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FOREWORD

Over the years , scientists have developed many techniques for extracting

and evaluating information from experimental data . One of the reasons

for holding the design conferences is to develop , in Army scientists ,

an appreciation for and the necessary skills to handle these techniques .

A special feature associated with the meeting this year was organized

to help develop some of these skills . This was a basic tutorial seminar

entitled , "Introduction to the Fundamentals of Experimental Design "

given on 2-3 October 1978 by Dr. George E. P. Box , the Ronald Alymer

Fisher Professor of Statistics at the University of Wisconsin and

the Mathematics Research Center . This course was designed for engineers

and other scientists with little or no formal training in statistics ,

and who are involved in generating physical measurements from experiments .

It presented basic notions and statistical techniques which allows one to

minimize data variance or variability , and hence ultimately enhances the

opportunities for recovering data information in later analyses . The forty

or so Army scientists attending this course were prepared to comprehend

the papers given at the Twenty - fourth Conference on the Design of Experiments

in Army Research , Development and Testing .

Members of the Program Committee for this conference were pleased to obtain

the services of the following invited speakers to talk on topics of current

interest to Army personnel .

Speaker and Institute

Professor Norman Draper

University of Wisconsin -Madison

Title of Address

RIDGE REGRESSION

Professor Ralph Bradley

Florida State University

STATISTICAL ANALYSIS OF WEATHER

MODIFICATION EXPERIMENTS

Professor Grace Wahba

University of Wisconsin -Madison

DESIGN PROBLEMS IN RECOVERING

FUNCTIONS OF TWO OR SEVERAL

VARIABLES
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STATISTICAL CONSULTINGProfessor Brian L. Joiner

University of Wisconsin -Madison

Professor Richard E. Barlow with

Bernard Davis

University of California -Berkeley

RECENT ADVANCES IN GRAPHICAL

TECHNIQUES FOR ANALYZING FAILURE

DATA

In addition to the invited addresses , there were nineteen contributed papers .

Many of these informative talks covered areas associated with the theme of

the conference , namely " Statistical Design and Analysis of Experiments ."

Titles of the technical sessions were : "Time Series and Stochastic

Modeling" ; "Analysis of Variance Models" ; " Statistical Theory" ; " Statistical

Inference " ; "Special Applications " ; and "Material Reliability " .

An important feature of these annual conferences is the awarding of the

Samuel S. Wilks Memorial Medal . The 1978 award went to the distinguished

scientist Dr. William H. Kruskal , Professor of Statistics at the University

of Chicago . His contributions to the field of statistics have been truely

outstanding .

The Army Mathematics Steering Committee (AMSC ), an intra - Army committee ,

sponsors the design conferences on behalf of the Chief of Research ,

Development and Acquisition . Members of this committee appreciated the

fact that the Mathematics Research Center (MRC ) was willing to serve as

host for the Twenty - Fourth Conference on the Design of Experiments . They

would like to thank Professor Bernard Harris for serving as Chairman on

Local Arrangements. He was ably assisted in this capacity by Mrs. Gladys

G. Moran . Those in attendance appreciated the assistance these and other

members of MRC gave them with the many problems that arose during the

course of this meeting .

The AMSC has requested that these Proceedings be published and distributed

Army -wide in order that the information contained therein will assist

scientists with some of their statistical problems. Finally , committee
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members would like to thank the Program Committee for all the work it

did in putting together another successful scientific conference .

Program Committee

Gerald Andersen Bernard Harris

Carl Bates clifford Maloney

Larry Crow Douglas Tang

Francis Dressel Malcolm Taylor

Walter Foster Michael White

Frank Grubbs (Program Committee Chairman )

Robert Launer ( Conference Secretary)

Herbert Solomon (Chairman of the Conference )
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STATISTICAL ANALYSES OF A WEATHER

MODIFICATION EXPERIMENT*

Ralph A. Bradley

Department of Statistics

Florida State University

Tallahassee , Florida

1 . INTRODUCTION AND SUMMARY

This article is a summary of a manuscript [ 4 ] prepared for

inclusion in a special issue on weather modification of the ref

erenced journal. The subject area is one of national importance

as emphasized in the recent reports ( 12,13 ] of the Weather Modi

fication Advisory Board .

Phase I of the Santa Barbara Convective Seeding Test Program

was conducted by North American Weather Consultants ( NAWC) in the

Santa Barbara area of California from 1967 through 1971 . Details

of this research were reported in (5,9 ) , with the first report us

ing augmented rainga ge data . Initial data analysis was reported

by NAWC and additional exploratory analyses are summarized here ,

in [ 2,4 ] , and in technical reports ( 1,3,10 ) , the second giving

additional detail . We are indebted to NAWC for their courtesy

*A summary of research supported by the U.S. Office of Naval

Research under Contract No. N00014-76-C - 0394 . Reproduction in

whole or in part is permitted for any purpose of the United States

Government .
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in providing data tapes to us . The Phase I experimentation was

followed by Phase II research with some experimental design

changes . Only Phase I data are considered here .

The exploratory statistical analyses reported are parametric

and intended to lead to insights that may be checked with Phase II

data . There are problems of validity of parametric assumptions

and issues of experimental design , multiplicity of analyses , and

possible need for randomization analyses raised in [ 12 ] .

We review the Phase I Santa Barbara experiment and data

available . An experimental unit is a single " seedable" convec

tive band occurring in a winter storm that may have one or more

such convective bands . The choice of experimental unit has the

advantage of increasing the number of available experimental units

in a season and the possible disadvantages of serial correlation

and persistence of seeding effects from unit to unit . Raingage

data are available for both a Target and a Control Area ; concomi

tant cloud physics data were recorded and , after summarization by

Gleeson ( 10 ) , used in trial covariance analyses .

The problem of data summarization is addressed first . It is

found that use of response- surface methods is not advantageous.

Use of concomitant variables for the reduction of experimental

errors in analyses reduces also the apparent effect of cloud seed

ing . When storm effects are included as components of a paramet

ric model , they are found to be totally or partially confounded

with seeding and again the apparent effect of seeding is reduced .

Some brief comments are included on some multivariate analyses .

The effect of our analyses is to leave some doubt as to the efficacy

of cloud seeding in the Phase I Santa Barbara experiment .

II . The Phase I Santa Barbara Experiment

The geographical setting of the Phase I Santa Barbara Experi

ment is shown in Figure 1 . Control and Target or Test Areas were

designated ; rainfall was measured through series of raingages , some

of which are shown in the figure . While the objective of the ex

periment was not precisely defined , it can best be described as an

2
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FIG . 1. Santa Barbara Pyrotechnic Seeding and Control Test Areas.

Source : Figure 2 , Elliott , St , Amand , and Thompson [ 7 ] . Rain

gage sites are designated by solid or open circles , telemetered

gages underlined . The seeding and radar site is indicated by a

solid triangle and Santa Barbara Airport by a solid square .
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investigation of whether cloud seeding can enhance precipitation

within a rather large target area .

The experimental unit was a suitable convective band in a

winter storm that might contain one or more such bands in a se

quence . The seeding decision was randomized effectively and care

was taken that the decision was not known to the meteorological

analyst determining raingage band passage times and precipita

tions . Criteria for determination of seedable convective bands

were specified but some operational difficulties were encountered .

Band precipitation data were obtained from all raingages in

control and target areas operational for a band . Air -mass char

acteristics of each band were determined from radiosonde observa

tions at Santa Barbara Airport , occasionally replaced by Vanden

berg Air Force Base observations . Gleeson ( 10 ) defined and sum

marized data for each band on the following variables : X , -

Mixing Ratio , X2 - 700mb Wind Speed , Xz - 700mb Wind Direction ,

X4 - Mean Wind Speed , Xs - Direction Avg. Vector Wind , Xo - 500mb

Temperature , X, - Stability Class , Xg - Showalter Index , Xg

Stability Wind Speed , X10 - Direction Stability Wind , X11

bility Transport , X12 Band Passage Time (Seeding Site ) . The

data array for the Phase I experimentation may be viewed as a

data matrix with N rows or bands , the first N, rows for unseeded

bands and the second N, rows for seeded bands , N = 107 , N ,

N2 = 56 , and with columns containing precipitation responses at

individual raingages , possible grouped by locations , and values

of the concomitant variables , X, to X12 : The data are not with

out problems . Raingage precipitation responses are correlated ,

data are missing for many raingages , rows may not be independent

observation vectors , and there may be a persistence effect of

seeding .

The main NAWC approach to data analysis was on a raingage

station -by- station basis . Single and double ratio indices of

precipitation were calculated and contour plots based on these

-

X11 - Insta

= 51 ,

4



Let Y. (i) or

ratios over control and target areas were given in various reports .

Let

Yia
denote precipitation at station i for band a , a = 1 , ... ,

N. = 1 O as station i was or was not operable for

band a and let (i) = 1 or 0 as band a was or was not seeded .

Then Era ( i ) = N (i )N ( i ) and (i )v. ( i ) = N ( i ) , respectively the

number of observations and the number of seeded bands recorded at

station i .
The number of unseeded bands at station i is Nos ( i )

N ( i) -N, (i ). Then

1 ,(i) (1 x ( ) (1ad ( i) , (i)yia /N ( i )

S

ns

and

Tins (1 ) - [ [ 1-82 (1) Y (1) Yid /Nns ( 1 )

are precipitation averages at station i for seeded and unseeded

bands . Six control - area detection stations were used , stations

circled in Figure 1 . If k indexes these control stations , de

fine ,

ēs = FTs (k) /6

and

Ons Fins (k)/6 .

The double ratio of NAWC at station i is

DR ( i ) =
[ īs (i) /ēg ]/ [īns ( i)/ēns)

and the single ratio is

SR ( i ) = īs (i)/īns(i ) .

Much the same contour plots were obtained from both ratios . Use

of the double ratio represents a use of control area precipitation

as a covariate .

The Wilcoxon -Mann -Whitney , two - sample , rank test was used

also by NAWC to assess the significances of double and single

ratios for each raingage station . The method of application is

5



not clear in reports but is understood as follows . For the single

ratio , Yia was used ; the precipitation themselves were grouped

into two samples , seeded and unseeded , and the rank test applied .

For the double ratio , Yia/ca was calculated for each band a at

station i , ča being the average of the six control area detec

tion stations for band a , and these indices were grouped into two

samples as before .

NAWC was aware that these significance tests were open to

possible criticisms , particularly dependencies from station to

station . A limited Monte Carlo study was conducted and reported

by Elliott and Brown [6 ] . They state : " At the 0.05 significance

level for all bands , 29 stations in the original test sample were

found to show a positive difference between seeded and not - seeded

cases (bands ) ; and three Monte Carlo runs (out of 50) were found

to have as high or higher counts of stations with a positive dif

ference at this significance level . "

III . DATA SUMMARIZATION

A more direct approach to analysis of the experiment is

through summary measures of precipitation for each experimental

unit over designated response areas .

Bradley , Srivastava and Lanzdorf [ 1,2 ] defined response areas

as in Table I that may be located in Figure 1 . The numbers of

raingage stations and the data used for Target Areas ( i ) - ( iv ) are

those of the Bureau of Reclamation study [ 5 ] and those for Target

Area (v) are those of the Naval Weapons Center study [ 9 ] with

minor modifications noted in [ 3,4 ] .

6
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TABLE I

Definitions of Response Areas

Response

Area

Ranges in Degrees

Latitude Longitude

Number of

Stations

( i )

( ii )

( iii )

( iv)

(v )

34.0-35.25 118.0-120.02

34.4-35.0 119.51-120.02

34.0-35.0 118.0-119.51

Areas ( ii ) + ( iii )

A11 Stations in the Naval

Weapons Center Reports East

of Seeding Site , long . 120.02

34.4-35.25 120.02-120.60

107

26

72

98

61

Control * 34

* The Control Area for the Naval Weapons Center study con

sists of all 39 stations West of the seeding site .

