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FOREWORD

Over the years, scientists have developed many techniques for extracting
and evaluating information from experimental data. One of the reasons

for holding the design conferences is to develop, in Army scientists,

an appreciation for and the necessary skills to handle these techniques.

A special feature associated with the meeting this year was organized

to help develop some of these skills. This was a basic tutorial seminar
entitled, "Introduction to the Fundamentals of Experimental Design"

given on 2-3 October 1978 by Dr. George E. P. Box, the Ronald Alymer
Fisher Professor of Statistics at the University of Wisconsin and

the Mathematics Research Center. This course was designed for engineers
and other scientists with 1ittle or no formal training in statistics,

and who are involved in generating physical measurements from experiments.
It presented basic notions and statistical techniques which allows one to
minimize data variance or variability, and hence ultimately enhances the
opportunities for recovering data information in later analyses. The forty
or so Army scientists attending this course were prepared to comprehend

the papers given at the Twentyéfourth Conference on the Design of Experiments
in Army Research, Development and Testing.

Members of the Program Committee for this conference were pleased to obtain
the services of the following invited speakers to talk on topics of current
interest to Army personnel.

Speaker and Institute Title of Address

Professor Norman Draper RIDGE REGRESSION

University of Wisconsin-Madison

Professor Ralph Bradley STATISTICAL ANALYSIS OF WEATHER
Florida State University MODIFICATION EXPERIMENTS
Professor Grace Wahba DESIGN PROBLEMS IN RECOVERING
University of Wisconsin-Madison FUNCTIONS OF TWO OR SEVERAL

VARIABLES

iii



Professor Brian L. Joiner STATISTICAL CONSULTING
University of Wisconsin-Madison

Professor Richard E. Barlow with RECENT ADVANCES IN GRAPHICAL
Bernard Davis TECHNIQUES FOR ANALYZING FAILURE
University of California-Berkeley DATA

In addition to the invited addresses, there were nineteen contributed papers.
Many of these informative talks covered areas associated with the theme of
the conference, namely "Statistical Design and Analysis of Experiments."
Titles of the technical sessions were: "Time Series and Stochastic
Modeling"; "Analysis of Variance Models"; "Statistical Theory"; "Statistical
Inference"; "Special Applications"; and "Material Reliability".

An important feature of these annual conferences is the awarding of the
Samuel S. Wilks Memorial Medal. The 1978 award went to the distinguished
scientist Dr. William H. Kruskal, Professor of Statistics at the University
of Chicago. His contributions to the field of statistics have been truely
outstanding.

The Army Mathematics Steering Committee (AMSC), an intra-Army committee,
sponsors the design conferences on behalf of the Chief of Research,
Development and Acquisition. Members of this committee appreciated the
fact that the Mathematics Research Center (MRC) was willing to serve as
host for the Twenty-Fourth Conference on the Design of Experiments. They
would 1ike to thank Professor Bernard Harris for serving as Chairman on
Local Arrangements. He was ably assisted in this capacity by Mrs. Gladys
G. Moran. Those in attendance appreciated the assistance these and other
members of MRC gave them with the many problems that arose during the
course of this meeting.

The AMSC has requested that these Proceedings be published and distributed
Army-wide in order that the information contained therein will assist
scientists with some of their statistical problems. Finally, committee
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members would 1ike to thank the Program Committee for all the work 1t
did in putting together another successful scientific conference.

Program Committee

Gerald Andersen Bernard Harris
Carl Bates Clifford Maloney
Larry Crow Douglas Tang
Francis Dressel Malcolm Taylor
Walter Foster Michael White

Frank Grubbs (Program Committee Chairman)
Robert Launer (Conference Secretary)
Herbert Solomon (Chairman of the Conference)
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AGENDA
THE TWENTY-FOURTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN

ARMY RESEARCH, DEVELOPMENT AND TESTING

4-6 October 1978
Host: The Mathematics Research Center

Held at: The Wisconsin Center, Lake and
London Streets, Madison, Wisconsin

*xxx% Wednesday, 4 October ****%

0815-0915 REGISTRATION -- First floor, The Wisconsin Center

0915-1030 GENERAL SESSION I -- Auditorium

CALLING OF THE CONFERENCE TO ORDER

Dr. Bernard Harris, Chairman of Local Arrangments,
Mathematics Research Center

WELCOMING REMARKS
Dr. Ben Noble, Director, Mathematics Research Center
CHAIRMAN OF SESSION 1

Dr. Frank E. Grubbs, Program Committee Chairman, Aberdeen
Proving Ground, Maryland

RIDGE REGRESSION

Professor Norman Draper, Department of Statistics,
University of Wisconsin-Madison

1030-1100 BREAK

1100-1200 =~ GENERAL SESSION I (continued)

SOME APPROACHES TO STATISTICAL ANALYSIS OF WEATHER
MODIFICATION EXPERIMENTS

Professors Ralph Bradley, Sushil S. Srivastava and

Adolph Lanzdorf, The Florida State Unlversity,
Tallahassee, Florida
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1200-1330 LUNCH

1330-1500 CLINICAL SESSION A -- Room 210

CHAIRMAN

Dr. Douglas B. Tang, Walter Reed Army Institute of
Research, Washington, DC

PANELISTS

Professor Ralph Bradley, The Florida State University,
Tallahassee, Florida

Dr. Mark Brown, Memorial Sloan-Kettering Cancer Center,
New York, New York

Professor Norman Draper, University of Wisconsin,
Madison, Wisconsin

CANDIDATE SEQUENTIAL DESIGNS FOR OPTIMUM SEEKING

Mr. Carl B. Bates, US Army Concepts Analysis Agency,
Bethesda, Maryland

ENVIRONMENTAL AND WATER QUALITY OPERATIONAL STUDIES

Drs. A. Dale Magoun and Michael P. Farrell, US Army
Waterways Experiment Station, Vicksburg, Mississippi

1500-1530 BREAK
1530-1700 TECHNICAL SESSION I -- Room 210 -- TIME SERIES AND STOCHASTIC
MODELING
CHAIRMAN

Dr. Edward Wegman, Office of Naval Research, Washington, DC

RED NOISE IN THE POWER SPECTRUM OF ATMOSPHERIC TEMPERATURE
DATA

Dr. 0. M. Essenwanger, US Army Missile Research and
Development Command, Redstone Arsenal, Alabama

SMALL SAMPLE BEHAVIOR OF SOME PROCEDURES USED IN TIME
SERIES MODEL BUILDING AND FORECASTING

Drs. Paul Neﬁbold, Mathematics Research Center, University
of Wisconsin-Madison, and C. F. Ansley, University of
Chicago



STATISTICAL PROBLEMS ASSOCIATED WITH THE HORIZONTAL CHANNEL
OF THE RAPID GRAVITY SURVEY SYSTEM (RGSS)

Dr. H. Baussus von Luetzow, US Army Engineer Topographic
Laboratories, Ft. Belvoir, Virginia

1530-1700 TECHNICAL SESSION II -~ Room 313 -- ANALYSIS OF VARIANCE MODELS

CHAIRMAN

Ms. Jill House, Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland

ANALYSIS OF VARIANCE ON THE TRADE-OFF FUNCTION RELATING
ACCURACY TO SPEED OF REACTION

Drs. Walter D. Foster, John H. Wolcott and Terrence L. Kay,
Armed Forces Institute of Pathology, Washington, DC

THE ANALYSIS OF PARTIALLY FACTORIAL EXPERIMENTS

Dr. John Robert Burge, Walter Reed Army Institute of Research,
Washington, DC

STATISTICAL ANALYSIS OF EXPERIMENTS IN SORPTIVITY

Dr. Edward W. Ross, US Army Natick Research and Development
Command, Natick, Massachusetts

1830 SOCIAL HOUR AND BANQUET

*%k%* Thursday, 5 October *#*x*%

0900-1030 CLINICAL SFSSION B -- Room 210

CHAIRMAN

Dr. 0. M. Essenwanger, US Army Missile Research and
Development Command, Redstone Arsenal, Alabama

PANELISTS
Dr. Bernard Harris, Mathematics Research Center
Professor Brian L. Joiner, University of Wisconsin-Madison

Professor Grace Wahba, University of Wisconsin-Madison

xi



ANALYSIS OF CENSORED REPAIRABLE SYSTEMS FAILURE DATA

Mr. Harold E. Ascher, Naval Research Laboratory,
Washington, DC

FRICTION OF RUBBER ON SNOW AND ICE

Mr. L. David Minsk, US Army Cold Regions Research and
Engineering Laboratory, Hanover, New Hampshire

0900-1030 TECHNICAL SESSION III -- Room 313 —- STATISTICAL THEORY

CHAIRMAN

Mr. Eugene Coppola, Watervliet Arsenal, Watervliet,
New York

ON COMBINING PSUEDO-RANDOM NUMBER GENERATORS

Dr. Mark Brown, Memorial Sloan-Kettering Cancer Center,

New York, New York and Dr. Herbert Solomon, Stanford
University, Stanford, California

SIMPLIFIED POINT AND INTERVAL ESTIMATION FOR REMOVAL TRAPPING

Dr. Andrew P. Soms, Mathematics Research Center, University
of Wisconsin-Madison

REGRESSION OF MARKOV DATA

Dr. Edmund H. Inselmann, US Army Combined Arms Combat
Developments Activity, Ft. Leavenworth, Kansas

1030-1100 BREAK

1100-1200 GENERAL SESSION II -- Auditorium

CHAIRMAN OF SESSION II

Dr. Bernard Harris, Mathematics Research Center,
University of Wisconsin-Madison

DESIGN PROBLEMS IN RECOVERING FUNCTIONS OF TWO OR
SEVERAL VARIABLES

Professor Grace Wahba, Department of Statistics, University
of Wisconsin-Madison

1200-1330 LUNCH

xii



1330-1500 CLINICAL SESSION C -- Room 210

CHAIRMAN

Mr. Carl B. Bates, US Army Concepts Analysis Agency,
Bethesda, Maryland

PANELISTS
Dr. Frank E. Grubbs, Aberdeen Proving Ground, Maryland

Dr. Paul Newbold, Mathematics Research Center, University
of Wisconsin-Madison

Dr. Andrew P. Soms, Mathematics Research Center, University
of Wisconsin-Madison

PROBLEMS OF GENERATING PREDICTION EQUATIONS BY MULTIVARIATE
ANALYSIS OF DATA DERIVED FROM COMPLEX SIMULATIONS

Mr. Tom Kitchell, US Army Concepts Analysis Agency,
Bethesda, Maryland

1330-1500 TECHNICAL SESSION IV -- Room 313 -- STATISTICAL INFERENCE

CHAIRMAN

Mr. Lang Withers, US Army Operational Test and Evaluation
Agency, Falls Church, Virginia

METHODOLOGY FOR ACCEPTANCE CRITERIA FOR TARGET DISPERSION
CHARACTERISTICS OF THE ARMOR PIERCING DISCARDING SABOT
(APDS) ROUNDS

Mr. Frank Craig Hopkins, US Army Materiel Systems Analysis
Agency, Aberdeen Proving Ground, Maryland

AN APPROACH TO THE SEQUENTIAL ESTIMATION OF QUANTAL
RESPONSE CURVES

Professor R. Srinivasan, Temple University, Philadelphia,
Pennsylvania and Professor R. M. Wharton, Trenton State
College, Trenton, New Jersey

A MONTE CARLO SIMULATION OF A PROBABILITY RATIO SEQUENTIAL
TEST (PRST) PLAN FROM MILITARY STANDARD 781C

Mr. William Broemm, US Army Materiel Systems Analysis
Activity, Aberdeen Proving Ground, Maryland

1500-1530 BREAK
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1530-1630

0900-1030

0900-1030

GENERAL SESSION 11 (continued)

STATISTICAL CONSULTING

Professor Brian L. Joiner, Department of Statistics,
University of Wisconsin-Madison

**kk% Friday, 6 October *#*k%

TECHNICAL SESSION V -- Room 210 -- SPECIAL APPLICATIONS

CHAIRMAN

Dr. Edward Ross, US Army Natick Research and Development
Command, Natick, Massachusetts

LASER BEAM WAR GAMES: DESIGN AND ANALYSIS CONSIDERATIONS

Mr. William S. Mallios, BDM Corporation, Ft. Ord,
California

STAR SIGNATURE MODELS
Dr. John W. Bond, US Army MERADCOM, Ft. Belvoir, Virginia

TECHNICAL SESSION VI -- Room 313 -- MATERIAL RELIABILITY

CHAIRMAN
Mr. William S. Agee, White Sands Missile Range, New Mexico

DETERMINATION OF STRUCTURAL RELIABILITY USING A FLAW
SIMULATION SCHEME

Drs. Joseph I. Bluhm, Donald M. Neal, and Donald S. Mason,

US Army Materials & Mechanics Research Center, Watertown,
Massachusetts

PREDICTED MECHANICAL BEHAVIOR OF MATERIALS WHEN SUBJECTED
TO SETBACK FORCES

Dr. Richard S. Simak, Chemical Systems Laboratory, Aberdeen
Proving Ground, Maryland

SUCCESSFUL APPLICATION OF STEWARTSON'S LIQUID INSTABILITY-
STABTLITY CRITERIA TO THE DESIGN OF MUNITIONS

Dr. John M. Ferriter, Chemical Systems Laboratory, Aberdeen
Proving Ground, Maryland



1030-1100

1100-1130

1130-1230

1230-

BREAK

GENERAL SESSION III -- Auditorium

CHAIRMAN OF GENERAL SESSION III
Dr. Frank Grubbs, Aberdeen Proving Ground, Maryland

OPEN MEETING OF THE AMSC SUBCOMMITTEE ON PROBABILITY
AND STATISTICS

Dr. Douglas B. Tang, Department of Biostatistics and
Applied Mathematics, Division of Biometrics and Medical
Information Processing, Walter Reed Army Institute of
Research, Washington, DC

RECENT ADVANCES IN GRAPHICAL TECHNIQUES FOR ANALYZING
FAILURE DATA

Professor Richard E. Barlow and Bernard Davis, Operations
Research Center, University of California-Berkeley,
Berkeley, California (Address to be presented by Bernard
Davis)

ADJOURN
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STATISTICAL ANALYSES OF A WEATHER
MODIFICATION EXPERIMENT*

Ralph A. Bradley
Department of Statistics

Florida State University
Tallahassee, Florida

I. INTRODUCTION AND SUMMARY

This article is a summary of a manuscript [4] prepared for
inclusion in a special issue on weather modification of the ref-
erenced journal. The subject area is one of national importance
as emphasized in the recent reports [12,13] of the Weather Modi-
fication Advisory Board.

Phase I of the Santa Barbara Convective Seeding Test Program
was conducted by North American Weather Consultants (NAWC) in the
Santa Barbara area of California from 1967 through 1971. Details
of this research were reported in [5,9], with the first report us-
ing augmented raingage data. Initial data analysis was reported
by NAWC and additional exploratory analyses are summarized here,
in [2,4], and in technical reports [1,3,10], the second giving

additional detail. We are indebted to NAWC for their courtesy

*A summary of research supported by the U.S. Office of Naval
Research under Contract No. N00014-76-C-0394. Reproduction in
whole or in part is permitted for any purpose of the United States

Government.



in providing data tapes to us. The Phase I experimentation was
followed by Phase II research with some experimental design
changes. Only Phase I data are considered here.

The exploratory statistical analyses reported are parametric
and intended to lead to insights that may be checked with Phase II
data. There are problems of validity of parametric assumptions
and issues of experimental design, multiplicity of analyses, and
possible need for randomization analyses raised in [12].

We review the Phase I Santa Barbara experiment and data
available. An experimental unit is a single ''seedable' convec-
tive band occurring in a winter storm that may have one or more
such convective bands. The choice of experimental unit has the
advantage of increasing the number of available experimental units
in a season and the possible disadvantages of serial correlation
and persistence of seeding effects from unit to unit. Raingage
data are available for both a Target and a Control Area; concomi-
tant cloud physics data were recorded and, after summarization by
Gleeson [10], used in trial covariance analyses.

The problem of data summarization is addressed first. It is
found that use of response-surface methods is not advantageous.
Use of concomitant variables for the reduction of experimental
errors in analyses reduces also the apparent effect of cloud seed-
ing. When storm effects are included as components of a paramet-
ric model, they are found to be totally or partially confounded
with seeding and again the apparent effect of seeding is reduced.
Some brief comments are included on some multivariate analyses.
The effect of our analyses is to leave some doubt as to the efficacy

of cloud seeding in the Phase I Santa Barbara experiment.

