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FOREWORD

.*\

The Harry Diamond Laboratories located in Adelphi, Maryland served

afi the site for the 22nd Conference on the Design of Experiments in Army

Research, Development, and Testing held 20-22 October, 1976. This Army

agency co-hosted the first three conferences in this series with the

National Bureafi‘of Standards when it was located there. It was a pleasure

to meet in the new quarters of the Harry Diamond Laboratories and take

advantage of their excellent facilities. Planning for these meetings

requires much effort and attention to detail and we are indebted to

Dr. Joseph Kirschner who served as Chairman for Local Arrangements and was

ably assisted by Grace Frazier and Steven Kimmel. We are pleased that

Colonel Thomas McGregor, Commanding Officer of the Laboratories opened

the Conference and welcomed the participants. We look forward to meeting

at the Laboratories again in the future.

It is traditional to have invited speakers give essentially expository

talks on topics of current interest in statistics and probability. There

is also an attempt to provide talks that are somewhat consistent with the

theme of the mission of the Army installation at which the annual Conference

is held. This confluence of purposes was achieved. The first talk was

given by Professor J. Stuart Hunter of Princeton University on "The Measurement

Process." The crux of this talk was measurement when data is available over

time such as in air pollution studies and the speaker presented two different

models by which this could be accomplished. Later in the first morning

Professor Benjamin S. Blanchard of Virginia Polytechnic Institute and

State University gave a talk on, "Management of Reliability." The

reliability theme pervades many Army installations and this is so at the

Harry Diamond Laboratories. On the afternoon of the second day there

were two sessions for invited speakers and each was devoted to a very

current topic in statistics where each topic has a fast developing

literature. The first speaker was Dr. Carl N. Morris of the RAND Corpora

tion who spoke on, "Stein's Estimator, Its Generalizations and Its

Applications." This was followed by Professor Robert Hogg of the

University of Iowa who spoke on, "Robust Statistical Procedures." The

subject matter in both of these talks has wide ranging applications

in a number of diverse activities of the Army. On the morning of the

last day of the meetings Professor Nozer D. Singpurwalla of the George

Washington University spoke on, "Accelerated Life Testing." This topic

has a long history in Defense Department programs and is still a quite

active subject for statistical investigations.

The audience consisted of a large number of participants from Army

installations, other government agencies, and a number of investigators

from universities. A major purpose of the conference is to bring

together those engaged in scientific work in Army installations with other

investigators. This interaction has been going on successfully since the

inception of the program and it continued at this Conference. Statisticians

and others in Army installations discuss their work at technical sessions

and clinical sessions at each Annual Conference. For this Conference
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there were eight technical sessions comprising eighteen papers and four

clinical sessions. At the clinical sessions a panel of experts

responds to problems raised by those in Army installations who have

usually given advance manuscript copies to the panelists. Besides the

technical aspects, these sessions provide a source for initiating future

collaboration between scientists in Army installations and those in

university life.

On the evening of the first day of the Conference a banquet is held

at which the Samuel S. Wilks Memorial Award of the American Statistical

Association and the Department of the Army is presented. At this meeting

the twelfth award was presented to Dr. Solomon Kullback, Profesor Emeritus

of Statistics at the George Washington University. The award was made by

Dr. Joan Rosenblatt, Chairman of the Wilks Award Committee. Professor

Kullback was cited for substantive contributions to both the theory and

the application of statistics, including his work on multidimensional

contingency table analysis and cryptanalysis, and his outstanding contri

butions in the application of statistics in the service of the Nation.

The Army Mathematics Steering Committee sponsors these meetings

on behalf of the Office of the Chief of Research and Development and

Acquisition to bring new developments in statistics to Army scientists

and engineers and to expose them to thinking that could be profitable

to them in the execution of their missions. The Committee has asked

that the Proceedings of the Conference be published and issued Arm

wide and to other scientific communities.

At the beginning of each calander year the Program Committee for

these conferences is selected and meets in Washington, D.C. to suggest

areas of interest, to outline a program, and to suggest speakers for

the meeting to be held later that year. I would like to express my

appreciation to Dr. Frank Grubbs, Program Chairman for this year‘s

Committee and to Dr. Douglas Tang, Chairman of the Subcommittee on

Probability and Statistics, Army Mathematics Steering Committee, for

their efforts and great help. My thanks also go to other committee

members involved in developing this year's program: Drs. Walter D.

Foster, Bernard Harris, Joseph M. Kirschner, Badrig Kurkjian, Clifford

J. Maloney, Robert J. iauner, Douglas B. Tang. Dr. Francis G. Dressel,

Program Committee Secretary, as always was helpful in many ways in making

sure the program was a success. Thus, many helped in guiding this

Conference to a successful conclusion and this is very much appreciated.

Herbert Solomon

Conference Chairman
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MANAGEMENT OF

RELIABILITY, AVAILABILITY, AND MAINTAINABILITY GURU

Benjamin S. Blanchard

College of Engineering

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

ABSTRACT. Our systems and equipment in the field have become more and more

complex; are not operationally available a good percent of the time; require

extensive maintenance and support; and are quite costly. One of the causes for

this dilemma is the emphasis that has been placed on performance and advanced

technology, while at the same time very little consideration has been given to

reliability, availability, and maintainability (RAM). More recently, a concerted

effort has been initiated to recognize RAM as necessary parameters of systemf

equipment design and development. Military specifications and standards have

been generated and RAM requirements (to varying degrees) have been formally

applied on many programs. Although this effort has forced the recognition of

RAM to a considerable extent, many program implementation problems currently

exist and our systems/equipment in the field are still experiencing significant

difficulties.

In this paper the author has attempted to identify some of the problems

associated with current RAM implementation practices, and to reconnmnd some

courses of action for improvement in the future. A significant challenge lies

ahead if we intend to derive some of the benefits from RAM.

l. INTRODUCTION. Through the past few decades emphasis in the design and

development of new systems and equipment has been placed primarily on performance

factors, delivery schedules, and initial acquisition price. The pressures associ

ated with increased performance has resulted in a dilemma where many items current

ly in government inventories are highly complex, inoperative a good percentage

of the time, difficult to maintain, and in general too costly to justify. In other

words, we have produced a large quantity of systems and equipment with low reli

ability and poor maintainability characteristics, and the level of support neces

sary to sustain them operationally is considerable! This in turn has:

a. Threatened the overall availability and operational effectiveness of

systems and equipment in the field and hence, the defense of our country

either directly or indirectly).

b. Caused high maintenance work loads and increased logistics support

resource requirements.

c. Increased life cycle costs for systems/equipment acquisition and

utilization, particularly those costsassociated.with system operation

and support throughout the life cycle.
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The current trends of rising system costs plus inflation, combined with some

budgetary shifts from defense to other public sectors, are causing serious

concerns relative to our future defense capability.

More recently, an attempt has been initiated to counter these trends

through the recognition of some critical "cause and effect" relationships

involving reliability, availability, maintainability, performance, logistics

support, life cycle cost, etc. Experience has indicated that highly reliable

and maintainable systems/equipment g£§_a means for improving operational

effectiveness while holding the line on life cycle costs. Reliability and

maintainability are indeed characteristics which are inherent in systeml

equipment design, and the extent to which they are considered has a signifi

cant impact on logistics support requirements and life cycle cost. Further,

the consideration of reliability and maintainability in the design process

must commence at the conceptual phase of system development and extend through

detailed full-scale engineering development, test and evaluation, and pro

duction. In essence, it has been recognized by many that the conditions

noted below should be stressed in the future:

a. Reliability, availability, and maintainability should be considered

in the system design and development process on an gguivalent basis

with performance and other related factors.

b. Logistics support should be considered in the design process and

should be closely integrated with reliability, availability, main

tainability, and performance considerations.

c. Life cycle cost should be considered as a design parameter (i.e.,

design to unit acquisition cost, design to unit operation and

support cost, design to unit life cycle cost).

A primary objective is to provide the necessary management emphasis in all

future system/equipment acquisitions, or modifications or improvement, to

ensure that these considerations are addressed at the proper level.

With this objective in mind, it is now appropriate to review current

practices, assess the pros and cons of such, and determine the steps neces

sary to further imrove our systems and equipment. The author attempts to

accomplish this in the paragraphs below, with the discussion basically

focusing on the management of Reliability, Availability, and Maintainability

flhflfl).

2. CURRENT RAM PRACTICES. Although reliability, availability, and

maintainabTTity are recognized in many programs today, the implementation

practices associated with these areas still require some improvement. A few

characteristic problems as they currently exist in on-going programs are

outlined below (not necessarily presented in any specific order).

a. Specification of System Technical Requirements

(1) In many instances, quantitative factors are included in requests

for proposals (RFPs) and in contracts as "goals". Consequently,

2
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these factors are indeed treated as als and not as reguirements,

and are considered only lightly (if at all) in program implementation.

Quantitative factors are not always specified in meaningful terms.

Often, probabilistic values that can not be realistica y monstrated

are specified instead of quantitative factors that can be understood,

allocated, and verified. For instance, it is questionable that one

can adequately verify a 0.9995 reliability requirement when limited

quantities of equipment are procured and the test sample is small.

Also, it is hard to explain a "0.9995 factor" to a design engineer

in a meaningful manner, where a.NflBF or MTBM value would be more

appropriate. In essence, the mathematical "jargon" sometimes employed

is difficult to relate directly to design and is often misuderstood

by engineers and management personnel alike.

(Z)

The application of technical requirements is not always related to

specific missicn objectives. As a result, it is difficult to deter

nune whether the requirements are too stringent or too loose relative

to the ultimate mission need. In many cases mission requirements are

not adequately defined early enough in the program, and one can not

properly design equipment without a mission profile or scenario of

some type; thus, RAM requirements result from a "best-guess" approach

which is less than satisfactory.

(3)

RAM as Design Parameters

Reliability, availability, and maintainability are not recognized as

' h t d the conce t of "desidesi parameters. Past practices ave promo e p gn

the system qu1cEIy, put it into a test program, and fix it if necessary".

RAM have not been truly coupled into the design effort, but designated

for measurement or demonstration at the conclusion of full-scale engineer

ing development. This concept has been quite costly, particularly when

extensive system/equipment modifications are necessary to meet RAM require

nents at this late stage of engineering development.

Application of Specifications and Standards

(1) On a number of occasions the "panic" to release specifications for

a procurement results in a fragmented document incorporating con

flicts and contradictions. RAM is not properly integrated into the

overall product. The specification is without dou t one of the nest

important aspects of a program, but is not always given the neces

sary level of attention because of the tight schedule requirement

to publish something for immediate dissemination purposes. The

consequences frequently result in problems occurring throughout the

remainder of the program.

Q) Military specifications and standards (e.g., MEL-STDs-470,—47l,—781,

-785) are often arbitrarily applied to a contract in terms of "blanket

coverage" without the tailoring of such to the specific program need.

This can result in the application of meaningless requirements, un

timely activities and information, too much data of little value,

3



and high consequaitial program costs. Specifications and standards

should address real time task enforcement, product measurement and

control, with less overall dependence on test and demonstration at

the end of full-scale engineering development.

d. Structuring of Test Programs

(1) System/equipment testing is accomplished to different environmental

profiles than what is actually experienced in the field. Hence, the

test results are not necessarily a verification that the intended

requirements have (or have not) been net. This relates to the

initial inadequate definition of mission profiles or scenarios as

discussed in Paragraph 2a(3) above.

(2) Many test and demonstration programs are accomplished at the end

of full-scale engineering development after the commitment of

production/operation funds. Testing at this stage can only measure

the worth of a design configuration at a point when it is too costly

and time consuming to nuke major changes to correct a problem for

RAM.

e. Producer Accoutability

Producer accoutability is generally lacking! If the system/equipment fails

in test and demonstration, the policy in some cases has been to discout the

failures or to change the standards such that the system will pass. How

often is the system/equipment actually rejected by the customer because of

failure to pass RAM tests? In such cases, is the producer actually required

to initiate the necessary corrective action at his own expense? Perhaps

there are some cases where the producer is actually held accountable for his

design for RAM; however, in nmerous other instances the system/equipment

is accepted regardless of the outcome of RAM verification testing.

The problems outlined above are representative of areas where current

implementation practices concerning RAM need improvement. In all cases the type

of problems indicated have beam recognized, and some action is being taken (to

varying degrees) in an attempt to improve future system/equipment acquisitions

from the RAM standoint. However, inspite of what is currently underway relative

t0 RAM activities, a great deal of additional effort is required if the objectives

of RAM in system/equipment design and development are to be truly realized.

3. CHALLENGES FOR THE FUTURE. At this point the major question is--Are We

Serious About Relia5iTity, AvaiI§5ility, And Maintainability? The author rirmry

believes that we arel However, every effort must be made to preclude or alleviate

some of the problem areas mentioned above. It is felt that no new policies per

se are necessary, but that a new approach to policy implementation is definitely

required. Some key implementation factors and challenges for the future are noted

a. More front end planning, programing, and budgeting is required relative to

the inclusion of RAM factors. In other words, RAM considerations must be

addressed in Decision Coordinating Papers (DCPs), Operational Capability

Objective (OCOs), Letters Of Agreement flfws), Outline Development Plans

@ODPs), Required Operational Capability (ROC) documentation, and so on.

4



b.

C.

Referring to Figure l, which illistrates the classical program phases, RAM

should be initially covered in the conceptual phase of system design and

development. The intent is not to be overly stringent relative to the

specification of RAM requirements at this stage, but to properly address

the major issues pertaining to RAM. In addition, program budgets must

reflect RAM decisions--i.e., increase the procurement dollars slightly to

acquire the necessary RAM and reduce the support dollars to reflect the

corresponding reduction in system support cost.

RAM must be treated more as a "discipline" throughout the system/equipment

life cycle and in particular, the early design process.

Figure 2 illustrates the system life cycle process and addresses typical

RAM activities in each phase of the process. Not only are RAM activities

applicable in each major evolutionary stage of system development, but

these activities must be closely interrelated throughout! Of particular

significance are the decisions pertaining to RAM which are a part of the

requirements depicted in Blocks 2 through 8 of Figure 2. Experience has

indicated that ultimate system life cycle cost is significantly influenced

by design decisions made during the conceptual and validation phases of a

program. The overall impact of actions affecting life cycle cost is re

flected by the "trend" curve in Figure 3. Further, experience has verified

that life cycle cost is highly influenced by RAM, particularly those costs

associated with system operation and support. Thus, RAM must be addressed

early in the system life cycle if the end product is to be cost effective.

Program maagement for RAM must be significantly strengthened! More

specifically:

(1) Realistic and meaningful requirements must be clearly specified

early in the system life cycle.

Q) Specifications must be improved and more precisely "tailored" to

meet the actual needs. User involvement in the initial preparation

of specifications is recommended.

(3 Requests for proposals (RFPs) must leave no doubt that RAM and per

formance are "equals" in priority and inportance.

(4) Program managers must be held technically accountable for RAM as

well as for other factors.

(5) Program "checks and balances" must be provided for management

(6)

control (and audit for compliance) relative to RAM requirements.

Formal program reviews and technical design reviews must address

major RAM issues.

Integrated test planning is required. As the purpose of testing

1S to ensure that the system/equipment design meets all stated

requirements fincluding RAWO, it is essential that sfiEH testing be

accomplished in the proper environment. If the test conditions

dplicate or exceed the ultimate field environment, the test results

5
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will be effective in ensuring that RAM requirements will be net after

system/equipment deploynent. If not, testing will be ineffective.

Additionally, a number of different tests nay be accomplished at

fiff t '-m lf 1 AU‘ M d lt t tberen stages in e 1 e cyc e. in vi ua es s mus e

addressed on an inte ated basis to ensure that the desired infornetion

is provided at the right tine in the system life cycle. Too much

testing too early is costly; accomplishing tests too late in the

program could be costly; and redundancies hi testing may also be costly.

(7) More producer involvement after the system is in operation is desir

able. In nany instances, the producer should be held responsible for

correcting major field deficiencies.

(& There should be more innovative approaches to better contracting

for RAM. ne should cosider the appropriate use of: penalty/incentive

provisions; penalty clauses to cover poor workmanship and design prac

tices; warranties at the piece part level; and meaningful progress pay

nent schedules. The application of the appropriate contractual provi

sions for RAM requirenents should create the desired emphasis relative

to RAM.

(Q) Strict and timely enforcement of RAM program requirements is essential.

d. Managers and organizations must be educated relative to the benefits derived

through the proper level and application of RAM. This is perhaps the great

est challenge, since it is felt that many of the problems experienced in the

past could have been avoided had the benefits of RAM been adequately under

stood and accepted. In addition, with the proper education and understand

ing, many of the desired objectives nentioned above should be readily attain

able.

4. CONCLUSION. The past few decades have led to many advances toward

focusing attention on reliability, availability, and maintainability (RAM). The

next decade is significant in terms of actual realization of the benefits derived

through RAM. The proper levels and applications of RAM are indeed necessary to

improve overall system/cost effectiveness at reduced life cycle cost. Address

ing the issues outlined in Paragraph 3 is believed to be a step in the right

direction and constitutes a major challenge for the future. With educational know

how, persistence, and dedicated effort, it is believed that this challenge can

be met.

l0



PROBLEMS IN ANALYZING PHARMACOKINETIC DATA

Carl Peck and

Alan Hopkins

Departments of Surgery and Information Sciences

Letterman Army Institute of Research

Presidio of San Francisco, California

ABSTRACT. Analyzing drug disposition data using pharmacokinetic

modeling techniques is a commonly used approach to reducing such data

to therapeutically useful facts. However, certain conceptual and

statistical problems arise as a result of the data analyst's choice

of (1) objectives of the analysis, (2) the class of models to fit the

data, (3) the data fitting procedure, (4) the technique(s) for

assessing goodness of fit, and (5) ultimately, the most acceptable

model. These problems are introduced here along with some current

techniques for overcoming them. The advice of the panelists is

presented along with our consideration of their recommendations.

1. INTRODUCTION. Dosing decisions in medical therapeutics often

involve deciding how much, how frequently, and how long to administer

a given drug to a particular patient. Such decisions are rendered

much less arbitrary if the therapist has some notion of the time

course of drug distribution and elimination from the body, as well as

a knowledge of the relationship of these quantitative features of drug

disposition to pharmacologic effects. Surprising as it may seem,

exacting knowledge of this sort is known for only a small proportion

of substances currently used in medical therapeutics. In the main,

dosing regimens have been developed on an empirical basis by a trial

and error process.

Note. The presentation of this paper at the Conference included

examples of problems encountered in analysis of pharmacokinetic data

in our laboratory. In order to provide space for comments by the

panelists (paraphrased by us) and subsequent discussions, numerical

examples are omitted. The interested reader is referred to the

paper of Boxenbaum et a1.1 for examples of pharmacokinetic data

which typify the issues addressed in this paper.

H



In recent years a general approach to gathering and organizing

drug disposition information has been developed and is frequently

referred to as "pharmacokinetics." Pharmacokinetics has been defined

by Gibaldi and Perrier as "the study of the time course of drug and

metabolite levels in different fluids, tissues, and excreta of the

body, and the mathematical relationships required to develop models

to interpret such data."2

For the purpose of making quantitative therapeutic decisions,

a pharmacokinetic analysis of drug data can contribute in several

ways. First of all, a model which accurately describes the time

course of the drug in the body as well as in particular pools

can be quite helpful in choosing dosing size and dosing frequency.

This presumes, of course, that the therapist has some notion of

desirable upper and lower bounds for drug amounts in the body or pool

of interest. The behavior of linear systems under single and multiple

dose administration as well as oral ingestion and intravenous infusion

is well worked out.2,3 Certain "derived" parameters, such as

"apparent distribution volume," "body clearance," "terminal elimination

half-time," and "extent of bioavailability" can be operationally

useful in making dosing decisions. Knowledge of the influence of

pathologic states on these derived parameters can result in optimal

dosing regimens in the face of disease—induced alterations in

distribution and elimination.

Secondly, insights into drug-body interactions can be obtained

from pharmacokinetic analyses. For example, a mathematically zero

order elimination process implies "saturation" of an elimination

mechanism, perhaps a hepatic enzyme-system. Observation that the

renal clearance and body clearances of a drug are identical suggests

that the kidney is the major elimination organ. A renal clearance

which is numerically in excess of glomerular filtration rate implies

tubular secretion i glomerular filtration as mechanisms of renal drug

processing. Insights of this nature contribute to therapeutic

decision—making by alerting the therapist to special precautions he

must take in designing a therapeutic regimen for multiple dosing in a

patient with a diseased liver or kidney.

In this paper we wish to summarize some current approaches to

analyzing pharmacokinetic data by identifying some problem areas and

presenting the responses of panelists to them.
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2. PHARMACOKINETIC MODELS: MATHEMATICAL DESCRIPTIONS OF DRUG
DISPOSITION. Conceptually, the pharmacokinetic model is usually A

viewed as a system of inter—connected pools or compartments (Figure 1).

The arrows between pools represent drug transfer directions and the

symbols "Kij" are interpreted as transfer rates. The drug is

considered to be introduced into one of the compartments and body

fluid samples are taken from one or more of the pools. Mathematically,

the model may be defined as a system of differential equations.

Linear differential equations (first order) have been the most fully

explored and frequently applied drug disposition models.3 Although

many drugs undergo apparent first order distribution and elimination

processes, this is not always the case. Apparent zero order or

combinations of zero and first order processes do occur in drug

kinetics, which render models of the Michaelis-Menton type

app1icable.4 However, for the purposes of this discussion we will

confine our attention primarily to the class of linear models.

Integrated solutions to systems of linear differential

equations assume a certain simplicity and order. An n—compartment

open model (with bidirectional drug transfer between all adjacent

pools) yields a linear combination of n—exponentials:

n

-Ac
Dj = Aie i Equation 1

i=1

where Dj = drug amount or concentration in the jgh pool;

n = number of compartments; A A = arbitrary parameters of the

1' 1

model which are various algebraic combinations of the original

"micro"—rate constants (Kij), volume scalars, and initial conditions.

3. METHODS OF PHARMACOKINETIC DATA ANALYSIS. Development of a

pharmacokinetic analysis usually procedes as follows: (1) serial drug

concentrations are measured in a body fluid following a dose

administration, (2) some procedure is used to choose a class of

probable models which are appropriate for the purpose of the analysis,

(3) the data are fitted to the models by some procedure resulting in

l3



K 2 Ki 61

K21 5

SOME LINEAR PHARMACOKINETIC MODELS

Conceptual Models Mathematical Models Generalized Solution

13.
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D1(t)
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Figure 1
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model parameter estimates, (4) an assessment is made of the goodness

of fit of the model to the data, and (5) a "most acceptable" model

is chosen. The remainder of the discussion is to focus on some prob

lems encountered in steps (2), (3), (4), and (5).

Step 2. Specifying the Class of Probable Models. Choosing the

class of models to be considered usually involves a preliminary

study of the concentrationltime-course data. If a cartesian plot

reveals a predominatly linear decay profile, then a zero order

model or Michaelis—Menton model is usually considered. Curvilinear

decay curves are rendered segmentally linear on log—concentration/

time plots if the data behaves as a poly—exponential. The number of

straight-line segments can be used as the initial number of

exponential terms to be included in the model. In addition, the

slopes and y-intercepts of these segments can be used as starting

points for iterative parameter estimation procedures. Although most

pharmacokineticists procede in this fashion using manual or partially

automated graphical procedures, attempts have been made to fully

automate this phase of the analysis.5:5

A decision must be made regarding the exact form of the mathe

matical model to use in the data fitting phase. While data may be

fitted directly to systems of differential equations,7,3 the usual

practice is to use the integrated form of the model. In the case of

linear pharmacokinetic models, this reduces to fitting data to a form

of Equation 1. The analyst must also decide whether to parameterize

the equation explicitly in the "micro"-rate constants (Ki ) or use

J

the "macro"-rate constants (A1, A1). This last issue was addressed

by one of the panelists (G.B.) and is discussed below.

Step 3. Fitting the Model to Data. Fitting the model equations

to pharmacokinetic data is usually done using an automated least

squares (LS) program such as SAAM or N0NLIN.3 With two exceptions,

currently employed pharmacokinetic models are nonlinear with respect

to their parameters in their integrated forms and therefore require

nonlinear LS data fitting procedures for estimating parameter

values. The two exceptions are one—compartment open models with

(a) purely zero order elimination or (b) first order elimination

(which can be linearized by a loge transformation of the entire

model). Among problems encountered in this stage of the analysis

l5



are (1) appropriateness of the LS criterion for minimization,

especially as regards deviations of the system under study from

assumptions inherent in the LS approach and the large influence

that aberrant data values can have on the parameter estimates,

and, (2) whether and how to "weight" data for the analysis. These

two problems constitute part of the requirement for assessing

adequacy of the model (addressed by panelist R.H.)

Step 4. Assessing Goodness of Fit. An evaluation of the goodness

of fit of the model equation(s) to the data is a highly desirable

procedure in pharmacokinetics. The exact form that this assessment

takes will depend upon the overall objective of the pharmacokinetic

analysis, models used, and the fitting procedure employed. For

example, the analyst may be primarily interested in developing a

descriptive equation employing "macro"-rate constants to use in

computation of "derived" parameters, or his principal intent may be

to estimate "macro"-rate constants of a specific compartmental model;

these divergent objectives will determine the criteria as well as the

technique employed in judging goodness of fit. If a LS data fitting

procedure has been employed, use of residual plots and analysis of

residuals for their distributional properties is appropriate.1:9>10

We have employed these techniques to evaluate some of our pharmaco

kinetic data analyses and found them to be particularly useful. Plots

of weighted standardized residuals against drug concentrations

reveal patterns which at a glance allow assessment of adequacy of

weighting (stabilizing the variance about the regression line),

model specificity (search for systematic deviations of residuals from

the regression line) and randomness of residual distribution. Further

analysis of residuals alone for distributional properties (e.g. mean,

median, variance, skewness, kurtosis, specific tests of normality) has

been enlightening but not always useful. As pointed out by panelist

Dr. R. Hogg, the use of normality tests may constitute too severe a

crite*ion for use in an area where the validity of normal assumptions

are in serious question from the outset. In this regard, it was

suggested by one of the panelists that the Shapiro—Wilk1l test for

normality might be reasonable.

Step 5. Choosing the Most Acceptable Model. Ultimately, all data

analyses must be terminated. This phase in pharmacokinetic data

analysis can be a troublesome problem when no clear—cut model emerges

more convincingly acceptable than others in the class of models
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explored, or when attempts at weighting leave the analyst puzzled

about adequacy of various weighting schemes. Analysis "termination

criteria" do emerge, however, when the overall objective of

the analysis is integrated with the other phases as is developed

in the discussion below. It should be noted also that a satisfactory

termination of data analysis is closely tied to the adequacy of the

overall design of the pharmacokinetic experiment. Optimally, the

experimentalist and the data analyst should comunicate in the

experimental design stage so that sampling times, number of replicates,

etc. are designed to "optimize" the information gain from the effort.

This translates into a pre—experimental consideration of models to be

used in analysis of the data and design of the experimental details so

that statistical estimates of model parameters are at minimum

variance within the practical constraints of experimental technology

and costs.

S. COMMENTS OF PANEL MEMERS AND DISCUSSION.

Dr. G. E. P. Box: A central issue which is inherently important

in each problem area cited above is the overall objective of the

exercise. Clear recognition of the goal(s) of a particular pharmaco

kinetic experiment leads to clarity in the subsequent data analysis.

Discussion: On the surface, these remarks seem almost

unnecessary, for the thoughtful data analyst should always have a

clear idea of the goals of the exercise. However, Dr. Box correctly

detected some vagueness in the objectives of analyzing pharmacokinetic

data relevant to the ultimate use of the results. We accept Dr. Box's

perspicacious comments and wish to cite some developments in recent

pharmacokinetic literature which contribute to clarifying the

objectives of pharmacokinetic analyses. While postulating a class of

pharmacokinetic models in terms of compartmental schematics with

specific inter—compartmental connections is intellectually attractive,

the effort required to test, evaluate, and find an acceptable one may

be far in excess of that necessary to fulfill the clinical goals of

the experiment. If knowledge relevant to making dosing decisions is

the principal purpose, then a data analytic approach which

concentrates on estimation of macro—parameter models may be adequate.

Wagner has recently published a series of articles which argue

these points forcefully and which propose simplified data analytic

techniques for computing useful pharmacokinetic parameters.12: 3:14
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If the analyst perceives that the objective of the analysis

is to provide tools for prediction and for computing "derived"

pharmacokinetic parameters, and 325 to test specific compartmental

models which were derived from differential equations, then he is

not restricted to exclusive use of the class of poly—exponentials.

For example, Wold et al.15 propose the use of cubic spline procedures

for computing area under the curve and terminal drug decay half-time,

and give a specific pharmacokinetic example to illustrate the method.

DR. R. V. Hogg: LS data fitting is not the only available option

and "robust" statistical procedures should be considered. [In his

formal presentation15 "On Robust Statistical Procedures," Dr.Hogg

outlined several possible alternatives to the LS approach to parameter

estimation.]

Discussion: Use of robust statistical procedures indeed offers a

potential contribution to analysis of pharmacokinetic data. Although

these approaches pose computational difficulties, they are attractive

both from the point of view of (a) relaxation of the more restrictive

normal assumptions inherent in LS procedures and (b) minimization of

the effects of "erratic" data (outliers). We have not yet applied any

of these approaches to our own problems, although we are aware of one

group which has. Frome and Yakata17 used both LS and least—absolute

deviation criteria in obtaining parameter estimates from the fit of a

one-compartment open first order model to a set of pharmacokinetic

data.

Dr. S. Geisser: Consideration should be given to the use of the

Cp statisticI8 and predictive sample reuse methods19'21 for assessing

goodness of fit and for developing data analysis termination strategies.

Discussion: The Cp statistic was originally derived for use

in making decisions about the number of terms to include in

linear models where normal assumptions hold. Therefore, use of

this approach for deciding among several poly-exponential models

must be viewed as an ad_hgg procedure, the theoretical basis for

which remains unexplored. Nevertheless, the technique is appealing.

Given that the "total squared error" computed from a nonlinear

regression bears some inexact but semiquantitative relationship to

the "true" squared biases and squared random errors, then plotting

Cp versus p for various pharmacokinetic modelsi may yield some

T here p might be considered the number of parameters of the model.
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basis for choice.

Use of predictive sample reuse methodology for assessment

of different predictive functions is apparently a rather recent

development in statistics. The available papers on predictive

sample reuse are not easy for the non—statistician to understand,

therefore, a brief description of technique in the present context

will be given. Like the Cp statistic, a number associated

with a given fit of a specific model to data is desired which will

allow discrimination between models such that a most reliably

predictive model may be identified. This number, call it Pp, may

be computed using the following "data reuse" approach. Model j

is fit to all the data less the first datum by LS and the residual

su of squares is recorded (RSS1). The procedure is repeated

after replacing the first datum and omitting the second data

point and the resulting RSS2 is added to the first. This is repeated

by replacing the iih data point and removing the (i+l)EQ datum

n

and so forth until Pp = §i;:RSSi. The entire procedure is

i=1

replicated for each proposed model. Then all Pp may be compared

and model p*, beyond which Pp does not get appreciably smaller, may

be chosen as an acceptable model. We have no experience with this

technique but it may be a useful data analysis termination strategy.

FINAL COMMENT. While following up on recomendations of the

panel, we ran across two treatises generally covering the areas of

goodness-of—fit and data analysis termination strategies which we

feel are important to pass on to the reader. They are Daniel and

Wood's book (see ref. 18) and a recent paper by Hocking.22 These

sources contain discussions of other techniques which may be applica

ble to the problems addressed in this paper.
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ABSTRACT. Unprocessed bran (bran) and carboxy-methyl cellulose

(CMC) were added to regular diets of overweight and normal weight volunteers

to determine the effect on serum lipids. Downward mean trends of cholesterol

and triglyceride levels were found in all groups taking bran and CMC after

twelve weeks except the overweight men ingesting CMC. Downward mean trends

for cholesterol ranged from 0.74 mg/l00 to l.65 mg/l00 per week and for the

triglyceride from 0.36 mg/l00 to 4.78 mg/T00 per week.

l. INTRODUCTION. Coronary atherosclerosis is the leading cause of

death in the United States. > In spite of this atherosclerosis was rare

in this country before l9O0,3 and remains almost unknown in some developing

countries.

Dietary factors are under constant scrutiny, and a number of researche§s]]

have proposed that lack of dietary fiber may be an important causal factor, '

because fiber is abundant in the diets of rural people in developing countries

where atherosclerosis is rare and has decreased in the diets of westerners

during the rise of fatal atherosclerosis.

Dietary fiber could lower serum lipids in various ways. It is hygroscopic

and might absorb emulsified lipids taken with the diet. Dietary fiber would

also absorb cholesterol secreted in the bile and thus reduce its reabsorption

in the small intestine. Increased dietary fiber also reduces gastro

intestinal transit time and thisnfight also reduce absorptions of lipids.

In an attempt to determine whether dietary fiber reduces serum lipids,

we performed the following study.

2. METHODS. Forty-four healthy men ages ranging from 23 to 65 years,

volunteered for a l2-week study. All were on duty at the Armed Forces

Institute of Pathology when the study began. Most were pathologists, and

the remainder were trained in one of the medical specialties. All under

stood the purpose of the study and were "dedicated" volunteers. They

continued their regular diets, did not alter their life styles, and

maintained body weight.
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The men were divided by height/weight ratio and age into three

equivalent groups--control, bran and cellulose. Each member of the bran

group added 56 gm of unprocessed bran to his daily diet--28 gm (l ounce)

with breakfast and 28 gm with his evening meal--a daily supplement of

about 6 gm of nonnutritive fiber. Each member of the cellulose group

added 6 gm of cellulose* to his daily diet--3 gm at breakfast and 3 gm

with the evening meal. This is all nondigestable, so both groups ingested

approximately 6 grams of nonnutritive hygroscopic substance. These

supplements were ingested for l2 weeks.

Fasting blood samples were collected at intervals of two weeks; serum

cholesterol determinations were done every two weeks; and serum triglyceride

determinations, every four weeks. (The control group, however, had no

triglyceride determinations on the fourth week.) '

During the course of the study, 9 of the 44 men dropped out-- 4 were

transferred, 4 could not tolerate the unprocessed bran, and l man

substituted sweetened bran ("All Bran") for unprocessed bran. Of the remain

ing 35, l8 had a "normal" weight and l7 were overweight. Linear regression

to estimate the trend of each man's serum lipids was calculated and the

trends were averaged for each group. Because only slopes were averaged, the

variation introduced by differences in lipid levels from subject to subject

was removed--a valid approach since each subject acted as his own control

in the trend analysis.' A refinement of the analysis involved the recompu

tation of the average trends per group with each subject's degree of

consistency of trend used as a weight in obtaining a weighted-average trend

(where degree of consistency was measured as the reciprocal of the variance

of the slope). The weighted-average, while conferring greater importance

to consistent trends, also served to be selective, giving some subjects

considerable prominence. Therefore, special care was taken in the

interpretation of the weighted averages to ensure that they were also

representative of the group.

The probabilities were obtained from Student's t—test on the average

trends (weighted and unweighted) for each group under the nullhypothesis of

zero trend against the one-sided, alternative hypothesis of negative slope.

3. RESULTS. The triglyceride levels were sharply lowered in the

normal-weight subjects eating bran and cellulose. The group of overweight

subjects eating bran and cellulose and the control group did not show this

striking trend. See Fig. l. In addition mean cholesterol levels fell in

the group of overweight men taking bran. The graphs in Fig. l are means of

the individual trends so that the variation in lipid levels from subject to

subject was removed.

*Purchased as sodium carboxy-methyl-cellulose tablets, 0.5 gm, from

Interstate Drug Exchange Mfg. Co., Plainview, Long Island, New York ll803
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Using a preliminary cutoff at P §_.l0, four of the seven negative

slopes in the bran and cellulose groups were statistically significant.

See Table l. Expressed as a percentage of the initial levels, the

reduction was 75% for the group taking CMC and 60% for the group taking

bran. Three of the mean trends that failed the statistical cutoff were

groups of overweight men. Because of the greater variability of serum

lipid trends among the overweight men, a refined analysis was performed

consisting of computing weighted-average trends using as weights the

degree of consistency of each individual's trend. The weighted trends

generally show a numerically steeper rate of reduction of serum lipids

together with enhanced statistical probabilities. Thus, six of the eight

trends for the bran and cellulose groups were statistically significant

(P 5_.05) downward trends. The only non-downward trend was the overweight

men ingesting CMC whose serum cholesterol unaccountably increased. This

contrasts with the decreased triglyceride level for this same group.

Since each subject served as his own control--his pretreatment level

was the initial point for his own trend--no reference thus far has been

made to the actual control groups. They served to determine whether an

unknown or subconscious factor influenced serum lipids during the study.

The average trends for the control group revealed no such factor. See

Table l. One of the weighted-average trends-—the triglyceride levels in

the normal-weight control group--did fall with P = .l2. To be conservative,

therefore, this slope was subtracted from the slopes of the bran and

cellulose groups for the normal-weight men, in computing the probability

statements.

Laboratory variation, expressed as a ratio of the laboratory variance

to the residual experimental variance, was l/l6, a negligible quantity as

a possible factor affecting the analysis and interpretation of these data.

The standard deviation for the laboratory, calculated over each two-month

period, was found to be 5 mg/100 ml for serum cholesterol and 8 mg/100 ml

for serum triglyceride.

4. COMMENT. A number of studies reporting the effects of whole or

fractional grain products on serum lipids have produced varied results,

but the majority support the view that whole grain and whole grain products

tend to lower serum lipids. 9-22 In our study CMC lowered the average

triglyceride levels by 75% in normal-weight subjects, and bran lowered the

average serum triglyceride levels of normal-weight subjects by 60%. He do

not know the mechanisms by which bran and CMC lowered serum lipids. Some

possible mechanisms suggest that nonnutritive substance (l) increases the

excretign of bile acids by increasing catabolism of cholesterol in the

liber,l (2) shortens gastrointestinal transit time, thus allowing less

time for lipids to be absorbed, and (3) absorbs water, bile salts and other

solutes including lipids, thus reducing absorption of lipids. None of these

hypotheses however,explains the fact that serum triglycerides in our normal

weight men dropped more quickly than serum lipids in our overweight men
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ingesting bran and CMC. If nonnutritive substance lowers serum triglycerides

more quickly in non-obese men, then other dietary factors probably play a

role. One of these could be the ingestion of excessive amounts of refined

carbohydrates by the overweight men. Sugar, for example, not only

contributes to obesity but is an important cause of hyperlipidemia.23

Our study supports the opinion that nonnutritive substance (bran

and CMC) lower serum lipids. And in particular, we found that the most

striking lowering effect was on the serum triglycerides in men taking

CMC who were not overweight.
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FIGURE 1.

MEAN TRENDS OF SERUM CHOLESTEROL AND TRIGLYCERIDE LEVELS FOR THREE

GROUPS OF VOLUNTEERS—-THE CONTROL GROUP, THE GROUP INGESTING BRAN,

AND THE GROUP INGESTING CELLULOSE.
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Table 1. Mean Tends (5, mg % per week) of Serum

Serum Cholesterol Levels as Determined

for 12 Weeks.

No.

of

Vol.

Controls

Normal Weig

Overweight

Bran

Normal Weig

Overweight

Cellulose

Normal Weig

Overweight

Controls

Normal Weig

Overweight

Bran

Normal Weig

Overweight

Cellulose

Normal Weig

Overweight

~k

ht 9 -0.43 0.93 NS -0.53

5 -0.33 1.70 NS 0.80

ht 4 -2.88 1.77 0.08 -3.48

6 - .60 1.86 NS -2.06

ht 5 -4.78 1.95 0.02 -4.12

6 -0.36 1.72 NS - .85

Serum Cholesterol

ht 9 0.22 0.70 NS 0.09

5 0.37 0.78 NS -0.78

ht 4 -1.49 0.96 0.07 -3.42

6 -1.65 1.11 0.08 -2.85'

ht 5 -0.74 0.85 NS -0.98

6 1.04 0.75 NS 1.52

E'= ZSx l _

>;—s>35- 5 -

wi =

v(E)= £s2y.x§D.F.)

2 ._
zsx (D.F.) v(bw)=

Averages

5-’ s(F)

Serum Triglyceride

Prob

Triglyceride and

on 35 Volunteers

Weighted Averages

5w+ s(bw) Prob.

-4c: .30

.36

.69

.71

oi

0.90

0.38

0.56

0.62

0.59

0.68

0.75

0.80

Swibi

SW.i

l/V(b )

0.12

NS

0.05

0.01

0.001

0.02

NS

NS

0.001

0.001

0.10

NS
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ANALYSIS OF AN ERROR—TIME RESPONSE PERFORMANCE

Michael Hacskaylo

U.S. Army Electronics Command
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Fort Belvoir, Virginia

ABSTRACT. The analyses of the error—time response performances of

groups of naive subjects permitted to make discrete right/wrong decisions

are presented for three experimental display panels of increasing com

plexity. The panel designs were based on a circular representation of

light bulbs, where the lights corresponded to the angles of a circle. The

first panel design consisted of a ring of lights that portrayed one con

tiguous angular representation by the lights. A contiguous representation

of light was defined as a domain. The complexities of the second and

third designs were increased to two contiguous semicircular representations

of the ring of lights, where for each design the semicircular representa

tives were defined as two domains. The function of the panels was to

display the azimuthal angular source location of infrared lasers when

detected by infrared detection systems.

The subjects were randomly selected from a large population having

no prior knowledge (zero degree of learning) of the panels and separated

into three groups of seven subjects each. Each subject evaluated two

of the three panels in an ABBA manner for one and only one set of six

trials per panel. Such a group of subjects, constrained to the same

degree of learning of the panels and limited to the one set of trials, is

defined as an eigengroup for this analysis.

The subjects were instructed to mark on a response panel as accurate

ly and rapidly as possible the corresponding angular light of the stimulus

panel, 115, the display panel. The response panel was a five inch circle

drawn on a 8 inch by l0 inch paper.

The number of errors of the eigengroups was analyzed as a function

of time for each of the experimental designs. It was found that for the

experiment, the error-time response equation is log E = —2n log T + K,

where E is the number of total errors per eigengroup, n is the number of

domains of the stimulus panel, T is the mean time for the total number of

trials for each eigengroup per system, and K is a constant. It was nec

essary to introduce new terms, i.e., domain and eigengroup to unambiguous

ly define the stimulus panel and interpret the results consistent with

the equation.

l. INTRODUCTION. The purpose of this paper is to present an error

time analyses of the designs of the informational display panels of

infrared detection systems. The systems detected and displayed the

azimuthal angular position of a laser source to a crew during a laser-tank
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engagement as shown in figure l. Since the error-time response perform

ance of a well-trained crew would more apt reflect the selectivity and

training of the crew, an evaluation procedure was required that would

reflect the panel designs rather than the personnel capability, training

and cumulative learning process. To implement the procedure it was

decided to employ naive subjects who had no knowledge of the systems,

exposed only to instructional procedures (without preliminary learning

trials) and constrained to make one and only one decision per trial. The

decision would be considered right or wrong. The results should be

different than the cumulative learning performance where error decisions

were allowed until the correct decision was made, Gagné and Foster (1949).

In other procedures, errors were treated as partially correct answers

(Fitts and Seeger, 1953), and the error-time response data are statisti

cally treated to determine the mean and standard deviation of the error

time parameters. These parameters are interpreted as how far from the

correct value the errors are as a function of learning and response times.

The determination of the number of discrete errors as a function of time

for a group of subjects, who were not trained nor subjected to the

cumulative learning process, is not apparent in literature.

I

I

seasons
~/T.‘

Fi ure l. Artist's conce tion of a laser—tank engagement8 P
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In this paper, the error-time response performance of groups of

individuals subjected to only one set of trials resulted in a frequency

distribution curve which was different than a cumulative performance curve.

The mathematical analysis of error—time response data of random groups of

individuals subjected to the one—trial set method appears to be signifi

cantly new. To assure that the groups were not subjected to a cumulative

learning process, each subject was instructed as to the procedure and

then dismissed after evaluating the panels. In this manner, each group

was considered to be of the same or identical state of conditioning or

training for all sets of trials. Such groups are defined as eigengroups.

(The word, eigen means proper, inherent, peculiar). In a fuller context,

the error-time response performance of eigengroups is properly satisfied

only when the groups are subjected to the one—set trial method.

2. METHOD. The error—time response performance data were obtained

on panel designs similar to those of Fitts and Seeger (1953). Due to the

similarity, the Fitts and Seeger experiment is briefly described. Their

experiment, in essence, was to determine the learning skills of matched

groups of individuals to a singlefold response. The stimulus panel had

a ring of eight equally spaced light bulbs. The stimulus was a light

flashing on. This action keyed the subject to associate the light with

the angular position on the ring. The response panel had a stylus. The

response was the action by the subject in moving the stylus to the

corresponding position on the response panel as the interpreted position

of the stimulus panel. (Two variations of the stimulus panel were

geometrically configured with increasing complexity to simulate the ring

design. The corresponding response panels were also increased in com

plexity. The S-R compatibility of those designs were also determined.)

The panel designs reported here were also based on a circular repre

sentation of equally spaced light bulbs. Since the physical entity is

the light bulb embodying the stimulus, the physical entity (light bulb)

is defined as the stimulant. The stimulant and the configurational

display of the stimulant (ring of light bulbs) on the stimulus panel is

defined in this paper as the significand. The significands were geomet

rically configured to increase the complexity of the stimulus panel for

the singlefold response. The three designs are now described.

Panel A. The significand of the panel was a three and one—half inch

diameter ring of 36 equally spaced light bulbs as portrayed in figure 2(a).

The ring was positioned on the front surface of a box 4 inches wide,

8 inches long and 2 inches deep. The light bulbs were angularly marked

in degrees from zero to 360 degrees in ten degree increments in a clock

wise direction with zero at the top. The continuous clockwise direction

of the marked light bulbs is considered as a domain of the significand,

i.e., one contiguous representation of the stimulus panel as portrayed in

figure 2(b). When a light came on it signified the angular position on

the ring.
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Panel B. The significand of the panel was a three and one-half inch

diameter ring of 36 equally spaced light bulbs marked in angular mils as

portrayed in figure 2(c). The ring was positioned on the front surface

of a box identical in dimensions as in panel A. The light bulbs were

angularly marked in mils from zero to 3200 in 177.78 mil increments in a

counterclockwise direction with zero at the top for one-half of the circle.

(There are 6400 mils per 360 degrees of a circle, therefore, each position

corresponds to 177.78 mils as well as l0 degrees.) The angular marking

started at zero again at the bottom, and continued in the counterclockwise

direction to 3200 at the top. The two halves completed the circle. The

two counterclockwise directional iterations of the marked light bulbs are

considered as two domains of the significand, i.e., two contiguous repre

sentations of the panel as shown in figure 2(d). When a light came on, it

signified the angular position on the ring.

Panel C. The significand of the panel was a stimulant in the form

as an alphanumeric readout display as portrayed in figure 2(e). The

display window was positioned on the front surface of a box of identical

dimension as in panel A. The first of three characters was a letter, L

or R, and the next two were digits ranging from 00 to 32. The letter R

indicated a circular representation in a clockwise direction. The numeri

cal values indicated the angular position in 100 mil increments (equivalent

to 5.625 degrees) with zero at the top and increasing to 3200 mils for one

half of the circular representation. The letter L indicated a circular

representation in a counterclockwise direction. The nuerical values

indicated the angular position in 100 mil increments with zero at the top

and increased to 3200 mils for the completion of the circular representa

tion. The one clockwise and one counterclockwise directional representa

tions of the circle are considered as two domains of the significand, i.e.,

two semicircular representations of the stimulus panel as shown in figure

2(f). When an alphanumeric readout came on, it signified the angular

position on the circular representation.

Response Panel. The response panel was identical for each panel.

A five inch circle was drawn on a 8 x l0 inch sheet of plain paper. The

circle was divided into quadrants and marked into degrees and mils as

follows: Zero degrees (0°) and zero mils (0 mils) were marked at the top.

In a clockwise direction, each quadrant was successively marked 90°,

1600 mils; 180°, 3200 mils; 270°, 4800 mils; and again at the top, 360°,

6400 mils. A pencil was used for marking angular positions with an "X"

on the circle.

3. PROCEDURE. Twenty—one U.S. Army enlisted men of all ranks, who

were not formally matched but had no prior knowledge of the experimental

panels, were randomly selected and separated into three groups of seven

subjects each. One at a time, each subject was thoroughly briefed on the

operational procedures of two preselected display panels just prior to

evaluation. The subject was instructed as follows: As quickly and as

accurately as possible, read the angular representation of a light (or
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digital readout) and the appropriate direction when the stimulus light

came on, and mark with an "X" that angular position on the circle of the

sheet of paper. The position of the intersection of the "X" was consid

ered to be the angular position. For familiarization the subject was

given two preliminary runs if so desired.

Each subject performed a series of six trials on the two preselected

cases in an ABBA manner for a total number of 12 trials. On a prepro

grammed schedule of randomness, each subject read the angular position

and marked the circle as quickly and accurately as possible. There were

three "X"'s per response (paper) panel since one panel was supplied for

each A, B, B, A sequence. The time interval from when the light came on

to when the subject marked the panel was measured to 0.001 second, how

ever, the time for each trial was recorded to the nearest 0.01 second. It

is assumed that the reaction-time error introduced by the investigative

team for the time measurements was constant for the trials.

Upon completion of the set of trials, each subject was dismissed.

Care was taken to insure that subsequent subjects for evaluation did not

associate with any of the previously dismissed subjects.

The display panels were evaluated in a room that consisted of a 36

inch high bench, chair, and associated equipment required to activate

the lights of the panels. The panels, two at a time, were positioned one

on top of the other on the bench in the following sequence: for eigen

group l, panel A on panel C; for eigengroup 2, panel B on panel C; and

for eigengroup 3, panel B on panel A. It is to be noted that the sequence

for eigengroup 2 was incorrect to maintain proper counterbalancing block

order. However, this flaw did not appear to be evidenced in the analyses

as described later. The only persons permitted in the room were the

subject and the investigative personnel.

For each stimulus panel angle (light), three angular resolution ranges

for determining the accuracy of the response panel angle "X" were con

sidered to be a) :40 degrees; b) 120 degrees; and c) :10 degrees. The

readout angle was considered as an error if the response angle was greater

than the angular resolution for each stimulus angle, i.e., each response

angle would be a right/wrong decision for three ranges.

The angular position marked on the response panels (from the pre

programmed readout angles) were measured in degrees. This was done by

using a transparent template graduated to 0.5 degree which was superimposed

on the marked response panels. The accuracy of the marked angle was

measured to 10.5 degrees.

The number of errors that each subject made with respect to each of

the three ranges for a set of six trials for each panel were counted.
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The average times of the six trials for the panels that each subject

evaluated were determined. The number of errors and associated time for

each of the 252 trials were tabulated for data reduction.

4. RESULTS. The mean time and number of angular errors in each

range for the set of six trials for the subjects are shown in Table 1.

The table separates the subjects in their respective eigengroups for the

panels evaluated. The average of the mean times as well as the total

errors per range for the groups for each panel are also shown in Table l.

Note that the errors are considered as completed events and that the

standard deviation of the angular errors have no significance in this

analysis.

An accepted method for the portrayal of the frequency-distribution

data of Table 1, is to plot the number of errors (per subject) as a

function of the mean time (per subject). To illustrate the method, plots

of the number of errors in the range ifi0° as a function of the mean time

of the subjects of the groups for each of the panels are shown in figure

3. The data presented in such a fashion cannot be clearly interpreted.

The only two significant observations that can be made are as follows:

The first is that the error—mean time response performance curves of the

two eigengroups for the same design exhibit some degree of similarity,

and the second is that most of the errors occur between 3 and 5 second

time interval.

However, if the data are plotted in a different fashion, a strikingly

new set of parametric curves are generated. If, for the data of Table l,

the number of total errors, E in the range ifi0° per eigengroup is plotted

as a function of the mean time on a log E vs log T scale, it can be seen

that two distinct linear curves are generated as shown in figure 4. The

eigengroup datum points for panel A fall on one line, and eigengroup datum

points of panel B and panel C fall on a second line. The two curves are

separated by at least one order of magnitude in the error count, and this

separation indicates that there is an uniqueness between panel A and

panels B and C.

The curve for panel A can be expressed as

log EA’40 = -2 log TA + l.l6 (1)

where EA 40 is the total number of errors 190° per eigengroup for panel

9

A; TA is the mean time per eigengroup of panel A; and l.l6 is a constant.

The negative sign is interpreted to mean that as the amount of time is

increased for reading the stimulus panel angle and marking the "X" on the

response panel, the number of errors decrease.
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HUMAN FACTORS DATA, N=252

Eigengroup 1

Panel A Panel C

Subject Mean Time Angular Errors Mean Time Angular Errors

(Sec) (Number) (Sec) (Number)

140° 120° 110° 140° 120° 110°

1 5.85 0 0 0 5.86 l 1 1

2 2.83 0 2 4 3.45 0 0 1

3 5.10 0 1 2 5.84 1 1 1

4 2.58 0 0 1 2.96 1 1 1

5 2.95 1 1 2 3.52 4 5 6

6 4.68 0 0 2 3.98 0 O 1

7 3.17 Q _l_ 3 4.86 1 2 3

3. 87 (Ave) 1 5 14 4 . 35 (Ave) 8 10 14

Eigengroup 2

Panel B Panel C

Subject Mean Time Angular Errors Mean Time Angular Errors

(Sec) (Number) (Sec) (Number)

140° 120° 110° 140° 120° 110°

8 3.78 0 0 1 3.51 1 1 1

9 4 38 1 1 3 3 37 0 0 0

10 4.11 0 0 1 3 66 0 0 0

ll 5.06 0 0 1 3 87 0 1 3

12 4 59 0 1 2 4 23 O 1 1

13 11.51 0 1 3 10.08 0 0 0

14 5.24 _1 2 4 5 77 _2_ 3 5

5 52(Ave) 2 5 15 4 93(Ave) 3 6 10

Eigengroup 3

Panel B Panel A

Subject Mean Time Angular Errors Mean Time Angular Errors

(Sec) (Number) (Sec) (Nmnber)

140° 120° 110° 140° 120° 110°

15 2.95 5 5 5 2 90 0 1 4

16 3.83 4 6 6 2 75 0 1 3

17 3.85 3 4 5 3.49 1 1 4

18 1.87 4 6 6 O 98 1 2 6

19 2.79 5 5 6 2 55 0 2 4

20 3.24 1 1 4 3 18 0 2 4

21 4.26 Q Q 2 3 82 Q _Q 4

3.26(Ave) 22 27 34 2 8l(Ave) 2 9 29

Table 1. Mean time and number of errors for each subject per eigengroup

tabulated for each angular resolution range per panel
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The curve for panel B and panel C can be expressed as

log EB’c’40 = -4 log TB,C + 3.38 (2)

where EB,C,40 is the total number of errors 140°, per eigengroup for

panels B and C; TB C is the mean time per eigengroup for panels B and C;

D

and 3.38 is a constant.