Use of a simple average over stations is the most direct

method of data summarization for a convective band .
Overall pre

cipitation means are reported in Table II . Note that the Control

Area mean is higher for seeded bands suggesting that seeding may

have had some effect in the Control Area or misfortune in the ran

domized choice of bands to be seeded .

TABLE II

Precipitation Means in Inches

Response Areas ( i ) ( ii ) ( iii ) ( iv) (v) Control

Seeded Bands

Unseeded Bands

0.257

0.178

0.329

0.229

0.249

0.172

0.271

0.187

0.267

0 190

0.234

0.203

With a view to improved data summarization , Brz ' ley , Srivas

tava and Lanzdorf [ 1,2 ] fitted response surfaces se rately for

the Control Area and Target Area ( i ) with the coordi sates of lati

tude and longitude of raingage stations as independ t variables

and raingage precipitation as the dependent variable General
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two -dimensional cubic response models were necessary to represent

responses adequately . Separate response surfaces were found for

each convective band . Precipitation volumes and their variances

were calculated over the designated target areas and Control Area .

Figure 2 is typical of results obtained ; the region where the sur

faces is negative is off- shore .

The response surface approach was successful as a method of

data summarization in that some 70% of the inherent variation in

responses among raingages within a band and response area was ex

plained by the independent variables . It was not successful in

improvement of data summarization in comparison with use of the

means of raingages within response areas for a convective band

in that correlations between precipitation volumes calculated from

the response surfaces and precipitation means ranged from 0.97 to

0.99 for Target Areas ( i ) - ( iv) and the correlation was 0.89 for the

Control Area . Thus, the use of volumes cannot be expected to

yield new insights .

Scott [ 10 ] used a multivariate approach to data summarization .

He found , with some difficulty and innovation , principal components

among raingage responses in both Target Area ( i ) and the Control

Area . The first three principal components were interpretable

approximately as a mean response , a coastal versus inland con

trast , and an East -West contrast . Percentages of variation ex

plained by these components were respectively 71.3 , 6.7 and 5.9

in Target Area ( i ) and 76.1 , 6.7 and 4.7 in the Control Area . The

correlations of the first component with the band mean were 0.997

for Target Area ( i ) and 0.985 for the Control Area . Scott is en

gaged in the use of these results in examination of the effects

of seeding ; it seems unlikely that much additional information will

be forthcoming .

In the following section , we show some parametric analyses for

Target Area ( i ) . Although Bradley , Srivastava and Lanzdorf [ 3 ]

followed through with analyses on precipitation volumes as well

as means , we report only on the use of means . All Target Areas
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FIG . 2. Graph of Cubic Response Surface : Band 96 (Seeded ) , Tar

get Area (i ) . Source : Figure 2 , Bradley , Srivastava , and Lanz

dorf [ 1 ] . Vertical axis is 2.3 times precipitation in inches .
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of Table I gave similar results .

IV . SOME PARAMETRIC ANALYSES

Weather modification experiments are conducted necessarily in

a natural environment involving much variability . The use of co

variates in analyses , as summarized by Gleeson ( 10 ) , for the reduc

tion of experimental error appeared to be the best means to im

proved experimental design .

Initial covariance analyses were reported in [ 3 ] . (Some la

ter analyses are summarized below) . Regression models used were

of the form .

р

U = B + OZ + E ,
i'i

i = 1

B. + [ B.V

where U is a precipitation response variable for a target area ,

Vi is the i - th covariate , z = 1 or 0 as the convective band was

or was not seeded , the B's and 8 are regression parameters , and

€ is a random error . The data matrix has rows , ( ua . Vla ? ...

pa ' 2 ) , a = 1 , ... ,N . The regression parameters were estimated

by weighted least squares through minimization of

V

N р

{ W. (U- Bo - { BAVBiVic - 02.) ?
a= 1 i = 1

Xc

In [ 3 ] , use of the listed set of covariates and their interactions

with seeding , along with X a measure of Control Area precipita

tion , was explored . In analysis of variance tables in [ 3 ] and

below , sources of variation , when included in models , were ordered :

covariates , covariate by seeding interactions after adjustment

for covariates , and seeding after adjustment for covariates and

interactions .

1
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The use of covariates was effective in reducing experimental

error but less so was the use of covariate by seeding interactions .

Preliminary analyses and redundancy considerations suggested re

duction from 12 covariates to 7 : X2 , X3 , Xo » Xy , Xg , X11 and

X12 » along with Xc Control Area mean precipitation . There is

concern about use of Xc because Elliott and Thompson ( 8 ] suggest

the possibility of an up-wind effect of seeding west of the seed

ing site attributable not to westward seeding contamination but

to a seeding-caused blocking of the air-mass flow leading to up

wind convection development . This may have affected X12 , band

passage time at the seeding site , also . Two choices of weighting

were used , wa= 1 (unweighted ) and wornme/s2 when U was target

area mean precipitation , where na was the number of observations

contributing to the precipitation mean for band a and sa was the

variance among those observatio
ns

. Weighted analyses with

wa
2

n / s were less satisfactory than unweighted analyses . This dif

ficulty arose because standard deviations are proportional to means

and very high weights were associated with convective bands with

low precipitations . The two best covariates were Xc and X123

The use of covariates reduced the apparent effect of seeding . In

these analyses and those below , N = 106 when covariates are used

because covariate data were missing for Band 73 .

Analyses were redone in [4 ] with responses transformed log

arithmically to stabilize variances . The transformed variate z

has the form , log ( 1 +ay) , where Y is a target area precipitation

observation . For Target Area ( i ) , U is now the target area mean

of z , and
a na The regression analyses are similar to those

described above .

Models with and without Xc and X12 were

used because it has been suggested that they may have been affec

ted by seeding . Six models were used as follows :

พ
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Model Identification of V. V
>

( 1 )

( 2 )

( 3 )

(4 )

( 5 )

(6 )

No covariates .

Xc X2 , X3 , X , Xy , Xg , X11 , X12

Model ( 2 ) less Xc

Model (2 ) less X12 :

Model (2) less Xc, X12 :

Model (2 ) plus X2Z , Xz2 , X62 ,

X, Z , Xg2 , X112 , X122 .

Mean squares , values of F , and values of R² , the coefficient of

determination , for these models are shown in Table III .

We comment on the analyses of Table III . The transformation

was shown to be effective in stabilizing variances except for

small values of U , values for convective bands that may not have

been acceptable " seedable" bands. Examination of residuals about

regression models for the transformed data suggests that transfor

mation improved symmetry and approximate normality of their dis

tributions . Slightly larger values of R² were obtained from the

transformed data than in [ 3 ] . Results for model (5 ) show that R?

is reduced considerably when Xc and X12 are omitted as covari

ates . Results for model (6 ) show that interaction terms contribute

little .

There is little indication for models (2 ) - ( 6) in Table III

of any effect of seeding . For Model ( 1 ) , the one- sided signifi

cance level is 0.06 , consistent with the randomization analysis

reported in Section II . The covariates may be affected by seeding .

We have commented on this in regard to Xc and X12 : Gleeson [ 10 ]

saw small but consistent differences in covariates for seeded and

unseeded bands . The other covariates were based on radiosonde

data taken at Santa Barbara Airport , well into the target area .

12



TABLE III

Analyses of Variance , Transformed Data ,

Target Area (i ) , Models ( 1 ) - (6)

Model ( 1 ) (2 ) (3)

Source of

Variation d.f. M.S. F d.f. M.S. F d . f . M.S. F

1 110.3 2.77 1 0.6 .05 1 0.0 .00Seeding

Interactions
-

Covariates 8 382.5 30.79 7 374.4 22.24

104 39.8 96 12.4 97 16.8Error

2

-

R? 0.03

-

0.72 0.62

Model (4 ) (5 ) (6 )

Source of

Variation d.f. M.S. F d . f . M.S. F d.f. M.S. F

1 11.6 .78 1 44.7 1.46 1 1.6 .13Seeding

Interactions 7 17.0 1.41

Covariates 7 398.6 26.64 6 200.4 6.53 8 382.5 31.73

97 15.0 98 30.7Error

2

89 12.1

R ? 0.66 0.29 0.75

Some other sources of variation have not been considered yet .

Convective bands occur within winter storms with one or more bands.

Therefore there is a total or partial confounding of storm ef

fects with seeding . If covariates are omitted and the effect of

seeding is considered after adjustments for storms , we have the

analysis of Table IV . It is seen that R2 = 0.54 , comparable to
2

values of R in Table III ; more degrees of freedom are expended.
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TABLE IV

Analysis of Variance , Target Area ( i ) , Transformed

Data , Storm Effects in Model

d.f. M.S. FSource of

Variation

1

1

24.0 0.82Seeding

Storms 37 61.1 2.08

67 29.4Error

2

R 0.54

InBut the apparent effect of seeding has disappeared again .

future similar experimentation , use of storms for blocking

should be considered , perhaps as suggested in [ 12 ] , with random

ization within storms rather than over all convective bands as

done in the Phase I Santa Barbara experiment for which the analy

ses reported in Section II and in Table III for model ( 1) seem

appropriate .

In further exploratory analyses, we considered as additional

sources of variation position of the band within a storm and a

possible first -order carry-over effect of seeding from a seeded

band to the following band if in the same storm . No real effects

for position or carry-over were found .

The analyses of this section are open to technical concerns ,

but parametric methods provide the best means of exploratory anal

ysis if not for the exact determination of significance levels .

The possible persistence effect of seeding raises questions about

the independence of experimental units that may be subject also to

serial correlation . Normality assumptions are not valid for indi

vidual raingage observations but may be appropriate for target area

14



means . Some variance heterogeneity is present after transforma

tion of the data . Choice of weights , Wa na ' for analyses

with transformed data is only strictly appropriate if raingage

observations are independent . Covariates in regression models

are subject to experimental errors .

V. REMARKS.

Some remarks and recommendations can be made after analysis

of the Phase I Santa Barbara experiment. We are in near agree

ment with the conclusion of Elliott and Brown [6 ] : " Even when

those bands not as receptive to seeding were included in the

sample , the seeded to not - seeded precipitation increases were

greater than 50 % . " The means of Table II show increases near

to 50% and the analysis of Table III for Model ( 1 ) suggests sig

nificance near to the 0.05 level .

Improved experimental design is needed but not easy to

achieve . Use of convective bands as experimental units increases

the number of available units per season but raises other prob

lems . Some improvements are needed :

( i ) Improved detection and determination of " seedable "

bands ,

(ii) More uniform dispersement of raingages over regions

of interest .

( iii ) Improved determination and measurement of precipita

tions attributed to particular convective bands.

( iv) Better determination and measurement of covariates

free from possible seeding effects .

(v) Allowance for blocking by storms for fu -ther control

of variation . Concerns may remain in regard to dep ndencies

among experimental units , data transformation , var ace hetero

geneity and persistence effects of seeding , some of which may be

met through use of randomization analyses. Futher eteorological

and statistical research is needed .
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CANDIDATE SEQUENTIAL DESIGNS FOR

OPTIMUM SEEKING

Carl B. Bates

US Army Concepts Analysis Agency

Bethesda , Maryland

ABSTRACT . Phase I of the Target Acquisition Systems Force Mix

Evaluation Analysis ( TASFMA ) Study is the development of a methodology

for evaluating the combat effectiveness of mixes of systems within a

functional area . The methodology requires a division combat simulation

model whose outcome is sensitive to changes in the quality and quantity

of sensor systems deployed . DIVOPS , a division -level combined arms en

gagement_model , is the primary candidate for the combat simulation

model . The model will simulate multiple quantities of up to 15 differ

ent sensor types . Because the DIVOPS Model can represent 15 sensor sys

tems , the developed methodology must be capable of accommodating 15 sys

tem types . Additionally , it is desired that three quantities be exa

mined for each of the 15 şensor types . Although DIVOPS is a relatively

fast running model , all 315 runs are impossible . Consequently , a method

is needed for constructing a manageably sized subset of the total 31

input combinations . This paper presents candidate sequential designs

for the study and search of the optimum sensor mix . Two two - level de

signs are presented , a resolution III design which requires 16 runs and

a resolution V design which requires 256 runs . Then two three- level de

signs are presented , a "Minimum Number of Points" design requiring 136

runs and a 3K - P fractional factorial design requiring 243 runs . Advant

ages and disadvantages of the designs are discussed .