II. The Phase I Santa Barbara Experiment

The geographical setting of the Phase I Santa Barbara Experi-
ment is shown in Figure 1. Control and Target or Test Areas were
designated; rainfall was measured through series of raingages, some
of which are shown in the figure. While the objective of the ex-

periment was not precisely defined, it can best be described as an
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FIG. 1. Santa Barbara Pyrotechnic Seeding and Control Test Areas.
Source: Figure 2, Elliott, St. Amand, and Thompson [7]. Rain-
gage sites are designated by solid or open circles, telemetered
gages underlined. The seeding and radar site is indicated by a
solid triangle and Santa Barbara Airport by a solid square.



investigation of whether cloud seeding can enhance precipitation
within a rather large target area.

The experimental unit was a suitable convective band in a
winter storm that might contain one or more such bands in a se-
quence. The seeding decision was randomized effectively and care
was taken that the decision was not known to the meteorological
analyst determining raingage band passage times and precipita-
tions. Criteria for determination of seedable convective bands
were specified but some operational difficulties were encountered.

Band precipitation data were obtained from all raingages in
control and target areas operational for a band. Air-mass char-
acteristics of each band were determined from radiosonde observa-
tions at Santa Barbara Airport, occasionally replaced by Vanden-
berg Air Force Base observations. Gleeson [10] defined and sum-
marized data for each band on the following variables: X1 -
Mixing Ratio, Xz - 700mb Wind Speed, X, - 700mb Wind Direction,

X4 - Mean Wind Speed, Xs - Direction Avg. Vector Wind, X6 - 500mb
7 - Stability Class, X8 - Showalter Index, X9 -

Stability Wind Speed, xlO - Direction Stability Wind, X11 - Insta-

bility Transport, X12 - Band Passage Time (Seeding Site). The

3

Temperature, X

data array for the Phase I experimentation may be viewed as a
rows for unseeded
1= 51,

N2 = 56, and with columns containing precipitation responses at

data matrix with N rows or bands, the first N1

bands and the second N2 rows for seeded bands, N = 107, N

individual raingages, possible grouped by locations, and values
of the concomitant variables, X1 to x12' The data are not with-
out problems. Raingage precipitation responses are correlated,
data are missing for many raingages, rows may not be independent
observation vectors, and there may be a persistence effect of
seeding.

The main NAWC approach to data analysis was on a raingage
station-by-station basis. Single and double ratio indices of

precipitation were calculated and contour plots based on these



ratios over control and target areas were given in various reports.
Let Yia denote precipitation at station i for band a, a = 1,...,
N. Let Ya(i) =1 or 0 as station i was or was not operable for
band o and let ﬁa(i) =1 or 0 as band a was or was not seeded.
Then gya(i) = N(i) and gsa(i)ya(i) = Ns(i), respectively the
number of observations and the number of seeded bands recorded at
station i. The number of unseeded bands at station i is an(i) =
N(i)-Ns(i). Then

T (1) = 28, (1)v, (1)y; /N (i)

and
T (1) = Z[1-6,(1) ]y, (1)Y, /N (i)
are precipitation averages at station i for seeded and unseeded
bands. Six control-area detection stations were used, stations
circled in Figure 1. If k indexes these control stations, de-
fine,
Cs = ETs(k)/6

and
éns = ETns(k)/e.

The double ratio of NAWC at station i is

DR(i) = [T(1)/C /[T (1)/C ]
and the single ratio is
SR(i) = Ts(i)/Tns(i).

Much the same contour plots were obtained from both ratios. Use
of the double ratio represents a use of control area precipitation
as a covariate.

The Wilcoxon-Mann-Whitney, two-sample, rank test was used
also by NAWC to assess the significances of double and single

ratios for each raingage station. The method of application is



not cleaxr in reports but is understood as follows. For the single
ratio, Yie “2S used; the precipitation themselves were grouped
into two samples, seeded and unseeded, and the rank test applied.
For the double ratio, yia/ﬁa was calculated for each band a at
station i, Ca being the average of the six control area detec-
tion stations for band a, and these indices were grouped into two
samples as before.

NAWC was aware that these significance tests were open to
possible criticisms, particularly dependencies from station to
station. A limited Monte Carlo study was conducted and reported
by Elliott and Brown [6]. They state: "At the 0.05 significance
level for all bands, 29 stations in the original test sample were
found to show a positive difference between seeded and not-seeded
cases (bands); and three Monte Carlo runs (out of 50) were found
to have as high or higher counts of stations with a positive dif-

ference at this significance level."

ITTI. DATA SUMMARIZATION

A more direct approach to analysis of the experiment is
through summary measures of precipitation for each experimental
unit over designated response areas.

Bradley, Srivastava and Lanzdorf [1,2] defined response areas
as in Table I that may be located in Figure 1. The numbers of
raingage stations and the data used for Target Areas (i)-(iv) are
those of the Bureau of Reclamation study [5] and those for Target
Area (v) are those of the Naval Weapons Center study [9] with
minor modifications noted in [3,4].



TABLE I

Definitions of Response Areas

Response Ranges in Degrees Number of
Area Latitude Longitude Stations
1) 34.0-35.25 118.0-120.02 107
(ii) 34.4-35.0 119.51-120.02 26
(iii) 34.0-35.0 118.0-119.51 72
(iv) Areas (ii) + (iii) 98
) All Stations in the Naval 61

Weapons Center Reports East
of Seeding Site, long. 120.02

Control* 34.4-35.25 120.02-120.60 34

*The Control Area for the Naval Weapons Center study con-

sists of all 39 stations West of the seeding site.

Use of a simple average over stations is the most direct
method of data summarization for a convective band. Overall pre-
cipitation means are reported in Table II. Note that the Control
Area mean is higher for seeded bands suggesting that seeding may
have had some effect in the Control Area or misfortune in the ran-

domized choice of bands to be seeded.

TABLE II

Precipitation Means in Inches

Response Areas (1) (ii) (iii) (iv) ) Control
Seeded Bands 0.257 0.329 0.249 0.271 (0.267 0.234
Unseeded Bands 0.178 0.229 0.172 0.187 G 190 0.203

With a view to improved data summarization, Br: 'ley, Srivas-
tava and Lanzdorf [1,2] fitted response surfaces se: rately for
the Control Area and Target Area (i) with the coordi :ates of lati-
tude and longitude of raingage stations as independ: t variables

and raingage precipitation as the dependent variabl. General



two-dimensional cubic response models were necessary to represent
responses adequately. Separate response surfaces were found for
each convective band. Precipitation volumes and their variances
were calculated over the designated target areas and Control Area.
Figure 2 is typical of results obtained; the region where the sur-
faces is negative is off-shore.

The response surface approach was successful as a method of
data summarization in that some 70% of the inherent variation in
responses among raingages within a band and response area was ex-
plained by the independent variables. It was not successful in
improvement of data summarization in comparison with use of the
means of raingages within response areas for a convective band
in that correlations between precipitation volumes calculated from
the response surfaces and precipitation means ranged from 0.97 to
0.99 for Target Areas (i)-(iv) and the correlation was 0.89 for the
Control Area. Thus, the use of volumes cannot be expected to
yield new insights.

Scott [10] used a multivariate approach to data summarization.
He found, with some difficulty and innovation, principal components
among raingage responses in both Target Area (i) and the Control
Area. The first three principal components were interpretable
approximately as a mean response, a coastal versus inland con-
trast, and an East-West contrast. Percentages of variation ex-
plained by these components were respectively 71.3, 6.7 and 5.9
in Target Area (i) and 76.1, 6.7 and 4.7 in the Control Area. The
correlations of the first component with the band mean were 0.997
for Target Area (i) and 0.985 for the Control Area. Scott is en-
gaged in the use of these results in examination of the effects
of seeding; it seems unlikely that much additional information will
be forthcoming.

In the following section, we show some parametric analyses for
Target Area (i). Although Bradley, Srivastava and Lanzdorf [3]
followed through with analyses on precipitation volumes as well

as means, we report only on the use of means. All Target Areas

- . C ey




FIG. 2. Graph of Cubic Response Surface: Band 96 (Seeded), Tar-
get Area (i). Source: Figure 2, Bradley, Srivastava, and Lanz-

dorf [1].

Vertical axis is 2.3 times precipitation in inches.



of Table I gave similar results.

IV. SOME PARAMETRIC ANALYSES

Weather modification experiments are conducted necessarily in
a natural environment involving much variability. The use of co-
variates in analyses, as summarized by Gleeson [10], for the reduc-
tion of experimental error appeared to be the best means to im-
proved experimental design.

Initial covariance analyses were reported in [3]. (Some la-
ter analyses are summarized below). Regression models used were

of the form.
P
-5, o]
1:

B.V. + 8Z + ¢,
p 11

where U 1is a precipitation response variable for a target area,
Vi is the i-th covariate, Z =1 or 0 as the convective band was
or was not seeded, the B's and § are regression parameters, and

€ is a random error. The data matrix has rows, (Ua’ \')

la’ " "*
v, Za), a=1,...,N. The regression parameters were estimated

pa
by weighted least squares through minimization of

N p 2
LUy - L BV - 82"

In [3], use of the listed set of covariates and their interactions
with seeding, along with XC, a measure of Control Area precipita-
tion, was explored. In analysis of variance tables in [3] and
below, sources of variation, when included in models, were ordered:
covariates, covariate by seeding interactions after adjustment

for covariates, and seeding after adjustment for covariates and

interactions.
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The use of covariates was effective in reducing experimental
error but less so was the use of covariate by seeding interactions.
Preliminary analyses and redundancy considerations suggested re-

20 X3, X6, x7, X
x12’ along with XC, Control Area mean precipitation. There is
concern about use of XC because Elliott and Thompson [8] suggest

the possibility of an up-wind effect of seeding west of the seed-

duction from 12 covariates to 7: X 8’ xll and

ing site attributable not to westward seeding contamination but
to a seeding-caused blocking of the air-mass flow leading to up-
lz,bmm
passage time at the seeding site, also. Two choices of weighting

wind convection development. This may have affected X

were used, wa=1 (unweighted) and W= na/si when U was target
area mean precipitation, where n, was the number of observations
contributing to the precipitation mean for band o« and 52 was the
variance among those observations. Weighted analyses with w, =
na/si were less satisfactory than unweighted analyses. This dif-
ficulty arose because standard deviations are proportional to means
and very high weights were associated with convective bands with
and X, ,.

C 12
The use of covariates reduced the apparent effect of seeding. 1In

low precipitations. The two best covariates were X

these analyses and those below, N = 106 when covariates are used
because covariate data were missing for Band 73.

Analyses were redone in [4] with responses transformed log-
arithmically to stabilize variances. The transformed variate z
has the form, log (l+ay), where Y is a target area precipitation
observation. For Target Area (i), U is now the target area mean
of z, and W, =n,. The regression analyses are similar to those
described above. Models with and without X. and X

C 12
used because it has been suggested that they may have been affec-

were

ted by seeding. Six models were used as follows:

n



Model Identification of V \')

12000V

(1) No covariates.

(2) Xeo Xpo X35 Xg» Xg, Xg, X195 X

(3) Model (2) less XC.

(4) Model (2) less x12'

(5) Model (2) less XC, x12'

(6) Model (2) plus X,Z, X;Z, X.Z,
X,2, XgZ, X ,Z, X ,Z.

Mean squares, values of F, and values of Rz, the coefficient of
determination, for these models are shown in Table III.

We comment on the analyses of Table III. The transformation
was shown to be effective in stabilizing variances except for
small values of U, values for convective bands that may not have
been acceptable 'seedable'" bands. Examination of residuals about
regression models for the transformed data suggests that transfor-
mation improved symmetry and approximate normality of their dis-
tributions. Slightly larger values of R2 were obtained from the
transformed data than in [3]. Results for model (5) show that R
is reduced considerably when X. and X,
ates. Results for model (6) show that interaction terms contribute
little.

There is little indication for models (2)-(6) in Table III

of any effect of seeding. For Model (1), the one-sided signifi-

2

are omitted as covari-

cance level is 0.06, consistent with the randomization analysis
reported in Section II. The covariates may be affected by seeding.
We have commented on this in regard to XC and X;,- Gleeson [10]
saw small but consistent differences in covariates for seeded and
unseeded bands. The other covariates were based on radiosonde

data taken at Santa Barbara Airport, well into the target area.
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TABLE III

Analyses of Variance, Transformed Data,
Target Area (i), Models (1)-(6)

Model (¢)) (2) (3)
Source of
Variation d.f. M.S. F d.f. M.S. F d.f. M.S. F
Seeding 1 110.3 2.77 1 0.6 .05 1 0.0 .00
Interactions - - - - - - - - -
Covariates - - - 8 382.5 30.79 7 374.4 22.24
Error 104 39.8 - 9% 12.4 - 97 16.8 -
R - - 003| - - o0712| - - o0.62
Model (4) (5) (6)
Source of
Variation d.f. M.S. F d.f. M.S. F d.f. M.S. F
Seeding 1 11.6 .78 1 44.7 1.46 1 1.6 .13
Interactions - - - - - - 7 17.0 1.41
Covariates 7 398.6 26.64 6 200.4 6.53 8 382.5 31.73
Error 97 15.0 - 98 30.7 - 89 12.1 -
R - - 0.66 - - 02| - - 0.75

Some other sources of variation have not been considered yet.

Convective bands occur within winter storms with one or more bands.

Therefore there is a total or partial confounding of storm ef-

fects with seeding.

If covariates are omitted and the effect of

seeding is considered after adjustments for storms, we have the

analysis of Table IV.
values of R2

It is seen that R

2

= 0,54, comparable to

in Table III; more degrees of freedom are expended.



TABLE IV

Analysis of Variance, Target Area (i), Transformed
Data, Storm Effects in Model

Source of d.f. M.S. F

Variation

Seeding 1 24.0 0.82
Storms 37 61.1 2.08
Error 67 29.4 -
R2 - - 0.5k

But the apparent effect of seeding has disappeared again. In
future similar experimentation, use of storms for blocking
should be considered, perhaps as suggested in [12], with random-
ization within storms rather than over all convective bands as
done in the Phase I Santa Barbara experiment for which the analy-
ses reported in Section II and in Table III for model (1) seem
appropriate.

In further exploratory analyses, we considered as additional
sources of variation position of the band within a storm and a
possible first-order carry-over effect of seeding from a seeded
band to the following band if in the same storm. No real effects
for position or carry-over were found.

The analyses of this section are open to technical concerns,
but parametric methods provide the best means of exploratory anal-
ysis if not for the exact determination of significance levels.
The possible persistence effect of seeding raises questions about
the independence of experimental units that may be subject also to
serial correlation. Normality assumptions are not valid for indi-

vidual raingage observations but may be appropriate for target area
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means. Some variance heterogeneity is present after transforma-
tion of the data. Choice of weights, W, =Ny for analyses
with transformed data is only strictly appropriate if raingage
observations are independent. Covariates in regression models

are subject to experimental errors.
V. REMARKS

Some remarks and recommendations can be made after analysis
of the Phase I Santa Barbara experiment. We are in near agree-
ment with the conclusion of Elliott and Brown [6]: "Even when
those bands not as receptive to seeding were included in the
sample, the seeded to not-seeded precipitation increases were
greater than 50%." The means of Table II show increases near
to 50% and the analysis of Table III for Model (1) suggests sig-
nificance near to the 0.05 level.

Improved experimental design is needed but not easy to
achieve. Use of convective bands as experimental units increases
the number of available units per season but raises other prob-
lems. Some improvements are needed:

(i) Improved detection and determination of ''seedable'
bands.

(ii) More uniform dispersement of raingages over regions
of interest.

(iii) Improved determination and measurement f precipita-
tions attributed to particular convective bands.

