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FOREWORD

The Army Mathematics Steering Committee (AMSC) sponsors, on behalf of
the Chief of Research, Development and Acquisition, the series of conferences
entitled, "Design of Experiments in Army Research, Development and Testing."
It delegates the responsibility for the conduction of these meetings to its
Subcommittee on Probability and Statistics. At the 30 November 1973 meeting

~of this subcommittee it was recommended that appropriate steps be taken to
celebrate the twentieth anniversary of the design of experiments conferences.
After some deliberation it was decided to ask members of the Program
Committee to increase the usual number of invited speakers from five to eight,
and to invite Army scientists to contribute many papers for both the
technical and clinical sessions. In addition, some person should be asked

to give a history of these conferences and their importance to the statistics
used by the Army. This individual should point out the role played in these
conferences by Professor Samuel S. Wilks, and also discuss his many
contributions to the Army and to the other armed services. The Chairman of
the Subcommittee, Dr. Walter Foster, reported that the coming conference
would probably be held at Fort Belvoir and he hoped for confirmation of this
in the near future.

In a letter under date of 20 February 1974, Lieutenant Colonel Harold
P. Hoefekamp issued a formal invitation to hold the conference at Fort
Belvoir on 23-25 October 1974. We quote the following paragraph from his
letter: "The Operational Test and Evaluation Agency and the Engineer
Center considers it an honor to host the Army's 20th Design Conference.
Every effort will be made to insure that the best facilities and support
are made available for this historic event. Both the Operational Test and
Evaluational Agency and the Engineer Center are fully aware of the conference's
significance, not only to the Army's scientific community, but to the Army
as a whole." The sentiments expressed in this letter certainly guided the
hosts in their handling of this meeting as it was one of the best conferences
in this series. This was no doubt due largely to the expertise with which
Fort Belvoir handled the arrangements and the visitors. Mr. Walter Hollis,
Chairman on Local Arrangements, is to be commended on a very fine job.
Unfortunately, he had to be out of the country on the dates of the conference.
In his absence, Captain Stanley Dahlin took over his chores. He deserves
special recognition for the manner in which he performed his assigned duties.

Each year the Program Committee is instructed to select invited speakers
who can discuss in an informative and stimulating manner statistical areas
of current interest. At least one of the speakers, who has expertise in
areas of special interest to the host installation, is asked to present
new developments in these fields. These selection criteria were certainly
met by the gentlemen giving the talks in the General Sessions. The titles
of their addresses are noted below:
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Samuel S. Wilks and the Army Experiment Design Conferences
Dr. Churchill Eisenhart, National Bureau of Standards

Multidimensional Contingency Tables
Professor Solomon Kullback, The George Washington University

Multivariate Data Analysis
Professor Herbert Solomon, Stanford University

Order Statistics
Professor H. A. David, Iowa State University

Reliability
Professor Gerald Lieberman, Stanford University

Ranking and Selection Procedures
Professor Robert Bechhofer, Cornell University

Maximum Information from Experiments
Dr. Marion R. Bryson, U.S. Army Combat Development Experiment Command and
Dr. William Mallios, McDonald Service Company

The tenth Samuel S. Wilks Memorial Award of the American Statistical
Association was presented to Mr. Cuthbert Daniel for his many outstanding
contributions to the applications of statistics. The presentation of the
medal, citation and honorarium was made by Professor Jerome Cornfield,
President of the American Statistical Association. More details about this
award appear in the body of these proceedings.

Probably the most valuable phases of these conferences are the technical
and clinical sessions. In the technical sessions Army scientists announce
their successes in handling a few of the many technical problems they face,
while in the clinical sessions they have a chance to get help from nationally
known scientists on ways to cope with some of their unsolved design
problems. This year there were thirty-four (34) technical papers and eight
(8) clinical papers on the agenda. We are pleased to be able to print
many of these contributed papers in this technical manual,

Members of my Program Committee (Marion Bryson, Gerard Dobrindt,
Walter Foster, Fred Frishman {Secretary), Walter Hollis, Badrig Kurkjian,
Clifford Maloney, Herbert Solomon, Dougias Tang and Robert Thrall) are
due my thanks for ogutlining the main events of this meeting and for selecting
such an outstanding list of invited speakers. I would also like to express
my appreciation to Francis Dressel for serving as secretary during the
final phases of this conference.

FRANK E. GRUBBS
Conference Chairman
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0900~1 130
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1300-1445

TWENTIETH CONFERENCE ON THE DESIGN OF EXFERIMENTS
IN ARMY RESEARCH, DEVELOPMENT AND TESTING

23-25 October 1974

The U.S. Army Operational Test and Evaluaticn Agency
and the U.S. Army Engineer Center

¥ % ¥ * X Wadnesday, 25 October ¥ X X ¥ ¥
REGISTRATION ~ Main Lobby of Humphrey's Hall

GENERAL SESSION | - Auditorium of Humphrey's Hall

CALLING OF CONFERENCE TO ORDER

Walter Hollis, Chairman on Local Arrangerents, U.,S. Army
Operational Test and Evaluation Agency

WELCOMING REMARKS

CHATRMAN OF SESSION |

Dr, lvan R, Hershner, Jr., Office of the Chief of Research and
Development and Acquisition, The Pentagon, Washington, D.C.

SAMUEL S. WILKS AND THE ARMY EXPERIMENT DESIGN CONFERENCE SERIES

Dr. Churchil!l Eisenhart, National Bureau cf Standards,
Gaithersburg, Maryland

MULTIDIMENSIONAL CONTINGENCY TABLES

Professor Solomon Kullback, Department of Statistics, The
George Washington University, Washington, D.C.

LUNCH

CLINICAL SESSION A - Auditorium of Humphrey's Hall

CHA 1RMAN

Douglas B. Tang, Department of Biostatistics/Applied Mathematics,
Walter Reed Army Institute of Research, Washington, D.c
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B, 0. Benn, Waterways Experiment Stations, Corps of Engineers,
Vicksburg, Mississippi
STATISTICAL TESTING OF ELECTROEXPLOSIVE DEVICES SUBJECTED TO
SHORT PULSE STIMULI

Burton V. Frank, Picatinny Arsenal, Dover, New Jersey
Ramie H. Thompson, Franklin Research Institute Laboratories,
Philadelphia, Pennsylvania

TECHNICAL SESSION I

CHA [RMAN
William L. Shepherd, Instrumentation Directorate, U.5. Army
White Sands Missile Range, White Sands Missile Range, New Mexico
TARGET VISIBILITY AND DECISION OPTIMIZATION
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BREAK
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A. Clifford Cohen, Institute of Statistics, University of
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Wiltiam L. Shepherd, Instrumentation Directorate, U.S5. Army
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xili



0830-1000

0830-1000

0830~-1000

*****THURSDAY*****
CLINICAL SESSION C ~ Auditorium of Humphrey's Hall

CHA | RMAN
Boyd Harshbarger, DeparfmenT of Statistics, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia

PANELISTS
A. Clifford Cohen, Institute of Statistics, University of
Georgia, Athens, Georgia

Larry H, Crow, U.S. Army Materiel Systems Analysis Agency,
Aberdeen Proving Ground, Maryland

Gerald Lieberman, Department of Operations Research, Stanford
Universlty, Stanford, California

CLIMATIC CHANGES FOLLOWING VOLCANIC ERUPTIONS

John Bart Wilburn, Jr., Instrumentation and Methodology Branch,
U.S. Army Electronic Proving Ground, Fort Huachuca, Arizona

VALIDATION OF ENGINEERING SIMULATION MODELS

| Roland H., Rigdon, Rodman Laboratory, Rock l|sland Arsenal,
Rock Island, I[llinois

TECHNICAL SESSION 5

CHA |RMAN

Gerard T. Dobrindt, U.S5. Army Test and Evaluation Command,
Aberdeen Proving Ground, Maryland

PREDICTING METASTASIS BY DISCRIMINANT FUNCTION WHEN SMALL OPHTHALMIC
MELANOMAS HAVE BEEN DIAGNOSED

Walter D, Foster and lan Mclean, Armed Forces Institute of
Pathology, Washington, D.C.
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Command, Fort Momnmouth, New Jersey

BREAK

GENERAL SESSION Il ~ Auditorium of Humphrey's Hall

CHA IRMAN

Professor Boyd Harshbarger, Department of Statistics, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia

MULTIVARIATE DATA ANALYSIS

Professor Herbert Solomon, Department of Statistics, Stanford
University, Stanford, California

LUNCH - Mackenzie Hall

TECHNICAL SESSION 7 - Auditorium of Humphrey's Hall

CHA IRMAN
Richard J. D'Accardi, U.S. Army Electronics Command, Fort
Monmouth, New Jersey
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Dr. Marion R. Bryson, U.S. Army Combat Developments Experiments
Command, Fort Ord, California

Dr. William Mallios, Braddock, Dunn, McDonald Sérvice Company,
Fort Ord, California
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SAMUEL S. WILKS AND THE ARMY EXPERIMENT DESIGN CONFERENCE SERIES

Churchill Eisenhart
Senior Research Fellow
Institute for Basic Standards
National Bureau of Standards

Washington, D.C. 20234

ABSTRACT. A biography of Professor Samuel Stanley Wilks (1906-1964)
of Princeton University, with particular attention to his early life,
notes on the persons who shaped his professional development, review
of his many facetted professional career and his role in initiating
and launching the U.S. Army's annual series of Conferences on the
Design of Experiments in Army Research, Development and Testing.

1. BIRTH, FAMILY, AND EARLY YEARS. Sam Wilks was born on the
17th of June 1906 in Little Elm, Denton County, Texas, the first of
the three children of Chance C. and Bertha May Gammon Wilks. His father
trained for a career in banking, but after a few years chose instead to
make his livelihood by operating a 250~acre farm near Little Elm. His
mother had a talent for music and art; and a lively curiosity, which
she transmitted to her three sons. The predilection of their father,
Chance C. Wilks, for alliteration is manifest in the given names of all
three: Samuel Stanley, Syrrel Singleton, and William Weldon (Wilks).

]

Syrrél, less than two years younger than Sam, was his boyhood
companion; studied biology (B.S., 1927) and physiology (Ph.D., 1936);
became Associate Professor of Physiology at the Air Force School of
Aviation Medicine; and passed away early this year (1974). In consequence
of Sam's and Syrrel's initials being the same, their publications are
sometimes lumped together under "S. S. Wilks" in bibliographic tools,
e.g., in the successive volumes of the Science Citation Index.

Sam's "baby brother,' William, was elght years younger. He also
took a B.S, degree; became a research advisor to Bell Aircraft Company
in Fort Worth, Texas; and is still living. The choice of 'Weldon"
for his middle name is merely a happenstance of his father's effort
to achieve a triple alliteration, and has no genealogical significance:
there is no known connection between the Chance Wilks family and that
of the pioneer biometrician, W. F. R. Weldon (1860-1906), who died in
London in April of the year in which our bilographee was born; or with
any other Weldons.

Sam began his early education in a typical one-~room rural school
house where, in the seventh grade, he had as his teacher William Marvin
Whyburn, who became a distinguished mathematician, the president of
Texas Technological College (1944-1948), and the chairman or head of



two university departments of mathematics (UCLA, 1937-1944; University
of North Carolina, 1948-1956, 1960-1965)~-the first of an extraordinary
number of prominent people who had a part in Sam's education. He
attended high school in Denton, the county seat and the site of North
Texas State Teachers College (now North Texas State University), and

of a College of Industrial Arts for women (now Texas Woman's University).
~ During the week he roomed in Denton, and went home on weekends, walking
the 15 miles to his father's ranch when necessary. During his final
year of high school, it was noticed that he was absent repeatedly from
study hall. Inquiry revealed that he was skipping study hall in order
to take a mathematics course at North Texas State Teachers College.

Following graduation from high school, Sam continued his studies
at North Texas State Teachers College, where he followed an industrial
arts program, with particular attention to mathematics. He received
an A.B. in architecture in June 1926, a few days before his 20th birth-
day. A large drinking fountain, designed by Sam and a friend, on the
campus of the College attests to his talent and serves as a reminder
of his one~time interest in architecture. But believing his eyesight
inadequate for the life of an architect, he turned to a career in
mathematics.

2. TEACHING AND GRADUATE STUDY. During the school year 1926-1927,
Wilks taught mathematics and manual training in a public school in Austin,
Texas, and began graduate study of mathematics at the University of Texas
there. He continued his studies at the University of Texas as a part-time
instructor in mathematics 1927-1928; and received an M.A. in mathematics
in 1928. His first course in advanced mathematics at the University of
Texas was set theory, taught by R. L. Moore (1882-1974), renowned
among mathematicians for his research in topology, his unusual methods
of teaching, and the vigor and resoluteness of his opinions. Wilks
was fascinated by the unfolding of this beautiful theory from a few
simple definitions and axioms, but Moore's espousal of pure mathematics
as a discipline wholly divorced from application, and Moore's scorn of
applied mathematics as work on a level with washing dishes, were
incomprehensible and unacceptable to him. Had Moore's attitude beenll
otherwise, Sam might have become a topologist. But, as Alex M. Mood~
has said in his note on Sam's philosophy about his work, 'Sam's character
demanded that his work be immediately and obviously useful [and] Moore
was the last man to persuade him that point set theory was useful."

(MOOD 1965, p. 953) Much more in keeping with his "character' were
probablility and statistics, to which he was introduced by Edward L.
Dodd (1875-1943), an inspiring teacher and distinguished scholar,
noted for his researchesloﬁ mathematical and statistical properties of
various types of means.=

An aside on Sam's views with respect to pure mathematics and pure

mathematiclans seems appropriate at this juncture, before taking up the
next step in his education. To this end I can do no better than to



quote further from Mood's note:

"Wilks...s8aw little sense in pure mathematics unless it
had some ultimate application. He generally believed

that most pure mathematics would eventually justify itself
in this way and was delighted when that did happen in his
own work or that of others....The set theoretical founda-
_tion of probability theory developed by Kolmogorov gave

Sam no end of pleasure partly because of that early course,
perhaps, but more likely because it was a good piece of
evidence that pure mathematicians were not, after all,
wasting their time.

"While Sam was generally optimistic about the eventual
utility of pure mathematics he became less and less
patient over the years with pure mathematicians themselves—-
especlally those in the United States. For one thing he
believed that their general refusal to apply their intellects
even briefly to important practical problems was less than
patriotic, to say the least. He rarely missed an opportunity
to point out that almost all top-level Soviet mathematicians
had at one time or another turned to an important field of
application thus placing themselves, in his eyes, quite above
many of America's leading mathematicians.

"The thing that particularly annoyed Sam about pure
mathematicians was their snobbishness about pure mathematics
and, worse, their success in generating the same sort of
snobbishness in every mathematically talented student that
came along. Sam was a very even tempered man but this was
a subject that could summon loud indignation from him. He
believed that feor reasonably even balance in the development of
mathematics a substantial proportion of the most talented
students should go into mathematical statistics, mathematical
physics, applied mathematics, econometrics, etc. As 1t was,
he believed that pure mathematics preempted over nine out
of ten of the most talented students thus completely deforming
mathematical progress in the United States. 1In his later
years he maintained that it was impossible for him to persuade
enough sufficiently promising college graduates to undertake
work in statistics at Princeton and therefore he had to go to
Britain and Canada to find good students whose attitudes had
not been corrupted by pure mathematiclans in the United
States." (MOOD 1965, 953-954)

When Sam completed the requirements for his M.A., in mathematics
at the University of Texas in 1928, Professor Dodd encouraged him to
pursue further study of mathematical statistics at the University of



Iowagj under Henry L. Rietz (1875—19§;)£/, the leader of his generation
in American mathematical statistics.=’ Wilks stayed on at the Univer-
sity of Texas as an instructor in mathematics during the symmer of 1928,
and the academic year 1928-29; applied for a fellowship at the University
of Iowa; and to pick up some ready cash, served as a monitor for State
bar exams given at the University.

In due course, Sam was offered, and accepted, a fellowship at the
University of Iowa, in Iowa City. He arrived in Iowa City in the
summer of 1929 to begin a two-year program of graduate study and research
leading to a Ph.D. degree in mathematics, with a minor in education.
During the second summer (1930), he was joined by two others whose
names were later to become well-known in probability and mathematical
statistics circles: Allen T. Craig and John H. Curtiss.

Curtiss had just received his A.B. in mathematics at Northwestern
University, and had come to the University of Iowa to study actuarial
mathematics preparatory to choosing actuarial work as a career. He
was assigned to one of two desks arranged back-to-back in the Mathe-
matics Department Library, the other occupied by . He has a close-
up plcture of Sam taken from this vantage point.—

Allen T. Craig, in contrast, had returned to the University of
Iowa in the summer of 1930 for the express purpose of completing his
doctoral thesis "On the Distribution of Certain Statistics Derived
from Small Random Samples'". I say "had returned to the University
of Iowa' because Craig had been there during the academiec year 1928-29,
but had left Iowa City in the summer of 1929 to accept a position as
an Instructor in mathematics at his alma mater, the University of
Florida, in Gainesville, for the academic year 1929-30. Drawn together
by common interests, Allen Craig and Sam Wilks immediately became
close and lifelong friends, Craig, in his thesis (CRAIG 1932), gave
a number of general results on the distributions of such statistics
as the arithmetic mean, harmonic mean, geometric mean, median, quartile,
decile and range of samples of small n items selected at random from
a rather arbitrary (continuous) universe, together with a large number
of explicit results for sampled universes of special types. Sam
often said that his own work on the theory of nonparametric or distri-
bution-free methods--an area in which Sam made a number of truly
outstanding contributionst/ -~had its origins in the general formulas
given by Craig for the distributions of the "median, quartile, decile,
and range'.

Sam's doctoral dissertation was, likewise, a contribution to 'the
theory of small samples". Entitled "On the distributions of statistics
in samples from a normal population of two variables with matched
sampling of one variable" (WILKS 1932a), .it provided the small-sample
distribution theory required to answer a number of questions drawn to



Sam's attention by Professor E. F. Lindquist, Professor of Education
at the University of Iowa and Director of the Iowa Testing Programs,
who had used the technique of "matched" groups in experimental work
in educational psychology, and whose lectures Sam had attended.

Sam's thesis was preceded by a short note by Sam on 'The standard
error of the means of 'matched' samples" (WILKS 1931), published in
the March 1931 issue of the Journal of Educational Psychology, where
it was accompanied by an article by Lindquist (LINDQUIST 1931),
describing the use and importance of "matched" groups as a statistical
technique in experimental psychology and educational testing. Sam's
predoctoral note and his doctoral dissertation were the first of a
serles of papers on multivariate analysis suggested by real-life
problems in experimental psychology and educational testing, and mark
the beginning of Sam's life-long assoclation with the latter field.

Sam and Allen Crailg both received their Ph.D.'s from the University
of Iowa in June 1931--Sam in Mathematics, with a minor in Education;
Allen, in Mathematics alone. 'Father Rietz" was mighty proud of his
"twins". Theirs were the first doctoral dissertations written at the
University of ILowa on aspects of 'the theory of small samples', the
new area of mathematical research, initiated in 1908 by "Student"
(William Sealy Gosset, 1876-1937) and developed to full flower by
R. A. Fisher (1890-1962) between 1915 and 1928, to which an increasing
number of American mathematicians were devoting attention at that
time--notably C. C. Craig (at the University of Michigan in Ann Arbor),
Harold Hotelling (at Stanford University, in California), Paul R. Rider
(at Washington University, St. Louis), and Rietz (at the University of
Iowa, in Iowa City). Rietz was doubly proud of their accomplishments;
not only had each made a first-rate contribution to '"the theory of
small samples', but also the mathematics in their dissertations was
intelligible to American mathematicians--which was a great deal more
than one could say about the papers of R. A. Fisher. He therefore
held out two "prizes' to his deserving "twins': (1) an appointment as
an Associate (a rank between Instructor and Assistant Professor)
in his department, and (2) his endorsement for a National Research
Council Fellowship. Allen chose the appointment in the Department of
Mathematics--stayed on to become a full Professor in 1945, and retired
in 1970; Sam, the NRC Fellowship, and made plans to continue research
in multivariate statistical analysis under Harold Hotelling (1895-1973),
a pioneer in this field, and the individual in the United States most 10/
versed in the mathematics of the Student-Fisher theory of small samples.—

After receiving his Ph.D., Wilks stayed on to attend the lectures
given, and seminar conducted, during the first half of the summer
session, 8 June ~ 16 July, by the British mathematical statistician,



Egon 5. Pearson; and gave a talk in the seminar series. Pearson's

two papers with Jerzy Neyman on "The use and interpretation of certain

test criteria for the purposes of statistical inference" (Part I,
Biometrika, Vol. 20A (1928), pp. 175-240; Part II, ibid, pp. 263-294)

had been well received by mathematicians interested in statistical

theory. As you will recall, it was in these papers that they introduced
and explored their likelihood~ratio technique for more or less 11
automatically discovering "good" tests of various statistical hypotheses.~—

Wilks also met R, A. Fisher, who came over to Iowa City from Ames
for a day during this period., By an extraordinary coincidence, R. A.
Fisher was "in residence" that summer at Iowa State College, at Ames,
90 miles distant, giving a "competing'' series of lectures on the
material in his two books, Statistical Methods for Research Workers
(3rd edition, 1930) and The Genetical Theory of Natural Selection (1930),
during the first half of their summer session, 16 June-24 July. The
overlap of the two programs, and the distance between the two institutions,
made it physically impossible for faculty and students to take in both
programs in their entirety.

3. MARRIAGE AND POSTDOCTORAL STUDY. Sam returned to Texas in
midsummer 1931, and on September 1 married Gena Orr of Denton. The
Wilks and Orr families had been friends for many years. Indeed, about
one year before Chance Wilks finally won the hand of Bertha, she was
being courted by Will Orr, while Chance was away from Little Elm,
trying his hand at the banking business. But Chance returned in time
to prevent my story from ending before it began--and in due course Gena
was fathered by Will; and Sam, by Chance.

Sam and Gena had known each other from childhood. They attended
the same high school in Denton; she was a student at the College of
Industrial Arts, in Denton, at the same time that Sam was attending
the North Texas State Teachers College there; and they both received
their A.B. degrees in 1926; but they did not start "dating" until
that summer. What brought them together was the wedding of Sam's
cousin, James Hodge, and Jessie Hill, at which Sam was Best Man, and
Gena a bridesmaid. Gena then taught school locally for a couple of
years, while Sam was continuing his study of mathematics at the
University of Texas, in Austin: and continued to date Sam from time
to time when he was home on vacation. In due course she got herself
over to the University of Texas, where she did graduate work in
English, and received her Master's Degree in 1929.




As part of their honeymoon, Sam and Gena set off for New York
City by boat, from Galveston, Texas. The trip took five days. They
settled in an apartment on the 6th floor of the Columbia University-
owned apartment bullding at 401 West 118th Street. During World War II
the main offices of the Statistical Research Group-~Columbia (SRG-C),
of which Harold Hotelling was the Principal Investigator, were located
in this building, in what had been Sam and Gena's apartment; and W.
Allen Wallis, the Group's Director of Research, occupied what had been
their bedroom.

Among those attending Hotelling's lectures on "Statistical
Inference'" that first year at Columbia in addition to Sam were Acheson
J. Duncan, from whom I was later to receive my first course in this
subject, and W. J. Youden (1900-1971), who was later to join me at
the National Bureau of Standards (1948-1965) as practitioner, expositor
and innovator of statistical methods par excellence. 'Atch' Duncan
was then an Instructor in Economics at Princeton University, and at
my father's insistence had been sent at University expense to study
modern statistical inference under Hotelling. I shall say more about
this in a few moments. 'Jack" Youden had received his Ph.D. in
Chemistry from Columbia in 1924, was a Physical Chemist at
the Boyce Thompson Institute for Plant Research in Yonkers, New York,
and was commuting to New York to hear Hotelling's lectures on his own /
volition to gain a better grasp of Student-Fisher theory and methods .

In addition to auditing Hotelling's lectures, Sam joined Jack W.
Dunlap and Warren G. Findley, then Ph.D. candidates at Columbia in
Psychology and Educational Psychology, respectively, in attending
the lectures, at Teachers College, of the English psychelogist,
Charles E. Spearman (1863-1945), revered by psychologists as the father
of Factor Analysis (1904) and for development of a rational basis for
determiéig7 general intelligence and for validating intelligence
testing. I mention Jack Dunlap and Warren Findley explicitly
because Sam's and their paths were to meet and join for a while at
various times in later years, for example, when Dunlap was Director
of Research of the National Research Council's Committee on Pilot
Selection and Training (1941-42), and when Findley was Director of
Test Development (1948-53), and later in charge of the Evaluation and
Advisory Services (1953~56) of the Educational Testing Service in
Princeton.

It was a year of exceptional productivity for Wilks: he wrote
or completed four distinct papers in the area of multivariate analysis
all of which saw almost immediate publication. In one (WILKS 1932b)
he found the maximum likelihood estimates of the parameters of a



bivariate normal distribution when some of the individuals in a sample
yield observations on both variables, x and y, and some only e¢n X, or

on y, alone; in a second (WILKS 1932c), he showed that the distribution

of the multiple correlation coefficient in samples from a normal
population with a non-zero multiple correlation coefficient could be
derived directly from Wishart's generalized product moment distribution
(1928) without making use of the geometrical notions and an invariance
property utilized by R. A. Fisher in his derivation (1928): in the

third, his great paper on "Certain Generalizations in the Analysis

of Variance" (WILKS 1932e), he defined the '"generalized variance' of

a sample of n individuals from a multivariate population, constructed
multivarlate generalizations of the correlation ratio and coefficient

of multiple correlation; deduced the moments of the sampling distributions
of these and other related functions in random samples from a normal
multivariate population from Wishart's generalized product moment
distribution (1928); constructed the likelihood ratio criterion for
testing the null hypothesis that k multivariate samples of sizes n,,

ny, --, ik are random samples from a common multivariate normal
population, now called "Wilks's A criterion", and derived its sampling
distribution under the null hypothesis; and similarly explored various
other multivariate likelihood ratio criteria; and in the fourth (WILKS
1932d), an outgrowth of attending Spearman's lectures, he obtained an /
exact expression for the standard error of an observed '"tetrad difference'—
in samples of size n from a normal population (in the special case in
which the intercorrelations of the four variables are all zero in the
population).

I mention these details just to show to what a remarkable extent
Sam was not only applying, but also extending the most advanced concepts
and tools of Fisher, Hotelling, Neyman, E. S. Pearson and Wishart
within one year of the receipt of his Ph.D.! I often heard my father,
Luther Pfahler Eisenhart (1876-1965), remark when he was Chairman of
the Department of Mathematics (1928-1945) and Dean of the Graduate
School (1933-1945) of Princeton University, that what determined a
man's stature in his chosen field was not the caliber of his doctoral
dissertation, but rather the caliber of the papers that he wrote and
published after receiving his Ph.D. Sam certainly passed that test
in 1932 with a wide margin to spare! TFurthermore, the high regard in
which Sam's papers were held immediately following their publication is
attested by the fact, already mentioned, that Irwin devoted 9 out of the
14 pages on "Exact sampling distributions" in his 'Recent Advances..(1932)"
(IRWIN 1934) to detailed consideration of Sam's thesis and the first
three of these four postdoctoral papers. And E. S. Pearson more
recently remarked that Sam's 'stature as a statistician was I think
early established by his Biometrika paper of 1932 on 'Certain generalizations
in the analysis of variance' [which] must have been written during the
winter after he gained his Ph.D. and as such was a remarkable
performance.' (PEARSON 1964, p. 597)



While at Columbia University, Sam went down to the Bell Telephone
Laboratories at 463 West Street to visit Walter A. Shewhart (1891-1967),
father of statistical quality control of manufacturing processes, 5/
with whose work he had become acquainted through Rietz and Hotelling.=—=
Sam became very interested in Shewhart's work, and shortly thereafter
Sam and Gena paid a brief visit to Walter and Edna Shewhart at their
home in Mountain Lakes, New Jersey. Several years ago, Mrs. Shewhart
told me that she remembered well how, as soon as Sam and Gena had left,
Walter had turned to her and said, "There is a young man who is going
to be one of the top men in Statistics in this country", or words to
that effect. This was the beginning of the friendship and collaboration
of these two men that continued until Sam's death.

In the Spring of 1932, Sam obtained a renewal of his National
Research Fellowship, as an International Research Fellowship. He
and Gena set off in August 1932 for London, England, where Sam was to
be in residence in Karl Pearson's Department of Applied Statistics
at University College (of the Unjversity of London) during the
"Michaelmas Term'" (Sept.~Dec.). While there, Sam and Karl Pearson's
gon, Egon S. Pearson, wrote a joint paper (PEARSON and WILKS 1933) in
which the likelihood ratio techniques of Sam's generalized analysis-of=-
variance paper are developed in greater detail for samples from a
bivariate normal distribution, generalizing to this bivariate case the
three tests developed by Neyman and Pearson (1931) .for the univariate
case. To illustrate the numerical application of the procedures they
had developed, they included two worked examples, one based on data
on the tensile strength and Rockwell hardness of aluminum dicastings,
taken from WaltiE/A, Shewhart's Economic Control of Quality of Manufactured
Product (1931).

While in London, Sam met a great many of the leading British
statisticians, and their disciples, either at University College or at
the delightful teas that preceded the monthly meetings of the Royal
Statistical Society. To add to the excitement-~-and to the strain of
a married couple's attempting to live in London on the small stipend
of an International Research Fellow--Sam ang Gena's son Stanley Neal
Wilks was born in London, in October 1932. Early in January 1933,
the family of three moved to Cambridge so that Sam could work with
John Wishart (1898-1956), whose work in multivariate analysis was close
to Sam's main interest. /

When Sam arrived at Cambridge, he found that Wishart and Bartlett
had just completed an "independent" derivation of Wishart's generalized
product-moment distribution "by purely algebraic methods'", that is,
by means of moment-generating functions in combination with the matrix
algebra of quadratic forms (WISHART and BARTLETT 1933). Wilks found



himself right at home in their company, and promptly wrote another
major paper (WILKS 1934) in which he gave a method of deriving directly
from the multivariate normal distribution (i.e., without using the
Wishart distribution) the moments of the sampling distributions of
functions of determinants of the types considered in his two Biometrika
papers. Also, at the suggestion of G. Udny Yule (1864~1951), he wrote
a paper, "On the Independence of Sums of Squares in the Analysis of
Variance', in which by means of characteristic functions in combination
with elementary matrix algebra, he demonstrated the independence of
various row, column, etc., "sums of squares' involved an analysis-of-
variance analysis of randomized blocks, Latin square, and certain other
experimental arrangements, discussed previously by R. A. Fisher.
Communicated to the Royal Society--not the Royal Statistical Society--
by Yule, for publication in its Proceedings, the paper suffered rough
treatment: it was apparently sent to Fisher to referee, who seems

to have felt that by its very theme it implied that he had not already
given adequate and intelligible proofs; then the manuscript was lost,
and Sam had to provide a second copy; and then it was rejected. The
publication shortly thereafter, in a publication of the Royal Statistical
Soclety, of a similar, but somewhat more elementary, paper on the

same subject, by one of Fisher's proteges, was a sore point with Sam
for many years. (I have discussed this matter with the author of the
"offending' paper. He assures me that he never saw Sam's manuscript;
and, until our conversation, never knew of its existence.)

