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FOREWORD

Professor Karl Pearson wrote the following statement, "The field of

science is unlimited; its material is endless, every group of natural

phenomena, every phase of social life, every stage of past or present

development is material for science." If any one field of science

* exemplifies these remarks, it is the field of statistics.-P'The papers

_. I in these Proceedings indicate a few areas where statistics and the

design of experiments are helping the Army solve some of its many

problems. Weapon system analysis is just one of those fields where

statistics plays an important role. bohring this out, we quote a

paragraph by Dr. Frank E. Grubbs which appears in the Engineering

Design Handbook: DARCOM-P 706-101. "Chapter 21 brings us to the

increasingly important topics of reliability, life testing, availability

and maintainability of systems, and reliability growth. There is hardly

any weapon system today which con or should escape analyses in terms of

these fields of interest, and the analyst must be highly competent in

evaluations associatcl with life-time or failure distributions such as

the exponential, the Weibull, the lognormal, and the binominal probability

distributions. Statistical testing for high reliability and safety of

systems is introduced in Chapter 21, as well as a brief account of

reliability growth. A major topic, and current effort, concerning systems

* : today is that of being able to place confidence bounds on the true,

unknown reliability of complex systems; accordingly, coverage of the more

recent and accurate techniques is given for the practicing analyst. Finally,

reliability now is often one of the major or sole, characteristics of some

weapon systems, and hence may represent a prime activity for the systemsj

analyst in many applications of his knowledge."
1,Z
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Except for the Nineteenth Conference on the Design of Experiments in

Army Research, Development and Testing, which was conducted at Rock

Island Arsenal, Rock Island, Illinois, the first twenty-two meetings

of this series of symposia were held on the east coast. The concentration

of Army installations in this area played a key role in selecting the

hosts for these meetings. The Army Mathematics Steering Committee (AMSC)

sponsors these confezences on behalf of the Office of the Chief of Research,

Development and Acquisition. Members of the subcommittee on Probability

and Statistics, whose responsibility it is to organize the Design

Conferences for the AMSC, had some misgivings about holding the twenty-third

meeting on the west coast. But these doubts were dispelled by the facts

that the number of attendees as well as the number of contributed papers

matched those of the east coast meetings. One anomaly did occur. Instead

of having one fourth of the contributed papers classified as clinical,

in the California meeting nearly one half were in this category.

The host £ r the twenty-third Design of Experiments Conference was the

U. S. Army Combat Development Experimentation Command, Fort Ord, California.

Excellent facilities for holding this meeting on 19-21 October 1977 were

provided by the Naval Postgraduate School. Dr. Marion R. Bryson, acting

for the host for the conference, served as Chairman on Local Arrangements.

He was assisted in this task by Mr. John E. Banks and several other members

of his staff. Those in attendance are grateful to them for so ably carrying

out the many tasks that needed to be handled before and during the course

of a meeting of this size.
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The five nationally known invited speakers together with the titles

of their addresses are listed below. These gentlemen gave those in

attendance an opportunity to hear about recent developments in the

field of statistics.

* Speaker and Institution Area of Talk

Prof. H. 0. Hartley Analysis of Unbalanced
Texas A&M University Experiments

Prof. Norman Breslow Censored Data
University of Washington

Prof. Rupert Miller The Jackknife: Survey
-Stanford University and Applications

Prof. Donald P. Gaver Estimation of Complex System
Naval Postgraduate School Availability

Prof. G. E. P. Box Time Series Modelling
University of Wisconsin

Dr. Churchill Eisenhart was recipient this year of the Samuel S. Wilks

Memorial Medal. He richly deserves this honor for his scientific

contributions. He has played many important roles in the conducting

* )of these conferences. At this meeting there were forty-two contributed

*, papers. Twenty-two of these were classified as technical and the rest

were presented in clinical sessions. Ninety-six persons registered for

the conference, but there were one hundred and eighteen individuals

who attended the opening session.

The members of the AMSC are duly aware of all the effort that goes into

making these conferences such memorable events. Their thanks go to

all these In attendance. The speakers in particular need recognition

for all the time they spent in preparing and delivering their interesting

V
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papers. Dr. Frank E. Grubba and Professor Herbert Solomon, who

respectively served as Program Chairman and Chairman of the conference,

are to be congratulated for guiding to conclusion a:,other successful

scientific meeting.
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AGENDA

THE TWENTY-THIRD CONFERENCE ON THE DESIGN OF EXPERIMENTS IN

ARMY RESEARCH, DEVELOPMENT AND TESTING

19-21 October 1977

Host: Combat Developments Experimentation Command

Held at: Naval Postgraduate School

F ***** Wednesday, 19 October *****

0800-0900 Registration - Lobby of Ingersoll Hall

0900-1015 GENERAL SESSION I -- Ingersoll Hall, Room 122

CALLING OF THE CONFERENCE TO ORDER

Dr. Marion R. Bryson, Chairman of Local Arrangements, U.S.
Army Combat Developments Experimentation Command, Fort Ord,
Callfornia

WELCOMING REMARKS

BG Donald F. Packard, Commander, U.S. Amy Combat
Developments Experimentation Command

RADM Isham W. Linder, Superintendent, U.S. Naval
Postgraduate Academy

CHAIRMAN OF SESSION I

Dr. Frank E. Grubbs, Program Comnmittee Chairman, Aberdeen
Proving Ground, Maryland

ANALYSIS OF UNBALANCED EXPERIMENTS

Professor H.O. Hartley, Director, Institute of Statistics,
Texas A&M University, College Station, Texas

1015-1045 BREAK
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Wednesday

1045-1200 CLINICAL SESSION A -- Ingersoll Hall, Room 271*

CHAIRMAN

Robert L. Launer, U.S. Army Research Office, Research
Triangle Park, North Carolina

PANELISTS

Gerald Andersen, U.S. Amy Materiel Development and Readiness
Command, Alexandria, Virginia

Frank E. Grubbs, Aberdeen Proving Ground, Maryland

H.O. Hartley, Institute of Statistics, Texas A&M
University, College Station, Texas

MOEs FOR DIVISION LEVEL MODELS

John H. Shuford and CPT Fredrick H. Knack, White Sands
Missile Range

ANALYSIS OF RATIO DATA FROM FIELD EXPERIMENTATION

CPT Brian Barr, Fort Ord

1045-1200 CLINICAL SESSION B -- Room 322

CHAIRMAN

Edward W. Ross, Jr., U.S. Ary Natick Research and Devel-
opment Command, Natick, Massachusetts

PANELISTS

Norman Breslow, Department of Biostatistics, University of
Washington, Seattle, Washington

Walter D. Foster, Armed Forces Institute of Pathology,
Washington, D.C.

Douglas B. Tang, Department of Biostatistics and Applied
Mathematics Division, Walter Reed Army Institute of Research,
Washington, D.C.

* All sessions will be held at Ingersoll Hall.
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***** Wednesday ****

PHYSIOLOGICAL AND PERCEPTUAL ADAPTION TO SUSTAINED AND
MAXIMAL WORK IN YOUNG WOMEN

D. Kowal, D. Horstman, and _. Vaughn, Army Research Institute
of Environmental Medicine, Natick

ANALYSIS OF WELL BEING AND OPERATIONAL EFFICIENCY IN A LABO-
RATORY SIMULATION OF A FIELD ARTILLERY FIRE DIRECTION CENTER

L.E. Banderet, LCOL J.W. Stokes, Army Research Institute of
Environmental Medicine, Natick

1045-1200 TECHNICAL SESSION 1 -- Room 288 -- CURVE FITTING

CHAIRMAN

Norman L. Wykoff, U.S. Army Jefferson Proving Ground,
Madison, Indiana

THEORY OF LEAST CHI-SQUARE FOR POLYNOMIALS: IMPLICATION
FOR DESIGN OF EXPERIMENTS

Richard L. Moore, U.S. Army Armament Research and

Development Coninand

SIMPLITFIED CONSTRUCTION OF HASIS FUNCTIONS FOR POLYNOMIAL SPLINES

J.J. Heimbold, Mark Resourcvs Incorporated

VALT PARAMETER IDENTIFICATION FLIGHT TEST

Robert L. Tomnaine, Wayne H. Bryant, Ward F. Hodge, Langley
Directorate

1200-1300 LUNCH

1300-1500 CLINICAL SESSION C -- Room ;.71

CHAIRMAN

Harold Larson, U.S. Naval Postgraduate Schoul. Monterey,
Cal i fornia

PANEL I STS

Donald P. Gaver, Operations Analysis D(,partment, Naval
Postgraduate School, Monterey, California
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***** Wednesday ****

6 ames R. Moore, Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland

Malcolm Taylor, Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland

EXPERIMENTAL DESIGNS FOR SENSITIVITY E;-PERIMENTS OF COMPUTER
SIMULATION MODELS

Carl E. Bates, U.S. Army Concepts Analysis Agency

ON VALIDATING MISSILE SIMULATIONS: FIELD DATA ANALYSIS
VIA TIME-SERIES TECHNIQUES

Donald W. Sutherlin, Redstone Arsenal, and Naim A. Kheir,
University of Alabama

STATISTICAL VALIDATION OF PROJECTILE/MISSILE SIMULATION
MODELS

Harold L. Pastrick, Redstone Arsenal

1300-1500 CLINICAL SESSION D -- Room 322

CHAIRMAN

Douglas B. Tang, Department of Biostatistics and Applied
Mathematics Division, Walter Reed Army Institute of Research,
Washington, D.C.

PANELISTS

Robert E. Bechhofer, School of Operations Research and
Industrial Engineering, Coriell University, Ithaca, New York

Badrig Kurkjian, Mathemttic.il Sciences, University of Alabama

William S. Mallios, BDM Services Company

ANALYSIS OF VARIANCE OF MULTIVARIABLE FLIGHT TEST DATA

James S. Hayden, U.S. Army Aviation Engineering Flight
Activity
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***** Wednesday *****

TOPICS IN THE ANALYSIS OF VARIANCE: SELECTION OF A MODEL
AND APPROPRIATE SUMMARY STATISTICS

Frederick H. Steinheiser, Jr., and Kenneth I. Epstein,
Army Research Institute for the Behavioral and Social Sciences

STATISTICAL DESIGN AND ANALYSIS OF UNDERGROUND STRUCTURES TESTS

Jon D. Collins and Eugene Sevin, Defense Nuclear Agency

1300-1500 TECHNICAL SESSION 2 -- Room 288 -- EXPERIMENTAL DESIGN

CHAIRMAN

Beatrice Orleans, Naval Sea Systems Connand, Washington, D.C.

EXPERIMENTAL DESIGN FOR TESTING EFFECT OF INGESTING CRUDE-
FIBER ON PLASMA ZINC LEVELS IN HUMAN VOLUNTEERS

Walter D. Foster, Armed Forces Institute of Pathology, and
Barbara F. Harland, Food and Drug Administration

THE ANALYSIS OF PARTIALLY FACTORIAL EXPERIMENTS

John R. Burge, Walter Reed Army Institute of Research

CONSIDERATIONS IN DESIGNING MANPOWER EXPERIMENTS

Gus W. Haggstrom, Rand Corparation

1500-1530 BREAK

1530-1700 CLINICAL SESSION E -- Room 271

CHAIRMAN

James R. Moore, Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland

PANELISTS

Robert E. Bechhofer, School of Operations Research and
Industrial Engineering, Cornell University, Ithaca, New York

Norman Breslow, Department of Biostatistics, University of
Washington, Seattle, Washingjton
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***** Wednesday *****

H.O. Hartley, Institute of Statistics, Texas A&M University,
Col.lege Station, Texas

FIELD EXPERIMENT DESIGN RISK UNDER PRACTICAL CONSTRAINTS
MAJ Lawrence T. Sughrue, Fort Ord

FIELD VERIFICATION OF RADIATION CHARACTERISTICS OF RADARS

J.L. 1arris, U.S. Army Missile R&D Command

CONSTRUCTION OF CONFIDENCE LIMITS IN NONLINEAR REGRESSION

Charles Maxson Greenland, Systems Assessment Office
Edgewood Arsenal, Maryland

1530-1700 CLINICAL SESSION F -- Room 322

CHAIRMAN

James Banks, Army Research Institute, Arlington, Virginia

PANELISTS

George E.P. Box, R.A. Fisher Professor of Statistics,
University of Wisconsin, MIdison, Wisconsin

Bernard Harris, Mathematics Research Center, Madison,
Wisconsin

Malcolm Taylor, Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland ,

COMPUTING THE DFr'INITE INTEGRAL ON A PROGRAMMABLE CALCULATOR

D.W. Rankin, White Sands Missile Range

A FRESHMAN ERROR CAN BE FATAL OR I'M NOT SURE ABOUT BEING
95 PERCENT SURE

Norman Wykoff, U.S. Army Jefferson Proving Ground

LASER VELOCIMETER DATA INTERPRETATION BY HISTOGRAM AND:) SPECTRAL ANALYSIS

SWarren H. Young, Jr., James F. Meyers, and Danny R. Hoad,
Langley Directorate, Hampton, Virginia
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***** Wednesday *****

1530-1700 TECHNICAL SESSION 3 -- Room 288 -- STATISTICAL MODELLING I

CHAIRMAN

Carl B. Bates, U.S. Army Ccnceots Analysis Agency, Bethesda,
Maryland

RANK ANALYSIS OF A CONSTRAINED GROUND-TO-AIR DETECTABILITY
* EXPERIMENT

Carl T. Russell, U.S. Army Operational Test and Evaluation
Agency

METHODS OF RESOLVING UNDER..IDENTIFICATION IN STRUCTURAL DESIGN

William S. Mall1os, BDM Services Company

1830- SOCIAl. HOUR AND BANQUET -- Herrmann Hall, El Prado Room

**** Thursday, 20 October *

0830-1000 CLINICAL SESSION G -- Room 271

CHAIRMAN

* Walter D. Foster, Armed Forces Institute of Pathology,
Washington, D.C.

PANELISTS

George E.P. Box, Mathematics Research Center, Madison,
Wisconsin

Churchill Eisenhart, Senior Research Fellow, National Bureau
of Standards, Washington, D.C.

Bernard Harris, Mathematics Research Center, Madison,•- Wisconsin

THREE DIMENSIONAL CURVE FITTING TECHNIQUES TO EXPRESS
SUPPRESSION AS A FUNCTION OF RANGE AND ASPECT ANGLE

MAJ Chaunchy F. McKearn and SP5 David Brown, Fort Ord*1
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***** Thursday ****

PREDICTION BOUNDS IN LINEAR CALIBRATION: HETEROSCEDASTIC
CASE

C.C. Peck and L.A. Hopkins, Letterman Army Institute of
Research

0830-1000 CLINICAL SESSION H -- Room 322

CHAIRMAN

Langhorne P. Withers, U.S. Army Operational Test and Evaluation
Agency, Falls Church, Virginia

PANELISTS

Gerald Andersen, U.S. Army Materiel Development and Readiness
Command, Alexandria, Virginia

Donald P. Gayer, Operations Analysis Department, Naval
Postgraduate School, Monterey, California

William S. Mallios, BDM Services Company

ESTIMATING PRODUCT RELIABILITY IN A DYNAMIC MARKET SITUATION
WHEN ONLY FAILURES ARE REPORTED

Leonard R. Lamberson, Wayne State University

CRITERION-REFERENCED JOB PR!OFICIENCY TESTING: A LARGE
SCALE APPLICATION

Milton H. Maier and Stephen F. Hirshfeld, U.S. Army Research
"Institute for the Behavioral 'and Social Sciences

0830-1000 TECHNICAL SESSION 4 -- Room 288 -- MAN-MACHINE INTERFACE

CHAIRMAN

J. Bart Wilburn, Jr., I&M C.ranch, U.S. Army Electronics

Proving Ground, Ft. Huachuca, Arizona

ANALYSIS OF MAN-MACHINE INTERFACE INFORMATION IN CURRENT
COMMUNICATIONS SYSTEMS

R.J. D'Accardl and H.S. Beriett, U.S. Army ElectronicsCommand, C,P. Tsokos, University of South Florida
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*** Thursday *

HIGHLIGHTS OF CASE STUDIES IN MILITARY OPERATIONS RESEARCH

William S. Mallios, R.D. Batesole, D.R. Leal. and T.Q. Tran,
BOM Services Company

1000-1030 BREAK

1030-1200 TECHNICAL SESSION 5 -- Roon. 288 -- STATISTICAL MODELLING 11

CHAIRMAN

Diane Brown, Combat Developments Experimentation Command.
Fort Ord, California

ERRORS IN LINEAR FITS DUE TO FUNCTION MISMATCH AND NOISE WITH
SPLINE APPLICATION

G.W. Lank, W.B. Kendall, and P.A. Gartenberg, Mark Resources
Incorporated

THE FACT"S OF LIFE

S. Goodman, A. McGoldrick, K. Heulitt, U.S. Army Armament
Research and Development Command

. I 1030-1200 TECHNICAL SESSION 6 -- Room 277 -- RELIABILITY I

CHAIRMAN

John Robert Burge, Walter Reed Army Institute of Research, tS! Washington, D.C.i

CONFIDENCE INTERVALS FOR RELIABILITY GROWTH ANALYSIS j
"Larry H. Crow, U.S. Army Materiel Systems Analysis Activity

*i A SENSITIVITY EVALUATION OF LARGE SCALE TACTICAL SYSTEM
AVAILABILITY UNDER VARYING SUPPORT RESOURCE LEVELS

R.A. Hall and H.M. Bratt, Ames Research Center

1030-1200 TECHNICAL SESSION 7 -- Room 322 -- RELIALBILITY II

CHAI RMAN

Donald Leal, BDM Services Company
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***** Thursday 4****

USE OF LOGNORMAL CONFIDENCE OF THE RELIABILITY FUNCTION IN THE
TRUE LIFE DISTRIBUTION IS NOT LOGNORMAL

Eugene E. Coppola, Watervliet Arsenal

COMPARISON OF ESTIMATORS OF THE RELIABILITY FUNCTION IN THE
EXPONENTIAL DISTRIBUTION

Jerome P. Keating, Bell Helicopter Textron

DOUBLE TESTING IN BINOMIAL DATA

G.R. Andersen, U.S. Army Materiel Development and ReadinessCommand

1200-1300 LUNCH

1300-1515 GENERAL SESSION II -- Ingersoll Hall, Room 122

CHAIRMAN OF SESSION II

Dr. Marion R. Bryson, Combat Developments Experimentation
Command, Fort Ord, California

CENSORED DATA

Dr. Norman Breslow, Departrient of Biostatistics, University
of Washington, Seattle, Washington

THE JACKKNIFE: SURVEY AND APPLICATIONS

Dr. Rupert Miller, Department of Statistics, Stanford
University, Stanford, California

1515-1545 BREAK

1545-1700 GENERAL SESSION II (CONTINUED) -- Ingersoll Hall, Room 122

MODELLING AND ESTIMATION OF COMPLEX SYSTEM AVAILABILITY

Dr. Donald P. Gaver, Operations Analysis Department, Naval
. 1Postgraduate School, Monterey, California
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S***** Friday, 21 October *****

0830-1000 TECHNICAL SESSION 8 -- Roor. 271 -- WEAPON SYSTEMS EVALUATION

CHAI RMAN

Agatha S. Wolman, Bethesda., Maryland

QUANTITATIVE EVALUATION OF THE M-60AI TANK CAMOUFLAGE BY
OPERATIONAL IMAGE INTERPRETERS

Edward R. Eichelman and Ronald L. Johnson, U.S. Army Mobility
Equipment Research and Development Command

DESIGN ON A FULL SCALE TEST FOR U.S. ARMY HELICOPTER NAP-OF-
THE-EARTH (NOE) COMMUNICATION SYSTEM

Bernard V. Ricciardi, U.S. Army Avionics Laboratory, George
Hagn and Bruce Tupper, Stanford Research InstitutE

0830-1000 TECHNICAL SESSION 9 -- Room 322 -- METHODOLOGICAL IMPROVEMENTS

CHAIRMAN

Malcolm Taylor, Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland

TABLE LOOK-UP AND INTERPOLATION FOR A NORMAL RANDOM NUMBER
GENERATOR

William L. Shepherd and John W. Starner, U.S. Amy White
Sands Missile Range

DIRECT DEGENERACY ATTAINMENT IN MARKON CHAINS

Richard M. Brugger, U.S. Army Armament Materiel Readiness
Command

THE CURSE OF EXPONENTIAL DISTRIBUTION IN RELIABILITY

L. Herbach, J.A. Greenwood, S. Blumenthal, Polytechnic
Institute of Brooklyn, Brooklyn, New York

1000-1030 BREAK

1030-1200 GENERAL SESSION III -- Ingersoll Hall, Room 122
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***** Friday *+***

CHAIRMAN OF SESSION III

Dr. Grank E. Grubbs, Program Committee Chairman, Aberdeen
Proving Ground, Maryland

OPEN MEETING OF THE AMSC SI:BCOQMITTEE ON PROBABILITY AND
STATISTICS

Dr. Douglas B. Tang, Department of Biostatistics and Applied
Mathematics Division, Biometrics and Medical Information
Processing, Walter Reed Arrry Institute of Research,
Washington, D.C.

TIME SERIES MODELLING

Dr. George E.P. Box, R.A. Fisher Professor of Statistics,
Department of Statistics, University of Wisconsin, Madison
Wisconsin

1200-1300 LUNCH
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ANALYSIS OF UNBALANCED EXPERIMENTS

IH. 0. Hartley
Texas A&M University

College Station, Texas 77843

1. Introductiun

The title of this talk is rather general; and I should explain,
therefore, that it is really confined to a limited number of aspects
of the area covered by the title. I am restricting myself to so-called
"multiple factor" experiments, that is experiments in which "responses"
are measured under experimental "conditions" described by specifying
the "levels" for each of several "factors." The well-known "factorial
experiments" represent a special case of a balanced and multiple factor
experiment xn which precisely onte (or precisely an equal number of)
experimental unit(s) is (are) used at all possible combinations of factor
levels. An unbalanced experiment will have unequal numbers of units
(including zero units) exposed at the possible factor-level combinations.

There are two main causes of unbalance:

(i) Experiments'originally designed as balanced experiments have
become unbalanced through "accidents." The best known
examples are the so-called "missing value" or "missing plot"
situations in which the response for a number of units entered
into the experiment has been lost or has been rejected as an
"outlier" generated by extraneous error-sources. Other
"accidents" lead to the "censorship" or "grouping" of some or
all of the responses. This means that these responses are
not known "exactly" but are known to lie within certain ranges
of the response and measurement scale. For other situations
of unbalance described as "incomplete data" see e.g., Hartley
and Hocking (1971).

(ii) The unbalanced data have not arisen from a designed experiment
but are the results of an operational study involving multiple
classifications of sampled units by numerous factors invariably
leading to unequal representations of the "calls" (factor-level
combinations) and usually involving many zero-cells.

Finally, our concept of "analysiS" is here confined to the problem
of estimating the parameters in a linearly additive model postulated for
the data. More specifically, we shall be concerned with the so-called
mixed analysis of variance model. Briefly in this model, the observed
response is the sum total of a mean response plus additive effects con-
tributed by "effect constants" of the applied levels of the "fixed factors"
plus the random "effect variables" of the applied levels of the "random

V factors." This model is illustrated by the examples of Sectioa 2 and
mathematically defined in the Appendix.
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In limiting our present objectives to the estimation of parameters,
we omit the important aspect of the drawing of inferences from the data.
However, we do not omit to stress that in the case of (ii) when unbalanced
operational data are analyzed the drawing of inferences of a causative
nature is particularly hazardous and requires the examination of potential
"latent variables" (see e.g., Box (1966), Hartley (1967)) causing spurious
input-response relationships.

2. Illustrative Examples of Unbalanced Data

Before turning to the mathematical details of the estimation theory,
it may be helpful to illustrate the concepts of Section 1 by examples.
These examples illustrate the various sources of unbalance. At the same
time they recapitulate the well-known concepts of "fixed factors" and
"random factors" in analysis of variance.

Example 2.1. (0. L. Davies (1956) pp. 296-297).

We quote from Davies.

The following is an example of an experimental design of
general utility in many fields. It relates to the testing of
nine aluminum alloys for their resistance to corrosion in a
chemical plant atmosphere. Four sites in the factory were
chosen, and on each of them a plate made from each alloy was
exposed for a year. The plates were then submitted to four
observers, who assessed their condition visually and awarded
marks to each from 0 to 10 according to the degree of resist-
ance to attack. The observers worked independently and the
plates were submitted to them in random order; in other words
the observezs did not assess all plates from one site at the
same time. '... The aim of the experiment was to decide which,
if any, of the alloys were suitable for use in the factory,
and especially to select any found to be suitable on all the
sites. It was also required to know whether the four observers
agreed in their relative assessments.

Basically the experiment is a balanced 9 x 4 x 4 factorial in which
plates from 9 aluminum alloys are exposed at each of four different
plant sites and these are inspected by each of four observers. The
mixed ANOVA model (not spelled out by Davies) that appears to underlie
his analysis is as follows:

wYirs e + ai + bo + uis ei [1+

S~where

Yios - score of ith alloy on sth site tested by oth observer.

a mean score

2



01 =differential effect constant of ith alloy (fixed factor)

b - effect variable of oth observer (random factor)0

cs - effect variable of sth site (random factor)

Uis - interaction variable of ith alloy by ath site (random factor)

e-os " error.

Note that the sites are considered random variables since inferences
are desired for the plant as a whole and not just for the experimental
sites. It seems reasonable that a random interaction variable between
sites and alloys is provided (which is rightly used as the valid error
for comparing alloys) but that interactions between observers and alloys
or observers and sites are regarded negligible., The above experiment is,
of course, balanced and the standard analysis consequential to the above
model is given by Davies. In realistic situations unbalance may easily
arise through "accidents" such as certain scores getting lost or becoming
invalid. We should, however, point out that the so-called "missing value
analysis" is strictly speaking correct only if all factors are fixed.
However, the data may be analyzed by the method given in Appendix 1.

Example 2.2. (0. HI. Pfeiffer (1964)).

This is an experiment to evaluate the performance of swivel hook-
type cross chain fasteners of tire chains. Again the experimental design
was balanced as described by Pfeiffer. Briefly, the test comprised 8
"wheel-blocks" in the form of the 8 tires of the 4 rear dual wheels and
these "blocks" were regarded as a factorial arrangement of three 2-level
factors, viz. "front duals" versus "rear duals," "right duals" versus
"left duals", and outside wheels versus inside wheels. Within each
"block" the 3 "treatments" consisted of 3 "clusters" of three different
types of hook fasteners, each cluster comprising 4 individual fasteners.
The main response measured for each fastener was the log of its miles to
failure.

Turning then to the factors, the type of fastener is clearly a fixed
treatment factor and the individual fasteners a random repetition factor
from the population of fasteners of each type but tested within a "cluster"
on the wheel. The tires are also a rtndom factor since inferences must
not be restricted to the particular set of 8 tires used in the test but
they have positional "main treatments" superimposed in the form of the
above 23 factorial. Pfeiffer uses (we think conservatively) the tire x
type interaction as an error which, of course, also includes any position x
type interaction. This decision is proved correct since the tire x type
mean square is virtually identical with the within type rean square.

In this experiment unbalance arose through accidental censorship:
Certain fasteners had not failed when the experiment was terminated at
425 miles. Since the missing values are all known to exceed log 425, the
customary missing value analysis (which assumes that the missing values

3
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are a random selection from the experimental responses) is not appropriate.
Likewise the analysis of the observed miles to failure as an unbalanced
experiment is not appropriate as it would disregard the censored information.

Si An appropriate analysis would be an iterative EM algorithm consisting of
the following steps.

STEP (E): For each missing.value compute its conditLional expectation, E,

given that it exceeds the value • - log 425. This is given by

I[
1 E • + 1 21Z(Q5

where

- iterative estimate of the cell mean for the missing va'lue
computed from the current estimates of the linear ANOVA
model,

2 iterative estimate of the within cell varianqe,

and Z(), Q( ) are respectively the standard normal ordinatel and tail area.
The assumption of an approximate normal within cell distmLbut~on of log
miles to failure requires checking. \

STEP (M): Using all values of E computed by [2] along with the observed
"log miles to failure records, compute the customary balanced ANOVA estimates
of all terms in the additive ANOVA model and return to STEP (E).

The symbol (M) of the socond step stands for Maximum Likelihood estima-
tion and the term EM algorithm was introduced by Dempster, Rubin and Laird
(1977). Earlier accounts of the algorithm are given by Hartley (1958) and
Hartley and Hocking (1971).

Example 2.3. (R. Bell (1963) p. 623).

"This paper presents a typical analysis of service practice
firing results and indicateu the significance of these results
in the Surveillance Program. An exaumple of the evaluarton of the
annual service practice firings for the, Honest John Rocket is
presented.

"934 Firings of Rocket 762MM: M31 Series, conducted for troop
training and other purposes by both United States and NATO firing
units have been considered. The purpose of this study was to
investigate the overall accuracy performance of the M31 rocket
system when fired by troop units and to establish if there is any
indication of a deterioration of this accuracy performance with
increasing age of the M6 series rocket motors of these M31 series
rockets."

4
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More specifically the operational data bank used in the study
consisted of all firings during 6 years (1958-63) by 3 launchers
(289, 386, 33) using rocket motors of varying ages (I1, 1 to 2 ... ,
7 to 8-). The 6 x 3 x 8 factorial table was by necessity unbalanced
with many "zero cells." Among other sources of unbalance there was a
tendency of the older rocket motors to be more heavily represented in
the later years. The data were acquired operationally over the years
and the analysis here carried out was not originally planned.

Of the three factors both the 3 launchers and the 8 ages are fixed
but there may be some question as to how the 6 years should be treated.
Inferences are obviously required for the period subsequent to that
covered by the data bank and there may be doubt as to whether conditions
in 1958 to 1963 should be regarded as a random sample of those prevailing
in future years. However, if such a proposition is accepted, the analysis
of Appendix I could he applied to obtain estimates of the age and launcher
contrasts and their interaction as well as estimates of components of
variance attributable to year to year variation, the year x age, and the
year x launcher interactions.

If thero is some doubt about the representativeness of years 1958
to 1963 of future conditions, no useful inferences can be made unless
a time series model can.be formulated.

3. Relation Between Various Methods in Balanced and Unbalanced Data
Analysis

As is well known the analysis of variance of balanced factorial data
makes a distinction between the so-called "fixed factors" and "random
factors." These conceptn were introduced in Section 1 and illustrated in 4
Section 2 by three examples. The same distinction must be made when
analyzing unbalanced data. In the two-way table below we distinguish two
main types of ANOVA's, namely (i) an analysis in which all factors (except
the error) are fixed which is contrasted with (ii) the so-called mixed
ANOVA, a situation where some factors are fixed but others are random.
The so-called all random model is included in this case as one in which
the only fixed parameter Is the mean response. Of course (i) is also a
special case of (ii), namely the case in which thu only random factor is
the error.

The row headings in the table are (a) balanced data and (c) unbalanced
data, but an intermediate situation (b) is provided in which the data are
"almost balanced" (notably missing value situations). In the body of the
table we give very brief descriptions of the appropriate analysis but would
amplify these as follows:

5 V1
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TABLE 1

Relation Between Various Methode in Balanced

and Unbalanced Data Analysis

(1.) (ii)

All Factors Fixed Some Factors Fixed

Some Random
(a) Balanced AOVA or regression ANOVA and estimation

Data analysis on dummy of components of

variables variance

(b) Almost Missing value formulas Missing value formulas,

Balanced ANOVA - ML EST's, heuristic ANOVA

Data tests approximate approximate

(c) Unbalanced Regression analysis on Mixed model ANOVA

Data dumay variables, components of variance

Exertt Max. Likelihood estimation,
estimation and hypothesis Estimation of constants,

tests Max. Likelihood
Minque
Present Method

6
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(i))(a) If the random (equal variance) error is the only random factor,
the data are of the form of a linear model y w XB + a with the i

design matrix X consisting of 0, 1 "dummy variables," After
reparameterization of 8 (to make X non-singular) the regression
analysis is identical with the balanced data ANOVA provided we
adopt the accepted hierarchy of factors main effects followed
by two factor interactions, etc.

(i)(c) The same applies to the case of all factors fixed unbalanced

data banks except that the reparameterization is more dependent
on the adopted hierarchy in which the factors are ordered.

(i)(b) This case is separated from (i)(c) in that it is often a
computational advantage to reduce the case of almost balanced
data to that of balanced data by a missing value EM type
algorithm.

(ii)(a) The simultaneous estimation of effect-constants and components
of variance in a balanced ANOVA is well documented in the
statistical literature. The (unbiased) estimation procedure
may, however, lead to negative estimates of variance components
for which various remedies are advocated.

(ii)(b) It should be stressed that the customary missing value estimates
are M.L. estimates only for the all fixed factor models. Therefore
an accurate treatment must reduce this case to (ii)(c).

(ii)(c) This is the most general situation and a computationally convenient
method is described in Appendix 1 which follows. Note that all six
situations (i)(a), (b), (c); (ii)(a), (b), (c) could be regarded as
special cases of (ii)(c).

Before turning to a more detailed discussion of (ii)(c) in Appendix 1,
we should stress that it does not cover unbalance through censorship and an
E-algcrithm should be adjoined to the M.L. estimation treatment briefly
referred to in Appendix 1.

7
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APPENDIX 1

A SIMPLE 'SYNTHESIS' -.BASED METHOD OF VARIMCE COMPONENT ESTIMATION

by

H. 0. Hartley , J. N. K. Rao+ and Lynn La~otte#

1. Introduction

Two of us (HOR and JKKR) have recently had occasion (see Hartley and

Rao (1977)) to consider components of variance estimation techniques in.

data banks arising from sample surveys. Such da&ta banks differ from those

encountered in experimental designs in that the "number of observations"-,

n (in our case the ntmber of elementary sampling units) is exceedingly large.

We have therefore been prompted to search for computationally efficient
methods for the estimation of components of variance when n is large and

the algorithm here described involves a computational effort (as measured

by the number of products) which is a linear function of n and this is

generally regarded as computationall highly efficient. While our

algorithm is new the statistical method of ostimation we employ is not.

In fact it represents a special case of C. R. Rao's (1971) HINQUE (with

V wI). It to also identical (Comunication by S. R. Searle) with a special

*R .OHartley, Institute of Statistics, Texas A&M University

+J. N. K. Rao, Carleton University, Ottawa

Lynn ;aMotte, Quantitative Management Scienda, University of Houston

A shortened version of Appendices I and 2 will be published in Biometri•s.
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case of the first iterate solution of the REML equations of Corbell and

Searle (1976) whose algorithms appear to involve much larger computational

efforts (proportional to n2). The computational effort is also consider--

ably less than that involved in the M.L. estimation by Hartley and Rao

(1967) which is still fairly laborious inspite of the improvements

through the W-transformation by He~merle and Hartley (1973).

* IInspite of its computational simplicit7 the estimation procedure has

numerous "optimality properties". Apart from being a special case of

'I MINQUE other properties are established in Section 6 and the asymptotic

consistency is proved in the Appendix under fairly general conditions.

The consistency of our estimator makes it convenient as a starting point

for a single H.L. cycle to obtain asymptotically fully efficiet.t estimates.

Finally we establish simple conditions for the estimability of all

variance components by our mathod (oos Section 6). In this context we

observe that with other methods (such as the Henderson 3 method (Henderson

(1953)) or the Abbreviated Doolittle and square root method (sa e.g.s

Gaylor, Lucas and Anderson (1970)) estimability depends on the subjective

ordering of the compoitents (such as with the Forward Doolittle procedure)

and if the ordering is unfortunate the method may fail to yield estimates

for certain components while with a different ordering (not attempted) all

components may well be estimable.

10
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2. The Mixed ANOVA Model

Employing the currently used notation we write the mixed ANOVA model

In the form

C+l
y Xa + E U b• 13)

*1-

where

y is an n x 1 vector of observations,

. X is an n x k matrix of known coefficients.,

a is a k x 1 vector of unknown constants,

UI is an n x m matrix of 0, 1 coefficients,

b is an mi x 1 vector of normal variables from N(O, a 2 I).

Specifically Uc+ 1n and b is an n-vector of "error variables".

Moreover the design matrices U1 have precisely one value of 1 in each of

thoir rows and all other coefficients 0. We denote by m - ml the

total number of random levels.

We may assume without loss of generality that

rxI0 (2)

'for if (2) is not satisfied we may orthogonalize X by a Gram Schmidt

orthogonalization process with a consequential reparamater$zation of a

omitting any linearly dependent columns in the Gram Schmidt process.

Usually the first column of X is the column vector with all elements

./rn. I' is the objective of the method to compute estimates of the

variatice components 02 and the vector a.
',.

3. The Present Method

The essence of the present method is to

(9) -Select c+l quadratic forms Qj(y) in the elements of y.

"11



(b) Use the method of synthesis (Hartley (1967), Rao (1968)) to

obtain the coefficients ki in the formulas for E(Qj) in the

form

z(Q - kj o . (3)
ii

(c) Estimate o2 i by equating the computed •tto their expectations

i.a. by inverting the system (3) to compute the vector a2 with

elements ;2

02 1Q(y) (4)

from the vector Q(y) with elements Q (y) where K = (ku) with

rank to be discussed in Section 6 and' 7.

(d) Replacing any negative elements of a2 by 0, with consequences to

be discussed in Section 7.

We now give more details for (a), (b) and (c)

(a) The Qj (y) will be based on contrasts which do not depend on

any elements of a. Accordingly we orthogonalize all U matrices

on X and construct matrices Vl orthogonal on X as follows: De-

note by u(t, i) the tth column vector of U and by x(r) the rth

column vector of X then the colurmns v(t, i) of Vi are given by

k
i v(t,i) u(t,i)- E x(r) {x'(r)u(t,i))I J r-l

orU (5)
:Vt U X1i

We no.t choose the c+l quadratic forum Q (y) an•j

H Qj(y) - yVV, - (Vy)'v y j - 1, ... , c+l (6)

(b) It follows from the method of synthesis (see Hartley (1967),

__ _ __ _ __ _ _



J. N. K. Rao (1968) that

C+L
SQj(y) - E k 2a

tj, ,

vith (7)

Now since v(rJ) is orthogonal on any x(p) (iL.e. since

v' (cj)x(p) 0 0) we can write the ki, In the altcrnaLive form

kj z (Vjl v(t'M)'(Vj'v(t'i))
(8)

- ZE (v'(rJ) v(ti)) 2

tT

shoving that k = kj.

An alternative form of k j in

k .- tr{(VjVp' (VjVp) . (9)

We shall show in Section 6 that the symmetrical matrix K , (kjj)

wrll have full rank c+l if the n x n matrices V1 V• are not

linearly dependent.

(a) We shall also show in Section 6 that the system of equations

,.0my2 (10)

i is consistent even If the rank of K is degenerate. Solving (10)

in the form

Ca2  -q (K-)

we shall, of course, be particularly Interested in the full rank

ease when V 1 - 1 .
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S. The Computational T~cad

It may be helpful to give an idea of the computational efficiency of

the present method by tabulating the number of products involved in the

"•ain operations of the algorithm. To this end we first note simplified

versions for the kc+li: Observing that Uc+1 - I we have from (5) that

V .+1 - I - XX' and since X'X a I we find that V C+IVt + - I - XX' and

finally from (9) that

k *~~ tr (I - KO')(I -XXV) -tr (I -XX') -n -k. (12)

Similarly we find that

"rk tr {(I - XX')(ViV[)) - tr {ViV[ - X,'ViV[1 - tr V1V[ (13)

Further we note the form ofVc 1 y i.e.

V1 - y - XX'y. (14)

Defining now the adjoined matrices

~ u- (Ul 1...1 Uc V (v ..I vc)€5

the bulk of the work consists of the formation of the elements of the

sy.metrical matrix VV a V'U - UV. The elements of this matrix are

assembled in submatrices in accordance with the partition (15) as shown

in the Schedule 1 below where it must be remembered that the range of the

column index t depends on i and is t - 1, ... , mi and the range of

c " 1, .,., ma so that the submatrix V3 U• has dimensions rjx Mi. The

i for i > j - 1, ... , c are then obtained by forming the sums of squares
.1

of the elements in each submatrix in accordance with (7).

Finally, we recite the formulas for the remaining coefficients in

the equations (10). The kc0 ,1 c+1 end k,+1,, are computed from (12) and

14
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"Schedule 1: Submatrices of V'U

U U2  ... Uc

V1  v(T 1 1) u(t,l) v(r,1)'u(t,2) . . . v (T,1)'u(t,c)

V2  V(T,2)lu(t,2) . . . v(r,2)'u(tc)

V v(Cc)'u(t,c)

(13) respectively and the right hand sides ofa Q(y) from the second form
_ __' y) ro te scodyor

in (6) for j - 1, c while is given in accordance with (14) by

Qc+(y)- y'y - (X'y)'(X'y) (16)

We can now summarize' the approximate number of products involved in

the various operations of the algorithms.

We list the algorithms and show Lhe a6sociated numbers of products in

1. Orthogonalization of X (k+(k+ - 1)n, where k+ denotes the

number of columns in the original matrix X)

2. Computation of X'Ut for i - 1, ... , c, (0, subtotals of X)

3. Computation of X(X'Ui) for i - 1, ... , c from equation (5), (nmk)

4. Computation of U'V - V'V in accordance with Schedule 1, (0 products

since the elements are subtotals of the elements v(tt))

5. Computation of kij for ij - 1 ... , a from equation (7), (I(m+l))

* 6. Computation of k,+li for i - 1, ... , c from equation (13), (urn)
",7. Computation of kc~~÷ from equation (12), (0 products)c+l,ci

B. Computation of the Qj(y) for J " 1, ... , c+l from 2 nd form of

equation (6) and equation (16), ((4.k+l)(n+l))

15
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The important point is that the number of products is only a linear

function of the number of data lines n. An approximate formula for the

total number of products is n{k+(k+ - 1) + (me+l)(k+l)

5. A Numerical Example

A small numerical example with n - 4, k+ - 3, k - 2, * 1, m, - 2,

m" 2, m2 - n w 4 is shown in schedule 2 below.

Schedule 2: A Numerical Example of a Mixed Model

y X Original U1  U2  X new V1

4 1 1 0 1 0 1 0 0 0 (1/2) (1/2) +(1/2) -(1/2)

2 1 1 0 0 1 0 1 0 0 (1/2) (1/2) -(1/2) +(1/2)

1 1 0 1 0 1 0 0 1 0 (1/2) -(1/2) 0 0

2 1 0 1 0 1 0 0 0 1 (112) -(1/2) 0 0

The orthogonolization of X (original) to X (new) follows the standard Uram

Schmidt procedure and reduces the It+ - 3 dependent columns to k - 2 columns

which are orthogonal and standardized. Note that

x(2)n. " x(2)Old - (1/2)x(l)old and

,x(3)old x()ne - x(2)now must be eliminated.

Using now x(r) - x(r)new we orthogonalize U1 on X and compute (see (5))

' X'(1) u(1,1) +(1/2), x'(2) u(1,1) w +(1/2)

i" and hone*

i v(1,1) ,,u(1,1) - (1/2)x.().) - (1/2)x(2)

likewise

X'(l) u(2,l) (3/2) x'(2) 0(2,1) -(1/2)

16
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and hence

v(l/2) - u(2,1) - (3/2)x(1) + (1/2)x(2).

This yields the matrix V1 in schedule 2 which has only one independent

column. The elements of VIU1 require the computation of

v(1.1)' (il.1) =(1/2); v(1,1)1 u(2,11 -v(2,1)' u(1,1) -- (1/2)

and

"" v(2,1)1 u(2,1) - 1/2 with sum of squares of k - 4(1/2)2 1.

Further (equation (12)) k2 2 - 4 - 2 a 2 and (equation (13)) k 2 -k

4(1/2)2 + 4(0)2 - I so that the K matrix is given by K- (Q 1).

Finally, (equation (16))

Q2 (Y) = 42 + 22 + 12 + 22 - 9)2 - 3)2- 25 --- 9 25 - 22.5 2.5
2 2

and (equation (6)) QI(y) 2) + 1 (-2))2. 2.

The solution of Q - Ka2 therefore yields g2 1/2, ;12 * 1.5.

6. Optimality Properties and the Consistency of thi Equations

The estimators described in Section 3 may be seen to be "best at a 2 1 0,

1, C$ 2 1" as defined by L. R. LaMotte (1973). Therefore,

the consistency of equation (10), regardless of the rank of K, is established

* as Lemma 4 by La~otte (1973). That the estimators defined by (11) are

*, "best" among invariant quadratic unbiased estimators guarantees that they

are admissible in that class; that is, no other invariant quadratic unbiased

* r estimators have uniformly less variance for all a. Further, as noted by

LaMotte (1973), the estimators (11) have the property that in any model for

which a uniformly best estimator exists, (11) will be uniformly best. Finally, it

may be seen that the "synthesis" eatimators (11) are also MINQUE as in

Rao (1971. Section 6) with V - I. No claim is made that this choice of

17
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the norm has any particular merits among the rather general family of the

norms covered by Hinque formulas. However, it appears to be reasonable to

us that in the absence of any theoretical criteria for selection of Minque

norms a norm leading to simple estimators may be regarded as meritorious.
Following Section AS in LaMotte (1973), it may be seen that the rank

of K is equal to the number of linearly independent matrices among VVilp

i - 1, ... , c+l. Thus a singular K may occur if-the UiU! matrices are not

all linearly independent or if there exists (see (5)) a linear combination

of the U U! matrices whose columns are contained in the linear subspace

spanned by the columns of X. In the first case the singularity is caused

by the design leading to the Ui matrices, while' in the second the singular-

ity in caused by confounding fixed and random effects. In either case, (10)

is consistent but some linear combinations of the variance components can

* not then be unbiasedly estimated. We should stress however that other

* special dases of Minque (not necessarily invariant to a) may also deserve

particular attention.

-18
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APPENDIX 2

The Asymptotic Consistency of c2
In discussin. the asymptotic behavior of o2  it is of course ncccomnry to

specify the limiting process under which such properties are supposed to hold.

Clearly it is necessary for the consistent estimation of the variances c1i.1Var bI that the number of elements mi in the vectors bi all tend to w'. Vor the
identity matrix Uc+ 1  we have mc+ 1 .- n the overal sample size. For the •e-
maining mi we assume that their limiting behavior is related to n by

Ii

--!aLn < mI <.n(17)

where 0 < aI < I and L,U are universal. constants. More specif~eally we assume
ai 'c l yu0a s m

. that a c+1 -0 but a i > 0 for I - 1, ... , c. Generalizations to situations in

which a, 0 for several components are under consideration,

Denote now by

v(t, i) v number of elements in u(t, i) which are 1

and

v(t, i; ', j) = number of rows in which both u(t, i) and

u(T, J) have elements 1. 
(19)

Using these concepts we introduce the following conditions of 'pseudo orthogon-

ality' of the u(t, i) vectors. We assume that

,a I a i
IAn < v(t, i) un (20)

(where Z, u are universal constants) and that
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.1

v(t, i; -r, J) O(V(t, J))

(21)

.1 i J j with 1 1, ... c a + 1

and J - 1, ... , c

The relationship between (17) and (20) is obvious since V v(t, 1) 11 so that
1 1 t-l

(20) implies (17) with U - and L m and the stronger condition (20) impliesL u

a uniform order of magnitude for all v(t, i) ina given Ui. Since the columns

of the U matrices are orthogonal we have v(t, i; L, i) a 0 for all pairi, t • r.
i

For columns u(t, i), u(T, J) with i 0 j condition (21) is satisfied if there is

an asymptotically uniform distribution of the v(t, i) rows for which u(t, i) has

elements 1 over a f':action qI1 of the mj columns of U where 0 < q < 1 since the

frsction of \i(t, i) which gives rise to u(t, i: T. .) will Le O(N -1) =

O(n 3 ) and will, tend to zero.

Next we must introduce conditions on the orthogon'al standardized matrix X

with elements x , Denote by I x2  the sum of x2 over those rows for which
sr s(tai) ar sr

u(t, i) has a I element then we assume that

- x2  (n (23).] s(t,i) ir

Since X 2 1 and the number of terms 'in . is v(t, i) = O(n C) condition
sr .(t,i)

-1(23) implies that asymptotically the x2 have a uniform density X 2  a O(n-)"

Finally we place on reco-'d a consequence of conditions (18) to (23): it

follows from'(5) using (18), (19), (23) a, Sk...wartz' inequality that
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O~2a.-.2a 
-1

"u'(t, v(T, ))0 + O(n ) for t T, T I - (-:,1)vr j •+ 2 ")fo r, -J (24)

v(t, I, T, J) + 0(nC ) for i € j

We now turn to the asymptotic behavior of the k and k. From (8) (17), (20),and (25) we have that

m i
-• mi

-:i1 ( , , ) 2 m i, 2)

"t E '( , ) vt, ) + u'(t, i) v(T, 1) (25)

l1ia+2ai 2-2 a +4a 1-2> Const n + 0(n)

> n]+a i±C n 
for all i-1, ... , I+1

From (8), (17), (19), (21) and (24) we have for I J J; i = ,.., c+1;'I' im , *..., C

k "u'(t, i) v(T, j)Skj F 1

tm-)l ml

m t 
mt+" V(t, i; Tj) 2 + O(n i•(t,; T, J)

:,;t T t T

tT_ m, m •a-

" • o(V(t, i)) • v(t, i; r, j) + o(n )n (26)
t T

2- a-aj) 2 a+ý2 a-2
+ O(n - o(n + )
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i+ei a +11 (26)o(n + 0(n j) o(n (

since a 1. Similarly we prove by symmetry that k *j o(n ) for i j J < c.

From (25) and (26) it is clear that for all large n the c x c matrix k for
S Ii i

t, j - I, ... , ' is asymptotically diagonal with diagonal coefficients > cn

whi.le the coefficients k are asymptotically equal to o(n). Moreover it is

obvious from (12) that kc+ Cl+ CO. Using therefore the first c equations

of Ka 9(y) we obtaiii that
-'i I - i-

Aa A ci G
a OU - " o(n (Q 1oo) + O,'. a)

for 1 - 1, .. c (27)

Substituting (27) in the last equation we obtain

a -ai

02c (cn + o(nl I) •c+l(y) + I Q (Y) o(n ) (28)

or

c -a
a. * O(n-)Q (y) + X Q1 (y) o(i ) (29)c+l ic+

Substituting (29) back in (27) we obtain

S-e-l l-i

02 - O(n 5 )Q1 (y) + on )Q (y) (0)

Equations (29) and (30) show that a2  is estimable from the Qi(y). They also

show that o2 is consistent provided we can show that
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on2at+2 '

Var Q r(y) - ) r
2 for r-=1,....., c (31)

Var Qe+l(y) - o(n 2)

since CovQ (y)Q (y) O(VarQ(y) Var(y)

In order to prove the first result in (31) we use formulas [22], [32]

[33) and [34) of J.N.K. Rao (1968) with slighply altered notation. Formula [22]

gives H Q2(y) in the form

e+l c+l c+l
( 2 c ))2 + ccii + hu (32)

r i<j-1 ii 1

th
where -41 U E bg are the 4 moments of the elements b,, of b,. Noting that

Var Q (y) - E Qr(y) 2 
- E2 (Q(y)) the leading terms of c and ctj given by

r r r ii

J.N.K. Rao's equations [33] and [32] cancel and we are left to consider the orders

of magcnitudo of

Cm

a m (33)
' r

:'i i Cl"2hi TM•' [ 2(U(t' i) ' + (s, r)) -r(U(t, i)v(U(, r) )12

Consider first the case r - 1. We distinguish two terms when sa t and a- T.

For those two terms (u(t, I)' v(s, I)) (u(T, 1)' V(8, I)) is from (24) of the

aG) 2a -1 3at1-1 m r

order of magnitude O(n1 ) O(n ) O(n ), For the remaining terms in

4a -2

the product is of the order O(n ) but the number of terms is of the order
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12 6o -2 2 - 2 o) 6 a 1-2
O(N so that is}2 jg O(n ) and hence - O(n O(n ) -

a
4at 2u+ 2

O(n ) o(n ) since e 1.

Consider next the case r • i and r c c + 1. We have from (33) and (24)

ml2a +2o -2
eli - ( V ( (t, i; s, r) V(t, i; p, r) + o(n I .r )

t<T a

+ O(n r) (v(t, i; s, t) + v(r, i; a, r)))2

mi 22ai+ar-

* " • X(o(v(s, r)) v v(T, ij a, r) + O(ni )
t<T 5

(34)

+ O(nir) (V(t, i) + v(,(, i)))2

, .x~a 2ai a1-MI

.1~ M on +O0(n)2
t<T

2+2o a+ +2a r+1 2oni+2or
-o(n +o(n )+ O(n

2+2n
- o(n T.

• I The case r 0 1, r - c + 1 follows on the same lines as (34) except that o r 0

:a and that V(t, i; a, c+l) V(T, i; a, c+l) - 0 sioce u(s, r) has a I only in the

* *th row and either u(t, i) or u(T, i) have a zero in that row. The order of

magnitude of (0 will therefore be O(n il) and e will be O o(n).

The treatment of the cij in J.N.K. Rao's formula [33] follows on simt.lar

"lines to the above proof for the cti if of the two alternatives i < J, j ' i

in (21) the smaller oil a is selected for majorisations.
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It remnins to consider the terms