(iv) Better determination and measurement of covariates
free from possible seeding effects.

v) Allowance for blocking by storms for fu-<ther control
of variation. Concerns may remain in regard to dep ndencies
among experimental units, data transformation, var: ace hetero-
geneity and persistence effects of seeding, some o:x which may be
met through use of randomization analyses. Futher -eteorological
and statistical research is needed.
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CANDIDATE SEQUENTIAL DESIGNS FOR
OPTIMUM SEEKING

Carl B. Bates

US Army Concepts Analysis Agency
Bethesda, Maryland

ABSTRACT. Phase I of the Target Acquisition Systems Force Mix
Evaluation Analysis (TASFMA) Study is the development of a methodology
for evaluating the combat effectiveness of mixes of systems within a
functional area. The methodology requires a division combat simulation
model whose outcome is sensitive to changes in the quality and quantity
of sensor systems deployed. DIVOPS, a division-level combined arms en-
gagement model, is the primary candidate for the combat simulation
model. The model will simulate multiple quantities of up to 15 differ-
ent sensor types. Because the DIVOPS Model can represent 15 sensor sys-
tems, the developed methodology must be capable of accommodating 15 sys-
tem types. Additionally, it is desired that three quantities be exa-
mined for each of the 15 ignsor types. Although DIVOPS is a relatively
fast running model, all 3*° runs are impossible. Consequently, a mfghod
is needed for constructing a manageably sized subset of the total 3
input combinations. This paper presents candidate sequential designs
for the study and search of the optimum sensor mix. Two two-level de-
signs are presented, a resolution III design which requires 16 runs and
a resolution V design which requires 256 runs. Then two three-level de-
signs are prEsented, a "Minimum Number of Points" design requiring 136
runs and a 3%P fractional factorial design requiring 243 runs. Advant-
ages and disadvantages of the designs are discussed.

1. INTRODUCTION. The Target Acquisition Systems Force Mix Evalua-
tion Analysis (TASFMA) Study consists of two phases. Phase I is the de-
velopment of a methodology for evaluating the combat effectiveness of
mixes of systems within a functional area. Phase II is the demonstra-
tion of the usefulness of the methodology. The following sequential de-
signs are proposed for incorporation into the developed methodology.

The methodology requires a division combat simulation whose combat
outcome is sensitive to changes in the quality and quantity of sensor
systems deployed. DIVOPS is the primary candidate for the combat simu-
lation. DIVOPS is a two-sided, deterministic, division-level ground
combat model. The model will simulate multiple quantities of up to 15
different sensor types. The model documentation is in Reference 1.

2. PROBLEM DESCRIPTION AND BACKGROUND. Because the DIVOPS Model

can represent 15 sensor types, the developed methodology must also be
capable of accommodating 15 system types. Additionally, because sensor
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influence may be nonlinear, it is essential that more than just two
quantities (say, a low and a high number) of sensors be examined for
each of the different types. It is desired that three quantities be
examined for each of the 15 sensYE types. Although DIVOPS is a rela-
tively {gst running model, all 3 input combinations cannot be run
since 3 lg 14,000,000, Moreover, neither could thfsmodel be exercised
for all 2*° input combinations, if desired, since 2°° = 32,768. Conse-
quently, a method is Tgeded for constructing a manageable size subset of
the totality of the 3*° input combinations, hereafter referred to as de-
sign points. The purpose of this paper is to present proposed sequen-
tial designs for the above described optimization problem.

3. METHODOLOGY RATIONALE. The methodology presupposes little or
no a priori information about the functional relationship between model
input variables and model output variables. The model input variables
and output variables are considered to be continuous variables. For the
purpose of this paper, it is assumed that the three quantities, here-
after termed levels, of sensors or systems are known for each system
under investigation. That is, the proposed procedure is not for deter-
mining what the levels should be. Rather, it is for identifying the
combinations of existing levels which should be employed in the search
for the optimum systems mix.

Although interest is in three levels of each of the input vari-
ables, because of the magnitude of 3K it is felt that the examination
process Eust be sequential in naturg, That is, the search should start
with a 2X design and proceed to a 3 design where k' < k. This ap-
proach employs some of the screening concepts of experimental designs
and response surface fitting.

4. TWO-LEVEL DESIGNS

a. General. Let x.,i =1,2,...,k be the model input variables,
where k = 15. Denote the extreme two of the three leve?s of each of the
variables by "0" and "1," respectively. If k were three, the eight de-
sign points would be as shown in Table 1 and are geometrically illus-
trated in Figure 1.

If the full factorial experiment were performed and a dependent
variable y were measured or observed at each of the eight independent
variable combinations, the full model shown as Equation [1] could be
fitted.

=b +
Y= P00 * P100*1 ¥ Po10*2 * Poor*a * Pr1o*1*2

+b xx,+b +b [1]

101°1%3 7 P011%2%3 T P111%1%2%3
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The general full 2K design permits the fitting of the following
terms plus the intercept, bg.

k single-variable terms
k(k-1)/2 two-variable terms
k(k-1)(k-2)/2x3 three-variable terms

.

Because a full 219 experiment is impossible for the TASFMA opt im-
ization problem, two alternative (1/2)P fractional designs, 2%7P, are
presented. The first design permits fitting the 15 single-variable
terms only. The second design permits fitting the 15 single-variable
terms and the (15x14)/2 = 105 two-variable terms.

b. Resolution III Design. Resolution III designs are available
which require k+l runs to study k variables, where k+l is a multiple of
four. In Reference 2, Box and Hunter give the following definition of
resolution III designs:

"No main effect is confounded with any other main effect, but
main effects are confounded with two-factor interactions and
two-factor interactions with one another."

The design ls first illustrated for a seven-yariable experiment.
Consider a (1/2)" of a complete 2’ factorial, a 2 -4 design. Construc-
tion of the design matrix starts with the design matrix in Table 1, a
full 2°. Four additional columns are generated from the three original
columns. Treat a "0" as a "-1" and a "1" as a "+1" and product the
three pairs of columns and the one triple. That is, generate columns 4,
5, 6, and 7 as follows:

column 4 = column 1 times column 2
column 5 = column 1 times column 3
column 6 = column 2 times column 3
column 7 = column 1 times column 2 times column 3

k-1



The resulting design matrix is shown in Table 2 and permits fitting
the seven-dimensional plane given in Equation [2].

Table 2. 27-% Design Matrix
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y = bo + blxl + bzXz + b3X3
* bax, + bpxg + bgXg + byxg [2]

Applying the technique described in the previous paragraph to the
15 variables of the TASFMA Study gives the design matrix 1n Table 3.
The first four columns constitute the design for a full 27 factorial.
Columns 5 through 10 are pairwise products of the first four columns.
Columns 11 through 14 are the four triple products, and column 15 is the
product of all four columns. The products are indicated under the col-
umn heading in the table. Exercising the computer simulation model for
each of the 16 input variable combinations indentified in Table 3 would
permit fitting a 15-dimensional plane for each output variable under
study. For each output variable, this would give a function in terms of
each of the 15 input variables, Equation [3].

Yy = bo + blxl + b2X2 + se0 + b14x14 + b15X15 [3]
The regression coefficients b s sess are the slopes of the
plane in the respective d1mens1ons. Tﬁe slopes can be analyzed to as-

sess the effect each of the 15 input variables has upon the particular
output variable and also to refine the space which will be further
examined with a three-level design.
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Table 3. 215-11 pesolution III Design
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The assessment will give the direction of the maximum response as well
as an ordering of the relative contribution of each of the 15 sensor
types. If some of the 15 contribute very little as compared to the
others, then the low contributors can be fixed at either their upper or
constraining levels for the follow-on three-level examination.

The above "cheap" experiment is not without risk. Naturally, a
sacrifice has to be made for a design with such a small number (16) of
design points. If two input variables, X3 and x., significantly inter-
act and neither x; nor x; individually significaﬂtly contribute, the
variables would not be récognized as being sufficiently important for
inclusion in the follow-on three-level investigation. If this risk is
considered too great and a design is required which will permit the
testing of all of the two-variable interactions, then the price of many
more computer simulation model runs must be made. In any case, the
resolution III design should be conducted first because it requires so
few runs.

c. Resolution V Design. Resolution V designs are defined by Box
and Hunter in Reference 2 as:

"No main effect or two-factor interaction is confounded with
any other main effect or two-factor interaction, but two-
factor interactions are confounded with three-factor interac-
tions."

Box and Hunter discuss resolution V designs and their construction
in Reference 3. This is the type of 2k-P fractional factorial designs
conventionally introduced in experimental design texts, such as Refer-
ences 4, 5, 6, 7, 8, and 9. The construction of resolution V 2X°P de-
signs is not the purpose of this paper and will not be discussed here.
Their construction can be found in the above references.

A 15-variable experiment has k = 15 main effects and k(k-1)/2 = 105
twoigariable interaction effects. The smallest resolution V design for
a 2% experiment has 256 design points. Using the 15 letters A, B, ...,

P (excluding I) to represent the 15 input variables xq,x5,...,x;5 and
the identifying contrast shown in Table 4, gives the 265’7design given

in Table 5. From the 256-run simulation model experiment we can fit the
model in Equation [4].

y = bO + blxl + b2X2 + ... + b15x15 + b1,2x1X2 + ..

*+ big 15%14%15 [4]
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Equation [4] has the 15 single-variable terms that are in equation
[3] plus 105 two-variable terms. That is, 120 degrees of freedom of the
total 255 degrees of freedom are used for fitting. The remaining 135
can be used for significance testing. Testing significance of the re-
gression coefficients can be accomplished as illustrated in the ANOVA
table, Table 6. The testing will identify those coefficents which are
not significantly different from zero. The corresponding variables can
then be fixed in the manner discussed in paragraph b above, and the in-
vestigation can proceed to the three-level follow-on investigation.

Table 6. ANOVA for 24°-7 Design

Source DF SS MS F-ratio
b, 1 $S(by) MS(b;) MS (by ) /MS (LOF)
b, 1 sS(b,) MS (b,) MS (b) /MS (LOF)
bys 1 $S(by5) MSb(y5) MS (by5) /MS (LOF)
by 2 1 $S(by ) MS(by o) MS(by 2)/MS(LOF)
b1a,15 L SS(byg 1) MS(byg,15)  MS(byg 15)/MS(LOF)
Lack of Fit 135 SS(LOF) MS (LOF )
Total 255 SS(Total)
30
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The obvious disadvantage of the above design is the large number of
simulation model runs required. This cannot be avoided when so many
(120) coefficients are to be estimated and tested. Care must also be
taken when assessing interaction significance. Since the interaction of
each variable with each of the other 14 variables is being tested, an
alpha-percent of the interactions would be expected to be statistically
significant due to random chance.

5. THREE-LEVEL DESIGNS

a. General. As with the two-level designs, two candidate three-
level designs are proposed. One design may be applied to all 15 input
variables if necessary; the other design presupposes that the previous
screening process reduces the number of input variables so that k' < 10.

First, the notation is changed from that used in the previous sec-
tion. Now, denote the three levels--low, middle, and high--by "0", "1",
agd "2", respectively. If k' were three, the 27 design points of a full
3° experiment would be as given in Table 7. The full design is illus-

trated geometrically in Figure 2.

If the full design were executed, the following model of Equation
[5] could be fitted. Equation [5] has 27 terms.

¥ = bogg + bjgox1 *+ bo1gx2 + bgo1x3
+ bygox§ + boagx3 + bogpx3
* b1joxyx2 * byo1x1x3 + bpixpX3
* D1ogx1x5 + oo + byppxfxix] 2

] [}

The general full 3K design permits fitting 3 terms, including the
intercept. In practice, however, even for moderate k', all possible 3
terms are seldom fitted. Usually they are not even desired. Two candi-
date tpree-level designs are proposed which require considerably less
than 3* design points. The first is the "Minimum Number of Points" de-
sign. The second design is the conventional 3" ~
design.

P fractional factorial

3



Table 7. 33 Design Matrix
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(2,0,0)
X1

Figure 2. Full 33 Factorial
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b. "Minimum Number of Points" Design.* The "Minimum Number of
Points (MNOP)" design contains the same number of design points as there
are terms in the fitted function, including the intercept. The design
permits fitting all first and second order terms.

First, the design is illustrated for k' = 3. The design matrix for
k' = 3 is shown in Table 8. The ten design points are illustrated in
Figure 3 and will permit fitting Equation [6].

Table 8. Minimum Number of Points Design
Matrix for k' = 3

X1 X2 X3
0 0 0
1 0 O
0 1 o0
o 0 1
2 0 O
0 2 o0
0 0 2
1 1 o0
1 0 1
0 1 1

¥ = bogo + bygo*1 * boroX2 * booix,
+ bagoxf + bozox5 + boozx3

* by1ox1x2 + byg1x1X3 + bo11X2X3 [6]

To show the pattern more clearly before presenting the MNOP design
for k' =15, the design is also illustrated for five variables. Table 9
contains the design for k' = 5. Note that k' rows have a single "1", k'
rows have a single "2", and k'(k'-1)/2 rows have two "1's". Although
the model that can be fitted is obvious, it is given in Equation [7% for
completeness. Subscript notation is changed from that previously used
to conserve space.

*The design was brought to the attention of the author by Dr. George
Box in a personal communication during May 1978.
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Figure 3. MNOP Design for Three Variables
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Table 9. MNOP Design Matrix for k' =5

x
—
x
N
x
w
bl
-
x
(8]

OCOO0O0OO0OHFHHFMFHFOOOONOOOO+O
COOHHFHFOOOHOCONODODOOHOO
OHFHOOHHFOOHHFOOONOOOOHOOO
HOHFOHROOHROOONOOOOHOOOO
EFHEOFOOFRFOOONOOOOHOOOOO

Y = by + byx) + bpxy + b3xz + bgxg + bgxg
+ byyxd + bypxd + by3id
+ bagx§ + bygxb + bypxix
* by3x x3 + bygxyxg + bygXgXs
* bp3xax3 + bpgxpxg + basxoxs
* b3ax3xq + bsx3xs
* bysxgxs [7]



Construction of the MNOP design for 15 variables should be obvious
from the above illustrations. The design has 15 rows with a single "1",
15 rows with a single "2", and 105 rows with two "1's", and one row of
all "0's", giving a total of 136 design points. The design matrix is
shown in Table 10. The columns denote the 15 variables x; through x
If a computer model simulation experiment were conducted us1ng the M&BP
design, the model given in equation [8] could be fitted for each depen-
dent variable under investigation. Each fitted function could then be
studied to determine the optimum systems mix for each measure of effec-
tiveness.

Y= bo + blxl + b2X2 + .00 + b15X15
+byyxf + bypxd + .en + byg q5xfs
* Proxyxp + by3xixz + ..o + by 15%14X15 el

If, however, the MNOP design is considered inadequate and the prior
two-level examination has resulted in a screening of the original 15 in-
put variables down to not more than 10 variables, a fractional factorial
design can be applied.

c. 3P Fractional Factorial. If k' < 10, a fractional factorial
experiment can Ee designed which has 243 design points. Theoretical
background on 3% “P fractional factorial designs can be found in Refer-
ences 4, 5, 6, 7, 8, and 9.