1 . INTRODUCTION . The Target Acquisition Systems Force Mix Evalua

tion Analysis ( TASFMA ) Study consists of two phases . Phase I is the de

velopment of a methodology for evaluating the combat effectiveness of

mixes of systems within a functional area . Phase II is the demonstra

tion of the usefulness of the methodology . The following sequential de

signs are proposed for incorporation into the developed methodology .

The methodology requires a division combat simulation whose combat

outcome is sensitive to changes in the quality and quantity of sensor

systems deployed . DIVOPS is the primary candidate for the combat simu

lation . DIVOPS is a two- sided , deterministic , division - level ground

combat model . The model will simulate multiple quantities of up to 15

different sensor types . The model documentation is in Reference 1 .

2 . PROBLEM DESCRIPTION AND BACKGROUND . Because the DIVOPS Model

can represent 15 sensor types , the developed methodology must also be

capable of accommodating 15 system types. Additionally, because sensor
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influence may be nonlinear , it is essential that more than just two

quantities (say , a low and a high number ) of sensors be examined for

each of the different types . It is desired that three quantities be

examined for each of the 15 senses types . Although DIVOPS is a rela
tively fast running model , all 315 input combinations cannot be run

14,000,000 . Moreover , neither could the model be exercised

for all 215 input combinations, if desired , since 215 = .

quently , a method is needed for constructing a manageable size subset of

the totality of the 315 input combinations , hereafter referred to as de

sign points . The purpose of this paper is to present proposed sequen

tial designs for the above described optimization problem.

3. METHODOLOGY RATIONALE . The methodology presupposes little or

no a priori information about the functional relationship between model

input variables and model output variables . The model input variables

and output variables are considered to be continuous variables . For the

purpose of this paper , it is assumed that the three quantities , here

after termed levels , of sensors or systems are known for each system

under investigation . That is, the proposed procedure is not for deter

mining what the levels should be . Rather , it is for identifying the

combinations of existing levels which should be employed in the search

for the optimum systems mix .

Although interest is in three levels of each of the input vari

ables , because of the magnitude of 3K it is felt that the examination

process must be sequential in nature . That is , the search should start
with a 2k design and proceed to a 3k design where k ' sk . This ap

proach employs some of the screening concepts of experimental designs

and response surface fitting .

4 . TWO-LEVEL DESIGNS

Let X;; 1a . General .
1,2 , ... , k be the model input variables ,

where k = 15. Denote the extreme two of the three levels of each of the

variables by " 0 " and " 1 , " respectively . If k were three , the eight de

sign points would be as shown in Table 1 and are geometrically illus

trated in Figure 1 .

If the full factorial experiment were performed and a dependent

variable y were measured or observed at each of the eight independent

variable combinations, the full model shown as Equation [ 1 ] could be

fitted .

y = b

000

+ b x + b X.

010 ^ 2 001

+ b X.X

110 ^ ^

+ 6101* 2 * 3 + b011*2*3 + b111* 1 * 2*3
[ 1 ]
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Table 1. 23 Design Matrix

X1 X2 X3

P
O
O
H
O

0

0

1

0 1

1

0 1

1 1

1 1

1

1

0

1

х3

( 0,0,1)) ( 0,1,1 )

|( 1,0,1) ( 1,1,1 )

(0,0,0 )
(0,1,0 ) X2

( 1,0,0 ) ( 1,1,0 )

X1

Figure 1 . Full 23 Factorial

2
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The general full 2k design permits the fitting of the following 2k - 1

terms plus the intercept , bo .

k single-variable terms

k ( k - 1 ) / 2 two- variable terms

k ( K - 1 ) ( K -2 ) / 2x3 three -variable terms

are

Because a full 215
experiment is impossible for the TASFMA optim

ization problem , two alternative ( 1/2 )P fractional designs, 2k -p
presented . The first design permits fitting the 15 single-variable

terms only . The second design permits fitting the 15 single- variable

terms and the ( 15x14 ) /2 = 105 two- variable terms .

b . Resolution III Design . Resolution III designs are available

which require k+ 1 runs to study k variables , where k + l is a multiple of
four . In Reference 2 , Box and Hunter give the following definition of

resolution III designs :

" No main effect is confounded with any other main effect , but

main effects are confounded with two-factor interactions and

two-factor interactions with one another .
11

The design is first illustrated for a seven- yariable experiment .
Consider a ( 172 ) 4 of a complete 2 ' factorial , a 27-4 design . ' Construc

tion of the design matrix starts with the design matrix in Table 1 , a

full 2" . Four additional columns are generated from the three original

columns . Treat a " 0 " as a " -1 " and a " 1" as a " +1 " and product the

three pairs of columns and the one triple . That is , generate columns 4 ,

5 , 6 , and 7 as follows :

column 4 column 1 times column 2

column 5 = column 1 times column 3

column 6 = column 2 times column 3

column 7 = column 1 times column 2 times column 3
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The resulting design matrix is shown in Table 2 and permits fitting

the seven -dimensional plane given in Equation [2 ] .

Table 2. 27-4 Design Matrix

X1 X2 Х3 X4 X5 X6 X7

1

O
O
O
O

1 1

1

1

1

1 1

O
O
O
O
H

1

1

0

0

0

0

1

1

1

1

0

1

P
O
P
O
O
P
O

P
O
O
O
P
P
O

1

1

y = bo + b1X1 + b2x2 + b3X3

+ b4x4 + 65X5 + 66X6 + B7X7 [2 ]

Applying the technique described in the previous paragraph to the

15 variables of the TASFMA Study gives the design matrix in Table 3.

The first four columns constitute the design for a full 24 factorial .

Columns 5 through 10 are pairwise products of the first four columns .

Columns 11 through 14 are the four triple products , and column 15 is the

product of all four columns . The products are indicated under the col

umn heading in the table. Exercising the computer simulation model for

each of the 16 input variable combinations indentified in Table 3 would

permit fitting a 15 -dimensional plane for each output variable under

study . For each output variable, this would give a function in terms of

each of the 15 input variables , Équation [3 ] .

y = bo + b1x1 + b2X2 D14X14 + 615X15
[3 ]

The regression coefficients by , b2 , ... , b15 are the slopes of the

plane in the respective dimensions . The slopes can be analyzed to as

sess the effect each of the 15 input variables has upon the particular

output variable and also to refine the space which will be further

examined with a three- level design .
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The assessment will give the direction of the maximum response as well

as an ordering of the relative contribution of each of the 15 sensor

types . If some of the 15 contribute very little as compared to the

others , then the low contributors can be fixed at either their upper or

constraining levels for the follow-on three- level examination .

The above " cheap " experiment is not without risk . Naturally , a

sacrifice has to be made for a design with such a small number ( 16 ) of

design points. If two input variables, X ; and X ;, significantly inter

act and neither X ; nor x; individually significantly contribute , the

variables would not be recognized as being sufficiently important for

inclusion in the follow-on three- level investigation . If this risk is

considered too great and a design is required which will permit the

testing of all of the two - variable interactions , then the price of many

more computer simulation model runs must be made . In any case , the

resolution III design should be conducted first because it requires so

few runs .

C. Resolution V Design. Resolution V designs are defined by Box

and Hunter in Reference 2 as :

" No main effect or two - factor interaction is confounded with

any other main effect or two-factor interaction , but two

factor interactions are confounded with three-factor interac

tions . '

Box and Hunter discuss resolution V designs and their construction

in Reference 3 . This is the type of 2k - p fractional factorial designs

conventionally introduced in experimental design texts , such as, Refer

ences 4 , 5 , 6 , 7 , 8 , and 9 . The construction of resolution V 2K - P de

signs is not the purpose of this paper and will not be discussed here .

Their construction can be found in the above references .

A 15-variable experiment has k = 15 main effects and k ( k - 1 ) / 2 = 105

two-yariable interaction effects . The smallest resolution V design for

a 215 experimenthas 256 design points . Using the 15 letters A, B ,

P (excluding 1 ) to represent the 15 input variables x1,x2, ..X1 ,x15
and

the identifying contrast shown in Table 4 , gives the 275-7design given

in Table 5 . From the 256- run simulation model experiment we can fit the

model in Equation [4] .

..y = bo + b1x1 + b2x2 + ... + b15X15 + b1,2X1X2 +

+ 614,15*14*15

[4]
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Equation [4 ] has the 15 single-variable terms that are in equation

[ 3 ] plus 105 two-variable terms. That is , 120 degrees of freedom of the

total 255 degrees of freedom are used for fitting. The remaining 135

can be used for significance testing . Testing significance of the re

gression coefficients can be accomplished as illustrated in the ANOVA

table , Table 6. The testing will identify those coefficents which are

not significantly different from zero . The corresponding variables can

then be fixed in the manner discussed in paragraph b above , and the in

vestigation can proceed to the three- level follow-on investigation .

Table 6 . ANOVA for 275-7 Design

Source DF SS MS F- ratio

bi
1

SS ( 61 )

SS ( 62 )

MS (61)

MS (62 )

MS ( 61 ) /MS ( LOF )

MS ( 62 ) /MS (LOF )bz
1

615
1

MSD ( 15 )SS ( 615 )

SS (61,2)

MS ( 615 ) /MS (LOF )

MS ( 61,2 ) /MS (LOF )61,2 1 MS(61,2)

614,15 MS ( 614,15 )

MS (LOF )

MS (b14, 15 )/MS(LOF )

Lack of Fit

1 SS (b14,15 )

SS ( LOF )

255 SS ( Total )

135

Total

3
0



The obvious disadvantage of the above design is the large number of

simulation model runs required . This cannot be avoided when so many

( 120 ) coefficients are to be estimated and tested . Care must also be

taken when assessing interaction significance . Since the interaction of

each variable with each of the other 14 variables is being tested , an

alpha - percent of the interactions would be expected to be statistically

significant due to random chance .

5. THREE-LEVEL DESIGNS

a . General. As with the two- level designs , two candidate three

level designs are proposed . One design may be applied to all 15 input

variables if necessary ; the other design presupposes that the previous

screening process reduces the number of input variables so that k ' < 10 .

First , the notation is changed from that used in the previous sec

tion . Now , denote the three levels -- low , middle , and high--by " 0 " , " 1 " ,

aga
" 2" , respectively. If k ' were three , the 27'design point's of a fuli

experiment would be as given in Table 7 . The full design is illus

trated geometrically in Figure 2 .