In May 1933 my father offered Sam an appointment as an Instructor
in Mathematics in Princeton University. 1 first met Sam when he turned
up in Princeton in time for the fall semester 1933, imported for the
express purpose of teaching me--at least, that was what I thought at
the time. My budding interest in probability and statistics may have
helped a tiny weeny bit, but the true explanation was quite otherwise,
and has an Interesting background.

4. WILKS'S PRINCETON APPOINTMENT, AND STATISTICS AT PRINCETON
BEFORE WILKS. The key figure in Wilks's appointment was my father,
Luther Pfahler Eisenhart (1876~1965), who, in the spring of 1933, was
not only willing, but, as Chairman of the Department of Mathematics
(1928-1945), Dean of the Faculty (1925-1933), and Chairman of the
University Committee on Scientific Research (1930-1945), was also
able to effect Wilks's appointment to an Instructorship in Mathematics
on a more or less emergenzﬁjbasis over the opposition of almost every
member of his Department.=

An event that was to be instrumental in bringing both mathematical
economics and modern statistical theory and methodology to the Princeton
campus was the arrival of Charles F. Roos (1901-1958) as a National
Research Fellow in Mathematics for the academic year 1927-28. Roos had

10




received his Ph.D. in theoretical economics at the Rice Institute in
1926 under Professor G. C. Evans (1887-1973), who at that time was
developing a new mathematical theory of economic phenomena termed
"economic dynamics", and had spent 1926-27 at the University of Chicago
working with Professor Henry Schultz (1893-1938) who at that time was
deeply engaged in his epochal research on statistical laws of demand

and supply as one facet of his life's work on the theory and measurement
of demand. Roos came to Princeton primarily to broaden and sharpen

his knowledge of mathematics as a basis for making further contributions
to Professor Evans' new "economic dynamiecs'. While there he succeeded
in convincing some members of the Department of Economics and Social
Institutions that the Department could not afford to continue to
neglect much longer the advances in economic theory and methods
ploneered by Evans and Schultz.

In 1928 my father became ‘the Chairman of the Mathematics Department.
One of his early acts in this capacity was to arrange for the loan by
the Bell Telephone Laboratories, Inc. of a member of its Technical
Staff, Dr. Thornton C. Fry, author of Probability and Its Engineering
Uses (D. Van Nostrand, 1928), to give a course at Princeton on 'Methods
of Mathematical Physics" as a Visiting Lecturer in Mathematics during
the first gemester 1929-30. 1 remember going with my father to Bell
Labs to visit Fry during either my spring or summer vacation of 1929--the
necessary arrangements may have been broached, or perhaps firmed up on
that occasion. Be that as it may, one result of Fry's visit to Princeton
was that a course in probability, taught by H., P. Robertson (1903-1964),
Associate Professor of Mathematical Physics, using Fry's book as the
text, was offered by the Mathematics Department during the second
semester of my sophomore year (1931-32). It was this course that first
interested me in probability and mathematical statistics and started me
on my career.

In 1931 steps were taken that led to a course in "modern statistical
theory" being offered for the first time at Princeton by the Department
of Economics and Social Institutions during the first semester of my
senior year (1933-1934). What happened was this: Professor Frank D.
Gragham (1890-1949) of this department approached my father in his
capacity as Dean of the Faculty, and suggested that one way to overcome
lack of competence in his department with respect to the latest develop-
ments in mathematical and statistical methods in economics would be to
send one of the young instructors in his department to study with
Professor Henry Schultz at the University of Chicago. (The possibility
of hiring a new staff member from the outside to this end had been
considered earlier but put aside--the Depression was in full swing,
and there was a freeze on new University appointments.) My father was
favorable to this proposition, subject to an additional provision:
that the individual concerned also study the modern theory of statistical
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inference with Harold Hotelling for the purpose of initiating a course
in this subject on his return. The "victim" that Professor Graham had
in mind was Acheson J. Duncan; and this is how it came to pass that
Duncan, with financial assistance from the International Finance
Section of Princeton University, spent the first half of the academic
year 1931-32 studying with Professor Henry Schultz at the University of
Chicago; and the second half with Professor Hotelling at Columbia.

When Duncan arrived at Columbia University early in 1932, one of
the first persons he met was Wilks., Another was W. R. Pabst, then a
graduate student in Economics at Columbia, who years later, was to be
instrumental in Duncan's becoming active as a teacher, author, and
consultant on statistical methods in standardization and quality
control. Duncan returned to Princeton in the fall of 1932, and began
to ready himself to teach his projected new courses, unaware--as were
also Wilks and my father--that before his course in '"modern statistical
theory' would get under way, Wilks would have joined the Princeton
University faculty.

The program worked out for Duncan on his return to Princeton
was this: He would particlpate as an assistant in the course,
"Elementary Statistics", taught by Professor James G. Smith (1897-1946)
in the Department of Economics and Social Institutions, scheduled for
the Spring semester in 1933, serving as instructor in charge of the
"laboratory" or 'workshop' sessions in which the students gained practical
experience in graphical and tabular presentation, and in the computation
of descriptive statistics, index numbers, moving averages, link relatives,
etc. Then, as a sequel to this course, Duncan's new course on '"Modern
statistical theory" would be offered by the same Department during the
first semester of the academic year 1933-34.

I took these two courses in the Spring and Fall of 1933, respectively.
In Smith's course we used as text Principles and Methods of Statistics
by Robert E. Chaddock (1879-1940), published by the Houghton Mifflin
Company in 1925, but the scope, nature, and mode of presentation is more
accurately reflected by Profeasor Smith's Elementary Statistics. An
Introduction to the Principles of Scientific Methods, published the
following year (New York: Henry Holt and Company, 1934). Some of
R. A. Fisher's contributions to statistical methodology were alluded to,
but only very briefly, as tips on recent developments that would warrant
looking into, not as integral parts of the course. In Duncan's course,
on the other hand, bullt as it was around Hotelling's lectures, and the
then available mimeographed chapters of Hotelling's never published book,
Statistical Inference, the contributions of Student and R. A. Fisher
occupied the center of the stage a large part of the time.
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In the spring of 1933 a crisis developed of which I was totally
unaware at the time, and the particulars of which I was not to learn
untll some years later. Wilks was at Cambridge University working with
Wishart on the last lap of his two-year fellowship program and would be
needing a permanent post, or at least a new source of income, by fall.

He had sent résumés of his professional career to the universities in the
United States known to have programs in probability and mathematical
statistics, indicating that he was 1n need of an instructorship or other
full-time position beginning with the academic year 1933-34., The replies
that he received were all negative--the United States was in the depth
of the Depression, colleges and universities were having to make do with
dramatically reduced income from endowment and other sources, and all,

it seemed, were tightening the belt, and none were planning to take on
additional personnel. With an exceptlonal training in mathematical
statistics, with four substantial research papers, and two research notes
already published, one joint research paper accepted for publication,

and two research papers nearly ready for publication, he was one of the
most promising young men in mathematical statistics and applied
mathematics generally, yet he had no prospect of a job. Wilks's
situation seemed hopeless and was rapidly becoming desperate. Here

he was in England with his wife and son; his fellowship funds, which

were never really adequate for married people, or couples with children,
were about to rum out; and no prospect of employment.

Hotelling, knowing full well of my father's desire to build up a
program in probability and mathematical statistics at Princeton and of
the need of the College Entrance Examination Board for assistance from
someone of Wilks's caliber on multivariate sampling distribution problems
arising in educational testing, appealed directly to my father to take
Wilks on at Princeton, stressing the long~term advantages to Princeton
and the at-the-moment desperateness of Wilks's situation. Thus it came
to pass late in the spring of 1933 that my father, as Chairman of the
Mathematics Department, offered Wilks an instructorship in the Department
of Mathematics for the academic year 1933-34, and advised him of a
tentative arrangement that he had made with Professor Carl C. Brigham of
the Department of Psychology and Assocliate Secretary of the College
Entrance Examination Board (the central office of which had been at
Princeton for some years) to work part-time also with the Board on
problems arising in the scaling of achievement tests. It was not until
many years later that I learned from my father that he had brought off
this coup over the opposition of almost every member of his Department.

I have often wondered whether he would have been able to bring it off

a year or even six months later because, although he continued as Chairman
of the Mathematics Department until 1945, in mid-1933 he gave up his

post as Dean of the Faculty to become Dean of the Graduate School,
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I also learned in later years, after I had returned from London
and had become a close personal friend of Sam and Gena Wilks, that
Sam had received only one other offer: at Rothamsted Experimental
Station, in response to Wishart's repeated pressuring of R. A. Fisher
on Wilks's plight and need. The offer itself, however, was humiliatingly
niggardly and grossly inadequate to Wilks's needs, perhaps as a result
of Wilks having already incurred Fisher's wrath over his analytical
(in contrast to geometrical) exposition of the independence of sums of
squares in the analysis of variance.

Wilks arrived in Princeton in September 1933. As a new instructotr
in the Department of Mathematics, he found himself teaching the usual
undergraduate courses in analytic geometry, calculus, and so forth
during the academic year 1933-34. In addition to such teaching that
first year, Sam continued his research, primarily in multivariate
analysis; gave me helpful guidance in the preparation on my senior
thesis on "The Accuracy of Computations Involving Quantities Known
Only to a Gilven Degree of Approximation'; and spent the remainder of
his "spare time" on his "second job'" with Professor Brigham and the
College Entrance Examination Board. The following year, 1934-35,
Sam's program was much the same, except that he now guided my post-
graduate reading and study in probability and statistical theory and
methodology in preparation for my becoming a doctoral candidate in
Statistics under J. Neyman and E. S. Pearson at University College,
London, 1935-37.

Wilks taught hils first statistics course at the University of
Pennsylvania, in Philadelphia, during 1935-36. (Dr. George Gailey
Chambers, Professor of Mathematics, University of Pennsylvania, had
died on 24 October 1935, shortly after his graduate course 'Modern
Theory of Statistical Analysis" had gotten under way. Sam was
commissioned to complete the teaching of this course in his stead.)
During the same period Sam gave an informal course--i.e., not listed
in the official University course catalog--to three Princeton seniors,
Walter W. Merrill, John 0. Rohm, and William C. Shelton, on much the
same material; and supervised Shelton's senior thesis on "Regression
and Analysis of Variance". (Shelton continued in Statistics, rising
to become Special Assistant to the Commissioner of Labor Statistics.
Merrill and Rohm took up accounting and law, respectively.)

Wilks was promoted to an assistant professorship in 1936; and
in 1936-37 taught his first statistics courses at Princeton: a
graduate course during the Fall Term--see WILKS 1937--and an under-
graduate course during the Spring Term. A Princeton senior that year
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who took the graduate course, Irving E., Segal (now a Prof. of Math

at MIT), wrote a senlor thesis under Sam's supervision that was
subsequently published in the Proceedings of the Cambridge Philosophical
Society (SEGAL 1938).

The publication, in the January 1973 issue of the IMS Bulletin,
of Professor Harry C. Carver's letter of 14 April 1972 to Professor
William Jackson Hall on the "beginnings of the Annals' prompts me
to correct a mistaken conjecture contained therein on why Sam Wilks
was not permitted to teach a course in mathematical statistics during
his first few years as an instructor in the Mathematics Department
there, Professor Carver wrote:

"...one day I asked [Wilks] how it was that he was not
teaching a course in mathematical statistics at Princeton.
He replied that he had tried to start such a course there,
but his superiors turned down his request each time,—--
probably because mathematical statistics and probability
had not yet rung a bell in the staid Eastern Colleges."

The fact of the matter is that mathematical statistics and
probability already had "rung a bell" at Princeton: two years before -
Wilks's arrival, Acheson J. Duncan had been sent off at University
expense to study with Professors Henry Schultz and Harold Hotelling
for the express purpose of readying himself to initiate courses in
"mathematical economics'" and "modern statistical theory' on his return.
It was this prilor arrangement and commitment, not lack of appreciation
of the importance of mathematical statistics and probability-—or of
Wilks's exceptional qualifications—-that constituted the primary
obstacle to Wilks's offering an undergraduate course in mathematical
statistics during his first three years as a member of the Mathematics
Department of Princeton University. Duncan's course on 'modern statistical
theory" had been scheduled to be offered for the first time during the
Fall Term of 1933 before the possibility of Wilks's coming to Princeton
had even been considered. In view of the expense that the University
had incurred in underwriting Duncan's year of training in preparation
for the offering of this course, and the sacrifice that Duncan had
made in postpening work on his doctoral dissertation in order to
acquire the requisite training at the University's request, it would
have been very improper and cruel to have shelved Duncan's course and
let Wilks start one instead. 1 am sure that Wilks recognized this; and
was also cognizant of the other factors that delayed his getting a
course of his own in the Mathematics Department.

The three-year delay between Sam's arrival at Princeton and

his first officially recognized course in statistics under the auspices
of the Mathematics Department was the result of at least four factors.
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First, there was the priority that circumstances had accorded to
Duncan's course in the Department of Economics and Social Institutions.
Furthermore, that Department had taken the initiative in the matter,
and was desirous of modernizing its outlook and cggﬁse offerings with
respect to mathematical economics and statistics.

Second, under the circumstances, any course on 'mathematical
statistics", "statistical analysis', '"statistical inference', or
whatever, to be offered by Wilks in the Mathematics Department would
have to be an additional new course, and would require the approval
of the all-powerful Course of Study Committee of the Faculty. A new
course at Princeton had to be described in detail by the department
proposing to offer it. Faculty approval gave the department the right
to teach the described subject matter. I am not sure that this was
an exclusive right, but I doubt that the Course of Study Committee
would have approved teaching essentially the same material in two
departments. Hence a major obstacle to Sam's teaching an undergraduate
course in Statistics was the historical fact that Statistics had been
the province of the Department of Economics and Social Institutions.

Third, until Sam was promoted to an assistant professorship in
1936, he was only an instructor; and in a department having the stature,
nationally and internationally, of Princeton's Mathematics Department
it was definitely not customary for an undergraduate, much less a
graduate course, to be initiated by and be the sole responsibility of
an individual with the rank of instructor.

A fourth, and very inhibiting factor was the unfavorable mathematical
"climate" that prevailed in Fine Hall, which housed Princeton's Mathe-
matics Department during Sam's early years at Princeton. Geometry had
occupied the center of the stage in this Department, for over a quarter
of a century, with Algebra and Analysis accorded much less exalted
roles. Then, in 1932, the new Institute for Advanced Study, an
institution completely distinct from Princeton University, had come into
being, and the members of its School of Mathematics were granted office
space in the Mathematics Department's Fine Hall until the completion of
their first building, Fuld Hall, in 1939. Albert Einstein (1879-1955)
arrived to take up his post in the Institute during the Winter of 1933,
and Hermann Weyl (1885-1955) arrived a few months earlier. Johm Von
Neumann (1903-1957) was already there (Lecturer, 1930-31, Princeton, then Professor
of Mathematical Physics, 1931-33; Professor of Mathematics, Institute
for Advanced Study, 1933-57); as were also E. U. Condon (1903-1961;
Assistant Professor of Mathematical Physics, Princeton, 1928-31;

Associate Professor, 1931-38, Professor, 1938-47), and E. P. Wigner
(Lecturer in Mathematical Physics, Princeton, 1930; Professor, 1930-36;
1938-1971). With this galaxy of mathematical physicists all together
ine one place for the first time, the mathematical theory of relativity
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and quantum mechanics were definitely the fashion of the day in Fine
Hall--~a difficult "climate" in which to initiate a program in
mathematical statistics.

By 1936-37, the division of territory between the Department of
Mathematics and the Department of Economics and Social Institutions
had been resolved. The latter would be restricted to instructiom in
statistical theory and methods pertinent to the economic and social
sciences; and the basic general undergraduate course(s) in statistical
theory and methodology, and the graduate courses in advanced mathematical
statistics would be the province of the Mathematics Department. As we
have already said, Wilks taught his first statistics course at Princeton
in the fall of 1936, the graduate course leading to his lithographed
lecture notes on Statistical Inference--(1937); and in the spring of
1937, a sophmore course with calculus as prerequisite, quite
possibly the first carefully formulated college underclass course
in mathematical statistics at this level. It was offered thereafter
for a number of years to students in all fields in the second half of
the sophomore year. The material presented in this course, extended
and polished, became generally available a decade later in his "blue
book", Elementary Statistical Analysis (1948b). A third course, also
one semester in length, was added in 1939-40. It was an upperclass
course for students who wanted to specialize in statistics, and
congisted of a rather thorough mathematical treatment of statistical
theory in the classroom plus a laboratory section devoted to applica-
tions and computations. This course was taken also by beginning graduate
students. Wilks's first doctoral student, Joseph F. Daly received
his Ph.D. in 1939. George W. Brown and Alexander M. Mood followed in
1940. World War II demolished his plans for sabbatical leave to lecture
in South America and accept an offered exchange professorship for one
semester at the Natlonal University in Santiago, Chile. As World War II
progressed, Sam became ever more deeply involved in war research—-I
shall return to this in a moment--and in due course was released from
academic duties entirely. Helped by two of his graduate students,
T. W. Anderson and D. F. Votaw, Jr.,and Henry Scheffé, he succeeded in
seeing through to lithoprinted publication the graduate level text,
Mathematical Statistics (1943), before becoming totally involved in
war work. This was the forerunner of his polished comprehensive treat-
ment bearing the same title published as a type-set book in 1962,

In keeping with my father's policy of promotions as soon as merited
without regard to leave of absence, Sam was promoted to a full Professor
of Mathematics in 1944, effective on his return to academic duties;
and plans were laid for a Section of Mathematical Statistics within
the Department of Mathematics. Following the war there was a steady
flow of able graduate students and postdoctoral research associates,
some of whom, like Robert Hooke and Henry Scheffé, were changing from
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mathematics to statistics. By the time of Sam's death (1964), Princeton
had granted Ph.D.'s to approximately 40 men in mathematical statistics and
probability, all of whom had studied to some extent with Wilks, and the
dissertations of about half had been supervised by him.

It would be a mistake to infer from the foregoing that Wilks's
educational activities were limited to teachingand thesis guidance in
mathematical statistics. He was deeply interested in the whole spectrum
of mathematical education. In '"Personnel and Training Problems in
Statisties" (1947) he outlined the growing use of statistical methods,
the demand for personmnel, problems of training, and made recommendations
that served as a guide in the rapld growth of university centers of
training 1in statistics after World War II. Drawing on his experience
at Princeton, he urged, in "Teaching Statistical Inference in Elementary
Mathematics Courses'" (1958), teaching the principles of statistical
inference to freshman and sophmores, and further proposed revamping
high schoel curricula in mathematics and the sciences to provide topics
in probability, statistics, logic and other modern mathematical subjects.
In furtherance of his ideas in this direction he co~authored, as a
member of the Commission on Mathematics of the College Entrance Examina-
tion Board 1955-1958, the Introductory...Experimental Course (1957) that
recommended major changes in the teaching of mathematics in the secondary
schools and suggested inclusion of an option of Introductory Probability
with statistical applications in the twelfth grade. During his last
few years he worked with an experimental program in Miss Mason's School
in Princeton which introduced new mathematics at the elementary level,
down to kindergarden. During his final week of life, he was considering,
as a member of the Advisory Board of the School Mathematics Study Group,
how much time the following summer he would be able to devote to writing
on probability and statistics for this group.

5. WILKS'S FURTHER CONTRIBUTIONS TO MATHEMATICAL STATISTICS. A
few more words are in order on Wilks's further contributions to mathematical
statistics before turning to his many services to the U.S. Government
generally and to the Army in particular.

Wilks was definitely not an ivory tower researcher. A great many
of his research papers in mathematical statistics were written to meet
needs that he personally had encountered in his applied work; and,
especially in his earlier papers, he usually included explicit worked
examples of the application of the new theory concerned. Thus, his
first important contribution to multivariate analysis after arriving
in Princeton, "On the Independence of k Sets of Normally Distributed...
Variables" (1935a), appears to have been written to meet a need Wilks
encountered in his work with the College Entrance Examination Board in
Princeton, N,J.; as do also many of his later contributions to multi-
variate analysis, e.g., "Weighting Systems for Linear Functions of
Correlated Variables..." (193&)and "Sample Criteria for Testing Equality
of Means, Equality of Variance, and Equality of .Covariances..." (1946);
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and "Multivariate Statistical Outliers" (1963), the last of his total
of fifteen research papers on topics in multivariate analysis, has a
definitely applied flavor.

In addition to the extensive and penetrating studies of likelihood
ratio tests for various hypotheses relating to multivariate normal
distributions embodied in the aforementioned papers, Wilks investigated
(1935b) likelihood ratio tests for various hypotheses relating to
nultinomial distributions and to independence in two~ three- and higher-
dimensional contingency tables, and provided (1938a) a compact proof
of the basic theorem on the large-sample distribution of the likelihood
ratio criterion for testing '"composite" statistical hypotheses, i.e.,
when the "null hypothesis" tested specifies the values of, say, only
o out of the h parameters of the probability distribution concerned.
Jerzy Neyman's basic paper on the theory of confidence-interval estimation
appeared in 1937. The following year Wilks showed (1938c¢) that, under
fairly general conditions, confidence intervals for a parameter of a
probability distribution based upon its maximum-likelihood estimator
are on the average the shortest obtainable in large samples; and a year
later, in a joint paper with J. F. Daly, generalized this result to the
case of several parameters,

In response to a need expressed by Shewhart, Wilks, in '"Deter-
mination of Sample Sizes for Setting Tolerance Limits'" (1941), laid
rhe foundations of the theory of statistical "tolerance limits"
which are actually confidence limits, in the sense of Neyman's theory,
not, however, for the value of some parameter of the distribution
sampled as in Neyman's development, but rather for the location of
a specified fraction of the distribution sampled, 1In this paper he
showed that a suitably selected pair of ordered observations ('order
statistics') in a sample of sufficient size from an arbitrary continuous
distribution provide a pair of limits, statistical "tolerance limits",
to which there corresponds a stated chance that at least a specified
fraction of the underlying distribution is contained between these
limits, thus providing the "distribution-free" solution needed when the
assumption of an underlying normal distribution of industrial production
is unwarranted. In the same paper he derived the corresponding parametric
solution of maximum efficlency in the case of sampling from a normal
distribution (based on the sample mean and standard deviation), and an
expression for the relative efficiency of the distribution-free solution
in this case. 1In "Statistical Prediction...'" (1942), he found formulas
for the probabilities that at least a fraction N, /N of a second random
sample of N observations from an arbitrary continuous distribution
would (a) lie above the rth "order statistic" (r*P observation in
increasing order of size), 1 < r < n, in a first random sample of size n
from the same distribution; (b} be included between the ™ and sth
order statistics, 1 < r < 8 < n, of the first sample; and i1llustrated
the application of these results to the setting of one~ and two-sided
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statistical tolerance limits. These papers embodied the earliest of a
serles of contributions made by Wilks to '"nonparametric' or "distribution-
free" methods of statistical inference, an area of research in which he
persuaded a number of his students to write senior theses or doctoral
dissertations; and of which he provided an extensive review in depth in
"Order Statistics' (1948a), an expository paper that was in large part
responsible for the ensulng blossoming of research activity in this area.

Wilks was one of the small group of mathematicians and statisticians
who at Ann Arbor, Michigan, on September 12, 1935, founded the Institute
of Mathematical Statistics, and thereafter was an active and leading
member. At this meeting, Harry C. Carver, who had founded, edited, and
personally financed and published the Annals of Mathematical Statistics
(in affiliation with the American Statistical Association) from 1930,
volunteered to turn over the editing and publication of Annals to the
Institute as its official organ as soon as the Institute was able to
assume these responsibilities. The Institute assumed full rESponSibilit§3/
for the Annals, and Wilks took over as editor, with the June 1938 issue.
He served as editor through the December 1949 issue, and guided the
development of the Annals from a marginal journal with a small subscription
list, to the foremost publication in its field, with a ten-fold increase
in individual, and a five-fold increase in library subscriptions; and
in the process, fostered the growth of the Institute, from a once
marginal society to a mature international organization, large in both
size and contribution. His editorship of the Annals was his greatest
contribution to mathematical statistics.

In 1954 Wilks joined Walter Shewhart in editing the Wiley Publications
in Statistics, a major U.S. publication effort that did much to change
statistics from a subordinate branch of the social sciences in the 1930's,
to a respected discipline in its own right with a large and solid
literature in the 1960's.

6. HIS BROAD CAREER OF GOVERNMENT SERVICE, AND AS INITIATOR OF
THESE EXPERIMENT DESIGN CONFERENCES. 1In 1936, when my father recommended
Sam for promotion to Assistant Professor of Mathematics he noted in his
recommendation that Sam had just received an appointment as a Collaborator
in a United States Soill Conservation Program of the Department of
Agriculture. A brcoad career of government service was underway that
was to range widely and continue through the last twenty-eight years of
his life. He served the United States Government as a member of the
Applied Mathematics Panel, NDRC, OSRD, and director of its Princeton
Statistical Research Group, 1942-1945; chairman, mathematics panel,
Research and Development Board, DOD, 1948-1950; member, scientific
advisory committee, Selective Service System, 1948-1953; 'charter"
member, ASA advisory committee to the Bureau of the Budget, 1951-1964;




member, divisional committee for the mathematical, physical and engineering
sciences, NSF, 1952-1956; member, committee on battery additives, NAS,
1953; member, divisional committee for the social sciences, NSF, 1957-1962;
member, scientific advisory board, NSA, 1953-1964 (chairman, 1958~1960);
member, U.S. National Commission for UNESCO, 1960-1962; and academic
member, Army Mathematics Advisory Panel (called "Army Mathematics

Steering Committee', from 1956 on), 1954-1964. It was in this izyter
capacity that he initiated these Experiment Design Conferences.

General Leslie E. Simon, upon becoming Chief of the Research and
Development Division in the Office, Chief of Ordnance, in 1951, entered
into an agreement with Duke University to establish on that campus, an
Office of Ordnance Research to sponsor extermal basic research initiated
by non~govermment investigators with ordnance interests. Such research
had always been carried out by all Army Technical Services, but previously
under vague mandate and seldom on an appreciable scale. The level of
effort had been wholly dependent on the sophistication of the administrators
concerned. A Statistics Bramnch, and other units with statistical interests,
were included in the setup.

In 1954 the Army Research Office--Durham (then the Office of Ordnance
Research) upon the request of the Chief of Research and Development
Division, Office, Assistant Chief of Staff G-4, Department of the Army,
established the Army Mathematics Advisory Panel (AMAP) as an ad hoc
committee to provide advice on the mathematical needs of the Army. (The
Panel was reconstituted as a permanent body, the Army Mathematics Steering
Committee, on 27 February 1956.)

Soon after its formation, the AMAP conducted a comprehensive inquiry
into the Army's uses of mathematics: whether these uses could be
advantageously extended; what future needs might be anticipated; and what
measures might then be taken to insure a future capability adequate to
these needs. As an academic member, Wilks surveyed thirty Army installations
with the AMAP and reported that 'the most frequently mentioned needs
expressed by the scientific personnel were for greater knowledge of
modern statistical theory of the design and analysis of experiments"
(SIMON 1965, p. 958), clearly implying that a major deficiency of Army
research, development and testing was insufficient use of modern
statistical experiment design techniques. He proposed, therefore, that
the Army establish a series of Army-wide conferences on design of
experiments in Army research, development and testing. Dr. Frank E.
GrUbb§5JWho had chaired an Ordnance symposium on Statistical Methods in
1953, strongly indorsed Wilks' proposal for Army-wide conferences
devoted primarily to design of experiments, General Simon gave the
proposal a green light and his support. Upon making further inquiries
it was found that a number of research workers at various facilities
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expressed an interest in contributing papers to such a conference.
Others had unsolved or partially solved problems which they wished to
present for discussion.

The AMAP decided to organize a three-day conference on the design
of experiments with three kinds of sessions. The first group of sessions
would consist of invited papers by well-known authorities on the philosophy
and general principles of the design of experiments. The second group
would consist of technical papers contributed by research workers from
various Army research, development and testing facilities. The third
group would be clinical sessions consisting of presentations and
discussions of partially solved and unsolved problems which had arisen
in these establishments.

Wilks agreed to serve as chairman of the first Conference, which was
held on October 19-21, 1955 at the Diamond Ordnance Fuze Laboratories
and the National Bureau of Standards in Washington, D.C. 1t was attended
by over 230 registrants and participants representing some 50 organizations.
Speakers and other participants in the conference came from the Bell
Telephone Laboratories, Johns Hopkins University, Princeton University,
Virginia Polytechnic Institute, Buig?u of Ships, National Bureau of
Standards, and 18 Army facilities.

More specifically, the principal speakers, and thelr topics, were:

1. W. G. Cochran, The Philosophy Underlying the Design of
Experiments.

2. Churchill Eisenhart, The Principle of Randomization in the
Design of Experiments.

3. M. E. Terry, Finding Optimum Conditions by Experimentation.

4, Panel Discussion led by John W. Tukey on How and Where Do
Statisticians Fit In. (The others on this Panel were: Besse B.
Day, Cuthbert Daniel, Churchill Eisenhart, M. E. Terry, and
S. 5. Wilks).

5. W. J. Youden, Design of Experiments in Industrial Research
and Development.

It was such a success that the Army has continued these conferences
annually in October or November since 1955, following the same format.
(See the Appendix for places and dates of the first nineteen Conferences,
and names and topics of the invited speakers at these Conferences.)

Wilks chaired the first nine of these Conferences (1955-1963), and wrote
the Foreword to the Proceedings of the first eight. At the tenth
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Conference, held in 1964 and dedicated to Wilks's memory, establishment
of the Samuel S. Wilks Memorial Award and Medal was announced, to be
administered by the American Statistical Association, and to be awarded
annually "to a statistician...based primarily on his contributions...to
the advancement of scientific or technical knowledge in Army statistics,
ingenious application of such knowledge, or successful activity in the
fostering of cooperative matters which coincidentally benefit the Army,
the DOD and the Govermment, as did Samuel S. Wilks himself'; and the
initial award presented to Dr. Frank E. Grubbs, Ballistic Research
Laboratories, Aberdeen Proving Ground. In 1947, Wilks was awarded

the Presidential Certificate of Merit for his contributions toward
antisubmarine warfare and the sclution of convoy problems; and the same
year, the Centennial Alumni Award of the University of Iowa.

6. HIS DEATH, AND CONCLUDING REMARKS.

Sam became "my teacher" and guiding spirit at once in 1933; and
in later years, he proved "a friend indeed", on a number of "difficult"
occasions. He died most unexpectedly in his sleep, on March 7, 1964,
at his home in Princeton, New Jersey. At that instant Statistics
lost one of its greatest champlons; government agencies, professional
socleties, and the field of education a devoted work mate, helping
hand, and guide; and I, "my teacher'" and "a friend indeed".

As W. G. Cochran has said: "He will be long remembered with
affection and gratitude: no man of his generation did as much to
ensure that the rapid growth of statistical theory, applications, and
education in the United States took place along sound and healthy lines."
(COCHRAN 1964, p. 191); and Egon S. Pearson: '"...it 1s hard to think
of any mathematical statistician of the past 30 years who combined to
a greater extent an excellence in the field of theory with a power of
inspiring confidence in govermment agencies, national research institutioms,
and educational authorities, as a wise counsellor in practical affairs."
(PEARSON 1964, p. 597)

He is survived by his widow, Gena Orr Wilks, his son, Stanley N.
Wilks; a brother, William Weldon Wilks, three granddaughters, one grand-
son; and a host of friends.