in mn m* 11i I 1E, h e- •(,c. )2)2,
" r { , (uo(t, i) v(s, r)) 2) 2  (35)

~~~t-l tll l

For the case r- i we have using (24)

'Ii mI
h,- {(u'(t, I) v(t, j)) 2 + (u,(t. ) V(2

tall

1al 2at 3a I'

1 (O(n + O(n ))2 (36)
t-l

l+3m 4a 5M-1
-O(n + O(n +O~n )

2a +2 2a +2
-o(n n r ) for i r c + 1,

"0 on2) for i -r -c + 1.

For the case i • r and r c + I

*i

• t1 sr

* ,,,, itI { r I att, ± s rt+_1 ))

1,1 1I r a +a -1

o(v(s, r))v(t, i; s, r) + O(n ~ ~ v(t, i; s, r)

J -0 20 +2M -2i+ rO(n i) r(n ))2 (37)

at a+C) 2ad +C1t- 1

- [ {o(n +O(n r
Eu-1

l +2a +1 2a +2a 3ck +20 -1
"ao(n + -- o(n + O(n )

S~2+2a
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Finally for r - c + 1, 1 1 r we have

ml n 2~all

h, I { X (w(t, i.; s, r) + (n ))2)
t-l s-I

(38)
1 al-1 2ai11 2

- 7 { • v(t, i; a, r) 2 + v(t, 1; a, r) o(0 ) + O(n

1bw since v(t, i; 9, c + 1) is either 0 or 1 we have that v(t, i; a, c + 1)2 -
S

Sv(t, 1; s, c + 1) - v(t, i) so that

2a

h i {O(n )40(n (39)
t-1

1-a 2aWO(n )O(nai

a 0(n 2 ).

Since o2 is unbiassed and Cov (62) a .n - it follows that 02 is

consistent. Moreover if we replace any negativb c2 by 0 the resulting statistic

say ;2 has a smaller mean square error and hence is also consistent.

The consistent estimator may serve as a starting value for the

iterative maximum likelihood estimation procedure described by Hemnerle

and Hartley (1973). Under certain regularity conditions (not discussed

here) one single cycle of the iteration will result in asymptotically

2
efficient estimators of a and a. If the iteration is carried to convergence

solutions of the ML equations are reached. If no ML cycles are performed

a consistent estimator i of ct can be computed from the generalized least

squares (XL) equations.
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S- ~(xVi-x)-l(xely)

where H In + 1 -.2

It har bccn ohown by llew.tueta and Hartley (1973) that (40) can be computed

directly from the UU1 •aX'U1 matrices without the inversion of the

a x n matrix H using their so called W transformation. In fact the WO

matrix (their equation (19)) is essentially given by the V?V metrices

S(see the above Schedule 1) and by the contrasts V y required in the computation

* of Q1 (y).

The variance covariance matrix of & can likewise be computed through

the W transformation.
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MEASURE OF EFFECTIVENESS FOR DIVISION LEVEL MODELS

John H. Shuford and Fredrick H. Knack
Special Studies Division

US Army TRADOC Systems Analysis Activity
White Sands Missile Range, New Mexico

ABSTRACT

High level excrusions, using the Division Battle Model (DBM) or a
similar game, are expected to become more Important in the performance of
future Cost and Operational Effectiveness Analyses (COEAs). It is there-
fore necessary that a good Measure of Effectiveness (MOE) for use with
these games be developed. Certain MOE, such as the force exchange ratio
or other ratios, have become accepted as providing good estimates of the
results of high resolution, compayy/battalion level combat simulations.
Efforts have also been made to develop analytical weighting systems for
the different weapons in order to compute weighted MOE. Both of these
methods have been used to analyze the outcome of DBM, a low resolution
division level war game, but neigher has been entirely satisfactory. It
is hoped that this paper will stimulate interest and further investigation
into the analysis and interpretation of combat simulation results.

The TRADOC Systems Analysis Activity (TRASANA) has recently completed
a major weapon system study, using a division level war game as one of the
analysis tools. In the course of this work, the problem of finding a prop-
er measure of effectiveness to distinguish between the competing alterna-
tives arose. This problem, of course, is common to all studies using models
or simulations, but it does take on some different aspects at division level
than at compatiy/battalion level. A broader way of stating the problem, and
perhaps the better way in the long term is: How should a model or experi-
ment be designed in order to distinguish between completing weapon systbms?

Since it is not possible-to do complete field testing on every pro-
posed weapon system, the use of simulations has been an important part of
the test and selection process. Now there is a growing interest in using
war games, which have been used principally as training aids in the past,
as analysis tools. A war game may be defined as a combat simulation that
is characterized by manual interplay and takes place in a simulated combat
environment. This paper describes in some detail the war game used in the
TRASANA study and demonstrates the dilemma faced in attempting to apply the
"accepted" measures of effectiveness to the results. It is hoped that this
presentation will both identify and lead to further investigation of a
problem area that is critical to the weapon system evaluation process.

The model used was Division Battle Model. It is a computer-assisted,I manual war game developed by the General Research Corporation (GRC) and is
designed to support studies of the performance of weapons, organizations,
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and tactics employed by a division sized force. Figure 1 describes DBM
schematically. The study was primarily concerned with the ground combat
portion of the game, which is linked to two other GRC models: CARPONETTE,
a stochastic, high resolution, company/battalion simulation, and COMANEX,
an extension of classical Lanchester theory. COMANEX Is both a stand
alone simulation and the ground combat assessment routine in DBM.

CARMONETTE's primary activities include the movement of units, the
detection of targets, and the ftiring of weapons. Unit resolution is

* variable from individual weapon system to platoons. The model Is critical
event sequenced with time recorded to one-ten thousandth of a minute. The
spatial representation is variable but a 100 meter grid is normally used,
Input to the model are detailed descriptions of the units being played,
performance characteristics of the various weapon types, a set of orders
for each unit, including movement and target priorities, target detection
probabilities, and a detailed description of the terrain. The unit orders
must be based on a predetermined scenario and on a specified tactical
doctrine, either current or one to be tested. The terrain description
required by grid square, includes average elevation, haight of vegetation,
cover and concealment. Output from a CARMONETTE run Is a computer listing
of every event assessed during the battle which includes the elements
killed, various operational statistics, and information on engagement

* : ranges. Various summary routines may be used to collect the data in pre-
paration for further analysis. In preparing CARMONETTE output for use
as DBM ground combat history, a sufficient number of replications of
each scenario must be made to develop good estimates of battle outcome.

DOM is a game rather than a simulation. It is played on a tactical
type map of scale 1:25,000 to 1:50,000 which provides sufficient detail
to support the levels of unit, time, and space resolution employed. For
the TRASANA study, it was more practical to resolve to the company level
for the Blue reinforced division and to the battalion level for the
attacking Red combined arms army, but different levels may be used depend-
ing on the gamers' purpose. Space Is measured to the nearest hundred
meters. Time may be measured to the nearest five minutes, but it was
found that to the nearest quarter hour was generally sufficient. While
the game can be played in open, semi-closed, or closed modes depending
on the degree to which intelligence is considered a critical factor, it
has principally been used only in the open mode. In this way, two to
four hours of battle time can be gamed per working day by a player/con-
troller team.

The manual operations of DBM consist mainly of decision making, event

determination and time sequencing, while the computerized portion focuses
on the determination of battle losses, tabulation and reporting of battle
results, and updating of stored information. Manual play takes place
over approximately four-hour increments of battle time but may be stopped
sooner if the control team determines that a critical event has occurred.
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At that point, computer input is prepared, describing the various com-bat actions that occurred during the manual phase. The computer routines

then assess the casualties and provide a printout showing losses, cause
of loss, and past and present unit strength. The control team makes
necessary adjustments to unit locations and notifies the players of the
battle outcome, after which manual play is resumed.

In order to provide the necessary background, the ground combat
assessmetnt routine must be described In some detail. The routine COMANEX
solves a set of Lanchester type equations for the different weapons
systems involved. These are shown for the simple case of one Blub and
one Red weapon system. It may be noted that these equations reduce to
the Lanchester square law for the case where all targets are acquired,
that is the Pa approach 0, and to the Lanchester linear law as the Pe
approach unity, or no targets are acquired. COMANEX then treats combat
situations between these two extremes of the Lanchester formulation.
These equations are easily generalized to the case of several Blue and
Red weapon types as Is shown by the following equations:

Homogeneous Forces

d -b(1-PR) B

dB

b b Rate at which one Blue weapon kills Red weapons given

acquisition of at least one target.
PB - Probability that a specific Blue target is unacquired by

an individual Red firer.

B - Number of Blue weapons at time t

Similar definitions for r, P., and R

Heterogeneous Forces

S= - bid(1-P) Bi (2)
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J.

dB. n B.

J-i

b.-Rate at which one type i Blue weapon kills Red weapons
of type J

B. Number of type i Blue weapons at time t

PB -The same as for Homogeneous Forces

The values of theb , and P.are calculated by a COMANEX prepro-
cessor from the results of each high resolution scenario. These are then
used by the DBM ground combat assessment routine, the COMANEX simulator,
to solve the equations and develop the results of battle groups using
different but similar force structure from that used in the original

* I CARMONETTE work. The validity of COMANEX in reproducing the results of
CARMONETTE and in predicting the outcome of different scenarios has been4
tested both by the developer and at TRASANA and has been shown to be
quite good. While these models simulate combat more or less realisti-
cally depending on our point of view, perhaps more from the point of
view of a high level'staff officer, devastatingly less from the aspect
of an infantry private, they alone say nothing about effectiveness. In
actual combat, the critical, in fact the only measure of effectiveness
Is mission accomplishment. Models are not as Inflexible.

In high resolution simulations, the win or lose criteria may be
difficult to define and quite arbitrary If it is done. Typically,
battalion level simulations are not stopped at a logical breakpoint but
are carried to extremes (e.g., 90% Red s~se losses) that distort both
time and system losses. After making al yof the necessary model runs
for each weapon system-, the analyst will analyze all of the data to
Identify a logical breakpoint. This " analysis point" is seldom driven
by tactical consideration (if it were, It could be specified before
hand) but rather by the necessity to find a point in the model output
where all of the competing systems can be ''objectively compared.''

The typical numerical output from a simulation is in the form of
a killer-victim scoreboard as is shown In Figure 2. These may be de-
veloped as frequently as is desired or practical during the simulation
and provide a summiary of the battle events.
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INITIAL FORCES

BLUE RED'

TANKS APCs ,TANKS IAPCs
5 4 15 10

KILLER VICTIM SCOREBOARD

VICTIM

BLUE TANK BLUE APC RED TANK RED APC

4 3

23 4

i~~ ~~~~- Ftor o.EapeocWraeDt

~- 31

FINAL FORCES

BLUE RED
TANKS APCs TANKS APCs

2 2 8 3

Figure 2. Example of Wargame DataI
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Figure 3 shows some of the traditional type measures of effective-
ness used with killer-victim scoreboard data. The loss exchange ratio
and force exchange ratio are often used with CARMONETTE type simulation.
The total tank ratio and tank contribution are less common but have still
been seen.

When one computes the value of an MOE at an analysis point, the dif-
ficulties are usually Just beginning. If different values for the MOEar~e found (as is desired, if multiple MOE are used, ittis also desired

that any differences are in the same direction) some determination must
be made about the significance of the differences. If a stochastic
model such as CARMONETTE Is being used, one can of course conduct a

statistical significance test providing there is some knowledge about
Sthe distribution of the model output. If not, non-parametric statistics
can be used. If, on the other hand, a deterministic battalion level
model is b~ing used, a difference of 10% is the accepted figure for
significance. If no significant difference can be shown in the MOE, it
is hoped that the model has provided enough "valuable insights" to come
to a decision on the best (preferred) system.

When analyzing the results of a division level model, things are
not as clear cut. First, it is difficult to use any of the traditional
ratio type MOE because the force ratios are constantly changing with

* the intensity of the battle and the tactical decisions being made by
the players. Analysis points can be identified as some arbitrary frac-
tion of survivors (or losses) of the total force available and then the
ratio type MOE may be used, but the problem here is that varying numbers
of forces actually participate. In simulations at company/battalion
level, a certain force is committed initially and fights to the conclu-
sion, with the entire battle taking place in a titme frame of approxi-
mately one-half hour or less. In contrast to this, a division game may
require a period of one to four days of combat time, while the Intensity
varies not only with time, but also with space along the division front.
The numbers of engaging forces change as a result of both combat attri-
tion and the tactical decisions made, such as commitment of the reserve
or withdrawal of a unit to another position.

The strong point of the division game, however, is that tactical
stopping points can be easily identified prior to the start of the game.
For the TRASANA study the end of game criteria was simply mission accom-
,ii1shment by Red or Blue. The game was stopped with Red accomplished
is mission by penetrating the Blue rear boundary or when Blue accom-

Splished his mission by causing Red to break off the attack and go on the
defensive. it was fortunate In the study that there were three distinct
outcomes for our three leading candidates. With one candidate Blue lost;
with the second, he prevented a penetration, but at a cost of an entire
division. However. with the third candidate Blue not only prevented
the breakthrough but had the capability to mount a strong counter-attack.
Even with results that diverse, a quantitative MOE is required if only
to have something to use with cost comparisons.
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TRADITIONAL NOE

Loss Exchanae Ratio (LER)

Number of Red Systems Lost
LER N�umber of Blue Systems Lost

Force Exchance Ratio (FER)

PER Number of Red Systems Lost/Inititl Number'of Red Systems.
Number of Blue SystOms LOst/Initial Number of Blue Systems

Loss Exchange Ratio
Engaging Force Ratio

Red ian'sTotal Tank Ratio (TTR)

TTR Red Tanks Killed
Blue Tanks Killed

-i~T~ank, Cont~ribution (TC)

T Red Systems Killed by Blue TanksI ~ ~TC -Blue Tanks 'Killed ..

'.3

Figure 3
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Figure 4 shows an example of the Force Exchange Ratio calculated
for each alternative for the previous manual interval at various times
during the game. Comment is unnecessary on the difficulty of using
this as an MOE.

Figure 5 shows the Loss Exchange Ratios for the same case. Here
the curves have been smoothed by taking cumulative values throughout
the course of the battle, but the differences lie only In the relative
positions of the curves and are still difficult to interpret. The
arrows show points of equal Red losses.

Simulations have long been used as test beds for weapon systems;
in contrast, war games have traditionally been used as training aids.
It is becoming recognized that the games, particularly high level ones,
have a legitimate use in the analysis process. In fact, TRASANA and
the Combined Arms Center at Fort Leavenworth are devoting considerable
Joint effort toward improving existing games and developing new ones
for use in both training and analysis. Use of the game does, however,
present some problems in experiment design and data interpretation that
have not been fully explored.

II
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Figure 4
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ANALYSIS OF RATIO DATA FROM FIELD EXPERIMENTATION

Brian Barr
SUS Army Combat Developments Experimentation Conrnand

Fort Ord, California

ABSTRACT. Measures of effectiveness which result from taking
H the rat toFO7two dependent variables are difficult to analyze. The

problem becomes further complicated when the data come from field
experimentation where the data is rarely "clean".

Examples of the type of data involved are presented along with
the reasons why the data cannot be analyzed using standard techniques.
The analysis approach of looking at the numerator and denominator sep-
arately is discussed along with the reasons why this technique cannot
be universally applied to ratio data.

I. INTRODUCTION. The Combat Developments Experimentation
Command (COEC) conducts field experiments for the U.S. Army. These
experiments quite often take the form of instrumented force-on-force
field tests in which one tactical unit engages another in a relatively
free play environment. The instrumentation permits the collection of
detailed data on the engagement sequences as they occur. Normally,
four or five independent variables are controlled, but the number of
uncontrolled or nuisance variables can be almost infinite.

Examples of the types of measures of effectiveness that have
been used in previous experiments include the ratio of red kills to
blue kills, the ratio of detections to engagements, the ratio of targets
exposed to detections, and the ratio of ammunition expended to hits or
kills. One ratio in particular that has appeared repeatedly is the
casualty exchange ratio, the ratio of red kills to blue kills. (Many
arguments can be presented for and against using this as a measure of
effectiveness. Without getting into that to ic, it should suffice to
say that this MOi has appeared before and w111 probably continue to

"'i be used.)

II. THE PROBLEM. The problems with analyzing the casualty
exchange ratio from field experimentation data start before the cal-
culation of the MOE. The first problem is that the sample size is
usually severely limited by practical constraints (field experiments
are extremely expensive). Time and cost constraints quite often
overshadow statistical considerations and the analyst must do the
best with what he is given. The sample size is further complicated
because up to 25 percent of the trials may be invalidated due to
operational problems or instrumentation failures. When these trials
cannot be rerun the result is unequal sample sizes. The sample sizes
may also be unbalanced by the nature of the MOE. The sample size of
the ratio of targets to detections, for example, is dictated by the
number of detection opportunities which randomly appear during the
field trial.

..i, 41
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A typical field experiment design might look like this:

Al A2 A3

61 6 6 6
B2 16 6 6

The independent variables A and B have three and two levels respectively.
Two more variables may be nested equally in the cells and an undetermined
number of nuisance variables may appear during execution. (In PARFOX VII,
for example, with 54 trials, nine variables could be shown to influence
the dependent variable.) These nuisance variables normally result in
great variability of the data within each cell.

The two elements of the ratio MOE are rarely if ever independent

of one another. The number of red players who have been killed obviously
Influences the number of blue players who will be killed. Also the dis-
tribution of the number of kills on either side is usually skewed in one
direction and often truncated by an arbitrary end of trial criteria. Thus,
the distribution is rarely normal.

III. PAST TRIALS. CDEC has been relatively successful in analyzing
casualty exchange ratio data by using analysis of covariance techniques;
hower thts has only been possible because the basic statistical question
of how to test hypotheses on ratio data has beon avoided. Instead of

* analyzing the ratio, the numerator and the denominator have been analyzed
independently, then conclusions have been drawn from the results of these
two analyses.

The ipproach taken so far has followed the following logic:

If Rl is greater than RZ and if B1 is smaller than B2, then the ratio
Rl/Bl must be greater than the ratio R2/B2. Likewise, if RI equals
R2, and 61 is smaller than B2, then Rl/B1 is greater than R2/B2; or
if B1 equals B2, and RI Is greater than R2, then Rl/Bl is greater than
R2/B2. This logic doesn't appear to bother anyone until the case where
R1 is greater than R2 and 61 Is greater than 62 (so far CDEC has not
had this appear, but Is would seem to be just a matter of time). Look
at the possibilities:

(a) 14,,

(b) >1

4 < 3
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In each case, the statistical testing on the separate variables tells us
the same thing (R1 is greater than R2 and BI is greater then B2); but the
ratios are equal, greater, and smaller respectively.

An additional consideration that will not be discussed but should

be mentioned is the case where we have:

1..10

The ratios are equal, but obviously the battles are not identical since
the casualties on both sides vary by a factor of 10.

IV. SUMMARY. Every indication points to the fact that ratio
type measures of effectiveness will continue to appear in field expe~ri-
mentation. Literature searches have failed to reveal acceptable solu-
tions to the analysis of ratio data, and eventually the case will arise
where the separation of numerator and denominator will no longer be
adequate. Further work needs to be conducted In this area, both to
strengthen Amy field experimentation and to benefit the whole statistical
community.
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AI PHYSIOLOGICAL AND PERCEPTUAL ADAPTATION TO
SUSTAINED AND MAXIMAL WORK IN YOUNG WOMEN

c Kowal, D. Horstman1, and L. Vaughan2

Exercise Physiology Division, US Army Research Institute of Environmental Medicine,

Natick, MA 2Department of Physical Education, Wellesley College, Wellesley, MA

*ZIn order to better understand differences in physical work
performance between. men and women, a study was carried out to determine if a.) women
perceive physical effort differently than menj b.) does previous activity exporience
influence the perception of efforti and a.) how does acute and chronic training affect
the perception of effort and ability for prolonged work in women. Preliminary analysis
suggests that pprceived exertion in women in influenced by activity history and velt
concept prior to participation in aerobic training. The perceptual measures displayed
a substantial interaction depending upon self concept/prior activity and group aff Llia-h
tion of these women. Psychological estimates of physical self concept improved for the
previous low activity training group but not for the previous high activity traininq
group when compared to controls.1

!~B a~ckgroundr

Presently, about 3% of the workforce of the US Army Is comprised of women,

the highest percentage In peacetime histury. This figure will Increase substantially

within the next few years with a projected contingency of 50,000 women soldiers.

The role of the Army's women has also undergone drastic change; whereas

previously confined to less physically demanding tasks (such as clerical work), all

Military Occupation Specialties are presently available to women, with the

exception of combat arms. With the prospect of increasing numbers of women

serving In a greater variety of work roles, our Interests have focused on the

performance of prolonged physical work by women. Sustained performance of

physical work is governed by two distinct factors: (a) one's capacity for work and

(b) ones willingness to endure hard physical work. Capacity is objective In nature

and dependent to a large extent upon genetic traits, but can be modified by other

Influences (primarily physiological), such as training, diet, and environment

(1,2,3,4). Willingness to endure Is more. complex and subjective In naturo, and

* I probably governed by psychosoclal factors (5,6,7,8).

Given this situation, the question is obvioust Are there physiological or
*1' perceptual differences between men and women that may obviate the latter from

performing sustained heavy work. Currently available research provides little

Information. However, observations In our laboratory suggest that, when asked to

perform tests which require a maximum voluntary contraction, women tend to

score less than could be predicted on the basis of physiological Indices, e.g., lean

body mass. It has also been reported that women possess approximately half the
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arm and shoulder strength of men, 3/4 the leg strengths, and 3/4 the aerobic
capacity of the average man (9). Further we recognize that perception of work Is

related to experience. However, because society has often considered women

Incapable or It unfeminine, many women have not experienced strenuous physical .'

"work.

This study was designed to evaluate the following questlons:
1. Do women perceive work differently than men and are the physiological

and psychological factors related to work capacity the same for both groups?
2. How does prior experience Influence the perception of effort and the

capacity for sustained work performance?

3. Do women who have had high activity experience differ from those with
!i~i low activity history in their response to training?

Seventy-five women volunteers ages 18-22 served as subjects. They were

assigned to one of 5 groupst Low previous activity, experimental (N a 14) and

control (N a 1), high previous activity, experimental (N a 15) and control (1) and

an Intercollegiate athlete (high fitness) group (N r 15). The following measure-

ments were made during the first and last week of the program. AnthropometrIc

-measurements were made of height and weight. Body composition was determined
by measuring s1n fold thickness with a Harpenden caliper at four anatomical sltes:

triceps, biceps, subcap~ular, and supralliac. An interrupted treadmill test for

maximal aerobic power W max) was performed following the procedure of Taylor

(10). During the last minute of each run, the expired gas was collected Into vinyl

Douglas bags and analyzed for oxygen and CO2 content. Subjects were monitored
electrocardlographlcally during all runs. 02 max was determIned when the oxygen
uptake did not Increase with an Increase In work load. At the end of each run the

subject rated her perceptual response during the workload using Borg's report of
perceived exertion (RPE). The RPE Is a ratio scale from 6-20 with verbal labelst 6

very$ very light to 20 a very, very hard. The treadmill test for aerobic fitness

was performed during the first week of study (Pre-tralnlng), a week later (Acute)

and following the 12-week training program (Post-training). These replications
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were performed to assess changes that may have occurred In both physiological and

perceptual responses to maximal work, and the aerobic training program. The

training program consisted of 12 weeks during which the women ran for

progressively longer periods.of time at a faster pace. Each week a 30 minute test

run was performed to assess Improvement In stamina and endurance. During the

pre- and post-testing sessions the subjects were asked to complete a battery of

cognitive and behavioral self-evaluation questionnaires designed to assess their

attitude toward exercise, expectations of their physical capacity and performance.

Anthropometric measures are summarized In Table 1. The findlnp suigest

that women engaged In an aerobic tralning program can expect to lose body fat but

gain some weight even though they are maintaining high energy expenditures. This
Is attributed to the increase In caloric Intake reported by the members of the

training groups. Table 2 summarizes the physiological and perceptual responses to

initial, acute and post training maximal exercise. Tne anticipated improvement In
aerobic fitness Is evident with Improvement in V02 max increasing 8% for the high

activity group and approximately 13% for the low activity group. It is difficult to

equate the perceptions of effort (RPE) reported because of the different workloacd
Involved at the end of the training program. The other measures of aerobic fitness,

"rentilation (V5 max), maximum heart rate (HRa) and maximum workloadmax
(speed/grade) also showed the anticipated Improvement as a result of training.

Table 3 describes the physiological and perceptual responses to a 20 minute

endurance run at 70% of Y02 max. While the first two endurance runs were based
on Initial max valuesp the post-training 70% workload was calculated based an

the subjects post-training V0 2 max; Ie. absolute workload was Increased from 8-

15% for the groups. It can be seen that the perceptual responses to the mme
workload (pre-acute) were quite different. This finding suggests that exposure and

activity experience alone may play. an Important role In understanding work

performance In women even If no training Is Involved.

Data analysis of these phyilological and perceptual measures across rqia-

tions of the maximal performance and endurance tests are In progres. It can be
seen In Table 4 that psychological measures of attitude toward activity, physical

self-estimation, hidden shapes, motor satisfaction, perceived control of the

environment (lack of control) and physical self concept did not demonstrate
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substantial differences between the high and low activity groups. However, It Is

noteworthy that many of these mea.ures were apparently different from the

college norm population scores. This could be expected in light of the activity

experience of the latter group.

In general the preliminary data analysis indicates that perceptual responses

are Intricately Involved In the development of physical work capacity in women.

Comparison of differences In peripheral responses between women and men will be

reported subsequently. The population studied appears to be rather unique and

superior to the college norms making psychological comparisons dlfflcultj however,

additIonal-analysis Is in progress.
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THEORY OF LEAST CHI-SQUARE FOR POLYNOMIALS:
IMPLICATION FOR DESIGN OF EXPERIMENTS

Richard L. Moore*
US Army Armament Research and Development Command

System Evaluation Office
Dover, NJ 07801

ABSTRACT. This paper extends the least Chi-Square theory
"* (which was previously developed[lJ for fitting data to non-linear func-

tions of the parametars) to fitting polynomial functions of an Independent
*i variable. The underlying concept Is that a Chi-Square Is minimized.

This Chi-Square is the ratio of the sum of the square of the residuals to
the variance of the Instrumental error plus the sum of the ratio of squares
of an appropriate number of autocorrelation coefficients (with delay times
which are Integral Increments of the Interval between observations) to their
variances. *

The normal equations are extensions of, and reduce to, the ordinary
least squares when the autocorrelation coefficients are zero. Iterative solu-
tion Is required since the sum of squares of residuals and the autocorreiltion
coefficients depend on the values of the parameters. Two different approach-
es for the Iterative solution have been programmed for a commercial program-
mable calculator. Typical results will be presented.

Effective use of this theory requires measurement of instrumental
errors, and if appropriate, randomization of the order in which the In-
dependent variable(s) are varied.

The use of the theory Is expected to give a set of values of the para-
meters which are "more probable" than those determined by ordinary least
squares. It Is expected to be "robust" to outliers and give an estimate of
the probability that a particular outlier came from the same population as
the other observations.

e , INTRODUCTION. The aim of the Investigations which led to this
paper- was to find a better method to estimate the parameters in mathema-
tical models of physical phenomena. Several assumptions are inherent In
such a problem: Two of them were essential In our considerations:

*Based partially on work done in Logistics Executive Development Course,
* USA Logistics Management Center, Ft. Lee, VA.
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First: The mathematical model or models under test are completely
specified by a priori knowledge; only the parameters are unknown.*

Second: The errors are assumed to be measurement errors, and
independent means are available (and have been used) to determine the pre-
cislon of the measurement devices whose variance Is given as ee . These
measurement errors are assumed to be Independent, and thus to form a
random sequence.

Because of the first assumption, we do not permit ourselves to use the
established statistical curve-fitting procedure of generalized least squares
In which the variance-covariance matrix Is transformed to a diagonal matrix.
The procedure Is rejected because In effect it changes the mathematical
model to a different model, in which "periodic" terms are added to account
for the observed values of the autocorrelatlon of the errors.

Because of the second assumption, we must provide a test as to
whether, In fact, the errors remaining after the parameters have been es-
timated are consistent with a random generation of errors with a variance of
e, and if at the same time the autocorrelations observed are consistent with

a random sequence of errors.

-. The last criteria Is essential from an experimental point of view since,
try as lie may, the experimenter may not have succeeded In eliminating all
sources of bias. To help him determine whether he has done so, many tests
of the residuals are available[3, 41. However, these tests are essentially
go/no go, and offer no method to Improve the estimate of the parameters by
reducing the autocorrelatlon.

Our object is to provide a data reduction method which will give a
single test to answer the question: What Is the probability that the set of
residuals corresponding to a given set of parameters arise by a random se-
quence from a population with variance %e'. Given this probability, can
the probability be increased by a change in the parameters?

"*Most (if not all) basic theories of physics can be derived from the least-
square principle. This principle was stated by Gauss in 1828, and has
recently been confirmed by Moore[21. Because of this fact, It would be
Inappropriate to add additional terms to the physical theory merely to

AI reduce the autocorrelation.
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11. CONSIDERATION OF CRITERIA. In considering what statistical

criteria could or should be used for our purpose, several well-known
criteria such as "run" probability, error normality, etc. as considered by
Anscombe[4], were proposed but were rejected either because a given
test was not expressible easily in terms of the residuals and thus In terms
of the parameters, or It was not directly applicable to the question of
Interest.

of theEvidently some form of chi-square tests would be desirable in view

of the well-known fact that the sum of squares of the residuals follow a chi
square distribution. The variance, covariance matrix (V -1) was con-c
sidered as a candidate by using the following, (where (111,.,) Is a column
vector amd (111.. ,* is Its transpose) (see Altken[51).

U11.., V c-1 (111,,... =n T. a'(1
c lijIj

iJ i

The expected value of this expression Is just no' . Because oa where I j J
can be either negative or positive and because of the tendency for alternating
positive and negative values In some cases, this expression was found to be
unsatisfactory for a chi square test.

The next criteria which could be used Is (Ill.,,)" (Vc-) (Ill...)
which equals n ( + E rj)1 a' whose expected value Is
n (1+2Zrl+2r rr +Era) 4 ,

If one should expand this square, on the assumption of rI being not
correlated with r (consistent with our second assumption) one might expect
the sum of the cr~ss product terms to vanish leaving only the sum of the
"squares. If this Is the case, then the sum of the squares criteria (an alter-
nate which follows) should be a more sensitive criteria.

A third alternative Is the combination of (a) the 'F" test of the
variance of the residuals where the measurement variance ae' Is the stand-
ard against which the sample sum of squares Is compared, and (b) the Box-
Pearce test of the sum of the squares of the autocorrelation coefficients
divided by the individunl variance v (Box and Pearce(61).

The chi-square formed by combining these two tests Is a single test
of the joint probability of a given value of the sum of the squares and the
corresponding values of the autocorrelation coefficients arising by chance

* I. from a particular set of estimates of the parameters.

5
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The mathematical process to find the parameters which maximize the
'll1 probability that both the "F" test and the autocorrelation test are satisfied

will be called the "least chi-square method." Its derivation follows.

1il. LEAST CHI PROCEDURE. In this derivation we will follow the
procedure and most of the notation of Aitken [5] for generalized least squares:

Let the representation of the vector of data:

u {u(xu), u(x,), ... U(xn)} (2)
in

by the vector:

Y =(Y( NO, y NO], .. Y(Xn) (3)

be linear in terms of a set of assumed functions

Pi (x), P3 (x), W, Pk+i W (4)

These functions are restricted only by the condition that they must be
linearly Independent over the n values of x.

If we let P be the matrix of these functions, the ith row of P Is the
row vector.

[~~P t (Xl N ), P Xl, ..Nkl(l] (5)

In this event, p is of the order of n x (k+l).

Let 0* denote a column vector of k+i coefficients Independent of x,
such that

9*~ (91e*, 0= *, e=* ,..* e }I (6)
k+i()

(The asterisk symbol * will be used to Indicate an estimate of the Indicated
symbol where convenient. However, It will not be used on complex expres-sions Involving X 1, as, and i because of typographical difficulties). By

definition then the vector y is I1e* and we let the vef:tor d be:

d = u y u - Pe*. (7)
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if XT Is defined In the first way considered, i.e., (d) '(d) /aO plus the

covarlance normalized to ae', it Is

ae-' d'd+e a [d' (V c-')'d- (d'd)'} (8)
e c

and let

(V -I) = [d (I + I=V -1) d

"In this expression V - Is defined as follows:* II
V1- 1 = 010. 1 . 0 V,' 001 .. 0

0010. 0 0001

00010. 0 000
I.,...(.o

(10)V 0 0 0 1
0 0 0 . . . .O . . .'l

* In these, the subscript "J" Indicates a unit value in each of the Ith rows and
(I + j)th column. Thus equation (8) becomes

"= {d'd + o "d'[d'(2" + I "-did) 01)
XT e a j=ie Juii

* The partials of equation (11) with respect to 0 are clearly a complex ex-
, I presslon, when compared to the method whichrfollows this discussion, so

* that further analysis is not presented.
If the chi-square is taken as the final alternative, and V is the

variance of r then: J

I I

XT=o d'd+E r (12)
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Following the generalized principle of least squares, the partials of XrT/2
are

axT / 2
* a- (P" r Pe*) - P,"r u) wo (13)

where r, . are defined In terms of the unit vector I and the factors d, r,
and V- as follows. Let

2r VV-1
UjU(d) (d)l/a 2 1 (rlP-

thus

r I + E ar V' (14)

Solving for 0*, we find

e* [P'r PPI- P' r u. (15)

Since r depends on the values of r and d'd, which again depends on G*,
the values of 8* must be determineti Iteratively, with each Iteration being
used to determine r and d'd until the values converge.

IV. LEAST CHI SQUARE FOR FUNCTIONS WHICH ARE NOT LINEAR IN
THE PARAMETERS. In the previous paper (1 the expression for a new
estimate of the parameters has been derived for "the least chi square" pro-
cedure. That derivation will be understood by the present notation as
follows:

Let yl*a y(x1 , l*), y(xj, 0*) . . . y~xn, ( *) (16)n
SI'

and let Ul*..uI-yl*

Define the matrix P* as the matrix whose Ith row Is

by,*ay B,* 8 ... by,*
F -I b, ... r1
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Let {d*} = P* (88*]- u*. (18)

From this It Is clear that d*, P*, 80*, and u* may be substituted for
d, P, 0*, and u In the formula for 8* so that

[be*] [P*' r p*,-l p*, r u*. (19)

V. EXPLICIT EXPRESSION FOR POLYNOMIAL LEAST-CHI SQUARE.

Equation (11) can be explilcitely expressed In terms of xlo u, and aI If
Pl (x) are polynomials. For computing purposes this may be desirable
since the various "moments" can be evaluated from the data (u1) and from
the values of the Independent variable xI In several ways.

To calculate the matrix elements explicitely, let the value of r be
I + 2 Z a V-1 as In (15). From this expression the matrix elements of the
equation"

P'ru = P'FPO*

are calculated and the results are given In Figure (1]. (Note that in Fig (1)
y Is used as the vector of the observed data Instead of uI as previously.)

* I, The matrix terms Include the ordinary least square terms plus the added
terms as may be seen by Inspection of each term. The added terms can be
dlstinguished from the ordinary terms by the fact that each of the added
"terms are proportional to ap. The calculation of the "moments" can be done

i.In a variety of ways, Assum Ing that x I are equally spaced Integers, two

different approaches have been used to program a Texas Instrument pro-
grammable computer (SR-52). These were:

(a) calculation and storage of all the "moments," calculation of x
and a from assumed values of 0* followed by calculation of the matrix le-
ments, and concluding with a new estimate of 0* by a standard ordinary
least square program routine such as the Texas Instrument "Trend Analysis
Program." This program calculates the new values of a1* by the usual
techniques of solution of slmultaneajus linear equations.

(b) A second way Is to calculate the residuals d from an Initial esti-
mate of 01"* From them calculate (d)' (d) and (d)' V j- (d). From these two,
XTI and a are calculated; followed by the matrix elements of the trend

analysis program and then the values of 0*,
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VI. EXAMPLES. The first to be discussed uses the data on "national paper-
board production per quarter" given by Butler, Kanesh, and Platt[71. This
case Illustrates the situation where serial correlation due to seasonal effects
is present, and offers a comparison between ordinary least squares, and
least chi square. The second case uses data on the gross national product

(8), In a case where the "eyeball test" indicates that a linear least squares
is not adequate. The purpose of the study of this case Is to provide a case
where a priori one would not expect a good fit.

In all cases, 30 data points were used. The variance of the autocor-
relation squared was taken as approximately (n-4) 1,• and the expected value
for 4 2X was assumed to be (2 (n+s-q) ]i where n Is 30, s Is 3, and q is 2.
The valiTdity of this formula as compared with alternates such as one where
the degrees of freedom are n+s-2q Is not Important for these cases.

Table 1 shows the results of the calculation. For each case, as de-
signated under the "DATA SOURCE" column, values were estimated for the
variance of the measurement error. Under "initial" and "final" columns
are given the estimates of ee , e1 , Xi', Xi" and X I . Using the final values
of 2x.1, an estimate of its deviation (4) in multipTes of the standard devia-
tion from the expected value E (,'R7) Is obtained.

The first case of Gross National Product (fig. 2) used a straight line
fitted by eye to the data. The second case used ordinary least squares as
the Initial estimate. The ordinary least squares gave the same final esti-
mate of the parameters after one Iteration as did the Initial "eye ball" fit
did after two Iterations. (There was no change between the second and
the third.) The amount of calculation would be somewhat less with the
ordinary least squares as the Initial point. The eyeball fit was used to
check the ability of the program to converge when given an Initial con-
dition which was not the "best" estimate.

The third case of the GNP used a value of the estimate of the
* imeasurement variance of the GNP as four times that Initially estimated.

The same Initial "eyeball" estimate was used as before and a rapid Itera-
tion to nearly the same final values of the parameter resulted. The
large value of Xi2 nearly always dominated the value of X,'.

The initial estimate on the "Paperboard Production" was taken from
the result given by the authors using many more data points. This es-
timate was: es Is 3671.8 and e1 Is 74.12. A change of variables was
made for convenience as follows:

I y" = .2y -760 (20)
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Using this value as "normalized" production the Initial and final values
are given in table 1, In terms of the original parameters the estimates

Sof 00, and 01 are 3712.5 and 72.25 respectively for case A. For case B

they are 3715.0 and 72.15.

In case A, the initial estimate of the parameters was changed by
the Iteration so that the least squares error became smaller and the sum
of the squares of the autocorrelation coefficients became larger. The
final parameters of case A were used as the Initial estimate for case B,
but the estimated variance of measurement was increased by a factor of
ten. The Iteration procedure produced a change in the final value such
that the sum of the squares (XI") was slightly increased, but the auto-
correlation decreased. This is the only case studied where "Al" Is less
than one standard err-)r.

The reasons for the large values of A, follow for each case: For
the GNP cases, the linear model Is obviously Insufficient to fit the data.
Making allowance for a larger estimate of the measurement error does
not compensate for the correlation of the residuals. We conclude: the
GNP case does not satisfactorily fit a linear model as assumed.

For the Paperboard Production cases the "measurement" variance
Is larger than 100 but probably less than 1,000. Because there has
been no attempt in the present study to adjust for "seasonal" fluctuations
which may be real, the "seasonal" fluctuation then represents an addi-
tional (and correlated) error in each quarterly estimate. Further analysis
will be done for this case when a computer of larger storage capacity
than the one used in this study is available.

To investigate the possibility that outlier rejection would be as-
sisted by this technique the 25th data point was chosen by Monte-Carlo
techniques and a -3oe deviation from the original fitted line was intro-
duced. Two cases were calculated using this set of data: in the first
case ordinary least squares was used to Initiate the calculations; In the
second case an initial estimate of the values of the parameters near to
the fitted line of the unmodified set of data was used.

The final parameter estimates agreed In both cases and the values
of both X,' and Xl' greatly Increased. The result Is that "Al became
greater than 2.3 as compared to the previous result of 0.68. (The
varlance of 4 is unity.)

aI
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Thus we find this test sensitive to a single outlier and Indicates
that further study should be done of this technique.

Questions such as the relation to the ARMA technique (9) have
not yet been investigated.

ViI. SUMMARY. It was observed that the fit criteria, X. was

Improved In each case from the ordinary least square value by the Itera-
tion procedure. In this process the chi square of the autocorrelation co-
efficients was always reduced from that which occurred at minimum
variance of the errors at the expense of permitting a slight Increase In
the variance of the errors.

Based on this result and on the theory of the tests, least chi
square gives an Improved estimate of the parameters as compared to
ordinary least squares.

The convergence was rapid. The number of Iterations required
to converge was approximately three. It Is yet to be demonstrated that
an "eyeball" Initial fit might reduce the number of Iterations required
but it Is believed likely.

When performing experiments Involving measurements, the measure-
ment error should be Independently observed so that data will be avail-
able to apply the least-chl square test If appropriate.
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SIMPLIFIED CONSTRUCTION OF BASIS FUNCTIONS FOR POLYNOMIAL SPLINES
J. J. Heimbold

MARK Resources . Inc., Marina del Rey, California

A simple, straightforward procedure is presented for generating poly-

nomials over a set of contiguous intervals. The polynomials can be constructed

to be continuous or to have an arbitrary number of derivatives continuous

* across the interval boundaries (knots). The constructed functions are

ordinary polynomial splines of given degree with any specified number of

derivatives continuous across the boundaries.

J, minimum mean-square error criterion in fitting tt.e spline polynomials

to a set of data points requires solving a nst of linear equations. In

actual applications it is efficient to express the polynomial splines as

a set of basis functions,which simplifies the solution of the linear equations.

A set of spline basis functions is presented which does simplify the solution

* to the minimum mean-square fit. The functions are created in such a way that

many pairs of basis functions are mutually orthogonal. In addition they are

* ordered in a way that results in a banded matrix in the net of linear

equations. Both of these properties lead to a numerically simple solution

and a reasonably small amount of computer storage.

MOTIVATION

I The need to conitruct splines grew out of a requirement to obtain tra-

jectory estimates from noisy radar data. It was known that some of the

trajectories could be modeled by fourth to sixth degree polynomials over

* short time intervals, and it was desired that the range, velocity and

sometimes the acceleration or higher-order range derivatives be continuous

Iacross interval boundaries.
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An a result of the need for the trajectory estimates, a technique was

developed for constructing spline basis functions for polynomials of

arbitrary degree with an arbitrary number of constrained derivatives at

the knots.

The motivation for deriving the spline basis functions cane from the

need to quickly Implement a spline program. A survey of the spline literature

found it to be either limited to second or third degree polynomials, or to

be unreadable without a specialized background.

CONSTRUCTION OF POLYNOMIAL SPLINFE

It can be shown that a polynomial spline of degree D in C P-2(z.-) over

the set of strictly increasing knots {xl(z2,... ,x6 can be written as

D D D

Q(x) -r 1 (z-z) +Z j (x-x )+

j-0 J-P J-P

where Ix-xi x>.xi

(x-xi)+ j
•, 0 x'xi

Expreosing tLe splines in this form yields a concise mathematical

formulation of the splines. The first suimation term is a polynomial of
SC~~P-I(I,)

degree D on (xl,-) and is in C (xlg-). The rest of the summation terms

j are in CP- 1 (-=,-), and hence Q(x) is in CF 1 (x1 ,-).

The functions (x-xI) +re basis functions for Q(x), and are not necessarily

mutually orthogonal for any two basis functions. Consequently, a direct
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computation of a minimum mean-square fit of Q(x) to noisy data will require

matrix storage and inversion for a square matrix with dimension (N-1) (D+I-P)+P.

A change of basis functions can reduce the matrix storage requiremenLo if the

basis functions are chosen such that many pairs of the functions are mutually

orthogonal.

SPLINE BASIS FUNCTIONS

The basis functions which lead to a banded matrix are

/~ ~ IiFjFlXi
k-I

otherwise

where

ii <MiP+l (xi+p+l'ixm-i)

Sk(X _X )J-1, -
lk i'P~ i+m-l_+k-l)

; l<m<P+l

for

k-l,2,...,P+l, and

1"1,2 ,.... N-1
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These basis functions span all terms of the form (x-) J-P,...,D;

i-1,...,R-1. The other terms in the polynomial Q(x), viz., (x-x),

j-0,1,...,P-1, arc spanned by creating P knots (P3 .),....H,6..o0 1 which

are strictly increasing with z0 ' X1. Then the set of basis functions

1B(x)), - -0 is a set of P+l linearly independent poly-

nomalss of degree P on the interval [xl, -, and hence

P

can be formed as a linear combination of these basis functions.

These basis functions have the property that

TBh(x)j(x) -a0 for li-il_ asl

They can be ordered as: "

B1BO1BP41' 13 _P+2' . • •,

10 2B1 l .. D+I-PB•

1A-1' 2 -l ' D+"-PU-1

With this ordering, the matrix of dot products of the basis functions is

banded with bandwidth (P+1)(D-P+1), P-0,1,...,D.
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VALT PARAMETER IDENTIFICATION FLIGHT TEST

Robert L. Tomaine*, Wayne H. Bryant,** and Ward 7. Hodge**

NASA-Langley Research Center
Hampton, Virginia 23665

ABSTRACT

The Langley Research Center is engaged in a research program to develop
the technology to maximize the capability of helicopter operation in ton-
fined areas. The program, VALT (VTOL Approach and Landing Technology), uses
an integrated approach involving the helicopter, avionics system, control
system, displays, and the pilot. An important task in the study is to
develop an accurate model of the helicopter system for flight control
design and simulation studies. A flight test designed utilizing the VALT
approach profile was performed at the NASA Wallops Island test facility to
obtain data for verifying existing mattematical models through use of 'para-
meter identification techniques. Briefly, parameter identification as
applied to flight vehicles consists of identifying the aerodynamic co-
efficients of the vehicle equations of motion utilizing the measured vehicle
states and accelerations resulting from measured control inputs. TheOreti-
cally, these coefficients can be determined very accurately; however, in
actual applications many problems and limitations are encountered. In
addition, the research vehicle used (CO-47) and the VALT flight regime intro-
duced problems specific to this application. The unique facilities utilized
to minimize these problems for the CH-47 parameter identification flight test
included the CH-47 fly-by-wire control system and onnboard computer, the
Wallops Test Center radar tracking system, the Langley Research Center mobile
research Aircraft Ground Station (RAGS) and Piloted Aircraft Data System
(PADS), and the C+-47 Sperry flight director display.

Data runs were performed to include test point@ along the entire VALT
approach trajectory, including straight and level flight, straight descending
and ascending flight, and spiral descents. Complete data sots were measured
at 40 spa on PCM recorders and stored on board to incloide attitudes,
velocities, angular rates, linear accelerations, pilot stick positions*
actuator positions, SAS positions, rotor RPM, and other pertinent information.

"In addition to describing the details of this flight program, preliminary
results of parameter identification processing utilizing advanced statistical
methods are presented.

*Structures Laboratory, US Army Research and Technology Laboratories (AVRADCON)

**National Aeronautics and Space Administration, Langley Research Center
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INTRODUCTION

V A L T is an acronym for VTOL Approach and Landing Technology (Ref. 1).

It is a comprehensive program including flight management, guidance and
control, and display technology with the ultimate goal of the development
of avionics technology for optimum VTOL short haul transportation in the
1980's time regime. One important task of the VALT program is to develop
an accurate model of the VALT research vehicle, which is required for
guidance and control system design. This paper is concerned with the

approach taken to determine this model.

The method of obtaining an accurate model of the VALT research vehicle
is verification of prior developed analytical models by processing selected
flight maneuver data with advanced parameter identification algorithms.

The VALT flight regime consists of cruise, transition and hover flight
conditions. Anticipated VALT trajectories include straight and level flight,
straight ascending and descending flight, and spiral descending flight. A
comprehensive flight test program was conducted at the NASA Wallops Plight
Test Center to obtain data for all of the flight conditions anticipated for
the VALT trajectories.

Parameter identification of flight vehicles consists of disturbing the
test aircraft with a known control input to produce a response in the vehicle
states which are measured as a function of time tsee Fig. 1). Uiven a form,

the vehicle model (plant) and the measured states, the algorithms compute
the coefficients (stability and control derivatives) of the model. The
equation set governing the identification process is as follows:

X - A(p)X + B(p)D

where X refers to the vehicle state vector, U is the control input vector,
and A and B are the stability and control matrices which compose the
assumed plant. The plant is the equations of motion of the vehicle.

The general identification problem is complicated by the presence of
two primary error sources. First of all, the measurements of the states
contain noise due to the vehicle vibration,_instrument limitations, and data
processing. This results in the equation Z - X + V , where the meaburement
vector Z is a combination of the actual state vector X and a measurement
noise vector V. In addition, some of the response of the vehicle may be due
to external disturbances such as wind gusts, and the assumed model may not
be representative of the actual vehicle. These error sources in combination
are referred to as process noise. Therefore, the problem is to determine
the components of the A and B matrices of the assumed plant in the
presence of both measurement and process noise.

In practice, several specific problems occur in parameter identification;
and in this study additional problems associated with the VALT flight regime
and the VALT research vehicle are encountered. The general problems include
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the presence of winds, which as discussed earlier introduces process noise.
Additional problems result from the form of the vehicle equations of motion
(plant) chosen to represent the vehicle. These equations are linear 6
degree-of-freedom small perturbation equations chosen for compatibility
with control system design procedures and limitations on existing parameter
identification algorithms. The equations require obtaining an accurate
and steady vehicle trim and linear response in the vehicle state variables.

The VALT flight regime introduces the problem of determining accurate
vehicle velocity measurements at low airspeeds where conventional pitat-
static instruments are useless. The vehicle itself introduces furtner
difficulty in that it has unstable modes and its rotors introduce high
frequency noise in the measurement system and the possibility of rotor/
fuselage coupling. Lastly, flight testing introduces the need to evaluate
on board and at the test location the accuracy and quality of the data being
acquired. The next section will discuss how the test was designed to minimize
the aforementioned problems, and to obtain an accurate and appropriate data
set. To provide a background for discussing how these problems were handled and
the testing approach taken in these flight tests, the facilities utilized are
discribed first.

DESCRIPTION OF FLIGHT TEST FACILITIES

The parameter Identification flight tests were carried out at NASA's
Wallops Flight Center, Wallops Island, Virginia in March of 1977. The
Wallops facilities crucial to these flights were the Aeronautical Radar
Research Complex (ARRC radar); the Transponder Data System (TDS); wind data
measurement equipment, including a wind measurement tower and weather
balloons; and the Research Aircraft Ground System (RAGS). The current VALT
research vehicle is a Boeing-Vertol CH-47 transport helicopter from NASA's
Langley Research Center. Each of these systems are briefly described below.

The ARRC radar facility consists of an FPS-16 radar used in conjunction
with a laser tracking radar to provide vehicle position data accurate to
one foot. This information is processed by a minicomputer within the facility
to provide highly accurate data in a Cartesian coordinate system aligned with
the runway chosen for each day's flights. The data is then telemetered to

the vehicle using the Transponder Data System (TDS). The TDS is a data link
that uses the time between radar pulses to send pulse position modulated
(ppm) digital data to and from the vehicle on the same frequencies as the
ground radar (uplink) and the airborne transponder (downlink). The data
transmission rate is one ten-bit digital word on both uplink and downlink per
pulse of the radar, and for these tests was configured to give approximately
34 complete position updates per second to the on-board digitul computer.

The ARRC radar facility was also used to track weather balloons released
at regular time intervals to obtain wind velocity and direction information
at 100-foot intervals from 200 feet to 2,500 feet. A 100-foot weather data
tower was used to obtain low altitude and surface wind data.
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The RAGS is a mobile station with a telemetry link to the aircraft
measurement system as well as magnetic tape playback equipment, It provides
the capability for both real-time data display of selected parameters
as well as a post-flight quick look capability at all of the measured
parameters.

As previously mentioned, the research vehicle is a Boeing-Vertol CH-47
tandem rotor transport helicopter equipped with a fly-by-wire control system.
The cockpit has both a standard mechanical control stick arrangement (the
safety pilot) as well as an electrical stick (the research pilot). The
mechanical control arrangement controls the position of the vehicle's
actuators. The electrical stick serves as input to the computing system,
which can manipulate the signals in a variety of ways through programming of
the Sperry 1819A digital flight computer. Outputs from the Sperry 1819A are
converted to analog signals used as inputs to electrohydraulic actuators.
The outputs from these actuators are then used to drive the standard
mechanical control stick arrangement through a clutch arrangement, which
allows rapid disconnection of the computing system in the event a potentially
dangerous control input to the vehicle is generated.

The Sperry 181U4 flight computer is a general purpose, fixed-point
18-bit stored program integer machine with 16,384 words of ferrite core
memory for program and data storage. This compuLer communicates through
a variety of interfaces to the research pilot's control sticks, motion
sensors, the control system actuators, the transponder data system, and its
own control panels, which allow data examination and modification.

Measurement, recording, and telemetering of spatial, control, and
discrete variables is handled by the Piloted Aircraft Data System (PADS),
a pulse code modulated (pcm) recording system. Sensor outputs are first
routed through buffer amplifiers and then sent to the computing system,
the on-board recording system, and to the telemetry system.

TESTING APPROACH

The first category of flight testing problems; accurate knowledge of
the winds, precise aircraft trim, and low-speed air data measurements were
handled through the combined use of the ARRC radar facility, the TDS, the
on-board digital computer, and an electromechanical flight director. An
described previously, wind data were obtained at periodic time intervals
by releasing and radar tracking a weather balloon. The subsequent reduction
of the radar track provided wind velocity and direction at regular altitude
intervals.

Accurate low-speed air data measurements were obtained through pro-
ceasing of radar derived potitiun data (telemetered to the vehicle using
the TDS) with on-board acceleration measurements in a complementary filter
implemented in the Sperry 1819A digital computer to obtain an estimate of
ground speed. To this ground speed estimate, the current wind velocity was
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added so that when flying directly into the wind an accurate estimate of
airspeed was obtained. This airspeed determination system was used for all
flights and covered the range from hover to 80 knots.

Precise trim conditions were established by using an electromechanical
flight director, driven by the flight computer, indicating deviation from
desired trim. Figure 2 is a photoraph of the research pilot's cockpit and
shows, in addition to the flight director, other standard aircraft instru-
menrts. Starting at the top on the left-hand side is an airspeed indicator,
a torque meter, and a flight-altitude indicator. At the right, starting at
the top is an altimeter, a vertical-speed indicator, and a magnetic compass.
The CRT shown just below center is usad for display evaluation, but was
not used in these flights. The flight director horizontal pointer was
used to indicate error from desired airspeed; the vertical bar, error from
desired sideslip; the doughnut (at the left side), error from desired
descent rate; and the localizer (at the bottom), error from desired rate
of turn. The pilot's task to obtain precise trim was to simultaneously
center the four flight director pointers. To accomplish this task, the
pilot first would obtain an approximate trim using the standard aircraft
instruments, and then focus his atfention to centering the four flight
director pointers. Gains and damping for each flight director pointer were
individually selectable through the entry of appropriate constants in the
Sperry 1819A computer. This feature allowed the flight director to be
"tuned" to the pilot to obtain the most satisfactory overall performance.

The second category of problems were all handled through the combination
of control input design, its implementation in the on-board digital computer,
and the electrically-driven control surface actuators. The basic control
input design was carried out under contract to NASA's Langley Research Center
by Systems Control, Inc. of Palo Alto, California. These designs were based
on exciting the Stability Augmentation System-on closed-loop modes of an
analytic model of the CH-47, and consisted of a high and low frequency sinusoid.
Figure 3 represents a typical control input generated by the flight computer
for the pitch axis and shows the two components of the designed control input.
To strike a balance between adequate model excitation and the linearity
constraints on the vehicle response imposed by the small perturbation model
used in the parameter Identification sequence, scaling was provided in the
computer implementation of the automatic control inputs. Repeatability and
accurate knowledge of the control input was inherent in the digital computer
implementation. To account for a known speed instability at higher airspeeds,
a longitudinal stabilization input (also implemented in the digital computer)
was added to the programmed input to maintain the resultant vehicle response
within the small perturbation equations' linearity constraints.

Two major systems were primarily used to address the third category
of problems, real-time data evaluation. The Piloted Aircraft Data System
(PADS) on board the vehicle was used to both record a wide selection of
measurements on magnetic tape and ALSO telemeter a qubset of these measure-
ments to the Research Aircraft Ground Station kKiGS) tor subsequent real-
time display on multi-channel chart recorders. In the RAGS, trqnsparent
overlays of the expected measurements, prepared earlier using the CH-47
analytic model (Ref. 2), were then coILpared with the real-time data for use
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in evaluating the success of i particular run. This information was then
relayed to the research project engineer on board the helicopter for his
use in determining the next flight test point. After each flight, the
on-board tape was used in t' ' RAGS to create additional stripchart recording
of measurements that proved useful in planning subsequent flights.

TEST POINT SEQUENCE

Figure 4 is a pictorial of NASA's Wallops Flight Center which illustrates
the systems used by this series of flight tests. Each of these systems has
been described earlier. This figure is useful in understarding the sequence
of events in obtaining flight test points.

Since the airspeed estimator required the vehicle to be flown into the
wind for all test points, the test sequence naturally divided into a downwind
leg and an upwind leg. On the downwind leg, a weather balloon is released
and tracked by the radar to obtain the requisite wind data. This data is
then relayed via radio to the research project engineer on board the helicopter,
who then decides what test points will be flown and establishes the constant
wind velocity to be entered into the digital computer for airspeed estimator
calculation.

On the upwind leg, the research project engineer first selects the test
point (based on wind magnittide), then provides the computer operator with
his reference number and the desired magnitude (in per cent) of the computer-
generated control input. When the computer operator enters these values,
the appropriate trim values are obtained from a look-up table stored in the
computer, and trim error signals are sent to the electromechanical flight
director. The research pilot then obtains the desired trim using conventional
aircraft instruments to obtain an approximate trim and the flight director
to obtain a more precise trim. When an accurate trim is obtained, the
evaluation pilot's electric stick inputs are disconnected by the computer
and programmed control inputs are substituted. At the end of an individual
data run (approximately 20 seconds), the computer system is disengaged from
the basic vehicle and the safety pilot regains control of the helicopter
setting up for the next data run. While these activities are underway, a
comparison of the real-time data collected with the appropriate analytic
model overlay provides valuable insight into the success of the test point.
The results of this evaluation are then relayed to the research project
engineer on board to aid in his selection of the next data point. Typically,
several data points were obtained during each upwind leg, and wind Iiifor-
mation was updated during each downwind leg.

PRELIMINARY RESULTS

The post-flight processing consists of converting the PADS data tapes
to engineering units and selecting the best data sets for each flight
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condition. Selection is based upon attained trims and state variable
responses. For data from helicopters, better identification results have
been obtained from filtered flight data measurements. For this study,
the data has been filtered by a zero-phase-shift Graham digital filter
(Ref. 3) with cutoff and termination frequencies chosen above any expected
rigid body modes and below frequencies associated with the rotor system.
This step reduces the noise content of the measured state variables
appreciably and provides only rigid body vehicle responses. The data is
further processed using a Kalman filter/estimator based upon the aircraft
kinematic equations. The Kalman filter estimates and removes the measure-
ment biases, and provides estimates of the vehicle states based on
measured attitudes, rates, and accelerations.

After data reduction and prefiltering, the data sets are ready for
parameter identification processing. This data will ultimately be pro-
cessed using two diffeding advanced algorithms capable of handling both
measurement and process noise, and the results will be compared. An
Extended Kalman Filter algorithm (Refs. 4 and 5) will be used by USARTL

* personnel to identify six degree-of-freedom stability and control derivatives,
and a maximum likelihood algorithm (Ref. 6) will be used by NASA personnel;

* and selected data sets will be processed under contract to SCI (Vt.), who
will also use a maximum likelihood approach.

Some rreliminary results are presently available from the Extended
Kalman Filter algorithm and the major derivative values identified are
compared with existing analytical values in figure 5. The majority of the
identified derivatives agree very well with the analytically-predicted
values. These results are encouraging since the responses generated by the
analytical values produced responses very close to those measured in flight.
Figure 6 shows the eigenvalues (characteristic roots) for both the identified
and analytical derivatives. Good agreement between analytical and identified
results are shown with all the basic vehicle modes represented, including
the expected unstable Dutch roll mode and speed instability. The results
presented are preliminary, and many data sets remain to be processed. Final
acceptance of the derivatives will be based upon a combination of tests;
including comparison with analytical values and expected values based on
engineering judgment, responses generated by identified derivatives
(regeneration), responses generated by identified derivatives for data not
used in the identification process (simulation), derivative uncertainties
and convergence characteristics, and comparison of eigenvalues (roots)
computed using identified oerivatives with analytical results and engineering
judgment.

CONCLUDING REMARKS

A specialized flight test was designed and implemented to provide data
L cceptable for parameter identification for an unstable rotorcraft operating
in the presence of winds at flight conditions from hover through transition
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to cruise. General problems in parameter identification, flight testing,
and problems specific to this flight test were considered; and a unique
test procedure utilizing existing facilities was performed. Preliminary
data processing has resulted in identified parameters which agree well
with existing analytical results.
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PRELIMINARY RESULTS

DERIVATIVE ANALYTICAL VALUE IDENTIFIED VALUE

X -. 0204 -. 0208

Mu -.0042 -.0046

Y -. 07 -. 054

-.0055 -.0050

Nv -,00009 -. 00009

* -.551 -.213

.P .0176 .016

Lp-.818 -. 834

M -1.68 -1,76

NR -. 0398 -. 0398

Figure 5. Derivative Comparison
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Figure 6. Elgenvalue Comparison
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EXPERIMENTAL DESIGNS FOR SENSITIVITY EXPERIMENTS OF
COMPUTER SIMULATION MODELS

Carl B. Bates
US Army Concepts Analysis Agency