If the full design were executed , the following model of Equation

[ 5] could be fitted . Equation [ 5 ] has 27 terms .

y = booo + 1100X1 + 1010x2 + boo1X3

+ b200xí + bozox2 + boozx }

+ 6110X1X2 + b101X1X3 + b011X2X3

120x1x2 + ... + b222x{x}x }
+

[ 5 ]

The general full 3k design permits fitting 3k ' terms, including the
intercept . In practice , however, even for moderate k ' , allpossible 3k

terms are seldom fitted . Usually they are not even desired . Two candi

date three- level designs are proposed which require considerably less

than 3k ' design points . The first is the "Minimum Number of Points" de

sign . The second design is the conventional 3* -p fractional factorial
design.
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Table 7 . 33 Design Matrix

Ix Zx

X3

0

0

0

O
O
O
O
O
O

I

1

0

0

0

0

I

0

0

1

1

1

1

1

1

1

1

1

1

0

0

1

८

८६



X3

( 0,0,2 ) (0,1,2 ) ( 0,2,2)

(1,0,2 ) (1,1.2) (1,2,2)

0,0,15 ( 0,1,17 ( 0,2,1 )

( 2,92) ( 21,2 ) K2,2,21

M1,0,1) 1,1,1 ) (1,2,1 )

(0,0,0 ) ( 0,1,0) (0,2,0) X2

12,0,1); |( 2,1,1) ( 2,2,1)

( 1,0,0 ) ( 1,1,0 ) (1,2,0 )

(2,0,0 ) ( 2,1,0 ) 72,2,0 )

*

Figure 2 . Full 33 Factorial
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b . "Minimum Number of Points" Design . * The " Minimum Number of

Points (MNOP )" design contains the same number of design points as there

are terms in the fitted function , including the intercept . The design

permits fitting all first and second order terms.

First , the design is illustrated for k ' = 3. The design matrix for

k ' = 3 is shown in Table 8. The ten design points are illustrated in

Figure 3 and will permit fitting Equation [6 ] .

Table 8. Minimum Number of Points Design

Matrix for k ' = 3

X1 X2 X3
O
P
P
O
O
N
O
O
O

W
O
O
N
O
O
O
O

P
O
N
O
O
O
O
O

bo01x3y = booobooo + b100X1 + b010x2 +

b200x} + bo20x2 + bo02x}

+ 6110x1x2 + b101X1X3 + b011x2x3

+

[6 ]

To show the pattern more clearly before presenting the MNOP design

for k ' = 15 , the design is also illustrated for five variables . Table 9

contains the design for k ' = 5 . Note that k ' rows have a single " 1 " , k '

rows have a single " 2 " , and k ' ( k ' - 1 ) /2 rows have two " l's" . Although

the model that can be fitted is obvious , it is given in Equation [ 7] for

completeness . Subscript notation is changed from that previously used
to conserve space .

*The design was brought to the attention of the author by Dr. George

Box in a personal communication during May 1978 .
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X3

(0,0,2 )

(0,0,1) ( 0,1,1 )
/

(1,0,1)

( 0,0,0 ( 0,1,0 ) (0,2,0) X2

( 1,0,0 ) (1,1,0 )

|

(2,0,0 )

X1

Figure 3. MNOP Design for Three Variables
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Table 9 . MNOP Design Matrix for k ' = 5

X1 X2 Х3 X4 X5

C
O
N
O
O
O
O
O

0

1 0 0

0

1

0 1

0 1

2 0

0

2

0 0 2

0 0 2

1 1 0

1 0 1

1 0 0 1

1 0 0 1

0 1 1

0 1 0 1

0 1 0 0 1

0 0 1 1

0 0 1 1

0 0 0 1 1

O
O
O
O
O
O
N
O
O
O

O
P
O
O
O
O
O
O
N
O
O
O
O
O
O
O
O

P
O
H
O
O

H
O
O
O
N
O
O
O
O
H
O
O
O
O
O

+

y = bo + b1x1 + b2X2 + b3X3 + 64X4 + b5X5

+ b11xſ + b22x2 + b33x3

bạ4x4 + bs5x3 + b12X1X2

+ b13X1X3 + b14* 1 *4 + 615* 1 * 5

+ b23x2x3 + b24x2x4 + b25*2X5

+ b34*3*4 + b35X3X5

+ 645X4X5 [ 7 ]
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Construction of the MNOP design for 15 variables should be obvious

from the above illustrations . The design has 15 rows with a single " 1 " ,

15 rows with a single " 2 " , and 105 rows with two " l's " , and one row of

all " O's " , giving a total of 136 design points . The design matrix is

shown in Table 10 . The columns denote the 15 variables x1 through X15:

If a computer model simulation experiment were conducted using the MNOP

design , the model given in equation [ 8 ] could be fitted for each depen

dent variable under investigation . Each fitted function could then be

studied to determine the optimum systems mix for each measure of effec

tiveness .

+ 615X15

+

y = bo + b2x1 + b2x2

611x1 + b22x3 + b15,15x15

+ b12X1X2 + b13X1X3 + + 614,15X14X15

+

[8]

If , however , the MNOP design is considered inadequate and the prior

two- level examination has resulted in a screening of the original 15 in

put variables down to not more than 10 variables , a fractional factorial

design can be applied .

c . 3k ' - p Fractional Factorial. If k ' s 10 , a fractional factorial

experiment can be designed which has 243 design points . Theoretical

background on 3k -p fractional factorial designs can be found in Refer

ences 4 , 5 , 6 , 7 , 8 , and 9 .

The design is illustrated for k ' = 10. The design is a 1/35 x 310 ,

i.e. , a 310 fractional factorial . As in paragraph 4c above , the ten

letters A , B , K (excluding I ) are used to represent the ten k ' in

put variables X1 : X2: X10:. Using the identifying contrast shown in

Table 11 yields the design matrix given in Table 12 .

,
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Table 10 . "Minimum Number of Points" Design Matrix

for 15 Variables

1 000000000 00 00 00 46 0 11 00 00 00 00 00 00 91 000 01 00 00 00 00 01

2 100000000 00 00 00 47 01010 00 00 00 00 00 92 0 00 00 11 00 00 00 00

3 010000000 00 00 00 48 010 01 00 00 00 00 00 93 0 00 0010 10 00 00 00

4 001000000 00 00 00 49 010 0010 00 00 00 00 94 0 00 00 10 01 00 00 00

5 000100000 00 00 00 50 010 00 01 00 00 00 00 95 0 00 00 10 00 10 00 00

6 000010000 OO OO OO 51 010 0000 10 00 00 00 96 0 00 00 10 00 01 00 00

7 0000010 00 00 00 00 52 010 00 00 01 00 00 00 97 0 00 00 10 00 00 1000

8 000000100 00 00 00 53 010 00 00 00 10 00 00 98 0 00 00 10 00 00 01 00

9 000000010 00 00 00 54 010 00 00 00 01 00 00 99 0 00 00 10 00 00 0010

10 000000001 00 00 00 55 010 00 00 00 00 10 00 1 000 00 00 10 00 00 00 01

11 000 0000 00 10 00 00 56 010 00 00 00 00 01 00 101 0 00 00 01 10 00 00 00

12 0000000 00 01 00 00 57 010 00 00 00 00 00 10 102 0 00 00 01 01 00 00 00

13 0000000 00 00 10 00 58 010 00 00 00 00 00 01 103 0 00 00 01 00 10 00 00

14 00000000000 01 00 59 00110 00 00 00 00 00 1.04 0 00 00 01 00 01 00 00

15 000000000 00 00 10 60 00101 00 00 00 00 00 105 0 00 00 01 00 00 1000

16 000000000 00 00 01 61 001 00 10 00 00 00 00 106 0 00 00 01 00 00 01 00

17 200 00 00 00 00 00 00 62 00100 01 00 00 00 00 107 0 00 00 01 00 00 0010

18 020000000 00 00 00 63 001 00 00 10 00 00 00 1 080 00 00 01 00 00 00 01

19 002 000000 00 00 00 64 001 00 00 01 00 00 00 109 0 00 00 00 11 00 00 00

20 000200000 00 00 00 65 001 00 00 00 10 00 00 1 10 0 00 00 00 10 10 00 00

21 000020000 00 00 00 66 001 00 00 00 01 00 00 10 000 00 00 10 01 00 00

22 000002000 00 00 00 67 001 00 00 00 00 10 00 1 12 0 00 00 00 10 00 10 00

23 on000200 00 00 00 68 001 00 00 00 00A 00 113 0 00 00 00 10 00 01 00

24 000000020 00 00 00 69 001 00 00 00 00 00 10 114 0 00 00 00 10 00 0010

25 000000002 00 00 00 70 001 00 00 00 00 00 01 115 0 00 00 00 10 00 00 01

26 000000000 20 00 00 71 00011 00 00 00 00 00 116 0 00 00 00 01 10 00 00

27 0000000 00 02 00 00 72 0001010 00 00 00 00 117 0 00 00 00 01 01 00 00

28 000 0000 00 00 20 00 73 000 10 01 00 00 00 00 118 0 00 00 00 01 00 10 00

29 0000000 00 00 02 00 74 000 1000 10 00 00 00 119 0 00 00 00 0100 0100

30 0000000 00 00 00 20 75 000 10 00 01 00 00 00 1 200 00 00 00 01 00 00 10

31 000000000 00 00 02 76 000 10 00 00 10 00 00 121 000 00 00 01 00 00 01

32 110000000 00 00 00 T7 000 10 00 00 01 00 00 1 220 00 00 00 00 11 00 00

33 101 000000 00 00 00 78 000 10 00 00 00 10 00 123 0 00 00 00 00 10 10 00

34 100100000 00 00 00 79 000 10 00 00 00 01 00 124 0 00 00 00 00 10 01 00

35 1 00 0100 00 00 00 00 80 000 10 00 00 00 00 10 125 0 00 00 00 00 10 00 10

36 1000010 00 00 00 00 81 000 10 00 00 00 00 01 126 0 00 00 00 00 10 00 01

37 100000100 00 00 00 82 000 0110 00 00 00 00 1 27 0 00 00 00 00 01 10 00

38 100000010 00 00 00 83 000 01 01 00 00 00 00 128 0 00 00 00 00 01 01 00

39 100 00000100 00 00 84 O OO 01 00 10 00 00 00 129 0 00 00 00 00 01 0010

40 100 000 000 10 00 00 85 000 01 00 01 00 00 00 1 30 0 00 00 00 00 01 00 01

41 100 00 00 00 01 00 00 86 00001 00 00 10 00 00 131 0 00 00 00 00 00 11 00

42 100 00 00 00 00 10 00 87 000 01 00 00 01 00 00 132 0 00 00 00 00 00 10 10

43 100 0000 00 00 01 00 88 000 01 00 00 00 10 00 133 0 00 00 00 00 00 10 01

44 100000000 00 00 10 89 000 01 00 00 00 01 00 1 34 0 00 00 00 00 00 01 10

45 100 000000 00 00 01 90 000 01 00 00 00 00 10 1 35 0 00 00 00 00 00 01 01

1 36 0 00 00 00 00 00 00 11
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Table 12. 310-5 Fractional Factorial Design Matrix

11
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leaves *ija

The design permits fitting and testing 20 single-variable terms and

180 interaction terms . The 20 single-variable terms are the 10 linear

... , X10

Each of the ?ljöx9}/31945 interaction effects have tour terms,
iXie XiXj, xjxj Xixi , giving a total of 180 two- variable terms .

This

degrees of freedom for Lack of Fit which can be used for test

ing . The fitted function of each measure of effectiveness can then be

studied to determine the optimum systems mix in the same manner ex

plained in the previous section .

6 . SUMMARY . Four candidate experimental designs have been pro

posed for the Target Acquisition Systems Force Mix Evaluation Analysis

methodology development . The designs , two two- level designs and two

three- level designs , are recommended for sequential application . The

resolution III and resolution V two- level designs contain 16 and 256 de
5sign points , respectively . The MNOP and the 31 fractional factorial

three- level designs contain 136 and 243 design points , respectively .

Therefore , four candidate combinations of 2m and 3h sequential designs

are available . The total number of computer model simulation runs range

from 16 + 136 = 152 to 256 + 243 = 499. The sequentialdesigns and the
required numbers of model runs are shown in Table 13 . The number of

model runs is shown in parentheses .