The ggsggn is illustrated for k' = 10. The design is a 1/3° & 310
i.e., a3 fractional factorial. As in paragraph 4c above, the ten
letters A, B, ..., K (excluding I) are used to represent the ten k' in-
gut var1ab1es X1» cees Xg Using the identifying contrast shown in

able 11 yields the des1gn magr1x given in Table 12.
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for 15 Variables

"Minimum Number of Points" Design Matrix
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001000000000000
000100000000000
000010000000000
000001000000000
000000100000000
000000010000000
000000001000000
000000000100000
00000000001 0000
000000000001000
000000000000100
000000000000010
000000000000001
200000000000000
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002000000000000
000200000000000
000020000000000
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0anoo00200000000
000000020000000
000000002000000
000000000200000
000000000020000
000000000002000
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110000000000000
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01000100000 0000
0100001 000000 00
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0100000 00100000
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01000000000 01 00
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Table 12. 310-5 practional Factorial Design Matrix

1 2 3 4 5
0000000000 0002112020 0001221010 0101010022 0100122012
2120012020 2122121010 2121200000 2221022012 2220101002
1210021010 1212100000 1211212020 1011001002 1010110022
0112110212 0111222202 0110001222 0210120201 0212202221
2202122202 2201201222 2200010212 2000102221 2002211211
1022101222 1021210212 1020022202 1120111211 1122220201
0221220121 0220002111 0222111101 0022200110 0021012100
2011202111 2010011101 2012120121 2112212100 2111021120
11012611101 11000720121 11(73132111 120223112) 1201(?:“0

0102201002 0202020011 0201102001 0200211021 0102120100
2222210022 2022002001 2021111021 2020220011 2222102120
1012222012 1112011021 1111120011 1110202001 1012111110
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2001020201 21011132210 2100221200 2102000220 2001212002
1121002221 1221121200 1220200220 1222012210 1121221022
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11 12 13 14 1
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1120000012 1122112002 1222201011 1221010001 1220122021
00232122211 0021201201 0121020210 0120102200 0122211220
2112101201 21113210221 2211002200 2210111220 2212220210
1202110221 1201222311 1001011220 1000120210 1002202200
16 17 18 19 2
0001110111 0000222101 0002001121 0201210200 0200022320
2121122101 2120201121 2122010111 2021222220 2020001210
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0110220020 0112002010 0111111000 0010020112 0012102102
2200202010 2202011000 2201120020 2100002102 2102111122
1020211000 1022020020 1021102010 1220011122 1222120112
0222000202 0221112222 0220221212 0122100021 0121212011
2012012222 2011121212 2010200202 2212112011 2211221001
1102021212 1101100202 1100212222 1002121001 1001200021
21 2 2 2
0202101210 0002220222 0001002212 0000111202
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1221202102 1021021111 1020100101 1022212121
0120021001 0220110010 0222222000 0221001020
2210000021 2010122000 2012201020 2011010010
1000012011 1100101020 1102210010 1101022000
2 2 P14
0100200211 0102012201 0101121221
2220212201 2222021221 2221100211
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0021120002 0020202022 0022011012
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1201111012 1200220002 1202002022




The design permits fitting and testing 20 single-variable terms and
180 interaction terms. The 20 single-variable termf arg the 10 éinear
terms xp, Xp, ..., X1 and the 10 quadratic terms x;, X2, eves X]Qe
Each of tge (%0x9$/5 ; 45 interaction effects have four terms,
XiXis XiXjs X{Xjis XjXj, givin? a total of 180 two-variable terms. This
1éaves 42 degre@s o %reedom or Lack of Fit which can be used for test-
ing. The fitted function of each measure of effectiveness can then be
studied to determine the optimum systems mix in the same manner ex-

plained in the previous section.

6. SUMMARY. Four candidate experimental designs have been pro-
posed for the Target Acquisition Systems Force Mix Evaluation Analysis
methodology development. The designs, two two-level designs and two
three-level designs, are recommended for sequential application. The
resolution III and resolution V two-level desigasscontain 16 and 256 de-
sign points, respectively. The MNOP and the 3*“~ fractional factorial
three-level designs contain 136 and 243 design points, respectively.
Therefore, four candidate combinations of 2" and 3" sequential designs
are available. The total number of computer model simulation runs range
from 16 + 136 = 152 to 256 + 243 = 499. The sequential designs and the
required numbers of model runs are shown in Table 13. The number of
model runs is shown in parentheses.

Table 13. Candidate Sequential 2™ and 3" Designs

Two level Three level
Resolution III (:) Minimum Number of
Design | — j” Points Design
(16) (136)

@ @

e
Resolution V (:) 310-5 Fractional
Design Factorial Design
(256? (243)
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Environmental and Water Quality Operational
Studies: Experimental Design Problems
Associated with the Fisheries of the
Mississippi River

Michael P, Farrell,
A. Dale Magoun,

Environmental Laboratory
Waterways Experiment Station
Vicksburg, Mississippi

Introduction

The Waterways Experiment Station is conducting a six-year, nationwide
program of applied research to investigate selected high priority environ-
mental quality problems associated with the Civil Works activities of the
Corps of Engineers (CE). The study is being conducted for the Office,
Chief of Engineers, and is entitled the Environmental and Water Quality
Operational Studies (EWQOS).

The principle goal of EWQOS is to provide new or improved methodologies
and technology for the planning, design, construction, and operation of CE
projects to meet environmental quality objectives in a manner compatible
with project purposes. A key element of EWQOS is the use of extensive
field studies to evaluate and document the utility of new or improved

methodologies and technology developed within the program.
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During the early planning phase of EWQOS, visits by WES personnel
were made to each CONUS Corps Division office to identify and assess the
magnitude of environmental quality problems. The nature and extent of
environmental quality problems being experienced by Corps field offices
was used as a basis for planning research to address these problems.

One major problem area identified as being of high priority was the
environmental impacts of project activities on waterways. Specifically,
it was determined that EWQOS research should develop field office guid-
ance to address envirommental and water quality aspects of dikes and
revetments. Such structures are common in waterways in many parts of

the United States, but most commonly occur along the Mississippi River
and its tributaries.

Based on this problem identification phase, a project was established
within EWQOS to conduct a comprehensive field study of dikes and revet-
ments associated with CE waterway navigation projects. This field study
is being undertaken within a 50 mile reach of the Lower Mississippi River
between Lake Providence, Louisiana, and Greenville, Mississippi. This
site was selected after an intensive survey of CE waterways navigation
projects and after discussions with knowledgeable CE field personnel.
Site selection was based on the existence of an extensive hydraulic and
hydrologic data base, the presence of a representative variety of dike
and revetment structure design, and optimum diversity of characteristic
floodplain and riverine aquatic macrohabitats, and plans by the Vicks-
burg District to conduct potamology studies in the reach during thé time

frame of EWQOS, and to synthesize in a report the existing hydraulic and
sediment data.

Goals and Objectives
The goal of the long-term waterway field study of dikes and revet-

ments is to assess the relative ecological importance of channel align-
ment and bank stabilization structures in the riverine ecosystem, and



to provide data to formulate environmental quality guidelines for use by
CE districts in designing and planning new structures and modifying exist-
ing ones.

The specific objectives are based on a macrohabitat approach in which
revetted banks and dike fields are considered as aquatic habitats within
the river system.

(1) Quantitatively define riverine macrohabitats of the study reach
including relative size, current velocity, sediment type, materials compos-
ing the dikes and revetments and associated riparian vegetation at various
river stages and times of year.

(2) Quantitatively describe the physicochemical characteristics of
the water and sediments in riverine macrohabitats at various river stages
and times of year and how these variables relate to the distribution and
abundance of aquatic organisms.

(3) Quantitatively describe the composition of the particulate
organic matter, including phytoplankton, zooplankton, and detritus, in
riverine macrohabitats at various river stages and times of year.

(4) Quantitatively describe the species diversity, abundance distri-
bution and production of benthic macroinvertebrates in riverine macro-
habitats, including the use of these habitats as spawning, nursery, and
feeding areas.

(5) Quantitatively describe the species diversity, abundance
distribution and production of fishes in riverine macrohabitats, includ-
ing the use of these habitats as spawning, nursery and feeding areas.

General Background

Dikes have been placed in rivers by the CE for many years for the
purpose of aligning and contracting river channels. The lower Mississippi,
middle Mississippi, Missouri, and Arkansas are examples of rivers that
have extensive amounts of dike structures. In navigation projects, the
principle use of dikes is in adjusting channel width, depth, and align-
ment and to close secondary channels and chutes. Dike structures are
probably the most effective means of channel alignment and contraction
in use today.

Dikes are structures constructed of permeable wooden piles or, more
typically in present times, of relatively impermable stone riprap. Dikes
may be singular or placed one after another along a bank forming a dike
field. Generally dikes are of the transverse type which extend from the
bank perpendicularly into the river channel past the point of highest cur-
rent velocities. An extension or L-head may be placed at the off-shore
end of a dike parallel to the main axis of the dike to retard scouring
and turbulence. Vane dikes which are placed in the channel parallel to
the bank line are also used.
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Water is shunted by a dike toward the opposite river bank and, if
this bank is stable, the resulting narrower channel is deepened by scour-
ing in order that the river's discharge may be carried. Dikes are
typically placed on the convex side or point bar in a bendway or in
straight reaches to achieve some degree of channel sinuosity and result-
ing contraction. Concurrent with channel contraction, suspended sediments
are deposited downstream of individual dikes due to the reduction of cur-
rent velocities caused by the structure. In dike fields sediment accretion
may be appreciable, and these accumulated sediments, which may in some
instances form fast land or a bar, further serve to confine the flow of
water. Slackwater pools may be found downstream of transverse dikes at low
river stages in cases where sediment accretion has not completely filled in
these areas. Since, ecologically, slackwater areas are thought to be im-
portant in a river system, knotches have been put in transverse dikes to
prevent sediment buildup on the downstream side of dikes.

In the lower Mississippi River there are presently 393 dikes totaling
approximately 875,000 linear feet (Table 1). The number of dikes dimin-
ishes downstream in lower Mississippi River, with no dikes being present in
the river within the confines of the New Orleans District. However, many
new structures are planned within the next two decades in the lower river.

Despite the large number of dikes present in many of the major river
systems of the United States, the ecological effects of these structures
are poorly known. Dike fields and individual dikes are distinct habitats
within river systems where these structures are numerous. Date on this
environmental quality characteristics of these structures and methods for
designing and modifying dikes to enhance their value as aquatic habitat is
needed by CE districts and divisions in designing and operating waterway
navigation projects.

Revetments are installed along river banks to prevent bank caving and
erosion. These structures are of many types, but generally consist of
erosion-resistance materials which are placed upon a pregraded bank from
the top of the bank line to the toe of the channel. In navigation and
flood control projects revetments are often located on the concave bank in
bendways and crossings in association with dike fields on the opposite bank
to contract the river channel and to retard meandering. They are also
placed in areas where erosion threatens levees.

Bank revetments are of many different types including stone riprap
and articulated concrete mattresses (ACM). ACM with stone riprap placed
on the upper portions of the bank as paving is the most common type of
revetment presently being installed in the lower Mississippi River. 1In
the past, asphalt and willow mats were used instead of riprap for bank
paving. Approximately 3.9 million linear feet of bank revetment works
have been constructed in the lower Mississippi River. In the Missouri
River, revetments constructed of stone riprap are used extensively.

When river banks are revetted, much of their natural character is
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Table 1

Dike and Revetment Structures in the Lower Mississippi River 1

Linear Ft. of Revet.
Linear Ft. of Dikes

No./Types pile (wood)
pile & stonefill
stone
stone trail
stone vane
car body

Total No. Dikes

1,758,515
583,498

31
68
137
6

8

250

1,202,610 930,721 3,891,846 1n ft

292,229 0 875,727 1n ft

8
24
90

5
15

1

143 0

1

Source of information. George Kerr, MRC, 327. (As of 30 September 1977).

47



altered. However, the environmental quality of the habitat formed by the
revetment structures is unknown. Older revetment structures which have
become extensively vegetated with willow and cottonwood trees and a variety
of sedges, grasses, and shrubs may have different value as aquatic habitat
than new revetments. Thus age is a variable of importance in evaluating
environmental effects of revetments. The type of material composing the
revetment may also be an important variable in determining the biological
productivity and habitat value of revetment structures. For example,

stone riprap is probably a more productive substrate for fish food organisms
than asphalt. Another factor is the sinuosity of the bank line upon which
revetment is placed. A sinuous bank would tend to have relatively lower
velocities caused by eddies and upstream flow than would a straight bank

line, and would, therefore, be expected to constitute more productive fish
habitat.

The large magnitude of revetted banks in many river systems make inves-
tigation of the environmental effects of these structures of value to CE
districts and divisions for use in impact assessments, and the planning,
design, and construction of new structures. At present there exists very
little environmental data on revetment structures regarding their produc-
tivity as compared to "natural" banks.

The distribution and abundance of organisms in a large river system
are fundamentally determined by river geomorphology, flow, and sediment
load for it is these factors which interact to produce distinct environ-
ments or macrohabitats for riverine biota. Undoubtedly, water quality,
temperature sediment type and other factors are important determinants of
the distribution and abundance of aquatic species in a given river but
these are secondary to the more basic geomorphology and hydraulic features
of the stream. Land use practices, terrestrial vegetation patterns, and
edaphic characteristics in the drainage basin, also contribute importantly
to the environmental conditions of the river, but these factors mainly
impose conditions upon the macrohabitats formed by the rivers' shape,
flow, and sediment load. For example, a broad, shallow braided river has
different proportions and types of macrohabitats than a stream with a deep,
narrow well-defined channel, irrespective of water quality.

The channel alignment and bank stabilization structures placed in
rivers by the Corps for achieving flood control and navigation objectives
can modify to different degrees geomorphology, stage and discharge rela-
tionships, and sediment movements within the stream. These changes in
the river's characteristics, plus the presence of the structures them-
selves as a substrate for organisms, result in shifts in the types, sizes
and variety of aquatic macrohabitats. Such alterations in riverine habitats
effected by the installation of structures may or may not produce positive
impacts on the ecology of the system. For example, certain "natural" macro-
habitats may be reduced in size and quality by training and stabilization
structures, while habitats created by the installed structures, such as
dike fields or revetted banks, may become commonplace. The primary goal of
this research is to determine the ecological importance or value of the



macrohabitats formed in the river by dike fields and revetted banks as
compared to "natural" habitats, and to formulate environmental quality

guidelines for use in designing and planning new structures and modify-
ing existing ones.

The general approach to the dike and revetment study in the lower
Mississippi River will be from a macrohabitat point of view, wherein the
length of river to be investigated will be subdivided into its macro-
habitats which will be characterized as to both biotic and abiotic vari-
ables. Dike fields and revetted banks will be treated as macrohabitats,
although man-made, together with other distinct biological habitats such
as the main channel, natural steep banks, towheads, chutes, river borders,
point bar cutoffs, and old river channels. The ecological importance of
each macrohabitat will be evaluated according to its basic water quality,
production of benthic organisms used as fish food, abundance of fishes,
use as spawning, nursery and feeding areas for fishes, and production of
suspended particulate organic matter. The function and relative value as
aquatic habitats of dike fields and revetted banks within the river eco-
system will be defined based on this information. The habitat evaluation
will be related to various key river stages and times of year.

The dike and revetment study will be initiated by preparing a quanti-
tative map of aquatic macrohabitats in the 50 mile reach of lower Miss-
issippi River selected for study. These data will form the basis of the
field investigations. The map will be prepared using existing hydraulic
and topographic survey data and aerial photographs belonging to the
Vicksburg District as a basis. Habitats will be initially delineated at
a low water stage, defined as 0 ft Low Water Reference Plane, using as
criteria primarily depth and information from aerial photographs as to
the location of sandbars and other features. This map will be refined as
to the definition of habitats with data on currents, sediments, and biota
collected during the pilot survey. The map will be redefined for bank
full and over-bank river stages.

The first efforts in the field will be a series of pilot surveys
designed to provide additional data for the habitat map, for developing
and testing sampling equipment and techniques, selecting representative
habitats for intensive study, and developing an experimental design for
the habitat surveys and detailed ecological studies. The pilot survey
will be conducted from April through September, 1978.

Following completion of the pilot survey and formulation of experi-
mental designs, at least two representatives of each habitat type will
be selected for comparative study. Dike fields and revetments will be in-
cluded in the catagory of habitats., Selected habitats will be surveyed
intensively four times each year, beginning in the fall of 1978. Data on
biota, water and sediment chemistry and physical variables will be collected
in a manner amenable to detailed statistical comparisons. The four yearly
samples will be related to distinctive river stages and seasons.
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Detailed ecological studies will be carried out in a few selected
habitats to investigate specific phenomena of interest. In general, these
studies will require collection of samples at short time intervals during
particular years, seasons, or river events such as flooding, and will be
directed towards answering specific questions. Examples of these types
of studies include particulate organic matter composition and distribu-
tion studies, determination of fish spawning periods and locations, fish
movements studies, studies of stream macroinvertebrate drift, secondary
production estimates for organisms growing upon the stone riprap and
other materials of which dike and revetment structures are constructed,
and fish food habit studies.
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RED NOISE IN THE POWER SPECTRUM OF ATMOSPHERIC TEMPERATURE DATA

Oskar M. Essenwanger

Research Directorate

Technology Laboratory
US Army Missile R&D Command
Redstone Arsenal, AL 35809

ABSTRACT. It is well known that persistence generates red noise in
power spectra of meteorological time series. In fact, significance of
spectral peaks is checked against the background of white or red noise,
although other criteria have been suggested in the literature.

Several types of red noise exist. In atmospheric science the most
common type is the exponential model which is identical with the first
order Markov chain. This type is easy to recognize and can be readily
calculated from the correlogram.

Today power spectra are mostly produced with the algorithm of the
Fast Fourier Transform (FFT) rather than based on the autocorrelogram.
Consequently, calculation of the exponential red noise is difficult unless
the first lag correlation is included in the computer processing.