Bethesda, Maryland

ABSTRACT. Large stochastic computer simulation models usually

have a large number of input variables. After model development

and/or before the model is used for production runs or used in a

particular study, sensitivity testing of input variables is usu-

ally required. Because of the size of the model and the intended

future use of the model, the list of input variables desired to be

tested is invariably long. Also, because of the absence of a pri-

ori information on the interaction of input variables, the experi-

mental design for the sensitivity experiment must provide for the

testing of main effects and first-order interactions. The appli-

cation of fractional factorial designs in sensitivity testing is

illustrated and their shortcomings for sensitivity testing of

large computer simulation models is discussed.
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1. INTRODUCTION

The US Army Concepts Analysis Agency (USACAA) is a staff sup-

port agency under the Deputy Chief of Staff for Operations and

Plans (DCSOPS). The agency's mission is to conduct mid- and long-

range force concept studies to establish the framework and guid-

ance for development of doctrine, organizations, and materiel re-

quirements for Army forces. Agency studies and analyses support

Department of the Army planning and programing and provide the

basis for materiel acquisition. The Agency develops, within re-

source constraints, the most effective force structure and weapon

and/or system mix. The primary tool for the performance of the

studies is computer simulation models. After computer simulation

model development and/or before a model is used in a particular

study, sensitivity testing of input variables is usually required.

That is, if no a priori knowledge exists concerning model sensi-

tivity, an investigation must be made of the sensitivity of se-

lected output variables to changes in input variables. This is

necessary in order to evaluate model performance or to assess tho

ability of models satisfying specific study requirements.

The models range from high resolution, low (division) level,

to low resolution, high (theater) level models. A commonalit,

however, of all the models is their size and complexity. All of

the simulation models are large and very complex. The number of

input variables is in the hundreds and the number of input data is

in the thousands.
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2. PROBLEM DESCRIPTION

Statisticians at CAA are within a service support Director-

ate. They provide experimental design and statistical analysis

support to all study Directorates within the agency. Analysts who

are study team members and who have responsibility for model sen-

sitivity testing of a particular model come to the statisticians

with experimental design problems.

Invariably, the list of it.put variables which are desired to

be investigated is in the order of 50 to 100 variables. One case

involved 350 variables. Naturally, time constraints never permit

a thorough investigation of all variables on the original "laundry

list" of variables. Because no a priori information exists, the

minimum objective of the sensitivity testing is to test and esti-

mate main effects and first-order interactions.

The list of candidate variables for testing are those suspect

of being significant. The small subset of input variables ulti-

mately tested are those most strongly suspected of being highly

significant. That is, the variables eventually tested are antici-

pated and expected to significantly influence model output. Past

experience in model sensitivity testing has shown that, in gen-

eral, most input variables ultimately tested are, in fact, sig-

nificant. Moreover, most of the first-order interactions are also
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significant. With study and hindsight, it is generally agreed

that this is consistent with reality. That is, the simulation

model does adequately portray the real world which does, in fact,

consist of many interacting parts or components.

3. EXAMPLE PROBLEM

A recent experimental design problem involved a sensor model.

It had been decided that three levels would be investigated for

each input factor considered. The pessimistic estimate of the

number of model runs was 100, and the optimistic estimate was 250

runs. All input factors under consideration were completely

crossed. Therefore, a factorial experiment in a completely rando-

mized design was appropriate for the computer simulation model

sensitivity experiment. Two designs were ultimately developed,

one requiring Approximately 100 runs and the other requiring ap-

proximately 250 runs.

A (1/9) x 37 fractional factorial experiment requiring 243

model runs was designed using I - ABCDE a CD2 EF2G2 as the defining

contrast. The design, plan 9.7.9 in Connor and Zelen (1959), per-

mits estimation of the 7 main effects and the () 21 first-

order interaction effects. The ANOVA table is given below.
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Table 1. ANOVA for the (1/9) x 37 Design

Source )F

7 main effects 14

21 first-order interactions 84

residual 144

total 242

A smaller fractional factorial experiment was then designed

such that its design points were a subset of the design points of

the above seven factor experiment. This was accomplished by using

the aliases from the (1/9) x 37 fractional factorial to determine

the five factors having a full design within the 243 design

points. The factors were B,C,D,E, and G. Then, using I a BCDEG

as the defining contrast gave a (1/3) x 35 fractional factorial

experiment requiring 81 model runs. The ANOVA table for the five

factor experiment is given below.

Table 2. ANOVA for the (1/3) x 35 Design

Source DF

5 main effects 10

10 first-order interactions 40

residual 30

total 80
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The design points of both designs wore provided to the ana-

-..

lysts responsible for exercising the sensor model. The 81 factor

level combinations of the (1/3) x 35 design were run first. Ex-

periment execution proceeded smoothly and the remaining 162 runs

for the seven factor fractional factorial were also run. ihe

analysis of Table I was performed on each of a number of output

variables selected during the design phase of the simulation model

sensitivity experiment.

4. CONCLUSIONS

Sensitivity experiments of large complex computer simulation

models involve a large number of input factors. The number of

input factors normally involved far exceeds the number of factors

involved in past field and laboratory experiments. A priori in-

formation concerning interactions among the input factors almost

never exists. Minimum experimental objectives are, therefore,

that the design permits the estimation of main and first-order

interaction effects. Input factors selected for testing are those

"suspected of being highly significant. Past experience has shown

that most main effects and first-order interaction effects are, in

fact, statistically significant.

Fractional factorials for 2n and 3n designs, developed by

Finney (1945) and (1946) and available in Cochran and Cox (1957),

Connor and Zelen (1957) and (1959), and Davies (1960) do provide
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designs which may be applied to sensitivity testing of computer

simulation models. However, the largest 2n design in Connor and

Zelen (1957) which yields estimable first-order interactions 1s

for 15 factors. The design has 256 design points. The largest 3P

design in Connor and Zelen (1959) which gives estimable first-

order interactions is for 10 factors and It has 243 design points.

The large number of computer simulation model runs required by

fractional factorial designs do not normally permit assessment of

the number of input factors desired when performing sensitivity

experiments of large computer simulation models. Oqslgns contain-

Ing less design points than fractional factorial designs but per-

mit the testing of main and first-order interaction effects are

needed. Tabulations and catalogs of designs and/or computer soft-

ware for generation of the designs are also needed. Analysis

methodology as well as fast and efficient software for performing

the statistical analysis dictated by the designs are naturally

required.
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ON VALIDATING MISSILE SIMULATIONS:

FIELD DATA ANALYSIS AND TIEM-SERIES TECHNIQUES*I

m Naim A. Kheir Donald SutherlIn
School of Science & Engineering Aeroballistics Directorate
The University of Alabama U. S. Army Missile Research

in Huntsville & Development Co mend
-H untsville, Alabama 35807 Redstone Arsenal, Alabama 35809

Abstract

The research reported here focused on an ARM/CM field data

analysis, and models' fitting using time-series techniques. The

imediate objective is to build, for the field data, an adequate

model that fits a noise signal corrupting a deterministic one. The

* data happened to be seasonal and nonstationary. The ultimate toal,

* however, is to use the generated model in updating an all-digital

computer simulation model, and be able to use simulation-data and

*: field-data in validating the model. Few computer programs have been

developed to help in the data analysis, the fitting and checking the

* adequacy of selected models. The fitted model is of the integrated

autoregressive moving-everage type.

This research was supported by the U. S. Army Research Office under
Contract DAAG 29-76-D-0100/D.0 534.

t
Copies of a detailed report with the same title can be obtained
from the authors.
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STATISTICAL VALIDATION OF
GUIDED PROJECTIL4AaISSILE SIMULATION MODELS

-r Harold L. Pastrick
Guidance and Control Directorate

Technology Laboratory

US Army Missile Research and Development Comand
Redstone Arsenal, Alabama 35809

ABSTRACT. This paper discusses the statistical analysis which is
proposed for aiding in the validation of several Laser Designator/Weapon
System Simulation models. The primary objective is to provide a means
for insuring that simulation responses to input signals match hardware
responses under similar driving conditions to some "goodness..of-fit"
criteria. The method involves generating several statistics on tl~e
point by point differences between the "true" data and the simulation
data. These statistics include subinterval mean errors, confidence
bounds for those errors, Theil's Inequality Coefficient, and the cumula-
tive mean error.

SI. BACKGROUND. Simulations of guided projectile and missile sys-

tems are used for a variety of purposes including flight stability analy-
ses, trajectory studies, and lethality predictions. The computer simula-
tion of these systems in many ways predicts the results that may be
obtained only by actual flight tests or enhances analyses already gener-
ated by flight data. The potential for significant cost savings by using
simulations vis-a-vis flight tests creates a firm case for making many
program judgements based on simulation data with the understanding that
they are truly representative of the real world. The general skepticism
that program managers and decision makers previously placed on simulation
data is slowly being replaced by their belief in simulation results given
that a quantitative match, to some level of confidence, can be established
between hardware and simulation models.

Recently a computer program entitled, "Laser Designator/Weapon Sys-
tem Simulation" (LDWSS) was generated to enable program managers for
COPPERHEAD, HELLFIRE, and Ground Laser Designators as well as Army policy
makers to judge alternatives among those systems. A significant objec-
tive in the LDWSS chronology is to validate the projectile/missile char-
acteristics modeled in the software. The approach is being directed
toward generating simulation responses under specified input conditions
that match some level of goodness-of-fit to the actual hardware. LDWSS
is the product of an evolution of simulations of semiactive laser guided
missiles which had been developed by US Army Missile Research and Develop-
ment Cinand (HIRADCQM) Technology Laboratory. Modeling formats and com-
putar executive structures which had been proven in prior missila 3imula-
tione were used as the base from which LDWSS was built 11-4].
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The one-on-one engagement scenario employed a fixed foreground false
target and a randomly selected background or overspill target. The ran-
domly selected distance between the tank target and the background false
target was based upon a statistical representation of this parameter
obtained for certain observation posts in a digitized terrain model.
All energy returns were rubjected to appropriate geometric and atmospheric
attenuation to determine the reflected energy received at the seeker.
Utilizing seeker false target rejection logic to aelect the return to
be tracked (tank or false target), the selected track point for each
pulse was used as input to the appropriate dynamic model of seeker and
delivery system. An overview of the organization of LDWS and associated
"data relative to simulation elements has several features. The executive

structure is designed to preserve a great deal of the internal system
operation information which is generated during the calculation of hit
probabilities (5].

II. DATA BASE. A simulation was developed to generate a set of
meaningful statistics which aided in the validation of several of the
models used in LDWSS (6]. The models examined included HELLFIRE and

. COPPERHEAD components. In general, model validation was accomplished by
comparing "real" data with that generated by the appropriate LDISS sub-
routines (under identical input conditions). The real data camo from
either field experiments or the hardware-in-the-loop simulation. In any
case, two sets of data were generated. They are referred to as actual
(real world data) and simulation data (LDWSS). Figure 1 is a sample plot
of these data. In actuality, both curvesmare generated from digital
simulations of an actuator. The outputs shown are time response curves
to a step function input. Figure 2 is a plot of point by point differ-
ence (actual - simulation) between the two curves. The more closely the
two curves are alike, the smaller the residuals, These residuals form
the basis for the statistical analysis progrmus.

The derivatton of the statistics used for verification has already
been covered in detail [7, 8] and will only be reviewed briefly here.
The time series shown in Figures 3 and 4 are analysed on a subinterval
and a cumulative basis, respectively.

Subinterval Statistics

a) Mean repiduals between the real and simulated data are
defined as:

n

r* 1
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Figure 2. Difference plot (actual simulation).
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Figure 4. Cumulative mean residual and TIC
(real versus hardware model).

where A1 is the ith sample from the real data, Si Le the ith sample from
the simulated data, j is the subinterval counter, and n' is the number o:!
points on the subinterval.
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b) Confidence bounds on e are given by:

LB- -60 (2)

Ia

UB e a A(3)

2.

where is the variance of 7 on the Jth interval corrected for corre-

1 2lation effects and 100 o (1 - 1/02) is the percent confidence desired.

c) Theil's Inequality Coefficients (TIC)

ni

(A S 2

U - -(4)'I 'fl n''( -,+ . -+" ..

IA, Ar I
(J-I)+k n (J-1)+k

k-l k-l

d) Theils Coefficient of Unequal Central Tendency

LJM NU M(

where S is the mean of the Si on interval J, A is the mean of the A,

on interval J, and NUM is the numerator given in Equation (4).

e) Theil's Coefficient of Unequal Variation

US rA. (6)
,I

where a A is the sample standard deviation of the Ai on interval j and
a is the sample standard deviation of the Si on interval J.

f) Theil's Coefficient of Imperfect Covariation

' UC .. 2l--)CSa

1U0 (7)
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where r is the correlation coefficient between the Ai and Si on interval J.

'In addition to the subinterval. statistics, two cumulative statistics
are also computed. These are ecumulative mean residual and cumulative TIC.

III. DESCRIPTION OF EXPERIMENT. The statistics package was run on
three Rets of data:

a) Real versus hardware simulation.

b) Real ver-uj, LDWSS.

c) Hardware simulation versus LDWSS.

Each time series consisted of 2020 data points with a delta time of
0.0078125 sec. The series was divided into 20 intervals each containing
100 data points. The percent confidence requested for the mean residual
was 957.. Each run produced a tabular output of the statistics as well
as several plots.

The hardware chosen for the experiment is the actuator which is
shown in its most complete form. That is, the model in Figure 5 repre-
sents the best information available for the actuator. It was subse-
quently reduced to the model shown in Figure 6 for use in the LDWSS simu-
lation program. The objectives were to determine whether the complete
model, referred to as the "hardware simulation" was well represented
by the reduced model, referred to as the "LDWSS model" and whether either
or both were high fidelity mor 'ls of the hardware test data, referred to
as "real data." The real data were obtained from flight recordings of
the output of the actuator as a response to input commands. Consequently,
the input-output command and response time series history is an accurate
portrayal of the transfer function characteristics of the actuator in
Figure 7.

An example of real data compared to simulated hardware data is
shown in Figure 8. It is a plot of the mean residuals and confidence
bounds (shown as vertical lines). From this plot, it can be seen that
the means of the real and simulated data agree rather well with small
mismatches on Intervals 8 and 9, where the mean residuals are -0.23 and
-0.32, respectively. Considering the range of values for the original
data, these residuals are quite small. Remember the ideal case is zero
mean residual with a small confidence bound. Subintervals 8 and 9 corre-
spond to the time period immediately following guidance initiate. This
is the point in the flight of the missile where the reflected laser energy
starts to contribute to the guidance loop. The small degradation in the
last couple of mubintervals &s due to the fact that the missile is in
terminal guidance where an acceleration in rate changes is common.

Figure 3 is a graph of the subinterval, the TIC for the same two
sets of data, i.e., real and hardware model time series. A TIC of zero
indicates equality between the two series, which in turn indicates that
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Figure 7. Real flight data digitized.

a perfect model had been hypothesized for the actuator. By the eighth
subinterval, the value is reduced to approximately 0.05 and it remains
small thereafter. The data in Figure 4 are a more detailed view of the

same data and include the cumulative mean residual for comparison with

the cumulative TIC.

IV. CONCLUSIONS. The preceding statistics represent a small sub-

set of those available to the analyst for validating dynamic systkms. i4any

(Bibliography) agree that these can supply useful and meaningful infor-

mation for validation purposes. However, there are some who feel that
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Figure 8. Real versus hardware simulation residuals

and confidence bounds.

special techniques must be used to analyze nonstationary systems and the
straightforward statistical quantities (as those discussed in this sum-
mary) are questionable in the cases where the models being analyzed pro-
duce highly nonstationary data. Work is underway using variations of
these techniques. as well am spectral techniques to circumvent the prob-
lem. Early results appear promising.
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ANALYSIS OF VARIANCE OF MULTIVARIABLE

FLIGHT TEST DATA

A CALL FOR ASSISTANCE

James S. Hayden
US Army Aviation Engineering Flight Activity

Edwards Air Force Base, California 93523

INTRODUCTION: The flight test community is frequently called upon
to define changes In performance resulting from a change in configura-
tion of an aircraft. Even with extreme attention to control of test
condition state variables, the problem of duplication of conditions is
an order of magnitude more difficult than In a laboratory environment.
Further complicating the problem Is the fact that depending on the
flight regime, up to three non-linear or eleven linearized Independent
variables are Involved. Measurement errors may be present in each of
the Independent variables. Published methods for analysis of variance
are Inadequate to treat this problem. A brief case history of deter-
mination of the change In hovering performance due to a rotor system
change Is presented to Illustrate the problem. Measurement accuracies,
test techniques and analysis methods are discussed to highlight the
problem and suggest areas where discussion of statistical analysis
techniques would be most useful.

HELICOPTER PERFORMANCE TEST TECHNIQUES: Pre-test preparation
Includes calibration of most performance Instrumentation data sensors
and Indicators to N.B.S. secondary reference standards. Wherever
possible "end to end" calibrations are performed on complete measurement
subsystems after Installation In the test vehicle. Certain systems such
as engine torquemeters and Instrumented rotor shafts are of necessity
calibrated by contractors. Prior to testing, the fully Instrumented
helicopter Is subjected to multiple precision welghings to accurately
determine weight, center of gravity location, and to calibrate fuel
cells. Strict Inventory control of useful load items such as ballast,
armament load, parachutms, oxygen equipment, Individual crew composition
and pro/post flight fuel mass are kept on a flight by flight basis. Re-
calibrations and re-welghings are performed periodically during the test
program.

The vast majority of precision performance data Is gathered under
stabilized conditions. Using the great outdoors as your laboratory has
esthetic advantages but your ability to carefully control the environ-Sment Is quite limited. Smooth air Is essential for all tests and steady

winds not exceeding three knots are required for hover performance
tests. Wind is not as critical for tests performed at altitude but
caution must be exercised to avoid mountain waves which may seem smooth
as glass while the air mass Is rising and falling sinusoldally In a
pattern relatively stationary with respect to the ground. Errors
equivalent to rates of climb of + 500 ft/mmn are not uncommon In these
atmospheric formations.
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It should be clear that the ability of the test pilot to stabilize
the aircraft with a minimum of control motions and to hold this condi-
tion for the required data recording time period is of primary Import-
ance. On many tests the state variables are also controlled to hold
certain non-dimensional variables (to be discussed) constant for a
series of data points. This process is itself quite involved and
requires the flight test engineer to calculate a target altitude and
rotor RPM for the next data point based on cockpit observed. values of
airspeed, altitude, air temperature and fuel used. The calculations are
quite Involved and require use of charts, a programmable calculator or a
telemetry down link with voice up link. Errors which may accumulate in
the various steps (engineer reading of cockpit indicators, calculations,
and pilot setting of conditions using cockpit Indicators) are reduced
significantly by the use of telemetry. The key point Is that the
accuracy of establishing desired flight conditions is limited.

PERFORMANCE DATA PARAMETER MEASUREMENT ACCURACY: As has been
pointed out, flight testing is not conducted In a laboratory environ-

ment. Test instrumentation Is exposed to a host of alien environmental
factors; vibration, temperature extremes, shock, dirt, etc. The flight
test engineer quickly recognizes that brochure accuracies are unreal-
Istic In practical application. Experience has shown that the follc.dng
accuracies can be achieved with reasonable attention to detail.

FLIGHT TEST PERFORMANCE DATA MEASUREMENT ACCURACY

PARAMETER SYSTEMATIC/ERROR POINT ERROR

Gross Weight 30 Lb 15 Lb

Engine Torque 1.5% 1%

Calibrated Airspeed 0.5 KT 0.3 KT (>.0OKCAS)

Rotor Speed 0.1%

Air Temperature 0.50C

Pressure Altitude 20 Ft

The Impact of these uncertainties on the analysis of hovering data
will be discussed In more detail later.

HELICOPTER PERFORMANCE MODELS: The versatility of the helicopter
expressed in Its ability to fly literal lyin any direction presents an
extremely complex perfoi-mance analysis statement. For the purpose of
describing the subject statistical analysis challenge, we will restrict
the discussion to two Important flight regimes; hover add cruise.

Non dimensional methods are commonly used In helicopter performance
analysis. The parameters of Interest, for our restricted discussion,
are power coefficient (CP), thrust (or weight), coefficient (CT),
advance ratio (N), and advancing tip mach number (M).
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NON DIMENSIONAL PERFORMANCE PARAMETERS

CPu A

po (6/e) ffRf

CT -W

p0 (6/e) %R 4n2

- KTAS X 1.68781
f R

Mu (I + 1) OR

1116.45 /*-e

WHERE:

CONSTANTS

po = S.L. Std Atmospheric density, slug/ft

R - Rotor radius , ft.

i, 1.68781, 1116.45 - CONSTANTS

MEASURED PARAMETERS.

Q a Total delivered torque at rotor speed, Lb-ft.

n - Rotor rotational speed, red/sec.

6 - Ambient atmospheric pressure/S.L. std ambient pressure, Dim.

0 - Ambient atmoshperic absolute temperature/S.L. std. Ambient
absolute temperature, Dim.

W - Aircraft gross weight , lb.

KTAS - True airspeed, Kt.

Hover power required, in simple terms, may be considered to be
composed of Induced power (energy required to produce lift) and rofie
power (energy required to overcome rotational drag of the bladesd t

S Rotational drag Is composed of a bass drag, a component of drag due to

lift, an additional drag due to compressibility and in some cases an addi-
tional drag due to stall. In coefficient form, a model which has proven
effective is:

HOVER POWER REQUIRED MODEL

CP A + 8 CT3 / 2 + C CT3 + f (CT, M)

This is the equation form which will be used with the specific example
to be discussed.
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Forward flight power required includes additional components;
parasite power (energy required to overcome airframe drag), additional
profile power due to forward speed (u), and stall and compressibility
power which Is a function of v, CT, and M. A typical forward flight
power required model is:

FORWARD FLIGHT POWER REQUIRED MODEL2 3
CP w A (+3 2I + D + E p + F (CT,ufM)

The functional relationship indicated for stall and compressibility
power understates the complexity of the phenomena. The onset of stall
Is usually defined for a specific aircraft as a unique relationship
between CT and p. This unique relationship, or boundary, is however a
function of both the drag configuration (I.e., rocket pods, doors open,
etc.) and the rotor tip mach number. The onset of compressibility
effects is usually defined as unique relationship between CT and M,
however, this boundry is also a function of p.

The gross trends of these additional power components are Illus-
trated In Figures I and 2.

Now that you have been introduced to the complexity of our forward
flight problem, lets turn our attention to the simple example problem to
be used to Illustrate our challenge - determination of the change In
hovering performance due to a rotor system change.

COMPARATIVE HOVERING PERFORMANCE TESTS: The United States Army
Engineering Flight Activity conducted comparative tests of two types of
rotor blade Installed on an AH-IR helicopter. The tests were conducted
at field elevations from approximately 2,300 ft to 10,000 ft over a span
of approximately three months. The comparison of out of ground effect
hovering performance was only one of the many objectives of the test and
Is the only subject which will be discussed here.

All tests were flown on the same aircraft with the same engine and
* with the same basic Instrumentation. Data were obtained with each blade

type, "Back to Back", at each of the three test sites,

Data were obtained by stabilizing the helicopter In hover at a skid
height of 100 + 2 ft for a period of not less than 20 sec. Data were
recorded contluously for a period of approximately 10 sec at a sample
rate of 100 samples/sec. The data records were then edited from time
history strip charts. Acceptable data points were then edited to the
most stabilized 6 sac of record. The edited record was then used to
calculate the non-dimensional parameters based on actual data every
tenth of a second. Tho calculated non-dimensional parameters were then
averaged over the period. This leads to the first question to be posed
In this clinical discussion:
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1. "Should data be averaged as measure or after calculation?"

The data gathered during these tests Is presented graphically in
Figures 3 and 4.

DATA ANALYSIS: The edited averaged date points were analyzed by
performing a multiple linear regression of the hover power required In
the form:

3 3/2
CP - A + B CT + C CT + DM

Results of the regressions are summarized as follows:

MULTIPLE LINEAR REGRESSION DATA

3 /CP + A + B CT + C CT + DM

WITH MACH NUMBER NO MACH NUMBER
BLADE A B A B
n 82 58 82 58
A -3.755-8 -3.189-8 -1.380-7 -7.457-8
B 3.673+2 2.430+1 -1.879+2 -2.040+2
C 9.458-1 1.120+0 1.376+0 1.319+0
D 1.250-4 6.431-5 0 0
R 9.859-1 9.843-1 9.832-1 9.839-1
s 8.965-6 1.085-5 9.760-6 1.099-5

The nominal performanceodesign point for the AH-IR is 9,000 lbgroas weight at 4,000 ft, 35 C or a thrust coefficient (CT) of 55.34 X
10 and a tip mach number (M) of 0.6465. Evaluation of the polynomials
yields the following power coefficients for the two blade sets.

CP(A) * 53.24 X 1o05

CP(B) a 50.67 X 10"5

If the problem being addressed was linear with a single Independent
or even multivariate, the analysis of variance would be straight for-ward. Recall the description of the functional relationships given In
AMCP 706-110 where X values can be measured exactly (FI) and where
errors may be present In the X measurement (FII).

Now recall the possible point errors of the present example, as
Implied by Instrumentation accuracies. The vectors representing the
Individual effect of la data urrors on the non-dimensional coefficients
are Illustrated In Figure 5 as are the maximum possible lo measurement
errors and clearly Illustrate that wo are confronted with an FII situation..1
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tinThis leads to the concluding question of this clinical presenta-'l tion:
-I

2. "What procedures are recommended for calculating a speci-
fled difference In average performance, with a chosen
degree of confidence with a multivarlable F1I relation-
sh

1 UMARY OF QUESTIONS:

1. "Should data be averaged as measured, or after calculation?"

2. "What procedures are recoinended for calculating a specified
difference In average performance, with a chosen degree of
confidence with a multivarlable FII relationship?"

REFERENCES:
I 1. "Airworthiness and Flight Characteristics, Improved Main Rotor

Blade on the YAH-IR", Yamakawa Et, Al, USAAEFA Project No 76-08.

I 2. AMCP 706-110, DEC 1969.
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FIGURE 1..COMPRESSIBILITY EFFECTS ON GENERALIZED
LEVEL FLIGHT PERFORMANCE
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FIGURE 3
OUT-OF-GROUND EFFECT I1ONDIMENSIONAL HOVERING PERFORMANCE

YAH-IR USA S/N 70-15936
ENGINE T53-L-703 S/N LE15124Z

-I SKID HEIGHT a 100 FEET

SYM REFERRED ROTOR DENSITY OAT
SPEED RANGE ALTITUDE

(RPM) (FEET) (C)

* 303 - 304 1300 4.0
a 305 1000 1.5

74 * 316 - 326 1240 3.5
p 327 : 331 1040 2.5

300 -301 4240 4.0
"0 311- 312 4260 4.0

70 * 318 -324 4280 4.5...... ..........
70 A 327 - 329 4240 4.0

0 299 - 300 1840 7.5
-' 0 315 -325 1960 8.0

326 1960 8.5
S66 V 292- 304 5580 19.5

o 305 - 315 5540 19.0 U
0 3163-320 5540 19.0
0 301 10860 4.5
a 312 10920 4.5

S62 323 10920 4.5
62 328 10920 4.5

B'

*,, 58 . 0

S54 I/0 NOTES: 1. ED SYMBOLS INDICATE
5,0BLADES S/N 8063 AND
8109.

2. SYMBOLS INDICATEp,5,,BLADES S/N 6500 AND6~502.

3. VERTICAL HEIGHT FROM
a BOTTOM OF SKID TO CENTER

OF ROTOR HUB - 11.9 FEET.
46 4. WINDS LESS THAN 3 KNOTS.

p 5. FREE FLIGHT HOVER
TECHNIQUE.

6. AVERAGE LONGITUDINAL CG
S4 2V(FS) 195.4 (MID).42 7. AVERAGE LATERAL T G-;: w (00) 0.1 (R'T).

r

381
42 46 50 54 58 62 66 70

X 10 GW X10M4AIN ROTOR THRUST COEFFICIENT, CT X 10 , GW0
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FIGURE 4

OUT-OF-GROUND EFFECT NONDIMENSIONAL HOVERING PERFORMANCE
YAH-IR USA S/N 70-15936

ENGINE T53-L-703 S/N LE15124Z
SKID HEIGHT , 100 FEET

SYN REFERRED ROTOR DENSITY OAT
SPEED RANGE ALTITUDE

(RPN) (FEET) (*C) 1
0 300 - 301 1620 6.0

74 0 315 1640 6.0
4 316 -325 1660 6.5

326 - 329 1560 5.4
0 314 4740 12.0

0 319 - 324 4800 12.5
70 c 304 10700 1.5

a 311 -313 10580 0.5V. 3.18 - 326 10700 2.0 Ai

,a 328 - 336 10520 -0.5

66 NOTES:. I. BLADES S/N 1005 A 1009.
2. V ICAL HEIGHT FROM BOTTON OF SKIn) TO

CENTER OF ROTOR HUB - 11.9 FEET.
"3. WINDS LESS THAN 3 KNOTS.

* 62 4. FREE FLIGHT HOVER TECHNIQUE. o625. AVERAGE LONGIT11DIHAL C.G. &
(FS) 195.1 (NIDP.

6. AVEPAgE LA0.1 UTE.L C.G.

658

64

• 46

42

2 46 5 54 58 62 66 70

MAIN ROTOR THRUST COEFFICIENT, CT X 104 1 01pAA2x 10',
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FIGURE S.

RELATIVE EFFECTS OF POINT ERROR

ON HOVER NON DIMENSIONAL COEFFICIENTS

.1116



ANALYSIS OF VARIANCE: SELECTION OF'A MODEL AND SUMMARY STATISTICS

Frederick Steinheiser, Jr. & Kenneth I. Epstein

Army Research Institute for the Behavioral and Social Sciences

Alexandria, VA 22333

SUMMARY

Three models can be used to perform ANOVA: fixed, random, or mixed.

The choice of a model is determined by the sampling plan of the treatments.

e.g., if sampling was exhaustive, then no generalization beyond such

sampled levels is allowable. Two summary statistics may also be computed:

the r-ratio (to rest the hypothesis of an effect due to a given treatmernt).

and an index of the magnitude of experimental effect (also called the

proportion of varjarice accoun-,ed for by a given treatment eff<c"c',. This

paper examines the relationship between ANOVA models. suiriarv szatistics.

and the infErences that can be drawn from them. Data from a completely

crossed repeated measures experiment are presented, to show how some

inferences about effects can change as a function of the model selected

arid *he su.,-ary statistics which are then computed.

117



Introduction

The topics of this paper are models for the analysis of variance

(fixed, random, or mixed ANOVA models), and the subsequent summary

statistics (F-ratio, quasi-F-ratio, and magnitude of treatment effect)

which may be computed following the ANOVA. ANOVA is a useful method

for assessing the statistical significance of treatment effects. But the

significance of an effect is a function of two decisions. First is the

selection of a model and an appropriate sampling plan for elements within

each of the treatment factors. Second is the choice of summary statistics

which indicate the extent of significance achieved. In this paper,

comparisons will be made between models, and between summary statistics.

Specific issues will be clarified concerning the interpretation of results

when various models and summary statistics are used on the same set of data.

Selection of an ANOVA Model

In the fixed-effects model, the levels of the independent variables

are assumed to have been exhaustively sampled. No generalization beyond

those levels sampled is intended, or theoretically permissible. The

random effects model assumes that the selected treatment variables have

been randomly selected from a very large population of such variables.

Generalization of results from the random sample to the population is

allowed. The mixed model allows both fixed and random factors to be

studied in the same experiment, with the results for each factor to be

* •interpreted according to that factor's sampling plan.

"The choice of a model has an impact upon the probability of

"obtaining. the olservations under the null hypothesis for each treatment

:1 118
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(factor). Behavioral research is particularly vulnerable to the choice

of a model, because often the investigator can use only a limited sample

of the possible number of stimuli (items, drug doses, etc.). Furthermore,

because of the difficulty in creating comparable sets of stimuli, the

same stimulus set may, by necessity, be given to a subjects.

As a simple hypothetical experiment (adapted from Clark, 1973),

suppose that two classes of stimuli, nouns and verbs, are individually

shown to subjects. We want to see if it takes the same time to identify

each word as a member of the correct part-of-speech class. This simple

: hypothesis will be shown to have interesting implications for both

experimental design and statistical analysis.

First of all, fixed sets of nouns and verbs which are matched on

relevant parameters, such as number of letters and frequency of occurrence,

should be prepared. If we want to be able to generalize to the full

domain of nouns and verbs, each subject should receive a different random

sample of words from the two lists. However, it is impossible to match

the words on all relevant variables. It is also practically impossible

to use a different random sample of words for each subject.

* IConsider, then, the following experimental design, in which "s"

subjects are each presented "w" different nouns and verbs:

TABLE 1. Assignment of Subjects and Parts of Speech.

Part of Speech
Subject: P1 (nouns) Pp (verbs)

I S1  .... ww/ ww/ 2+1 .... w

hS

In order to compare the adequacy of the several possible F ratios for

testing the difference in response time to the two "treatment" (part of

speech) conditions, the following tables of expected mean squares will

be helpful: 119



TABLE 2. EMS Assuming Parts of Speech is a Fixed Factor, and Subjects

and Words are Random.

Source EMS

P 'Part of speech) 2 12 + w
e wp +0 ~p w~rPx, xwW(PN (Words within part of speech) + so +

w ) 're + xw(p) +swpS (Subjects) a a sxw(p)
+ pw02 +

P Sx.S 2?-
Sxp O.xw(p)

SW(P) a.+ OSwp

,I.

.i! ~ ~ ~ TAL S. •EM Aosesouemihnsgt~cne f h Parts of Speech andt•et Wod r Fxd.n

• the approprubectsare -Randomfrte. dl 1utae i al

W(P) e2 p 0 + i0cS x
e +5O(p) Ox~

S e+W~

P xS 02-+ w02-e pxs

S x 61(P) +Qýee sxw(p)

If we choose to test the significance of the Parts of Speech treatment,

the appropriate F-ratio for the model illustrated in Table 2 is:

F1 = Ms/MSpxs. The only term in the numerator that is not in the

denominator is sw02. However, if this same F-ratio is used with the model
deoinTable 3
in Table 3 (applicable when generalization is desired to all nouns and

verbs), then this F-ratio will contain two terms that are not in the

denominator: p) and sw . And, using alternative error terms in the

parts-of speech fixed, words random model (Table 2) also leads to the

same problem. For example, if we test the parts of speech effect against

the words within parts of speech effect, we obtain F2  MSp/MSw(p). In

this case, EMS exceeds EMS w(p) by the amount of w 2x + w,. Therefore,

p w~)pxs W5.
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this F2 ratio would also be significant when the true contribution of

due to parts of speech (treatments) is really zero. In summary, both

F, and F could be significant when 0 provided that e, and -2 p w px6

exceed zero.

A possible solution to this dilemms 1.s to take the "quasi-F" ratio,

iior F?, which equals (MSp + MSsw(p))/(MSpxs + MSw(p)). Now the only

tern in the numerator which is not in the denominator is e.. However,
p

P' is only approximately distributed as F, although the error involved is

not large, provided that adjustments are made to the degrees of freedom.

Another, more conservative solution is minimum F1, which assumes that

MSsxw(p) is zero. A more detailed discussion of this problem may be found

S* in Clark (1973).

A series of Monte Carlo computer simulations (Forster & Dickinson,

1976) explored the relationship between all of the above F-ratios and

and the resulting type I error rates. Generally, F1 and F2 alone

produced unacceptably high error rates, whereas F' and min r' were more

conservative, as can be seen in Table S.

TABLE 3. Type I Error Rates as a Function of Variation in MSsXp and

MSW(p). (500 observations per situation, alpha = .05, p = 2,

q = 5, r =9)

Source of Variance s'd' s'd.2  F1  F2  min F' F'
Manipulated

Neither 0 0 .044 s046 .010 .026
5 0 .228 .052 .038 .044

1S(p) 10 0 .484 .070 .060 .060

15 0 .586 .056 .048 .052
20 0 .724 .050 .048 .048

MS 0 5 .042 .146 .024 .036sxp 0 10 .064 .388 .042 .042
0 is .036 .520 .032 .034
0 20 .042 .588 .038 .042
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Both 5 5 .124 .096 .034 .042
10 10 .190 .090 .0401 .040
15 15 .132 .056 .064
20 20 .118 .048 .048

As can be seen in Table 4, increasing the number of items and subjects

* tends to decrease F1 type I error for the fixed effects model, where only

subjects are random. Min F' and F' continue to have lower error rates.

TABLE 4. Type I Error Rates as a Function of the Numbers of Subjects and

Items. ( 300 observations per situation, s.d. 1 = a.d. 2  20, and
alpha = .05.)

Number of Subjects Number of Items F1  F2  minF' F'

10 5 .240 .070 .040 .040
10 20 .090 .290 .063 .053
20 5 .307 .077 .067 .067
20 20 .193 .217 .060 .060

The "Magnitude of Effect" as a Summary Statistic

The F ratio indicates the level of statistical significance that can

be attributed to a particular treatment. The degree of statistical

significance is a joint function of the "true" strength of that factor,

the error variability (which reflects the degree of experimental control),

and the sample size (i.e., number of subjects tested). As sample size

increases, there is increasing power to reject a false null hypothesis.

Thus, in conducting large scale experiments with hundreds of subjects,

the large "n" may be necessary in order to detect a weak "signal" buried

in a background of "noisy" data. But the large n may also lead to

spuriously significant F-ratios which are actually statistical artifacts.

One index for assessing the significance of effects is the "magnitude

of effect," also sometimes referred to as the "proportion of variance

accounted for." It is interesting to note that relatively few research

papers have included this index, compared to the ubiquitous F-ratio.
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i Basically, the magnitude of effect (m.e.) measures the degree of

association between the independent variable(s) and the dependent

variable(s). In the simplest case for ANOVA having fixed factors, none

of which are repeated, the m.e. formula is:

mgnitude of effect = (SSeffect - 4feffect x MSerro))/i(SS tota + MSerror).

Rules for deriving m.e. indices are provided by Dodd & Schultz (1973),

along with tables for representiave ANOVA designs.

The concern of the present paper is with the interpretation of these

summary statistics, since both F and m.e. can be computed from the same

set of data. It is clear that as the statistical significance for a given

effect increases--i.e., the p(observationjnull) decreases--the magnitude

for that effect also increases. But it is also possible that an F-ratio

may be highly statistically significant, yet the m.e. for that effect

could account for only some very small proportion of the overall variance.

The results from an experiment summarized in the following section

show that when statistical significance (p<.001) was achieved by several

treatments, the m.e. for these treatments ranged from 1% to 23%.

A Study of Marksmanship

Consider the following experiment which was conducted for the

U.S. Army Military Police School at Fort McClellan, Alabama. Each of

237 students shot a total of 240 handgun rounds from eight different

position-distance combinations. There were three repetitions of 80 shots

each, at stationary silhouette targets. Within each repetition, five

shots were taken, the weapon was reloaded, and five more shots were

fired in the adjacent test lane. (Each subject had previously passed a

training course with a score of at least 35 hits out of 50 shots.) In

the test, 160 trials (2 repetitions) were taken on Thursdays, the third
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was taken on Fridays. The completely crossed design was tkerefore:

AxBxCxD, or 237 x 2 x 8 x 3, or subjects x lanes x tables x

repetitions.

Table 5 highlights the results of the ANOVA from this experKint.

* The first column of F-ratis ( a mixed model, with BC,D as fixed

Sfactois. 1he second column o- F-ratios assumes that only Tables was

a fixed factor. The third r-ratio column assumes that all four factors

I were randomly sampled from their respective populations. The point is

rather obvious: different ANOVA models produce different F-ratios for

null hypothesis rejection, given'"he same set of data.

TABLE 5. Changes in F-Ratios as a Function of ANOVA Model

2 34
Source rJL ~L

A (Subjects) 236 12.80 3.93**** 2.54****

B (Lanes) 1 7.70 7.33**** 5.96** 2.26

i C (Tables) 7 732.71 385.64**** 79.11**** 79.11**

D (Repetitions) 2 34.75 14.18*** 12.5"**** 4.71**

****:2 . .001 ***:a C.01 **:p C.025 *i. C.05

1.d.f. for F-ratios were obtained using the Satterthwaite approximation.

2. A random; B, CO D fixed effects.

3. A, B, D random, C fixed.

4. A, B, C, D all random effects.

The problem of interpreting the F-ratios now needs to be addressed.

1s there, for example, a significant effect due to lanes or to

repetitions? If these effects are assumed to be fixed, the answer is yesq

if they are assumed to be random, the answer for lanes is no, and for

repetitions the level of statistical significance has greatly decreased.
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We offer the suggestion that the choice of the ANOVA model (and

ultimately the level of significance reached) lies in the eye of the

beholder--the scientist himself. From a s persepctive, it may

well be that only those conditions which are studied in the experiment

are of interest. If W_= lanes, repetitions, or even tables are eVqer to

be studied or added to his testing program, then those factors would never

be sampled from a larger population of such factors. However, one might

argue from a scientific point of view that many additional lanes,

repetitions, and firing positions could have been tested. That is,

we happen to have chosen only three repetitions, two lanes per subject,

and eight different distance-position combinations. Thus) the sponsor-

practitioner wishes information that is specific to his prticular test.

In oontrast, the scientific "purist" may perceive this one test or

experiment as merely one of many different kinds which could have been

conducted by him for the sponsor. Hence, the cboice of model indeed

influences the significance levels obtained.

Thi power of the F-ratio to reject a false null hypothesis is a

funct~ion of (1) the "true" strength of the particular factor, and (2)

the eu•.ple size. Although a large sample size may help to detect a weak

signal in a noisy background, the result of using such a large sample

can lead to increasingly significant F-ratios, with little, if any

concomittant increase in the m.e. It is to this latter summary statistic

that we now turn our attention, in the analysis of the same set of

marksmanship data.

The m.e. results are shown in Table 6, where it may be seen that the

largest effect, other than random error, was due to the "Tables"

factor, which'captured a 23% share of the total score variability.
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The effect due to Persons, reflecting individual differences among the 1
students, reached nearly 10%. Several interaction terms, in wh.ch

Tables was a factor, accounted for about 6% to 7%.

TABLE 6.- Changes in Magnitude of Effect Index as a Function of ANOVA Model.

Proportion of Total Variance, Assuming:

Source A Random, A,H,D Random, ABCD Random
BCD Fixed C Fixed

A (Subjects) .0852 .1027 .1030

B (Lanes) .0004 .0006 .0005

C (Tables) .1643 .2454 .2631

D (Repetitions) .0027 .0041 .0042

Note that the effect due to Repetitions in Table 5 was statistically

significant, whereas according to Table 6, Repetitions contributed an

effect worth only about .4%. The reason for this apparent discrepancy

between the two summary statistics is due to the large number of subjects,

which in turn produced a large number of degrees of freedom. This allows

amall F-ratios to more readily achieve statistical significance. Thus, the

values for m.e. in Table 6 act as a check upon the significance levels

listed in Table 5. Therefore, the effect due to Repetitions reveals a

slight, but probably inconsequential learning effect. A similar line of

reasoning holds for the interpretation of the Scores variable in Tables

5 and 6.

Sumuary and Conclusions

In actual experimental testing situations, it may not be easy to

determine whether a given treatment should be classified as a fixed or as

a random effect. For example, in the experiment outlined, the Scores,
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Repetitions, and Tables factors could be considered as either fixed

I. or as random. Recall that Tables had eight levels, representing the

eight specific position-distance combinations that comprise the

* 2marksmanship test. Since there are theoretically an infinite number.,

of distance-position combinations, Tables could be interpreted as a

sampling of eight from this much larger population. Since an experimenter

is often interested in generalizing his results beyond the specific

treatment levels fo a larger set of "real-world" circumstances, a random

effects assignment to Tables could easily be justified. Furthermore,

the .probability of falsely rejecting a true null hypothesis is less when

a treatment is considered to be random as opposed to fixed.

In summary, the wise use of an ANOVA model involves the following

points: (1) determination of fixed vs. random factors, (2)computation of

complete sets of summary statistics, (3) interpretction of the statistics.
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EXPERIMENTAL DESIGN FOR TESTING EFFECT OF INGEST]NG
CRUDE FIBER ON PLASMA ZINC LEVELS IN HUMAN VOLUNTEERS

Walter D. Foster, AFIP, and Barbara F. Harland, FDA
Washington, D.C. 20306

ABSTRACT. The benefits of ingesting dietary fiber may be r.'f. .
by a possible depression of plasma zinc levels. An experiment was

designed to detect a loss of lOug/100ml in plasma zinc (if it ex-
isted) at the .'l significance level with a power of .95. Variance
estimates were deduced -from serum (not plasma) distributions in the
literature and restructured to offer between (and within) subject
varia.nce coponents. Accordinz to the non-central F-distribution,

',e.desin r eters required.14., volunteers to finish the expert-
:.en-, e..h .ith thre- = ama Z -etr.minations before treatment and
thr.ee more at the end. reatment consisted of daily ingestion
of bran muffins and bread containing 2.7grams of crude fiber for a
period of 14 weeks. A similar, group of controls ingested this diet
without added fiber.

I. INTRODUCTION AND OBJECTIVES. For at least 20 years, the
scientific literature has noted the general health benefits that miwht
accrue from the ingestion of crude fiber, "-:ith specific emphasis on
crude fiber's potential for reducing the incidence and severity of
atherosclerosis. The popular literature of recent years has reiter-
ated this theme. Thus, a growing proportion of the reading public
is actively altering diets to include more crude fiber. The manu-
facturers of bread and breakfast foods have instituted advertising
porograms to sell newly developed, high fiber products.

S..at is not well known is the possibility of detrimental ef-
tfects from increased crude fiber, specifically the excretion of zinc
and other minerals from the body. This problem has been acknowledg,
in the medical literature only recently and has been slow to reach
the popular literature and the advertising media.

The Food and Drug Administration bears the responsibility
"for monitoring (and regulating, if necessary,) the production and
sale of food. T'o augment the information currently available, FDA
asked for experimentation specifically'designed to measure the de-
crease (if any) in zinc and other minerals in blood plasma as a re-
sult of the daily ingestion of 2.7 grams of crude fiber in addition
to self-Zelected diet.

:t is the cbjective of this report to describe in detail the
d•esizn and suggested analysis for this experiment and to document
-he e):erinental. protocol selected.

?he hypothetical time trend shown in Figure 1 formed the
-:f the plan. :.:easurew•ents of plasma levels %.ere to be ob-

ta ne e f ; re tr ..ea.te. Treatment was defined to be the daily In-
-estcr.f c 2.7 "rams of crude Jber derived from unprocessed bran,

..ntc ... . .ns, dat.e. bed. an. ":.c, ies. A"te r a tr-n-
.. . . .'_.. ' 'Je 'r levels -c riac' 1--.. .... . ....- :e e 3 t raa .. a -.
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equilibrium, further plasma determinations were to be obtained.

PRE- TRANSITION EQUILIB-
TREAT- RIUM
MENT

-- . ~ aControl. . . . .
• Fiber

FIGURE 1. Hypothetical time trend of plasma zinc

The specific questions were: 1. duration of transition period;
2. number of subjects in the treatment group; 3. number of sub-
jects in the control group on the same regimen but without bran;
and 4. number of plasma measurements in the pre-treatment and
equilibrium periods.

II. ESTIMATION OF SAMPLE SIZES. Neither our own experience

nor the literature was helpful in answering objective #1: length
Sof transition period. Our solution was arbitrary--12 weeks, a

most conservative estimate to allow for complete transition. 'No
weeks were allotted fur the pre-treatment baseline testing; two
weeks were added for the equilibrium period, making a total of 16.

Objectives 2-4, how many subjects and how many periods, were
approached simultaneously. The paradigm below shows the detailed
experimental design and suggested analysis of variance, but does
not specify how many subjects and how many periods.

Pre- Equilib-
Treat- rium
ment _

A -- - --

wB - - - A.V.
Treat- E. Pds. Pds. GROUPSment U. DIETS.

Group WS - - - Gx
Con ~ a - -- 5UBJECTS I

Con- -a . . . .-. SxD T
trol mb - - - - PERIODS IN D
Group . GxP

SxP
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It was convenient to consider the treatment group alone as an approach to
* suggesting the number of subjects and periods.

, DIETS

Pre- Equilib
STreat- rium

ment A. V. EXPECTED MAN SQUARE

Treat- A - - - - - - SUBJECTS a + dpaz

ment B - - - --- DIETS Z X a + pa-Z sa

Group SxD • + Pa÷
SP S

PERIODS IN D az + Ga
6?

S - -- - -- S• . . a• SP

The problem was to secure estimates cf those variance components to be used
to test the effect of Diets and to determine s and p. Design criteria were

* . defined as follows: require that a difference in plasma level due to diet of

as much as 10 ug/lOOml be statistically significant at the .01 level with the

power of the test set at .95. In terms ofkthe non-central F-distribution, we::have 5~l )2/k
Non-Central F : 2 0 2

4 EMS/Sample Size

We set k * 2

02 * 32 for a .01, 8 * .05, 6 * 10

• ¢2 62/2

or, solving for p,

2Op/S + a
!P P - ,• . (1)

SD-
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Measurements of serum (not plasma) levels repeated in time
for subjects on a steady-state but self-selected diet were available
from Pekarek (72.), but not in analysis of variance format. An ap-
proximate reconstruction of Pekarek's data in AV form is shown below.

d.f. MS EMS
Subjects COl~U aP + Palo
Periods in S 728 81 a + 2

If we assume that p L 827/99 a 8.35, then CYp + 82 * 61 and
Pug- a• &1753. These estimates were not out of lfne with those
recons ructed similarly from other investigators, Davies (69),
Pecoud (75), Halstead (74), and Nichols (76). However, there was
a problem in changing scale from serum values to the expected
equivalent in plasma levels.

A currently used conversion from serum to plasma means is a
simple percentage drop: ax * plasma - serum - Xp - XS

A Xs/ 1.16 - XS - -. I4XS.
A plot of s(X) vs 7 using both serum and plasma reports revealed
the consistent relation: As a AX/5 so tUsa

1e f1 u-.0275XgOl -2.8 for typical serum
levels of i00.ug/100ml. In terms of variances, the estimates become
a P + of - 38.4 (Plasma). Equation (1) requires estimatep of a ,.. 3
aim, and o2 thus far, the literature has yielded only usp + -p
TI I contains values of a and p for a variety of relationships
between 2~p O2 2

y sprf SDac and a p in an effort to "box in" a portion of
hypersurface represented with the hope that impracticable values
of s and p would be accompanied by unlikely values of the
variances. Clearly a considerable degree of guessing was involved
when the values of s - 14 and P - 3 were chosen from the center
of Table 1. Thus, 14 subjects who would finish the experiment was
a minimum requirement. A similar number was recommended for the
control group with the emphabis on a greater number in the treatment
group if absolute balance was not possible.

IIl. ALLOCATION OF SUBJECTS. Allocation of the 34 persons
who answered the request for volunteers was based on a balance of
height, weight, sex, level of physical activity, and a measure of
body fat. The physical factors were combined to give an index num-
ber Y as follows:

Y = 2(t - T) + (w - W)/3, where

t - triceps skinfold, mm; T - median skinfold for that age,sex; j
w = weight, pounds; W - median weight for height,sex, and frame

from the Metropolitan Life tables. I
The index numbers Y were found to be reasonably related to a some-
what similar index constructed by Lamphier in Nichols(76). After

i
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ranking the subjects by their index number Y and according to their
level of physical activity, adjacent subjects were allotted to
groups at random. Neither the subjects nor the technicians who
made the plasma determinations knew the group allocations; every
precaution possible was employed to make it truly a blind experi-
ment.
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FIELD VERIFICATION OF RADIATION CHARACTERISTICS
OF RADARS

JL HARRIS
Aeroballistics Analysis Branch

Aeroballistics DirectorateI Technology Laboratory
US Army Missile Research and Development Command

Redstone Arsenal, Alabama

ABSTRACT. This paper deals specifically with work done
to determine from field test data, the radiation patterns of
the radars of the Improved HAWK system. It does not attempt
to treat the subject in general. The problem of data analysis
is the underlying subject of this paper. Many problems were

p encountered when doing the analysis which would yield a radia-
tion pattern. These are discussed. Some rebults are presented
and conclusions are drawn. The conclusions deal with measures
which will make the job of data analysis easier and quicker,.
and should apply generally.

I. INTRODUCTION. In 1975, from Juiy to November, field
tests were conduoted with the radars of the Improved HAWK system.
The tests were conducted at Naval Weapons Cente±' (NWC), China
Lake, CA. The tests were motivated by the Anti-Radiation
Missile prbblem (ARM). The primary objectives and findings of
the tests are not the subject of this paper. During the tests,
data was collected from which the transmit patterns of the pri-
mary radars could be determined. Pattern data had been made
available by the system prime contractor. This was data taken
on a radar range, in a receive rather than transmit mode, and
in a free space environment, to whatever extent this latter
was aohieveable. It was felt that the data taken under field
test conditions should be processed to yield the patterns of

o. the antennas in a transmit mode, in a natural environment (if
China Lake can be judged natural), with multipath present. It
was also felt that the data could be processed in such a way
that it would provide a check point for a multipath model which
had been developed. For these reasons an effort was started to

* develop the radar patterns from the data which had been collected.

II. DATA COLLECTED. Figure 1 shows the geometry of the
tests and test set-up. An RF sensor was mounted in the gondola
of a hot air balloon. The balloon was then permitted to rise to
various altitudes and as the radar of interest was allowed to
rotate with its main beam at a fixed elevation, the output of
the RF sensor was recorded. Thus, the geometry of the radar
relative to the balloon borne RF sensor was widely variable,
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0 to 360 degrees of azimuth and from almost zero elevation up
to about 60 degrees (the mechanical limit). Also mounted in
the gondola of the ballon, and boresighted with the RF sensor,
was an IR seeker, a television camera, and a riflescope. The
riflescope allowed the operator to point the seeker cluster
toward the radar. The TV camera provided a visual record of
where the seeker cluster was pointed. The IR seeker provided
a quantitative history of where the seeker cluster had been
pointed because an IR source was provided at the radar and
the seeker was gimballed and free to track the IR source. The
IR seeker gimbal angles provide a record of the pointing error
of the seeker cluster.

The quantities which were recorded are the intensity output,
the two (right-left and up-down) direction finding outputs, and
a status indicator from the RF sensor; the two gimbal angles
from the IR sensor; and north marks from the radars. Also, the
geometric data to relate the balloon position to the radar
position was recorded. This was named the "Call Out" data
because of the way it was collected and recorded. A person was
atationed with a sextant and he kept sighting on the balloon
and calling-out the balloon azimuth and elevation. Someone
would write it down in the log with time of occurrence. The
balloon operator would observe range lines painted on the ground
and call out the range and someone would write it down. There
was also data from an altimeter to be called out and written down.
This handwritten log was the only source of the"Call Out" data.
The other data was recorded on FM tape, copies of which were
furnished to MICOM for use in data analysis. Copies of the log
were also furnished. Some of the FM tapes were digitized and
copies of these were furnished to MICOM.

III. ANALYSIS APPROACH. The problem with analysis was not
so much a problem of approach as of retreat. As soon as some
of the digitized tapes were available at MICOM, people began to
be solicted to "do something" with the data. One young man
started to do something with the data and found that some of the
digital tapes could not be read at all, the rest were digitized
at only 20 samples per second, and that there were chronic tape
reading problems with the computer system which he had chosen to
use. Being a very capable and many faceted individual, he quickly
found something else to do and has been busy ever since. So it

Swent, for about a year. Then the-author was solicited to "do
something" with the data, and got stuck with it. To abbreviate
the story, the data tapes were digitized by the Test and Evalua-
tion Directorate of the Research, Development and Engineering.
Laboratory of MICOM. The digitization rate was 100 times per
second, and tapes were generated which were compatible with the
CDC 6600 computer system which was chosen for the analysis.

i J
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No big problems have been encountered with this part of the
effort, Just communications.

Only carefully selected portions of the FM tapes have been
digitized because of the large amount of data which exists. For
a segment of interest, chosen with the aid of the test conductors'
log, the digitized tapes provide the outputs of both the sensors
and the radar north marks, as a function of time. The test con-
ductor's log is used to make a table of balloon elevation angle,[ azimuth angle, and range as a function of the same time base.
These are entered into a computer program which reads the tape,
and then calculates the relative geometry which existed for every
time recorded on the digital tape. To represent the radar in-
tensity pattern as a function of the relative geometry, angular
space was divided into cells which were I degree of elevation and
3 degrees of azimuth. All samples occuring in a particular cell
were then averaged and a standard deviation calculated. The
quantities processed were the intensity output (which indicates
radar pattern) and the direction finding outputs of the RF seeker.
The latter provide information about the multipath situation.
The number of samples which occurred in each cell was also re-
corded. For a particular radar, data from several different
days of testing were lumped together if the RF conditions were
the same.

IV. STATUS. The only analysis which has yet been done is
that Just described. No time series approach or spectral analysis
approach has been attempted. The most complete set of results is
for the low altitude search radar. Much less data was recorded
for the illumination radar. No analysis has yet been done with
data from the high altitude search radar.

V. RESULTS.

A. Radiation Pattern. Figure II shows a three dimen-sional plot of the intenslty data from the RF sensor, for th3 low

altitude search radar. In this figure 0. relative azimuth means
that the radar beam is pointed in azimuth toward the balloon.
Negative relative azimuth is to the right. The elevation is
balloon elevation angle above the radar beam. Note that the
intensity scale is not provided here. It can be seen that the
most power is with the main beam pointed toward the balloon and
that power decreases with balloon elevation. Data for main beam
on the balloon is not shown here and was not taken in this test.
Other places where no data is shown are at high balloon elevations
where none was recorded, and at a few orientations where there
"was insufficient received power at the RF sensor. Figure III
shows a representation of data from the contractors tests. The
intensity scale is again unspecified, and is different from
previous figure. The thing which seems worthy of note here is
that the intensity levels in some regions are approximately the
same, but the patterns measured by the contractor show much
steeper gradients. Indeed, the plot is full of spikes. There
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is higher intensity in a quite narrow region at zero relative
azimuth for all elevation angles shown. Within about ten degrees
to either side of this region the intensity drops abruptly down
to a region which is approximately 180 degrees total width. In
this region, the intensity spikes seem randomly scattered and
their height decreases roughly linearly as the edge of the region
is approached. Another striking difference between the two plots
is the shape variation with azimuth at a particular elevation. The
field test data is high at zero azimuth, drops for a few degrees
to each side of zero, then rises again and drops again. Some
behavior of this nature can be seen at all elevation angles. The
contractors data shows this sort of tendency only at approximately
40 degrees elevation angle, and in regions approximately 900 to
either side of zero azimuth. Still another difference is that
the field test data shows intensity to decrease consistently with
balloon elevation, but the contractors data does not change much
with elevation angle, except at the 40 degrees elevation angle
Just discussed. The contractors data was based upon a single
set of measurements and no averaging was done. Consultation
with people who are experts in the field has revealed that there
may be a good deal of randomness in the structure of a radiation
pattern determined from a single set of measurements. In other
words, if the measurement set were to be repeated by the contractor,
the radiation pattern would not be duplicated, but should have
the same general characteristics. If several measurement sets were
averaged together, then the resulting pattern should be much more
similar to the pattern determined by averaging field test results,
as I have done. This argument would lead to a conclusion that the
examination of the field test data on a scan by scan basis should
reveal a rapidly changing intensity history as the various radia-
tion spikes are oriented toward the balloon. The field test data
has been inspected on a scan by scan basis and the intensity
variation within a scan does not appear to be of this rapidly
changing nature. In fact, many of the scans have the same
characteristics as the plot of the averaged data. Figure IV
shown three scans of this data. It is thought that the data re-
cording rocess (the RF sensor, telemetry process, and stripchart
recorder) do not introduce enough filtering to prevent response
to intensity spikes. But effort is being put forth to determine
whether or not this is true.

B. Multipath Model. The multipath model validation effort
will now be discussed. The model hypothesizes that multipath is
produced by a diffuse type of reflection of the main beam radia-
tion of this radar. For some radars it might be necessary to
include other high level lobes also. It must be emphasized that
diffuse rather than specular radiation is assumed. The main lobe
is assumed to "paint" a swath of ground as illustrated in Figure V.
This area then becomes a distributed radiator. The model calculates
the area and centroid of the swath and using empirically derived
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data taken at NWC in a previous test, calculates the power
radiated from the swath of ground. Assuming this power
effectively originates from the area centroid of the swath,
the centroid of the direct path and the multipath radiation
combined can be calculated. Obviously this centroid will be
at some point displaced from the radar on a line toward the
centroid of the swath of area. The model would then predict
that the sensed emitter location would revolve around the
actual radar location at the rotation rate of the radar. If
the RF sensors were directly overhead, the sensed emitter
location would be on a circle and the azimuth and elevation
components of the angular error would be equal. In the
general case the elevation angular error is smaller because
the circle appears to be elliptical when viewed at an angle.
This multipath error model has not been extensively validated.
One objective of analysis of the field test data Is to vali-
date the model, or to discover its short comings. Figure VI
shows idealized error plots for this low altitude search
radar, at a particular balloon elevation. When the radar

* •main beam is 90 degrees to the right of the balloon, the
azimuth channel error should be a maximum value and to the
right, while the elevation channel error should be zero.
When the main beam is pointed toward the balloon (or away
"from it), the elevation channel error should be a maximum,
and down (or up) and the azimuth channel error should be
zero. Figure VII shows a three dimensional plot of the
azimuth channel error from the field test. It is to be
noted that at a particular elevation angle the error behaves
in the same manner as the idealized error of Figure VI. Figure
VIII shows the elevation channel error, where again the be-
havior is as the model would predict, in a qualitative sense.

' ! The preceding figures have demonstrated that multipath

seems to originate by diffuse scattering of radiation from
the radar main beam on Lhe ground, because this assumption
seems to describe what was observed in the field test. The
comparison is qualitative, however. The multipath model has
not been exercised to see to what degree it will reproduce
the field test results. To do this, a good representation
of the radar pattern is needed. At this point it is not
clear what to use. The pattern from the field test data
contains an intensity contribution from the multipath, and
there are no measurements which are free of multipath, except
the contractors measurement. These look a good bit different
from the pattern derived from the field test, and it is felt
that the difference cannot be attributed to the multipath
power alone. Also, these would be very difficult to represent.
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The next step toward validation of this model is likely
to be the calculation of the multipath intensity contribution
for each angular cell where field test data was collected,
using the model as is. This intensity can then be subtracted
from the intensity measured in this field test and the differ-
ence taken as the radar contribution, The multipath model
can then be used to produce error data for all geometrics
of the field test, and this compared to the error data fromthe field test. An Iterative process could be used to refine
the model,

V. PROBLEMS. There exists the problem of the' radiation
pattern being different from that measured by the contractor.
On one hand, there is the opinion that if the contractors
facility does not yield the same results as field tests,
then it's no good at all. The other extreme of opinion is
that the agreement is as close as should be expected.

The number of samples which have been averaged to find
mean intensity, and mean angular error components, is variable.
Near the lower and upper' extremes of balloon elevation, fewer
samples were taken. This contributes to the raggedness of
the estimates in those regions. In regions where the received
intensity was low there are also fewer samples. In this case,
there is a double contribution to the raggedness of the esti-
mates because the RF sensor noise becomes more important at
low signal. But, all the available data has been used.

VII. CONCLUSION3S.

A. A data reduction/analysis plan should be
prepared prior to the test.

B. Where exchange of magnetic tapes is contemplated,
it would be very good to verify compatibility with a pre-test
sample.

C. The person or persons who will ultimately end
up doing the analysis should be intimately involved in test
planning, determination of data requirements, and perhaps the
conduct of the test. At a minimum, he should observe some
typical portions of testing.
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m * CONSTRUCTION OF CONFIDENCE LIMITS
IN A NONLINEAR REGRESSION

C. MAXSON GREENLAND
LYNN H. DAVIS

SYSTEMS ASSESSMENT OFFICE
Chemical Systems Laboratory

Aberdeen Proving Ground, Maryland

ABSTRACT. This problem was presented in a clinical session at the

Tw.enty-Third Conference on the Design of Experiments. It arises from

the need to assmass the uncertainties associated with calibration curves

which have been fitted to observed data. The discussion includes a

particular nonlinear model for the curve, the regression procedures,

and several attempted methods for calculating IOO(1-a)% confidence limits

for the curve. A detailed description is given of an approach outlined

by panel members to whom the problem was presented. Finally, a complete

example is given, including graphical representation of a portion of a

IOO(i-m)O confidence region in the parameter space, and a description of

the computer work necessary to obtain numerical results.

I. BACKGROUND. Sensitive electronic analyzers which are now in use

are capable of measuring very 'nw concentrations (on the order of 1-15

nanograms per milliliter) of chemical substances in solution. The

uncertainties inherent in the development of calibration curves for this

type of equipment assume great importance in quantitative analyses of

highly toxic materials. At a given significance level, a, a properly-

constructed confidence band for a calibration curve is the basis for