Table 13 . Candidate Sequential 2" and 3h Designs

Two level Three level

Resolution III

Design

Minimum Number of

Points Design

( 136 )( 16 )

2 3

4

Resolution V

Design

( 256 )

310-5 Fractional

Factorial Design

( 243 )
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Environmental and Water Quality Operational

Studies : Experimental Design Problems

Associated with the Fisheries of the

Mississippi River

Michael P. Farrell ,

A. Dale Magoun ,

Environmental Laboratory

Waterways Experiment Station

Vicksburg , Mississippi

Introduction

The Waterways Experiment Station is conducting a six -year , nationwide

program of applied research to investigate selected high priority environ

mental quality problems associated with the Civil Works activities of the

Corps of Engineers (CE) . The study is being conducted for the Office ,

Chief of Engineers , and is entitled the Environmental and Water Quality

Operational Studies ( EWQOS ) .

The principle goal of EWQOS is to provide new or improved methodologies

and technology for the planning , design , construction , and operation of CE

projects to meet environmental quality objectives in a manner compatible

with project purposes . A key element of EWQOS is the use of extensive

field studies to evaluate and document the utility of new or improved

methodologies and technology developed within the program ,
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During the early planning phase of EWQOS , visits by WES personnel

were made to each CONUS Corps Division office to identify and assess the

magnitude of environmental quality problems . The nature and extent of

environmental quality problems being experienced by Corps field offices

was used as a basis for planning research to address these problems.

One major problem area identified as being of high priority was the

environmental impacts of project activities on waterways . Specifically ,

it was determined that EWQOS research should develop field office guid

ance to address environmental and water quality aspects of dikes and

revetments . Such structures are common in waterways in many parts of

the United States , but most commonly occur along the Mississippi River

and its tributaries .

Based on this problem identification phase , a project was established

within EWQOS to conduct a comprehensive field study of dikes and revet

ments associated with CE waterway navigation projects . This field study

is being undertaken within a 50 mile reach of the Lower Mississippi River

between Lake Providence , Louisiana, and Greenville , Mississippi . This

site was selected after an intensive survey of CE waterways navigation

projects and after discussions with knowledgeable CE field personnel .

Site selection was based on the existence of an extensive hydraulic and

hydrologic data base , the presence of a representative variety of dike

and revetment structure design , and optimum diversity of characteristic

floodplain and riverine aquatic macrohabitats , and plans by the Vicks

burg District to conduct potamology studies in the reach during the time

frame of EwQOS , and to synthesize in a report the existing hydraulic and

sediment data .

Goals and Objectives

The goal of the long -term waterway field study of dikes and revet

ments is to assess the relative ecological importance of channel align

ment and bank stabilization structures in the riverine ecosystem , and
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to provide data to formulate environmental quality guidelines for use by

CE districts in designing and planning new structures and modifying exist

ing ones .

The specific objectives are based on a macrohabitat approach in which

revetted banks and dike fields are considered as aquatic habitats within

the river system .

( 1) Quantitatively define riverine macrohabitats of the study reach

including relative size , current velocity , sediment type , materials compos

ing the dikes and revetments and associated riparian vegetation at various

river stages and times of year .

( 2 ) Quantitatively describe the physicochemical characteristics of

the water and sediments in riverine macrohabitats at various river stages

and times of year and how these variables relate to the distribution and

abundance of aquatic organisms .

( 3 ) Quantitatively describe the composition of the particulate

organic matter , including phytoplankton , zooplankton , and detritus , in

riverine macrohabitats at various river stages and times of year .

( 4 ) Quantitatively describe the species diversity , abundance distri

bution and production of benthic macroinvertebrates in riverine macro

habitats , including the use of these habitats as spawning , nursery , and

feeding areas .

( 5 ) Quantitatively describe the species diversity , abundance

distribution and production of fishes in riverine macrohabitats , includ

ing the use of these habitats as spawning , nursery and feeding areas .

General Background

Dikes have been placed in rivers by the CE for many years for the

purpose of aligning and contracting river channels . The lower Mississippi ,

middle Mississippi , Missouri , and Arkansas are examples of rivers that

have extensive amounts of dike structures . In navigation projects , the

principle use of dikes is in adjusting channel width , depth , and align
ment and to close secondary channels and chutes . Dike structures are

probably the most effective means of channel alignment and contraction
in use today .

Dikes are structures constructed of permeable wooden piles or , more

typically in present times , of relatively impermable stone riprap . Dikes

may be singular or placed one after another along a bank forming a dike

field . Generally dikes are of the transverse type which extend from the

bank perpendicularly into the river channel past the point of highest cur

rent velocities . An extension or L-head may be placed at the off-shore

end of a dike parallel to the main axis of the dike to retard scouring
and turbulence . Vane dikes which are placed in the channel parallel to

the bank line are also used .
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Water is shunted by a dike toward the opposite river bank and , if

this bank is stable , the resulting narrower channel is deepened by scour

ing in order that the river's discharge may be carried . Dikes are

typically placed on the convex side or point bar in a bendway or in

straight reaches to achieve some degree of channel sinuosity and result

ing contraction . Concurrent with channel contraction , suspended sediments

are deposited downstream of individual dikes due to the reduction of cur

rent velocities caused by the structure . In dike fields sediment accretion

may be appreciable , and these accumulated sediments , which may in some

instances form fast land or a bar , further serve to confine the flow of

water . Slackwater pools may be found downstream of transverse dikes at low

river stages in cases where sediment accretion has not completely filled in

these areas . Since , ecologically , slackwater areas are thought to be im

portant in a river system , knotches have been put in transverse dikes to

prevent sediment buildup on the downstream side of dikes .

In the lower Mississippi River there are presently 393 dikes totaling

approximately 875,000 linear feet ( Table 1 ) . The number of dikes dimin

ishes downstream in lower Mississippi River , with no dikes being present in

the river within the confines of the New Orleans District . However , many

new structures are planned within the next two decades in the lower river .

Despite the large number of dikes present in many of the major river

systems of the United States , the ecological effects of these structures

are poorly known . Dike fields and individual dikes are distinct habitats

within river systems where these structures are numerous . Date on this

environmental quality characteristics of these structures and methods for

designing and modifying dikes to enhance their value as aquatic habitat is

needed by CE districts and divisions in designing and operating waterway

navigation projects .

Revetments are installed along river banks to prevent bank caving and

erosion . These structures are of many types , but generally consist of

erosion-resistance materials which are placed upon a pregraded bank from

the top of the bank line to the toe of the channel . In navigation and

flood control projects revetments are often located on the concave bank in

bendways and crossings in association with dike fields on the opposite bank

to contract the river channel and to retard meandering . They are also

placed in areas where erosion threatens levees .

Bank revetments are of many different types including stone riprap

and articulated concrete mattresses (ACM) . ACM with stone riprap placed

on the upper portions of the bank as paving is the most common type of

revetment presently being installed in the lower Mississippi River . In

the past , asphalt and willow mats were used instead of riprap for bank

paving . Approximately 3.9 million linear feet of bank revetment works

have been constructed in the lower Mississippi River . In the Missouri

River , revetments constructed of stone riprap are used extensively .

When river banks are revetted , much of their natural character is
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Table 1

1

Dike and Revetment Structures in the Lower Mississippi River

Linear Ft . of Revet . 1,758,515 1,202,610 930,721 3,891,846 In ft

Linear Ft . of Dikes 583,498 292,229 0 875,727 ln ft

No./Types pile (wood )

pile & stonefill

stone

stone trail

stone vane

car body

31

68

137

6

8

8

24

90

5

15

1

Total No. Dikes 250 143 0

1

Source of information . George Kerr , MRC , 327 . ( As of 30 September 1977 ) .
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altered . However , the environmental quality of the habitat formed by the

revetment structures is unknown . older revetment structures which have

become extensively vegetated with willow and cottonwood trees and a variety

of sedges , grasses , and shrubs may have different value as aquatic habitat

than new revetments . Thus age is a variable of importance in evaluating

environmental effects of revetments . The type of material composing the

revetment may also be an important variable in determining the biological

productivity and habitat value of revetment structures . For example ,

stone riprap is probably a more productive substrate for fish food organisms

than asphalt . Another factor is the sinuosity of the bank line upon which

revetment is placed . A sinuous bank would tend to have relatively lower

velocities caused by eddies and upstream flow than would a straight bank

line , and would , therefore , be expected to constitute more productive fish

habitat .

The large magnitude of revetted banks in many river systems make inves

tigation of the environmental effects of these structures of value to CE

districts and divisions for use in impact assessments , and the planning ,

design , and construction of new structures . At present there exists very

little environmental data on revetment structures regarding their produc

tivity as compared to " natural " banks .

The distribution and abundance of organisms in a large river system

are fundamentally determined by river geomorphology , flow , and sediment

load for it is these factors which interact to produce distinct environ

ments or macrohabitats for riverine biota . Undoubtedly , water quality ,

temperature sediment type and other factors are important determinants of

the distribution and abundance of aquatic species in a given river but

these are secondary to the more basic geomorphology and hydraulic features

of the stream . Land use practices , terrestrial vegetation patterns , and

edaphic characteristics in the drainage basin , also contribute importantly

to the environmental conditions of the river , but these factors mainly

impose conditions upon the macrohabitats formed by the rivers ' shape ,

flow , and sediment load . For example , a broad , shallow braided river has

different proportions and types of macrohabitats than a stream with a deep ,

narrow well-defined channel, irrespective of water quality .

The channel alignment and bank stabilization structures placed in

rivers by the Corps for achieving flood control and navigation objectives

can modify to different degrees geomorphology , stage and discharge rela

tionships , and sediment movements within the stream . These changes in

the river's characteristics , plus the presence of the structures them

selves as a substrate for organisms , result in shifts in the types , sizes

and variety of aquatic macrohabitats . Such alterations in riverine habitats
effected by the installation of structures may or may not produce positive

impacts on the ecology of the system . For example , certain " natural" macro

habitats may be reduced in size and quality by training and stabilization

structures , while habitats created by the installed structures , such as

dike fields or revetted banks , may become commonplace . The primary goal of

this research is to determine the ecological importance or value of the
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macrohabitats formed in the river by dike fields and revetted banks as

compared to " natural" habitats , and to formulate environmental quality

guidelines for use in designing and planning new structures and modify

ing existing ones .

The general approach to the dike and revetment study in the lower

Mississippi River will be from a macrohabitat point of view , wherein the

length of river to be investigated will be subdivided into its macro

habitats which will be characterized as to both biotic and abiotic vari

ables , Dike fields and revetted banks will be treated as macrohabitats ,

although man -made , together with other distinct biological habitats such

as the main channel , natural steep banks , towheads, chutes , river borders ,

point bar cutoffs , and old river channels . The ecological importance of

each macrohabitat will be evaluated according to its basic water quality ,

production of benthic organisms used as fish food , abundance of fishes ,

use as spawning , nursery and feeding areas for fishes , and production of

suspended particulate organic matter . The function and relative value as

aquatic habitats of dike fields and revetted banks within the river eco

system will be defined based on this information . The habitat evaluation

will be related to various key river stages and times of year .

The dike and revetment study will be initiated by preparing a quanti

tative map of aquatic macrohabitats in the 50 mile reach of lower Miss

issippi River selected for study . These data will form the basis of the

field investigations . The map will be prepared using existing hydraulic

and topographic survey data and aerial photographs belonging to the

Vicksburg District as a basis . Habitats will be initially delineated at

a low water stage , defined as 0 ft Low Water Reference Plane , using as

criteria primarily depth and information from aerial photographs as to

the location of sandbars and other features . This map will be refined as

to the definition of habitats with data on currents , sediments , and biota

collected during the pilot survey . The map will be redefined for bank

full and over -bank river stages .

The first efforts in the field will be a series of pilot surveys

designed to provide additional data for the habitat map , for developing

and testing sampling equipment and techniques , selecting representative

habitats for intensive study , and developing an experimental design for

the habitat surveys and detailed ecological studies . The pilot survey

will be conducted from April through September , 1978 .