The similar plots of the number of total errors :20 per eigengroup

are shown in figure 5. The curve for panel A can be expressed as

log EA,20 = -2 log TA + 1.86 (3)

where EA 20 is the total number of errors i20° per eigengroup for panel A,

D

TA is the mean time and 1.86 is a constant. The curve for

can be expressed as

log EB,C,20 = -4 log TB,C + 3.57

panels B and C

(4)

where the terms have the same comparable definitions as for Eq. (2).

The plots of the number of total errors 110° per eigengroup are

shown in figure 6. The curve for panel A can be expressed

log EA’l0 = -2 log TA + 2.35,

and the curve for panels B and C can be expressed as

log EB’C,lo = -4 log TB,C + 3.72

where the terms are defined similarly as those in Eqs. (l)

The general equation can be expressed as

log E = —2n log T + K

where Elis the number of total errors per eigengroup, n is

domains of the significand of the stimulus panel, T is the

the total number of trials for each eigengroup per system,

constant. The general equation and the definitions of the

as

(5)

(6)

and (2).

' (7)

the number of

mean time for

and K is a

terms are

limited to the results and discussions of the above analyses of the error

time response performance for a singlefold response.

5. DISCUSSION. The purpose of this experiment was to evaluate the

human factors of three variations of a display panel by subjects with zero

(minimal) bias. The mathematical analysis of the error—time response

performances of groups of "unbiased" individuals resulted in a new
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frequency—distribution equation. In order to maintain clarity in describ

ing the experimental designs and procedures, it was necessary to introduce

and define new parameters which would be relevant to the analyses of the

panels and interpretation of the equations. The three display panels were

designed to perform the same response function, but the complexity and

domains of the significands of the stimulus panels were increased. In

particular, the methods of the angular readouts were changed from the

circular display of degrees in one direction of one domain of panel A to

the two circular sequential displays of mils in the same direction of two

domains of panel B, and finally to the alphanumeric readout of mils

generating two semicircular displays in opposite directions of two domains

of panel C.

The subjects, selected at random for this experiment were considered

to be identical, but not matched with respect to knowledge and training

associated with the designs. (Random groups are comprised of subjects

which would be considered representative of a large assembly of those

subjects, whereas matched groups are defined as groups comprised of those

subjects whose evaluated characteristics have been found to be similar

within some norm of a criterion. Both groups can be considered as eigen

groups if they are constrained to being nearly the same state of knowledge

and training, and evaluated once and only once for one set of trials for

each of the experimental designs.)

The curves for the three error ranges for the panel having one domain

(panel A) can be portrayed by an empirical equation, log E = f(log T)

with each having the same slope of -2. The displacement constant increases

from 1.20 to 1.86 to 2.35 with increasing angular readout resolution. The

curves for the three ranges for the panels having two domains (panels B

and C) can be portrayed by the same empirical equation as above with each

having a slope of -4. The displacement constant increases from 3.38 to

3.57 to 3.72 with increasing angular readout resolution. Since the slope

of the general equation is —2n, where n is the number of domains, and the

constants, increasing with increasing angular resolution as well as number

of domains, it appears that the general equation is an explicit function

of both the number of domains of the panels and the resolution of the

response data. This implies that the general equation is independent of

the amount of training of the eigengroups. However, it is logical to

expect that for a given number of trial sets, the total number of errors

per eigengroup would decrease with increased level of training. Since

it is not known how the training would effect the equation, if at all, it

is assumed that the general equation is an implicit function of training.

In order that the error—time response experiment to be meaningful, it is

required for the number of trials sets be sufficiently large so that at

least one error be committed per trial set for each of the experimental

designs.
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The increased complexity, i.e., changing the significand from a

circular representation of two domains of panel B, to an alphanumeric

representation of two domains of panel C had no apparent influence or

deviation from the linearity of the curves representing those panels.

The lack of deviation is not unexpected as a result of the Gagné and

Foster (1949) studies.

It is realized that the analyses presented here are of a small sample

evaluation of groups of individual subjects. However, the analysis of

variance indicates that trials of the right/wrong decision—timed response

performances on the three systems are valid (F(5,65) = 5.08; p<0.00l).

The analysis of variance for the systems (F(2’156) = 8.84; p<0.00l)

indicated that the systems were different, and that TrialXSystem

(F(1o,156) = 0.39) was not significant. Some learning did occur for the

subjects (six trials each), however, the learning did not interact with

the systems, and all subjects learned equally to about the same degree.

From the above discussion, it is postulated that the general equation

is valid for other error-time response experiments similar to those

described in this paper. Efforts were made to apply the error-time

response data of Gagné and Foster (1949) and Fitts and Seeger (1953) to

the analysis. This was done for the purpose of subjecting Eq. (7) to

experimental results of other investigators for corroboration. The error

time response equation could not be generated from the above sources due

to the following reasons: (1) the mean time was measured only for the

correct choice which included the wrong choices until the correct choice

was made; (2) the total number of errors were determined as a function of

preliminary and accumulated training; and (3) most importantly, the error

time measurements were not made on eigengroups, i.e., those groups having

identical prior knowledge of the panels, and the same acquired learning

for each set of trials for the entire series of trial sets. Further

investigational work is required to subject the general equation to

experimental verification.

6. SUMARY. The experiment presented here is similar to those

reported in literature, and the stimulus—response procedures are standard

practices. It is known, in general, that as a subject takes less time to

make decisions, considered to be right/wrong, the number of errors

increases and the standard deviation becomes larger. However, the

experiment here differs on two important aspects with respect to the

control of the subjects and data analyses. The first is that the subjects

were separated into groups of equally biased knowledge (no pretraining)

concerning the panels and were not subjected to a cumulative learning

process for the entire series of trial sets. The second aspect is that

an error was considered as a discrete response of a right/wrong decision

and the errors were analyzed as a function of the mean time of the total

number of decisions per eigengroup. The analyses of the error-time
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equations necessitated the introduction of new parameters in order to

unambiguously define the stimulus panels and interpret the procedures and

results consistent with the equations. The general equation is a mathe

matical expression which, for this experiment, describes the relationship

between the number of errors of right/wrong decisions and the mean time

in making the decisions.
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OF AIRFIELD LIGHTING SYSTEMS

‘ Frank Kuo

Edward S. Lindow

US Army Corps of Engineers

Construction Engineering Research Laboratory

Champaign, Illinois

ABSTRACT. The reliability analysis of a system with multiple types

of components under maintenance is a complex problem. This paper presents

a model for such analysis with specific application to airport lighting

systems. A set of consecutive coefficients is introduced to account for

system failure criteria which includes random light outages, consecutive

light outages, and consecutive light bar failures. Probability theory

and simulation techniques are used along with the consecutive coefficients

in determining system reliability. The computerized model has been used

in a sensitivity analysis to determine the effect on system reliability

of parameters such as unit reliability, system configuration, maintenance

strategy, and unit performance characteristics.

l. INTRODUCTION. Visual guidance lighting systems for airports provide

necessary information for aircraft operation during the approach, landing,

takeoff, and ground movement (taxiing). In darkness, inclement weather or

other periods of low visibility, the information provided by these systems

is critical to safe and efficient air travel.

Although significant research has been devoted to improving component

equipment in these lighting systems and to delineating the pilot's infor

mation requirements, little has been done to determine the operational

reliability of the systems currently in use. Because these systems are

critical to safe and efficient aircraft operations and because installation

and maintenance costs for such systems are high, procedures to analyze the

reliability of present airfield lighting systems are needed.

The purpose of the research sumarized in this paper was to develop

procedures for evaluating the functional reliability of airfield lighting

systems.

2. AIRFIELD LIGHTING SYSTEM MODEL. There are numerous types of

lighting systems involved in the visual guidance of aircraft traffic. The

number and the configuration of lights in each system will depend on factors

such as the information conveyance requirements, the area to be served, the

category of operations, and the terrain.
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Although individual systems are comprised of specialized equipment in

configurations designed to satisfy specific information requirements, all

lighting systems have the common elements of a power source, power circuitry

and light transmission equipment. Because of these similarities, a general

model can be used to define all visual guidance lighting systems.

The model developed for this purpose consists of 12 types of components:

commercial power, auxillary power, control panel, control circuitry, control

vault, regulator, primary cable, isolating transformer, secondary cable,

fixture, lens, and lamp. Division of the model into these components con

sidered function, maintenance, physical proximity and connection, and failure

modes. Some of the components include several elements (e.g., the control

vault includes power transformers, relays, switches, etc) while others are

composed of a single element (e.g., the lamp).

Figure 1 illustrates the general lighting system model. Since the number

of components of each type can be varied (or deleted if not applicable), this

model provides the necessary flexibility to define all airfield lighting

systems.

By defining the geometry of a system, the operating characteristics, and

the failure criteria, any lighting system can be analyzed using this general

model.

3. RELIABILITY MODEL. System reliability is typically defined as the

probability that a system will perform its intended function in a specific

environment for a specified period of time. However, systems which under

go constant maintenance, as is the case with airfield lighting, are composed

of equipment of various ages and thus a time period can not be realistically

analyzed. For such maintained systems, the steady-state reliability, which

can be interpreted as the probability of the system being in a nonfailure

state while under operation, is significant.

Figure 2 is a tree structure depicting the parameters which must be

considered in analyzing the reliability of airfield lighting systems in

the steady state. Essentially three steps are required.

a. Develop the component reliability function for each type of

component.

b. Simulate the average light unit reliability.

c. Calculate the system reliability by applying the system failure

criteria.

Thus, the reliability model includes both deterministic and stochastic

parameters which must be combined by using analytic and simulation procedures

The following sections summarize the procedures employed in the three steps

of the model.
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4. COMPONENT RELIABILITY. The reliability of each component type in

the general lighting system model can be approximated by an exponential

distribution over the component's design life. This distribution is defined

by Eq l and illustrated in Figure 3.

R (t) = e ‘At [Eq l]

~< : 6-Al!‘

Y

TIME

RELm.su_/7-y
S

Figure 3. Component Reliability Distribution.

Determination of the failure rate (A) for each component in the

system is quite complex when maintenance and operation practices are con

sidered. Full-scale testing of lighting systems to determine failure rates

would be very expensive and time consuming, while accelerated testing of

systems or individual components introduces inaccuracies. Thus, field data

on system performance are the best source of information for determining

a component's reliability function.

Considering the field data anticipated to be available, the reliability

function for each component in the lighting system can be expressed by:

(t-ts)Cm

__._E...__.
R(t) = e f [Eq 2]

where Cf - the coefficient of failure

Cm the coefficient of maintenance

ts the safety time (i.e., the period of time when the component

is known to have no chance of failure).

5l



The coefficient of failure (Cf) for each component is computed from

Eq 3.

= total no. of component i in the system
cfi (no. of component i failures per year I 50’000 [Eq 3]

The coefficient of maintenance (Cm) for each component is computed from

Eq 4.

c . = I" ('Cfi I" Ra) [Eq 4]

m1
_ln TItL tSI/2}

where tL = design life of component i

ts = safety time for component i

Ra = average reliability for component i.

2

oI-h

-1

-40.
kl

=,_("><

where Nf failures per year for component i

total number of component i in the systemZ

O

IIll

Td average downtime for component i (hours)

operation time per year (hours)
-‘I

ll

Utilizing these relationships, Eq 2 can then empirically account for

preventive maintenance, corrective maintenance, and failure rate. Preventive

maintenance (PM) considers the component's design life, replacement time

(i.e., that period preceding the design life when group replacement is under

taken), and, indirectly, the level of PM activities (i.e., the more PM

performed, the lower the failure rate). Corrective maintenance includes the

time to detect a failure and the time required to perform repairs. The

failure rate is the annual number of failures of that component ty e in a

system due to all failure modes (e.g., wear-out, human error, etc.).
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5. UNIT RELIABILITY. Once the individual component reliabilities

have been determined, they can be combined to obtain a unit reliability using

Eq 5. The unit reliability (Ru) is defined as the probability that a

randomly chosen single unit in the system will be operational when called

upon to perform. The unit is composed of one of each component type in

the general lighting model as depicted in Figure 4.

Ru = {1 - [1-R] (5)1 [1-R2 (t2)]} ' R3 (t3) ' R4 (t4) - R5 (t5) -

Rs (ts) ' R7 (17) ' Rs (ts) ' R9 (ts) ' R10 (tl0) ' R11 (tn) ' R12 U12) [Eq 5]

To determine the average unit reliability, a Monte Carlo simulation

routine was developed to stochastically account for the time function and

system geometry factors. That is, the component's reliability is actually

a function of time and, in the steady-state. the component's reliability

may be at any point of time on the function. In addition, the system

geometry, or the number of each component in the system, will also influence

the average unit reliability. The routine used is illustrated in Figure 5.
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meanRu

Performsufficientiterationstocalculate

I 77
For each component, i, select j

random times (t. .) such that

0 < t . < t. "3
i.J

where t replacement time for

component i

j number of component i

in the system

I
From the individual component

reliability functions, determine

the component reliability for

each ti’j

,.=_=)

is

3'1"

\-.

er---—

L
Combine component reliabilities

(Ri’j) using:

Ru = [l-(l-R],j)(l-R2,j)] R3,j

Rm Rm Res" Rm

R8,: Res‘ Rios Rim

R12.J'

to provide a unit system for each

light.

I

Figure 5. Simplified framework of

average unit reliability simulation

routine.
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6. SYSTEM RELIABILITY. An airfield lighting system fails when it does

not accurately transmit the information required by a pilot for safe operation

of an aircraft. Since pilot perception is involved, system failure is sub

jective in nature. Through research studies, the FAA has established objective

failure criteria which provides minimum operating standards for each type of

lighting system.

In defining failure criteria, the airfield lighting systems have been

categorized as linear and bar systems. The linear system criteria stipulates

the percent of random outages and the number of consecutive outages. The

bar system criteria stipulates the percent of random outages, the number of

outages in a bar creating bar failure, and the number of consecutive bar

failures.

Using the appropriate failure criteria and the average unit reliability,

the reliability of the lighting system can be determined from Eq 6 for both

categories of systems.

fl . .

_ n-1 _ 1
RS - wi Ru (1 Ru) [Eq 6]

l=O

where RS the system reliability

Ru = the unit reliability

n = the total number of lights in the system

i = the number of light failures in the system

Hi = the number of ways i failures can occur in a system of n

total lights without the system reaching failure by either

the random or the consecutive failure criteria.

The following example illustrates the application of this equation.

The example involves finding the system reliability for a three-lamp system

(n=3) with system failure defined as all three lamps out or two consecutive

lamps out. The probability of a lamp being on is Ru. TaBTe l shows the

eight possible conditions in which this system can be; three are failures

and five are successes.
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The system reliability is

TI .

ns = z wi nu"'I (1-nu)‘

i=0

_ 3-0 0 3-l l 3-2 2
Rs - 1Ru (1-Ru) + 3 Ru (1-Ru) +1Ru (1-Ru)

+ onu3'3 (1-nu)3

Possible Conditions for Example

TABLE I

S (S S F S F

Lamp I 0 x 0 x x x

Lamp 2 0 0 x x 0 x

Lamp 3 0 0 0 0 x x

i=0 i=l = i=3

N. = l w = 3 W = l N =
1 i i i

Success

Failure

Light operating

Light failed

In a linear lighting system, if the consecutive failure criterion is

not considered, Eq 6 reduces to a binomial distribution or

NR . .

n = z (9) nu"" (1-nu)‘ [Eq 1]
s

i

where NR = number of random failures allowed in the system.

0

l
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To consider consecutiveness as well as random outages in the failure criteria,

an analitical procedure has been developed to compute each W.. Since W.

is a multivariate integer function of n, NC, and i (where NC1= number of

consecutive failures allowed and n and i as previously defined), there

is a unique constant for each (n, NC, i) which is defined here as the

consecutive coefficient, C(n, NC, i). This coefficient is the number of

ways that i outages can be distributed in n total lights without having

more than NC consecutive outages. Substituting the coefficient in Eq 6

produces:

"R n-i 1'

RS = >2 w‘. Ru (1-Ru) [Eq 8]

-I. ll

Z

(Note that the summation is from i=0 to i=NR since W. goes to zero when the

number of outages, i, exceeds the allowable random odtages, NR).

An automated procedure is used to compute the consecutive coefficients

based on the following recursive function:

C(n, NC, i) (

C(n-l, NC, i-1

ll \./('3

I3

I

(§_|

/-\.,
I3

NC, i) +

-NC-2, NC, i-NC-1) [Eq 9]

The derivation and development of the program may be found elsewhere.]

The method for analyzing the bar lighting systems is similar. However,

the determination of W. is much more complex due to the nature of the bar

system failure criterid. A detailed descr ption of the bar system analitical

technique is given in the project final report.l

1 Lindow, E. S. and Kuo, F. "Reliability Analysis For Airfield Lighting

Systems" Final Report for Contract DOT-FAGGWAI-118, CERL, September 1976.
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7. THE RAALS PROGRAM. The reliability methodology summarized in the

previous sections would Be difficult to apply manually when considering the

number of lights in a system, the stochastic properties of the component

reliabilities, and the sophistication of the failure criteria. Thus, the

procedures have been com uterized in the RAALS (Reliability Analysis of

Airfield Lighting System) program. This program is capable of efficiently

estimating the functional reliability of any lighting system used in the

visual guidance of aircraft. Flexibility is provided in the program to

consider various system configurations and failure criteria as well as

different component failure rates, design lives, and levels of maintenance.

Figure 6 is a simplified flow chart of the RAALS program. Figure 7

presents the input data listing, a typical component reliability function,

and the system reliability output resulting from an example problem.

8. CONCLUSIONS. The automated procedure for analyzing reliability of

airfield lighting systems (RAALS) is an implementable tool which can be

used to:

a. Compare the reliability of similar systems,

b. Determine where a system should be improved to increase its

reliability,

c. Form a basis for decisions on implementing changes to failure

criteria, equipment, or maintenance policies,

d. Monitor the reliability of a system as it becomes older or as

modifications are installed.

The RAALS program logic is based on traditional reliability theory.

However, due to the number and complexity of lighting systems and the

necessity to consider consecutiveness in the failure criteria, original

analytical techniques were developed and interfaced with traditional

theory. These techniques included:

a. Formulation of a general lighting system model capable of con

sidering all of the diverse equipment and geometry encountered in airfield

lighting

b. Adaptation of a Monte Carlo simulation routine to the analysis

to account for the stochastic nature of the component reliabilities

c. Derivation of the consecutive coefficient to consider consecutive

ness in the system failure criteria

59



CHARACTERISTICSRELIABILITYFUNCTION

OFCOMPONENT1OFCOMPONENT1

 

‘(;HARA¢TER|3T|(;3RELIABILITYFUNCTION

or-'COMPONENT120FCOMPONENT1

SYSTEMOPERATION

DATA

RANDOM NUMBER

SYSTEMGENERATOR

GEOMETRY

SYSTEM

TYPE

 

 

SYSTEM

RELIABILITY

 

CONSECUTIVE
COEFFICIENT

SYSTEM

FAILURE CRITERIA

Figure.6

MAINFLOWCHART

U

INPUT

__BUILTIN ROUTINE

__DATA BASE

QINTERMEDIATE

RESULT Q-—OUTPUT

09



~ii

II

1TJ._
IQ _'\' II?-I ‘fl!

_,_

>
»»
z
c
z
o
a
>
;
c
.

»
z
c
_
o
_
c
u
m
o
o

»
z
m
_
o
_
u
u
m
e
o

m
¢
<
=
m
>
a

u
1
=
s
_
<
c

u
c
z
<
z
c
»
z
_
<
z

Z

m
m
_
.
¢
=
.

=
<
K
»
o
@
.

e
m
a
z
a
o
.

z
~
c
~
?
3
¢

a
m
a
a
a
a
.

c
o
-
a
o
.

s
a
n
r
a
a
.

_
a
~
.
T
_
.
.
¢
o

_
m
:
¢
r
o
.

.
~
n
.
»
¢
.

_
=
~
_
¢
¢
.

-
m
m
e
a
o
.

J
~
r
<
_
;
u
I

.
m
_
»
a
¢

.
s
=
s
s
s
_

.
s
a
¢
a
s
~

.
a
=
n
~
¢
_

.
a
s
a
a
s
@

.
a
s
s
=
m

.
¢
=
¢
m
~

.
¢
a
¢
a
_

.
°
¢
¢
=
:

.
s
s
°
s
m

.
¢
s
s
=
m

.
a
s
s
s
m

p
a
n
a
m
a
.

_
_
¢
a
¢
m
.

s
a
u
n
a
s
.

s
¢
=
_
_
a
.

a
s
m
a
a
m
.

o
n
a
o
m
o
.

-
.
~
>
¢
.

a
s
a
m
m
a
.

»
u
s
>
_
@
.

a
s
m
q
a
a
.

s
»
~
>
~
m
.

o
o
m
n
o
c
.

.
s
a
s
¢
_

.
s
a
a
s
¢

.
=
s
s
°
e

.
=
=
¢
¢
¢

.
a
=
s
a
a

.
s
¢
¢
¢
Q
_

.
a
=
s
n
~
_

.
=
¢
@
¢
¢
~

.
=
=
e
=
=
_

.
s
=
=
r
~
_

.
=
¢
a
m

.
=
=
s
m
~
_

.
»
1
z
.

w
i
_
4

c
_
m
o
a

P
3
:
3
.
.
.

.
o
=
=
s
_
<
u

¢
<
m

»
z
o
_
s

m
m
e
n
a
a
s
w
z
e
o

1
4
0

<
z
a

w
o
¢
:
s
~
<
l

»
I
o
~
4

n
a
n

.
n

w
=
=
s
_
<
c

z
m
»
m
>
w

m
m
»
=
_
_
»
m
z
o
o

m
u
z
:
s
_
<
c

:
1
3

s
z
o
a
s

m
>
_
»
o
o
m
z
¢
o

N
.
~

.
o
=
=
s
_
<
u

:
m
»
m
>
m

m
m
e
a
p
a
h
w
z
o
o

m
m
=
=
5
H
<
c

»
I
u
~
4

1
.
s
~

¢
~

m
o
_
»
w
_
1
»
»
o
<
¢
<
z
u

e
z
m
z
e
a
z
o
o

e
.
n
o
n

n
=
<
m
>

c
w
a

m
>
<
o

a
.
~
_

u
>
<
=

a
w
e

m
a
c
:

.
¢
~

.
a

.
s
a
s
e

s
e
a

.
¢
~

.
s

.
s
s
a
s
¢

m
a

.
o
n

.
e

.
=
°
s
¢
a

n
~

.
m
<

.
¢

.
¢
=
=
¢
a

s
a

.
<
~

.
a

.
s
s
s
e
¢

m
.

.
~
_

.
=

.
s
=
=
¢
s
_

n

.
¢
~

.
s

.
¢
°
=
r
a
_

~

.
-

.
s

.
¢
¢
¢
°
o
~

n

.
¢
~

.
s

.
¢
¢
=
a
s
_

_

.
¢
~

.
s

.
¢
¢
¢
¢
~
_

_

.
a
~

.
e

.
s
¢
¢
¢
s
_

_

.
¢
~

.
s

.
=
s
=
¢
~
_

_

.
w
z
z
.

.
.
m
a
r
.

.
.
w
¢
1
.

m
a
.
»

o
z
.
»

m
a
s
»

¢
<
»
>

z
u
a

z
z
c
o

>
»
m
u
<
m

.
»
z
m
=
m
o
<
s
a
w
¢

m
o
s
s
o
a
a
c

»
<
_
¢
u
»
_
¢
o

m
¢
:
s
_
<
u

.
m
1
~
»

z
o
-
»
<
z
u
c
o

a
m
.

1
1
¢
;

a
m
.

w
m
m
z
o
s

a
m
.

s
=
=
»
~
_
c

a
m
.

s
o
m
a
o

>
:
<
o
:
c
o
~
m

a
m
.

a
u
z
a
a
c
m
z
a
a
»

H
m
s
x
a
o

>
1
¢
1
_
Q
l

n
s
o
e
a
s
s
a
o
z

_
»
4
:
<
>

s
o
a
p
z
o
u

~
»
4
:
<
>

0
»

o
s
a
<
o

~
s
m
z
a
a

J
O
J
»
Z
O
U

-
z
c
n
o
a

>
a
<
_
s
_
x
:
<

_
a
m
a
s
s

s
.
_
u
=
o
:
;
s
o

u
a
>
»

a
u
a
z
a
z

p
z
u
z
o
a
x
o
u

o
z
_
s
=
m
»
=
o
o

~
|
c
m
s
<

.
w
a
>
>

z
m
_
m
>
w

z
m
s
m
o
e
a

u
s
a
:
<
~
u

.
z
e
_
»
<
o
o
s

61



3
2
8
.

0
0.=_..:._

0
0
0
:
0

0
:
0
0
»

.
s
a
a
0

0
o
c
o
m

.
a
a
a
0

.
a
a
s
@

.
a
a
0
~

.
=
a
a
_

0
0

O
O
I
I
O
O
O
O
O
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
O
O
O
O
O
O
O
Q
I
O
I
O
O
O
I
O
O
O
O
O
O
O
I
O
O
O
O
Q
O
O
O
O
O
O
O
O
O
.
-
'
:
-
-
-
:
.

#
0
0
0

~
~

~
_

~
_

~
~

~
0
0
0

~
~

~
~

~
~

_
~

~
0
0
0

~
_

~
_

~
~

~
_

_
0
0

_
_

-
~

~
~

~

~
~
0
0
0

~
~

~
~

~
~

~

0
l
l
l
l
l
l
l
l
l
0
l
l
0
0
0
l
l
l
l
0
l
l
l
l
l
l
l
l
l
0
l
l
l
l
l
l
l
l
|
0
l
l
l
l
l
l
l
l
l
0
l
l
l
l
l
l
l
l
l
0
l
l
l
l
l
l
l
l
l
0
l
|
l
l
l
l
l
|
|
0

0
0
»
.

_
_

~
~

~

0
0
0

~
M

~
_

0
0
0

R
~

~

~
0
0
0
0

_
~

-

~
0
0
0

~
~

_

l
l
l
l
l
l
l
l
l
0
0
l
l
l
l
l
l
l
l
0
l
l
l
l
l
l
0
0
0
0
l
l
l
l
l
l
l
l
l
0
l
l
l
l
l
l
l
l
l
0
l
l
t
l
l
l
l
l
l
0
l
l
l
l
I
l
l
l
l
0
l
l
l
|
l
l
l
l
l
0

0
0
0

_
~

~
~

~
0
0
0

~
~

~
~

_
0
0

_
~

~
~

~
0
0

~
~

~
~

~
0
0
~

~
~

~

I
I
I
O
I
I
I
I
I
O
I
I
I
I
I
O
I
I
I
O
I
I
I
I
O
I
I
I
I
Q
|
|
|
|
l
|
|
|
|
0
O
l
l
l
l
l
l
l
l
O
l
l
|
|
|
|
|
|
l
O
l
l
|
|
|
|
|
|
|
O
I
I
I
I
O
I
I
I
I
O

~
~

~
~

0
0

~
~

_

~
~

~
~

0
0

~
~

~

~
0
0

»
~

~
0
0
0
~

_

~
0
0

~

-
-
'
-
-
-
'
-
-
§
"
O
-
"
-
-
-

O
-
-
|
-
'
-
-
'
-
.
"
-
"
'
-
-
'
§
-
-
'
-
-
-
-
-
'
.
Q
.
-
"
"
'
-
.
-
-
-
'
-
-
-
"
.
-
'
-
-
-
-
-
'
-
O

OonrnmonunOO~unmlnu0OI—hnmonm

aura» uomnuunm unaoqnnm

unmunrnm

manna cnnom

named ammonium

nofluu

itdllllliirl 0-00-10-can-0 u-Q1-on-0|-1

~
~

~
~

~
~

0
0

~
~

~

~
~

-
~

~
~

0
0

_
~

~

~
~

~
~

~
~

0
0

~
~

~

~
n

~
~

~
~

0
0
~

~
a

~
~

~
_

~
~

0
0

~
~

0
|
l
l
l
l
l
l
l
l
0
l
l
|
l
l
l
l
l
l
0
l
l
l
l
l
|
l
l
|
0
l
l
l
l
l
l
l
l
l
0
|
l
l
l
l
l
l
l
l
0
l
l
l
l
|
l
l
l
l
0
0
0
l
l
l
l
l
l
l
0
|
l
l
l
l
l
l
l
l
0

~
~

_
0
0

~
~

~
0

~
~

_
0
0

~
~

~
0
0

~
~

Q
I
I
I
I
I
I
I
I
I
O
l
l
l
l
l
l
l
l
l
O
I
I
I
U
I
I
I
I
I
O
I
I
I
I
I
I
I
I
I
O
I
I
I
I
U
I
I
I
I
O
l
l
l
l
l
l
l
l
l
O
I
I
I
I
I
I
I
I
I
O
I
I
I
I
I
I
I
I
I
O

~~
0
0

~
0

m
0

~
0
0

O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
O
O
O
O
|
|
|
|
|
|
-
|
|
§
|
-
|
-
|
|
-
|
'
O
-
-
0
I
|
-
|
-
|
-
O
O
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
O
O
O
O
O
O

mnuu-mun

mourn-em

munnnmcu

monnnmnn

-0

O

u

-0

IIIIIIIdO-II

Iltliunlu-1

0-h0h0—u19l~nnnnm0u

I

uuunrnulm

unmsnodun mhuunnnm

a-4~0mo< nonhuman

m-‘women munrnmun

onpomunpa unfiouunm

u4%0nun@ >4m|~rn%

unmununm rnmlnrnm

0

0

§
|
"
|
-
'
|
-
-
O
O
I
O
O
O
O
O
O
O
Q
O
O
O
O
O
O
O
O
O
.
u
"
"
-
:
'
.
'
-
'
-
"
‘
:
Q
'
-
|
-
-
-
-
'
-
Q
O
O
O
O
O
O
O
O
I
Q
O
O
O
O
O
O
O
O
O
O

M
0
0
0

0
0
0
0

m
a
e

0
0
0
0

0

O O

Dfiiillli iiiiill

N
0
0
0

p
0
0
0

1
0
0
0

0
0
0
0

s
a
a
.
_

QlM.J"'(lI'"-J"'F'><JIlIIQ

62



(coo-1f‘:-nCDouI'l"\I

Figure7(¢°"'t)

.----------------------.---------------------aw------Q0.--¢---.-Q------------Q.5------Q-a--o-.--------------

ITERATIONMEANUNITRELVARUNITRELSvSTtMREL
I.sen3o1u1.000007I9.v9eI911I

2.9eav3Iz4.ooooo1I1.9s1e3v23

3.9o71s~u3.00o00656.v91z793o

4.9ev4s>1I.ouoooq1o.9v1Iv153

5.voo33ou5.o0ooo6$5.9vslno3>

6.9o~I202I.0000057l.»95auo9I 1.9a713usu.ouo0oe0u.9v1z1una

u.9s~11bbh.00000873-99615183

9p.9bd88355.0000056I.99bJ2972

I0.vs:3eao0.00noo12I.99u~IIo9

II.vso42~35.ooooo7e4.9vauIu30

I2.vs4nu~31.00ooosu4.995IoJo:

I3.960I5II6.ooo0os~2¢993nU£ZI I4.9hJbH152.o00oo55u.9vsola3b

I5.v1IuIaz~.0000077I.v9HI9J37

Io.9o0II2I4.0onoo1oI.993us590

17,9~uao516.oonooeeo.99au2o03

Id.96JI7u3I.00000626899546975

I9.9b7b42I2.00000736.9972393Z

20.957A5I9I.00000613-99215189

BYINPUTDATASETI0THEMEANSYSTEMRELIABILITYIS.99b0I5988

IntVARIANCLorIIIS.oo0oo2042

I-000*

II II II II II II II ~II II III IXxI II IIXI II Ix IxI IXI II II II II II II II II II II II II II II II

.oo?»------------------------------------------------------»

0-I0.Z0

I

X

XI

I

X,XX

O x~|---_¢----|-----<---a--->¢-----.- O

_-__--|,._--I.--—@.
1F

£9



d. Development of an anlaytical procedure to determine system

reliability which accounts for the operation, maintenance, and failure

variables of each component

e. Automation of the combined procedures into a concise, efficient

computer program.

Although this research effort was devoted to airfield lighting systems,

the methodology developed is applicable to any system which can be similarly

defined and for which failure criteria stipulate consecutive failures

as well as random failures.
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SIMPLIFIED METHOD FOR DETERMINING

APPROXIMATE IDWER CONFIDENCE BOUNDS OF A SYSTEM

WHOSE POSTERIOR RELIABILITY DISTRIBUTION IS DESCRIBED AS A BETA

Louis M. Iannuzzelli

Product Assurance Directorate

US Army Armament Command

and

Robert Dostal

US Army Management Engineering Training Agency

Rock Island, IL 61201

ABSTRACT. This paper deals with a simplified method of determining the

approximate lower confidence bounds on reliability of a system, given the

system posterior reliability beta parameters A's and B's (integer or non

Given: AS, BS system posterior reliability parameters of a beta

integer) and/or trials and failures observed and the interval desired. Prior

to the development of this method, a computer was utilized to determine the

lower bounds due to the fact that the beta parameters were, for the most part,

non-integer. The method described in this paper was empirically developed and

provides a method of determining approximate reliability bounds very simply

with the use of a SR 51, HP 45 etc., hand calculator. The unsolved problem

simply stated is "Why does the method work as well as it does?"

1. INTRODUCTION. A need arose in ARMCOM for a simplified method of

determining approximate lower bounds on reliability, given subsystem data,

a model and the confidence interval desired. As a result, a literature search

was made of current available methods. These methods are referred to by com

parison in our paper titled, "Confidence Limits for System Reliability When

Testing Takes Place at the Component Level," dtd 31 Oct 75. Based on the

review of the current available methods, it was decided to see if a more

simplified method could be developed which would overcome some of the short

comings of the current methods and still provide results which would satisfy

our needs. A method was developed as described in reference paper; however,

the mathematical expression derived empirically for calculating the lower

bound is still, to this day, not fully understood.

2. THE LOWER BOUND ON RELIABILITY. The lower bound on reliability is

determined as follows:

l - a = Confidence interval desired

fl =f2 = ZAS
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R(l—G.) = exp‘ i

f1.Z f2

_ 2

Xo;fl

fl + £2 - 2 - (fl - 2) .831 {1 - ( 1 - 1 )

£1 + 1 £2 + 1

f1

where Q = T1-qrjgg

2

' X(1 - u)‘f
._. 7 2

ml-.. =ex1»<

where

£1 + £2 - 2 - (£2 - 2) .831 {1 -( 1 - 1 )

£ + 1 + 1
2 1

Q
.= £2

R(l - Q) = 1 _ R(l —o)

3. EXPRESSION FOR BINOMIAL DATA.

Given:

R(l — Q)

N = No. of trials

f = failures

l - a = Confidence interval

f + 1 < (N — f)

2
I Xa;2(f + 1)

exp ( _ ,_

2 {N - f .831 {1 -(g 1 - 1 )} QQ I

2£ + 3 2(u - f) + 1

where Q = f + 1

N + l

f + 1 > (N — f)

f

I Q'Q

)

66



r r :___-- iv"-0" -1-g__-r -n.

_ 2
x(1 - a); 2(N - r)

n(l_a,=e><p< as as E
2 {N - ((N - f) — 1) .831 {1 -( 1 - 1 )} Q'Q}

2 (N ~ f) + 1 2f + 3

where Q' = S ; i

R(l - Q) = 1 _ §(l — a)

A fractional chi—square table is required; however, linear interpolation

can be utilized.

4. PROBLEM. An understanding of the expression:

2

_ Xagfl

R = exp ( * )

(1 ' “I fl + £2 - 2 - (fl - 2) .831 {1 -( 1 - 1 )} QQ

fl + 1 £2 + 1

h Q fl
w ere = ___..___

fl'I"f2

is needed in order to provide an answer to the many inquiries concerning the

mathematical validity of the above expression.

5. RESULTS. Many values of AS and BS, both integer and non—integer,

were compared. The values shown are just a few of the comparisons made.

Other comparisons at different confidence intervals were made as shown in

Table l through 4.

For whatever help it may be, the relationship between the F distribution

and the expression was found to be:

f l_:_R

Fa; fl. f2 = _Z ( p ); fl < f2

f1

where p = exp (—K)

Fa;fl.f2=£g( 1 -1)

fl EXP (—K)

Fa; £1, £2 = £2 (exp (K) - 1)

£1

X2
a;f

K = 1 . 1 :_

£1 + £2 - 2 - (£1 - 2) .831 {1 —( _ 1 ) QQ

f_9_+l
I-Y1

P

+H

w

)
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fl
Q:-..i..__i

fl + f2

From this expression, approximate values of the F distribution can be

obtained for non-integer degrees of freedom.

68



_ -- - .1?-1?: 7

AS BS CONFIDENCE TRUE CALCULATED ERROR

4.18 8.00 99 .091 .091 0

95 .144 .144 0

90 .179 .179 0

102.34 28.44 99 .693 .692 +.00l

95 .721 .721 0

90 .735 .735 0

7.01 6.04 99 .234 .237 -.003

95 .314 .315 -.001

90 .361 .361 O

7.49 6.09 99 .251 .254 -.003

95 -0001

9O .379 .379 O

18.71 3.99 99 .607 .606 +.00l

95 .681 .679 +.002

90 .713 .717 +.OOl

18.08 5.00 99 .559 .557 +.002

95 .632 .631 +.OOl

90 .670 .668 +.002

17.84 4.99 99 .555 .554 +.00l

95 .629 .627 +.002

90 .667 .666 +.00l

TABLE 1
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AS BS CONFIDENCE TRUE CALCULATED ERROR

98.23 4.98 99 .891 .890 +.00l

95 .913 .912 +.00l

90 .924 .923 +.00l

94.21 10.99 99 .816 .814 +.0O2

95 .843 .841 +.0O2

90 .856 .854 +.0O2

38.58 .75 99 .901 .901 0

95 .937 .937 0

90 .953 .953 0

6.12 .71 99 .521 .519 +.0O2

95 .669 .668 +.00l

90 .743 .742 +.00l

49.45 .52 99 .934 .934 0

95 .961 .961 0

90 .972 .972 0

647.45 .63 99 .99426 .99432 —.00006

95 .9965l .99656 —.00005

90 .99744 .99750 -.00006

122.23 .68 99 .969l9 .969l6 +.000O3

95 .98104 .98l02 +.OO002

90 .98604 .98602 +.OO002

49.86 .35 99 .945 .944 +.00l

95 .970 .970 O

90 .980 .980 0

TABLE 2



LOWER BOUNDS OF SINGLE TAIL CONFIDENCE

' INTERVAL (BINOMIAL DATA)

.90 .95 .99, A,

N £ 021 CAL. ERROR OPT g CAL., ERROR OPT CAL. ERROR

3 0 .464 .464 0 .368 .360 0 .215 .215 0

1 .196 .198 -.002 .135 .137 -.002 .059 .060 -.001

2 .035 .035 0 .017 .017 0 .003 .003 0

6 0 .681 .681 0 .607 .607 0 .464 .464 0

1 .490 .492 -.002 .418 .421 -.003 .294 .298 -.004

2 .333 .336 -.003 .271 .275 -.004 .173 .179 -.006

3 .201 .202 -.001 .153 .154 -.001 .085 .085 0

4 .093 .092 +.001 .063 .063 0 .027 .027 0

5 .017 .017 0 .009 .009 0 .002 .002 0

10 0 .794 .794 0 .741 .741 0 .631 .631 0

1 .663 .663 0 .606 .606 0 .496 .496 0

2 .550 .551 -.001 .493 .494 -.001 .388 .390 -.002

3 .448 .449 -.001 .393 .395 -.002 .297 .300 -.003

4 .354 .354 0 .304 .305 -.001 .218 .222 -.004

5 .267 .271 -.004 .222 .226 -.004 .150 .153 -.003

6 .188 .189 -.001 .150 .151 -.001 .093 .094 -.001

7' .116 .116 0 .087 .087 0 .048 .048 0

8 .054 .054 0 .037 .037 0 .016 .016 0

9 .009 .010 -.001 .005 .005 0 .001 .001 0

30 0 .926 .926 0 .905 .905 0 .858 .858 0

1 .876 .876 0 .851 .851 0 .798 .798 0

2 .832 .831 +.001 .805 .804 +.001 .748 .747 +.001

3 .791 .789 +.0o2 .761 .760 +.001 .702 .701 +.001

4 .751 .749 +.0o2 .720 .719 +.001 .660 .658 +.002

5 .713 .711 +.0o2 .681 .679 +.002 .619 .617 +.0o2

6 .675 .673 +.0o2 .643 .641 +.0o2 .580 .578 +.002

7 .639 .636 +.003 .606 .604 +.002 .543 .541 +.002

8 .603 .601 +.0o2 .570 .568 +.0o2 .507 .505 +.0o2

9 .568 .566 +.0o2 .535 .533 +.0o2 .473 .471 +.0o2

10 .534 .531 +.003 .501 .498 +.003 .439 .437 +.002

11 .500 .497 +.003 .467 .465 +.002 .406 .405 +.001

12 .467 .464 +.003 .434 .432 +.0o2 .374 .373 +.001

13 .434 .431 +.003 .402 .399 +.003 .343 .342 +.001

14 .401 .398 +.003 .370 .367 +.003 .313 .312 +.001

15 .370 .376 -.006 .339 .345 -.006 .284 .290 -.006

16 .338 .344 -.006 .308 .314 -.006 .256 .260 -.004

17 .308 .312 -.004 .279 .283 -.004 .228 .232 -.004

18 .277 .281 -.004 .250 .253 -.003 .201 .204 -.003

19 .248 .250 -.002 .221 .224 -.003 .176 .178 -.002

20 .218 .221 -.003 .193 .196 -.003 .151 .153 -.002

21 .190 .192 -.002 .165 .168 -.003 .127 .129 -.002

22 .162 .164 -.002 .140 .142 -.002 .104 .106 -.002

23 .135 .136 -.001 .115 .116 -.001 .083 .084 -.001

TABLE 3



LOWER LIMITS OF 50% CONFIDENCE INTERVAL

(BINOMIAL DATA)

N f OPT. CAL. ERROR N f OPT. CAL. ERROR

2 0 .707 .707 0 20 16 .181 .182 —.00l

l .293 .293 0 17 .131 .132 —.00l

18 .083 .083 0

3 0 .794 .794 0 19 .034 .034 0

1 .500 .501 —.00l

2 .206 .206 0 30 0 .977 .977 0

1 .945 .945 0

6 0 .891 .891 0 2 .912 .911 +.001

1 .736 .736 0 3 .879 .878 +.0Ol

2 .579 .578 +.0Ol 4 .846 .845 +.0Ol

3 .421 .422 —.00l 6 .780 .778 +.0O2

4 .264 .264 0 8 .714 .712 +.0O2

5 .109 .109 0 10 .648 .645 +.003

12 .582 .578 +.OO4

10 0 .933 .933 0 14 .516 .511 +.005

1 .838 .838 0 16 .451 .455 +.OO4

2 .741 .741 0 18 .385 .388 -.003

3 .645 .644 +.001 20 .319 .321 —.OO2

4 .548 .546 +.0O2 22 .253 .255 —.OO2

5 .452 .454 —.OO2 24 .187 .188 —.00l

6 .355 .356 —.001 26 .121 .122 —.00l

7 .259 .259 0 27 .088 .089 —.001

8 .162 .162 0 28 .055 .055 0

9 .067 .067 0 9 .023 .023 0

20 0 .966 .966 0

l .917 .917 0

2 .869 .868 +.0Ol

3 .819 .818 +.0Ol

4 .770 .769 —.00l

5 .721 .720 +.0Ol

6 .672 .670 +.0O2

7 .623 .620 +.003

8 .574 .570 +.OO4

9 .525 .520 +.005

10 .475 .480 —.005

11 .426 .430 *.004

12 .377 .380 -.003

13 .328 .330 —.OO2

14 .279 .280 —.001

15 .230 .231 —.001

TABLE 4
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EVALUATION OF GUNNER ERRORS THROUGH TIME SERIES ANALYSIS

Latricha Greene and John Howerton

Systems Evaluation

Aeroballistics Directorate

US Army Missile Research and Development Command

Redstone Arsenal, Alabama 35809

ABSTRACT

This paper describes a procedure used at the Army Missile Command

(primarily with command to line of sight systems) for modelling man

in the loop. The model developed here with its parameters can be used

to simulate data or to drive a total systems simulation.

The procedure outlined here was developed initially by L. Greene,

J. Howerton, N. Rich, and M. Wise of the Army Missile Command in

conjunction with M. Yang from the University of Florida for the optical

mode of Air Defense Systems in which a man was used to track the

target. Current plans call for using this same technique to evaluate

tracking radars during an ECM environment.

The analysis of the original work as described here was concerned

only with stationary data.
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l. Introduction

Prediction of the amount of error due to gunner tracking

of a moving target is an important phase in the development of weapon

systems. Data of this type occur in the form of time series. The

observations are dependent and the nature of this dependence is of

utmost importance.

The purpose of this paper is to present a method for evaluating

gunner error data described below, thereby defining a time series

model. This model and its parameters can be used to simulate data for

future problems of a similar nature or may be used as a subroutine to

missile flight simulation.

2. Data Description

The initial tests to determine the gunner tracking error

characteristics were conducted at Redstone Arsenal during the period

l3 through l8 July 1972. The King Air, a twin engine Beechcraft, was

the target utilized for these tests.

A 16mm film camera was attached to the monocular output of the

tracker unit. This output presents the same view to the film camera

as the binocular output presents to the gunner.

There were four gunners who participated in the tests. They were

instructed to track the centroid to the target aircraft when details

were not resolvable. When resolvable they were to track the inter

section at the wing and fuselage. The amount of error was shown to be

independent of individual gunner, that is, there was no statistical

significance.

3. Model Building

This section discusses the time series model building for the

gunners' error data. After examining all the data available, we conclude

that the data forms a stationary time series except at the beginning

where a transient occurs during acquisition, and at the end where a

transient is introduced by the simulated missile in flight signal.

Runs with too few data were eliminated. The total number of runs was

then 143. A few nonstationary data can also be seen. They occupy

13.29 percent of the total.

When the data are recorded with equally spaced time intervals, we

generally use a linear time series model to fit the data. A commonly

used model for univariate time series can be written as
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Yt - I1 = ¢1(Yt_1 - u) + ¢2(Yt_2 - I-1) + '+ ¢p(Y,.__p - I1)

+ at - 61at_1 - - 6qat_q (1.1)

where .

subscript t = time

Yt = the value of the time series at time t

u = the expected value of Yt

at = a white noise process, i.e., at is independent,

identically distributed N(0, 02)
a

p, q = two parameters depending on the properties of a

particular time series.

Model (1.1) is called a mixed model with autoregressive and moving

average components. It has been widely used in practice with fruitful

results (see e.g., Box and Jenkins [1], Fuller and Tsokos [2], Cleveland

[3, 4], and Box et. al [5]). The intuitive idea behind the model (1.1)

is the assumption that the present value Yt depends on the values of

Yt in the near past, i.e., Yt_1, Yt_2, ..., Yt_p. This is the autore

gressive component I

(Yt - n)-= o1(Yt_1 - u) + ¢2(Yc_2 - u) + ... + op(Yt_p - n)

The moving average component at - 61at_1 - ... - 6qat_q indicates that

the present value Yt depends not only on the present noise at, but also

the previous noise at_l, ..., at_q. This is reasonable since the noise

will not diminish very rapidly in real situations. The noise prolongs

its influence on Yt for a certain period.

In practice when time series data are given, a model of the form

(1.1) can generally be built. The detailed procedure has been given in

Box and Jenkins [1]. There are four main steps.

a. Model Identification

In this first step, autocorrelation coefficients, partial

autocorrelation coefficients, and inverse correlation coefficients

(e.g., Cleveland [3]) are used to determine the values of p and q in
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model (1.1). The value p is called the order of the autoregressive

¢Qmponent and the value q is called the order of the moving average

component in a mixed model (1.1).

b. Parameter Estimation

After the values of p and q have been determined, there

are p + q + 2 parameters: a, o1, oz ..., op, 61, ..., Gq and the

variance 0: of at to be determined. The method used to estimate ¢'s

and 9's has been described in Box and Jenkins (Chapter 7, [l]),

Clevenson [6], and Parzen [7]. The main technique is the maximum

likelihood estimation. Generally, the calculation needs the help of

spectral density estimation [7] or nonlinear least squares estimation

[1].

c. Diagnostic Checking

A A2
The estimated values Q, 3, Q, and ga of the parameters

H, ¢, 9, and oi, respectively, are not generally equal to the real value

of these parameters. The model with estimated parameters

12 I
C) \.¢

t = ¢1(Yt_1 - Q) + ... + op(Yt_p - Q) + at - 61at_1

- - §qat_q (1.2)

may not fit the original data well. Diagnostic checking determines

whether our estimated model fits the data well. The residual process

[at] is examined. If the [at] is close to a white noise process, the

model is considered to be adequate and the whole model building procedure

is over. Otherwise, we go to the next step.

d. Modification of the Model

If the model we built is found inadequate through the

diagnostic checking, we will try to fit the data by a new modified

model. Generally, the residual process [at] will reveal some information

on how the model should be rebuilt. In most cases, a pair of new values

of and q will be obtained. Using these new values of p and q, we

undergo steps b., c., and d. for this new model building.

All the four steps have been carefully followed for building the

gunners‘ error data model. Fir the (apparently) stationary time series,

with azimuth and elevation both counted, the total number of realizations
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was 248. Each time series of azimuth and elevation is run separately

(Tables 1 and 2). Sixty-two percent of the stationary series can be

fitted well by a third order autoregressive process [p = 3, q = 0 in

model (1.1)], i.e.,

Yt - u = ¢1(Yt_1 - 11) + ¢2(Yt_2 - u) + ¢3(Yt__3 - u) + at

(1.3)

A few data can not be fitted well by (1.3); they are fitted by a more

complicated model. These models and their percentages of the total

data are given in Table 1. Due to the biological and psychological

differences among gunners, there are variations in these parameters.

The means and variances of these parameters are also given in Table 1.

TABLE 1. GUNNER'S ERROR MODEL FOR AZIMUTH

General model (3rd order autoregressive process) (62.90%)

u 01 02 03 0:

Mean 0.0393 0.4489 0.2362 0.1245 0.0128

Variance 0.0108 0.0170 0.0066 0.0087 0.0001

Special Model *

Mean Variance

1) $4 1 0 (17.74%) 0.1490 0.0050

2) 05 ¢ 0 (4.84%) 0.0962 0 0076

3) ¢6 ¢ 0 (5.65%) 0.0485 0 0189

4) 07 ¢ 0 (3.22%) 0.1218. 0 0060

5) ¢8 1 0 (0.81%) 0.1844 0 0000

6) ¢9 ¢ 0 (2.42%) 0.0196 0 0142

7) 010 ¢ 0 (1.61%) 0 0568 0.0145

8) $11 ¢ 0 - (0.81%) 0.0970 0
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TABLE 2. GUNNER'S ERROR MODEL FOR ELEVATION

General model (3rd order autoregressive process) (60.48%)

4 2

$1 02 ¢3 Ga

Mean -0.0515 0.3692 0.2165 0.1448 0.0045

Variance 0.0124 0.0188 0.0051 0.0057 0.0001

Special Model

Mean Variance

1) o4 ¢ 0 (l5.32%) 0.1535 0.0014

2) o5 ¢ 0 (8.87%) 0.1255 0.0088

3) o6 1 0 (7.25%) 0.1125 0.0039

4) 07 ¢ 0 (4.84%) 0.1221 0.0087

5) 08 ¢ 0 (0.81%) 0.1497 0

-6) 09 1 0 (0.81%) 0.1294 0

7) olo 1 (0.81%) 0.1178 0

8) oll 1 (0.81%) 0.0573 0

A question arises whether the azimuth error and elevation error

are dependent on each other during a gunner's aiming. The data show

that we can consider the azimuth error and elevation error to be two

independent processes. The following procedure is followed.

A general model describing the relation between two time series is

a linear transfer function model. Let Xt be the time series of azimuth

and Yt be the time series of elevation. A linear transfer function

model can be written as

(Yt " uy) = @1(Yt_1 - uy) + --- + Q%(Yt_m - uy)

+ B1(Xt_1 - (Ix) + ... + Bn(Xt_n - (ix) ‘I’ Nt

(1.4)
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where

mt)
"Y

"C

X

ll E(xt)

Nt a noise process .

m, n the numbers of past values of Xt and Yt on which the present

Yt depends.

Intutitively, model (1.4) indicates that the present azimuth value Yt

may depend on the previous values of both azimuth and elevation. This

model has been used in many practical situations and gives good results

(see e.g., Box and Jenkins [1]). Since we have already found a good

model for Yt in the previous model buildings, we may combine the Y

model and (1.4) and have .

at = B1(Xt_1 - (Ix) + ... + Bn(Xt_n - (ix) + Nt (1.5)

where at is the noise process from the model of Yt. Since at is a

white noise process, the values B's can be easily estimated (Box and

Jenkins [1] p. 380).

