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PROGRESS TO DATE ON COMPUTING REGRESSION BASED ESTIMATES
OF CLIMATIC CHANGES FOLLOWING VOLCANIC ERUPTIONS

John Bart Wilburn
US Army Electronic Proving Ground
Fort Huachuca, Arizona 85613

ABSTRACT

Report and invite comments on: Problem addressed, method of analysis,

and results to date.

Intent of project is to produce regression based estimates of seasonal
temperatures and precipitation at several locations by: Performing

a multivariate analysis of Tree Ring data from selected sites in
North America and perform a subsequent multivariate regression of the
Tree Ring data against meteorological data.
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PURPOSE:

The purpose of this project is to detect tree growth anomolies following volcanic
eruptions by analyzing tree ring growth patterns and using modern meteorological data with
coincident tree ring data to develop transfer functions for reconstructing climate anomolies
following volcanic eruptions.

These climate anomoly patterns can be compared with other derived paleociimate
anomolies for further understanding of the environment.

PROCEDURE:

The procedure involves several steps of analysis. First the analysis of the tree ring data to
detect statistically significant responses of tree sites to volcanic eruptions. The volcanic
eruption data was selected from H. H. Lamb (1969), Volcanic Dust in the Atmosphere. (1)
The tree ring data were selected from Schulman (1956) (2) and were restricted to Douglas
Fir trees with good intercorrelation, high sensitivity, and with sufficient length of sample to
incorporate most of the volcanic data. The tree ring data was selected from ten sites (fig. 1)
to span a significant portion of the Western North American Continent so as to obtain a
good sample of a large scale climatic condition. (29°N - 52°N, 105°W - 121 °w).

These tree ring data (percent of normal growth) were then arranged into a 14—year lagged
array. That is to 1st column in years 1 (referenced to the beginning of the chronology) to
14. The second columns are years 2 to 15 and so on to the last row of M- 13 toM for a
chronology of M years. This array is referred to as The Total Ring Data array. From this
array, for each site, was extracted a subset referred to as The Ring Signal Data Array.

A second subset is created by implication of the first. That second subset is the remainder
of the Total Ring Data and is referred to as The Background Ring Data array. These arrays
are denoted by: DtNM , Total Ring Array; DsN p » Ring Signal Array; and DbN R’
Background Array.

The D> are picked from Dt in the following manner. The volcanic eruptions are
parameterized by date of eruption in years, location in latitude and longitude and
magnitude of eruptions denoted by a dust veil index (d.v.i) devised by H. H. Lamb. (pp.
471-473)

A class of eruptions is specified by bounds on these parameters. The dates of the
eruptions within these bounds are translated to column numbers of D t. These columns of
Dt selected in this manner are extracted from D and comprise the array D 5 of N rows
and the number of columns determined by the number of eruptions in the specified class
called for,

The test for significant responses is a two-fold test. First, a CHI—SQUARE test was
performed as follows: A CHI—SQUARE test was performed on the row averages of D S
against the hypothesis of being indistinguishable from the row averages of (2) D t and {(b)
D P, At the same time, a CHI-=SQUARE test was performed on the row averages of D b
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against the hypothesis of being distinguishable from the row average of (c) DY, and a
CHI—SQUARE test on the row averages of D ! against the hypothesis of being
distinguishable from the average of the total tree ring chronology ( d). If all hypothesis are
rejected, that is the probability of DS being a chance variation of D t or Db is low while at
the same time the probability of D P being a chance variation of Dt s high and that rows of
Dt are all chance variation of the total ring average, then the set DS is labeled as a
candidate for the second test.

An example of this first test is seen below (fig. 2). The error terms are standard-
deviations. The example picked is the Tree Ring chronology from the Fraser River Basin.
The volcanic criteria was: Magnitude 500 - 5000 d.v.i., latitude 20°N - 90°N, longitude 0°
to 135°W.

The second test involved an eigenvector comparison. The software which built the Arrays
D!, D® and Db and computed the CHI-SQUARE test was extended to perform a correlation
matrix calculation and an eigenvector extraction. An examp!e of the printout is seen in
figure 3 for the correlation matrix CtMN = —M'--_l D M D MN the eigenvector set E *
and the eigenvalues At . This computation was per%rmed for correlation matrices and
their associated set of eigenvector/eigenvalues, for variance about the row averages of each
of the arrays. That is, the data for D t , D 5 and DD were normalized with respect to their
own row averages. '

There were some interesting developments from these‘eigenvectors as seen in figures 4, 5,
and 6. These vectors are from D 1, the total ring array. Each eigenvector appears to be a
composite of sinusoids of increasing complexity. The first and second vectors being
predominately half waves of a fundamental and increasing from there on. The explanation
of this behavior is not settled as yet.