Following completion of the pilot survey and formulation of experi

mental designs , at least two representatives of each habitat type will

be selected for comparative study . Dike fields and revetments will be in

cluded in the catagory of habitats . Selected habitats will be surveyed

intensively four times each year , beginning in the fall of 1978 . Data on

biota , water and sediment chemistry and physical variables will be collected

in a manner amenable to detailed statistical comparisons . The four yearly

samples will be related to distinctive river stages and seasons .
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Detailed ecological studies will be carried out in a few selected

habitats to investigate specific phenomena of interest . In general , these

studies will require collection of samples at short time intervals during

particular years , seasons , or river events such as flooding , and will be

directed towards answering specific questions . Examples of these types

of studies include particulate organic matter composition and distribu

tion studies , determination of fish spawning periods and locations , fish

movements studies , studies of stream macroinvertebrate drift , secondary

production estimates for organisms growing upon the stone riprap and

other materials of which dike and revetment structures are constructed ,

and fish food habit studies .

5
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RED NOISE IN THE POWER SPECTRUM OF ATMOSPHERIC TEMPERATURE DATA

Oskar M. Essenwanger

Research Directorate

Technology Laboratory

US Army Missile R & D Command

Redstone Arsenal , AL 35809

ABSTRACT. It is well known that persistence generates red noise in

power spectra of meteorological time series . In fact , significance of

spectral peaks is checked against the background of white or red noise ,

although other criteria have been suggested in the literature .

Several types of red noise exist . In atmospheric science the most

common type is the exponential model which is identical with the first

order Markov chain . This type is easy to recognize and can be readily

calculated from the correlogram .

Today power spectra are mostly produced with the algorithm of the

Fast Fourier Transform ( FFT) rather than based on the autocorrelogram .

Consequently , calculation of the exponential red noise is difficult unless

the first lag correlation is included in the computer processing .

Two questions have been pursued in this paper . What is the effect

on the exponential red noise pattern if any periodicity , significant or

not , is removed from the power spectrum ? Can true periodicities with

low wave numbers be distinguished from red noise?

The influence of " quasiperiodicity " on red noise , the power spectrum

and Fourier components is analyzed for atmospheric temperature data .

Finally , the utilization of discrete spectral filters will be discussed

and a separation of the time series into cycles , quasicycles and red noise

is delineated .

I. INTRODUCTION . The question of the reality of meteorological

cycles has been raised at various times in the past (e.g. , Bartels , 1943 ;

Brier et al . , 1964 ; Craddock , 1965 ; Shapiro , 1975 ; etc. ) and has not been

completely settled . The physical mechanism behind the annual and daily

cycle in meteorological time series leaves no doubt about their reality ,

but most other periodicities are accepted by some authors and rejected by

others . Although significance criteria have been developed in statistical

analysis , the subjectivity in the adoption of a significance threshold

leaves some ambiguity .
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In addition , many criteria are based on the postulation that the

data are independent and / or Gaussian distributed which is not applicable

to many atmospheric elements . It is well known that most atmospheric

time series show varying degrees of persistence . This persistence is

usually taken into account by testing time series data , e.g. , power spectra ,

against " red noise" which is generated by persistence . An added difficulty

is the appearance of the " quasiperiodicity" where apparent cycles prevail

during a limited time only .

It is well known that red noise is related to the first lag cor

relation coefficient but the modification of this coefficient by the

presence of a cycle is neglected in most references . It will be shown

that the construction of red noise is not independent of the presence of

cycles , and it is not trivial to select a red noise test background .

Time series data of atmospheric temperature serve as an example for

a mixture of cycles and red noise pattern . An attempt is made to separate

these two components . It proved that the power spectrum has the advantages

of disclosing significant cycles in concentrated form and of responding

better to quasiperiodicity than the Fourier analysis . The Fourier analysis

is the most appropriate tool to provide quickly amplitude and phase angle

for spectral filters . The periodogram analysis reveals quasiperiodicity

best and permits us to pinpoint the exact cycle length .

II . THE EXPONENTIAL RED NOISE MODEL . Different types of red noise

patterns have been discussedby the author (1977 ) , and only the equations

for the exponential model will be presented here .

The most common red noise in meteorology follows a plain exponential

sequence :

Pt
exp (-bt) ( 1)

with

t > 0 , b > 0 .

This exponential series is also obtained from a first order Markov

chain :

k

PK ot ( 2 )

It is trivial that t = k , b = -ln p , and 0 < p < 1.0 . In the first order

Markov chain p = Pz . The constant b in the exponential noise can be cal
culated from :

b -Inp1 (3a)
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We must also keep in mind that by eqn . ( 1) the p. follows the exponential

distribution (see Essenwanger , 1976 , p . 113) . Consequently :

ppt = 1/6
(36)

Because in practical applications the summation is truncated after m terms ,

and some discrepancies between eqn . (3a) and (3b ) may arise .b+ bq

A suitable equation for the power spectrum has been deduced by

Gilman et al . (1963 ) . They cast :

[1 - 03) / ( 1 - 02 - 20 cos kn /m ) ] / m

( 4)

In our case ps Pa

Other models and their differences have been analyzed by the author

( 1977 ) . It becomes evident that p, is a crucial parameter in red noise

analysis. Eqns . ( 1) and (4 ) are related by :

El cos (tkr/ m ) ( 5 )

k - 1

III . RED NOISE MIXTURE WITH CYCLES . The general meteorological time

series may comprise a mixture of red noise and periodicities . This fact

was previously exemplified with the aid of three - hourly temperature data

at Huntsville , Alabama for a time period from 6 November 1958 through

14 March 1959 with N = 1024 (see Essenwanger , 1977 ) . In this article

the author has 11lustrated that an appropriate combination for the structure

of the autocorrelation function is :

P1 = WIPR,

a

+ Σ

j=2

Σω,P31 (6)

where :

n

Σ ω = 1

1

1

( 6a)

PRy
and

denotes the red noise , Pg1 the correlation of the respective cycle

Lj. ( The consideration is for data without a trend ) . This simple linear

(weighted ) combination of correlation coefficients works better than Fisher's z

function which is suggested for the combination of correlations by various

authors . A numerical example which confirmed eqn . ( 6) was given by the

author (1977 ) .
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0.5 and W2 .

22,1

Let us assume that
W

= 0.5 . The first lag cor

relation coefficient for rēd noise could be PRI
= 0.6 and 0.4

from a cycle . Then the first lag correlation of the data series is

P1 = 0.5 (0.6 + 0.4 ) = 0.5 which is less than po
PRy

In this case the

correct size of the first lag correlation for red noise is not identical

with the first lag correlation of the data series .

IV . POWER SPECTRUM , QUASIPERIODICITY AND FOURIER ANALYSIS . Three

different statistical tools are available for the analysis of meteoro

logical time series data : power spectrum , Fourier series and periodo

gram . These three individual techniques serve different purposes .

Consequently , we must expect that different characteristics are enhanced

by the analysis of the same data sample with different methods although

the meteorological characteristics do not vary .

A set of 8-hourly data (one year from 1 September 1959 ) was sub

jected to a Fourier analysis. Today this task is rapidly performed by

application of the FFT , the fast Fourier Transform (see Cooley and Tukey ,

1965) . The FFT , conveniently performed for a basic period of 1024 = 210

shows a first significant cycle of 341.3 days , the annual period .

24hThe 24 cycle is not a period of an integer divisor , and is spread

over the wave numbers 339-345 . A more sophisticated computer program

was utilized for the FFT , which does not require that the basic period

can be expressed as a power of 2 . This Fourier analysis was established

with a basic period of 365 days . In this analysis the day is an integer

wave number , and a sharp peak appears alone at 24h , i.e. , wave number 365,

without spilling over to the adjacent classes .

This fact confirms results by Rikiishi (1976) , and illustrates

some fundamental characteristics of power spectrum , FFT and Fourier

analysis . If an existing cycle is not precisely the length governed

by an integer wave number the cycle is " smeared" over the neighboring

frequencies . One solution is the use of a " filter band " (or band filter)

whose width is determined by the spreading . If one particular cycle

exists , the precise length can be found by a periodogram analysis ( see

Essenwanger , 1976 , p . 234 ) .

The utilization of a filter band for the representation of a cycle

has some added benefits . A peak in the power spectrum may indicate quasi

periodicity . This expression may comprise two phenomena . First , the

cycle length may fluctuate , e.g. , in our case between 5 to 6 days (or even

4 to 7 days ) . Second , the cycle may be repetitive over a few periods ,

and then suddenly either disappear or become longer or shorter . The power
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spectrum or Fourier analysis reflects the closest mathematical fitting ,

resembling an average cycle (see Essenwanger , 1951) . Quasiperiodicity

18 weakening the amplitude over the total data length , and the signifi

cance of quasiperiodicity 18 difficult to prove by statistical tests

because of the resemblance to random cycles . Indeed , some authors con

sider quasiperiodicity by and large as a totally random product . It

must be interjected , however , that in atmospheric science a physical

background for quasiperiodicity can sometimes be found . E.g. , a cycle

of 5-6 days can be generated by the development of sets of cyclones ,

80 - called families of cyclones . The length of this development fluc

tuates but the fact of its existence cannot be denied .

The explanation of a 5-6 day cycle as related with the development

of cyclone families is also supported by an examination of the FFT for

the winter 1976/77 with predominantely meridional circulation . In this

" cold winter " at Huntsville , Alabama the 5-6 day " quasiperiodicity" was

absent , and was replaced by an 8-9 day quasicycle .

V. EXAMPLE OF SEPARATING RED NOISE FROM CYCLES . After the utilization

of filter bands has been explained we return to the analysis of two data

sets : the time series of 6 -hourly temperature observations from 15 July

1959 to 10 July 1960 and 15 July 1961 to 10 July 1962 . The truncation

of 5 days from the year simplified the computational efforts for the

application of the FFT and its relationship with the power spectrum . Later

one full year of data was utilized but the results from the full year dif

fered only by 0.1% from the truncated series ,

The elimination of cycles ( quasicycles ) was performed in three steps

(see Figures la and b ) . First , the spectrum of the original data series

was obtained . Then the annual and daily cycles were removed . The remain

ing data were subjected to the FFT again . A series of " quasicycles " or

"quasiperiodicities" were identified and subtracted . Afterwards , the

spectrum of the remaining data series displayed only insignificant de

viation from the recalculated red noise series thus leaving the " noise "

or random fluctuations with persistence. The cycles and quasicycles with

their percentage share are exhibited in Table 1 .

At first glance we may find it peculiar that the annual cycle is

listed as a filter band from the wave numbers 1-7 . One would think that

the truncation of 5 days from the year should not make a signifcant

difference . In reality a peak appeared at 360 days with a side lobe at

90 days length . It was convenient to eliminate the total series of waves

from 1-6 or 1-7 . The appearance of this filter band may be caused by the

asymmetric behavior of the annual cycle .
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Table 1 . Separation of Temperature Time Series Data

into Cycles (Quasicycles ) and Red Noise

1961 1959

Wave Number % Wave Number %

1 - 7 Annual 67.0 1 6 Annual 71.3

12 15 24 - 30 days 1.5 13 23 16 - 28 days 4.9

20 28 3.9 28 33 11 13 days 1.7

33 41 3.3 43 52 7 1.58 days

6 days51 53 0.8 61 70 5 - 0.8

13 - 18 days

9 - 11 days

7 days

4 5 days

daily

semi -daily

73 - 86 2.1

359 361 10.2 359 - 361 8.6daily

semi -daily720 0.5 710 0.4

Red Noise 10.7 Red Noise 10.8

A distinct peak at wave number 360 appeared which signifies the daily

cycle . The adjacent classes 359 and 361 displayed an amplitude more than

10 times as large as the adjacent waves ( 350 to 358 or 362 to 369 ) . In

order to eliminate a remaining peak at the daily cycle in the power spectrum

of the red noise series the band from 359 to 361 was removed .