An attempt has been made to fit all the corresponding pairs of

azimuth error data and elevation error data by model (1.4). Except for

a few exceptions (l percent of the total), the B values are very small

(less than 0.05 for all B1, 62, ..., B25). Hence, we consider that the

error in elevation has no significant influence on that in azimuth. A

similar model fitting by replacing X by Y and Y by X in (1.4) has also

been run for all pairs of data. An independence relation is also

obtained here. Hence, we conclude that there is no significant

dependence between azimuth error and elevation error.

4. Simulation Procedure

In order to simulate the total performance of a guided missile

system with a man in the loop, we may use the gunner's model described

in the previous section. Considering the nonrepeatability of man's

reactions, it must be realized that for any single simulation the error

model will not give the same results as given by man. However, man's

behavior on the average should agree with that of the error model.
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Simulation of a gunner's behavior may be performed as follows:

a)

C0113 IIIUC II azimuth error, if

Choose 2 random numbers 71 and 72 in [0, 1]. 71 is used to

71c :0, 0.6290], a third order autoregressive model will be

116

11s

rle

rle

116

11$

rlé

rle

0.6291

0.8065

0.8549

0.9114,

0.9436

0.9517

0.9759

0.9920

0

O0

0

0.

0.

0.

0

1

.8064:

8548]

911$

9435

9516

9758]

.9919

00],

I used

I

3

a fourth order autoregressive model with

04 ¢ 0 will be used,

a fifth order autoregressive model with

05 ¢ 0 will be used,

a sixth order autoregressive model with

66 ¢ 0 will be used,

a seventh order autoregressive model

with 07 x 0 will be used,

aneighthorder autoregressive model with

08 1 0 will be used,

a ninth order autoregressive model with

09 z will be used,

a tenth order autoregressive model with

610 1 0 will be used,

aneleventh order autoregressive model with

O 11 ¢ 0 will be used.

Thus, we have chosen a model for azimuth error process. 72 is

used to construct elevation error, if

726 I0, 0.6048], a third order autoregressive model will be

12¢

725

725

725

0.6049

0.7581

0.8468

0.9193

used
3

0.7580], a fourth order autoregressive model with

04 1 0 will be used,

0.8467], a fifth order autoregressive model with

$5 x 0 will be used,

0.9192], a sixth order autoregressive model with

66 x 0 will be used,

0.9676], a seventh order autoregressive model

with 07 ¢ 0 will be used,
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72$ [0.9677, 0.9757], an eighth order autoregressive model with

o8 ¢ O will be used,

yze [0.9758, 0.9838], a ninth order autoregressive model with

o9 x O will be used,

72¢ [O.9839, 0.9919], a tenth order autoregressive model with

olo ¢ 0 will be used,

72¢ [0.9920, l.0],an.eleventh order autoregressive model with

o ¢ O will be used.

11

b) Use normal random number generator to generate the required

2

parameters u, o's, and ca.

c) Using a polynomial root solver, check the roots of Xp - o1Xp_1

.... - op = O. If any of the roots isgreaterthanor equal to 1, discard

this set of o's and select another group of parameters.

d) Let Xt denote the azimuth error process and Yt denote the

elevation error process. Then according to the models and parameters

chosen by steps a) and b), we can simulate Xt and Yt consecutively

by generating normal random derivates at from N(0, 0:).

e) If the perfect aim of a gunner at time t is (At, EC), then

our simulated coordinate of a gunner at time t is (At + Xt, Et + Yt).

A simulation example:
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7. Future Use

Although the original work dealt mostly with a stationary

set of data, there is no reason why this technique could not be used

with non-stationary data simply by using the difference equations as

outlined in Time Series Analysis, Forecasting, and Control, by Box
and Jenkins. A

A study is underway to evaluate the ROLAND Air Defense System

during an ECM environment. This is a very critical area and one that

so far has not been investigated with a systematic quantitative approach.

The approach offered here would be valid regardless of the type of

engagement (optical or radar). Simply stated: A series of target

tracks are carried out and a time series model is built of the resulting

radar errors as a function of ECM and other parameters.

The final output of this study would be a computer program (or

subroutine integrated with the weapon system simulation) that could be

used for predicting end game results as a function of different types

of ECM throughout the ROLAND system engagement boundary.

The basic data needed to build the proposed model comes from a

video camera bore-sighted to the track radar. An investigation of

the advantages of putting a missile beacon on the target is being

conducted at this time.
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A METHOD FOR DETERMINING PAIRWISE

CONTRASTS FROM A FRIEDMAN TWO-WAY LAYOUT

BASED ON A THEOREM BY MARASCUILO

Jimmie C. DeLoach and Eugene F. Dutoit

United States Army Infantry Center

Fort Benning, Georgia 31905

1. INTRODUCTION.

The authors wish to express their appreciation to the US Army Research

Office and the Clinical panelists at the Twenty—second conference in the

Design of Experiments for their valuable coments about this problem.

In recent years there has been an increased effort to produce more

and more non-parametric statistical tests. These tests have had broad

based applications in education and psychological research and to some

extent in military testing and evaluation of new products and training

methods.

The value of such non-parametric tests is well known. Although it

is not the purpose of this paper to demonstrate the usefulness of these

tests, it is worthwhile to restate one of the more salient features of

non-parametric tests and that is the fact that they do not depend upon

sometimes unrealistic distribution assumptions, such as the normality

of error distribution and that in many cases they are more readily com

prehended and their test statistics more easily computed by a broader

spectrum of statisticians and researchers.

Friedmen in 1937 introduced a test which is sometimes referred to

as the two-way analysis of variance by ranks. The method is outlined

in detail in Conover [ref l, pp 264-274]; the test is considered to be

the non-parametric version of the familiar parametric two—way analysis

of variance (ANOVA). The parametric ANOVA is the usual way of testing

the hypothesis of no treatment differences. For experiments of the ran

domized block design, and where there is one observation per block, the

Friedman test is used as a non-parametric method to test this same hypo

thesis.

The subject of this paper is related to an extension of the Friedman

test to the case of several observations per block, given in Conover

[ref 1, p 273]. The example given in the next section will illustrate

the use of this extension. The data come from unpublished lecture

notes of reference 4.

2. EXAMPLE.

The hypothetical data of Table [l] represent scores on a reading

test given to seventh grade students following one, three, or five weekly

20 minute training periods on an electric talking typewriter programed

to teach reading skills. The study was conducted across four different

schools, drawing from different social strata in the community and

taught by four different sets of teachers in four different classroom

environments.
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%ab1e [1] Scores on a Reading Test Following One, Three, or Five Weekly

0 Minute Training Periods on an Electric Talking Typewriter for Four

ifferent Schools.

School 1

. Sessions per Week

3 5

80 65 103

appears in Table 2. The sum of ranks Rj are also given.

A 110 82 118

87 84 96

79 74 104

102 70 126

B 41 93 111

76 76 76

43 91 91

74 40 105

C 56 102 _83

50 40 72

64 39 60

61 62 105

D 67 68 126

60 87 101

50 69 126

The data of Table 1 are ranked within each block. These rankings

Table 2 Observations Ranked Within Blocks and the Sum of Ranks.

Sessions per Week

School 1 3

Q 10 4 11

6 5 7

3 2 9

p 8 1 12

B 2 10 12

6 6 6

3 8.5 8.5

4 1 ll

Table continued on following page



Sessions per Week

School 1 3 5

C 4 11 10

3 2 9

8 l 5

6 7 12

D 4 5 ll

2 8 9

1 6 12

7 3 10

R1 = R2 = 80.5 R3 = 154.5

The expected value of Rj is given by:

E(Rj) = bm(§k+l)

where

The Friedman test statistic is given by

T4=

Ill

_ (4)(4)[(4)(3)+l] (1)

WU‘
lllll

____l2_____ 2 [R.-E( .)]2 (2)bkm2(mk+l) i=1 3 R3

3

_____l3_______.E [Rj—lO4]2

(4)(3)(16)(l3)j=l

___l£L____ [272+23.52+so.s2]

(l2)(208)

_l_ [729+552.25+255o.25]

208

3831.5

208

18.4

W

2

l6(l3)

2

104

# blocks (schools)

# treatments (sessions per week)

m — # observations per cell
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The distribution of T4 can be approximated by the chi-square distribution

with k-l degrees of freedom. For this examle k—l=2 and X295(2) = 5.99.

Thus, we would reject a null hypothesis of no treatment differences.

3. PROBLEM.

In the preceding section, the results of the extension of the Fried

man test to the case of several observations indicate that significant

differences between the three treatments exist at the a = .05 level. A

natural question arises, i.e., which treatments differ significantly

in a statistical sense? No post—hoc pairwise comparison procedures

are given in Conover for this extension. Also, Hollander and Wolfe (1973)

do not address this problem. A possible solution lies in extending

a theorem given by Marascuilo and Mcsweeney (1967) which is given in

the next section.

4. THEOREM (MARASCUILO - MCSWEENEY); Let 0 = al 91 + .-.1262 + . . . +

ak9k, Whéré k

Z ai = O is a linear contrast of unknown parameters. Con

i=1

sider the set of all possible linear contrasts of the form W. Let

W = a1 01 + a202 + . . . ak0k (3)

be an estimate of 0 with estimated variance given by

Var (0) = E ag Var (Bk) + 2 2 2 ai air Cov (6i,0i,) (4)

1=1

Then in the limit the probability is l-u that simultaneously for all

linear contrasts of the form 0

$"x2 0<-1) 'ar (‘T’) ““<"”"><2 0<-1) ‘sir (‘I’)

1_a 1-(1

The reader will note that this theorem is a chi—square analog to the

more familiar Scheffe’ theorem.

The proof of this theorem may be obtained from Marascuilo and McSweeney

(reference 3) upon request.

5. APPLICATION OF THE THEOREM. Let Ri be the sum of the ranks as in

section 2. Let

I1) = 8.161 + B262 + . . O +
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be a linear contrast with estimate

A

$‘= a1 R1 + a2 R2 + . . . + ak Bk (6)

The variance of the contrast will be determined two ways; assuming inde

pendence between treatment observations [i.e., Cov (6_, 8_l) = 0] and the

1 1

case where the assuption of independence cannot be justified [i.e., Cov

(ail 01¢

a. If Cov (Bi, Gil) = 0

Var ($) = alz Var (R1) + ag Var (R2) + . . . afi Var (Rk)

= [bmz (m 1<+1) (1<-1)] Zaiz

12

Where Var (Ri) is given in Conover (p. 273).

Aar(1’})) = /[bm2(m 1<+1)(1<-1)] >3.-=11’ (7)

12

b. If Cov (3., §i-) 91 o
1

A... ((1)) = bm(m 1<+1) (mk - m+l) Za_2 (8)
12 1

NOW

-G) I-I

ll IR1 - R2 — 77-so.5= -3.5

1112 = R1 - R3 77-154.5 = -77.5

A

‘P3 = R2 - R3 ‘“ = -74
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are the possible pairwise comparisons and their estimated values from

our original example. In order to test tnese values for significance,

we apply the Marascuilo - McSweeney theorem and compute the critical

differences.

CD

3..

CD

b.

CD

'§f—a(k-1) (431 ($) (9)

A

If Cov (gi, Biz) = O

V5.99

(2.45)

40.79

If Cov (Oi,

V5.99

(2.45)

43.28

V277.33

(16.65)

A

6-1) #0
1

V312

(17.66)

Any contrast which has an absolute value greater than CD is a statisti

cally significant contrast. Thus, at the G = .05 level of significance,

A A

$2 and $3 are significant contrasts. Therefore, in relationship to

our example, it would appear that five sessions per week are necessary

to increase the test scores and improve reading skills. This conclusion

is consistent with the findings of the example source (reference 4).

1.

Wiley, 1971.

2.
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ESTIMATE OF RELIABILITY IN THE

' STRESS-STRENGTH MODEL

As it P . Basxl‘

University of Missouri-Columbia

ABSTRACT

Suppose Y is the strength of a component which is subject to a

stress X. Then the component fails whenever X 2 Y, and there is

no failure when X < Y. In this paper the problem of estimating the

reliability function

R = P(X < Y)

is considered.“ A survey of available results is presented and some

new results are considered.

*Research supported by Army Research Office under Grant No. DAA 29-76
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INTRODUCTION

Let X and Y be two random variables with cumulative distri

bution functions _F(x) and G(y) respectively. Suppose Y is the

strength of a component subject to a stress X. Then the component

fails if at any moment the applied stress (or load) is greater than

its strength or resistance. The stress is a function of the environ

ment to which the component is subjected, and its value at any point

of time is considered a random variable. The strength of a component

is measured by the stress required to failure. Strength depends on

material properties, manufacturing procedures and so on. If the com

ponents under question are'mass produced and their selection in a

given system is assumed to be made at random, then the strength should

also be considered a random variable. The reliability of a component

during a given period [0,T] is taken to be the probability that its

strength exceeds the stress during the entire interval, that is, the

reliability function R is given by

R = P(X < Y)

From practical considerations it is desirable to draw inference about

the reliability function. The problem of estimating R has been con

sidered by many using nonparametric, Bayesian and parametric approach.

We shall present a survey of available results and consider some new

results.

The above model was first considered by Birnbaum (1956) and has

since found an increasing number of applications in many different
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areas, especially in the structural and aircraft industries.

As an example, consider the following problem discussed by

Lloyd and Lipow (1962). A solid propellant rocket engineis success

fully fired provided the chamber pressure (X) generated by ignition

stays below the burst pressure (Y) ‘of the rocket chamber. If

X 2 Y, the enghm blows up and the operation is a failure.

Note the problem of inference about R = P(X < Y) is similar to

the problem of estimation of P = P(X 2 Y), the probability of fail

ure. So one can either talk of R, or of P.

2. Nonparametric approach

Let (X1, X2,...,Xm) and (Y1, Y2,...,Yn) be two independent

samples of measurements ofi X and Y respectively. Let

_¢(Xi, Y_) = 1 if Yj < Xi

J 0, otherwise

then

Ill I1

u= 2 2 ¢(xi, Y-)
i=1 j=1 J

is the well known two sample Mann-Whitney statistic, that is

lI= number of pairs (Xi, Yj) such that

- Y. X.

J < 1 '

Birnbaum (1956) showed that the Mann-Whitney statistic U could be

used to estimate 1 — R (Probability of failure), and hence R. In

particular
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§ = 1 + fi = UVmn (2.1)

was proposed as an estimator of P = Pr (failure), and it was used

to obtain one sided confidence interval for P for the cases F

known, G unknown (m + w), and both F and G unknown. Birnbaum

and McCarty (1958) considered a numerical procedure for computing

4

the sample sizes needed for the confidence interval based on U/mn.

Owen, Craswell and Hanson (1964) showed that the assumption of

continuity required in Birnbaum (1956) was not essential and produced

some tables for use in computing sample sized and confidence intervals

for the Birnbaum-McCarty_procedure.

Govindarajulu (1968) also has explicitly derived one sided and

s

two sided distribution free confidence bounds for P based on the

asymptotic normality of § = U/mn. This bounds are approximately

one half of the corresponding bounds due to Birnbaum and McCarty

(1958). In particular, Govinderajulu showed that for all F and G and

large m or n, the solution e of the equations

P(P 5»? + £1 = P(P 2 $ - 5) 2 Y, o < Y < 1

is given by

-1 -1

<=2<4~»> /2 Mn.

and the solution of the equation

P(| 5 - PI s 5) 2 Y, o < Y < 1
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is given by

. 2 (4 v)1/2 <1>"1(7—1*5’).

Here

0(x) = 1. /xe'“§2au ,

. /2} -~

and ¢'1(') is the inverse function of ¢(-).

Recently Govindarajulu (1974) has also considered a sequential dis

tribution-free procedure for obtaining fixed—width confidence limits

for P. (and hence for R). However, in the absence of additional

numerical computation, it is not known how good is the performance

of this sequential procedure.

3. Bayesian Approach

Not much has been done from the Bayesian point of view

Enis and Geisser (1971) investigated Bayesian approach for estimating

R assuming _X and Y to be independently distributed and that X and

Y are either exponentially distributed or normally distributed.

4. Parametric Approach

' In many situations, the distribution of X or (of both X and Y)

will be known, and it is desired to obtain parametric solutions.

Thus, in case of missile flights, the stress may be expensive to

sample, but the physical characteristics of the missile system, such

as the propulsive force, angle of elevation, changes in atmospheric

condition, and so on may all have known distributions; consequently,
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the distribution of stresses may be calculated. In this section, we

shall consider the problem of estimating R (or P) for specific para

metric distributions.

4.1 Normal Distribution: Gwen, Craswell and Hanson (1964) considered

above problem and gave one sided confidence intervals for R when

both stress and strength are (a) jointly bivariate normally distribut

ed and observations are in pairs, or (b) when X and Y are indepen

dent normal with a common unknown variance. Note if X and Y follow

a joint bivariate distribution

77 ll P(X < Y) = P(Y - x > 0)

B° '

'£0: - 2 poxo% + oy2}%)>

and Q = ¢ {Y - X / (oi - 2 pox
'-+

Q

‘<N
‘J.

06!‘
\-7"

if 0x,'oy and p are known. Similarly if X and Y are independent

P(X < Y) = I“ F(x) dc(x).

Same problems have been'considered by Govidarajulu (1976), who obtain

ed two sided confidence intervals for R. Church and Harris (1970)

have also considered the same problems under the assumption that X

and Y are independent, normally distributed and the distribution of

X is known. -Assume, without any loss of generality, that E(X)=0

and Var(X)=1. In this case, '

R = P{X < Y} =¢(-1L-a

"¢§*92 102



where u = E(Y) and 02 = E(Y — 8)”. - Church and Harris considered

considered the estimator' '

\ TY

R say,‘

where’ Y = 1 2 Y. and S2 = g (Y. - Y)2/(n - 1) from which the

obtained the following confidence interval for R."

fwcv - ¢'1c1 - '15) av) < R < <1» cv + ¢‘1(1 - {.1 6,,)1=1-iv

Similarly, a one sided confidence interval is given by

~ .P{R > ¢ (v - ¢‘1(1 -Y ) 8v)}=1-y .

Here

_ 2
6 = S2 ( $ + YZSZ

V 1 + $7 “ 2(n - 1)(1 + 8232

The confidence interval obtained by Church and Harris compare

favorably with that of Govindarajulu (l968)l Their procedure, al

though empirically demonstrated to be superior to that of Govindarajulu

is, however, inexact since it uses the asymptotic normal approxima

tion of a given statistic and requires the substitution of the popu

lation mean and standard deviations by their observed sample values.

In fact, all the parametric estimators suffer from same weakness as
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they are based on maximum likelihood estimators. Mazumdar (1970),

has considered the same problem of obtaining point and interval

estimates of reliability and obtained mvue of reliability using

interference theory. Minimum variance unbiased estimator of R in

the normal case has also been considered by Downton (1973).

4.2 Qamma_and_E;pgnentia1_dist1ihu;ign; .Since in many physical

situations, specially in reliability and life testing problems, ex

ponential and gamma distributions provide more realistic models,

it is desirable to obtain estimators of R in these cases.

Let X and Y be independently distributed with density func

tions

fl ' -X/a p-1 ‘
f(X)'~8 X ,x>0,p>_0

. pq

20') “fie-Y/B Yq'1 . y> 0', q > 0

q

respectively. Then

R = P(X<Y) 6° [1-G(x)] dF(x)

= In I” ———l———- e'y/B yq'1dy -1- e'X/a"xp'1d

0 L =< F(q)Bq r<p>c=P

B . .

1<=o- r(p)1"(1¢+1) (¢+e)P*"
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Here p and q -are assumed to be known integers. If two independent

.. Y p g .
random samples (X1,X ,...Xm) and (Y1, 2...,Yn)from the two amma

populations are available mle of o and B are given by 8=% and

§=§. Hence mle of R is H _

. A = r ‘.

R 2 A A 'p+E

.k‘0 r(P}P(kf1)(¢*B)

As special cases, if- q 1, that is if X follows the gamma distri

bution and Y follows the exponential distribution

I

R = {i/(a+§1P .

Finally, if both P and <1 are equal to l, we have the case of two

independent exponential disufibuthnm and we have

-I-'-<|

=

sfi

a+BiY

The distribution of §, for large m and n, can be shown to be

normal and hence asymptotic confidence interval for § can be ob-'

tained. ' '

Tong (1974, 1975) has obtained mvube of R for gamma and ex

ponential distributions. The variance of the muvbe of R, in the

exponential case has been derived by Kelley et al (1976)

4.3 1Weibul1 distribution: Let X and Y be independent random

variables each following the Weibull distribution with common shape
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parameter 6. That is let

6

F(x)=l-e')_([<1 ,a>0,x>O

e
G(y)=l-e'y/B , B>0,y>0.

We can readily see

R-=P(X6<Y6) =P(X<Y)- B

. “+8

Note above is independent of 6. Again,~we can obtain the mle

of R to be

R = é/ca +45)

where 8‘and § are mlo of a and B.

4.4 Bivariate exponential distribution: Since exponential distri

bution is considered a useful model in life testing problems, it is

desirable to consider bivariate analogue of univariate exponential

distributions which will have properties similar to the univariate

exponential distribution. Marshall and Olkin (1967) have proposed

a very important bivariate exponential distribution (BVE), which

is given by _

Fkx.v1=Pcx>x.Y>v>=e"1*'*2"*1i“a*(*'Y).osA,.a2.A,2<@.A,+Ai;>v.12+112>0cx>@.v>o)
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The BVE does arise in several natural ways and its properties ap

pear to be fundamental. In particular, marginal distributions of

BVE are exponential and BVE has the loss of memory property (LMP)

given by

F(x+t,y+t) = F(x,y)¥(t,t) for $1, s2,_t20

However, this distribution is not absolutely continuous and there

are clearly situations when it can not be applied. Thus, from data,

it is found that XfY for any pair (X,Y) the model is clearly

not applicable. An alternative absolutely continuous distribution

related to the BVE and having some of its properties would appear

to be of interest. To this end, Block and Basu (1974) have proposed

an absolutely continuous bivariate exponential extension (ACBVE),

which turns out to be the absolutely continuous part of the BVE of

Marshall and Olkin. ACBVE is also seen to be a variant of the

distribution Freund (1961). The ACBVE is given by

?(X.Y) exp[-11X-X2?-A1,maX(x.y)]

A1+l2

*12

A1+l2

exp[-Amax(x,y)] for x>0,y>0.

Here

A = Al + A2 + A12 .

107



Estimates of R when the underlying distribution is BVE or

ACBVE has been obtained by Basu (1976). These results wil1'be com

municated elsewhere.

S. Reliability of complex systems -

The model described before can be extended to more complex sys

tems. For example, a single component system of strength Y could

be subjected to k different independent stresses *X1,X2,...Xk.

Here reliability of the system is given by '

R = P{X1<Y, X2<Y, ... ,Xk<Y}

O1’

R = P{max(X1,X2, ... ,Xk) < Y}

An example of interest is the case where a beam with strength Y is

subjected to several stresses X1,X2, ... ,Xk. Another similar pro

blem of interest is to evaluate the reliability function R’ of a

k-component system of strengths Yl,Y2, ... , Yk respectively

each of which is subject to a common stress X. Here

R =_P{X<Y1, X<Y2, ... ,_X<Yk}

= P{X<min (Y1, . . , Yk)} .

As an example, the flow of a current X through an electronic com

ponent assembled from several subcomponents with abilities to accom

modate currents Y1,Y2, ... ,Yk would follow this pattern.
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Chandra (1975) has considered the problem of estimating R and

R’ under the assumption that the X's and Y's are all independent

random variables and (a) all follow normal distributions, (b) Y's

are all exponential and X is normal with known variance.

Bhattacharyya and Johnson (1974) considered the problem of

estimating reliability function R for a more complex m-out-of-k

system. Here each of m components of a system of strengths Y1,

Y2, ,Yk is subjected to a stress X and the system survives if

at 168511 in Out Of the 1< components survive. Assuming X,Y1, ,Yk

to be independent with distribution functions F(x), G1(YiL G2(Y2),

... ,Gk(yk). Bhattacharyya and Johnson considered the problem of

estimating the reliability function R=Pr(at least m of the Y1, ...,

Yk exceed X),under the assumption G1=G2=..=Gk=G, sa» and that F

and G are exponential distributions with known scale parameters.

Here

k ,R = aim 5: [1-Gc=<)1a[<=c=<>1“'°‘d<Fc=<n

Bhattacharyya and Johnson (1973) have also considered a nonparametric

approach for the above problem.

The author is currently investigating additional problems in

this area.results of which will be communicated elsewhere.
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UNDERLYING PROBABILITY DISTRIBUTION

OF GUN TUBE FATIGUE LIFE

Ronald L. Racicot

Applied Mathematics and Mechanics Division
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Watervliet Arsenal

Watervliet, New York

ABSTRACT. The fracture mechanics studies of gun tube fatigue

conducted thus far are essentially deterministic. That is, crack

growth and failure are described exactly by assuming that all pertinent

parameters are known. Much information has been gained by this

approach in studying the important parameters that affect fatigue life.

Fatigue life, however, is known to be a random variable. The proba

bilistic nature of fatigue life must, therefore, be taken into account

in the development of gu tubes.

The development approach used at the present time is to schedule

gun barrel replacement early enough to forestall failure during firing.

Since fatigue life is a random variable, this is accomplished by

statistically determining a "safe life" from fatigue test results on a

small number of tubes.

In this paper, a probabilistic approach starting with existing

theories of fracture mechanics is used to determine the best fit theo

retical distribution of life. The main purpose is to improve the

present statistical methods for determing safe life by providing a

basis for choosing a distribution in analyzing small sample data. The

approach used is to assume that the material properties and design

parameters in crack growth and failure laws are random variables.

Fatigue life is then given as a function of a number of random variables.

The fatigue test results for the 105mm Ml37Al and 175mm Mll3El tubes

are used as bases to estimate means and variances of the model para

meters. Monte Carol simulation studies are then conducted by assuming

various probability distributions for the model parameters and computing

the statistics of the distribution of fatigue lives. Results of the

Monte Carlo studies indicate that the best-fit theoretical distributions

of fatigue life are the 2- and 3-parameter log-normal.

1. INTRODUCTION. The general problem considered is the fatigue

failure of gun tubes resulting from repetitive firing pressure cycles.

Numerous studies have been performed at the Watervliet Arsenal and

elsewhere on fatigue crack growth and failure of gun tubes [1-12].

These studies include both theoretical fracture mechanics which relate

material properties and design parameters to crack growth and exper

imental measurement on actual gun tubes of crack depth versus number of

cycles.
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The fracture mechanics studies conducted thus far are essentially

deterministic. That is, crack growth and failure are described exactly

by assuming that all pertinent parameters are known. Empirical methods

are used to estimate some of the model parameters. Much information

has been gained by this approach in studying the important parameters

that affect fatigue life [10-12]. Fatigue life, however, is known to

be a random variable. The probabilistic nature of fatigue life must,

therefore, be taken into account in the development of gun tubes.

The development approach used at the present time is to schedule

gun barrel replacement early enough to forestall failure during firing.

Since fatigue life is a random variable, this is accomplished by

statistically determining a "safe life" from fatigue test results on a

small number of tubes [4-6,13,l4]. The safe life is a statistical

tolerance limit [15] for fatigue life for which current specifications

require at least a 0.999 probability that tubes will survive the

specified safe life. This is determined by first assuming a theoretical

distribution of fatigue life and then statistically computing the 0.999

tolerance limit at 90% confidence from a six tube test. The main draw

back of this approach is the lack of justification for choosing the

theoretical distribution. In the past the 3-parameter Weibull has been

arbitrarily assumed [4-6,13].

In this paper, a probabilistic approach starting with existing

theories of fracture mechanics is used to determine the best fit theo

retical distribution of life. The main purpose is to improve the

present statistical methods for determing safe life by providing a

basis for choosing a distribution in analyzing small sample data.

The approach used here is to assume that the material properties

and design parameters in crack growth and failure laws are random

variables. Fatigue life is then given as a function of a number of

random variables. The fatigue test results for the 105m Ml37Al and

175mm M113El tubes [4,5] are used as bases to estimate means and

variances of the model parameters. Monte Carlo simulation studies are

then conducted by assuming various probability distributions for the

model parameters and computing the statistics of the distribution of

fatigue lives [16, p. 124].

2. PROBABILISTIC MODEL BASED ON FRACTURE MECHANICS. There are

essentially three phases in the fatigue failure of gun tubes: 1) initi

ation of cracks; 2) stable crack growth; and 3) failure through unstable

crack growth or perforation of the tube surface. Initiation of cracks

occurs very early in the life of a tube due primarily to the heat

effects of firing the first few rounds [5,l0]. The main phenomena in

tube fatigue, therefore, are crack growth and failure.
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The theories of fracture mechanics for fatigue of tubes are well

covered in the literature and Army reports; so only the final results

are summarized here (see [ll] and references listed in this paper).

The crack growth model used in this study is based on the Paris [17]

expression for rate of crack growth and on analyses and experimental

results of Throop [12], Throop and Miller [ll], and others [1-10].

The rate of crack growth is approximated by the expression

III

in which b crack depth

N number of cycles

AK = range of variation of stress intensity factor K

for one cycle (see [18] for discussion of stress

intensity factor)

m = empirical parameter dependent on material and

stress intensity

M = empirical parameter dependent on material

properties.

In the Throop model [12], a value of m equal to 3.0 gives an

adequate overall fit to tube fatigue data although m is known to vary

from specimen-to-specimen and for different tube designs. The vari

ables AK and M in this model are given as

AK = as/-FF (2)

M = EK 0 /C (3)

1c Y

in which S maximum hoop stress at the bore of the tube,

P(w2+l)/(wz-1); P = internal pressure, w =

O.D./I.D.

empirical parameter which depends on crack shape

and residual stresses. Compressive residual

stresses at the bore of the tube are introduced

using the autofrettage process [19,20].

E Young's modulus

fracture toughness for a crack in a tangential

stress field. KIC is the value of stress intensity

K at which unstable crack growth begins.

yield strength

empirical parameter which varies with m to maintain

dimensional homogeneity and may be a function of

other material properties.

Q
ll

7< I-Q

C1

llII

Q

(')‘<

llll

113



Substituting (2) and (3) into (l) gives

db C--= -——-—-(aS/¥b)m (4)

dN Edy Km

In the probability model, the exponent m is allowed to be a random

variable with the mean being determined empirically. The variables

E, oy, KIC, a and S are random variables.

All of the parameters in (4) can statistically vary from cycle

to-cycle, as a function of crack depth and for different cracks within

a given tube. Depth measurements of the largest crack versus number

of cycles as well as results of probabilistic studies indicate, however,

that the greatest sources of fatigue life variability stem from tube-to

tube variability in the controlling crack growth parameters. Fatigue

crack growth in a given tube, therefore, is essentially deterministic

in comparison to tube-to-tube variability. The problem then reduces

to integrating (4) assuming that material and tube parameters remain

constant within a given tube:

2120 1< -1(m-2) -1-(m-2)

Nf = N-Ni = —f(OLS/T_T;'mi§l_2) (bi 7 -b 2 )

for m é 2 (5)

- LEOKIC 1n(b/bi)

C(aS)21r

for m = 2

in which bi initial crack depth which depends on the heat

affected zone and residual stresses.

Ni initial number of cycles yielding bi.

In (5), Ni is relatively small and can be assumed zero. The initial

crack depth bi is assumed to be a random variable.

Failure occurs when the crack depth b is either equal to the tube

wall thickness B or equal to the critical depth at which unstable growth

begins. Unstable crack growth in tubes occurs when

AKIC2

b = - -- 6C "((18) c)

in which be = critical crack depth

A = empirical constant which accounts for differences

in crack shape in the tube and in the specimens

used to determine KIC.

Finally, fatigue life Nf is equal to (N-Ni) in (5) where b = min

(Bsbc) -
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3. LEVELS OF VARIABILITY OF MATERIAL PROPERTIES AND DESIGN

PARAMETERS. Equation (S) is a model of fatigue life given as a

function of random material and design parameters. The theoretical

forms of the distributions of the different model parameters are

unknown. The normal, lognormal and Weibull distributions [21] were

consequently assumed for the model parameters in studying the form

of the distribution of Nf. For these distributions, the mean and

variance of each parameter are sufficient to fully characterize the

random variables.

Available test data for the 105mm Ml37Al and 175m Mll3El tubes

were used as bases to estimate means and variances of the model para

meters. Once the model parameters are characterized in a probabilistic

sense, sensitivity studies can be performed to determine important

factors that influence the statistics of Nf.

a. 105mm Ml37Al Tube Data. Table I lists fatigue life and

property data for nine 105mm tubes [4]. The fracture toughness was

not measured for these tubes and had to be estimated from the yield

strength and critical crack depth data using (6) and an empirical

relationship for oy versus KIC [22]. In addition to this data,

crack depth versus number of cycles data were measured on these tubes.

The model parameters m, a, and bi were estimated from this data by

fitting the model (5) to the data. Figure 1 shows a comparison of the

model to the data for some of the tubes.

TABLE I: FATIGUE AND PROPERTY DATA FOR 105M

Ml37Al TUBES

(1)

Tube Fatigue Life, bc, oy, K15» (2)

No. Rounds + Cycles in ksi ksi/ifi' a

59421 16798 0.80 196 90 .777

59071 12576 0.80 190 99 .851

58046 12469 1.07 171 116 .864

59906 12162 0.60 189 85 .841

62103 10971 0.85 192 107 .891

59895 10801 0.80 187 104 .892

59527 10397 1.05 204 121 .910

59239 9503 0.70 187 100 .921

59531 8882 0.75 207 106 .944

(1) Estimates using equation (6) and 0 = 334 - 1.39KIC [22]

(2) Estimates from crack depth vs. cycIes data.
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Table II is a summary of the means and standard deviations of the

model parameters either estimated from the 105mm tube data or assumed

if no data was available.

TABLE II: SUMARY OF MEANS AND STANDARD DEVIATIONS

OF MODEL PARAMETERS FOR IOSMM TUBES

Standard

Parameter Mean Deviation(1)

Do, Outside diam., in 6.85 0.0 A

Di, Inside diam., in 4.21 0.0 A

P, Max. Pressure, ksi 42 0.0 A

a, Crack shape-residual stress

parameter 0.877 0.050 E

KIC, Fracture toughness, ksi/in 103 11.5 E

oy, Yield strength, ksi 191 Oy = 334 - 1.39KIC

bi, Initial crack depth, in 0.02 0.001 A

m, Rate exponent 3.5 0.1 A

E, Young's Modulus, ksi 30,000 300 A

A, Critical crack depth constant 1.604 0.0 A

C, Empirical constant 0.0333 .0.0 A

(1) E E Estimated; A E Assumed

b. 175mm Mll3El Tube Data. Table III summarizes the fatigue and

property data either measured or estimated from tests on four 175mm

tubes [5]. Figure 2 is a comparison of the model to the crack depth

versus cycles data for these tubes. The means and standard deviations

estimated from data or assumed for the model parameters are summarized

in Table IV.

TABLE III: FATIGUE AND PROPERTY DATA FOR l75MM M113E1 TUBES

1

Tube Fatigue Life, bc, oy, KQ. K1c( ) (2)

No. Rounds + Cycles in ksi ksi/in ksi/in a

4134 10974 _Z 3.98 156 130 152 .900

4133 12313 2.40 169 115 115 .874

4127 15255 :_3.98 151 124 139 .819

4130 16201 > 3.98 153 135 136 .805

(1) KIC was adjusted to account for b¢ = 2.40 for tube 4133 by

nonstandard specimen.

(2) Estimates from crack depth versus cycles data.

applying equation (6). KQ is an estimate of KIC using a
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TABLE IV: SUMARY OF MEANS AND STANDARD DEVIATIONS OF

MODEL PARAMETERS FOR 175MM TUBES 4

Parameter,

(See Table II Standard

for Definitions) Mean Deviation(1)

no 15.0 0.0 A

oi 7.04 0.0 A

P 46 0.0(2) A

a .8495 0.045 E

KIC 135.5 15.3 E

oy(3) 146 oy = 334 - l.39KIC

bi 0.06 0.005 A

m 3.0 0.1 A

E 30000 300 A

A 2.26 0.0 A

C 0.2413 0.0 A

(1) E E Estimated; A E Assumed

(2) Tube-to-tube variation assumed zero; however,

cycle-to-cycle standard deviation Z 0.90 from

[23].

(3) oy was computed from the equation given. This

resulted in a somewhat lower value than the measured

values given in Table III. The computed O is still

within the required specifications of 140-T60 ksi.

4. BEST FIT PROBABILITY DISTRIBUTION OF FATIGUE LIVES. In this

section, the model expressed by equation (5) is used to generate prob

ability distributional information for fatigue lives of tubes. This

is accomplished by first assuming probability distributions for the

model parameters and then using Monte Carlo simulation to generate

the fatigue life distribution. The simulation trials were conducted

as follows:

a. The general form of the distribution for the model parameters

is fixed. A choice of one of three possible distributions is used;

normal, lognormal or Weibull.

b. The mean and standard deviation for each parameter is fixed

using the test results and assumptions given in Section 3 as bases.

It should be noted that the 105mm and 175mm tube data are used only

to provide a starting point for conducting the Monte Carlo trials.

c. A value for each of the random model parameters is generated

using random numbers [16, p. 124].

d. The fatigue life for the given set of parameters is computed

using (5) and (6).
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e. Steps c) and d) are repeated J times (usually 1,000 to 10,000)

yielding J different values of fatigue failure times.

f. Various distributional statistics are computed from the J

failure times; eg. mean, variance, coefficients of skewness and

kurtosis [16, p. 146], 99.0 and 99.9 lower percentiles, and the K-S

(Kolmogorov-Smirnov) statistic [16, p. 466].

Steps a) through f) can be repeated for different model parameter

distributions, different values of parameter means and standard

deviations, different failure criteria, etc.

A number of candidate theoretical distributions were considered

for fatigue life; normal, 2- and 3-parameter lognormal, 2- and 3-para

meter Weibull and gamma [16,21]. A comparison was made of the various

theoretical distributions to the Monte Carlo model distribution. This

was done by first fitting the theoretical distribution to the model

distribution by equating means and variances. The third parameter in

the 3-parameter distributions were fixed by equating the 99.9 lower

percentile of the theoretical and model distributions. The reason for

this was to match as closely as possible the lower tails of the

distributions for comparative purposes. Goodness of fit was then

checked using the K-S statistic and by comparing the coefficients

of skewness and kurtosis (third and fourth moments) and the 99.0 and

99.9 lower percentiles.

The K-S statistic is a measure of the maximum deviation of a

theoretical cumulative distribution from a set of data; the lower the

K-S statistic, the better the fit. The data in this case are the Monte

Carlo failure times. Table V lists the K-S statistics for the various

theoretical distributions as a function of parameter distribution and

data bases.

TABLE V: K-S STATISTIC FOR COMPARING MODEL WITH

VARIOUS THEORETICAL DISTRIBUTIONS

K-S Statistic*

105mm Ml37Al Tubes 175mm Ml13El Tubes

Failure Time Parameter Distribution Parameter Distribution

Distribution Normal Lognormal Weibull Normal Lognormal Weibull

Normal .068 .061 .120 .050 .040 .109

2-p Weibull .084 .078 .135 .082 .073 .136

3-p Weibull .081 .073 .299 .143 .138 .330

2-p Lognormal .029 .022 .075 .019 .010 .073

3-p Lognormal .021 .023 .046 .014 .010 .036

Gamma .041 .034 .090 .029 .019 .085

*Only 1,000 Monte Carlo trials were used in this case to reduce excessive

computer time.
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It should be noted that the distributions of the material and design

parameters in equation (5) are not known. Different distributions

were consequently assumed to indicate the importance of this factor,

if any, on conclusions made about the failure time distribution. The

K-S statistics given in Table V indicate that the 2- and 3-parameter

lognormal provide the best overall fit to the model for the different

parameter distributions considered.

An explanation is required for why the K-S statistic in Table V

increased in some cases for the 3-parameter distribution in comparison

to the 2-parameter distribution. Generally, one would expect a better

fit when the number of distribution parameters is increased. This

would be true if the 3rd parameter was chosen to minimize the K-S

statistic. However, in the gun fatigue problem the main concern is

estimating probabilities at the lower tails of the distributions.

The third distribution parameter was consequently chosen by equating

a given lower percentile. This resulted in a worse fit at the upper

tail for some of the cases considered, particularly for the 3—parameter

Weibull distribution, resulting in a higher K-S statistic.

In light of the above discussion, it is of interest to compare other

goodness-of-fit statistics which would indicate behavior at the lower

tails. Table VI lists the coefficients of skewness and kurtosis and

the 99.0 and 99.9 lower percentiles for the model and theoretical

distributions. The parameter distributions were assumed normal for

these particular results with 10,000 Monte Carlo trials run for each

case. Again, the lognormal, particularly the 3-parameter lognormal,

yielded the best overall fit to the model statistics. Compare, for

example, the 99.0 percentiles of the assumed failure time distributions

to the model value.

TABLE VI: COMPARISON OF SIMULATED MODEL DISTRIBUTION

WITH THEORETICAL DISTRIBUTIONS

Coefficients of Lower Percentile

Failure Skewness Kurtosis g 99.0 99.9*

Time 105mm 175mm 105mm 175mm 105mm 175mm 105mm 175mm

Dist. Tubes Tubes Tubes Tubes Tubes Tubes ,Tubes Tubes

Normal 0.0 0.0 3.00 3.00 5589 7891 3598 5977

2-p Weibull -0.27 -0.41 2.90 3.11 5171 7181 3298 5007

3-p Weibull 0.37 0.26 2.87 2.78 6688 8707 6050 7954

2-p Lognormal 0.68 0.55 3.84 3.55 6802 8857 5745 7712

3-p Lognormal 0.81 0.65 4.18 3.75 6992 9003 6050 7954

Gamma 0.45 0.37 3.30 3.20 6456 8571 5218 7256

Model 0.86 0.76 4.45 3.97 6996 9154 6050 7954

*The third parameter for the 3-p distributions was chosen such that the

99.9 percentile was equal to the model results.
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There is theoretical justification for why the lognormal could be

expected to provide a representation of the fatigue life distribution.

The model (5) gives fatigue life as a product of random variables. The

limiting distribution for the product of an infinite number of random

variables is the lognormal regardless of the form of the distribution

of the individual random variables [16, p. 262]. In practice the

actual number of random variables required to give a lognormal depends

on a number of factors including the form of the distribution of the

individual random variables as well as accuracy required for the

distribution which is to represent the product. For example, if each

random variable in the product is itself lognormal then the product

is always lognormal regardless of the number of random variables. It

appears that even though equation (5) represents the product of at

most seven random variables, this is apparently enough to give a trend

toward lognormal as indicated by the results.

5. FUTURE RESEARCH EFFORTS. The results reported in this paper

were based on the particular fracture mechanics model given by equation

(5). As additional experimental results are obtained this model may

be revised as well as the values of the model parameters and their

variances. The effect on life distribution must be rechecked in this

instance.

In any case, a number of interesting studies may be pursued using

the developed probabilistic model:

a. determine the relative effects of variability in design and

material parameters on the variability of fatigue life;

b. study possible methods of increasing safe life through control

of statistical parameters;

c. study different methods of computing safe life; and

d. improve the initial design approach for new gun tubes.
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ESTIMATION AND EFFECT OF-NOISE CORRELATION

ON VARIANCE ESTIMATION FROM MOVING ARC SMOOTHING

Paul H. Thrasher

Quality Assurance Office

US Army White Sands Missile Range

White Sands Missile Range, New Mexico

ABSTRACT. Correlation in the noise on Y, in measurements of Y versus X

with X assumed exact, does not formally effect the moving arc least-squares

estimate of Y. "It does, however, effect the variance estimate of Y. Analysis

has been done to find correction factors to the zero correlation estimates of

(1) the moving arc smoothing factor and (2) the degrees of freedm in the

relation

. . _ _ 2 [Smoothing Span Factor]
[Variance Estimate] - [Z(YSmoOthed Ynata) ] —IDegrees of Freedom] .

Both correction factors depend on the correlation matrix. An algorithm has

been devised to estimate the correlation matrix by assuming First Order Markov

correlation. Problems with the application of the theory are discussed and

possible modifications are suggested.

'1. INTRODUCTION. In many physical measurements of related quantities X

and Y, two conditions exist. First, the independent variable X can be measured

so much more accurately than the dependent variable Y that X can be assumed

exact. Second, the man and/or machine system which measures Y introduces

correlated noise. In one example, the tracking of missiles, X is time and Y

is position.

The statistical analysis may be complicated by a lack of knowledge about

the physical model describing the data. One approach to this dilemna is to do

a least-squares fit of a polynomial to a smoothing span of N data points in

order to find a "smoothed" value for the middle point i. To aalyze the (i+l)th

point, the smoothing span must be shifted one point forward in X and the least

squares analysis must be repeated. In the example of missile tracking, a

quadratic polynomial fits a highly restricted physical situation. The quadratic

description is rendered invalid by such factors as air resistence, changing

rocket thrusts, and stage separation. Since the correct physical description

is unknown, however, the quadratic polynomial is normally used.

The theory presented below is based on a polynmial model of degree n.

Three sections are devoted to the theory.

First, an algebraic derivation yields values of (a) smoothed positions

and corresponding derivatives dmYS;i/dXm, (b) estimates of variances of

dmYS;i/dXm when the noise correlation is not considered, and (c) correction

factors to these variance estimates in order to take correlation into account.
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These correction factors are functions of the correlation coefficients and

the number of degrees of freedom in the smoothing span.

The second theory section is a matrix derivation which obtains (a) an

alternate expression for the polynomial obtained used in the first section and

(b) the relation between the number of degrees of freedom and the correlation

natrix.

The third section estimates the correlation coefficient in the correlation

natrix by using a First Order Markov approxmation.

The fourth section reports on difficulties encoutered in applying the

theory to (a) the output of a white noise generator that has had First Order

Markov correlation introduced into it and (b) actual missile tracking data.

The basic problem is that the results appear to depend on analysis variables

which have no physical influence on the correlation present.

A brief fifth section lists the primary cause of the difficulty and

possible corrective procedures. This information was provided by the panel

at the presentation of this problem to the Twenty-Second Conference on the

Design of Experiments in Army Research, Development, and Testing.

2. ALGEBRAIC RELATION BETWEEN VARIANCE ESTIMATES FOR IGNORING AND

CONSIDERING CORRELATION.

This section discusses the effect on the covariance of measurenents,

COV(Yi+j,Yi+j,) = p(i,j,j',w,s) VAR(Yi) , (2.1)

on the variance of a least—squares polynomial. If the data's correlation is

either non—existent or ignored, the correlation coefficient, p(i,j,j',w,s),

is set equal to 6jj.. In general, however, the measuring device's bandwidth

and neasurement interval, w and s, result in o # 6jj,. The following equations

trace the influence of the data correlation through the noving arc smoothing

process.

The calculation of the snoothed dependent variable does not formally

depend on the correlation in the data. An nth degree polynomial, YS_i+j, is

9

constructed through N data points. The ith point is in the center of this

snoothing span and j ranges from -a = —(N-l)/2 to a to locate individual

measurements. The polynomial is a sunnation over orthonormal function which

are defined by

k

._ .2,

Fk(s]) - Z Ck£(]) , (2.2)

2-0

where orthonormality deterndnes the Ck£'s; thus, the polynomial is
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n n k 2

yS;i+j = kgo Ak(l) Fk(s3) = kgo Ak(1) Ck£(J) . (2.3)

A least-squares calculation mi.n:I.mizes -

G (X

-2 : Y 0 a"Y. n 2 -jg“ ej jig ( S;i+3 1+3)

to determine the constants to be

G

Ak(i) = 32-0‘ Fk(Sj) Yi+j . p (2.5)

The mth derivative of YS_i is obtained by m differentiations of YS_i+j with

3 3

respect to (Xi + sj) and then setting j equal to 0; this results in

_ m t .m m n ~

<f“vS;i/<12“ _ [(1/S > <1"’rS;i+j/C1; ]j 0 (m!/S > k§mAk<1<> cm

1% ajm Yi+j (2.6)

where

-mlnk .1

ajm : Q5 kgm 250 Cm cu“) '

Since the dmYS_i/dXm values are functions of the Yin. data through the

D

Ak(i) values, the errors in these derivatives are also dependent on the errors

and correlation of the Yi+j data. The variance of dmYS_i/dXm is calculated

9

from expectation relations to be

1'1 1'1

vAR(d“&S;i/<:><'“) = (III!/Sm)2 kgm kgm ckmck.'m COV[Ak(i),Ak.(i)] . (2.1)

The covariance of Ak'(i) and Ak.-(i) is found to be
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IIID

a o

oov <1), .(i)]= Z Z {Fk.(sj’)xH». A. j,_,j.=_,

where Yu_i+j is the true mean of the i+j point. By using

’
.

COV(Yi+j,Yi+j,) = 6jj,VAR(Yi)

for

the correlation-ignored result is found to be

I1

[vAR(d’“rS ; i/ax") 1OORR_IG = (m:/Sm)’ VAR(Yi) kgm cm’ . (2.9)

The degrees of freedom used in VAR(Yi) is n+l less than N. By using the general

expression p(i,j,j’,w,s) VAR(Yi) for COV(Yi+j,Yi+j,), the correlation-considered

result is found and the ratio of the correlation-considered estinate of variance

to the correlation-ignored estimate is calculated to be the product of

1' ii iii if <>“<i>"'< >

_ _ , __ _’_ C16-nck* cklckezej j’ pi>jsj’>wa3

(1) = k-m k =m 1-0 2 =0 3--a 3 --o? m p (2.10)

2
kzmckm

where (j)z = l for j=Z=0'and (j')2' = l for j'=£’=0, and

_ N-(n+1)
Pb - -—fi:T—— (2.11)

where T is the "true" reduction in the degrees of freedom discussed in Section 3

For segments of the data in which the correlation coefficient nay be

assued constant in i and symetric in j and j’, the Rmn(i) nay be rewritten

to expedite computer calculations. For j=j’, the correlation coefficient must
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be unity. 'I'his fact and the symmetry about the two diagonals in the array of

possible j and j’ values are used to rewrite the numerator of Rm. The

definition and orthonormality of the Fk(sj) functions simplify the sum over

the main diagonal; the result is

-1
I

n n n k (N-1)/2

2 2

n _ k

Rm“ = [kgm Chg L511. CM“ + 2 kgm Jcgm ago 9/Z0 3'21

. 2, .2,’ . .

CkmCk.mCk£Ck.2.(J) (-3) p(],-3,w,s)

n n k k’ (N—l)/2 (j-1)

+~2 ,2 2 ,2 ,2 ,,2_
k=m k =m 2,=0 9. =0 ]=l 3 =- 3-1)

c c (j>”<">“'p<j 5' w S) <2 12>Ckmck’m kt 1<'z’ 3 ’ ’ ’ '

where (j’)!' = 1 for j’=2,'=0.

The constants in the orthonormal functions may be obtained by a bootstrap

derivation by starting with C . The non-zero constants for subscripts less

than or equal to 5 are °° .

C ‘J l/N

c '=./12/Mm’-1) ,
11

C20 = q(5(N2-1)/l+N(N2-1+) ,

"cu = /180/N(N2-l)(N2-4) ,

c“ = =/7(3N2-7):/N(N2-1) (N2-1+) (N2-9) ,

cu =J 2800/N(N2-l)(N2-1+)(N2-9) ,

cw =J 8l(N2-1)(N2-9)/6l+N(N2-H)(N2-16) ,

cu = ;-/225(3N2-l3)2/N(N2-1)(N2-H)(N2-9)(N2-16) ,
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c =\/ uuloo/N(N*-1)(N2-u>(N*-9><N’-16) ,
lolo

cs! =\/ ll(l5N“-230N2+H07)2/l6N(N2-l)(N2-H)(N2-9)(N2-l6)(N2-25) ,

cs: - :/5390O(N2-7):/N(N2-1)(N2-H)(N2-9)(N2-l6)(N2-25) , and

css \/ 6985HH/N(N2-l)(N2-H)(N2-9)(N2-l6)(N2-25) . (2.13)

The systematic occurrence of zeros in the table of Ckz values may be used to

futher expedite computer calculations. Since Ckz = 0 unless k + 2 is even,

each term in the sums of Equation (2.12) is identically zero uless k + m,

k’ + m, k + 2, and k’ + 1’ are all even. '

3. MHTRIX DERIVATION OF NUMBER OF DEGREES OF FREEDOM.

The raw variance of data analyzed with a smoothing span of N points is

given by

E(E T E >

_ ~e ~e
VAR - -" 1

The numberator, E(EeT E6), is the expectation value for the sum of the squares

of the differences between data values and corresponding snnothed or filtered

values. The denominator, N-T, is called the number of degrees of freedom. The

reduction in the degrees of freedom, T, is dependent on the correlation of the

data in the smoothing span. For zero correlation, T is one nore than the degree

of the polynomial used for smoothing. This corresponds to the number of constants

in the polynomial. For the total correlation, T is equal to N. In this case,

the variance is undefined. The following derivation yields a description of

the degrees of freedom for intermediate correlations.

The dependent variables, Yr, may be arranged in N by l matrices. Each of

these colun matrices are related to the independent variables, polynmial

coefficients, and random errors by

xa +.E (3.2)
~ ~~ ~e '

-<
ll

The rth row of the random error column matrix, E8, contains the error, er, of

the rth dependent variable, Yr. The nth degree polynomial coefficients, Bn,

Bn_l, ..., B0, are in the n+1 by l colun matrix B. The N by n+1 matrix X may
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7 ~— — ,_ —* , — _—————*——a-—_-__i _ ______ Wriii iwi __
< -. -- - __—;---u-— A -— -——%_---..-:-_—. --.1

be considered as a composite of n+l column matrices, >~<n, 2_<n_| , , {(0. The

rth row of each >~<c contains the cth power of the independent variable Xr that

corresponds to the dependent variable Yr. The smoothed or filtered dependent

variables Y , are given by the independent variables, X, and estimates of the

polynomial Icoefficients, 8, by ~ _ u

§=§§ . (aw

A least-squares calculation may be used to find The summation of squares

for the deviations, "

er = Yr - §r , <3.u>

is given by

rgl er’ = 587 56 <3.s>

T . ' ' . '
where Ee 1S the row matrix which lS the transpose of the colurrn matrix Ee

containing the eP's. Substitution of Ee = Y-Y = Y-XB, differentiation of the

sum of squares with respect to Bi, and setting the result equal to zero yields

0 = [—YTXlr + 8TxTx|r] + [-YTx|r + 8TxTx|r]T (3.6)

vhere Ir is a column matrix defined in terms of Kronicher delta functions,

Gk’, = 0 if kit and sk,k = 1, by

6n,I

Ir = sn:1" (3.7)

60!