Some comments on what is being done as an aid in interpretation are due here. The
matrices, D t, as well as the others, are correlated by rows.

That is, we are looking at the correlation of a pattern of growth beginning in one year and
running sequentially with a pattern of growth beginning in another year and running
sequentially. In short, we have a type of autocorrelation. In this context, however, we might
explain it as the correlation of a growth sequence with any set of previous growth
conditions of each element of the sequence. The eigenvectors depict the relative
contribution of the respective rows to the total variance of D t accounted for as indicated
by the relative magnitude of their associated eigenvalues, or the mode of variance associated
with that eigenvalue.

The notion of the mode of variance in years following the year of the first row is
particularly useful when we are interpreting the average growth d 5. and eigenvector of the
Ring Signal array D S. This is because now we are talking about modes of variance in years
following an eruption in a specific class of volcanic eruptions.
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FRASER RIV TOTAL RING (Continued)
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This brings us to the second test for significance - - the comparison of eigenvectors. The
Ring Signal arrays D S were analyzed a second time. This time the row averages of Dt were
subtracted from the elements of identical rows of DS and then a covariance matrix was
computed from the new array DS and the eigenvectors extracted from the covariance
matrix. To insure that we were not comparing unrelated quantities, the eigenvectors of the
covariance matrix of Dt, DS and Db were recomputed using their own row averages of
their respective arrays as used previously for the correlation matrix computation. The
eigenvectors computed from the covariance matrix were nearly identical with those from
the correlation matrix. This was to be expected since variances of the row variables are
nearly the same.

The rationale behind this move was the following. The eigenvectors extracted from the
correlation matrix of D S using its own row averages comprise a description of the modes of
variance about the response signal of the trees to volcanos, if there is one; whereas, the
eigenvectors extracted from the covariance matrix of D S using the row averages of D t
comprise a description of the variance of the response signal of the trees about the
background signal of tree growth. Based on this reasoning, if the two sets of eigenvectors are
nearly the same, then the array DS is labeled as a type | error and rejected. There are more
rigorous statistical techniques for comparing the eigenvectors (4) but the situation here does
not seem to warrant that degree of rigor. If the two sets of eigenvectors are significantly
different, then the array DS is labeled as a significant response signal to volcanoes and the
eigenvectors of the covariance matrix are considered as the modes of variance of the
response. Note that because the variance is indicated by the square of eigenvector
component, a mirror image is considered as the same mode.

An example of this comparison is seen in figure 7 which shows the average growth
(d S. ) of the Fraser River Chronology for 14 years following an eruption specified by the
class 500 - 5000 d.v.i., 0 - 135° Long, 20 - 90°N Lat, and the eigenvector, Ev, extracted
from the covariance matrix and the eigenvector, Ev, extracted from the correlation matrix.

The results of these tests were the selection of four sites, one with two cases, making a
total of five cases. The sites and their case were:

Fraser River Basin: 500 — 5000 d.v.i.
20° — 90°W lat.
0° — 135°W long.

Saskatchewan River 500 — 5000d.v.i.

Basin : 20° — 90°N lat.

0° — 135°W long.
Missouri River Basin: 500 — 5000d.v.i.

209 — 90°N Iat.
0°} — 135°W long.
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FRASER RIVER 500—5000 d.v.i.; 20°N—90°N; 0°—135°W LONG.
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Big Bend: 500 — 5000 d.v.i.
20° —  90°N lat.
0 — 135°W long.

— 500 d.v.i.
20°N Iat.
180°W long.

Note that with four of the cases, a latitudina! dependance may be investigated.

+ + o

Their average growth curves (a‘sj ) and their first eigenvector (Ev) are shown in figures
8 and 9 respectively. There does not seem to be anything consistent in the growth curves
but the eigenvectors indicate a definite similarity of modes of variances between Fraser
River and Saskatchewan River and between Missouri River and Big Bend ch ronologies. One
must remember that the growth curves depict the result of change from a previous set of
initial conditions of growth and climate, whereas the eigenvectors depict the mode, or
mechanism, of that change.

METHOD

The next part of the project was to use these chronologies from the four sites to
estimate the seasonal temperature and precipitation at or near the tree sites during the 14
years following the eruptions. Because of the nature of the tree growth physiology, the
seasonal data was referenced to the preceding year. For example, precipitation during the
winter season preceding the year of the tree growth (8). The seasons were divided into: (a)
preceding year ending 30 May; (b) preceding summer consisting of months June, July,
August and September; (c) preceding winter consisting of months October,.November,
January, and February; and (d) the preceding spring consisting of months March, April, and
May. '

The regression based estimate was performed by a regression analysis technique
referred to as, “Principal Component Regression Analysis.” It is described in detail in a
paper (5) to be published separately and is included as an appendix in this clinical report.