obtaining interval estimates of concentration x (the independent variable)

for an observed value y (the jeendent variable) of the analyzer output.

An interval of particular in'erest is determined by the intersection of

the upper confidence limit curve and the Y-axis. This point, yc' is

called the decision limit since an observed instrument response of less

than or equal magnitude has a non-negligible probability of having been

produced by a zero X-value. The X-value, xD, corresponding to yc and

determined by the lower confidence limit curve is called the detection

limit, the lowest value of X which can be distinguished from zero.

Hence, for concentration measurements at a significance level of t, xD
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is the lowest concentration which can be detected, and y is the lowest
reading which distinguishes between the presence or absence of a

chemical substance. These relationships, which have been discussed by

Hubaux and Vos (ref. 1), are illustrated for a hypothetical nonlinear

curve in Figure 1.

.1 Y
Ymax curve

Calibration curve• • "-• Ym curve•

JI m

ii ,

xo X

Figure 1. Calibration curve and confidence band; minimum (XL).
maximum (Xy) and regression value (•) corresponding to chart
reading (YJ; decision limit (yC) and detection limlt .(xD),

II. REGRESSION PROCEDURES. The calibration data for analyzer

instruments used in a recent Chemical Systems Laboratory study demonstrated

a configuration similar to Figure 1, where the abscissa represents the

concentration in nanograms/mlliliter (1 ng a 10O9 grams), and the

ordinate represents observed chart-readings.

Because of time constraints, the first calibration curves were

developed by means of linear interpolation between points. Later, when

more time became available, a model of the form y w a + blnx was examined;

it had the approximate configuration of the data plot and was linear In

the parameters a and b, but y decreases without bound as x approaches zero.

In order to translate the curve to the left so that the point (0,10) falls
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reasonably close to the curve, the following modified equation Was tried:
y - a + bln(x+k)

The unknown parameters were obtained as follows:

1) The parameter k was estimated; then z-ln(x+k) transformed the
model into y-a+bz, which is linear in a and b.

2) The three parameters (p-3).of the regression curve were
determined by the method of least squares.|!I

3) The value of k was varied in increments of 0.1, and new fits were

calculated by means of an HP25 handheld electronic calculator until a

maximum value of the correlation coefficient was obtsined.
4) The equation which produced the greatest value for the correlation

coefficient was the model selected for the calibration curve.

A representative example of eight data pairs (n-8) risulted in the

following regression equation:
y w, -38.405 + 41.167 In (x+3.2)

and a correlation coefficient of 0,9996. The standard error of the

estimate Is:
)1

E n-p /(y abin ,)
0.9131

Then, following a procedure described by Natrella (ref. 2), 100(1-i)%
confidence intervals were calculated for the inverse function.

X a exp a (Y'-a)]-k

whereV' is the average of n' chart readings. The equation for the

interval, which was also programed on the HP25, is

_-/01/ b
C - C xx

* X - mean of the observed X-values

u mean of the observed Y-values
s xx = I Xi2 " ( / Xl) 2/n

SY a standard error of the estimate of Y

I.
i,3
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n - number of calibration observations

n' a number of new observations of Y

s - standard error of the estimate of b

Although this appears to be a somewhat more refined approach than

successive linear interpolations, several theoretical objectives occur:

1) There is no physical reason to assume an underlying logarithmic

relationship between concentration and the electrical output of the

analyzer.

2) The equation cannot be transformed to one which is linear in the

parameter k.

3) The size of the increments applied to k was arbitrarily chosen.

4) The correlation coefficient Is a questionable criterion of
selection of the parameter values.

These considerations led to a search for improved procedures.

In this instance, the analyzer operates on the principle of light

absorption. The intensity of light transmitted through a sample of the

solution is inversely proportional to concentration and affects the

output of a photocell, which causes the deflection of a continuously-

recording pen. The process of radiation absorption is described by the

Beer-Lambert Law:

-ri intensity of light before transmission

I -w intensity of transmitted light

Assuing simpl inea e k r absorption coefficient

L1 a length of light path through solution

Assuming a simple linear relationship between intensity of transmitted
light and instrument reading leads to the following:

y + bI

* a + bIoeaklx

*1 i *a+ OYX

Note: The symbol a for the parameter should not be confused with the

symbol a for the statistical significance level.

t
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At Chemical Systems Laboratory (CSL) there is available an International
Mathematics and Statistics Library (IMSL) subroutine (ref. 3) which
estimates a, 8 and y for this function, calculates the standard error
of the estimate (SE), and determines the variance-covariance (VCV)
matrix for a, 8 and y. Only partial details of this proprietaryprocedure are available, but an estimate of y is determined iteratively
to a specified accuracy using a Fibonacci technique, Then a and 0 aredetermined by the method of least squares. When this example was run onthe UNIVAC 1108 computer at CSL, ten iterations of the subroutine gave
the regression equation

y a 92.394 - 81.868 (0. 88 35 2 )X
and S * 0.3167, which is approximately one-third the value of SEEE
obtained for the logarithmic model.

A method described by Snedecor and Cochran (ref. 4), based on aTaylor's series expansion of the function, is particularly satisfactory
if good intial estimates of the parameters are available. Consider y
as a function of y:

SY f(Y) + By , where y c Ek.i] and O<k<l.
If f is contir,uous on Ck,lJ and differentiable on (kl), and if r 1 g rk,t]
then for each y L (k,1)

f(y) - f(r 1 ) + (y-rl)f'(ro), where y < r0 < r
If r 1 is chosen very close to y, the following approximation holds:

f(y) - f(rj) + (y-r,)f'(rl)
Therefore,

y + orlx + (ylr 1)xr x-
* 

,, aX0 + OX1 + AX2
0 12where X0  1 , Xw r- X2 * xr1 X ] and A - o(y-rl). If the above

, 
11

equation were exact, it would be possible to obtain estimates ;, 0 and ,of the coefficients a, o and A; • could then be calculated. The
truncation of the Taylor's series introduces an error;. henre, thecalculated values are estimates a, b and c of the estimates &, B and •,respectively. It is then possible to use procedures applicable to
multiple linear regression to fit the model

V" aX0 + bXU + cX2
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where c -b (r 2 - r 1 )
If X is the matrix of observed values of the X1 , i.e.

~1 a

X ,A. b ,Y- ,

c

1 rIXn "x rX1n"l1 Y

and X' is the transpose of X, then the matrix equation X'XA w X'Y can

be solved for A:
A * (X§X)"I X'Y

Then, If a, b and r 2 , r 1 + F are substituted into the original equation

for a, 0 and y, respectively, SE can be calculated. The procedure is
repeated until SE reaches a minimum value. In this example the final

equation is
Sy 91.263 - 80.916 (. 8 80 12 )x

and SE - 0.2581, a further reduction in the standard error of about 19%.

This two-step approach was used to fit all the calibration curves In

the CSL study.

Since the calibration curves are used to obtain concentration

values from chart readings, the Inverse function

ini
provides the necessary transformation.

, III. CONFIDENCE REGIONS

A. Preliminary Calculations
The inverse matrix of Gauss multipliers* (ctj) W (XX)lwas

used to calculate the standard error of each coefficient:
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II
S E a aS 0.7185 &

sb aE 'c-22 - 0.6528

. sEc /"C 33  C22  C23

) = SE cv'33/b -*0.00213

Then 100(1-o)% confidence limits for each estimated parameter are given
by

a + =,n-pb

- r+ t+n pSr

,i A simultaneous 100(1-ct)% confidence band is required, i.e., a confidence.
•' band which will contain the calibration curve 100(i-ct)% of the time,

i ~Breiman (ref. 5) has shown that individual I00(1-a,)% confidence intervals

,i 'for k parameters, fram 100(1-k=)% simultaneous confidence intervals.THence, a 95% simultaneous confidence region for the three parameters a , B

S~and y represents 98.3% individual intervals. Then t 0 .0 1 7 ,5 * 3.5. and

-- : o c [88. 748, 93. 778J
; 13 c E-83.201. -78.631"]

-:: 'y c [0.87265, 0,887580J
By selecting combinations of the parametric values within these intervals

i! ' which give maximum and minimum values for y, a 95% simultaneous confidence

i'. region for y was calculated. The procedure is relatively crude and

; leads to fairly wide intervals. The detection limit is approximately

!"y

1 ng/ml, and the interval estimates become wider at the higher concentrations.
A method is needed to calculate improved (more restricted) confidence
regions, if possib+e.

I' B. Suggested Procedure
I• The following method for determining a 100(1-a)% simultaneous

;!:! confidence band for the calibration curve y • a + By developed from
if! suggestions of the panel members to whom this problem was presented at
ti the Twenty-Third Design of Experiments Conference in Monterey, CA. A new

:I model, y - 91.269 - 8 0 .g2 1 (. 8 8 0 1 4 )x, based on 24 calibration points,
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fitted as previously described, is introduced here.

In the preceding section 100(1-m)%, individual confidence intervals

were calculated for each parameter. A set of 3 linearly independent

unit vectors, A, B, r can be considered as an orthornormal basis for a

vector space P called the parameter space. Every point of P can be

written as a linear combination of A, B and r, i.e., as a 3-tuple of

real numbers (a, 0, y). All points of P whose components lie within

the separate confidence intervals determine a rectangular parallelopiped

in P. An extension of a method described by Draper and Smith (ref. 6)

permits the further restriction of the points (a, 0, y) to a subset which
represents an approximately 100(1-a)% simultaneous confidence region C

for the three parameters.

All points must satisfy the equation

S(a, o, y)- Si, J, )[+ F (p, n-p, 1-*
n n

where S(6. B, y) *i (Y1 " -"xi) 2

and ( Y, ', •) is the point in P whose components are the parameter

values of the calibration curve. Hence, the right side of the equation

is a real-valued number, S, which is a function of (i) the sum of the

squared residuals of the calibration curve, (ii) the number of parameters

to be estimated, p (here p-3), (Mii) the number of data pairs,

n (here n-24) and (iv) the confidence level, 1-a (here awO.05).

Expanding the equation,

S(a. 3, -y) Yi (V1 - -

; "1!1 [(Y 8Y')'yi]

n n x. n

y2Xi*62"2 (Yi-O)y 0 + E (Y1-a) 2I i . •
1.1

a AB2 - 2B0 + C
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2I
Since AO2  280 + (C-S) 0,

-(-2• /48 .4A(C-S)

0l 2A

where A- a2xi B a i "( -) .Xj, and C -y ).

Since for this example it is simpler to calculate the O-values from
a and y, the 3-tuples will be denoted by (a,y,8) to conform to the

to 'usual coordinate convention (xy,z) in three-dimensional drawings. A

"visualization of the parameter surface is achieved by use of the fact

that every point (a,y,8) of P which lies on the surface or interior to

it has real-valued conponents. As a was held constant the two real a

values were calculated for successively incremented y values; the

process was repeated for successive m increments. To obtain sufficiently

small initial values and sufficiently large final values for a and y

to bracket the entire surface it was necessary to widen the 98.3%

individual confidence intervals by about 25%. In this example, the 98.3%

confidence intervals for a and y are [90,031, 92.508J and :0.87647, 0.883821 ,
respectively; the intervals [89.800, 92.gog] and [0.87544, 0.88454] are

sufficiently large to include the a and y values which apply to C.

Increment sizes of 0.01 and 0.0001 for a and y, respectively, require

approximately 3 minutes central processor time to produce approximately

11,500 points of C. Figure 2 illustrates the )happing procedures, using
a.; a hypothetical sphere as an example. ,

I.L

Figure 2. Illustration of the method used to determine the points on
the surface of a solid figure.
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A package of FORTRAN callable subroutines, the Perspective Plotting

System, is available at CSL for producing drawings of perspective views

of three-dimensional objects. Appropriately ordered arrays of data values

are necessary as input to this graphics package. The array of approximately
11,500 o-values for the region C, which was created as described from

the (a, y) pairs, contains values between -82.311 and -79.620; hence, C

lies in the negative 0 half-space. Attempts to achieve graphical

representations of C using the calculated array were only partially

successful because of limitations of the Perspective Plotting System.

For example, the coordinates for an acceptable "observer's position" must

be selected, and plots ot closed solid figures are not now possible.

However, a perspective drawing of approximately one-half of the region

was produced by means of a two-step transformation on the coordinates.

First, subtraction of the centroid coordinates from each point (0, y, 02)

translated the upper portion of C to the vicinity of the origin in P.

Second, a transformation matrix applied to the translated points rotated

the figure in such a way that the vector lamax-c, Ymax' 0min')

* is rotated into the Ar-plane. The net effect is approximately a one-to-

one linear mapping of the points (a, y, 02) onto points (a', y', 019

where so > 0.

A computer graphics drawing of this object was produced by a

Tektronix 4051 Graphic System using approximately 2700 points. The final

version shown in Figure 3 was produced by means of a CalComp Pen Plotter.

The true scales of the A and B directions have a ratio of approximately

1:1. The ratio of the true scale of A to that of r is approximately

100:1. Despite the unavoidable distortion of scale in the drawing,

interesting geometrical characteristics of the region are apparent. The

figure appears to have symmetries with respect to certain axes and planes.

Alternating ridges and grooves encircle C in the r-direction. Analysis

of the mathematical properties of the function which defines C has not
been completed.
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For each concentration x, the calibration curve y(x) * Oyx lies

within a 100(1-a)% confidence band determined by thp 100(1-a)% confidence

region C in P. To determine the curves which define the band, it is

necessary to calculate, for each x, the maximum and minimum values of y

for all values of the parameters in the region. It is possible to

eliminate from consideration all points (a,yo) in the interior of C

for the following reasons. The directional derivatives of y in the

coordinate direction are

Dy•y- 1

For all x and for all parameter values obtained here (note y f 0)

these derivatives are defined. At no point (cOl, YO 8o) is it true

that Dy - Day - Dyy - 0. Since it is necessary that the three partial

derivatives equal zero simultaneously for an extreme value of the function

to exist at a point, it follows that extreme values of y on the closed

region must occur on the boundary C.

For each x from 0 to 15.1 ng/ml (in increments of 0.01) the value of

y was computed for approximately 11,500 points of C. The maximum and

minimum y values for each x represent the 100(1-a)% confidence limits

for the instrument response. At a 9500 confidence level the decision

limit for this curve is 10.74 divisions and the detection limit is

0.08 ng/ml; at the higher concentration levels" (about 14.5 ng/ml), the

interval represents an uncertainty of approximately 1 0.3 ng/ml.

The table gives the maximum and minimum chart readings for concentrations

from 0 to 15 ny/ml. Figure 4 i, a graph of these points to illustrate

the calibration curve :onfidence band.
TABLE

ANALYZER CHART READINGS

L.ncentration, X V.• YMux
Ing/mQ!Ldvlslns) (INIJ~s)q~ (diVISIOns)

0 9.95 10.74 10.35
19.78 20.31 20.05

2 28.33 28.84 28.18
3 3,5.0 36.39 36.10
4 42.39 43.03 42.71
S 48.20 48.86 48.03
6 53.32 53.98 53.6S
7 57.86 58.47 14,16
8 61.8.& 62.42 62.13
9 65.31 65.89 65.62

10 61.43 68.97 68.V0
11 71,12 71.69 71.40
12 73.47 74.10 73.78
13 71.1 76.24 YS.88
14 77.30 78,15 77 72
15 78.17 79.03 7n. 3
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C. Future Investigations

The work described here has involved fitting the model

y * + OYX by least squares and the development of a numerical method

of determining a 100(1-a)% confidence band for the curve. Continuing

investigations will include (1) extension, if possible, of the methods
to additional nonlinear models which are of importance in testing

and other experimental work. (ii) analytic investigation of the

functions, and (iii) development of a computer program to permit a

more complete visualization of closed surfaces of the type encountered

m* in this study.
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COMPUTING THE DEFINITE INTEGRAL 7 -(px 2 + qx + dx
0

ON A. PROGRAMMABLE CALCULATOR

tDonald W. Rankin

Army Materiel Test and Evaluation Directorate
US Army White Sands Missile Ran&*

White Sands Missile RanRe, Nov Mexico

ABSTRACT. When a reliability function is expressed by the exponential
of a quadratic form, computation of mean life or mean time to failure
requires evaluation of the definite integral

:a (px + qx + r)dx

A transformation of variables is effected by completing the square. This
allows e to be expressed rather simply in terms of the complementary error
function of the new variable. The latter can be evaluated by either of

two well-known infinite series.

In using these series and, indeed, in selecting which of the two
should be employed in a given case, certain difficulties are met with
and there are some pitfalls to be avoided. A reasonably economical
solution to the problems encountered is found.

I. THE PROBLEH. Recently, in conducting a software reliability
analysis, employment of the modified Schick-Wolverton model was indicated
SD*. This gives rise to the following equation:

S7C2 2)

MTTF e -7 a- + x, (1)
o

a and c2 being constants obtained by observation. Solution is by "com-

plating the square". Thus

7 ..2..2 + a2 + aX +X

0

Ssae 1" -c2 +j) 2 dx.

0

Le •t t ca +Tx. ThanTdt- dx. Note that whenx O, t -ca, whence
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22 t. (2)

toca

In passing, observe that the aboince of a constant term in the first
exponent entails no lose of generality.

The error function and its complement are defineds

erf x -2iot dt and

erfc z- 2- "t dt -1ertz.

Thug, setting z c ca,

e- eO 2 erfc . (3)

II. THE ASYMPTOTIC SERIES FOR erfc z. For large values of s, a use-
ful asymptotic exansion is 2J

1 1" XS+ 13 l4 13 -5 -6 +"
re a rfcu-ew 2  -s T- S (4)

22 23

The general term is T' n - + 1 . and2 am

the recurrence ratio Tn 2 -T i

It is easy to see that the sallest term will occur when 0 < - n + z2 <
the series diverging after that point. Using this inequality to lientify
the mollest term, and truncating the series itmediately thereafter,
results in a (nearly) minimu error. The worst case occurs when 2 -
"n being the Integer subscript of the mallest term. Some values of the
relative error in this sum, together with the relative value of the mall-
eat term, are tabulated for illustrati.)n:
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TABLE I

,2 liI IT, 1--2 ICI l nl

rn
ce c6 c0 ce

0.5 1.0000 1.5251 7.5 4.3261 2-4 8.3823 E-4

1.5 0.23446 0.41149 8.5 1.5741 E-4 3.0609 E-4

2.5 0.075564 0.13867 9.5 5.7399 X-5 1.1193 E-4

3.5 2.6047 E-2 4.8859 E-2 10.5 2.0964 E-5 4.0976 F-5

4.5 9.2158 E-3 1.7514 E-2 11.5 7.6657 E-6 1.5012 E-5

S5.5 3.3030 E-3 6.3317 E-3 12.5 2.8056 E-6 5.5034 2-6

6.5 1.1926 E-3 2.3002 E-3 13.5 1.0276 E-6 2.0185 E-6

11I. A SERIES FOR erf x. For small values of x, the infinite series

2 20 x2n+ 1
erf s- e I 3.5 .(2n + 1) (5)

,l •- n-oi+
is employed C43. Although the series converges for all finite values of
x, it in of little practical use when x is large. Convergence in then
very slow - hundreds, even thousands of terms being required -- and an
unacceptably high number of significant digits are lost when the .ubtrac-
tion erfc z - 1 - erf z is performed, even though the computations be
done in multiple precision.

Recalling that xr(x) - r(x + 1) and that r(C) -- , we have

r +(m - • • . where m is an integer. This

can be rewritten

,~~ r3+½ 5 1,, ,.... (2m -,,1) ý-?'

Setting m - n + 1, we can write imnediately

"z2 • 2n + 1

erf - a-* - - (6)
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The wanted function, of course, is 1
/~ 2 ,f 2

6 a-i c z - W af - (1- erf )

Z2 *2n + 1
C~ inor +

2n 2n + 1
" { r(n+1)(or }7)

This last form not only points up a problem -- that e must be computed
2n + I

to the stae precision as n -- but suggests the answer:

Th two parts can d sumed u the same subroutine, varying only
the Writ ter h andeth iro t vhlu e R suminji nx. This advantage
(programing simplicity) was decisive In the choice of serise for erf a,
even though one is known which converges slightly faster [3]3

& It is interesting to note that a simple change of suming index pro-

duces the elegant form

rub rc -~o +

An estimate of the number of significant digits lost by subtraction
is given by

l log1  erfc z10810 •s2 1-ef) 100

a alerf z)

Some values of - log10  erfc s are tabulated:
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TABLE 2

SI Iz -log1 0erfc a -lo1021 rfc x z -logl 0erfe x

1.5 1.470 2.4 3.162 3.3 5.515

1.6 1.626 2.5 3.390 3.4 5.818

.1.7 1.790 2.6 3.627 3.5 6.129

1.8 1.962 2.7 3.872 3.6 6.449

1.9 2.142 2.8 4.125 3.7 6.777

2.0 2.330 2.9 4.386 3.8 7.'113

2.1 2.526 3.0 4.656 3.9 7.459

2.2 2.730 3.1 4.934 4.0 7.812

2.3 2.942 3.2 5.220 4 .1 8.174

Table 2 does not take into account the affect of round-off error In the
individual terms.

It can be seen at once that, as z increases, significant digits are
* lost at an accelerating rate. An actul single-precision program on a

13-digit calculator produced the following result:

TABLE 3

argument range significant number of
(value of x) digits terms in sum

0.83 to 1.42 10 13 to 20

1.43 to 2.01 9 19 to 26

2.02 to 2.51 8 25 to 33

2.52 to 2.93 7 31 to 38

2.94 to 3.30 6 37 to 43

j 3.31 to 3.63 5 42 to 48

3.64 to 3.94 4 46 to 53

3.95 to 4.22 3 51 to 57

4.23 to 4.48 2 55 to 61

4.49 to 4.73 1 59 to 65

4.74 to * noise only 63 or more
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IV. WHICH SERIES TO UE? To point up the problem which remains,
let us assume there is a requirementxto compute to six significant
digits on a machine which computes e with a maximum relative error of
10-9. For values of the argument up to about 2.33 (sz2 - 5.43), the
second series (see eq. 7) can be used, and for values above 3.68
(s2 - 13.54), the asymptotic series (see eq. 4) can be used if truncated
after the smallest term. But what to to be done when the argument falls
"in-between"? (i.e., when 2.33 < z - 3.68?)

The answer, aurprisingly enough, lies In the asymptotic series
itself. Asymptotic series of this type* have a most interesting and
useful property: Provided that the truncated series consists of at
least two terms Ci.e., n 11), and further provided that the series Is
terminated •mediately after the smallest term, the approximation ALWAYS
Is Improved by halving the last term. Performing this operation and
tabulating (see Table 4), it is seen that the improvement, thouah quite

* !noticeable, is not yet enough to solve the problem.

TABLE 4

* ~ ~ ~ Z 2 I.i..I'iI Z2 IL.i 2 Ii.I.qI

c. ce

0.5 0.23743 5.5 1.3721 E-4 10.5 4.7599 E-7

1.5 0.028718 6.5 4.2497 E-5 11.5 1.5957 1-7
S2.5 6.2314 E-3 7.5 1.3495 9-5 12.5 5.3917 E-8

3.5 1.6177 E-3 8.5 4.3663 E-6 13.5 1.8340 1-8
4.5 4.5884 E-4 9.5 1.4333 E-6 14.5 6.2743 E-9

* It is both interesting and informative to compute and plot the ratio

(See Figure 1.) Since an alternating series always "overshoots",
the last term used and the error in the partial sum will he of the same

slp, and their ratio will be positive definite. The function

f(z) -
* Tn

SIt *.e., with simple terms. Should -- say -- Bernouitli's numbers appear,
the adjective "useful" may no longer be applicable# due to increased
progrming difficulties.
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is a "Saw-tooth", having two values at those points where a, + ; is an
integer. (There are two equal "amaZl.lst" terms, and it Is arbitrary
whether one or both are used.) It is obvious that the sum of the two
values ia unity.

After applying the half-term correction, the remaining error can be
stated as c - ½ Tn, of course. Using a similarly-formed ratio, we define!n

e Tn

n

Let us tabulate, not S(z), but Its reciprocal, at the points where
92 + ½ - n (i.e., an integer), using the greater of the two values

TABLE 5

n 1 Tn 2n

0.5 1 6.4234 5156 7.5 8 62.1131 7520

1.5 2 14.3283 6175 8.5 9 70.1017 6038

2.5 3 22.2527 7233 9.5 10 78.0924 2300

3.5 4 30.2036 5992 10.5 11 86.0846 4634

4.5 5 38.1700'2696 11.5 12 94.0780 7107

I 5.5 6 46.1457 3873 12.5 13 102.0724 3985

6.5 7 54.1274 3674 13.5 14 110.0675 6367

By inspection, we can approximate at these end-points reasonably
Swell by the function

*On -2+ from which

n + 1

8n 2 + 6n- 1

The right-hand end of the r4mp is then estimated by

-(/ ) " -(n+ 2)

8n2 + 22n + 13
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V. APPROXIMATING T•hE RAMIP FUNCTION. We can iwprove both the

notation and the accuracy as follows. Let

X2 + z+ - n + x. (10)

The integer part of t is represented by n, the decimal part by x.
Sis a continuous variable, n a discrete one. The Seneral form of the
approximating function is taken to be

1 1

- 8C- 2 +

which upon development yields

• *C) ---- • ÷ (11)

8C2 + (Ba- 2) ý + (1- 2a)

A little Investigation reveals that in the region of interest (z > 2), a
7near-optimum formula is given by assigning the value a - Thus

7
-*( __+-__ 

(12)
&C2 + 5& -

i4

An a fortunate happcnstance, the denominator is factorable, allowing the

expression to be reduced to partial fractions,

g*(0) (13)

An extremely close approximation to the ramp is given by

1 - 2x +g*()
n

Adopting the notation I Ti for the finite series truncated after the
i~o

smallest term, we find

co- o T nT[ + [,- 2x + L-.x 2 ) s*(•)] (14)

i~o n

Some worst-case results are given in Table 6, below.

& 171



TABLE 6

Residual error, q, in fo from"corrected" asymptotic series for erfe z

TI U

2.00 -1.255331 1-7 -9.7940 E-6

2.07 2.103996 E-7 22.3722 E-6

2.17 1.429149 E-7 -24.3138 1-6

2.30 -0.407994 3-7 13.1637 1-6

2.39 -0.279393 1-7 -14.2805 E-6

2.50 8.7552 E-9 8.0323 E-6

2.59 6.0404 2-9 -9.0574 1-6

2.70 -2.0204 1-9 5.6537 1-6

2.78 -1.3582 3-9 -6.0688 E-6

2.88 0.4902 1-9 3.9942 E-6

2.95 3.409 11-10 -4.278 1-6

3.04 -1.248 1-10 2.772 2-6

3.12 -0.833 E-10 -3.105 1-6

3.20 0.328 1-10 2,081 C-6

3.27 0.229 E-10 -2.331 E-6

3.36 -9 E-12 1.69 E-6

3.42 -6 1-12 -1.80 1-6

3.50 3 1-12 1.35 E-6

3.57 2 1-12 -1.47 2-6

3.64 -1 E-12 0.88 3-6

It is found that employment of the "corrective" term extends the use
of the asymptotic eeries dovn to an argument of a - 1.99, thereby over-
lapping the useful range of the other series and providing a solution to

I
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the six-place problem posed in Section IV. In fact, if "break points"
of z - 2.1 and z - 4.1 are chosen*, the relative error throughout the
whole spectrum probably does not exceed 3.5 x 10-7. A program written
for a thirteen-digit calculator, with break points at z - 2,5 and
a - 4.4 (summing the first eleven terms thereafter), produces a value
of cO which errs no more than one in the eighth decimal place.

VI. INCREASING THE ACCURACY. In the remote event that additional
accuracy is required, two avenues of approach offer themselves.

a. The calculations can be performed in double- (or triple-)
precision. This will extend the useful range of the argument when
employing the series for erf z. This procedure Is NOT recommended, since
it will increase the running time by many orders of magnitude.

b. The accuracy of the "corrective" term can be improved, thereby
extending downward still further the use of the asymptotic series for
erfc z, Since we will be operating in a region where the asymptotic
series cuntains very few terms anyway, it is unlikely that running time
will be too adversely affected, In pursuit of our goal, two steps are
taken,

1. The degree of the rational expression for g*(C) is
increased. It is found to be

t2+a (15)
8e3 + (8* - 2) g2 + (1 - 2az + 80) t + a 28-

Selecting a - 1.2 and 0 - 1.05 results in

B*( = ' (16)
80S + 1.6&2 + 7C - 1.65

2. More terms are added to the ramp function. Thus

When s ; 4.> , merely sum the f.rst eleven terms (1 0 0, 1, 2, ... , 10)
of the asymptotic series.

1171
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nir x E

ce- I T I-T[1+1-2

(17)
4r2 Jý

Using these refinements, with breAk poinits at 2.34 and 4.77, rediicas
the taximum error on a 13-digit calculator to less than 1.7 x E-9.
Attempts to further reduce the maximum error will prove to be tedious
and somewhat unrewarding, since the "smallest" term In the asymptotic
series becomes too large to le.d itself to the process.
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A FRESHMAN ERROR CAN BE FATAL

OR

I'H NOT SO SURE ABOUT BEING 95 PERCENT SURE

NORMAN L. WYKOFF
US ARMY JEFFERSON PROVING GROUND

MADISON, IN 47250

ABSTRACT.

The testing of artillery ammunition Involves the use of control rounds to
measure the "day-to-day" variations caused by different tubes, recoils and
weather conditions. The control rounds are assembled from components that
have been tested (separately and In combination) In sufficient quantity to
establish the performance characteristics of control components and com-
plete rounds.

The difficulty comes when a component Is nearly depleted and must be re-
placed. Unless the match is perfect, the performance characteristics of
the control will shift. The accepted technique thus far has been to check
the match or mismatch using a 95 percent confidence Interval for the means
of rounds with the old (nn20) and new (n-20) component. Obviously, this
criteria does little to assure the Integrity of the control and thus can
Jeopardize troops In the field.

The problem Is two-fold: (1) what is an optimal technique, considering
both cost and control Integrity; and (2) how can we eliminate the Idea
that use of a 95 percent confidence interval means you are almost certain
to make a good choice.
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I. INTRODUCTION:

Part of the mission of US Army Jefferson Proving Ground Is to ballistically
test large caliber ammunition. Statistically, the process is not overly
complicated, but there are many factors that vary, Independently and depend-
ently, that keep the process from being a simple one.

A round of ammunition is a complex machine. There are many components
that must do their particular job •n exactly the right way, at exactly the
right time for the complete round to behave properly.

FIGURE I

PROPELLINO CHARCE -CASE -1H41 HARGI

• .
PRMR.!*s..;...,.,

IMMR.i• ~ l

TRACER ROrATINO @AND

PROJECTILE BOOY

In this example there are eight major components plus the whole assemblage
to be ballistically tested. That Is, performance parameter. such as veloc-
Ity, chamber pressure, target accuracy, range accuracy and/or functioning
must be evalurted for each component when the round Is fired from the appro-
priate weapon.

There are many different factors that can affect a parameter such as the
velocity of the round. For example, tube wear, recoil system, give of the
earth under the weapon, size of the projectile, type of rotating band,
burning rate of the propellant, and of course the amount of propellant
will each have an effect. Some of these factors cannot readily be neasured
and mayIn fact change from trial to trial. The obvious way to estimate
the total of all these extraneous effects Is to use a control round. A
control round with a long history of performance including many very care-
fully monitored firings can be iised to estimate the trial-to-trial or day-
to-day variation as It Is usually called. in brief, If the control rounds
have a mean velocity that Is 20 foot-seconds lower than normal in a trial,
we assume that the sum total of all those effects yields a 20 foot-second
decrease In the velocity of the test rounds also. Therefore we add 20 foot-
seconds to the observed test velocities to "correct" them to standard con-
ditions.

1I
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In order to reduce the number of Interactions, a test component is tested
against the control component by loading each Into rounds that are "ident-
Ical" except for the component being tested. In this way we can measure
the change In performance of the test component from the control component.

By now you can see the dependence on the performance Integrity of the con-
trol round for a critical parameter such as velocity. It Is exactly this
dependence that creates my concern In this present problem. Before I de-
scribe the problem more fully, let me emphasize that obtaining the long
history on the control rounds Is expensive In time, money and material.

II. The Problem: Because of the variety of uses of the control round, one
componlit my-W•e nearly depleted long before the others. It only makes
sense then, because of economics to substitute a new lot of the component,
rather than restart the whole process.

Suppose the component In question Is the projectile, It obviously has an
effect on the velocity. Incidentally, we will not considar the-propellant
since the substitution process Is different for the propellant. The ques-
tion now is, what Is the best procedure to use in substituting a new pro-
Jectlle lot?

Figure 2 shows the description of the accepted practice.

FIGURE 2

S. FIRING CWTTII_ SUSTrTUT COMPOINTrs, The purpose of these firings
is to determine the aff uct ol chnnging a selected component in tho master
or reference established values. When any change of a component in the
reference round is required, the following steop are tokens

a. From engineering Judament and past data decide whether Cho change
Is likely to affect the valocILy or pressure level of the round.

b. If a change in velocity or pressure is expected, fire 20 rounds
from the check tube with the old component and 20 with the new, keeping
all other components the same.

e. If the firing in b above Is not statistically different (signifi-
canct level of 3), accept the now component.

d. If the firing in b above shows a significnnt difference, fire
20 additional rounds with the new component and 20 vith the old in each
of two tubes with not less than 90 pe-rcent life remaining (totals 80
rounds). If this firing also shows a significant difference, discard
the now component and select a second replacement component. Repeat
the test procedure In b until a satisfactory replacement component is
obtained,

e. For multicharge systems, conduct the firings under b at sones at
which ballistic ditftroncas would be at a maximum. If the difference is
significant at that charge or charges, follow the procedure of d. above.

f. before testing a substitute lot, evaluate the perfortnnnce of
the existing calibration rounds (para 3.5) and submit the evaluation to
AMiCOM.
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It leaves quite a bit to the Imagination of the reader doesn't It. Although,
perhaps not too much. The underlying assumption In the process Is that the
continuous parameters (velocity In this case) have a normal distribution with
Vi and a unknown and estimable for a given trial only by the results of that
trial. There are a few possible Interpretations for the meaning of the
statement above but the one that seems to have been used by those who have
the task of Interpreting it is to use-the 2 sample t-test (2 sided). That
Is, the test Is based on:

"-FI G I

0 -" I f n ,ns A mx a
(a) t -

The ac~ceptannce region for the statistic 02) Ist

This Is axactly what you saw In that freshman statistics course a few years

ago. However, hopefully you saw more. You understood that the so called
95 percent confidence Interval given in (3) Is an Interval big enough to
contain the difference of the sample means (given these values of 51 and
Si) 95 percent of the time If the two samples actually come from the same
population and that you didn't fall prey to the freshman fallacy of be-
lieving that if rl - 7'a fell In this Interval you were 95 percent sure
that pl and jig were actually the same. If you made this mistake you prob-

: ably never did reconcile the Implication that the larger 99 percent Interval
made you even more certain that the match was good. Of iourse, we don't
make such errors. Perhaps if the phrase "confidence Interval" wasn't used

onnothers wouldn't either. I wish we could change this to a percent loca-
tion Interval".
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The problem Is hopefully now clear. The process Is good for the seller,
but not for the buyer and I represent the buyer. To say It a different
way, this Is the classic case where cA (the probability of rejecting a
test lot that is ,an exact match) is fixed and B (the probability that
a opoorly matched lot Is accepted) varies and for some reason that I pre-
fer not to put In-print, we choose a to be small.

In the following example, the numbers are realistic although they donot
represent actual data. Suppose T1, S1, nl, and •2• S2 , na represent the
old and new sample means, standard deviations, and numbers. Suppose fur-
ther than n, - n2 - 20, 7'i - 5050, S - S2. - 26.6 (the maximum allowable
value for acceptance tests for this round) and 3r, w 5067. The acceptance
region Is shown In Figure 4 below.

By now some are asking, why not use the location Interval based on the
first sample and .see if 71 falls Inside?

FISURE 4

95% Location Interva lBased on 2 Sample Test

-17.03 0 17.03 d

$032.97 5050 5067.03 72

95% Location Interval Blaed on Sample I

-12.45 0 12.45 d

5037.55 050 5062.45 "2

95% Location Interval Blaed on Sample 2

I -

-12.*S 0 12.45 d*

05 5 067 5019*.45 1r,
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It seems to be a good Idea, It does shorten the Interval with no Increase
In sample size or cost. 1 believe, however, that this has not been used
because it doesn't make use of S2 (or S,, If you (:enter the interval about
T2) and it Is necessary to have samples taken from each of the populations
and therefore both means and standard deviations are available.

Looking at this another way for the numbers already given.

FIGURE 5

TWO SAMPLE TEST

5 -. 0 &N\

ONE SAMPLE TEST

5050 5067

a *
S - .23

Quite a change In 8 from the two sample to the one sample technique.
Better, but not good enough for me. I still represent the buyer and I
am very Insistent that the product "prove" to me that It Is good. In
other words, I want to have a high degree of confidence that the produmt
Is good, the same thing that freshman student thinks he has. I am not
content to reject or not reject the claim that they are the same. You
see, I must think of that poor GI who must use this ammunition to defend
himself. If we are lax and let the velocity level change too much, he
just might miss the tank that Is bearing down on him.
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There seem to be two things for mo to do. First, to convince the people
Involved that the one sample technique is preferrable in terms of the
power of the test, even though it doesn't use all the sample informatlon,
and second, to take the best steps to decrease B even more. The two
alternatives for decreasing 8 are to increase the sample size or Increase
*. Both techniques dramatically increase the cost In my application, but
It Is difficult to predict the exact amount. My choice Is to Increase a.
This will result in rejecting more lots of good components, but I will be
more content to accept a lot that passes the more severe test. Increasing
the sample size will increase the confidence in the decision but at a
greater cost in each lot considered.

F I I|
9IA 6

I we Solo $coy.$ $67

I- I"- A
3050 5087 3050 0578 57

In Figure 6 we have a comparison of the distribution for a- .50, n - 20

and a - .0S with n - 40 for 71 - 5050 and Ra- 5067. I like the tight cut-
offs on the first one and the separation on the second. However, Figure 6
only tells part of Ohe story. The question I originally thought I would
po•a for the panel Is: Which Is better, Increase a or n?

But after I drew the OC curves for n - 20 with a .50, n - 40 with a. -

•.05 and the currently used 2 sample test, I have changed the question to:
How much should I Increase a?
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LASER VELOCIMETER DATA INTERPRETATION
BY HISTOGRAM AND SPECTRAL ANALYSIS

Warren H. Young, Jr.,* James F. Meyers,** and Danny R. Hoad*
Structures Laboratory, U.S. Army Research and Technology

Laboratories (AVRADCOM)
NASA Langley Research Center

Hampton, Virginia 23665

ABSTRACT. A laser velocimeter has been used to survey turbulent,
unsteady flows. Data have been analyzed in histogram form. The time-
averaged flow field has been found from ensemble averages. By assuming
stationary flow, the standard deviation and excess give the RMS unsteadiness
in the flow and the statistical uncertainty in the mean and standard deviation.

The calculation of part of the unsteady flow field has been attempted
by a Monte Carlo method. Partial success in explaining bimodal and skewed
histograms has been achieved. This approach has been limited by the necessity
of constructing a hypothetical flow field and the inability to define a
mathematically unique solution.

The definition of power spectra has been achieved for single components
of velocity. Autocorrelation has been chosen to construct the power spectrum
because of the random sample time. Measurements of velocity are available
only when seed particles pass through the sample volume. This is a random
event with a Poisson distribution so that the usual time series analyses are
precluded.

Theory has been developed for cross-correlation and cross-spectral
analyses for two velocity components. However, methods for analysis of
nonstationary flow have not yet been explored.

I. INTRODUCTION. The reduction and Interpretation of data acquired by
laser velocimetry in large wind Lunnsls has illustrated several unique aspects
of the data analysis. The distinctive characteristics of the laser velocimeter
that contribute to the need for new data interpretation techniques are pri-
marily the ability to calculate errors prior to the test, the acquisition of
discrete, digital measurements, and the randomness of the time between
measurements. The purpose of this paper is to illustrate several techniques
that have been developed specifically for handling laser velocimeter
measurements, to outline the limitations of the present techniques, and to
anticipate opportunities and problems that lie in the immediate future.

In order to define the source of the unique aspects of laser velocimetry,
the apparatus is briefly described. This description is sufficient to explain
the interaction between the error analysis and the histogram moments. Monte
Carlo methods extend the usefulness of the histogram as an interpretative tool.

*Structures Laboratory, USARTL (AVRADCOM)
**NASA Langley Research Center
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The second part of the paper deals with the analysis of the time
dependence of the flow. The capabilities of time analysis are linked both to
the manner in which laser velocimeter measurement times relate to the time
scales of the flow and to the method of analysis of the data. The most
general method in use, power spectra, is described in detail. Differences
between laser velocimeter and traditional frequency analyses are identified.
The basic requirements of conditional sampling are outlined, and.several
future needs are identified.

II. APPARATUS

Example tests: The laser velocimeter has been used in large wind
tunnels at Langley Research Center to measure flow velocities about aero-
dynamic models such as wings. Two such test setups are shown in figure 1
(Ref. 1) and figure 2. These particular models are wings at very high angles
of attack (about 19.50). The two tests used flow velocities of 170 m/sec
and 50 m/sec, respectively. In both cases, measurements were taken of the
two components of velocity which lie in a plane perpendicular to the wing span.
This plane cut the center of the span of the wing. Thus, from figures 1 and 2,
it can be seen that the velocity measurements were made perpendicular to the
laser beams.

Laser velocimeter operation: In order to measure two components of
velocity, three separate laser beams were used (Ref. 1). These beams inter-
sected at the center span of the wing. The beams were 0.3 mm in diameter so
the volume of intersection (called the sample volume) was about 0.3 mm in
diameter and 1 cm in length. Seed particles that pass through this sample
volume scatter laser light back through the optics system to photomultiplier
tubes. The two photomultiplier-tube outputs are separately checked for
consistency and strength. A signal of sufficient quality will allow the
measurement of one or both velocity components to be measured for these
particular tests with a bias error between -1.33 percent and +0.91 percent
and a +0.47 percent random uncertainty.

Examaljdaa: The example tests required the analysis of the several
million velocity measurements acquired at several hundre.. points in the
velocity field about an airfoil. Figure 3 shows a section of the wing &6 the
center span and the directions, labeled UL and VL, in which the two
components are measured. The tail of each arrow in figures 4 and 5 represents
a measurement point. At each measurement point several hundred (up to 4096)
individual velocity measurements were made in a period that varied from
10 seconds to several minutes.

III. DATA INTERPRETATION BY HISTOGRAM

Histogram moments: The most elementarM compact means of presenting laser
velocimeter data is by means of a histogram of ensembles of each component of
velocity. Figure 6 shows four pairs of histograms measured at four points
above the airfoil. The ordinate, Ci, is the percentage of measurdments that lie

between Ui - and Ui + . In this case, AU was 2.56 m/sec.
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The histogram shape approximates a probability density function, P(U).

Thus, Ci is approximately P(UI)MU. The mean of the probability density

function is equal to the time-averaged velocity, that is

S n U(t)dt -U (U) dUa T fJI CUd

The histogram mean approximates the time-averaged velocity under the
following assumptions:

1. The true velocity probability density function is independent of
time (i.e. stationary in time).

2. The laser velocimeter is equally likely to measure all velocities,
or else any velocity bias (Ref. 2) has been removed before the formation of
the histogram. Therefore, this source of error, as well as particle tracking
errors, will be ignored in this discussion.

3. The number of velocity measurements, D ' is large. The statistical

uncertainty in the mean for a 95 percent confidence limit is given by:

Uncertainty in U +2

2
where 2 is the variance of the histogram.

In a similar manner, the standard deviation, a, is identified as the
root-mean-square value of U(t) - U8 . The statistical uncertainty in a for

a 95 percent confidence limit is given by (Ref. 3):

Uncertainty in CY a j 2 I1 + E

where E is the excess (or kurtosis - 3) of the histogram. The uncertainty
in a is usually an order of magnitude larger than the random error in the

individual velocity measurement. (The random error in individual velocity
measurements was discussed in section II). For example, if 6 is 3.50 m/sec
and the excess is zero and if 2030 measurements were made, then the uncertainty
is 0.11 M/sec.

Histogram interpretation: The histograms are extrcmely useful in the physical
interpretation of the flow field. Figure 7 shows contours of constant resultant
mean velocities, and figure 8 shows contours of constant resultant standard
deviation. The aerodynamic interpretation of these contours was hindered by the
complete lack of any time history or frequency information in the histograms.
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For example, the cause of the locus of maximums of standard deviations (shown in
figure 8 by a dotted line) may be caused by (1) high levels of random turbulence,
(2) a moving continuous vortex sheet, (3) by a series of discrete vortices that
move down the airfoil, or (4) any combination of the above. In order to
distingufsh between these possibilities, a Monte Carlo simulation of the histograms
was used.

Monte Carlo simulation: The first step in the Monte Carlo simul-tion is the
creation of a flow model. A vortex model, shown in figure 9, was hypothesized.
By adjusting the physical parameters (such as vortex strength and height above
the airfoil), calculating the velocities causee by the vortex model, and
simulating the laser velocimeter measuring process, a series of simulated
histograms were generated. Figure 10 shows a comparison, above the 15 percent
chord of the airfoil, of the actual measured pairs of histograms along with
the simulated histograms for each component. The Monte Carlo method has
qualitatively reproduced the measured bimodal histograms. The simulation
reproduces the high velocities in both components at point "a." Although
points "b" through "d" have low measured velocities, the simulation does not
show the lower velocities before points "d" and "e." Point "f" shows good
simulation of the bimodal histogram. For points "g" through "J" a gradual shift
to a low mean velocity is reasonably simulated. Although this and other Monte
Carlo type simulations were considered to be successful, the hypothetical flow
model cannot be accepted with complete assurance because other models could yield
the same result. The Monte Carlo method cannot define a unique time variation
of volocity. This is one of several severe defects in the present method of
histogram interpretation.

Limitations on interpretation: The value of the histograms is augmented
by one of the distinctive characteristics of the laser velocimeter. The laser
velocimeter is an unusual measurement tool in that the errors, both random and
bias, of individual measurements are talculable, and therefore known, before
the experiment begins. Since several hundred, or even several thousand, indi-
vidual velocity measurements are available to calculate each value of mean
velocity and standard deviation, the statistical uncertainty of these two
histogram moments are also calculable. However, it has not been possible to
fully utilize the advantages of precalculable errors. For example, the
uncertainty in the higher moments of the histogram, skew and excess have not
been derived, and their physical significance apart from indicating large
deviation from a Gaussian shape, is not readily interpretable. Also, it has
not been possible to assign any quantitative degree of certainty to the histo-
gram shape. Thus, no numerical measure for the goodness-of-fit of the Monte
Carlo simulation'and the measured histogram has been found.

The splitting of histograms into a steady (mean) part and unsteady part
is a familiar process. Although each of the two peaks of a bimodal histogram
represents a flow state, there is no analysis available to separate the
unsteadiness in each state so that the two states may be analyzed separately.
The goal of such an analysis should be a means of defining the set of time
histories that may reasonably have yielded the histogram.

Extension of hintograz' applicability: The difficulties in histogram
interpretation will be compounded when the laser velocimeter is structured to
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simultaneously measure both velocity components so that pairs of components,
(U0 , Vi) are recorded. The type of histograms that might result from this

process is shown in figure 11. Although much more information is available in
the two-dimensional histograms, the type of analysis needed to fully utilize
this information is not available.

The need for histogram analysis will not disappear with the newer laser-
velocimeter data-acquisition systems that record time of measurement. The
his togram analysis requires at l..ast ani order of magnitude fewer velocity
nieasurements and measurement rates than frequency spectrum representations.
Conditional samrIng techniques yield many histograms. Also, the histogram
analysis will continue to be used for online confirmation of the data validity
and online selection. An optimization of data-acquisition cost may eventually
consist of histogram representation at most points in the velocity field and
selective use of temporal or frequency analyses.

IV. TIMED VELOCITY MEASUREMENTS. In order to analyze velocity data by
time-based methods, it is necessary to record the time lapse, or interarrival
time, between successive velocity measurements. The task of measuring inter-
arrival times has been performed by a clock with three ranges. For interarrival
times between 0.1 Usec and 6.55 meec, the clock has a resolution of 0.1 psec.
Using automatic ranging, the clock measures up to 0.655 sec with a resolution
of 1 Usec and up to 0.655 sec with 10 Usec resolution. The typical time scales
for large-scale wind-tunnel power spectrum measurements are shown in Table 1.

TABLE I.- TYPICAL TIME SCALES SUITABLE FOR POWER SPECTRA

Maximum resolution of the interarrival clock ................ 0.1 psec
Instrument reset time between measurements . . . . . . . 0.4 lseac
Time required for one velocity to be measured . . . . . 2 esec
Residence time of a particle in sample volume . . . .... 2 to 20 Ussec
Average particle arrival time (T/D) ............ 0.5 to 2 mseac
Maximum interarrival time measurable by clock . . . . . . . 0.655 sec
Measurement period, T ............. . .. . . . 2 to l00se

Since existing instrumentation is capable of making a velocity measure-
ment about every 2.4 Usec (this depends on particle velocity, Bragg cell
frequency, and fringe spacing), the limiting factor on data rate is the rate
at which particles pass through the sample volume. Since each particle must
pass through 10 fringe planes (spaced, in the second test, 26.5 pm apart) in
order to register a velocity measurement, and since the planes are moving in
the measurement direction at a speed governed by the Bragg call frequency
(e.g., 132 m/sec), the time required for one velocity measurement is the reset
time plus (10 x fringe spacing)/(Bragg velocity + measured particle velocity).
The average particle interarrival time depends on the average flow velocity,
the diameter of the sample volume (e.g., 0.314 mm), and the density of

particles of measurable size. Although the minimum time between measurements
will vary from 2.4 ijsec for various test conditions, it is unlikely to be a
restrictive factor in the data analysis. This can be demonstrated by a
comparison to the average data rate.
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The arrival of particles through the sample volume has been found to approxi-

mate a Poisson distribution in time (Ref. 4). This distribution takes the form

p~n;OTT. twen;st a n - 0, 1, 2...

where X is the mean particle arrival rate. In an experimental test case, where
Swas 317 measurements per second, It was found that the limitations imposed by
the system, minimum interarrival time of 2.4Usec and the maximum interarrival
time of .6•q second, pose no limitations on the measurement of interarrival times,
figure 12.

V. POWER SPECTRA. The best developed method of presentation of the time
dependence in unsteady flows is power spectra. The most accurate calculation
method that has been found to use the laser velocimetry measurements for power
spectra is an indirect method. The first step is the calculation of a weighted
estimate of the autocovariance. In order to apply a fast Fourier transform to
obtain the power spectra, the autocovariance is extended to form an even function.
This method has been selected over Fourier series methods and pariodgram methods
entirely on a trial and error basis (Ref. 4). its superiority has not been I
established analytically, and there is little understanding of the reasons for

the smaller errors that result from the autocovariance approach.

Formation of the autocovariance: The autocovariance estimate C(k6T) for
k = I . . . K is based on a minimum lag time LT. The value of AT must be
greater than the resolution of the interarrival clock. However, much larger
values are required to avoid excessive errors. Of course, KAT must not exceed

the measurement period, T.

These limitations on the choice of AT and K are the same as they are in
determining the autocovariance function of a uniformally sampled data set from a
continuous signal. That is, the frequency resolution is determined by Af w 1/2KAT
where the maximum (possible lag) value of KAT is the total measurement time, T,
and the maximum frequency is limited by f - 1/2AT where AT is the minimummax
time between samples. For the system under consideration, the minimum possible
AT is 2.4psec and the maximum value of KAT is related to the average arrival
rate by KAT - 4096/X where the value 4096 is the maximum number of measurements
that can be stored in the memory buffer and X is the mean data sample rate (mean
particle arrival rate). However in a practical random sampling situation, the
choice of K and AT should be made with regard to the following: 1) desa±red
frequency resolution and resulting variability error, and 2) the value of AT
must be chosen so that K is fixed at 512 due to data processing limitations. If
the chosen value of AT is found to be undesirable, the fact that the data is
sampled randomly in time allows another choice of AT to be made without repeating

the experiment.

To obtain the autocovariance, the mean velocity is subtracted from each
measurement to give velocity values U•, i * 1 . . . D. The time delay between
two velocity values U a and U has oeen recorded and is denoted as t1 - t

The lag product, A (k) is defined as
u

D D
A u(k) E E UU SI(t - t - (k -;)AT)((k + ½)b.- t + t)J"u i-I -
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where S(x) = 1 for x 2. 0

- 0 for x < 0

Thus only those velocities whose interarrival times, ti - ti, lie between
(k .. 5)AT and (k + .5)AT contribute to the lag product.

For efficient computation, each possible pair of velocities is examined;

t -t
the lag time ratio, i , is calculated; and no action is taken if for

that pair the time lag ratio is not leas than K. Otherwise the product
UiU is added to the kth location (where k is the integer nearest the lag

time ratio) of the array An(k) and kth location in array H(k) is incremented

by one. The accumulations of A (k) and H(k) found for several separate

periods (e.g., lots of 4096 velocity measurements) of measurement may be summed.
The autocovariance is then formed as

A (k)
C(k~t) = r for k - i .. . K

This has been shown to be an unbiased estimate (Ref. 5) if the true mean
velocity has been subtracted from the data. The variance of C(kAt) is,
under very restrictive assumptions,

Sa4 + P2(NA)-

k - _H_(k)

* where 02 is the variance of the velocity data. No error estimate is avail-

Sable for spectra that do not describe a stationary broadband Gaussian process.
The value of C(0) may be calculated by the above scheme or more simply as

DC(o) 1 2

SPower spectra results: The power spectrum is the Fourier transform of the
autocovariance. Figure 13 shows results obtained by calculating a 512 bin
autocovariance array, and then defining an additional 512 bins so that an
even function is formed. This allows a fast Fourter tranuform using Bartlett
(triangular) window and a frequency resolution of Af a 1/2KtAT to be used.

* - Figure 13(c) is a power spectrum of the V velocity component of the
circled point in figure 7. About 40,000 maLuiements, taken at an average data
rate of about 400 measurements per second, wore used. The minimum lag time,
AT, for the autocovariance was 0.5 meec and 512 values of lag time were
calculated. These data were taken in 10 lots with about 4000 measurements
in each.
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Figure 13(a) shows the distribution of number of lag products, H(At).
The histogram bin size is 0.5 msec. The autocovariance is shown in figure 13(b).
The spectrum is displayed in figure 13(c) up to the maximum calculated frequency
of 1 kHz. The reason for the negative values that occur above 280 Hz is not
known. The negative values persisted for the recalculation of the power spectrum
for a doubled (1 msec) minimum lag time (Fig. 13(d)). Since negative power is
undefined, the source of the anomalous behavior above 280 Hz must be an error.
At this particular data rate, for this 2 Hz frequency resolution, and for
40,000 measurements, a satisfactory spectrum has apparently been calculated
up to 280 Hz although attempts to calculate this spectrum with only 4000
measurements gave very inconsistent curves. There is, unfortunately, no general

* analysis of the error in the spectra, no theory that explains how the researcher
may compensate for a low data rate by increasing the number of measurements, and
especially no means of calculating the effects of the known random measurement
errors in velocity and time.

"Frequency limitation on spectra: Work is proceeding, on an experimental

basis, on the maximum frequency limitation. Because of the random interarrival
times of the velocity measurements, the Nyquist criterion does not apply to the
average data rate. Theoretically, a maximum frequency far exceeding the Nyquist
criterion could be achieved. In simulations (Ref. 4) and experiments, attempts
to exceed twice the Nyquist critLrion frequency have led to erratic spectra.
A method of predicting the data rate, number of samples, and error bounds
necessary to achieve a desired frequency limit and accuracy is needed.

Although satisfactory power spectra have been obtained by the indirect
method using an autocovariance estimate, it is possible that an improved
technique could be devised.

VI. ANALYSIS OF PERIODIC PHENOMENA. As research into the fluid mechanics
of turbulent flow has progressed, more patterns have been discerned in flow
fields traditionally considered to be random variations in velocity (Ref. 6).
The aerodynamicist must also analyze patterned or organized flow even in the
presence of random or broadband velocity fluctuations (Ref. 7). Flows such an
those beneath a helicopter rotor (Ref. 8) are difficult to break into three
categories as suggested in reference 9: mean flow, organized or patterned or
repetitive velocities, and random velocity fluctuations.

The spectrum in figure 14 is taken from a heuristic test in a water tunnel.
An oscillating vane imposed a discrete frequency oscillation on the axial flow
velocity. The spectra alone is sufficient to relate the velocity response to
the vane oscillation to the magnitude of the random turbulence and confirm

* the absence of higher harmonics.

The spectrum is not sufficient to define the phase angle between the flow
and vane oscillation. This information can be obtained by a conditional
sampling technique. The preferred method is to record, at the time of each

' * velocity measurement, the vane angle. A plot of velocity versus vane angle
will reveal the phase, the waveform of the response, and the variance of the
response at each vane angle.
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A similar technique has been applied to a rotor tip vortex flow (ref, 10)

and will be applied to an oscillating airfoil test now under construction. The
airfoil is large enough (66 cm in chord) to contain a small laser velocimeter.
Figures 15 and 16 show the airfoil mounted in Langley Transonic Dynamics Tunnel.
As the airfoil oscillates, the flow velocity with respect to the airfoil-
fixed coordinates and roughly parallel to surface will be measured. This
velocity is expected to be highly nonsinusoidal due to presence of shock waves.
Therefore, the primary data reduction technique will be conditional sampling
based on the airfoil angle. Other techniques could be devised (such as basing
the condition on the leading edge pressure drop as zero time and plotting against
time). Each experimental setup will contain unique conditional sampling tech-
niques but each will share three common demands on the data acquisition and
reduction process.

1. Each velocity will be linked to a condition of some measurement.

2. Velocities must be sorted into bins on the basis of the condition
measurement.

3. Each bin must be analyzed by the techniques developed for histograms.

The use of current and planned methods of data analysis of laser velocimster
measurements will allow the aerodynamicist to investigate flow fields that have
not been amenable to probe investigation. Such complex flow fields as helicopter
rotor wakes, separated and recirculating flow on airfoils, and transition from
laminar to turbulent flow are especially likely candidates for laser velocimeter
measurements. Because of the continuing need for evermore penetrating analysis
of experimental data and because of random phenomena that occur in each of
these flows, a need will arise for the reduction of laser velocimeter data by
such techniques as temporal and spatial cross-correlation of two velocities,
time history reconstruction, moving block analyses, and pattern recognition.

The potentialities and difficulties of the more refined data-analysis
techniques will become morc apparent as deeper understanding of conditional
sampling and power spectrum technique is gained. However, these two techniques
are clearly not the end point of laser velocimeter data analysis.

VII. CONCLUSIONS. The rapid development of the laser velocimeter as a
routine tool for flow measurement in large wind tunnels has given rise to new
demands for data interpretatiun and analysis. The distinctive characteristics
of laser-velocimeter systems with respect to the traditional flow measurement
systems are primarily the following:

1. Rapid acquisition of thousands of individual, digital velocity
measurements is possible at data rates limited, at present, only by the
capacity of the wind-tunnel seed-particle injection process.

2. The seed velocity measurement errors are not only small but they are
predictable before the experiment is begun.

3. The time between measurehients is a random variable.
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These distinctive characteristics offer opportunity for more precise control
of errors and more efficient and more complete analysis of time-dependent
data and real-time data analysis. To achieve these advantages much work
remains to be done on both the existing methods of analysis, such as histogram
displays and power spectra, and on methods now being developed such as
two-component histograms, conditional sampling, and cross-correlation.

Histograms are the most efficient means of data interpretation because
of much lower requirements for the amount of data and data rate. Bettermeans of quantizing histogram shape and errors in shape are needed, especially

for bimodal and other highly non-Gaussian shapes. Even a shape classification
to guide the present cumbersome Monte Carlo methods would be helpful. The
use of histograms in the conditional sampling process will compound the need
for these analytical tools.

Also urgently needed are better error analyses for power spectra. Any
optimization of the calculation process would be very useful.

The problems that will be presented by the untried data reduction
techniques are not as clearly defined as for the histogram and power spectra.
These problems may include the reconstruction of time histories from data
with random interarrival times, error analysis of cross-correlations using
noncoincident (in time) measurements of the two velocity components, and
sufficiency conditions for moving block analyses.
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RESOLVING UNDER-IDENTIFICATION THROUGH REPLICATION

IN STRUCTURAL EXPERIMENTAL DESIGN

William S. Mallios

8DM Services Co.

ABSTRACT: Appl.ication of structural regression to experimental

design often results in under-identification. A remedy, albeit

unrealistic, is to assume the structural system is diagonally

recursive. Reexamination of this assumption leads to a measure

of the degree to which structure has been resolved in a non-recur-

sive system, assuming identification. To assure identification,

the experiment should be replicated with one replication used as

an instrumental variable for the other.

1. INTRODUCTION.

In the structural regression systen

AY- rx+ 8, (1.1)

Sis a p x 1 vector of endogenous variables, x is a q x 1 vector of

exogenous variables, A(p x p) - (Q hh*) is the direct effect1 of Yh*

on Yh' Ohh - 1, r (p x q) - (Yhi), Yhi is the direct effect of xI on

Yh' and j(p x 1) is the model error vector. Assume that E(6) a 0 and

1See [5] for definitions of direct, indirect, and overall effects.
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E (E6)9 = Z.; I.e., : (0, Z), whorp Z6 is non-singular and contains

finite diagonal elements. Assumi'ng IAI t 0 and premultlplying (1.1)

by A- yields the reduced regression system

y - AI rx + A6I- Bx + C, (1.2)

where B (p x q) = (ahi), 8hi is the overall xt effect on Yh' and

-: (0, A), -1 A .

Let 4 and ii.denote n x 1 vectors of observations on Yh and xi.

Then the h-th model of (1.1) is written as

h a 'h 2-h + Xh~h + •h Zhh + Ah (1.3)

where Yh(n x Ph) - (4h,), Xh(n x qh) * (xi), Zh - (Yh1 Xh), and

_'h•'h ' I denotes the n x n identity matrix in the

2
assumption A : (0, 'n •h

Letting X denote the n x q matrix of all controlled variables,

the ordinary least squares (OLS) estimate pf B is

B " (X'X) 1 x'y. (1.4)

r is estimated by

S - (Y - XB)'(Y - XB)/(n - q). (1.5)

Assuming identification [2, 3, 5), h and , can be estimated indirectly

-through the reduced system by equating B to B a A and S to E

A AIE6 A" Alternatively 2, 4h cin be estimated directly through two

stage least squares (2SLS) estimation as follows:

2See [2, 3] for other estimation techniques.
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-= [(z x)(x'X)'(X'Zh)]1(z X)(X'X)-x'Yh; (1.6)

var =1(Z)(X'X)1(X'Zh)]' as=h

where a is estimated by s~ 2h.)(h h.)(

This estimate derives its name from a conceptual, two-fold application

of OLS; i.e., in the reduced regression for Yh' giver by E(Yh) X B

Bh is estimated by (1.4); after replacing Yh by Yh a X Bh in (1.3),

OLS is applied a second time which leads to the rcsult ir. (1.6); in

this process, the uncontrolled Y has been replaced by a consistent

estimate, ih' which is treated statistically as if it were controlled;

see [3, p. 153].

2. COMMENTS ON THE ASSUMPTION OF A DIAGONAL 6.

In (1.3) a natural question is regarding the appropriateness of

estimating h by (ZZh)Y'IZ ,h' the OLS estimate. When A is triangular

and E is diagonal, the structural system is termed diagonally recursive

[2, 4, 5) and the OLS estimate is consistent. Regarding the plausibility

of the diagonally recursive assumption, a triangular A might be realistic

so long as the experiment is designed with this restriction in mind;

i.e., a triangular A implies that, during the course of the experi-

ment, no causal feedbacks occur between any two Yh and Yh* and that

no variable has an indirect effect on itself [5]. However, an assumed

diagonal E6 has far reaching implications. Under a diagonal E6, extraneous

variables (EVs) comprising 6h are independent from one model error to the

next; i.e., if uh and uh* denote any two EVs making up a component part

of 6h and 6h*, respectively, then a diagonal Ed implies that E(uhUh,) = 0;

otherwise, E(uhuh*) O 0, E(uh6h) # 0, and E(uh*6h) 0 0 together imply
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that E(Shdh*) 0 which violates the diagonal Et assumption. Thus,

aside from the structural models comprising the system, no other

relevant models are associated with the experimental unit under a

diagonal z,. For if there were, they would be defined by relations

among EVs comprising model errors. But since E(uhuh*) n 0 for

h 0 h*, there can be no relations among these 3 . E thus provides a

quantitative measure of structure resolution.

POSTULATE: Total ignorance regarding structure occurs when struc-

tural parameters are under-identified and a reduced regression

analysis is the only recourse. Total resolution of structure (relative

to a well defined experimental unit) is characterized by a diagonal

E which is validated through experimentation. 4  The degree of structure

resolution is quantified on a CO, 1) scale in terms of an estimate of

IRI, where R is the p x p matrix of model error correlations.
Note that the "invariance'" 5 of the reduced regression under what-

ever the hypothesized causal scheme provides complete objectivity

but total ignorance regarding structure. However, assuming identifi-

cation, lack of this type of objectivity is no reason to reject structural

regression. When two experimentors propose different causal schemes for

the same set of data and the matter is not resolved in the ensuing analysis,

continued experimentation will validate one or the other or reject both.

3Relevant structural relations among EVs contained wholly within one
particular 6h would likely indicate that E(ah) t 0 and/or that the
experimental unit needs redefinition.

4See [1, p. 260) for a test of the hypothesis that E is diagonal.

51nvariance is used in the sense that A and runiquely determine B
in (1,2) though not conversely. Thus, and infinity of (A, r)
structures could lead to the same B.
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Consider, for example, a sugar beet experiment [5, p. 816],

where the stand (y2 ) of the crop was found to have a positive, direct

effect on yield (yl). The estimated model error correlation was

- .45 (hence, estimated IRI a .80) which led to a conjecture of food

competition between plants; i.e., apart from the average positive

effect of stand on yield, a stand response above its expectation

would tend to accompany a yield response below its expectation due

to the greater competition by plants for food. The implication of

this correlation is that additional structural relations remain to

be hypothesized in future experiments and that these relations might

involve measures of moisture content and plant food. Unfortunately,

under-identification is generally the case in experimental design so

that attention is redirected to methods of achieving identification.

3. DESIGNING THE EXPERIMENT TO REMEDY UNDER-IDENTIFICATION

Consider the following two model system describing an experiment

in a completely randomized design:

Yl "P l T + 12 Y2 + 81
(3.1)

Y2  P2 + T2 + 021 Yl + 62

where Ph and th denote mean and direct treatment effects, respectively.

Since q < +h + additional information is necessary to estimate

structural parameters. For example, the reduced model errors corres-

ponding to (3.1) are F1 - (61 + 012 62) / (1 - al22) and e2

(62 + 02 161 )/(l 0 ,12021), whereupon, from E AIE t
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02 2÷2 2 2
+ 1 22 + a 2 08 8(1 + 412a21) + =21 6 + a012 08

1 2 2 12 2 1 2

2

2 2 2.1+ a

Equating Eto S in (1.5) yields three equations in five unknowns. If,

however, there is no causal feedback with only a direct effect of y2

on Yl (i.e., a21 0) and the ratio X2 / 02 is known, then we

have three equations in three unknowns, and a,2 and 6 26 /06l

are estimated by

&12 ~~ -212 r* sj (s 2 s )-
1 X s aand r A " .