Two questions have been pursued in this paper. What is the effect
on the exponential red noise pattern if any periodicity, significant or
not, is removed from the power spectrum? Can true periodicities with
low wave numbers be distinguished from red noise?

The influence of "quasiperiodicity" on red noise, the power spectrum
and Fourier components is analyzed for atmospheric temperature data.
Finally, the utilization of discrete spectral filters will be discussed
and a separation of the time series into cycles, quasicycles and red noise
is delineated.

I. INTRODUCTION. The question of the reality of meteorological
cycles has been raised at various times in the past (e.g., Bartels, 1943;
Brier et al., 1964; Craddock, 1965; Shapiro, 1975; etc.) and has not been
completely settled. The physical mechanism behind the annual and daily
cycle in meteorological time series leaves no doubt about their reality,
but most other periodicities are accepted by some authors and rejected by
others. Although significance criteria have been developed in statistical
analysis, the subjectivity in the adoption of a significance threshold
leaves some ambiguity.
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In addition, many criteria are based on the postulation that the
data are independent and/or Gaussian distributed which 1s not applicable
to many atmospheric elements. It is well known that most atmospheric
time series show varying degrees of persistence. This persistence is
usually taken into account by testing time series data, e.g., power spectra,
against '"red noise" which is generated by persistence. An added difficulty
is the appearance of the "quasiperiodicity" where apparent cycles prevail
during a limited time only.

It is well known that red noise is related to the first lag cor-
relation coefficient but the modification of this coefficient by the
presence of a cycle is neglected in most references. It will be shown
that the construction of red noise is not independent of the presence of
cycles, and it is not trivial to select a red noise test background.

Time series data of atmospheric temperature serve as an example for
a mixture of cycles and red noise pattern. An attempt is made to separate
these two components. It proved that the power spectrum has the advantages
of disclosing significant cycles in concentrated form and of responding
better to quasiperiodicity than the Fourier analysis. The Fourier analysis
is the most appropriate tool to provide quickly amplitude and phase angle
for spectral filters. The periodogram analysis reveals quasiperiodicity
best and permits us to pinpoint the exact cycle length.

ITI. THE EXPONENTIAL RED NOISE MODEL. Different types of red noise
patterns have been discussed by the author (1977), and only the equations
for the exponential model will be presented here.

The most common red noise in meteorology follows a plain exponential
sequence:

Pe = exp(-bt) (1)

with
t>0, b>0.

This exponential series i1s also obtained from a first order Markov
chain:

Pp =P (2)

It is trivial that t = k, b =-n p, and 0 < p < 1.0. In the first order
Markov chain p = pl. The constant b in the exponential noise can be cal-
culated from:

b= -2np1 (3a)



We must also keep in mind that by eqn. (1) the p _follows the exponential
distribution (see Essenwanger, 1976, p. 113). Consequently:

1 (3b)

Because in practical applications the summation is truncated after m terms,
b ¥ bl, and some discrepancies between eqn. (3a) and (3b) may arise.

£o, =1

A suitable equation for the power spectrum has been deduced by
Gilman et al. (1963). They cast:

L

In our case p = pl.

[t - pz)/(l - p2 - 2p cos kn/m)]/m )

Other models and their differences have been analyzed by the author
(1977). It becomes evident that p, is a crucial parameter in red noise
analysis. Eqns. (1) and (4) are r%lated by:

m
P = kf?k cos (tkm/m) (5)

III. RED NOISE MIXTURE WITH CYCLES. The general meteorological time
series may comprise a mixture of red noise and periodicities. This fact
was previously exemplified with the aid of three-hourly temperature data
at Huntsville, Alabama for a time period from 6 November 1958 through
14 March 1959 with N = 1024 (see Essenwanger, 1977). In this article
the author has illustrated that an appropriate combination for the structure
of the autocorrelation function is:

n
P, = WP + I w,p (6)
S o PSS AT
where:
n
i w, = 1 (6a)

and Pr denotes the red noise, jS the correlation of the respective cycle

Lyg. (Tﬁe consideration is for data without a trend). This simple linear
(weighted) combination of correlation coefficients works better than Fisher's z
function which is suggested for the combination of correlations by various
authors. A numerical example which confirmed eqn. (6) was given by the
author (1977).
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Let us assume that w, = 0.5 and w, = 0.5. The first lag cor-
relation coefficient for red noise coulg be pR1 = 0.6 and Py 1 ™ 0.4
9’

from a cycle. Then the first lag correlation of the data series is
Py = 0.5 (0.6 + 0.4) = 0.5 which is less than Pp,+ Inm this case the

correct size of the first lag correlation for red noise is not identical
with the first lag correlation of the data series.

IV. POWER SPECTRUM, QUASIPERIODICITY AND FOURIER ANALYSIS. Three
different statistical tools are available for the analysis of meteoro-
logical time series data: power spectrum, Fourier series and periodo-
gram, These three individual techniques serve different purposes.
Consequently, we must expect that different characteristics are enhanced
by the analysis of the same data sample with different methods although
the meteorological characteristics do not vary.

A set of 8-hourly data (one year from 1 September 1959) was sub-
jected to a Fourier analysis. Today this task is rapidly performed by
application of the FFT, the fast Fourier Transform (see Cooley and Tukey,
1965). The FFT, conveniently performed for a basic period of 1024 = 21 ,
shows a first significant cycle of 341.3 days, the annual period.

The 24h cycle is not a period of an integer divisor, and is spread
over the wave numbers 339-345. A more sophisticated computer program
was utilized for the FFT, which does not require that the basic period
can be expressed as a power of 2. This Fourier analysis was established
with a basic period of 365 days. In this analysis the day is an integer
wave number, and a sharp peak appears alone at 24", i.e., wave number 365,
without spilling over to the adjacent classes.

This fact confirms results by Rikiishi (1976), and illustrates
some fundamental characteristics of power spectrum, FFT and Fourier
analysis. If an existing cycle is not precisely the length governmed
by an integer wave number the cycle is "smeared" over the neighboring
frequencies. One solution is the use of a "filter band" (or band filter)
whose width is determined by the spreading. If one particular cycle
exists, the precise length can be found by a periodogram analysis (see
Essenwanger, 1976, p. 234).

The utilization of a filter band for the representation of a cycle
has some added benefits. A peak in the power spectrum may indicate quasi-
periodicity. This expression may comprise two phenomena. First, the
cycle length may fluctuate, e.g., in our case between 5 to 6 days (or even
4 to 7 days). Second, the cycle may be repetitive over a few periods,
and then suddenly either disappear or become longer or shorter. The power



spectrum or Fourier analysis reflects the closest mathematical fitting,
resembling an average cycle (see Essenwanger, 1951). Quasiperiodicity
is weakening the amplitude over the totel data length, and the signifi-
cance of quasiperiodicity is difficult to prove by statistical tests
because of the resemblance to random cycles. Indeed, some authors con-
sider quasiperiodicity by and large as a totally random product. It
must be interjected, however, that in atmospheric science a physical
background for quasiperiodicity can sometimes be found. E.g., a cycle
of 5-6 days can be generated by the development of sets of cyclones,
so—called families of cyclones. The length of this development fluc-
tuates but the fact of its existence cannot be denied.

The explanation of a 5-6 day cycle as related with the development
of cyclone families is also supported by an examination of the FFT for
the winter 1976/77 with predominantely meridional circulation. In this
"cold winter" at Huntsville, Alabama the 5-6 day "quasiperiodicity" was
absent, and was replaced by an 8-9 day quasicycle.

V. EXAMPLE OF SEPARATING RED NOISE FROM CYCLES. After the utilization

of filter bands has been explained we return to the analysis of two data
sets: the time series of 6-hourly temperature observations from 15 July
1959 to 10 July 1960 and 15 July 1961 to 10 July 1962. The trumcation

of 5 days from the year simplified the computational efforts for the
application of the FFT and its relationship with the power spectrum. Later
one full year of data was utilized but the results from the full year dif-
fered only by 0.1% from the truncated series.

The elimination of cycles (quasicycles) was performed in three steps
(see Figures la and b). First, the spectrum of the original date series
was obtained. Then the annual and daily cycles were removed. The remain-
ing data were subjected to the FFT again. A series of "quasicycles" or
"quasiperiodicities" were identified and subtracted. Afterwards, the
spectrum of the remaining data series displayed only insignificant de-
viation from the recalculated red noise series thus leaving the "noise"
or random fluctuations with persistence. The cycles and quasicycles with
their percentage share are exhibited in Table 1.

At first glance we may find it peculiar that the annual cycle 1is
listed as a filter band from the wave numbers 1-7., One would think that
the truncation of 5 days from the year should not make a signifcant
difference. In reality a peak appeared at 360 days with a side lobe at
90 days length. It was convenient to eliminate the total series of waves
from 1-6 or 1-7. The appearence of this filter band may be caused by the
asymmetric behavior of the annual cycle.
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Table 1. Separation of Temperature Time Series Data
into Cycles (Quasicycles) and Red Noise

1961 1959
Wave Number Z Wave Number Z
1- 7 Annual 67.0 1- 6 Annual 71.3
12 - 15 24 - 30 days 1.5 13 - 23 16 - 28 days 4.9
20 - 28 13 - 18 days 3.9 28 - 33 11 - 13 days 1.7
33 - 41 9 - 11 days 3.3 43 - 52 - 8 days 1.5
51 - 53 7 days 0.8 61 - 70 - 6 days 0.8
73 - 86 4 - 5 days 2.1 - - -
359 - 361 daily 10.2 359 - 361 daily 8.6
720 semi-daily 0.5 710 semi-daily 0.4
Red Noise 10.7 Red Noise 10.8

A distinct peak at wave number 360 appeared which signifies the daily
cycle. The adjacent classes 359 and 361 displayed an amplitude more than
10 times as large as the adjacent waves (350 to 358 or 362 to 369). In
order to eliminate a remaining peak at the daily cycle in the power spectrum
of the red noise series the band from 359 to 361 was removed.

It is evident from Table 1 that the "quasicycles" fluctuate from year
to year which should be expected. These quasiperiodicities vary in ampli-
tude, phase angle and duration. As pointed out some authors comnsider them
equivalent to random fluctuations. The red noise series and displayed
power spectrum after removal of cycles (middle of Figures la and b)
illustrate that additional cycles (i.e., quasicycles) should be subtracted
to achieve a better agreement (see right hand side of Figures la and b).

Thus, the time series of the two sets of data samples can be expressed
by 3 cycles (annual, daily and semi-daily) with about 78 to 80% of the vari-
ance, 4 or 5 (for 1959 and 1961, respectively) quasicycles with an added 9
to 112, and a remaining red noise component of about 11Z. The proper red
noise influence 1is then:

= (p - I 7
Pr, l}i :,.2“’1"11}/“’1 ™
where p1 = 0.86 for the 1959/60 data set, n = 7, and p, = 0.59. The respec-

tive numbers for the data set 1961/62 can be found fro:IFigure 1b and Table 1.
It is evident that the true red noise first lag correlation is different from
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We can safely deduce that the red noise pattern cannot be obtained
in a trivial way in the presence of cycles. Furthermore, the first lag
coefficient p, in the autocorrelation is not automatically the one which
provides the proper red noise entry. How does this result affect signi-
ficance testing of the power spectrum against the statistical background
of red noise? The answer is not simple and depends on the goal.

If we only intend to find whether the power spectrum is produced by
red noise, the pattern based on the first lag coeffient may suffice. If
our goal is the separation of the data series into cycles and red noise,
a formalistic application of the first lag correlation is not realistic
unless we find no cycles.

A similar composite pattern to the autocorrelation can be developed
for the power spectrum. We deduce:

Lj = “’1ij + kaFk(Lj) (8)

where Fk(Lj) stands for the spectrum of the filters.
The reconstruction of the red noise component in the data series
18 not trivial because the phase angles for the Fourier terms must be
known. One way to obtain these is by eliminating the filter bands from
the data series, and subjecting the remainder to a FFT. This method is
not difficult to develop once it is known which cycles (quasicycles)
must be removed. Furthermore, random fluctuations will produce randomness
of the phase angles for the red noise waves. We can check whether the re-
maining phase angles display randomness because it requires a rectangular
distribution of the angles. The result is disclosed in Figures 2a and b.
The deviation from the average number of occurrence, 28.1 or 28.2, was
tested for statistical significance by applying the Kolmogorov-Smirnov
test for the cumulative distribution. None of the deviations proved to be
high enough to reject the hypothesis that the displayed histogram has a
rectangular distribution as statistical background.: We find confirmation
that the remaining data series behaves like red noise in amplitude, and
now in phase angles.

VI. CONCLUSION. The background of red noise in meteorological time series
has been examined for temperature data at Huntsville, Alabama. Of special
interest was the question whether significant cycles influence the determin-
ation of the red noise pattern from autocorrelogram or spectral analysis.

As 1l1lustrated, the presence of long time periodicities tends to increase
the first lag correlation. In fact, any existing cycle may modify it.
Therefore, the judgment of red noise from the first lag correlation alone
may be insufficient in many cases.
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This result is important in the evaluation of an existing time
series, but it may be of little consequence for the testing of cycles
against red noise background. However, the drawing of conclusions from
one test curve alone may not always be advisable. A sequence of testing
such as the 3 steps illustrated in Figures la and b may be more appro-
priate.

A separation of the data series into red noise and cycles was
delineated (Figures la and b). This method resembles Craddock's (1965)
suggestion of filtering insofar as certain significant cycles are
filtered out. Two significant deviations from Craddock's scheme must
be emphasized. First, the filtered cycles are subtracted from the total
data series after the cycles have been determined from the power spectrum.
Second, the remaining data series is a red noise spectrum. These dif-
ferences are produced by the dissimilarities in the analysis goals be-
tween Craddock's method and the technique of this study.

The red noise contribution to the variance of the two sets of data
of 3 hourly observation for about one year is approximately 11%Z, i.e.,
this percentage can be associated with random noise with persistence
while the remaining flucuations are produced by cycles or quasicycles.
About 80%Z represent the diurnal, semi-diurnal and annual cycle which can
be considered as a simple and predictive part. Quasicycles impose some
restrictions to the predictability because they vary from year to year,
and the red noise fluctuations are predictive only with respect to their
statistical properties. The determination of the contribution of red
noise in meteorological time series may thus be important informationm.
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ABSTRACT. This paper summarizes the results of a very large simulation
study of some procedures commonly used in time series model building and fore-
casting. Theoretical results available in this area are generally asymptotic
and exact finite sample results are readily obtainable only for a few over-
simplified cases.

Often (particularly in business and economic applications) analysis of
relatively short time series, in the neighborhood of 50-100 observations, is
required. We examine, by simulation, the behavior of various procedures for
such sample sizes.

Specifically, we examine the properties of three estimators of the coeffi-
cients of autoregressive-moving average models, two procedures for testing the
adequacy of representation of such models and the usual estimates of error
variances when these models are projected ahead for forecasting.

I. INTRODUCTION. Suppose that the available data consists of n obser-
vations X1,X3,...,X, ona stationary time series. (In practice it is often
necessary to difference the original data to induce stationarity). Such data
can generally be well represented by a low order autoregressive-moving average,
ARMA(p,q), model

- - - 3 - - - q
(1 - ¢B- ... ¢pBP)xt (L-8B-...-08ha (1)

where B 1is a back-shift operator on the index of the time series defined so
that BIX¢ = Xt-gr and at 1is white noise, i.e., E(ag) =0, E(a%) = og for
all t and E(atag) = 0 for all t # s. Stationarity of the model (1) is
guaranteed by requiring that the roots of the polynomial equation in B,

(1 - ¢B- ... - ¢po) = 0, all have modulus greater than unity. It is also
convenient to impose the invertibility condition, that the roots of

(L -6,B- ... - Oqu) = 0 all have modulus greater than unity. This ensures
uniqueness of representation of the model. A constant term can be added to (1)
to account for non-zero series mean.

For seasonal time series of period s (so that s = 4 for quarterly and
12 for monthly data) the model (1) can be elaborated to give the multiplicative
seasonal model
gP s pss
- - eee — - - eee = B X
(1 ¢1B ¢P ) (1 ¢1'SB ¢ )

(2)
= - - - q - S— - S
(1 91B ces 6 B7)(1 ellsB can 6 ,sB )at
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Stationarity and invertibility conditions for this model are obvious extensions
of those for (1).