The essence of the principal component regression analysis is that it allows the physical
phenomena, considered as a system, to be partitioned into independent and orthogonal
modes of variance, or principal components, and then to allow only those modes of variance
of the regressand phenomena which correlate well with all of the allowed modes of variance
of the regressor phenomena to be used in the estimate of the regressand. This technique
further allows a selective reduction of error in the regressand estimate.

All of the properties mentioned above are consequences of the orthogonality and
independence of the principal components of original data.

Quantitatively, the regression rationale is as follows in a brief outline. We have a set of
tree ring data DtNM from which a complete set DtNU can be selected which matches,
chronologically, a set of meteorological data F Nnu also formatted into a lagged array. The
meteorological data is from a station at or near the tree site. From these two sets of data are
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computed the correlation matrices CdNN and CfNN and subsequently the eigenvector
sets are extracted satisfying the equations:

d -
c NNENN _ENNANN

f =
C'nn Gnn _GNNQNN
The unitary transformation of D and F into their respective principal components is

performed by:

!
= t
Xnu " Enn Pinvu
'
nu =G nu Fnvu (1
Now then, from X, we select a specified number of components q accounting for the
amount of variance requested. This is determined from the knowledge of the fact that the

Y

amount of variance accounted for by the ith principal component, X, , is given by
vy (Xpy) =
TR IV
tr ANN

Thus all have a set XqU accounting for a specified amount of variance given by:

V., (X )'g; M
UTaUT ey v

A set of regression equations B Ng aTe calculated such that we have a regression model of

YnuTBng Xqu (2)

* NN
It is worth noting that because the X [, are all independent, the q coefficients of the
n TH equation are completely independent. Also, the multiple correlation coefficients,
RZN are unambiguous because the joint confidence region of the regression equation is
unambiguous. In any case, recalling the transformation (1), (2) can be restated as

- U S
FNP—G'NN ﬁNqquDqP (3)

Those equations 5 Ng Which fail an F-test against the hypothesis C B =0 are set to zero.
This amounts to a kind of stepwise regression except that the variables rejected are those
modes of variance of the system of F which have an insignificant statistical relationship with
any combination of all of the modes of variance of the system of D.

The confidence bounds (90%) of the estimate, F, indicated by §Fyp are
computed from the confidence bounds of ﬁNq indicated by Vqu ; K=1, N. The

b7




FLOW CHART OF THE REGRESSION
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computation is performed by (Cf.5)

- 1 1 s ! ! s Y,
SFNP—GNN{t(p—q 1,1—a/2)[C, [D75 EququEqND nel™l } 4)

Summarizing, the estimation of F p from DSNP can be performed by transfer function

T aw

Tun = GunbBoaEgn

and the calculation of the confidence bound of the estimate Fy, can be performed by an
operator function of 6F po on DSNP as indicated in (4).

This analysis was implemented in the manner indicated by the flow chart shown in
figure 10.

The results to date are for data selected from the Fraser River Chronology for the class
of eruptions specified by 500 — 5000 d.v.i., 0° - 135°W Long, 20° - 90°N Lat. The
meteorological data tested was the pre-summer precipitation from Kamloops, Alberta,
Canada.

The regression based estimates of the pre-summer precipitation in Kamloops, Canada
was made by using the best estimates for each of the 14 years selected from the regressions
specifying: 80 percent, 90 percent, 95 percent and 100 percent of the variance of the Tree
Ring data system and accepting the regression equations which pass the 90 percent
confidence F-test.

Figure 11 (Plate 10) of Appendix A is an example printout of the principal component
regression computer program run of a CDC 6500 for the case of 80 percent variance
requested. Note the program computes the estimate twice; once before the F-test rejection
and then again incorporating the F-test rejection.

Figure 12 illustrates the estimates of the pre-summer precipitation. These estimates are
the composite of the best results of all four cases (80%, 90%, 95% and 100% of Tree Ring
data variance).
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Regression based estimates of summer precipitation in Kamloops, Canada during: (a)
1553-1566, (b) 1600-1613, (c) 1624-1637, (d) 1659-1672, (e) 1720-1733, (f) 1754-1767,
(9) 1765-1778, (h) 1782-1798, (i) 1844-1857, (j) 1865-1878.