"Since knowledge of =2l and l is not often available, another

recource is to assume that (3.1) applies to the first replication of

the experiment and that

S+ 'h + 'hh*Yh* + h(3.)

applies to the se.cond replication. Note that while =hh* and treatment

effects remain the same between replications, the block effects may

differ. Moreover, it will generally be the case that E(h8 ,) * 0 for

h, h* - 1, 2. Subtracting y' from Yh In (3.1) and (3.2) yields

Yh " YA + ("h - 0) + 'hh*(yh* - y40) + (6 h 8•) (3.3)

Consider, first, estimation of parameters of the first model

in (3.1). Using the result in (3.3), (3,1) can be replaced by
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i•. Yl~ " 1  +T 1r + •'2 Y2 + 6
yl , " 1 2 ' (3 .4 )

Y2 a Y- + (2 "•i) + 1 (Y1  " y•) + ('2 "7).

Taking the y1 controlled variables amounts to replicating the

experiment and using one replication as an instrumental variable

[2, 3, 5) for the other 6 . All parameters in (3.2) are identified

as is made obvious by referring to the corresponding reduced system,

given as follows:

YI jlH + I12 ("2  ) + "12 yi l- 212•2 y + TI

+ 111 + 112 (62 - a)1 ,

Y2 21 11 "l + ("2 - 1+ -i a21y1' + "2l T,

+ h2 61+ (62

where - - a12C21. It is clear that structural coefficients are

over-identified.

As for estimating the T2 , (3.1) is replaced by

Yl a j + (PI - 10) + a12 (Y2 - Y2) + (6l 6 0)

Y2 a 2 + 12 2 y1 Yl +62

and 2SLS can be applied directly as in (3.4).

There is a price to be paid in using the replication method to

produce identification. Firstly, the sample size is halved which

S6In the same manner that lags are used in econometric models, one
"replication can be considered as a lag for the other replication.
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reduces power. Secondly, if Yh and •h (the consistent estimate of

.1 Yh obtained through the reduced system)are not highly correlated,

the resulting structural estimates may be highly inefficient. How- "

ever, the alternatives are (1) complete reliance on a reduced

analysis (which should always accompany and complement a structural

analysis) and (2) OLS estimation which generally leads to Inconsistent

estimates, but which may provide certain estimates with low mean

square error.
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THE SAMUEL S. WILKS MEMORIAL MEDAL
BANQUET REMARKS

Frank E. Grubbs, Program Chairman of the Conference

The twenty-third year or occasion for the Design of Experiments
Conference in Army Research, Development and Testing marks another very
significant milestone for Statistical Methods in the Army. Each year
I like to reflect back over previous conferences, and it is easy to
see how much we owe a great debt to the memory of Sam Wilks for his
vision in getting Amy statisticians together on a yearly basis for
the common good of all. Indeed, we continue to benefit considerably
from our previous 22 conferences, which have promoted much good
statistical work in the US Army. Don't you agree? The associations
with our statistical friends from the universities have kept us up
to date and provided much stimulus toward many timely accomplishments.
These conferences have done a lot of good by simply getting us all
together on problems of common interest and we cover so many fields

* of interest! Again, I am reminded we have not stuck to the title,
"Design of Experiments", in all detail, but that is good as the field
of statistical topics changes fast and we must always move on to new
things or areas. I could go on and on concerning the good these
"conferences have accomplished, but I must mention that the success
of these conferences would not have been so great were it not for our
most dedicated friend, Francis Dressel, who as we all know again
deserves a vote of thanks at this time, for his effective, continuing
contributions (so sorry he couldn't make it this year.) Also, this
is the first time we have been privileged to have our conference here
at Monterey and we appreciate such nice facilities, and also Doug Tang,
Wally Foster and Bob Launer are to be thanked for the very significant
part they played again this year.

We now turn to the Samuel S. Wilks Memorial Medal.

The Samuel S. Wilks Memorial Medal Award, initiated Jointly in
1964 by the US Army and the American Statistical Association, is
administered for the Army by the American Statistical Association,
a non-profit, educational and scientific society founded 138 years
ago in 1839. The Wilks Award is given each year to a statistician -
often a good one! - and Is based primarily on his contributions to
the advancement of scientific or technical knowledge in Army statistics,
ingenious application of such knowledge, or successful activity in the
fostering of cooperative scientific matter which coincidentally benefit

* ,. the Army, the Department of Defense, the US Government, and our country
generally. The Award consists of a medal, with a profile of Professor
Wilks and the name of the Award on one side, the seal of the American
Statistical Association and name of the recipient on the reverse, and
a citation and honorarium related to the magnitude of the Award funds,
which were donated by Philip W. Rust of the Winnstead Plantation,
Thomasville, Georgia. The Annual Amy Design of Experiments Conferences,
at which the Wilks Medal Is given each year, are sponsored by the Army
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Mathematics Steering Committee on behalf of the Office of the Chief
of Research and Development and Acquisition, Department of the Army.

Previous recipients of the Samuel S. Wllks Memorial Modal include
John W. Tukey of Princeton University (1965), Major General Leslie
E. Simon (1966), William G. Cochran of Harvard University (1967),
Jerzy Neyman of the University of California, Berkeley (1968), Jiack
Youden (1969) formerly of the Mational Bureau of Standards, George
W. Snedecor (1970) formerly of Iowa State University. Harold Dodge
(1971) formerly of the Bell Telephone Laboratories, G1rrge E. P. Box
of the University of Wisclnstn (1972) - and with us today, H. 0. (HOl)
Hartley of Texas A&M U,•iversity (1973) - and our keynote speaker,
Cuthbert Daniel (i.g7l) - private statistical consultant, Herbert Solomon
of Stanford Unive-:,31ty (1975) - who Just trekked to the United Kingdom
for two years wlth ONR, and Solomon Kullback of George Washington
University(';.

This brings us up to thts year, and I call on Jeff Kurkjian,
University of Alabama, Chairman of the S. S. Wilks Memorial Medal
Committee to discuss this year's committee work and give the presentation.

SAMUEL S. WILKS' MEMORIAL MEDAL COMMITTEE:

MEMBERSHIP. CHARTER, SELECTION PROCEDURE
Badrig Kurkjian, University of Alabama

The 1977 Committee was made up of Badrig Kurkljan, Chairman, Francis
Anscombe, Jerome Cornfield, Cuthbert Daniel, Fred Frishmn, Frank Grubbs,
Joan R. Rosenblatt, and Herbert Solomon. Three of these members were
former employees of the US Army with virtually career-long experience
with the Amy Design Conference. Three others have considerable
experience consulting with the Army on technical problems and policy
matters associated with the business of the Amy Mathematics Steering
Committee. Moreover, the Committee contained three former Medalists--
Cuthbert Daniel, Frank Grubbs, and Herbert Solomon.

One could summarize the charge to the Committee by stating simply
that the recipient of the Wilks' Medal should be a person who has
emulated Sam Wilks to a significant extent--that is, a scholar, a
contributor to statistical methodology and one who unstintingly devoted
significant effort to the public interest, in particular the U. S. Army

* Design Conference in Sam's case.

Each year the Conmmittee considers nominees from prior years as well
as those forwarded to the Committee from various sources within the
statistical community in the Army and elsewhere. This year, the ballot

! ) contained twelve nominees, each of whom Is a nationally, or internationally,
renowed statistician. As might be expected each year, the voting is usually
"very close and two ballots are required to select 'he recipient. However,
this year the Wl1ks' Medalist, Dr. Churchill Eisenhart, Senior Research
Fellow, National Bureau of Standards, was the clear winner on the first
oallot. The Committee had no difficulty in recognizing Dr. Elsenhart's
professional career match with that of Sam Wilks.

The Army Design Conference was privileged to have Professor G. E. P.
Box, University of Wisconsin and in-coming President of the American
Statistical Association, present Dr. Eisenhart with the ,Medal the
official Citation, and a modest monetary honorarium.
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7 , REMARKS OF CHURCHILL EISENHART ON ACCEPTING
THE 1977 SAMUEL S. WILKS MEMORIAL MEDAL

Z Chairman Grubbs, President-Elect Box, 'Fellow Statisticians, Ladies and
Gentleman:

This is for me a very happy occasion as I express my very great
pleasure in acoepting the 1977 Samuel S. Wilks Memorial Medal that
honors my teacher, long-time friend, and the initiator of these
Experiment Design Conferences. I especially appreciate the high honor
of being presented this award, having served as a member of the Wilks
Memorial Medal Committee of the American Statistical Association from
1965 through 1970.

I have spoken in great detail about Sam Wilke at two preceding
Conferences of this serios--the 10th and the 20th: about his extensive
contributions toward the advancement of statistical methods in Army

S i research, development and testing, and about his many other important
contributions in the national interest. I shall limit myself on this
occasion to sketching how very, very helpful Sam was to me in the early
stages of my career. Generosity in helping others in spite of his
own heavy schedule was one of Sam's outstanding characteristics.

I was Sam's first student in statistics. He arrived in Princeton
in September 1933 in time to supervise my Senior Thesic on "The Accuracy
of Computations Involving Quantities Known Only to a Given Degree of
Approximation". The first part was an attempt to present a fairly
complete survey of the accuracy of the general processes of arithmetic
without recourse to probability theory and the methods of statistics,
"which were introduced and applied in the second part.

Sam also supervised the preparation of my first two publications
Ln statistics. The first was a short note in the December 1935 issue
,of the American JozanaZ of Soienoc criticizing the statistical approach
employed in a paper appearing in the May 1935 issue--too harshly, my
geologist friend, W. C. Krumbein, says. The object of the paper on
"which I comented was to suggest a numerical measure of the degree of
"likeness" of two or more "heavy mineral suites" with respect to their
mineral contents. The measure of agreement or "likeness" advocated
was such that the value obtained in a particular instance depended
upon the order in which the respective minerals were listed: if listed
alphabetically by their names in English, one value would result; if
listed alphabetically in some other language, a different value would

*' be found; and, if in order of their respective densities, still another
value.
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I suggested an approach via the X2 teat of the homogenRity of
frequency data arranged in an r x c table, and referenced R. A.
Fisher's Stat18ti•aZ Methods for Reeearch Workers. I would never have
had the courage to submit this critical note for publication had Sam
not been standing behind me all the way.

My second statistical paper, "A Test for the Significance of
Lithological Variations", published in the December 1935 issue of the

* i JowJo'uaZ of Sedimentary PetroZogy, was an exposition, for geologists,
of the X2 test for homogeneity, with three worked examples utilizing
data from the paper discussed in the note. This seems to have been
the first exposition of X2 methods in the literature of geology.

Several months before those two papers appeared in print, I had
left Princeton, at Sam's recommendation , for University College, London.
I went there to work townrd a Ph.D. in Statistica under Jerzy Neyman
and Egon S. Pearson in the Department of SLatistics. I also attended
the lectures that R. A. Fisher (of the Galtoa Laboratory for National
Eugenics) was giving on Experiment Design and on the History of Biometry;
and at his request, prepared a little brochure on the use of ranked
normal deviates in the analysis of data expressed as ranks, for the
guidance of some of Professor Cyril Burt's graduate students in psychology.
At the Annual Karl Pearson Memorial Dinner at University College in the
spring of 1959, Egon Pearson introduced me as "one of the few persons
who worked with Fisher, Neymun and a Pearson and managed to survive".

While I was at University College, a circumstance occurred that
enabled me to help Sam for a change: Professor George G. Chambers of
the University of Pennsylvania, had died on 24 October 1935, shortly
after his graduate course "Modern Theory of Statistical Analysis" got
underway. Sam was commissioned to complete the teaching of this course.
He wrote me a hurried note saying that he was in dire need of up-to-date
problems in statistical theory and methods for the students in his
new class. Would I please send him some quickly. From time to time

* ithroughout the remainder of that academic year, I sent off to Sam a
* bundle of homework and test problems that we had been given in the

courses that I was taking under Neyman, Pearson, B. L. Welch and Fisher.

Sam's next turn to help me came in the fall of 1937, when I took up
my post as Station Statistician at the Wisconsin Agricultural Experiment
Station. To find one's self the expert on statistics in a major research
organization immediately after finishing one's doctoral program, without
a period of "internship" training in applied work, with no senior expert
at hand to consult, is a trying experience--to be avoided, if possible.

*I At Wisconsin, however, I had the advantage that I did not have to "sell"
statistical methods to the staff of the Experiment Station. There were

S� falready on the campus several agricultural research workers who had
taken courses in statistics under George Snedecor at Iowa State or
studied biometry under Forrest Inmer at the Minnesota Agricultural

-2
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H Experiment Station. These fellows were for the moat part quite self-
sufficient in statistics. Nonetheless, they were a source of difficulty
for me; They would bring me hard problems to which the straight forward
procedures that they had learned from Snedecor or Immer did not apply.
I tackled these as best I could, and sent a draft to Sam in Princeton
for his approval, correction, or other counsel. Only then did I turn
over my "solution" to the "client".

* More of a problem to me were the members of the Experiment Station I
staff who had acquired a smattering of statistical techniques of y
experiment design from lectures given there a previous summer by Cyril
H. Coulden of the University of Manitoba. As an admirer of Goulden and
hi. writings I have not the slightest doubt that what he presented in
his lectures was entirely correct; but some of his listeners seem to
have missed some of the essential details.

Thus, soon after my arrival, I was confronted with the results of a
field trial of 24 varieties each replicated 4 times in a 4 x 4 rectangular
arrangement of 16 cells with 6 varieties i.n each cell. (I do not recall
the exact number of varieties Involved, nor the exact size of the
rectangular design, but the choices here will serve to bring out the

; problem I faced.) The disposition of the 4 replicates of each variety
was such that each variety occurrea o•ce and only once in each cell-row
and each cell-column.
I got a lot of argument from my consultees when I tried to convince

them that, in spite of the last-mentioned restrictions, this arrangement
was NOT a Latin Square; could not be analyzed as such; that the best
that could be done would be to do a Randomized Blocks analysis with
the call-rows as '"locks", and again with the cell-columneiac "blocks",

and then use whichever analysis led to the smaller residual mean square
for "error".

In view of the considerable unhappiness of the consultees at this verdict,
and being not entirely sure that something better could not be done, I
sent the whole package off to Sam in Princeton. He replied by return
mail saying that in this particular instance I was entirely correct,
inasmuch as the experimenters had failed to group the 24 varieties into
4 "bundles" of 6 varieties each. Had they done this and arranged the
4 replicates of these bundles in accordance with a 4 x 4 Latin Square,
they would have had a Split-Plot Latin Square--a design that I didn't
recall Fisher having discussed in his lectures. They then would have
been able to do a regular Latin Square analysis with respect to the 6
different (but fixed) "bundles", leading to two "error" mean squares,
one appropriate to comparing varieties in the same bundle, and one
for comparing varieties in different bundles.

2
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The point of all this in that he always took the trouble and the
time to respond promptly and very helpfully by return mail--in this
instance at a time when he was already enormously busy with his
teaching, his work for the College Entrance Examination Board and his
new duties as Editor of the Annals of Mathemrati•lo Statietios.

I could go on, but I believe that I have said enough to reveal
that Samuel Stanley Wilks was the distinguished mathematical statisti-
cian who was my closest teacher, who launched me into my career, and
who was also a vise and greatly loved friend and counselor from the
moment of my first meeting him.

I shall cherish this modal bearing his name and his likeness.

I2
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THREE DIMENSIONAL CURVE FITTING tECHNIQUES TO
EXPRESS SUPPRESSIONJ AS A FUNCTION OF RANGE

AND ASPECT ANGLE

Chaunchy F. McKearn and David E. Brown
Combat Developments Experimentation Command

Fort Ord, California 93941

ABSTRACT.

During the 2nd Ouarter FY 1978, the Combat Developments Experimen-
tation Command will conduct the next in a series of suopression exoeri-
ments, Supex III. The primary objective of this experiment is to deter-
mine the probability of suppression, P as a function of range, r, and
aspect angle, B. Artillery projectile will be set off in all directions
and at varying ranges from the players, who will be observino through a
periscope in an uncovered foxhole. What is needed is a surface fitting

*m: technique that will permit the surface, P - g(r,e) to be determined from
the data produced. The level curve for aAy fixed value of P must be a
smooth curve which is perpendicular to the line of observation at the two
points at which the curve intersects this line.

The results of previous experiments indicate that P considered as a
function of only offset distance, x, P * fix), has an 1xponential or
logarithmic form. These results also indicate that the probability of
suppressing, P , is not symmetric to the front and rear of the observer.
The curve below shows the general desired form of a level curve for a
fixed value of P.

1. Location of observer. 2. Direction of observations.

The difficulty is in arriving at the form of an equation such that any
curve for a fixed value of B, i. e., P - q(r,B6 ), would be exponential or
logarithmic and the level curve for a fixed valBe of P , I. e., P0  ,
is a closed curve with continuous derivatives with dx/6 = 0 for B = 0
andin(to insure smoothness and vertical tangents),
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I. INTRODUCTION. Combat Developments Experimentation Command (CDEC)
has conducited ii 'se-e7Tes of suppression experiments to measure the proba-
bility of suppression, P , as a function of miss distance. Generally,
the players being supprelsed represented antitank guided missile gunners
and the suppressive weapons included both direct and indfrect fire weapons

-1 from the M16 rifle up to the 8 in. Howitzer. Thi's report concerns only
the indirect fire point detonating high explosive rounds.

In order to collect empirical data on the phenomenon of suppression,
the subjects were placed in protective foxholes as shown in Figure 1 and
observed down range through periscopes. They were task loaded by requir-
ing them to report the position of a target tank in reference to a row of
numbered panels along its path at a range of 1500 meters. The gunners

* were required to track the target tank for fifteen consecutive seconds to
receive credit for hitting the target tank.

The periscopes.were instrumented in such a manner that when they were
raised or lowered it was automatically recorded on the central computer.
In addition, each periscope was electrically connected to a pop-up silhou-
ette immediately in front of the foxhole so that when the periscope was
raised the pop-up silhouette came up and when the periscope was lowered
the silhouette went down. This pop-up silhouette was within the gunner's
field of view and represented the gunner in an unprotected position.
This assisted the subjects, in perceiving the danger they would be in if
they were located at the pop-up silhouette's position. If a piece of
shrapnel hit the silhouette, a loud buzzer was set off in the subject's
foxhole indicationg that had he been at the pop-up's location he would
have been killed or wounded.

The artillery rounds were placed on the ground within the player's
view at various ranges and statically detonated in a random manner. The
data collected from these tests indicated that the probability of suppres-
sion as a function of miss distance could be reasonably well represented
by an exponential curve of the form

where 
I -Aebx

P5 : probability of suppression
xs 2 distance between the foxhole

and the detonation point, and
A and b are curve fitting parameters.

Figure 2 lists the curve parameters for the various munitions tested In
CDEC's last suppression experiment, SUPEX II.

I
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EXPONENTIAL CURVE PARAMETERS

WEAPON A B

60mm Mortar 1.61911 -. 02453
81mm Mortar 1.50512 -. 01262

.1 105mm Howitzer 1.64851 -. 01306
105mn.-HEP - T 1.70799 -. 01317
2.75 in Rocket 1.77098 -. 01530
1 55mii Howitzer 3.26843 -.01773

8 in Howitzer 1.58806 -. 00450

FIGURE 2: EXPONENTIAL CURVE PARAMETERS FOR EXPRESSING THE
PROBABILITY OF SUPPRESSION AS A FUNCTION OF
MISS DISTANCE.

11. EXPERIMENTAL DESIGN.

theLast July CDEC hosted a Suppression Working Meeting to determine what
the next step in CDEC's Suppression Program sihould be. Many of the atten-
dees, mostly modelers, expressed the concern that CDEC's suppression data
only addressed suppression caused by detonations directly to the obser-
ver's front. What was needed was a function of range and aspect angle,
Ps - g(rae). To accomplish this the SUPEX III experiment is currently
being planned and Is scheduled to begin in April 1978,

FourThe range for this experiment will be laid out as shown in Figure 3.
Four foxholes will be located at the center of the wagon wheel with one
foxhole oriented along each of the four principle axes. Five rounds will
be placed along each of the twelve wagon wheel spokes and set off in a
random manner. When all of the trials are completed there will be six-
teen observations at each range at all twelve aspect angles.

III. STATEMENT OF THE PROBLEM.
The data obtained from SUPEX III should permit the development of a

three dimensional surface expressing P as a function of range and aspect
angle similar to that shown in Figure 4. Past experience indicates that
for each aspect angle one could expect the data to fit a truncated expo-
nential and for a fixed value of Ps one sbould obtain i level curve that
is somewhat elliptical or egg-shaped with continuous derivatives.
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One candidate function is as follows:

Ps " Ae rb (1-Ycose)
Sq

Ps " probability of suppression

r - miss distance

A,b a shaping constants

Y a excentricity

6 - aspect angle

The difficulty with this function is that in order for the level curves
for a given value of Ps to assume the desired egg shape, Ywill have to
be a function of v. This makes It difficult to determine all of the
parameters by such conventional methods as least squares because the
function is no longer linear in its parameters. What is needed is a me-
thod for non-linear regression that can handle a function like this or
a different function which has the desired characteristics and is linear
in its parameters.
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O1 VALIDATING CRITERION REFERENCED TESTS

Hilton H. Mailer and Stephen F. Rirshfeld

lUS Army Research Institute for the Behavioral
* and Social Sciences

I-•TRODUCTION

Skill Qualification Tests (SQT) have been developed to replace
Military Occupational Specialty (MOS) proficiency tests as measures of
ability to perform Army enlisted jobs. SQTs are performance-based,
criterion-referenced measures of job proficiency. consisting8 of precisely

defined tests of tasks, all of which are critical and necessary to per-
formance of the job. The criterion-referenced approach provides an ex-
plicit relationship between job requirements and test content in that
job requirements dictate content of SQTs. The SQT development process
requires that tests be reviewed by subject matter experts and validated
on representative job incumbents to assure that test content is job
relevant. Test standards of acceptable levels of performance are also
based on job requirements and test content. Performance standards are
based on behaviorally derived absolute scoring standards, and are not
based on performance relative to other soldiers who take the teat. For
these reasons SQTs are justifiably viewed as criterion-referenced tests

of job proficiency.

This paper provides a description of the SQT program, Its evolution,
underlying assumptions, requirements, construction and validation pro-
ceases, and methods of statistical analysis. It concludee.vith a set of
questions characterising some of the major issues still under review.

Army training during background in the late 1960's and early 1970's
experienced a major revolution. Performance-based training amd testing,
based on critical job tasks and criterion-referenced standards of par-
formance, wars being Implemented in entry-level training courses.
Training objectives were operationally defined by the performance tests
given during the course, and the tests were made public to students as
well as instructors. Because of the direct relevance of these tests to
the job, they were capable of focusing Army training activities.

By maintaining accountability, tests become effective instruments
for Institutional chanes. Test content helps Implement doctrine about
the way jobs are to be performed, and is helpful In defining training
requirements and standards. The public nature of the tests helps focus
attention on the critical elements of the job and enables effective use

* of soldiers' time in preparing for tests, thus improving individual
readiness.

So impressive was the success of performance-based training and
tasting that the Army made the policy decision to change from the existing
mode of "norm-referenced. paper-and-pencil testing," to the criterion-
referenced mode of proficiency testing. These new criterion-referenced
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tests, called Skill Qualification Tests (SQT), are having a profound

impact on the entire Army community. The new testing procedures are
forcing training managers, personnel managers, and research support
personnel to rethink and often redefine their functions.

REQUIREMENTS OF SKILL QUALIFICATION TESTS

The basic requirement of SQTs is that the tests are Job relevant.
The tent content must be based on job requirements, and the test scores
must be accurate measures of ability to perform critical job tasks.

Traintnu and Personnel Management. SQTe are used by both training
and personnel management to help make important decisions affecting the
career development of soldiers. Both training and personnel management
need timely and accurate information about how well individuals are
performing - training management to determine training requirements of
individuals, and personnel management to help determine who to promote,

.1 reclassify, or reassign. Although both training and personnel management
have a Liesd for the same kind of information, their immediate require-
ments are not identical.

i ITraining managers base their immediate training requirements on the

specific tasks performed in their units. Therefore, from this point of
view relevance of the tests for specific job assignments is the primary
consideration, and it is defined in terms of the tasks that soldiers
perform in their assignments. The set of tasks performed in an assign-
ment is generally a subset of tasks required in a specialty. The task
is a convenient unit for determining training requirements because tasks
are observable, have initiating and terminating cues, and have standards
of performance that can be reasonably well specified. Decisions about

.1 proficiency can be made at the task level, and training managers can
* identify-the specific tasks on which soldiers need training. If the

test measures performance on the specific tasks for which the training
managers have responsibility, then the tests are serving their basic
purpose.

Personnel managers are also concerned with the job performance of
individual soldiers; but rather than focusing on soldiers' specific
assignments, personnel managers need to know how well soldiers can per-
form all the tasks in a specialty. For example, performance in a specialty,
such as Infantryman or Wheeled Vehicle Mechanic, cannot necessarily be
inferred from the set of tasks found in any one assignment. Personnel
managers, therefore, have a need for information based on a standard set
of tasks for each specialty. All soldiers in a specialty need to be
evaluated on the same set of tasks to enable fair decisions about which
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soldiers to promote, retain, or reclassify. The need for a standard set
of tasks in each specialty imposes additional testing requirements for
feasibility and acceptability. The test scores should not be affected
by when or where the test is taken, nor by whom it is administered and
scored. The testing conditions, as well as performance standards,
should be standardized.

The requirement for Army-wide standardization at the present state
of the art in testing means that initially most of the test content in
in the paper-and-pencil mode rather than hands-on performance tests.

Al Paper and pencil tests generally lack the apparent job relevance of
hands-on performance tests, and therefore an additional requirement is
Imposed to assure that the tests are acceptable to examinees, supervisors
and commanders an valid measures of job proficiency.

Job relevance of the tests is the basic requirement for both training
and personnel management, even though the definition of job relevance
may have somewhat different meanings for the two purposes. For training
purposes the focus is on the subset of tasks performed in the specific
Job assignment, whereas for personnel purposes the interest is on the
entire set of tasks in the specialty.

Because of the strategic importance of Skill Qualification Tests to
both training and personnel management, high level policy decisions were
made about test content, validation, and scoring. The general require-
aunt. of the program are that tests must be fair and feasible.

Fairness and Feasibility of the Tests. Fairness means that all
soldiers have an equal opportunity to demonstrate their true level of
job competence. Test content must be based on actual job requirements,
and testing conditions must be sufficiently constant throughout the Army
so that. scores obtained from administrations under varied conditions are
not noticeably differant. Tests given in Alaska, Panama, and Korea must
all be administered under similar conditions, and, in addition, all
parsons administering and scoring the tests must be able to do so accu-
rately and objectively. An additional requirement is that the tests
must be acceptable to soldiers and knowledgeable experts as fair measures
of ability to perform critical Job tasks. Therefore, fairness attends
to requirements of both training and personnel management.

* :Feasibility requires that the tests be suitable for administration
in all types of units; equipment, terrain, personnel and all testing
material must be readily available. Another aspect of feasibility is
that tooting time must be reasonable, vith up to one day allowed for
tesiing each soldier.
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Form of Testing. The requirements that Skill Qualification Test.
be fair and feasible put severe limitations on the use of hands-on per-
formance tests. The history of performance testing is that scoring
accuracy and standardization are difficult to obtain. The resolution of
the fairness and feasibility requirements is to have several kinds of
testing. Under present policy decisions, all Skill Qualification Tests
contain a written component, and some Skill Qualification Tests contain
a hands-on component. Four hours of testing is allowed for the written
component, and up to four hours is allowed for the hands-on portion.

Hands-on performance tests are most desirable. They are a form of
structured observation where a scorer evaluates an individual on a set
of performance measures (observable behaviors). Advantages of hands-on
testing are obvious: It tests actual performance, has high fidelity to
the job, allows for limediate feedback, and has high face validity to
examinees. However, considerable developmental effort is required to
insure scoring reliability and standardization of conditions. It also
is expensive in terms of equipment, personnel, and time, i.e., feasi-
bility is often a problem. In order to ensure feasibility there is a
natural tendency to truncate tests of tasks by shrinking the boundaries.
Unfortunately, this may be at the expense of the validity of the test.
For these reasons it is extremely difficult, if not impractical, to
initiate a large scale hands-on testing system for an organization as
large as the Army. Therefore, a hands-on component constitutes a subset
of an SQT.

The decision to include a written component imposes careful considera-

tion and analysis of what criterion-referenced measurement means in this

context. Since the focus of Skill Qualification Tests is on ability to
perform critical job tasks, that acpect must be retained. Each written
test of a task is to consist of a set of items, where each item is de-
signed to measure an essential behavior or step iu performing the task.
For tasks that require primarily mental skills, such as the supply and
administration fields, written tests of tasks are often similar to the
behaviors required on the job, and the standards for ability to perform
the test of the tasks can be reasonably close to those on the job. For
other tasks that require psychomotor skills, written test items only
simulate actual job behaviors, and the setting of realistic standards
indicating ability to perform the tasks is a more arbitrary process. To
help approximate realistic job conditions, written items may have multiple
correct responses and variable number of alternatives. This added
flexibility increases the difficulty in developing appropriate methods
for setting standards. The determination of reasonable standards for
written tests of tasks is one of the most difficult issues in the SQT
program.
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Criterion-Referenced Measurement of Task Performance. Because Army
jobs and training proerams are structured in terms of critical tasks,
the appropriate level of analysis for the SQT should also be based on
tasks. The concept of "scorable unit" was invented to help assure
criterion-referenced measurement of task performance. A scorable unit
is designed to measure ability to pecform a specific task, or in the
case of complex tasks, a well defined subtask.

Each written scorable unit consists of a set of items, where each
item is designed to measure an essential behavior or stop in performing
the task. Each item is scored pass-fail, and a prescribed number of
items must bo passed to be GO on the written scorable unit. A GO is
counted as ability to perform the task. The current resolution to
setting standards for written scorable units is to require that an a
priori number of items be passed. For example, if a scorable unit
contains five items, then four must be passed to obtain a GO.

Hands-on scorable units consist of a set of performance measures,
where each performance measure is scored pass-fail, and a prescribednumber of performance moasures must be passed to be GO on the scorable

unit. A GO on the scorable unit is interpreted as ability to perform
the task. The standards of GO generally are comparable to what is
required on the job.

The requirement that all scorable units be acceptable as fair
measures of ability to perform tasks is applied to both the hands-on and
written tests. Juries of experts must a&ree that the written items and
hands-on performance measures reflect ability to perform the tasks.
Perhaps a safer statement would be that failure to pass the items indi-
cates that the person is not able to perform the task.

EStablishing a Correspondence Between Test Content and Job Tasks.
The most critical requirement of SQTe is their job relevance. The pro-
cedures for establishing job relevance are described In this section.
Test content of all SQTs is a sample of critical tasks from the domain
of job tasks in the specialty. In this way the tests have a specifiable
and explicit link to the job. For each Army job there exists a Soldier's
Manual that lists the tasks for which a soldier In that specialty is
responsible. Therefore, this *et of tasks becomes the operational
definition of the job. Tests to measure performance on specific job
tasks listed in the Soldier's Manual are developed from appropriate task
analyses, and the tests for each task are operational definitions of
performance on the tasks. Performance on the individual tasks is summed
to obtain a total score, which in turn serves as the operational defini-
tion of job competence. Modern instructional technology, with its
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emphasis on specification of objectives and verification that those ob-
jectives are attained, supports the above process for establishing the

content and focus of SQTs, and thereby lends added credibility to theseprocedures.

Though the task is the basic level of analysis, the validity of
task proficiency measurement depends on the adequacy of the test of the
task. By means of detailed task analyses, the set of performance measures
or behaviors required for successful performance of the task are identi-
fied. These lists of performance measures are all available in the Sol-
dier's Hanual. Each item developed to teat for task proficiency must

*i occupy a clearly specified relationship to a performance measure required
in task performance. Assuming that the set of items developed for a test
of a task has been selected in accordance with the procedures described
above, one may assume with reasonably high confidence that successful
performance of each tested behavior is a necessary condition for success-
ful performance of the task. How to score the set of items in a written
scorable unit to obtain estimates of abilitt to perform tasks is a complex
question. Heasurement error is always a problem that must be allowed for.
Whether being scored GO on a test of a task requires passing all items
included in the test of the task, or some number less than perfection, de-
panda on the nature of the task, the fidelity with which the task can be
tested in a written mode, the complexity of the format (e.g. multiple cor-
wect responses), and the number of items vithin the cluster. Use of sub-
ject matter experts in reaching such a determination is mandatory.

In the came of a hands-on test of a-task, measurement error arising
from the use of words In minimised. However, other measurement probloms
arise. One is that a full performance test of a task generally is not
feasible. It may be too costly in terms of time, equipment, and personnel.
Therefore, a truncated test of the task is often developed by eliminating
some of the performance measures or steps required for the full performance
test. By truncating the test, though, it is possible that the tested por-
tion is necessary to successful task performance, but is not sufficient.

Validate Tests Prior to Administration. A first question to be re-
solved is how to define validity. The starting point is the usual defini-
tion of validity, i.e., that the tests measure what they are intended to
measure. In the case of Skill Qualification Tests, the intent is to mea-
sure ability to perform critical job tasks. The content of the tests,
therefore, becomes the crucial factor in establishing validity. The con-
tent must be thoroughly reviewed by experts to ensure that the right
behavivrs and decisions are assembled in each scorable unit. The first
requirement, then, is consistent agreement among experts that the content
of the test is based on ability to perform critical job tasks. A
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second requirement is that the scorable units discriminate between per-
formers (masters) and nonperformers (nonmasters). A third requirement
applies only to written scorable units. All items in a written scorable
unit must be consistent estimators of mastery on the task covered by the
entire scorable unit. Thus, the conceptualimdng of validity focusce on
consistency; Consistency between the content of the test and the job
tasks, consistency among expert reviews, and consistency in identifying
masteryp
msryDEVELOPMENT PROCESS

Skill Qualification Tests are constructed and validated by Army
agencies that have resident expertise in the job specialties. Generally
these are the Army schools, but they also include other agencies, such
as the Health Services Command. Since the test content must reflect job
tasks, the test developers must have detailed task analyses available
that identify the behaviors essential to successful performance of the
tasks.

The development process for Skill Qualification Tests may be concep-
tualized in four steps:

1. Identify job tasks for testing; these tasks require special
training or are frequently failed.

2. Identify behaviors or steps essential for performing each task;
the intent is to identify the steps that are necessary and sufficient
for successful task performance.

3. Develop scorable units (tests of tasks) to measure essential
behaviors for the tasks; items in scorable units must have explicit
relationship to task steps, and the scorable unit as a whole must cor-
respond to performance of the task; items are scored pass-fail (1 or 0),
and scorable units are scored GO/NO-GO (also 1 or 0) to reflect mastery
or nonmastery of the task according to the prescribed standards; the
number of scorable unite scored GO is a measure of job proficiency.

Content of the Skill Qualification Tests is fixed after these three
steps are completed. Experts review (a) the tasks selected for testing
to make sure they are critical to the job; (b) the behaviors required to
perform the task to make sure they are necessary and sufficient; and (c)
the scorable unit to make sure that the items correspond to the behaviors.
After the experts agree on the appropriateness of the test to job require-
ments, the test content cannot be changed.
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4. Try out storable units on soldiers.

This stop serves only to establish the measurement properties of
the tests. Items found to be unsatisfactory through the tryout can be

revised, as long as the test content is not changed.

STATISTICAL ANALYSIS OF TRYOUT DATA

The tryout step wan originally conceived of as the validation of
Skill Qualification Tests, and the earlier steps as test construction.
Experience gained during the past two years, however, has shown that for
criterion-referenced tests, validation encompasses the entire develop-
ment process.

The guiding principle of the developmental process is consistency
of measurement. Experts must agree on the relevance of the teat con-
tent to job requirements and the appropriateness of tests items to task
behaviors. In the tryout on soldiers, the scorable units must be con-
sistent indicators of ability to perform the task. For written scorable
units, each item in a scorable unit Is first correlated with an inde-
pendent estimate of ability to perform the task, and then with the other
items in the scorable unit*. The external estimates of ability to perform
the task are self-ratings obtained through standard questions. Up to 30
soldiers are included in the sample to determine consistency of measure-
ment for each storable unit. The analysis consists of computing an
Agreement Index for each item and scorable unit:

Self-rating

Performer Nonperformer

Item Passa b
or or

Scorable GO ,
Unit Fail C d

or
NO-GO _ _

a,b,c, and d are cell frequencies

Agreement Index - ad - be; if Agreement Index 4 0, then the item or
scorable unit is satisfactory; if Agreement Index < 0, then the item or
storable unit is unsatisfactory, and must be examined for revision.
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A second analysis involves examining patterns of Agreement Indices
for items in a scorable unit. Items that have positive Agreement In-
dices are satisfactory, and items with negative Agreement Indices must
be examined for revision.

SQT ISSUES STILL UNDER REVIEW

1. Is the Agreement Index an appropriate statistic to evaluate the
quality of written items and scorable units?

2. For written scorable units, standards of performance are set
arbitrarily, e.g., 3 of 4 items must be passed to be GO on a scorable
unit. Are there statistical techniques to indicate level of mastery
that can be readily employed by test developers who are not trained in
statistics?

3. Are there alternative procedures for collecting and analyzing
data on the satisfactoriness of written items and scorable units, which
are also sensitive to the requirement of fixed test content?

4. Are there more appropriate ways of combining scores from items
and scorable units into a total test score that indicates level of job
proficiency?
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"ANALYSIS OF MAN-MACHINE INTERFACE INFORMATION

IN CURRENT COMMUNICATIONS SYSTEMS

R. J. D'Accardi arid H. S. Bennett, US Army Communications
Research and Development Command, Fort Monmouth, New Jersey

C. F. Tsokos, Department of Mathematics, University of South
Florida, Tampa, Florida

ABSTRACT. Experiments dealing with man-machine interface problems occurring
in t-iacal communications systems have been conducted at Ft. Monmouth, NJ.
The thrust of the study was to characterize the human element of a sophisti-
cated system by varying the environmental factors of ambient light and
acoustic noise and observing quantitative changes in operator performance.
Specifically, the number of errors committed by a communications systems
operator were observed as a function of the environmental factors. The
equipments used were the standard teletypewriter terminal and an optical
display terminal.

The object of this presentation is threefold: First, we discuss the
importance of human-factors in system development and briefly review the
experimental design. Secondly, we present a ru,)I-linear regression model
and error matrices which can be used to pred.io1. operator performance as a
function of the environmental factors of ambient light and acoustic noise,
and thirdly, time series models are presented for the optical display
terminal to illustrate the usefulness of characterizing, within reason,
the error performance of a terminal operator working in a wide variety of
environments.

I. THE IMPORTANCE OF HUMAN FACTOR3 IN SYSTEM DEVELOPMENT.

It is interesting to note that Human Factors studies in the Army can
be traced back to World War 1. It was found at that time that in the
fledgling British Air Service 90% of all fatal accidents were the result
of individual pilot deficiencies and only 2% were killed in combat (the
remaining 8% were due to materiel deficiencies). This fact led the US
Army to establish a laboratory designed to study problems (including the
human factors aspects) connected with flying. It was called the Research
Board of the Army Signal Corps Air Service and was established in
October 1917. It was quickly followed by the School of Aviation Medicine

• in 1918 (now the School of Aerospace Medicine at Brooks Air Force Base,
Texas) and the Physiological Research Laboratory (now the Aerospace
Medical Research Laboratories at the Wright Patterson Air Force Base).
By the time World War II began the human factors field has been taken
over by industrial engineers and inuustrial psychologists (e.g. Taylor,
Gantt, and the Gilbreths). It was World War II, however, with its
quantum jump in the technological complexity of man/machine systems,
"which set the mold and pattern for modern present day human factors

-- engineering.
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The mission of modern day studies of man/machine environmental factors
has five aspects:

a) It is connected with the contributions of the man/machine
interface to the entire or over-all performance of the system. As the
systems become more complex, they also become more vulnerable to catas-
trophic failures (shades of the power blackoutsl) and the man/machine
interface is a critically vulnerable point In such systems.

b) It must be concerned with the translation of broad system
operational requirements into specific man/machine Interface functional
requirements. For example, how do you "get down to cases" in an air
defense vigilance task with operator requirements when all you know is
that a "bogie" must not get through even though it may occur only once
in a 24 hr. day.

c) The human factors engineer must be involved in the promulga-
tion of training and personnel selection criteria. If, in a complex
system, the status of the man/machine interface is critical to the over-
all system performance then the qualifications, job description, and
needed skills for the human elements of the system (including maintenance
as well as operation) must be a major duty of human factors engineering.

* _d) As most modern complex systems are relatively costly, it
behooves the human factors and systems engineer to model, whenever
possible, the system under consideration. Such models must be flexible
enough to incorporate a realistic (and usually non-ergodic) representa-
tion of the man/machine interfaces. Analyses of data secured from these
models also is the concern of the human factors engineer.

e) Finally, although modeling may be the norm for analysis of
-- complex systems, the human factors engineer must never lose touch with

the real world. Therefore, whenever feasible, he should be involved in
actual system performance tests and in the analyses of the resulting data.

The work being reported on in this paper is In line with several of
the above listed missions, and, in particular, the one under subparagraph
"d" above. Before considering the details of the research, one should
consider the environment In which the interface under study is immersed.
This environment is described as a hierarchal command/control system. A
generalized Cd system model must make provision for sensing, filtering,
analysis, decision making, and feedback at each level in the hierarchy of
command. However, since each level in the hierarchy must feed information
upwards in the chain of command and effector-action commands downward, the
resultant loops are imbedded in a hierarchal fashion.
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"Let us trace one such loop. Imagine a line or field .of sensors (REM-
* BASS) at the FEBA intended to warn of enemy overload approach. In addition,
_ ,let us visualize airborne reconnaissance (drone and manned), behind the

lines intelligence operations, prisoner interrogation, signal intercept
.. operations and the like. All of this "sensor" information must be filtered,

classified, and appropriately analyzed and correlated for presentation to
a commander for decision as to appropriate effector action (retreat,
advance, hold, encircle, etc.). Once the effector action is ordered, the

* resulting movements and actions must be reported through the original
information gathering network, as well as through command channel status
reports, so that further or modified effector action may result. Thus,
we have a reentrant feedback loop continuously in action. If we visualize

-- this situation (sensing, decision, effector action, feedback) as occuring
at least at each level of command (company, battalion, division, corps),
then the significance of the imbedded or hierarchal nature of the multiple
feedback loops becomes evident.

How does the particuliar man/machine interface being reported upon -,n
the paper fit into the above? At almost every stage of information flow
there is a point where multiple channels of information must be consoli-
dated and summarized so as to form a new message. A common denominator at

-*,these points is the message center, and in particular, field or forward
-- area message centers. The operators in such message centers operate under

a combination of stressful environmental factors - acoustic noise, poor
light, fear of bodily harm, etc. The subject study attempts to simulate
under controlled conditions the first two factors and to substitute for
fear of bodily harm a fear-of-failure situation by giving the operators
who are taking part in the simulation a series of tasks which are greater
in amount than the time allotted for thoir accomplishment.

This is the general scenario and motivation for the study. Now let us
proceed with a discussion of the results which were to be realized from
the data gathered. Since in a simulation one cannot hope to achieve all

* the detailed conditions possible, it was the purpose of this study to come
up with a predictor model which would allow for insertion of other permuta-
tions and combinations of the considered conditions and then to predict
operator performance under these new conditions.

* :II. DESIGN OF THE EXPERIMENT.

The details of the experimental design were reported in the Proceedings
of the Twenty-first Conference on the Design of Experiments in Army Research

* Development and Testing, ARO Report 76-2, pp 13-29, May 1976. What follows
* in this section is a general summary of the experiment.
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The significance of acoustic noise and ambient light on operator
performance was investigated using both an optical display transmission
device, and a standard teletypewriter. Primarily, the visual display
terminal is a developmental equipment intended to visually present
messages on a CRT display where an operator can see and correct his
message prior to transmission.

The experiment consisted of testing the transcription accuracy of six
experienced communicat-Ions-center operators under 16 different combinations,
of environment. Ambient light was varied at four levels, ranging from
24 ft-candles to 3 ft-candles, and acoustic noise was concurrently varied
at four sound-pressure levels ranging from 55 dBa to 95 dBa. The 55 dBa
level was const.ered the quiet condition and the 95 dBa level represented
an extremely annoying and distracting "pink" noise. The chosen ambientlight levels of 24, 12, 6, and 3 ft-candles, respectively, represented
successively deteriorating lighting conditions.

The messages for the experiment consisted of forty random-letter word
groups of five characters each. They were derived through a random number
generator and an alpha-numeric conversion. No message was a duplicate nor
were they duplicated by any of the operators on either terminal equipment.
The aim of the experiment was to vary the environmental variables and to
observe the transcription accuracy of each operator utilizing the visual
display terminal as a function of time. The response variable, accuracy
(number of committed errors), was the measure of transcription errors that
each operator committed per four second interval. The results were com-
pared to an acceptable operator norm, i.e., typing a message format on a
standard teletype terminal under the same conditions. Each operator was
tested in four sessions, each session programmed for eight random environ-
mental combinations, four for each terminal equipment. See Table 1. The
tests were alternated between the optical display unit and the standard

* teletypewriter to reduce the effects of learning. A thirty minute
familiarization period was given each operator prior to the tests.
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TABLE 1

TREATMENT SCHEDULE PER OPERATOR

Envi roninental Treatment*,. ,Combinattons

Optical Display TeletypeSession Run Terminal Terminal
, 1 1,4 3,1

2 4,3 4,43 3,2 2,24 2,1 1,3

11 5 3,1 4,1
6 4,4 1,27 2,2 3,48 1,3 2,3

III 9 4,1 2,4
10 1,2 3,3
11 3,4 1,112 2,3 4,2

IV 13 2,4 1,4
14 3,3 4,3
15 1,1 3,2
16 4,2 2,1

*Treatment (Abient Light Level, Acoustic Noise Lee)

Ambient Light Acoustic Noise

Level Value Level Value
1 24 ft-candles 1 55 dBa2 12 ft-candles 2 70 dBa3 6 ft-candles 3 80 dBa4 3 ft-candles 4 95 dBa

I,24
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III. A NON-LINEAR REGRESSION MODEL FOR MAN-MACHINE INTERFACE.

In this section an acceptable model to predict operator performance
is presented so that one can determine the environmental combination of
ambient light and acoustic noise which generally causes a minimum number
of committed errors. Variouslinear, multiple linear, and non-linear
models were tested for both terminals. The criterion used for choosing
the best model was the minimum SSE (sum 6f squares for error) where

SSE - E (YV - Y1)2.-11

and Y1  observed errors,
A

Yj * predicted errors.

The general model that best describes the observed data is of the
form:

Y - Be + 81X1 + 8 + X1XZ + 8 2

S+ 25x2 + BIx)xl + 87xxz + 8,xIx + 0,'A + 0Iox' + Ej

where Y - average number of errors (operator performance) per

cell,

X, ambient light level,

X2 - acoustic noise level,

81 = model coefficients, i *0,1 .... 10,

w experimental error, j • 1, "-'-n, (the extent to which
the observed data and the model disagree, where ejs
are independent and c 'i N(O, azI)), and

n a 16.
The estiviated values of the coefficients, error variance, correlation,

and appropriate F statistic for both terminals ai' .ý,mnmrtzed iq the
following table:
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I
Parameter Optical Display Teletypewriter

Terminal Terminal

B0  34.7500 -7093

S.5092 -6.365

B2  -1.0840 1.018

8, - .0399 .1588

B0. .0359 .1663

B, .0137 - .02055

6B .0002373 - .0007769

B, .001990 - .004906

B, -. 000011 .00002257

B, .003293 .001425

o10  .000053 .0001133

SSE 5.136 3.389

s2 1.027 .6779

F(MODEL) 2.735 6.536

R'yy .8455 .9289

Ryq .9195 .9638

2
f 25
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In the case of the optical display terminal, the F statistic
indicates a possible overabundance of variables. In the case of the
teletypewriter terminal, the small SSE, large R and relatively
small F statistic indicate an acceptable model. yy

*• Now, we begin to investigate the possibility of eliminating those
*; variables that do not significantly contribute to the dependent variable.

The procedure used to form the reduced models was the "forward selection
procedure" which begins with the variable Xi, that has the highestScorrelation Px with y Next, the partial correlation coefficients of
the remaining and , p(xgyjxl), j 0 t, are calculated. The xi with

*I the greatest p(•iyIxt) is s~lected to enter the regression equation.
.1 This process is gontinued, and as each variable is entered into the

equation, the multiple correlation coefficient Rly9 and the partial F
test value for the most recent entry are examined. In the first case,
one checks to assure a relatively insignificant change in R , and,
secondly, whether or not the inserted variable has taken up p significant
amount of variation over the previous variables in the regression model.
When the partial F test becomes Insignificant (the SSE is sufficiently
reduced) and R2 ^ is not very different from the "full model", the pro-
cess is terminaid. The reduced model, therefore, contains all signifi-
cant variables plus the first two insignificant variables to accomodate
any error due to the estimates.

Based on the general model previously stated the appropriate
reduced models which characterize operator performance for both terminals
are as follows:

I) for the optical display terminal:

01 + $IXv + B1XIX + NX + OIX! + C

where: 8• * 10.63,

"1 •-0.1239,

2 0.000028,

i a• -0.0002202,

- 0.000008367,

with SSE a 8.678,
!S2

S0.7889,

F(MODEL) u 7.783,

y * 0.7389,

R y • 0.8596
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H i.

ii) for the teletypewriter terminal:

VY $ + X + 8X1X + 8OIX 2  + BIX+ + 3

where: $1 - 3.211,

j 1 -1.365,

- 0.03532,
2

01 -0.001288,
JS

$1 - 0.002123,
4
$1 - -0.000004273,

with: SSE - 7.63,

S2  - 0.763,

F(MODEL) 10.5,

R2 A " 0.84,II yy
R A a 0.9165.yy

The reduced models now provide the capability to predict the number of
transcribed errors given the desired combination of ambient light~and
acoustic noise.

IV. OPTIMAL LIGHT AND SOUND LEVELS.

One can now attempt to find the light-sound combination that causes
the least number of errors to be committed. The method used was simply
to evaluate the predicted value of Y for ordered pairs, (X1 , X2 ), where
A. Rassumes all integer values from 1 to 26, and X2 assumes even integers
v lues from 50 to 100. These ranges of Xi and X2 where chosen based upon
the levels of X1 and X2 used in the experiment. Thus, the reduced models
are used to provide a reasonable extrapolation outside the tested environ-
mental limits.

The predicted Y values, i.e., the predicted number of errors, were
calculated for the environmental combinations described in section II for
the optical display data (using the reduced model) to obtain the matrix of
table 2. Visual examination of this matrix shows that the minimum number,
of error!, i.e., 4.4, will occur at a light level of 24 ft-candles and a
concurrent acoustic noise level of 54 dBa, or, If we are willing to
extrapolate slightly outside the region from which data has been obtained,
the absolute minimum, 3.8, occurs at 26 ft-candles and 50 dBa. Thus, one
can conclude that the minimum number of errors committed on the optical
terminal (in the region for which data was taken) occurs at the minimum
sound and maximum light combinations, that is, 26 ft-candles/55 dBa.
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A similar matrix of predicted errors was computed for the reduced
teletypewriter model, and is shown in table 3. In this case, visual
examination shows that the minimum number of predicted errors occur at
a light level of about 16-17 ft-candles and at a concurrent sound level
of about 55 dBa. In both cases (optical display and teletypewriter) the
results of the minima were expected. It is to be noted, however, that in
a tactical situation the environmental factors of ambient light and
acoustic noise are far from optimal. Thus, one can conclude from the
matrices that for a wide variety of the environmental factors X1 and X2 ,one can predict how well experienced communicators will perform.

,'1
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V. TIME-SERIES MODELING OF MAN/MACHINE INTERFACES.

The best non-linear regression model presented in the previous section 2
dealt with the prediction of the number of committed errors as a function
of two environmental variables, namely, light and sound. More often, the
communications engineer is interested in such factors as performance, and
efficiency as a function of time. Thus, utilizing time-series models, it
may be possible to characterize a group of operators either singly or as a
whole for predicting the number of committed errors at times t1, t•, t ,•.., t, in the future. The time-series approach for this type o inr -

mation is somewhat unique in that not many attempts have been made to
implement this methodology in analyzing time-dependent man-machine inter-
face data. In view of this uniqueness, there are a number of shortcomings
that were experienced. One of the most serious limitations was the sample
size. Howevir, enough information is available so that one can initiate
the time-series methodology into this particular subject area. This
approach is extremely useful because it characterizes, within reason, the
error performance of any communications terminal equipment operator
working in wide variety of environments.

Incorporated into the design of the experiment was a four-second time
interval counter. This provided a running count of the number of trans-
cribed errors in each four-second time period for the duration of the test.
Thus, thirty-two non-deterministic time-series were created (sixteen per
terminal, one corresponding to each combination of environmental factors).
Of the time series so obtained the two most critical environmental com-
binations are presented, namely, (1,4) and 0,4) (refer to Section I1).
Criticality was determined by the degree of non-stationarity of the series,
or in other words, the amount of filtering required to bring the process
into statistical equilibrium.

Clearly, the time-series characterization of the data is very promising
from the point of view of affording to the communications system designer
and planner a means to predict the human element of the total communications
system architecture. The following stochastic formulations obtained were
very adequate in characterizing the underlying process of error performance:

a. for the (1,4) environment, teletypewriter terminal, we obtained

the mixed autoregressive-moving averages (A'RA) model:

Xt - -0.046 + O.660Xt.I + 0.367Xt. 2 + Zt + 0.449Zt.I + 0.223Zt. 2 +

0.422Zt- 3
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b. for the (1,4) environment, optical display terminal, the third
order autoregressive (AR) model obtatned was:

A

Xt - + 0.254Xt-1 + 0.133Xt-2 + 0 . 355 Xt-3 + 0.258Xt- 4 + Zt,

c. for the (4,4) environment, teletypewriter terminal, we obtained
another mixed model, (ARMA):

A

"Xt - 0.006 + 1.785Xt.1 - O.570Xt.2 - 0, 2 15Xt.3 + Zt + O.95OZt 1 +

O,191Zt. 2 + O.O16Zt- 3,

d. and, finally, for the (4,4) environment, optical display terminal,
the third order moving-averages (MA) process obtained was:

Xt - 2.158 + Zt - 0.453Zt.1 + 0.023Zt.2 + 0.O51Zt. 3 .

To illustrate the adequacy of the models figures 1 and 2 graphically
display the observed and simulated information for the optical display
terminal (ODT).These particular presentations were chosen because of the
projected role of the ODT in future communications systems. The details
of the teletypewriter terminal analysis and a comparison to the ODT will
be presented at a later date.

I"

One of the implied features of this research is that for each environ-
mental combination, no common realization, either ARMA, MA, or AR, was
obtained to characterize operator performance. One can conclude, therefore,
that even with an adequately developed procedure for analysis, more than one
characterization may be required to evaluate the human subsystem in sophis-
ticated communications systems, The procedures developed clearly provide
a realistic view of the complex man-machine interface that occurs in
current communications systems.
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IMPROVED QUANTIFICATION OF PLAYER
EFFECTS IN EXPERIMENTAL DESICN

Williav MAllios, Robert Batesole,
Donald Leal, and Thieu Tran

BDM Scientific Support Laboratory
U.S. Army Combat Developments Experimentation Command

Fort Ord, California

ABSTRACT. This paper discusses and illustrates a methodological

alternative to standard experimentkl designs for use in certain applications..

Focus is on the quantification of random subject or player effects to be used

in place of dummy (1, 0) variables in the usual linear model assumed for

analysis of variance. The advantages of this approach are: (1) increasing

the efficiency of the analysis; (2) providing explanation of player differences;

(3) forming a base for the evaluation of adjusted treatment effects; and (4)

logical formulization for extrapolations to other populations of individuals

for increased utility of the results.

The reader is assumed to have some familiarity with the statistical

analysis of experimental data.

I. A MIXED EFFECTS MODEL.

Consider the Mixed Effects Model

- T + a+ +cj (1.1)

where -r is the fixed differential effect of the i-th treatment, i-l,°..,

P; the Ba, J-l,..., q, are random block effects which are assumed normallyJ2

and independently distributed with E() - 0 and variance (0 C 0" i.e.,
2 2NID (0, os); for the model error, cij, it in assumed that cij- NID (0, cc).6ij:

The dependent variable is yij1 while • is the base from which differential effects

are measured.

1The normality assumption is required for tests of significance, nut for
estimation.
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II. THE INDIVIDUAL AS A BLOCK. In many applications, the block is

defined by an individual who is subjected to some or all of the P treatments
2

in succession. For example, in clinical trials, cross-over designs are used

to compare drugs (treatments) by subjecting each individual to each drug in

succession.3 A second example in in military field testing where each partici-

pant is subjected to fire by each of different weapon types (treatments), the

dependent variable i3 some measure of suppression per treatment.

III. TREATMENT BY BLOCK INTERACTIONS. In designing experiments

characterized by these examples, it is hoped that treatments and blocks do

not interact. Assuming non-significance, this interaction becomes the inherent

model error, cj. If, on the other hand, this interaction is expected to be

significant, then replication should be incorporated in the experiment so that

this interaction can be estimated. Replication, however, poses problems in the

examples just discussed. In the drug experiment, replicating the individual

may induce complex carry-over effects of drugs. In the military experiment,

replication may induce learning and/or boredom effects so that repeated use

of an individual within a treatment level does not constitute a replication

in the statistical sense of the word. Consequently, many experiments are

designed under the assumption of no block by treatment interaction when prior

logic is to the contrary. In fact, it is not unreasonable to expect indivi-

duals to react differently to treatments in many situations. For example, in

military field experimentation, subjecting different individuals to the same

experimental situation will produce different responses depending upon an

individual's military experience, degree of enthusiasm, mental aptitude, physical

sensitivity (hearing, eyasight, etc.), and physical endurance. Treatments

which are sensitive to any of these attributes will lead to an interaction of

block (player) by treatment since these attributes will differ from player to

player.

2Cross-over designs (see (1)) are sometimes favored over parallel designs wherein
individuals are maintained on the same treatment over the entire period of experi-
mentation; i.e., individuals are nested within treatments. With cross over designs,
"differences between individuals are neutralized in comparing treatments, given
certain assumptions are met.

3The ordering of drugs will generally differ between groups of individuals so as
to allow for estimation of carry over effects.
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S~ IV. QUANTIFYING THE BLOCK EFFECT IN TERMS OF A DUMMY VARIABLE. In

model (1.1), the block effect quantifies the individual in terms of a dummy
(0,i) variable. The intent of these variables is to isolate the between

individuals sour,-e of variation so as to increase the efficiency of the analysis.

Note, however, that under model (1.1), no attempt is made to distinguish between

differences in physiological or psychological states within individuals; i.e.,

the state of the individual may vary during times when different treatments are

administered to him. The result of the (0,1) dummy (block) variable analysis

is the estimation of an "average" effect for each individual. If these states

vary substantially during experimentation, the efficiency of the analysis

corresponding to model (1.1) decreases relative to the case where "adjustments'

thru the use of covariables that quantify these states are made for. Moreover,

variations in these states during experimentation, which cannot be realistically

controlled only measured, can lead to serious biases in comparing treatments

when a predominance of a particular state exists within a treatment over another

treatment.

V. OTHER METHODS OF QUANTIFYING THE INDIVIDUAL. How does one quantify

the individual other than through dummy variables? A general answer is through

covariables while a specific answer lies in the particular application. In drug

experiments, measures drawn from the blood and/or urine serve to quantify the

individual. In the military field test, the individual partially quantifies

himself in terms of his responses to psychological questions.

If the psychological or physiological states are not expected to vary

significantly within individuals over the course of the experiment, quantification

of the individual may be required only once, say prior to the application of the

first treatment. Replacing the block dummy variables with the covariables quanti-

fying the individual serves several purposes. Firstly, the covariables explain

differences between inividuals whereas dummy variables do not. Secondly,

assuming that only a few covariables are required to adequately quantify the

person, the replaciement of the dummy variables by the covariables adds to the

error degrees of freedom and hence to the power of the test. Thirdly, more

freedom is allowed to estimate treatment by player covariable(s) interaction in
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lieu of the previously mentioned treatment by block interaction. Finally,

the possibility exists to use these covariables as a logical formulization

for extrapolation to other populations of players thereby enhancing the

utility of the results.

Then in place of model (1.1),
r

Ylk 0 + Ci + E 'k k + 6 ik (5.1)
k-l

may be applied, where Kik denote covariables which quantify the individual,

k-l,..., r; the a k are regression coefficients; and the 6ik are model errors

with the usual assumptions for 8ik accompany the model for tests of significance.

Model (5.1) holds if the states fluctuate widely within individuals,

though in this case, quantification of the individual should take place just

prior to each treatment application, not after. If the individual is quanti-

fied following treatment, there is the possibility of treatments affecting the

covariables. In this event, direct and indirect treatment effects may have to

be considered through a system of structural regression equations; e.g., model

(5.1) and

"a + i+ (5.2)

could form a system where •T of (5.1) is the direct i-th treatment affect

on Y, Tki of (5.2) is the direct i-th treatment effect on x k' and T + "k "ki
is the overall i-th treatment effect on y; see Mallios (2)

For the case of significant block by treatment interactione with player

quantification taking place prior to each treatment application, the model would

take the form
r P,r

Yk o + YkXik + E (TY) X + C (5.3)
Yi o I k- i~k ik ik+ ikal i,k

where the Y are regression coefficients. The ( T )ik allow for the y kto

differ between treatments. Here, note that with this formulization, replication

within a treatment is not necessary, since the repitition aspect io through