Since each of the two terms in Equation (3.6) are scalars (i.e., 1 by l matrices)

and the second is the transpose of the first, the two terms are equal. Thus,

Equation (3.6) simplifies to

o = 2[-YTXIF + 8TxTx|r] . (3.8)
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This further simplifies to

Zw)

I

IX

I III

2><

-1

I-<

= <xT (3.9)

where the '1 superscript is the standard notation for inverse. This result

utilizes the raw data to estimate polynomial coefficients.

The raw variance of the data within the snnothing span is foud by relating

the expectation values of EeTEe, E€TE€, and EEE€T. The first is estimated by

the sum of the squares of Yr-Yr, the second is the product of N and the desired

variance denoted by 02, and the third is the product of the correlation natrix,

V,and oz. Substitution of Equations (3.3) (3.9) and (3.2) into the definition

Ee = Y-Y yields

E = [I - x<xTx>"xT] E (3.10)

where I is the standard unit matrix whose elements are defined by Iij = Gij,

and (XTX)'1 is the inverse of (XTX) defined such that

(xTx>"(xTx> = <xTx><xTx>" = .

~~'~~ ~~~~

zi

Equation (3.10) leads innediately to

T _ T T _1 T
Ee Ee T Es [1 T §(§ 5) 5 1 E8 ' (3'll)

Taking the expectation value of Equation (3.11) yields

, T _ T _ T T -1 T
E‘5¢ Ee) ' E{Ee Es} E{Ee §(§ 5) 5 Es} '

The first term on the right is just N02. The last ternlnay be simplifed by

noting that the quantity in braces is a l by 1 matrix, replacing this simple

matrix by its trace, and using the identify

Trace (ABC) = Trace (BCA) = Trace (CAB) 0

~~~ ~~~ ~~~

Further simlification is made by interchanging the order of expectation and

trace operations and finally by naking the usual assuption that the measurements

in X are exact so
~

T _ T
E[f(§)(§€§€ >1 - f<§>E<§e§e > .
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The result is

T 2 T 1 T T

ruse 1-:6) = No - 'I‘race {xcx x>- x messes >1 . (3.12)

The use of E(EeE€T) = X02 Yields

E(E TE )

-.8 -6

oz = . (3.13)

N-'I‘race{X(XTX)"XTV}

~~~ ~~

Fquation (3.13) is cumbersome because the trace is performed on an N by N ma1rix.

Trace algebra converts the quantity inside the braces to a n+1 by n+1 matrix.

Estimation of E( ESTES) by EeTEe then yields an estimate of the raw variance to be

T .

3} = 5° ge T . (3.111)

N-'Irace{(X x)“x vx}

The evaluation of the effective degrees of freedom, 'i.e. , the denominator

of Equation (3.114) is dependent on the data through V and the smoothing process

through X and N. The X matrix is given in terms of xj = js + si where xi is

the mid-point of the smoothing span and s is the measurement interval. The

general form is

xn xn_l . . . . .-0. -or

X = xn xn'1 1 (3 15)

-. -a+l -a+l ' '

xn xn_l . . . . . l

on . u _

where on is defined by (N—l)/ 2. Although X depends on s and xi, the degrees of

freedom do not. The independent variable's increments, s, has no effect because

it does not effect either the variance or the sum of the squares of the deviations

The midpoint of the independent variable segment, xi, has no effect under the

necessary assumption that V matrix describes the correlation in all segments

considered. For computational ease, s and xi may be set‘ equal to l and 0 for
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the degrees of freedom calculation. This si.mplifies xj to xj = j. The

calculation of the n+l by n+1 matrix, 2_(TV_>_(, is further simplified if V is

described with a single Markov constant p by Vm = plrhcl . The other n+l by

n+l matrix, Q_(T§)"1 , may be obtained by either analytically or computationally

finding the inverse‘ of

Xx?“ Zxgml . . . Zj2n . . . Zjn

5T5 = ;><§“'1 ;..§“"2 ;..“"1 = . . (3.16)

i X’? ><‘.“1 2a+l j“ 2o.+l

J I1 __ -— _.

where all summations are over the range -omijioz. The sunmations over powers of j

may be found with either a computer or a mathematics handbook.

If one desires an explicit equation for the degrees of freedom, the

procedure of the above paragraph can be done analytically. The results for

n=0, n=l, and n=2 are, respectively:

whereH
~

DOF° = N - wfliy wowgo » (3.17)

nor! = N - % I1a%D-@lT\_/131 + t|0Tv@€I , and (3.18)

IDF2 = N ' o1(o1+l)(2o:I)(2a+3)( 2a-1) E2T‘.'i'2 + (liguie) '11TYi'1

' igfill 'I'2T‘.'§.'o + EQTYDQJ (349)

is given by

(-a)j

ajj = (-a+1>j (3.20)

(a)j
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with the understanding that [ 01° = 1. For each of these three equations,

substitution of V = HOHOT yields zero. This simply states that totally

correlated data has zero degrees of freedom.

If the identify matrix is used for V i.n Equations (3.17), (3.18), and

(3.19), the results are DOF° = N-1, 11)F1_~= N7-2, and DOFZ = N-3. 'I'his (checks

with lX)Fn F N-(n+1), i.e. , the number of degrees of freedom equals the number

of points in the smoothing span minus the number of constants in the polynomial.

ll. ESTIMATE OF CORRELATION COEFFICIENTS.

The covariance of two raw data points, Yin. and Yi+j ,, is related to

their correlation coefficient and the variance of the points in the range

i-(1 _§ (j or j’) i i+a by .

The pseudo-deviations are defined by

where Ys_i+j is not the true mean which would yield the true deviations; instead,

S

it is the kth degree polynomially smoothed value from the operation

- G

YS;i+j = PL! ap Yi+j+p . (4.3)

The ap's a.re restricted by

_a

Pia aP- 1 ,

and are defined by Equation (2.6) with j = p and m = 0.

By using two fast Fourier transforms and associated manipulations,

COV(ei+j, ei+j ,), may be obtained. The needed quantities, however, are either

COV(Yi+j, Yi+j,) or pi+j,i+j, and VAR(Yi). Unfortunately, these cannot be

obtained without applying constraints. Presented below is a method of

determining pi+j i+j, and VAR(Yi) assuming that Yi+j is a kth degree polynomial

9

with additive First Order Markov error.
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By defining bp E 6P0 - ap, the pseudo-deviations may be found from

on

eiij = pgia bp Yiiiip . (4.1))

By using

or.

2 a = l

P=-0 P

and

o

2 b = 0 ,
P=-Q P .

Eh:.~tion value of (ei+i, ei+i ,) may be shown to equal both OOV(ei+i ,

1 3

o 0. i

P§_u q§_a bp bq cov<ri+i+P, Yi+i,+q) .

These results and the use of Equation (11.1) leads to an expression,

C! U.

COV(ei+i, ei+i,) = VAR(Yi) pgia q;_a bp bq pi+j+P,i+j,+q , (4.5)

which relates the known pseudo-deviation covariances to the desired raw data

correlation factors. This equation cannot be solved for pi+3. i+3. ,, however,

S

because the double sunmation is over (2cx+l)"' terms. In order to circumvent

this problem of having rrore unknowns than equations, it is convenient to

mathematically model the correlation factor.

The First Order Markov error in the i+l point, eiil, is given in terms

of a single Markov constant, p, the error of the i point, Eli, and a random

variable, niil, by _ -

ei+i = psi + ni+l . (11.6)

Relating expectation values of 1 - , ei+i) for all values of j may be used to

express the correlation coefficias-.:1t pi i. as

3

. . = |j'j'| (u 7)
pl >1
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By using Equation (4.7) and defining an index ¢ = j’ - j, Equation (4.5)

becomes

G G

_ |¢+q-Pl
COV(ei+j, ei+j.) - VAR(Yi) p§_a q;_a bb bq p (4.8)

This set of equations has only two unknowns, p and VAR(Yi). The straight

forward approach would be to define a deviation by

I _ (1 G I¢+_|

A = COV(e. . e. ..> - VAR(Y.) Z Z b b p q P (4.9)

1+3’ 1+] 1 p=_u q=_a p q

calculate a sum of squares by '

2a

s a Z A2 (4.10)

¢=-2a

/\

and find the values of 6 and VAR(Yi) that simultaneously satisfy

Q
I

_ 3S

4]
p=6, VAR(Yi) = (A\t<Yi) (4.11)

and

_ as

° T avAR(YTI:] ,\

1 p=§, VAR(Yi) = VAR(Yi) (4.12)

Unfortunately, the direct procedure is algebraically intractable. An

alternate approach is to first perform a calculation of Equation (4.12) and

find the 6AR(Yi) as a function of p to be

Q

Z [COV(e. .,e. .,) X Z b b p|¢+q_PE]

,c\ =_ 1+) 1+1 P q

VAR(Y.) = ¢ 2“ P q > (4.13)

1 ° I I 2Z < ¢*q-P )

¢=-2a 40>»: 40"’!

wt!’ DU‘ o
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and second, define a new deviation as a function of p only as

/“\ _
A’ 5 COV(ei+j,ei+j,) - VAR(Yi) If) (Z1 bp bq p|¢+q PI (u.1u>

and graphically find 6 as the value of p which minimizes

\

s_ z Z A’2 (u.15)

¢

where ¢ is still bounded by -2a 3 ¢ §_2a. In this graphical procedure S’ is

of course a function of p. The saving restriction which makes the procedue

tractable is that p is bounded by -l 1 p i +l. The computation work is still

considerable; however, so it is worthwhile to use the invariance under change

e - + - Iin sign of ¢ of COV(ei+j> ei+j+¢)> Z Z bp bq O|¢ q pl» and A (¢)

- P q

5. NUMERICAL RESULTS. Two sets of numbers have been analyzed in order to

deterndne the usefulness of the theory in the last three sections. The first

set has been generated by using a random noise generator and introducing First

Order Markov correlation of known p. The second set is from a missile versus

drone test at White Sands Missile Range.

- The generated numbers do not lead to completely desirable results from the

analysis. Table I shows the input and one set of output of the computerized

equations from the last three sections. For large values of p, the two resulting

variance estimates agree with each other but diverge considerably from the input

variance. The basic discrepancy occurs in the output p.

Comparison of the left and right columns of Table I shows deviations for

all values of p. Table II shows sample output of p's for ranges of snnothing

span N and polynomial degree n. Since the output average is 0.57 1 0.07 when

the input is 0.5, and 0.17 1 0.05 when the input is 0.2, it appears that the

problem is in the variability of the output.

Analyzing data from missile versus drone missions displays were variability

of the output. Table III shows the results of varying smoothing span and/or

polynomial degree on missile position data. The resulting output p varies in

an unsystematic manner. A further lack of uniformity is shown in Table IV. The

drone, which the missile of Table III was attacking, was airborne for sufficient

time to analyze eight successive segments of 256 data points. The variation in

output p between segments is evident; but again there is no evident system of

variation. A final illustration of the non-uniformity of the output p is shown

in Table V. The Cartesian coordinates of Table IV were calculated from azimuths

and elevations measued with several cinetheodolites. Table V shows the averages

and variance estimates of five elevation output p's from one cinetheodolite.
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6. POSSIBLE CAUSES OF DIFFICULTIES. The panel at the Twenty-Second

Conference on the Design of Experiments in Army Research, Development, and

Testing made some comments on this problem.

First, the use of polynomials was seriously questioned. The fluxuation

in calculated p should not occur if the mathematical model fits the physical

situation. Since the form of the equation for missile trajectories is unknown

except in idealized circumstances, a parameter free approach was suggested.

Second, if polynomials must be used to compare with current correlation

ignored results using quadratics, it was suggested that the sum of squares of

deviations should not be minimized; instead of deviation, the deviation divided

by the square root of a previous estimate of the variance should be used. This

procedure, which would change both the position estimates and its variance

estimates, should be iterated until the position estimates stablize.

Third, since the path of an object depends on previous position, velocity,

and acceleration of the object and not on future values, it was suggested that

estimates of position and variance should be determined from the forward time

end of the smoothing span, instead of its midpoint, estimate position and

variance.
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TABLE I

OUTPUT USING n=0 AND N=l7

VARIANCE ESTIMATES

MOVING ARC '
INPUT wmvmmmv

MARKOV p VARIANCE RMS OF CORRECTED

or OF GENERATOR FOR DEGREES p - 5* 5

@mmwmR emmwmm mnmm OFHEHDM Rmmnm ESHMME

.0V 1 1.03 1.1u 1.13 .05

.1 1 .97 .95 .99 .12

.2 1 .95 .91 .55 .11

.3 1 .90 .55 .35 .27

.u 1 1.02 .57 .90 .37

.5 1 1.07 1.12 1.15 .51

.5 _ 1 .95 1.01 1.12 .55

.7 1 1.01 .92 1.05 .77

.5 1 .99 .57 .73 .70

.9 1 .39 .93 .97 .79
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SDDOTHING

SPAN n = 0 or 1

17 .61

19 .61)

21 .67

17 .11

19 .11

21 .13

TABLE II

O

SCI

no-3
r~.)"U

0C.‘dd

co

'0

{J n

.62

.58

I5“

.20

.19

.11-1

l&or5 INPUTp

.51

.1-15

.50

.25

.18

.21

.5

.5

.5

.2

I2

.2
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SMOOTHING O U T P U T p "

SPAN n = 0 or 1 n = 2 or 3 n = 4 or 5

7 .02 .20 .99

11 .00 .09 .30

15 .10 .04 .09

21 .35 .05 .07

31 .58 .10 .07

TABLE IV

DRONE ANALYSIS

OUTPUT FOR n = 2 or 3 AND SMOOTHING SPAN = 15

SEGMENT X Y' Z AVERAGE

1 .39 .80 .59 .59

2 .46 .34 .48 .43

3 .57 .31 .59 .49

4 .89 .69 .50 .69

5 .86 .80 .68 .78

6 1.00 .43 .52 .65

7 1.00 1.00 1.00 1.00

8 -.05 -.06 .25 .05

AVERAGE .64 .54 .58 .59

TABLE V

OUTPUT p FOR ELEVATION OF DRONE FROM

FIVE SUCCESSIVE SEGMNTS ON ONE FILM

V n = 0 or 1 n = 2 or 3 n = 4 or 5

.66 i .27 .34 i .39 -.08 1 .62

TABLE III

MISSILE ANALYSIS
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ROBUST OUTLIER DETECTION IN TRAJECTORY DATA REDUCTION

William S. Agee and Robert H. Turner

Analysis and Computation Division

National Range Operations Directorate

US Army White Sands Missile Range

White Sands Missile Range, NM 88002

ABSTRACT. A data reduction program at White Sands Missile Range that

often has an hour of flight time is called the Multiple Radar Tracking

System (MRTS). Undetected outliers destroy automated data reduction

causing a significant number of reruns with human detection of these out

liers. The procedure described in this paper enables the MRTS to reduce

large quantities of radar data with very little chance of being influen

ced or ruined by outliers.

Outliers are detected by examining residuals from a least squares

estimation. Three robust methods of estimation which are insensitive to

outliers are described. The masking effect is almost nonexistent in

these methods.

l. INTRODUCTION. An entire trajectory of Cartesian position velo

city and acceleration data is produced from radar (range, azimuth, and

elevation) data by the Multiple Radar Trajectory System (MRTS). The MRTS

consists of four distinct areas:

a. Data gathered from several sources are merged onto one file after

being calibrated and time corrected.

b. A preprocessor eliminates outliers and computes initial observa

tion variances and initial X, Y, Z positions. The robust outlier detect

or is in this stage.

c. A batch processor produces the entire trajectory simultaneously

from all observations (except outliers).

d. A fixed lag optimal smoother then produces smoothed positions,

velocities and accelerations.

The remainder of this paper is about the preprocessor stage. As the

program is at present, whenever outliers are found they are discarded

instead of being deweighted.

In order to detect outliers an examination of residuals should be

made. But these residuals must not come from an estimation of the ob

servation process that is influenced by the outliers. Three estimation

schemes are described which are resistant to outliers. Two methods of

examining the residuals for outlying observations are described. The use
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of the outlier resistant estimation and residual examination make up the

robust outlier detector used in the preprocessor stage of the MRTS.

2. OUTLIER RESISTANT ESTIMATION. The observation model is

xi = a0 + a,ti + aztiz + ei, i = 1, n

The three methods described are called:

a. Least squares with robust weights,

b. Brown-Mood, and

c. Theil-Sen.

The first one is used in the MRTS.

Least Squares with Robust Weights. The median of the observations x*

and its respective time t* are found. For each observation compute

d (X,--x*>-2

i -Solve for the

AT = (ao,a,,a,).

by minimizing

-0

IlB4:
_4

2

where

n

d.

Z
-0.

‘||l\/I

-0

-0.

La
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7+ r— -—~".' '_¢-Q-U W’ _ Q -- .._'__*—

Brown-Mood. The following steps show the iterative process for slope

and curvature coefficients:

a. Initialize

5§°) = 5§°) = o

t* med (ti)

t+ med (t1>t*)

t’ med (ti§t*)

J = 0

b. Find median residual in each hali

+ _ _ (J) _~(J) 2
x - tme€* (xi $1 ti a2 ti)

i

x' med (x.-a%j)ti-a§j)t?)

. qgv ‘ ‘

c. Update coefficients

~(J+l)_ <1) 1 ><*-><'
a1 - 5] + 2 [t+_t_]

0+1), (J) 1 x*-x'
‘2 . a2 * 2 [(t+)2_(t-)2]

The relaxation factor of l/2 seems to provide faster and more stable con

vergence. '

d. Repeat steps two and three until convergence, then compute the

intercept coefficient
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~ _ ~U+U ~U+U 2
ao - med (xi—a] ti-a2 ti)

Theil—Sen. This method is not iterative but it does require many

divided differences be taken. First, all the divided differences dj,1

without duplication

_ x xi _ _

d - —Jj7—— J > 1

j,i tj ti

To compute all possible divided differences of the dj,i would take too

much time and space. Instead a smaller number of divided differences

which represent the dj,i well is computed

e(i,i+£,i+2£) = d(i+2z,i+z)-d(i+2,i)

ti+2z'ti

for

1 = l, n—21

1 = 1. [n/3]

Let

52 = med (e(i,i+2,i+22))

Now

x--x.

=.;L_J_=dj,i tj—ti °1 + “2 (tj+ti)

since

xi = ao + a]ti + azt?

Let

5] = med (dj,i—a2(ti+tj))
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and finally

._ _._.2
ao - med (xi a1ti azti)

3. OUTLIER DETECTION. A Grubb's-type statistic proposed by Teitgen

and Moore |2| is described. A modified version of this statistic is used

in the MRTS.

Grubbs Type Statistic. All residuals are ordered by absolute values

Ne make a change of variable names so that the r s correspond to the ob

servations

lZ1|1|Z2|: .<_|Zn|

zzr ,IOO,Z=r

1 1(1) n J(n)

After finding the largest gap

(lzn-k+l| ' |Z,,_kl)

compute the test statistic

Ek(n) = -———-—-—-—-—

(Z-i"2-)2

nik

i=l

n

Z
i=l

where

n-k

Z Z,

T = ‘i=1

k n-E

and

Z.'2‘
2': ‘i=1 1

If Ek(n) is smaller than the desired critical value, we conclude that

these k most extreme residuals correspond to outlying observations

(21.-Tk)
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Mgdified Grubbs Type Statistics. This is the same as previously des

cribed except for the denominator of the test statistic and the critical

value selected. Instead of testing for k outliers in n samples. we test

for one outlier in n-k+l samples. We compute

=
I

7?

,2. (Zi'ik)2

E1(""<*‘> = F-"W-_— 2

1;] (Zi'zk+l)

where

n-k

. .21 Zk

-_ _ 1:

1|. - "n_-l<_

and

n-k+l

Z Zk

2' = ‘i=1

k+l n-k+l

If E1(n-k+l) is smaller than the desired critical value, we conclude that

the k most extreme of the n residuals correspond to outlying observations

3. EXAMPLES. The three previously described estimation procedures

and an unweighted least squares were applied to four sets of real data.

The original sets of data and residuals from each estimation are listed.

Exam le l - a set of l6 observations where the last two are outliers

(residuaisXl05):

LEAST SQUARES

OBSERVATIONS N/ROBUST WTS BROWN M000 THEIL-SEN LEAST SQUARES

l. -.0051 -658

2. -.0048 -281

3. -.0044 24

4. -.004l 257

-74 -ll -3829

-47 -6 -6479

-22 0 -7532

0 6 -6991
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lO9\lO\U'l

10.

11.

12.

13.

14.

15.

16.

OBSERVATIONS E/ROBUST WTS BRONN—MO0D

LEAST SQUARES

THEIL-SEN LEAST SQUARES

0037

0033

0033

.0027

.0023

.0021

.0017

0013

0010

.0006

.9590

.4451

418

557

s24

419

342

-s

-221

-s20

-985

-1421

-960730

442389

20

87

51

13

72

-71

-17

34

-17

29

-958727

445014

11

er

22

-22

33

-111

-ss

o

-44

11

-958733

445022

-4854

-1071

4207

11081

19650

29615

41375

54731

69583

86129

-854528

568910

Exam 1e 2 - a set of 15 observations where the third, fourth and

fiftfi are outliers (residuaTsx106):

“M

-§(A,|\,—'¢\D1§@u'|§Q’|\,—'

00000000000000

15.

and

1.

2.

3.

LEAST SQUARES

OBSERVATIONS W/ROBUST HTS BROWN-M000 THEIL-SEN LEAST SQUARES

.21709

.21824

'.95519

.94511

.93499

.22288

.22405

.22530

.22652

.22770

.22900

.23028

.23155

.23286

.23418

Example 3 - a set of 15 observations where the twelfth,

-1611

-1497

734413

723287

712116

-1051

-943

-760

-612

-510

-293

-101

75

286

502

-444

-313

735591

724437

713215

-24

-11

54

61

- 0

32

15

-39

-81

-140

fifteenth are outliers (residua1sx105):

LEAST SQUARES

-135

-87

735744

724529

713256

-23

-39

9

9

-47

0

10

7

QC

—332222

-314194

441640

452449

465224

-221986

-193910

-163748

-131611

-97508

-61280

-23066

17144

59399

103670

thirteenth

OBSERVATIONS N/ROBUST NTS BROWN-M000 THEIL-SEN LEAST SQUARES

-1.70987 -3359 -599 9 -157774

—1.70942 -867 387 0 -204

-1.70893 991 225 12 105480
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4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

LEAST SQUARES

OBSERVATIONS N/ROBUST wis

-1.70646
1.70793

-1.70741
1.70682

-1.70626

“.7057l

-1.70610

1.70449

1.43777

1.44602

-1.70267

1.44667

BROWN-MOOD THEIL-SEN LEAST SQUARES

2166

2708

2576

1841_

402

-1721

-4456

-7866

3129701

3132585

-22044

3120482

6l

-54

-159

-166

-233

-282

-262

-232

3141456

3149144

0

3146696

-5

0

-14

23

12

-28

-28

-45

3141666

3149163

-121

3148416

159227

161087

111021

9099

-144780

-350595

-608277

-917885

1862231

1456410

2158177

473139

Example 4 - a set of 2l observations where the seventh, twentieth

and twenty-first are outliers. This example illustrates dropped sign

bits and zeroed data (residualsxl06):

_\O@\lO\U‘l-h(a)I\)-4

OIOI

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

LEAST SQUARES

OBSERVATIONS E/ROBUST WTS

.00988

.00995

.00976

.01017

.01016

.O1023

.0

.01047

.01083

.01089

.01089

. .01121

.01143

.01152

.01185

.01200

.01206

.01241

.01239

.01215

.0T301

BROWN-M000 THEIL-SEN LEAST SQUARES

-123

-88

212

-83

47

102

10463

129

-90

-4

147

-16

-75

2

-166

-128

-6

-l68

46

24763

26646

-423

-337

9

-243

-75

14

10404

96

-103

0

164

8

-46

30

-133

-114

-6

-185

5

24717

25750

-248

-178

164

-114

39

112

10487

162

-52

36

182

11

-60

0

-179

-178

-85

-282

-106

24587

25603

-4433

-2839

-1203

-386

632

1361

l2l52

2034

l807

l66l

1356

613

-449

-1600

-3010

-4558

-6236

-8422

10467

ll8l0

10177
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4. CONCLUSIONS

a. Least Squares with Robust Weights:

(l) Almost always can produce residuals which reveal up to half the

sample to be outliers,

(2) Is the fastest of the three estimators described, and

(3) May be improved with other choices for weights and iteration.

b. Brown—Mood Estimator:

(l) Has unknown convergence properties and

(2) May not work if too many outliers are in one half.

c. Theil-Sen Estimator:

(l) Has robust coefficient estimates,

(2) Is slowest and simplest of the three estimators described, and

(3) May be made more efficient by taking advantage of equally spaced

data and for other schemes of selecting divided differences.

d. Grubbs'Type Statistic:

(l) Has no masking effect,

(2) Is fast and easy to use, and

(3) Could use 2d difference criteria to determine which k residuals

to be tested.

e. Modified Grubbs-Type Statistic:

(l) Simplifies table look-up and

(2) Detects same outliers as the Grubbs‘-type statistic on all

samples tried so far.
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TABLE LOOK-UP AND INTERPOLATION FOR A NORMAL

RANDOM NUMBER GENERATOR

William L. Shepherd and John N. Hynes

Systems Management Division

Instrumentation Directorate

US Army Nhite Sands Missile Range

white Sands Missile Range, New Mexico 88002

ABSTRACT. A normal random number generator using table look-up and inter

polation for the inverse normal distribution function is presented and

compared to one where the inverse function is computed from a commonly

used formula.

l. INTRODUCTION. In Monte Carlo problems and in simulations of noisy

measurements, the cost effectiveness of the required normal pseudo-random

number generators is still of some economic importance. We present and

compare two such generators. One of them is available on the Univac ll08

computer at White Sands Missile Range (NSMR); the other is the main subject

of this report.

2. INVERSE DISTRIBUTION FUNCTION METHOD. Let

~1
+

2

P(x) = [Q -:/—l_“—- 5'1‘ /2 dt (2.1)

and {y} be the output (sequence) generated by a uniform random number

generator with density function equal to l over the interval [0, 1] and

0 elsewhere. Then {P_1( )} can be thought of as the output of an n(0, l)

random number generator fl, p. 950]. As mentioned in [l], the principal

difficulty in using this principle is in the computation of P'1(y). In

one of the normal random number generators in use at NSMR, P'1(y) is

computed by the formulas

P"(y) = - P“(1 - y) for -1- < y < 1 . (2.2)

2
= n - 7° +,a1nef~§2n for 0 < y 1 2 ,

1 + b n + b n2 + b n3

1 2 3
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where

n = /:§ZZY_

ao = 2.515517 I b] = 1.432788

a] = .8D2853 b2 = .189269

a2 = .O10328 b3 = .001038 ,

with error less than 4.5 x l0'4. (This formula is also given in [l] and

[2].) We refer to this generator as Generator A.

In the following sections, we describe another approximation to P'1(x),

referred to as Generator B.

3. A svugngz AZPPRZOXIMATION TO P'1,(y)_. First, consider

go) Mn+9WwW-a)+My-M2 wraivi

=MM+9%Mw-b)+My-M2 %ra+b <y;b . on)

Set h = b - a, §'= a E b ,

@=fT<mw-gen-%Wwwwo+gwm> . (an

Y=-fT<um-gun+%Fwwwm+gwn> . (aw

with some laborious manipulation, it can be verified that

907') = 95+) , 9'5") = 9'(Y”) - (3-4)

g(y) is a quadratic spline, with knots {a, y, b}, on [a, b], which inter

polates locally between (a, g(a)) and (b, g(b)).
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Now, consider the 2N+l knots

t0=%<t2<t4...<t2N<1 ,

1 .
1321+] ='?'-(1121 +t2,i+2), l=0,1, . . . ,N-1 ,

and the splines

g-](.Y) P ](t2-1) + P-]'(t2.I)(.Y ' 1521) 7' B.i(.Y ' 1121-)2 9 t2-i f. .Y< t2-i+'|

= P'1(t ) + P']'(t )(y - t - ) + (y - 4 - )2 (3-5)21+2 21+2 21+2 Y1 21+2 ’

"21+1 i Y ‘ t21+2 '

where

_ 2 -l -l l -1. -l.
B1 " hT (P ' P ' (3P + P 0i

Y1 = ' (T ('°—]("21+2) ' P-1(t2i)) * (3P_]'(“21+2) * "']'(*21)) 4 (3'7

i

1.1. = 121,2 - 12, . (3.8)

Define

g(t) = g1(t) tzi §_t < t2i+2 , i = 0, 1, . . . , N-1 . (3.9)

From (3.1), (3.2), and (3.3), with a, b, g(a), g(b), g'(a), and g'(b) re

" '1 ' 1 ‘ 1

pieced by 12,-. 1%,. P N12,). P 021,2). P ‘ <12,-1. P <12,-,2). gm

is a spline agreeing, in function and first derivative, with P'](t) 0"

{t2i}§=0. (g(t) also has the knots {t2i+]}?;$.) g(t) interpolates the

table

1121., P-](t21), P']'(t2i)}?=o . (3.10)
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In order to use (3.9), (3.l0) for a normal random nmber generator, we need

a suitable table and a means for computing P(t) for t2N < t < l.

Define

|]g - P_1]|(a’b) = ma.x{g(t) - P“(t)|t e [a,b]} , b <1 .

We need a t2N close to l and a sequence {t2i}?=0 with a small N so that

||g - P'1|| < e for a prescribed tolerance s. Ne used numerical
<1/2.t,N>

search not described in detail here. It took up much computer time and is

not optimal. Essentially, we started with to = , computed t2 so that
do

—l
H9—P|| is . fit

(to,t) 2

-l
||9 ' P l| > 5 ! t > t i

(to,t) 2

then recursively determined t21+2 so that

||g ' P_]]I(t2i.t) 5-6 ’ I21-1 t < t2i+2

> e , t > t2i+2 .

t2N was detenmined empirically by stopping when t2N - t2N_2 was less than

a prescribed tolerance 6.

For the computation of P'1(y) in the above, we used Newton's method for

solving

Nfl-X=0

for x, with

Pm=%n+mmm).

- n n+l

@“Y= 2 £0“”'TfififiT
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from [l], and

P-1-M = —-1T—
P‘(P (yl)

P'(x) 1 e-X2/2 .

/5?

Our numerical experience indicated that near one the knot spacing needed

to obtain the required accuracy is not feasible, as N is large. we now

present two methods for computing P'](t) for t2N < t < l.

The first method is to use the approximation (2.2) from Generator A.

The second method is to approximate P'](x) by a quadratic spline with

knots {t2N, —%f(l + t2N), l} which has the same area under the curve as

does P'](t) over each of the intervals [t2N, -%f(t2N + l)], and [—%f{t2N + l),

(A discussion is given in Appendix A.)

Table 2, 3 gives the requisite coefficients for N = 29, N = 89, respectively.

tively. The last row shows l to be a knot. The entries in this row were

obtained according to the equal area criterion and would not be used in a

computer program where a rational approximation is used for t2N_§ t < l.

EXAMPLE FOR TABLE 2:

For i = l3, .9l450227l < t 5 .920905352

and

g(t) = 1.4111a7ss + e.7s4ss741(: - .92o9osss2)

+ 30.8378448(t - .92o9os3s2)2 .

4. NUMERICAL RESULTS. The Generator B was run under 4 separate conditions

as indicated in Table l. The interpolation tolerance for N = 29 is l0'4

and for N = 89 it is l0'6. Results for Generator A are also includes in

Table l.

]
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TABLE 1. AVERAGE RUN TIMES (CPU) IN SECONDS WITH IDENTICAL INPUT

OF 10,000 POINTS

GENERATOR A 2.427272

GENERATOR B

For N = 29 (with rational function approximation

at the end) 1.307336

For N = 29 (with spline approximation at the end) l.lll576

For N = 89 (with rational function approximation

at the end) 1.503344

For N = 89 (with spline approximation at the end) 1.276524

5. CONCLUSIONS AND ADDITIONAL RESEARCH NEEDED. From Table 1, the f01

lowing empirical inferences can be made.

a. Generator B with N = 29 and with either end option is slightly more

accurate, and about twice as fast as Generator A. It requires 186 stored

constants.

b. As compared to Table 2, Table 3 provides for interpolation over a

larger interval, is a little slower, provides six significant digit inter

polation accuracy but requires 543 stored constants.

Additional research could be done in the approximations at the end. (2.2)

is not necessarily optimal for t2N 5 t < l.

The constants for Generator B are believed to be of nine significant digit

accuracy. It is possible that they do not have to be this accurate.

Further research could address this problem.

Since computation for N = 89 is only a little slower than for N = 29, but

interpolates much more accurately, we think more of the CPU time is used in

the interpolation than in the table look-up logic. As higher order inter

polation is slower than quadratic, there is not much advantage in using it

in order to reduce the required number of knots.
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APPENDIX A. In this Appendix, we outline the procedure for extending g(t)

over the interval [t2N, 1). Principally, we want to exhibit (A.3) and

(A.4), omitting most of the detail.

First, we want B so that, with

A _ -

gN(t) = P + P " + B(t " 2for t2N_§ t §_—%— (t2N + l) = t, we have

/ZN gN(t)dt = {Em P'](t)dt . (A.2)

By the change of variables t = P(x), we have

IEQN P'](t)dt = ]E::(E) x P'(x)dx

<:2N>

= /;_“ I::1g:N) X P-XP(-X2/2)dX

= <@xp[-<P"‘<t2N>>21-wt-<P"<¥>>21> . (A.3)

Similarly,

1;P"(t>d: = fig? 1; P"(:>dt = wt-<P"<¥>>2J . (M)

(A.3), (A.l), and (A.2) yield

B = ___—_:-L? (P-1 " + "%_ P-1 ' '(t '- (wt-<P“<t2N>>21 - wt-<P"(¥>>21>) .
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For E |I\
1-1» |/1

1| , we proceed similarly to define

gN11> = gN1¥> + 61,1011 - 11+ 111 - oz ,

Y = ——%,— 1gN1¥>11 - F) + % 6111111 - 612 - ‘ wt-1P"1¥>>*’-1)
(1 - t) /2'1?

with 6 and Y so detennined,

9(t)=9N(t). t2N:t1l -

It should be noted that gN(t) is not, strictly, an interpolation function.
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-In U>GJ\JO\U1¢iQJRJ—‘C7 ID ll
T2 l3 l4 l5 l6

17
l8 l9

20 2l 22 23 24 25 26 27 28 29 30

I21

.soooooooo

.558l7l995

.s1242s22s

.66l64l926

.7ossss74s
.74434l6l9 .77s3499s1

.808l26397

.ss4oss993

.sses4so4o .s7s29299s
.s9s344ss1

.908099l89

.92o9o5352

.93l977972

.94l55l745

.9497987ll
.9ss927as1

.9s3o7o221 .9ss3ss371

.972s95302

.97saos4s9 .980lO25l7
.9a29o7sos

.9ss29s324

.9s74s7s9s
.9s93o99s7 .9908so7s7

.9922sea37
.99ss72ss4

1.oooooooo

QUADRATICSPLINECOEFFICIENTSFOR.0001TOLERANCE

TABLE2

t2i_]'FUNCTIONVALUElSTDER.

*********.DOO0OOOOO2.5D662827

.529085997.l46336l742.5336ll29 .5852976ll.2856404l22.6llOOl22 .637032576.4l69484032.73426l88

.683599334.5404503l92.9007862]

.724949l8l.6567887453.ll000477

.76l345785.9666324l43.36289l48

.793238l74.87l0l27233.66295469

.82l08ll95.9702377l84.Dl332l27

.8453405l6l.O65366924.42l33582

.8664690l8l.l56653374.893276l2

.8848l8788l.2445l2955.43763796

.90072l885l.329l405O6.0632488O .9l450227ll.4lll87636.7846574l

.92644l6621.4906856]7.6l4l6498

.936764858l.567934ll8.56896728

.945675228l.642905069.66496074

.95336328ll.7l609695lO.929l433

.959999036l.78748238l2.3849888 .96570l796l.85684465l4.0535436

.9706l4336l.925l5959l5.99l5l48

.97485l88ll.99l89042l8.2242343

.9784554882.0558708620.7436675

.98l5050632.ll78852923.6096984
.984l0l9662.l779823326.8627900

.9863769602.2400942030.8l33965

.9883837662.30l2035935.3998477

.9900953622.36074l7640.6699449

.99l5587l22.4l98543246.84227OO

.99280465l2.4768523653.8572662

.9966863323.25464832255.76l9ll

(2NDDER.)/2

LEFTINTERVAL.

.075764656
.5457239l5 l.057782l7

l.65836525

2.397394l8
3.33320045 4.53770637

6.l0705566

8.l60240l7

l0.8696708

l4.45l2634

l9.l979064

25.4950866 33.8953704

45.l0l8066

60.0864257

80.ll47766

l07.027099

l43.l55273

l9l.57202l

257.207l53

345.40869l

46l.757202

6l6.023l93
82l.8662l0

lll2.46679

l508.l0644
2043.2l679

2776.53808

4829.7l895

**********

(2NDDER.)/2

RIGHTINTERVAL

.3880344l2
.880786896

l.44656276

2.l336l930

2.99693870

4.l028l944

5.53949546

7.4l560363

9.88627243

l3.l50l464 l7.473l445 23.203l402

30.8378448 4l.0l982ll 54.6292266 72.8l0l50l

97.2ll3037

l29.989746 l73.870666

233.24l76O

3l3.360229 4l9.432983

559.967285
745.8347l6

l0O6.04l74

l363.5625O

l846.82568

2509.l5l36

3398.48632

37970.l705

**********

l9l
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21 22 23 24 25 26 27 28 29 30

*2:

500000000 527511597 554553339 580875465 .606299114 630684651 653944977 676039376 696952964 716695715 735394360 752785078 769208248 784623388 799060028 812598409 825273288 837133552 848223594 858593434 868287360 877344058 885802651 893701702 901068493 .907950355 .914368497 .920354167 .925936506 931142691 .935996797

QUADRATICSPLINECOEFFICIENTSFOR.000001TOLERANCE

t21_1~FUNCTIONVALUE

*********.ooooooooo

.5l3755798-.os9o1so97

.54l032468.l37l73924 .5677l4402.204l33636

.593587290.269686078 .618491883.333667207

.6423l48l4.395993l98
.664992l76.45665l928

.686496l70.5l5656885

.706824340.573053353 .725995038.628904958

.744os9719.683280l36
.760996663.73624l888

.7769l58l8.787903379

.79l84l708.838268462

.8058292l8.8875l2233

.8l8935848.93ss4999s

.83l203420.982745l25

.8426785731.02884437

.853408514l.07402131

.863440397l.ll833l87 .8728l5709l.l6l8ll89

.88l573354l.20450436

.889752176.246457l9

.897385098l.28766382

.9045094241.32823862

.9111s942sl.368l5678

.9173s1ss2l.40745786

.92314s3se1.44s179os .9285395981.48435556

.9a3ss9744l.5220l068

TABLE3

\lO'|0501010101->-§->-15-§(A)Ql(aOO.)(A)(a)(AJI\JI\)f\)I\)I\)I\)I\>I\)l\7Y\7

DO

7 7

1STDER.
50662827 51260520 53032278 55940243 59946024 65012136 71107122 78209440 86305588 95392149 05475458 16570065 28696482 41895313 56186948 71648198 88319780 06263803 25544315 46245657 68455825 92262519 17766358 45082132 74297625 05598746 39083559 74908770 13245471

5428056
.98206208

(2NDDER.)/2

LEFTINTERVAL

.036046982 .253898621 .475940704

.707033l57

.951988220 .21565246 .50334739 .82032775 .17249679 .56611633 00863266 50746154 07207870 71248626 .43972778 .26869201 .21306610 .29160308 .52256012 10.9304428 12.5411071 14.3872680 16.5016784 18.9241790 21.7013854

24.89l9067

28.5552368 32.7624511 37.5995178 43.1614074 49.5636901

\D@\lO\O'l-5-§OJOOI\)f\)—-'-—"—‘

(2N0DER.)/2

RIGHTINTERVAL

.181203842

.40l294708

.628820419 .868577957 .12551879 .40468025 .71118545 .05090713 .42998504 .85541153 33451080 87625885 49017715 18707656 98056793 88455963 .91645813 .09383392 10.4404678 11.9809799 13.7451629 15.7641296 18.0794219 20.7341918 23.7821044 27.2801818 31.2964172

35.9l24016

41.2204589 47.3302917 54.3616333

\O\lUYU'lU'l-§(;)(.O|'\$f\)I\)-l—|—l
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TABLE3(Continued)

tzit21_]FUNCTIONVALUE1STDER.

.9405207109382587541559159728.45221094 .9447357399426282241595822088.95545274 .9486605749466981561632003019.49395652 .95231714395048885816677482410.0707042 .95572152095401933117030593610.6882405 .95889079595730615717379568911.3496354 .96134039396036559417724540612.0580832 .96458475796321257518065627312.8170072 .96713800196586137918403014113.6302717

.96951l72O96832486018736653814.5014626

.9717185379706151281.9066731415.4350326

.9737701869727443621.93934266l6.4358269

.9756775809747238831.9716914517.5091240 .97745085997656422020037366218.6606822 .979095992.97827342620354261119.8940017 .9806254519798607222.0668414321.2181148 .9820473709813364112.0979987022.6404429 .98336653398270695221288468524.1656689 .98459294398397973821594649425.8053788 .98572353998515824121896046527.553313l .9867658089862446732.2192696529.4153730 .987747769.98725678822491262931.4444682 .988653015.98820039222785476233.5101517 .989487538.98907927623075366035.9202470 .990272348.98987994323366901138.4361673 .99099584699063409723654472541.1246983 .99166282099132933323938105143.9961846 .992289085.99197595224223184347.1225577 .992866423.99257775424504657450.4675066 .993398657.99313254024782546854.0447095

(2NDDER.)/2

LEFTINTERVAL

56.9315795 65.4213256 75.1904907 86.4738769 99.4630126 114.445007 131.775878 151.735717

174.836l81

201.486328 232.297607 267.935791 309.224609 356.886230 411.999755 476.125976 550.188476 636.053222 735.710937 850.266601 982.49121O 1137.92187 1316.7998O 1524.25488 1766.84277 2046.94531

237l.78710

2753.17968 3195.23046 3705.70703

(2NDDER.)/2

RIGHTINTERVAL

62.4606323 71.7829589 82.5385131 94.9212036 109.226562 125.739074 114.763549 166.786010 192.179077 221.552856 255.501708 294.767822 340.171630 392.791503 453.737548 524.165527 606.019042 700.946777 810.318359 936.277343 1083.87255

1254 1451 1681 1949 2258 2620 3040 3525 4087

.44921 .35644 .52832 .18457 .28613 .29687 .56445 .90234 .43554
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EIGENVECTORS ANALYSIS OF EMPIRICAL DATA

VERSUS UTILIZATION OF STANDARD FUNCTIONS

Oskar M. Essenwanger

Physical Sciences Directorate

Technology Laboratory

US Army Missile Research and Development Command

Redstone Arsenal, Alabama 35809

ABSTRACT. Parameterization of empirical data (e.g., the wind pro

files from surface to 25 Km altitude) in many cases entails the

approximation of data by mathematical functions. In general, several

options which lead to solutions are available but the question of which

is the most suitable form is sometimes difficult to answer.

Often a specific goal of approximating data by mathematical functions

is the derivation of one characteristic parameter or variate. Theoreti

cally, eigenvector analysis (or equivalently the development of empirical

polynomials) should lead to maximum information by a single parameter.

A comparison between approximations by eigenvectors and standard

(orthogonal) functions has been made. It is shown that in particular

cases standard functions can achieve equivalent reductions of the

variance and they may be simpler and more economical to compute than

eigenvector functions.

1. INTRODUCTION. Parametrization of atmospheric data (such as

the wind profile as function of the altitude) requires the derivation

of suitable mathematical expressions. The availability of high speed

electronic data processing tools has opened the door to a utilization

of the most sophisticated mathematical tools even for the generally

huge collectives of atmospheric data. For example, the calculation of

empirical polynomials (or eigenvectors in mathematical terminology) is

now possible without too much difficulty for the large dimensions of

atmospheric data matrices. Consequently it is very tempting to "grind"

huge data collections through the computers without considering how

much benefit these highly sophisticated tools render compared with the

application of standard functions or simple parameters.

In this article, some light is shed on the utilization of empirical

polynomials in comparison with the use of standard functions exemplified

by the wind profiles of certain altitude ranges. Under certain condi

tions, standard functions can achieve an equivalent reduction of the

variance to the one obtained by eigenvector analysis.

2. THE CALCULATION OF EIGENVECTORS. The problem under considera

tion is the development of proper functions for the wind speed profile

Vh where the h is a subscript denoting the altitude. Vh designates a

mean wind speed profile. The wind direction 6h can be treated equiva

lently. We formulate the representation of the wind speed profile:
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vh,i - vh = 31,1 ¢1’h + 132,1 <l>2,h + Bmi ¢»n,h (1)

where i = l,..., N, and n << N. In this equation the coefficients Bj i

and the functions ¢j h must be determined. ,

I

The development of optimized characteristic functions oj h is a

known problem of matrix analysis. A mathematical formulation’is:

. _ 1 =

M4» MvM¢ M». (2)

where M¢ designates a matrix of eigenvectors (or polynomials), Mv the

data matrix for the wind profile, and Mk a (diagonal) matrix of eigen

values. The elements of the (symmetric) data matrix are either the

covariances:

vh,k = Z vh,i - vk’i/N (3a)

the standardized covariances:

\7h,k = Z(vh’i - '\7h)(vk,i - Vk)/N (3b)

or the correlations:

rh,k = "h.1</ (°vh ' °vk) ' 9°)

A judgement of the effectiveness of the systems can be made by a calcu

lation of the residual or left variance, or the percentage reduction,

which can be readily obtained from the eigenvalues A by:

53
Ll:

||
7'

1...M

._..\

N v-I

2

>.j (4)

More details on the mathematical background can be found in the author's

text (1976). The covariance and the correlation system has been compared

in a recent article by Essenwanger (1975), and will not be repeated here.

In this article it is illustrated that the percentage reduction varies

largely with the particular system which is selected but the residual

variance (error) is of the same magnitude for the same number of terms

irrespective of the percentage reduction of the individual system.
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3. EIGENVECTORS OF THE WIND PROFILE. First it should be clarified

that under the term Wwind profile" the structure of the wind velocity

in the first 10 m of the atmosphere is not meant. The nomenclature

designates the wind speed or direction as a function of the altitude up

to about 25 or 30 Km.

The first eigenvectors of the wind direction covariance matrix for

the altitude range surface to 24 Km are depicted in Figure l for January

and July at stations representative of four climatic zones. We learn

from inspecting Figure 1 that it would be very difficult to find an

adequate standard function to approximate that particular structure of

the atmospheric direction profile.

In turn, as displayed in Figure 2, the first eigenvector of the

wind speed from surface to l0 Km altitude range lends itself readily

for replacement by a standard function. A linear curve fit would ade

quately replace the eigenvector for three stations, and the fitting of

a second order curve maybezasuccessfulapproximation for Albrook.

The examination of the eigenvectors for the surface to 24 Km wind

speed system follows next. Figure 3 discloses that at least for some

climatic regimes a standard function such as the Fourier series may be

applicable. This fact is supported by scrutinizing Figure 4 which

exhibits the wind speed profile for Montgomery. As it is displayed, the

major eigenvector comprises over 80% of the variance and resembles a

sine wave. Indeed, a Fourier analysis of the first three eigenvectors

revealed that at least the first two eigenvectors provide largely one

dominant Fourier term. A comparison of the eigenvector and Fourier

system appears to be a worthwhile study.

 

244 JANUAl\\Y_' _ 241

—A|.anoox \ N

22 ,_-—-Momoomenv .-__

---- cnATeAuno\'1x\.\-_" j

2°__------1’!-IULE , ,1 2°_

13- '| !

I i-5- 16~ | '-: __ 16

-8 '\ \ e
_' 1‘_ \ .\ '.__‘ 5

3 ‘ ..»:\\I"""" ""1 Ill

:> 12- .,...... \ .\ 12

E \ \ §

A 10- \ \ ;

< \ j -I

8- \ \_ < 8

6 \\ ‘I

\\ ‘K.

4- \ E 4

3- I \_ \ .

0""Li -‘-1::"L> 0‘

-05 0 05 10

Figure 1. First Eigenvectors, Wind Direction, Covariance.

167



 

..__ ALBROOK

---- MONTGOMERY

THULE

I

E E

:5 £5

nu us

Q D

D D

C '2
P‘ F"

.1 .1

< <
 

ALTITUDE(km)

241 JANl'JARY __ 241

22- ‘ 22

20- 20

15- 15

15- E15

:‘-‘:1=— :.~.:.:;*;="..s1:*""°"* _ 2 ==~
rai 210

5- E 1 5

5- ' 5

4- ' 4

2- z

° I-.015 I 0 0.5 1.0’ ° A A ‘

Figure 2. First Eigenvector Structure (Surface to 10 Km)

 

Figure 3. First Eigenvector Structure (Surface to 24 Km)
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4. STANDARD FUNCTIONS FOR THE WIND PROFILE. While empirical

polymomials provide an optimum of information in one single term, stand

ard functions have other advantages. One of them is the homogeneous

mathematical background for different collectives, e.g., data from

different climatic regimes. This homogeneity is beneficial for a classi

fication of the wind profile into categories (see Essenwanger, 1974).

The differences of the percentage reductions between individual order

terms at locations from typical climatic regimes are not partially or

entirely caused by the diversity of this mathematical background.

Because the present goal is the derivation of one characteristic param

eter, the homogeneity of the background is of secondary importance

here. Of interest, however, is the simplicity or the cost savings

associated with the utilization of standard functions.

Table l serves as a basis for the examination of the reduction of

the variance by individual order terms. Three systems are depicted for

the surface to 25 Km wind profile at Montgomery (Alabama):
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec COV

56 61 50 52 23 14 17 25 32 4828. 58.
U2
l

.41 .26 77 37 44 38 .45 53 08 .65 81 50

Vh-VhVhCovEigenvector

lTerm2Terms3Terms0:lTerm2Terms3TermslTerm2Terms3Terms

2434l50510.652343191771244828918

2309l380952255290l5410.385247l7

23.4215l211.64267310l661235l24.319 l755ll007.96180.239122826l16912

11386514596615l74410.510.57

95653836533152784120876 7254.413062516889598745 81047533030.19990596765

10.065.493.6741l68734125927

ll916.6947593190785l70ll68

181710.89788151256127929620.5l3 2148138696718230.618.012367238l6

Tablel.LeftVarianceofWindProfile(Surfaceto25Km)

FourierandEigenvectorSystem

=-1x-foo»->1)/11

Unit:(m/sec)2

Montgomery,Alabama
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Vh’i — Vh = A0’i + A1,i sin (Oh + B1’i)*'A2,i sin (20%-+ B2’i)4n.

(5a)

Vh,i = C0,i + C1,i sin (Oh + @2,i) + C2 sin (20h + ¢2,i) +...

(5b)

and the eigenvector system of equation (3b) which had emerged as the

system with the smallest residual variance of the three eigenvector sys

tems in a separate study.

We learn that one term of the eigenvector system with coefficient

B1 i displays the lowest left variance. It should be noticed that A0

I

or Co is the first coefficient of the Fourier system, which leads to:

oi = i.1E(vh,1 - Vb - A0’i)2/(h - N) (6a)

Or:

02 = Z1 Z (vh 1 - Co,i)2/(h - N) . (6b)

Z D‘

Consequently the column for one term of the eigenvector system must be

compared with the columns oi and U2. Attention should be called that

an assumption:

<l

vh,i = h = Ao,1 (5°)

leads to a residual variance which is quite comparable with the eigen

vector system. Although the system requires that the mean wind speed

profile Vh is known, the prerequisite is identical, however, with the

one in the eigenvector system. It is self evident that the calculation

of the average value A0 1 is a trivial task.

9

A further reduction of the variance is gained by adding terms in

the Fourier or eigenvector series. Because one term of the Fourier

system has two parameters which can be fitted the columns should not

be compared equivalently according to their headings. The left variance

should be compared between one term of the Fourier series and three

terms of the eigenvector system. Then the fact that the left variance

is lowest for the empirical polynomials agrees with the expectation.

One additional fact deserves attention. If we are interested in

a single-variate system, the eigenvector system can only be based on

B1 i because the other coefficients Bj 1, j 2 2, are independent of

D 9
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B1 i. Although the Fourier system is orthogonal the coefficients can

9

be related (see Essenwanger, 1964).

5. SINGLE-PARAMETER FOURIER SYSTEM. Before a single-parameter

system other than based on A0 i can be examined let us derive an ana

9

lytical expression for the replacement of the current coefficients of

the Fourier system by an approximation . We cast:

Vh,i - Vh =(A0,1 + eAO,i) +(A1,i + €A1,i) sin (ah + 51,1

+_AB1,i) + (7)

By summation over h and omission of the terms which become zero we

deduce the following expression for the left variance:

2 _ 2 2 2 2

VarL — SV — A0 + eAo - A1/2 + A1<Al + eA1)(l - cos A51) + eA1/2

Z Z

- A2/2 + A2(A2 + eA2)(1 - cos A52) + eA2/2 + ... (8)

(The subscript i denoting the individual observation time has been

omitted).