Figure 13 is the plot of the average of the regression based estimates of the pre-summer
precipitation. This average is averaged over the ten chronologies for each of the 14 years
following the eruption. The error bases are the root-mean square of the errors of each of the
ten values in the average. '

Figure 14 compares the curve plotted in figure 13, re-normalized, to the normalized,
average growth, d > ., of the Fraser River Basin tree ring chronology. Note that since the
precipitation estimates are of the preceding summer of the ring growth index, only 13 values
are plotted. The striking feature of this plot is that the curves seem to have a high
correlation. It is , in fact, 0.68 which seems to imply that the assumption that the tree
growth in any one year is dependent on the precipitation in the summer preceding the
growing season rather than on the summer of the current growing season is not strictly true.
In fact, the dependence is on both and when one considers trees in the northern latitudes,
the dependence on precipitation of the current growing season increases. This can be tested
by repeating the experience using summer precipitation from the current growing season
and then see which regression produces estimates with the highest precision. However, due
to the sampling nature of the decomposition of the data systems into principal components,
the components which heavily weight the first row of D tNP will not correlate highly with
the similar component of Y nyp - For that reason, when one deals with a lagged array, a
mistaken assumption on time coincidence does not cause a complete miss on the regression
analysis.

The curves of figures 12 and 13 are interpretable as follows. The curve in figure 14 is a
general estimate of the summer precipitations following an eruption of a large volcano,
whereas the curves of figure 12 are specific estimates. The estimates are given by year with
90% confidence bounds. As one can see, some of the estimates have confidence bounds so
large as to constitute essentially no estimate at all. Within the confidence bounds calculated
for each point, the curve in figure 13 agrees with most of the curves in figure 12,
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*
APPENDIX A

*The next article in these Proceedings is the appendix to the paper
entitled "Progress to Date on Computing Regression Based Estimates
of Climatic Changes Following Volcanic Eruptions".
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PRINCIPAL COMPONENT REGRESSION ANALYSIS

John Bart Wilburn
United States Army Electronic Proving Ground
Fort Huachuca, Arizona 85613

ABSTRACT: Development of the mathematical rationale of multivariate regression
between sets of principal components with a demonstration of a computer program
implementing the rationale.

The intent of this paper is to propose a user-oriented method of multivariate linear
regression which will reduce the uncertainty of the user by eliminating the unwanted effects
of intercorrelation of variables and to enable the user to eliminate unnecessary variables
with predictable results.

Procedure:

The situation is that of two sets of data: Regressor data, Dymi  Nvariables and
Mmeasurements and regressand data; Fnm also of Nvariables and M measurements. In
general, the sets D and F will not be of the same number of variables, but for purposes of
development, they will be considered the same without any loss of generality.

The user supposes that he has two systems, D and F, adequately described by the
variables in each. The user further acknowledges that the systems are very likely noisy and
that he has observed them long enough to have a representative sample of the variance in
each and also that normality can be assumed. Having satisfied these assumptions, the user
may proceed as follows:

First, compute the variance/co-variance matrices of the two normalized data sets

D - 1 ’
CoNn =57 Pam D'mn

and

F - 1 '
CNN'M_I Fam Fune

Next, perform the eigenvalue/eigenvector calculations

CD

NN Enn = EnnAnn




F -
c NNGN‘N - GNN QNN

where E and G are orthonormal sets, e.g.

2 - 2 -
Zileij 1 and ?eij 1.
The eigenvector sets are used to compute the principal components by the unitary
transformation of:

!

Xum = EnnPrm

and

!

Yum = G nnF

NM*
Users from the physical sciences will recognize this as analogous to a principal axis’
transformation.

Each of these principal component sets consists of vectors which are independent and
orthogonal. Furthermore, each of the vectors represents a specific “mode’ of variance of the
system which is independent and orthogonal to the other N — I modes. The time-independent
modes themselves are represented by the eigenvectors associated with the principal component
in question indicating the relative contribution of each of the original N variables in D or F to
that mode.

The following operation demonstrates the orthogonality properties of the principal
components and also one other very useful property. '

We will use the set X but the same applies to Y. Compute the variance/co-variance
matrices of the principal components

1 x X' =t E'  DyyDmn E

M — 1 nm X mn= B NN nm P mn

NN*

The righthand side of the equation can be seen to be

! 1 [ _ ]
E NN (M—l |:)NM D MN)ENN“E NN CDNNENN




which reduces to

!