8. POSTSCRIPT AND ACKNOWLEDGMENTS. At the Tenth Conference (1964)
dedicated to the memory of Professor Wilks, I spoke from notes on "Sam
Wilks as 1 Remember Him'". The material presented was for the most part
subsequently written up and a typescript prepared, but unfortunately not
in time for publication in the Proceedings of that Conference--nor in the
Proceedings of the Eleventh Conference, as was suggested. Portions of
the typescript were submitted to, and comments received in writing from
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Alva E. Brandt, Acheson J. Duncan, the late Frederick F. Stephan (1903-1971)
and the late George W. Snedecor (1881-1974). Large portions of that pre-
vious manuscript have been taken over bodlly and incorporated in the
present text, with revisions in the light of the comments received from

the foregoing, for which I am very grateful. Use has also been made of
comments recelved from Frederick Mosteller on the penultimate draft of

a biography of Wilks prepared for publication in a forthcoming volume of

the Dictionary of Scientific Biography (New York: Charles Scribner's

Sonsg, Publishers, 1970- ), likewise gratefully acknowledged. In addition,
I have taken advantage of, and have very probably incorporated more than

I realize, from the obituarles and other memorial articles on Wilks that
have appeared during the past decade, especially: ANDERSON (1965),

COCHRAN (1964), DIXON (1965), HANSEN (1965a, 1965b), MOOD (1965),

MOSTELLER (1964, 1968), PEARSON (1964), SIMON (1965), STEPHAN AND TUKEY
(1965), and TUKEY (1965). My thanks to these for what I have "borrowed",
explicitly or otherwise. For whatever faults of commission or omission
still afflict this memorial to Sam Wilks, I must assume full responsibility.
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NOTES

Alexander Mc Farlane Mood was the second of Sam's graduate students
to receive a Ph.D. (1940) in mathematical statistics from Princeton
University. After teaching at the University of Texas, and serving
as a statistician in the Bureau of Labor Statistics, Mood returned
to Princeton during World War II as a research associate in the
Statistical Research Group-Princeton, engaged in war research under
Wilks's direction as an arm of the Applied Mathematics Panel (AMP)
of the National Defense Research Committee (NDRC) of the Office of
Scientific Research and Development (OSRD), under a contract between
Princeton University and the OSRD. It was as a member of this group
that he and Wilfrid J. Dixon wrote their famous memorandum, later
published as an article in the Journal of the American Statistical
Association (Vol. 43, No. (March 1948), 109-126), on the statistical
theory of the "up-and-down'" or "Bruceton' method of obtaining and
analyzing sensitivity data, with which they had become acquainted in
1943 at the NDRC's Explosives Research Laboratory (now a unit of the
Bureau of Mines, U.S. Department of the Interior), at Bruceton,
Pennsylvania. Subsequently Mood became a professor of mathematical
statistics at Iowa State College; deputy chief, mathematics division,
RAND Corporation; president, General Analysis Corporation; a vice
president of CEIR, Inc.; and at the time of writing his tribute to
Wilks, was Assistant Commissioner of Education, U.S. Office of
Education.

Dodd had joined the staff of the University of Texas in 1907 as
Instructor in Pure Mathematics. He seems to have been silent
publication-wise until 1912 when two papers by him appeared, one

on plane and skew curves, and the other on the method of least

squares and orthogonal transformations. These were followed
immediately in 1913 by four papers on statistical properties of the
arithmetic mean, the median and "other functions of measurements'.

One of these latter, entitled 'The probability of the arithmetic

mean compared with that of certain other functions of the measurements',
was published in the Annals of Mathematics (Vol. 14, pp. 186-198,

June 1913), of which my father (Luther Pfahler Eisenhart, 1876~1965)
was then an editor. My father seems to have corresponded with
Professor Dodd with regard to this paper. Thereafter Professor Dodd
sent my father reprints of many of his subsequent papers on functional
and statistical properties of various types of 'means'. These reprints
proved to be very helpful to me when I became interested in such
matters in the early '30's. 1 had the good fortune to meet Professor
Dodd, when I went with Sam to the Joint Meeting of the American
Mathematical Society and Institute of Mathematical Statistics in
Indianapolis in December 1937. (For additional information on Dodd,

25



see footnote 4; J, C, Poggendorff, Biographisch-Literarisches
Handworterbuch fiir Mathematik..., Vol. 5 (1904-1922), Leipzig and
Berlin, 1926, p. 299; and C. D. Simmons, "Edward Lewis Dodd,
1875-1943", Journal of the American Statistical Association Vol. 38,
No. 222 (June 1943), 247-248.)

The University of Iowa in Iowa City (now known as the '"State
University of Iowa") was, in the 1920's, the leading center in

the United States for research and training in mathematical
statistics. It should not be confused with Iowa State College at

Ames (renamed "lowa State University' on the occasion of its centenary
in 1958), which, during the same period, was the leading center for
application of, and teaching the application of, modern statistical
methods in the experimental sciences, especially in agricultural
research and closely related fields.

Professor Dodd after receiving his Ph.D. in mathematics from Yale

in 1904, had served as an Instructor in mathematics for two years
(1904-06) at the University of Iowa, and one year (1906-07) at the
University of Illinois, in Urbana. At the University of Illinois,
Dodd had become acquainted with Rietz, who at that time was dividing
his time about equally between his position of Assistant Professor
of Mathematics in the Department of Mathematics, and his position

of Statistician in the Experiment Station of the College of
Agriculture. Rietz was teaching a course in the Mathematics Depart-
ment entitled "Averages and Mathematics of Investment', which he had
been induced to develop two years before, when a demand had arisen
for a course in statistics which none of the members of the Mathe-
matics Department were particularly prepared to give. Also, at that
time Rietz was very busy working on his first publication in
statistics, a 32 page appendix (''Statistical Methods. Appendix to
Principles of Breeding') to A Treatise on Thremmatology by Eugene
Davenport, Dean of the College of Agriculture and Director of the
Agricultural Experiment Station (Boston: Ginn and Co., 1907,

pp. 681-713): and also on his bulletin (with Dean Davenport) on
Statistical Methods Applied to the Study of Type and Variability

in Corn (Illinois Agriculture Experiment Station Bulletin No. 119,
1907). From then until he was called to the University of Iowa in
1918 as Head of the Department of Mathematics, Rietz published a
long list of papers on statistical topics, some purely theoretical,
some expositional, some arising out of his connection with the
College of Agriculture. I mention these detalls to emphasize the
fact that the development of statistical theory and methodology

in the United States owes far more to the needs and support of
workers in agriculture than many people realize today.
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Under Rietz's leadership the University of Iowa rapidly became one

of the leading centers of actuarial mathematics in the United States,
and the leading center for research in mathematical statistics.

(Other notable centers of actuarial mathematics and mathematical
statistics were the University of Michigan, in Ann Arbor, under the
leadership of James W. Glover (1868-1941) and Harry C. Carver, who

in 1930 founded, and for five years personally financed the Annals

of Mathematical Statistics; and Harvard University, under the leader-
ship of Edward V. Huntington (1874-1952), Truman L. Kelley (1884-1961)
and Warren M. Persons (1878-1937).) Two of Rietz's publications helped
to firm up the University of Iowa's standing: (1) the Handbook of
Mathematical Statistics (Boston: Houghton Mifflin Company, 1924)
prepared by the '"Members of the Committee on the Mathematical Analysis
of Statistics of the Division of Physical Sciences of the National
Research Council" (H. C. Carver, A. R. Crathorne, W. L. Crum, James

W. Glover, E. V. Huntington, Truman L. Kelley, Warren M. Persons,

H. L. Rietz, and Allyn A. Young) with Rietz serving as Editor-in-Chief;
and (2) Rietz's own Carus Mathematical Monograph (No. 3) entitled
Mathematical Statistics, published for the Mathematlcal Association
of America by the Open Court Publishing Company in 1927, which served
as the basis for courses in mathematical statistics given in Depart-
ments of Mathematics of many universities and colleges for years
afterward. The jointly written Handbook was doomed, however, to
become obsolete almost upon publication: the future of mathematical
statistics was being shaped in the 1920's by the papers of R. A.
Fisher; and the future of statistical methodology, by his Statistical
Methods for Research Workers (1925), which rapidly became ‘'the Bible'
of statistical methodology Iowa State College, Ames, under the
guidance of Professors George W. Snedecor (1881-1974) and A. E.
Brandt. (For additional information on Rietz, see A. R. Crathormne,
"Henry Lewis Rietz—-In Memoriam', Annals of Mathematical Statistics,
Vol. 15, No. 1 (March 1944), 102-108, which contains lists of
selected publications of Rietz, of his books, and of doctorate
digsertations written under his supervision; and Frank Mark Weida,
"Henry Lewis Rietz, 1875-1943", Journal of the American Statistical
Association, Vol. 39, No. 226 (June 1944), 249-250.)

After one year of graduate work in actuarial mathematics at Iowa,
Curtiss decided against a career as an actuary, and went on to earn
his Ph,D. in pure mathematics (analysis) at Harvard in 1935. However,
five years later, as instructor in mathematics at Cornell University,
and the most junior member of the Mathematics Department, he was
assigned the responsibility of a course in mathematical statistics.

To prepare for this course, to answer the teasing query of his senior
colleagues, "What is there to statistics anyway?'", he dug into the
first ten volumes of the Annals of Mathematical Statistics, the

first six volumes of the Supplement to the Journal of the Royal
Statistical Society (borrowed from the late Frederick F. Stephan
(1903-1971), and J. 0. Irwin's series of reviews of "Recent Advances
in Mathematical Statistics' in the Journal of the Royal Statistical Society,
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and other sources. In the third of these reviews (for 1932), he
no doubt noticed nine of the fourteen pages of the section on
"Exact sampling distributions" were devoted to discussion of four
papers of his friend Sam Wilks. During World War II, Curtiss, as
a Lt. Commander, USNR, applied modern statistical theory and
methodology to problems of naval engineering with considerable
success in the Bureau of Ships of the U.S. Navy Department. (For
discussion of some of these applications, see J. H. Curtiss
"Statistical Inference Applied to Naval Engineering", Journal of
the American Society of Naval Enpineers, Vol. 58, No. 3 (August

1946), 335-398.) 1In April 1946, he was brought to the National
Bureau of Standards by its new Director, Dr. E. U. Condon (1902-1974),
and appointed statistical assistant to the Director for the express
purpose of introducing modern statistical theory and methodology

into the scientific and technical programs of the Bureau. However,
before Curtiss could get such a program under way, Dr. Condon was
obliged to turn over to him the day-to-day administration of the
Bureau's new responsibilities in the development of large-scale
automatic digital computers, and of an associated program of developing
the mathematics of numerical analysis. John's original assignment

at the Bureau was therefore placed on my shoulders, when I arrived

at the Bureau to receive it on October 1, 1946-—-and the rest of that
story vou know.

See WILKS 1941, 1942, 1948; pp. 18-19 of ANDERSON 1965; and
items (40), (41), and (45) in the list of '"'The Publications of
S. S. Wilks" appended thereto.

Rietz gave a paper, ''Comments on Applications of Recently Developed
Theory of Small Samples', at the 92nd Annual Meeting of the American
Statistical Association, Cleveland, Ohio, 30 December 1930, which saw
publication in the Journal of the American Statistical Association,
Vol. 26, No. 175 (June 1931), 150-158.

Thus Paul Rider, in a valuable review article, A Survey of the
Theory of Small Samples (Annals of Mathematics, 2nd Series,

Vol. 31, No. 4, (October 1930), pp. 577~628), which was later to
"save my neck" on a number of occasions, wrote (p. 578):

"Undoubtedly the leading writer in the theory
of small samples is R. A. Fisher, whose work in
this field has revolutionized modern sampling theory.
Much of it is to be found in his book, Statistical
Methods for Research Workers, but this book is
extremely unsatisfying to a mathematician, as it
merely states results without proofs and usually
without even indicating how a given result may be
derived. It discusses such things as the distribution
of t without telling what the distribution is. His
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original papers are much more enlightening, but
from the references as given in the book it is
sometimes difficult to tell which paper treats

of a given topic. Even these papers suffer in
places from the same defects as those of the book,
and they are often troublesome to follow.”

I don't know whether Paul later retracted these remarks, or
Fisher was forgiving, because, when I got to University College,
London, in 1935, to study under J. Neyman and E., 5. Pearson,
there was Paul sitting at a desk up in "Fisher territory" (the
Galton Laboratory and Department of Eugenics), working on moment
functions for Fisher's k-statistics in samples from a finite
population.

Hotelling's paper on "The distribution of correlation ratios
calculated from random data', in Proceedings of the National
Academy of Sciences, 11, no. 10 (October 1925), 657-662, made

him the first person in the United States to respond in kind to.

R. A. Fisher's signal contributions to the theory of small samples--
his derivation employed the same kind of geometrical reasoning in
terms of Euclidean N-dimensional space that Fisher had used so
effectively. This paper carries a footnote that I've always
considered to be very significant. I believe it affords am explana-
tion of why so many American mathematicians had difficulty following
Fisher's geometrical proofs. Anyone who attempts to duplicate
Fisher's geometrical reasoning soon discovers that a crucial step

is the correct evaluation of the relevant element of volume.
Hotelling, at this juncture in his paper, gives a general expression
for the relevant element of volume, which he numbers "(17)", and
then remarks in a footnote:

"This important expression for the volume element has been used in
lectures by [at Princeton University] by Professors O. Veblen and

L. P. Eisenhart. I do not find it in any of the treatises on
Calculus, Analysis or Differential Geometry, save for the special
case in which the manifold of integration is a surface. It may
readily be proved by showing first that (17) is a relative invariant
under arbitrary transformations of the parameters; and second, that
if the parameters of the hypersurface are orthogonal at a point,
(17) becomes at this point the simple expression for the volume
element in cartesian coordinates."

Hotelling had gone to Princeton University as a J.5.K. Fellow in
mathematics, 1921-1922, after receiving his A. B. (1919) and an
M.S. (1921) from the University of Washington, in Seattle. His

“interests in statistics predated his going to Princeton in the Fall
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of 1921. He had hoped to find some work in probability theory and
the mathematics of statistics going on there in the Mathematics
Department., Finding none, he undertook instead a program of study
and research in topology (then called "analysis situs") and
differential geometry, under the direction of Professor Oswald

Veblen (1880-1960) and my father, Luther Pfahler Eisenhart (1876-1965).
He stayed on at Princeton, 1922-1924, as an Instructor in Mathematics
and received his Ph,.D. from Princeton University in June 1924, his
doctoral dissertation being on "Three-dimensional manifolds of

states in motion.”" 1In 1927 he published a paper "An application of
analysis situs to statistics' (Bulletin of the American Mathematical
Society, Vol. 33, (1927), pp. 467-476), which had to do with
topological aspects of serial and multiple correlations.

Following receipt of his Ph.D., Hotelling returned to the West
Coast, to Stanford University, where he was a Junior Research
Associate (1924-25), and then Research Associate (1925-27), in the
Food Research Institute; and finally, an Associate Professor of
Mathematics (1927-31), in the Department of Mathematics. Hotelling
visited Fisher in England, in 1929, hoping to persuade Fisher to
join with him in the preparation of an up-to-date textbook on the
mathematics of Statistical Inference. Fisher was not interested in
the proposition. In 1931, Hotelling was called to Columbia University,
in New York City, as Professor of Economics to develop further the
existing work there in Mathematical Economics, and to initiate a
program in Mathematical Statistics.

These papers had been followed by their more elegantly written "On

the problem of two samples'" (Bulletin de 1'Académle Polonaise et

des Lettres, Series A, 1930, 471-494), and "On the problem of k
samples" (idem, 1931, 460-48l1), in which the likelihood-ratio
technique had led directly to the now famous test for the homogeneity
of variance involving the ratio of the weighted arithmetic mean of

the sample variances (with weights subsequently modified by Bartlett).
This great discovery was discussed by Pearson in one of his

lectures, and no doubt contributed to Sam's enthusiasm for likelihood-
ratio tests.

It was too early to claim that the tests thus found were "best" in
some sense inasmuch as the Neyman-Pearson Lemma was yet to come

in J, Neyman and E. S. Pearson, ''On the problem of the most efficient
tests of statistical hypothesis', communicated to the Royal Society

of London in August 1932, 'read'" to the Society on November 10, 1932,
and published on February 16, 1933 in the Society's Philosophical
Transactions, Series A, Vol. 231, pp. 289-337; which, incidentally
was refereed by Fisher who, at the time, considered it an important
step forward.
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14.

15.

Time and again during his years at the Bureau I would hear him tell

a consultee, or an audience, that he was "a chemist", implying that
he was not a statisticlan. Well, Jack may have been all chemist at
one time, but by 1931 he was already on his way to becoming an
exponent and practitioner of Fisherian methods too. He had come

upon Student's t test '"by accident...in 1925" (W. J. Youden, Risk,
Choice and Prediction: An Introduction to Experimentation, Duxbury Press,
North Scituate, Mass., 1974, p. 5). By the "summer of 1931 [he] had
obtained one of the 1050 copies printed of the first edition" of
Fisher's Statistical Methods for Research Workers (1925), and when
Fisher "visited Cornell' to attend the 6th International Congress of
Genetics, 24-31 August 1931, Youden "drove there...to show him an
experimental arrangement'. (Quotations are from p. 727 of W. J.
Youden, "Memorial to Sir Ronald Aylmer Fisher," Journal of the American
Statistical Association, Vol. 57, No. 300 (Dec. 1962), 727-728.)

From Hotelling's lectures Youden "first got some hint that [Fisher's
Statistical Methods...] also held a message for mathematicians...He
told the young men listening to him not to be misled by the large
print, the wide margins, and a text almost devoid of mathematical
symbols, that in this book were concepts as new to the theorists as

to the researchers'". (Quoted from p. 47 of W. J. Youden, "The Fisherian
Revolution in Methods of Experimentation,' Journal of the American
Statistical Assoclation, Vol. 46, No. 253 (March 1951), 47-50.)

During the next few years he published a variety of papers expounding
and demonstrating the application of known statistical techniques to
various problems arising in studies of apples, seeds, solls, leaves,
tomatoes, trees and viruses. He had clearly "crossed the Rubicon";
was on his way to becoming an expert expositor and practitiomner of
statistical methods in experimentation; and from then on he became
more and more of a statisticlan--or shall we say, "experimentrician'--
and less and less "chemist".

Spearman devoted over 40 years of his life to the development of a
psychological theory of mental ability built around a General Factor,
g, that characterizes an individual's "general mind power'--see

his The Abilities of Man (New York: The Macmillan Company, 1972);

but is most widely known among statisticians today for a comparatively
minor contribution, his coefficient of rank-order correlation (1904).

Whether the population tetrad differences, T1234 = P12034 ~ P13P2y and
Ty3z,y = P13P24 ~ P1uPog, Were both zero, both non-zero, or one zero and the

other non-zero, where pij is the coefficient of correlation between
the i-th and j~th traits, was of decisive importance in Spearman's
theory of mental abilitlies of man.

Rietz had chaired the session on Statistical Methodology on the first
day of the 92nd Annual Meeting of the American Statistical Associlation
in Cleveland, Ohio, December 29-31, 1930, at which Shewhart had
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17.

presented his paper on "Statistical Method from an Engineering
Viewpoint" (published in the Proceedings of the Meeting as "Applica-
tions of Statistical Method in Engineering', Journal of the American
Statistical Association, Vol. 26, March 1931 Supplement, pp. 214-221);
and the following day Shewhart had been the invited discussant of
Hotelling's paper on "Recent Improvements in Statistical Inference'
(same Supplement, pp. 79-87; discussion, pp. 87-89).

This was Karl Pearson's last year as the first Galton Professor

of National Eugenics (1911-1933), as Editor of the Annals of Eugenics,
which he had founded and edited since 1925, and as Head of the
Department of Applied Statistics (1911-1933), which included the
Biometric Laboratory (which Pearson had originated in 1895, as a
center for postgraduate study in this new branch of applied mathe-
matics when Goldsmid Professor of Applied Mathematics and Mechanics
(1884-1911)) and the Francis Galton Laboratory of National Eugenics
(which had been formed, and placed under Pearson's direction, in
1906 at Galton's request, as successor to Galton's own Eugenics
Records Office established at University College in 1904 by a gift
from Galton to the University of London for this purpose). He
continued, however, to edit Biometrika, of which he was one of the
three founders, always the principal editor (vols. 1-28, 1901-1936),
and for many years the sole editor; and had almost seen the final
proofs of the first half of volume 28 through the press when he
died on 27 April 1936.

When T arrived at University College in October 1935 as a Ph.D.
candidate in statistics, we were told that Karl Pearson's strength

was rapidly failing, that he was still driving himself to shut out

his grief over the thwarting of hisideal of an Applied Statistics
Institute (with Readers in Genetics, Medicine, Psychology, Mathematical
Statisties, etc.) by the break up of his Department into separate
Departments of Eugenics and Applied Statistics; and that he was very
reluctant to see visitors. The end came before Paul Rider and I

and many of our fellow students were granted opportunities to meet

him. I have never quite recovered from that lost opportunity.

E. S. Pearson had spent some time with Shewhart and his colleagues
at the Bell Telephone Laboratories during his 1931 wvisit to the
United States. He was one of the early exponents in England of
Shewhart's control-chart techniques, and at the time of Sam's visit
was engaged in the preparation of a paper on '"Statistical Method

in the Control and Standardization of the Quality of Manufactured
Products", presented at the December 1932 meeting of the Royal
Statistical Soclety, and later published in the Society's Journal,
(Vol. 96 (1933), pp. 21-60). This paper was largely responsible
for the formation of the Industrial and Agricultural Research
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Section of the Royal Statistical Society on November 23, 1933, and
the subsequent publication of the now-famous Supplement to the
Journal of the Royal Statistical Soclety to provide a medium for
publication of papers of this Section. (For further details,

see E. S. Pearson, '"Some Historical Reflections on the Introduction
of Statistical Methods in Industry: The Statistician, Vol, 22, No. 3
(Sept. 1973), 165-179.)

Stanley, like his father, received an A.B.--but in mathematics,
not architecture--from North Texas State College ("Teacher's"
having been dropped from the name) in 1955. He studied at
Cambridge University 1955-1956; married Jocelyn Wilkins, daughter
of a classmate of Sam's at North Texas State, in 1958; received an
M.S. in applied mathematics from Columbia University in 1961;

has three daughters and a son; and works for the Department of
Defense as a mathematician.

John Wishart had gained First Class Honors Degree in Mathematics

and Natural Philosophy at the University of Edinburgh, in Scotland,

in 1922. At Edinburgh he had attended the lectures of E. T.

Whittaker (1873-1956), on "The Calculus of Observations' which

were latexr to appear in book form (T. WHITTAKER and ROBINSON,

The Calculus of Observations, London and Glasgow: Blackie and

Son, Ltd., 1924), and had learned numerical mathematics 'the hard way',
i.e., without the benefit of a desk calculator, in Whittaker's Mathematical
Laboratory. In the autumn of 1924, Wishart had joined Karl

Pearson at University College, as a Research Assistant. One of
Wishart's main tasks on arriving there was to get work on Pearson's
Tables of the Incomplete Beta—Function underway.

Wishart stayed with Pearson for three years and then in the autumn
of 1927 accepted a teaching position at the Imperial College of
Science and Technology (of the University of London), inasmuch as

he was a teacher by training and temperament. While still with
Pearson he had collaborated with R. A. Fisher on a joint paper

"On the distribution of the error of an interpolated value and on
the construction of tables" (Proceedings of the Cambridge Philosophical
Soclety, Vol. 23, Part 8 (October 1927), pp. 917-921). He was
barely settled in his new post at Imperial College, when, at the
beginning of 1928, he was offered and accepted an appointment as
Statistical Assistant to R. A. Fisher at Rothamsted Experiment
Station. With Fisher's encouragement, he derived

"The generalized product moment distribution in samples from

a normal multivariate population' (Blometrika, Vol. 22A, Parts 14&2
(July 1928), pp. 31-52), by a geometrical argument analogous to
those used previously by Fisher, the simultaneous distribution of
the sample estimates of the variances and covariances of a multi-
variate normal population corresponding to a sample of N items from
such a population, and prepared an extensive tabulation of the
moments and product moments of this distribution, which is now known
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as "Wishart's distribution". Wishart, during his three years at
Rothamsted (1928-31) participated fully not only in the mathematical
research on sampling distributions and their properties, but also

in the advisory and service activities of Rothamsted Statistical
Department during that period, as reflected by the twenty publications
of which he was the single or joint author during this period.

In October 1931, a few months after G. U. Yule's retirement from
full-time teaching as Reader in Statistics in the University of
Cambridge, Wishart was appointed to a newly created post of Reader
in Statistics in the Faculty of Agriculture, with responsibilities
also for some teaching in the Faculty of Mathematics. This was an
exceptionally fine appointment: at Cambridge, as at other English
universities, a Readership 1s only one step below a Professorship,
and until the late 1950's Professorships were very few and far
between, there ordinarily being only one per established discipline
(e.g., Mathematics), which Statistics certainly was not at that
time. (Thus Yule himself had been merely a University lecturer in
Statistics from 1912 until only a few months before his premature
retirement owing to i1l health). Wishart saw in his Cambridge
appointment an opportunity to introduce statistics to mathematical
undergraduates, and began at once to offer not only a general
course on statistical methods in the Faculty of Agriculture, but
also a course on mathematical statistics which undergraduate students
in the Faculty of Mathematics could offer for Schedule B of the
Mathematical Tripos. Among his early students in this program were
M. §. Bartlett (B. A., Queens' College, 1932) and W. G. Cochran
(B.A., St. John's College, 1933). (For additional information on
Wishart, see E. S, Pearson, "John Wishart, 1898-1956", Biometrika,
Vol. 44, Pts. 1&2 (June 1957), 1-8, which includes a bibliography of
his published work; and M. S. Bartlett, "John Wishart, D.Sc.,
F.R.S.E.", Journal of the Royal Statistical Association, Series A,
Vol. 119, Pt. 4 (1956), 492-493.)

A few words are in order on how my father became interested in,
and partial to statistics.

My father's primary mathematical interest was differential geometry,

and his research was exclusively in that area. Exactly when he began

to take an 'outside" interest in mathematical statistics I do not

know. It may have been as early as 1913, when as noted earlier, he
corresponded with Edward L. Dodd on various aspects of the latter's
paper entitled '"The probability of the arithmetic mean compared with
that of certain other functions of measurements", which was published

in the Annalg of Mathematics (Vol. 14, pp. 186-198, June 1913), of which
my father was then an editor. At any rate, thereafter Dodd sent my
father reprints of many of his subsequent papers on functional and
statistical properties of various types of "means", which my father kept
and ultimately turned over to me when I became interested in such
matters in the early '30's.

34




Early in 1924, "at the request of the Commission on New Types of
Examination of the College Entrance Examination Board', my father
"formed a conmittee of mathematicians to examine critically certain
statistical methods used in the investigations of the Commission"
(American Mathematical Monthly, Vol. 31, No. 4 (April 1924), p. 209).
The "mathematicians" of the Committee included the economic
statisticians W. Randolph Burgess and W. L. Crum (1894-1967) of the
Federal Reserve System and Economics Department, Harvard, respectively;
the mathematicians E. V. Huntington (1874-1952) and J. H, M.
Wedderburn (1882-1948), of Harvard and Princeton, respectively; and
the mathematical statistician, H. L. Rietz.

The findings of this Committee, my father's continued advisory
relations with the higher-ups of the College Entrance Examination
Board (CEEB), and Wilks's contributions at lowa (and under Hotelling
at Columbia) to the solution of statistical problems arising in
educational testing, made it possible for my father to arrange a
part-time appointment with the CEEB concurrent with his initial
University appointment--a relationship with the Board, and its
successor, the Educational Testing Service, that continued until
Wilks's death.

As mentioned earlier, Hotelling, after receiving his Ph.D. in
mathematics from Princeton in 1924, went to Stanford University,
first to a position in the Stanford Food Research Institute, later
in the Mathematics Department, Stanford University. During these
years at Stanford (1924-1931) he wrote and published a stream of
important original contributions to statistical theory and mathe-
matical economics; reviews of American and English books on
statistical methods, (e.g., of Statistical Analysis by Edmund

E. Day (New York: The Macmillan Company, 1925), in Journal of the
American Statistical Association, Vol. 21, No. 155 (Sept. 1926),
360-363), in which he deplored the obsoleteness of teaching and
research in statistics in the United States and placed the blame
squarely on the doorsteps of Departments of Mathematics; and
expository articles on "British statistics and statisticians today"
(Journal of the American Statistical Association, Vol. 25, No. 170
(June 1930), 186-190), '"Recent improvements in statistical
inference" (cited fully in footnote 15), etc.,, in which he did his
very best to acquaint American readers with the 'mew look' in
statistics. He regularly sent reprints of all of these to my
father. When my father gave them to me in the Fall of 1932, as

I was reading up on "Student~Fisher statistics', it was quite clear
that my father had more than a superficial knowledge of the papers
on statistical theory, and had 'got the message' of Hotelling's
book reviews and expository articles.
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This assignment was very disruptive to Duncan at that time. When
asked to undertake it he was already at work on his doctoral
dissertation on "South African gold and international trade'"; and
his acceptance of it delayed until 1936 his completion of the
requirements for his Ph.D. in Economics. He also lost out on one
of the features that "sweetened" the proposition, an opportunity
to visit the West Coast--when the plans were made, Hotelling was
at Stanford University, but had moved on to Columbia University
before the time arrived for Duncan to study under him. This
assignment was to be instrumental in changing the direction of
Duncan's subsequent career.

The aim of the Department of Economics and Social Institutions

was to improve its own offerings in statistics for economics

students by integrating and updating the Smith-Duncan sequence

of courses within that department. The extent to which this aim

was achleved 1s evidenced by the two volumes Fundamentals of the
Theory of Statistics: Vol. 1, Elementary Statistics and Applications:
Vol. 2, Sampling Statistics and Applications, authored jointly by
Professors Smith and Duncan and published by the McGraw-Hill Book
Company, Inc., in 1944, 1945, respectively.)

For further detalls on the founding and early years of the

Annals of Mathematical Statistics see the letter from Harry C.
Carver, dated 14 April 1972, to Professor [W. J.] Hall, reproduced
in the Institute of Mathematical Statistics Bulletin, 2, No. 1
(Jan. 1973), 11-14; and Allen T. Craig, '"Our Silver Anniversary",
in Annals of Mathematical Statistics, 31, no. & (Dec. 1960),
835-837.

The material of the five following paragraphs is taken for the

most part from MALONEY 1962 and SIMON 1965, where further details can
be found on the history of statistical methodology in Army research,
development and testing.

See Proceedings of the First Symposium on Statistical Methods:
Sampling Techniques (4-5 November 1953), Ballistic Research
Laboratories Report No. 837, Aberdeen Proving Ground, Maryland,
January 1954,

Proceedings of the First Conference on the Design of Experiments
in Army Research, Development and Testing, Office of Ordnance
Research Report No. 57-1, Office of Ordnance Research, Durham,
North Carolina, June 1957.
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APPENDIX
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Panel Discussion on "How and Where Do Statisticians Fit In."
The Panel: John W. Tukey, Chairman, Cuthbert Daniel, Besse Day,
Churchill Eisenhart, M. E. Terry, and S. S. Wilks.

2nd: Washington, D.C., 17«19 October 1956.
Diamond Ordnance Fuze Laboratories and National Bureau of Standards.