It is easily recognized that for e = 0 and AB = O Eqn. (8) reduces

to the well—known formula for the left variance (e.g. see Essenwanger,

1976) because the two terms after A2/2 disappear. It may be reasonable

that A? > ei for the dominant Fourier term. For the other term of the

J

series it may not hold, and instead of a net decrease of the variance,

an increase may result.

A critical contribution to the error variance is also made by AB.

It is obvious that for |Afi| > n/2 the cosine term becomes negative, and

thus the error contribution of this term may become quite significant

unless the amplitude is small. Inspection of Figure 5 reveals that B1

for the system (Sb) displays a distinct maximum for its frequency dis

tribution, and a replacement of the individual B1 1 by its mean B1 may

I

suffice. However, B1 for the system (5a) exhibits a bimodal distribu

tion (Figure 6). Consequently we must find a characteristic parameter

which provides a close approximation of B1, A0 and A1. The investigation

is still in progress but tentative results indicate that choosing a

single characteristic such as:
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Y1,i = E "’1< Vk,i (93)

O1‘:

y2,i = g wr (vr,i - vr) (gb)

may succeed. Then 6(y), A0(y) and A1(y) etc. k and r denote certain

altitude levels, and w stands for appropriate weights. Tentative results

are depicted in Table 2 which had been obtained under favorable condi

tions. We learn that the surface to 25 Km single parameter system would

be competitive with the eigenvector system. It should be considered

that an increase of the variance of 25% is not significant at the 95%

level of confidence for the F—test for N ~ 200.

It is emphasized that the replacement by standard functions cannot

be generalized for the wind profile from all altitude ranges. For

example, if our goal is the derivation of a single characteristic for

the surface to 15 Km range, probably the eigenvector system is the best

approach. The possibilities of a replacement by standard functions mst

be examined in every individual case.

6. CONCLUSIONS. A comparison was made between curve fitting

systems based on empirical polynomials (i.e. eigenvectors) and standard

functions. It was disclosed that the eigenvector system offers an

optimum reduction of the variance with a minimum number of coefficients

as expected from theory. It was illustrated, however, that under certain

conditions standard functions may perform quite well, and these are

simpler and more economical to compute than eigenvector functions.
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

EigenvectorVh-ghVh

AOneOneOneOne

1Term2Terms3Terms0ParameterF-TermParameterF-Term
44.82891865643.524.344531.9 38.52471776152.423.138229.0 35124319050.45.123.433631.0 2611691225237.617.625623.9 153105782821.011.416315.1 12087662316.09.620115.2 98745214.12.37.317116.8 9676581712.68.120619.9 12592722516.810.120916.8 170116833212.111.920.719.0 .9620.513648.39.818.232525.6 36723816658.46.221.542030.6

Table2.LeftVariance
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Subject: Errata Sheet

TO: Recipients of Proceedings of the 22nd Conference on the Design of

Experiments in Army Research, Development and Testing

The undersigned apoligizes for some errors in my paper "Induction on

a Markov chain" appearing on pages 177-186 of the proceedings. Four pen

and ink corrections will correct these errors:

a2 2The denominator in Equation (5) should be l r q%q2 rather than

1 - qlqz.

b. Equation (7) should be P(S2) 3 P(S2) rather than P(Sl) I P(S2).

c. The numerator of the second tern in Equation (ll), following the

summation sign, should be

(k)p;q:-1(k—i) rather than

1

k) 1 k—i(k 1)

(1 P141

d. The phrase between Equation (27) and Equation (28) should be:

"If kQ+l fiLN/2 the above generalizes to

rather than

"If k°+l = N/2 the above generalizes to".
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INDUCTION ON A MARKOV CHAIN

Richard M. Brugger

RAM Assessment Division

Product Assurance Directorate

U. S. Army Armament Command

Rock Island, Illinois

ABSTRACT. Through the use of Markov chain methods, expressions for Mean

Rounds Between Failure (MBF) were found for a class of weapon systems. The

method led to an inductive determination of an expression for the general case.

Following the derivation of the general MRBF expression, expressions for

reliability are obtained (but not a general expression).

l. INTRODUCTION. The problems treated in this paper relate to a ship

board weapon system of the following type. Some number (a variable) of gun

mounts are connected in parallel. This parallel network is then connected in

series with a fire control system. Each gun mount has the same nuber of guns

(for simplicity, we will assume one gun per mount; the results are easily ex

tended to some other nuber of guns per mount).

ql = Prob (given mount functions successfully) — (l)

Q2 = Prob (fire control functions successfully) (2)

pi=l'qi’i=l’2' (3)

Once a mount fails, it is considered inoperative thereafter.

Note that we are assuming that each gun mount has the same success prob

ability. This assumption simplifies the Markov chain work somewhat, but,

as we will show later, even this simplifying assumption doesn't serve much

purpose in the end.

In this particular application, the interest was focused only on the be

havior of the gun mounts and fire control. We are therefore not concerned

with failures of other parts of the system, such as the guns or the ammuni

tion, and will, for convenience, assume that these function perfectly.

2. MEAN ROUNDS BETWEEN FAILURE (MBF). In this application, MRBF will

be defined as the expected number of rounds, successful and unsuccessful,

attempted up to and including the first salvo where either none of the

mounts function, the fire control does not function, or both events occur.
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For one mount, it is apparent that MRBF follows a geometric distri

bution. The probability of a salvo successfully occurring is qlq2 . By

the properties of the geometric distribution, then

MRBF = 1/(l — qlqg)
('4)

For two mounts, a Markov chain was constructed with the following

state definitions:

S0

S1

S2

everything working

one mount out, fire control working

system not working

The transition matrix was as follows:

so qiqe Zplqlqz l — Z left elements

31 *- qlq2 l — Z left elements

SO Sl S2

S2 l -—- -—

In the above matrix, the expression left elements" refers to matrix

elements in the same row but in columns to the left. One would ordinarily, and

correctly, think that in row S2 the one should be in column S2 rather than

S0, thereby reflecting the fact that state S2 is an absorbing state. This

one is shifted to SO, however, to change the problem into one that can be

treated as a first passage situation.

We will use column S2 to bring about degeneracy, so we are not concerned

about what the actual values in this column turn out to be. Solving therefore,

for the steady state probabilities in terms of the steady state probability

for state S2 (denoted P(S2)), we have

l 2

C5)
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were

For three mounts, the transition matrix becomes more complicated, so

the simplified Markov chain method [1,2] was used. The states were defined

in terms of situations, rather than on a salvo-by-salvo basis. The states

2919192

P(Sl) = TI:EEa;§Y1:a;E;) P(S2) (6)

P151) = P(32) (T)

<9

= __ii___

SO

Sl

S2

S3

system working

l mount failed in salvo of first failure

2 mounts failed in salvo of first failure

system not working

The transition matrix becomes:

SO

Sl

S2

S3

SO Sl S2

]__

l

l

l

qlq
2

l

2 2

3P1q1q2 3P1q1q2

3 3 1

2

S3

- 2 left elements
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Going through the steps required for solution, as described in 1,2 ,

we obtain

3 (9)
MBBF = -——-—-—

(l-qlqg)

Using the simplified Markov chain method for 4,5 and 6 mounts, the pattern

MRBF_ = (10)

1 (l—qlq2)

continued, where i is the number of mounts.

Since only the top row of the transitional matrix in the simplified

form has any new information as the number of mounts increase, and since

the expected length of the various states (in the simplified Markov chain

sense) was determined as the number of mounts increased, induction was

considered.

By considering the result true for krl and considering what the

structure of the top row of the transition matrix would be for k ,

it was seen that

k-l

k ' k—'

2 (.)p1ql 1(1<-1)

k i=1 1
MRBF = ---kl‘ + q_2 i-T——'i— (ll)

l-qlq2 (l-qlq2)(l—qlq2)

= x

l—qlq2

QED.
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I

After obtaining this general solution, further relection was given to the

problem. Because of the nature of the simplified Markov chain transition

matrix for this problem (whereby all of the information of interest appear

ed along the top row) it was seen that a direct algebraic induction solution,

without any use of Markov chains at all, was possible.

Finally, it was seen that the problem was actually much simpler; even alge

braic induction was not necessary. This was determined as follows. Let us

imagine that an observer is stationed by each mount, and that each observer

will remain by his mount for an infinite length of time (or for an infinite

number of trials from the situation "everything working" to "system down").

Each observer records how many rounds are fired from his mount until his

system (the fire control and his mount) breaks down. His system is equival

ent to a one mount system, as is each of the other observers, so, over the

long run, the average number of rounds between failure for his system will

be the same as the MRBF for one mount. For several mounts, then, the MBF

for the system is just equal to the sum of the MBF's for individual mounts

(whereby our earlier simplifying assumption that all mounts have the same

MRBF is seen to be unnecessary). While the comon fire control suggests de

pendency, the dependency exists only for each trial from "everything working

to "system down"; it does not exist for the system MRBF.

From the above, it is seen that almost no mathematics was necessary for

solution. At the same time, the mathematics bears out the result obtained

through the purely intuitive approach just described.

2. RELIABILITY. For this application, the reliability for an N round

mission will be defined as the probability that a mission of N successful

rounds will be accomplished.

For one mount, we have a simple geometric distribution, and the N round

reliability can be expressed as

RN = (q1q2)N (12)

For two mounts, let KO be the number of salvos that would be required

if the Nth successful round were fired in the Kath salvo and no breakdowns

occurred in the first ko—l salvos. If N is even, k°= N/2. If N is odd,

ko = (N+l)/2.

I
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After some investigation into how the problem could best be alge

braically treated, it was found that the best approach would be one where

by any necessary summations would be indexed by the number of successful

fire control salvos. Thus, for two mounts, N even, we have

_ N

RN = qgqgo + 2 2plq§q: (13)

k=ko+l

which, for q2 < l, is found to be

qk0+l qN+l

N k N -2 ' 2 (lh)

q1<1o° * 2P1°~1 T?‘

For two mounts, N odd, we have

N

N+l k N k N k

RN = ql q2° + 2plqlq2° + Z Zplqlqg (15)

k=ko+l

which, for q2 < l, is found to be

qko+l _ qN+l

N+l ko N ko N 2 2
ql Q2 + Eplqlqg + Zplql"-jf1jj;;——— (16)

For three mounts, the problem becomes slightly more complicated. Let us

make the following definitions for ko .

If

N = 0 module 3, ko = N/3 (17)

N = l modulo 3, ko = (N+2)/3 (l8)

N = 2 modulo 3, ko = (N+l)/3 (19)

The following probability of mutually exclusive events are defined.

l. P(0) is the probability that the N'th successful round occurs on

the kéth salvo.

2. P(0A) is the probability that the N'th successful round occurs after

the kéth salvo, but no mount failures occur in the first (ko-l) salvos.

3. P(l) is the probability that one mount failure occurs in the first

(ko—l) salvos, no more failures occur, and the N'th successful round occurs

after the kéth salvo.
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salvo.

Then

When

When

When

When

N

N

N

N

RN = P(0) + P(OA) + P(l) + P(2) .

modulo 3

P(0) = qgqg/3 -

modulo 3

P(0) = qf'lqéN+2)/3(l - pi) -

modulo 3

P(0) = q§'2qéN+l)/3(qi + Bplqfi) -

modulo 3

P(0A) = q§_3qéN_3)/3{(3plqiq2)(l - Pi)q2

When N = l modulo 3

P(0A)

2 2 2
+ (3Plqlq2)qlql}

N-l N+3 2 2

Bplql qé )/ (1 - pl + Plqlq2) -

0 .

4. P(2) is the probability that two mount failures occur, at least one

before the kéth salvo, and the N'th successful round occurs after kéth

(20)

(21)

(22)

(23)

(24)

(25)
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When N = 2 modulo 3

Let S(N/2) be the smallest interger larger than or equal to N/2 .

Then

If ko+l = N/2 the above generalizes to

k +1 s(N/2)+1

for q2 < l. If (kO+l) > N/2, P(l) does not axist (the case for N small).

where C indicates the number of ways two numbers can add up to N-k

given tNe mgximgn of these two numbers is less than k.

For S(N/2) = k = N

For ko+l
ll/\ bi‘

P(0A) = 91 92 [(3pl9l92 9192]

_ N (N+4)/3 2

N-2 (N-2)/3 2 )

_ S(N/2) N-2k 22 k S(N/2) N—2k+l 2k k

P(l) ' Z 3p1Q1 Q1 Q2 I Z 3P1Q1 Q1 Q2‘

k=ko+l k=k°+l
k§N/2 k§(N+l)/2

N N 1 Q2° " Q
3 (9 + 9 + ) 2
P1 1 1 1 - q

N
2 N k

P(2) = Q 3P1CkQ1Q2

k=k0+l

Ck N - k + 1 .

S(N/2) - 1

Ck (-N + 3k - 1)

2

(26)

(27)

(28)

(29)

(30)

(31)
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Then

Q 23pl(N

k=S(N/2)

I

k + l)q§q:

3piq§ ( g (N - k - 1 + 2)q: 1 (32)

S(N/2)

N N

2 N k k

3 { 2 (n+2) - 2 (1<+1) 1.plql s(N/2) Q2 s(N/2) Q2

Treating the right hand term within the brackets as the sum of derivatives

(being equal to a derivative of a sum) the above becomes, for q < l

2

S(N/2) N+l

2 N q2 ' Q2

3Plql {(N + 2) ---I-:-E;:-

N k S(N/2)—l k

-[z(r+n%- 2 (k+n%11
O O

S(N/2) N+l

q ' Q

= 3Piq§ ‘(N * 2) ‘g‘1r<r7;;ii“ (33)

1 - (N + 2>q§*1+ (N + 1>q§*2

-(
(l - q2)2

1 - (s(N/2) + 1)q2(N/2) + s(N/2)qZ(N/2)+l

- 1}.

(1-%F
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In a similsr manner, we find

S(N/2)-1

Z ( - N + 3k — l)3Piq§qg

ko+l

k°+l S(N/2)
— q

= 3Piq§( - (N + ll) iT:%

1 - (s(N/2) + 1)q§(N/2) + s(N/2)qg(N/2)"

+ 3{ 2 9

( l — q2)

1 _ (kc 2,)q12‘o+l + (ko + 1)q:o+2 } )

<1 - <12?
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MARKOV AND PATH DEPENDENT PROCESSES

APPLIED TO CONTINUOUS SAMPLING

PLANS IN TANDEM

David L. Atp

Naval Weapons Center

China Lake, California

ABSTRACT. A continuous sampling scheme, consisting of two generic

Continuous Sampling Plans (CSP) in series, is analyzed. This serial

arrangement is used for the attribute sampling for two different indepen

dent characteristics of items in a given production run; the output from

the first plan forms the input to the second. Using standard one dimen

sional Markov Chain (MC) models for the generic CSP's, the serial CSP

model is shown to be equivalent to a two dimensional (or second order) MC

wherein the state of the second component is directly dependent on that of

the first.

The ergodic properties of the marginal distribution of the second

component are analyzed by using 1) the ergodic theorem applied to matrix

valued random variables, 2) a nonstationary MC approximation to a path

dependent process, and 3) direct products of transition matrices constrained

by the dependence mentioned above. In the latter two approches, the MC's

are shown to be aperiodic and (strongly) ergodic; either one can be used

to show convergence of the path dependent process. Taking the appropriate

limits, as the production run becomes infinite, it is proven that the

limiting probabilities for the second component are independent of those

of the first.

Using direct products, the analysis is extended to the case of three

or more CSP's in tandem. Under the additional assumption of a separable

initial probability vector and for n 2 2, the direct product MC, which is

ergodic and stationary, is shown to be equivalent to a finite sequence of

n MC's. In this sequence, the first MC is ergodic and stationary; the re

maining MC's are (strongly) ergodic and nonstationary. Comparisons are ,

also made with other naturally arising multicharacteristic sampling plans.

1.0 INTRODUCTION.

1.1 Continuous Sampling Plans. Given a production line of items, a (one

characteristic) Continuous Sampling Plan (CSP) consists of two or more

phases of attribute sampling for an item characteristic directly from

the line. In at least one phase, the sampling frequency is zero with an

exit occurring only after a fixed number of items are found to be conse

cutively nondefective (screening phase). The phases are always connected

is such a way that each of them is "positive recurrent" for an (abstract)
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infinite production run. Moreover, the number of phases is finite and

an exit from any one of them takes place after a finite number of produc

tion units with probability one.

CSP's are modelled by Markov Chains (MC) which, because of the phase

structuring, are finite, aperiodic, and irreducible. The plans and their

MC models are discussed at length in References 6.2 and 6.5. The simplest

of the CSP's, CSP-1, along with its usual MC model, is described in

Chapter 2.

1.2 Origin of Tandem CSP1§, In the past, CSP-1 has been used in a serial

manner to sample for eight different characteristics per production unit.

In practice, the characteristics were sampled for at successive stations

along the production line. It is this type of sampling that is generalized

and modelled in Chapter 2 and further analyzed in the succeeding chapters.

1.3 Contents of Paper. In Chapter 2, after describing CSP-1 and its MC

model, Semi Markov Chains (SMC) are introduced and utilized to simplify

the MC model in two ways: the "classical" way, driven by a particular

functional, and a second way, motivated by the serial sampling plan and

the idea of a controlled Markov Chain (MC). Such a SMC simplification of

a MC is called SMQ reduction (see Reference 6.2)n The description of

(2)—serial CSP-1 is then given followed by a second order MC ((2)—MC)

model for it. The (2)—MC model is based on the assumption of independent

characteristics.

In Chapter 3, the second SMC reduction is used in developing two

similar approaches to the simplification of the (2)—MC model. The major

connections between the resulting models are also brought out. The second,

path dependent model is approximated by a strongly ergodic nonstationary

MC. In Reference 6.2, it is erroneously stated that this approximation

is equivalent to the (2)-MC. Thus, one of the major purposes of Chapter 3

is to clarify the assumptions made which make the nonstationary MC differ

from the (2)-MC. '

In Chapter 4, the longest of the chapters, a third method is given

which utilizes the concept of the direct product of matrices. For n> 2,

(n)—serial CSP-1 is also handled by the same techniques and the CSP-1

restriction is eventually dropped. For (n)—serial CSP-1, it is also

shown that its direct product MC, which is stationary and ergodic, can be

separated into n MC's. The first of these MC's is also stationary (and

ergodic) in contrast to the remaining ones which are nonstationary (and

strongly ergodic). Furthermore, the latter n-l nonstationary MC's exhibit

structures which are essentially different from the one exhibited by the

nonstationary MC in Chapter 3. Of primary interest is the marginal Average

Fraction Inspected (AFI) functional for the last plan in tandem. This

functional is compared to the one which results from use of the plan by

itself. The treatment of other reasonable nonserial multicharacteristic

sampling plans concludes the chapter. Chapter 4 contains all the major

results in the most satisfactory form.
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Chapter 5 concludes the paper by summing up the major conclusions

and theorems as well as suggesting some further possibilities for and

modificationsof multicharacteristic sampling plans. '

1.4 Glossary. In References 6.1, 6.2, and 6.3, the clearance number, which

characterizes the screening phase of CSP-l, is denoted by the capital

letter I. However, in this paper, "I" might be confused with the identity

matrix and thus small i will be used instead for the clearance number.

Henceforth, references will be denoted by numbers in brackets (e.g.,

"References 6.2 and 6.3" will be written as [6.2,6.3]. Common abbrevia

tions and notations are given below.

rxm = r columns and m rows

[a.e.] = almost everywhere

pv = probability vector (non—negative entries with sum = 1)

CSP = Continuous Sampling Plan

FI(N) = Fraction Inspected out of N units

AFI(N) = Average of FI(N)- _

AFIn(°°) = Marginal AFI(9=) for the nth plan in 5 (n)-serial cs?

MC = Markov Chain; SMC = Semi Markov Chain

M(-) = MC process; X(') = SMC process

A (X)B

Am

Direct product of the two matrices

Transition matrix of (n)-serial CSP-l

1.5 Acknowledgment. Mrs. Leah K. Jones deserves full credit for the

excellent and expeditious typing of the paper as well as for the drafting

of some complicated diagrams and the proper rendering of special technical

symbols.

2.0 BACKGROUND.

2.l CSP-1. This sampling plan, the simplest of its type, is characterized

by one variable and two parameters. The variable, p, is the probability

of finding a defective item (characteristic) under the assumption that the

product flow forms a Bernoulli process. The two parameters are i, the

clearance number required to exit from the screening phase (abbr. sc), and

f, the sampling frequency to use during the unlimited sampling phase (abbr.

uls). Thus, when necessary for clarity, a particular CSP-1 will be written

explicitly as CSP—l[p; i,f]. The black box deseriptimiof and the MC model

for the plan appear in Figures l and 2, respectively. '
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Figure 1

Block Diagram of CSP-l[p; i,f]
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Second box = unlimited sampling phase (uls)

Figure 2
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2.2 Semi Markov Chains. Semi Markov Chains (SMC) can be used to simplify

CSP's and, specifically, CSP—l. Below, a brief exposition of SMC's is

given. For further details, see [6.2, Appendix of 6.3, or 6.6].

For discrete (and integral) t 2 0, let X(t) be a fiiscrete) stochastic

process. Then we have

Definition 1. X(t) is a finite Semi Markov Chain iff its state space

is finite and and following relationship holds

Prob[Y(n), W(n)|Y(m), W(m); 0 5 m s n—l]

= Prob[Y(n), W(n)|Y(n—l), W(n—1)] .

where Y(m+l) = X(tm+1), T(m+l) = W(m+l)-W(m) is the time of sojourn in state

Y(m) from its entrance until its exit to state Y(m+l), t(m+1) is a parti

cular realization of the random variable W(m+l) which in turn is the total

time to (m+1)st transition, and Y(m) #=Y(m+l) for all m.

For further reference, we have

Definition 2. Let 2, k be in the state space of X(-). Then

"a. The (defective) pdf of the time to transition from state 2 to state

k is

Qz,k(t) =_ Prob[X(t) = k; X(t') = 1L, t > 'c'> 0|X(0) = 1],

for L #=k and is otherwise zero.

b. The probability of starting in state 2 at time zero and being in

state k at time t is given by .

1>z,k(¢) = Prob[X(t) = 1<|x(0) = 11.

In Definition 1, the process Y(-) is a MC called the embedded Mg of the

SMC. Letting HQ be the Heaviskhzsequence, the transition matrix for this MC

is

[110-><Q,,,<<~>1

where the asterisk denotes the operation of convolution. If in Definition 2

there should exist at least one state k such that Qk k(~) is not identically

zero, then self transitions are possible without being recorded by the SMC

apparatus. In this case, the concept of a Markov Renewal Process (MRP)

must be used. Referring to Definition 1, dm:MP would be the process (X(-),

W(-)). In the rest of the paper, we will be dealing with aperiodic, irre

ducible, and stationary SMC's. The definitions of all these concepts parallel

those for MC's. For further information on MP's, types of SMC's and their

relationships with their embedded MC's, see [6.2, 6.3, or 6.7].

9
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-We finish this section by stating two theorems needed later on.

Theorem 1. Given the SMC X(-), we have

Pg,k(t) => 2: Qg,j *Pj,k(t) + (5g,k)Jk(t)

.1

where Pg,k(-) and QR,j(-) are defined

Kronecker delta, and

Jk(t) = Hq*(5o - XQLS) (t)

s

Proof. See [6.2, 6.6, or 6.7].

Theorem 2. Given the SMC X(-),

ekik

Lim r,k(=) = -T
t+® sesus

where e = the unique eigenvector with

in Definition 1 6; k is the

the following limit holds.

eigenvalue 1 for the embedded MC and

uk.= the mean time of sojourn in state k.

Proof. See [6.2, 6.6, or 6.7].

2.3 Simplification of CSP-1. The first simplification is driven by the

Fraction Inspection (FI) functional which is given in

Definition 3.

Fraction Inspected (FI) functional is

N

v

FI(N) = 1 — 5 Z ¢(ulo)(c)

t=0

In the equation, N

For the model of CSP-l appearing in Figure 2, the

= the total number of units which have passed the in

spection station in real time, v = l—f, and

1, if X(t) is in uls

C(u1$)(t) = {:0 otherwise

Taking the conditional average of FI(N) gives a function defined in

192



Definition_4, The Average Fraction Inspected (AFI), for the first N

units and starting in either MC state HO or in any state under equilibrium

conditions is '

AFI(N) E[FI(N)|M(0) = H0]

Ee[FI(N)], also

where M(-) is the MC process, E[-] the expectation operator, and e_the long

run probability vector (pv). ‘

Concerning the first simplification of CSP-1, we have

Theorem 3. Letting sc = 1 and uls =2 (see Figure 2), we can construct

the following SMC whose states are defined in terms of the z transform

[e.1, 6.2, or 6.11].

States: (1, 612(2)) and (2, 621(1))

x i _ .
where Q12(z) = g1%§:%%;; , Qg1(z) Y = Pqi.u NI“

-A
.

6 = fp, and B = 1-6.

Proof. See [6.2].

Corollary l. The unlimited sampling phase of CSP-1 can be reduced to

a MC state Si with a geometric pdf.

Proof. From Theorem 3, the.transform of the function 021(2) is a

(nondefective) pdf which can be written (in the time domain) as

Qs1,uo(t) = 5Bt'l

In the above equation, H0 is used since the application of this Corollary

will be to the MC model.

Corollary 2. Starting in state l at time zero, the FI(N) functional

in Definition 3 has a limit as N approaches infinity given by

Lim FI(N) l-vuz [a.e.]

N+m

' AFI(“)

Proof. The first equality follows from Theorem 2 applied to the SMC

constructed in Theorem 3 and the ergodic theorem for functionals defined

(or, in this case, definable) on SMC's. The second equality follows from
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Definition 4 and the facts that "M(0) = H0" is equivalent to "X(0) = l

and E[c2(c)|x(0) = 11 = 212(5).

The second simplification will be used in Chapter 3.

Theorem 4. From the MC model of CSP-1, a SMC can be constructed with

the following states (again in terms of the z transform)

States: (a, Qab(z)) and (b, Qba(z))

where

~ _ » _ 021(2)-Qd (Z)

_ Qab(Z) ~ j%; and Qba(Z) - I:%;;?;;T6i;?;;

The transfer functions for the intermediate states c and d are

622(2) = (3) 1'1 and 6¢a<z> = (1
1-1) .

Proof. Let a = H0, c = <Bj2>, for 1 5 j 5 i—l, and d = Si. Then a and

d have geometric pdf's and are t us (trivial) SMC states. From [6.2], c

is a SMC state with the given transform. Using a routine combinatorial

argument, we have (dropping the argument z)

Elba = ’Q¢d'.Qda (Qac'6ca)j}

J'=0

Thwch reduces to the given form by summation of a geometric series for

z > 1_

2:4 MC Model for (2)-Serial CSP-l. We consider two (different) CSP—l's in

tandem: CSP-1 [pk; ik, fk] with MC and SMC states {hjk, Sik). and

{ab bk}, respectively.

The (2)—MC model of (2)-serial CSP-1 is based on the assumption that

the two item characteristics being sampled for are independent. Following

the practical case discussed in Chapter l, two item characteristics are

sampled for at two successive stations along a production line, according

to two (different) CSP-1 types. If an item is rejected because of a de

fective first characteristic, then the second characteristic is not sampled

for. Thus a transition to H01 occurs in the first plan but no transition

at all occurs in the second plan for the given operational time increment

which the item represents. However, if the item passes muster for the

first characteristic (i.e., the item is inspected and found to be nonde

fective in the lst characteristic or, because of f1, is not inspected),

a transition takes place in the first plan to a state other than H01 (or

a1) and the item moves on to the second station. Thus, in this latter

situation, a transition takes place in both MC's for the specific
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operational time increment generated by the unit, We translate this view

point into the (2)—MC model given in Figure 3.

Figure 3

Second Order Markov Chain Model.for (2)-Serial CSP—l '

States: {(1<1, 12), (kl, k2), (11,,1<2).

. forOskj sij-l,j=l,2}

Transitions: ((kj)+l may be ij, j = 1,2)

§£E£s '§£§£g Probability

(1<1, (<2) ((k1)+l. (k2)+1) qlqz

(11, k2) > :::> (11, (k2)+l) Blqz

(1.1, 12) ' ((1<1)+1, 12) q1l-3'2

(11, 12) (11, 12) 8132

(1<1,'1<2) ((1<1)+1, 0) qlpz

(il, k2) > ; (il, O) B1p2

(kl. 12) ((1<1)+1, 0) Q152

(11, 12) (il. 0) B152

(1.1, x) > ; (0. x) P1

(11, X) (0, X) 51

(x = i2 or k2).

The result is a rather complicated 2 dimensional lattice. The re

maining chapters reduce the study of this model and, more generally, similar

models for (n)—serial CSP-l's and functionals defined on them to a manageable

systematic analysis with various degrees of success. To help in this analysis,

we fix some more ideas in two more definitions before leaving Chapter 2.

Definition 5. A (n)—serial plan is the same as a (n)—serial CSP and

consists of CSP's arranged in tandem such that the output of the jth plan

is the input to the (j+l)st plan, l $ j 5 n-l. For a given operational time

increment given by the movement of a production unit through the sampling

stations, a transition takes place in the (j+l)st plan only if no defects

are found in the preceding j plans. Moreover, if a defect is found at the

jth station, no transitions take place in the consecutive plans after j.
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However, the interpretation of "virtual transition" for "no transition" will

also be used when convenient to do so. If only a particular type of CSP is

used, the serial plan will be called a (n)-serial CSP-"type". If the CSP‘s

are mixed types, the plan will generally be written out: (CSP—type(l))—— --- -

(CSP—type(n)).

~ Definition 6. A multicharacteristic plan (MCP) will be used as a generic

term while a non—CSP MCP will be called a variant MCP.

3.0 TWO APPROACHES T0 (2)—SERIAL CSP—l. The two approaches are given in

Sections 3.1 and 3.2. The connections between them are given in Section 3.3.

In addition, a and b are the SMC states appearing in Theorem 4 for the first

plan, A2 is the usual transition matrix for the second plan used alone,

and I2 is the identity matrix of rank ig.

3.1 Average Transition Matrix. Given the (2)—MC model for (2)-serial CSP-l,

we first define the matrix valued characteristic functional in

Definition 7. Let l) w be a realization of the process (X(t), M2(t)),

where X(-) is the SMC variable for the first plan and M2(-) is the MC vari

able for the second plan and 2) Projt(m) be the projection to the first

component at time t. Then the matrix valued characteristic functional is

A2» if Projt(w) - b

Ct(“’) =

I2, if Proj,__(w)

Using the idea of a controlled MC (see [6.l2]) and Definition 7, we can

prove

ll Di

Theorem 5. As N approaches infinity,

N

-% §: Ct (w) + aa I2 + ab A2 [a.e.]

t=l

Proof. We can break the matrix valued random variable up as

Ct (w) = at(w) I2 + bt(w) A2

The functionals at(-) and bt(-) have the obvious definitions: at(w) = 0 or

l iff Projt(m) = b or a, respectively and btun) = l—at(m). Then the above

average sum can be similarly decomposed. The theorem then follows from the

definition of the (2)—MC model given in Figure 3, the SMC reduction of CSP—l

in Theorem 4, and the ergodic theorem for functionals defined on SMC's.
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Using Theorem 5, an average operator can be associated with the

second plan in - ' _

Definition 8. Given the RHS of the limit in Theorem 5, the Average

Transition Matrix for the second plan is

K2 =°‘oI2 +°‘bA2

Clearly, for the second plan, the expression for A, can be looked

ll

upon as stating that, in the long run, I2 is the (virtual) transition

matrix" (100)aaZ of the time while A2 is the appropriate matrix for the

remaining (lOO)obZ of the time. To elaborate somewhat, I2 can be interpreted

as the "Stop" matrix. That is, when I2 is employed, no transitions take

place as far as production unit time is concerned. A possibly better inter

pretation is to consider (virtual) transitions as taking place according to

the identity matrix but to define the relevant functionals only for transi

tions which occur according to A2. With this latter viewpoint, we then have

a path dependent nonstationary process (see Section 3.2).

Given A2, we have

Theorem 8.

Lim )k‘ = L2

k+@ " .

hi

where L 2 is the usual long run matrix for the second plan. That is, the

columns are all identically equal to the long run probability vector (pv)

E2’

Proof.

(/_\2)k=, X <12‘/\2)j Al? 2(1)

' 3

However,

Lim A‘; = |_, <2)
k+@

Therefore, Eq. (2) and summability theory [6.9] imply that the limit exists

for Eq. (l) and is L_2.

Theorem 8 shows that the use of the average matrix gives the same long

run results that use of A12 does. Thus, using this first approach results

in a marginal AFI(@) which is the same as that which would be obtained if

the second plan were to be used by itself.
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3.2 Path Dependent Model. The model is given by the matrices in

Definition_2J The path dependent matrices for (2)—serial CSP-1 is

t

A(t,u)) = T‘: (ak(w)I2 + bkn») A-2.)

' k=l

where ak(-) and bk(-) are defined in the proof of Theorem 5 and the matrices

are defined in Section 3.0.

Let the conditional expectations E[-|X1(0) = a] and E['|gl]* °PeYate

on tbs above matrices to yield matrices Aa(t) and Aa(t), respectively. Also

let 51 = (l,0,---,0), 11 times, and yz be an arbitrary pv with i2 entries.

Th8n, a little reflection shows that the (2)—MC model with initial pv =

[51 , 12] or [51, yz] is equivalent to using Aéft) or Aa(t), respectively,

with initial pv = Z2.

Using the equality "bk(-) = l—ak(-)", we can rewrite the matrices in

Definition 9 as

t

A(t;w) = aka») 12- A2 l +A2 (As)

,lT( ( ) )

Multiplying the RHS of Eq. (A3) out, we get

A(t;w) = (-'11-'=\2 '----at) (12 - A2)‘:

. + -—- + ( aJ-1aj2._...--ajs) (I2- A2)s Altz-3

+---+( a,)(I,-A,)A”,1+A‘ <18)

‘E£l\’J~b/1‘

In Eq. (B3), the arguments of the aj's have been dropped for notational

convenience and "Z " is the restricted summation obtained by requiring that

3'11 < 32 <---< J's

. From Eq. (B3), a recursive scheme can be developed. For a (complex)

polynomial of degree n with roots rj (j = l to n), let Sk(r1,—-—,rn) be the

kth symmetric function of the roots (associated with the variable of power

n-k). For simplification in using Eq. (B3), define

1'1

Dk((~°) = Sk(a1v"'_aan)

figl is SMC notation for ea.

-j~T if 47* T 7 i T iii}
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Thus, for example,

D%=1 E:aj,andDg= aj

Since ak(w) = 0 or l, we can consider the RHS of Eq. (B3) as a random matrix

polynomial over the binary field. Using_the symmetric function, we have

U
'-‘U ll

Theorem 9. With the special random symmetric functions defined above,

we have a recursive relationship between the coefficients of A(n+l;m) and

A(n;w) where we treat (I2-A2) as "1" and A2 as the polynomial indeterminate

Proof. The recursion is obtained by expressing A(n+l;w) as A(0,fl§w)'

A(n,n+l;w) and equating coefficients. Explicitly, the recursion is given by

n+1 =
D0 l

n+1 = n
Dn+1 an+1 + Dn

DI}:-+1 = + an+l Da_l, l .<. k S Tl

In particular,

D“ - /a- a' ---—-a'
n_s ' J1 J2 J9

_ Eq. (B3) is more useful for calculation of Eq. (A3) because of

Proposition 1.

E[aj1aj2-—---ajs|X(0) = a]

= Paa(j1)Paa(j2_j1)‘-"'-°Paa(jS_js-1)'

' Proof. Since state a has a geometric pdf,

Paa(_'l) = Pr<>b[M1 <1") = H<>|M1<o> = H01

where M1(q) is the MC process for plan l.

Corollary 1. For the first plan, letting E[-|X(0) = a] = Ea[~], we have

Ea[a1a2"""‘-an] = pl;

Eag 35]] = Xpaafi)

J

Proof. Proposition l and definitions.

Corollary 2. With the same conditions as Corollary 1,

Ea[D16+1] = 1

' e n+1 = n

Ea[Dn+1] Paa(n+1) + Ea[Dn]

Ealvfil + EaE>£Earan+1lva1] <<=3>
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Proof. Theorem 9 and definitions.

Eq. (C3) is, in general, tedious to evaluate. As this equation stands,

the probability of the union of k overlapping events would have to be evalua

ted. Thus we try an approximation such that Eq. (C3') holds:

Eeligfi E.(a..+1|1>£1I| = Eelvfil E.(e..+11 (C3')

However, Eq. (C3') is equivalent to the assumption that the random matrices

A(j,j+1;w) are independent. Proceeding with this simplifying assumption, we

get the following nonstationary MC,{A (k)} , where

A'((<> = (1>,,(1<)I2 + 1=,.,(1<)A2) (vs)

Concerning this MC, we have

Theorem 10. The nonstationary MC whose matrices are given by Eq. (D3)

is strongly ergodic. Its limit is expressed by

H

Lim T[ A'(1<) = L2

n 1<=1

where the strong convergence is in the sense of the norm supremum (or any

norm equivalent to it in finite dimensional Euclidean space).

Proof. Each of the matrices has the unique eigenvector 52 with eigen

value l. From [6.lO] and Theorem 8, the nonstationary MC is strongly ergodic

with the above limit since

um A'((<> = 11,.

k

where the limit is taken with respect to one of the above norms.

The nonstationary MC in Theorem lO is the approximation which is

erroneously stated to be equivalent to the (2)—MC with the expectation

operator Ea[-]. To get some idea of the relationship between Ea[A(k,w)]

and A (l,k), we prove

Proposition 2. Paa(j) is a monotonically non-decreasing function.

Proof. Recalling the stochastic sequence W(-) from Definition l and

letting Tab be a sojourn time in a until exit to b, we have

APaa(n) = Paa(n+l) - Paa(n)

— —Qab(n) + Z {1=(wj(e> = n1

j=l

-P[Wj (a) + Tab = 11]} (1)
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But the expression inside the summation sign in Eq. (1) is

-P[Wj (3) + Tab = 1'1 and Tab=?‘= 0] S, 0 (2)

From (l) and (2), the Proposition follows.

Corollary 3. The coefficients of the nonstationary MC are all less

than or equal to the corresponding ones of the expected value of the path

dependent model.

Proof. Abbreviating Paa(-) by P(-), Proposition 2 shows that

P(j1)P(j2)**-—'P(Js) S P(j1)P(j2'j1)'“'-'P(js'js“l)

Each side is a general term of the two models, the LHS coming from the non

stationary MC model and the RHS coming from the path dependent one.

3.3 Connections. The transition matrix A12 in Section 3.1 is clearly equal to

strong-lim A'(k).

k

The connection between the nonstationary MC and the average of the path de

pendent model has already been examined; the former is obtained from the

latter upon assuming the independence of the one step random matrices. Non

stationary MC's also arise in Chapter 4 but they are more related to the

SMC reduction in Theorem l than to the reduction given in Theorem 2.

4.0 DIRECT PRODUCTS AND MULTICHARACTERISTIC PLANS. In this chapter Ak will

denote the transition matrix of the kth CSP in a serial plan. The plan

variables and parameters will also be indexed in the same manner (e.g., pk,

qk, fk, and ik for CSP—l). Ik will denote the identity matrix of rank ik.

We will use properties of direct products without detailed coment (see

[6.8]).

4.1 (2)—Serial CSP—l. The direct product of two matrices is given by

' Definition 10. Let A and B be nxm and rxs matrices, respectively. Then

the direct product of A and B is the nrxms matrix

311B 312B """' a1!1B

A (X) B = > ~

3m1B 3m2B ‘““ amnB
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(with some abuse of notation in using B rather than its entries). A direct

product is sometimes referred to as a Kronecker product in the case of

matrices and an (algebraic) tensor product when the factors are explicitly

linear operators.

Given the (2)—MC model in Figure 3, Chapter 2, Definition 10 can be

used to express its transition matrix in a compact form which is given by

the third equation below. By construction, the (2)—MC matrix can be written

as _

A P112 q1Ag 0 ""‘ 0

P112 0 q1A2""' 0

A12 ___ ...

P112 0 0 """q1A2

5112 0 0 """‘B1A_9_ _

Using some simple properties of direct products,,we can rewrite the above

matrix as 1

1
1 ‘ 1

P112 0---U PIA, O 0

P112 0---O PIA, 0-—-0

P112 U---O ' PIA, O---0

6112 U---0 _ _<51A2 O---U __

‘PIA, q1A, 0 0

P1A2 0 q,A ,—-- 0

+ ___

' P1A2 0 0'"q1A2

51A2 0 0---B1A2

C1 (X) (I2‘A2)+Al ® A2
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where

1 0 -—- 0

10---o_

cl = (pl) -e- (an 11x 11 matrix)

1o—--0

£1 0 -—- 0

Concerning A12 we have

Theorem ll. A12 is aperiodic, irreducible, and finite. Moreover, if

_e_- is the long run probability vector (pv) of Aj, j = 1,2, then e_1®e2 is

the long run probability vector (pv) of A12.

Prggf, 1) Refer'to Figure 3, Chapter 2. The state (0,0) is aperiodic.

It is straightforward but tedious to verify that (0,0) can be reached from

any state and that from (0,0) any state can be reached. Thus the matrix

is irreducible. Being irreducible and having one aperiodic state (0,0)

imply aperiodicity for the matrix. Finally, it is trivial that the matrix

is finite since its direct product components are. 2) To prove the second

part of Theorem ll, we use the fact that a finite, aperiodic, and irreduci

ble MC matrix has an unigue eigenvector with eigenvalue l. By assumption,

§jAj = gj, Ilgjllz = 1, and gj is unique,

where ||_1lI2 = Z |vS| and 1 = 1,2. Thus we 1......

(s1(X)s.2) All =(§,<x> s2){C1 <x> (1, A,)}

1 (£1(X)s2){A1® A2}

= 2., cl (X) Q2 (1; A2) +2, A1<X) £2 A,

= 2., C, <X)0 +_e_1®s,

= 21 (X) 22

Moreover the entries of e_1 ® E2 are
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positive and add to one by the definition of the direct (or tensor) product

of two vectors (of course "g_1®e2" requires, by Definition 10, that 51 be

ilx l and E2 be l x 12). The uniqueness of a long run pv finishes the

proo .

We now turn to the investigation'of the marginal AFI(@) for the second

plan.

Theorem l2. For the second plan in (2)-serial CSP-1, the marginal

AFI(w) is given by

AFI2(°°) = 1 - Vgdbl e212

(abz is used as shorthand since no SMC reduction is used in the proof.)

Proof. 4

21®'22 = l:<e11.><<=-2,->1

by definition.

N 1 _

~ 1<=1 j=1

[a.e.], by definition,

[-I

I-5

= v2 elj ) e212 [a.e.]

J=l

= \)2C1b1 8212

Except for three coments, the theorem is finished.

If sampling begins with state (0,0) with probability one or with

Av = e1® E2 , then operating on the characteristic functional,

C(j,i2)(w1,w2;k), by E[-IS], where

S = "M12(0) = (0,0)" or T5160 52", allows the dropping of "[a.e.]I' Secondly,

wk = Projk(w), k = 1,2. Finally, the definition of the functional implies

that we are considering the identity matrix as a legitimate, but virtual,

transition matrix; this viewpoint has been mentioned in Definition 5 and

after Definition 8, Chapter 3.

We see from Theorem l2 that the formula

1 - vzflbl @212

is the average number of units which are actual]_ inspected for the second
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characteristic. Thus, for the second plan in tandem, "not inspected" is

not equivalent to "sampled" because of the control exerted by the first

plan on the second (recall the two interpretations of the identity matrix

in Definition 5). In other words, l—AFI2 (W) is the average fraction not

inspected whereas l-AFI(<==>, p2;i2,f2) is the average sampled (equal to

“2e212)

Before leaving this section, an alternate "proof" of Theorem ll will

be given which will, in addition, give some insight into the transient

behavior of the (2)—serial CSP—l model. If a (2)—MC p\ canbe expressed

as the direct product of two pv's (one for each plan), then such a“ pv will

be called separable. Given that the (2)—MC starting pv (initial pv) is

separable, define the pv's xo and yo as the initial pv's for the first and

second plans, respectively. Defining a vector as a unity vector iff each
of its entries is unity, furtheridefine a(k) as the l x ik unity vector,

k = 1,2, and a(k)’: as its transpose ik x l unity vector). Let <_u_r2 and

git} be the vectors £50 } and 610 respectively (if the m aning is

c ea , we won't use th notation it for a ow (column) vector corresponding

to the column (row) vector 1). Then?

(E1 ® 1% (Rio ® Y0)E:]_® I2 + (A]_' C1) ® A2] £1

so \ 1)

=2‘ .

@-"-C

\

+

C

___=0-0-I

|,.;,c,_,N!’-'I

n

U9
@

where go = l—v1 xgl, and., in the same way,

)t(51® 11) = 201° + (l—s0)y_1
D3 /\ P-'

*0ther ways of writingax ®y are: 5 . it,“ 5 and y column vectors, ,

and J ust

>|<1 X1>'1--- X1>'12

; <y,, ---, yiz) = --

X11 xi1Y1“"xi1Yi2

In all four notations, the result is an outer product which is a matrix.
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» = 1/_° (so I2 + (1-go) A2)-.

However, (_§1® X1) '- 331 and _a_Q_)_t (_x_1® yl) = Z1{fl
{C3

I

which, combined with the above, gives

5‘ = 2‘ and 11 = 1° (go I2 + <1-80> A2) -

Repeating with X2, .

where g1 = l-v1xJ1_1 . In general, by induction,-we have

ir+l = 2r+l and Xr+l = it (gr I2 + (1-gr) A2)

where gr = 1-v1x§_1. Thus, for a separable pv, the first plan's pv propagates

according to the plan's own individual structure. In contrast, the second

plan's pv propagates as a nonlinear function (because of "l—gr") of vectors

(pv's) arising from both plans and dependent on v1. The relevance to Theorem

ll arises from the observation that for all practical purposes, any pv for

the model can be considered separable even though theoretically, there are

nonseparable pv's whose transfinite cardinal number is equal to that of the

set of all linear functions from the unit interval to itself (loosely speaking,

there are an infinite number of ways to factor a real number). In particular,

g1_® E2 is not only separable (by construction) but self replicating.

The connection with Theorem ll will be completed by showing convergence of

it and yr to 51 and 52, respectively. In the process, we will see that the

model can be decomposed into a stationary ergodic and a nonstationary strongly

ergo-:lic'MC thereby providing a link to the results of Chapter 3. From Chapter

and [6.l0], the matrix .

1' 1'

]TA,<j> = '_[I(g,- I2 + (1-"gj) A2)
j=l j=l

= (1-yr)

strongly converges to L2 since

LimA2(j) (1-"'V1u'2i1) I2 + (V1°'2i1) A2

j

(AFI(1) I2 + (1-AFI(1))A 2)

Q

A'2 , AFI(l) = AFI(w,p1;i1,f1),

N

and(A"2) (strongly) converges to L2 by the usual summability arguments.

3

206



Thus yf strongly converges to Q2. The decomposition of AI2 into Ar and

A2 Clgfl is not surprising since the first plan doesn't depend on fhe_

second while the nonstationary MC appears because we are restricting

attention to the second plan which does depend on the first.

4.2 (n):Seria1 CSP:1. These plans can also be easily handled by direct

products. Before proving the next theorem, some new matrices must first

be provided. By extension of direct products to three or more matrices,

we define the needed matrices in

Definition 11. Given (n)-serial CSP-l, the (n)-serial transition

matrices are

1-P1:-2n q1A2n 0 '“ 0

P1::2n 0 q]_A2n_"" 0

A11. "

P111," 0 - 0—-- q,A 2,,

81:2“ 0 2 . 0"__B1A2n

"here _P1<:(1<+1)o ‘11<A(1<+1)n 0‘“0 '

pk:(k+1)n 0 <1kA(1<+l)u"‘ 9

(k-li'l)n

Akn ' ““

P1.--<1<+1)u 0 0 “‘.‘11<A<\<+1>n

6k" (k+l)n 0 0 "" BkA

for 2 s k s n—l (and for k = 1). More explicitly,

Akn = the transition matrix of the (n-k+l)-serial CSP-l, consisting

of CSP—l[s k through n from the original (n)-serial CSP-l.

For k = n, Ann = An. Moreover,

IA F’I(k+1)n = the identity matrix of rank (ik+1~-—-- in), for l 5 n—2,

and of rank in for k = n-1;

that is,

I(k+l)n = Ik+_1®“‘® In» 1 5 k ‘ "*2

= In , k = n-1.
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Some important relationships exist for these matrices in

Theorem 13. Given the matrices in Definition 11, we have

A... = <1.<X> ( I..- A..)+ A.<X>.A._.

More generally,

1 Akn = (I(1<+l)_nA(k+1)n)+ A(k+l)n ' 1 5

Proof. By definition,

77' IA n-l

A(n-1)n = Cn—l ® (Inn " Ann) + An-l ® -Ann

cn—l ® (In T An)-1 An—l® An

since Ann = An and Inn = In. Backward induction on k, the second equation

in the statement of this theorem, and the decomposition of the transition

matrices according to Definition ll give the result for fixed n. Backward

induction can be converted

induction can also be done

by induction on k, keeping

To determine tne long

used, in Theorem 14, along

Proposition 3. If Bl

aperiodic, and irreducible

Moreover if E1 and _e_2 are

into forward induction by relabelling. Double

by varying n, keeping k fixed, and then proceeding

n fixed.

run pv of (n)—serial CSP-1, Theorem 13 will be

with

and B2 are transition matrices for two finite,

MC's, then Bl® B2 also has all three properties.

the long run pv's for Bl and B2, respectively,

then _e_1® _e_2 is the long run pv for the matrix direct product.

Proof. It is trivial

properties follow from the

1311

(1 .k) (r , s)

'.'.'heorem 14. Given (n)

that {he direct product is finite. The other

equation

= <P§,>1<P§,>2 .

-serial CSP-1 together with the long run pv's,

gk, for the constituent plans (1 s k s n), the long run pv for the serial

plan (model) is

‘a®a®m®a

Proof. Using backward induction on the index k, for fixed n (and more

generally, double induction on k and n) as in Theorem 13, Theorem 12 shows

that en_l ® en is the long run pv for A(n__l)n. The first equation in

Theorem 13, the equation

"s1® 9.2 (X) -—- (X) an = <21) (X) (2.2 (X)""~® 2.0"»
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the fact that Al is a MC matrix, and Proposition 3 applied to A1 <8) Azn

Suffice to finish the proof.

As an example of Theorem 14, consider (3)+seria1 CSP—l. The "Go"

probabilities for a transition in the third plan are:

q1<l2. (1132, BN2» and B132 -

The "Stop" probabilities for a (virtual) transition in the third plan are:

\

P19 qlpzr (11621 61: Blpzv and B162‘

The matrices are:

A13 = C1 ® (I23 ‘ A23)+ A1 ® A23 (A4)

A23 = C2 ® (I3"A3) + A2 ® A3 (B4)

Rearranging Eqs. (A4) and (B4), expanding the "23" identity matrix, and

substituting the rearranged Eq. (B4) into the altered Eq. (A4) yield

A..=c.<X>1.<X>1. +(A.-c.)® ¢.<X>I.

*'(A1'C1)®(A2' C2)®A3

Looking at this last equation and the Go" and "Stop" probabilities, the

first term of the equation is the "Stop" matrix for transitions in the

second and third plans together while the second term is the "Stop" matrix

for transitions in the third plan alone. The third term is, of course, the

"Go" matrix for all three plans together.

We investigate, at this point, an alternate "proof" for Theorem 14

analogous to the one given for Theorem ll. First of all, we derive the

recursions and the decomposition which result from the assumption of an

initial separable pv for (3)—serial CSP-1. The extension of the results

to (n)-serial CSP-1 is then easily obtained.

Let x°® y"® 5° be an initial pv'for the (,3)—serial CSP-1 model.

Furthermore, define the following three sequences of vectors:

2’ = 5°/\I» 2‘ =z° AZ» and 2‘ = °A§-.1N

Also define a(2,3) to be the unity l x (i2i3) vector, and a(k) the unity

l x ik vector, for l 5 k 5 3. Rewrite the equations for A13 and A23 as

A13 = C1 ® I23 " (A1 ' C1) ® A23 (CA)
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and

A23 = C2 ® I3 ‘* (A2" c2)® A3 (D4)

From sq, (04), we have

a‘b® <z‘® 21> = 21° C1® <x°® 2°)

+ <2‘ " <1"31=<i1) ) (X) <z°® 5° A23)

opin

Since the components of y1(X)51 add to one, we have from the RHS of the

last equation g (1) g0(1)

(£1® (zl® 21)) a(2,3) _ <09 ) -|-21.. ( 9 )

O' 5

21, 80(1) = 1-“X21

Thus, as before we have x} = 3}. Since the components of xi add to one, we

also have

fig‘ (§‘® <z‘® 21>) - so<1> <z°® 2°) + <1-20(1)) (>:°® 1° A23)

= z1®a‘

Using Eq.-(D4) to evaluate the second factor of the second term of the RHS

of the second to last equation gives the following string of manipulations.

<>;°>1® <e°>‘ <_v_°(X) ;._°> A23

((1°)1®(5°)1)a(2) (1°® 5°) A23 -1(2) or

(19)! 3} (as with the (2)—serial case)

ll

W /\

RAJ

\./

(‘Y

ll
Q3 /\ U3 \./

I‘?<<_»;°>1(X)<5°>‘> ((y°® 5°) A23) or

<e°>1 80(2) 5° + <1-g@<2>>z‘

(gum I3 + (1—g0(2)) A3)

where g0(2) = ,1-W22. Finally,

<;21® 21> e<_2_>_ = 1/_°(g0<1> I2 + (1-80(1)) A2)

= Z1

I
1N
O
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and

O)
/\
W

\/

I‘?