D
ENNC NNE

NN~ AnNNe

Thus, the principal components are orthogonal and now we can see that the variance of each
of the principal components is given by the eigenvalue associated with the eigenvector used
to compute that particular component. Viewed in this way, the total variance of the original
data, Dy, is partitioned by the eigenvectors E, with the relative amount of the variance
accounted for by the i THprincipal component given by

AL
Relative Var. (xiM ) = _t_A'.._.
r ANN"

It should be noted here that if the variables in D and F are of the same units and variance,
the correlation matrices C computed from the normalized data can be replaced by the
co-variance matrix computed from unnormalized data. This may appeal to some users.
However, under those conditions of equal variance and units, this writer’s experience has
been that the eigenvectors are very nearly the same as those from the correlation matrix. It
is when the variances are not the same that the sampling properties of the eigenvectors differ
depending on whether they are extracted from the correlation matrix or from the
covariance matrix. It is my feeling that the correlation matrix is best for general use.

These properties, orthoganality, independence, and the partitioning of the variance will
be seen to be very useful in the following development of the regression postulating the

model of

Yum = Bnn Xum * €nm-

From the above comments, we now know that both the XnNm and YNM are distributed
according to Xpm ~ N(O, AypJand Yy~ N(O, Qnn)-

Thus, the estimate of 8\, éNN is found by:

2 ! 14 _I
Ban = Yam X mn Kym X mn)

which reduces to
v Xogng A7
1 TNM MmN NN

Bun =5
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We can incorporate the factor into the relationship by setting

M—1
A" N = (M=) Ay

and similarly
%* — .
Q NN = (M=) QNN

The matrix of the residual sum of squares ¥\ y of the regression estimated by the
maximum likelihood method is estimated by 2NN computed as follows:

1 - '
Znn T 1M BynX nm (Y ™ Bn X NM)}

from which follows

- 1 ' R
INN TV {YamY MmN~ BnXnm

this reduces to

_ 1 * - o,
ENN“,(,,‘ {Q NN~ B NN A*NNﬁ NN}

An unbiased estimate of ZNN is given by

=M 5
NN M- N

NN

From the above formulation, we can identify the total sum of squares as the diagonal matrix

Q* N and the sum of squares due to regression as BNNA NNB NN

GEOMETRIC INTERPRETATION:

- ~ ~ 7
The matrix BunA* N B NN is the matrix of the vector products of the regression based
estimates: Yam®

This can be seen as

~!

- ~ ~ ’
Yam Ymn =B nnv Xum X mn B8 NN

where Xy m X'MN ist identified'a’s A*NN' Viewed in the geomtitrical context, the
diagonal terms of BNNA*NN B NN areﬂ the lengths of the vectors Y, . The off diagonal
terms are the vector products Yim. * YjM; i#j.
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Thus

Yiw * Yim =Yl | Y| cos ¢
Thus the off diagonal terms may be negative if cos ¢ < O. However, since the vectors Yy,
are ideally orthogonal, the angle ¢ is an error. By this argument, it is of no great
consequence that the off-diagonal terms of Z, may be negative in the computation.

While interpreting the regression geﬂometrically, considerﬁNNXNM as the projection into
X space of Y 0 in Y space. ThenIBXl Ylis the cosine of the angle between Yy, and
its projection BNN Xnm Graphically, this would appear as follows considered in two
dimensions.

X
Y
Y -
B X
© Yo
X2
Figure 1
where
|_Y| cos © = Iﬂ)’('
‘Thus
~ 1 -I‘
2 ﬁNNXNMXMNuﬁ NN
cos = — n
YNMYMN
or
BanA NnB
cos2 @ = NN *NN NN
Q2 NN
this can be identified
- * -}
R2. . = B A Nn B N
NN Q*
NN
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Since the vectors YNM are not, in general, completely orthogonal, and that the matrix
‘Q*NN is a diagonal matrix, the off-d iagonal elements of R'ZNN may be negative. However,
we are actually only concerned with the diagonal elements; therefore, we can compute

2 N * St * -1
RINN =By AN B a2 NN O

The quantity R ZN n s interpretable as the square of the multiple correlation coefficients of
the regression equations ﬁNN .

An F — test against the hypothesis C B =0 can be provided from R2 by

R? M-N >
=R n—1 N-tmen (1)

which is equivalent to

Fn A B un L MoN >
MXZunN N —1

N—1,m — n (7).

Note that for the off-diagonal elements, the F — ratio is negative.

The multiple correlation coefficient squares, interpreted as the amount of variance of
Y it explained by BiN XM » €an be transformed into the coordinate system of FNM SO
that the amount of variance of F variables explained by the D variables can be estimated.
The transformation is simply the diagonal terms of

- !
V(F) = {GNN‘QNN('NNRZNN)GNN}

However, it is not clear just how useful this information is. What is useful to the user is a
regression transformation from D to F and an expression for the confidence intervals on the
estimates Fam -

t,

The transfer function for computing Fis simply

F = (G 3 '
NM ( NN ﬁNN E NN)DNM
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where the expression GNNBNN E nnis identified as the transfer function

-~ 1
Tan = Gun Bun Enne

The calculation of the confidence intervals proceeds as follows and will illuminate some very
useful consequences of the independence and orthogonality properties of the principal
components.