C. A. BENNETT, "The Predesign Phase of Large Sample Experiments,"

R. A. BRADLEY, "Recent Research in Statistical Problems in
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B. G. GREENBERG, "Application of Order Statistics in Medical
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G. E. NICHOLSON, JR., "The Planning of Experiments in the Presence
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15th: Redstone Arsenal, Alabama, 22-24 October 1969.
U.S. Army Missile Command.

JOHN E. CONDON, "Reliability and Quality Assurance,"
NANCY R. MANN, "Systems Reliability."

CLIFFORD J. MALONEY, "A Probability Approach to Catastrophic
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SOLOMON KULLBACK, '"Minimum Discrimination Information Estimation
and Application."”
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17th: Washington, D.C., 27-29 October 1971.
Walter Reed Army Institute of Research, Walter Reed Army Medical
Center.

MARVIN ZELEN, '"'The Role of Mathematical Sciences in Biomedical
Research."

BERNARD G. GREENBERG, "Randomized Response: A New Survey Tool to
Collect Data of a Personal Nature."

GEOFFREY H. BALL, "Classification and Clustering Techniques in
Data Analysis."

K. S. BANERJEE, 'Hotelling's Weighing Designs."
JOHN J. GART, "The Comparison of Proportions: A Review of
Significance Tests, Confidence Intervals and Adjustments for
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18th: Aberdeen Proving Ground, Maryland, 25-27 October 1972.
U.S5. Army Test and Evaluation Command.

JOHN TUKEY, "Exploratory Data Analysis."

G. S. WATSON, "Orientation Analysis."

J. STUART HUNTER, "Sequential Factorial Estimation."

G. E. P. BOX,"Forecastiug and Control."

RAYMOND H. MYERS, '"Dual Response Surface Analysis."
19th: Rock Island, Illinois, 24-26 October 1973.
Headquarters U.S. Army Armament Command and U.S. Army Management
Engineer Training Agency.

JEROME CORNFIELD, '"Bayesian Statistics."

SHANTI GUPTA, "Ranking Based on Multiple Criteria."

J. SETHURAMAN, "A Strong Justification for the Use of Rank Tests
in the Case of Non-Normality."

H., L. GRAY, "Generalized Jackknife Techniques."
- FRANK PROSCHAN, "Reliability Growth."
SAM C. SAUNDERS, "Accelerated Life Testing."

WILLIAM A. THOMPSON, JR., "Reliability of Multiple Component Systems.'
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Solomon Kullback
The Florida State University
Department of Statistics

ABSTRACT. Through the use of the principle of minimum discrimination
ihformation estimation, leading to exponential families or multiplicative
models or log-linear models it has been shown, using illustrative examp—
les exhibiting different aspects of contingency table analysis, that:

(1) Estimates of the cell entries under various hypotheses

or models can be obtained;
(2) The adeguacy or fit of the model, or the null hypothesis,
can be tested;

(3) Main effect and interaction parameters can be estimated;

4) The structure of the table can be studied in detail in

terms of the various interrelationships among the classi-
ficatory variables;

(5) The procedures can be applied to test hypotheses about
particular parameters and linear combinations of parsmeters
that are of special interest;

(6) The procedures provide indication of outlier cells;

(7) ©Since the procedures and concepts are based on a general
principle a unified treatment of multi-dimensional contin-
gency tables is possible;

(8) The procedure provides estimates based on an observed or
sample table, which satisfy certain external hypotheses
as to underlying probability relationsg in the population
table, These estimates also preserve the inherent pro-
perties of the observed data not affected by the hypo-
thesis;

(9) 1In general, the m.d.i. estimate is best asymptotically
normal;

(10) The minimum discrimination information test statistics are
asymptotically distributed as chi-squared with appropriate
degrees of freedon,

(11) Convergent iterative computer algorithms are available
for the analyses.

CONTINGENCY TABLES. There are two ways in which Statistical data are
collected., TIn one form, actual measurements are recorded for each
individual in the sample; in the other, the individuals are classi-
fied as belonging to different categories. On many occasions classi-
fications are used to reduce original data on direct measurements. A
well known example is that of "frequency-distributions". Data collec-
ted in the form of measurements may later be grouped and presented as
u frequency distribution. An important advantage of grouping is that
it resultls in a considerable reduction of data. On the other hand, it
is not usually possible to convert grouped or classified data back into
the original form,

Data which results from experiments in the physical sciences and
eugineering are usually outcomes of controlled experiments, and expres—
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sible in quantitative terms. In many other fields however, the data
are seldom results of controlled experiments. In addition, the ob-
servations usually can be expressed only in qualitative or categorical
terms, a yes - no, alive — dead, agree - disagree, class A ~ class

B - class C, etec. type of response.

A contingency table is a form of presentation of grouped data. In
the simplest case, a group of N items may be classified into just two _
groups, according to, say, presence or absence of a certain characteristicf
For a fixed (given) characteristic the different groups of classification
are called categories. TFor example, a group of N individuals may be
classified according to hair color (characteristic), the categories being
black, brown, blonde and "other". The categories may be qualitative as
above, or may be guantitative, as for example in the classification by
weight in pounds consisting of five categories: 40-80, 80-120, 120-160,
160-200, 200-240. When there is only one characteristic according to
which data are classified we get a one-way-table. If there are two
ways of classification, say according to Rows and Columns, the Row-
classification having r categories and the Column~-classification having
c categories, the table is called a two-way table or a r x c table.

The latter notation gives the number of categories in each classification.
Carrying this notation further, a r x ¢ x d table will have three char-
acteristics of classification, the first having r categories, the second
having ¢ and the third d.

For example, an individual may be classified by sex, by race, by
profession, by smoking habit, by age, by incidence of coronary heart
disease. If we take observations over a sample of many such individuals,
the result will be a multidimensional contingency table with as many
dimensions as there are classifications. Contingency tables are cross—
classifications of vectors of discrete random variables showing the num-
ber of subjects belonging to distinect categories of each of several quali-~-
tative or categorical classifications. The number of counts of individuals
in a cell of this table represents that portion of the sample having the spe-
cific attributes within each of the classifications. A problem of interest,
for example, might be to determine the factors that are associated with the
presence or shsence of coronary heart disease.

Data from many fields are often presented in this manner, that is,
in a cross~tabulated form. Statistical analyses of these types of data
has had a long history, but were mainly concerned with the simple kind,
the two-way teble. Analyses of multidimensional contingency tables have
been investigated intensively only during the last decade or so.

Conclusions drawn from contingency tables may be only exploratory
in nature. One of the difficulties can be the availability of meaning-
ful and reliable data. The first problem one faces in the analysis of
cross-classified data is the decision on the number of classifications
to be included and the categories within each classification. Typical
among the problems in the analysis is how to segregate the effect on
the response of some of the background variables, individually or jointly,
from that of the others that are of particular interest. The data analy—
tic attitude is empirical rather than theoretical. A more empirical
attitude is natural when detailed theoretical understanding is unavailable .
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Estimation of parameters in models should be considered less as attempts
to discover underlying truths and more as data calibrating devices which
make it easier to conceive of noisy data in terms of smooth distributions
and relations. With a given data set, a variety of models may be tried
on, and one selected on the ground of looks and fit.

In the analysis of contingency tables we are usually interested in
the relationship between one classification and one or more of the other
classifications. As an example, consider a three-way r X c X d contin-
gency table in which the row-classification represents the response of
an experiment on animals, the column classification types of treatment
and the depth classification sex. The following hypotheses may be of
interest.

1. Response is independent of treatment Irrespective of sex.

2. Response is independent of the different combinations of
treatment and sex (as against the possibility that a parti-
cular treatment is more "effective" in terms of the response,
for a particular sex).

3. Given sex, response igs independent of treatment.

Of course, not all contingency tables can be interpreted in such
a straightforward manner. In some instances, all three classifications
can be considered as responses; then we may be interested in the inde-
pendence or association among these responses. In other cases, & classi-
fication may be controlled, experimentally or naturally, like three apeci-
fied levels of fertilizer applied or sex, and then the classification is
termed a factor. For convenience, we shall group all the concepts of
association, dependence, etc. under the general term of interaction.
No interaction between treatment and sex appears to be a more acceptable
phrase than independence between treatment and sex, since the term inde-
pendence is usually reserved to express the relationship between random
variables. We may also say that the interaction between response and
treatment does not interact with sex, meaning the degree of association
between response and treatment is the same for both sexes. The concept
gives rise to the idea of second-order interaction. There are a number
of different approaches to the mathematical formulation and interpretation
of the concept of "no interaction". One such approach, through the con-
cept of "generalized independence" is powerful and general enough to in-
clude all hypotheses of "no interaction" (formulated in a specific manner)
and many other hypotheses about homogeneity, symmetry, etc. that we come
across in analyzing contingency tables.

Consider, for example, an experiment to compare the effectiveness of
safety release devices for regrigerators in relation to children's safety.
Children between two to five years of age are induced to crawl into refri-
gerators equipped with six different types of release devices. If a child
can open the door of the refrigerator, from inside, within a certain time
period, the response is classified as a success, otherwise a failure. The
background variables studied inecluded age, sex, weight, socic-economic
status of parents. The experimental variable was one of six devices.

(A partial analysis of this data may be found in page 581 of Kullback, S.,
Kupperman, M., and Ku, H.H.(1962), Tests for contingency tables and Markov

chains, Technometrics, L, 573-608). Some balancing of the background vari—
ables was achieved.
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In other ingtances none of the factors are subject to experimental
control, and whatever availasble data could be collected is reported. .
The analysis of this type of data, though it may Only be seeking prelim-
nary information can be important in fields of health and §af?ty. The
uncontrolled experimental data are sometimes the only realistic data
available when these data deal with life, death, health, and safety, and
some of these factors and responses are only expressible in qualitative

terms, in the present state of art.

It is expected that the number of problems calling for the tech-
niques of the anslysis of multidimensional contingency tables will
increase. Experience at the George Washington University with such &
growing demand confirms this. The examination and interpretation of
data from social phenomens, housing, psychology, education, environmen-
tal problems, health, safety, manpower, business, experimental testing
of devices, mllitary research and development, etc., are potential source
sreas.

Classical problems in the historical development of the analysis of
contingency tables concerned themselves primarily with such questions as
the independence or conditional independence of the classificatory vari-
ables, or homogeneity or conditional homogeneity of the classificatory
Variables over time or space, for example, similar to such tests in multi-
variate analysis as independance, multiple correlation, partial correlation,
canonical correlation, etc. Such classical problems turn out to be special
cases of the technique we discuss.

These techniques result in analyses which are essentially regression
type analyses. As such they enable us to determine the relationship of
one or more "dependent” qualitative or categorical varisbles of interest
on a set of "independent" classificatory variables, as well as the rela-
tive effects of changes in the "independent" variables on the "dependent
variables". The object of the analyses is the study of the interaction
between and among the classifications. The term intersction is used here
in a general sense to cover both dependence and association.

Critics of methods for contingency table analysis have mainteined
that most of the procedures used, at least in the past, were only of a
global chi-squared test nature. However, for a recent example of this
see Patil, K.D. (197h)sInteraction test for three~dimensional contingency
tables, Journal Am, Statist. Assn, §2116h~168. Through the use of the
principle of minimum discrimination information: (m.d.i.) estimation, lead-
ing to exponentisl families or multiplicative models (generalized indepen-—
dence) or log-linear models we. show that:
(1) Estimetes of the cell entries under various hypotheses or models
can be obtained;
(2) The adequacy or fit of the model, or the null hypothesis, can
be tested,
(
(

3) Main effect and interaction parameters can be estimated;

h) The structure of the table can be studied in detail in terms
of the various interrelationships among the c¢lassificatory
varisbles;

(5) The procedures can be applied to test hypotheses about particu-

lar parameters and linear combinstions of parameters that are
of special interest;

52



(6)

(1)

(10)

(11)

The procedures provide indication of outlier cells. These may
cause a model not to fit overall, yet fit the other cells exclu-
ding the outliers;

Since the procedures and concepts are based on a general prin-
ciple a unified treatment of multidimensional contingency tables

is possible. Sequences of generalizations step by step to high-

er order dimensional contingency tables are not necessary as has
been the case with other ad hoc procedures (see for example,

Patil (1974), Sugiura, N and Otake, H. (197Th), An extension of
Mantel-Haenszel procedure to K 2 x ¢ contingency tables and the
relation to the logit model, Communications in Statistics, to
appear);

The procedure provides estimates based on an observed or sample
table, which satisfy certain external hypotheses as to under-
lying probability relations in the population table. These
estimates also preserve the inherent properties of the observed
data not affected by the hypothesis;

In general, the m.d.i. estimates are best asymptotically normal
(BAN) and in the many applications of fitting models to a table
based on observed sets of marginal values or linear restraints

of observed values, the m.d.i. estimates in particular are
maximum=likelihood estimates;

The test statistics are minimum discrimination information

( m.d.i.) statistics which are asymptotically distributed as
chi-squared with appropriate degrees of freedom. 1In the case

of fitting models to a table based on observed sets of marginal
values or linear restraints of observed values, the m.d.i. stat-
istics are log-likelihood ratio statistics. The m.d.i. statis-
tics are additive, as are the associated degrees of freedom, so
that the total under an hypothesis can be analyzed into components
each under sub-hypotheses. The analysis ig analogous to analy-
sis of variance and regression analysis techniques. It uses a
design matrix, a set of regression parameters, and explanatory
variables, and analysis of information tables.

In models fitting estimates to an observed table based on sets of
observed marginal values as explanatory variables, some estimates
can be expressed explicitly as products of marginal values.
However, this is not generally true, and expected cell frequencies
(functions of marginel values), can be computed by an iterative
proportional fitting procedure, and the use of a computer to perform
the iterations becomes necessary. For the foregoing cases which we
term internal, and problems involving tests of external hypotheses
on underlying populations a number of iterative computer programs
are avallasble. They provide as output, design matrices, the obser-
ved cell entries and the cell estimates as well as their logarithms,
parameter estimates, outlier values, m.d.i. statistics and their
corresponding significance levels, and covariance matrices of para-
meter estimates, to assist in and simplify the numerical aspects of
the inference. 1In this respect it is of interest to cite the
following quotation from a book review by D.J. Finmey in Journal
Royal Statistical Society, Series A(General) Vol. 136(1973), part
3, p. 461, "No mention is made of the extent to which computers
have destroyed the need to assess statistical methods in terms of
arithmetical simplicity: indeed the emphasis on avoiding lengthy,
but easily programmed, iterative calculations is remarkable".
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MULTI-DIMENSIONAL, NON-GAUSSIAN, RANDOM PROCESSES
WITH SPECIFIED COVARIANCE AND PROBABILITY DENSITY FUNCTIONS

James W. Wright
Advanced Sensors Directorate
US Army Missile Research, Development
and Engineering Laboratory
US Army Missile Command
Redstone Arsenal, Alabama

ABSTRACT, The simulation of radar scattering signatures, including
radar cross section and glint, of complex targets for use in air defense
system simulations is a difficult and time consuming task. Although it
is possible to develop deterministic models of the radar signature, as a
function of the target aspect angles, it is generally not possible to use
these models in a realtime simulation because of the computational require-
ments involved in using such a model. Statistical and stochastical models
of radar signatures are generally limited to the classical radar cross
section models, although some models do include crudely correlated glint
models as well, It is possible to describe statistically the radar scat-
tering signature in terms of the probability density and covariance func-
tions, but the processes generally are non-stationary, non~Gaussian, non-
Markovian processes. Even reduction of the process to a stationary,
Markovian, non-Gaussian process does not presently reduce the problem to
an analytically solvable problem. The development of techniques to gener-
ate these multidimensional random processes is needed to make more real-
istic simulations practical.

I. INTRODUCTION. The simulation of realistic radar signatures of
aircraft for use in air defense (AD) system simulations is a difficult
task. Stochastic models capable of representing the multidimensional
radar signature with any realism do not exist, so complex deterministic
models are used when realism is required. These deterministic models
require significant computer resources in terms of both computation time
and memory, but they can represent the nonstationary multidimensional
signature with sufficient accuracy to make them invaluable in all digital

- simulations. The computation time requirements generally exclude deter-
ministic models from realtime hybrid simulations, i.e,, those simulations
with actual system hardware in the loop. It is for these realtime, hybrid
simulations that realistic stochastic models are needed.

The purpose of this paper is to present the problem with a descrip-
tion of the process and the underlying phenomena from which it is derived.
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IT. DESCRIPTION OF THE PROBLEM

1. General. The first step is to establish the definition and
description of the radar signature, The elements, or parameters, of the
signature can be addressed one at a time or in pairs to arrive at a
statistical description of the overall process.

The radar signature is defined to be the set of target induced param-
eters which are measured by the observing radar(s) or which directly
influence the radar measurements or tracking systems. These include the
radar cross section (RCS), azimuth glint (ee), elevation glint (ew), and

intrinsic phase (@). Other parameters, such as range glint, which are
dependent on system mechanization will not be considered. Each of these
four parameters is range independent for far field conditions, which is
assumed for simplicity. Since most of the Army AD systems are semi-active
systems, each of these parameters must be considered twice: once for the
ground radar, and once for the missile seeker. The signature, therefore,
is eight dimensional.

The problem is further complicated by the fact that these parameters
are functions of the target aspect angles which are nonstationary functions
of time., Figure 1 depicts the plan view of an arbitrarily selected flight
path and Figure 2 depicts the aspect angles of a perfectly controlled tar-
get in still air as seen from a ground radar located at the origin. (The
+ sysbols are taken at equal time intervals.) A realistic target will
experience random rotational (and resulting translational) perturbations
from wind gusts and autopilot noise and response characteristics, so that
the actual aspect angles will be a two-dimensional random process with
averages approximately as shown in Figure 2, The nature of the random
perturbations is a function of the assumed environment and the target
aerodynamic and control response characteristics.

The problem, then, is to develop a stochastic model of a nonstationary
eight-dimensional random process., The correlations among the various param-
eters must be maintained because they significantly affect the response of
the AD system, It is clear that some simplifications to the problem are
required before any attack can be made on the problem, An investigation of
the various parts of the problem will reveal some significant simplifications.

2. Target Signature Characteristics. The most realistic deter-
ministic radar signature models are based on the N-body approach. This
approach assumes that the signature can be assumed to be generated by N
scatterers or scattering centers. The components of the radar signature
can be given by [1]:

N N
RCS = z z /Si Sj cos (ai - O!j) >
i=1  j=1
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(xi, Vio zi) are the coordinates of the i-th scatterer,
Si is the RCS of the i-th scatterer,
and
oy is the phase angle associated with the i-th scatterer.

0
errors in the apparent target position, in meters, in a plane orthogonal
to the line of sight at the target. It has been demonstrated that the

glint errors, €, and %P’ can be expressed as the gradients of the phase

with respect to the appropriate angles [2,3]. Conversely, it is possible
to compute the random component of the intrinsic phase as the integral of
the phase gradient.

The RCS is given in square meters, and the e, and q$ are given as

Figures 3, 4, and 5 depict the RCS, RCS* e, (theta component of non-
radial power) and RCS* e@ (phi component of non-radial power) for a

selected region of aspect angles for a simple mathematical model of the
MQM-34D (BQM-34A) target drone [1] for a frequency of 1 GHz, The non-
linear nature of these functions is clear, but the correlation is not.
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The correlation of interest is the statistical correlation. If it is
assumed that the aspect angles have some statistical relationships, it
is possible to compute the statistical relationships of the scattering
components,

The nonstationary nature of the process can be handled in a relatively
straightforward manner. Since the average aspect angles generally change
slowly with respect to the random components, it is reasonable to consider
the random component separately. 1t is assumed that the random components
of the aspect angles are stationary Markov processes. This is not strictly
true but the lack of definitive measurements on aircraft motion and the
realism of the radar signature models make the assumption acceptable. Since
the statistical characteristics of the signature components are functions
of the aspect angles, the statistical characteristics of the signature are
also assumed to be stationary processes when considered from the short term
viewpoint.

3. Statistical Characteristics of the Radar Signature. The statis-
tical characteristics of the radar signature of a target are functions of
many variables, two especially important ones being radar frequency and
aspect angle statistics. Figures 3, 4, and 5 were computed for 1 Glz,
The lobing structure increases approximately linearly with frequency, but
the averages and variances do not. A Monte Carlo type simulation of the
target at a point corresponding to 6 = 103.8 degrees, © = 38,67 degrees
with 6 and ® jointly normal and ¢, = 3.07 degrees qp = 1.46 degrees, and

0

pa® = 0,543 resulted in the results shown in Figures 6 through 11. These

figures present plots of the radar signature parameters or related param-
eters. These plots indicate the type of random processes that are to be
modeled. Figures 12 through 16 present probability density functions of
the data in Figures 6 through 11 and Figures 17 through 20 present typical
covariance functions for part of these data,

Three classical statistical RCS models are of interest. They are the
Swerling 1, Swerling 3, and log-normal. The equations for these models
are given by:

Swerling 1

fs(s)=:']s}exp -—_-Z_-' , 820
where

s = E {s} ,
Swerling 3




and log-normal

' 2
1 Un s - p)-
£f (s) = exp{ - In_s 5 , §20
S
os ./ 2n 20

where

uw == E {4n s}
and

o =E ((Uns - 2

Models of the nonradial components of power have not been developed at
this time.

The problem of bistatic angles must also be addressed. It can be
shown that the bistatlc signature is best approximated by the monostatic
signature for the aspect angles corresponding to those of the bisector
of the ground radar aspect angles and the missile seeker aspect angles
reduced by a scale factor which is a function of the bistatic angle. The
covariance of the RCS as a function of one half of the bistatic angle is
approximately the same shape as the covariance of the RCS as a function
of the aspect angle.

The roll-off of RCS as a function of bistatic angle for the MQM-34D
drone near nose-on appears to be exponential in shape with a reduction of
approximately 4.5 decibels (multiplicative factor of approximately 3) in
30 degrees in average and standard deviation.

A review of the known data is appropriate at this point to determine
what data are missing. The first order probability density functions and
covariance functions can be assumed to be known for the monostatic RCS
and nonradial components of power and for the bistatic RCS and nonradial
components of power. The covariance function of the monostatic and
bistatic RCS is also known. The covariance functions of the monostatic
and bistatic nonradial components of power are not known, but theory and
experiments indicate that for the frequencies of interest and bistatic
angles exceeding 5 degrees, these covariance functions can be assumed to
be zero. The intrinsic phase is most readily computed as the integral of
the glint (phase gradient) since absolute phase is not important. Thus
the stochastic process is actually reduced basically to a pair of three-
dimensional random processes, with a correlation between the monostatic
and bistatic RCS for small bistatic angles.

The first order probability density functions for the RCS will
generally be selected from one of the three classical models previously
given, The probability density functions for the nonradial components
of power remain to be determined, at least in analytical form. The
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covariance functions appear to be approximately exponential for the cases
studied to date. Analysis of other deterministic models, the MQM-34D
and other targets, may indicate other shapes for the covariance functions,

however.

The nonstationary aspect of the problem can probably be handled by
using averages and variances which are functions of the aspect angles and,

hence, of time,

That leaves one major problem area, the generation of a three-dimen-
sional random process with non-normal probability density functions and
specified covariance functions. Techniques are available for handling
limited classes of one-dimensional random processes [4, 5, 6], but it
appears that generalization to multidimensional processes, except for
very special cases [ 5], has not been accomplished [ 7].

ITII. CONCLUSION. This paper has outlined one area where the multi-
dimensional random processes are needed today. No attempt has been made
to present all of the data necessary to completely define the problem.

In fact, the author is not sure what data are needed to completely define
the nature of the stochastic process that is to be modeled. The data
presented are generally accepted as necessary but are probably not suf-
ficient to permit complete characterization.

IV. REFERENCES

1, Weight, J. W. and Haddad, A. H., On the Statistical Model-
ing of Radar Targets, US Army Missile Command, Redstone
Arsenal, Alabama, Report No. RE-72-19, November 1972,

2. Howard, D, H., "Radar Target Angular Scintillation in Track-
ing and Guidance Systems Based on Echo Signal Phase-Front
Distortions,"” Proceeding of NEC, Vol 15, 1959,

3. Lindsay, J. E., "Angular Gliant and the Moving, Rotating,
Complex, Radar Target," IEEE Transactions on Aerospace and
Electronic Systems, AES-4, No. 2, March 1968,

4. Haddad, A, H. and Valisalo, P. E., '"Generation of Random
Time Series Through Hybrid Computation,'" Sixth International
Hybrid Computation Meetings.

5. Haddad, A. H., "Dynamical Representation of Markov Processes
of the Separable Class,'" IEEE Transactions on Information
Theory, IT-16, No. 5, September 1970,

6. Broste, N, A,, Digital Generation of Random Sequences with
Specified Autocorrelation and Probability Density Functions,
US Army Missile Command, Redstone Arsenal, Alabama, Report
No, RE-TR~70~5, March 1970,

7. Wong, E., "Recent Progress in Stochastic Processes - A
Survey," IEEE Transactions on Information Theory, IT-19,
No. 3, May 1973, '

60




30,000 4

T

10,000 4 FLIGHT PATH

Figure 1. Plan view of target flight path,

61



“appps puncJsb 02 sepfun gosose gscuael 2 3unbl
Y13HL
rARR1} ¥'001 9'66 8'86 0’86 L6 v'96 9'G ) ;
] 1 I I 1 1 | : 6 mwm 0'v6
000'ce—
+
+
+
*
+
+
‘s
+ = 009°L2—
+
+
+
+
+
*e
*e
.........
* =002 €C—
e
+
+
+
*e
v,
*s
*s
*s
*s
...+++ 00881 —
*
*s,
=00 vi—
e OO0 1] —

6o

IHd



£9

RCS

9.501
6.394—

3.197—

Tymiivmea 2

L N

Ui m =

100.000

105.000
THETA

SO

110.000

115.000

120.00¢



P (THETA)

6.010

[ ¥ A T T
90.000 95.000 100.000 105.000 110.000 115.000 120.000
THETA
Figure 4. Theta component of non-radial power as a function
of the asnect angles .



UCLEOUNS B SP J48MOd [BLPEBJ-UGU O 3UBUOQWOD LYyd "G 34nbij

Vi3HL
000°0Z1 000°'SLL 000 0Ll 0007501 000'001 000°56 000706
‘ ' L S R HN S S

- P67

—GyeL—

B2 Al

(I4d) d




"A403SLY UC1]D3S SSOJD ueped paje|nuls g d4nbLyg

{99s) JNIL
¥'eol

AL

 —————Tyr AT TV

—2090

—~2060

—£0Z°¢

P05t

W) NOILD3S SSOHD HYAVH
[N

(Z"



"A403SLY JuLiB }JO JUBUOCWOD BIBYZ paTER{NWLS

{08s) JWILL
£'y8L 8'eot v'eEvL 6'¢cL y'eoL 6'Ll8

S el e - 1 e e e e - S - [ S

i
|
1
i
i
! H
\
: |
| 1
1 i
H | i
P
H .
i v H
i .
4 I
7 3

*/ 3anbiyg

oLy

[r—

+
i
i

502

00

o BYLL

~96'6—

—80'G

-19C1

~E1'0C

LNITD 40 LNINOdWOD VLIHL

67




ot a1
WU J by

~
“
)
R
[72)
—
<
40
e
—
o
Y
4]
i)
<
ar

{oes) IWIL
8'v0¢ g8t g'eot VEFL 6'czL ¥'ecol 6'i8 19 oly S0 00
! f f - h!i\\ S S S O U O [01°e—

. 1101~

A A

~

LNiTS 40 LNINOJInNOD IHd



L R

—5.261—

-10.521
—15.781—

HIMOd TVIAVHNON 40 llgBNOdINOO V13HL
92

-21.041—

184.3 204.

122.9 143.4 163.8

102.4
TIME (sec)

20.5 41.0 61.4 81.9

0.0



O R R

"AJ01SLYy JBMod |BLpPEA-UOU 40 juduodwod Lyd palre|nuis Q] a4nbLly

(998) JNIL
8'¥0Z 8L 8'e9l eyl 6221 ¥'201 618 ¥'19 0Ly 50z 00
! | | i S A R S R R B R £99°0—
i )
1 ; i N _
—£25°0—
-
“ T
i Q
o
=
_ . : 5]
" : il Qo
i | i Z
; | =
| | | S
! -
: P
o
=
. X
e
>
r
by~
o
=
[ m
_ b+l
|
1
| i |-stro—
Y .
i m




l

"A403SLY Bseyd pajepnuts

{09s) IWIL
6'¢C1 L&A

[ S [

"Ll 34nbi4

6'L8

RPN

<=

—008t

ISVYHd

T1




cL
PROBABILITY DENSITY

0.060 =~

}
i
}
1
0.048 \
\
\
0.036 =
ya
0.024 = v i%
\
0.012 =4 \
\/\\/ L Y ff\f
Jwﬁv‘n\mf* »j‘ 7~ \/\A M‘“’*![‘f/\j\’*‘
0.000 r r T T r r T
0.000 0.148 0.297 0.445 © 0.593 0.741 0.890 1.038 1.186 1.335
RADAR CROSS SECTION (m?2)
Figure 12. Probability density of radar 3aztion

1.483



€102

"aULi B 40 juaucducd 215y 40 A3Lsudp A3L[Lqeqodd gl d4nbid
1Ni719 40 LININOJINOD V13HL
LE91 Lg2i ¥8'8 80'S A e 0Z'9— 966~ ELEL— 6v'L1—
m S &lL(/)\G/ 1 : . : - 0000
uw Mk&lﬂ«.mu mw
oy \
«Mw i ~6E0°0
i
i
!
[
{
¥
=800
w H
j
= L1110
= /GL°0
ﬁ

~96L0

ALlISN3A ALIT19vd0ud
T3




B s
i B AR
e,

I

..‘,.,,,,,.-M"

Pl

N
ridny ol I e gy .‘ch(vl“ihm‘mmmim “
g """"’Nw\.‘
‘\W -,
T oy
{‘\
S,
L M) h
e
Lw
Mm%
‘ T 1 ! & g
r~ o ©
(=] & g
: % : : S :
= © @ @ ° N

ALISNIA ALITIEAVHOHd

—2.059 -1.535 —1.011 —0.487 0.037 0.561 1.085 1.608 2.132

—2.583

-3.107

PHI COMPONENT OF GLINT




A AT T b

R v
m“\'m’-

" oA

™ -
o
-z
T b g ¥ e
Ll
R e

(:-..AW,W.__ -

MR A

g Rt an

e perRE

X

o AN

R
%m\

)
ol et

L "
.

o
ey
L T— A
ey, .

.

o1

AR ANy 7 R g
R T T R A T o R R 3 g,

0.051~
0.04 1=
0.031~

0.021-

0.010=
0.000

ALISN3Q ALITIGVYEO0Hd

FC

-0.623 -0.285 0.054 0.392 0.730 1.069 1.407 1.746 2.084

—0.962

—-1.300

THETA COMPONENT OF NONRADIAL POWER

onent

o

n of theta co

10

ity functi

2nsi

of non-radial power.

ty d

i

b

13 ]

Praoba

U

1

aqi

Figur



9L
PROBABILITY DENSITY

0.077 -

ML W e

!

0.062

L T PR P

0.046 4

it

0.031=

0.015—

0.000 .{.......__.amr .