/'\
1N

X1® E1) ___ 1

° (g0<1,2> I, +_<1-g,,<1,2>> A3)

where 1-go(l,2) = (l—g0(l))(l-go(2)). Proceeding by induction,

ll

{N

I u _
£r+l = _r+l, Zr+l ___ Zr (1.), and :.,:r+l = Er A3 (1.,

C

where

A"; (r) = g,<1> I2 + <1-g._.<1>> A2. g,_.<1> = 1-~»1><’{,

A", <r> = g,<1.2> I3 + <1-g,<1.2>> A3. 1-g,<1.2> = <1-g,.<1>><1-g.<2>>

and gr(2) = l—v2y§2. Furthermore,

r_1 n r_ no

11' =1° gr]; A2(j) and 5}’ =50 It A3(j)

Therefore once again yF (strongly) converges to ea, gr(l) converges to

l—v1a2i1, and gr(2) converges to 1—v2a2i2. It follows then that

l-gr(l,2) converges to (l-v1u2i1)(l-vzaziz)

and that

A"3 (r) (strongly) converges to (l—AFI(l)-AFI(2))I3 + Al-‘I(l)~AFI(2) A3 .

From the last statement, the recursive relationships, summability theory,

and [6.l0], E? converges to 53. '

In summary, for an initial separable pv for (3)-serial CSP-1, all

three components individually converge to their long run pv's which are

independent of one another. Moreover, analogous to A12, A13 decomposes

into one ergodic stationary MC and two strongly ergodic nonstationary MC's,

the third depending on the first two.

The vector approach can be generalized to (n)—serial CSP—l as an alter

nate "proof" for Theorem 14. However, the major reason for the vector

approach is to obtain recursions and the manner of convergence. By induction,

one can now easily show the follgwing recurs%ons and decomposition for Ala

with an initial separable pv = x_1®-——® xn. An outline of the results ‘

is given below.

xg+l = xi. A:(r), l 5 s s n

where

= gt-(1-)2a___9S"1)IS + (l"8r(l,2,""",$"1)) As
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and S-1

1“8r(1:2a""'.>5"1)= (1-“\’k(.§11<.)i'k)

k=l -

(and gr(O) = 1). Then taking limits, we have a "proof" for Theorem 14.

In general then, A1“ decomposes into an'ergodic stationary MC and (n-1)

strongly ergodic nonstationary MC's of increasing dependence on the ele

ments of all the preceding MC's.

We now deal with AFIn(w) in

Theorem 15. For (n)-serial CSP-l,

1"AF1n<°°> = “n<“b1°‘b2 "*"' °‘b<.._1>)en1n

(again ubj is shorthand, l s j s n-1).

Proof. From Theorem 14,

..<x>--~<x> E. = [<e..><e..>-----<e..>]

The rest of the proof follows the logic of Theorem 12. For example, the

functional is

N

where J-is the set of (n—l)—uplesof indices varying in a manner such that

the rth index varies between l and ir, 1 5 r s n-l.

The same comments made about AFI2(w) and AFI(w,p2;i2,f2) also apply to

AFIn(w) and AFI(@,pn;in,fn).

4.3'(n)—Serial CSP. An example of a CSP, different from CSP-1, is CSP-2

given in Figure 4; the limited sampling phase (abbr. ls) requires sampling

at some frequency and, in addition, has a "clearance" number (for successive,

but not consecutive, k nondefective inspected items). In a sense, the ls is

a combination of the sc and uls phases.
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Figure 4

Block Diagram of CSP—2

__ ' <3)

(4) I

sc and uls as in Figure 1

ls = limiting sampling phase

Arrows (l) and (2): As in Figure l

Arrow (3): If k units are successively inspected

and found to be defect free

Arrow (4): If the jth unit inspected is found to be

defective, l 5 j S k

The ls phase can be looked upon as consisting of k MC states. Further,

each state, SLj, has transitions to H0 and SL(j+l) (or to Si for j = k),

given in the z transform mode, as follows (see [6.2] for further details)

SLj to SL(j+l) or Si given by "A/(z—vY§ A = fq

SLj to NO given by "6/(z—v)", 6 ='fp

As an example, consider the (2)—serial CSP given by a CSP—2 followed by a

CSP-1 (the reverse order is easy since then the component matrix "A% is

just the transition matrix for CSP-2). The matrix for the total plan is

A,2<2.1> = C1<2><X) (I2- A2<1>) + A1<2>(X) A2<1>

Dropping indices on the individual probabilities, those matrices used on

the RHS above which come from use of CSP—2 are

G11 Gm

A 2 =l( ) Gik Gkk

where
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pqo---0"‘ ‘W10---0'

p 0q_--—— 0 0111 0

G11 = --- . . G1.1<= --

P°°""q 000-—-v

000—-- B __

<s 0 0 --- 0- _ -‘A

5 0 0 --- 0 0

G11<= "" A » Gm’

6 00 0 6 0 0 --- 0

and Grs is an rxs matrix. Also

1 0 --- 0

1'0 --- 0

1 0 --- 0

C1<2> = <p>

0 0 --- f --- 0

£ 0 --- 0

1 0 --- 0
I. —

where the"f" not in column l is in (col, row) = (i+l,i). Formally, the

analysis can proceed in a manner entirely analogous to that done in Section

4.2. For an initial separable pv, the decomposition of this (2)—serial

CSP into a stationary MC and a nonstationary MC also holds. More generally,

such decompositions, analogous to the one which holds for (n)-serial CSP-l,

hold for any (n)-serial CSP. _

4.4 Variant Multicharacteristic Plans. The first plan that would seem a

natural variant is one whose MC matrix is given by

A12 = A]_® A2

With this plan, the state determinations for each component are independent

of one another. By Proposition 3, the above matrix is irreducible, finite,

and aperiodic with long run pv _e_1® 52.

Another possible variant is given in Figure 5.
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Figure 5

Variant Multicharacteristic Plan

States; Same as in Figure 3

-Transitipps ((kj)+l may be ij for = 1,2):

State State Probability

<1<1.1<2> <<1<1>+1, <1<2>+1> q,q,

(11,12) (11,12) 5132

Any of above + (0,0) l—Prob(state)

The transition rules in Figure 5 can be restated: transitions take place

iff both characteristics are each either inspected and found nondefective or

sampled. If we let i1 = i2 = i this plan has one ergodic class given by the

diagonal ordered pairs: {(j,j)I0 S j 5 ijz ; all other states are transient.

Moreover, if the inspection starts off wit the state (0,0), we then have a

plan equivalent to CSP l with 5 = l—q1q- and E = B182. However, with this

plan, marginal AFI has no meaning because of the ambiguity expressed by 5

and l-§. It is even doubtful whether the traditional AFI function would

be'a good measure of effectiveness for such a plan.

5.0 CONCLUSION. The motivation for this paper is Chapter 3 even though the

main, workablc results are contained in Chapter 4.

5.1 Chapter Three. The two models considered in Chapter 3 employ SMC reduc

tion in an attempt to simplify the second order MC model at the end of

Chapter 2 and highlight the difference between it and the (approximate)

model given by the nonstationary MC. Any simplification of the (2)—MC

model by using SMC reductions for both plans would probably not be worth

the effort since superimposing two ipdependent SMC's is quite a complex

process in itself; here, of course, the SMC's are dependent!

If we are only interested in the long run case (ignoring the transient

case which is hard to analyze anyway), SMC reduction of both plans can be

used to yield a model consisting of the states {(a,l), (a,2), (b,l), (b,2)}

where the letters and numerals refer to the second and first SMC reduction,

respectively, in Chapter 2. This model would replace the pdf's of states b

and l by geometric pdf's. The conditions to be satisfied for this change are

-D

U"<5-‘

-mi
I—l¢P-1

= ub and = pl

215



The (q')'s are to be determined given the standard mean times ub and pl,

More results on products of random matrices may be found in [6.41

where various types of independence assumptions are invoked.

5.2 Chapter Four. One main result is Theorem 12 (and Theorem 14). As

a consequence of the theorem, the expression "V2e2i2" has two interpreta

tions: the average fraction sampled in the usual sense and the average

fraction not inspected in the serial sense. The other rain result, not

formally stated in any theorem, is the decomposition of any (n)-serial CSP

into a sequence of MC‘s, the first stationary, the remaining nonstationary.

The (2)—MC model assumes that the characteristics are independent.

This condition can be relaxed if the ordered pairs remain independent but

the two elements of any particular pair are allowed to be correlated. Let

Z- = (Xj, Yj) be the description of the jth unit. That is, Xj(Yj) = 0 or l

iif the first (second) characteristic is nondefective or defective, re

spectively. The relaxation is equivalent to the assumption that the Zj

form a Bernoulli process but that Xj and Yj are not independent. Then,

using the definitions of correlation coefficient and conditional probability

(oi = pkqk, k = 1,2) we have

_ P2~'- (T0102 + PIPZ)

P[Yj = 1|xj = 0] = P; ql

and

.0

-
P[Yj = olxj = 0] = = 1-P; .

Now P; < P2 (or > P2) iff roloz > 0 (or < 0) and then iff the characteris

tics are positively (or negatively) correlated. In particular, if r > 0

(or < 0), then AFI2(w) will be smaller (or larger) than that obtained in

Chapter 4. We finally note that for random variables Xj and Yj, uncorrelated

is equivalent to independence.

In the variant case, a (2)-characteristic plan is given where the very

meaning of marginal AFI is nonexistent. Such a plan might be useful for

cases of large positive correlation.
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OF STEIN'S ESTIMATOR

*
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ABSTRACT. The James—Stein estimator improves the expected mean

square error of k_2 3 independent sample means for all possible com

binations of true means. In spite of this, it is not widely used in

practical applications, partly because no confidence intervals acconr

pany it. We derive interval estimates in this paper based on an um

informative prior distribution and illustrate the use and success of

the method in an application. Not only is the estimator about three

times as efficient as the sample mean vector in this example, but the

intervals provided are 37 percent shorter while containing the true

values with greater frequency than nominally claimed. The prior is

used in the final section to extend the James-Stein estimator and to

provide interval estimates for the case when the unknown parameters

are exchangeable but the sample means have uequal variances.

1. INTRODUCTION. The James-Stein estimator (1961) of the means

of k 2 3 independent normal distributions is well-known for being ui—

formly and substantially better than the sample mean, on the basis of

its expected sum of squared errors. The James—Stein estimator and its

generalizations apply to many situations involving linear models, and

offer mean squared error improvements over the classical estimators in

many of the applications of statistics. Nevertheless, an informal poll

of perhaps 150 statisticians at this conference revealed that only one

(I would be a second) had ever used a Stein-like estimator in a real

application.

Why? Polls of other groups of statisticians probably would yield

similar results, although subjective Bayesians and ridge analysts may

use related methods more frequently in actual data analysis. The rea

sons certainly include ufamiliarity on the part of many statisticians

with the methods and the types of applications for which the James

Stein estimator in particular, and multiparameter estimation in general,

is best suited. Long acceptance of the sample mean and its simplicity

makes statisticians reluctant to reject it in favor of a more comP11'

cated and imperfectly understood method. Furthermore, the use of the

James—Stein estimator requires making judgments about which problems

to combine, which not to, and the choice of origin to shrink toward.

If these judgments are not good, then the James—Stein estimator will

improve on the total mean squared error of the sample mean insignifi

cantly, and can be much worse for some coordinates. These reasons for

the nonuse of the James—Stein estimator in applications are discussed

more fully in Efron-Morris (1975, Secs. 1, 5).

__- j_..___i

This work was partially supported by a grant from the U.S. Depart
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Even those familiar with the James-Stein estimator often do not

use it in its simplest form because the assumptions made for its der

ivation usually are not met. Instead, a generalization usually must

be derived to estimate an appropriate origin, to accout for nonnormal

distributions, for nequal variances of the observations, for unknown

variances of the observations, for regression situations, for multi

variate data, or for another variation of the assumptions. Recent pro

gress in providing these generalizations has not yet had much impact.

Furthermore, the generalizations derived by different researchers are

not always in agreement because they are not derived from any single

principle. It seems to me, however, that data analysts probably will

find the empirical Bayes viewpoint most useful both for identifying

appropriate situations for using the James-Stein rule and its general

izations, and for deriving appropriate generalizations. For that rea

son the empirical Bayes viewpoint has been used in most of my papers

with Professor Efron (March 1972, August 1972, March 1973, November

1973, 1975, March 1977, May 1977) on this topic.

Another deterrent to using the James-Stein estimator is that

despite its ability to reduce mean squared error, no methods have been

developed for estimating the precision of the estimates, or for deter

mining confidence intervals. (Some attempts have been made by Stein

(1962, 1975, 1974), but the results there are largely theoretical and

asymptotic.)

The primary purpose of this paper is to provide a method for

deriving interval estimates for the unknown parameters estimated in a

matter similar to that of James-Stein and to illustrate the results on

data. This is done in Section 2, using formal Bayesian ideas. The

improper prior distribution used is not chosen subjectively, however,

but is chosen because it yields an estimator similar to the James

Stein estimator, because the resulting estimator is minimax (uniformly

dominating the vector of sample means) and admissible, because it

should lead to conservative interval estimates, and because it results

in easily computable statistics. It has been considered previously by

several authors Baranchik (1964), Stein (1962), Leonard (1974).

The discussion in Section 2 is centered on the problem of esti

mating the true batting averages of eighteen baseball players. These

data, which were used before in Efron-Morris (1975), are ideal for this

work because the true values are available. The "confidence intervals"

derived by the methods of Section 2 are about 37 percent shorter in

this problem than those for the sample mean and theY ¢°ntai" the

true values with the proper probability. Since the true values were

not chosen from the prior, the results encourage the idea that this

method may be used generally. Such a recomendation must await further

research.

The prior distribution also is used in Section 4 to derive a

multiparameter estimator for parameters which have an exchangeable

distribution, but whose sample means have markedly unequal variances.

While the resulting estimates and interval estimates in this
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illustration compare favorably to the sample mean, Section 4 is intended

only to illustrate the use of this method. The resulting rule is known

not to be minimax, however, and its properties await fuller investigation

Still, the method appears to be as good as any suggested to date for

generalizing the James—Stein estimator to the case of unequal variances,

and it does permit construction of interval estimates.

2. A WORKED EXAMLE: EMPIRICAL BAYES INTERVAL ESTIMATES FOR THE

BATTING AVERAGES OF EIGHTEEN BASEBALL PLAYERS. Let us consider the

problem of estimating the true means {G1} of k normal distributions,

having observed the independent sample means X1, X2, ..., Xk. Each Xi

is assumed to have the same variance V which is known. Thus, given 91,

O

xiii‘? N(e1, v) 1 = 1 2, 1<. (2.1)

The simplest version of the James-Stein estimator (1961) applies

when k_2 3 and requires making a priori guesses pl, p2, ..., pk at

01, B2, ..., Gk. Then 61 is estimated by

ei,JS = “1 + (1 7 BJS) (X1 ' H) (L2)

with

§Js E (1.-2)v/z(xi - |,|.i)2. (2.3)

The value in (2.3) determines how much Xi should be shrunk toward pi.

Whenever BJS exceeds unity, it should be replaced by 1 in (2.2)

The usual estimator of 91 is Xi, being the best unbiased estimator,

the best fully invariant estimator, the maximum likelihood, the least

squares and the Gauss-Markov estimator. It is minimax with the ex

pected su of squared errors, the "risk," being

2 _
EeZ(X1 - 91) /v - 1<. (2.4)

The subscript 9 on the expectation operator indicates that 61, ..., Gk

are fixed and X1, ..., Xk vary according to (2.1). The James—Stein

estimator is uniformly better by this criterion, having risk

. 2 _ _ _ .
EeZ(61,JS — 91) /V - k (k 2)EeBJS. (2.5)

which is less than k, since BJS > 0 always. If 61 = pi for all i, then

EGBJS = 1 resulting in a risk equal to 2.

221



If the statistician prefers not to guess at the {pi}, but believes

pl = n2 = ... = pk = n (say), he may estimate u byii = E Xi/k and modify

(2.2) to

e1,JS = x + (1 - BJS)(Xi - x), (2.6)

defining

EJS E (k-3)/S, s E z(xi - §)2/v. (2.7)

This version of the James—Stein estimator applies only if k_2 4 (one

degree of freedom is lost in estimating u by X), but it ordinarily would

be preferred to (2.2) in applications to data. Its risk is

~ 2 _ _ _ -

EeZ(01,JS — ei) /v - k (k 3)EeBJS, (2.8)

dominating the risk (2.4) of the sample means. If G1 ... = Gk, it is

easily checked from the chi-square distribution that EBJS = l and hence

I

that (2:8) is equal to 3. Otherwise (2.8) increases from 3 to k as

Z(9i - 9)2 increases. Once again, it is better to modify (2.6) so that

every 91 is estimated by X in the event that BJS > l.

The estimator (2.6) was applied in Efron-Morris (1975) to the base

ball data of Table 1. The observations Xi in the second column are the

*

batting averages of 18 batters in 1970 after 45 attempts. The variance

of each Xi is known to be V = (0.0659)2. The batting averages for these

players during the remainder of the season, considered to be the true

values" Oi, will be presented later.

Instead of the James—Stein estimator (2.6), the one recommended in

this paper for k 2 4 uses

5i=i+ (1-§)(xi-E), (2.9)

as in (2.6) but replaces (2.7) by the smaller value

*Actually the values Xi in Table 1 are minor adjustments to the __

observed averages after 45 appearances given by Xi = 0.4841 + 0.0659v%5 *

arcsin (25 — 1), rouded to three significant figures. The observed

average acfually is 5,; for example, 51 = 18/45 = 0.400 for player 1

(Roberto Clemente). The arcsin transformation stabilizes variances, as

required for assumption (2.1), and the constants 0.4841 and 0.0659 are

chosen so that the [Xi] and the {pi} have the same mean (0.26567) and

standard_deviation (0.0659)- The Same tran9f°rmati°“ 91 = 0-4841 +

0.0659v%5 arcsin (2p1—l) was made to the true values pi, being the pro

portion of successes during the remainder of the season for batter i.

The names of the players and other information about this problem are

contained in Efron-Morris (1975).
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Table l

THE MAXIMUM LIKELIHOOD ESTIMATES (MLE), EMPIRICAL BAYES ESTIMATES (EBE) ,

AND TWO ESTIMATES OF THE EBE RISK FOR EACH OF EIGHTEEN BASEBALL PLAYERS

(1) (2) (3) (4) (5) (6) (7)

MLE EBE

,,
* * ..

1 1x1 91 °i(X) P1 R1 R1

1 0.395 0 308 0.046 0 203 0.491 1 738

2 0.375 0 301 0.044 0 145 0.454 1 163

3 0.355 0.295 0.043 0.097 0.424 0 685

4 0.334 0.288 0 042 0.057 0 398 0 287

5 0.313 0.281 0 041 0 027 0 379 -0 006

6 0.313 0 281 0.041 0.027 0 379 -0.006

7 0.291 0.274 0.040 0 008 0 367 -0 198

8 0.269 0 267 0.040 0 000 0 362 -0 274

9 0.247 0.260 0.040 0 004 0 365 -0 234

10 0.247 0 260 0 040 0 004 0 365 -0 234

11 0.224 0 252 0 040 0 021 0 376 -0 067

12 0.224 0 252 0.040 0.021 0 376 -0 067

13 0.224 0 252 0.040 0 021 0 376 -0 067

14 0.224 0 252 0 040 0 021 0 376 -0 067

15 0.224 0.252 0.040 0 021 0 376 -0 067

16 0.200 0.244 0 041 0.052 0 395 0 243

17 0.175 0.236 0.043 0.100 0.425 0 714

18 0.148 0 227 0 045 0.168 0 469 1.391

MEAN 0.266 0.266 0.042 0 056 0.397 0 274

srnsv | 0.068 0.022 0.002 0.060 0.038 0 593

COMPUTATIONSZ R = 18, m = 7.5, V = (0

E = 0.26567, s = z(xi-302/v = 18.93244,

1 - 8(J§) = 6.76 X 10' , eo 5(8) = 3720.30214, e7 5(s) = 6.77428

8 = l%(1 - 1/e (s)) = 0.79229 X 0.85238 = 0.67534.

51 = E; + (1-B)x1 = 0.17941 + 0.32466 xi, Pi = (x14i)2/SV = (X14§)2/0 08222

V2

4 _ 1 ll _» 3R1 — —1—8- + 18 (1 B) + P1vS 0.36218 + 0.63178 Pi»

[213 — l5(1-B)/e7 5(3)]/S = 0.63178/S = 0.03337 = ((),]_327)

7.5

.0659)

* * .1_ 7:,

o1(X) = (V * R1)? = 0.03966(1 + 1.7444 Pi) ,

A. 17 ~ ~2 _ _
Ri = 1 - 2-T5 B + Pi S{2v +.n } - 0.27563 + 9.89823 Pi

2 R:/k = 0.39728, 2 R1/k = 0.27427.

2
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where for S E Z(Xi - §)2/V we have defined

1

em(S) E m exp(S/2) f B‘“'1 exp(-BS/Z)dB. (2.11)

o

The theory behind this estimator will be presented in Section 3.

Here it will be described and its application illustrated. The fuction

em(S) increases with S from em(O) = l at S = 0 to infinity as S ~ w.

Thus em(S) > l always and therefore B in (2.10) shrinks Xi toward i less

than the Jams-Stein estimator does. One can comute em(S) by direct

integration, or by using tables of the chi—square distribution, of the

incomplete gamma function, or of the confluent hypergeometric function

lfla, b, z). Abramowitz—Stegu (1965, Chapter 13), since

e <s> = r<m+1><3>“ (s/2) S/Zsgfii-952115195 <2 12>

m S exp yo F(m) ’ '

= M(1, m+l, s/2) = F(m+1) E (S/2)j/F(m+l+j). (2.13)

j=0

However, it usually is simplest to compute it recursively from

em(S) = 3% (em_l(S) - 1) (2.14)

using the initial values

e1(S) (eXP($/2) — l)(2/S).

' __ (2.15)

e_5<s> xp<s/2>[1<,s> - .51.ll

I\

N

=/J;
NI»

(D

§(x) being the cumulative distribution function of a standard normal

distribution. For large values of S, the approximation

NIP

1 - §(,/§) é (2ns>’ exp(—S/2)(S+l)/(S+2) (2.16)

may be used in (2.15), Abramowitz-Stegun (1965, p. 932). For small values

of s, em(S) é 1 + S/2(m+l) + S2/4(m+1)(m+2), from (2.13), so

m S/2

m+1 (1 - (2.17)
U1>

ll‘

ignoring terms of order S2. Hence B decreases monotonically from

m/(m+l) = (k—3)/(k-1) at S = 0 to O as S ~ m. The reader is cautioned

about the use of (2.14) for small values of S. It can be numerically

ustable in Such cases, and then (2-13) should be used instead.
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Using the values of {Xi} in Table l, we calculate

>4! ll

I

0.26567, s = 2(xi - x)2/(0.0659)2 = 18.93244, m = (1<-3)/2 = 7.5,

1 - @(,,§) = 6.76 X 10'“ from (2.16), e_5(s) = 3720.3oz14 from (2.15).

em($) = e7.5($) = 6.77428 by iteration of (2.14) seven times,

.§Js = 15/s = 0.79229, T3 = 0.79229 * 0.85238 = 0.67534,

'61 = 0.26567 + (1 - 0.67534) (xi - 0.26567) = 0.17941 + 0.32466 xi.

In this case, (2.9) shrinks the ME toward the grand mean only 85.238

percent as much as the James-Stein estimator (2.6) does. The values

Bi are recorded as the empirical Bayes estimates in the third column

of Table l.

What precision should be attached to the estimates just derived?

Tpe error of estimate we will use is given in column 4 of Table l as

oi(X), computed as follows. Define

v e [213 - (1-ii) (11-3) /em(S)]/S (2.18)

and

R: = % + % (1-13) + P1vS (2.19)

where

P = (x - i)2/>:(x - i)2 = (x - i)2/vs (2 20)
1 " 1 j 1 ' '

Then o:(X) is defined to be

O‘:(X) = (mi)? (2.21)

From the values already obtained, we compute

v = 0.63178/S = 0.03337, R: = 0.36218 + 0.63178 Pi,

* é.oi(X) = 0.0659 (0.362l8 + 0.63178 Pi) = 0.03966(l + 1.7444 P1) .

The values {P1}, which are recorded in colun 5 of Table 1, measure in

relative terms the squared distances from the individual eans to the

grand mean. The prgcision (2.21) is better for those components i having

Xi near the center X of the data. This fact is completely analogous to

a similar result in linear regression, that prediction errors are smaller

near the mean of the explanatory variables. Values of o;(X) appear in
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colun 4 of Table 1- A Player at the mean would have c:(X) = 0.03966,

but player numbfir 1 is farthest from the center with Pl = 0.203, and

therefore has o1(X) = 0.046, 16 percent larger. The typical value of

oi(X) is about 0.0415, or 37 percent less than the standard deviation

0.0659 of Xi. Thus, a considerable improvement in precision is claimed,

equivalent to using the sample means of a sample 2.52 times as large.

Formula (2.19) is one of two estimates of the risk (01 - 61)2/V

*

of the empirical Bayes estimator (2.9). These values are given as R1

in column 6 of Table 1, and are less than the risk of the sample average

Ee(Xi — 0i)2/V = l for every player.

In colunn 7, the unbiased estimates R1 of the risks of 81 are given,

computed from the formula

- _ 1<-1 * »2
Ri= 1- 2—k B+Pi[2v+B 1s. (2.22)

The estimator in (2.22) is the unique unbiased estimator of the squared

error risk of the estimator (2.9). That is

. _ .. 2
EGR1 - Ee(9i 91) /V, (2-23)

for all fixed (91, ..., Gk). Summing the values of (2.23) over all k

players, with (2.18) substituted in (2.22), we obtain

Q Q

R+ = 2 ii = 1. - (1<-3)[fi + (2—B)/em(S)]. (2.24)

Since R+ < k for all (X1, ..., Xk), and R+ is unbiased for the risk of

(2.9), it follows that (2.9) is a minimax estimator of (01, ..., Gk)

for k > 4. That is

Ee2(§i - e1)2/v = k - u<-3)E[§ + (2-3)/em(S)] < k (2.25)

for every set of values (61, ..., Gk). The minimax character of (2.9)

was proved by Baranchik (1964).

Clearly the values R1 in Table l are unreasonable, being negative

estimates of a positive quantity in the central ll of the 18 cases. With

other data these estimates might look better, but they generally tend to

be quite variable. The smoother values R: provide more reasonable esti

mates of component risk, although as a group they tend to be conservative,

for the following reasons. The su of the values R2 can be written
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R1; 2 R: = k - <1<-3) lfi + (1-13)/em(s)], (2.26)

or using (2.24),

R: = f<+ + 2m/em(s). (2.27)

*

It follows from (2.27) that R+ overestimates the total risk of

(él, ..., §k), since §+ is unbiased for this risk. For the data of
‘

. *

Table l, we calculate R+ = 4.937 from (2.24), R+ = 7.151 from (2.26),

and 2m/em(S) = 2.214. The amount 2m/em(S) that R: overestimates the

total risk decreases as S increases, and would tend to be smaller for

most examples, where the true values are likely to be more dispersed.

How well does this analysis do? The true values* are given in

Table 2, column 2. Column 3 presents the values (G1 — 61)/o;(X), a

distribution which ideally has zero mean and unit standard deviation.

The mean of these values is -0.027, only about one-tenth of a standard

deviation from that expected, the standard deviation is 0.862, meaning

that the intervals are conservative. This is expected, since from (2.27),

*2 _ * A 2

E921 oi (x) - vEeR+'>Ee2 (ei - ei) (2.28)

and so the o;(X) tend to be too large (by about 15 percent in this case).

For comparison, the distribution of errors of Xi, relative to the stan

dard deviation of Xi, is given in colun 4 of Table 2. The mean and

standard deviation of these numbers are almost exactly what is expected

from a sample of 18 nubers from a N(0,l) distribution. Hence, the in

tervals for 91 in this example are both shorter and more conservative

than those for Xi.

The signs of the MLE errors in column 4 are strongly correlated

with the Xi values, because the true means 61 have regressed markedly

toward the mean, relative to the observed means Xi. Figure 1 shows

this regression effect vividly and how the {é } shrink the [X } to
’ i 1

produce better estimates. The dispersion of the {G1} is even smaller

than that of the true values {G1} since the ordering of the {Bi} is not

highly correlated with that of the {X1} (Spearman's rank correlation

*These really are only the batting averages for the remainder of

the 1970 season, being independent estimates of the true values with

standard deviation 0.0659 (45/Ni) , N1 given in colum 7 of Table 2.
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coefficient is only p(6, X) = 0.218 for these data).‘ The regression

to the mean effect also occurs for the EB estimates 6. in colun 3,

although it is_much less prononced. An even less conservative shrinking

constant than B would be needed to eliminate the regression to the mean

for these estimates and true values.

Table 2

TRUE VALUES, RELATIVE ERRORS, AND LOSSES FOR

EMIRICAL BAYES ESTIMATES (EBE) AND

MAXIMUM LIKELIHOOD ESTIMATES (ME)

(1) (2) (3) (4) (5) (6) (7)

TRUE EBE MLE EBE MLE

VALUE RELATIVE RELATIVE LOSS LOSS

anon muzon

0 -e x -8 (0 0) (x -e 2
1 6i 1 1 -__iVi_ ii-‘,__j_-i N

, 0 "1 J17
1 0 346 -0.831 0 744 0 339 0 553 367

2 0 300 0.026 1.138 0 000 1 295 426

3 0 279 0.365 1.153 0.057 1 330 521

4 0 223 1.560 1.684 0 968 2 837 275

5 0 276 0.124 0 561 0 006 0 315 418

6 0 273 0.198 0 607 0.015 0 368 466

7 0 266 0.198 0 379 0 014 0 144 586

8 0 211 1.406 0.880 0.716 0 775 138

9 0 271 -0.286 -0 364 0.030 0 133 510

10 0 232 0.694 0 228 0.175 0 052 200

11 0 266 -0.343 -0 637 0.044 0 406 277

12 0 258 -0.145 -0 516 0 008 0 266 270

13 0 306 -1.334 -1.244 0 668 1 548 435

14 0 267 -0.368 -0 653 0.051 0 426 538

15 0 228 0.598 -0 061 0 134 0 004 186

16 0.288 -1.054 -1.335 0 439 1 783 558

17 0 318 -1.903 -2 170 1 540 4 709 408

18 0 200 0.609 -0 789 0.174 0 623 70

MEAN 0 267 -0.027 -0 022 0 299 0 976 369

srnsv 0.037 0.862 0 988 0 412 1 157 150

The observations of the preceding paragraph are expressed differently

in Figure 2. The central dashed line is the maximum likelihood estimator

(the 45 degree line); the other four dashed lines are the ME plus or

minus 1.00 and 1.96 standard deviations of Xi. These determine the classi

cal 68 percent and 95 percent confidence intervals. Each player is plotted

at his point (Xi 61). The dashed confidence bands do very well: l2/18 of

of the true values are located between the 16th and 84th percentiles; and
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Fig. l—True values, maximum likelihood estimates, and empirical Bayes

estimates for each of l8 players illustrating regression to the mean of

the true values and shrinkage of the empirical Bayes estimator
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ond EBE=0\'l, EBE to-L*(X), and EBE iI.96 o';’_"(X) (solid curves)

Eighteen pIoyer$ plotted at (X1, Bi ) using data of Tables I, 2
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17/18 are within the 95th confidence band. The middle solid line is

the empirical Bayes estimator Bi = 0.17941 + 0.32466 X1. This value

1 o:(X) is intended to correspond approximately to 68 percent con

*

fidence, and i 1.96 o1(X) to 95 percent confidence. Notice that these

solid line confidence bands curve to allow for greater errors at extreme

values of X1. The confidence bands are conservative in this application,

in congruence with the theoretical statements made after (2.27); 13/18 =

0.722 of the true values are in the central 68 percent confidence region,

and all 18 are in the 95 percent region.

An extremely interesting point raised by Figure 2 is that when the

95 percent confidence region is used to make a statistical test that the

true value of a player is a specified value, then conflicting results can

be obtained from the classical and empirical Bayes methods. Because it

has shorter intervals, we expect the empirical Bayes methodology to reject

certain true values when the MLE does not. For example, from Figure 2,

a 0.500 season average cannot be rejected for player nuber l according

to classical theory, but is out of the question from the empirical Bayes

standpoint. (No one has ever approached such a value for a full season.)

The astonishing fact is that the empirical Bayes method includes two small

regions that are excluded by the classical ethodology. To illustrate

this, a true value of 0.318 is rejected at the 95 percent level for player

nuber l7 (Thurmond Muson) by the classical test, but is not rejected at

the same level using emirical Bayes intervals in Table 2. It turns out

that 0.318 was Munson's true value. (And in 1976 he was voted the most

valuable player in the American League!) We will not discuss this hy

pothesis testing problem further here, but obviously it is a worthy topic

for further research.

_ Columns (5) and (6) show the losses incurred by_the two estimators

61 and Xi. Only for the 10th and 15th players does Bi fail to improve

on X1, and in those cases the 91 loss is small. The empirical Bayes loss

Z(81- 01)2/V for the 18 players is 5.38. The sample means give 17.57,

close to what is expected for 18 components, but worse by a multiP1e °f

3.27 than 5.38. The values R: and RI from Table l estimate the expected

value of entries in column (5) of Table 2. Since R+ = 4.94 and Ri = 7.15,

R+ is closer to the combined loss 2(6i — 9i)2/V = 5.38. However the R:

values, being smoother estimates of E(81- 9i)2/V, are much closer to the

individual losses (0i- 6i)2/V of the players than are the R1.

Do these results hold up for other samples {Xi} from these true

values {Bi}? A simulation was conducted to check this and to determine

" * A

whether the intervals computed by 01 1 oi(X) and 81 i_l.96 o:(X) contain

the true values at least 68 percent and 95 percent of the time. Using

the same true values {Bi} of Table 2 each time, new values of (X1, ..., X18)

were randomly drawn from the normal distribution (2.1) one hudred times,

with Var(Xi) = (0.0659)2 in all cases.
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In the 1800 experiences, the_true values were contained in their

nominal 68 percent intervals (in 61 :_cI(X)) 74 percent of the time, and

in the nominal 95 percent intervals 97.3 percent of the time. In one of

the 100 cases three of the true values fell outside their nominal 95 per

cent intervals, in nine cases two true values fell outside, in 28 cases

one fell outside, andhin the remaining 62 cases all 18 of the true yalues

were in the interval 6i_i 1.96 o€(X). The average shrinking value B was

* A

0.608, and ai(X) was typically 65 percent of V2, so empirical Bayes con

fidence intervals were both 35 percent shorter and more conservative than

those based on the sample mean.

The estimate-{Xi} had average loss 18.45 (0.75 of a standard deviation

8b0Ve that eXPeCted), while~{91] has 6.41, more efficient than the MLE by

a factor of 2.88. In no case did {Di} have combined loss exceeding 13.1, and

its total loss never exceeded 60 percent of that of {X } in any of the 100 cases

i

Next consider the estimates of risk. The risk of {Oi} is close to

6.4, the azerage loss in the 100 simglations. The average value of R+

was 6.3, R+ averaged 8.3. However R+ was ahbetter estimate of the total

loss, which varied from case to case, than R+ in 59 of the 100 cases, and

had root mean squared error 2.9 for estimating the total loss

1+ E >:(ei - ei)2/v (i.e., Z(R_‘;‘_ - 1.+)2/100 = (2.9)2 for the 100 cases),

whereas R+ had an igferior root mean squared error of 3.7. The component

estimates of risk R1 were much better than R1, as estimates of the loss

Li 5 (51 - 9i)2/V. In the root mean square sense, [RI — Lil averaged

0.51 while |Ri— Lil typically was 0.78. The latter errors

also were more variable from problem to prpblem. In only 9 of the 100

cases was the root man square of the 18 lR1- L1] values smaller than

the root-mean—square of the |RI— Lil values.

The analysis presented in Tables 1 and 2 then is typical (although

slightly on the favorable side) of what would be expected from a random

draw of observed values {Xi} from the true values [Oil of Table 2. The

conclusion from the simulation for these {Bi} is that in addition to

substantial improvement in the risk of the sample means, the empirical

Bayes estimates [01] of (2.9) provide much shorter confidence intervals

than the classical estimator, with nominal values that are conservative.

We cannot ake similar claims at this time for the confidence in

tervals generated by the empirical Bayes estimator for other combinations

of true values, but there is reason to expect similar results if the

statistician is careful to combine estimates from problems for which the

true values are exchangeable (i.e., the distribution of the {O1} should

1

232



be invariant under permutations). For large Z(01-0)2 the rule (2.9) is

nearly equal to the James-Stein estimator, which Stein (1962) has shown

leads to approximately correct confidence sets when either S or k is large.

Over all components, (2.9) is minimax, and conservative both because it

shrinks less than the James-Stein rule, and because

~ 2
E z(e -0 )

—"—"—,f2i < 1, (2.29)

E82 oi (X)

which follows from (2.27). But the statistician who cares about each

individual component really needs to know not that (2.29) holds, but

that for every i = l, ..., k,

E (‘ei-e1)2
6 ——i*2 5 1, (2.30)

01 (X)

or nearly so. This can fail badly if the true values fall into distinct

groups (so they could not have come from the exchangeable prior on which

(2.9) is based). The most dramatic example of phis failure occurs for

large k when 02 = 93 = ... = Gk and 61 = 62 j;vkV. Then, although

6:2(X) 5 V for i = l, Ee(§1-G1) 5 Vk/4. However the unbiased estimate

of risk of 91, R1 will be close to the cprrect value k/4 and therefore

is a much better estimate of risk than R1 in this instance. More generally,

an uppir boud for R; is 1.5 for all k, X, achieved for P1 = l near S = 2k.

Thus oi(X)“5 l.2254V always, resulting in nonconservative intervals for

components that are badly estimated. A limited translation modification

of the estimator (2,9) would reduce this error significantly without

substantially reducing the overall efficiency of the estimate (Efron;Morris,

1972). Obviously, considerable caution must be taken when applying 91 to

components with large Pi or large R1 values. This example warns against

too much reliance on the Bayesian interpretation of the estimator and

illustrates why the statistician must consider the exchangeability

assuption to be plausible before using either the James-Stein estimator

or (2.9).

3. DERIVATION OF THE EMIRICAL BAYES ESTIMATOR. The James-Stein

rule (2.6) may be derived as an empirical Bayes estimator (see Efren

Morris, March 1973, and Efron-Mbrris, 1975) by assuing that the true

values {G1} independently follow the same prior distribution with two

unknown parameters u = E01, A = Var(61),

9112.4 u(0, A) 1 = 1, 2, ..., 1.. (3.1)

233



Given {Oi}, the sample means have the normal distribution specified in

(2.1). If u and A are known, the Bayes estimator of 81 for squared error

loss is the posterior mean

E(ei|x. A. u) = p + (1-B)(Xi-u), (3.2)

defining

U

lll

<

.~:l<
(3.3)

The marginal distribution of {X1} given p, A is obtained by integrating

{G1} out of the conditional distribution (2.1) of [X1], obtaining

xiifid N(p, v + A) 1 = 1 2, ..., k. (3.4)

Thus X is the usual estimator of u, from (3.4), and can be used to replace

the unknown u in (3.2), while S E ZXXi-X)2/V, being distributed as

tn Z

Wll-I

fF~
*1

(3.5)

because gf (3.4), provides a basis for estimating B. The unbiased estimate

of B is B - (k—3)/S,Ll VJ
ll

“ _ 3:2 =EBJS = E S B (3.6)

from (3.5). Substitution of i and BJS for the unknown values p and B in

(3.2) yields the James—Stein estimator (2.6) of {Si} as an empirical Bayes

estimator.

Instead of the ubiased estimate, we will derive a formal Bayes

estimator of B by assuming A is uniformly distributed on [0, ab, that is,

with probability element dA on [0, ch. A compelling reason for this choice

is that the James—Stein estimator is the formal Bayes estimator resulting

from distributing A uniformly on [—V, w). Since it is known that A ¢aRfl0t

be negative, being a variance, restricting it to [0, ad leads to an

estimator similar to but better than the James—Stein estimator. This prior

has been studied before with u known, by Stein (1962), by Baranchik (1964)

who proved the resulting estimator is minimax, and again by Stein (1973)

where he developed the unbiased estimator R+ of its risk and also observed

that the rule is admissible because of a theorem of Brown (1971). Leonard

(1974) discussed the prior in a Bayesian setting, and it is similar to, but

not identical with, priors recommended by other Bayesians for this problem:

Jeffreys (1948), Lindley-Smith (1972), Ze1lner—Vandaele (1975), and Good

and Wallace (as interpreted by Stein (1962, p. 281). An appealing property

of this prior is that it does not depend on the variance V. The estimators
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of Strawderman (1971) do not share this property, which renders them

inapplicable in the context of Section 4.

Using the density from (3.5) and dA = —VdB/B2, the density of B

given S is proportional to

f(B|S) = n”'1 exp(-BS/2)dB (3.7)

with m = (k-3)/2 on 0_§ B_§ l. Therefore the formal Bayes estimate of

B is

1'1»
0 B exp(-BS/2)dB

E = EBIS = - (3.8)
_ fl B"'1 exp(-BS/2)dB

0

The d8H0miH8t0r Of (3-3) 18, up to a scaler multiple, the marginal

density function of S (being an improper density). Integrating the

numerator of (3.8) by parts once yields

1
- é-exp(S/2) + £9 I Bm'1 exp(-BS/2)dB

0

and hence (3.8) simplifies to

* _ 5:2 _ __li_

0 - S (1 em(S)) (3.9)

with em(S) defined in (2.10). Estimating H by i and B by (3,9) in (3,2)

yields the estimator (2.9) as an empirical Bayes estimator.

The variance v of B given S also can be obtained. we have

v 5 Var(B|S) = -2 gg-EB|S = -2 %§-S. (3.10)

Since

de (S) Q

it follows from (3.10), (3.9), and then (3.11) that

v - Zlfi - (1-i)m/em(s)1/s. (3.12)

The unbiased estimate of component risk of any estimator of 61 of

the form 01 = § + (l—B(S))(X1—i) is, denoting B'(S) = dB(S)/dS and

— 2

P1 — Z(Xi-X) /SV,
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§i(s) = 1-2 Bil B(S) + PiS[B2(S) - 48'(S)] (3.13)

for any shrinking fuction B(S) which depends only on S. That is

A 4; 2 V

EeRi(S) Ee(e1-01) / - (3.14)

This follows from writing

Ee(§i-91)2/V - Ee[(Xi-ei) - 8(s)(x1-i)12/v

X -9

1 + EeB2(S)(X1—X)2/V - 2E9 ‘V 1 B(S)(X1-X),

and then applying Stein's formula, Stein (1973), Efron-Morris (1976), to

obtain the identity

x -e
E9 iv 1 B(s)(x1-1'!) = E6 3% B(S) (xi-1'1). (3.15)

Formula (3.13) is obtained by computing

_6_ _- = _'5_5__ _
axi B(S)(Xi X) B'(S)(Xi X) axi + B(S)(l l/k),

noting that 5S/3X1 = 2(X1-X)/V, and collecting terms. The expression

(2.22) for R1 follows from substituting (3.10) and (3.9) into (3.13).

It is interesting to note if B(S) in (3.13) is any Bayes estimator

of B, computed as Bn(S) = EnB|S with n the prior density of A, then

Varn(B|S) = -2dBn(S)/dS and the unbiased estimate (3.13) of risk becomes

9 k-l 2
Rim 1 2 k B_n(S) + P1S[Bfl(S) + 2 Varn(B|S)]. (3.16)

To compute the posterior distribution of {G1} given the data {Xi},

we need a prior distribution for p in (3.4). This distribution is chosen

to be Lebesgue (uiform) measure on (—m, Q), independent of the distribution

on A, because it leads to the classical estimate X for p. Assuming the

normal distributions (2.1) and (3.1) for {Xi} given [91] and {Bi} given

p and A, Bayes theorem gives

0|x, A ... N(X, %. (3.17)

To extend the result (3.2), denote 9 E (81, ..., Gk)’, X E (X1, ..., Xk)',

e = (1, l, ..., l)', and I the kxk identity matrix. The distribution of 9 is
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9|(X, ll-9 ~ + (x"l'le)9

Integrating the distribution of n (3.17) Out of (3.18) yields

e|(x, A) ... nkdze + (1-B)(x-fie), v(1-n)1 + 13 -E ee'). (3.19)

Finally, the distribution of A = V(l—B)/B given X is given by (3.7). So

integrating B out of (3.19), using (3.7), yields

n(e|x) = is + (1-i)(x-ire). (3.20)

with B given by (3.9), and the conditional covariance matrix as

% Cov(9|X) = (1-in + Bee‘/k + v(x-ire) (x-Rev/v (3.21)

with v = Var(B|S) given by (3.12).

It is not precisely true that

_e|x ... Nk(E9|X, Cov(6|X)) (3.22)

has the normal distribution. But 9 does have a normal_distribution for

every fixed B (3.19), and if either B is estimated by B without large

variance, or if the normal distribution of X is considered as an added

source of variation in (3.20), then the normal distribution should hold

approximately in (3.22). We assumed this to produce interval estimates

in Section 2. Formula (3.21) actually shows that the {Bi} values are

correlated, a fact not mentioned or used in Section 2. Thus (3.21) could

be used to find posterior credibility ellipsoids for G given X. Instead,

Section 2 uses only the diagonal elements of (3.21)

2
* _ * _ _ k—l A

0'1 (X)/v - R1 - 1 T B + PivS, (3.23)

and ignores the covariance.

In some problems the prior mean n (3.1) may be known, and then

(3.17) would be inappropriate. All the results given so far cover the

case of known n provided: X is replaced by u throughout; k—l and k-3 are

changed to k and k-2 in (3.5), (3.6); m is changed to (k-2)/2 throughout

(this is the reason for using the subscript m on em in (2.10)); (k-1)/k

is replaced by l in the middle terms of (3.13), (3.16), and (3.23); (3.19)

is ignored in favor of (3.18); and the ee'/k term in the middle of (3.21)

is eliminated.

As stated before, the James—Stein rule is a formal Bayes esti

mator against the prior taking A uiform on [—V, =9. Therefore

the risk estimates, interval estimates, posterior distributions, and all

other quantities computed in this section can be computed for the James

Stein estimator. These results are obtained by replacing em(S) by
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infinity (1/em(S) = 0) in all formulas. Recall, for example, that

B = BJS(l—l/em(S)), so setting em(S) = m modifies B to BJS. More

generally, if the prior takes A uniform on [0, w), a_2 -V, then the

resulting value of B is

BEVZE.

The James—Stein rule is obtained by letting B ~ m in (3.24), hence

em(BS)- w. The estimator of this paper is given by a = 0(B = 1),

while other more conservative estimators result from choices of a > 0

(B<1).

4. FORMAL BAYES ESTIMATORS IN THE UNEQUAL VARIANCES CASE. Because

of the success in previous sections of the formal Bayes estimator result

ing from the prior

6i|A ifid N011, A) 1 = 1, 2, 1< (4.1)

with the variance A distributed as

A.~ Uniform (0, ab, (4.2)

we use this prior again in the case where the variances of the sample

means X1 are not necessarily equal. That is, (2.1) is generalized to

ind _

x1|ei - N(9i, vi) i - 1, 2, ..., k (4.3)

with the V1 known, but possibly unequal. This is the case that arises

most frequently in applications. The equal variance situation rarely

occurs, except in some designed experiments. We shall assue that the

{pi} are known, because while they can be estimated, doing so causes

the formulas of this section to become much more conplicated without pro

viding much additional insight. In most applications, however, estimating

the {pi} would be worthwhile. Having assumed {u } known, we take them to

be zero without essential loss of generality, and replace (4.1) with

I

e1]A ifid N(0, A), i = 1 2, ..., k. (4.4)

By making use of Bayes' formula, and by obtaining the marginal distri

bution of {Xi}, (4.3) and (4.4) are equivalent to

e |(x A)1P.“ N((l-B )x v(1-3)) i = 1 2, 1 (4.5)
i i’ i i’ i i ’ ’

x A1.‘.‘.du(o, A+V), i= 1, 2, 1 (4.6)

i i

where we have defined

vi

Bi 2 V + A . (4.7)

i
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Letting Si = Xi/V1, it follows from (4.6) that

ind 1~ 2
Si|A ... 5-ixl 1 = 1, 2, k. (4.8)

The posterior distribution of A may be obtained from application of Bayes’

formula to (4.2) and (4.6), or more simply to (4.2) and (4.8), to obtain

the posterior probability element of A given X1, ..., Xk

k

e=tp(-% 2 [njsj - log(Bj)])dA

fS(A)dA = 3:1 ' ("'9)

w k

1 -foexp(- 2 jf1[Bj$j 1<>g(nj)1)14

with each Bj a function of A given by (4.7).

Formulas (4.5) and (4.9) sumarize all information relevant to a

Bayesian analysis. In particular

Q

01 5 E6i|X = (1-B1)x1 (4.10)

and

R* = 1- V&1.‘(8 |x) = 1-ii + s v (4 11)
1 - vi 1 1 1 1’ '

where we have defined, with Bi = B1(A) given by (4.7),

Bi E EB1|S - jo Bi(A)fS(A)dA (4.12)

and

vi .=_ V81'(B1|S) = jo Bi(A)fS(A)dA - ii. (4.13)

Although there are many methods and some tricks to help in computing

the integrals (4.12), (4.13), none yield simple answers like those of the

preceding sections. The simplest way to compute (4.12) and (4.13) we have

foud so far is to evaluate the numerator of (4.9) at a nunber Of points

(about 100, not equally spaced), then to divide these values by their su

to obtain fS(A) at those points, and finally compute the 2k integrals (4.12),

(4.13) as finite sums. This is a minor task using a computer. More thought

should be given to these computational issues if the method is used fre

quently.

The symbols (4.10) and (4.11) are the same as those used in Sections 2,

3, and retain their meanings (except that here u is not estimated). So do

239~



B1 and vi, although they now vary with the component. The standard devia

tion of 81 given X E (X1, ..., Xk) is, once again,

Ao:(X) = (viR:)‘5, (4.14)

and this quantity again will be used to define interval estimates.

The ubiased estimates of risk are

4. A A2

R1 = 1-231 + si(n1 + Zvi)» (4.15)_

being derived by the same argument used to obtain (3.13) and (3.16). Then

R1 satisfies

0 Q 2

Eek, = Ee(e1— 91) /vi (4.16)

for every (91, ..., Gk).

For illustration, these estimates are computed on the eight obser

vations given in Table 3. The variances Vi have unit geometric mean, and

nearly increase by a factor of two (actually l.9921))each time, leading to

max(V1)/Z V = %. The data Xi and true values 8 are fictitious, but are

carefully chosen fuctions of the square roots of the 16 expected squared

N(0, 1) order statistics so that: (i) the {Oi} look like a sample from

1

N(0, l)(hence A = 1); (ii) the values (Xi-Bi)/V? look like a N(0, 1) sample

with Z(X1-91)2/V1 and Z(X1-61)2 nearly equal to their expected values;

(iii) Z(91-X1/(l+Vi))2 and E(9i-X1/(1+Vi))2 are nearly equal to their

conditional expected values given X1 (X1/(l+V1) is the Bayes estimator of

91 if A=l in (4.5)); and (iv) the three squared correlations between the

pairs (91, log(Vi)), (log(Vi)» (X1-91)/V%5, and (61, (X1—61)/X?) have been

controlled to be near their expected values, 1/(k-l) = 0.143. The sample

is called "surprise—free" for obvious reasons. Such a sample is desired

because the purpose of this section is to illustrate the methods on only

one data set, while we hope the results will typify ore general experience

The data and true values appear in colun (1), (2), (3), (11) of

Table 3. The amout of shrinking B1, column (4), increases sharply as

V1 increases. The values A1, defined in comparison to (4.7) by

AB = "-*'- , (4.17)

i Vi+A1

also increase, nearly linearly in the standard deviation (V1)%.
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The "true value" of A is 1.000, and Z0i/k = 1.752, so all these values

A

of A1 are conservative, although for small V1 they are slightly less con

servative because those components get higher relative weight when esti

mating A- The estimates 01 and their Bayesian standard errors, which

increase with Vi, appear in columns (6) and (8). The 0i differ little

from Xi for small Vi, but are shruk considerably for large Vi. As usual

in the unequal variances situation, the empirical Bayes estimates order

the true means differently than the sample means do (the 4th and 8th com

ponents are reordered). This has important implications for the theory

of ranking and selection.

*

The Bayesian estimate R1 of the ratio of the mean squared error of

81 relative to that of Xi is given in colun (9). These values average

0.773, a quantity one cares about if the loss function is %-Z(01—01)2/Vi.

The square root, 0.879, is the average ratio of confidence interval widths,

although little improvement over the sample mean is possible for components

with small Vi and much for large Vi. The unbiased estimates of risk, R1,

*

appear in colun (10), averaging 0.790, slightly higher than the R1 average.

All the quantities in coluns (l)—(l0) can and should be computed when

utilizing these estimates.

The ttrue values" appear in column (ll). The relative errors of the

estimate 6 , given in column (12), have root mean square of 0.788, much

less than fhe nominal value 1.000. Thus, confidence intervals based on

0:(X) would be conservative in this example. The weighted squared errors,

whose expectations are estimated by R: and R in columns (9), (10), appear

in colun (13). The_sum of the values in colun (13), corresponding to

the loss function Z(81-9i)2/Vi is 4.26, while if Xi is used, 8.00 (the

expected loss) is obtained. For squared error loss, Z(81—6i)2= 4.87

while Z(Xi—0i)2 = 22.56 (the expectation of this last quantity is 22.32).

The values of the shrinking coefficients B1 (Table 3, column (4))

are plotted in Figure 3 against log(Vi), which is linear in i- The

amout of shinking increases sharply as V increases, but not as much

i

as the shrinking coefficient Bi = Vi/(l+Vi) for the Bayes estimator

(1-Bi)X1 which would be used in (4.5) if A were known to be equal to 1.