The variance/co-variance of the regression equations can be computed by the following
procedure:

VB,) = EB—B) B;—8;)

~ ’ ’

n - — _ *  _faA* -1
V(ﬂii)_qg(via Yia)(onz Yja)xN'axaN XA NNANN }

V(B;) = € {g(Yia"'{(ia Wia —Via ) A"

* -

V) = o * A nn

Fori, j=1, Nthis becomes
A - = * * - ]
V(BNN)—E NN X A NN
WhereiﬁN is the unbiased estimate of T .
Recalling the previous argument regarding the off-diagonal elements of ﬁNNA’;\mé'N N We may
ignore them in which case V (B n) is a diagonal matrix of dimension N2 X N2. It is worth
noting that, in general, the off-dEagonal elements are usually at least one or more orders of
. A *
magnitude down from §,, A", B "
The matrix V([i ) can be partitioned as:

outiond
O
2

V(f)‘) = VNN

O n
VNN
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Where the submatrix y* nn s @ diagonal matrix for the K™ row OféNN , BKN . The
submatrices are found by

[ * .1
A
K = ‘ * .1 O

e
where 0, is the K™ diagonal element of il:';'and )\*}' are the diagonal elements of AT\J;}
Thus, it is clear that

COV Byg.Byyy) = 0, 8#M

as a consequence of the orthogonality of X nm - This implies that the joint confidence
regions of each of the regression equations are entirely unambiguous. This is vital to the
interpretation of the confidences intervals of the estimates; lENM , as legitimate intervals.We
can also see how the variance of the B increases for the less important components of X for
any given component in Y.

The independence of the BiN for any given i, is of great help in the application of the
regression analysis. This comes about when one recalls how the principal component
transformation, in addition to its properties of independence and orthogonality, also
possesses the property of having partitioned the variance of D and F into modes of variance
which form a decreasing series of relative contribution to the total variance of the original
data, D and F. Of concern here is the set D leading to X. If the set XNM is too large in the
dimension N as to be undesirable one can select those components which contain a
prescribed amount of variance less than 100 percent. Thus, Xnm is replaced by X PM p<
N.The assumption that the principal components have to be sorted has been made.

This selection of p components will cause the regression equationBNNto be[}NP. What is
important here is that the remaining P coefficients are unaffected by the rejection of the last
N— P coefficients. Of course, the RZNN is lowered, but then the F — ratio may be increased
because of the change in the degrees of freedom involved. The price paid for this reduction
in the number of variables in X is that one may not know a priori which modes of variance
in X will correlate with any one of the modes of variance in YNM . The decision must be
made on the results of seeing all, or at least those allowed by computer limits tried first. For
this reason, an interaction of the user is required in the use of this analysis. Also the F — test
(as will be seen later) can be used in conjuction with the selection of p to improve the
confldence interval calculation. The set Y ., may also be reduced leading to qu q<N,q
= p. However, this would preempt the F — test and therefore should be used only to satisfy
the computer limits.
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This confidence interval calculation procesds as follows. We start with the confidence
interval calculation of § y :

Conf (1-a, f ) = HM—N—1, 1—0a/2) - VB

For an individual row of the regression matrix this becomes

Conf (1—a, By py) = tM—N—1, 1—a/2) /v% .

This can be expanded to compute the confidence interval of the results if an operation
indicated by £,,, is performed to convert the M XM matrix computed by

. ' R
Conf (1=, ¥ (\y) = tM=N-1, 1— ay2) - [x NN X NM’]

intoalXxm mitrix .corresponding to the kK7™ row of Yam -

That is

Conf (1—a, Y™ ) = t(M—N—1, 1—0a/2) f;em [x'mN Y NN x',w]"'§
which can be re-written as

8Y ¥ m = tM—N—1, 1—a/2) {EIMP’MNEMUKNNE'NNDNM ]lh }

if this operation is done K= 1, N times, ﬁ“'nbocomos a matrix § ?NMof confidence
intervals of Y, .. Note that 8Y decreases as the rank of v“NNdccrusos. This matrix of
intervals can then be transformed back into F—space by Gpyn: Thus we get the 1| —a
confidence intervals of Fam BY

’FNM' Gun 5 Ynm:

If the calculation of 82“. is performed using independent data, D*Nq as would be
applied to Ty, , the calculation would appear as

- % L}

F'na ™ Tnn Dna

and
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where

) . ! * Yz —_—
8Y"\q = [t(M—N-l. 1—a/2) - {‘EIM [0 anEnn Y NnE NP el gxﬂ N

Note that E and G are from the calibration data, D and F, used to compute TNN and
v(B NN The condition on D*Nq is that it comes from the same distribution as did Dnwm
Note that if E and G come from the correlation matrix, then the estimates F * § F are in

units of standard deviations.