—0.759

-0.512

e O R
—0.388

e — T r
—0.265 -0.141 —-0.017 0.106 0.230

PHI COMPONENT OF NONRADIAL POWER

™
o

rohani )ity dengity Turcian o7 oAl coronnent

a

“h
[+

oy

0

non-radi

(W]

0.353

4

0.477



012395 SSCUD JOPEL 3U3 4O DOUDLABACDOIND paZiimiick /L 3unbig
S$OH 40 IDONVIHVYAODO0LNY
(o8s) INIL
0066 0168 026°L 0£6'9 ot6’'S 0G6'Yy 096’C 0/6'2 086°L 0660 000°0
! i 1 i 1 b} 1 1 1 . | 1 "y —
mloco L
W
§
3
i
¥
:
i~ 0090~
W

#0020~

™~ 0020

N

000°L

JONVIHVAQD




e EEEEEEE———

“uam0d | eLpeA-UOU 10 JUBUOAWOD ©33U] 4O SDUBLUBAODOINE pSZL[BWAON 8| 34nbij

YIMOd TVIAVYHNON 40 LNINOJWOI VIIHL 40 IONVIHYAOIOLNY
{085} JNIL
006'6 0L6'8 0c6'L 0€6'9 0v6'S 0s6'v 096t 0L6°¢C 086°1L 0660 0000

| SOV SRS ISR SNSRI R (VR SNSRI SRS SUSUIS. SN SO S .Jalw.l 000’ L—

~009'0—

P

R T
=
[l S TP

{
- i
H
i H

FONVIHVAOD.



1.000 —

os0d N\

0'200 - \

oL
COVARIANCE

—0.200~

—0.600

i

—mel T v Y T T r Biats e T T r 3
0.000 0.990 1.980 2.970 3.960 4.950 5.940 6.930 7.920 8.910 9.900

TIME (sec)
COVARIANCE OF RCS AND THETA COMPONENT OF NONRADIAL POWER
Figure 19. WNormalized covariance of radar cross SeCtici and theid
combanent nf non-radial power.




98 COVARIANCE

1.000 ~

0.600=4
0.200 ~
/M—/"‘m“\m e
~0.200 - e
0,600 ;/
/
P/
F
; 7
|
—1.000-7 T T Y T T T I I T
0.000 0.990 1.980 2.970 3.960 4.950 5.940 6.930 7.920 8.910
TIME (sec)

COVARIANCE OF THETA AND PHI COMPONENTS OF NONRADIAL POWER

Figqure 20. Normalized covariance of the theta and phi
components of non-radial power.

9.900



DESIGN OF EXPERIMENTS FOR THE EVALUATION OF
MATERIEL PERFORMANCE IN WORLDWIDE ENVIRONMENTS

Bob 0. Benn
Waterways Experiment Station
Corps of Engineers

Vicksburg, Mississippi

Background

A review of recently approved Required Operational Capability
(ROC) documents reveals that the user in the Army is requesting a
host of materiel items with truly exceptional performance capabilities.
A good example of this trend toward materiel sophistication can be
found in the ROC's dealing with intrusion detection, target—position
location, and target discrimination. It is axiomatic that the more
complex the system, the more sensitive it can be to its operational
environment. Nevertheless, the systems are intended to function
adequately in the majority of worldwide terrain or environmental
conditions. |

The Test Methodology Directorate, U. 8. Army Test and Evaluation
Command (TECOM), has recognized for some time that adequate testing
procedures are not available for comprehensive evaluation of materiel
of the type discussed in the preceding paragraph. To a large extent,
the inadequacy results because empirical tests to evaluate materiel
items are conducted in a specific (and only a limited number of)
terrain or environmental conditions; yet those test results must be

extrapolated to worldwide conditions if the evaluations are to be’
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conclusive. As part of TECOM's endeavor to improve its test and evaluation

capability, the U. S. Army Engineer Waterways Experiment Station (WES)

was asked to develop test guidance and analytical procedures that could

be used to extrapolate to worldwide enviromments the results obtained in

tests with unattended sensors and mines in specific terrains.
In general, the problem to be addressed was the development
of guidelines for designing an experiment in which the items could be
evaluated to determine if they will function above the minimum operating
criteria stated in the ROC. Conventionally, the chief objectives of
experimental design are to:
a. Arrange the experiment so that the effects of changing
each relevant condition or factor can be readily measured
independent of the effects of changing the other condi-
tions and of experimental error.

b. Obtain a valid estimate of error appropriate for assessing
independently or synergistically the statistical sigﬁificance
of the effects of the factors considered.

c¢. Enable the effects to be measured with the required accuracy.
Normally, the experiment is arranged so that one (or at most two

or three) of the factors or conditions which are known to be significant

are varied incrementally while all others are held constant. This

permits the effects of those factors to be determined, but only as
independent variables. Such a procedure does not permit the evaluation
of the effects of all of the relevant factors acting in concert, yet

that is invariably the way they act when the device is in operational
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use. Nor does this procedure make any provision for the recognition of
the factors which are not known to be significant at the beginning of
the experiment or test. In general, classically-designed experiments
respond to this situation only by increasing the experimental error.

The economic aspect of experimentation cannot be emphasized
too strongly. Inductive inference from experimental data is subject
to error that can be quantified with mathematical statistics; therefore,
a measure of accuracy is obtainable. 1In practice, it is necessary to
consider the cost of obtaining a particular accuracy and at what Qtage

the cost of obtaining increased accuracy is too great.

Energy Exploitation

Materiel items that are used for intrusion detection, target—position
location, and target discrimination must contain sensors that function
by exploiting a wide range of energy propagation forms, such as seismic,
acoustic, magnetic, electromagnetic, etc. In general, an item is
designed to exploit the energy generated by a target of military interest.
To be exploited, the generated energy must be propagated from the target
to the sensor. The informational content of the propagated energy, i.e,
the information at the sensor, is acted on by the signal processor (i.e,
the logic) of the materiel item, The generation of energy in all the
various forms is affected by interaction of the generator (target) and
the environment, and the energy wave form is further affected by the
medium through which it propagates. Every large region of the world

cxhibits a wide variety of terrain conditions, each of which may change
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the character of the wave in one or more ways. If the wave is changed to
a form which the sensor logic has not been designed to ''recognize," the
sensor will not respond.

The implication of the above is that to design an adequate
experiment to evaluate the item's performance, its interactions with
the operational environment must be understood quantitatively. Prerequisite
to this understanding is an identification (and quantification) of the
factors of the environment that control or significantly influence the
interactions. Thus, two major experimental design steps emerge:
(a) modeling the item-terrain interaction and (b) quantification of

the test environment.

‘Materiel Item Design

The design of advanced hardware often requires use of specialized
technology, and most designs emerge from defense contractors, who may
have proprietary rights to software and procedures they have developed.
Because of idiosyncrasies in the design procedures, the contractors
often optimize the device for certain environments. Unfortunately,
testers may not be aware of this because they may not have access to
critical information on the rationale and procedures used to develop
the item's design. Furthermore, the as-built specifications are not
always provided to the test agency. It is the tester's duty to be
skeptical, and to try to stress the item in a manner analogous to actual
use conditions.

The difficulty in implementing this duty can best be explained by

designing an experiment for the evaluation of a specific item. For
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this discussion a seismic sensor that is required to discriminate
among classes of targets is chosen. In.this case it is instructional
to consider the problems of designing sensor logic that can discriminate
among targets.
The difficulty in designing such a seismic sensor lies in the
fact that sensor logic must be capable of identifying seismic signal
features that are consistently associlated with a particular target,
regardless of terrain or target conditioms. This generalized problem
breaks down into three components: (a) the inadequacy of the techniques
available for extracting design criteria, (b) the inherent variability
of seismic signals, and (c¢) the inadequacy of available seismic data.
The most popular method of developing design criteria consists of
extracting candidate signal characteristics from an empirlcally generated
data base. Briefly, the steps are as follows:

a. Establish signature design data base. This step involves
measuring signature data from targets of interest operating
aﬁ various speeds and in various terrain conditions.

b. Digitize the data and separate them into two batches.

c. Select candidate discriminating features measurable from
the time~ or frequency-domain signals. Examples include
ratios of energy in selected frequency bands, Fourier
coefficients, number of zero crossings, peak-to-peak
ratios, root mean square values of selected frequency
ranges, mean values of selected frequency ranges, etc.

d. Measurc candidate features from one batch of the signature

data,
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e. Correlate features with target classes. Multiple corre-
lation techniques are used in this step to identify the most
persistent features and relate them to target classes.

Test the correlation derived in step e. This step

|
.

involves testing the model against the second batch of
signature data not used in the development of the model.
The results are often shown as a probability of classi-
fication by target class.
Because these techniques must rely on a finite number of samples,
they do not ensure that the logic will function for all situations in
the total signature population, i.e. the data base may not have statistical
representativeness. As a point of fact, a statistically valid data base
may be exceedingly difficult to define. If the design data base is
inadequate, the adequacy of resulting sensor design is subject to

question.

Evaluation Test Design

Variables to be considered

Because the design technique is subject to statistical probability,
the problem facing the test designer becomes one of developing a scheme to
establish the performance envelope of the sensor, i.e. demonstrate under
what operational and environmental conditions the sensor will and will
not meet the design specifications as stated in the ROC. Conventional
empirical test procedures in themselves are wholly inadequate to define
the performance envelope of a sensor capable of discriminating among

targets. For example, consider a sensor designed to discriminate among:
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a. Tracked vehicles

b. Wheeled vehicles -
¢. Man or men

d. Rotary aircraft

e. Fixed-wing aircraft

f. Noise

To decide the number of test interactions required to positively define
the sensor's performance envelope, the sources of variance in the signal
characteristics (which are correlated with target class) must be examined.
Within a given target class, such as tracked vehicles, a number of types
exis;, e.g. the M113 personnel carrier, the M60 tank, etc. Since the
various types within a class do not have identical engines, drive trains,
suspensions, etc., it is very reasonable to assume that values for specific
signal characteristics (i.e. within a given terrain and at a given distance
from the source) will not necessarily be the same for each type of tracked
vehicle. Thus, some variance in the values of signal characteristics
occurs because all tracked vehicles are not the same.

A similar, but more subtle, variation in the values of specific
signal characteristics may.occur because all members of a particular type
of target within a class may not have exactly identical characteristics.
For example, all M1l3 tracked persounel carriers certainly have similar
power supplies, drive trains, suspensions, etc.; however, their physical
characteristics (such as spring constants, effective horse power, weight,
ete.) may not be identical because of inherent variability in the manu-
facturing of the vehicle and the different degrees of wear and histories

of usage.
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A third factor, and perhaps one of the more important, is the
influence of terrain ‘conditions on the values for the signal characteristics
for a given member of a specific target type and within a specific
target class. Three general phenomena must be considered:

Generation of the signal.

(®

b. Influence of surface and subsurface conditions on signal

characteristics.

Influence of surface features (topography) on signal

|0

characteristics.

It must be emphasized that the influence of surface and subsurface
conditions on signal characteristics is a function of distance from the
source in many cases. Thus, the influence of the terrain can be complex
indeed.

The generation of seismic signals is a complex process and
depends primarily on the target and the terrain conditions on which the
target superimposes an input stress. When the target is moving, it is
reacting to the irregularities in the surface of the terrain, and ag a
function of time is passing onto and over a variety of the surface
irregularities. The target, such as a vehicle, will react in various
ways to different sizes and shapes of surface irregularities and
therefore will produce variations in the generated signals as a function
of time. In addition to this time/geometry problem, the signal generation
process 1s affected by the subsurface terrain conditions; the coupling of
energy into the terrain materials by the target is not the same for all

subsurface terrain conditions. Thus, the characteristics of the generated
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signals can vary because of the variations in the energy coupling phenomena
in different subsurface materials (both configurations and properties).
The effects of both the surface irregularities and the subsurface
characteristics are complicated by another variable, the speed of
travel of the target. Thus, the variation in the generated signal
due to surface and subsurface effects may have an additional component
of variation with changes in target speed.

In addition to a consideration of signal generation, it is necessary
to examine signal propagation. Once energy is coupled to the medium,
it propagates away from the source in various modes. As the signals
propagate, the terrain materials through which they travel alter the
frequency and amplitude characteristics of the signals by acting as a
filter. The filtering effect of the terrain materials is a function of
distance, thus variance in measured signal characteristics can occur (for
a given target) because of different terrain conditions and as a function
of the distance from tﬁe source at which the signals are measured.
Furthermore, surface irregularities come into play again, i.e. the
signals propagating near the surface may be altered by reflection,
refraction, and conversion from one propagation mode to another as a
result of the interaction of the signal and the surface irregularities.
An additional source of variation occurs if terrain conditions change
between the source and the point of measurement. Thus, variations in
terrain conditions in general are the cause of many sources of variation
in measured signal features. Another complication can be added by noting

that wmany terrain parameters, such as soil moisture content and soil
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strength, may vary considerably (i.e. at one position) because of changes
in seasonal or c¢limatic phenomena (e.g. rainfall, freezing, etc.).

Other sources of variance in slgnal characteristics exist, such as
testing or measurement errors; however, elaboration on these topics is
beyond the scope of this discussion. The cogent question to be answered
ig: How can these sources of variance in signal characteristics (upon
which the sensor design i3 predicated) be isolated and their effects be
accounted for in a test program to evaluate the performance of the sensor?

Empirical evaluation

If the assumption is made that the evaluation can be made by
empirical testing, it is pertinent to examine the influence of the many
sources of variance on the number of tests required. In any empirical
study it is necessary to collect sufficient data to define the variation
of a given variable under a specified set of conditions. For example,
the seismic response (i.e. the amplitudes and frequencies of the seismic
signal) ef a specific M113 tracked vehicle has some distribution for a
given set of terrain and test conditions. Since the initial estimates
of variance values are not readily available, statistical theory cannot
be used to calculate the number of tests necessary to achieve an adequate
evaluation. For this reason, a somewhat cursory analysis must be made
by listing the relevant variables and estimating the number of combinations
of variables that must be tested.

As stated earlier, both surface and subsurface terrain conditions
affect the generation and propagation of seismic energy. Further,

these conditions (i.e. surface and subsurface) are dynamic phenomena that
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are closely related to soil moisture content. Also, the seismic signals
- are affected by the propagating medium as a function of range. Let it
be assumed that the entire spectrum of terrain surface conditions of
interest can be represented by 10 specific situations, and the spectrum of
subsurface terrain conditions of interest can be limited to 100 specific
conditions. Since both surface and subsurface conditions are dynamic
rhenomena that are closely related to moisture content, let us assume
that five different situations (e.g. five moisture conditions, ete.)
can occur. Also, let us assume we need measurements at 10 distances
from the target to the source. In the extreme, but considering only
these factors, the number of possible combinations that must be tested
is a striking 50,000,

If this were not bad enough, consider the fact that it is
necessary to define the variability in the signal characteristics
that may occur for an individual target of a specific type (e.g. a
specific M113). To do this let us assume the need for five repeat
trials. Aiso, since all individuals may not react the same, let us
test five individuals of each target type within each target class.
In addition to this, it must be remembered that there are numerous
types within each class, say five. Finally, we are dealing with six
classes of targets. When all of these comblnations are considered,
the resultant number of combinations (or required field tests) could
~ total 37,500,000. Clearly, this is not a viable solution, either

technically or economically, and an alternative approach must be sought.
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Empirical~theoretical evaluation

Perhaps the most viable solution consists of a balanced experimental
and theoretical program. Tn this approach, well-controlled empirical
tests are conducted to ensure that the hardware functions, i.e. it meets
ruggedness and longevity specifications and the electrical circuits work.
Equally important, the empirical tests demonstrate how the device works
in a specific set of test conditions.

In the theoretical portion of the program, realistic simulation
models are used to estimate how the device would function if the various
terrain and target factors were varied throughout the range of interest.
The deficiency in applying the balanced approach centers around the fact
that simulation models adequately describing sensor performance as a
function of target and envirommental conditions are not readily available.
Further, for practical applications, they must be formulated such that
they accept unique and measurable target and environmental factors.
Although difficult, formulation of adequate simulation models is both
possible and practical. To illustrate, the following paragraphs briefly
describe a seismic sensor performance model developed at the WES. Also
presented are examples of how well the signals predicted with the model
compare with measured signals from man-walking and vehicle targets.

Also, presented are examples of how the signals change as a function

of terrain conditions.
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WES Seismic Sensor Performance Model

The simulation process

The seismic prediction chain for the simulation process developed
at the WES is shown in fig. 1. Stress signals are predicted by the
various intruder models (e.g. footstep and wheeled and tracked vehicles)
for the forces applied to the ground media as the intruder travels over
it. The stress signals are used by the microseismic signal model to
compute microseismic signals. The microseismic signals are applied to
the seismic sensor model, which is used to compute sensor response as a
function of site and target properties. The simulation models are
described in detail in the WES report entitled "Effects of Environment
on Microseismic Wave Propagation Characteristics in Support of SID
Testing at Fort Bragg, N. C.; Report 2, Comparison of Summer— and Winter-
Season Conditions," by T. L. Engdahl and H. W. West, soon to be published.
It should be noted that the model simulating the sensor can be in
the form of a mathematical transfer function, or the predicted signal
can be input via magnetlc tape directly into tﬁe sensor itself. For
this reason the sensor does not necessarily have to be modeled, and the
critical link in the simulation process is the prediction of the seismic
signal. Fig. 2 demonstrates how well this can be accomplished for a
slgnal resulting from a footstep. The two sets of measured curves
(figs. 2a and 2b) are for the same walking man at the same Fort Bragg,
N. C., site, but the second set (fig. 2b) was recorded after a heavy rain
some 10 days later than the first (fig. 2a). In the soils at Fort Bragg

(predominantly sand), the footstep signals have approximately the same
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amplitude and frequency content in both the wet and the dry conditions.
This is not necessarily the case for all soils, but, under this situation
an intermediate condition ought to show roughly the same signal character—
istics. The predicted signals (fig. 2c¢) are for such an intermediate
condition; the surface rigidity data for the footstep model were collected
a short time after both sets of footstep signal measurements were taken,
when the soil moisture content was intermediate to before-rain and after—
rain conditions. It can be seen that the predicted signals have wave
forms with characteristics (amplitude, frequency content, and signal
duration) similar to those in both sets of measured signals.

Measured and predicted signals from Fort Bragg for am M151 jeep
at 32 km/hr are compared in figs. 3 and 4. The measured and predicted
time-domain signals in fig. 3 show very good agreement at ranges of 50,
100, 150, and 200 m. For this particular set of predictions, the signals
are primarily generated by the suspension as the jeep travels cross-country.
If the vehicle had been traveling much slower or traveling over a smooth
surface, the suspension component would be reduced and the seismic signal
would reveal the engine signal components. Both the predominant frequency
and the amplitudes are reduced as the rauge increases. This is shown
more clearly in the frequency-domain signals for the same test (fig. 4).
As the range increases, the high-frequency signal components are reduced
in amplitude at a much greater rate than the low-frequency components,
This causes the peak in the gspectrum to reduce in amplitude and shift
to lower frequencies.

The terrain inputs required for the man-walking target predictions
are: compression spring constants (RS C) and deflection at maximum

>
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bearing capacity (Zmax) obtained from plate-load tests; and thickness (T),
compression wave velocity (V?), shear wave velocity (VS), of the various
soil layers as defined by seismic refraction surveys, and soil wet
density (p). Normally good comparisoq of predicted and measured signals
can be obtained if only the first and second layers are considered. In
addition to the surface parameters (i.e. kS,c and Zmax) discussed above
for a man-walking target, a surface geometry profile is required as an
input to both the wheeled and tracked vehicle models. Subsurface data
{({.e. T, VP’ VS), and p) requirements are identical to that required for

making a prediction for the signal from footsteps.

Extrapolation of test results

Extrapolation of test results to environmental conditions outside
the test area is accomplished by varying the environmental factors
discussed in the preceding paragraph. For example, various combinations
of the factors representing soft soil, firm soil, and frozen ground are
shown in figs. 5, 6, and 7. Predicted time- and frequency-domain signals
for a man~walking target at a range of 5 m 1s shown in fig. 8. These
examples (which cover a wide range of soil conditions) show that the
particle velocity amplitude for the frozen ground is about two orders
of magnitude (from * 20 to .2 cm/sec x 10_3) less than that for the soft
solil. Also, the energy is propagated at higher frequencies as the soil
rigidity increases.

Fig. 9 shows predicted results for a Soviet light tank (PT76)
on the same terrain conditions as in the man-walking predictions,
The speed of the vehicle is 5 mph, and it is at a range of 75 m from

the sensor. These plots show dramatically how the shape of wave forms
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from a vehicle depends on terrain conditions. As with footstep signals,

the amplitude decreases with soil rigidity. Also, the dominant frequency

increases with soil rigidity.

Conclusions

It must be recognized that the various terrain and target parameters
can combine so as to have a synergistic effect on the resultant wave
forms; therefore, many combinations of terrain factors must be evaluated.
The WES sensor performance models use algorithms that can be solved
efficiently; therefore, they provide a means for generating a relatively
large number of predictions at a low unit cost. Work is now being directed
toward devising a listing or matrix of terrain factors to provide a data
base for the comprehensive evaluation of any seismic sensor. It is felt
that this balanced approach, i.e. balance between empirical testing and
theoretical extrapolation, can be directly applied to the evaluation of

many items of advanced materiel.
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SHORT PULSE TESTING OF EEDs
AND
THE BRUCETON PROBLEM

Ramie H., Thompson
The Franklin Institute Research Laboratories

and

Burton V. Frank
Nuclear Engineering Directorate
Picatinny Arsenal

1. TINTRODUCTION

The authors have recently completed tests of the short pulse response
of some electroexplosive devices. The primary results were evaluated
using the classical electroexplosive device statistical techniques., This
paper describes the test equipment and technique in some detail. Hopefully,
enough detail to allow the reader to get a feeling for the accuracy of
the techniques and yet not bore him completely. In any case the section
describing the stimuli and their generation can be skipped without any
great loss of knowledge about the central question we wish to raise. That
guestion is straightforward. Are the commonly used statistical techniques
of electroexplosive evaluation adequate for the use to which we put the
information generated by these techniques?

The authors suspect that the presently used techniques are the best
of a bad lot-the result of economic and theoretical compromise-and frankly

seek suggestions for improvement or alternate technigues.
2. BACKGROUND

The Applied Physiecs Laboratory of The Franklin Institute Research
Laboratories has been involved with the evaluation of the DC and RF (both
pulsed and continuous wave) responses of Electroexplosive Devices (EED's)
for about twenty years. Recently an interest in the response cof EED's to
very short duration/high amplitude electrical stimuli has been prompted by
concern about possible Electromagnetic Pulse (EMP) interactions with EED's.
The original work we performed in this field used damped sinusoidal stimuli
tut ‘interest has shifted to the more easily produced and controlled rec-
tangular pulse shape. All of the work discussed here uses the short rec-

tangular pulse as the basic EED stimuli.

107



How short is a short pulse? We have conducted extensive tests using
25 ns, 50 ns and 100 ns pulses but pulée lengths can be increased without
trouble to about 10 microseconds. The primary advantage of our specialized
pulse supplying equipment is the ability to monitor our high amplitude

stimuli and responses without interference.*
3. THE STIMULI AND THEIR GENERATION#

Conventional type twin lead EED's can be initiated by two ways:

(1) Passing current through the bridgewire (the conventional firing
mode) and

(2) Application of a high voltage between the pins of the EED and
the metal case.

Our pulse generating equipment can supply short pulses to the EED in
either of these firing modes. Figure 1 shows a typical high current short
duration pulse applied to the bridgewire of a conventional type hot wire
EED. The oscilloscope traces shown here have been traced from the actual
oscilloscope photographs., Note that the waveform on the left shows the
current thourgh the bridgewlire of the EED and the waveform on the right
shows the voltage across the bridgewire, The time scale is the same on
both photographs and the individual sweeps start at the same time.

Figure 2 shows a high voltage short pulse applied to the pin-to-case
firing mode of an EED. Note that the current is very low and that this
is associated with a "no-fire" response of the EED. This current is that
which actually flows between the pins and the case of the EED during the
voltage pulse application.

Figures 3 and 4 show simplified equivalent circuit schematics for the
pin-to~pin and pins-to-case short pulse testing equipment configurations

and Figure 5 is an overall schematic for the actual system.

TThe short pulse generating equipment is described in great detail in
"Ping~to~Case Short Pulse Sensitivity Studies for the Atlas PC Switch,"

FIRL report I-C3410 produced for Picatinny Arsenal.

+host of the material in this section is taken directly from "Short Pulse
Testing of EED's," a paper by R. H. Thompson given at the 8th Symposium
on Explosives & Pyrotechnics at The Franklin Institute, Phila,, Pa. in
Feb. 1974.
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In operation the equipment is used in this order: (Refer to

Figure 5).

1)

2)

3)
4)

5)

6)

7)

Adjust the high voltage supply for the desired voltage and
polarity. This charges transmission lines 1 and 2 through
the large resistors Ry and Rj.

The closure of pushbutton P energizes time delay relay K2 for
approximately 2 seconds.

Relay K2 energizes the 40 KV vacuum relay K1 for 2 seconds.

As the contacts of K, begin to close they eventually reach a

point where the charged transmission line (line 2) arcs to the
movable contact of Kl. This arc effectively connects trans-
mission lines 2 and 3 together. This switching action is

roughly equivalent to that of a perfect switch so we approximate
the theoretical situation of a charged transmission line connected
instantaneously to a load.

The electromagnetic disturbance caused by the switching propagates
from the relay contacts in two directions: both through line 3
toward the insertion unit and back through line 2 toward R,.

R, is chosen to be very large in relation to the 50 ohm charac-
téristic impedance of line 2 so that it approximates an open
clrcuit., The insertion unit contains a series or parallel
resistor such that the impedance looking toward the EED is

about 50 ohms. For pin-to-pin tests the insertion unit con-
tains a 50 ohm resistor in series. For pin-to-case tests a

55 ohm parallel resistor is usually used. In general the choice
of impedance insures that the system behaves as i1f line 2 is
open circuited at the R, end and loaded with 50 ohms at the
relay end, This choice results in a theoretically rectangular
voltage across the input impedance to the insertion unit. The
aptitude of the pulse if theoretically one-half the DC charging
voltage and its duration is twice the one way delay time of

line 2,

The damped rectangular stimulus is coupled through a teflon filled
coaxial cable, through the T&M monitor, through the teflon filled
coaxial firing mount and thus to the EED.

The voltage and current for the EED are monitored by the T&M
nonitor and coupled to the oscilloscope by fairly short coaxial
cables. The traces of the scopes are photographed on high speed
film,

Note that the block diagram shows several components in an oil bath.

The o0il used is standard transformer oil. It eliminates corona digcharge,

and its resulting interference, from the system. The metal cans shown in

" the block diagram are constructed to completely confine the electromagnetic
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noise due to the arc at the switch. ©Note that the only commections between
the shielded volume containing the arc and the outside volume containing the
oscilloscopes is through the 300 feet of RG 14/11, thourgh the 300 feet of
shielded Twinax or though the voltage and current monitor cables, Noise on
the monitor cables is a real perturbation to our measured signals and it will
be displayed on the scope as it should be. The other type of noise that would
normally affect our oscilloscopes, due to direct coupling between the arc

and the scopes, does not show on our photographs because it must, in our
system, propagate at least the length of the RG 14/11 and/or the Twinax
before it can interact with the scope. This takes enough time that our
photography is finished and the scopes have finished their sweep long before
the noise arrives. We thus get clean pictures of the actual voltage and

current across the load.

The two metal shielding cans shown in Figure 5 differ in construction.
The can that contains R2 is a modified one gallon paint can. The shield
line 1 is soldered 360 degrees to the bottom of the can which it penetrates.
The 1id of the can is penetrated by line 2 and this shield is also soldered
360 degrees. In use R2 is soldered in place with the 1lid almost closed, the
can 1s filled with oil, the lid closed and the can submerged in an oil bath.
The can containing relay K1 is a modified 50 caliber ammunition can. The
can has both input and output connectors. They are Teflon insulated, General
Radio, 50 ohm connectors. RF gasketing material has been applied to the
lid/body mating line. The overcentered closure device thus makes a good RF
joint when the can is closed. The shield of the twin lead relay control
cable is 360 degree soldered where it penetrates the can. Line 2 is dressed
with a Teflon insulated connector on the end opposite the paint can 1lid.
This connector mates with the input connector on the ammo can. In use the
can with its input connector is submerged in an oil bath. The output con-

nector is above the oil level.

Note that line 2 is comstructed with a paint can lid soldered at one
end and a connector at the other end. The length of this lime controls
the pulse length of the overall system. We have constructed lines giving
25, 50 and 100 nanosecond pulses and with the arrangement described above

we can substitute one for another in about five minutes.
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The T&M monitor contains a shunt 506 ohm voltage divider and a 0,051 ohm
series resistor for current monitoring. The voltage division ratio is 98.6:1
and the output impedance is 50 ohms. The voltage output of the T&M monitor
1s coupled through six feet of 50 ohm line to 23 dB of Gemeral Radio 50 ohm
pads. These pads are in turn connected through five feet of 50 ohm cable
to a shunt 50 ohm load at the input to the voltage monitoring 454 Tektronix
oscilloscope. The current monitoring output of the T&M monitor (which is
across the 0,051 series resistor) is connected by 24 feet of 50 ohm cable
to the input of the current monitoring scope. This input is also shunted
by a 50 ohm load. The current monitoring scope 1s externally triggered
by the voltage monitoring scope's sweep gate signal through a six foot 50 ohm
cable. The voltage monitoring scope 1is internally triggered by the voltage
input. The cable lengths are critical (within a few feet) for proper time

relation of the voltage and current.

The 98.6:1 voltage divider and the 23 dB pad result in an equivalent

deflection factor for the voltage monitoring scope of:

Stimulus Scope
Volts/Division Volts/Division
1393
2786
6964

The 0.051 current monitoring series resistor results in an equivalent

deflection factor for the current monitoring scope of

Stimulus Scope
Amps/Division Volts/Division i
0.98 0.05
1.96 0.1
3.92 0.2
9.8 0.5
19.6 1.0
39.2 2.0
98.0 5.0
196.0 10.0
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Since the reading of the oscilloscope pictures can seldom be done to
better than 5% accuracy the calibration factors above are rounded off in
the quotation of scope deflection factors. Thus we give 40 amperes per
division for an actual 39,2 ampere per division factor and we quote 2800

volts per division for an actual factor of 2786 volts per division, etc.

The scopes are calibraﬁed against their internal voltage standards
and the system monitoring equipment is calibrated (or checked) by connecting
a 50 ohm load on the end of the T&M monitor and observing the magnitude
of voltage and current indicated. During this check the horizontal posi-
tioning controls of the scopes are adjusted so the pulses begin at the same
place on the scope faces. This facilitates comparison of the voltage and

current photographs,

Considerable short rectangular pulse testing has been done on the Atlas
Squib Switch. Figure 6 shows a cutaway view of the overall switch and
Figure 7 shows a disassembled switch. Most of our testing was done on the

"plug" alone. This subassembly is indicated in Figure 6.
4. SOME RESULTS

Figure 8 is a representative set of traces of a 25 nanosecond pin-to-pin
Bruceton test for the Atlas Squib Switch plug. If we assume that the bridge-
wire resistance is constant during the test (and it seems likely from study
of the voltage trace in Figure 8) we can calculate firing energies. Figure 9
compares the mean firing energies for various other Brucetons with that de-
termined by our 25 ns test. Note that the means all roughly compare. This
result points to the fact that the pin-to-pin response to short pulses is
in keeping with the theory applicable to longer pulses and that no new phe?

nomena are evidenced in this shorter time regime.