The value Z of A that maximizes 13(4) in (4.9) 18 3. = 2.345, being

the maximum likelihood estimate of A based on the joint distribution

(4.8) of (S1, S2, ..., Sk). Use of this in the Bayes estimator (4.5)

yields the empirical Bayes estimator, labeled "EBME" in Figure 3. As

Figure 3 illustrates, this shrinking value Bi = V1/(2.345 + Vi) is less

conservative than Bi. For large values of k it should be nearly equal

to B .

i
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Formal Bayes estimator,

B-L given by (4.12)

James-Stein estimator

Hudson—Berger; Bi = .OiO03 /V L

(minimax)
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Fig. 3——Va|ues of the shrinkingcoefficient Bi = Vt/(/P:i+ V 1) for

several estimators of the form (1-B -L) Xi plotted as a function

of the logarithmic variance, for surprise-free data of Table 3
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The two horizontal lines at Bi = 0 (no shrinkage) and B1 = l (full

shrinkage to the prior mean) correspond respectively to the maximum like

lihood estimator and to the estimator that ignores the data and estimates

61 = O in every case. The other estimators compromise between these extremes.

The James-Stein estimator, modified for the unequal variances situ

ation, has constant shrinkage Bi = 0.084 for i = l, 2, ..., 8. This

estimator estimates 01 by

k-2

(1 - gm? (4.18)

X VZ 3'1

being minimax for the loss function Z(81-9i)2/Vi- It is derived by setting

... .3_- ... .l_ ~

Xi = Xi/Vi, 81 = 91/Vi, applying the James-Stein estimator (2.6) to {Xi},

and then transforming back. These transformations do not preserve the prior

distribution (4.4), however, so the resulting estimator is unsatisfactory

if the statistician thinks a priori that the {G1} are exchangeable. The

result in Figure 3 slightly overshrinks the components i = l, 2, which are

well estimated by Xi and forfeits the big improvements possible for the

components with large Vi.

The estimator of Hudson (1974) and Berger (1976), which estimates

9 by

i

(1 - L i-)x , (4.19)
Vi Ex;/Vi i

is minimax for the loss fuction 2(0i-9i)2. But it shrinks less, not more,

as the variances increase, and therefore can hardly shrink at all, see

Figure 3.

This is the price one pays in order to use a minimax estimator in

the case of unequal variances: almost no shrinkage will be allowed on

those components that are not well estimated by X , although they are

precisely the components where shrinkage is needed. Implicit in this

statement is another assertion: estimators that are empirical Bayes

against exchangeable prior cannot be minimax if the variance of some

component is large relative to the others. A data analyst wishing to

improve on the maximu likelihood estimator therefore must choose between

two very different kinds of estimators. Since he probably is more able

to recognize exchangeable prior distributions than to choose loss functions

(and minimax estimators are highly sensitive to the weights L1 assued in

~ 2
the loss function Z Li(9i-61) ) he generally will be better off using

empirical Bayes estimators. This approach also will permit him to identify

many situations when he should stay with the maximum likelihood esimator.
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The empirical Bayes approach, combined with formal Bayes theory,

has one other advantage that.is central to this paper. It provides

a coherent method for computing interval estimates for the estimated

parameters. For priors that yield estimators similar to the one of

this paper, these intervals promise to contain the true means in most

problems with the specified probability if the true means-{G1} have any

orthogonally invariant distribution, and perhaps will do so for most

exchangeable prior distributions. If further research shows this, data

analysts will be able to identify many situations for which powerful

alternatives to the sample mean can be used.
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ROBUST STATISTICAL PROCEDURES
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ABSTRACT. Two proposals are given that can be used to modify the

method of least squares. The first replaces one of the factors in the

squaring process by the rank of that factor. While some success has been

achieved in applications with this procedure, the computations involved

are not as easy as with the second method. In the latter, the square func

tion is replaced by another function, say p. This p function can be

convex, as in Huber's M-estimators, but it can also be non-convex, as in

the descending M-estimators of Andrews and Hampel. The descending M

estimator scheme thus requires a better preliminary estimate so as not to

find the "wrong" solution. Three examples using real data are considered.

l. INTRODUCTION. The method of least squares, that is,

lll\/133

. . . . 2

minimizing i l[yi-JglBJxiJ] ,

has served us well for many years! But there now is concern about the

influence of "outliers" as they tend "to pull" the solution towards them

too much. Consequently the residuals (if they are even considered) are

distorted too much, and accordingly the outliers are difficult to detect.

Of course, the situation is worse if the investigator blindly takes one of

the many packaged programs and treats the answers as if they were the

"truth" without checking assumptions, etc.

Two examples are:

(a)

t—robust line

Aiikq///,-least squares line

-+- _
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least squares line

While the first is one that I constructed, the second is like some lumber

data that Boardman [3] considered. The investigator of that project at

first fit the least square line, and later Boardman discovered that they

were really dealing with two populations.

To see exactly what can be gained by robust methods, consider the

example in Chapter S of the book by Daniel and Wood. This concerns the

operation of a plant for the oxidation of Ammonia to Nitric Acid. There

are 21 observations, in which the 3 independent variables are air flow,

cooling water inlet temperature, and acid concentration while the stack

loss is the dependent variable. The following table shows the "least

squares" betas, the "least squares" betas with four bad points thrown out

and two sets of "robust" betas based on all 2l observations.

ESTIMATES OF BETAS

Eh B1 52 Ba

Least squares .72 1.30 -.15

Least squares

(without outliers) .80 .58 -.07

M-estimates

(Andrews) .82 .52 -.07

Nonparametric

(median scores) .83 .58 —.06
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While some of the details of the latter two procedures will be explained

later, please note that they give essentially the same answers using pl;

21 points as does least squares after 4 bad points have been removed; seem

ingly these robust schemes provide a BIG advantage in applications!

2. NONPARAMETRIC PROCEDURES. While I like "nonparametrics" myself,

there are programming problems and hence we will not discuss that technique

at length. The idea is this: Instead of minimizing

p.

||t\/15
(Y-Efix )2

1 1 _1=1JiJ ’

replace one of the factors (yi-ZBjxij) by its rank, say Ri, and

n

minimize i;l(yi-J§lBJxiJ]Ri.

Please note that Ri is a function of the 81,82,--~,Bp and hence an

iterated process must be used (while there are a few short cuts, the rank

ing requires most of the computer time).

Of course, this nonparametric scheme can be generalized easily. Con

sider the "scores"

11(1): 11(2); 5 a(n)

and then

llt\/J33

minimize i l[yi -J§lBJxiJ)a(Ri).

Examples: (i) a(i) i, then a(Ri) = Ri.

p-1.|_:.

VA

(ii) a(i) = {_i: égiigggz and if n+l/2 = integer,

then a(£%lfl = O.

The scoring in (ii) is often referred to as "median scores," and these

scores were actually used in the nonparametric scheme associated with the

Daniel and Wood example.

One final remark about these nonparametric procedures, if a constant

is subtracted from the scores a(i) so that the resulting a's are such

that
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n

Z a(i) = 0,

i=1

Pl
ll

:3|+-»

the minimization is equivalent to solving the p approximate equalities:

|.:.

l|l.\/15

l"‘

XI-LJ5-(R3-_)~ Os 11:]-s2s"'sP'

While several persons have worked in this area, I believe that Hettmansperger

and McKean [4] have developed the programs the most.

3. M—ESTIMATORS. Huber [6] first proposed these estimators. He sug

gested replacing, in least squares, the square function p(w) = w2 by some

other 0 function and

n

minimizing iglplyi -jglfijxij).

For some theoretical reasons, his first substitution was

W2 . l\~'|i¢

0(w) = 2

2c|w|-c , |w| > c.

That is,

2 traight lines

w replaced

by

2

* > > ~ 4 = >

-C C

To clearly understand this substitution, let yl,y2,---,yn be an observed

random sample. Let us try to estimate the unknown middle 8 by the method

of least squares, noting the modification as we proceed.

lll\/I5

/\

2 _ 2 _ n

p(w) = w and min yi-6) - min I p(yi-8).

1 l i=l

Take the derivative and equate to zero to obtain
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ll545

U

1 1 -2)(yi-6) = igl-w(yi-B) = 0.

where w = p‘. In Huber's M-estimates (called this because if w = -f'/f

where f is the density, the resulting estimate is the Maximum likelihood

of the location parameter), we have some difficulty because the formula

changes at "c". Huber's w = p' is

{l2c

-2c, w < —c,

I»(w)= 2w. -¢.<_ ac.Q

, c < w.

,/.2.

To make the equation,

I1

{M .-0) = 0,i=1 yl

have a scale invariant solution, we need to introduce a scale factor s

in the following way:

n y.-8

Zw[‘sI=0

i=1

A familiar s used by "robustniks" is given by

(.6745)s = med(|yi — med(yi)|) = MAD,

the median of the absolute deviations. The constant c should be selected

so that if yl,y2,---,yn actually arose from a normal population, most of
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the numbers |(yi—6)/s| 5_c. Values of c around 1.5 or 2.0 are popular.

In the more general regression situation, we could take

Iyi - prel. est. of middle]

s = median ,

(of non-zero ('6T"5)

deviations) .

where preliminary estimate of middle should be fairly robust. While numer

ically difficult to determine, the B's that

minimize Znyi — Jglfijxijl

would provide robust estimates. However, while not real robust, many use

least squares estimates, which is satisfactory with Huber's procedure.

'The equations that we must solve in fitting § B x, are, j=l,2,---,p,

_ J13
j—1

n y,-EB x.

Z,,[_1___J_1l],, = O_
i=1 s iJ

Several iterations are usually required, and s would be recalculated on

each (there are other suggestions for s in the literature [9] that are

possibly easier to calculate).

Also note that if we wish to fit a non-linear function h of some

3h.

parameters, say 81,82,---,Bp, we simply replace xij by Sgj, where

hi is h with the ith independent variables inserted (that is, those

observations corresponding to yi). Note in the special case h is linear,

then

ozoz...|U |-It

ll
><

13'
L4

Hence, in the non-linear case, we solve (by iteration)

lll\/1:3

i—'

€—

r> Q) D‘

L1..

. (-59-)'§_B_J"'=O9 j=l929'°'9P9

1

where
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Ai = yi - hi.

One interesting way (there are others [9]) of handling this is by

weighted non—linear least squares.

w(A./ ) an

3 Ai5.B_1.=O,
i=1 (Ai/s) ,1

where the weight

8h,

wi=w(Ai/S)/(A1/S) and 5-5;

are found from previous steps in the iteration (of course, recalculating s

each time). Of course, ordinary non—linear least squares is

n 2 n 8h,

min Z Ai yields Z Ai SE5 = 0.

i=1 i=l J

Now we have

n Qhi

{wiAi8—B——=o, j=l,2,-~-,p.

I-4'

ll
l—‘

L4

h. DESCENDING M—ESTIMATORS. Several statisticians (Hampel, Andrews,

etc. il,2]) have modified Huber's W function (and, of course, the corre

sponding p) with functions that descend back to zero.

Hampel's Q:

-9 -b -8. /~

\/) a b C
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Andrew's Q:

 

s1n(w/c)

The problem, in the general regression situation, is still to solve

n Ai Bhl

fig: Os j=l>2s"'sP'

Again, weighted (linear or non—linear as is the case) least squares is

frequently used. However, since the corresponding p function is not

convex, the solutions may not be unique. Thus, it is extremely important

to start with a reasonably good preliminary estimate Or else the iter&ti0£

process could end up with the wrong solution. One way to avoid the wrong

solution is through the use of Huber's W function on several iterations

before using a descending w function.

It is also extremely interesting to study the weights associated with

the various observations; they indicate the importance-of the points. In

particular, very low or zero weights (using Hampel's or Andrew's w) indi

cate that the corresponding points are probably outliers. To see how all

of this fits together, let us consider two illustrations, both of which

were obtained from the statisticians at the Los Alamos Sci. Lab. In each

case, the Andrew's sine W function was used.

Ex. l. Evaluating the lognormal assumption on bids for wildcat oil

leases. There were l7 leases under consideration and in each case the

number of bids ranged from 10 to 18. The logs of the bids were taken, and

normality was tested using the Shapiro—Wilk W. In 6h cases out of the

17h, normality was rejected; Hence it seemed that bids did not follow a

lognormal assumption.

However, it was observed that there seemed to be some very low (noise)

bids (oil firms trying to get a lease cheap). Hence, using Andrew's pro

cedure, the middle of the values was estimated and the weights recorded with

each observation. For illustration, here is a sample of n = lb after l0

iterations (starting with wi = 1).
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th

 

yi=log(i ) Ai wi (using c=l.0O)

15 612 -.28h 1.h05

15 080 -.816 1.133

15 82h - 072 1.hh2

15 37% -.02h 1.§§h

15 9 .000 1. 5

1h 916 -.980 1.009 weighted

12 7&3 -1.133 .381 mean-15 8962

1 .1 .251 1. 13

16 2h6 .350 1.38h

16.737 .831 1.éfi217.2 9 1.392 . 9

13 529 -2.367 .000
l7.h58 1.562 .h95 ‘Ei*~out1iers

10.h63 -5.h33 .000~rz/’

This was done for each of the 17% leases. The outliers (low, but

noise bids) were eliminated from each. Then normality of the logs tested

again. In this testing, only 5 of 17h cases were rejected. That is, about

3% were rejected, which is in good agreement with a 5% testing procedure.

Thus it seems that bids do have an approximate lognormal distribution once

the noise bids have been eliminated.

Ex. 2. Half-life of Plutonium-241. Six laboratories in the U.S.

started a sample exchange program to follow the isotopic content of a Plu

tonium sample which had some of 238Pu, 2“0Pu, 2“1Pu, 2“2Pu, and 239Pu,

the latter of which was used as a base. That is, for example, values of

the ratio of the contents of 2“1Pu to 239Pu were reported and denoted

by R. Every 3 to 6 months, each of the six labs would report the value of

this ratio giving a total of 78 points. They wished to fit the non—linear

function h(t)

iterations.

item

l.

2.

34.

35.

Roefkt. The data and print-out looked like this after 25

w. mos R. h. A,

1 1 1 1

7.62 0 .0hh71 .0hh70 .0o001

7.58 O .0h468 .0447O -.OOO02

h.2o 16 .0h168 .0h191 -.00023

0.00:§ 16 .O427l .O4l9l .0008O

i outlier E i

There were 6 points with zero weights (out of 78). The interesting thing

is that upon checking these "bad" points it was discovered that all 6 were
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from one lab, due to a technical difficulty. (Incidentally, the half-life

seems to be about 14.4 i .1 years. Without robust procedures, this was

about 14.8 i l year.)

While there are more improvements to be made using these robust pro

cedures, they already provide substantial protection against outliers or

bad data points and could be used in place of standard least squares proced

ures; for examples, regression, ANOVA, time series, and fitting by splines.
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ESTIMATING RELIABILITY FROM SMALL SAMPLES

Donald W. Rankin

Army Materiel Test and Evaluation Directorate

US Army White Sands Missile Range

White Sands Missile Range, New Mexico

ABSTRACT. Exact probability formulae are developed, with no restrictive

assumptions, for use with tests which produce data of the go-no-go type.

Although universally valid, the formulae are particularly apropos when small

sample size is dictated. Since a programmable calculator greatly facilitates

the solutions, programming suggestions are included.

1. INTRODUCTION. Often it is found that military, economic, or time

limitations preclude the employment of ' any "testing technique which requires

that a large sample be taken.

Statistical treatment of small-sample data, always difficult enough, should

not be degraded by requiring unnecessary postulates or by using formulae which

yield only approximations. Consequently, the methods developed herein are based

on no assumptions other than that of random sampling, and the formulae yield

exact answers.

Increasing availability of programmable calculators with external program

storage makes this approach completely feasible. With this in mind, programming

suggestions are included where they seem to be indicated.

Since the formulae are exact, there is no theoretical limit to sample size.

There is, however, a practical one, depending jointly upon the size and operating

speed of the computer or calculator and upon the ingenuity of the programmer.

It may prove helpful to insert here a few remarks on notation and

terminology, since there are to be found variations in the literature.

Factorials are variously indicated as

|£=n!=n(n)=l~2'3'"n.

The symbol L11 is chosen for use, since it acts as parentheses and thus reduces

confusion when parentheses are used for another purpose within the same

expression (e.g. Equation 38).

Generalized factorials are found as n(m> or (n)m.

(m) '1
n =, n(n-l)(n-2) "° (n-m+l) |n_m

will be used.

257



Binomial coefficients appear in many ways:

(k) E1

Ck=C(n,k)= “)=1—=i- .
n k U3 ui|n-k

The symbol C(n,k) is adopted, since it can be typed easily on a single line.

The indefinite sunnation symbol is taken to nean

Z¢(X) = ¢(a) + ¢(a+l) + °'° + ¢(X-1) ,

a series which consists of exactly x-a terns. The indefinite finite integral

thus is

A"¢(><> = z¢<><> + c . -

Here, A"‘¢(x) is analogous to ff(x) dx in the infinitesimal calculus.

” The generalized notation used for a series is

S = T + T + T + --- + T. + --- .

1 2 a 1

If there exists sae value of i such that T. = 0 for all j > i, the series

is finite. 1

Derivatives are shown by primes:

§‘|a. :3
E, = f’(r) .

Level of confidence is denoted by L.

By "insignificant" is meant "insignificant to the computer." For example,

if a series S is being summed and Sj represents the sum of the first 3 terns,

Tj+1 is insignificant if it is too small to affect the least significant digit

of Sj as programmed in the calculator.

L 2. BINOMIAL PROBABILITY. Sometimes the testing technique perndts sampling

with replacement. Even when replacement is not possible, the same condition can

be achieved (mathematically) by assuming* a population of infinite size. In

other words:

The act of sampling does not alter the characteristics of the population.

*This does not belie the statement of Paragraph 1, since the opposite case -- when

an infinite population cannot be assumed -- also is covered in Paragraph H.
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Given the above condition, let us specify that in a certain population, the

probability of observing a success is given by r. Obviously, the probability

of observing a failure is given by l-r, which we shall call p.

P=l-I‘ 0

It follows that (p+r)n = 1. Thus, if we draw a sample of size n, the

probability of observing exactly k failures is given by the appropriate term*

of the binomial expansion

(p+r)n = C(n,0) pn + C(n,l) pn_l r + C(n,2) pn_2 r2

+ --- + C(n,n) rn .

Since,

n

X C(n,k) p“'k pk = 1 , (1< = 0, 1, 2, ---, n) , (1)

1<=0

it may be said that

conk>fl*kI*

defines a probability function in the discrete variable k.

Noting that

C(n,k) = —-Fl_—£_k = C(n, n-k) ,

we define

p(k) = C(n,k) pk <1-p>“‘k = C(n,k) r“'k (1-r)k <2)

as the probability of observing exactly k defectives (failures) in n trials.

Unfortunately, the problem rarely is that simple. In most test designs,

it is possible to control the value of n arbitrarily, and to observe the value

of k exactly, but nothing is known about r. A probability function in r is
required. i

*The term containing pk
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Now r can take any value within the prescribed limits, 0 ; r:; 1;

i.e., it is a continuous variable and necessarily

l

I f(r) dr = 1 (3)

r=0

describes f(r), whatever it may turn out to be, as the required probability

function in r. Setting

g(r) = C(1'l,k) h““< <1-wk , 0+)

n and k being constant, we see from Equation (2) that g(r) is a density function

in r. In order to discover a relationship between g(r) and f(r), we must

evaluate

1 1 n-k k
I g(r) dr = C(n,k) f r (1-r) dr . (5)

r=0 0

To integrate*

fxn-k (l—x)k dx

let

u = (1-x)k

and

dv = x“'k dx .

Then,

du = -1<(1-><>k'l dx

and

v = (n-k+l)'1 xn_k+l .

-———-——————— l
*The value of I xn-k (1-x)k dx is found in nany tables. But a program for

" 0

. Z n-k k . . . . .

computing f x (1-x) dx , 0 < Z < l 1S required, hence it 1S considered

0

desirable to show the complete process of integration. These two definite

integrals are sometimes referred to as the complete nd incomplete Beta

function.
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Note that n and k are integers such that 0 < n_>= k ; 0.

- l —k 1 k k -k+l k-1fxp k (1-X)k dX = fi:E;I‘xn + (l—X) + EIEII fxn (l—X) dx .

Another similar integration by parts is performed upon the last term, yielding

n k k 1 n—k+l

+ k

IX -_ (l—X) dX = H:E:I X (l—X)

1

n—k+l n-k+2

k.

xn-k+2 (1_x)1<-1

+ fxn-k+2 <1-x>*<-2 dx }

Iterating k times results in

_ k .. .. _Ixn k (3-"X) dx = n_]1<+1 xn k+l (1-x)k + n_k+1 kn_k+2 xn k+2 (1-x)k 1

'+ ' k(k—l)°'°(k-k+2) xn-k+k (l_x)k-k+l

* ' ' ' ‘(n-k+l) (n-k+2) - - - (n-1<+1<i

+ k(k—l) ' ° ° (k-k+l) n-k+k k-k
‘(n-1<+1)<n-1<+2>---(n-1<+1<> Ix (l"‘) d" ' (5)

But now the last term submits to integration. It can be rewritten

Ii n n+1

D

'-(fiyfx dx = ~—-—Vx . (7)

It now becomes very easy to evaluate the definite integral

l

I xn_k (1-x)k dx ,

x=0

since at the lower limit, all terms become zero, and at the upper limit (x=l),

all terms excegt t_}§ last becolre zero. Hence '

1 n-k 1< '5'-‘ii li éx <1“) d" = |n+l ‘ (n+l)C(n 1<> ' (8)

x=' . 9
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Substituting this expression into Equation (5), we arrive at the remarkable

result

1 1 .
I g(r) dr = I C(n,k)rp-k (1-r)k dr = 5%; ; (9)

r=0 0

1 .

i.e., I g(r) dr depends upon sample size only! And thus, the desired

0

probability function in r is

|n+l
-k k

f(r) = (n+1) g(r) = L]T-|n_k1~“ <1-1») . (10)

That it be a useful probability function requires that other definite integrals

can be computed. Substituting Equation (7) into Equation (6) and multiplying

through by (n+l)C(n,k) enables us to write

|n+l I k . .

I [Efr5;E-x"'k (1-x)k dx = c + igo C(n+l,k-i)xn+l'k+l (1-x)k'l . (11)

Without loss of generality, we can choose the lower limit (of the definite

integral) to be zero. The function there conveniently reduces to the constant

of integration. Also, to avoid programing problems, we can restrict the upper

limit to values less than unity. Thus, for an arbitrary value of z,

z k . .
I f(r) dr = z“"‘*1 Z C(n+l,k-i)zl (1-z>"'1 , <0 ; Z < 1) <12)

r=0 i=0

expresses the probability that r:; z. The case of z = 1 already has been

covered by Equations (3) and (10), i.e., E

1 1 n-k k
I f(r) dr = I (n+l)C(n,k)r (l-r) dr = 1 .

r=0 0

The same formula (Equation 12) can be used to solve the inverse problem;*

i.e., when the level of confidence is specified. Set

z

L»= l — I f(r) dr . (13)

0.

then solve for z.

*See Paragraph 5C.
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3. ESTIMATES OF THE RELIABILITY.

A. The Function f(r).

It is worthwhile to examine the probability function

f(r) = (n+1)C(n,k)rn_k <1-wk . <10)

A typical graph (n = 7, k = 2) is shown in Figure l. The area under the curve

is divided into quarters by the ordiates at r = 0.567, 0.679, and 0.779. A

maximum occurs when, exclusive of the end points, f’(r) = 0; i.e., when

(n-k)(l-r) — kr = 0. We shall call this maximum the "maximum likelihood

estimate" of the reliability and identify it with a circumflex (“). It

computes easily to be

d> F4 I
‘.317?’

= . (1u>

When n-l > k > l, the curve exhibits two inflection points, equally spaced about

the maximum. They occu at

As will be seen later, they are of interest to the programmer. Figure l shows

inflection points at (0.530, 1.55) and (0.899, 1.01).

H>

When k = 1, only one inflection point appears at

IT1 = d> |
UIX

(see Figue 2).* Any program must take this fact into account.

B. Level of Confidence.

It is the nature of a function of a continuous variable that an area

below the curve (i.e., a definite integral) cannot be described by a single

point. A_pair gf_pQints is required.

When the function under consideration is a probability function,** the

ordinates erected at the selected pair of points enclose an area called the

level Qf confidence. It is proper to think of a level of confidence as an area,

*Quart1les, r = 0.697, 0.799, and 0.870. rpl at (0.7lH, 2.125).

b .

**i.e., when I f(r) dr = 1.

a
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as a definite integral, or as a probability. Again referring to Figue 1, it

can be stated "at the 50% level of confidence, 0.567 < r < 0.779" or "at the

75% confidence level, r > 0.567." In the latter case, r = l is the second

nemmer of the pair.

* Selection of a level of confidence nay be, and often should be, quite

arbitrary. However, deferment of this selection until after preliminary test

results are in, in an effort to "improve" the data, usually can be regarded

as a reprehensible practice.

When selecting a confidence level (in advance, of course) it sonetines

helps in vizualizing it, to couch it in terms of ordinary gambler's odds,

rather than the more commonly used decimal fraction. Thus, a confidence level

of 0.96 gives odds of 2H to 1 against the analyst issuing erroneous advice.

At 0.90, the odds drop to 9 to 1 and at 0.75 to an alarming 3 to 1.

However, there is another side to this coin. Consider what happens when

a 100% level of confidence is chosen. Obviously, the pair of defining points

is located at 0 and l, regardless of the nature and shape of the probability

function. Selecting too high a confidence level produces a strong masking

effect by driving the defining points (limits of integration) far into the

tails. A higher-than-necessary level of confidence may be a luxury the analyst

can ill afford.

In sunnary, there are two approaches for handling the data. The first is

to select (perhaps arbitrarily) two values of the argument, then compute the

level of confidence (area) between them. The second* is to choose a confidence

level, then compute two values of r which will bound it.

C. The Case of Zero Failures.

Specifically, when k = 0, the function degenerates to

f(r) '= ('n+1)r“ . (16)

Additionally, given n > l and r > 0,

f’(r) ¢ 0

f"(r) ¢ 0

and the algorithms which will be developed will fail. The function for n=7,

k=0 is shown in Figure 3. Note that there is no point of inflection and no

naximum in the usual sense. However, we still can define

'15) n
I-'

I
DIX’

u
#1

I
filo

u |—'

§See Paragraph 3D and the opening remarks of 3E.
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Quartiles at r = 0.8l+l, 0.917, 0.965
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The solution of this case is very simple and can be effected with an

ordinary table of logarithms, since

Z

1 f(r) dr = 2"“ . <1v>

-0

The practical solution possibilities are limited to two.

(1) Choose r = z and r = l as the two values of the argument, z

being arbitrary but less than l. Then the level of confidence, L, is given by

L = 1 - z“*1 (18)

(2) Choose L. Then set r = l as the upper bound. The lower bound,

r = z, is given by

I-—'

|»
z=(l-L)n+ . (19)

If the programmer wishes to include the case of zero failures, he should

write it as a separate suberoutine.

D. The Best Estimate of the Reliability (0 < k < n).

When both values of r are specified (r = zl and r = zz), the problem is

straightforward enough. Simply use Equation (12) twice to compute L.

Z Z

L=f2f(r)dr-f1f(r)dr . (20)

o o

If either z‘ = 0 or z = l, then Equation (12) need be emloyed only once.

2

But when L is specified, there are an infinite number of solution-pairs

which satisfy the required condition. The usual way out of this dilemma is to

set one of the limits to be 0 or l, then solve Equation (12) for the other.

Newton's method of successive approximations is well-suited to effect this

solution. An algorithm will be given which converges quite rapidly upon the

correct answer.

Sometines a confidence level is specified which arbitrarily excludes equal

areas from each end of the distribution. This is equivalent to two solutions

with zl = 0.
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But a progranneble calculator makes practicable a more elegant solution.

Let it be called "The Best Estimate of the Reliability." Briefly described,

it is this: The level of confidence being specified, the best estimate of the

reliability is given by the particular values of 2 and z which minimize the

1 2

difference z - z . We shall designate them with a tilde thus:

---—--- 2 1

2,2 or r,r .

1.2 1 2

The best estimate of the reliability possesses several distinguishing

properties:

(l) The solution is unique.

(2) z - z is a minimum, by definition.

2 1

(3) f(E1) = f(22) . (21)

That this is true is evident from Figure H. If either ordinate is displaced

away from the maximum, the other must be displaced a smaller anount to conserve

area; i.e., z - z increases. This important equality is made use of in the

solution. 2 ‘

~

_ (4) 21 and 22 always lie on opposite sides of 9. Thus is avoided the

absurdity of excluding 5 frm the solution area. This property also is used in

the solution.

(5) Any included value of r is nore likely than every excluded value.

ll7T'

i-1|:

‘<0Note that when , the solution is degenerate.* This should not be

suprising, since r ields an absolute extremal, not a relative one.

E. Comparison of Methods.

It is comon practice to specify L, then set zz = l and compute z . Under

1

these conditions, z is a function of L. Although this does not invalidate the

1.__._.________.__._

nethod, it indicates that due caution be exercised, lest the published value

of zl reflect little more than the analyst's whim. _The nethod can make only one

kind of statement, viz. "At the 75% confidence level, r exceeds 0.567." No

attempt is made to predict what r actually is (it may be far from 0.567) and

nothing is said about the shape of the distribution, save that the right-hand

"tail" surely is included. The method might be used by a manufacturer or user

to test for compliance with a_minimum standard.

*See Paragraph 3C.
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On the other hand, the best estinate of the reliability states "The

naximum likelihood estimate of r is 0.71M and, in any event, at the 75% level

of confidence r lies between 0.519 and 0.867."

The values of zz - Z1 are 0.433 and 0.348, respectively.

The "best estinate" might be used to evaluate a new device or procedure,

without reference to a pre—established criterion.

In a nut-shell, one method measures, the other tests for compliance.

Before choosing between them, the analyst must decide what sort of question

he is attempting to answer.

F. The Effect of Increasing Sample Size.

What happens when the same failure rate is observed in a larger sample?

This is graphically illustrated in Figures H and 5. It is observed that 9 is

unchanged, but f(r) increases. Also, 21 and 22 both move inward toward r;

i.e., E2 - Z1 decreases. It is clear that enlarging the sample size will

increase the precision of the "best estimate." If n becomes great enough, the

graph of the function virtually is reduced to a tall spike at r.

H. HYPERGEOMTRIC PROBABILITY. when test conditions do not permit sampling

with replacement, and when the population is known to be finite (and measureable!)

in size,* the theory of Paragraph 2 is not applicable. We must perforce develop

another method for dealing with sampling without replacenent. To parallel our

earlier statement, we say:

The act of sampling measurably alters some characteristic of the remaining

population.

In this Paragraph, we shall not speak of the reliablity, nor shall we

emloy as a symbol the letter r. (As will be seen, the analogous quantity is

1 - x/N.)

Given a population consisting of N items, x of which are defective, the

probability that a sample of size n will contain exactly k defectives is

|fi*_"_\£|_Ii"Ll£

p(k) = p(N,x,n,k) = 'N_n_x+k ln_k 'x_k IN Ik . (22)

Notice that x and n are interchangeable in the formula, which, at ou convenience,

can be written in either of two ways:

_ C(N-n,x-k)-C(n,k) _ C(N-x, -k)-C( ,k)p(k) ‘ C(N,x) ‘ Cr(1N,n) X ' (22)

§e.g., test-firing guided missiles.
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But in the usual case, N, n, and k are known and it is required to estimate

x; i.e., x IS TH ONLY VARIABLE. What is needed is a probability function in x.*

Now Equation (22) in any of its fonns gives p(k) as a probability function in k,

but not necessarily in x. It is observed that with n and k being held constant,

p(k) serves as a density function in the discrete variable x. In attempting to

disclose the relationship between p(k) and the desired probability function in

x -- which we shall write as px = pX(N,x,n,k) -- we must, as the first step,

evaluate the finite definite integral**

k+N-n

Qx = Qx(N,n,k) = Z p(k) , <23)

x=k

a series consisting of N-n+1 terns. The limits of integration are obvious, since

k defectives already have been observed, and N-n is the population remaining.

Substituting Equation (22) in its first fonn for p(k) and factoring out the

constants (which do not contain x) we find

Q = _L%2%El§E___ k+§-n (N-x)(n_k) x(k) (24)

X LL-k E US x=k

(n-k) (K) . . ' .
where (N—x) and x denote generalized factorials.*** An expression for

this integral is obtained as follows:

Let

ux = (N-x)(n_k)

and

¢(x) = x(k) .

Then, l

c + Zux¢(x) = A"1ux¢(x> = (EE’ - 1)“ ux¢(x) (25)

*cf the discussion following Equation (3), Paragraph 2.

**i.e., su the finite series over all possible values of x.

***The basic reference for the following derivation is George Boole's

"Calculus of Finite Differences." Boole's notation (third and later

editions) is used throughout.
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where, temporarily, E operates on u alone, E’ on ¢ alone. Continuing,

(EE’- l)"ux¢(x) - [(1 + A) E’ - l]"‘ux¢(x)

(A’ + AE’)"ux¢(x)

= F1, (1 + -(8%:-)-‘u)(¢(x) I

=,_1. {1 Ag . (1% - .x.<..> . <2.»

from Equation (28) we can write the desired expansion, dropping the primes as

no longer necessary.

Zux¢(x) = -c + uxZ¢(x) - Auxz=¢<x+1) + A2uxE3¢(x+2) - --

--- + (—l)jAjux Zj+1¢(x+j) + --- . <27)

The series of Equation (27) will terminate after n-k+l terms, fewer by N+k-2n

than that of Equation (23). It can be used to sum any number of terms of

Equation ( 23) or Equation (2l+).

It will prove useful to list a breakdown of the terms in Equation (27).

This is done below.

‘-18-:-Au = (n-k) (N—x-1) (n_k_1)

7 x

Azux = (n-k)(2)(N-x-2)(n_k_2)

(—l)jAjux - <n-k>(j)<u-X-j>‘“'k'5)

(-l)n_kAn'kux = | n-k

An-k¥l
ux = 0 (28)
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x(k+1)

£¢(x) = kfl

(x+l)(k+2)

>:=¢(x+1> = -—-@

(k+2)

' (k+3)
z’¢(x+2) = 53i3l-(-;

u<+a> 3

. . (k+j+1)
z3+l¢(x+.) = (x+3)

J (k+j+1){3+lj

(n+1)
Zn_k+l¢(x+n-k) = 9-c+i](<%E+-If (29)

I Owl)

Noting that when x < k, ¢(x) = x(k) = 0, we have

k-l

X ux¢(x) = 0

x=0

and

§ u ( > — (N-k)(n-k) k
x=0 x¢ X _ |_ .

From the definition of the operator Z,* we have

k-l

Zuk¢(k) = X ux¢(x) = 0 = -c + 0 + 0 + --

x=0

since all £j¢(x) vanish when x = k. Thus C = 0,** and

ZuX¢(x) = uxZ¢(x) - AuxZ2¢(x+l) + --' (30)

holds for all admissible values of x, i.e., k ; x ; k + N - n.

Ti

""‘-‘A more rigorous demonstration is given in Appendix A.

Paragraph 1 .
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Again remembering the definition of the operator Z, we can evaluate the

.xpression in Equation (21+) as follows:

k+Nfn (N-x>(“'k) X0‘) = 2uk+N_n¢(k+N-n) + (n-k)(n-k)(k+N-n)(k) . <31)

x=k

Utilizing Equations (28) and (29) to write dovm the full expansion, we

obtain

k+NX n (N-x>‘“‘k) X00 = (k+N-n)(k) |n-k

x=k

(k+l)
(N- k)." l_-""‘< "'l1<-1'—'

(k+2)

+ (n_}<) |n_1<..1 ~fi_

(k+2)

(1<+3)

+ (n-k)(2) |n-k-2 $§I5i5i3%§;-

(k#3)