A further refinement in the accuracy of the regression (over that of eliminating
unnecessary components in X, .. ) can be introduced by using the F—test to reject
(suppress to zero) entire regression equations. This has the effect of setting to zero
components of Y nm Which have insufficient probability of being more meaningful than
zero. This amounts to a kind of stepwise regression except that the elimination of some of
the components estimated in YNM leaves the remaining components unaffected since they
are independent.

The application of the F—test rejection involves the calculation of RZNp i p<n
according to the amount of variance desired by the user based on experience. From the
Rsz, the F—ratio is calculated. Those F—ratios failing the minimum value (95 %
confidence level) cause the corresponding rows of ﬁNN and submatrices vKNN to be set to
zero and the calculation of Ty Fpypn» and V (Fypn) is repeated. The user can then
manipulate p = p (% var. F) until the confidence intervals of FNN appear to be optimum. It
should be noted that in most cases the values of t(M—N—1, 1—a/2) do not change to much
for changes in N to p amounting to a few integers, if M is several times as large as N. The
vatue of the F-ratio, F,_, P—1 (y), can be estimated from a simple polynomial in (M -
p) with sufficient accuracy for use here.

The Var (F) can be estimated as mentioned earlier compounded by the amount of variance
corresponding to the number of principal components Y *sq passing the F—test rejection.

It is important to realize the physical implication of the means by which the accuracy of
the regression is improved. By the initial assumptions about the data Dyyp; and Fypy , we
claim normality and a representative sample of the behavior of the observed phenomena for
all time. Further, we postulate a modal nature of the behavior or variance of the system as
described by the N-variables. The modal nature of the variance is further postulated to be
multimodal with modes numbering up to N and, in general, being of differing relative
magnitude which linearly add up to comprise the total variance of the system.
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With these observations in mind, we can now understand what is happening in the
regression situation. When one or more of the least important principal components of
X ym are omitted, we are claiming that those modes of variance of D have an insignificant
statistical relationship to any of the modes of variance of F. When we reject any of the
regression equations by the F—test rejection,we are claiming that the mode of variance of F
represented by that regression equation has an insignificant statistical relationship to all of
the modes of variance of X used in the equation. It is important to reaffirm that one cannot
say a priori which components of X will correlate highly with which components of Y. This
will be clearer upon inspection of the demonstrated regression following. In any case, we
can now understand that we are using as many as possible of the modes of variance of X
that seem to have some significant statistical relationship to at least one of the modes of Y
which passes the F—test. Further, we are allowing only those modes of variance of Y to be
estimated which have a significant probability of not having been estimated by chance to be
used to reconstruct the regressand. F. In this way, we can see that it may well be possible
that the modes of variance of X and Y that have a significant statistical relationship may or
may not be the dominate modes in each and in any case the regression based estimate of F is
a composite of significant modes estimated in Y without the interference of the insignificant
ones. It may be possible to further improve the estimate by selectively eliminating the
components of X for each regression equation in which the associated regression coefficient
is insignificant. However, this would cause the degrees of freedom for each estimate Y ;

to be, in general, different than for the other estimates. This would cause a rather
cumbersome complication in the software and it is not clear just how beneficial it would be
since the primary impact is on the confidence interval and not the estimate. Perhaps further
work on the problem may answer these questions.

APPLICATION:

The regression analysis described in this paper has been implemented into two matching
software packages: CORMAT and REGRESS. Attendant to these packages are two
subroutines; CLEAR, which simply zero's out an array, and a CDC library subroutine
MATRIX which performs matrix operations. The programs CORMAT and REGRESS are
written so as to be used as subroutines themselves in a parent program which reads and
formats the data D NM and FNN . D*Nq is selected and formatted by another subroutine:

SIGNAL.

The program CORMAT computes the correlation, or co-variance, matrix, depending on
how it is called and also the eigenvalues/eigenvector and the principal components. The
number of components computed is determined by the amount of variance requested to be
accounted for. The maximum number of components is limited by the length of data and
the size limitations of the machine. It is worth noting that the program CORMAT will
compute the co-variance matrix about a mean value given to it which may be other than the
mean value of the data supplied. In this way, one may investigate the modes of variance
about a mean value from another distribution.
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The output of CORMAT is the correlation, or co-variance, matrix, the list eigenvalues, the
set of eigenvectors and the set of principal components computed accounting for the
prescribed amount of variance of the input data. CORMAT writes the principal components,
the reduced (if variance accounted for < 100%) set of eigenvectors and the list of eigenvalues
used on a random access file and then returns. The number of eigenvectors used to compute
the principal component are transferred between subroutines.