Figures 10 and 11 show double exposure results of high voltage pin-to-case
short pulse tests on the Atlas Squib Switch. Both photos show a normal '"no-
fire" response with very small currents and a "fire" response that clearly
shows breakdown and a large pin-to-case current. A considerable number of

such photos shows that pin-to-case initiation is a phenomena that takes
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place on a nanosecond time scale. Several determinations of the energy
delivered to the breakdown impedance have been made. The minimum energy
determined to date is about 25,000 ergs but more work is obviously neces-
sary.to determine the minimum energy necessary for initiation. We feel
that continued work in this area could lead to a much better understanding

of overall pin-to-case firing characteristics of electroexplosives.
5. THE BRUCETON AND THE PROBLEM

Figure 12 shows the computer output from a not atypical Bruceton*
calculation using the short pulse data. Note that we compute the Bruceton
statistics using both the "fires" and the "no fires" and then average the
results, The confidence levels are computed using the average data. The
computer program is written in Fortran IV and can produce 957 or 90% con-
fidence levels at choice. It can also produce the same sort of output
ag shown in Figure 12 forthe 1%, 99% levels and the 10%, 90% levels.

Other levels can of course be obtained but we would need to change the

program cards slightly.

The most common use of the no-fira (i.e. 0.17) probability levels
as determined by the Bruceton test procedure is as an absolute safety
level. For example many radio frequency/EED safety analyses use the
0.1% power level (with 95% conf.) of a radio frequency Bruceton test as
the absolute maximum of power that can be coupled to the EED and have the
overall system considered safe. Other analyses add a safety factor by
dividing the no fire level by two or ten. In any event a sensitivity
test that predicts a no-fire level that is consistently lower than the

actual tends to err on the conservative or safe side,

Our end uses of the Bruceton results mentioned in this report were

for the estimation of "no-fire" levels. We have used the 0.1% level (with

*The "Bruceton" test we refer to is a test of the type described in "Statis-
tical Analysis for a New Procedure in Sensitivity Experiments,'" a report
submitted by the Statistical Research Group, Princeton University, to the
National Defense Research Committee July 1944,
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95% confidence) as this no-five level,

Our primary questions about the application of the Bruceton in this
manner are two:

1) - How does the error in the determination of the test levels influence
the Bruceton results?

2) 1Is the Bruceton test procedure a useful tool in this application
or are there other more "optimum" techniques?
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TARGET VISIBILITY AND DECISION OPTIMIZATION

Timothy M. Small
Countermine/Counter Intrusion Department
U.S. Army Mobility Equipment Research and Development Center
Fort Belvoir, Virginia

ABSTRACT. The detection optimization problem can be reduced to
simple terms, even though the specific technology used may be sophis-
ticated. Basically, the target's response signal and its contrast to
background is to be maximized and it should provide as unique a sig-
nature as possible. The first two experimental conditions optimize
target visibility; the latter minimizes false signals. In other words,
the objective is to optimize the measure of a detection system's per-
formance - the detection efficiency and target specificity.

This paper provides a generalized analysis of detection efficiency
optimization in a system which measures a spectral response of a target
in a consistent background. The spectral response is assumed to be a
Gaussian shaped enhancement mixed within a uniform background. The
analysis related signal intensity, signal to background ratio, back-
ground determination error, efficiency and specific¥ty. Optimization
of the signal window width and decision threshold are constraining con-
ditions. Calculated results and the relative sensitivity of each of
these parameters will be presented. This analysis provides the detection
system designer with the information needed to specify critical parameters
or to predict the performance of a given system.

1. INTRODUCTION. Another title for this paper could be "A Pedes-
trian's Approach to Detection Theory". Being neither a statistician nor
familiar with the state-of-the-art in detection theory, I have developed
an approach to detection optimization in a way which makes sense to me
and would like to share with you.

The approach to target detection which we are going to consider is
intended to be practical in nature and is in some respects model dependent.
For clarity's sake only a simple but somewhat generalized case will be
described. Many of the constraining assumptions may be easily changed to
better approximate a particular technique with relatively simple modifi~
cations to the analysis.

The essence of target detection is the accurate determination of
whether or not a target is within the field of view of a detection system
- often under conditions in which the signal intensity is quite limited.
This entails tailoring the detection system so as to maximize the visibi-
Tity of the target and providing decision logic which maximizes the pro-
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bability of correctly cueing on a target while minimizing the introduc-

tion of false cues. This in turn assumes that the detection system provides
a binary response. A cue is given if a target-like signature is detected,
otherwise no cue is given. We assume that this decision must be rendered

in a single pass over the target and based entirely on the response of

a single detector.

In actual detection scenarios an object which simulates a target may
be encountered, thereby inducing a false signal. Because the description
of this class of false signals is closely Tihked to the specific technique
used, it will not be further considered here, but rather assumed to be an
isolated problem to be considered by the detector designer. Another source
of false signals is spurious cueing due to statistical fluctuations in the
detector response. We assume this to be the predominant consideration in
optimizing detection specificity.

The model we will consider is that of a target which emits either
spontaneously or by stimulation a characteristic spectral signature,
which in turn is measured in one pass by the detector. The reconstructed
spectrum may look something 1ike Figure 1. It would be composed of a
background and a signal whose centroid is at a known position in the spec-
trum. The target emission or detector response is assumed to be quantized
or quantizable, thus the spectral intensity on this graph is defined as
the number of counts, N, corresponding to the detected quanta, per interval
in the spectral parameter, x, such as counts per energy, wavelength, or
time of arrival. Quantized data is particularly convenient for computer
processing, which this analysis lends itself to. We will assume that both
signal and background count fluctuations within an interval obey Gaussian
statistics with one standard deviation corresponding to the square root of
the number of counts within the interval. Such Poisson fluctuations are
adequately approximated by Gaussian statistics if the number of counts is
large. In addition, the background shape is assumed predictable so that the
background under the signal can be inferred by normalizing the counts in a
pure background portion of the spectrum. For simplicity the background is
assumed flat in the region of the signal so that the signal shape is not
distortdd. The signal is assumed to have a Gaussian shape. This is a good
approximation in many cases, particularly if the original signal width is
much less than the detection system resolution, so that it is smeared into
the Gaussian shape.

2. MODEL SPECIFICATION. Figure 2 illustrates some of the basic
parameters we will need. The resolution of many systems is defined in
terms of the full width at half maximum. For a Gaussian, one standard
deviation is slightly narrower than the half width at half maximum and a
half-bin width parameter, xp, remains to be calculated. This parameter
defines the upper and Tower bounds of the optimal signal window. The sig~
nal which falls within this window is called S. This window corresponding-
1y defines the amount of background which is collected, B. S, and B, are
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internally calculated numbers, since they are a function of x,,a cal-
culated parameter. In order to externally specify the signal and back-
ground we Bhould select experimentally meaningful definitions. So
accordingly is defined as the to#al signal counts in the entire Gaussian,
and Bz is the background counts within the FWHM interval of the signal.

The detection system is designed to cue when the total counts within
the window exceeds a certain threshold. The threshold should be as much
above the background as possible for good specificity - to avoid cueing
on statistical fluctuations - and below the total signal plus background
for good detection efficiency. We can write this

Tp, =S +B - Ge /S + B

where o_ is the number of standard deviations above the background and

o is the corresponding parameter below the signal plus background. Note
that the o's are the number of standard deviations and not the standard
deviation itself.

The error on the background is more than just the statistical error.
There is also a determination error, since B must be inferred. Thus the
complete expressions for a standard deviation are

T, =B+ /B +aB”
T,=S+8 -0, /5 +B+ a8’

where AB is the determination error. In actuality Ty = Ty which 1s.the
detection threshold, T, and it is optimized when both ¢'s are maximized.

The specific detection problem determines the relative importance of
efficiency and specificity. This ratio is designated, «, the signal a6
background ratio is p, and g8 is the ratio of background measurement error
to statistical error.

g

kK £ -&
0S

= 2
=B
g =48
/B

Making these substitutions and setting T; = T, we obtain the following
expression.
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Since the o's are to be maximized the expression ¢ should be minimized.

The signal is written as a function of the spectral parameter Xx

whose origin is assumed to be the siTna12centroid.
1{x

e Z{Xo

5 (x) =

Xo T
S, is the total signal counts and as before x is the Gaussian's width
expressed as one standard deviation and is approximately 42 percent of

the full width at half maximum. )

Xo = v (FWHM), v = (8 2n 2) 2 = 0.42

To provide generalized dimensionless variables we define z s x{x, and
define A as the definite integral of the Gaussian.
2
1 g L
;] e2 dz

L

A(z) =

This expression can be numerically approximated by an inverted polynomial
series. The sigaal can then be written

2z
s =/°B -
3B 5(2) dz = 25, A (zp),

where z, is the half signal window width. An experimentally convenient
way to gxpresg the background is as counts per FWHM interval. We have
designated this Bo, so the background within the signal windew, B, is

B = ZyBOZB.
This reflects the assumption that the background is filat. Thus, the
signal to background ratio

S So A
p s —_—= ...._(i&.)_
B yBo ZB
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Now with these expressions for S and p, ¢ becomes a constant times
¢', a reduced minimization function.

1
¢(z) = ——— ¢'(2),
72 So polY
2
where o, =So a=1+28,
° U ey
Yaz + x VYaz + p A(Z)/y
$'(z) =
A(z)

Note that all variables are dimensionless and that z_ is a function only

of the three input parameters, «, p,, and B. B
3. MODEL SOLUTION. The complexity of the expression for ¢' doesn't
Tend itself to an analytic solution of its derivitives to determine the z
corresponding to its minima. Thus iterative solution by computer is used.
A program, GRE@P, has been written to run on the MERDC CDC 6600 to calcu-
late z,. Some of these results are summarized in Figure 3. Here z_ is
not di@p]ayed - rather zg/y, where y = 0.42, is contoured on a po vBrsus
¢ plot in which the background is assumed well known. If g > 0 the op-
timal width decreases slightly. Note that a window width approximately
20 to 30 percent above the signal FWHM is in mamy cases optimal. The
next question is how sensitive is the choice of zg? Figure 4 shows that
it is relatively insensitive. Changes of 20 percent induce a decrease in
the o's of less than 2 percent. Two extreme conditions among those I have
calculated with g = 0 are shown and are quite similar. If g > 0 then the
trough narrows slightly. Once Zp is determined several other parameters
can be calculated.

Fraction of S, within window = 2 A(zB)
Optimal window width as fraction of FWHM = ZZB/Y )
Relative Gaussian amplitude at window boundary = e _g.

The actual signal to background ratio within the window is p,
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The optimal threshold to background ratio, T, also follows after a little
artthmetic.

p+t1+«k /Tmim;7;
1+« /1 +p/a

T
T -—
B

These dimensionless ratios are shown plotted in Figure 5 for the case

in which 8 = 0. The Bbhreshold/background ratio, 1, is plotted versus

the measured signal/background ratio, o. A family of curves can be

drawn for each efficiency/specificity ratio parameter, x. The input po
is alee shown. As B increases the optimal threshold also increases, as
expected in order to move it further from the less well known background.

Up to this point all parameters have been dimensionless ratios. If
we now specify S_, B,, 0 , or o - alse dimensionless but not independent
numbers since p, and k hdve beefl specified - then the others can be calcu-
lated. For example, given various signal levels, So counts, corresponding
to expected target emission intensities, the background per FWHM, the ¢'s
and the signal and background within the window follow.

BO = So/po
o= 1/¢(ZB)
o, = kd = K/¢(ZB)
S =25, A(ZB)
B = S/p - 230 ZBY/pu

The optimal threshold, false signal probability due to statistical fluc-
tuations, and the target detection efficiency can now be calculated.

T=B+as/&E=TB
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1
1/2 + A(cs)

False signal probability: 1 per

Target detection efficiency = 1/2 + A(o )

4. RESULTS. Figure 6 is a portion of the printout from GREQP for
the case in which 8 = 1/2, « = 1/2, and p, = 1. Those variables which
were previously assigned a symbol, have that symbol written in here. Note
particularly the false signal frequency due to statistical fluctuations
and the detection efficiency as they vary with total signal. A signal of
200 counts produces almost 100 percent efficiency and essentially a com-
plete lack of spurious false signals. Such rejection is surely much better
than the false signal rate due to target simulation in most scenarios.
GRE@P generates a four dimensional matrix of conditions spanning some of
the most Tikely values of the input parameters, so that cross comparisons
can be performed.

Several related problems have not been considered in this paper, such
as the extension of this analysis to non-quantized input and the problem
of collecting data continually rather than processing one sample at a time.
The price paid to achieve continuous converage is that of not knowing the
time domain in which the target is viewed, thus somewhat higher signal count
rates are required to yield the same performance as with a static confis.
guration. Other modifications such as multiple targets each with a distinct
signature, multiple signals from a single target and non-flat backgrounds
are relatively simple extensions of this analysis.

5. GAUSSIAN RESPONSE FUNCTION. To digress a bit, one may think that
a weighting function which matched the response function would provide a
better window to filter out the signal. That is to say that the ¢'s would
be larger if the window were Gaussian weighted than if weighted by a box
function as we have done.

1? - _22
s =s 22 "71e j -7§4- o dz
G 2
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Notice the Gaussian weight is not normalized to unit area since this
would unnecessarily attenuate the signal. A Gaussian weighted Gaussian
signal can be seen here to yield a detected signal of 71 percent of the
total signal and a signal to background of about 2/3, see Figure 7.

Both values are less than that of the previously presented GRE@P cal-
culation, 86 percent and .69, respectively. Only when p, and x are Targe
and B is small, does p,. exceed p, which drops to .55 under the worst
conditions; but under @hese conditions over 95 percent of the signal is
processed. Under all situations calculated the processed signal is lar-
ger. Thus if there is a better filtering function than that used, it is
not Gaussian in shape.

6. SUMMARY. Much of what I have discussed is related to communi-
cation theory. But not being familiar with the intricies and subtilies
of this field I have started from scratch, in a detection format, assuming
the signal is digital and have kept the approach as convenient for appli-
cation as possible. The input parameters follow naturally from the detec-
tion conditions. For example, B (the relative background determinatton
error) follows from the detector characteristics, « (the relative imper-
tance of efficiency to specificity) from the nature of the detection pro-
blem and o (the signal to background ratio) from the target characteris-
tics. The optimal threshold can then be détermined directly since it is
proportional to the background with a proportionality constant t, which
can be calculated once g, ¢ and py are known.

Another practical example is the determination of the minimum signal
intensity,which yields the desired detection characteristics - that is
the false signal rate and detection efficiency. Or the inverse in which
a given signal intensity is available and it is desired to determine how
to best optimize performance. Given the range or parameter values which
constrain his system, the designer can trade off one for the other to ob-
tain the best performance with the weakest signal. Thus if nothing else
this approach to target visibility and detection decision optimization
provides the desigher with an organized approach to improvement of his
detection system.
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OPTIMIZING A PRODUCTION LINE
FOR COST AND QUANTITY

Eileen M. R. Weigand
Manufacturing Technology Directorate
Small Caliber Ammunition
Modernization and Engineering Division
Frankford Arsenal, Philadelphia, Pennsylvania

ABSTRACT. At various times in the production life.of any manufacturing
equipment, it is desired to optimize one or more outputs of the production
machinery. Such outputs might be cost per round, number of pieces produced
per minute or system reliability. Variable, but controllable, factors can
influence the measured outputs. In the SCAMP program, the operating RPM of
the equipment and the length of the running time between repairs and pre-
ventive maintenance may seriously affect the outputs stated above.

A statistically designed experiment will be used to generate mathemati-
cal equations. These equations will then be used to predict the effects
which operating rate and time between equipment shut~down will have on
operating cost and pieces produced.

The results will be used to establish the operating and maintenance
policies for the SCAMP production lines. Since each output may be optimized
by different values of rates and time, the machinery may well be operated
and maintained differently in peacetime than in a state of full mobilization.

Response surface techniques will be utilized to generate the mathemati-
cal equations. The equations will then be used to establish the operating
and maintenance policies based on the factor to be optimized. Moreover,
the response surface equations should then be used throughout the life
cycle of the production equipment to monitor the machinery for deviations
from the original conditions which may indicate a need for major repair
and/or replacement.

1. INTRODUCTION. At the present time, new generation equipment
designed to automate the 5.56mm ammunition production line is now entering
its final stages of development. The equipment consists of a group of sub=-
modules connected in series which, when integrated, shall be known as the
"SCAMP" production module.

The Small Caliber Ammunition Modernization Program consists of a
Case Submodule which manufactures brass cartridge cases. These cases,
in turn, are fed into the Primer Insert Submodule which inserts the primer
charge into the base of the brass case. At the same time, the Bullet
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Submodule manufactures the copper bullet which is mated to the primed
and charged hrass case by the Load and Assemble Submodule. The finished
rounds of ammunition are then prepared for shipping by the Packaging
Submodule. The entire operation is completely automated and computer
controlled.

The submodules are composed of high speed rotary turrets linked
by a continuous transfer mechanism. The twenty-four station turrets
are designed for rapid tool changes and offline repairs. These turrets
are also designed to operate at a maximum speed of fifty revolutions per
minute. The cartridges can then be manufactured and assembled at rates
approaching twelve hundred rounds per minute.

Up to now the submodules have been tested individually to debug the
equipment and to fine tune the various steps of the production process.
During this time, each of the prototype submodules has displayed its own
distinctive operating characteristics, and a data bank has been developed
for each one. We know the range of speeds over which the individual
submodules can operate, approximately how and when the individual tool
stations on each turret will fail, and how frequently the entire submodule
must be stopped for repairs and maintenance. Turrets and transfer
mechanisms were redesigned to increase the mean time between failures and
to reduce the repair and maintenance downtime.

The individual submodules have now reached the stage where they are
ready to be linked into a continuous production line. At this point, the
thrust of the SCAMP statistical regearch shifts to the module as an
integrated system. In particular, the emphasis of this research shall
be to determine how well the equipment meets its design criteria, and then
to construct and formalize operating and maintenance routines for the entire
production module. Thus, this paper will present one technique which is
under congideration to optimize both the cost and the yield of this highly
complex, computer controlled automated production line.

2. DEVELOPMENT OF THE STATISTICAL MODEL. It is desired that the pro-
duction system produce, at least, a daily average of 384,000 acceptable
quality pieces at the lowest possible unit cost during an eight hour
production day. Several factors of the production module affect both the
number of good pieces produced and the unit cost. Among these factors are
the modular operating speed, the amount of time the module operates before
it is shut down for maintenance, the length of time it takes to perform
maintenance, the quality of the input raw materials, lubrication, and the
initial settings and adjustments of the tooling. Of these factors, some,
such as lubrication, are not easily controlled. Other factors, however,
appear to exert the greatest effect on submodule productivity and cost.
From previous tests the following appear most likely. They are the
operating speed of the equipment and the duration of time the production
module runs before it is shut down for maintenance. Fortunately, they are
easily controlled. Thus, we shall concentrate on this latter set.
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To simplify the problem, the submodules shall be considered from an
integrated system perspective only. We are primarily interested in the
number of pieces produced and their unit cost when the module is run for
a specified period of time at a predetermined operating rate. Therefore,
one is interested in determining the predictive responses of (1) cost
and (2) quantity for a certain range of values of speed and time. This
suggests a multiple polynomial regression approach for the problem resolution
since the yield, or response, may be perceived as a function of the controlled
variables. (Figure 4) This function is called the response surface. If the
function is not known, it can sometimes be satisfactorily approximated within
the experimental region by a polynomial in X. Again it is fortunate that we
already know the boundary conditions. For the operating speed, thirty and
fifty revolutions per minute are the constraints. Moreover, since the
pProduction schedule is eight hours, we can establish reasonable boundaries
for the operating time of the equipment. Let's say three to seven hours.

Once again prior experience with the machinery has limited our
experimental region to the areas over which the module can and will be
operated. Thus, we are looking for the optimum response, or yield,
within the above constraints. Moreover, the previous data lends one
to believe that the response surface will be adequately approximated by
a quadratic function. (Figure 5) Therefore, the experimental points
chosen for the test are speeds 30, 40 and 50 revolutions per minute
(i.e., 720, 960 and 1200 pieces per minute) and times of 3, 5 and 7
hours. For these values of speed and time, we have a 32 factorial design
or 9 treatment combinations. Coding the minimum values as -1, the maximum
as +1, and the mid value as 0, we test for the responses,

Y, i=1,..., 9, at the nine design points, (xlj ’ xzj),j =1, 2, 3 (Figure 6).
The X matrix for this model is shown in terms of the coded variables in

Figure 7. However, the variance-covariance matrix for this model is not
diagonal.

. Since a diagonal variance-covariance matrix is desired to eliminate
any interaction between the coefficients of the equation, standard tech-
niques suggest we rewrite the response surface equation as shown in Figure 8
to obtain a new X matrix. In this model xzmi is the mean of the sguared
coded variables for i = 1,2. Now the variance-covariance matrix, shown in
Figqure 9, is diagonal and we can determine the least squares estimates for
the values of B by the matrix equation given at the bottom of Figure 6.
Thege values of B will give us the response surface equation. Knowing
the estimates for the reqression coefficients, a regression analysis
of variance is performed to determine the accuracy of the response surface
equations for (1) pieces produced and (2) cost.

3. ANALYSIS OF THE FITTED SURFACE. Now, after we have determined
the proper second order response functions, we are prepared to analyze the
fitted surfaces. The maximum point, if it exists, will be the set of
conditions such that the first partial derivatives are simultaneously
equal to zero. This set of conditions is called the stationary point.
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This point, however, is not necessarily that which maximized the response.
In fact this point can be either a maximum, a minimum, or a saddle point
as illustrated in Figure 10. In addition, there may not be a point at
all, but some type of a ridge which may be classified as rising, falling
or stationary. The determination of the nature of the stationary point,
and the entire response surface, is the ultimate goal of the experiment.

The analysis begins with a translation of the response surface to the
stationary point, X. Then the response function is expressed in terms of
new variables 2 and Z2 . This corresponds to a rotation of the axes to
correspond to the principle axes of the contour system. The form of the
function in terms of the 2 variables is called its cononical form. Now,
by moving along the new axes one can see the quickest dlrectlon to travel
to find the maximum or the minimum responses. :

4. OUTLOOK. Slippages in schedules, due to equipment debugging have
delayed the integration tests needed to obtain data for this experiment.
But looking at the preliminary data generated by the submodules we can
theorize that the response surface for the number of pieces produced will
be a rising ridge. For the cost surface, we expect some type of a basin.
Thus, the conditions under which we will operate the equipment will then
be somewhere in that space enclosed by the two response surfaces. If the
two surfaces do not intersect, or in times of national emergency, then we
must choose whether we want to operate for maximum yield or minimum cost.

Pogitive results from the operating equipment will be obtained in
approximately six months. But we are very confident that these techniques
will give us our desired results, in the least amount of time and for
minimum experimental costs. The procedures are well-defined and, as soon
as the equipment becomes available, we can generate our two equations to
predict the number of acceptable pieces produced and the unit cost. These
equations will then be used to establish the optimum operating and
maintenance policies for the SCAMP production line.
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AN APPLICATION OF THE WEIBULL-GNEDENKO DISTRIBUTION
FUNCTION FOR GENERALIZING CONDITIONAL KILL PROBABILITIES
OF SINGLE FRAGMENT IMPACTS ON TARGET COMPONENTS

William P. Johnson
Vulnerability Modeling Branch
Concepts Analysis Laboratory

US Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

ABSTRACT. It has previously been shown in a number of works on reli-
ability that the Weibull-Gnedenko distribution gives a good description of
the lifetime of numerous elements in electronic equipment when the failure
of these elements is regarded as the exceeding of established limits and
the part of any of the parameters.

In this study a modified version of the Weibull-Gnedenko distribution
has been used to establish a relationship between the conditional proba-
bility of kill of target components (PK/H) and the momentum per unit area

of the impacting fragment (MV/A). A threshold of sensitivity is assumed

for each component resulting in a three parameter distribution function.

Techniques have been developed and are presented which allows calculation
of approximate values for each of the three parameters.

1. INTRODUCTION, When a high explosive munition detonates, the
casing that surrounds the explosive charge is fragmented and projected out-
ward, The resultant fragments are usually irregular in shape, vary in
weight and lose velocity through air at a rate that is proportional to
several physical parameters. Equipment and/or weapon systems. struck by
these fragments may be unharmed, incapacitated, or killed. For this
reason, a portion of the Army's defense effort is devoted to determining
the relationship between parameters of the impacting fragments and the
resultant system damage. An important part of this effort has been the
. establishment of conditional kill probability curves.

Conditional kill probabilities, for critical target components, have
been developed as a function of the striking mass and selected velocities
of the striking fragment.l The impracticality of using these same tech-
niques to make measurements over the entire spectrum of fragment mass-
velocity combinations, makes a generalized model a necessity. Models of
this type facilitate the vulnerability analyses designed to rate the capa-
bilities of existing and prospective systems on the basis of their abilities
to withstand impacts from fragments or shaped charges.

Tﬁ. E. Kinsler, "Conditional Kill Probabilities for Single Fragment Impacts

on Components of the Soviet KRAZ-214 Truck (U),' Ballistic Research Labo-
ratories Memorandum Report No. 1995, .July 1969, DDC AD504240L, CONFIDENTIAL
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Previous attempts to relate fragment size to conditional kill proba-
bilities used step functions. The use of these functions required the
user to interpolate between curves for masses which were not included in
the original analysis and between points of a given curve for velocities
not included. Computer programs using these curves required an extensive
amount of memory in order to accommodate all of the input data normally
required for a detailed analysis. Computer run time was usually extensive;
due in part to the numerous conditional statements required to determine
whether the right combination of curves was being used in the interpola-
tion process. Figure 1 illustrates a typical step function representation
of the experimental data, It should be kept in mind that this approach
required a curve of this type for each mass included in the sample
population,

The model outlined in the subsequent pages of this report was developed
to overcome the limitations in the step function approach. The primary
aim was to develop a mathematical relationship which would satisfactorily
represent the data points and would expedite subsequent computer analysis
of the vulnerability of the target. The accuracy of the data points them-
selves were not questioned, but merely accepted as the best available
representation of the true data points., A description of the technique
used to develop the experimental data may be found in references 2 and 3.

2. PROCEDURE. The experimental data inlcuded conditional kill
prrobabilities as a function of kill criterion, fragment mass, fragment
velocity and attack orientation. Of these four variables, kill type and
fragment attack orientation were held constant for each analysis. DMore
specifically, only the random attack condition was used to develop the
model, The random condition assumes that attack of the target is equally
likely from all directions., The same procedures used to establish the
model could also be used to determine regression constants that would
provide conditional kill probabilities as a function of any other attack
orientation or kill criterion.

The weights of the fragments included in the experimental data were
the following:

Weight (grains) Weight (kilograms)
1 6.48 x 107°
2 ‘ ‘ 1.30 x 1074
5 3.24 x 1074
10 6.48 x 1077
15 9,72 x 1074

157



Weight (grains) Weight (kilograms)

30 © 1.94 x 107°
60 3.89 x 107
120 7.78 x 1077
240 1.56 x 107
500 3.24 x 1072
1000 6.48 x 10'2k
2000 ' 1.30 x 107}

Striking velocities ranged from 91.44 m/s to 2133.6 m/s (300 to 7000
fps.).

Independent plots were made for several of the target components,
Several conditional probability of kill (PK/H) - abscissa combinations

were considered before it appeéred that a relationship between the condi-
tional probabilities and the ratio of the momentum of the fragment to its
average presented area existed,

The root mean square deviation (erms) of the experimental data points
from the regression curve was used as the criterion for selecting the ana-
lytical model which generally best described the data population. Erms
was calculated from the following equation:

2 ;(Ypi ) Yoi) .'
erms = 1= ‘ (1)
55-3
where: YP = predicted-conditional kill probability ;

i
Yo, = observed conditional kill probability

i
58 = sample size,

3. THE WEIBULL - GNEDENKO DISTRIBUTION.4 Let us consider a system consisting
of a group of elements and possessing the following properties: (1) The

4Gertsbakh, I. B., Kordonsky, Kh. B,, '"Models of Failure," Springer-Verlag,
New York, 1969
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failures of the elements are mutually independent. (2) Failure of any
element is treated as a failure of the entire system. We call such svstems
chain systems. Let o denote the lifetime of the chain system and let ol
denote the lifetime of the ith element of the system for i = 1, 2, 3,...Z.
In such a case:

. 1 2 3 Z
o =min (o™, ", o, ... o)

We point out an important special case suppose that all elements
of the chain system have an exponential distribution of the lifetime.
In accordance with formulas derived in reference 4, the distribution
function F(t) is equal to:

F(t) =1- ¢ 1=1

where the o™ are parameters of the distribution of the elements of the
‘chain system,

Of special interest is the situation generalizing the case just
described but having the following features. The number, Z, of elements
of the chain system is great and all the distribution functions F, (t)
are such that: 1

P = gth o)} (2)
Where g and X are positive, as t » 0.

This relationship determines the order of the infinitesimal F(t)
for small t. One can show that, for large Z, the distribution function
F(t) is well approximated by an expression of the form:

' A
F(t) - {(1) - exp[_B(t) ] » E%g (3)

This distribution was proposed by W, Weibull in 1939 without math-
ematical foundation, A rigorous mathematical treatment of related prob-
lems was done by B. V, Gnedenko in 1941,

Equation 3 shall be called the Weibull-Gnedenko Distribution through-
out this report.

It has been shown in a number of works on reliability that a
Weibull-Gnedenko distribution gives a good description of the distribu-
tion of the lifetime of numerous elements in radio-electric equipment

5 . ..
Bolotin, V. V., "Statistical Methods in Construction Mechanics,"
Stroyizdat, 1965
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when the failure of those elements is regarded as the exceeding of
established limits on the part of any of the parameters.

Often there are situations in which there is a threshold of sensi-
tivity, t_, that leads to a displacement of the distribution. For these
situations the Weibull-Gnedenko Distribution becomes:

FOTE IR N BT (@
0 , t <t

Where t, is defined as the threshold of sensitivity. The defini-

tion originated in metrology. Its significance, is that until the para-
meter t exceeds or equals the threshold of sensitivity the device under
investigation does not '"feel' the effect of the load and it is only when
t >t that this influence becomes perceptible and causes a probability

of failure.

4, APPLICATION QF WEIBULL~-GNEDENKO DISTRIBUTION AND CALCULATION OF
PARAMETERS., For these studies of a modified version of the Weibull-
Gnedenko distribution was found to represent the experimental data popu-
lation extremely well,

This variation assumes the following form:
y BMV/A - N, Mu/A s K
4 [1-e
-] max

Pkom %) (5)
0 , MV/A < K

Where the combination MV/A is substituted for the parameter t in the
original distribution, and K becomes the threshold of sensitivity, In
addition the distribution is multiplied by a constant P oax’ This multi-

plication factor was included so as to provide constraints on the regression
curve such that 0 < PK/H < Pmax in contrast to the constraints provided

by the original distribution 0 E_F(t) < 1.0. These new constraints were
prompted by practical consideration which indicate that the maximum proba-
bility of kill that can be obtained on certain components is less than 1,

An explanation of the terms included in the above equation follows:
pK/H - represents the conditional kill probability
- M - represents the weight of the fragment.(kg)
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V - represents the striking velocity of the fragment upon the
component (m/s)

A - represents the average prescnted area of the fragment (cmz)

P - Maximum value of P

nax ks In experimental data set

e - represents the base of the natural logarithm
B & N are regression constants.