It is evident from Table 1 that the " quasicycles" fluctuate from year

to year which should be expected . These quasiperiodicities vary in ampli

tude , phase angle and duration . As pointed out some authors consider them

equivalent to random fluctuations . The red noise series and displayed

power spectrum after removal of cycles (middle of Figures la and b)

illustrate that additional cycles ( i.e. , quasicycles ) should be subtracted

to achieve a better agreement (see right hand side of Figures la and b ) .

Thus , the time series of the two sets of data samples can be expressed

by 3 cycles (annual, daily and semi-daily) with about 78 to 80% of the vari

ance , 4 or 5 (for 1959 and 1961 , respectively ) quasicycles with an added 9

to 11% , and a remaining red noise component of about 11% . The proper red

noise influence is then :

PRI
Σ ω.Ρ

11.10
( 7 )

j=2
jji

where P1 = 0.86 for the 1959/60 data set , n = 7 , and = 0.59 . The respec

PR
tive numbers for the data set 1961/62 can be found from Figure 1b and Table 1 .

It is evident that the true red noise first lag correlation is different from

P1 :
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FIGURE 1. SIX -HOURLY TEMPERATURE DATA

HUNTSVILLE , ALABAMA
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We can safely deduce that the red noise pattern cannot be obtained

in a trivial way in the presence of cycles . Furthermore , the first lag

coefficient p , in the autocorrelation is not automatically the one which

provides the proper red noise entry . How does this result affect signi

ficance testing of the power spectrum against the statistical background

of red noise? The answer is not simple and depends on the goal .

If we only intend to find whether the power spectrum is produced by

red noise , the pattern based on the first lag coeffient may suffice . If

our goal is the separation of the data series into cycles and red noise ,

a formalistic application of the first lag correlation is not realistic

unless we find no cycles .

A similar composite pattern to the autocorrelation can be developed

for the power spectrum . We deduce :

F , (L. ) ( 8)

Ig= Walthy

where FL (ly!where F , (L. ) stands for the spectrum of the filters.

The reconstruction of the red noise component in the data series

is not trivial because the phase angles for the Fourier terms must be

known . One way to obtain these is by eliminating the filter bands from

the data series , and subjecting the remainder to a FFT . This method is

not difficult to develop once it is known which cycles ( quasicycles )

must be removed . Furthermore, random fluctuations will produce randomness

of the phase angles for the red noise waves . We can check whether the re

maining phase angles display randomness because it requires a rectangular

distribution of the angles . The result is disclosed in Figures 2a and b .

The deviation from the average number of occurrence , 28.1 or 28.2 , was

tested for statistical significance by applying the Kolmogorov - Smirnov

test for the cumulative distribution . None of the deviations proved to be

high enough to reject the hypothesis that the displayed histogram has a

rectangular distribution as statistical background. We find confirmation

that the remaining data series behaves like red noise in amplitude , and

now in phase angles .

VI . CONCLUSION . The background of red noise in meteorological time series

has been examined for temperature data at Huntsville , Alabama . Of special

interest was the question whether significant cycles influence the determin

ation of the red noise pattern from autocorrelogram or spectral analysis .

As illustrated , the presence of long time periodicities tends to increase

the first lag correlation . In fact , any existing cycle may modify it .

Therefore , the judgment of red noise from the first lag correlation alone

may be insufficient in many cases .

-
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FIGURE 2 . FREQUENCY DISTRIBUTION OF PHASE ANGLE

(RED NOISE )
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This result is important in the evaluation of an existing time

series , but it may be of little consequence for the testing of cycles

against red noise background . However , the drawing of conclusions from

one test curve alone may not always be advisable . A sequence of testing

such as the 3 steps illustrated in Figures la and b may be more appro

priate .

A separation of the data series into red noise and cycles was

delineated (Figures la and b) . This method resembles Craddock's (1965 )

suggestion of filtering insofar as certain significant cycles are
filtered out . Two significant deviations from Craddock's scheme must

be emphasized . First , the filtered cycles are subtracted from the total

data series after the cycles have been determined from the power spectrum .
Second , the remaining data series is a red noise spectrum . These dif

ferences are produced by the dissimilarities in the analysis goals be

tween Craddock's method and the technique of this study .

The red noise contribution to the variance of the two sets of data

of 3 hourly observation for about one year is approximately 11% , i.e. ,

this percentage can be associated with random noise with persistence

while the remaining flucuations are produced by cycles or quasicycles .

About 80% represent the diurnal , semi - diurnal and annual cycle which can

be considered as a simple and predictive part . Quasicycles impose some

restrictions to the predictability because they vary from year to year ,

and the red noise fluctuations are predictive only with respect to their

statistical properties . The determination of the contribution of red

noise in meteorological time series may thus be important information .
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SMALL SAMPLE BEHAVIOR OF SOME PROCEDURES USED

IN TIME SERIES MODEL BUILDING AND FORECASTING

Paul Newbold

Mathematics Research Center , University of Wisconsin

Craig F. Ansley

Graduate School of Business , University of Chicago

ABSTRACT . This paper summarizes the results of a very large simulation

study ofsome procedures commonly used in time series model building and fore

casting , Theoretical results available in this area are generally asymptotic

and exact finite sample results are readily obtainable only for a few over

simplified cases .

Often (particularly in business and economic applications ) analysis of

relatively short time series , in the neighborhood of 50-100 observations , is

required . We examine, by simulation , the behavior of various procedures for

such sample sizes .

Specifically , we examine the properties of three estimators of the coeffi

cients of autoregressive -moving average models , two procedures for testing the

adequacy of representation of such models and the usual estimates of error

variances when these models are projected ahead for forecasting .

I. nINTRODUCTION . Suppose that the available data consists of obser

vations X1 ,x2 ,..., xn on a stationary time series . ( In practice it is often

necessary to difference the original data to induce stationarity ) .

can generally be well represented by a low order autoregressive -moving average ,

ARMA (p , q ) , model

( 1 - 0.B
1 - 0B) xtx =

( 1 - 0.B

B1 -0,89a
( 1 )

where B is a back-shift operator on the index of the time series defined so

that Bİxt = Xt - j, and at
is white noise , i.e. , E (at ) = 0 , E (aſ ) = 2 for

all t and E (atas) = 0 for all t7 s . Stationarity of the model ( 1 ) is

guaranteed by requiring that the roots of the polynomial equation in B ,

( 1 - 01B
$pBP ) all have modulus greater than unity . It is also

convenient to impose the invertibility condition , that the roots of

( 1 - 01B
B - qB9) == 0 all have modulus greater than unity . This ensures

uniqueness of representati
on of the model . A constant term can be added to ( 1 )

to account for non-zero series mean .

0 ,

SFor seasonal time series of period s ( so that = 4 for quarterly and

12 for monthly data ) the model ( 1 ) can be elaborated to give the multiplicative

seasonal model

ps

( 1
- 0,5

$ _BP) ( 1 φ B ) X
1,5 t-

S

B

S
p 1

( 2 )
g. S

= ( 1 - 0B
- 0B - 0,09% ( 1 - 62,88%

Bo lat
9.
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Stationarity and invertibility conditions for this model are obvious extensions

of those for ( 1 ) .

Following the principles set out in ( 1 ) , the fitting of models of the form

( 1 ) or ( 2 ) to data involves an iterative cycle of identification , estimation

and diagnostic checking. At the identification stage , based on statistics cal

culated from the data , a particular model is selected , that is specific values

for P.Ps.9P.Ps, and as in ( 2 ) are chosen. The parameters of this model are then

estimated by asymptotically efficient statistical methods . Finally checks are

made on the adequacy of representation of the chosen model to the given data .

Any inadequacies revealed at this stage may suggest an alternative specification ,

and the cycle is iterated until a satisfactory model is found . The model even

tually obtained may then be projected forward to obtain forecasts of future

values of the time series .

Details of the model building and forecasting methodologies are given in

the books ( 1 ) , ( 2 ) and ( 3 ) and more briefly in the paper (4 ) . In the remainder

of this section we describe only those procedures whose properties are investi

gated in the present study .

Consider , first , the problem of estimating the vector

meters in ( 1 ) or ( 2 ) , under the additional assumption that

distributed . The likelihood function can then be written

ß

at

of unknown para

is normally

-n/2
2

L (B , 02 | x, ) & (0% )) f ( ) exp .( -5 (8,8 ) / 202, ( 3 )

a n a

where xn (X1,82 , ... , xn ) and f ( B ) involves the parameters but not the data .

Analytic expressions for f ( B ) and S ( B , xn ) are given in ( 5 ) , and an alterna

tive form which can lead to great computational savings is given in ( 6 ) .

mum likelihood (M.L. ) estimates of В are then obtained as those values which

maximize

LH (BX ) (4 )

f (ſ ) [ S (B, A,O) 1-1/2

Now , clearly , as sample size increases ( 4 ) is dominated by its final term . If

f ( B ) is treated as roughly constant , then , this suggests use of the exact least

squares (E.L.S. ) estimator which involves minimizing S ( B , xn ) . This has compu

tational advantages over M.L. , particularly if one adopts the approximation

involving " back - forecasting " proposed in ( 1 ) . The name " exact least squares "

derives from the fact that s ( f , xn ) can be written as a sum of squares .

An estimator of greater computational simplicity is obtained by writing,

for example , ( 1 ) as

+ ... + ө а

at = x+ - 0 ,'t- 1
( 5 )

p* t- p + jat- 1 @ qat - q

=

3* -73
ap + j (j = 1 ,.

If ap ( j 1,2 , ... , 9 ) are set to their expected values , zero ,

.. , n p) can then be calculated recursively from ( 5 ) as functions

of the ºi and Oj , and these parameters estimated by minimizing the sum of

squares

2

į This is the conditional least squares (C.L.S. ) estimator.
'to

t = p + 1

at
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All three estimators are calculated by numerical function minimization and

for very large sample sizes they are virtually identical . However , in small

samples there are important differences and these are investigated in the next

section of this paper .

Now let Ộ denote the coefficient estimates and âtât the residuals from the
fitted model . Since, if the model is correctly specified , the at should be

white noise , it is natural in assessing model adequacy to examine the residual

autocorrelations .

n n

fr atât-k! ]/ aam
( k = 1,2 , ... ) ( 6 )

t=k+1 t = 1

These quantities are studied in ( 7 ) and ( 8 ) , where it is shown that , if the model

is correctly specified, they are asymptotically normally distributed with zero

means and variances which we write as Vk (B ) . Unfortunately , Vk (B ) is unknown ,

but can be estimated by Vk (@ ) , so that the distribution of

(k = 1,2 , ... ) ( 7 )

$ = Ê !( VX (@ ) ) 1/2

should be close to a standard normal . Clearly , if this distributional approxima

tion is valid , then large absolute values of the statistics ( 7 ) will indicate

probable model inadequacy .

mAlso in ( 7 ) a " portmanteau test" of model inadequacy involving the first

residual autocorrelations is proposed . It is shown that , if the model is cor

rectly specified the statistic

12

( 8 )2 = n

k=1

k

is asymptotically distributed as chi - squared with (m - k ) degrees of freedom ,

where k is the number of estimated coefficients , provided is sufficiently

large ( values of m > 20 are commonly used) .

In fact the available evidence ( see ( 9 ) and ( 10 ) ) suggests that in finite

samples a closer approximation to the asymptotic distributions is likely to be

obtained by replacing ik in ( 7 ) and ( 8 ) by

for the [ ( n + 2) / (n - k)11/2 ( 9 )(k = 1,2 , ... )
* k

giving the statistics tk and e* . In section 3 of this paper we examine the

empirical distributions of these statistics .