the communality, provided overlapping exists between treatments, of the x

responses.
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VI. QUANTIFYING A PLAYER'S PROPENSITY TO PARTICIPATE IN A SUPPRESSION
E•PERIMENT. An experiment was conducted to evaluate individuals"

assessment of danger when fired upon under different conditions while situated

in foxholes. The seven treatments included overhead fire by different small

arms with varying bursts at varying ranges. Initially, 31 participants were

rehearsed and prebriefed on experimental objectives and techniques. There-

upon, all 31 were situated in separate foxholes and were simultaneously

subjected to each treatment over seven distinct trials. Oollowing each trial,

each player gave an assessment as to whether the particular treatment was

"very dangerous", "quite dangerous", "fairly dangerous", or "not very dangerous".

Prior to each trial, each player answered the series of questions in

Table 6.1. Their answers were intended to give areasure to the player's propen-

* sity to participate in the experiment. In very loose terms, the answers give

measure to player motivation.

Note that most of the questions are directed at short term attitude

changes rather than long term changes; e.g., the player could be bored, tired,

or hungry on one trial but not another. Table 6.1 presents the percentage of

yes responses over all players and all trials. Due to the high percentage of

yes responses, questions 4 and 8 were deleted from further consideration.

Since the questions were answered on a per trial basis, it must be

established that the questions had the same meaning between trials or that

relations between questions remained the same over trials. Accordingly, based

on quantifying "yes", no answer, and "no" responses according to -1, 0, and 1,

a 10 by 10 covariance matrix, say Si, based on questionnaire responses was

calculated for each trial. Let S1 estimate Zt. Then relationr between

Squestions differ between trials if the hypothesis

H : m M .0a :1 "' 7

is rejected. Using the likelihood ratio criterion (see (3)), H was not rejected.
0

* , Consequently, all the questionnaire data were pooled into one covariance matrix

(based on differing mean vectors per trial), say S.
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The matrix S was converted to C, the matrix of simple correlations,

and a principal component analysis (3) w;as performed. The three eigenvectors

associated with the three largest eigenroots are given in Table 6.1. Theme

eigenvectors are part of a principal component analysis and provide a redimen-

sioning of the original questions to isolate the inherent pattern in the

responses to the questions. Thus, the eigenventor associated with the largest

eigenroot represents the linear combination of the original responses which

had the most variability. These eig•nvectors are then used to generate the

values of the covariables. On a sýbjective basis, these eigenvectors are

deaignated as indices relating to experiment validity, to player discomfort,

and to trial structure.

For the first index, scores for the 31 players are given for a particular

trial in Table 6.2. These scores reflect the degree to which participants felt

the experiment was valid prior to the particular trial.

* ~VII4 REPLACING BLOCK EFFECTS WITH COVARIABLES IN A DISCRhIXIIA.NT ANALYSIS,
In this experiment, the dependent variable - level of danger - is cate-

gorical so that discriminant analysis 4 is a natural recourse with treatments and

Sblocks as predictors.

In the first analysis treatments were forced in as predictors while player

(block) effects were allowed to enter, if significant, through stepwise discri-

minant analysis (4). In the second analysis, block effects were replaced by

covariables produced from eigenvectors corresponding to C and by interactions

of the covariables produced from the first three eigenvectors with treatments.

Again, treatments were forced in as predictors while the other variables were

scanned for significance as before.

One result was that following scanning of variables for significance, the
. U statistic (a measure of the goodness of the discriminate) dropped from .59

in the first analysis to .46 in the second. Thus, quantifying the player per

treatment allow for a great explanation of the variability.

Although the following example employs a discriminant analysis, this quantif ice-
* tion technique has and can be used in the general linear model.

5An eigenvector when multiplied with the vector Xn of (1,0) responses will
produce the scores which become the measure(s) of the coveriable(s) to be
used as the predictors in the model.
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6

The model exercise of the discriminant function through Bayes Theokin6

is given in Table 7.1. Presented therein are the probabilities of the four

dianger categories given the particular treatment and given a particular score

for the first index. For example, for treatment 7, a high score for index 1

was contrasted with a low score. Of these who thought the experiment was

valid (large negative scores for index 1), 57% though treatment 7 was very

dangerous, 36% considered it quite dangerous, 6% considered it faily dangerous,

while 1% said it was not very dangerous. These probabilities are contrasted

with those associated.with individual. who thought the experiment was not valid.

The obvious implication here is that the players "propensity to parti-

cipate" going into a particular trial has an overwhelming effect on the uutcome.

Without adjustments for these states, experimental ::esults would have fallen

somewhere between the two sets of rosults in Table 7.1. Thus, it can be seen

that the quantification of the player in this way not only provided a more

effiEi.ent analysis, but also some insight into the dynamics of the experiment

which would ultimately lead to becter experinartal technique.

REFERENCES

(1) W. G. Cochran and G. M. Cox (1957), Experimental Designs, Wiley, N.Y.
(2) W.S. Mallion (1970), The analysi6 of structural effncts in experimental
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ERRORS IN LINEAR FITS DUE TO FUNCTION MISMATCH
AND NOISE WITH SPLINE APPLICATIONS

G. W. Lank, W. B. Kendall, P. A. Gartenberg
MARK Resources, Inc., Marina del Rey, California

INTRODUCTION

In producing trajectory estimates from noisy radar data it is generally

necessary to smooth the radar data by fitting a deterministic function to

it. The choice of function depends on hay much is known about the trajectory.

However, usually all that is known is that range as a function of time will

be a "smooth" function with "small" values for its higher derivatives. Then

a reasonable and practical choice for the deterministic function is a poly-

nomial of low order. This is the function which has zero for all derivatives

beyond a certain order, and thus will be a good approximation to any true

range function uhich has sufficiently small higher derivatives over the

smoothing interval.

A smoothing function related to polynomials, but which has wider applic-

ability, is the polynomial spline. This function consists of a series of

polynomials which are used over contiguous time intervals to represent the

true range function. The individual time intervals are chosen to be

sufficiently short for all higher-order derivatives to be negligible (i.e.,

over each short interval the range data very nearly follow a polynomial)

and smoothness of the overall fit is achieved by constraining the Individual

polynomials to match their neighbor's value, slope, and perhaps higher derivae-

tives, at the boundaries (knots) between polynomials. This function has the

advantages that it can be used to smooth data over Intervals which are

far coo long to use a low-order polynomial, but at the same time it is much

more constrained (and, therefore, much smoother) than a higher-order

polynomial.
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* PROBLV4 TO BE SOLVED

This brings us to the problem addressed here. When fitting splines

to noisy measurements there are two distinct sources of error which

prevent the fitted smooth function from being equal to the true noise-

free underlying function: (1) Even in the absence of noise the under-

lying (trajectory) function may not be of the form of a spline, so that

a perfect fit is impossible. (2) Noise in the (range) measurements

of the underlying function prevent a perfect fit. Quantitative results

for the effects of these two error sources can be gotten as follows.

FORMULATION

Assume we observe a function, such as range versus time, at M discrete

times which are not necessarily uniformly spaced. The observations of the

function have additive noise present in each sample. The noise is Gaussian,

zero mean, independent from sample to sample, and has the same variance

2 at each sample. The observed noisy function is to be fitted in time

by the weighted sum of F basis functions. In general if the function were

to be observed noise free, its form would not necessarily be exactly equal

to a weighted sum of the F basis functions. A set of basis functions which

in used In practice is those functions which yield a polynomial spline.

THE ERROR AVERAGED OVER TIME

The statistics of the sum E.T of aZZ the squared errors at the sampled

times (i.e., the sum of the squared differences between the resultant weighted

sum of the basis functions and the actual noise-free function) is found. It

is found that ET has a biased X2 distribution with F degrees of freedom
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2
with the variance correspovding to each degree of freedom given by a

The bias is the sum of the squared errors which would exist at the sampled

times if no noise were present. It is due to the fact that the noise-

free function is not necessarily exactly equal to a weighted sum of the

F basis functions.

The probability density of ET is specifically given by
T

x /2-1 -x/2
-'F 1 22 F (2 ) x > 0

{2F/2Qr(F/2)p(ET-
T 0-x

where

2

x (ECTfEb)/or

Eb - bias,

F - number of basis functions,

r(,) - the game function.

The significant characteristic of ET as far as the noise is concerned

is that for a given bias Eb the probability density of ET depends only
2 :

upon a and F, and not on the specific functional form of the basis

functions used. It is also independent of the number of sampled points.

Furthermore, the ensemble average of ET is

"F a2F + "b.
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Thus, the larger the number F of degrees of freedom, the larger will be

the expected error.

If the structural fcorms of the basis functions are changed in order

to make the bias E, smaller, then the probability density p(ET) will be

unaffected except for a shift of the function to lower values of ET.

This shift equals the difference between the original and the new value

of Eb. This is true as long as the number F remains constant. Thus,

for constant F it may be possible to reduce the errors in the noise-

free function estimte by making functional changes in the basis functions.

Doing this will not affect the statistics of the error due to the presence

of noise. The effects of noise and E on the resultant error are thus

statistically independent.

THE ERROR AT SPECIFIC TIMES

The squared error between the fit and the actual function at any
2

iven time (not necessarily at a sampled time) has a non-central X distri-

bution with one degree of freedom. The noncentrality parameter in the

squared error between the weighted sum of the F basis funntions and the

tunction to be fitted when no noise is present. The variance for the

one degree of freedom is the mean squared error due to the effect of the

noise.

It has been found that the variance at a specific time cannot

be obtained without knowledge of the basis functions, and even then

it cannot be obtained in closed form. However, it can be evaluated

readily by numerical computer techniques. This has been done for the

case of polynomial splines. The polynomials' first P-1 derivatives(s)

if we have P-O then P.-1 is -1. In this case neither the function nor

its derivatives are continuous at the knots (i.e., independent polynomials
are fit between adjacent knots).
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are assumed continuous at N knots. The values of the polynomials at

the knots at the beginning and end of the spline are not constrained.

Each of the polynomials making up the spline is of degree D. The knots

are not assumed to be uniformly spaced. Also, the times at which sampling

takes place are not uniformly spaced, nor do they have to occur at the

times-at which the knots are placed. The number of degrees of freedom

in this case is given by

F,- P + (N-1) (D.l-P)

Examples of mean squared error versus time have been obtained for this case

using a computer program. Examples are shown in Figures 1 through 8. The

examples are all for third-degree polynomial splines (D-3). Cases have

been obtained using three knots and also six knots. Values of P used were

from zero to three, which covers the range of continuities which can exist

at the knots of a third-degree polynomial spline.

In all cases the M discrete times at which the function is sampled

are uniformly spaced. The value of M used was large, as this is the situa-

tion of general interest. The total time of observation used for all plots

"was one unit of time. Plots of mean-squared error multiplied by (H/a2

"versus time were made. For any total time of observation and any Zarze M

these plots can be used to obtain the mean-squared error versus time. This

is done by multiplying the ordinate by the actual o2 /M and the abscissa

by the actual total time of observation.

CONCLUSION

The errors in spline fits to noisy data have been analyzed, and

their probability distribution has been determined. Closed-form results
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were obtained for the statistics of the squared error averaged over

time. Numerical results for the statistics of the squared error as a

function of time have been presented.
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AUTOREGRESSIVE MODELS OF AIRCRAFT MOTION
AND AIR DEFENSE PREDICTION

Walter J. Dziwak*
ARRADCOM, Dover, New Jersey

ABSTRACT

One of the primary functions of a gun air defense sysaem
is to accurately predict the target position a time-of-flight
into the future. -If the future position is known accurately,
then one can. be reasonably assured of a hit on target pro-
vided that the remaining fire control errors as well as
errors arising from uncertainties in ballistic and meterio-
logical conditions are small.

The availability of aircraft flight data made it possible
for the first time to analyze aircraft motion statistically
and to build models of aircraft motion. These models are, df
necessity, Statistical because those components of aircraft
motion induced by wind gusts, terrain features, And evasive
maneuvers are generally unknown and must therefore be treated
as random variables.

It was found that models of rate of change of target
acceleration as autoregressive moving average processes lead
to prediction schemes which enhanced the predictability of
target future position; especially at extended ranges (long
time-of-flight). Furthermore, these wiodels were found to
exhibit a remarkable degree of robustness; a lack of sensi-
tivity due to changes in the coefficients of the autoregres-
sive models as well as to changes in aircraft maneuvers
seems to be an inherent feature of these models.

Other variables, chosen to be more explicitly tied to the
dynamics of aircraft motion and less dependent on the choice
of coordinates, Were also modeled as autoregressive processes.
Again, the results were encouraging, indicating that signifi-
cant improvements in predictive capability inhere in the
autoregressive models.

*Much of the work done on this project was contributed by
Max Mintz, Steve Hauling, Stan Goodman.
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I. INTRODUCTION

The most common prediction schemes in use for many years
in the air defense community were the so-called linear and
quadratic prediction equations

S+ tF ) = x(t) + X(t)tF

X(t + tF) = h(t) + X(t)tF + xIt)t 2

referenced to some inertial coordinate system.* The realiza-
tion that these equations fare poorly against highly maneuver-
ing targets led to the development of nume.o~s predictors,
including polynomial types after Blackman, I) constant energy
and defense of a known point after H. Weiss(2) as well as the
v-ariaty derivable from the Weiner as well as the more general
Kalman-Bucey filter equations. Unfortunately, the perform-
ance of these predictors against real targets remained largely
unknown. With the availability of attack aircraft data in
1974, however, (eir relative predictive capabilities could
be determined. The results led to the conclusion that no
one predictor is best for all classes of attack maneuvers for
a particular aircraft. Furthermore, it was found that the
single largest contributor to the prediction error lay not in
the availability of accurate knowledge of target state, but
rather in the unpredictable pilot induced maneuvers.

Rather than try to formulate a new set of deterministic
equations as in (1) and (2), One is thus led to consider
statistical models of target motion. Although there is no
a-priori reason for believing that autoregressive models will
lead to better predictors, their consideration appears
reasonable in view of the exhaustive efforts already directed
to alternative schemes.

"*For the short times of flight involved (1-4 sec), the
rotation of the earth can be neglected. Thus, a
coordinate frame fixed to a stationary weapon system
can be viewed as an inertial reference frame.
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.1 II. AR MODELS

Let xi be some generalized coordinate.* The variable
x takps on the value x, at time (i-l)P where • is
some time increment. Autoregressive moidels, then, are
governed by the foj2rwing assumptions:

=(a) .X + ý.- . ÷ ... + _p + U

ri- -, '" r. d , -r.n

(22) E[un] 0 , Vn

E[UnU m mn

where E (-] •indicates an ensemble average over-.

"if SP O * then the model is an autoregr-e.Esive (AR) model
rof or'er p.
Since fu I Fatisfies (2) for all n, and n is given by (I),

u is trncorrilated with xn_, Xn-l xn-2' .... and E[xm 0
.fPr all m.

If

(3) r(k) a E[xn+kxn]

then one can determine the Si 's in terms of the covariance
functions r(k) as follows:

M1ultiply (1), successively by XnI Xn 2 . . . . . . X to
obtain p equations of the form. np

(4) XXn = six + 8 Xn_2Xn.j+'" p

Taking the expectation value of both sides of (4), one

obtairs p equations in p unrknowns. The r(k)'s are assumed
krco•w.. Defining rp and R by

r() r(l) ... r(p-
r(l) r(O) . r(p-2,)

r(p-J ) . r(O)

the p equations can be expressed ncre concisely by
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(5) R =r

or

'- (6) a _ R 1
L -- p

where B is the column matrix ( $i 82 OP ' )T

Ill. ESTIMATION OF a FROM ACTUAL TIME SERIES DATA
The determination of 8 is dependent upon one's ability

to compute r(k) from an ensemble of time series data. In
practice, however, such data is often unavailable for obviousreasons; time, money, and resources often do not permit the
accumulation of such data. This is especially true in the
present discussion where replication of aircraft flight paths
becomes both time consuming and costly. One is thus lead to
consider replacement of ensemble averages with averages over
time. Thus, in olace of (3), one estimates r(k) with

N-k
___ ' i+k'i .N i~k

The matrix 0 is then formed by replacing r(k) withr(k)
i.n the relation

a R r
PJ

- p

IV. MODEL IDENTIFICATION

The determination of the "proper" choibe of p i5 an
important practical question. The following result.(4) is
often useful:

. if for a given choice of p the estimated value of 0
derived from the sample covariance function satisfies
I 0 I/ then one can assume that p.=0 and hence
check the model, with order p-l. However, in order for this
result to hold, one must strengthen the assumptions withrespect to [u J. Specifically, one assumes that the [un]
vare independes t and identically distributed random= ~vari abl es.

Fortunately, the autoregressive models considered here
turned out to be of order no higher than six.
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V. OTHER MODELS

Models other than autoregressive models were also con-
sidered. These included the moving average and autgoregres-
sive moving average models. These are characterized,
respectively by

(7) xn = Un + + 0'" + (IU

with E [u J 0
n

E [UnUmJ= 026

and by

(8) xn X + + . BX + u+n i n-I P n-p n iInl + 'Lýn-q

with

E CuIa =0
nm02'E [u n~m u ml m

Equation (7) is a qth order moving average process and
(8) is a (p,q) autoregressive moving average process.

Analysis of the aircraft data indicates that aircraft
motion is adequately modeled as an autoregressive process
rather than either a moving average or autoregressive moving
average processes.
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VI. PREDICTION

For a process described by the autoregressive model

"n'xn = 3
1 ,Xna + ... + n u

one wishes to estimate x' from the knhown' values xn ,"
x ,... , Xnp. This i a mplished by first noting' the

, !fliowing:

(9) E(xn/Xn 1  Xn.2, ... , - .%+n-l+ • 2Xn- 2

+ '''" + 0 pXn'p

(10) E [x ~/x11  'n2 * Xp' 110) E [n+k/ nI, Xn-2, .. ,.n-p]

- nl(k) xn_ 1 + , 2(k)xn 2 + ..... + ,p(k)x

= n+k

where k > 0.

The prediction procedure to be derived will be recursive.
The resulting equations can be easily implemented and con-
cisely expressed in matrix form. For this purpose, We
relabel the generalized coordinates xn as follows:

y2 (n) - xn

Yp(n) -Xn -p+l

Thus,

.0i r n-1 I
"n) n 0 ... Ly(n-l ) 0l

(11)Y2nj I: 1 ?I Y26
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Define Yl (n)l
(12) Y1(n)-(n) =

LyF,

1I I
•ý 0

Then

(13) y(n) = Oy(n-1) + run

andx

AA

E[( ) (n)/x n-1n, .- ,n-pJl

Ingnso If ra i
(15), (n-1) = *[k(n-1)/n

i, z~~~(n).- E[y(n)/xn~,.., np

a ptheni ~ ~(14•) z"(n)- ¢-)

Y- Ox - - - -- -- .-- --

,,In general, if

' ~~(15) A(~k = k4-l •n

,•'which is the scheme by which prediction Is accomplished for

'•i'Ia pth order autoregressive process.
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VII. PREDICTION USING AIRCRAFT FLIGHT DATA

As seen in Section II, u is characterized as a white
noise sequence. That is,

Eru n .0

E[u u O
fnm

Analysis of the aircraft data indicated that if T is the
rate of change of target acceleration in some inertial coordi-
nate frame, then it satisfies approximately the statistical
assumptions of AR models. One can then predict future posi-
tion with the'aid of the following assumptions:

., (16) x x ,4*n-' + A.2*AA 6/n_-

n ni-1 n-i + n-i

(18) v n n-1 +6 n-1

with'*'modeled as an autoregressive prooess:

+A .. + 0* + uXn *n- + /2 pn- p n

Proceeding as in Section VI,

xn 01 A A2/20 Xn-1xn 0 1 A A220..-

, n 0 0 . / 0.... ,0 0 xn-1

xn 00 o . • O,,.,0 0 XnI
xn op-: Op xn-:
Xnl 0 0 0 1l 0....0 a

x, _*] _ * . . . .
P 0 0 1 . n-p

or

A W

xn 2

Thus,

,,A

(20) X--Xn

, , Xn+k R n-io',
which is the analogue of equation (15).
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The reason for partitioning the transition matrix as
above is that this results in substantial savings in
computational labor.

From the raw aircraft data that was available, two
independent sets of'k data were produced. -One set was
derived from smoothed accelerometer data from on board
the aircraft, and the other by thrice differencing
smoothed position data. -Prediction for the second set,
i.e.,, the thrice differenced data, is accomplished by
computing (Xn+S-3xn+2+3Xn+l-Xn) then proceeding as i.n (20).

The autoregressive coefficients for the two classes of
predictors will be different. This is exhibited in Figures
I and 2 which show the distribution of the roots of the
characteristic equations for the x-axis. Here, each symbol
is associated with a separate and distinct flight path.
It is interesting to note. that the groupings of the roots
are quite different for the two models. (This is also
true for the y and z axes which are not shown.). However,
the roots show a marked similarity within a particular class.
This suggests a commonality in the statistical description
of the data, although the full import of this feature was'
not investigated.

Comparing the performance of the two clesses of models,
it was found that the predictors developed from the thrice
differenced data do not perform as well as the' 'Cpredictors,
but the differences are not substantive for short T:.,
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V111. VELOCITY-GAMMA-sIGMA AR MODEL

Here we define a new set of dynamic variables (Ry,c) where • is the aircraft
velocity, y the angle between ý and the horizontal plane, and a the angle
between the projection of i onto the horizontal plane and y-axis.* The
mean values of the generalized coordinates are not zero as in the previous

oases, so they are removed adaptively from a one second time window. Thus,
the AR models are

(21) Vn a vn + B1 (Vn-1  - %n-1) + + 05 (vn- 5 - %n-5)

where n is the adaptive mean
1 N

(22) - E vi N In10' (22) •n • n-i N=iNi-1

* the data rate being 10 data points/sec. The variable •, it turns out, is
adequately modeled as a fifth order AR process.

Similarly,

(23) Yn n + n-" 9n-1) + - + '6(Tn-6 - Yn-6)

Sigma, however, is modeled as a firet-differenced AR process thereby
reducing the dependence on the orientation of the x-y coordinate axes.

(24) an = n-l + &On + 1(Aan1  a- 1  + + 5 (•n-5 Aun-5)

where

S(2•) An * n-1 "n-2

and
1N

(26) &a F E , Nl10n Ni-1 n

The relation between the target position and the dynamic variables
(VyC) is non.-linear so prediction must proceed recursively via the
following equations:

(27) x + A(v coY dnlh aln n- n-l b -ln n-l
(28) Yn 0 rn-i + A(v n-la°s Yn-1Cs on-1)

(29) zl - 5n + A(v 1sin y)
',i ' (•9) n " n-l. ÷ n-li •n-l)

An inertial x,y,z met is used as before.
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IX. RESULTS

The predictors developed in Sections VII and VIII were
compared with some of the common predictors that have been
in use over the years. The comparisons were made by gen-
eratlng a histogram of the number of shells fired from a
hypothetical gun air defense system which fall within speci-
fied bins or regions of the target after some time-of-flight
T No attempt was made to model error sources in the fire
cgntrol system or to generate realistic ballistic trajectories.
The shells were assumed to be free of the earth's gravita-
tional field and meteriological effects. The projectile
velocity was taken at 1000 m/sec. For the purpose of com-
paring predicLors, the added complexity of introducing fire
control errors and accurately modeling ballistic trajectories
seems unwarranted and does not shed light on the relative
efficacy of the predictors under comparison.

Comparison of the A-R predictors was made with the
folloWing standard models:

Linear

^(t + Tf) - x(t) + k(t)Tff

Quadratic

ý(t + Tf) a x(t) + A(t.)Tf + V(t)T2 /2

First Order Markovian in Acceleration*

X(t + T f) x(t) + k(t)Tf + *x'(t) eWTf + wTf - 1

with w = .1

(3)Previous studies comparing a larger class of predictors
of which the three above are a subset were made with the con-
clusion that no single predictor is best over the range of
flight paths considered here. Thus, inclusion of this larger
class is unnecessary since nothing new will be learned that
is not already known.

* The model for this process is "• - - + u from which

the above equation is derived.

2
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Tables 1 and 2 typify the type of data that was obtained
in comparing A-R predictors with the three above. The fol-
lowing explanations of these tables are in order. -Minimum
miss distance is the distance of closest approach between
the target and projectile. -Regular one point misses refer
to the miss after time Tf. -The bottom row of numbers desig-
nates a distance between target and projectile. -Column 5
differs from all other columns in that it lists the total
number of prujuctiles falling within 5 m of the target. .The
remaining columns designate the number of projectiles falling
within a bin of certain width. For example, Column 3 gives
the number of projectiles falling with 2 to 3 meters of the
target, Column 7 the number of projectiles falling within
10 to 15 meters of the target, etc. -The last column gives
the total number of rounds fired in a given time interval
(Tf).

As is evident from the figures, the A-R predictor performs
better than the quadratic predictor. -Of particular interest,
however, Is the region where T > 3 sec., -where predictors
have traditionally fared poorl;. Here, We see that with the
A-R predictors, dome rounds fall in close proximity of the
target (ie, Within 15m); in contrast, rio rounds fall in the
region with the quadratic predictor.

These observations hold in general. -That is, they can
be made for the entire class of flight paths investigated
(12 in number), As well as for the linear and Markovian
predictors. ,Furtherm6re, the A-R thrice-differended predic-
tors, As well as the $-y-c models, also perform markedly
better than either of the standard predictors.

Table 3 gives the performance of the A-R thrice-differenced
predictor for flight pags 13 (same as for Table 2) and Table 4
the performance of the v-y-a predictors, also for the same
flight pass. -Observe that the thrice-di~ferenced predictor
does not perform quite as well as the '"predictor,An observa-
tion alluded to in Section VII. -In addition, the V-Y0
predictors do not fare as well as thec'•predictors.

L. . .298
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X. ROBUSTNESS

The sensitivity of the predictiv'e performance oX a
particular A-R model to changes in the autoregiessive
coefficients is important because, in practice, dne does
not have a-priori knowledge of the statistics of target
motion from which one can compute these coefficients. -One
is thus lead to pose the following questions: How do the
predictors perform when the coefficients associated with a
particular axis are used for all three coordinate axes, and
how well car. one predict with a single model for all avail-
able flight passes. -In answering these questions, it was
found that the A-R models exhibit a remarkable degree of
robustness. -Table 5 gives the performance of a standard
thrice-differenced A-R predictor. -Table 6, generated for
the same flight path, was produced by using the x-coefficients
for all three coordinates. .Notice that little degration in
performance was incurred by using a single set of coefficients.
Table 7 was generated by using a model developed for a dif-
ferent flight pass. -Again, the predictors perform quite well.
Using a single model for all flight passes, One is led-to the
conclusion that a single set of A-R coefficients can be used
for prediction against a given aerial target.

I3
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XI. DISPERSION SYNTHESIS

In a realistic combat environment, more than one gun
"air defense system will be employed for defense of a given
area. If a communications link is established between the
systems, one can enhance hit probability by firing the
guns at points in space dictated by some optimization
criteria. Optimization for the location of the bursts
was done for the case where four guns are employed. This
was done as follows:

Orient the y-axis along the target flight path. The
burst pt.tern is then defined in the x-z plane as in Fig.
3 below.

z0 "T
Az

X
4xx

Fig. 3

The pattern is defined by:

Ax aI + a2 Tf + a3 Tf 2

Az * bAx .

The four parameters were obtained via optimization using
theperformance criterion

e-d 2 /2c 2

where d is the minimum miss of the four shells and a = 5.0,
the radius of the "hit" circle.* This particular form for
the performance criterion was chosen in order that the

- number of rounds falling within 5m of the center of the
target be maximized.

For attack aircraft, 5m is roughly the effective radius
* of the target.
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I
Table 8 typifies the results obtained for all flight

passes. One finds that more rounds fall within the 5m
distan•ce of the target, although the percentage of rounds
falling within this distance is not necessarily larger.
Howe-Jer, there is a decrease in the RMS of the distance
of closest approach as expected. (Compare with Table 2.)
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XII. CONCLUSIONS

The results presented heretofore are by no means
conclusive. -Prediction using A-R models for dynamic
variables linked more closely to the dynamics of aircraft
motion in presently under investigation. The brief dis-
cussion on dispersion synthesis is by no means the last
word on the subject and a game theoretic approach to the
problem seems to be in order. Degradation in predictive
capability under conditions of sensor and ballistic errors
remains to be determined. -Nevertheless, the results
appear encouraging. -The predictors discussed here, Which
were designed and tested against actual aircraft data,
outperform any class of predictors developed heretofore.
As more data becomes available, additional tests of model
robustness can be made, Using an already developed pre-
dictor against a new set of flight data.

One is compelled to conclude that with some engineering
-intuition and Judgment, increased system performance can be
had for a cheap price by properly analyzing and modeling
threat data.,.
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A SENSITIVITY EVALUATION OF A LARGE SCALE TACTICAL SYSTEM
AVAILABILITY UNDER VARYING SUPPORT RESOURCE LEVELS

ROBERT A. HALL AND HOWARD M. BRATT
AVIATION RESEARCH AND DEVELOPMENT COMMAND

Fort Eustis, Virginia
Introduction

A major problem for Army decision makers and consequently Army
operations research analysts is the estimation of needed resources to
support large scale tactical systems. This problem is further compounded
by the question, what if I reduce the particular resource by XXI?

This paper presents one method of handling this problem, that is,
through the use of simulation. The US Army, through the Applied Technology
Laboratory, has developed computer mathematical programs that simulate the
experiences of a system in the field. These computer programs are known as
the Army Reliability and Maintainability Simulation (ARMS) model.* ARMS is
a highly complex set of computer programs that simulates the operational
and maintenance policies of a quantity of aircraft in the field. ARMS flies
the aircraft; breaks parts; fixes the parts, either on-aircraft or off-
aircraft, if off-aircraft, at one of four different maintenance levels;
inspects the aircraft and queues and limits the aircraft resources. Use of
ARMS allows the analyst to define his system to the detail he requires or
to the level to which he has data. This definition includes malfunction
rates, probability of remove and replace, times to repair, number of men
needed to perform the repair, time-between-overhaul, if applicable, and
off-equipment repair (higher level maintenance). Also defined are mission
scenarios by minute segments, scheduled calls for aircraft, continuous
missions, random missions, effects of flight essential failures, maintenance
concepts, manpower limits, and shift hours.

The fielded system chosen for study is the CH-47C. This is a highly
complex aircraft system that will provide a highly active system for study.

When estimating aircraft resources, there are three broad areas that
may be examined: GSE, manpower, and parts availability. This paper
examines all three areas showing the independent effects of a reduction
in each parameter.

A question arises, how do you measure the effects of a percentage
reduction in a resource? There are as many answers to this question as
there are interested groups wanting such an answer. We have chosen one
main variable for examination based on the assumption that the object of
maintenance is to get aircraft ready for launch. If aircraft are ready
when called, then the resources supporting that aircraft are sufficient.

*Reference I
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- I The CH-47C Model

An ARMS model version of the tandem rotor, medium lift CH-47C
* helicopter had been developed and validated several years ago under
* ~contract with The Boeing Comnpany.* This model with only minor changes

became the basic vehicle used in the current study. The CH-47C con-
sisted of 164 elements and 11 subsystems. For each element the following
data was provided:

Maintenance Actions per Operating Hour
'I Flight Criticality

Mission Equipment Essentiality
Probability that a.Maintenance Action would be Discovered at
Time of Failure

Probabilities that an Undiscovered Maintenance Action would
be Discovered at Subsequent Scheduled Inspections and
Mission Events

For Flight Critical Elements, the Consequences of a Failure
During Flight, Probability Distribution Including Forced
Landing, Attrition, Abort Mission and Continue Mission

The Probability that a Maintenance Action would Cause a Remove
and Replace Event Rather than a Repair in Place

The Mean Time, Using the Exponential Distribution, to Repair
in Place

Administrative Time Delay (RIP)
Ground Support Equipment Required (RIP)
Military Occupation Speciality (MOS)- Code of Each Type of Mechanic

Required and Number of Each Required (RIP)
The Probability that this Maintenance Action would Require a

Functional Test Flight (RIP)
For Remove and Replace (R/R) Maintenance Actions, the Supply Delay
Time to Obtain and Prepare the Replacement Part

Administrative Delay Time for such Things as Processing Paper
Work, Scheduling the Maintenance Action, etc.

Ground Support Equipment and Maintenance Facilities Required for
the R/R Action

The MOS Codes Required to Perform the R/R Action
The Probability a Spare Component would be in Stock when Requested

(this parameter was used in the study)
The Restock Time, Delay to Obtain a Part on Order (3 days was used

in this study)
Probability that this R/R Action would Result in the Requirement

for a Maintenance Check Flight
There were 16 Elements with Scheduled Time Between Removal (TBO)

which varied from 2400 hours to 300 hours

*Refper.nce 2
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There were 8 scheduled maintenance events modeled in the study:

Daily Inspection, every 24 Hours if the Aircraft had Flown
and in 72 Hours if the Aircraft had not Flown on the
Previous 3 Days (not accomplished if the aircraft was
down for maintenance or lack of spare parts)

12.5 Hour Spectrographic Oil Analysis Sample
25 Hour Preventative Maintenance Intermediate Inspet.tion
100 Hour Preventative Maintenance Periodic (PMP) Inspection

90 Day Fire Extinguishing System Inspection
6 Month Pitot/Static System Inspection
12 Month Engine Fire Extinguisher Inspection

There were 2 maintenance shifts at organizational level:

Shift I Start at G600 Stop at 1400
Shift II Start at 1400 Stop at 2200

Manpower quantity was a parameter in the study. The "Super Crew
Chief" concept, I.?., a mechanic trained in all maintenance disciplines.
This concept was necessary to parameterize the manpower function in the
study. It could fe thought of as the same as supporting a very large
number of vehiclý,s which, because of the size of the fleet, require a
large number of each type of mechanic. The number of mechanics used in
the base case was 40 and this number was gradually reduced in subsequent
runs as discussed in the portion of the paper that describes the experiment.
Ground Support Equipment, another parameter used in the study, was also
generalized for the same reasons as applied to the manpower. In the base
case, 15 pieces of GSE were provided and this number, also, was subsequently
reduced during the experiment.

The third parameter used in the study was the probability of spare
parts being available when required for remove-and-replace actions. 100%
availability was used in the base case and the percentage was reduced in
subsequent runs of the model. Another variable that impacts the sensitivity
of parts availability is the period of time chosen for the delivery of
unavailable parts once they have been ordered. A time period of 72 hours
was chosen as a constant (no distribution function) for the resupply time
when parts probabilities were less than 100% in the experimental model runs.
Any user of the data reported in this paper must recognize that the assump-
tion of a 72 hour supply time has a significant iMpact on the sensitivity of
the results relative to the spares parameter. For example, a resupply time
approaching zero hours with a 50% probability of spares availability would
have the effect of providing almost 100% spares within a few minutes of the
time they were requested. The mission c&. y for the CH-47C helicopter is
called the resupply mission in which the oclicopter is carrying external
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loads of munitions to a forward gun site. The following segments and
elapsed times were used:

Ground preflight and engine start and taxi 30 Min
Flight 90 Min
Post flight, taxi and park 30 Min
Refuel 30 Min

In simulation modeling in general and especially when an attempt is
being made to quantify the optimum quantity of logistic support resources
necessary to obtain a desired effectiveness, it is essential that the
number of aircraft requested significantly exceed the maximum capability
of the system; In simulation parlance this is called "Loading the System."
The following miss-ion schedule was requested. 7 days a week, for 4 weeks:

Take-Off Time Max Number of Aircraft Min

0700 4 1
0830 4 1
1000 4 1
1130 4 1
1300 4 1
1430 4 1
1600 4 1
1730 4 1
1900 4 1

The Max/Min numbers are to be interpreted as Max - the desired number
of aircraft per mission and Min - the minimum number of aircraft that will
be permitted to fly the mission. From this data, 1008 launches are
scheduled per a 28 day month to fly 252 missions. In the base case, 753
aircraft launches were accomplished and all of the 252 scheduled missions
were flown with at least one aircraft on the mission. 74.7% of the
scheduled launches were met.

_ *In simulation modeling It is necessary to provide a simulated period
of stabilization running prior to the start of the data collection period.

*' The stabilization period is sized to assure that those functions and inter-
actions which occur during the simulation become stabilized before final
statistics are collected. That is, people are working and being demanded,
parts are being. used and ordered, delays are occurring for lack of resources,
etc. To speed the stabilization, an initial quantity of flight hours Is
distributed across the aircraft fleet and time scheduled removal components.

* All runs consist of a 2 week stabilization period.

*Reference 3
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Remembering that the ARMS model is stochastic and that probability
distributions are widely used in the internal decision process, it is to
be understood that any one replication represents only one realization
in a distribution of possible outcomes. Therefore, for statistical
validity as well as for parameter smoothing, replications of the runs at
each data point using different random number streams are required. The
number of replications required to achieve statistical confidence will
vary with the scheduled activity within the simulated scenario and also
with the length of the simulation period. For the data used in this
report, 10 replications were made at each data point and a 28 day simulation
period was used. A mathematical average was made of the replicated values.

rom this data, trend lines were computed for each test parameter using a
second degree polynomial regression program. Another parameter that could

have been used in this study would be the number of aircraft in the fleet.
For this study the number of CH-47C aircraft remained constant at 16.

Having achieved our baseline point, we began running the cases to
show the effects of varying the support resources. Holding GSE and Parts
Availability constant, we made simulation runs decreasing Manpower by 10%,
20%, 30%, and 40% from the baseline point. The aircraft launched showed an
immediate impact with a 10% decrease In manpower causing a .5% decrease in
our parameter. As the Manpower decreased, its effects rapidly increased
until the 30%-40% decrease caused a Jump from 8% less aircraft launched to
18% less aircraft launched. This indicates that any further decrease in
available Manpower would severely limit the capability of the CH-47C to
perform its missions.

The Ground Support Equipment simulation cases were handled the same
way. While holding Manpower and Parts Availability constant, the GSE was
reduced 10%, 20%, ... 70%. The graph of the results was generally the
same, however, GSE had a more gradual initial impact than Manpower showed.
GSE did not have an accelerating effect until it had been decreased approxi-
mately 50% of its initial strength.

Parts Availability was decreased 90%, 80%, ... 50% while Manpower and
GSE were held constant. However, the effects of Parts Availability did not
follow the same general slope as Manpower and GSE. Its shape is more a
straight line than curved. The effects of Parts Availability apparently
are linear, at least through a large reduction in the Parts Avail ability.
This may be due to the large number of variables involved in this area, such
as inventory restock delay time (3 days for this paper) or probability of
remove and replace.

* After viewing the results curves from our experiment, the analyst can
give answers to the question of how a reduction in support resources can
affect his particular system. However, the analyst must realize that in
any given situation, he must do more than was done in this paper. We did
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'1.

our experiment with certain simplifying assumptions and certain variables
as constants. The analyst should review these and see if they are adequate
for his particular situation. If they are not, he should change them so

* they are applicable. He must also take Into consideration what the decision
maker wants, For instance if it is how to reduce the cost of resources
while causing the least impact on the system, the analyst must calculate the
total cost involved in reducing resources. For Instance, he may be able to
reduce a high cost resource th'.t has a large impact on his system and compen-
'sate for the decrease with an increase of another resource and still save the
necessary dollars as opposed to Just reducing the resource with the least
Impact on his system, hoping he will get the necessary cost saving, which may
not happen. Also, the analyst may find that for reasons beyond his control,
he may not be able to reduce the resources that his analysis tells him should
be reduced,

All the above situations are just reasons why the question of "resources
impacting availability" is not an easy one. However, In answering these
questions, the analyst does have a tool that will help him do his job, that
is the ARMS model. If used correctly, it can be a great help.
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"USE OF LOGNORMAL CONFIDENCE BOUNDS ON RELIABLE LIFE
61•IEN THE TRUE LIFE DISTRIBUTION IS NOT LOGNORMAL

Eugene E. Coppola
Benet Weapons Laboratory

Watervliet Arsenal
Watervliet, NY 12189

1. Reliable Life and Its Lower Confidence Bound

Reliable life is that time S during which a specified proportion R of
a population of devices will operate continuously without failure. The
proportion R is called the reliability. Reliable life is especially
important for devices which can fail catastrophicly; that is, failure of
the device can result in the destruction of the device and possibly surround-
ing equipment and also possible injury or death to operating personnel.
Cannon components such as tubes and breeches fall into this category. For
such catastrophicly-failing devices, it is important that the device be
operated only during the time for which the probability of successful
operation (R) is high. For cannon components, R is generally specified to
be 0.999. The reliable life for cannon components is also known as safe
life, and we will use the two terms interchangeably.

For a new device, reliable life is not known and must be estimated from
test data. For cannon components a confidence requirement is added. That
is, it must be shown with a specified confidence level C that the actual
reliable life exceeds a given value. For cannon components, C is generally
specified as 0.9. In practice, because of the confidence requirement, point
estimates of safe life are not used; instead a lower confidence bound on
safe life at level C is used. The lower confidence bound will be called
lower confidenced safe life (LCSL).

For cannon components, catastrophic failures are caused by fatigue
cracks. Consequently, safe life is important only for fatigue failures.
There are other ways that cannon components can fail (e.g., excessive wear
in tubes) but these are fail-safe types of failure and hence are ignored in
safe life determination. Fatigue testing, even with the laboratory simu-
lotion techniques employed today, is very expensive and time consuming.
This greatly limits the anount of data that can be collected for any one
type of device. The generally accepted method today is to test six spec-
imens to failure and to base safe life calculations on these.

Because data is limited and the specified reliability is so high,
non-parametric and distribution-free methods do not give good results.
Consequently, it is necessary to assume that the failure times follow a
distribution of known mathematical form. The lognormal and Weibull distri-
butions are corcnonly used for this purpose, although there has never been
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enough data from any one particular device to make a determination of the
true failure distribution. There are some theoretical justifications behind
both the lognormal and Weibull distributions, but we shall not consider them
here.

2. Fracture Mechanics Model of Gun Tube Fatigue

Using Paris' equation for rats of crack growth and experimental results,
Throop and others at Watervliet Arsenal have developed a deterministic model
of fatigue crack growth in gun tubes [3,7]. After some manipulation of
Throop's equations CS), the following equation relating crack depth b to
numbor of cycles N results:

I -k -kN" (bo -b ) (1)

where: bo the initial crack depth, assumed to be present after a few

rounds of firing

2k+l

G C CCXtSAr)
EayKIC

k a parameter dependent on material properties and stress
intensity

S = maximum hoop stress at the bore

ai •a parameter depending on crack shape and on the residual
strcsses introduced by the autofrettage process

E - Young's moduluis

a 07 yield strength

KIC =fracture toughness for a crack in a tangential stress field

C * a parameter varying with k to maintain dimensional homogeneity
and possibly depending on material properties

From equation 1, one can calculate the number of cycles N required for
* : the crack to reach a critical depth at which fatigue failure occurs, provided

one knows the relevant material properties. The material properties, how-
ever, vary from tube to tube, that is, they 'are random.

3. Computer Simulation of Fatijue Failure

t Using Throop's nodel, Racicot [5] perfoir]w.d ,onte-Carlo simulations to
generate a large number of pseudo-fatigue lives that could then be analyzed
statistically. However, there is not sufficient data at this tL-nie to deter-
rine the distributions of the naterial rr.rerltics (bo, k, S, a, E I . I,
n-rd C) thht r.-pear in T,-irocp's model. Tacico: t,->-.refore ss'u:-:od tý,i c;ch
of •he .aterin.l ,rcerties had the saie tv-'e of distribution and that this
t)-pe of distrýbution wa- eitlier norral, logno-r al or V-*eibull. The parprieters
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of the assured raterial-properties distributions were estimated from exper-
, imental data. The present author (2) has extended Racicot's results by
considering more general cases. For each run of the author's simulation
program, the program was instructed to pick at random a distribution type
for each of the material properties. The parameters of the material-prop.
arty distributions were then estimated from experimental data. This method
would hopefully allow some independence from unwarranted assumptions. The
present author has also considered cases where the material properties are
correlated; Racieot assumed that most of the material properties were
statistically independent. In this manner, we obtained several sets of
simulated fatigue data, ceach of which could be examined statistically.

One question of great interest was whether the simulated data could be
described by various parametric distribution families. This problem was
approached in the standard way. For each parametric family, the parameters
were estimated from the simulated data to obtain an approximating distri-
'bution. The approximating distribution could then be compared to the
simulated data by goodness-of-fit statistics. Ile used three goodness-of-
fit statistics: Yolmogov.Smirnov (KS), Cramer-von Mises (CVM) and Anderson-
Darling (AD). (See reference 6 for definitions and uses of these.)

* As an example of the sort of results obtained, Figure 1 shows the
frequency histogram for the data of Run #1, consisting of 10,000 simulated
fatigue lives. Figure 2 shows the empirical cumulative distribution
function Ccdf) of the simulated data, along with the approximating distri-
butions from several parametric distribution families. None of them really
gives a good fit. In Table 1 we show the goodness-of-fit statistics
calculated for several distribution families. The lognormal distribution
gives the best fit (the smaller the goodness-of-fit statistic, the better
the fit). The Birnbaum-Saunders runs a close second. Weibull and exponential
distributions do not fit nearly as well.

These results were typical for the simulated data; the lognormal or the
Birnbaum-Saunders gave the best fit. They were quite close together and
generally did much better than the other distributions. In his studies,
Racicot concluded that the lognorimal gave the best fit (he did not consider
the Birnbaum-Saunders) and recomyriended that the lognormal distribution be
used in the future for fatigue life studies. The only problem is that the
present author has shown that although the lognormal distribution usually
does give better fits, the fit is mot totally acceptable. In fact, the
toodncss-of-fit statistics in most cases were significantly too large, thus
leading to a rejection of lognormality. It then becomes important to know
bow well procedures derived from the assumption of lognormality work even
though the fatlue life distribution is probably not lognormal.

4. Birnbauji-Saunders vs. Lo~nornal

Before w¢e consider the adequacy of the lognorral, we should explain why
we are riot performing a similar analysis for the Birribaum-Saunders distri-
bution, even thot:gh the BSrnI.a -- Sunders ,rd the honor:::al fit about
C-,ually ui.?l. t,.:aflly, the closcness of t',e 'r :%-Yu-,ers fnd the
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lo~normal was anticipated.on theoretical grounds. The cdf of the Birnbaum-
Saunders distribution is given by:

F1 xxB)- 0 x(Ox a

where O(x) -f - ea- / 2dy

is the 'standard normal cdf. a and 0 are positive unknown parameters.

The lognormal cdf is given by:

0[1 .n x > 0
F2 "Cx;r,9 e 9)

0 x<O

where a and 0 are positive unknown parameters.

Now suppose that X is a random variable with cd£ Fl(, ;a,). Let Y -

CX/a)l/a. The cdf of Y is easily seen to be:

G Cya,• = Ca/2 y _'a/2,
G-y;ag) = a for y > 0

and 0 for y 0. Now let al approach 0. For any y > 0,

lim ya/2 .- a/2
.in y.

Consequently, for all y,

lIm G(y;a,Ba) Cln y)

which is the standard lognorinal distribution.

The above suggests that for small a, the Birnbaum-Saunders distribution
Fl(x;aB) can be approximated by the lognormal distribution F2 (x;a,B). The
opposite is also true: For small a, the lognormal F2Cx;0,0) can be approx-
imated by the Birnbaur.-Saunders Fl(x;o,6). The difference FlCx;al) -
F2 (x;a,l) is shown in Figures 3 and 4. The approxil:ation is quite good
for small a. In fact, data from gun tube fatigue tests suggests that Ct
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will usually be small (lc-ss than 0.3). We also observed small a for the
simulation data. In practice, therefore, the Birnbaum-Saunders and the
lognormal will be so close ,s to be nearly interchangeable. Hiowever, the
lognormal is much easier to deal with in practice. So we have chosen to
ignore the Birnbaum-Saundors even though it fits about as well as the
lognormal.

S. Methods of Confidencing. Safe Life

in the past, there have been 3 main schemes for calculating LCSL
t:;cd at Wnatcrvliet Arsenal. The first assumes the underlying failure
distribution is lognormal; the other two assume that the underlying
dlistribution is Wcibull. In the following we assume that Xl,...,xN are
LJentically' distributed, independent fatigue lives obtained from testing.

Method I: Lognormal MLE Method

This method is based on the maximum likelihood estimates (MLE's) of
the lognormal distribution. (See Ref. 4, p. 264-268 for a fuller
exposition of this method.) Let:

N

Nz 1 in Clxj-y

ji-

02z (in xi - •)2

The LCSL S1 is given by:

U, - exp(j- KN(R,C)0)
where KN(R,d) is a tolerance factor dependent on R,C and N.

Method II: Weibull BLIE M•ethod

This method is based on the Bett Linear Invariant Estimators (BLIE's)
of the extrerc-value distribution. For this method, the underlying fatigue
life distribution is assumed to be 2-parameter Weibull. The extreme-value
distribution enters the picture because the logarithm of a random variable
with a 2-parameter Weibull distribution has an extreme-value distribution.
(See Mann, Schafer, and Singpurwalla E4] for a fuller exposition of this
method.) One calculates two numbers ý and C which are the BLIE's of
extreme value location and scale and are basically just weighted sums of
the logarithms of the failure times, the weights depending on sample size
N. The LCSL is given by:

,S1 exp(i - LN(R,C)Q)
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where LN(R.C) is a tolorance factor (not the same as the tolerance factor
in Method I) depending on R,C and N.

foudhile Method I and olothod II are superficially similar, it has been
found in practice that Method II will generally give a much smaller LCSL
than M•thod I., The~author conjectures that some general law is at work

- that requires S1 > SII with high probability but he has not been able to
show this.

The third method involves a Bayesian scheme devised by Clarke (1].
This method involves much laborious computation and we will not consider
it here. Most often, thia Bayesian method gives an LCSL intermediate
in value between SIt and SI.

6. Adequacy of Methods of Confidencing Safe Life

Because of the random method of selection of material-property distri-
bution, each run of the simulation program effectively establishes a
possible fatigue life population from which we can select random samples.
Each population has its ovm true safe life, which can be estimated fairly
well. We can then perform simulation studies for each population to
determine how well the methods given above for constructing LCSL actually
work.

The most important property of a lower confidence bound is that it
underestimates the true quantity with a given probability C, the con-.
fidence level. Both Methods I and II are derived from assumptions on
"the underlying failure distribution. Let us call the "nominal confidence
level" the confidence level C one would have if the appropriate assumptions
were true, and the "actual confidence level" the probability CA that the
method in question produces on LCSL less than the true safe life. If the
assumption from which the method is derived is true, then CA N C. As
mentioned above, the assumption of an underlying lognormal or Weibull
distribution is probably not true. So we will probably have CA 0 C. If
CA > C, the method gives conservative bounds, that is, we are actually
underestimating more often than we think we are. Because we are dealing
with devices that can fail catastrophicly, a conservative method is more
to be desired than a non-conservatihe one.

The lognormal MLE and Weibull BLIE methods (I and II) give conservative
bounds for all runs. The actual confidence levels CA were estimated from
1000 simulated replicates of samples for various R and N and for nominal
confidence C a 0.T. Some results are shown in Figures S through 8. The
estimated true confidence levels are of course random variables, which
accounts for the jaggedness of the curves in those figures. However,
the main point here is not so much to determine the true confidence level
but to determi-o if CA > C. For all of our CA's, except for a few in Run

. #2 with R w 0.9, we do indeed have CA > C with a 90% confidence. We can
therefore conclude that the lognormal MLE and Weibull BLIS methods do give

• 'conservative confidence bounds.
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An additional interesting fact emerges from these graphs. It appears
that while both methods are conservative, the Weibull BLIE method is more
conservative (that is, it gives a larger CA) than the lognormal MLE method.
This would suggest that the lognormal MLE method is to be preferred to the
Weibull BLIU method.

7. Conclusions

The lognormal distribution, while generally yielding better fits to
' the simulated fatigue data than the other distributions considered, Is
probably not the exact fatigue life distribution. Methods derived from
the lognormal are generally conservative and can be used. However, the
lognormal may be overly conservative for large reliabilities and better
methods probably exist. Methods derived from the Weibull distribution are
extremely conservative for large reliabilities and should be avoided.

.:1
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Coodrncss-of.Fit Results

DistriLIttflon P~aaioters . Goodness-Of-Fit Statistics

S .Location.. Shap. Scale (Sp CV).¶•10j) AD

ormal 11731 - 2570 0.072 1.6 10.6.

Logno,.al - 4.594 IL.163 0.051 9.5 6.2

S" 204 .13 1 948.9
I Vxt rcx•-Val'O 12894 - 2004 0.13

Weibull - 5.893 12642 0.10 38.7 29.5

txponclit iml a
I-prn•c:t1. -o 11738 0.47 S94.7 • 282.5

Exponential
2.paraleter 56,0 6108 0.30 287.3 149.9

Double-
Exponential 10581 . 2004 0.063 16.S 10.8

Tnv a ise -

Tiecbu1l 5.893 10393 0.081 28.0 20.2

N Birn~bak)Y2-
Saunnle S 0.2178 11466, 0.052 9.6 6.2
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DOUBLE TESTING IN BINOMIAL DATA

G. R. Andersen
Battlefield Systems Integration, HQ DARCOM

Alexandria, Virginia 22333

ABSTRACT:

Suppose that a sample w,, w wN of size N is drawn at random

from some infinite population. Each element of this sample is to be

classified as defective or non-defective according to one or more tests.

To be specific, denote by TO a (preliminary) test which, although it0)

classifies each element of the sample as defective or non-defective it may

do so incorrectly. Denote by Tl1 a (primary) test which also classified

members of the sample, but does so without error. TO is often called

a fallible test, while T1 is called an infallible test. This paper

discusses some aspects of the problem of estimating the probability p,

that an element of the population is non-defective, on the basis of the

sample w1, . .. , wN, when all the members of this sample are subjected

to the TO -test, but only a subsample of size n (n 4 N) is tested accordiny

to T1. This problem has been referred to in the literature (e.g., Tenenbein.( 1 ))

as "estimating from Binomial data with misclassificatiotis."

For convenience, we will identify the symbols 'r and T,, representing

" the tests, with numerical valued functions which assign the value o to a

defective and the value 1 to a non-defective sample item.

This paper will only be concerned with those tests T0 which are necessary

for TI, in the sense that To(wI) -0 implies with probability one that

(1) Tenenbein, A., `A Double Sampling Scheme for Estimating from Binomial
Data with Misclassifications", Journal of the Amer. Statist. Assoc.,
Sept 1970, Vol. 65
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T(WI1 ) 0. That is, passing the T0 test is a necessary condition for

passing the T test. Examples of such tests are numerous; they are sometimes

thoiight of as screening tests. In the field of reliability, think of

attempting to judge the reliability of items in a stockpile by applying

a cheap (nondestructive) test to a large sample followed by an expensive

test applied to some of the items which pass the first test.

The difference then between this problem and the one studied in the

Tenenbein paper is that here the size of the second sample, the subsample,

Is random. This is because here the subsample is drawn from those members

of the original sample which pass the To -test; whereas, in Tenenbein's

paper the size of the subsample does not depend on the number of members

in the initial sample which pass the fallible test.

Of course, if eve-y sample member that passed a (neceý.ssry) TO -test

was subjected to the T1 -test, then the appropriate p would be the classical

estimate. In the application that prompted this study both the fallible

TO -test and the infallible T -test were costly. Therefore, long before

the test was run, the initial sample size N for the T0 -test and a nonrandom

subsample size, v, for the T1 -test had to be specified. Hence, the

classical estimate of p would result only if, by chance, SN, the number

of T0 -successes, did not exceed v. However, the size of the subsample,

in general, could only be stated to be n - minimum (SN, v). Therefore,

the need arose tc find a way of judging which values of N and v to choose.

As usual certain "precision-in-estimation" statements were required, so

the question was, first of all, what is the best estimator of p in this

setup and, secondly, what should N and v be in order to guarantee that a

certain level of precision1 will be achieved in estimation, subject to

constraints on the costs of testing.
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1. SUMMARY OF RESULTS: A precise statement of the problem considered
* A

here is given in Section 2*and the maximum likelihood estimation, ~v

of p together with some exact distribution results are given in Section 3.

The relationship between the results of this note and those in A. Tenenbein's

paper (1) is explained In Section 3, Remark 3.4, where the exact and

asymptotic variance of PNv is presented. (The exact variance is not

obtained in the problem considered in (1) ). Basically, in the context

of Tenenbein's work, this amounts to showing how much the asymptotic

variance of P~v Is reduced when the preliminary To is necessary for T,

*(and so can misclassify in only one direction as opposed to both directions

.1as in (1) ); this reduction in the variance of PNv cannot be obtained from

Tenenbein. The asymptotic properties of the estimator and an associated

statistic are derived in Section 4. Both random and nonrandomly standardized

forms of the central limit theorem are given for PN, and the statistic

giving the exact number of successes in the second sample of size min (S' )

Approximate confidence intervals for p are derived in Section 5.

Realizations of these confidence intervals have different functional forms

depending on whether the observed number, S NO of To successes is greater

than, or less than, or equal to, V.

In Section 6, the required modification to A. Tenenbein's (1) results

on sample size determination based on cost and precision are given for

* I necessary tests.

:1 *This article and the others noted below will appear In a paper which is
* being prepared for printing In a national journal.
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ANALYSIS OF CENSORED SURVIVAL DATA1

Norman Breslow

University of Washington
Seattle, WA, 98195

ABSTRACT

Recent developments in the methodology of censored survival

data are briefly reviewed. These include estimation of the survival

curve, non-p7rametric tests for the comparisou of r survival curves,

tests for t end, and the regression analysis of survival data. A

final section provides some additional references to the recent

literature.

I. INTRODUCTION

Censored survival data arise in a wide variety of statistical

investigations. In clinical trials one measures duration of re-

sponse from start of treatment until relapse or death due to dis-

ease. Observations on response time are censored for those subjects

still in remission at the study's end, as they are for patients

lost-to-follow up during the course of the study. Animal carcino-

genesis studies, such as used by the Food and Drug Administration

to determine the safety of food additives, provide another example

of censored survival data. Here the endpoint is the age at diagnosis

1. Paper prepared for the 23rd Conference on Design of Experiments in
army research, development and testing held at the Naval Postgraduate
School in Monterrey October, 1.977.
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of a particular kind of cancer, while censorship occurs because of

death due to other causes including sacrifice, In tests of the re-

liability of missile components, failure timea are measured from the

start of testing until failure of the component, with censorship Im-

posed by the failure of other components or the necessity of analya-

ing the data before all items have failed. While all of these types

of data occur widely in practice, the presentation below ephasizes

the clinical trial since that is the area of application with which

the author is most familiar.

Figure 1 illustrates the results for the control group in a

clinical trial reported by Heyn at al (1974). Thia trial was de.-

signed to investigate the effects of combined chemotherapy as an

adjunct to surgery and radiation in the treatment of childhood

rhabdomyosarcoma. The endpoint for analysis was the re-appearance

of tumor, whether at the site of original treatment or through dis-

tant metastasis, so that children who remained disease-free at the

time the data were analyzed had censored observations. In addition

to the control arm IA, there were two groups of children who received

the drugs actinomycin-D (ACT-D) and vincristine (VCR): group IB were

concurrently randomized with the controls, both these groups having

apparently had their tumors completely resected; while IIA consisted

of patients with microscopic residual disease at the margin of surgi-

cal resection.

Interim data from all three arms are presented in Table 1. Note

that the censored observations for arm IA, those in the column

346



II
labelled "disease-free", are smaller in the table than they are in

t.the figure. This is because the figure was drawn from data computed

at a later point in time, when additional foll:w up was available

for most patients who had not already died.

Analysis of censored survival data such as presented in Table 1

has several goals. First one wants an estimate of the survival curve,

the probability of surviving t units of time, for each of the compari.-

son groups. Statistical tests are required next to determine whether

the observed differences between the curves are real or are simply

chance efiects. If real, a method of quantifying the nature of the

differences is desirable. Finally there may be available concomitant

observations, including continuous measurements such as age at diag-

nosis, whose joint effects on survival are important to determine.

2. ESTIMATION OF SURVIVAL CURVES

The first stop in the analysis of censored survival data is to

form a series of 2 x r contingency tables as shown in Table 2. One

table is formed for each of the K distinct times 0 - t 0 tlt 2...<t

at which deaths (or failure, relapses, etc.) occur. The column

totals nik refer to the total number of subjects in the ith group* •
who remain "at risk", i.e. alive and under observation, just prior

to time tk. The tabular entries dik and Sa denote the numbers of

these who die at tk, and survive tk, respectively. Table 3 illus-

trates the calculation of the first three such tables for the data

in Table 1. Here r *3 and ti W 2, t2  3 and t 3  9 months. Note
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that the tables for increasing tk refer to a constantly diminishing

population "at risk" as additional subjects die or are withdrawn

(censored) from further observation.

Kaplan and Meier (1958) derived the maximum likelihood non--

"pararetric estimate of the survival curve based on censored data.
This may be calculated recursively from the entries in the 2 x r

contingency tables shown in Table 2. Starting from P(t 0 ) 1 1, and

suppressing the group index i, the recursion formula is
,k)P~ - (tkl )

for k 1 l,2,...,K. In other words, the probability of surviving

past tk in estimated as the probability of surviving past tk_ times

the conditional probability of surviving past tk given survival to

tk. The curves reiain flat between failure times, Because of the

multiplicative structure (1), Kaplan and Meier refer to their esti-

mate as the product limit (PL) estimate. In case there is no cen-

sorship in the data, this reduces to the familiar empirical

distribution function.

Table 4 shows the calculation of the relapse-free survival

curve from the interim data in Table 1 for treatment group IA. The

corresponding curves calculated from final study data for all three

treatment curves are shown in Figure 2. Numbers above each curve at

annual intervals in this figure refer to numbers of patients still

at risk in each group. These are an important means of judging the

stability of the estimates. Such estimates can in fact be quite
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unstable in the tail of the survival distribution where few subjects

remain at risk.

A more formal method of judging the stability of the PL estimate

is to calculate its variance. Kaplan and Meier provided a variance

" • formula for their estimate, which may also be expresued recursively.

Starting from V{P(t 0 )) - 0 this is defined by

2i Q{Owtk -f + )(k)( (2)

S mately normally distributed with mean equal to the true survival func-

neither Pkt) nor VkP(t)) will change after the last uncensored re-

sponse time in each group, even though additional subjects continue

to be withdrawn from observation. In this region the satia~ted vari- :

ance often does not accurately reflect the variability in the esti-

mated survival, which will be substantial unless large numbers remain

on study.

3. COHPARISON OF SURVIVAL CURVES. THE LOG RANK TEST

A very simple but powerful non-parametric test for the
- I.

cowparison of r survival curves with censored data may also be cal-

culated from the series of 2 x r contingency tables shown in Table 2.

This test exploits the fact that, under the null hypothesis of no

difference in the underlying survival distributionx and conditional

upon fixed values for the marginkl totals in the 2 x r table, the
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k A (dlk "drk)' of observed deaths at the tk has an

r-dimensional hypergeometric distribution, Consequently the null ex-

pectation of the number of deaths in group i at tk is

Dk
ik - E(dk) - k()

i.e. the number at risk in the ith group times the death rate for all

r groups combined. An illustration of this calculation is given in

Table 3 for the interim study data. The covariance matrix Vk of d

has, under the null hypothesis, an (i,j) component equal to

n ik(Nk'nik)DkSk , j -

2N (Nk'1)

I1YlcI1ij
n kn kDkSk i J

N k (Nk-1)

The main idea behind the test is to sum up the statistics

calculated from each of the K 2 x r tables into a vector

0 -

of observed numbers of deaths in each group, a vector

E - kek

of expected numbers of deathu, and a summary covariance matrix

Since the K 2 x r tables refer to overlapping sets of subjects