In the above equation, K dictates the MV/A valuc at which the pre-
dicted kill probability diverges from zero., In order to determine this
constant a computer program was developed in which cutoff points were
selected at small intervals between zero and the smallest ratio of MV/A
available for the component - kill type combinations under consideration.
A combination of the constants B § N were calculated with each selection
of K, from the solution of normal equations for a straight line, after a
double logarithmic transformation had been made on equation 5. The root
mean square error was calculated from each combination of B, N & K by using
the calculated values of these constants in Equation 5. It should be
noted that the erms was determined thru the use of Equation 5 and not thru
its logarithmically transformed version. The logarithmic transformation
served solely as a means of obtaining values of the constants,

Equation 1 was used to determine the average deviation of the
regression line from the data population, The combination B, N § K
selected to be used was that group which minimized erms.

A second equation was used to establish 95 percent confidence limits
on the individual values of P for a second value of MV/A. This equa-

K/
tion assumed the following form:
Y - S
e~ Lozse (ss-3)%r Pk S Pt Lozs (ss-3Sp (O
where: PK/U - represents the conditional kill probability
58 - represents the sample size
Sp - represents the standard deviation of the PK/H
population
t.025 - represents the value taken from the students t

table with (S5-3) degrees of freedom,

Confidence intervals of this form have a minimum at the mean of
the independent variable values included in the experimental data set,
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Therefore, it is expected that predictions made on either extreme of the
data set would have larger confidence intervals., In these analyses these

intervals were restricted to the interval 0 < pK/H~i 1, although mathe-

matically, they would have fallen outside of these intervals. This restric-
tion forces the confidence intervals to reach a plateau at each of these
limits in some instances. Figure 2 illustrates the goodness of fit of the
above model to data from a typical component.

5. MODEL VALIDATION. Upon completion of the program development, constants
were calculated for several data sets, and given to vulnerability analysts
to test in established vulnerability programs., The purpose was to deter-
mine whether the use of the equation rather than the step-functions would in
fact decrease the running time of the programs as had been speculated and
also to determine whether significant statistical differences existed
between the results of the two methods.

It was observed that the vulnerable area calculations based on mass-
velocity combinations contained within the original data set were reasonably
close to values obtained thru the use of step-functions, however, vulnerable
area values determined from extrapolated values of the data set were gen-
erally larger.

A plot of the PK/H

step-functions and the generalized curve diverged at the maximum PK/H

data from a typical data set revealed that the

value for each of the fragment masses., As can be observed in Figure 3,
the step function approach assumes that a maximum PK/H can be achieved

and the P curve will remain constant at this value., But because the

K/H

Weibull-Gnedenko distribution provides a curve with P values directly

K/H
proportional to the independent variable MV/A, Py values greater than
those obtained in the experimental data set were 6§tained for each mass
smaller than the largest.

To circumvent this problem it was decided that a second equation was
needed which would enable the analyst to determine the maximum PK/H value

obtainable for a given component as a function of a fragments mass., The
logic was that during the actual calculation of vulnerable areas in the
analyst's computer programs, a comparison could be made between the pK/H

value determined from the generalized curve and the maximum P value

K/H
which could be obtained from the fragments mass. The smaller of these
two values would then be used in the vulnerable area calculations.
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To carry out this logic a relationship between the maximum PK/“

values for each mass contained in the experimental data set and the mass
itself was needed, Interpolation of the maximum value of PK/H for masses

not included in the data set was the main reason for requiring a gener-
alized relationship.

As had been the case earlier, it appeared that the Weibull-Gnedenko
Distribution provided the best relationship between the variable of interest.
The relationship:

N1
p _ 1. Bl (og M+ D) - Kl (7N

gave excellent regression fits of the experimental data with small erms
values as determined by Equation 1 (Figure 4).

In the above equations the independent variable can be chosen as
(logloM) if the masses of interest are greater than 1 unit. The above

form will provide P values for fragments with mass > 0,1 units.

K/Hmax

The actual unit of mass chosen to use in the equation is immaterial since
the values of Bl, Nl and K1 will adjust to the unit used.

Upon completion of the generalization of the maximum PK/H as a

function of cach fragment's mass, the idea to use the Pmax value pre-

dicted from Equation (7) as a variable in Equation (5) evolved.

The objective was to provide an upper limit on the pK/H predictions

for each mass under consideration and to avoid the comparisons required
in the earlier method. To determine whether this was a feasible tech-
nique, both sides of Equation (5) were divided by pmax giving:

N
_ -B (MV/A - K) (8)
Pl(/H/ Phax =1 ¢

Equation (8) indicates that the distribution function for the ratio of
the conditional probability of kill to the maximum probability of kill
for a given fragment is given by the Weibull-Gnedenko equation, All
variables in Equation (8) are identical to those described for Equation

(5) with the exception of Pmax’ pmax in the above equation is the maximum
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probability of kill obtainable against a selected component for the
desired fragment weight. Since Pmax is determined from Equation (7),

Equation (7) must be developed prior to using Equation (8).

In studies designed to document the prediction error of P values

K/H
obtained from Equation (8) and those obtained from Equations (5) and (7),
both methods appeared to work equally well, To illustrate this point
nine components are listed below with associated root mean square errors
(erms) obtained from both methods:

ERMS ERMS
COMPONENT NUMBER EQUATION 5, 7 EQUATION 7,8

1 072 .100
2 .003 .004
3 .013 .008
4 .000 .001
) .052 .027
6 .069 .042
7 .166 .192
8 .137 .120
9 .110 .110

Although there appears to be little difference in the erms values
calculated from each of the two methods, Equation (8) may be easier to
use during actual vulnerability calculations and is therefore recommended.
Both methods prevent the divergence of the step-function and the gener-
alized curves illustrated previously, and both appear to reduce computer
running time over that which was previously required.

Though it appears that the objectives of the generalization have
been achieved, more formal tests are needed to determine whether the
resulting vulnerable area values produced by (1) the step-function curves
and (2) the generalized equation are statistically equivalent, Suggested
techniques are discussed in the next section.

6, STATISTICAL METHODS.6’7 In order to determine whether there is a
significant statistical difference between the vulnerable area values
obtained with the step-functions and the values obtained with the gener-
alized equations, the following hypothesis, level of significance and
test statistics are sugpested.

6Dixon, Wilfrid J. and Massey, Frank J. Jr., "Introduction to Statistical
Analysis," 2nd Edition, McGraw-Hill Book Company, Inc., 1957, Chapters
9 & 14.

D. V. Huntsberger, "Elements of Statistical Inference," Second Edition,
Allyn & Bacon, 1967, Chapter 2.

7
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1. Let: X be the vulnerable area value obtained from mass (X)
and velocity (Y) using the step-function approach.

X be the vulnerahle area value obtained from mass (X)
and velocity (Y) using the generalized equation
approach,

Let the difference between the two vulnerable area values previously
defined above equal X where X = X, - Xg' Clearly, X will only be equal

to 0, that is no difference between the individual values exists when
XS = Xg otherwise X will be either a positive or a negative number

(X>0o0r X <0).
Let SS represent the number of differences to be considered.

2. Test the hypothesis that the mean difference between the vul-
nerable area values generated by step-functions (Us) and the vulnerable

area values generated by the generalized P equations (Ug) is statis-

K/l

tically equivalent to zero, (i.e. My = Wg - ug i'ZX/SS = O).

3. A test of significance is in general terms a calculation by
which the sample results are used to throw light on the truth or falsity
of a null hypothesis. A quantity called a test statistic is computed,
which measures the extent to which the sample departs from the null
hypothesis in some relavant aspect. If the value of the test criterion
falls beyond certain limits into a region of rejection the departure is
said to be statistically significant or more concisely significant. Tests
of significance have the property that if the null hypothesis is true
(not difference between means) the probability of obtaining a significant
result has a known value most commonly referred to as a and chosen as
0.05 or 0.01. This probability is the significance level of the test,

For the purpose of the analysis one should choose:

4. o = 05 or o = ,01, The test criterion should be:
- X
S g
~ Mg S8 X
5. t = - s .

S//ﬁsw $/v3% S/VSS
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where: Xg = Vulnerable area estimate from step-functions
Xg = Vulnerable area estimate from generalized curve
SS = Sample size

S = estimate of population standard deviation and is
computed from the following:

-

2 oD
(20X - X))
SS

I (X - x&)2 -

55-1

6. Our population should be large enough so that the central limit
theorem is applicable. Therefore, our test statistic will have a t dis-
tribution with SS5-1 degrees-of-freedom.

7. Our rejection region defined in paragraph 5 will be obtained
from standard tabular values of the t distribution with S$S-1 degrees-
of-freedom.

In other words we will only be able to statistically state that
vulnerable area values computed from the two, equations are different
if the computed value of the test criterion t is outside of the region
defined for the combination, that is:

beb = [*1/24, sS - 1.

Otherwise, we will have to say that there is not enough evidence to
reject the hypothesis,

An alternate approach to the above would be the use of a two way
analysis of variance which would offer the advantage of determining
whether the differences, if any exist, are between the row effects
(masses), column effects (velocities) or both.

7. SUMMARY. The Weibull-Gnedenko Distribution function has been used
to establish a relationship between the conditional probability of kill
(PK/”) of a fragment and the fragments momentum per unit area (MV/A).

Statistical tests are suggested which determine whether a significant
statistical difference exists between vulnerable area values calculated
using this distribution function and vulnerable area values calculated
from currently used step-functions.
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If it is determined that no significant difference exists, then it
is recommended that this distribution function be used in subsequent
vulnerability analyses because of its convenience and the reduction
obtained in computer running time.
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DECISTON THEORY APPROACH TO GRADING
BINOMIAL POPULATIONS

Paul Williams
U S Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, Maryland

ABSTRACT. A method of classifying lots of mass produced articles
into one of k categories on the basis of the number of defectives
allowable in a single sample size n (n<k-1) is presented. A beta
distribution is assumed as the prior distribution of the true lot
fraction defective where the parameters are to be estimated using
knowledge obtained from lots inspected in the past. An optimum
decision rule for obtaining the allowable number of defectives in
a lot is developed where the allowable lot fraction defective and
sample size are determined prior to testing.

1. INTRODUCTION. The production of large quantities of
mass produced artilces often necessitates dividing the articles,
for the purpose of homogeneity, into groups called lots. It is
then desirable for the producer or consumer to place the lot in a
category based on the quality or reliability determined from some
characteristic of the individual articles in the lot. If the
articles in the lot are to be labcled effective or defective after
inspection, then the inspection is to be by attributes since
inspection by variables is based upon quantitative measurements.

Where large lots are concerned, the cost of testing of each
item may be excessive or where the item is destroyed by testing,
a sampling plan to estimate the number of defectives in the lot
must be devised, Such a plan is the single sampling plan where
a sample of n items is selected from a large lot of size N. After
each item has been inspected or tested, the number of defective
items (r) is determined and the lot is placed into one of k categories
based on the number of defectives in the sample.

A basic solution to the single sampling problem is to decide
on an acceptable quality level Py such that the consumer desires
to accept almost all lots of fraction defective p; or less and
also to specify an objectionable quality level P, which represents

lots of quality so inferior that the consumer cannot accept more
than a few lots of this quality. By specifying quality levels
Py and Py the risk a of rejecting a lot of lot fraction defective

Py and the risk B of accepting a lot of objectionable quality can
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be determined given the distribution of the process sampled. The
problem then is to find the smallest sample size and acceptance
number which will give the desired protection. In the case of fixed
sample size, the problem is to determine a minimum acceptance number.

The sampling plan considered in this paper is the single
sampling plan and is solved using the decision theory approach,
that is, a priori information will be combined with data from the
sampling program. However, cconomic considerations are assumed
to be unimportant or small when compared to the risk of making a
wrong decision,

2. DEFINITIONS OF THE ACTION SPACE. The sampling plan then
calls for obtaining a fixed sample of n items from the lot and test-
ing to determine the number of items (r) which are defective. If
the lot contains ¢ or less defectives, the lot is accepted, but
if the lot contains c+l defectives the lot is rejected. With any
sampling plan there is the possibility of making a wrong decision,
that is, taking an action which would not be taken if the true
quality of the lot were known before making a decision. The set of
all possible actions which may be taken to solve a problem is known
as the action space. As an example, the space of possible actions
could for a decision about the disposition of a lot contain two
points; (1) accept the lot or (2) reject the lot. The correct action
to take would depend on the true state of nature; that is the actual
proportion of defective items in the lot. The difficulty of course
is that the true state of nature is not known unless the entire lot
is tested.

The action space can then be defined as placing a lot into
one of k categories. A lot is placed into one of k categories by
using the following rule:

If 0 <T ﬁ-cl Lot is Grade A
c1 +1 <T <¢C Lot is Grade B
g tler g Lot is Grade k

Each of the above intervals should be determined from the
allowable lot fraction defective for each category.
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3. PRIOR DISTRIBUTION. In considering a production lot
in which the items can be classified into two groups, effective
and defective, a natural probability model is the Bernolli process
which has probability mass function:

o Success
1 Failure

) £(x) = p* (1-p)*7¥ X

It H

where p is the probability that a randomly chosen item in the

lot will be defective. As the prior distribution of the parameter
p in the Bernolli process, we choose a Beta Distribution of the
form

_ T(A+B) pA'1 (l—p)B'1

(2) f(p;AB) = RORO)
where: o <p <1
A>o0
B >o

where A and B are to be estimated from prior knowledge, that is
previous testing. The Beta Distribution has been chosen as a
prior distribution for the true defect rate in the lot for two
reasons: (1) The random variable p in the Beta Distribution is
defined in the interval o < p < 1 as is the parameter in the
Bernolli process. (2) The Beta Distribution represents a rich
family of possible densities to express our knowledge of prior
information. '

For various values of A and B we can generate the family
of Beta Distributions, some examples of which are given in
Figure 1. To select a member of the family of Beta Distributions
we can choose its mean and variance as an expression of our prior
beliefs about the unknown parameter p. The first and second moments
about the origin are:

(3 E @) = u = og

2, 1 A (A1)
(4) Ep) =1y = ) (A+B+D)

Using the number of defects as observations on p, parameter
estimates for the Beta can be estimated by:
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In some actual problems the choice of a specific beta prior
distribution may be largely subjective at the start of production.
However, after a few lots have been produced the selection of

the prior distribution becomes more objective by incorporating
previous lot results.

4, PROBABILITY OF CORRECTLY GRADING A LOT. Under the
plan stated In paragraph 3 and using the formula of total
probability*, the probability of correctly grading the lot for
the two action state case is the sum of the probabilities of
accepting lots of true quality Py and rejecting lots of true

quality Py This probability can be expressed by an equation
of the form:

Probability of Correctly Grading Lot = P

r < C1|O < p <p1)

fa

=Pr (0 < p « pl) Pr (o
+ Pr (p1 <P < pz) Pr (cl +1 ¢ 5_czlp1 <P < pZ)

Using the distribution assumptions, the probability of correctly
grading k categories in the above expression can be written as:

P1 ¢y
A-1 B-1
_ (A+B-1);  p' " (1-p) ]
) F f (A-1); (B-1)1 2 (’;)p’r (1-p)"T dp
(o} =0
P €2

2 A-1 B-1
~ (A+B-1)! 1- -
(A+B-1) p- - (1-p) 2: (;)pruﬂ”na@
r=C,+1

+ -l‘ {A-T)T (B-1)1
P, 1

*B.V. Gredenko ''Theory of Probability"
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The problem then is to determine the number of defectives €1CyC3

. ¢, which will make placing a lot into one of k categories an

optimum act under uncertainty.

5. TERMINAL ANALYSIS. The first step in terminal analysis
is to determine the posterior distribution of the process. If we

let Xl X, X3 ....X Trepresent a random sample from the lot, the

distribution of any x given p can be written:

n

1-
X (1_p) X
0, 1

(8) £ (x/p)

X

Since the observations are independent the conditional density of
all the X's in the sample is:

(9) £ (X,X,,Xg ... Xnfp) = ;x (1—p)“'Zx

To simplify the problem, the n - tuple (X1 X, X, ... Xn) is replaced

3 -
by a 2-tuple. For the Bernolli process with binomial sampling,
= (r, n), where r = § :xi is a sufficient statistic and will

therefore replace the n - tuple in the analysis. Thus equation
(9) may be written as:
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(10) f (r|p)

]
L= =1
N—
=

H
~

—

H
a=1
~

=

1

Pi

If we put a beta prior distribution on p, the posterier distribution
is:
(11 h (p|r) = (n+A+B-1)! pA+r-1 (1_P)H+B—r—1

) plr - (A+I‘—1)! (n+B-r-1)!

The problem now is to find a function @ defined by ﬁ = ¢ (r) which
will minimize the posterier expected risk in estimating p. The
definition of expected risk is:

(12) E [R (@, p):, = f R (#, p) £ (p) dp

0

The concept of correct action leads to the definition of another
term, the loss function, denoted by

L [¢ (r); P]

The loss function is intended to give the loss which is incurred
when a certain action is taken when a certain state of nature

prevails. Since the interest is in the estimate of p being close
to p, there difference should be small, For this purpose we use
the squared error loss function which is:

L 6 ;o] = -p)°

The posterier risk then can be written as:
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The value of p as a function of the sample which will minimize the
posterier risk is then obtained by taking the derivative of v (p;r)

with respect to p and setting the result equal to zero; that is:

QV(E;r)zzA_zA"'r:o
; ﬁ p n+A+B

or
(14) r = p (n+A+B) - A

Thus an optimum decision rule has been obtained for finding the value

of ¢ in terms of p. The criteria for finding the number of allowable
defectives in a sample of n can be given as

Reject if: ¢ (n+A+B) - A

1> Py
Accept if: ¢, <P (n+A+B) - A

This criteria can readily be extended to more than two categories

by specifying the allowable lot fraction defective ﬁk for each
of k catcgories.

If another lot is to be tested, A+r and n+B-r can be used
as paramcters for a new prior distribution. It may be noted that
after a number of lots have been tested, the terminal analysis
tends to become less sensitive to the parameters of the initial
prior distribution and more dependent on the accumulated test
experience.
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6. CONCLUDING REMARKS. The decision theory approach applied
to the sampling situation in this paper is productive since a small
amount of experimental data is combined in a rationale manner to
make decisions among alternative courses of action. It is assumed
that prior test experience is available so that the prior distribution
may be determined since the entire structure of prior convictions is
expressed by the beta distribution. Also, the method considered does
not depend on the specification of consumers on producers risk but
only requires the experimenter to answer a non-statistical question
about good or bad quality. That is, what percent defective is accept-
able for the lots under test? In most practical situations, this
question can easily be answered.
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PSEUDO-BAYESIAN INTERVALS FOR RELIABILITY OF
A SERIES SYSTEM GIVEN WEIBULL COMPONENT DATA

Ronald L. Racicot
Research Directorate
Benet Weapons Laboratory
Watervliet Arsenal
Watervliet, New York 12189

ABSTRACT. A pseudo-Bayesian solution for confidence intervals on
average reliability of a series-system composed of Weibull components
has been formulated. The term pseudo-Bayesian is used since the goal
is to choose priors that lead to classical 1imits and not the usual
Bayesian limits. Uniform priors are assumed for population param-
eters to approximate complete prior ignorance. The distribution
assumed for component interarrival failure times is the 2-parameter
Weibull with both parameters unknown.

In the solution derived, an approximation is used to compute
average system reliability from average component reliabilities. A
normal distribution is then assumed for the log of system reliability
with mean and variance being computed from the posterior means and
variances of the individual component log-reliabilities. The bias in
the mean log-reliability was also investigated and an unbiasing
factor can be used to reduce the potentially large errors in system
reliability resulting from the accumulation of biases in the component
means.

Monte Carlo trials were conducted to determine frequency
exactness of the derived intervals for particular cases. Near
exactness was observed for a number of cases depending on Weibull
shape parameters, true component reliabilities and sample sizes.

NOTATION.

f(t) pdf of interarrival times of failures;

F(t cdf corresponding to f(t);

F(t 1 - F(t)

Fra(*) cdf of average reliability Ry;

h(t) renewal rate; the unconditional pdf of component
failure and subsequent renewal;

Ne number of components in system;

ng number of component failures;

M number of missions over system life;
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R(t,T) reliability at time t for an interval T;

Rj(t,r) reliability of thke jth component;

Ra(t) average reliability over system 1life for mission
interval t;

Rja(T) average reliability of the jth component;

R (t,t) system reliability at time t for an interval «;

Rea(t) average system reliability;

t system or component age;

t; starting time for the ith mission;

X sample outcome including both failure and censoring
times;

Xf component failure time;

o Weibull scale parameter;

B Weibull shape parameter; and

T mission length for which reliability is required,

1. INTRODUCTION. The general problem is to determine the
reliability of a series system from component test results where the
term "series" implies that a failure of any component in the system
results in system failure. The interarrival failure times of each
component are assumed to follow the 2-parameter Weibull distribution
with both parameters unknown. In addition, the assumption of ideal
repair is made wherein a component is instantaneously renewed with a
1ike new component whenever it fails during system operation.
Finally, a fixed number of failures with associated failure times
are assumed given for each compcnent.

Consider first a single component in the system. The failure
times for a component subject to ideal repair form a renewal
process. The theory for renewal processes and interval-reliability
are well covered in the literature; so only the final results are
summarized here [1-5]. The failure times of components within a
system are not known in advance and are treated probabilistically by
introducing the renewal rate (unconditional failure rate) h(t) over
the population of all systems. The renewal rate in this case is
distinguished from the hazard or conditional failure rate which
describes failure of a non-repairable item. The renewal rate is a
function of the underlying failure distribution [2, 3]:

t
h(t) = f(t) + [ f(t-x)h(x)dx. (1)
0

Interval or mission reliability at system time t for mission length
T can be determined from the renewal rate [4]:
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t
R(t,r) = F(t+r) + [ F(t+r-x)h(x)dx (2)
0

in which
F(t) = 1 - exp (-at?) (3)
for the Weibull distribution.

Since interval-reliability given by (2) is transient, there is
some motivation to define a single reliability index that would
characterize a component in a system throughout system life. For
this, one can define the worst mission reliability, the asymptotic
reliability or, as is done in this paper, the arithmetic average
reliability for some fixed system 1ife given in number of missions:

Ry(1) = - [ R(t.1) (4)

in which t; = starting time for the ith mission.

Average component reliability, as defined by (4), does not
readily lend itself to classical confidencing approaches since a
statistic for reliability could not be found which depends only
on the true reliability. The statistics considered depended on both
of the unknown Weibull parameters. This is in contrast to reliabil-
ity of a non-repairable component in which, for the Weibull example,
the distribution of the maximum 1ikelihood estimate of reliability
depends only on the true reliability [6, 7].

A Bayesian approach was consequently used to at least render
this problem numerically tractable. The goal was not to determine
the usual Bayesian limits, in which prior information is to be used,
but rather to choose priors which gave near classical frequency
1imits; hence the term pseudo-Bayesian.

The solution for the single Weibull component in which uniform
priors were assumed for the population parameters is presented in
another paper [8]. The final result for the posterior cdf for
average component reliability from this paper is given by the follow-
ing expression:

© “ng-1
Fag(z/Xstun )=k [ a(8)(b(8)) nf P(ngtl,w(t,n ,z,8))d8  (5)
0



in which K = ? a(g)(b(s)) ds
0

n f_

a(g) = 8 f II (Xfi)B&]

i=1

N

b(g) = } xJ6
j=1

N = total sample size including both failures and censor-

ing times

W(tan,2,8) = RS (1, ,2,0)b(8)

P(n;x) = incomplete gamma function

n-1 .
-e* 7 x'/i! for integer n [9].
i=0

Solution of (5) for given z, 7, ny and sample outcome X is accom-

plished by numerical quadrature. Confidence 1imits on component
reliability can be determined from (5) by computing the probability
1imit z for a given probability level.

In this paper, results are presented for a few of the problems
encountered in determining system reliability from the component
results using a similar pseudo-Bayesian approach and using the
derived posterior distribution (5) for average component reljability.

2. NUMERICAL COMPUTATION OF SYSTEM RELIABILITY. The first
problem encountered i1s the computation of average system reliability
from the average component reliabilities. The reliability of a
series system 1is g1ven as

pT) -H_R s'l')- (G)

Average system reliability can be defined in a similar manner as
average component reliability:

: My Ne
Rsa('l') =ﬁ‘r'n-121 Jl-z -lnT (7)
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This is a difficult equation to work with since the time dependent
component reljabilities are required. Ideally, one would like to
express average system reliability in terms of average component
reliabilities so that use can be made of the posterior distribu-
tion given by (5).

Three approximations to average system reliability were
investigated:

Ne
Realt) = 1= [ (1-Ry, (1)) (8a)
J=1
e
“exp [- J (1-Rj5())] (8)
j=1
n
o WRja(T) (BC)
j=1

In the first two, component reliabilities were approximated by
exponential forms which are accurate for high reliability components.
In the third, the product and summation signs for system reliability
(7) have been interchanged and the definition of component reliabil-
ity (4) was used. Equality would exist in this third case if geo-
metric averages had been considered instead of arithmetic averages.
The geometric average is close to the arithmetic average for either
high reliability components or if there is a relatively small varia-
tion in reliability as a function of time. Table 1 lists some of
the computations performed using (8a), (8b) and (8c). Based on these
and other computations, it was concluded that (8c) represents an
adequate approximation to system reliability over a wide range of
reliability levels. It also gives a somewhat conservative result in
that a Tower than true reliability is generally computed.

3. BAYESIAN SOLUTION FOR SYSTEM RELIABILITY. The next step is
to formulate a Bayesian solution for average system reliability.
Taking logs of (BCA gives

c

tn R, (1) = .21 &n Rja(T). (9)
JE

This equation, in a Bayesian sense, represents ¢n Ry as a random

variable which is equal to the sum of the random variables &n Rja‘

1.85%
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Using the Central Limit Theorem, the posterior distribution of in

RSa can be assumed to asymptotically approach the normal distribu-

tion. The mean and variance of 2&n Rea required in the normal dis-
tribution can be derived from the means and variances of &n Rja:

e
E(2n R,) = 'Z E(en Ry,) (10a)
j=1
and e
var (n Rsa) = j§1 Var (an Rja) (10b)

in which statistical independence is assumed for the random variables
n Rja' It remains then to determine E(#n Rja) and Var (n Rja)

from the posterior distribution of Rja' These are obtained from the
following relations:

1
E(an Rja) = - g (FRja(z)/z)dz (11a)
B
E(2n’ Rjg) = -2 [ (Fp, (2)enz/z)dz (11b)
o Jd
Var(sn Ry.) = E(n? Ry,) - En R ) (11c)

in which Fp_(z) is given by (5).
ja

Using the normal distribution assumption for en R.,» prob-
ability 1imits on R, can then be determined using a standard
normal table.

4, BIAS OF THE BAYESIAN ESTIMATES. From previous work and
from work on similar approaches presented in the literature, the final
solution for system confidence 1imits can be sensitive to the bias
of the estimators used for component reliability. That is, if the
component reliability estimates are biased, then a function of these
such as system reliability can become highly biased. The statistical
bias of component log reliabilities was consequently studied to
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determine potential bias of the system reliability estimates.

Table 2 summarizes some of a number of results obtained for the
true mean and for Bayesian mean of an Rja derived from Monte Carlo

simulation. Generally, the results indicate that the mean of 2n
Rja is biased on the conservative side of true reliability. Unbias-

ing factors were studied which are analogous to the exponential case
where one failure is subtracted from the total number of failures to
yield an unbiased estimate of mean failure rate [10]. Unbiasing
factors obtained by subtracting 0.5 to 1.0 failures gave the best
overall results for Weibull shape parameter in the range of 2 to 6
as indicated, for example, in Table 2.

5. FREQUENCY INTERPRETATION OF THE BAYESIAN INTERVALS. The
final question regarding the Bayesian Timits is whether or not there
is a frequency interpretation of the resulting intervals with and
without an unbiasing factor. In order to check this, a number of
Monte Carlo simulations were conducted using the previously described
confidencing procedure. Monte Carlo is not used here to derive the
confidence intervals but rather to check for exactness.

Various systems of 3 and 6 components were assumed. The shape
parameter, true reliability and number of failures for each component
were fixed at different assumed values. Test samples were then
artificially generated from random numbers using the assumed parameters.
Exactness was then checked for the generated samples. For these trials
%he system Tife was 150 missions with mission time t being equal to

.0.

Table 3 lists some of the results of the Monte Carlo trials. In
this table the Kolmogorov-Smirnov rejection error is presented [11].
This error represents significance level or risk in rejecting the
hypothesis that the confidence intervals are exact at all confidence
levels when in actuality the hypothesis is true. From the results
given in Table 3 it can be seen that when no unbiasing factor is
used, the resulting confidence intervals are not exact at all confidence
levels. Using an unbiasing factor of (nf~0.5)/nf gave the best overall

results except for the case of 8=1.0.

In addition to the K-S statistic given in Table 3, the relative
distribution of the confidence 1imit was also generated to determine
exactness for the lower confidenced reliability in the range of 90 to
95% confidence. It was found that in all cases considered the lower
confidenced reliability is conservative when no unbiasing factor is
used. That is, the proportion of the time that the true reliability
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TABLE 2
SUMMARY OF COMPUTATIONS TQ CHECK BIAS

OF BAYESIAN MEAN OF LOG OF RELIABILITY

nf-'l nf—O.S
. . bl i)
ne 5 e f f True Ra
10 1.0 .879 .89C .885 . 900
2.0 .897 .907 .902 . 300
3.G .896 .505 .901 .900
10 1.0 .64¢ 945 .543 .950
2.0 .947 . 953 .950 .950
3.0 .94¢ . 954 . 951 . 950
£.0 .949 .954 .951 950
10 1.0 .989 . 9901 . 9895 .990
C . 9891 .9902 . 9896 .990
u = Mean of in Ra from Monte Carlo Simulation (1080 trials)
ne = Number of Failures
8 = Weibull Shape Parameter




TABLE 3

i K-S TEST FOR MONTE CARLO TRIALS TO CHECK EXACTNESS

OF PSEUDO-BAYESIAN INTERVALS (100 TRIALS PER CASE)

K-S, Rejection Error*

Run No Unbiasing Unbiasing Factor
E No. ng R B3 Nfj Factor = (ng-0.5)/n¢
13 .90, .90, .90 1, 2,3 20, 20, 20 0.05 >0.20
2 3 .90, .90, .90 1, 2, 3 10, 10, 10 0.01 0.10
3 3 .9G, .90, .90 1, 1, 1 20, 20, 20 0.0} 0.01
oy 4 3 .90, .90, .90 2, 2, 2 10, 10, 10 0.01 0.15
(o]
5 3 .90, .90, .90 3, 3, 3 10, 10, 10 0.01 >0.20
6 6 0.97, 0.97, 0.97, 1, 2, 3, 10, 10, 10, 0.01 >0.20
0.97, 0.97, 0.97 4, 5, 6 10, 10, 10
7 & 8.90, 0.90, 0.90, 1, 2, 3, 10, 10, 10, 0.01 >0.20
0.90, 0.90, 0.90 4, 5, 6 10, 10, 10
8 6 0.90, 0.90, 0.90, 1, 2, 3, 5, 5, &, 0.01 >0.20
0.90, 0.90, 0.90 4, 5, 6 5, 5, 5,
g 3 0.95, 0.95, 0.95 3, 3,3 10, 10, 10 0.01 0.15
10 3 0.99, 0.99, 0.99 2, 2, 2 10, 10, 10 0.01 >0.20

*Significance or risk in rejecting hypothesis that confidence intervals are exact at all levels
when hypothesis is true.



was greater than the lower confidence 1imit was at least equal to
the confidence level. These results hold for Weibull components with
shape parameter greater than 1.0,

It is also of interest to compare the pseudo-Bayesian limits
derived for Weibull components to the usual method used for determin-
ing confidenced reliability from component results. Generally, the
exponential assumption is made for failure time distribution regard-
less what the true underlying distribution may be. The exponential
assumption yields a constant failure rate (constant reliability)
for components and hence for the entire system. This assumption is
usually made since confidence intervals can often be derived clas-
sically [10]. Table 4 lists some results of the average lower 90%
confidence 1imit on reliability for the pseudo-Bayesian Weibull and
the classical exponential methods. From these results it can be
seen that the Bayesian limits, although previously shown to be con-
servative, are not as conservative as the exponential 1imits. The
degree of difference depends on true reliability and shape parameter.