Subroutine REGRESS uses the principal component sats, the eigenvector sets and the
independent regressor data (referred to as signal data) to compute the regression
coefficients, the transfer function, the multiple correlation coefficients, the F—ratic and the
regression based estimates of the regressand from the signal data. Subroutine REGRESS also
performs the F—test rejection computation.

For an example application, the situation is the regression of tree ring data, the regressor,
taken from the Fraser River Basin against matching precipitation data; the regressand,
occurring during the summer months at Kamloops Meteorological' Station, Kamioops,
Alberta, Canada. The calibration data runs for 49 years from 1896 to 1944. The two data
sets are lagged by 14 years. That is, the first column contains years 1 (referred to 1896)
through 14, the second column years 2 through 15 and so on to column 36 containing years
36 to 49. The signal data, D *NGq » is composed of columns selected from D NMm, the tree
ring data dating from 1500 to 1944, such that the tree ring indicies in row 1 correspond to
years in which a large volcano srupted in the region prescribed by the limits of long0°to
135°W, Iatitude 20°N to 90°N. In appendix A are copiss of the printout of the program
with the conditions on percent of variance accounted for and F—test as described in the
printout. Two other calculations were performed requesting 100% and 80% of the variance in
D g The effect can be seen in Figure 2 where the plots of F . + i FNS for the
estimated precipitation in years 1783 — 1796 are shown as an example. The curves are: (a)
100% variance, with no F—test, (b) 100% variance with F—test, (c) 95% variance with
F—test, (d) 90% variance with F—test and (e) 80% variance with F—test.

Upon inspection of Figure 2 we can see sevaral effects at work, all of which involve the

user as a student of the phenomena being analyzed rather than as a purely detached
statistician.
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First, one sees the changing nature of the estimate F is asfewer modes, or principal
components, of X are allowed in the regression. Secondly, one notices that the 90%
confidence bounds, 8F, of F vary from one element to another within each of the rows of F
for each case (variance accounted for in X). This is to be expected when one recalls the
modal nature of the decomposition of the data into principal components. For any given
mode of variance some of the variables may be emphasized and others may not. This is
evident upon inspection of the associated eigenvectors. This is equivalent to identifying
which variables are contributing significant amounts of variance to a particular mode and
which are simply supplying noise.

On the other hand, if the noise is evenly distributed among the variables and if the entire
mode is essentially a noise mode with none of the variables containing any significant
amounts of signal, then none of the elements of the associated eigenvector will be
prominent. If the noise is not evenly distributed, some of the elements may be prominent in
a noise mode. However, remember that noise is random and unlikely to correlate with .
another set of data. Thus the coefficent B will be small and the variance VKNI\| (B) will be
large.

When one remembers that the modes are themselves partitioned with respect to the
variance of the original data, it is easy to see how a variable contributing mostly noise in a
dominate mode (dominated itself by signal) may still overpower the contribution of that
same variable contributing mostly signal in a lesser mode.

Another fact which must be considered finally when inspecting the estimates F is whether
or not the noise evidenced by &F is caused by uncertainty in B or by the physical
phenomena itself. This problem is largely self correcting to be one and the same when one
assumes that the noise should be highly uncorrelated between the sets D and F and also
recalls that the ﬁ are independent within each regression equation. Thus, the regression
coefficients should be essentially zero for noise and this in turn will cause VKNN to be
farge. Therefore, by disregarding an estimate in one case (variance accounted for) because of
a large § l':', one is always sure of not overlooking a valid signal and by the same argument,
keeping an estimate F i Afrom one case because of a small § F and plotting it wi’Eh another
similarly good estimate F ik from a different case, each with their original 8 F’s, one is
simply combining good estimates of F from D and disregarding noise. In a sense, one is simply
keeping those components of X and Y which contain mostly signal and discarding those
which contain mostly noise.

Using these arguments, the final regression based estimate of pre-summer precipitation in
Kamloops, Canada, for 14 years after the Icelandic volcano eruption in 1783 appears as
shown in figure 3. The units are standard units of deviation about the mean and the error
bars are 95% confidence bounds.
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Before leaving the topic of inspection of results, note the transfer function itself (plates 6,
7 and 10). The reader will note the occurrence of *ridges’ and ‘‘valleys” running diagonally
from rows 1 and 6 and column 6.

Inspections such as this of the transfer function and also the eigenvectors, can reveal
the likelihood of physical relationship between and within the sets F and D worthy of
future causal investigations.
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