(n+1)
(n—k) N

+ ~~~ + ( —k) 0 . (32)
Z _ j

n L (n+1) “ ‘"1

Since 0(0) = IQ = l, and since In-k is a factor of every term, the last equation

becomes

k+N-n (k+l)
Zk- (N-x)(n—k) x(k) = |n-k {(N-n+k)(k) + Q-15%

x=

+ (N-n+k+l)(k+2) + (N-n+k+2)(k+3)

(k+2)(2) (k+3)(3)

N(n+l)

* * its - ‘$3’

(n+1)

To sum the series inside the braces, we return to the list of Equation (29) and

notice that, except for the first term, we have exactly the values taken on when

x = N—n+k. The first tenn, of course, is ¢>(N-n+k). whence we can write

symbolically
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k+N—n 2
-k) (k) 1 E Exgk (N—X)(n X = |n-k {I + K + K2‘ + K3

k

+ 000 + '*l~ ¢(N-I'1+k)

A

E n-k+l

1 _ _

= [n-k ‘J. 4' % [*'~ ¢(N—1’1+k)

A .

évia

n-k+l

=|n-k{l ¢>(N—n+k)

E n-k+l

= I n-k ) ¢(N—1’1+]<)

From the basic definitions of the operators,

n-k+l
{(%-) } ¢(y) = Zn-k+l ¢(y+n-k+l) , and

k+N—
2 " (N_x)(n-k) x<1<> = I n_k En-k+l Wm _

x=k -

Again referring to Equation (29),

]°*N'"_ ( )(n-k) <1<> _ <N+1)(“*1> _ [ii Lhflxgk N-X X ' LQZE (n+l)(n-k+l) ' |N-n |n+l '

,Substituting this value into Equation (2H) yields the desired integral

n+N—m
_ ' _ N+l

Qx - Xgk P(N,X,X'1,k) — fi .

Finally, the required probability function in_§_is

‘ n+1

Px = Px (N”"“'k) ‘ NTI p(k) ’ _|(N-x) - (n-k) |n-k |x-k |N+l |1<

= .C(N+l, n+l)

(3H)

(35)

(36)

(37)

(38)
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Note that this probability function differs by only a constant multiplier

from the original function, p(k), given in Equation (22). However, x and n no

longer are interchangeable, due to the presence of the factor n+l.

The technique of Equations (27), (28), (29), and (30) can be used to sum

any number of terms of the probability integral. Thus, provided only that m

is some proper value of x, (k=; mzé k + N - n),_

Linml‘ M (N >‘“'k’ ‘k’ - --—-‘L1‘Ll 2 < > (39)

|n-k [N+l L15 xgk ‘X " ‘ |n—k |N+l gg ‘"‘m¢ m ’

gives the probability that FEWER than m defectives will be found in N. As

previously noted, (Equation (27)), the right-hand side of Equation (39) will

contain n—k+l terns. An alternate expansion for £um¢(m) which sums in fewer

terns whenever m < n is given in Appendix B. This alternate expansion is

preferable for progrannung.

The graph of the function is, of course, a histogram composed of rectangles

of equal width but varying height. (Figure 6). For any arbitrary value of x,

the area (integral) of the corresponding rectangle can be computed by Equation

(38). The combined area of any number of consecutive rectangles can be computed

by Equation (39) and interpreted as a level of confidence.

The inverse problem is not so clear-cut, however, since no attempt is made

to attach meaning to "a portion of a rectangle." Thus, any assigned confidence

level must include the phrase "greater than" or "less than." Repeated application

of Equation (39) to successive values of x will reveal the correct answer. It

nay be useful to employ Equation (13) to obtain a fairly close first approximation

Borrowing the terninology of Paragraph 3 and referring to Figure 6, we can

make stateents like:

"That x < 12 exceeds the 80% confidence level," or

-I‘-‘>0

||/\||

><\1

U
“g

l—'

HQ_ "Best estimate of x: at the 0.7H89l level of confidence,

xx = ll and x2 = H;" i.e.,

5. COMPUTATIONAL PROCEDURES. .

A. Significant Digits. The occurrence of large factorials really permits no

alternative to computation by logarithms. Now two processes which are prodigal

of significant digits are subtraction of nearly equal numbers and computing

antilogarithms.* We can be subjected to both hazards within the sane algorithm.

Therefore, it is suggested that computations be carried to l2 or 13 significant

digits. For machines which do not compute logarithms accurately enough, the

following is suggested:

*lne |lO0O is of the order of 5300. Four significant digits will be lost when

subsequently passing to an antilogarithm.
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Express the number in scientific notation thus: 378 = 3.78 X 102. If

the resulting units digit is l, proceed directly. If it is 2, 3, '+, or 5, divide

the left-hand member by e = 2.718 281 828 ‘+59, intending to add lnee = l to the

result later. If the units digit is 6, 7, 8, or 9, divide by e2 and add 2 later.

Call the resulting number y. For our present example,

= 1.39 "'
__ 3.78

y ' e

Now use the transformation

E=k];.

ytl

The series ,

a 1

!51ney=§+€—3-+-€%+§7+~~~ , (H0)

will converge rapidly.* The exponent is recovered by adding or subtracting

lnel0 = 2.302 585 092 99%, a suitable number of times.

B. Stirli.ng's Formula for |n. Bernouilli's Numbers.

StirLLng's formula for [2 is

nn./2 n

|31 = --5§1- (n1)

e

where S is the asymptotic series

B n'2 B n"" B n'°

S = 1" i-2 + 3-u ‘ §-s * "° ' (“2)

The Bj are Bernouilli's numbers, the first six of which are

l

B = —- B

1 5 1

1

B = — B

a 30 9

l

B = -- B
s '42 11

~the example, E; = = 0

2%»

O7 C701

l\7

\‘lO'7
(DLO

Qt-"

.1sa-- and the eighth term is 1.02 x 10-1’
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For thirteen-digit accuracy, n > ll requires four terms of the series S,

n > 39 but three terms. Thus,

1 1lne |£= 35.1.ne(21m) + n(lnen-1) + 1-2-5 [1 - $1-(1 - , n > ll

or V

lne E = 55Jne(21m) + n(lnen-1) + T; (1 - —-,-301 ), n > as . (us)

Logarithms of smaller factorials must be computed directly, of course.

C. Newton's Method. For the solution of otherwise-difficult inverses,

Newton's method of successive approximations is indispensable. However, certain

precautions must be taken by the programmer.

Ideally, the graph of the function is an ogive. But it serves the purpose

equally well if two values of the argument can be found which surely bracket the

desired solution and between which the function behaves like an ogive.*

f(x)

inflection

point

 

_ FIGURE?

The basic operation, of course, is

f(z) - f(xi)

X]-"+1 = xi + , (ll-'4)

*1.e. , bounded by a maximum and a minimum, with a single point of inflection

between.
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f(z) being given, and from which it is required to find z. Let the first

approximation be taJ<en at the inflection point. Since the slope is steepest

there, it insures that the approximate solutions will not overshoot the true

one. Thus the xi's will remain within bounds, avoiding a spurious solution or

runaway.

Were we to express the cumulative probability of Equation (12) as a

function of z, »

z

F(z) = I f(r) dr , (H5)

r=0

we would find that its graph is a 1rue ogive, that itsAderivative is simply

F’(z) = f(r), and that the inflection point occurs at r.

D. Summation of Series. Many of the formulae herein developed for use

involve the summation of series. A convenient way of handling this type of

computation i_n a programmable calculator is to discover and employ a term-to

term recurrence relationship.

Usually, infinite series offer no problem. For example, in Equation (H0)

we can choose to assign only odd subscripts to terms, whence

|.:.l"|-'1‘.

+

|\)N

v—]Ti+2 ‘ 1 '

- 2

6(i) = is known as the recurrence ratio. It is of most use to the prograrrmer

when it is a constant or a function of position only. _

Finite series ostensibly offer a choice -- they can be sunmed from either

end. Not really. When there are only a few terms, it probably makes no

difference. But when there are many, the least term always should be left until

last. There are three compelling reasons for this:

(l) 'I‘he earlier the large terms are computed, the less accumulated

round-off or truncation "error" they will contain.

(2) When employing a recurrence ratio, no term can contain more

significant digits than‘the first term. In a fixed point machine, computing

the least significant term first may result in complete disaster.

(3) If some fterms are insignificant, it is unnecessary to waste

computer time on them, provided the significant terms are computed first.

In this case, the effect is quite similar to surrming an infinite series.
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E. Exiting a Loop. Many of the formulae developed can advantageously

employ an iterative process in the computation.* A program must employ some

device for terminating this process; i.e., exiting the loop. Basically, there

are two cases which must be treated.

The first occurs when the number of iterations is known, or can be

deterndned readily. The programmer merely finds a factor (or sets up a

dummy index) which is known to reach zero eventually, and tests it.

The second (and more sensitive) obtains when the nuber of iterations

depends upon the results of the calculations. It is a mistake to test the

utreated single term, since it nay becone insignificant to the result, but

yet not zero. It is tempting to test the difference between two successive

solutions, but it is possible (particularly with Newton's method) to reach two

alternating solutions which differ only in the least significant digit. A

nearly foolproof procedure is to establish a maximum allowable error (call it 6)

subtract it from the absolute value of the quantity in question, then test the

sigg of the difference. It may be necessary or desirable to choose a 6 which

squanders two or three (ostensibly) significant digits, in order to hasten the

exit.

§Examples: Sumation of Series, Newton's Method, Factorials.
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MEWHA

EVALUATING A CONSTANT OF INTEGRATION

Equation (27) states

' Zux¢(x) = -c + uxZ¢(x) - Auxz*¢<x+1) +'A*uxz’¢<x+2) -

+ (—l)jAjux zj*1¢<><+j> + <21)

and it is required to evaluate C, the constant of integration.

Now the adissible values of x are

k;x;k+N—n

and the fastidious may object to the development and inclusion of an expression

um

kd

Z ux¢(x) = 0

#0

So, let us increase the upper limit by unity. That the expression

k

Z uX¢(x)

$0

msam£sm,mdfimtmsmis

K
Z ux¢(x) = (N-k)(n k) LE

$0

flmewnmnomwt

Continuing in the manner of Equation (30), we ave

1<
_ _ (k)

>:uk+1¢<1<+1> - X20 ux¢(x) - (N—k) “ |5

= -c + (N-1<-1>(“'k) [El + (n-k)(N-k-2)(n-k-l) L<'+'2_

‘ 1<+1 '(k+'2')'(T_

<2) (n-k-2) '32
+ (n—k) (N-k-3) + .

o<+a>(35

2%



If we transpose -C, then

lk+h

-_m- = 1<(k+h) L

is a factor of the right-hand side, so that

c + cu-1<>‘“'k’ L15 = E {<N-1<-1>‘“"<’ + (n-k)(N-k-2)(n_k-1)

+ <n-1<>‘2)<N-k-s>‘“""” + + (n-k)(n_k)(N-n-l)(0)}

If we substitute x = k+l into Equation (28), we obtain exactly the succession of

terms exhibited within the braces above. This allows us to write symbolically

c + (N-1<)(“'k) I5 = \5 {1 - A + A2 - A’ + + (-1)“'kA“'k} uk+1

\ + n-k+l '
= l§{l_'—%_"'}u1<+1 = [5 "'k+1 ’

n-k+l

since, by Equation (28), A it = 0 for all x. '

(n-k) (n k)
c+ (N-k) |__1<_=|5E-1uk+l=|_1;uk=|_1<<N-1<> ' ,

i.e., c = 0. Q.B.D.
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APPENDIX B

AN ALTERNATE EXPANSION OF EQUATION (25)

An alternate expansion of Equation (25) follows. As before, let

ux = (N_x) (n-k)

and

¢(x) = x(k)

Then,

c + £ux¢(x) = A"ux¢(x) = <22» - l)'1ux¢(x) , (25)

where, temporarily, E operates on u alone, E’ on ¢ alone. Continuing in a

different manner,

(EE' - l)'1ux¢(x) [E(l + A’) - l]'1ux¢(x) = (A + EA')"ux¢(x)

5%, (1 + §§.~)"ux¢<x>

..—%» {1-s» <9 - uy +--~} <3-1>

Prom Equation (B-l) , we can write the desired expansion, once more dropping the

primes as no longer necessary.

Zux¢(x) = -c + ux_lZ¢(x) - Aux_2Z2¢(x) + A=ux_3z°¢<x>

- --- + (—l)jAjux_j_l Zj+l¢(x) + --- (B-2)

Again it is useful to list a breakdown of terms.
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(h-9)

(S-3)

;r~fi1“_*"_‘_’<><>¢

(T+U)x'

T+X-uz

_(L‘_'.3_)_EEi>2<=<>¢>K
(I+l‘:">[)x-I+l.3

xiii.
(e+>[)"=<">¢,x

;_@‘_Zf‘_>

—(x)¢zg
(Z+x)x'

__I1§__

('[+){)x_ <>I>"=<><>¢

0=3'X+u-xn
T+X-uy

_§:G1=T‘X+u-xn
1x'uVX—u(I')

u)uIE

_)_:_."x

.“§"c"->

<z->(-<r+><_: U)N)(Z)(X-u)=8-xnzv

(_['>[-U)(T+X—N)(>[_'z_
U)=xnV_p

(X-U)

(X-u)

(T+X—N)'[—Xn

<""N>_’%.
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Following the method of Appendix A,

'< < -1<>
{O ux¢(x) = (N-k) “ L5 = Zuk+l¢(k+l)

X:

(k+1)
= -c + (N-k>("'k) $5i%%I--; - 0 + 0 - --- (B-5)

since all 2j¢(x) vanish when k + j > x.

Simplifying,

- ( - )(N-k)(n k) up = Zuk+l¢(k+l) = -c + (N-k) “ k Lg

and again C = 0. Thus, Equation (B-2) can be written

£ux¢(x) = ux_lZ¢(x) - AuX_2Z2¢(x) + --- , (B-6)

which holds for all admissible values of x. From Equations (B-3) and (B-H), it

is apparent that when substituted into Equation (39), the expansion never will

contIu1norethan n - k + lterms, and will contain fewer whenever m < n.

Other expansions are possible, but usually prove to be ncme cumbersome

than the two already developed.
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APPENDIX C

PROGRAM PLANNING — BINOMEAL

l. INTRODUCTION. Reliability is expressed by z or by r, depending upon

whether or not it 18 a limit of integration.

In general, loops will be exited by comparing the difference between two

successive iterations with some standard, 6. (See Paragraph SE.)

Nearly every formula of interest is greatly simplified if expressed as

a function of f(r). Thus, '

p(k) = L rm
n+l

f’(r)=[%]§ - %]f(r)=%[n-fiilflr).

z

I f(r)dr=T +T +T +--
r=o 1 2 a

where

_ zf(z)

“Tm

and

h. z T.

T = 1 1
i+l (n+2-hi)(l—Z)

n = k, h = k-l, h = k-2, etc.
1 2 3

Note that if n and k do not change, there is no need to comute

lne |n+1 - lne In-k - lne Lg

ncme than once.
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2. COMPUTING L (z specified). Equations (l2) and (13).

Ehter data

yesa sub-routine for zero failures

no

‘ll I n+l

Oompute llle F-—|n_k

Compute (n-k) lnez + k lne(l-z)

Add the above, yielding lnef(z)

Compute and store T1

Set hl = k

Flag

Oompute Ti+1 and add to partial sum

decrement hi

no—% return to flag

yes

W
Subtract final sum from l

End.
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COMPUTING z (L specified). Equations (12), (l3),_(|+l+), and (145).

Enter data

yes ——> sub-routine for zero failures.

no

W |n+l

Compute and store lne FIE

Compute and store 6 = 1 - -1:; . This is the first estimate of z. '

Flag -

Compute (n-k) lnezj + k lne(l-zj)

|n+l

Add lne Li|n_k , yielding lnef(zj)

Compute and store T1

Set hi = k

nag

Compute Ti+ and add to partial sum
l

Decrement hi

IS SUM

no ?> return to Flag

yes z.

\} 1 - I 3 f(r) dr - L

Compute Az- = 0

1 f(zj)
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no —%- end

S A 3

IGNIFICANTLY

LARGE?’

yes

zj+1 = zj + Azj . Store.

Return to Flag

1%. COMPUTING "BEST ESTIMATE OF THE RELIABILITY." (L specified). It might

be said that the method employed is (Newton)2, ‘Therefore, it is mandatory that

the program include realistic exit routines, in order to keep computer time

within reason. Both 2 and 2 are computed. Equations (11+), (15), (21), and

1 z

Paragraphs 2 and 3 above are employed.

Enter data

yes —-9 generate error message

I10

i as
Compute and store lne If|n_k

Fyes no, k > l————fiI

Compute and store: Compute and store:

*3)

__ 2k _ A A

rpl - l n r r

()

v-5> + I *3)
__1<__ g _ _bl-1 nu 1.) 1>1- V (1 ml)

V O<

V
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The . are the successive estimates of E2. The program will not run

I-1!-'

b

with bi = , hence the above split. To continue:

Flag

Compute (n-k) lnebi + k lne(l-bi)

Compute and store f(bi)

b.

To compute I 1 f(r) dr, call "i.ntegral" subroutine. Store.

0

Set a = r

0 P1

Hagfil

Compute (n-k) lneaj + k lne(l-aj)

Compute f(aj)

Compute f’(aj) =
u?|a

r-1

k
n - raj)

f(b.) - f(a.)

a- = 8.. '5' éfi;

3+1 3 f aj

no mreturn to Flag

yes

i
a.

To compute I J f(r) dr, call "integral" subroutine

0

\_ b. a.

L - I 1 f(r) dr + I 3 f(r) dr f.(a_)

A1,, = ° ° . _____1__

1 m>i> f’(aj) - f’(bi)
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NOTE: Since at this point in the solution

f(a) = f(b), the second fractional.

expression reduces to

n__1<

U
I

I-'

7?‘

d.|
I

UIW
.'-'3T-sh)

b1+1 ’ bi * Abi

 

J.

T
end.

Subroutine "integral"

From x and f(x), compute

T1 = (n+1-k)_1 x f(x)

set hx = k

Flag

yes —-areturn to Flag

and store

Conpute and add to partial sum

T = h£xT£

2+1 (n+2-h2)(l-x)

Decrement h2
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s sum

COMPLETE? n<>?> return to Flag

yes

I
Return to main program.
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APPENDIX D

PROGRAM PLANNING - HYPERGEDMETRIC

' 1. INTRODUCTION. The variable x is to be associated with the probability

of a specific number of defectives. The variable m is to be associated with

the cumulative probability that FEWER than the stated number of defectives exist.

In general, the series to be sumed are all finite, but when both m and n

are quite large, it will measureably hasten exiting the loop to compare the term

with some arbitrarily small standard, 6, rather than zero.

The formulae of interest are conveniently expressed as functions of

px(N,x,n,k). Thus,

_ C(x,k)C(N-x,n-k)

PX ' C(N+l,n+l)

N+l

p(k) = E;i-px

Hkl

xgk PX = T1 + T2 + Ta + ...

where i

T = C(m,k+l)C(N-m#l,n-k)

1 C(N+l,n+l)

_ nvk N-m+l

_ kII . ?fiIEIH7¥?E¥I7 ' Pm

and I

HP(k+1) ' (n+1)-(k+i)
Ti+1 = 1<+i+1 ' (N-m-n)+(1<+i+1)' ' Ti

Note that in implementing the_above formula (D-5), the factors of the

numerator should be computed'before incrementing the index, the factors of

the denominator after. In fact, under this schene, the denominator of

Equation (D-H) becones equivalent to that of Equation (D-5), and the index

can be set to k+l before computing T1

(D-1)

(D-2)

(D-3)

(D-H)

(D-5)
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2. COMPUTING px (x ARBITRARY). Equations (38) and (H3)

Although the computation of nine logarithms is involved, there should

be no difficulty encountered worthy of notice. It is preferable to compute

and add (i) the largest logarithms last. (I N+l, LNZQ, and [N-x will be

the largest nubers.)

m-l

3. COMPUTING 2 px (m SPECIFIED). Equations (39) and (B-6)

-e-—-——-————-x=k -————————————

The program plan is left to the reader. Sufficient suggestions should

be found in Paragraph 2, Appendix C, and in Paragraphs l and 2, above.

4. COMUTING m (L SPECIFIED). See Paragraph H, "Hypergeometric Probability

The problem is to find an integral value of m such that H

ms2 Hhl

xgk px < L < xgk px . (D-6)

A first approximation is obtained by using the method of Appendix C,

Paragraph 3 to solve for z from the observed values of n and k, then applying

the transformation

m = 1< - % + (1-z)(N-n+1) + 8 . (D-7)

The quantity 0 ; e < 1 is necessary to insure that m is an integer. A study of

Figue 6 will reveal why Equation (D-7) is a suitable transformation.

In actual practice, e need not even be determined. Instead, the estimate

of m from Equation (D-7) is truncated at the decimal point, yielding mel.

ms2

Next Z px is computed from the estimate of Hhl, (see Paragraph 3, above)

x=k

It is not necessary to compute the second integral of Equation (D—6), since

mrl m-2

Z p ' p + Z p (D-8)
x=k x m-l x=k x

and both members of the right—hand side already are available.

If the inequality (D-6) holds, the problem is solved. If not, the estimate

of m-l is adjusted by unity and the last process repeated. (Only pm or pm_2, as

the case may be, need be comuted.)
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5. COMPUTING THE "BEST ESTIMATE OF x, THE NUMBER OF DEFECTIVES."

(L SPECIFIED).

The problem is similar to that discussed in Paragraph H, above.

First approximations to 2 and 2 are obtained by using the method of

1 2

Appendix C, Paragraph H, to compute 21 and 22, then transforming the variables.

Several values of both the simple and cumulative probabilities are computed

for arguments near the estimates of 21 and 22. The results are tabulated and

inspected. The simple rectangles are discarded one at a time, beginning with

the smallest in area. The process stops when one more step would reduce the

remaining integral (area) to less than the value of L.

The "maximum likelihood estimate" is merely the value of x associated

with the tallest rectangle.
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ESTIMATION AND PREDICTION OF CONFIOENCED

RELIABLE LIFE FROM SMALL SAMPLE SIZES

Eugene E. Coppola

Benet Weapons Laboratory

watervliet Arsenal

watervliet, New York

RELIABLE LIFE AND ITS LOWER CONFIDENCE BOUND. Reliable life is that

time S during which a specified proportion R of a population of devices

will operate continuously without failure. The proportion R is called

the reliability. Reliable life is important for devices that fail cata

strophically, that is, failure of the devices generally results in dis

truction of the devices and possibly destruction of surrounding equipment

and injury or death to operating personnel. Cannon components such as

tubes, breeches and chambers fall into this category.

Since such catastrophic failures must be avoided, it is important

that the device be operated only during the time when the probability of

failure is low. The reliable life for a new device, however, is not .

known and hence it must be estimated from test data. In addition. for

gun components, a confidence requirement is added. Namely, it must be

shown with a specified confidence level C that the actual reliable life

exceeds a given value. In other words, what we want is a lower confi

dence bound S at confidence level C for the reliable life S. The lower

confidence bound will be called lower confidenced reliable life (LCRL).

Note that when applied to cannon components, reliable life is usually

called safe life.
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The testing of cannon components is quite costly and time-consuming.

Consequently economic and time considerations greatly limit the number

of components that can be tested. This number, the sample size, is gen

erally around six, although in some instances it has been as low as three

and as high as 20. If the reliability were low, then this restriction of

sample size would be relatively unimportant. However, the reliability for

cannon components is generally specified to be 99.9 per cent. Further,

the confidence C is generally specified to 90 per cent. On first glance,

one might imagine that the smallness of the sample size would give highly

undesirable results in calculating S. This is, however, not always the

case, as we shall see below.

THE LOGNORMAL DISTRIBUTION. Because of the smallness of the sample

size, non-parametric methods do not give satisfactory results. Conse

quently, it is necessary to assume that the failure times follow a dis

tribution of known mathematical form. The lognormal and Weibull families

of distributions are usually used for this purpose. In this paper, we

will restrict ourselves to the lognormal family.

A real-valued random variable X is said to follow a lognormal dis

tribution of X is positive with probability l and log X follows a normal

distribution. The normal distribution of log X will depend the two usual

parameters, u and o , defined by u = E (log X) and O = Var (log X). These

two parameters are also the parameters of the lognormal distribution of X.

In terms of the parameters, the reliable life S is given by:

S = exp (u-ozfi)
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where ZR is the l00 R'th per cent point of the standard normal distribution.

Assume that m specimens have been tested to failure, with the failure

times being x], ... xm. we further assume that the specimens were randomly

selected from the population and that they are independent. Then the maxi

mum likelihood estimates (MLE's) of u, 0 and S are given by:

l III I11

- Z log x. Z (log X -a)2
m Jzl J j=l J

‘D
u

Q
N n

BIH

(1))
ll

exP(fl—6zR)

The LCRL Sm is given by: - L

am = exp(t1-amm)‘

Where Km is a tolerance factor that depends on m, R and C. Values of Km

for various m, r and C have been tabulated and are readily available in the

statistical literature. Note that since we are most interested in examin

ing the sensitivity of the LCRL to the sample size m, we have added a

subscript on to the LCRL notation Sm to emphasize that Eh is being calculated

from a sample of size m.

STATISTICAL PROPERTIES OF'Sm. To eliminate the parameter p, we con

sider Sm/S rather than Eh. The distribution of'Sm/S, in fact, does not

depend on the parameter u; it does, however, depend on m, R and C and the

parameter 0. Now, o is generally not known. However, from past experience

it appears that for cannon tubes and breeches, Q will be between 0 and 0.3

in the vast majority of cases, with an average value of about 0.2. The

expected values of Sm/S and (Sm/S)2 are given by:
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I

Sm 2exp[ozR+02(-‘£7; +L:1)] Q 2

E(— ) = (u-oL )2.-.»'“ du
S II1—l m

N?) oLm

é 2exp[2oz +2a2(l +2L2)] ~
R 2E('S'm)2 = m m I (u—2oLm)2e_u du

20L
m

- I/2

where Lm = (2m) Km

By evaluating these, the mean and variance of Sm/S may be determined.

Table l shows the expected value of Sm/S for R = 0.999, C = 0.9 and

for various 0 and m. Since we would like Sm to be close to S, values of

E(Sm/S) close to l are most desirablp. However, since Smii S with prob

ability C, we should have E (Sm/S)'< l. As can be seen from Table l,

E (Sm/S) is much smaller than l for very small m. For example, for 6 =

0.2 and m = 3, E (Sm/S) is approximately 50 per cent. This means that

on the average, Sm will only be half as large as S. For the developer,

this means that if a policy were adopted that LCRL were to be based ex

clusively on samples of 3, then the developer would have to insure that

on the average the actual reliable life of the equipment be twice as large

as the reliable life he desires to demonstrate. For this reason alone, a

policy of basing LCRL on samples of 3 is highly undesirable.

It should be no surprise that m = 3 gives undesirable results. What

is surprising is that for m not much larger than 3, the results are not

too bad. The author finds it remarkable, for example, that for m = l0,

one will obtain’Sm on the average about 77 per cent of the actual S.
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Table 2 shows the variance of Sm/S. A variance near 0 is most desir

able. As can be seen, the variances for very small m are relatively far

from 0. For ° = 0.2, the variance is fairly small for m26 and changes

relatively little with increasing m. Use of any of the standard inequali

ties such as Chebyshev's Inequality shows that even for relatively small

m,'Sm/S will tend to be fairly close to its expected value.

Hence, the restriction to small m, whole not ideal from a statistical

viewpoint, is not especially damaging either, provided m is not too small.

In fact when 0 is close to 0, the LCRL will have quite good properties.

THE EFFECT OF INCREASING SAMPLE SIZES. Although in some cases small

m may give acceptable results, in other cases small m may not be as desir

able. Let us investigate the following question: m specimens have been

tested. what would happen if we tested an additional k specimens and added

them to the sample to give a sample size of m + k?

The question is of more than academic interest. For example, Table 3

shows the probability that by adding one more specimen to the sample, we

can increase LCRL. As can be seen, it is likely that LCRL will increase.

If the amount of increase is sufficiently large, it may be worthwhile to

test one or two more specimens. _

Assume that we have a sequence X], X2, X3, .. of independent, randomly

selected failure times. For each m, let

m

Um = og XJ , 6; = Jil(log xJ—flm)2
B|l—'

L1
.1“

l—‘

Ell-‘

Sm = exp(flm-6mKm)
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fim, am and §@ are just the MLE's and LCRL that we would calculate from the

first m failure times. To see the effect of adding k additional specimens

to a sample of m, we want to study Sm in relation to Sm+k.

Define T = log §m+k-log ém

m,k 6

m

The distribution of Tm,k does not depend on either u or 0 , so that Tm,k

can be used whatever the actual values of these parameters. A knowledge

of the distribution of Tm,k is useful for the following reason: Once m

specimens have been tested, we can calculate §m and am. The only unknown

quantity in the definition of Tm,k is §m+k. Consequently, probability

statements concerning Tm,k can be translated into probability statements

concerning §m+k. In particular, we can construct prediction intervals for

?§n+k in terms of Eh and m, as follows: Assume p (O<p§l) is given and

that we have determined two numbers t1 and t2 such that

5 é = .Pr(tl-Tm,k t2) P

tThis last equation is equivalen to:

- S _ =Pr(Smexp(6mtl) - Sm+k - m+keXP(3mt2) P
IA

U):

Consequently, ( §mexp(6mtl) , §m+keXP(6mtg) ) will be a prediction interval

for §m+k at level p.

An interesting fact about Tm,k is that with probability l, Tm,k is

bounded from above under a certain mild condition. In fact, T can be written

in the following form:

P4Q

l—‘|—'

YN

[\)

— C2(l+ Iififi )1/2 + Km (1)
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I
where _ _§_.l/2

Cl (m+k)

_ m l/2
C2 _ (m+k) Km+k

z is standard normal, x is chi-squared with k-l degrees of freedom,

y is chi-squared with m-l degrees of freedom and x, y, and z are inde

pendent. (Note: we assume here that m 2 2. We allow k = l and interpret

a chi-square variate with 0 degrees of freedom as a random variable which

takes the value 0 with probability l). The function given in(1)above will

take a maximum value if C232 C], and in this case, the maximum value is

Km _ (0;-ci)l/2 The condition C22? C] is equivalent to:

K$+k 2 5' (2)

when this inequality is satisfied, the maximum value will be

mK ,-k

_ .m+x l/2
Hm,k _ Km _ ( m+k )

Consequently, when inequality 2 is satisfied,

P é =r(Tm,k Hm,k) 1

This is equivalent to:

Sm+k me (8mHm,k) with probability l. Inequality(2)will
ll/\

ma

N‘U

not be true for all m and k. (In fact, as k * ” , the left

side of (2) approaches Z§ while the right side approaches w . Hence,

inequality(2)will not be true for large k). However, (2) will be true for

m and k of interest in this paper. For example, when m = 6, R = 0.999 and

C 0.9, inequality(2)will be true for k:£ 50.

The distribution of Tm,k for R = 0.999, C = 0.9 and for some m and

k have been determined by Monte-Carlo simulation. The cumulative dis

tributions of Tm,k for m = 6 and k - l, 2, 3 and for m = l0 and k = l, 2,
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3 are shown. Note that for m = l0, the bulk of the distribution is con

centrated near O, so that adding up to 3 more samples to an already

existing sample of l0 will probably not produce much change in LCRL. For

m = 6, the distribution is not so closely concentrated near 0. However,

depending on the actual numbers involved, the prediction intervals may be

fairly tight.

An Example

As an example, consider the following six failure times: 2596, 2536, 28ll,

2l4l, 2416, 2839. We calculate from these:

56 7.941

56 0.09493

§6 1427, for R = 0.999, c = 0.9

Now suppose that the original test plan is to test 8 specimens, of which

the first 6 gave the failure times above. Then prediction intervals for

S} and S5 at a level of 90% are

§} 1305, 1554

§, 1265, l649

The figures on the right represent the upper bounds mentioned above. That

is, with 100% confidence, 35:5 I649.
Now, if the original aim of the test was to demonstrate a reliable D

life of 2000, it is clear that this will be impossible. For after all 8

specimens have been tested, the LCRL cannot be higher than 1649. Conse

quently, the testing can be halted after 6.

Suppose instead that only I500 reliable life was desired. From the

distribution of T6’2, we can calculate that l500 is a lower prediction

I

I
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bound of SQ at a level of approximately 70 per cent. One can therefore

be fairly confident the test will show at least l500 reliable life. On

the other hand, if only l250 reliable life were desired, then one can be

about 90% confident that the final results will show a reliable life of

at least l250.
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l2
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739
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773
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834

840

845

849
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860

863

867

0
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TABLE 1

Expected Value of '§',,/sR

R = 0.999, Y = 0.9

.4 0.

.354 .

.424 .

.479 .

522

ooooooooooooooooooooooo

.556 .

.584

.607 .

.627. .

.643 .

.658 .

.671 .

.683 .

.694 .

.703 .

.712 .

.720 .

.727 .

.734 .

.740 .

.746 .

.751 .

.756 .

761

6

348

374

408

439

469

491

512

531

548

564

577

589

601

611

621

630

638

646

653

660

666

672

678

0
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8

334

363

386

.402

.420

438

.455

.471

485

.499

SI]

523

534

544

554

562

571

579

586

593

.600

.606

612

—-I

.0

332

359

380

397

403

412

422

434

445

456

467

.476

486

.495

.504

512

520

527

.535

541

.548

.554

.560
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21
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2

132

091

068

054

045

.038

.033

.029

026

.024

.022

.020

.018

.017

016

.015

014

013

013

012

011

011

010

0

OOCDOQQQOOOOOQOQOCQOQCJOQ

4

279

199

156

130

111

097

086

.078

071

065

061

056

053

050

.047

044

042

040

038

037

035

034

032

TABLE 2

Variance of 8;/SR

R = 0.999, Y = 0.9

0.

QQOCJCJOOOOCQQOOOQOOCDOOOO

6

602

384'

281

225

190

166

147

133

122

113

105

.098

.092

.087

.083

.079

075

072

069

066

.063

.061

.059

0.

QQQOOOQQOCOOQCDOOCDCDOQOH

8

598

809

523

388

311

262

228

203

184

169

156

146

137

129

123

117

111

107

102

.098

.095

.091

.088

1

QOOOQQOQOQQDO(DOOOOOQ—'—I-l>

0

700

.916

.064

709

528

421

353

305

271

244

223

206

192

180

170

161

153

146

140

134

129

125

120
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l2
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l4

l5

l6

l7

l8

l9

20

2l

22

23

24

999

.821

797

783

774

766

760

755

752

748

746

743

74l

739

736

736

733

733

730

729

728

727

726

726

TABLE 3

r-’ ~

PF (5n+lZ Sn)

Y = 0.9

0.99 0.95

.819 .815

.796 793

.782 780

.773 771

.765 .763

.759 758

.755 755

.750 749

.747 745

.745 744

.742 739

.740 736

.737 .734

.736 733

.736 729

.73l 728

.730 728

.730 728

.729 726

.727 725

.727 724

.725 723

.725 723

308



-
-
-
-

l
l
l
l
.
|
I
d
m
|
I
|
I
.
.
n
u
U
H
l
|
H
|
|
F
i
|
|
.
|
.
~
H
H
.

.
4
d

:
I
.
I
0
1
1

I
0
2
.
I
u
l
O
N

x
O
N

O
D

l
I
B
N
.
r
U
_
O
H
I
H
U
J
U

I
U
l
(
l

v
-
\
(
I
U

l
H
B
N
L
.
U
_
O

D
N
(
a
w
n

D
I

309



r
E
L
L

.
»
.

_
_

i
.
-
.
I
.
u
f
-
I
.
.

.
.

.
.

.

fi
i
i
l
i
fl

c
.

,
_
»
.

.
.
.

.

_
.

_
w
n
.
1
n
.
i
.
.
.

_
I
r

H
.

.
.
.
.
.
.
n
n
.
.
w
1
.
.

3..
M

...-..m._...,,..a...M,.
fi
t
.

x»
n
e
w

.
.
-
.
1
_
.
.
.
.
n
.
.
.
.
H
h
.
w
M
n
-

.
.

..
......-H

.
.
|
.
.
.
I

L
|
.
U
4
l
I
|
\
"
.
‘
x
I
x
P
Y
|

1
.

.
1

_.
l
l

1
.
.
,
.
w
.
.
.
.
_
,
.
.
.
i
.
!
H
i
-
.
-
-

.
-
.
N
.
-
»
w
,
,

i
_

.
i
i

.
.
.
l
.
-
.
i
-
.
.
.
-
.
-
-
-
.
i
-
.

.
.
.
.

.
.
.
-
.
l
!
U
T
!

-
i
.
.
_
.
.
.
.
l
-
.
l
l
-
i
|
-
i
l
-
.
.
.
.

..
.
i
.

..
1
.
_

.
-
.
.
.
.
.
-
.
1
i
i
|
|
l
.
|
l
.
.
,
I
i
!

1

.
.
m
.
.
.
m
H
.

..........i_n.H.
n
h
i
m
y
n
fi
n
i
w

.
-
.
.
.
-
.
-
.
l
-
.
,
.
.
-
.
|
.
l
»
!

.
.
l
.
L
l
l
|
-
|
1
+
.
.
$
l
|

-.-H.,l.i....,.l.».H..n..:|.w.1l.,.n.@..M.il|i
.

I

.
|
.
M
H
|
|
L
.
I
|
.
N
l
i
.
|
.
_
H
_
H
.
h
.
.
n
n
-
T
.
.
h
1
|

.....i.H
H
H
|
T
r
n
.
U
l
1
*
H
m
»
M
.
l
l
.
i
.
i
l
.
.
+
.
.
¢
W
.
,
w
.
H
w
u
H
~
H
~
-
w
H
“
w
H
~
H
|
W

.
.
.
l
i
u
.
|
|
.
l
i
i
l
l
.
l
|
l
l
1
1
.
.
H
.
.
i
.
.
»
.
.
l
w
.
H

|......,..H..-v..4..h..
n
H
w
i
.
i
.
|
/
A

Q
t

l
l
.
-
.

.
l
.

.
i
v
.
.
.

T
i

....

-
u
|
,
|
l
l
.
H
W
.
i
|
.
H
M
u
m

l
-
H
.

l
_

I
.

_

n
l

3
H
.
.
.
.
.
.
.
n

I
-
5
.
.
-
F
"
;

..

1
,

.
l
l
l
m
m
fl
l
w
m
r
l
l
l
n

u
n
n
fi
fl
fl
n
-
I
n
-
.
-
1

I
i
l
h
l
l
l

l
r
l
l
l
l
u

I

I
I
n

l
u
l
n
l
-
_
.

l
»
l
n
.
.
r
.
"
:
.
.
I
n
.
l
:
n
.
h

.
_

.
.

.
_

.

T
l

.
-
i
_

.
.
|

1
i

U

i
1
1
.
-
.
L
i

.
.-_-

_
_

E
.

...::.._............n..u"n.........-...
.

.
.

.
i
s

_
.
.

<
n
.
.
.
.
_
m

-
H
a
fi
a
u
:
n
a
E
:
_
.
.
.
.
.
.
fi
.

...
a
n
:
:
.
.
.
“
.
.
.
.
.
_
m
H
n
.
.
.
.
_
.
.
n
.
h
n
fi
.

.
n
n
q
m
m
-
m
u
.
.
.

I
L
l
n
L
l
@
.
|
l
W
.
|
_

I
I
I
I
I
I
I
I
N

§
I
i
‘

I
n

.

L
<

5
I
_
h
I
I
.
l
i

I
I
I
I

I
I
I

I
I
I

.
c

A
M

_
E

E
H
H
.
F
.
a
.
.
“
a
.
s
"
_
m
.
_
e
s
.
.
#
.
_
.
.
.
.
i
1
.
5
.
?
E
fi
m
r
a
m
a
w
m
n
m
m
a
m
fl
fi
u

.
0
0
I
I
I
I
U
I
-
I
l
i
a
-
I
I

I
I
X
U
I
_

9
-

I
F

O
o
h
O

0
.
1

x
u
z
.

u
x
c
.
O
F

o
.

n
o
_
W
0
1

3l0



SEQUENTIAL ALLOCATION or OBSERVATIONS IN THE

EXPONENTIAL SELECTION PROBLEM -

Robert M. Wharton, Ph.D. R. Srinivasan, Ph.D.

Thomas Jefferson University Temple University

Philadelphia, Pennsylvania Philadelphia, Pennsylvania

ABSTRACT. Two sequential data-dependent allocation rules for assigning

patients to clinical trials are explored in this paper. The objective of the

designs is to test the null hypothesis that there is no difference in mean

survival times associated with two treatments where survival time is assumed

to be exponentially distributed and at the same time to minimize the number

of patients assigned to the inferior treatment. Both the single patient and

multiple patient entry cases are discussed.

1. INTRODUCTION. This paper is concerned with protocols for clinical

trials in which we desire to determine whether there is any difference in the

effects of two treatments. We will base our decision on some measurable

response associated with a treatment (i.e. survival time, time to remission,

etc.). We also assume that patients arrive for treatments sequentially in

time either individually or in groups.

Most clinical trials addressing this question require approximately

equal numbers of patients to be assigned to each treatment. Now suppose it

becomes clear to the treating physician that one treatment is better than the

other before sufficient patients have been accrued to reach a decision with

the significance and power specified in the original trial design. He then

faces an ethical problem. He can not continue to treat patients with an

inferior treatment and yet by terminating the trial prematurely, he may lose

information which would be invaluable in planning the treatment of many future

patients.

To reduce this ethical problem, it would be useful to design the clinical

trial using the data collected up to a given point to choose the treatment

for a patient entering the trial at that point. The aim being a design which

tends to assign the majority of the patients to the superior method of treat

ment, while meeting the classical statistical criteria of significance and

power.

For the exponential selection problem in which we test the null hypothesis

that there is no difference in mean survival times associated with the two

treatments where survival times are assumed to be exponential with parameters

(death rates) depending upon treatment, Flehinger and Louis (1971) have investi

gated a whole range of sequential data-dependent assignment rules ranging from

strict alternation of treatment to assignment of treatment with lower estimated

death rate. Clearly the most data-dependent allocation rule would be to assign

the next patient to the treatment with the smallest expected death rate

(maximum likelihood estimate). Unfortunately this rule would often have the
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effect of allocating an overwhelming proportion of patients to one or the

other treatment and thus extending the length of the trial indefinately

(Armitage 1975)- To reduce this difficulty Flehinger and Louis have pro

posed the following range of allocation rules:

Let Din.= the number of deaths of patients treated by

method i by time n

Tin: the total time lived by patients treated by

method i by time n

7 = be a constant between 0 and 1

then at time n

a) if |D1n - Dznl > Yn and Din < D2“ treatment 1 is used whereas

if Din >‘ D2“ treatment 2 is used

b) 11‘ [pm - om‘ _<_ Yn and om/Tm 5 n2n/ Tzn

Treatment 1 is used whereas if D1n/ Tm > D2n/ Tzn treatment

2 is used.

2. ALLOCATION RULES. We wish to examine two further allocation rules.

The first treats the same situation as the Flehinger-Louis rules (i.e. exponential

survival time, patients arriving sequentially over a period of time and being

assigned immediately to a single treatment.) This allocation rule which we will

refer to as R1 assigns treatment to the next three incoming patients based on

accumulated data with two of the patients receiving treatment 1 if it has the

smallest expected death rate and one patient then receiving treatment 2 and

the reverse if treatment 2 is associated with the lowest expected death rate.

If the two treatments have the same expected death rate then the treatment

given to two of the next three patients is reversed from that of the previous

triple of patients. This relatively simple rule overcomes the difficulty of

an overwhelming proportion of patients going to any one treatment and is

comparable to the Flehinger-Louis rules with respect to Average Sample Number

(A.S.N.) and Inferior Treatment Number (I.T.N.).

It also has the advantage that it can be extended in a natural way to the

case of multiple patient entry. We will only consider here the situation where

three patients arrive for treatment every third day but the suggested approach

can easily be extended to a more general setting. In the three patient entry

case as in the above allocation rule we assign two of the next three patients
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to the treatment which has the smallest expected death rate on the basis of

accumulated data. We shall refer to this allocation rule as R3 . The

protocols for clinical trials utilizing R1 and R3 are open sequential

design which terminate when the likelihood ratio crosses a given boundry.

This is also true of the Flehinger-Louis rules. Comparisons of R1 and

R3 with two allocation rules denoted R2 and R4 involving strict

alternation are presented in Section 3. These results have been obtained

on the basis of computer simulation with 1000 replications for each entry.

3. DEFINITIONS AND SIMULATION RESULTS.

Himotbesis under consideration:

It is assumed that there are two treatments available. A patient is

given one of these treatments at a point in time, after which his remaining

life length has an exponential distribution, the death rates L1 and X2

depend upon the treatments. The clinical trial is intended to choose one

of the following hypotheses:

H0111‘-' L2: H1:X2= k)u1; H2:).1=k)¢2

where k > 1 is chosen in advance as a ratio which represents a medically

significant difference.

All9_caii9n_Hulaa¢

For any given time t , after the trial begins.

Let

xijt be the time lived since treatment if he is still

alive for a patient given treatment i at time j.

Yijt be the time lived from treatment to death if he has died.

Dit be the number of deaths of patients treated by method i by time t.

Tit be the total time lived by patients treated by method 1 by time t.

We consider four allocation rules denoted R1 thru R4 .

R1 The patients arrive one per day but the treatment plan for the next three

(3) days is defined every third day by randomly assigning one of the two

treatments to two of the patients and the other treatment to the remaining

patient in the triple. Which treatment is used twice is determined by the

' following rulefl
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If nit / Tit < Dzt / Tat treatment 1 is used

t tm t 2 i dif D1‘ / Tit > DE; / Tzt rea en s use

if pit] -pit 2: D21: / Tzt W change from previous assignment.

R2 Is simple alternation of treatment one and two, with the

' treatment for the first patient randomly selected.

R3 Three patients arrive on the first day and every third day thereafter.

The treatment received by the majority of the next triplet is determined

0 by the same rule used in R1.

R4 The patients arrive as in R3. Treatment one or two is randomly selected

and this treatment is randomly assigned to two of the 3 patients with

the third patient receiving the other treatment. The treatment scheme

is reversed for the next 3 patients.

1‘.emi_.naiiQn_Bulea A

The termination rules considered utilize the liklihood ratio's

D

2* n n

n
:: it D D

L2.‘ k { ('r1t+ Tzt) / (1<'r1t+ Tzt) I ( 1? gt)

and are of the form: select two numbers A and B with A < 1 < B.

"31 (Lit » Lzt) < A * terminate and accept Ho.

Max (Lit, Lzt) > B + Terminate and accept H1 where i corresponds

to the larger of Lit, Lzt.

A 5 max (Lit, Lzt) 5 B » continue testing.

Plehinser and Louis (1971) showed um for 1<=2, A= .1 and B= 30.

give a significance level of .05 and a power of .95 . These values were

used in the results that follow.

The authors are currently working on more extensive computer simulations

Of the schemes presented here for the exponenti-1 and similar results for the

normal case. The implications of introducing further randomization and its

effect on selection and trend bias are also being explored.
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0.0.
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1.0
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Maximum Likelihood Estimation of 12D

for Inoculated Packs

Edward W. Ross, Jr.

Office of the Technical Director

U.S. Army Natick R&D Command

Natick, MA 01760

Abstract. This paper describes a statistical procedure for

estimating the 12D dose in the radiation-sterilization of

canned food, using data from an inoculated pack experiment.

The method assumes a two-parameter distribution, of which

the shifted-exponential is taken as a prototype, and uses

the maximum-likelihood principle to estimate the parameters

and hence l2D. The procedure is embodied in a computer pro

gram which estimates l2D and provides confidence limits on

both 12D and the kill at zero dose. The method is illustrat

ed by an example.

l. Introduction. This paper is concerned with methods for

assessing the effectiveness of ionizing radiation as a means

of food-preservation. In particular, it deals with the prob

lem of estimating the 12D dose, using the data obtained from

an inoculated pack experiment. A number of papers have dealt

wholly or partly with this question, including those of

Anellis et al. (1968, 1969, 1975), Grecz et al. (1971) and

Ross (1974, l976). The general problem is one of determining

a dose—response function and is discussed by Finney (1952).

The purpose of the present paper is to describe a method

of data analysis, based on the maximum-likelihood (ML) cri

terion, for estimating l2D from inoculated pack data. An

example will be presented, showing how the method works.

The ML method is a very widely-used procedure for deriv

ing estimates of unknown parameters from experimental data

and is described in most books on mathematical statistics,

e.g., Hoel (1971). It seems not to have been applied in

analyzing inoculated pack data, possibly because it leads to

complicated formulas that can in practice only be solved

with the aid of a high-speed computer. Despite this draw

back the ML method is worth considering because it can

extract more useful information than other procedures from

the same data.
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2. Theory. This section is divided into two parts, dealing

with the inoculated pack experiment and a description of the

ML method. .

2a. The Inoculated Pack Experiment. The inoculated pack

experiment consists of inoculating cans of the food sub

strate with a large number of the test-microorganisms. The

cans are then vacuum-sealed, groups of them are exposed to

different doses of radiation and then incubated. After in

cubation each can is examined to see whether it contains sur

vivors. In the example described later, the test microorgan

isms were spores of ten strains of Clostridium botulinum, the

incubation period was six months and the method of examination

was the recovery of viable botulinal cells.

If we denote the different groups of cans by index, i,

i = l,2,..., M, we define

x_ = dose which the i-th group received.

1

n_ = number of organisms per can in the i-th group.

1

Ni = number of cans in the i-th group.

Ki = number of sterilized cans (i.e., cans without sur

vivors in the i-th group.

Usually the experiment is designed so that all n. are approxi

mately equal, and all N_ are the same. This simplifies the

experiment and analysis} but there are advantages to be gained

by varying n_ and N.. In any case, the procedure described
here applieslto thel situation where ni and Ni may all be dif

ferent.

The data consist of x_, ni, Ni and K_ for i = l,2,...M,

1 1

where x, and n. are non—negative numbers and N- and K- are
. 1 1

negative integers. The data—analysis must deduce an estimate

of the l2D dose from this data.

2b. The ML Method. The method described here is based on

the general probability theory for inoculated packs, see Ross

(1974).

It is assumed that under the test conditions, the

probability that an individual organism will be killed at V

dose x is given by the distribution function G(x), the sur

vival probability being l—G(x). The l2D-dose, which we denote

xc, satisfies
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l—G(xc) = 1 X 10‘1* (1)

The probability that a can containing n organisms will be

sterilized (i.e., all organisms will be killed) at dose x

is denoted by ¢(x). ¢(x) and G(x) are related by means of

II

¢(X) = [G(x)] (2)

or, approximately for n large and l—G small,

¢(x) e-n[l-G(x)]

(3)

G(x) 1 + n‘1 in 0 (X) (4)

In the inoculated pack test at dose x_, N_ cans are

exposed each having ¢(x-) = ¢. as the probability of

sterilization. The probability that K- cans are sterilized

at dose xi is given by the binomial distribution

N- K N -K

_ 1 1 i .

)°i (1 " *0 ‘,K_

1

So far, nothing has been assumed about the form of the

function G(x). We now assume that G(x) has a general form,

G (x; B1, B2). by which is meant that G depends not only on

x (i.e., dose) but on two other quantities, B1 and B2, which

are independent of dose. For example, assuming a shifted

exponential distribution for G(x) means

G(x) = 1 - exp I-B,(X-B27}

If B1 and B2 were known, we could immediately estimate 12D

by solving Equation (l), which becomes in this case
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l — l x l0_12= l - exp {-B1 (xc — B2)}

or

xc = B2 + (12 ln 10)/B1 = B2 + 27.63/B1

Usually we do not know B1 and B2, and our problem is then

to estimate them from the inoculated pack data.

The ML method tells us to do this by choosing B1 and B,

so that the probability (likelihood) of getting the observed

experimental results is as large as possible. If B1 and B2

are given, then ¢i is known and Pi is the likelihood of get

ting the observed outcome at dose x-. Since the cans at dif

ferent doses are tested independently, the joint likelihood of

getting the observed experimental results for all the M doses

is

P = P1 P, ...PM

The ML procedure directs us to find B1 and B2 so that P will

be maximized. This is equivalent to maximizing

M

r= ln P = Z{ln c. + K. 1n0_ + (N.-K.)ln(l-¢ )} (6)

i=1 i i i i i i

where _

N_ 1 N.\

C, =( ___’ 1‘

'1 1

Ki Ki¥Ni KiU

¢ exp {-n. (1-G_)}.

i 1 1

The usual procedure for finding B1 and B2 is to solve the

equations

_.ar/as, —I O

er/as, ll
O

Z~
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The plausible forms for G(x) all lead to equations which are

too complicated to solve by simple formulas. Usually one

uses, instead, a successive.approximation scheme, like the

one written in matrix form as

B (r")’lr'

B BF/8Bwhere e = Bl B = 1 In =[ /ml]

B2 B2 ar 2

2 2 azr SB as
Q P" = azr/asl 2 / % 2

a P/3B28Bl a F/8B2

In using this, an initial guess is made for B1 and B1. The

terms on the right of Equation (7) are evaluated for those

values of B1 and B2 and the quantities B1 and B2 are calculat

ed using Equation (7). These are then taken as the new values

of B1 and B2 and the process is repeated. This continues

until the B's and B's are equal to some desired accuracy.

ll
{I7 I

(7)

The properties of this Gauss—Newton iteration scheme

are reasonably well—known. It converges if the initial

guess is good enough, and the Hessian matrix, F", is positive

definite. If it converges, the inverse of the Hessian Matrix,

(F")", gives the estimated variance-covariance matrix of B1

and B2. However, the method may occasionally fail to converge.

Given any assumed form for G(x), one can write explicit

formulas for the quantities 81"/BB1, er/aaz, azr/asfi, 32F/3B13B2

etc. as functions of B1 and B2, These formulas are necessary,

but they are complicated and not especially informative, so we

omit them.

The calculations involved in carrying out the ML method

are obviously very tedious. However, the author has prepared

a FORTRAN computer program which does the calculation of_B

and B2, then finds the l2D dose, xc. The program also fimfi

confidence limits on xc and the logarithm of the survival

probability at x=0. It does all of these calculations for

each of the following five general forms of G(x): .
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G(x) = 1 - exp{B1(x—B2)} shifted exponential

B

G(x) 1 _ exp{ _(B2x) 1} Weibull

6(1) Fé{Bl(x-B2)} normal

lognormal
c(x) Fg{Bl2n(x/B2)}

c(x)= 1._exp@3lx) unshifted exponential

where

Fg(y) = Jy <2")-1/2e-t2/2dt

The program receives the inoculated pack data as

input, including doses where all or none of the cans are

sterilized as well as partial spoilage doses. It first

carries out least-squares fitting of the data from partial

spoilage doses only, obtaining in this way initial estimates

of B1 and B2 for all five forms of G(x). These are used to

start the ML method. Having found the optimizing (i.e.,

maximizing) values of B1 and B1, the program also finds for

each form the quantity

_ 2X2 = § (Ki N131)

1 Ni¢i(l - oi)

This is distributed approximately as a X2—random variable

with M-2 degrees of freedom and is an overall measure of how

well that form can be made to fit the data.
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3. Example. In this Section we describe an inoculated

pack that was recently carried out at the U. S. Army

Natick R&D Command and shows the results of using the pro

posed method of data analysis.

An inoculated pack was done at -30°C using Q. botulinum

spores in canned pork. The data (Anellis, unpublished,

based on can-swelling) are shown in Table 1. The results

from the preliminary least-squares (LS) fitting and the final,

maximum likelihood (ML), estimates are shown in Table 2.

Figure l is a graph of the data points and the four distri

butions fitted by the ML method.

Examining the ML results, we see that the normal dis

tribution predicts that the entire 95% confidence interval

of Z lies below -1, i.e. there is more than 90% kill at zero

dose with 95% confidence. We therefore discard this distri

bution. For the exponential distribution ML predicts a very

small shift (Z = -.23) whose 95% confidence limits straddle

zero. There is, therefore, no reason to conclude that the

shift is non-zero, which means that in this case the simple

exponential hypothesis is acceptable (i.e., it is not contra

dicted by the data). Similarly the Weibull shape parameter

is very close to 1.0, B1 = .9733, which also supports this

hypothesis. These two distributions give almost the same

12-D dose, x = 3.89, and the 12D-dose of a simple-exponential

is X = 3.839 The Schmidt-Nank formula yields x = 3.76.
The C lognormal leads to the estimate xc = 4.11.0

The theoretical value of X2 is X2 (-95) = X§(~95) = 9-49:

M"2

which exceeds the computed X2 for all four distributions, so

we have no evidence against any of the four distributions on

grounds of goodness-of-fit.

In this case we can adopt a procedurally conservative

viewpoint and reason as follows. In the past, the simple

exponential has always been used. The data does not refute

its use here, so we may conclude that the distribution is

exponential, the best-12D estimate is 3.89, and the 95% con

fidence limits are 3.62 5 x 5 4.32. An alternative algo

rithm is to suspend judgmentcon the distribution but use the

largest 12D-value given by any acceptable distribution.

This leads to use of the lognormal estimates, 2c = 4.11 and

3.73_< xc _< 4.77.

Either of these two viewpoints can be taken in this

case and the two 12-D values obtained are not statistically

different at the 95% confidence level. Also in practical

terms the difference between 3.9 and 4.1 megarads for 12D

is not very important.

323



4. Discussion. The ML method has the following advantages:

(i) It is a generally accepted statistical procedure.

(ii) It is a very flexible method that can be used

with many different assumed distribution functions.

(iii) Because it uses the data at points where Ki = O

or Ni, it comes closer than existing methods to using

all the information that is in the data.

‘ It has two drawbacks, namely, it is complicated and

may occasionally fail to converge. The former is not a

problem since a computer program already exists for it, and

the latter happens very rarely in the writer's experience.

On balance, it appears that the ML method is promising

and deserves further study.
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Exp Weib

ML LS ML

i 2.5 - 2.5

W 18.0 - 18.0

B1 6.963 7.751 -9733 1

B2 -.077 .171 7.771 6

95% x 3.616 _ 3_559

cl

l2D==xc 3.891 3.736 3.895 3.

95% x h.315 - h.h73

CU.

95% ZL l-753 - -
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Table 1: Swelling data from

inoculated pack for Q. botulinum

in irradiated canned pork.

F2 -10.07 -11.11 -10.09 -10

X2 2.93 6.03 3.00 5

LS

.

059

.151

738

I73

O3

LS

3.3h5

2.10h

3.897

Norm. Logn

Ml LS ML

215 " 2~5

5.0 - 5I0

l.2h7 1.351 3.015

-1.932 -1.601 2.507

3.h69 - 3.730

3.710 3.606 h.113

h.O79 — h.773

-2.912 — -

-2.097 -1.815 —

-1.h33 — —

-9.59 -10.17 -10.58 -11.59

2.20 3.9h 3.75 6.93

Table 2: Maximum likelihood (ML) and Least Squares (LS) estimates for

four distribution-forms, based on data in Table l. Z = logic (survival

probability at zero dose). LS simple exponential 12D =

3.829, Schmidt-Nank 12D = 3.755. The LS results are based on the data

2.2_$x $2.8, the ML results in 2.09 X $3.0.
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Figure 1: Graph of loglg (survival probability) as a function

of dose in megarads for irradiated canned pork, based on viable

cells. Data points are shown as I, and the four distributions

fitted by ML are shown as lines: Weibull, —

exponential, -—- -~ —— normal, lognormal. 1 and T are the

95% confidence ranges for theoretical probabilities at doses

where no cans or all cans are sterilized.
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CONFIDENCE BOUNDS FOR THE GENERAL LINEAR MODEL

J. Richard Moore

Malcolm S. Taylor

USA Ballistic Research Laboratories

Aberdeen Proving Ground, Maryland 21005

In this paper, for the general linear model Y = XB + e, we con

sider the construction of confidence bounds about the entire regression

line. To accomplish this we exploit a powerful theorem of Scheffé. A

procedure often encountered is one in which a set of confidence inter

vals about E(y|x) or prediction intervals for future observations are

determined and then the end points are connected in such a fashion as

to describe an envelope. The belief is that what has been accomplished

is precisely what Scheffé's theorem allows one to do.

In addition, we present some extensions concerning confidence

bounds about combinations of regression lines and suggest a useful

application of these results. Specifically, we propose to use the

confidence bounds about the difference of regression lines to make a

quantitative assessment of when and where independent sets of data

characterizing the same phenomena are in agreement or disagreement.
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1. INTRODUCTION

It is appropriate at the onset that we devote a few paragraphs

to the introduction of the general linear hypothesis model of full

rank. We want to consider uncorrelated observations yl, y2, ..., yn

that satisfy the relation

llM"U

>4
U

Myi = j 1 ijfij + ei, i = 1 , n (1.1)

and are linear in the unknown parameters B1, B2, ..., Bp with known

coefficients xii and random term ei satisfying

llb'l"U

l—'

>< is
JE(yi) = j 1] J

and

2

Var(yi) = 0 ;

In other words, the random term ei is a random variable with expected

. 2
value E(ei) equal to zero and unknown variance Var(ei) equal to 0 .

The problem, in its most general sense, involves determining point and

interval estimates of several quantities of interest of the model and

the testing of various statistical hypotheses.

For compactness of notation and ease of manipulation let

Y1 X11 X12 "' xlp B1 e1

y2 X21 x22 ... xzp B2 e2

Y = . , X = . , B = . , e = . ;

yn xnl xnz ... xnp Bp en

then we can write the system of relations (1.1) as

Y = XB + e

and proceed to define the general linear hypothesis model of full rank

as follows:
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Definition 1.1. The model Y = XB + e where Y is a random observed

vector, e is a random vector, X is an n x p matrix of known fixed

quantities, and B is a vector of unknown parameters is called the

general linear hypothesis model of full rank, provided the rank of X

is equal to p where p ; n.

In the present inquiry we restrict our consideration to the nor

mal theory case, which means the random vector e, already satisfying

E(e) = 0 and cov(e) = oi, will, in addition, be assumed to be normally

distributed.

The problem most frequently addressed is that of estimating the

unknown parameters Bj on the basis of the observations yi. These

estimates of Bj, denoted by Bj, are functions of yi; and, as such, are

themselves random variables about which confidence intervals can be

constructed. These ideas are fully developed in a number of text

books.1’2 A point not so widely expounded is that the usual frequency

interpretation of a confidence interval based on a single sample

yl, y2, ..., yn holds only for a single coefficient Bj; if the same

data are used to determine confidence intervals for both Bi and Bj,

i f j, the probability is not l-a that the confidence intervals thus

constructed will simultaneously contain Bi and Bj. The complexity

is advanced by the fact that the interval estimates are not independent

so, in general, only a single confidence statement can be made from a

single set of observations.

It is not our intent here to address this problem directly; such

an inquiry falls into the general area of simultaneous confidence

intervals. It is our intent, however, to consider a ramification of

this problem: namely, the construction of a confidence envelope about

the entire regression line. We will, in addition, provide some results

concerning confidence envelopes about combinations of regression lines

and implications of their use.

Toward this end consider the following definition due to Bose:3

1 Graybill, F. A., An Introduction to Linear Statistical Models,

Volume I, McGraw-Hill Book Company, Inc., New York, 1961.

2 Rao, C. R., Linear Statistical Inference and Its Applications,

John Wiley G Sons, Inc., New York, 1965.

3 Bose, R. C., "The Fundamental Theorem of Linear Estimation",

Proceedings of the 31st Indian Science Congress, 1944, pp. 2-3.
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Definition 1.2. A parametric function 0 is called an estimable function

if it has an unbiased linear estimate, i.e., if there exists an n-vector

a of constant coefficients such that E(a'y) = 0.

If L is a p-dimensional space of estimable functions with basis

{$1, 02, ..., up} and 0 is the least squares estimate of 0 e L, then

we have the following theorem due to Scheffé4.

Theorem 1.1. Under the general linear hypothesis model (normal case)

the probability is 1 - 0 that simultaneously for all 0 e L

A A ) >

0 - So, ;:¢ ; 0 + So,

T W

where the constant S = {pFa(p,n-r)}1/2 and rank X = r.

The implications of this theorem are far reaching; and in this

article we will exploit a single facet, albeit an important and useful

one. To facilitate this we need to be aware of the fact that since

A

least squares estimates B are BLUE, the elements of the vector B of

the general linear model of full rank form a basis of a space L of

estimable functions which includes polynomials as a special case.

2. CONFIDENCE REGION FOR A POLYNOMIAL

To determine a confidence region for a polynomial with observa

tional equations

2 -1 .

yi = BO + Blxi + Bzxi + ... + Bp_1x? + ei, 1 = 1 2, ..., n

in the model Y = XB + e, the n x p matrix X = (xi.) of known constant

coefficients takes the form J

4 Scheffé, H., The Analysis of Variance, John Wiley G Sons, Inc.,

New York, 1959.
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7

2 p-1
1 x1 x1 ... X1

2 p-1
l x2 X2 ... x2

X = '

l x x2 ... xp'1

n n n

A

The least squares estimate of B is given by B

choose wi = Bi, i = 0, l, ... , p-1, then {vi}

linearly independent estimable functions which

space L. For any value xo denote X8 = (1, xo,

E(y°) = X88 s L and has least squares estimate

n
nM5 N

A

-1
xge - x5(x'x) X'Y

‘<
. i i

1 1

—— ._ 1--I-ur .

\

4

(x'x)'1x'Y. If we

{Bi} is a set of p

forms a basis for the

xg'1). Clearly,I n n
U

where the coefficients ai are the elements of the 1 x n vector

x5(x'x)'1x'. Thus

"P13 W

H-N

x5(x'x)'1x'[x5(x

i 1

x3(x'x)'1x'x(x'x

ll
-1

x5(x'x) xo

so that OE = 02X5(X'X)-1Xo with unbiased estima

¢

vx)'1X|]u

-1
JXO

te s2x'(x'x)'1x
O Q

From Scheffé's theorem we can assert with probability 1-a that

simultaneously for all w e L and, in particular

A A A

, X86 e L

A

xée - So. ; xés ; x3e + So.

¢

where S = [pFu(p,n-p)]l/2.

¢
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As an illustration, suppose the paired data (1.20, 0.34),

(1.37, 0.94), (1.38, 0.99), (1.65, 1.58), (1.71, 2.08), (1.82, 2.25)

are characterized by the quadratic y = -0.31x2 + 3.97x - 3.95 over

the interval of interest, 1 ; x_; 2. The 95% confidence region for

the entire true line is given by

A A A A

X88 - (5.28)o$ é X88 ; X83 + (5.28)o$

as shown in Figure 1.

Grubbss showed that for the case y = so + Blx the confidence

bounds resulting from Scheffé's theorem are

_ 2 1/2

" ‘ 1/2 l_ n(x-x) (2.1)
Bo + Blx i [2Fa(2,n-2)] S[n + ——Kf————]

xx

n 1/2

where S = —3—- Z (y - 8 - 8 x )2 and A = nZx2 - [Ex ]2
n-2 1:1 i o i i xx i i '

Note that the value x appearing in (2.1) is not limited to an xi which

noappears in the observations (xi,yi), i = 1 2, ..., n.

3. THE TWO-SAMPLE CASE

Suppose two independent sets of data have given rise to two

characterizations of the same phenomenon so that we are now confronted

with what is, in essence, two models:

Y1 - X181 + el , an nl x pl problem,

and

-<

to

ll
X262 + e2 , an n2 x p2 problem.

We can still represent this situation as Y = XB + e where now

5 Grubbs, F. E., Linear Statistical Regression and Functional Relations

BRL Report No. 1842, November 1975.
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Y1 x1 | 0 B1 el+1 I +1
A

The least squares estimate is given, as before, by B = (X'X)_1X'Y

Consider now the difference of two polynomials yi - y§ e L with

I“ I“ I

LS estimate Xi B1 - XE B2 where X; = (1, xi,

I“ I“

xi B1 - x5 B2 =
I 8XEI | _ XEI ii

B2

where the coefficients

x*'(x'x)'1x'. Thus,

ai are the elements of

Zaiz = x*'(x'x)'1x'[x*'(x'x)‘1x']' = x*'(x'x)

..., xgi-1). Rewriting,

*I l *I ' -1

x1 ' - x2 (x x) x Y

n +n
1 2

2 aiyi

i=1

the l x (n1+n2) vector

1x'x(x'x)'1x* = x*'(x'x)‘1x*

X. . I . _1 (X; 1)" | 0

Now x* = xi |- x; and (x'x) = — — — - --1--T--:1

0 I (XZXZ)

so X*'(X'x)‘1X* = Xi'(Xi"1)'1X1' " X§'(X.;_X2)

A

_1X

*2 2 ' -1
As before, Var(¢) has the unbiased estimate 0, = s X* (X'X) X*,

111

where s2 is now the pooled estimate of the variance, and with probability

l - a simultaneously for all ¢ s L
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‘A |A A '6 A

Xi B1 — X5 B2 — So; ; yi - ya ;=X* - X5 B2 + So;

1/2

with 5 = (P1 + P2)Fa[P1 + P2. n1 + n2 — (P1 + P2)]] -

0

03>

v-I

To illustrate one of the most useful potential applications of this

result consider the situation where we are presented with two sets of data,

collected from the same process; and we want to say something about the

similarity or dissimilarity of the two descriptions. Suppose each set is

fitted with a quadratic; and we construct the confidence bound about the

><difference y; - yg, as shown in Figure 2. Over the region (1.65 ; ;=2.0S),

where the confidence bounds cover the line y = 0, we will say the two des

criptions are consistent, although the associated probability level can

not be attached without qualification and interpretation.

The extension of Grubbs result (2.1) to this case is direct; the

bounds take the form

~* '* 1 2
Xi B1 ‘ X5 B2 i (P1 * P2)Fq(P1 * P2’ “1 * “2 ' P1 ‘ P2)] / ' S '

_ _ 1/2

n (x* - x ) n (x* - x )
_ i_ + i_ + 1 1 1 + 2 2 2

“1 "2 A A
XX XX

where S2 is the pooled estimate of variance and Aix is computed from the

i-th data set.

4. THE k-SAMPLE CASE

The straightforward generalization to k sets of data proceeds as

follows:

_Z1_ _i1_:_2-:.-. :_2_ -51- _i1_

_Z2_ - _2_|_i2_|-.- |_2_ -52- + _i2_

___

_____'_____|--- ‘___

___ ___

Yk Q l O I I Xk Bk Gk
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and

" -1
B1 (XiX1) Xiyl

-1;--1 (x'x )'1x'v
2 2 2 2 2

5 = "T‘_ = T _"f"'"'_

5 (x'x )'1x'v
k k k k k

‘. J X 1

I 1 i I I‘ | pi'1

Now for X* = X* . . . X* where X? = l, x, . . , x
1 | | k, 1

. * '* ' -1 .
we can write y? = X? B. = X? (X!X.) X!Y. , 1 = 1, 2, . , k.

1 1 1 1 1 1 1 1

Suppose we now consider the estimate of Zciyiz

P I-'1'

" '* ' -1 . .
Zc y. - £ciX; Bi - ZciX; (XiXi) XiYi. Rewriting,

n +. . .+n
k

|| ||'M> iv
‘-I ‘<

)-In

Zc x*'a — x*' | I x*' (x'x)‘1x'v

i 1 1 " °1 1 | ' ' | °k k 1
1

where the coefficients ai are the elements of the 1 x Zni vector

cx*'(x'x)'1x'

Thus,

2 | _1 1 _1 I

Xai cx* (x'x) x'[cx* (x'x) x']

cx*'(x'x)'1x'x(x'x)'1cx*

cx*'(x'x)'1cx*.
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Now

CX*' = c X*' I c X*' and (X'X)_1 =

1 1 | ' ' | k k

s C (X X) CX

7?‘

0 x*' ' ‘1 * = ?x;' ' '1x*

the form

zc.x#'§. - S{sCX*'(X'X)'1CX*]1/2 5_Zc.yf 5 z¢.xr'§. + S[sCX*'(X'X)-1CX* 1/2;
111 “'11” 111

lll”! O

1 1 1

. l 2

with S = [2pi'Fa(Zpi,Eni - 2pi)] / .

For the linear case we obtain

and the two sample case (Section 3) is obtained by setting cl = 1 and

c2 = -1.

CX*'(X'X) '1cx*

7?‘

2 ' -1
2 ¢.x# (x!x.) x*

1:1 1 1 1 1 1

k

2 c? —l— + n.(x - _ ) ,

i=1 1 ni 1 0 1,
x. 2

(xiX1)'1

(x;Xk)'1

(XiXi) i. The confidence region now assumes

--

...

..

----%

___

I

l

f

!
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