Following the principles set out in (1), the fitting of models of the form
(1) or (2) to data involves an iterative cycle of identification, estimation
and diagnostic checking. At the identification stage, based on statistics cal-
culated from the data, a particular model is selected, that is specific values
for p,psrd and qg in (2) are chesen. The parameters of this model are then
estimated by asymptotically efficient statistical methods. Finally checks are
made on the adequacy of representation of the chosen model to the given data.
Any inadequacies revealed at this stage may suggest an alternative specification,
and the cycle is iterated until a satisfactory model is found. The model even-
tually obtained may then be projected forward to obtain forecasts of future
values of the time series.

Details of the model building and forecasting methodologies are given in
the books (1), (2) and (3) and more briefly in the paper (4). In the remainder
of this section we describe only those procedures whose properties are investi-
gated in the present study.

Consider, first, the problem of estimating the vector £ of unknown para-
meters in (1) or (2), under the additional assumption that a; is normally
distributed. The likelihood function can then be written

-n/2

2 2 2
L(B,0,|X )= (o))  £(B)exp.(-S(B,X )/20 ] (3)

where X, = (X3,X5,...,X) and f£(B) involves the parameters but not the data.
Analytic expressions for f(g) and S(B,X;) are given in (5), and an alterna-
tive form which can lead to great computational savings is given in (6). Maxi-
mum likelihood (M.L.) estimates of B are then obtained as those values which
maximize -

-n/2

L, (B]X ) = £(8)[S(8,X )] (4)

Now, clearly, as sample size increases (4) is dominated by its final term. If
f(B) 1is treated as roughly constant, then, this suggests use of the exact least
squares (E.L.S.) estimator which involves minimizing S(B,Xp). This has compu-
tational advantages over M.L., particularly if one adopts the approximation
involving "back-forecasting" proposed in (1). The name "exact least squares"
derives from the fact that s(§v§n) can be written as a sum of squares.

An estimator of greater computational simplicity is obtained by writing,
for example, (1) as
(5)

+ 6 + ... +

R L T R %3%-q
If ap+1_-(j =1,2,...,9) are set to their expected values, zero, ]
+j(J =1,...,n - p) can then be calculated recursively from (5) as functions
of the ¢; and ej, and these parameters estimated by minimizing the sum of
n
squares z az. This is the conditional least squares (C.L.S.) estimator.

t=p+1 t
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All three estimators are calculated by numerical function minimization and
for very large sample sizes they are virtually identical. However, in small
samples there are important differences and these are investigated in the next
section of this paper.

Now let B denote the coefficient estimates and at the residuals from the
fitted model. Since, if the model is correctly specified, the ai should be
white noise, it is natural in assessing model adequacy to examine the residual
autocorrelations.

32
1 t

(k =1,2,...) (6)

[N t=]

E A A
r, = a /
kK k41 EEK

These quantities are studied in (7) and (8), where it is shown that, if the model
is correctly specified, they are asymptotically normally distributed with zero
means and variances which we write as Vx(B). Unfortunately, Vk(B) is unknown,
but can be estimated by Vy(f), so that the distribution of N

t =&/, BN (k = 1,2,...) (7

should be close to a standard normal. Clearly, if this distributional approxima-
tion is valid, then large absolute values of the statistics (7) will indicate
probable model inadequacy.

Also in (7) a "portmanteau test" of model inadequacy involving the first m
residual autocorrelations is proposed. It is shown that, if the model is cor-
rectly specified the statistic

Q=n )] ¥ (8)

is asymptotically distributed as chi-squared with (m - k) degrees of freedom,
where k is the number of estimated coefficients, provided m is sufficiently
large (values of m > 20 are commonly used).

In fact the available evidence (see (9) and (10)) suggests that in finite
samples a closer approximation to the asymptotic distributions is likely to be
obtained by replacing ry in (7) and (8) by

1/2;

foX -
I,
k

X (k =1,2,...) (9)

[(n + 2)/(n - k)]

giving the statistics tﬁ and Q*. 1In section 3 of this paper we examine the
empirical distributions of these statistics.

Suppose now that the coefficients of (1) or (2) are known. Setting
t =n +h, these equations may be written in the form

Xoth = @nan T ¥2%en-1 Yoot P @) o % ¥y t ) (1O
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where the yj are known functions of the ¢; and ©j. It is then well known
that, given xn,xn_l,xn_z,..., the minimum mean squared error predictor of Xpin
linear in Xn.j(j =0,1,2,...) 1is the second bracketed expression on the R.H.S.
of (10). The other bracketed term is then the forecast error, so that the opti-
mum predictor has error variance

2 kol o,
V() =@+ § v (11)
a j=1 I

Now, in practice there are two reasons why (11) constitutes an understate-
ment of the best attainable forecast error variance. First, even if the model
parameters were known, given only a finite realization of the time series the
an_j(j = 0,1,2,...) required to compute the optimal predictor would be unknown
and would have to be estimated from data. Second, the model parameters them-
selves have to be estimated, and sampling variability in the parameter estimates
naturally leads to an increase in forecast error variance (see, for example, (11)).
Thus the best attainable V(h) in fact depends on the method of parameter esti-
mation employed, and comparisons will be made amongst estimators in this way in
the following section. More details on these points are given in (12).

In practice forecast error variance is estimated by substituting estimates
of og and of the model coefficients to calculate estimates of the Yy in (11).
This implies the possibility of further bias in the resulting estimator V(h)
and the quality of this as an estimator of forecast error variance is examined
in section 4 of the paper.

The results presented in the remainder of this paper summarize an extensive
simulation study covering a wide range of non-seasonal and seasonal time series
models. While we will discuss our findings in general, specific results will be
quoted for just two models. These are the ARMA(1l,1) model

X = a - fa (12)

N e T
and the first order multiplicative moving average quarterly seasonal model

= - - 4
xt (1 ela)(l 64B )at (13)

More detailed results are contained in (12), (13) and (14).

II. COMPARISON OF ESTIMATORS. In evaluating the performances of the M.L.,
E.L.S. and C.L.S. estimators we generated data from a range of models of the
form (1) and (2), taking the a; to be standard normal deviates. The estimates
were compared in terms of bias, mean squared error and the quality of the fore-
casts resulting from their use. 1In general our finding was that, if a single
estimator is to be recommended for all-purpose use, M.L. is preferable, as there
are circumstances where each of the others has undesirable features. It is not
the case that M.L. is invariably best by any of our criteria, but it is rarely
out-performed to any great extent.

To illustrate, Tables 1 and 2 contain results for the ARMA(1l,1) model (12)
with 50 observations. Clearly for this sample size the C.L.S. estimator can be
very badly biased with unacceptably large mean squared errors for large values
of |9| or vhen ¢ and 6 are close to one another in value. On the other
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hand, the E.L.S. estimator compares rather well with M.L. in terms of bias and
mean squared error. However, use of this estimator rather than M.L. would lead
to slightly inferior performance in terms of forecast error variance, except in
the extreme case le[ = 1.

Tables 3 and 4 contain similar results for the quarterly seasonal model (13).
The performance of the C.L.S. estimator for this model is rather poor for moder-
ate and large values of |e4|, where it is badly biased towards zero. On the
other hand E.L.S. is badly biased away from zero for small and moderately large
values of |64|. These characteristics are reflected in poor forecast perfor-
mances of these two estimators. Indeed, by this criterion, M.L. seems clearly
preferable except in extreme cases where one or other of the parameters is on
the boundary of the invertibility region. Here E.L.S. shows up rather well.
However, its doing so is in fact a reflection of a very undesirable character-
istic of this estimator. Even when the true values are inside the boundaries of
the parameter region, E.L.S. estimators are quite likely to fall on these bound-
aries. This point is illustrated for our two models in Tables 5 and 6.

Clearly, as would be expected, the problem is more severe for a sample of
50 observations than for one of 100 observations. Nevertheless it is by no
means negligible for the larger sample size. The importance of the problem lies
in the fact that, if the E.L.S. estimator were used, the analyst could frequently
be led to erroneous conclusions about the appropriate degree of differencing for
the data.

The results presented in this section are a small subset of these contained
in (13). From this larger study it emerged that the greatest differences between
the estimators arise in models with moving average terms. In that case there can
be problems in small samples with the use of either of the least squares estima-
tors. If the true parameter values are not quite far from the boundary of the
invertibility region, C.L.S. estimates can be badly biased to the center of that
region, with large mean squared errors and an associated poor forecasting per-
formance. On the other hand, when the true parameter values are some distance
from the boundary, the E.L.S. estimates can be biased towards the boundary with
rather large mean squared errors, resulting on occasions in poor forecasts.
Moreover, this estimator has a disturbing tendency to produce estimates on the
boundary of the invertibility region, even when the true parameter values are
well inside.

III. STATISTICS BASED ON RESIDUAL AUTOCORRELATIONS. We assume now that a
time series model has been fitted to data, the coefficients having been estimated
by maximum likelihood. 1In checking model adequacy it is natural to look at the
residual autocorrelations for the first one or two lags and at low multiples of
the seasonal period. The statistics tﬁ, based on (7) and (9) could then be
used to suggest possible model inadequacies. However, it is first necessary to
inquire whether, for correctly specified models, the distribution of these
statistics is sufficiently close to standard normal. In (14) it is shown that,
for first order autoregressive and moving average models, even for samples of
only 50 observations, the distributional agreement in the tail areas is quite
close. However, for two parameter models the situation is rather less clear, as
can be seen from Table 7.

For the ARMA(1l,1) model the empirical significance levels agree very well
with the asymptotic levels for k > 1, even for sample size 50. However, for
this sample size, a test based on the first residual autocorrelation would
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reject the hypothesis of correct specification too frequently when the true para-
meter values are fairly small. The situation improves markedly, however, as the
sample size increases to 100. The only case which gives difficulty here is the
model

- o.sxt_ =a - 0.4at_ (14)

xt 1 1
which again would be rejected far too often by a test based on the first resid-
ual autocorrelation. In fact this is not alarming as, for such a small sample
size, it would rarely be fitted since in practice it would be virtually indis-
tinguishable from the simpler hypothesis that Xt = ay, i.e. that the data is

white noise.

This is typical of the results found in (14) for non-seasonal models. The
test statistics behave very much like the corresponding asymptotic distributions
except in cases of near-overparameterization (which would be unlikely to be iden-
tified in practice). In these circumstances the test statistic based on the
first residual autocorrelation tends to give too many large values.

For seasonal time series models it is natural to check not only the low order
residual autocorrelations, but also those at small multiples of the seasonal
period. For the quarterly moving average model (13) some results are shown in
Table 8. Of course, it is almost invariably the case that the agreement between
empirical and asymptotic distributions improves as sample size increases. Never-
theless, the improvement from sample size 50 to 100 here is remarkable. For the
larger sample size the empirical significance levels are generally quite close
to the asymptotic levels, suggesting that for this sample size interpretation of
the statistics is straightforward. On the other hand, for the smaller sample
size the empirical significance levels are frequently too high, particularly at
those lags associated with the seasonal frequency. These results are typical of
these reported in (14).

We now consider the portmanteau statistic Q*, based on (8) and (9).
Although this statistic is almost invariably calculated in practical time series
studies, published evidence of its empirical distribution is sparse, the prime
exception being in (10), where just the simple first order autoregressive model
is examined. Tables 9 and 10 show empirical significance levels for the models
(12) and (13). The evidence in these tables certainly reflects variability
between models and also variability between parameter values within the same
model. However, it is quite clear (and this is confirmed by further evidence in
(14)) that the empirical significance levels are generally "too high". This
observation accords with a prediction made from theoretical considerations in
(9). Generally speaking, the discrepancies between the empirical and asymptotic
distributions are likely to be largest for small sample sizes, for seasonal
models, and in the extreme tail areas of the distributions. However, it is clear
from the tables that even for samples of 100 observations, for such relatively
simple two parameter models, use of the Q* statistic can lead to rejection of
a correctly specified model far more often than reference to the asymptotic sig-
nificance levels would indicate.

An additional consideration when using any test statistic, of course, con-
cerns its power. Some evidence on the frequency with which the portmanteau test
detects model misspecifications of varying degrees of severity is contained in
(15), where it was found that, unless the sample size is large, the test can
have disturbingly low power.
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IV. ESTIMATION OF FORECAST ERROR VARIANCE. When a fitted time series model
is projected forward to obtain forecasts, it is usual to estimate the error vari-
ance by substituting estimates of the unknown parameters in (11). The w in
that expre531on are estimated in an obvious way from the coefficient estlmates
¢1 and 6 . If, as will be assumed in this section, the model is estimated by
maximum 11ke11hood, it follows from (3) that the innovation variance o3 is
estimated by

A2 _ -~
Ua = S(.B,'En)/n (15)

where § is the vector of maximum likelihood coefficient estimates. With these
substltutlons, we denote the estimate of V(h) of (l1) as V(h)

In fact, as we have already noted, the minimum attainable forecast error
variance, V,(h), will be greater than V(h). This is so, since the expression
(11) takes no account of sampling variability in the parameter estimates or of
the fact that only the finite past of a time s§ries is available for the compu-
tation of forecasts. It is likely then that V(h) will be a biased estimator
of V,(h). 1In this section we examine the extent of that bias. It should be
emphasized that our results are specific to the case where parameter estimation
is by maximum likelihood. In particular circumstances, rather different conclu-
sions can hold for alternative estimators, as illustrated in (12).

Tables 11 and 12 contain values of (E(V(h)) - v,(h))/v, (h) estimated by
simulation for the models (12) and (13). The general picture emerging from these
tables is of a moderate downward bias in V(h). For one step ahead prediction in
the ARMA(1l,1) model this is in the neighborhood of 5-10% of the true variance for
sample size 50, and 3-6% for samples of 100 observations. For the seasonal model
the corresponding figures are slightly higher. Perhaps the outstanding feature
of the tables concerns prediction 10 steps ahead for ARMA(l,1) models with the
higher autoregressive parameter value. Here the bias can be around 20% of the
true variance for 50 observations and around 12% for twice that sample size.

Although, with this latter exception, the tables suggest some uniformity in
the proportionate bias, the causes of that bias differ substantially between
models and parameter values. We suggested previously four potential causes of
bias in the usual estimator of forecast error variance. It is of interest, now,
to examine these factors in a little more detail.

Suppose, for now, that the parameter values are given. It is still the case
that, if the model contains moving average terms and only the finite past is
available to compute forecasts, the minimum attainable forecast error variance
will be somewhat higher than (11). This factor is only of practical significance
when the moving average coefficients are on or very close to the boundary of the
invertibility region. Even then, for the kind of sample sizes considered here,
it is relatively unimportant for simple non-seasonal models. For example, for
the ARMA(1,1) models of Table 11 for sample size 50 it accounts for an addition
of at most 2% (when 6 = -1) to one step ahead prediction error variance, and
less for prediction further ahead. On the other hand, for seasonal moving aver-
age models, in small samples this factor can be more substantial. For example,
for the multiplicative first order moving average quarterly model, in the
extreme case 6) =1, 64 = 1, the minimum attainable one-step forecast error
variance is 13.4% higher than (11) for sample size 50 and 6.9% higher for sample
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size 100. However, the effect quickly dies out as the parameters move away from
the boundary. For example, for 6; = 0.85, 64 = 0.85 the inflation factor for
one step ahead prediction is only 0.5% for sample size 50.

The necessity to estimate the model parameters inflates forecast error vari-
ance by a proportion in the neighborhood of K/n, where K is the number of
estimated coefficients. There is, of course, some variability here. A particu-
lar case is in forecasting several steps ahead when the optimal predictor is
dominated by a relatively low autoregressive term. In this case the influence
of estimation error can be very slight. For example, for the ARMA(1l,1) model
for ¢ = 0.5, 6 = -0.4, h = 10, estimation error in the parameters adds only
0.1% to (11). This factor is discussed in more detail for non-seasonal models
in (11) and (16).