6. CONCLUSIONS. Although numerically tedious, the pseudo-
Bayesian method of confidencing system reliability for Weibull
components described in this paper appears to be a sound approach
to a problem which generally has no other solution. Two conclu-
sions that can be made based on the results of this study are:

a. The approximation &n Rgy = § 2n Ry, for system reliability

with no unbiasing factor gives a conservative lower con-
fidence Timit for all cases considered but not as conserva-
tive as assuming the exponential distribution.

b. The unbiasing factor (ng-0.5)/n¢ to (ng-1.0)/ng gives the

best overall results for exact confidence limits at all
confidence levels for £>1.0.
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TABLE 4

AVERAGE LOWER 90% CONFIDENCE LIMIT FOR BAYESIAN-

WEIBULL AND CLASSICAL EXPONENTIAL METHODS

Average Lower 90% Confidence

o Mgt fue el el gme | Lt op systen ReliabilinD

Rel. Parameter Per Comp Rel. HeibuT](z) Exponent1a1(3)
] 3 . 995 6.0 10 .985 .982 . 965
VA 3 .995 3.0 10 .985 .979 . 967
3 3 595 2.3 10 985 .978 963
4 z 995 £.3 5 a8s 979 . 965
5 3 .895 3.0 5 .985 . 981 .968
6 3 . 995 2.0 5 .985 .970 . 965
7 6 .995 2.0 10 .970 . 959 . 941
8 10 .995 2.0 10 . 951 . 940 910
9 3 . 990 2.0 10 .970 . 963 .956
10 3 . 950 2.0 10 .857 .831 .829

(1) A
(2) p
(3) M

verage of 10 Monte Carlo trials.

seuydo-Bayesian limits described in this paper.

ann-Grubbs frequency limits [10].
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T U TG ACrLTOATION OF
BAXHQIAH YPATTSTIOO
TO HIGH fLIASRTLITY TESTING

Gharles A, Pleckaitis
Liectronic ingineer
Lrwin Biser
Operations iesearch dnalyst
Avionicd Laboratory
.. Army Blectronics dommand
fort, Honmer*h, Hew Jersey

JoTita s The paper deals with sinulating the reldability redictions
0. Upnvy Lift Heliconter (.IL1) Flyuhymgtrc systen. Acceptance decisions
are dependent on the prior distributions (based o available subiective
Judrments and experinental information) of the equinment deliabilities

wiich constitute the "states of nature (4;).

The prior probabilities F(4;) associated with the stahes ol nature

(rel m‘)ﬂimes) are. deternined J}’r‘om test data, historical systor reliahiltif:

Trrents.,

data predictions, and infercnces from sxperiences with simdlar

The As's are arbitrary discrete valnes near the ridpoints of
various relia™ 1ity bands., These are chosen to cover the reliabilis:
scale from O to 1. wq, For exanmple, 18 the eovent withjn cell tin, 2
its associated reliability of O 07“ 399 991 P(4,,) = L.9(H). ”h(

values (midpoints)are chosen to be closer to oné anoprw at '
valuoa of reliabilities and spread apart as the re vab111+1~f Jeereasc.

This is done wilh the objective of obtaini»y a susry Heurrininat'on of
reliability values at *he required 0 0 cpectran, Urds are W Ll
enable onc to investijate the assoriated orobabliis o at, tjv: MiLﬁ”‘r
reliability regions. dee Table I ond F‘yure 1.

Reliability tests were performed, and Bavesian alporithms were
used to update the oriors based on the test data. This results in a
posterior distribution which is used as a new pricr for the ne:i phase
of tegting.

farions dnitial priors were appliicd to diTferent. sets o1 test data
inorder to obgerve how sensitive the nrinrg are, after Bayesian npdotis
in affeet] n;v Vhe reon ltant nonsterior distribations,  harts ond crapas

showing these presuiis are nresentoed.
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Table I. Discrete Reliability Cell Formulation

Gell Cell RHeliabilidy : Reliability Bands
No. Velues

1 0,999 999 995 0,999 996 992 5 - L2
2 0,999 999 99 D.559 999 975 = C.999 920 992 5
3 0.999 999 95 G.599 799 928~ 0,999 999 775

1 0,999 999 2 N.,099 259 75 - 0.999 999 225

o 0,999 999 5 D555 999 25 - 0,999 999 75

& 0,999 999 1e999 957 5 - 0,999 999 25

7 0,599 995 0999 992 5 = 0,999 997 o
J 04999 95 G929 975 - 0,256 992 7
9 0.999 7 0,999 75 - 4589 073
L0 999 0,997 4 - DGu55 7!

11 >.y9 0,975 - 0,7 5

L2 0.9 0405 - 0,975

l ? (JIB (jJI '{\.)’ - {J.l_l‘) .

1 0.7 D - 075

15 0.6 04 hY - 0463

16 0.0 9.L5 - 055
17 0.l , G435 - 05
Lo 0.3 D470 T
12 0,2 Uelld - 0.25
20) 0.1 2,05 - 0415
27 0 0 - 0,08

#This is the reliabiliiy we would like to obtaln

Lot BACKCROUND.  Larly in the investigations of the deavy Lift
Heliconter's Wdovolnbment, it was recofmised that ceortain aress of
ite Jovelooment would be a technolosical challenga. The arca of Jiicd
coptrols stimilates avionics interesi due to the needs of container cargs
off shore loading, Fly-By-Wire (FBW) primary control, precision hoveri:,
and 8ling load stabilization, »

A wapor technolorical breakthroush in the HLI is the FR orinar:
coptrol, In this appreoach the conventional mechanical nrimary [Mlignt
contral mechanical linkare is elimirated and the pj!.'l_r.wﬁ's Ui commands
the control surface actuator o swashnlate 1:}.w.r'our-h e"o ttrical eipnsl
wires,  Gone areas of primary concern in the use 1 F3W et a
Pliphl safety veliability denonstration, mission *'01‘1 abiiit tes?h
and neelear vitlnerability,  The FBW systerm i3 +riple redundant Wit e
"‘H ehto safet reliability ceal o 0,999 900 9ix) for two hours of 100
{or a HPBY o approxirately LC,G00,000 hones)

2ott ITODIUTTON. - The objective of Lhis paper ";; to Pine a
tecimiyne fo teat domonstrate the Veavy Lidd, Heliooptor (HLD Lo e
rodundant 3l -Wire (FRE) syoten's $1igat safoty ,M'tnbﬁ L l Vool ol
Y 9 099 200 £or wo dours. It investipates by similating the reliahility
predictions of the HLIT FIW systen, )
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Ideally, the purnose of a relinhil ty demonstration technique is to
nstablisn, in the shortest possibl. “est time and at the minimum cost,
whether this high reliability goal crm he met. The FBW reliability
denonstration testing environment consists of':

* igh lleliability Requirementi.s

' Limited Funds
* Short Test Times Available
-

Low Test Risks (which requires long test tines)

yootuer words, it is desirable te have low producers!' amd consumers'
risec wideh results in long test tines due to the nigl reliability
requirements. Generally, the acouracy of the demonstration relisbility
teate and the measure of test conflidence increases as the number of observed
faflures inoreases.  However, wizh reliability requirements mean “ong
Yives to (observcd) failures. This environment creates a cost/tinc
roblen waich e apparently unsolwvalle by traditional Classical mebtliods.
Thic 1z cxactly the dilemss involved in testing the hdghiy reliable
and capenoive HLI TFBRW systen.

- s

wheno one applies the fraditional Jsssical wethod te velliabilit:-
dovenaleation tests the followiiny ~arracheristics emerpo:

- 1

s Lechmdgne 18 ecasy teouse ol o wderstand

£

It in assumed that bhe dogiyod reliability U ois fined 0 s
actnally a random variable)

L
Previous (or prior) failure inforvation is ioiorec isneh ag
Leboratory desipn and devolopnent tests, initial Luyer aceortancs
teots, ete.)

L]

It requires long test tines for equimments of higl rel

Alter investigations, the conclusion was reached that it ie not
sractical to use traditional Classical fcelmiques to test dennnstrate
systens of 0,992 999or higher with a reasonable degree of coniidence,

As an alternstive, Bayvesian statistical techniques are ccnsidered.
In this methodology it is essential taat a prior distributicn v uscd and
the rolinbility parameter R he considered as a random variable.

198



3.0 BAYES T.Udidl, Baves Theorem 1s essentially a simple relation
between probabilities of thc ccrurrcneccs of two d:.;lr.-:r‘ent avents, It

will be applicd in this naper to a discrete reliability cell formnlahicn.1
The basic expression wiich deseribes the Bayes relationsiip Letween
two ovents iS:
. . P4, ) P(:}/} -
P(n, /%) (4 )
P 1)
where P(B) = E P4, ) P(i3/4,)
izl L .
and tne"/Mis to be read "piven that', This relationsidp i words statess
. " T
Hew OMrobabilily Prior Probahilivy Provabiliy, »f
concerning opecified = concerning, specliied hA Choorvisl Lest
voliability typothezis reliabi lity lyvothesis outeome wnder The
civen test dala Reliability Hypothesi:
. -
- ) ) y
Total Probabiliiy ol
Obsrrved test oatoonnd
wrger all specified
Ehﬂjability'}Wpotnuﬁﬂﬁ

-

The terms of thoe releationship are defined as lollows:

Ai: States of nature; or the event of having cell number ‘17 wibih 115
associated reliability.

3d:  test evenl) or evidence bearing upon either ihe succesc or failure
ol an observed reliability test (that is, test result which bas a bearing
upor. the credibility of the A; events),
. . s - PR . 1 .
)- Reliability associated with cell number "i", given by prior distribution

P(
sjgnmentu before test evidence B becomes anllable.

Tise of Uayes' Theorem In Its uiscrete Formulation Yor Reliability
fiution Purposes”, W.d. jac Farland, from Transactions of the Tth

L1
Reliability and Maintainability Conference, July 1905, pages 352-3C5,
168 Annual Assurance scilences,

199



1’(T/A )t Uhe orobability of the ohegorved outcomr B assuming
the occurrence of event Aj. ['The probability that the test
resulted in a suecess (the equipnent wored satisfactorily of the end
of a fixvi tine ““fprval)'ﬁiven that Lo asgocdiated cell &y relisbility
ig, Ay, U.90-1ig 0,20, Also, the probability of an ohserved test
failure B~ piven thdt the associatec eil Ay reliability is, say, U.90-
is obviously C.10].

P(B): Thare probability of the observed event B evaluated across
the entire weighted engemble of even's As.

P(A;/B): 'The vosterior or medi’irl (new) probability, or bhe
probability assigned to events Ay a8 a resul? of the new test evidence
B by the use of Bayes' technique. “hus, Bayves' Technique provides the
basis to rocompute P(A; ) based on alditicnal new test evidence B,

4.0 BAYESTAL DI1SCRETE UPDATTNG. Table 1 shows a discrete reliability
cell Tormmlation consisti np of 21 cells and 21 reliability rangns (the
number of chosen cells is arbitrary), The Aj's are arbitrary discrete
values near the midpoints of the various roliabalxtJ bands or ranges.

These bands are chosen Lo cover the reliability scale from O +teo 1. The
cell reliability values (midpoints), tho 4" s,are selected close to

cne anothelr at the desired reliability of interest; and spx read apart as Lhey
diverge from the desired reliability. This is done with the objective

of obtaining a sharp discrimination of reliability values for the reqaired
high spectrum. This procedure enables one to investigate the associated
probabilities in the hgher reliability regions.

Bayesian acceptance decisions are dependent on the prior distributions
(bassd on qvajiable subjective Judpments and experimental LnJuwva¥1on) of
the systom reliabilities which constitute the "states of nature! Ai)'

The next step is to establish from pistorical and empirical data a
prior reliability distribution. One must determine from existing historical
and erpirical lfailure data the probability values, P(Aﬁ), Tor wach cell
reliability value Ajs. ‘

ool DETERMINATION OF PRIOR PROBABILITIES. For the equipment in
quastion, knowledgeable individnals such as the component manufacturers,
the desipn enpincers, reliability experis, and other responsible individuals
should be gathered to determine a suitable prior distribution. As a
hypothetical example, a component manufacturer is asked to estimate tie
vercent, of {ime, a 110usand components (in the equipment in question) can
be exocoted to function successfully for two hours within the. ceéll number 1
relinbility band (0,999 999 9925 to L.0). The component manufacturer may
indicate oue percent, i.e.)P(A1) = 0,01 based upon his available historica!
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TABLE (1), BISCRETE RELIABILITY CELL FORMULATION,

({ STATES OF NATURE )

¥ THE DESIRED RELIABILITY

Cell | A = Cell Reliability Raliability

No. Value Bards

1 0.999 999 995 0.999 999 992 5 -~ 1.0

2 0.999 999 99 0.999 999 975 -~ 0.999 993 992 5
3 0.999 999 95 0.599 999 925 - 0.999 3999 975
*4 0.999 995 9 0.999 939 75 - 0.999 899 925
5 0.999 999 5 0.9%9 999 25 - 0.983 83893 75
6 0.999 999 0.999 597 5 - 0.999 999 25
7 0.999 995 0.999 892 5 - 0.999 997 5

8 ¢.999 99 0.999 975 - 0.999 992 5

9 0.999 9 0.999 75 - 0.999 975

10 0.999 0.997 5 - 0.993 75

11 0.89 0.975 - 0,997 5

12 0.9 0.85 - 0.975

3 0.8 0.75 - 0.85

14 0.7 0.65 - 0.75

15 0.6 0.55 - 0.65

16 0.5 0.45 - 0.55

17 0.4 0.35 - 0.45

18 0.3 0.25 - 0.35

19 0.2 0.15 - 0.25

20 0.1 0.05 - 0.15

21 0 0 - 0.05




ceoondrieal datae, e ds riven ticye Voot f‘auh Gl e " SRR RS LK
v mi N ac conddiden bt e o “(A Jorust oeane b oo
vsee tab oo 7y, In otable (2), i1 s TS wx“wr? that, ttw-v Z“‘r “"L ot
ave cf g valves ol O 0L bLeoaan Caibdal on nznvm nt ol vooo v R
coull wwvoer be vadated b Bayest oo pOove ropariloss (.r.i’ wash ot Ty
brgt dato mipnt Praddesteo, ddeve vocl P(hg) value is desipnated nf: ‘
orciahi of the corresvonding ool vaiuve As, Lstiuates of #{as; are
hladnod, based upon ."'L.ﬂ’rol'tr,al A aresl 1L For eani cell
velinhility valne g e (esion " . i‘}“"‘*'
frop similar equivments and ouber oo ERRRAINRA
Tabi (9), are then avevaro! and Lo ' o
'(}\ De i cmantning this tehlo. Ayp 18 the cvent uitid
1LY ovalue naioor “W \AL. = O My with 4o mssocinto P
hats do, P(A ) = 00y

vne car also observe from Lo Aversge PAL) coloom tha! HERF IR S
At Al LU0 000 U T e most ‘vr”)u‘z‘h‘ w, that is, ;’(’A‘“) ,.' RIS
Laavs velue of hhe Averacs PIADY cobam vow Porme an estinated selalo i Ly
alorribution, called e prior listriirilior i‘m,), ‘
vinto van form in Mpuee (). Thia Livsamen s hows ] (o
avirages,  Helerring to Table (2), wacn salue oF T LE frlexLﬂw ol
averages s dincorporaled as a probahll iy of Lhe corres rncmdmr cedl
(reliability) value (A3), Tor cxan:le, siach a probabi lity - asgesiat e
with coll Ag (0,992 209) 48 0,165 in Tahic (2) which olothbed as e

abscloaa figure 1.

T cell reliability values is oo drawn o e I-‘L'_:'uf‘*.m{ pa maedt L
Litey are not, proportional ip width o "' amount ~0 probebili A R
roliabilily value contained., However » in this paper, e ach Aj is
drawn to a uniform scale width,

Using: the h:istc);r"r‘am ui" Tignre L os our prior, Lef us conoliucr zorg
crasples showirng; the resulte of the Baresian nwrh‘( ityr calenlatinrs o
his prine distri bution, m:t us call tds pricor disteiougion U
binomial type average prior.

GoO BPUCINIC APPLICATION OF Fii. D Io0RETY SAYEolal TEOTL o
DARTTON G L LALTABTLIDY Tibia. A Leoh 18 perfomied wner simn
cnvironmental conditions which are (“'wr“(:d to be encounterod nature,
Por exaimple, a nione Avionies copuivment cer Lo tested during ac Ln::
deliconter tost M13p.505 (and 1*1*01111& tests), The Lest nmeasureients are
to record the Tatlare Simes which coould i cate whether or net Lar
cqiviument o ls oat the ond of, Sny‘ LV LWo howrs,
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a FAITIR. (Test Fvent 3).

BATSGTAN UPDATEIG COMPUTATIONG. e desire to undate each P(A;/B)
baged upon the onc cmpirical observation trat the first test resulted in
failure. The P(4,/83), for each i {in this case i = 1 to 21}, is the set,
of posterior probabilities of Ay, iven B, These can be used as the
new priors for the next phase of testing. As an dllustration, the
caleulations for eccll values Ay, and Ay are given below, Table (3)
shows the results of all the Bayesian cell value caleulations for this
cxarple.

pXAMPLE 1, Uhe FPirst test, at tae end of two hours, resulted in

FOR DKLL VALUE Ay

From Table(l) Ay = 0,999 999 994, irom Table(?2) 2(A1) = 1.00325,

wa want to compﬁte ?(Al/B).

lere A, is the evenht of having cell number L wiin its asaociated
reliability of 0,799 900 995, P(Ay) i bhe prior probabilit, assigned to

cell nuber L before test ovidence B is available. In other words, it

i5 the prior nrobability that the cawlpment reliability falls wilthin a

band of reliability (in this case 0,999 992 992 § to L.0) centered
anvrovimately abont 0,999 999 995,

Applying Baves'! Theorem we get,

P(A/B) = P(&1) P(B/AL)
- P(L1)

F{B/A1) is the Llikelihood (the protebility) o the obscrved ‘est

out.nome B, piven that cell Ay is the casc, tnat is, 4, iz ¢ band of
reliabilities centered about 0.999 997 995, If this Ts in Jacth frue,
(that is, i test B is a success), then P(B/41) = 6,900 00 3w, In

o 2 Y-k

otlier words, the best estimate (bascd on the success of the Jirst fest 3)
of the equivment reliability falling within the A7 Reliability Band (i.:.,
1.0 to 0,995 909 99%) 18 0,000 000 05 (1-0,7299 299 2095,
The Bayesian Ualeulations are:
PA/B) = P(4y) P(B/Al)
P(3)

) = E P(B/A;) P(ay) (frow Table 3)
=]

PR = 0,007,833
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TABLE (3 ). BAYESIAN UPDATING CALCULATIONS IF FIRST TEST RESULTS IN FAILURE,

Log

Cell Values, P(Aai) P(B/Ai}* P(B/Ai) P(ai) P(Ai/B)= E{(Ri}P(B/Ai)
A : P (B)
A, = 0.999 939 995 | 0.00325 | 0.000 000 005 1.625 x 10711 0.000 00
Ay = 0.999 999 99 0.0130 0.000 000 01 1.30 x 10711 0.000 00
Ay = 0.999 999 95 | 0.050 0.000 000 05 25 x 10710 0.000 00
Ay = 0.999 999 9 .| 0.235 | 0.000 000 1 0.000 000 023 5 0.000 0O
Ag = 0.999 999 5 0.2425 0.000 000 5 0.000 000 121 25 0.000 02
Ag = 0.999 999 0.165 0.000 001 0.000 000 165 0.000 02
A, = 0.999 395 0.120 0.000.005 0.000 000 600 '0;000 08
Ag = 0.999 99 0.065 0.000 01 0.000 000 650 0.000 09
Ay = 0.999 9 0.0425 0.000 1 ' 0.000 004 25 0.000 57
A = 0.999 0.0275 0.001 0.000 027 5 0.003 67
Aj,= 0.99 0.0125 0.01 0.000 125 0.016 70
B = 0.9 0.01025 0.1 0.001 025 0.136 97

*p(B/Ai) for test failure is given by 1-Ai where Ai is the cell value. Therefore,
P(B/Al) = 1-Al = 1-0.999 999 995 = 0.000 000 005 = 5x10-9,

I1f the test had been a success P(B/ai) is given by Aj.




TABLE (3), *  Bayesian updating calculations if flrst test
results in a failure (contd)}.

g0¢&

Cell Values, P(Ai) P(B/AL)* P(B/Ai) P(al) P(M/B”—m‘%}%&&ﬂ—
A _
A= 0.8 | 0.0055 0.2 0,001 1 0.146 99
Ay, = 0.7 0.001 0.3 | 0.000 3 0.040 09
A = 0.6 0.001 0.4 0.000 4 0.053 45
A = 0.5 0.002 0.5 0.000 5 0.066 82
A= 0.4 0.001 0.6 0,000 6 0.080 18
Ag=0.3 0.001 0.7 0,000 7 0.093 54
A19 = 0.2 0.001 0.8 0.000 8 0.106 90
A, =01 -1 0.001 0.9 0.000 9 0.120 27
A =0.0 0.001 1.0 '6.001 0 0.133 63
21
P(B)= & P(B/A,P(A) = 0.0074833
i=1

#*p{B/Ai) for test failure is given by l1-Ai where Ai is the cell value. Therefore,
P(B/Ar) = 1-A; = 1~0.999 989 995 = 0.000 000 Q05 = 5x10-9,

iF THE TEST HAD BEEM A SUCCESS P (B{Ai] IS GIVEN BY A;,




P(A,/B) . (0.00325) (0.000 000 )
(N.0074833)

F(A;/B) = 1.625 x 10-11 _ 1.210 ¥ 10-13
0.0N74L333

For cell value Aln

From Table 1, Ajp = 0,999
From Teble 2, P(A1n) = 0.0275
We want to compuhe P(AlO/B).
ihe Bayesian Salculations are:

Playe/B) _ PA1p) P (WAyp)
RI6)

n=21
r(B) -;;’ P(W/A;) P(Ay) = 0.0071833

1
P(A1/B) = (0.0275) (8.001)  0.00275
(0.0071,833) 0,007L333

P(A1/B) = 0.00367

Table 3 showq the Tesnlts oF the remaining P(A:/B) Bayesian calculations.
These PQA )= ¥y, and ! >(Ay/B) = P, are plotted in figure 2. 'The P} posterior
d3°+r1hutton 1% used as the new vrior o the next test (see Table ).

Figure 2 shows a histogram of the prior distribntion updated by the
Bayesjan calculations after a single test resulbed in a failurc., A
shift in the P(A.) probabilities is observed with the higlher reliability
values, 0,999 095 9 and 0,999 999 &, being shifted to 0.9 and 0.3, respectively.
Also Sifn“plbanb values of reliability occur between 0,7 down to ﬁ L0,
and the updated distribution shows a trend clustered near zero. Thls section
indicates that evem one initial test failure may radically alter a prior
di.stribution.’

The results of Bayesian updating calculations for a second test
resulting in a success after an_initial failure is shown in example
2, histogram. figure 3 and table 5.

1t shonld be mentioned that “ue case of more than one failure in &
tvo hour test is still to be treated as one fajlure in tnis approach. In
other words, cither the system functions properly or fails at the end ol
the twoe hour test,
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CaBLi L. Prioy and Posterior (Or iimal) Distributions After Moed
Taest desults ia daldlare

P{4i;): Prior : PO(Aﬁ) P(4:/R) & Pesterior (or BMaal)
or P-{&,) now Prior fur llent
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HOTL:  The aceuracy of Yhege Bayesian calculatinns wors

carried out to thdirtecr decimal olacen by computer, TH 2o
is used in subsequent calelations in tiirteen dectualns
although tne results are only Listed az five decimals 30 oo

tablies.
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-,37% 5. Bayesian updating calculations if second test results in a
success after an initial failure.

cle

Cell Values, | §§§;}B;S°f P(B/AL)* P(B/Ai) P(Ay) [P(AL/B) = P‘Aiéﬁé?/Ai)
Aj Table (3)
0.999 999 995 0.000 00 0.999 999 995 0.000 00 - 0.000 00
0.999 999 99 0.000 00 0.999 999 99 - 0.000 00 . 6.000 00
0.999 999 95 0.000 00 0.999 999 95 0.000 00 © 0.000 00
0.999 999 9 0.000 00 0.999 999 9 0,000 00 | 0.000 00
0.999 999 5 0.000 02 0.999 999 5 0.000 02 0.000 04
0.999 999 0.000 02 0.999 999 - 0.000 02 "~ 0.000 04
0.999 995 0.000 08 0.999 995 0.000 08 0.000 18
0.999 99 0.000 09 0.999 99 0.000 09 0.000 20
0.999 9 0.000 57 0.999 9 ~ 0.000 57 0.001 27
0.999 0.003 67 0.999 0.003 67 ' 0.008 18
0.99 0.016 70 0.99 © 0.016 53 - 0.036 84

*P(B/Aj) for a test success if given by the A; cell values.
If this second test had been a failure then
P(B/A{) is given by (1-Ai).



TA3LS 5. Bayesian updating calculations if second test results in a
success after an initial failure (contd).

€12

Cell values, §§§i}3§sof P(B/Aj)* P(B/Ay) P(A;) |P(Ay)/B)=R(AL)P(B/Af
A Table (3) B(B).

0.9 0.136 97 0.9 0.I23 27 Iy 0.274 59

0.8 0.146 99 0.8 0.117 60 - .. 0.261 94

0.7 : 0.040 09 0.7 0.028 06 | 0.062 51
0.6 0.053 45 0.6 0.032 07 . 0.071 44

0.5 0.066 82 0.5 | 0.033 41 , 0.074 42

0.4 ‘ 0.080 18 0.4 - 0.032 07 0.071 44

0.3 N 0.093 54 - 0.3 "0.028 06 0.062 51

0.2 o 0.106 90 . 0.2 0.021 38 0.047 63
0.1 0.120 27 | 0.1 0.012 03 . 0.026 79 -

0 | 0.13363 |~ 0.0 |  0.000 00 © 0.000 00

P (B) =*1 P(B/Ai)p(ai) = 0.448 93
i=1 -

*P(B/A;) for a test success if given by the A; cell values.
1f this second test had been a failure then
P(B/A;) 1s given by (1-3;).
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LEXAMPLIY 2, The second test results in a success after an initial
failure, The Bayesian sample calculatiosfollow for Ay and Ay, cell
values nsing Py (A;) as the new prior probability.

-

For Cell Value Ay, From Table .1, Py(41) = 0,000 00, Since we cannot
use zero, we must use the number calcmla%od from example | which 1s
P(A;/8)= 1,216 x 10-13 = P (A1), The new posterior distribution is now
calculated:

P(a/B) o P(aq) P (3/A))
P(B)

Fvrom Table 5, P(B) = D.44893

2(A/B) 2 Py(ay) P (B/&y) 2 (1217 2 107E3) (0,999 999 )
I 42) (0.7393)

P(A/B) = 2.709 x 103 (shown &5 0,000 00 in Table 5)

For Cell Value Ajp. lrom Table ), P (AL0) = 0,00307. The new posterior
(or final) value for P (A71/B) is now calculated for cell Ayp = 0,999 and
a second test resulting in a success,

l-)(Alﬁ)/B)_: P_'L(A'_LQ) I3 (B/AIO)
P(B)

I'rom Table 5, P(B) = 0.41893 and P(D/Aqo) is 0,999 because second test
Wwas a success. )

P(A1n/B) = (0.00367) (0.999) = 0.00018
(0.114393)

Table & shows the results of the remaining P(4;/B) Bayesian caleulations
waich are plotted in histogpram forny in fipure 3.alorny with its niior. By
ongerving this histojyram, one can sce that the reliability cells are now
sailted away from 0.0 and a signficant increase in relative probability
values is observed at 0.9 and 0.9,

Table O shows the flow of data for cach .ell from the Prior Distributicn
Lo second test 8 success following & Mrost test failure.
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TABLIY 6. Prior and Final Distributions Af'ter Second Teet is a

Sucress and First Test was a lailure.

PRIOR DISTRIBUTION FTL m“ST A FATLUR: SEOONTD TisT A SUCCESSH

Pp(a, ), i=1 to 21 Py (4:)

Figure 1 F%gufe » Pigure 3
0.00325 (DG O 0000 1)
0, QL300 2.000 00 (e 00 D0
(05000 0 00 00 SIS Y SV
0.23500 (,000 00 0,000 00
0. 24250 L0002 Gl Gl
), 16500 L0 00 SREARENN
N, 12000 OG0 ST ANRY
000500 GL000 1) () i) 20
005250 o 57 Uil 27
0.,02750 0.002 07 G008 18
0.,01250 0O.0L6 70 G036 Ll
0.01025 4,130 97 0L27h
0 O0L50 0,1h6 99 L2061 b
Q.C01L00 £.040 09 L.0H2 51
0.,00100 0.053 Ls 0.07L Li
D001 D066 62 GJOTY L2
() e OO0 CLdo Ll CJO7L L4h
O L0 .03 5L 0002 5L
() 4100 Lre LU 90 0,047 63
M ULO0 FMARTVIN-Y 0.026 79
0 GOLO0 133 63 0,000 00
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7.0 VARIOUS PRIOR DISTRIBUTIONS AS APPLIED TO DIFFERENT SETS OF TEST
DATA, Other initial prior distributions, termed "A", are chosen in order
to indicate how sensitive the selection of prior failure distributions
are to the final resultant distributions after Bayesian updating calculations.
In other words, the following histograms are used to illustrate the degree
change of prior distribution that occurs after Bayesian updating as new
reliability test data becomes available. Table 7 gives the reliability
values at each reliability cell, Ay, for the following prior distributions:
Binomial type average distribution of table 2; Uniform distribution;
Peaked (at Lth cell mid value) distribution; Peaked (at 7th cell mid
value) distribution; and Skewed Binomial type distribution. Figures 1,

L, 5, 6, and 7 show relative frequency histogram graphs of each of these
prior distributions.

The tables and histogram graphs of Appendix A will be used to
illustrate the change that occurs in the Bayesian estimates as new
reliability test data becomes available, The Bayesian calculations were
performed with an EAT 8400 digital computer with a double precision
calculation accuracy to thirteen decimal places.® This acauracy is
necessary because it is impoptant to use extremely small numb