-k they are not, strictly speaking, statistically independent.
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Nevertheless Cox (1975) has shown that the conditional distributioas

for the observation vectors k may be formally regarded as independ-
-k

ent, so that V is an appropriate covariance matrix for O-E. V is a

singular covariancs matrix of dimension r-1. This corresponds to

the fact that 0 ZEi is the total number of deaths observed in

all r groups. However by defining 0* and E* to be the first r-l

components of 0 and E, and by 9* the (r-1) x (r-l) upper left hand

corner of V, a test statistic for testing equality of the r survival

curves is obtained as

, ~~T1 (O*-E*)OV*-l(o*-E*)..

'• I.

This is distributed as chi-square on r-l degrees of freedom under

the null hypothesis.

The test T was first proposed for survival data by Mantel

(1966). Cox (1972) later derived it from likelihood theory under

the proportional hazards (PH) model, in which the instantaneous

death rates in the r groups are in constant ratio throughout the

follow up period. (This model is discussed further below). Peto

and Peto (1972),considering only the case r w 2, argued that it

was anasymptotically efficient test under Cox's model and dubbed

it the "log rank" test.

A copservative approximation to T1 which requires no matrix

inversion is given by the familiar chi-square formula

r
* T2 -T (oi-Ei) 2 /E i.

While T2 <T1 , in fact the two will be quite close provided that
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there are few ties among the uncensored survival times (i,e. most

of the Dk in Table 2 are unity) and that the patterns of censorship

operating in the r groups are not grossly different. See Peto and

"Pike (1973) and Crowley and Breslow (1975) for discussion of this

• ' approximation.

Table 5 illustraten the manner of presentation of the summary

and test statistics for the interim study data. Note the calcula-

tion of the ratio O/E of observed to expected numbers of deaths in

, each treatment group. These are very useful as measures of treat-

ment effect since their ratios, e.g. 01 /E 1 * 02 /E2 , estimate the

relative death rates in the respective treatment groups (Breslow,

1975).

4. ALTERNATE WEIGHTING SCHEMES: THE GEHAN/BRESLOW TEST

The sumnary statistics 0-E weight the observed differences

dk-ek in each table in a manner which is appropriate to the PH model

already mentioned, However this is not the only possible weighting

scheme. Multiplying the observed differences before summing by Nk'

the total number of subjects in the k table, gives more weight to

the earlier times tk when larger numbers are at risk. This leads
to the scores

K

k�{kdik - nikDk},

covariance matrix
* K
V N 2V~',. w k k-
k-l
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and test statistic

3 w Id

where the asterisks (*) denote the corresponding r-1 dimensional

quantities. A conservative approximation to this statistic not

requiring matrix inversion is

r

4 ,

whereK

of ~ ;~1(Nk'kknik/(Nk

The scores Wi may also be obtained from a pairwise comparison

of the observations in the ith treatment group with those in the re-

maining r-l groups. Each such pair is assigned the value +1 (or -1)

according as the true survival time for the first pair member is

known to be smaller than (or larger than) that for the second mem-

bar. Ties or indeterminate comparisons due to censorship are as-

signed 0 values. Gehan (1965) suggested the use of such scores for

the comparison of two samples (r-2), noting that the resulting test

T4 essentially reduced to the familiar Wilcoxon rank sum test when

there was no censorship. Breslow (1970) extended this work to the

case of r>2 samples, proposing also covariance matrix Vw and the

statistic T This latter statistic is valid for situations where

the patterns of censorship operative in the r treatment groups are

unequal, as in animal carcinogenesis studies where there is dif-

ferential toxic mortality. The conservative approximation T4 is
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strictly valid only where there is equality of censorship.

In practice the tests T1 and T3 often yield rather similar

numerical values. However this is not always true and some com-

ments on the proper interpretation when only one statistic is sig-

nificant are in order. Since T3 weights early values more heavily,

it may achieve significance when there is an early separation be-

tween the survival curves which later come together or even cross

over. T1 gives more weight to the latter part of the curves, and

would detect differences in the curves which only appeared later

on. Such behavior often indicates an interaction between treatment

and time on the instantaneous death rates, which is worthy of

investigation in its own right.

5. TESTING FOR TREND

In many situations the r treatment groups will correspond to

r different levels or dosages of some quantitative variable x, say

x<X 2<...<Xr. In such cases the global chi-square tests T1 and T1 2 r'1 3
are notoriously lacking in power. One would prefer instead a sin-

gle degree of freedom test for trend in survival with increasing

dose.

Fortunately, such tests for trend are readily calculated from

the summary statistics already at hand. In the case of the 0 and 9

analysis, one uses 2

ixTi.S~x'Vx
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..t as a single degree of freedom chi-square for a linear trend of O-E

with x, and
T n TT6  1T - T 5

as a chi-square on r-2 degrees of freedom for deviations from

!! linearity (Tarone, 1975).

+. Similarly, when using the W scores,
* {x'W) 2

-- 7 ~' xx

provide. a test for linear trend of these scores with x and

T8 a T - T
8 3 7

* a test for deviations from linearity.

6. ADJUSTMENT BY STRATIFICATION

When it is thought that the r comparison groups may differ

with respect to factors which influence survival, an adjusted or

stratified analysis which corrects for the confounding effects of

such variables is in order. Such an analysis is carried out very

simply, as follows.

First, divide the population into strata which are more or

less homogeneous internally with respect to the confounding variable

or variables.. Of course there is a limitation on the number of

confounders which may be simultaneously accommodated in this fashion
isince if strata become too large in number, and small in size, a

large loss of comparative information may result.

* i355

.I. ......



.1

Next, perform separate survival analyses within each stratum,

This means calculation of the survival curves and especially the

summary statistics 0, E, V, W and V defined earlier, These sumeary

statistics are then cumulated by simple addition over strata.

Finally, calculate the adjusted test statistics T,, T2, T5 ,

and T6 just as before using the cumulated summary statistics O,E

and V in place of the stratum specific ones. Likewise calculate T3 ,

T4 , 76 and T7 using the adjusted or cumulated W and V

7.' REGRESSION ANALYSIS OF SURVIVAL DATA: THE PH MODEL

If the number of confounding concomitant variables is very

large, the stratified analysis approach quickly breaks down due to

large numbers of strata with just one or a few subjects in each.

Furthermore, it may be of interest to quantify the relationship be-

tween survival times and concomitant variables, so:m of which may

be continuous. This situation calls out for some kind of regression

model.

A usual (normal theory) regression approach would specify

that the survival times, or some transform such as their logarithm,

were equal to a linear combination of the concomitant variables

plus some random error term. While not impossible, the generaliza-

tion of such models for use with censored data may be quite awkward

and computationally involved. Thus considerable interest was

aroused by Cox (1972) when he proposed an alternative type of re-

gression model formulated in terms of the effect of the regression
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variables on death rates rather than times of death. Statistical

analysis under this model turned out to be much more tractable than

for those others proposed earlier. Furthermore, it avoided an7

parametric assumptions about the shape of the underlying survival

curve.

Cox's model is defined in terms of the time t specific death

rate or hazard function )X(tj!) for an individual having a p-vector
of covariates z. Specifically he assumes

- exp(Q')AO()W

where @ is an unknown p- vector of parameters (regression coeffi-

cients), while Ao(t) iW the unknown hazard or death rate function0i
for an individual with a standard (Q-O) set of covariates. A con-

sequence of this model is that the ratio of hazard functions for two

individuals with different sets of covariates,

T(tl! 2 ) 1 2

does not depend on time, whence the title proportional hazardo (PH)

model.

Several authors (Cox, 1972, 1975; Kalbfleisch and Prentice,

1973; Breslow, 1974, 1975) have developed the likelihood analysis of

the PH model from rather distinct points of view. Providing that

there are no tie. in the uncensorad data, all derive for the In-

likelihood function of 8 the expression
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LC(0) F 00z Ln leXp(ooz)S" k- k jcR(tk3  '

where R(t.) is the riek set of subjects still alive and under

observation at tk-0; lk is the covariate vector for the individual

* who dies at tk; and the outer summation is over all K true

* (uncensored) times of death. In case of ties, the three approaches

yield somewhat different likelihoods; see also Efron (1977).

Taking the vector of first partial derivative of L, setting

equal to 0 and solving the resulting non-linear equations yields

Sa maximum likelihood estimate 0 for the regression coefficients.

A covariance matrix for this estimate is obtained in the usual fa-

whion by inversion of the negative of the matrix of second partial#

of L. The integral
t

A0 (t) - t du

defines the cumulative hazard function for the standard covariate

set. Once i is obtained this may be estimated by

t .4t JcR(tk)

where the outer sunmnation is again over true survival times tk less

than or equal to t. The corresponding estimate of the survival

* function

P0ot) - exp{-A0 (t)i
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t kLt exp( !J)
iCR(t)

Notice that when 8 - 0 this reduces to the PL estimate of Kaplan

and Meier, calculated from the entire set of observations considered

as one homogeneous sample.

8. FURTHER READING

Much of the above material is presented in greater detail in

my review article (Breslow, 1975) on the PH model and its applica-

tions to survival data. Sone additional applications of this model

to epidemiologic data are outlined in a forthcoming paper (Breslow,

1978). Peto, Pike, et al (1976, 1977) present a thorough discussion

of the use of the model in the design and analysis of clinical

trials.

A computer program for calculating the PL estimate and all the

test statistics presented in sections 2-5 above is available from

Thomas, Breslow and Cart (1977).

Several authors have pointed out that the W scores defined in

section 4 do not lead tc. the most efficient generalization of

Wilcoxon's test to censored data. They all propose essentially the

same statistic as an alternate generalization. See Efron (1965),

Peto and Peto (1972), and Prentice (1978).

A comparison of the efficiencies of the test statistics using

Monte Carlo techniques is made by Lee #_L &I (1975). Efron (1977)
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discusses the efficiency of the Ln-likelihood function L for the

PH model from a more abstract viewpoint.

Extensions of the PH regression model for use with grouped or

heavily tied data are discussed by Cox (1972), Kalbfleisch and

Prentice (1973), Thompson (1977) and Prrntice and Gloeckler (1978).
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The above figure, as well as the next one, were first published in
Volume 34:2128-2141, 1974 of the journal CANCER. They appeared
"in an article by Heyn, R., Holland, R., Newton, W. A., Tefft, M.,
Breslow, N., and Hartmann, J., entitled "The Role of Combined
Chemotherapy in the Treatment of Rhabdomyosarcoma in Children".
We appreciate the fact that the editor, Dr. J. E. Rhoads of CANCER
and Dr. Ruth Heyn gave their permission to reproduce Figures 1 and 2
In these Proceedings.
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e FIGURE 2
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The duration of the disease-free interval in patients
from Part IA (control), IS (treated), and IIA (microscopic

SI residual, treated). Shown above each curve at 24 and 48
months are the numbers of patients known to be disease-

- free after those time periods.
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I TABLE I

INTERIM DATA FROM CCG614: MONTHS FROM START OF

TREATMENT TO RELAPSE OR LAST OBSERVATION FOR

THREE TREATMENT GROUPS

TUMOR COMPLETELY RESECTED MICROSCOPIC RESIDUAL

SURG + X-RAY SURG + X-RAY
SURG + X-RAY + ACT-D + VCR + ACT-D + VCR

IA 1B IIA

Disease- Disease- Disease-
Relapsed Free Relapsed Free Relapsed Free

2 12 9 12 37 25

3 15 16 19 28

9 18 19 20 29

10 24 20 38

10 36 24 42

15 40 24 45
16 45 30 47

30 31 48
34 50

42 52

A4

53
59

62
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TABLE 2

FORMATION OF 2 x r CONTINGENCY TABLES COMPARING
DEATH RATES AMONG r TREATMENT GROUPS AT EACH

DISTINCT TIME OF DEATH

PATIENTS FOLLOWED TO TIME tk

Treatment Group

1 2 r Totals

Deaths (at tk d 2k drk D
Survivors Slk S2k $rk Sk

lk 2k rk k

Total "at risk" n1k n n N
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TABLE 3

ILLUSTRATION OF 2 x r TABLES FOR

CCG614. INTERIM STUDY DATA

t a 2 months

IA IB . ZA Total

Relapsed 1 0 0

Disease-Free 14 17 II 42
- I

"At Risk" 15 17 II 43

Expectations: '0.349 0.395 0.256 1.000

t 3 3 months

IA 1B ZIA Total

Relapsed 1 0 0 1

Disease-Fre•: 13 17 II 41

"At Risk" 14 17 11 42

Expectations: 0.333 0.405 0.262 1.000

t -_9 months

IA II ZIA Total

Relapsed 1 I 0 2

j Disease-Free 12 16 11 39

"At Risk" 13 17 11 41

Expectations: 0.634 0.829 0.537 2.000
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TABLE 4

ESTIMATION OF SURVIVAL CURVE FOR GROUP 1A

BY METHOD OF KAPLAN AND MEIER (1958)

Number Number Conditional Survival
Month At Risk Surviving Probability Proability
tk n k s1k P(tk) P(tk)

2 15 14 0.933 0.933

3 14 13 0.929 0.866

9 13 12 0.923 0.799

10 12 10 0.833 0.666

15 9 8 0.888 0.592

16 7 6 0.857 0.507

30 4 3 0.750 0.381
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TABLES
SUMMARY STATISTICS FOR CCG614 INTERIM DATA

Treatment Group

IA Is 11A
No. of pts. (N) 15 17 11
Relapses observed (0) 8 3 I

Relapses expected (E) 3.11 4.99 3.90
O/E 2.57 0.60 0.26

T,- 11.10, 2 d.f. , p -. 0.004

T2 - 10.77, 2 d.f. , p - 0.005

T3 , 11.41, 2 d.f. , p m 0.003

I3
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THE JACKKNIFE: SURVEY AND APPLICATIONS

hupert G. Miller, Jr.
Stanford University

S1. Introduction

The jackknife technique is becoming so familiar to statisticians that

it is almbst not necessary to reintroduce it with each article. However,

to establish notation and to aid any reader encountering the jackknife

for the first time, a brief definition is given.

Let Y1 9 ..." Yn be n independent random variables identically

distributed according to the distribution function F , which depends on

an unknown parameter e . The aim of the statistical analysis is to es-

timate or teat 0 . The jackknife technique can be applied to any estima-

tion procedure which for any sample aize gives a point estimate

§(YI''' .. . of e . The ith deleted estimate is the estimate ob-

tained by applying the estimation procedure to the sample with the ith

random variable removed, i.e.,

6-i ' ..'9 -i' yL'"'' Yn)

Corresponding to the ith deleted estimate is the ith pseudo-value

•i " 8 -n-l).1 "(2)

The Jackknifed estimate of 6 is the average of these pseudo-values

I
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i l,...,n as each random variable is deleted in turn, i.e.,

1 n.

If n is large, a variation of the Jackknife can be invoked to save

on the computation time. The modification is to divide the total sample

into g groups of size k each (n = gxk) , and to successively delete

each one of the groups rather than single random variables. The ith de-

leted estimate is now

"e- e(Y V - Y(i l)kt Yik+ ..9Y) 1(4)

and the corresponding pseudo-value is

g o 56 - (g-l)§-i . (5)

The Jackknifed estimate is still the average of the pseudo-values, i.e.,

Quenouille (1949, 1956) introduced the Jackkni±fe as a method of bias

reduction, and this aspect is surveyed in Section 2. On the other hand,

Tukey (1958) saw the Jackknife as a device for robust interval estimation,

and developments along this line are summarized in Section 3. Robust

point estimation hac also been a rapidly developing field in recent years,

372



and the connection between it and the Jackknife through the influence func-

tion is explored in Section 4. Application of the Jackknife to various

statistical problems is illustrated in Section 5.

In my 1974 review article, almost all methodological papers on the

Jackknife published before or during 1973 were listed. The reader is re-

ferred to this earlier article for an extensive bibliography of papers from

that era. A few papers were missed (Collins (1970), Cronbach et al. (1972),

Hollander aid Wolfe (1973), Mosteller (1971), and Pennel (1972)), and these

are included in the references to this paper. The final section of this

paper is a bibliography of all methodological papers on the Jackknife

published between 1974 and 1977 which have come to my attention.

2. Bias Reduction

Quenouille (1956) pointed out that if the estimator e for a sample

of size n has the expectation

SE(e) = +--+ + (7)
n

then the jackknifed estimator eliminates the leading bias term, i.e.,

b1

= + 0 + " +. (8)
n

* This idea was generallzed in Schucany, Gray, and Owen (1971). Let

a1 and e2 be two estimators of 8 with expectations of the form
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E(8i) - e + f 1 (n)b(e)

*1j (9)
E(2) - + f(n)b(e)

Then, the estimator

* det t (10)f(n) f(n f (n) (n))

is an exactly unbiased estimator for e , i.e., B(8 ) 8
The estimator V is called the generalized ,ackknife. It includes

the standard Jackknife as a special case with the identifications

I n
1 2 W S-i'

1
f (n) f• f(n) n-

-. i1

By extending the definition (10) to include three or more estimators, the

second or higher order bias terms in the expansion (7) can be exactly

eliminated by the generalized jackknife. For more detail on these gene-

ralizations the reader is referred either to Schucany, Gray, and Owen

(1971) or Gray and Schucany (1972).

3. Robust Interval Estimation

In his 1953 abstract Tukey proposed that, as a method for roburt
confidence interval construction, ... , 0 could be treated as n

S•'• n

1374

? i .. . ..



independently, identically distributed random variables with mean 6

The pseudo-values are clearly identically distributed provided YI,...•Y

re identically distributed and the estimators 6(YI,...,Y

treab the random variables symmetrically, so the major question hinges on

whether or not the pseudo-values behave as though they are approximately

independent. In this direction a great deal of research has been devoted

to learning when.

- e) $ N(O'l) (1a)

Fn-i-. 1 1

as n .

If e is asymptotically normally distributed as indicated in (12),

then the interval estimate 6 ± g•/2(T(8i n ,where /

is the 1 - (a/2) percentile point of the standard normal distribution,

give3 a robust way of testing or bounding e . Folklore says that in placea/2 i/2 tc/2

o g is better to urn t /2 , where tn- is the percentile point

from a t distribution with n-1 degrees of freedom. The rationale for

this folklore ostensibly stems from a strong belief in the approximate in-

dependence and normality of the pseudo-values, but, with just one exception,

all papers on distribution theory for the jackknife have focused on esta-

blishing asymptotic normality. In fact, it in often the case in practice

that the jackknife t intervals are conservative (i.e., wider than neces-

sary for the nominally listed coverage), so it may be a better policy to

J use the no=.&al critical constant.
/' i~
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Under what circumstances is the Tukey proposal valid, and when is it

invalid? Miller (19604, 1968) proved that (12) is valid if the estimator

is a smooth function of a sample mean or means, i.e., 8 - f(Y) . Estima-

tors of this type include transformed averages and variances. This approach

was extended by Arvesen (1969) and Arvesen and Loyard (197T) to functions

- I of U-statistics 6 = f(U) in order to handle variance component problems.

The proposition (12) is also true for functions of regression estimators
iA

"f(B) in the general linear regression model Y a XB + e as shown by

Miller (19T7b).

Brillinger (1964) took a different limiting approach by holding g

fixed and letting k 4 c for the grouped Jackknife (4) - (6). His proof

shows that if 6 - f(O) where 0 is a root, of the likelihood equation

n D log p(yj,•)
"I �-o, (13)1

then as k,4

+ t (1.4)

This is the lone instance in which the t distribution, rather than the

normal, has been established as the approximating distribution. Typically,

.o rhowever, one would prefer to have g >> k , so the asymptotics do not ee-

tablislh the t approximation in many problems.

Since the maximum likelihood estimator has a vell-established asymp-

j, totic distribution theory involving Fisher's information, the need for
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Jackknifing in this context has been questioned. However, In recent work

Reeds (1977) has answered these criticisms. Firstly, he has proved the

asymptotic normality for 8 when g 4 w with k = I , and secondly he

has shown that the jackknife gives the correct asymptotic N. sriance for

and 0 even if the model is incorrect. The Fisher information does not

do this becr.use it is computed theoretically on the basis of the assumed

density p(yo) If the model is incorrect it may not be clear what 4'

is estimating, but in problems like the location of a symmetric distribu-

tion it will be. Reeds' work applies as well to more general M-estimators

and in this regard the reader should also see Brillinger (1976).

The basic ingredient needed in the estimator e for the Tukey pro-

posal to work is for it to be a smooth function of each Y 1 . The proofs

depend upon power series expansions of the estimator in each of the random

variables. The common motif of the estimators mentioned above is that

asymptotically they are all functions of glorified means. By this I mean

that they are asymptotically equivalent to a function of a (possibly

weighted) sum of independent, identically distributed random variables.

This is true for U-statistics, regression coefficients, maximum likelihood

estimators, M-estimators, etc. In the cases where the jackknife is known

riot to work, such as for the median or other percentile estimators, this

is not true.

Three remarks seem in order before closing the discussion on the use

of the jackknife for robust interval estimation.
The first is that based on mean square error considerations in ratio

"and other problems and on uniqueness criteria, the choice g - n seems
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best. (See, for example, Rao (1965) and Rao and Webster (1966).) However,

"Hinkley (1977b) tentatively suggests that the accuracy of the t distribu-

tion approximation may be improved by taking k larger than one and that

there is little loss in efficiency for small k > 1 . The argument for

this is that the skewness and kurtosis of Z/k , is the
(i-l)k+l I. v~hi n

dominant linear term in ei , may be considerably improved by selecting k

slightly larger than one.

The second remark is that Jackknifing does not correct for outliers.

The reader should not confuse large sample robustness of the jackknife

procedure for any underlying distribution with resistance to contaminating

observations in small or moderate size samples. In fact, the jackknife

appears to be rather sensitive to aberrant values. This sensitivity may

make it a useful device for detecting outliers in complicated estimation

problems. Trimming of the pseudo-values or application of other robust

procedures to them may be a good way of correcting for the outliers.

Hinkley (1976, 1977a) has started an investigation of this in the context

of correlation coefficient estimation.

The third and final remark is that if you are going to use a grouped

Jackknife with k > 1 , random selection of the groups is probably the

most sensible approach when the Y1' ' are identically distributed,

but if the underlying random variables are not identically distributed,

then one presumably has the opportunity to do better. In particular, the

regression situation comes to mind. It may be possible to exploit the

pattern in the independent variable vectors x associated with the Y1

to form groups which give the jackknifed estimator a better mean squared
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error or improved robustness in interval estimation. Hinkley and Miller

have some inconclusive results along this line, but at this point it is

difficult to see what the general principle of selection should be.

* I4. Connection with Influence Functions

To establish the connection between the Jackknife and the influence

function it is necessary to give a brief description of the latter. von

Mises (1947) introduced the idea in his study of differentiable statistical

functions, but it remained relatively unnoticed for two decades until in-

vestigatoru interested in robust estimation uncovered its usefulness (Bee

Hempel (1974)).

In many estimation problems the unknown parameter 0 can be considered

to be a function 8 - T(F) of the underlying distribution F , and its

estimator 6 to be the same function of the sample distribution function.

For example, in the case of the mean, 8 *mfydF(y) and §fydFn(Y) , En Yi/n

The influence function I(y,O) measures the amount of change in T(F) for

an infinitesimal change in the weight assigned by F to y * It is like a

partial derivative of T with respect to a change in F at coordiuate y

Specifically,

'((1-C)F + CS - TF)"'.I(y,O) - lim .... , (15)

where 6y is the distribution function which places mass one at y

Under regularity conditions the function T can be expanded in a

series involiing (15) and higher order derivatives. Specifically,
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T(G) T(F) + I(y,e)dG(y) + .... (16)

In the case where C is the sample distribution function F , the expansionn

(16) and the identifications § T(F ), 8 = T(F) given

e-e + I(Yi 9 ) + ... (17)

The randori variables I(Yi,e) are independently and identically distributed

2
with mean fI(y,e)dF(y) * 0 and variance fi (yB)dF(y) . Since the

higher order terms in (17) are o (n-) under the regularity-conditions,

the asymptotic distribution of 8 is given by

In-(O- e) N(o, f T (y,B)HF(y)) .(8

The connection between the jackknife and the influence function is

that the pseudo-values give finite difference sample estimates of the in-

fluence function. For

-, 1- C n. and F F19)
n-i n-l n

the qv.antity (I-O)F + £6 at Y i becomes

(1-)Fn + ay" n-1 n. n S " n-l,-i (20)

•k where i is the sample distribution function based on n - 1

I _ 380

MIN



I?

observations with the ith observation deleted. If the finite difference

sample estimate of I(y,B) at Y for e - § = T(Fn) is defined by

T((i-c)F + C6yi) - T(F)

I (2FFn)=-i/(n-1)

n

then it follows that

i n• - (n-l)_i,

- e ÷'(n-l)(6-i) (22)

because _ T((l-t)F + C6).n Y IA

If the influence function is sufficiently smooth so that i(yO,)

converges to I(y,O) for all y as n , then each pseudo-value 6i

is approximately 8 + I(Yi,e) • This means the jackknife vill be behaving

correctly asymptotically because 0 will be asymptotically normally dis-

tributed with mean 8 and variance fl 2 (y,e)dF(y)/n , which is the correct

limiting distribution of 6 for any underlying distribution function F

Huber (1972) had indicated that the jackknife should work properly

asymptotically for robust estimators with smooth influtnce functions. An

example is the trimmed mean, which has a continuous influence function. A

little algebra shows that the sample variance of the pseudo-values for the

trimmed mean approxiriaLt2y equals the Winsorized sanple vLriance. The

latter is the correct variance to use with the trimmed mean so the jackknife
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is performing as it should (see Cox and Hinkley (1974), p. 350). On the

other hand, the median and the Winsorized mean have discontinuous influence

functions. It is well known that the Jackknife doesn't work for the former,

and it won't work for the latter either because it depends heavily on two

order statistics.

Two recent developments are worth mentioning before closing this

section.

Hinkley (1977a) has initiated an investigation into the second order

derivatives to see if there is any information in them which might improve

the performance of the Jackknife. Specifically, he examines estimators

which admit the expansion

M +n I (Yi'e) + 2  1Yi0Y0i) + ... (23)
n 1 -2 12. y'

to see what effect the term involving the second derivative 12 has on the

Jackknife.

The Jackknife operates by deleting observations. Thus, as a finite

difference approximation to the derivative I(y,B) , it subtracts mass at

y . Mallows has proposed an alternative finite difference approximation

which adds mass at y . In effect, this introduces a procedure which adds

hypothetical observations to the sample. For a discussion of this the

reader is referred to Devlin, Gnanadesikan, and Kettenring (1975). In a

similar spirit Efron (1911) has proposed inferential procedures based on

samples generated randomly according to the empirical distribution function

- ' of the sample. He has coined the term bootstrap for these procedures, and
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he has demonstrated that the jackknife is just a linear approximation to

the bootstrap.

5. Applications

i) Ratios. One of the earliest applications of the jackknife

was to ratio problems. Let X,, ... , Xm be a sample with

theoretical mean ) , and Y l' "'. Yn be a sample with theore-

tical mean n . The problem is to estimate 0 - n// , and the

standard ad hoc estimator is e = Y/• . Durbin (1959) showed

that jackknifing 8 improves not only its bias but also its

mean squared error in many cases. Later authors amplified on

these results and compared the Jackknifed estimator with other

ratio estimators. For a full discussion of this application the

reader is referred to Miller (1974a).

ii) Variances. The sensitivity of normal theory variance testing

procedures to departures from normality is well established.

Mosteller and Tukey (1968) and Miller (1968) proposed jackknifing

2e= log S as a way of handling this problem in robust fashion.

- Shorack (1969) compared the jackknife estimator and some other

robust procedures for the two sample problem. These ideas also

extend to robustly handling the k sample problem and variance

component problems. For a fuller discussion on this area the

* •reader is referred to Miller (1974a).
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iii) Correlation Coefficients. Another problem where the normal

theory procedure is not robust is interval estimation for the

correlation coefficient. The test that P equals zero is robust

to non-normality, but for p 0 0 the asymptotic variance of

S= tanh- r = (l/2)ln((l+r)/(l-r)) is not 1/(n-3) unless the

underlying distribution is normal. Duncan and Layard (1973)

studied Jackknifing e and found that it works well for most

distributions. Recent work on improving the jackknife in con-

nection with the correlation problem is contained in Hinkley

(1976, 1977a).

iv) Censored Data. Considerable progress has been made on the ana-

lysis of censored data within the last two decades. In four

landmark articles the product-limit estimator of a distribution

function was introduced by Kaplan and Meier (1958), the log-rank

analysis for two sample tests on censored data appeared in Mantel

and Haenszel (1959), the Wilcoxon rank test was adapted to cen-

sored data by Gehan (1965), and Cox (1972) presented his condi-

tional likelihood analysis of a proportional hazards model. None

of these procedures requires the services of the jackknife because

the relevant standard errors can be estimated without difficulty.

However, for more complicated censoring and truncation problems

as in Turnbull (1974, 1976) estimation of the standard error be-

comes messier and the jackknife may be useful. Similarly, the

standard error for the estimated probability of survival beyond a
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specified time for the proportional hazards model with covariates

is sufficiently complicated that the Jackknife may be a good way

of estimating it. Preliminary work on the performance of the

Jackknife in the presence of censoring appears in Miller (1975)

and Route (1976).

v) Model Simulation. It is difficult to get analytic answers for

probability models which are sufficiently intricate to accurately

model realistic storage systems, queueing systems, etc. Usually

it is necessary to simulate the system on a computer. The esti-

mates of the important parameters of the system can sometimes be

"improved by jackknifing, and the variability of the parameter

estimates can be assessed by Jackkuifing. Examples of this can

be found in Gaver (1975, 1977) and Iglehart (1975).
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MODELING AND ESTIMATING THE AVAILABILITY

OF COMPLEX SYSTEMS:

THE JACKKNIFE, COMMON-CAUSE, AND INSPECTION MODELS

Donald P. Gaver
Operations Research Department

Naval Postgraduate School
Monterey, Ca. 93940

* 1. Introduction

An important property of any system of coopexative or

interacting components or equipments is its availability. By

this is meant, roughly speaking, the fraction of time during

which the system is operative and thus able to perform its

intended function, and is not down for maintenance or repair.

This paper outlines various ways in which component, and then

system, availability may be described, i.e. represented by

mathematict.l models. In Section 4 it is shown how, in several

cases, operational data may be used to estimate availability,

and also to assess the uncertainty, or error, of the estimates.

The technique used for this purpose here is called the jackknife;

see Mosteller and Tukey (1977), and Gaver and Chu (1977), from

which the present account is borrowed. In Section 6 models for

redundant repairable systems susceptible to common cause (some-

times termed common mode) failures are described and analyzed.

It is shown that redundancy loses effectiveness when common

cause failures, perhaps caused by external events such as weather

or human error, tend to occur. Finally in Section 7 a sample

*3i
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model for a standby system subject to periodic inspection is

introduced and examined. Although occasional inspection and

testing of a standby unit, such as a military weapon or a
reactor safety system, is important to detect inoperability,

too-frequent inspection may well increase the likelihood of

failure. The model suggests an optimum--or at least reason-
able--inspection inLerval as a compromise.

2. SPystems and Scenarios

Examples of the kinds of systems we have in mind are

shipboard communications (for a study see Perrin (1975)),

general aircraft, including the engines and avionics, nuclear

Sreactor safety systems, electric power boilers and generators,

telecommunications systems including those involving satellites,

and computer systems.

Such systems are complex, being made up of various

interacting components, usually including a human link in

* either an active or maintenance capacity. The effect of improper

Smaintenance is addressed in the inspection model of Section 7

butis otherwise, ignored. A range of operating scenarios

must be considered. Some are

1) Equipments always active, except when failed and when
maintenance is carried out; examples: a base-loaded
electric power generator powered by a nuclear plant,
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2) Equipments inactive (on "cold standby") unless needed;
examples: most weapons such as missiles, nuclear

& reactor safety systems,

3) Equipments (modules) active unless they are in
maintenance or spare stock; example: replaceable
aircraft engines.

There are other scenarios also; many include a certain amount

of redundancy, i.e. extra equipments to be relied upon in

case one or more of those "on line" fail.

Some appropriate definitions of availability are as

follows$

a) Availability is the (expected) fraction of time an

equipment is workable or up. Such a definition obviously

relates to productivity of a base-loaded power

generation or propulsion system.

b) Availability is the probability that a system is up when

needed. Such a definition is suitable for a "cold

standby" system, such as a missile or other weapon, or

a reactor safety system, or perhaps certain communica-

tion devices. To say that the system is "up when

needed" may also imply that the system remains up for

a significant time period thereafter.
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3. A Single Equipment Model

Consider a single equipment, for instance or a component

of a system or a system itself, such as a nuclear power plant.

Describe the equipment times to failure or uptimes by random

variables Ui, and the subsequent repair times by random vari-

ables Di. i = 1,2,... Supposing that the system begins up,

then the first cycle terminates at U1 + D1 with the system

again up; the ith cycle duration is U + D C Then if
= i

A Ut) is the availability of the system at t, given that the

system was initially beginning an up period, and if cycle times

are independent, one arrives at the Volterra integral equation

for Au(t)

t
Au(t) 1 - Fu(t) + f Au(t-x) Fc(dx) , (3.1)

0

FU being the distribution function (d.f.) of U, and FC the

d.f. of a cycle length C. Renewal theory shows that if either

U or D or C has an absolutely continuous component that

then

lira Aut M [U Elul AU (3.2)
t•

provided the expected values [E,U] and E[D] are finite. This

simple expression describes the long-run point availability of

the system. Notice that nothing is said about the independence
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of U and the subsequent D: examples exist to show that if

U and D are positively related (correlated) the rate of approach

to the value AU is slower than if they/are independent (see

Gaver (1972)). If the equipment is an emergency unit (weapoen

or safety system) that is required at a random time T, and T

has the exponential distribution FT(t) M - e , where
--1

R - EBET], then the convolution properties of Laplace transforms

show that availability Et demand time is, for any s > 0,

Au(s) - A(t) eSts dt A U (3.3)
0 1 - F (u)C

where (a) - Ead - E [esC]. This expression

can easily be evaluated for some familiar distributions (not

the log normal), and AU(s) approaches Au as s + 0. Demand

times occurring according to gamma distributions, or even more

general laws, can be handled in similar fashion.

4. Single-Equipment Availability Estimation by the Jackknife

Method.

Suppose observations are available on the up and down

times of a single equipment; denote theme by uI, u2 , ... , Un, !

and d,, d 2 , ... , d respectively. These may be used to make
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inferences (statistical estimates) of system availability.

One promising technique for dealing with this problem is the

jackknife: see Mosteller and Tukey (1977), Chap. 8.

. Analysis shows that in large samples the jackknife method tends

to remove estimator bias--its originally advertised purpose--

and in addition supplies usefully accurate confidence limits.

We report Monte Carlo simulation results that indicate the
iI

validity of such confidence limits for realistically smallish

numbers of observations as well. In a later section we also

show how the method extends to systems of independently failing,

and independently maintained, equipments.

The approach proceeds by first examining the obvious

point estimate of

(4.1)
~+a

where u and a are the means of the observed up and down

times. We first rewrite it (transform) to consider

z -In ( -In I-in d.(4.2)

The purpose of this transformation is to allow consideration

of a quantity more nearly symmetrical and evea normal (Gaussian)

than is A itself. Note that although the log transformation

is likely to be effective other possibilities exist as well;
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the cube root or Wilson-Hilferty is a plausible alternative

(see Kendall (1947)), apparently not yet much investigated..

Having computed z based on all observations one next

recomputes z, but leaving out the jth pair of observations

(j -12..n

Z - X. n( ui) - in d

Here it is assumed that the number of up times and down times

are equal. Next, compute the pseudovalues

z nz - (n-)zj (j - 1.2,...,n)

and their mean and variance:

n n
zin ,2 1 2- -n -1z n= zj- J1)2

Now quote as point estimate of availability the quantity

A jT K " e .

1 + ez

obtained by inverting the log.-logistic transformation. At the

suggestion of J. W. T4Akey (1958), treat the individual zj's

as approximately independent and Normal and so apply Student's

t to establish approximate confidence limits first on
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£n(AU/(I-Au)) and then on AU itself: for two-sided (l-0)-100%

.1 intervals find.I i -

* I

, * I
HC t 1-a/2(n1

ii Ha= • t (n-l) •

1-/ z -snz

so that, approximately,

SL a, I n _U H a- ~U)

and thus also

L AUH
Au - +

with (l-a).100% confidence.

Asymptotic techniques (n large) of R. Miller (1964)

will show that this procedure tends to be valid. That it is

also robust of validity--coverage of the true availability

reasonably close to stated 95% for a variety of distributions

of up and down times-- is borne out by simulationse see the

following tables for n = 15 and n - 25. Distributions con-

sidered are these

A. Ui and Di mutually independent and each

exponential; E[UiI - X-1 E(Di --
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B. U independently exponential and Di independently

gamma with shape parameter k - 3.

C. Ui independently exponential and Di gamma and

independent with the gamma proportional to the

preceding exponential up time; shape parameter

k-2.
i~i xhX

D. Ui independently "long-tailed h" (i.e. U - Xe

with X exponential, adjusted for desired mean and

variance), Di independently exponential.

The long-tailed h distributions of D are introduced to

represent data appearing nearly exponential for small-to-medium

values but that has long tails. For more details see Gaver

and Chu (1977), and Gaver (1978). Thus an attempt has'been

made by means of the above four distributional forms to deal

with data cf a reasonable and plausible variety. This is

necessary, for there is little chance that the "correct distri-

butions" can bi identified from the data itself in an applied

situation. Notice that in the case of data model A--ups and

downs independently exponential--an exact solution is available

in perms of the classical F-statistic, for 5/U is seen to

be a ratio of independent chi-squares. Acting as if the "F"

procedure is applicable in every case considered is clearly

less valid than is the jackknife, as the tables show.
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5. The Jackknife Applied to System Availability Estimation

The jackknife technique can also be applied to estimate

the availability of systems of equipments; in fact, this may

be its most important application. We indicate by some examples

the effectiveness of the procedure.

K-Component Redundant--.Identical Units

If K units are in parallel, and all must be down in

order for the system to be down, then long-run unavailability

is, under independence aosumptions,

K Z[D] K[D, -n-,... (5.1)i- I Eu]+ E[IDi I Bu] + E[D

which would naturally be 'estimated by

(5.2)

But now

_.z =n " /K In In In (5.3)

)

and so one merely jackknifes z as before and inverts to put

(l-a) 100% confidence limits, on A:

< A ( 1 (5.4)
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K-Component Redundant--Different Unite

If the units are unlike it is plausible to jackknife

z.n -I I n (5.5)

i-.i

The straightforward way of carrying this out is to compute as

before the Jth pseudovalue i, of in Ai for i -1,2,...,K,
- 2

find its mean and variance, denoted by i and s . Last,

- combine to obtain

"1 i2
- and a 1 . (5.6)

""u i il
i-

Upper and lower confidence limits on in A are then of the form

HO - I + tl.o/2( ni K).s

ZLa tlca/2 ij ni - K).s

These may be translated to limnits on A, and on A. An alternative

procedure is one of linearization around the jackknifed point

estimate of La Al for details see Gaver and Chu (1977).

Some Monte Carlo simulation results are exhibited

in Table 3. Once again the results seem usefully valid and

efficient.
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Two-Out-of-Three Voting

A final example is provided by a system of three units

that is considered available if any two are simultaneously avail-

able. Thus

A- AIA2 A3 + A1 A2A3 + A1A2A3 + AIA2 3

As usual, up and down time data are assumed to be available on

all three units; we do not wish to assume them identical.

One procedure is as follows. First compute the jackknifed point

estimate of system availability. Next consider the log-logistic
transformation Z - kn[A/ll-A)], and expand to linear terms

around the jackknifed point estimate A', thus finding an expression
for 8.1 for further details see Gaver and Chu (1977).
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6. Common-Cause Failure Models
The previously discussed models for availability of systems

assumed that the component equipments failed and were repaired

independently. Such an assumption is often inappropriate: common

causes of failure, such as environmental shock or personnel error,

may well be decisive. We present now a simple model for catastrophic

common-cause failure.

A Repnirable System Experiencing Common Cause Failure

Consider a system of m (m > 1) identical equipments,

* each one of which fails independently with rate X (exponential

time to failure), and is repaired (after an exponential time)

with rate V. The system is also confronted by a common cause

failure mechanism, such that when it is activated the system fails

completely. The rate of occurrence of the latter is c. Rule

that the system is operative or up so long as k out of m

(1 < k < m) units operate. The system fails as soon as at least

Z n m-k+l units are down simultaneously. The problem addressed

here is to calculate the expected time to system failure, where

failure may occur either because of the individual machine chance

failures, or because of the common-cause catastropic event.

Analysis of the model may be conducted in terms of the

state variable D(t); D(t) J j means that j units are on

repair at time t. Clearly D(t) is a Markov process, and its

state transition rates are specified as follows: given D(t)
S.then
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SChange Probability
D(t + dt) = D(t) + 1 X dt

D(t + dt) - D(t) -1 0 dt

D(t + dt) - m cdt

D(t + dt) - D(t) 1 -( + j+ c)dt

All other probabilities are negligible. Of course A and Vj

may be specified so as to represent any kind of system; for

instance, one in which there are limited numbers of repairmen and

thus queueing occasionally occurs, or one in which not all units

are simultaneously operative and susceptible to failure. Here we

specify these parameters to be

S- (m -J)

(6.1)

3j 1 min(j,r)V, j -0, 1m

where r (1 < r < m) is the number of repairmen available to

work simultaneously. Furthermore, r = m in the numerical examples.

The process {D(t)} is actually birth-and-death (see

Feller (1957)) with an independent Markovian killing process. Denote

by Tt the elapsed time for the system to pass for the first time

from 'D(0) - 0--no element down--to the state X or greater, at

which point system failure occurs. Note that

It

P(Tt > tID(0)=0) = P{T* > tiD(0)-0.e.ct (6.2)
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where T is the first passage time to X in the ordinary birth-

and-death process that admits no catastrophes. Equation (6.2)

simply expresses the fact that failure time exceeds t if and only
if neither a chance failure nor a catastrophic failure occurs

before t.

Now Laplace transform (6.2) to obtain

e-st P{TL > tID(O)-O} e-st P{TL > tID(O)mOle ctdt
0

- �(1 - E[e- (s+c)T.*} (6.3)
a

the latter following by an integration by parts. The Laplace
transform of T is of the form

E[B (+IGT- J ( * (s+c) (6.4)i-.O

where

ls+c) = i + Pi + s + c - •i~i.l(S + C) - 1,2,3,...

and

#0 I.s+ c) A0  ~+(65

, see Karlin and Taylor (1975). By combining (6.3) and (6.4) one
+, [

Smay calculate (6.2)t then, allowing a + 0 there results
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EC01 1 E [ e-'TI,-
E(TLJ = 1-"

c

Numerical Example

Let m - 3, k - 1, Z - 3, meaning that the system of three

equipments fails only when all are down simultaneously. Put

A- 10 2 (days-l), j - l(days-), and consider the effect of varying

the catastrophe rate, c.

E[T£] 0 (Catastrophe Rate)

3.5 x 105 0

4 -41 x 104  10-
1 x 103 0"3
i4

Obviously a catastrophe rate as great as 10- completely dominates

the effect of the individual unit chance failures. Thus only if

the catastrophe rate is of magnitude 10-5 or smaller will the

present redundancy be at all effective.

I4
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7. An Inspected System

In this section we turn attention to an equipment that

is not expected to operate constantly, but that is intended to be

ready when needed. An example is a weapon such as a gun or missile;

another example is an alarm or safety system, perhaps associated

with a nuclear power system.

Attempts to insure the operability or readiness of such

systems usually include periodic inspection and preventive main-

tenance. Our model incorporates these attributes; furthermore,

it allows for imperfection in the inspection-repair process, e.g.

brought about by hluman error.

The Model

A single equipment is subject to periodic inspections and

preventive maintenance or repair actions. Let the time from the

completion of a preventive maintenance period until the beginning

of the next be I time units, and let the subsequent preventive

maintenance periud require R time units; both J and R will

be taken to be fixed. Hence over a long period (say one year)

the system presents itself as nominally "ready" a fraction of

time equal to I/(I + R), and down for inspection and maintenance,

and hence tnavailable, for a fraction of time R/(I + R). Now:,

* admit the possibility that the system be additionally unavailable

* for one of two reasons: (a) at the end of an inspection-

maintenance period the equipment is returned to active service

in an inoperative condition, an event of probability 6 (0 < 6 < 1),
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(b) at the end of an inspection-maintenance period the equipment

is up, an event of probability • - 1-6, but it fails before the

next inspection, and is thus actually unavailable for the time

following that failure until the next inspection-repair period

begins. Let F(t) be the distribution function, and f(t) the

density, of equipment failure time. If the inspection interval,

I, is treated as a decision variable it is interesting to select

its value so as to maximize long-run availability, or, equivalently,

to minimize long-runs unavailability. In order to do so, first

calculate the expected time unavailable during one cycle of

length I + R:
I

6I + • J (I-t) f(t)dt + R
0

division by I + R then gives the expected unavailable time per
unit time as the latter depends upon I:

6X (I - t) f(t)dt + R

( 1 -(7.1)... .
I++

One may now choose I so as to minimize X; differentiation shown

that the optimum I must satisfy the equation

I IFCI) - F(t)dt
1 0

|ii.

k T tf(t dt I F(I,,

: ... ... .
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since the denominator is a decreasing, and the numerator an

* increasing, function of I there is exactly one root of (7.2.).

* Surprisingly at first glance, the optimum inspection interval,

Iopt' does not depend upon 6, the probability of a faflure dujHr

the inspection-preventive maintenance period. Of course the

eventual system availability does depend upon this parameter;

providing Iopt is chosen it turns out that

opt- - •[ - F(Iopt)]

Although (7.2) cannot usually be solved explicitly it turns out,

in the case of exponential failures, to be

X1)~
R + le -(1

when A is small, so in this case

Iopt

and

A(Iop) • 1 - I exp(- /2-R)

or, in terms of availability,

i •. ~~A(Iot exp(- •/27R)
opt

415

.- . •. .



REFERENCES

FELLER, W. (1957). An Introduction to Probability Theory and
ItX Applications 6--•--nF-l?-efi-y-dons, New York.

GAVER, D.P. (1972). "Point Process Problems in Reliability,"
in Stochastic Point Processes, ed. by P. A. W. Lewis,
John Wiley and Sons, N.Y.

GAVER, D. P. (1978). "Simple Parameteric Hazard Models,"
paper in preparation.

GAVER, D. P. and CHU, B. (1977). "Estimating Equipment and
System Availability by Use of the Jackknife," submitted
for publication.

KARLIN, S. and TAYLOR, H. (1975). A First Course in Stochastic
Processes, Academic Press.

KENDALL, M. G. (1947). The Advanced Theory of Statistics, Vol. I,
Charles Griffin and Co.., Ltd., London.

MILLER, R. P. (1964). "A Trustworthy Jackknife," Annals of
Math. Statistics, 35, pp. 1594-1605.

MOSTELLER, F. and TUKEY, J. W. (1977).. Data Analysis and Regression,
Addison-Wesley Publ. Co., Reading, Mass.

PERRIN, C. S. (1975). "A Manning and Maintenance Effectiveness
Model Applied to the Conmnunication Division of a "Knox"
Class Destroyer Escort," Naval Postgraduate School Master's
Thesis.

TUKEY, J. W. (1958). "Bias and Confidence in Not-Quite Large
Samples," Abstract in Ann. math. Statist. 59, p. 614.

416

* I

-•." /6 ,rI~-I. *



QUALITATIVE EVALUATION OF THE M6OA1 TANK CAMOUFLAGE

BY OPERATIONAL IMAGERY INTERPRETERS

EDWARD R. EICHELMAN

* RONALD L. JOHNSON

US ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COtIMAND

FORT BELVOIR, VIRGINIA 22060

ABSTRACT. A continuing problem in the assessment of camouflage effective-

ness has been the objective analysis of subjective data. This paper is

concerned with such an evaluation for an M6OAI Tank, Thirty operational

image interpreters analyzed the following camouflage prototypes: natural

foliage, fender nets, two styles of gun barrel disrupters, and counter-

shading. Each interpreter viewed aerial Imagery of each condition. A

forced choice of descending ratings was assigned. Mean ratings and associ-

ated variances were calculated. The scores were standardized, and the Z

statistic was employed to determine significant differences. The effective-

ness of foliage was significantly better, a - .01, than counter-shading.

I. INTRODUCTION.

Up through World War II the development of camouflage involved a sub-

Jective, artistic approach rather than the scientific method now advocated.

With the advent of more complex sensor systems the development of camouflage

concepts has necessitated a more controlled approdch based on stringently

quantified data. The results of the analysis are then used as a data base
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to identify the most promising camouflage concepts for further development.

One such instance in which the U.S. Army is involved is the tactical camou-

flage of the M6OAI combat tank. The purpose of this study was to objectively

evaluate the effectiveness of various prototype camouflage items for the

M6OAI tank. It was accomplished through the use of operation image inter-

preters (Ill's).

II. DESIGN OF EXPERIMENT.

A. Targets. The test targets consisted of M6OAI tanks in the follow-

ing conditions:

a. Pattern painted.

b. Pattern painted and natural foliage.

c. Pattern painted, countershadlng, and gun barrel disrupter

(Type I).

d. Pattern painted, fender nets, and gun barrel disrupter

(Type II).

These various conditions of camouflage will now be described in detail.

1. Pattern Paint.

The purpose of the camouflage paint patterns is to distort

straight lines and edges of objects, alter perception of depths, and

to reduce contrast with the surroundings and cause the object to blend

with its background1 . Camouflage paint patterns were developed by

*. the U. S. Army Mobility Equipment Research and Development Command

(MERADCOM). The pattern used In this test combines patches of the

colors forest green, light green, sand, and black. it is the Summer

U. S. and European verdant pattern.
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2. Natural Foliage.

The natural foliage was inserted into specially placed brackets to

disrupt the target's outline and distinct features. It was also intended

to reduce the target to background contrast.

3. Countershading and Type I Gun Barrel Disrupter.
.1

Countershading of the target consists of painting the normally dark

* or shadowed areas with light colors (e.g., white or gray) to reduce

detection and identification by means of these visual contrast cues.

The Type I gun barrel disrupter is an accordion like sleeve that slips

over the gun barrel to break up the parallel straight edges as well as

to distort Its shadow.

4. Fender Nets and Type II Gun Barrel Disrupter.

The final camouflage condition evaluated, contained fender nets and

a Type II gun barrel disrupter. Fender nets were designed to cover the

visual cues of the tank's track system and lower portion of the hull.

They consist of six foot long fiber glass rods supporting plastic garnish

material from the Army's standard lightweight camouflage screening system

(LWCSS). The Type II gun barrel disrupter is of an irregular fan shaped

design which is attached along the top of the gun barrel.

B. Test Imagery.

The test imagery consists of a series of 4" X 5" color positives for

each of the camouflage conditions. Scaled aerial photographs at 1:10,000

and 1:5,000 were taken of the front, back, top, and both sides of each

target M6OAI tank. Additional-ground level photographs were taken of

each target for documentation. The target tanks were sited so that they

! •were unobstructed by indigenous foliage.
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C. Test Procedure.

Thirty operational image interpreters (II's) participated in the

camouflage evaluation. They were first shown the close-up, gr3und

level pictures of the camouflaged tanks and given a brief description

"of the purpose of each type of camouflage. The pattern painted tank

was defined as the baom c:ondition upon which the five types of camou-

flage were applied. They were than shown all of the 4" X 5" color

positives of the camouflage conditions for evaluation. In order to

provide objective results from this study, the II's were instructed

to make a forced choice in analyzing the effectiveness of five types

of camouflage. The ranking choices were as follows::

1. Most effective

2. Above average effectiveness

3. Average effectiveness

4. Below average effectiveness

5. Least effective

III, EXPERIMENTAL RESULTS.

The dependent variable of this test is the frequency with which each

* lprototype camouflage was assigned a particular effectiveness value by the

II's. The forced selection of effectiveness allowed the conversion of the

* subjective data into objective results. Figure I shows the cumulative

totals of the forced selection of effectiveness. As an example, for

countershading, the left end of the lower line with diamond points indicates

zero choices as No. 1 (most effective); two choices as No. 2 (above average

effectiveness); two more choices as No. 3 (average effectiveness) for a

total of four; seven more as No. 4 (below average effectiveness) for a total
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GRAPHIC RESULTS OF EVALUATION OF M-60A1
CAMOUFLAGE BY OPERATIONAL IMAGE

INTERPRETERS

30

- 28-
26
24-

22-mw 20l-

"U. 18-
* 16-

14-

* 12

* ~ 10
m 8-

6
4
2
0 2 3 4 5

CAMOUFLAGE EFFECTIVENESS

KEY

1-MOST EFFECTIVE 4-BELOW AVERAGE EFFECTIVENESS
2-ABOVE AVERAGE EFFECTIVENESS 5-LEAST EFFECTIVE
3-AVERAGE EFFECTIVENESS

A FOLIAGE WITH BRACKETS G GUN BARREL DISRUPTER TYP I
• FENDER NETS 0 COUNTERSHADING
S GUN BARREL DISRUPTER TYP I

FIGURE 1
421.

• . .."i, - -.



of eleven; and finally, nineteen more as No. 5 (least effective) for a

total of thirty.

Table I is a numerical summary of the II data by camouflage effective-

ness rating versus the type of camouflage.

The means and associated standard deviations were compared, using the

z statistic2 , to determine which means are statistically different from

each other. The results are presented in Table II.

Any Z value greater than 2.576 indicates significance at an ( of .01

shown by the values with asterisks.

IV. DISCUSSION.

The stated purpose of this study was to quantify the subjective evalu-

ations of prototype camouflage for the M6OAl Tank. The problem faced In

this study was one of obtaining objective data from facts that were subjec-

tive in origin. Four by five inch color positives were obtained of the

M6OAI tank for four conditions of prototype camouflage. Photographs of the

pattern painted tank were used as the base case. Thirty operational II's

were shown all of the imagery. They used the forced choice rating technique

to determine the effectiveness of the camouflage conditions on a five point

scale, with one being most effective. The mean and standard deviation were

determined for the frequency with which rating values were assigned to each

condition of camouflage. The means and associated standard deviations were

then subjected to the Z statistic to determine which condition of camouflage

was significantly most or least effective. The resulting data was success-

fully used to determine the most promising candidates for further develop-
ment.
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TABLE I

GUN BARREL GUN BARREL
CA00 FENDER DISRUPTER DISRUPTER COUNTER
EFFECT WEIGHT FOLIAGE NETS TYPE I TYPE II SHADING

1 5 27 1 0 2 0

2 4 2 11 9 6 2

3 3 1 9 7 11 2

4 2 0 6 10 7 7

1 0 3 4 4 19

•: MEAN
STANDARD 4.87 3.03 2.70 2.83 1.57
DEVIATION .434 1.066 1.055 1.1,5 .893

4I2

II
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TABLE II
Z OR STANDARD SCORES

FOR COMPARISON OF WEIGHTED MEAN CAMOUFLAGE
EFFECTIVENESS VALUES

GUN BARREL GUN BARREL
FENDER DISRUPTER DISRUPTER COUNTERFOLIAGE NETS TYPE I TYPE II SHADING

FOLIAGE

FENDER NETS 8.72*

GUN BARREL
DISRUPTER TYPE 1 15.20* 1.22
GUN BARREL

DISRUPTER TYPE II 10.54* 0.71 0.48

COUNTER SHADING 18.13* 4,67* 4.48* 4.84*

*SIGNIFICANT AT " .01

.X1 X
Z 005 2.576 - '

N1 + N2

N 30
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V. SUMMARY AND CONCLUSIONS.

Thirty operational II's evaluated tank camouflage effectiveness from

4" X 5" color positive aerial photograhs of the camouflaged M6OAI Tanks.

The means from a forced choice evaluation of the conditions of camouflage

were objectively evaluated by use of the Z statistic. The data from Tables

I and II, significantly (a * .01), indicate that the use of natural foliage

provides the best camouflage of those evaluated. The use of countershading

has little or no camouflage effect or value. Fender nets and two types of

gun barrel disrupters were significantly (a - .01) better than the counter-

shading, but significantly (a - .01) inferior to foliage. Fender nets and

the types of gun barrel disrupter did not differ significantly in camou-

flage effectiveness from each other. From the results of this study it was

recommended that the use of foliage, fender nets and gun barrel disrupters,

Types I and II, be subjected to additional development and testing. Count-

ershading was not recommended. It is also noted that the use of forced

choice rating can be very successful in an objective evaluation of data

that is subjective in origin.
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DESIGN OF A FULL-SCALE TEST FOR U.S, ARMY HELICOPTER

NAPqOFq.THEvEARTH (NOE) COMMUNICATION SYSTEMS
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Fort Monmouth, New Jersey

Bruce C, Tupper and George H. Hagn
Telecommunications Sciences Center

SRI International
Menlo Park, California

ABSTRACT. Of particular interest to the Army is a reliable voice commun-
ication capability for helicopters that fly at Nap-of-the-Earth (NOE) alti-
tudes. This flight regime at tree-top level or below is necessary for air-
craft survival in the modern battlefield. At these altitudes, the present
aircraft VHF/FM radio systems operate over only extremely short ranges and
are essentially limited to line-of-sight (LOS) paths.

To quantitatively assess the performance and effectivenas of the nine can-
didate radio systems (both VHF/FM and HF/SSB) and communication methods, a
large scale combined operational and engineering test was designed, The ex-
periment design considered'variables including range, altitude, terrain, time
of day, frequency, and power that affect the radio channel (SNR). The tests
were designed to determine how the performance of the non-LOS and LOS radio
systems depended on these major variables. The test, conducted over a three-
month period, involved over 100 personnel, and 1000 hours of flight testing,
and utilized over 10,000 alpha-numeric (A-N) test messages to determine and
evaluate the voice intelligibility of the radio systems.

This paper deals with a definition of the problem and development of
measures of effectiveness (MOEs) to measure radio performance, the design of
the experiment, and how the variables and dimensions of the test were treated.
Although statistical principles were considered, a rigorous statistical de-
sign was not used; however, probability theory techniques were used for ex-
tension of the results to other terrains. Results are briefly discussed;
Lesson& learned from the tests are also summarized with recommendations given
which could be applied to future operational tests of this nature.

1.0 INTRODUCTION: The Army is currently faced with a serious radio
communication problemi communicating with the helicopter on the modern
battlefield.

In order to survive on the modern battlefield aircraft must fly close to
the surface of the earth in a Nap-of-the-Earth (NOE) region [1). The NOE
flight regime for helicopters is flying at extremely low altitudes, typically
hover altitudes, at relatively low speeds below tree-top level in the battle
area. Aircraft must fly at NOE altitudes to take maximum advantage of the
terrain features for cover. Survivability and mission effectiveness in battle
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area depend on how well the aircraft and crew can function under these strain-
ed conditions and how well communications can be maintained with the elements
being supported. The problem of how to effectively communicate in the battle
area while flying NOE resulted in the conduct of a full-scale operational
field test of nine different communication systems. The main objective of
the test was to comikre and evaluate the communication effectiveness of the
candidate radio-systems under NOE conditions. The presently used tactical
VHF/FM radio system was considered the baseline system for the tests.

Many variable3 existed for the NOE Communications test. Figure I shows
the major test variables.,

Variable Condition

Spatial: Range Terrain
Altitude Siting

Time of Day: Day Night
Dawn

Frequency Band/Modulation:

HF/SSB (2-8 MHz Below MUF)
HF/SSB (8-30 MHz above MUF)
VHF/FM (30-76 MHz)

Power Output: HF (40, 100, 200, 400W PEP)
VHF (10, 40W)

System Configuration
(Links): Air-Ground

Ground-Air
Air-Air

FIGURE 1. TEST VARIABLES

These variables, and others, were considered in the design of the test
to determine how communications range was affected with aircraft operating at
various altitudes in various type terrain conditions. The tests described in
this paper were supplemented by other engineering tests and by computer pre-
dictions of communications in operationally-slgnificant areas such as Europe,
the Mid-East, and Korea.

2.0 DESIGN OF THE TEST.

2.1 Measures of Effectiveness. To comparatively evaluate the per-
formance of the candidate systems, two measures of effectiveness (MOEs) were
developed.

2.1.1 Alpha-Numeric Test Messages. The first measure was a
measure of communications etfectiveness using randomly selected alpha-numeric
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(A-N) characters sent through the radio channel. Communication effectiveness
was defined as the percent of A-N characters correctly received, sent one way
without repeats through the communication channel. This measure provided a
quantitative comparison of each of the candidate radio systems as a function
of the range and other test variables.

A test message containing an equal number of randomly selected letters
and numbers was developad. This was called an A-N test message. The A-N
test messages were formatted and transmitted as tactical spot reports by the
tester. The tester determined that messages sent in this spot report format
operationally resemble grid or target coordinates that helicopters routinely
transmit over radio systems. Further, spot reports in this format sent one
way through the channel without repeats are demanding on the communication
channel. Finally, A-N messages in this format can be practically recorded in
the helicopter by a test observer and graded at the end of the mission.
Figure 2 shows a typical data recording sheet. A word consists of six random-
ly selected A-N characters. In this message characters and numbers are sent
using the phonetic alphabet. These mvsages were copied down on answer
sheets such as shown, graded and used as the primary measure of effectiveness
for the tests.

Figure 2. AIple Oate Sheet

RITKlU TUT WN D PAl
RA.MOI (KOP) )-QO.... ALT A12 La. OUlT

A/C NO 0 0 TA~3 No ...7.Z... ID

SPOT SEP05? M~ SON.. Nuo.LINKOQ_ ,-O-2_ n

S_7___ 1 - I. -

AUTZ TOO. VAST 700 5WU (DM ,Iep s~aII hrrelyllFlo~~l

ACAIIL1TJIV I 0 k 3 1 i 5 l mada.t ~19MM NOW

1RlbIC T cIMuCT I Madabla.Zl .Me U IFFlC.L1Y

p Ak. t j baftfd II I INtABL
QWHO CKT CO14OMT

DATA TANKS __:& .. TALKER
I4
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2.1.2 HeiRht to Break Squelch. The second measure was the alti-
tude required to establish two-way communications from the aircraft to the

base station. In this case the aircraft would climb to whatever altitude was
required to establish two-way communications to the base station. Thin pro-
vided an estimate of the vulnerability of the aircraft containing a candidntf
radio system to the enemy weapons zhreat. The units fur the measure would be
the height, in feet, above ground level (AGL) required to commnunicate above
an NOE-situated site. This measure was made for the baseline system only ard
not for all of the candidates due to testing time limitations.

2.2 Test Variables. Many variables affected two-way helicopter commun-
ications (Figure 1). The principal variables were range, altitude, and

terrain; next in importance was transmitter power used in the aircraft.
Finally of importance was the link tested. Links (or modes) are air-to-

ground (A-a), ground-to-air (C-A), amnd air-to-air (A-A). Perfo'rmance over
these links differs.

The range and altitude variables are shown in Figure 3 in the form of a
range/height matrix. Ranges at which the communicatdons equipment were test-

ed were selected to include thn failure range for the candidate systems, par-
ticularly the VHF/FM systems which operate under near LOS condition,.

FIGURE 3. RANGE-HEIGHT CELLS

ALTITUDE
TWO-WAY COMMUNIrA-

HSQ( ) TION ALTITUDE

NOE ( ) NOE REGION FOR

SOG() FORT HOOD

1 2.5 5 10 25 50

RANGE (QM)
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"2.2.1 Range. The range intervals at which the communication sys-
tems were tenred were spaced logarithmically at operationally significant
distances of 1, 2.5. 5, 10, 25, and 50 km. Actual ranges for the test differ-
ed slightly from these because of terrain and military reservation boundary I
limitations. Selection of ranges spaced at two to one multiples of distance
results in excess of 10 dB incremental basic transmission loss for a ground-
wave signal between each site.

The test ranges were selected to identify the capabilities and limits-
'I tions of each of two modes of transmission--groundwave mode and near vertical

incidence skywave (NVIS) mode of propagation. VHF/FM radio systems operate in
the groundwave mode of communication in which the launched signal generally fol-
lows the surface of the earth and is refracted or reflected by terrain irref,-u-
larities along the path profile between the transmitter and the receiver.
Signals in the VHF portion of the spectrum (30-76 MHz) are attenuated by both
range and terrain. The test ranges of 1-10 km were selected prior to thv
tests to bracket the expected failure ranpe of the VHF systems originating at
a base station. The HF/SSB signals also propagate in groundwave mode but to

-- longer ranges than their VHF/FM counterpart radio.

* HF/SSB radios have the capability of operating both groundwave and in
near vertical incidence (NVIS) mode. For NVIS mode the energy is directed
from a horizontal radiator to the ionosphere and returned to the surface of
the earth. Due to NVIS propagation, HF/SSB has the capability to operate at
extended ranges independent of terrain effects. The 25 and 50 kna points were
selected to investigate the communication performance of HF/SSB radios in the
NVIS mode.

2.2.2 Altitudes. The altitude intervals for the test were select-
ed from an operational standpoint. Three altitudes wore used:

* Skids on ground--this altitude defines the bottom of the
NOE flight regime.

* NOE nltitUde--this altitudL, iapproximately 3-ft AGL for
Fort Hood terrain, represents the top of the NOE flight
regime in the test.

* Height to break squtelch altitude--this is the height above
ground to which the aircraft must climb to establish two-
way communications, This altitude is operationally signif-
icant in that the aircraft must climb to it in order to
communicate to a remote base station. As the aircraft
climbs above the NOE regime, its vulnerability to ground-
based weapons Increases.

As can be seen from Figure 3, the choices of six ranges and three alti-
tudes resulted in a grid or matrix containing 18 cells. This matrix consti-
tuted the sampling grid.

2.3 SaMV.injpyLpn. The tester chose to use a fActorial analysis for
the analysiRs of the test data to relate the performance of the candidate
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radio systems and test variables to the dependent variable, percent correct
A-N score. A complete five-factor analysis of variance was planned. 12,3].
The five factors were radio system, range, time of day, altitude, and mode of
transmission (A-A, A-G, G-A). A factorial analysis is generally used to de-
termine the relationship among many test variables and the outcome (A-N
score). To perform this analysis an assumption on the distribution of the
data in required--that the data be normally distributed about the mean, The
analysis of variance program run by the tester revealed significant inter-
actions between the factors and also resulted in a large computed F-ratio for
the candidate radio systems. On the basis of these results, the Newman-Keuls
test was run to make pair-wise comparisons of the mean A-N score of the can-
didate radios and to determine significance. This test is also based on the
Normal assumption.