For maximum likelihood estimation, the estimate (15) of residual variance
tends to be slightly biased downwards. An exception is the case where moving
average coefficients are on or very close to the boundary of the invertibility
region, when the bias is upwards. In this latter case some of the effects of
the inflation caused by only having the finite past to calculate forecasts are
cancelled out, and this explains why the estimates of error variance when moving
average terms are on the boundary of the invertibility region do not have a more
severe downward bias. For examgle, for the multiplicative first order moving
average quarterly model with o =1 and n = 50, for 65 = 0.85, 64 = 0.85,
E(03) = 0.92, while for 6; =1, 84 = 1, E(62) = 1.05.

h-1 2
Finally, the term Z wj in (11) is generally well estimated by substitu-
j=1
tion of the parameter estimates, except for moderately large h in models con-
taining autoregressive factors close to the stationarity boundary. This is the
reason for the serious under-estimation of forecast error variance in the
ARMA(1,1) model for ¢ = 0.95, h = 10 noted in Table 1l.

These factors are all discussed in more detail for a wider range of models
in (12).
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Estimated coefficient biases for ARMA(1l,l) process

[n = 50; 1,000 replications]

Bias §
M.L. E.L.S. C.L.S.
0.172 0.096 0.505
0.090 0.067 0.298
6.039 0.017 0.046
0.028 0.012 0.033
0.027 0.009 0.024
0.026 0.007 0.023
0.064 0.054 0.184
0.061 0.053 0.191
0.119 0.064 0.191
0.038 0.031 0.016
0.007* 0.004* -0.001*
0.005* -0.008 -0.026
-0.013 0.006* 0.010
-0.020 -0.010 0.007*
-0.033 -0.020 -0.016
-0.120 -0.064 -0.181
-0.072 -0.046 -0.183
-0.064 -0.055 -0.182
-0.028 -0.004 -0.024
-0.026 -0.010 -0.025
-0.030 -0.007 -0.035
-0.046 -0.017 -0.047
-0.096 -0.050 -~-0.281
-0.168 -0.103 -0.526

Bias @

M.L. E.L.S. C.L.S.
0.112 0.042 0.468
0.074 0.050 0.286
0.026 0.006* 0.029
0.015 0.033 0.017
0.025 0.053 -0.012

-0.028 -0.008 -0.098
0.041 0.011 0.180
0.001* -0.017 0.143
0.114 0.047 0.178
0.032 0.040 0.018
0.025 0.056 -0.016

-0.032 -0.008 -0.105
0.027 0.007 0.105

-0.021 -0.057 0.018

-0.036 -0.034 -0.013

-0.114 -0.056 -0.164

-0.009* 0.025 -0.128

-0.040 -0.011 -0.181
0.030 0.008 0.105

-0.020 -0.056 0.019

-0.01° -0.028 -0.018

-0.034 -0.012* -0.015*

-0.07 -0.028 -0.264

-0.110 -0.051 -0.500

*Bias is not statistically significant at 5% level.
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Table 2: Estimated coefficient mean squared errors and forecast error variances
for ARMA(1,1) process [n = 50; 1,000 replications]

M.S.E. & (x 103) M.S.E. 8 (x 103) V(1)
¢ [] M.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S.
-0.95 -1.00 90.5 28.1 502 63.8 23.2 510 1.054 1.050 1.065
-0.95 -0.85  52.0 50.7 298 70.8 86.2 320 1.036 1.058 1.057
-0.95 -0.40  9.41 7.09  13.2 33.4 34.3  36.8 1.037 1.053 1.048
-0.95 0.40 4.78 4.85  5.54 22.7 30.2  23.6 1.043 1.051 1.049
-0.95 0.85 4.40 3.8  4.36 9.04 12.5 10.1 1.039 1.063 1.047
-0.95 1.00 3.91 3.20 5.19 3.1 1.12 17.8 1.055 1.050 1.101
-0.50 -1.00  29.0 20.9  91.7 9.60 2.09 104  1.059 1.053 1.114
-0.50 -0.85  57.6 59.2 122 38.6 40.1 121  1.041 1.059 1.053
-0.50 =-0.40 234 214 283 287 255 323 1.044 1.047 1.045
-0.50 0.40  34.1 35.4  29.5 40.8 43.0  40.3 1.049 1.049 1.050
-0.50 0.85 17.1 17.1  18.1 1.1 12.9  12.6 1.047 1.061 1.054
-0.50 1.00 14.4 14.7  18.4 4.18 0.95 20.0 1.066 1.047 1.100
0.50 -1.00 13.8 13.8  20.1 3.46 0.82  20.8 1.055 1.046 1.095
0.50 -0.85 19.5 17.6 17.8 10.5 13.7 12.5 1.045 1.068 1.058
0.50 =-0.40  31.9 31.3  30.0 40.8 45.0  42.9 1.046 1.053 ‘1.051
0.50 0.40 241 199 282 294 253 329  1.043 1.044 1.046
0.50 0.85 60.9 54.8 118 40.4 38.2 104  1.046 1.062 1.059
0.50 1.00  30.1 24.8  90.3 9.36 4.76  96.9 1.059 1.054 1.104
0.95 -1.00 3.71 3.08  4.08 3.72 1.10  20.3 1.056 1.049 1.101
0.95 -0.85 3.64 4.06 4.76 10.1 12.6 11.6 1.039 1.065 1.046
0.95 -0.40 5.16 4.12  6.02 23.8 23.4  23.9 1.039 1.051 1.044
0.95 0.40 14.0 9.91  13.2 38.4 38.9  38.6 1.042 1.060 1.054
0.95 0.85 67.4 39.9 258 87.6 71.7 276  1.041 1.070 1.051
0.95 1.00 93.9 42.4 520 68.6 36.6 547  1.048 1.050 1.060
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Table

01
-1.00
-1.00
-1.00
-1.00
-1.00
-1.00
-0.85
-0.85
-0.85
-0.85
-0.85
-0.85
-0.40
-0.40
-0.40
-0.40
-0.40

-0.40

3: Estimated coefficient biases for multiplicative first order
50; 600 replications]

moving average quarterly models [n

04
-1.00
-0.85
-0.40

0.40
0.85
1.00
-1.00
-0.85
-0.40
0.40
0.85
1.00
-1.00
-0.85
-0.40
0.40
0.85

1.00

M.L.

0.030

0.035

0.031

0.039

0.048

0.042

-0.012

-0.018

-0.022

-0.018

-0.025

-0.029

-0.006*

-0.003*

-0.017

0.003*

-0.019

-0.007*

Bias 51

E.L.S. C.L.S.
0.011 0.085
0.010 0.089
0.009 0.091
0.006 0.171
0.004 0.256
0.001 0.264
-0.038 0.004*
-0.045 0.013
-0.049 0.005*
-0.054 0.062
-0.094 0.141
-0.103 0.147
-0,010* -0.010*
-0.013 0.002*
-0.015 -0.014
-0.025 -0.001*
-0.044 0.005*
-0.032 0.007*

Bias 64

E.L.S. C.L.S.

0.083

-0.020

0.005*

0.046

0.033

-0.064

0.082

-0.014

-0.007*

0.030

0.010*

-0.074

0.076

-0.022

-0.008*

0.017

0.007*

-0.080

o* 0.257

-0.133 0.128

-0.056 0.010*

0.149 -0.006

0.142 -0.164

o* -0.287

o* 0.245

-0.132 0.122

-0.075 0.007*

0.105 0.000*

0.141 -0.156

o* -0.278

o* 0.241

-0.130 0.117

-0.079 -0.007*

0.084 -0.009*

0.137 -0.119

0 -0.249

*Bias is not statistically

significant at 5% level.
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Table 4: Estimated coefficient mean squared errors and forecast error variances
for multiplicative first order quarterly moving average models
[n = 50; 600 replications]

M.S.E. 87 (x 103) M.S.E. 84 (x 103) V(1)

_0_1_ Ei M.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S.
-1.00 -1.00 2.83 1.46  13.2 17.4 0 80.1 1.149 1.113 1.471
-1.00 -0.85 4.30 1.13  13.7 14.9 22.4  31.1 1.077 1.055 1.250
-1.00 -0.40  3.79 1.09  15.3 23.0 49.8 23.8 1.072 1.089 1.189
-1.00 0.40  6.42 1.09  44.4 29.6 80.1 26.9 1.066 1.133 1.272
-1.00 0.85 6.67 0.92  84.5 14.1 22.5  41.1 1.092 1.070 1.425
-1.00 1.00 6.26 0.24  90.7 13.5 0 95.7 1.182 1.134 1.503
-0.85 =-1.00 7.79 12.9  9.59 17.2 0 74.1 1.126 1.124 1.410
-0.85 -0.85 8.06 12.0  9.90 16.3 23,2  28.8 1.051 1.065 1.192
-0.85 -0.40  9.39 12.9  9.38 26.9 53.6 24.5 1.051 1.108 1.140
-0.85 0.40 11.3 13.5 16.1 32.1 63.1  23.9 1.052 1.113 1.076
-0.85 0.85 11.8 18.2 39.3 18.2 22.6  38.5 1.057 1.068 1.178
-0.85 1.00 9.19 19.1  42.9 15.3 0 89.9 1.130 1.124 1.383
-0.40 -1.00 15.8 20.0  22.6 17.0 0 70.0 1.127 1.102 1.205
-0.40 -0.85 18.9 24.8  21.3 17.8 22.5 25.2 1.047 1.056 1.087
-0.40 -0.40  25.9 24.3  24.0 27.9 52.0 23.6 1.057 1.088 1.065
-0.40 0.40  21.7 25.5  21.1 26.6 56.3  23.9 1.045 1.106 1.048
-0.40 0.85  22.7 36.2  26.7 19.7 22.7  26.7 1.052 1.074 1.092
-0.40 1.00  19.5 33.4  25.3 17.8 0 73.9 1.128 1.121 1.218




Table 5:

Percentage times an E.L.S. parameter estimate is on the boundary
of the stationarity or invertibility region for ARMA(l,1l) process
[1,000 replications, n=50; 600 replications, n=100]

% 6 n=50 n=100 [ 6 n=50 n=100
0.50 -0.85 46.7 8.7 0.95 -0.85 47.4 17.3
0.50 -0.40 1.4 0 0.95 -0.40 10.8 0.3
0.50 0.40 15.2 5.5 0.95 0.40 19.8 0.8
0.50 0.85 53.0 26.8 0.95 0.85 54.0 19.8
Table 6: Percentage times an E.L.S. parameter estimate is on the boundary
of the invertibility region for multiplicative first order moving
average quarterly models [600 replications]
EL 2& n=50 n=100 gl gi n=50 n=100
0.40 0.40 9.3 0.2 0.85 0.40 57.3 22.2
0.40 0.85 92.3 73.7 0.85 0.85 98.0 78.3
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Table 7: Empirical significance levels of the statistic ti for ARMA(1,1)
models [1,000 replications, n = 50; 600 replications, n = 100]

n = 50 n = 100
$ 8 K 0.05 level 0.10 level 0.05 level 0.10 level
0.50 -0.85 1 0.111 0.186 0.072 0.128
2 0.063 0.109 0.040 0.095
3 0.052 0.112 0.055 0.103
0.50 -0.40 1 0.184 0.257 0.068 0.130
2 0.050 0.105 0.055 0.100
3 0.045 0.099 0.057 0.112
0.50 0.40 1 0.147 0.195 0.197 0.248
2 0.055 0.107 0.095 0.143
3 0.051 0.103 0.047 0.097
0.50 0.85 1 0.072 0.141 0.058 0.108
2 0.052 0.112 0.058 0.098
3 0.049 0.092 0.042 0.100
0.95 -0.85 1 0.066 0.133 0.053 0.100
2 0.059 0.099 0.043 0.112
3 0.065 0.110 0.058 0.110
0.95 -0.40 1 0.101 0.157 0.063 0.120
2 0.065 0.116 0.077 0.130
3 0.052 0.114 0.053 0.083
0.95 0.40 1 0.113 0.175 0.078 0.122
2 0.060 0.102 0.045 0.093
3 0.041 0.086 0.062 0.120
0.95 0.85 1 0.068 0.130 0.055 0.130
2 0.058 0.133 0.062 0.110
3 0.057 0.109 0.055 0.090
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Table 8:

0.40

0.40

0.85

0.85

Empirical significance levels of the statistic tﬁ for multiplicative
first order moving average quarterly models [600 replications]

0.40

0.85

0.40

0.85

=

n = 50 n = 100
0.05 level 0.10 level 0.05 level 0.10 level
0.060 0.100 0.053 0.102
0.040 0.080 0.038 0.097
0.067 0.125 0.047 0.102
0.057 0.105 0.045 0.093
0.105 0.152 0.063 0.133
0.050 0.087 0.055 0.107
0.085 0.150 0.050 0.107
0.085 0.120 0.073 0.135
0.052 0.100 0.050 0.093
0.048 0.102 0.047 0.108
0.107 0.163 0.058 0.122
0.072 0.135 0.052 0.095
0.048 0.108 0.052 0.125
0.042 0.093 0.050 0.093
0.093 0.162 0.045 0.087
0.097 0.165 0.057 0.128
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Table 9: Empirical significance levels of the statistic Q* for ARMA(1l,1) models
[m = 20; 1,000 replications, n = 50; 600 replications, n = 100]
n = 50 n = 100
$ 6 0.05 level 0.10 level 0.20 level 0.05 level 0.10 level 0,20 level
0.50 -0.85 0.104 0.169 0.267 0.053 0.112 0.212
0.50 =-0.40 0.069 0.106 0.198 0.068 0.110 0.208
0.50 0.40 0.080 0.132 0.224 0.072 0.123 0.200
0.50 0.85 0.100 0.152 0.243 0.068 0.112 0.212
0.95 -0.85 0.102 0.153 0.267 0.065 0.132 0.228
0.95 -0.40 0.092 0.146 0.256 0.072 0.128 0.208
0.95 0.40 0.078 0.123 0.218 0.077 0.138 0.248
0.95 0.85 0.106 0.179 0.272 0.105 0.167 0.275
Table 10: Empirical significance levels of the statistic Q* for multiplicative
first order moving average quarterly models [m = 24; 600 replications]
n = 50 n = 100
El Eﬁ 0.05 level 0.10 level 0.20 level 0.05 level 0.10 level 0.20 level
0.40 0.40 0.065 0.123 0.210 0.050 0.100 0.212
0.40 0.85 0.135 0.223 0.330 0.088 0.157 0.245
0.85 0.40 0.105 0.143 0.253 0.077 0.133 0.213
0.85 0.85 0.168 0.235 0.338 0.095 0.160

0.255"




Table 11: Estimates of (E(V(h)) - v,(h))/v, (h) for ARMA(1,1) models
{1,000 replications, n=50; 600 replications, n = 100]
n=50 n=100
) ] h=1 h=2 h=10 h=1 h=2 h=10
0.50 -1.00 -0.058 -0.060 -0.009 -0.036 -0.038 -0.010
0.50 -0.85 -0.097 -0.077 -0.013 -0.060 -0.049 -0.027
0.50 -0.40 -0.087 -0.067 -0.004 -0.038 -0.029 0.005
0.50 0.40 -0.079 -0.036 -0.005 -0.040 -0.024 -0.012
0.50 0.85 -0.077 0.007 0.022 -0.053 -0.011 -0.003
0.50 1.00 -0.068 0.009 0.005 -0.033 0.002 -0.002
0.95 -1.00 -0.062 -0.083 -0.194 -0.033 -0.045 -0.119
0.95 -0.85 -0.080 -0.076 -0.178 -0.047 -0.048 ~-0.136
0.95 -0.40 -0.071 -0.069 -0.180 -0.037 -0.040 -0.118
0.95 0.40 -0.098 -0.100 -0.204 -0.039 -0.046 -0.126
0.95 0.85 -0.081 -0.064 -0.067 -0.036 -0.027 -0.019
0.95 1.00 -0.069 -0.034 0.002 -0.033 -0.019 0.003
Table 12: Estimates of (E(V(h)) - V,(h))/NV, (h) for multiplicative
first order moving average quarterly models [600 replications]
n=50 =100
& M Bl B2 k4 B 2 M
0.40 0.40 -0.087 -0.028 -0.026 -0.046 -0.023 -0.023
0.40 0.85 -0.121 -0.078 -0.084 -0.073 -0.050 -0.048
0.40 1.00 -0.086 -0.052 -0.056 ~0.052 -0.031 -0.034
0.85 0.40 -0.101 -0.064 -0.060 -0.058 -0.036 -0.032
0.85 0.85 -0.138 -0.096 ~-0.092 -0.068 -0.042 -0.043
0.85 1.00 -0.106 -0.066 -0.057 -0.052 -0.018 -0.018
1.00 0.40 -0.072 -0.061 -0.062 -0.041 -0.036 -0.036
1.00 0.85 -0.106 -0.087 -0.090 -0.066 -0.061 -0.062
1.00 1.00 -0.105 -0.071 -0.071 -0.040 -0.028 -0.032
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STATISTICAL PROBLEMS ASSOCIATED WITH THE HORIZONTAL CHANNEL
OF THE RAPID GEODETIC SURVEY SYSTEM (RGSS)

H. Baussus von Luetzow
U.S. Army Engineer Topographic Laboratories
Fort Belvoir, Virginia
ABSTRACT

The paper discusses the estimation of deflections of the vertical along with
horizontal gyro biases from a set of given and measured data as a statistical
adjustment problem. In conjunction herewith, it presents a quasi-optimal esti-
mation method and necessary covariance functions. It further outlines the

estimation of gridded deflections from RGSS data and improved stochastic
position error control.