The decision to perform an analysis of variance in this manner required
iterative and equal sampling in each of the range-height cells for each of
the conditions of the variables. This resulted in multiple sampling in each
range-height cell to estrblish the required confidence levels. This approach
is not recommended for future tests of radio systems in which the range char-
acteristics of the radio systems can be estimated from propagation models.

A sequential sampling is more appropriate for a test program of this
nature. Under this plan, samples would be taken at each of the range-alti-
tude cells, only until the communication effectiveness, mean A-N test score
in this case, could be estimated with a 95% confidence level. The number of
samples required in each cell is dependent on the mean score and confidence
level required. Seqilential sampling is desirable to conserve expensive tuvt
resources and to redirect those resources (helicopters) to investigate other
aspects of the NOE communication problem. A comparison of the two sampling
approaches is shown in Figure 4.

FI(tRE ,. COMPARISnN OF FOUAL-OCCURRENCE AND SEQUENTIAL SAMPLING PLANS

EQUAL SAMPLES
V / . VARIANCE (FACtORIAL) . .. .. WiNTIAL SAMPI ING

1. rouIkS NOHAL. ASSUMPTION AND SAMPI.ES tRUM 1. DISTRIBUTION FREE

POPULATION WITH SAME MEAN

2. REQUIRES NO A PUDRI ASSUMI'PION% ON RADIOS 2, MAKES USE Of KNOWN PHYSICAL

3. REQJUIRES EQUAL SAMPLES IN ALL CELL% rOa LAWS GOVERNING RADIOS

FACTORIAL ANALYSIS OF VARIANCE 3 NOT REQUIRED

4J, REQUIRiS NORMAL DISTRIBUTION FOR CONFIDLNCE 4. CONFIDENCE STATEMENTS MADE DN

STATEME $TS CELLULAR SASL1, DISTRIBUTION FKEE
5. NO THRSFHOLD REQUIRED 5, REQUIRES THRESHOLD FOR DUAL

HYPOTHESIS TENTING
' LESS COST EFFECTIVE 6. MORE COST EFFECTIVE

NEWYAh.KEUL,--SIG.NIFIWCjC..OI% ME N5
1. REQUIRES NORMAL AtSUMPTI,)NFOR POPULATION (NOTE 4 AsOVE)

DI STRI SLfT ION
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The sequential sampling approach was prepared but was not used during
the tests. This approach implies the use of a channel utility estimator and
is more operationally oriented; simply stated: Does the system work? To
frame this objective, Does the channel work?, we must first define some quan-
titative measure of the term work. This can be done arbitrarily in percent

* of messages that can be correctly received in a particular test environment,
but it must be decided an before the tests are begun. This can be achieved
by prefield tests, such as screenroom tests run on radio systems using the
test material, by experienced judgement, or by both• methods. As an example,
an A-N score of 802 may be a reasonable threshold between channel accept-

A three-level hypothesis testing procedure was proposed for sequential

sampling:

0 Take N samples of communication performance on the channel.

a Form an unbiased test statistic, based on the performance measured.

a Use this statistic to accept one of the following hypotehses:

Hl. The channel can support communications.

H2. The channel cannot support communications.

H3. Cannot be determined. More samples required.

The expected results of such a sampling plan are shown in Figure 5.
Test thresholds and confidence levels required were determined a priori to
the experiment. Channel quality is measured at the required confidence level
and by using repetitive samples. In Figure 5, C indicstos a good channel, B
a bad channel, and no entry indicates more samples are required. It is pro-
posed that once #1 and #2 has been accepted, then measurements under these
test conditions will be terminated. In this mannner, experimental resources

* can be contentrated in areas where communication performance is at or near
the critica.1 value.

FIGURE 5. EXAMPLE OF SEQUENTIAL SAMPLING PLAN RESULTS

ALTITUDE

6 6 ? B

II RANGE (KM)

6 - GOODi MEETS Hi
B- B. * AD; .EETS H2
? - CANNOT BE DETERMINED.

MORE SAMPLES REQUIRED.

FIGURE 5
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For this approach, confidence levels were determined using the binomial
distribution based on independent Bernoulli trials.

P(x) a () x qn-x

-1 where

P(x) a Probability that exactly x correct
characteristics received in n independent trials

p - Expected probability character correctly
received (preselected threshold or desired

.1; probability)

q -1-p

Suppose we wish to test the hypothesis that the channel is acceptable

(p 0.8), using ten transmitted characters (n 1 10), of which three are
correctly received (x - 3).

r(3) - (10) x lo-x[X p q
- 7.865 x 10-4

Under these conditions, the probability of receiving 3 characters correct-

ly, assuminE that the true (desired) probability in 0.8, is approximately
10-3, or 0.1%. Hence we can reject the hypothesis that the channel is accept-
able with confidence, Q, where

Q - 1 - 7.864 x 10-4

- 99.92%.

In informal correspondence, the test officer for FM-320 estimated that
for mean A-N test scores used in the field with helicopters, 85% was accept-
able without repeats, 75% acceptable with repeats, and less than 70% unaccept-
able [5).

2.4 Test Implementation, A detailed test plan was developed by the
TRADOC Combined Arms Test Activity (TCATA) to implement the test at Fort Hood,
Texaw. This plan is extremely complex and is a tribute to the TCATA or-
F.anization. The test Involved six helicopters visiting the 18 range height
cells in approximately 1 hour and 30 minutes--the time duration for their
fuel load. At each cell the helicopter crew was required to send and receive
an A-N message from a ground station or another aircraft. This was done in
three, 2-hour intervals in each 24-hour period: at night, during dawn, and
during the daytime hours. Over 10,000 A-N messages were tratnsmitted, and re-
ceived, and graded during the duration of the tests.

To handle the data generated by the large volume of meosages, TCAT,' uio,,;d
a remote terminal, similar to a time-sharing terminal, to enter the A-N test
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scores into a central computer. The computer was an Army-owned CDC-6500 con-
puter located at Fort Leavenworth, Kansas, The test scores were entered at
the end of each day. This type of data handling system is strongly recommend-
ed for any future tests having large amounts of data. The system has a
number of distinct advantages:

0 Mean A-N test scores for each of the candidate

radio systems were computed and updated daily,

0 Cumulative results were available in real-time to

the test officer and others at TCATA interested in
the progress of the tests.

*It permits ongoing analysis of the tests results
on the basis of these results, and allows room for
redirection of resources,

SFigure 6 (extracted from the TCATA FM-320 Report) [2] shows an
accumulative output, called a Table of Means for each candidate radio aystem
tested. This table was prepared daily for use by the test officer to evaluate
performance and to plan tests for the succeeding days.

• ltUKk e. PERCENT OF COMMUNICATION WFFECTIVENCSS AT MNP.-THE-EARTN ALTITUDES AT
ALL AME&S

Ranges

96 t" . .5 6O 910, 2.0 60.0 9 2 94

AN/ARC-114 (MA LIN) 96 90 G8 70 4 1 s0 64 14

lit (-W) so B 96 05 9I 83 95 g2 9
or 0t013 ST ) g, 97 27 96 85 65 go 81 goi

*o7 R SMIMIoN 94 or 91 g4 ?3 35 64 ?3 e8

* All A• MSMIWON 96 90 80 93 58 46 s0 77 79

SPRCIAI WA0o 93 89 76 70 6 1 56 1 56

N Q(ooW) 96 97 9? 98 79 59 90 84 Be

MN (4A0) 98 96 93 88 70 50 82 84 62

Yov"V P (40W)' 97 97 86 87 7 4 63 64 1 63

uAs tested during M-320. rurthar mo•dtficatluns (improvements) have sincea bsen 1"dQ
to |lthi Ch|diast.

Sourcet TCATA rm-320 xoport. (Table A-3).
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3.0 RESULTS. Figure 7 is a plot of successful communications completed
versus range for an A-N score equal to or greater than 80% for Fort Hood type
of terrain. Success here is defined as an A-N score greater than or equal to
80%. The ordinate shows the percentage of the time that this score was equal
to or exceeded. The data used to generate these curves were extrarted from
the TCATA FM-320 tests !21 for aircraft flying at two altitudes (skids-on-
ground and a low hover), three time periods, and three communication modes
(aircraft-to-ground, ground-to-aircraft, and iircraft-to-air'Iraft),

The curves show the advantage of an improved FM system over baseline

and the improvement of a high power 11F system (400W equivalent) over a low-
power HF system (40W). For multipower radios, the minimum power setting
should be used to achieve acceptable communication quality at the required
range. Switching points for an A-N score of 85% are indicated on Fig,,re 7.
For additional and detailed analysis of this type, the reader is dir,-cted to
reference [6].

Figure 7
TYPICAL COMMUNICATIONS SUCCESSFULLY

COMPLETED VS RANGE FOR AN A-N SCORE ? 80%
FOR FT HOOD TYPE TERRAIN (FM-320)

(More FavorableS~Prop Conditions)

HI HIPwr HF
gLo

Hwr Pw-
Eo2. 80 Baseline Pwr
i 0- 0FM

Q0 . .. .. .. . ... .. .. ". ... . . . . . - "

1.5 2.5 5 910 25 50
Range (kin)

In summary, the following information was determined from the t.st:

A comparison of A-N scores for the nine systems at six
test ranges.

The dependence of system performance on the test variables.

The relationship of the technical characteristics, such ns
power output, to eommunications performanee.
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Areas for improvement for the combined aircraft and ground
station communication system.

4.0 LESSONS LEARNED. From the planning, conduct, and analysis of the
tests, a number of lessons were learned that may be applicable to operational
(and engineering) tests that the Army conducts in the future.

4.1 Measures of Effectiveness. The measure of effectiveness (MOE)
selected to evaluate a communication system should be operationally signifi-
cant and mission-related. A measure of effectiveness must have three char-•'I acteristics. First, it must be measurable in the field, Second, it must be

quantitative. Third, it must measure to what degree the objective ie
achieved. The MOE should have operational significance to decision makers.

il • 4.2 §amp!ing Plan and Statistical AnalysLs. If the data for the
tent are to be analyzed statistically, it is recommended that the assumptions

on the forms of the expected distribution of the data be carefully reviewed,
and, if possible, be checked. For the FM-320 data, the tester assumed that
the A-N test scores would be normally distributed about the mean, This did
not prove to be the case. A sampling plan should be designed, written, and,
if possible, tested before implementation of a full-scale test. The choice
of an appropriate confidence level and the number of samples required under
each set of variable conditions to achievo that level should be determined.
The consequenLces of acquiring insufficent data (insufficient samples) should
be investigated. Distribution free techniques should be used to estimate the
required sample sizes for Lhis type of test where the distribution form can-
not be known in advance. Finally, the sampling plan should allow for test
flexibility and redirection, if trends in the data so warrant.

4.3 Pretest Planning and Other Recommendations. The importance 4

of pretest planning cannot be overstressed. It is important to review and
* exchange information among all test participant agencies and to change the

design of the test if early results so warrant. Real-time data input and
access are recommended for tests having large volumes of data. Finally, pre-
dictions or theoretical modeling should be accomplished before the start of
the test and, if possible, be validated as part of the test procedure. This
approach is mandatory for sequential testing. The test plan should obtain
data for at least a spot check of any models which will later be used to
extrapolate the test results to other situations.

5.0 CONCLUSIONS. The results of an operational/engineerlng test will
* be only as good as the planning inputs, the Implementation of the test plan,

and the analysis and reporting of the results.

In the fall of 1976, a large scale NOE communication test was performed
by TCATA, which required 50-60 personnel, used 1,000 hours of helicopter
flight time with 6 aircraft, and which used 10,000 alpha-numeric messages.
This test was performed by TCATA with test inputs from the U.S. Army Avionics
Research and Development Activity and U.S. Army Aviation Center to evaluate
comparatively nine candidate radio communication systems.

The results of this test supplemented by additional analysis and com-
* puter predictions wore a determining factor in the selection of a NOE radio
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system for U.S. Army helicopters. The system selected will provide accept-
able air-to-air, air-to-ground, and ground-to-air communications for helicop-
ters operating in the NOE flight regime, and will represent a significant

.1 i improvement over the present communications capability of Army helicopters.

.1
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"TABLE LOOK-UP AND INTERPOLATION FOR A NORMAL
RANDOM NUMBER GENERATOR, II

William L. Shepherd and John W. Starner, Jr.
Advanced Technology Office
Instrumentation Directorate

OS Army White Sands Missile Range
* White Sands Missile Range, New Mexico 88002

ABSTRACT. Results obtained since a paper of the same title was presented
at the Twenty-Second Army Conference on Design of Experiment are described.
An improved table look-up algorithm and more refined error norms are used.
Comparison of the generator with several others is made.

1. INTRODUCTION, A paper with the same title was presented at the Twenty-
Second Army Conference on Design of Experiment (Shepherd and Hynes [1]).
We now present some results obtained since then. Some duplication will,
of course, occur.

With

1 /l2
P(t) t 1-- eV/ 2 dv, (1.1)

G(t) - (t),

and {u) any output sequence for a uniform random number generator with den-
sity function equal to I over [0,1] and 0 elsewhere, the sequence {G(u) I
can be thought of as the output sequence of an n(O,l) random number genera-
tor (Abramowitz and Stegun [2], page 950).

•- IA difficulty in using this idea is in the computation of G(u). The earlier
report described an interpolating quadratic spline which, once constructed,
alleviates the difficulty and approximates G(u) to within a prescribed accu-
racy. We now describe a somewhat improved procedure for constructing the
spline. Blair, Edwards, and Johnson [3] furnished us with faster computa-
tion of the norm of the error, which in turn allowed a finer determination
of the norm. At the same time, more compact storage of the coefficients
was devised. Our experience with some uniform random number generators is
presented, and the results of some statistical tests are given. The normal
random number generator is compared with some others.

2. THE SPLINE APPROXIMATION FOR (it). From symmetry of {(t, G(t)) } about

(, G ), we need con.ider only •- t < 1. First consider the knots
I
Y" to < t < t2N .(2.1)
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.2N

A continuously differentiable quadratic spline, x, with knots t 2N

can be represented by

_x(t) * x(t 2 1+l) + x'(t 21+l)(t-t2l+l) + x"(t 2 i+l)(t-t 21 +l (2.2)

for t t S t and

x(t) = x(t 21+l) + x'(t 21+l)(t-t21 +l) + * x"(t 21+l+)(t-t 2 1+l) (2.3)

for t2i.. s t < t

i - 0, 1, ... , N-I.

It can be shown that

x(t 21 ) u G(t 21 ), x'(t 21) G'(t 2 1), for i 1 0, 1, ... , N (2.4)

if and only if

*jx'(t) 2t t. (tG21+12 2 [G(t 21 +2 ) - G(t2 1 ) . 2+2 t2+lG(t21+2)

- (t2 i~ -t 21 )G'(t 2i)], (2.5)

x(tvi) G(t2 i) + ½ (t 2 1 +1 -t 21 )(G'(t 2 i) + x'(t 21i+)), (2.6)

x,(2 i+l -) G= 21 + ' 2 + t2 2 6

(t (x'(t 2l ) - G'(t 2 1)), (2.7)
21+ 21

x"(t+ 2'.1-+ t 1 (G'(t 21 +2 ) - X'(t 2 +lG)). (2.8)

This spline interpolates G(t) and G'(t) at every other knot. The computa-
tion of G(t2 0) can be done by the rational approximations of Blair, Edwards,

and Johnson [3]. G'(t 2 1) can be computed from

G'(t/ eEG(t)3 2/261() P(Gt)) e (2.9)

(2.5), ... , (2.8), in order, can then be used to compute the coefficients
in (2.2), (2.3).
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Since G(l) * =, we must choose t2N < 1. Hence in extending x over [t N,1],
we depart from interpolation and require that

x(t2N) G(t 2N), x'(t2N) o G'(t 2N), (2.10)

f t2N+l x(t)dt jt2N+l G(t)dt := Al, (2.11)
t2N t2N

I'I
1tN~ x I~d G(t)dt :* 2 (2.12)
2N+ x~~t 2N+1

t2N+l T. (I + t2N). (2.13)

A1 and A2 can be evaluated by the formula
22

fa G(t)dt r (e" - e[G(b)]J/2), (2.14)

((2.14) can be obtained by the change of variables t * P(u).)

With A :m ½ (l-t2N), the conditions (2.10), ... , (2,13) are equivalent to

x1(t) 6 () -1 G'(t)A 2 ) (2.15)

"t2N+I") 6 (A, - 6(t2N 2N '

x'(t2N+l) U G'(t 2N) + x"(t 2N+l)A, (2.16)

x(t2N+l) - G(t 2N) + G'(t2N)A + ½ x"(t 2N+-)A2 , (2.17)

I .) (A2 )2 (2.18)
x(t 2N+l) -•-(A? - x(t 2N+l)A - 2.x'(t 2N+l .

Figure I illustrates G(t) and x(t) for t2 N • t < 1. With this extension,
2N

x(t) is a simple quadratic ;p1ine over E[, 1). Table 1 gives the 4(N+I)

coefficients corresponding to the odd numbered knots.

* 3. THE KNOT SERUENCE AND SEARCH ALGORITHM. We now turn to the determina-=•I i tion 07 -sutable set' of k'nots. T'h'is' set' of knots must be chosen with aI
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number of things in mind. The accuracy of our approximation depends on the
knot spacing. The efficiency of our search algorithm in the table look-up
depends on the exact placement of the knots, and the amount of storage
depends on the number of knots used. These three considerations will be
used simultaneously to obtain our knot sequence.

The accuracy to which we wish to approximate G(t) depends very much on the
uniform generator used and the machine on which this algorithm is to be
implemented. The most common (and most efficient) type of generator is the
linear congruential type. Knuth [4], chapter 3, presents an excellent dis-
cussion of the, linear congruential generator as well as some alternatives.
It has been shown (Coveyou and MacPhereson [5] and Knuth [4]) that in a 35-
bit word (as in the case of the UNIVAC 1108) using a linear congruential
generator one can expect to have successive pairs of numbers independent
only to an accuracy of about lO. Successive K-tuples for K > 2 are inde-
pendent for even smaller accuracies. It would be wasteful of effort to
approximate G(t) to any greater accuracy for use with this uniform genera-
tor. It should be noted that the generator developed here is not suited
for use in high resolution applications. If a greater accuracy is needed
and a suitably accurate generator is obtained, a new knot sequence could be
formed to make the spline sufficiently accurate.

The search algorithm determines, for any given t, a value of j so that
t2j 1 t ' t2j+2. Instead of using some binary search technique or a Fibo-
nacci search, it was discovered that if we placed the knots carefully we
could very simply compute an index from the value of t and then look up the
value of J in a table using this index.

Let us choose the knots so that each even indexed knot is a multi ple of .01
and also so that the maximum error over each interval [t2j, t2j+2] is less
than or equal to 10-4. Further, we want each interval as long as possible
to minimize the number of knots. This gives us the values listed in table 2.

Note that at .97 it is no longer possible to maintain an accuracy of 10-4
and a minimum spacing of .01. For any t in [.5, .97] let the index It be
given

It - Jloot_I - 49 (3.1)

This is very simple and fast to compute in FORTRAN. It is the index of the
interval of length .01 in which t is to be found. Since all of the knots
are on the boundaries of the intervals, we can look up in a table exactly
which knot interval to which this index belongs.

For t > .97 we have a problem. The value .97 is not close enough to 1 to
use the equal area criterion on this last interval, so we need more knots.
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Table 2 Table 3
t2 j t 2j J t2 j

0 .50 7 .91 13 .977
1 .61 8 .93 14 .9832 .70 9 .94 15 .9873 .77 10 .95 16 .9904 .82 11 .96 17 .9925 .86 12 .97 18 .9946 .89 19 .995

20 .996
21 .997

Table 4 Table 5
SI MI(It) It Ml(It) It M2(It)

1 0 25 2 1 132 0 26 2 2 133 0 27 2 3 134 0 28 3 4 13
5 0 29 3 5 136 0 30 3 6 13
7 0 31 3 7 14
8 0 32 3 8 149 0 33 4 9 1410 0 34 4 10 1411 0 35 4 11 1512 1 36 4 12 1513 1 37 5 13 1514 1 38 5 14 1615 1 39 5 1s 1616 1 40 6 16 1717 1 41 6 17 1718 1 42 7 18 1819 1 43 7 19 1920 1 44 8 20 2021 2 45 9 21 2122 2 46 10 22 2123 2 47 11 23 21

24 2 48 12
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Starting at .97 we let the knots be multiples of .001. (See table 3.)
We then use the index

It loot - 976 (3.2)

and look up the knot interval in a second index table. At the value .997
we can no longer maintain the accuracy 10 and the spacing .001, At this
point, we use the equal area condition on the interval [.997, 1].

At the cost of extra storage and one further test, we could have formed a
third sequence of knots starting at .997 with a spacing of .0001. We feel
that the gain in accuracy near 1 does not Justify the extra cost of 40 words
of storage and one extra test.

We should mention here exactly what we mean by maximum error and how we com-
pute the knots. To compute the maximum error over an interval, we compute
the absolute difference between our approximant and an accurate rational
approximation at 100 equally spaced points in the interval. (See Blair,
Edwards, and Johnson [3].) The odd indexed knot t21.l is chosen inside the

interval to an accuracy of .1% of the interval length to mimimize the maxi--- '.• mum error over the interval. Starting with to -½ 1 o 1!Ol2,.,-

we compute t 2j+l and t 2j+2 simultaneously to give the largest interval so

that (1) the maximum error is minimized with respect to placement of the

center knot, (2) the maximum error is less than or equal to 10"4, and
(3) the interval length is a multiple of .01.

The search algorithm is the following:

1. Input t (t is in [.5, 11)

2. If t > .97, skip to53. It - 1_100t._1 - 49

4. Return J - Ml(It) (see table 4)

5. 1t • bjOot I -976

6. Return J - M2(It) (see table 5) (3.3)

4. A SPECIFIC GENERATOR AND STATISTICAL TESTING. In this section, we study
a specific generator and present some empirical statistical tests. The tests
are designed to study the distribution and serial correlation of the sequences
generated by our algorithm. We choose a particular linear congruential uni-
form generator and use the tables presented here to form our generator. The
uniform generator chosen was designed for a 35-bit integer word, atid all of
the tests were performed on a UNIVAC 1108 computing system.
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The uniform generator used is of the form

Un+1 a (AUn + C) mod m, (4.1)

where m a 2 and A and C are chosen to give the uniform generator good
statistical properties. The numbers U are the integers in the range

0 - U < 25 - 1. To obtain a value in (0, 1) simply divide Un by 3
[n

The multiplier A is chosen to obtain good results in the spectral test.
(See Knuth [4) and Coveyou and MacPhereson [5].) Coveyou and MacPhereson
present several values of A and the results of the spectral test for each.
We choose from their results the value A - 27214903917. Knuth presents
the following criterion for choosing C. To minimize the serial pairwise
correlation over the entire period, let

c (4.2)

where m = 235 and C is odd. We choose the minus sign which gives the value
C - 7261067085.

The first test performed on the normal generator is the Kolmogorov-Smirnov
test. (See Knuth [4].) This test studies the distribution of sequences
obtained from the generator. The empirical distributions of sequences of
modest length (1000 numbers) are compared with the normal distribution.

The maximum positive deviation (K+) and maximum negative deviation (K')
are determined for each sequence. The distribution of the values of

K and of K' should be close to the Kolmogorov-Smirnov distribution. The
deviations of these distributions from the Kolmogorov-Smirnov distr'bution
are well within the confidence limits set forth by Knuth. Figure 2 shows
these empirical distributions and the Kolmogorov-Smirnov distribution.

The second test is a measurement of the serial correlation for normally
distributed sequences. We compute the following statistic for serial cor-
relation

N 2
N(XIX 2 + X2X3 + + XNX1) - X

NIXj 2  (C XQ (4.3)
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Anderson (6] has shown that for a truly random sequence of numbers the
distribution of the serial correlation coefficients is for a large NI N-2
asymptotically normal with mean and variance Figure 3 shows

9-7

a comparison of the empirical distribution of the serial correlation coef-
ficients of 50 sequences of 1000 numbers with the normal distribution with

1 998mean and variance 9 . The agreement is quite good.

5. COMPARISON WITH OTHER ALGORITHMS. We now compare our algorithm with
two other popular algorithms in terms of speed, storage requirements, and
ease of programming. There are many algorithms, and a discussion of most
of the algorithms in use can be found In a paper by Ahrens and Dieter [7].
The two we choose here are probably the most commonly used.

One of the most popular algorithms is the polar algorithm. This is a modi-
fication by Marsaglia of the Box-Muller algorithm. The algorithm requires
one floating divide, one square root, and one natural logarithm to generate
two random numbers. It also requires approximately 2.5 uniform random num-
bers to generate two normal random numbers. The algorithm requires very
little storage and is very easy to program. The difficulty with this algo-
rithm is speed. The special function calls are very expensive.

Marsaglia, MacLaren, and Bray [8] present a faster algorithm (the rectangle-
wedge-tail algorithm), which is based on the decomposition of the normal
distribution into simple distributions. This algorithm is very fast, but
requires much extra storage for tables. Further, to take full advantage
of the speed of this algorithm, it should be programmed in machine language.
There is no question that a machine language version of this algorithm is
the fastest available; however, the difficulty of programming makes this
algorithm somewhat inaccessable.

Our algorithm (the inverse distribution algorithm) requires some extra stor-
age for tables. The amount required is, however, considerably less than the

* rectangle-wedge-tail algorithm. A FORTRAN implementation of our algorithm
is also faster than a FORTRAN implementation of the rectangle-wedge-tail
algorithm and is considerably faster than the polar method. Table 6 shows
;approximate times for the generation of one number with FORTRAN implementa-

* tions of each of the algorithms and the approximate amount of extra storage
required. The timings were made on the UNIVAC 1108 with the FORTRAN V com-
piler.

Table 6

Algo ri thm Ti me Storage
Polar 102 usec .-
Rectangle-Wedge-Tail 82 Psec 707 words
Inverse Distribution 70 osec 176 words
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6. CONCLUSIONS. We have presented an algorithm for the generation of nor-mally distributed random numbers. This algorithm is designed to be imple-
mented in a high-level programming language such as FORTRAN. Compared withother good algorithms in FORTRAN implementations, our algorithm is the
fastest and requires only a modest amount of storage. Because this algo-rithm is to be programmed in FORTRAN, it is portable. One must, of course,obtain a uniform generator that is designed for a given machine; however,the inverse distribution calculation is entirely machine independent. The
inverse distribution approximation is accurate to lO'; however, the uniformnumbers are at best independent to four places. A greater degree of accu-
racy is unnecessary and would materially add to the number of knots whicheffects both the efficiency and storage requirements. This method shouldbe used in any application not requiring high resolution where ease of pro-gramming and speed are important and storage is not critical. This methodcan be used, with the appropriate table, to generate random sequences from
any continuously differentiable distribution function.
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DIRECT DEGENERACY ATTAINMENT
IN MARKOV CHAINS

Richard M. Brugger
Quality Evaluation Division

Product Assurance Directorate
US Army Armament Materiel Readiness Command

Rock Island, Illinois

ABSTRACT. Some procedures for solving for steady state probabilities
are more complicated than necessary. This paper shows that by not intro-
ducing the equation reflecting that the sum of steady state probabilities
is one into thu matrix solution, the work becomes easier.

1. INTRODUCTION. This paper deals with the matter of determining
steady state probability expressions for Markov chains. In particular,
it deals with the matter of working with the set of equations from which
the steady state probability expressions are derived.

As is well known, Markov chain methodology is often useful, and is
sometimes the only methodology available, for dealing with certain types
of problems related to such applications as determining sampling plan
properties or analyzing the characteristics of a weapons system.

The motivation for this paper arose from a training course in which
the author was enrolled. In this training course, a method of solution
for the steady state probability expressions was presented which was
much more complicated than the method which I had been using. Reviewing
some of the more well-known textbooks that included material on Markov
chains, it was noted that mathematical concepts of solution were presented,
but generally no algorithms were provided to carry out these mathematical
concepts. This paper, then, without benefit of references, will provide
the algorithm from the training course and a simpler algorithm that the
author has been using for some time. This simpler algorithm may not be
well known, since, as mentioned, the better known textbooks on Markov
chains tend to avoid detailed descriptions of algorithms.

Throughout the paper, ergodic chains only are considered.

II. THE LONGER METHOD. As an example, consider the chain represented
by the matrix in Figure 1.

Figure 1
Transition Matrix

Sl S2 S3

sl p q/2 q/2
S2 -- p q

53 p q
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In this chain, p + q - 1. Let P(SJ) represent the steady state
probability of state J. From the matrix, proceeding column by column,
we can extract the following set of equations:

P(Sl) - pP(Sl) + pP(S3) (1)

qP(Sl) - pP(S3) - 0 (2)

P(S2) - (q/2)P(Sl) + pP(S2) (3)

(1/2)P(Sl) - P(S2) - 0 (4)

P(S3) - (q/2)P(Sl) + qP(S2) + qP(S3) (5)

(q/2)P(SI) + qP(S2) - pP(S3) a 0 (6)

Taking equations (2), (4), and (6) from above and taking into
account that the sum of the steady state probabilities is equal to one,
we have the following set of linear equations:

qP(Sl) - pP(S3) - 0 (2)

(1/2)P(SI) - P(S2) - 0 (4)

(q/2)P(Sl) + qP(S2) - pP(S3) - 0 (6)

P(Sl) + P(S2) + P(S3) - 1 (7)

We shall see later that including equation (7) at this time was
not wise.

We have a set of four equations in three unknowns, and we know that
since the chain is ergodic, exactly two of the equations can be trans-
formed into linearly dependent equations, thus producing a degeneracy
which in effect reduces the set of equations to three linearly
independent ones.

The process of working with these equations to attain this degeneracy
can be done in a variety of ways. A standard approach is the so-called
sweep out method, which we shall use here.

P(Sl) - (p/q)P(S3) - 0 (8)

1P(SI) - 2P(S2) - 0 (9)

P(Sl) + 2P(S2) - 2(p/q)P(S3) - 0 (10)

P(Sl) + P(S2) + P(S3) - 1 (11)
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Subtracting (8) from (9), (10), and (11), we obtain:

.1 P(Sl) - (p/q)P(S3) - 0 (12)

- 2P(S2) + (p/q)P(S3) - 0 (13)
2P(S2) - (p/q)P(S3) - 0 (14)

P(S2) + (1 + (p/q))P(S3) - 1 (15)

We see that equation (13) is simply minus one times equation (14),so we will discard equation (13).

Proceeding we obtain:

P(SI) - (p/q)P(S3) - 0 (16)

P(S2) - (p/2q)P(S3) - 0 (17)

P(S2) + (1 + (p/q))P(S3) - 0 (18)

Continuing, we obtain:

P(S1) - (p/q)P(S3) - 0 (19)

P(S2) - (p/2q)P(S3) - 0 (20)

(1 + (p/q) + (p/2q))P(S3) - 1 (21)

Solving for P(S3) in (21) and doing appropriate substitutions in
(20) and (19), we finally obtain:

P(S3) - 2q/(2 + p) (22)

P(S2) a p/(2 + p) (23)

P(Sl) M 2p/(2 + p) (24)

It can be seen that even with a very simple example, a great deal
of effort was expended in order to obtain a solution using this long
method.

III. THE SHORTER METHOD. Refer again to Figure I., the transition
matrix for this example. We will work with the matrix differently at
this time. First, we select the most complicated looking column of the
matrix. This is column S3, since it contains an element in each row.We will then proceed to solve for each steady state probability in terms
of P(S3).

455

II )1



We thus obtain:

P(Sl) pP(Sl) + pP(S3) (25)

P(S9) - (p/q)P(S3) (26)

P(S2) - (1/2)q P(SI) + pP(S2) (27)

P(S2) - (l/2)P(SI) w (p/2q)P(S3) (28)

P(S3) a P(S3) (29)

It is Interesting to note that (29) permits us to disregard all
of the elements in column S3. This is why we selected the most
complirated looking column, because by so doing we eliminate more work.

Since the sum of the steady state probabilities equals one,
and since

P(Sj) aj P(Sj2

aj P(si)

j 1, 2, 3, (where aj represents the coefficient of P(S3) in (26),

(28), and (29)) and since P(S3) cancels from each temn, we can immediately
write the solution as:

P(Sl) - 2p/(2 + p) (30)

P(S2) - p/(2 + p) (31)

P(S3) - 2q/(2 + p) (32)

As is obvious, this is much simpler than the other method.
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The exponential is wrong
But works like a song.
Beware the Weibul Z:
"I,'s incoro'igi4bZe.--Anon.
AZZ models are wrong.
Some work.--,G. E. P. Box

ABSTRACT. The fact that failures follow the exponential distribution
is almost universally accepted in reliability analysis. Two reasons are
given for this assumption: (1) It is commonly assumed that electronic
components do not wear out but are subject to random ,,shocks" which may
cause failure. If these shocks form a Poisson process the underlying
failure distribution is exponential. (2) Sufficiently complex equipment
run for a sufficiently long time (failed components being replaced by
good ones) will follow the exponential distribution. These reasons are
investigated, especially the latter one. In many cases, equipment do not
last long encugh to reach the steady state alluded to in (2).

1. INTRODUCTION. The exponertial distribution is used, almost ex-
clusively, for the time between failures in reliability analysis. Even
when it cannot be assumed that the failure distribution of a component
is exponential, the exponential distribution is used for the time
between failures of systems. The rationale for this is the belief that
there is a theorem which states that for large systems the time between
failures is exponentially distributed, Use of tne exponential distribution
simplifies the analysis considerably: it is well known that systems, whose
failure law follows the exponential distribution, do not age; the expon-
ential failure law is the only continuous distribution with this property.
Since the analysis us'ng any other failure law complicates the solution
considerably, engineers are loth to give up use of the exponential. If
retaining the exponential leads to incorrect conclusions, oiae might say
that the reliability engineer is ,,being seduced by an easy solution" or
is ,cursed by the exponentiel distributioni". The purpose of this paper
is to state, somew. .t colloquially but a little more precisely, the theorem

*Preparation of this paper was partially supported by the Office of Naval
Research unier Contract No. N00014-77-C-0601/NRO42-377.
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underlying the correct use of the exponential failure law for systems j
whose components fail according to another law, and to show the dangers
when this theorem is not used correctly.

This paper is concerued with the euperimpoeed •enewal prooeae,
illustrated in Figure I for the case of n = 5 components connected in I
series. Whet any component fails, the system fails. We assume that a

failed component is instantly replaced by a new one. The x's indicate
times of failure for each component and the bottom line indicates the
failures of the renewal process or system. One version of the exponential
limit theorem [4] states that if one has a renewal process consisting of
n components, with identical non-exponential failure laws, connected in
series; then, for n greater than some n* and t greater than some t*, the
times between failures of the system are indeed exponentially distributed.
Intuitively the theorem states that for a sufficiently complex system,
after some time t* the components have been replaced at ,,randQm" times,
and there is a random mix of ages of components. Thus the succeeding
times of failv-e will occur at random--one of the postulates of a
Poisson process, which implies that times between failures follow
the exponential law.

We have investigated how large n* and t* must be for the limit
theorem to yield a good approximation when the underlying component
failure law is lognormal, gamma, or Weibull. For all those laws it
appears that the dependence on n is not so crucial as the dependence
on i; it is believed, however, that reliability engineers frequently
ignore the dependence on t.

Actually the exponential limit theorem is more general than given
above. Under certain conditions, the components need not all have the
same failure distribution: in this case t* would have to be larger yet,
and the results given herN would be even stronger.

2. RENEWAL DENSITY AND SYSTEM HAZARD. Although the mathematical
details, which appear elsewhere [1, 2, 3], will not be repeated here,
we will give some definitions, outline the techniques used, and present
some cases to illustrate the results. Calculations are based on

h(t) = renewal density of a component

= At)+f(t)*f(t)+[f(t)] +... + [f(t) ... ,

where [f(t)]*n denotes the n-fold convolution of f(t), i.e. the density
of the distribution of the time to the nth failure of the component,
oeasured from the initial time-; and f(t) is the failure density of a

component. Thus h(t) is the density of all failures for a specific com-
ponent and h(t)dt is the probability that, in the interval (t, t+dt),

•-the component either fails for the first time or falls for the second
time if it was replaced prior to t or fails for the third time if it
failed twice and was replaced prior to t, etc. It can be shown that
4)* 1/v as t + w, where V is the mean time to failure of a component.
Note that the renewal function
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t
s(t) 1 fh(r)dr = Expected liumber of failures up to time t,

0

and that HCIt) "' t/.- constant, where the constant reflects the fact
that, for small t. h(t) is typically less than 1/p.

Let h (t) be the system hazard so that h (t)At is the probability

that the system fails in the interval (t, t+&t), given that it was oper-
ating at time t. For At << t the probability of more than one failure in
the interval is negligible and h(t) will be reasonably constant in the
intervalý These of course are the postulates of a Poisson process, and
would suggest that some exponential limit will apply. In addition, hi(t)
is an ensemble average over many components with different replacement
histories. It is not an appropriate failure rate to use at time t for
a component last replaced at some known time; in a system of n components
connected in series, however, the summation of failures over components
is a good approximation to this ensemble average for large n. Since we
have assumed that failed components are instantly replaced, the mean
number of system failures in the interval is rigorously n times the
mean number of failures of a component. Thus nh(t) is rigorously the
system failure rate at time t, computed when the system is first put
on test (t = 0). Because of the averaging over n components, nh(t) is
a good approximation to the system failure rate at time t, computed at
time t, after we know the system history; and h (t)4t can also be con-

sidered as the mean number of system failures in (t, t+At).

We are interested in

J x k(w;t,n) a Pr{next failure occurs after t+W I present age in t}.

But, for large n, J- £j where

£ =£(v;tn) 2 Pr{next failure occurs after t+' I failure occurred at 0).

Note that in A we have n components with unknown agos (although we do
know the distribution of those ages), while in C we have n-1 components.
with unknown ages and I -.omponent which is new at time t. Thus the first
moment of l is the mean time between failures. Define a, a dimensionless
waitiug time, by w x Pa/n, where p is the average time to failure of a
component and U/n is the average waiting time between system failure8.
Then it has been shown 13] 'that q neglecting terms of the order of n',

C~usn~t~) =exp(-uaeA(t)}{I - (its) 2 LI/2n - (us) 3L 2/24n 21. (1)
where

L I = L{lise, h(t), h'(t)) and L2 = L2 (s, h(t), h'(t), h'(t)1;

iLe* the ,,correction" terms depend on us and the renewal density and its
derivatives. This dependence is reasonable. For large W (earlier in this
section, when relating the system hazard to the Poisson process, W was
denoted At) the system hazard h (t+÷w), 0 < e < 1, is not a constant; so

that hat) M ha(t•0). The mean number of failures in time W is given by
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f h (t+Ow) t de
0

Using a Taylor expansion around t for the integrand will involve the
derivatives of h.

Now, for n infinite, (1) becomes

lrm I (ile/n;t,n) = exp{-ush(t)), (2)

and the waiting time is characterized by a non-homogeneous Poisson
process. If, furthermore, n 4 -, then h(t) -* i/V and we have

ulm lim t (ue/n t,n) = a -8 (3)
t#-*o n-,w

the limit theorem referred to in Section 1.

We shall present results based on (1) and (2) when the underlying
failure distribution is gamma or Weibull. For the gamma we have

f(x) = xalexp(-x/e)/(Oa(row), x > o, e > o, a > o; (4)
, IJ ea;(5)

for the Weibull,

f(X) a pX'l(0/e)Pexp{-(X/6)P), ' > 0, e > 0, p > 0; (6)

er(l+p (7)

3. E4)WLES. ZVw;t,n) is plotted as a function of t in Figures
2-9 for gamma and Weibull components. The smooth curve represents n a ,I
+ represents n= 64 and x represents n = 256. Figures 2, 4, 5 appeared in
(1]; Figures 3. 6, 7, in [3].- Figures 8, 9 were used in the oral presen-
tation of [5] but did not appear in the Proceedings and have not been
published previously.

In interpreting the gamma plots, Figures 2-7, several successive
transformations from real time to coded time must be made. Start with T,
the age of the system, and W/, the waiting tim,, both in clock hours; so
that we are concerned with failures in the interval ('P,T+W). Then trans-
form: (a) Eliminate 6 by computing t a T/O and W = W/1. (b) The non-
dimensional waiting time

e = nW/I• n W/Oas) u nw/a.

(O) The curves are indexed by ea- the double limit for n and T infinite,
which is given equally spaced values from .05 to .95; thus

W V -jn loge.

(d) Instead of t,

was used in order to relate the plots to systems composed of elements
- Ihaving unit mean life regardless of a. To have used t would involve
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FIGURE 3. ,f (cx/n; t, n) for n gamma components: a 12

making plots for systems whose elements had different mean lives for dif-
ferent values of a and would make comparison of the results for diffurent
a more difficult, since both shape and mean life would be changing. (a)
Finally, exp(-t/a), rather than t/a, was taken as the argument, to ,,com-
press" the abscissa in the curves. This final normalization means that
the gamma plots must be read from right to left: t x 0 and - correaspond
to abscissas of 1 and 0 respectively. (The Weibull plots, Figures 8 and
9, read from left to right.)

The asymptotic probability a- ranges from 0.05 to 0.95 by steps
of 0.10 in Figures 2, 4, 5 and by steps of 0.30 in Figures 3, 6, 7, 8, 9.
Thus the top cuve in Figure 2 corresponds to o a log(.95) & .05; a a 12,
W a 0/n w .6/n. Because W depends on both a and a, each curve on any
figure represents a different W; the same w, moreover, corresponds to
different W as 6 is varied.

To illustrate these somewhat confusing transformations that take W
into e, consider a system with n a 300 components, a s 2, and 0 u 5000
hours, so that U 10,000 hours; and let the contemplated waiting time
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.20 .0 .60.80

FJTGURE& 6. £(CX8/n; t, ni) for n gamma components: a 2

W~ 100 hours. Then

nWI 300x100/IC,000 = 3, e - 0.05.

c Thus the time-equilibrium probability (t a ) that the system operates
for at least 100 hours! without a failure is 0.05.

As another example, suppose we desire to find the probability that
a system of 100 components survives without failure for at least 24 hours
when all of the components have the gamma distribution with a 2 and
mean life 10,000 hours (8 5,000 hours). The system age is T = 10,000
hours. We hdve t z 2, t/aL 1, 8 =100x24/10,000 s 0.24; so that

=0.787, e~ 0.368.

Interpolating in Figure 5, we find £ 0.792. Alternatively one could
show that wh(t) *0.984 and use (2) to obtain

£ -20X.984 e.236  070
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*1!

-.24X.5904 -. 141Z5 = e- = 0.868.

* This is a somewhat larger survival probability than the time-equilibrium
* prediction would give. The difference is more striking if we consider

the probability of surviving 240 hours so that a = 2.4;

e- = 0.091 and £ e-"eh(t) = e"1.4 = 0.247,

which is considerably larger than the equilibrium value, 0.091. The
errors in ignoring system age are seen to be far greater for large
waiting times than for small ones.

Several global conclusions can be drawn from these curves. The
most important is that the effects of finite t are more important than
the effects of finite n. This may be seen from the wide fluctuations of
£ as t varies and the closeness* of x's and +'s to the smooth curve for
t =. The approach of £ to its limiting value for a * as displayed
in Figure 7, is monotonic increasing; this is because gamma components
have decreasing hazard rates when a < 1. Although we do not present the
curve here, the same phenomenon has been seen for Weibull components
with p < 1. As a ( or p ) gets larger there is a range of shape parameter
for which the approach is monotonic decreasing, as shown in Figures 6, 7,
9. For still larger a or p the curve oscillates before damping in its
approach to the equilibrium value; the larger a, the more oscillations
are visible.

These oscillations were not expected, but they are genuine. Since
hindsight is often 20/20, we now give an intuitive justification for the
phenomenon. If the mean of the failure distribution of a component is
large relative to its standard deviation (if the component has a small
coefficient of variation) failures concentrated near the component mean
life P reduce the reliability, causing a relative minimum. After replacing
the failed components, the reliability is increased, causing a maximum.
But after an additional time p the second generation of components will
fail, causing a second maximum, etc. Thus we expect peaks to occur at
values of T that are multiples of p. The peaks get wider and shallower
as T increases, until failures are essentially ,,random" and the exponential
limit takes effect. This situation is illustrated in Figure 10. The upper
set of curves represents f(t) and its convolutions (time to second
failure, time to third failure, etc.). The distribution of kth failures
peaks at t k= a; its standard deviation is of the order of PA times the
coefficient of variation of f. Thus the peaks do get wider and shallower
as T increases. Another heuristic argument is illustrated by the lower
curve in Figure 10, representing h(t), the sum of the curves in the

*A comparison of the two curves for a = 2, Figures 2 and 3, indicates
that the approach for n - • is faster in Figure 3 than in Figure 2. Both
curves represent computer plots. We had intended to include only Figure
3, but, having discovered the discrepancy, found it advisable to include
both. Clearly one of the computer programs used was in error. The program

Sis being rewritten; a correct tabulation and plot will be furnished on
request.
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FIGURE 10. Schematic representation of .f (t) (above) and h(t) (below)

upper figure: it oscillates and then stabilizes to a constant value. But
one observes from (1) that Z is essentially a monotonic function of h(t)
(LI and L2 affect the size of the oscillation, but have little effect on
its location) and one observes from (2) that the asymptotic g for n -

is a monotonic function of h(t), with sense reversed: the peaks of h(t)
are mirrored into the troughs of t (t). It is well known that the coef-
ficient of variation of the gamma and Weibull distributions decreases as
et and p, respectively, increase.

The oscillations increase the value of T/I needed before one can
be sure that the deviation of Z from its limit is less than some specified
value. For example, consider the curve of " )

a-PA for e8x0.35

when f(t) is a gamma density. Table I is obtained by finding on these
curves the time beyond which the value of I never deviates from 0.35 by
more than 1% (i.e. 0.0035). Note that such a time as T u 3.1j can be
very large for highly reliable components. For example, if a = 12, and
9 = I month, and n = 256, then on the average the system has 256 failures
per year or one failure every 1.4 days. Yet the steady-state exponential
limit is reached after 3.1 years! If a = 12, and 8 = 1 year, and n = 256,
then the system fails every 17 days; and the steady state is reached
after 37 years! Do many systems last this long? if not, one should not
be analyzing their reliability by means of the exponential assumption.

Table 2 illustrates how the mean life p = a8 (for gamma components)
enters the calculations. The first two lines were read f'nom Figure 2. If
6 r 15 hours and n = 256, the MTBF of a component is 180 hours and there
is a system failure every 42 minutes. If 6 a 15 years and n = 256, the
MTBF of the system is 257 days-, the last line of Table 2 indicates that
steady state has not arrived after 165 years.

470



TABLE 1. Time for oscillations to die down as function of scale parameter

scale parameter normalized time coded time

aj t/a e Oct/ t - T/l
1/2 3.0 .050 1.5

1.2 .301 1.8
2 1.2 .301 2.3
6 1.7 .183 10.3

12 3.1 .04.5 37.6

TABLE 2. Effect of scale parameter 0 on reliability calculations:

Poisson components, a = 12

e- t/a 0 .23 .40 .58

C .75 .795 .663 .90

t/a 1.47 .92 .54

a I Mo. T 17.6 mos. 11.0 mos. 6.5 mos.
15 hrs. 265 hrs. 165 hrs. 98 hrs.
15 yrs. 265 yrs. 165 yrs. 98 yrs.
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APPLICATION OF TIME SERIES MODELS

Geor6- E. P. Box
University of Wisconsin

Madiso;., Wisconsin

1. The need for time serier, models

Statistical models with which the user is perhaps most fain-

Illar are of a form such that for the t'th of n observations

Sa f(xt, ) +ut (u)Ytt

where Yt is the t'th observed value, xt is a vector of k independ-

ent (input) variables,& B is a vector of p parameters. The error

term ut has zero mean & is often assumed to be distributed

i) normal.ly,

ii) with constant variance a independent of t,

iii) independently of any other error us (sit).

Such models include those customarily associated with anal-

ysis of variance as well as with regressfon analysis. The practi-

tioner is however frequently involved with data which occurs ser-

ially in time or space. Thus yI' Y2''*''Yn might be successive ob-

servations of the positions of a missile observed every second, or

of recruitment to the Army observed every month. For such data the

errors are unlikely to be independent. A disturbance o'ncurrinr

at time t ir likely to influence not only an observation made at

time t but also subsequent observations at times t+l, t+2, etc.

In such a case the errors ut may be serially correlated.

Now statisticians have a great deal of experience with build-

inr models of the form of (1) and have available a battery of tech-

niques which are appropriate when the assumptions mentioned above,

(in particular the independence assumption) are true. Most notably

maximum likelihood estimates of the parameters 6 may then be obtained

by use of the method of least squares (i.e. standard regression analysis).
473 ............
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It might therefore be asked whether serial correlation of'

errors will seriously invalidate these standard methods. Statis-

ticians have traditionally seemed to worry most about the effects

on non-normality rather than the effects of stochastic dependence
of errors. It is therefore relevant to consider how badly the

effects from violation of serial independence assumptions compare

with those from non-normality.

Table 1 shows the result of samplinr experiment (Box 1976,

Ell) in which two samples of 10 observations from identical popula-

tions of the forms indicated were taken and subjected to a t-test (t)

and a Mann-Whitney test (MW). The sampling was repeated 1,000 times

and the number of results significant at the 5 percent point was

recorded. Ideally, this number should be 50( that is, 5 percent

of the total) but it has a standard deviation of about 7 because of

sampling errors. More accurate results may be obtained by taking

larger samples or by analytical procedures, however, since there is

no practical difference between a significance level of say 4 per-

cent and 7 percent, the present Investigation suffices for illustra-

tion. Autocorrelation between adjacent values was introduced by

'. generating observations so that p1, the first serial correlation, had

"values of -0.4 and +0.4.

"The frequences on the left are those obtained for a nonrandom-

ized test. The frequencies on the right are obtained when the ob-.

servations were randomly allocated to the two groups.

As is to be expected the significance level of the t-test is

affected remarkably little by the drastic changes made in the mar-

ginal parent distribution--changes for which the "distribution-free"
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test provides insurance. Unfortunately, of course, both tests are

equally impaired by error dependence unless randomization is intro-

duced when they do about equally well. The point is, of course,

that it is the act of randomization that is of major importance

here not the introduntion of the non-parametric test function.

In the situations we discuss in this paper, randomization is

not possible and it is evident that in this case we face a serious

problem if errors are serially correlated.

As a further illustration consider the following regression

model used by Coen, Gorrme & Kendall (1969), [16) to model quarterly

data in which Y is a stock market index, xl,t_ 6 is a measure of U.

K. car production lagged 6 periods & x 2 t 7 is a commodity index

lagged 7 periods

yt a + at ÷ xi1 t_ 6 + 82 x2 ,t_7 + ut

On the assumption of error independence, for which ordinary

least squares is appropriate, estimates of B and (2 were calcula-
3.2

ted. These were 14.1 and -9.9 times their standard errors, indica-

ting overwhelming significance. On this basis the authors of the

paper believed that they could forecast future stock market prices.

It was subsequently pointed out however (Box & Newbold 1971, [10]),

that, as soon as proper provision was made for serial dependence in

the errors, the apparent relationships disappeared.

2. ARIMA time series models

, odels hvinp their origins in the work of Yule [22] Slutsky

[19) & Yaglom( [I1], which have been fouiid to be of great practical

value in representing serial dependence, employ stochastic difference

equations of the form

f (B) ut - 8(B)at (2)
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II
where ut is the sequence to be modelled, B is the backshift oper-

ator such that But = Ut,,i

¢(B), called the autoregressive operator is such that

00C) - 1-0 B-0 B ,...-O BP1'1 2 p
0(B), called the moving average operator, is such that

0(B) - 1-0 B-e B2 -...- e Bq
1 2 q

and {a }is "white noise", that is, a source of independent random
t

"shocks" roughly normally distributed about zero with constant vari-

2
ance aa"

The form of equation needed is often rather simple. Thus FiP.

I shows a number of real time series together with the fitted sto-

chastic models which have been found to represent them.

As illustrated by these examples, models for nonstationary

time series may often be built by fitting a stationary model to a

differenced series. Thus (see Figure l(b)) the first difference

ut-ut_ - (l-B)ut - Vut of the stock price series is represented

by a stationary first order moving average model yielding the over-

all model
(l-B)ut - (l-OB)at with 0 - -.1

i.e. ut . ut_ at + .latI

Models of this kind have been used successfully to solve a wide

variety of problems including

SForecastinp future values of a series.

Smoothinp Series (including seasonal adjustment of series).

Intervention Analysis (detecting & estimating effects of

system changes buried in dependent noise).

Control of Systems.

We now illustrate come of these applications with examples.
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Pig. I (l-.9b)ut - 1.15+(l-.6B)at

(a) Two-Hourly Concentration Readings:
Chemical Process

,r (1-B)ut - (I+.1B) a

(b) DEily I01: Stock Prices

(l-B) 2  2

of"I Weightit

""'|Weight s0

I* II 4 C.I l Oll

ft.l

1-30

(c) Series arisira; in a contrcl pr blem with
forecast function & limrits of rror

I_12 l_• )( _6 12
IB 1-B) )utM~-( 4)l., )a'•

3.40
I!

* I II-.. on il
•' 4.00

1143 1950 1951 1902 IM5 154 1955 1N i 351 DS? iiii 1040 "mi

SC(d) Sees.onal series: lops of monthly passenqers
totals in international air travel. rorecasts
for up to 36 months ahead all made from arbitrary
origin july ~
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3. Estimating future location of a missile

The following is taken from an MRC technical report (Box &

Pallesen 1978, (11]) which describes the modellinr of some missile data

(made available by Mr. Paul Thrasher of the Quality Evaluation Division

of White Sands, Missile Range). It shows how a stochastic difference

equation model may be built & used to predict the future location

of the missile, Dotails of the calculations will be found in the

book by Box & Jenkins indicated here by 13&J[83.
dA r•odel p (B)V z a e (B)a (3)

is said to be an ARIMA (Autoregressive Integrated Moving Average)

model of order (p,d,q) if W(B) & 0 (S) are polynomials in B of
p q

degrees p & q respectively having zeros outside the unit circle.

3.1 Identification, Fitting and Checking of Model

The data series we are considering consists of 246 consecutive

observations of the x-coordinate of a missile trajectory. The ob-

servations, zt; t - 1,2,...,246, were made with constant sampling

interval and there are no missing or obviously aberrant values.

Modeling such a time series Is conceived of as an iterative

process involving three stages: identification, fitting and diA-

nostic checkinE. Identification is first performed along the lines

of Chapter 6 in U&J [8]. Plotting the data zt (Figure 2a) shows a

smooth nonstationary series, whose autocorrelation function (Figure

.* 2(b)) dies out extremely slowly. After differencing three times

the series t appears stationary and its sample autocorrelation

and partial autocorrelation function (Figures 2 c and 2d) suggest

that a reasonable model for VZt should include a few moving aver-

age parameters of low order. A clear identification is not possible
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at this point but a stochastic difference equation model of the form

V3z- ( - - e2B 2  e3 B3 )a (4)

is considered worthy of being tentatively entertained.

Fitting this model by the method of Chapter 7 in B&J [8) gives

the parameter estimates: residual sum of squares (PSS) and the

residual mean square (RMS) listed in Table 2. If this model is

adequate the RMS value provides an estimate of the variance,

a 2 -E(a2), which is the one step ahead forecast error variance.a

Diagnostic checking, (Chapter 8 in B&J [8]) involves examination

of the residuals (the estimated at's) left after fitting this model

to seek for departures from the "white noise" form. One way of

doing this is to submit the residualfit}sequence to the identifica-

tion procedure previously applied to ýzt. In fact the autocorrela-

tion function of the residuals &t's, Figure 3(a), suggests that while

most of the dependenco is being accounted for by the model, some sip-

nificant low order autocorrelations remain, indicating some addl-

tional e parameters are needed. Notice, that the diapmnotic check-

inr of the model (4) reveals model inadequacy and also identifies

in which way the model should be modified.

Pfter another cycle the model

v3 zt - (1 - 1 D - e - - 8 - e 5Bl)at (5)

is identified, and it fits the data very well, leaving residuals,

Firure 3(b), which look like white noise. Figure 3(c) shows the

sample autocorrelations of the residuals. This fitted model along

with some other contenders are listed in Table 2. Additional

models are fitted as a check that additional parameters would not
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Table 2

Models fitted to Missile data

(x-coordinate)

(p,d,q) Model RSS RNIS (DI'l
(0, 2,2) V zt (I- (l 01 B -0 2B )at 410. 1. t,9 (242)

"A 7  .83
S.71 60

A -. 400 2= ". 517 -. 63

Modliofroots- 1. 39 1. 39(Moduli of ri.e. stable 9)

(0,2,3) V2 zt= (-0 B-0 B2- 0B3)a 348. 1.44 (241)

1 2 54

2 - 26

0= -. 425 54

'Moduli of roots: 1. 14; 1. 14; 1. 83)
M i.e. stable

3 2- 3
(0 3, 3) V = (1-01B-02B 0- 3B )at 247. 1.03 (2.40)

01 -: 1.7 3 1

0 -. 77 -.7
2 .79

0 . 104
3 -. 13

(Moduli of roots: 1. 0 stabl) 1. 014; 9. 3)
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Table 2 Continued

(p,d,q) Model RSS RMS (DF)

(0, 3,-4) V3zt = (1-0B-0B a-0 3 B 3-0.B4)at 203. .85 (2-39)
^ I 1.99

I= 1.938

- .95

0 -1.0302 -1.11

A 02

3 .27
^ • .25

0= .173

4 ( .09
(Moduli of roots :1.13; 1.13,; 1. 59;

2.86)

3 2 3 4 5(0, 3, 5) Vzt = (1-01 B-0 B -o 3 B -04 B -0B) 192. .81 (238)

= 2.078 2.04

A -1.21
02 = -1.291 .1.37

A .O0003 = -. •115 .00

3 -. 23

A .51
04 395 .28

A 13 04
01 .22

(Moduli of roots: 1. 11;1. 11;1. 79;1. 79
1.93)

V3 2 3B 4 5
* (0, 3, 6) Vz .(1-0 B-0B 0OB 0 -B 192. .81 (237)

L 1 2 3 41 5
6.- e6  )at

(roots o. k.)

e6"
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substantially improve matters (overfitting), and also to demon-

strate that the chosen number of differencings is appropriate.
:i.2 C c• n zeros of 6 (B)

Regarding the operator

e(B) - 1-e0B- eB2 -eB - B5 (6)1 2 3  4B 5
as a polynomial in B, it is shown in B&J [8) that a necessary require-

ment for a sensible model is that the zeroes of this polynomial be

outside the unit circle (invertibility property).

It is important to check this and the moduli of the roots given

in Table 2 indicate that the model is indeed invertible.

3.3. Forecasts

Accepting that the (0, 3, 5) model provides an adequate re-

presentation of the system (with the (0, 3, 4) model as a close

runner-up) the forecasts produced are most easily calculated from

the difference equation itself (see Chapter 5 of B&J [6]). From

Equation (5) we find

2t a 3zt_ - 3zt. + zt.
t -1 

3 t_2 t-3

t - tla - e2 a_ 2 - e3 a_ 3 - 4 - esat 5 . (7)

Then by taking conditional expectations of Zt+lzt+2,...Zt+L at

origin t (as described in B&J p. 130 [8)) the 1,2,3,..., ,... step

ahead forecasts are:
(1) 3z+ - to 4 -3 -5t_

St(l) m 3zt - 3Ut.i zt-2 I at - e2 at- 1 - 3 at-2 - at-3  a-

^ t(2) 3 3•t(l) _3zt + zt-1 _ e2 at - O3 at- 1 - e0at_2 - 65at-3

:•(3) - 3z (2) - 3zt(1) + z- a e6at., - esat 2

_() - 31t(3) -3^t(2) " •(1) - O6at - 05 at 1

" z t(5) - 31t(4) - 3t"(3) - "(2) - 6a5

2 t) - 3it(1-l) - 3£(L-2) -^(L-3) L > 6
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Table 3
PORE CAST S

Model Model Model
Obs # Actual value (0, 3, 5) (0, 3,4) (0.3, s1

201 13225.08 13224.78 13224.80 1 P22.|. 90

202 13306.74 13305.80 13305.94 1 3S0o. 4t,

203 13387.51 13386.70 13386.77 1.3387.51

201 13-468.42 13.167.20 13467.23 131t,8. 14

205 13549.7.4 1 3547. 33 13547. 34 135.18. 3.1

206 13628.61 13627. 10 13627.08 13 o28. 12

207 13708.78 13706.49 13706.46 13707.48

208 13788. 67 1 3785. 52 13785.48 13786. 40

209 13868. 21 138641. 18 13864. 11 1381ti4. 91

210 139417. 30 13942.447 13942.-1 13912. 99
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In practice of course this is done automatically by the computer.

For illustration, the forecasts produced by this model with an

origin (for all forecasts) at t - 200 is shown in Figure 4. It

will be noticed that the forecasts are in very close agreement

with the actual values. Even the 10-step ahead forecast is hardly

distinguishable from the actually observed value.

Table 3 lists the actual values and the forecasts numerically.

The forecasts produced by the models (0, 3, 4) and (0, 3, 3) are

also very good and they are included for comparison.

3.4. Error of Forecasts

In order to determine the error of the forecasts, it is helpful

to write the model (3) in random shock form. Thus formally

0 (B)

t d at; " *(B)at(
V (B)

where

nd ¢(B) -1 + *iB + *2B 2 +. (10)

And it is shown in B&J [8) p. 126-128 that the lead L forecast error

is

et(t) -zt+ - zt(1) - at+L + Olat+_L1 +... + *L-lat+l . (11)

Whence the variance of the forecast error is

var[et( ()] E(z%+ - + )t(()12
- (1 + 1 + 2 + + x 1)a

For the fitted model (5) the *-weights are calculated by equating
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coefficients in (13), B&J [8] pp. 132-134.
2 32(i -1.B + 3B2 B 3)(I + iB + 02B2 + ..

(( -8 BB- 8 B2 -- e3B - e4B3 - eBBS) (13)

Specifically we find the values given in Table 4. Using the

estimated a" .81 from Table 2, the variance of the forecast error
a

is given for Z w 1,2,...,20. The last column in Table 4 lists k2

standard errors, corresponding to approximately 95% probability

intervals for the forecasts. We note, that these probability Inter-

vals are so narrow, that they cannot be distinguished from the fore-

casts themselves in a plot like Figure 4.

The above is all that is needed to compute forecasbs and the

standard deviations of forecast errors. What appears in the follow-

ing sections is not necessary for calculation, but does illuminate

the nature of the projection process.

3.5 Integral forms

As discussed in Chapter 4 pp. 103-114 of B&J [8], the

equivalent integrated form of the model of Equation (5), is of

some interest also. In this form the observations appear as a

linear aggregates of post random shocks, their difference, sum,

sum of sums, etc., plus a new random shock. Specifically the in-

tegrated model form

• I. 2 Va%1 + A-lat a + AoSat 1 + AiS 2 at l + a2S 3 at( 1t (4)

Sdegenerates to different models from Table 2 when certain of the

: A-coefficients are taken to be zero. Table 5 links models from

Table 2 to their equivalent integrated forms, and lists estimated A

coefficients which can be calculated from the estimated e's. Con-

version formulas for the models under consideration are given in

I. i494[:
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Table

q -weights and forecast errors

Approx. 9 5,

* Var[ct( 1] Probability lntervalsIt
I1 .81 -• 1.8

1 .922 2 1.38 k 2. 3

2 1. 057 3 1.81 2. 7

3 1. 520 4 3.74 3. 9

4 1. 916 5 5.95 .4.9

5 2. 376 6 9. 15 * 6. 0

I 6 2.900 7 13.62 * 7.4

7 3. 488 8 19.170 * 8.9

8 4. 140 9 27.77 * 10. 5

9 4.856 10 38. 20 * 12.4

" t4
' •V5
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Table

Integrated model forms

zt - Va tl +X•.. at.l + x0 Sat 1 + x 1 82 a t.l x 1 s at-l• 't

Model \..2 _ -I ___1__ tSS

(0, 2,) 483 800 -110

(0, 2, 3) -. .425 .035 .878 3-18.

(0,3, 3) - 1. 104 .016 . 149 247.

(0, 3, 4) - . 173 .56V7 . 197 .065 203.

(0, 3,5) .131 -. 129 .716 . 140 .064 192.

""- --, 4
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Table 6, but can more penerally be found from equating coefficients

in Equation 4.3.21, p.112 in B&J [8].

3.6. The eventual forecast function

One question of interest is what function is being selected for

projecting the forecasts, i.e. what is the forecast function. It

is shown in B&J [8] p. 139 that depending on the nature of the left

hand operator, the model (3) could call for forecasts lying on an

updating function that could consist of any combination of poly-

nomials, exponentials and sine and cosine waves. What forecast func-

tion does the model imply for the present fitted (0, 3, 5) model?

The eventual forecast function for the (0, 3, 5) model satis-

fies the difference equation

3(1) - 0 (15)

which has as its solutions a nolynomial in Z of 2 nd depree

A - W (t) Wt t 2 (6z t() b0  + b1  1 + b(16)t

and applies for .>q - p - d (i.e. Z>2).

In outher words the model (0, 3, 5) implies, that the forecasted

future values from some time origin t,will, except for slight devi-

ations in the first two lead-times, follow a quadratic curve. (The

(0, 3, 4) model which fits slightly less well implies that only one

initial deviation occurs, while the (0, 3, 3) model implies that all

forecasts lie on a quadratic curve).

Although the forecasts are best calcwlated directly from the

difference equation as above it is enlightening to further consider

their nature.

As the origin of forecasts is advanced the calculating process

requires that coefficients bo, bi and b are sequentially updated.

I 497

M;.. .



Table 6

Conversion formuta, o to X

Model Formulae

X0 =I + e
(0,22) I - 01 - 02

(0,2,3) x 0 =1 + 0 2 + 20 3

=1 - 03
1 1

-1 3

(0,3,3) %1 = 1 + 02 + 203

12 = I - 01 2 02 a 3

m- =1-0

O3 34
(03,3) =1+ 2 + 203 + 304

X2 1 2 3 0 - 0

x =0 +

-1 4 5
(0, 3,S) X0 1 - 002 30 - 6o

12 3 4 5

1 4" 02 + 20 304 + 41051 =0 + 0 0 0 0

Z 1 2 3 5 5L!
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For example the updating formulae for the (0, 3, 5) model can be

found directly by relating (16) to the forecastinV formula from

the integrated model.

We find that the updating formulae derived below are

b(t) -b Ct-i) (t-1) Ct-i)
b+ bb + b at

b Ct) *b (t-l) +2bt1 + (X+ (17;)1 2b~1 1 2

b Ct) *b (t-l)+ ,Xa
2 2 +) 2 at

Note that the first terms in the right of (17) simply allow for

movement of the origin without changing the polynomial. The term

involving the last random shock at appropriately updates the coef-

ficient.

The updating formulae (17) are derived as follows. WJe have

fror Equation (14) that

zt+X X _2Va t+L-l + X-lat+il X 0Sa t+4_l
+IS2 a +X S 3 at18)+(iS)

1 t+t-l 2 t+i + at+,

Assuming L>2 and takinp expectations at origin t we find

a~ ~ 3~St XS 2 ai+£ 1

zt(1) * E(• 0 Sat+_I ) + E()I S 2at,,_I) + E(X 2 S at+t.I)

X (0Sat + (XiS2 aa~ + 2X Sat)

+ (X 't-2 + (L+iS2 + (I+I)2 S

(X0Sa +XiS 2 a + A 2S2 ata + X S3 a0 Ct 1 atl 2 t-l 2 t-2~

+ L(XiSat + A2S 2at + LA 2Sat)

+ L2 (MA2 Sat) (
499



'A

The coefficients (t) b(t) b(t) in Equation (16) are now identified as.Tecofiiet 0 2

(bt) 2 + 32 a +0 t~a 1 ati ~2 t-1l at-2

b(t) 0 S + AS2 a + I S
I I t( 2t)1 2

2bt) U 41 2Sat (20)

Now it is seen that (17) can be rewritten as (20)

3.7 How are the data used in the forecast?

Still another way to interpret the forecasts is as a weighted

sum of previous observations: Writing (5) as

v3

F -mzt w(B)z - at (21)

where

W(B) 0 1-i B -w2 B2 
- ... (22)

we find that

W (1) - (i1t(L-l) + I 2 zt(1-2) + (23)

where zt(-h) is taken to mean zth for h - 0, 1, 2,... The

i-weights can be found by equating coefficients in the following

identity after the e-estimates have been substitutedi

V3 -0(B) w(B)

(I1- 3B + 3B2 - 3) (1 - B-0 B2 a -
B ) -(1 -0 1B- 2B2 

- 3BB3)

.1B (1 .- -vB2 _ - ... ) (24)

The w-weights (also denoted by wC1) are given in Figure 5:

thus for example
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* zt(1) - .9220zt + .207xzt 1 + 35 5 zt.2 - ,039xzt 3

-~. 68xzt-4 - ' 1 7 1 xzt - .149xzt- 6 - .143xzt_ 7

-. 107xzt_8 - •0 79xzt 9 - • 046xz - 018xZ (25)

+.00 8 xzt_1 2 + .02?xzt_13 + .041xzt_14 + .048xzt_15

+.'048xzt- 1 6 + .044xzt_ 7 + .036xzt_18 + .026xzt 2 0 +...

The two step ahead forecast can be found similarly by replacing z;

by zt(1) and z by z and so on for forecasts with hipher

lead times. However these forecasts may also be expressed directly

as weighted sums of the observations zt, zt-, zt.2j .... The

(2) (3)weiFhts vr and iT corresponding to the two and three step ahead

forecasts respectively, are also shown in Figure 5. In the remain-

der of this paper a brief outline is presented of two other iimpor-

tant applications of time series modelling.

4. Intervention Analysis

We frequently need to detect & estimate possible changes in

the functioning of a system affected by known interventions.

For example Figure 6 shows monthly averages for ozone in

parts per hundred millions (p.p.h.m) measured in downtown Los Angeles

(Box & Tiao 1975 [13)). It is known that in January 1960 a law

(rule 63) was put into effect whereby the amount of reactive hydro-

carbons in gasoline sold throughout L.A. county was reduced. Can

a chanre be detected at this point in the series? If so how large

is it?

P02



Furthermore modified engines were made compulsory for new cars

introduced after 1966. Can any effect be detected which might

plausibly be related to this intervention?

Standard statistical procedures will certainly be invalidated

for examples of this kind because

(a) the noise ut is highly dependent (& in this case seasonal).
(b) the effect of changes made may not be immediately felt but

may have dynamic characteristics.

Difference equation models of the form

+' a (26)
t~ B4

can take account of both difficulties.

For the Ozone data a model was developed of the form

W2 X2 t w3x 3t (1-__ (_-e2_1_ )yt " Wl + _, + +J-•_IB2 at

In this expression x& x are indicator variables allowing

for possible changes introduced by interventions.

0• t < Jan 60 Allows for step change of size wi possibly
Xlt {l t > Jan 60 associated with rule 63.

I for summer months 66 onwards Produces a staircase func-
tion (step size W ) to rep-

x resent possible effect of
new car enpines in summer

Sfor winter ronths 66 onward conditions.

0 for summer months 66 onwards Produces a staircase func-
tion (step size W3 ) to rep-

3t ow rresent possible effect or

1 for winter months 66 onwards new car engines in winter.
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Estimates were obtained as follows
iA

) -1.09.10, -. 25t.07 - -. 07t.06

(with S1 - -. 2J4.03, - .552.06)
2.

This suggest that

(1) a step change of about -1.1 units occurred at about the

tike rule 63 was introduced.

(i1) that progressive changes of about -0.25 units per year

occurred in the summer months after the new engines were

introduced.

(Ili) no detectable corresponding effect occurred in the winter.

Seasonal AdJustment

It frequently happens that time series such as Inventories of

equipment items, army recruitment etc. are highly seasonal. Changes

are much more readily understood if appropriate seasonal adjustments

are made. An empirical method for separating seasonal series Into

* (i) a seasonal component (1i) a trend component (iii) an additional

error component have been discussed by Julius Shiskin (1967),

(183 & is presently used extensively, and is referred to as the Xll

method. This method produces good results on the average. It Is

however unable to take account of the particualr properties of in-

' * dividual series. New research suggests that a model-based approach

* (Box, Hillmer & Tiao 1976), [23 can accomplish this. For example

Figure 7 shows results obtained by the Xl method & by the model

based method on a time series for unemployed males in the United

States 20 & over.

Further research on stochastic difference equation models is

currently undergoing, vigorous development. In particular, research

Is being conducted into multivariate applications and to problems

in control & the general identification of dynamic systems.
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