1. INTRODUCTION

The involvement of the U.S. Army Engineer Topographic Laboratories (ETL) in the
field of inertial surveying and, subsequently, in inertial geodesy, can be
characterized by three phases. Phase I comprised the development of a Position
and Azimuth Determining System (PADS) primarily in support of U.S. Army
artillery and was completed in 1972. Phase II was concerned with the instal-
lation of a higher-accuracy vertical accelerometer for improved vertical
positioning and the inclusion of software and a data storage unit for the
determination of gravity anomalies and deflections of the vertical components

€ and n under consideration of initial and terminal gravity vector components.
The modified PADS operates as an optimal local-level system in the Inertial
Positioning System (IPS) mode and as a quasi-local-level system in the Rapid
Geodetic Survey System (RGSS) mode. The RGSS mode without Kalman platform tilt
corrections has advantages concerning gyro bias estimations and thus for the
determination of £ and n . Phase 11 was essentially completed after ETL tests
at White Sands Missile Range in 1976. These tests established an RGSS capability
of determining gravity anomalies and deflection components with average rms
errors of 2 mgal and 2 arcsec, respectively for 50 km runs in comparison with

unreduced rms values of 35 mgal and 5 arcsec. Phase III concentrates essentially
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on additional RGSS testing in the vicinity of Washington, D.C., the development
of improved methods for the determination of £ and n and their implementation,
improved stochastic error control for positioning, and desirable hardware
improvements, notably the installation of two Al000 accelerometers in the
horizontal channel. With sufficient funding, it could be completed in 1981
and should permit £, n-determinations with a mean standard error between 0.5
and 1.0 arcsec without repetitions, and improved positioning. Promising
RGSS applications are:
*Rapid Ag, £, n-determinations along solitary courses of about 60 km length.
*Establishment of regional Ag, &, n-grid information networks suitable for
use in a gravity-programmed inertial positioning system and for analy;ical
continuation in space in the case of flat or moderate terrain.
*Improved point positioning approaching classical surveying accuracy.
*Flood plain profiling and mapping under consideration of the underlying
geoidal structure.
*Geophysical prospecting.
Section 2 of this paper describes quasi-optimal and suboptimal methods for the
determination of £ and n by means of RGSS and auxiliary data. Section 3 gives
a short overview as to required auto-correlation functions. Section 4 outlines
the construction of regular £, n-grid networks from solitary course data.
Finally, section 5 addresses essentially improved stochastic position error
control which would be particularly valuable in the context of local surveying

within a radius of about 20 km from the starting point.



2. Optimal and Suboptimal Post-Mission £, n-Estimation.

The error differential equations of interest, applicable to horizontal motion,

are for the RGSS:

d z=--13 (1)
dat R

- b
%{ X = Syl = 9% +9n + ag (3)
%t9=-sE¢z+g¢E-9£+aN (4)
gf ¢z = tnﬁé.- (QN + Py sec29) ; + wdp + a (5)
%f oy = %. + wydn + B (6)
%t 5 ="'{1;‘ tughyt Nl Y (7)

For simplicity, the symbol § in front of the dependent variables has been

omitted. The applicable coordinate system is evident from Figure 1.

y (North)

D

—X (East)

Figure 1

Applicable Coordinate System
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Symbols used in the foregoing local level equations are:

x east angular position error
y north angular position error
x east velocity error
y northvelocity error

azimuth axis angular drift rate error!
g north axis angular drift rate errorl
y east axis angular drift rate error!

g normal gravity

¢ geographic latitude

R mean earth radius

| azimuth platform attitude error

3 platform tilt error about north axis

¢ platform tilt error about east axis

gn = %‘—' product of g and deflection component?
b4

gf = - :—: product of g and deflection componentz

dVu

Sy = gz north acceleration of survey vehicle

sg = g%g. east acceleration of survey vehicle

ap correlated east accelerometer error

ay correlated north accelerometer error

lcuT4(c=-%),B=F+ (B-B), Y=Y+ (y +Y) where the bar symbol
indicates constant bias and the terms in parentheses are correlated random
errors.

2 ¢ i5 the earth's anomalous gravity potential. The derivatives 2 and L

ox
are taken along the level horizon in the eastern and no::i:her:nd:i.!:ecl:icm,ay

respectively.
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Qcos$ north earth rate

2

3

O
]

VE/R north angular rate

€
L]

QN + pN = Qcosé$ + VE/R north spatial rate

€
(]

E Pp = - N/l?. east spatial rate

w, = ﬂz + Py = Qsind + VE/R * tn¢ vertical spatial rate

In inertial land navigation, terms involving w, in equations (5) and (6)
are neglected in Litton's Kalman error controller. The initial conditions

= ©) 5 0 = 0) o $@Q. ;O ,@. ,0_ o .
at time to 0 are Qz o, ON Nyr QE Eo, X y x Y 0
The system (5)-(7) can be approximately solved in closed form for conatant gyro biases
E, E, 7 The solution is, with wN = QN and wz = nz,
¥,(t) = Yeos® + Q71 (1 - cos@t) + Bsiné cosdt - Q! sinQt)
+3(sin2¢ « t + cos2¢ + Q" lsinqt) (8)

?iN(t) = Ysin® ¢+ Q7! (cosQt - 1) + B(cos2® + t+sin2d - 9 lsginQt)

+ asind cos®(t - 9 lsinQt) (9)
TiEm = Y2~ lsinQt + Bsin® 27! (1 - cosqt)
+ acos® Q-1 (cosfit - 1) (10)

The substitution of 32 (t), 3N(t) , and TE(t) , respectively in equations (3)
and (4) permits the direct assessment of gyro bias effects on 3; and x
In order to provide for quasi-continuous time integration for intervals A

between stops, successive representative £'s and n's for constant time

3 In the error equations, normal and meridional radii with respect to the
reference ellipsoid may be replaced by R for IVI < 100 km h~l.
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intervals At are designated by a subscript v. Subsequently, numerical inte-
gration with respect to time yields the following solution

structure for the first interval between stops, identified by A = 1:

IA £ +IB n +Ca+DB +Ey+ZIa (ad-a)+Ib (B-B)+c (Y -vy)
lv v lv v 1 1 1 1v v v v l1v v v

+ + = x (11)
zAlvan z:Bl\)aE\) * * ¢l(£0'n0'£e'ne)

LG + IH +Ja+KB+LY+Zd (a-a)+ Ze -B)+ £ -y
lva lvnv 1l 18 lY lv( v ) lv(Bv B) lv(Yv )

+3 + IH v+ ¥ ,
vy 1v2Ev Yy + ¥ (Egr g £ ) (12)

The terms involving a, Bv' Yy and stochastic accelerometer-induced errors
are only used for the computation of error covariance matrices which are
necessary for the establishment of a priori weights in a least-squares
solution. The terms Ql and Wl represent known linear functions. The small
terms SN¢Z and SE¢Z in equations (3) and (4), respectively are omitted prior to

the determination of constant gyro biases and may be considered in an

iterative scheme.

The variables Ev and nv except go, Ee' no, ne as given initial and terminal

values are estimated by means of statistical collocation by suitably spaced

- ~

Ei and ni the number of which should be chosen to achieve sufficient degrees
of freedom in a post-mission adjustment. Accordingly, under consideration

of representative Ev = Ev[x(t), y(t)]1, n, = nv[x(t), y(t) ],
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g =Im &, (13)

v vi'i (14)

A

under consideration of EO = 60, no = no. e e’ e o

For short distances no advantage is gained from estimating £, and n,
in equations (13) and (14) by additional terms containing ﬂi and éi'
respectively.

Substitution of Ev and ﬁv estimates (13) and (14) in A equations of

the form (11) and (12) yields the final observational equations:

) .
By o= M8 v Iy

n ¥ 5
ny + C)‘u + DAB- + EAY (15)

i

F(2)_£P £ + I : + H,a + J,B + K,Y
A = LBy &) Y IQyyn; + Hya + Ty AY (16)

- + + + + =
(YA ekgo fAno ' glﬁe hAqe) 0
A weighted least-squares solution yields Qquasi-optimal deflections of the
vertical together with gyro biases and also makes it possible to provide
error estimates thereof. Approximate constant survey vehicle velocities
between stops and standard vehicle acceleration and deceleration would

simplify the analyses and contribute to greater accuracy.

The geometrical considerations relating to equations 6411) - (14) are

evident from Figure 2 .
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At = const.

Figure 2

Traverse with Stops S, and Point Estimates Ei' ny and Segment S

A ofsl

For the computation of mos and nvi it is necessary to record t, x, y, to

tabulate these data together with stop and point estimation coordinates

~ ~

X,, Y5+ X, ¥y, to compute distance and correlation matrices [rv.] and [Dv,],
i i

and finally to determine m. and nvi-regression coefficients under restriction
to five appropriate Ei or ﬂi-estimators. In a strict solution, corresponding
mvi's and nvi's differ from each other. In practice, it may be possible to
use isotropic correlation functions for both £ and n because of short
distances involved (see section 3). Due to the small correlation between

E and a for short distances no advantage is gained by estimating Ev and n,

in equations (13) and (14) by additional terms containing ny and Ci'

respectively.



The present quasi-optimal method is illustrated by the following: The
observable acceleration error at the first vehicle stop is

y; = 9bgy - 9 (E) - E) +ay, a7
under consideration of the initial deflection component £,. The tilt error
¢g1 is then estimated by means of the observable velocity errors il and §1
according to the linear regression equation

bgy = By% + By¥y (18)
The accelerometer is then biased according to

Yp, = ¥ - T (19)

The deflection difference of interest is then estimated as

£y = £y =m—= - —= (20)
With respect to the second stop interval it is

§2 =g (¢g - 331) + gbdp, - g (8, = E)) + ag, (21)
where S8¢p, is estimated in the form

5$E2 = a,k, + B,7, (22)
Subsequently,

§Bz =y, - g8b,
The second deflection change estimate is then

Yp DN
2 2
82 8%=""9g =" 5 (23)

The accuracy of deflection determination is thus dependent on the accelerometer

error, gyro bias error, and the cumulative tilt estimation error.
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With Ex-go = A as initial estimates, it is

(1)_ 1 (1) 2 1 (1)_ (1)
£= £+ ,5‘2 TSP E‘e Er(.

N (24)
1 -1

) AP An-l

Following estimation of E; and n;, the closing errors £e-£é and ne-n; are

available for the approximate determination of average gyro biases @, B, Y.
However, at least one additional intermediate §{ or n is required for a unique
bias calculation. Finally, bias corrections to the initial deflection components

(1)

EA can be applied as

8, = (6 - &EA)Bias (25)

EX
In contrast to the above procedure, the prior quasi-optimal method

for the determination of éi and ai-data contains sufficient degrees of freedom
for the simultaneous estimation of gyro biases. It is, however, of significance
that ix and §A of the general optimization method and iLA and §LA of the present
RGSS mechanization are different because of implemented Kaiman "corrections"

a$EA and 6$Nx. it is, e.g.,

. f=A-1 ~
Iy Tt 9L S0 (k) (26)

with A>2. While the identified accelerometer "corrections" permit an
improvement in stochastic position determination, they are not beneficial with

respect to optimal £, n-determinations.

The present suboptimization method is due to Huddle [1977 ] while the quasi-
optimization concept was originally formulated by Baussus von Luetzow [1977].

3. Necessary Covariance Functions

Useful and consistent covariance functions, including cross-covariances, per-
taining to Ag, £ and n are those developed by Jordan [1972]. The covariance

functions are:

2 2 r 2, -r/D 27
8gg(x) = og $gg = 0g (1 + § - Z-ple (27)
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= 2 = 2 r._ r2 2 -r/D

°£g (r, ©) °§¢EE Of 1+ Y cos ©) e 28)
2 2 2 .9 -r/D

®n (r, ©) =opé o (1+ r. %r sin® @) e (29)

nn n D

Suitable constant parameters are

Og = OAg = 35 mgal, og = on = 5 arcsec, D=37 km.

Cross-covariance functions, although available and includable in the general
optimization method outlined in section 1, are not shown here. For short
distances, cross-correlations tend to be small, and they become hardly sig-
nificant for longer distances. The assumption of (approximate) homogeneity
applies to all covariance functions. The geometry relating to an arbitrary

2 point-correlation is evident from Figure 3.

)
|
|

| o

Figure 3

2 Point-Correlation Geometry

Basic, direction-independent correlation functions ¢gg' ¢ (r, 8) and

122

$n’ (r, ©) are shown in Figure 4.
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+---Ag-Correlation Function ¢ (x)
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©6---n -Correlation Function ¢nn for =0
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covariance functions pertaining to correlated gyro drift errors and correlated

t
T . Parameters to be used are

accelerometer errors are approximated by A * e
Og = 0.002°/hr and 6= 2 hr in connection with Litton's G200 gyroscopes, and

10 pgal and TA = 40 min in the case of Litton's A200 accelerometers.

92



4. Estimation of Gridded §{, n-Data from Discrete RGSS-Determined &, n-

Information
For a mathematically satisfactory solution of the estimation problem in
question, error covariances E-TE;T_E_TE;) = ;;k should be computed from
time-dependent linear aggregates of correlated gyro and accelerometer errors.
In general, it is sufficient to estimate E, a-data from about 20 corresponding
£, n-values, obtained by means of the RGSS. Otherwise, the computational
load as to matrix inversion becomes too great. Under utilization of Figure 5,

E-estimation at P33 may be formulated as
833 =& =

= all(gli+ell)+ cesscccecsscscesscacscssesscecccscncnes +a15(€15+e15)

+ta (B te ) L. Ceeseiesacssctcscesaanae +a26(£26+826)

+ + + + +
a(Eygte )+ L eeeeeeans 3, (6, ey

+a54(€54+e54)+....... ..... tag  (Ec teg )

+ + 4+ it cccectcecsccscccscscas
a73(£73 e73) +a76(€76+e76)

with regression coefficients a 1’ etc. The first line of the resulting

1

covariance matrix is then

&&=
$E. )4 cececcctceccncecececcncannnn ) o
all(varE ell) +a15(€1i515+e15)
+ it ceccecccscccocncsscccncsccccos
32522511 R TSP TAR T

+a & 4 cecccccsccnsasecaccecceadta E E
33 33E11 36536511 (con't)
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Figure 5

RGSS Solitary Courses C, with Discrete Emn' nma-Data Crossing

a Reqular Grid with Estimated § ik’ nik-l)ata
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Of significance is that "noise" covariances may be neglected as to data
from different runs. The computation of respective covariances by means
of equations (23) and (24) and the inversion of the covariance matrix
presents no computational difficulties. Simplifications as to the in-

clusion of variable noise covariances may be potentially possible.

It should be noted that the midpoint Ag-estimation from Ag-data measured

at two points separated by a distance of 3 km has a mean error of 0.32 mgal
which corresponds to 0.05 arcsec. Although this theoretical estimate appears
to be optimistic, the indications are that gravity anomalies and deflection
components can be well-interpolated in non-mountainous terrain for grid

intervals Ax = Ay € 5 km.

5. Improved Stochastic Position Error Control

The determination of gyro biases along with that of deflections of the vertical

under availability of initial and terminal deflection components 50, No+ Ee' Ng s
makes it also possible to compute position corrections GxB(tA)' GyB(tA). Term-

inal position closure errors Gxe, Sye may thereafter be attributed to accelero-
meter scale factors, and these closure errors are then linearly allocated as
additional position corrections. A<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>