SettingSuppose now that the coefficients of ( 1 ) or ( 2 ) are known .

t = n + h , these equations may be written in the form

х

nth

( a
nth

tu
Vyanth - 1

+.. + \ n - 1 °n + 1' + ( , a + Yn + an - 1
+ ... ) ( 10 )
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where the Vj are known functions of the di and 9j . It is then well known

that , given Xn Xn - 1' * n - 2 ' the minimum mean squared error predictor of Xn+h

linear in Xn- j ( j = 0,1,2, ... ) is the second bracketed expression on the R.H.S.

of (10 ) . The other bracketed term is then the forecast error , so that the opti

mum predictor has error variance

h-1

2

v (h ) = 0 (1( 1 + Į vezi ( 11 )
a

j =1

Now , in practice there are two reasons why ( 11 ) constitutes an understate

ment of the best attainable forecast error variance . First , even if the model

parameters were known , given only a finite realization of the time series the

- j
( j = 0,1,2 , ... ) required to compute the optimal predictor would be unknown

and would have to be estimated from data . Second , the model parameters them

selves have to be estimated , and sampling variability in the parameter estimates

naturally leads to an increase in forecast error variance ( see , for example , ( 11 ) ) .

Thus the best attainable v (h ) in fact depends on the method of parameter esti

mation employed, and comparisons will be made amongst estimators in this way in

the following section . More details on these points are given in ( 12 ) .

In practice forecast error variance is estimated by substituting estimates

of o? and of the model coefficients to calculate estimates of the Vj
lj in ( 11 ) .

This implies the possibility of further bias in the resulting estimator

and the quality of this as an estimator of forecast error variance is examined

in section 4 of the paper .

The results presented in the remainder of this paper summarize an extensive

simulation study covering a wide range of non - seasonal and seasonal time series

models . While we will discuss our findings in general , specific results will be

quoted for just two models . These are the ARMA ( 1,1 ) model

x+ - $X+-1 = at - eat- 1
( 12 )

and the first order multiplicative moving average quarterly seasonal model

=
X

t

( 1 0.B) ( 1

B ) ( 1 - 0,84 ) at
( 13 )

More detailed results are contained in ( 12 ) , ( 13 ) and ( 14 ) .

II . COMPARISON OF ESTIMATORS . In evaluating the performances of the M.L. ,

E.L.S. and C.L.S. estimators we generated data from a range of models of the

form ( 1 ) and ( 2 ) , taking the at to be standard normal deviates . The estimates

were compared in terms of bias , mean squared error and the quality of the fore

casts resulting from their use . In general our finding was that , if a single

estimator is to be recommended for all -purpose use , M.L. is preferable , as there

are circumstances where each of the others has undesirable features . It is not

the case that M.L. is invariably best by any of our criteria , but it is rarely

out -performed to any great extent .

To illustrate , Tables 1 and 2 contain results for the ARMA ( 1,1) model ( 12 )

with 50 observations . Clearly for this sample size the C.L.S. estimator can be

very badly biased with unacceptably large mean squared errors for large values

of Tol or whenor when 0 and ө are close to one another in value . On the other
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hand , the E.L.S. estimator compares rather well with M.L. in terms of bias and

mean squared error. However , use of this estimator rather than M.L. would lead

to slightly inferior performance in terms of forecast error variance , except in

the extreme case 101 = 1 .

Tables 3 and 4 contain similar results for the quarterly seasonal model ( 13 ) .

The performance of the C.L.S. estimator for this model is rather poor for moder

ate and large values of 1941 , where it is badly biased towards zero. On the

other hand E.L.S. is badly biased away from zero for small and moderately large

values of 1941. These characteristics are reflected in poor forecast perfor

mances of these two estimators . Indeed , by this criterion , M.L. seems clearly

preferable except in extreme cases where one or other of the parameters is on

the boundary of the invertibility region . Here E.L.S. shows up rather well .

However , its doing so is in fact a reflection of a very undesirable character

istic of this estimator . Even when the true values are inside the boundaries of

the parameter region , E.L.S. estimators are quite likely to fall on these bound

aries . This point is illustrated for our two models in Tables 5 and 6 .

clearly , as would be expected , the problem is more severe for a sample of

50 observations than for one of 100 observations . Nevertheless it is by no

means negligible for the larger sample size . The importance of the problem lies

in the fact that , if the E.L.S. estimator were used , the analyst could frequently

be led to erroneous conclusions about the appropriate degree of differencing for

the data .

The results presented in this section are a small subset of these contained

in ( 13 ) . From this larger study it emerged that the greatest differences between

the estimators arise in models with moving average terms . In that case there can

be problems in small samples with the use of either of the least squares estima

tors . If the true parameter values are not quite far from the boundary of the

invertibility region , C.L.S. estimates can be badly biased to the center of that

region , with large mean squared errors and an associated poor forecasting per

formance . On the other hand , when the true parameter values are some distance

from the boundary , the E.L.S. estimates can be biased towards the boundary with

rather large mean squared errors , resulting on occasions in poor forecasts .

Moreover , this estimator has a disturbing tendency to produce estimates on the

boundary of the invertibility region , even when the true parameter values are

well inside .

III . STATISTICS BASED ON RESIDUAL AUTOCORRELATIONS . We assume now that a

time series model has been fitted to data , the coefficients having been estimated

by maximum likelihood . In checking model adequacy it is natural to look at the

residual autocorrelations for the first one or two lags and at low multiples of

the seasonal period . The statistics tk, based on ( 7 ) and ( 9 ) could then be

used to suggest possible model inadequacies. However , it is first necessary to

inquire whether , for correctly specified models , the distribution of these

statistics is sufficiently close to standard normal . In ( 14 ) it is shown that,

for first order autoregressive and moving average models , even for samples of

only 50 observations , the distributional agreement in the tail areas is quite

close . However , for two parameter models the situation is rather less clear , as

can be seen from Table 7 .

For the ARMA (1,1) model the empirical significance levels agree very well

with the asymptotic levels for k > l , even for sample size 50 . However , for

this sample size , a test based on the first residual autocorrelation would
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reject the hypothesis of correct specification too frequently when the true para

meter values are fairly small . The situation improves markedly , however , as the

sample size increases to 100 . The only case which gives difficulty here is the

model

х 0.5xt-1
- 0.4a

t t - 1

( 14 )

which again would be rejected far too often by a test based on the first resid

ual autocorrelation . In fact this is not alarming as , for such a small sample

size , it would rarely be fitted since in practice it would be virtually indis

tinguishable from the simpler hypothesis that Xt ati i.e. that the data is

white noise .

This is typical of the results found in ( 14 ) for non- seasonal models . The

test statistics behave very much like the corresponding asymptotic distributions

except in cases of near - overparameterization (which would be unlikely to be iden

tified in practice ) . In these circumstances the test statistic based on the

first residual autocorrelation tends to give too many large values .

For seasonal time series models it is natural to check not only the low order

residual autocorrelations , but also those at small multiples of the seasonal

period. For the quarterly moving average model ( 13 ) some results are shown in

Table 8 . Of course , it is almost invariably the case that the agreement between

empirical and asymptotic distributions improves as sample size increases . Never

theless , the improvement from sample size 50 to 100 here is remarkable . For the

larger sample size the empirical significance levels are generally quite close

to the asymptotic levels , suggesting that for this sample size interpretation of

the statistics is straightforward . On the other hand , for the smaller sample

size the empirical significance levels are frequently too high , particularly at

those lags associated with the seasonal frequency . These results are typical of

these reported in ( 14 ) .

We now consider the portmanteau statistic 2* , based on ( 8 ) and (9 ) .

Although this statistic is almost invariably calculated in practical time series

studies, published evidence of its empirical distribution is sparse , the prime

exception being in ( 10 ) , where just the simple first order autoregressive model

is examined . Tables 9 and 10 show empirical significance levels for the models

( 12 ) and ( 13 ) . The evidence in these tables certainly reflects variability

between models and also variability between parameter values within the same

model . However , it is quite clear (and this is confirmed by further evidence in

( 14 )) that the empirical significance levels are generally "too high " . This

observation accords with a prediction made from theoretical considerations in

( 9 ) . Generally speaking , the discrepancies between the empirical and asymptotic

distributions are likely to be largest for small sample sizes , for seasonal

models , and in the extreme tail areas of the distributions . However , it is clear

from the tables that even for samples of 100 observations, for such relatively

simple two parameter models , use of the Q* statistic can lead to rejection of

a correctly specified model far more often than reference to the asymptotic sig

nificance levels would indicate .

An additional consideration when using any test statistic , of course , con

cerns its power . Some evidence on the frequency with which the portmanteau test

detects model misspecifications of varying degrees of severity is contained in

( 15 ) , where it was found that , unless the sample size is large , the test can

have disturbingly low power .
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IV . ESTIMATION OF FORECAST ERROR VARIANCE . When a fitted time series model

is projected forward to obtain forecasts , it is usual to estimate the error vari

ance by substituting estimates of the unknown parameters in ( 11 ) . The Vj in

that expression are estimated in an obvious way from the coefficient estimates

ội and @j . If, as will be assumed in this section , the model is estimated by
maximum likelihood, it follows from ( 3 ) that the innovation variance

estimated by

S (B , x ) / n ( 15 )

2
is

a n

With thesewhere B is the vector of maximum likelihood coefficient estimates .

substitutions , we denote the estimate of v (h ) of ( 11 ) as v (h ) .

In fact , as we have already noted , the minimum attainable forecast error

variance , V (h ) , will be greater than v (h ) . This is so , since the expression

( 11 ) takes no account of sampling variability in the parameter estimates or of

the fact that only the finite past of a time series is available for the compu

tation of forecasts . It is likely then that û (h ) will be a biased estimator

of V (h ) . In this section we examine the extent of that bias . It should be

emphasized that our results are specific to the case where parameter estimation

is by maximum likelihood . In particular circumstances, rather different conclu

sions can hold for alternative estimators, as illustrated in ( 12 ) .

Tables 11 and 12 contain values of (E (û (h ))(E (û (h )) - V. ( h ) ) / V , (h ) estimated by

simulation for the models ( 12 ) and ( 13 ) . The general picture emerging from these

tables is of a moderate downward bias in û (h ) . For one step ahead prediction in

the ARMA (1,1) model this is in the neighborhood of 5-10% of the true variance for

sample size 50 , and 3-6% for samples of 100 observations . For the seasonal model

the corresponding figures are slightly higher . Perhaps the outstanding feature

of the tables concerns prediction 10 steps ahead for ARMA (1,1 ) models with the

higher autoregressive parameter value . Here the bias can be around 20% of the

true variance for 50 observations and around 12 % for twice that sample size .

Although , with this latter exception , the tables suggest some uniformity in

the proportionate bias , the causes of that bias differ substantially between

models and parameter values . We suggested previously four potential causes of

bias in the usual estimator of forecast error variance . It is of interest , now ,

to examine these factors in a little more detail .

Suppose , for now , that the parameter values are given .
It is still the case

that , if the model contains moving average terms and only the finite past is

available to compute forecasts , the minimum attainable forecast error variance

will be somewhat higher than ( 11 ) . This factor is only of practical significance

when the moving average coefficients are on or very close to the boundary of the

invertibility region . Even then , for the kind of sample sizes considered here ,

it is relatively unimportant for simple non-seasonal models . For example , for

the ARMA (1,1 ) models of Table 11 for sample size 50 it accounts for an addition

of at most 2 % (when 0 = -1 ) to one step ahead prediction error variance , and

less for prediction further ahead. On the other hand , for seasonal moving aver

age models , in small samples this factor can be more substantial . For example ,

for the multiplicative first order moving average quarterly model , in the

extreme case 01 = 1 , 04 = 1 , the minimum attainable one-step forecast error

variance is 13.4% higher than ( 11 ) for sample size 50 and 6.9 % higher for sample
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size 100 . However , the effect quickly dies out as the parameters move away from

the boundary . For example , for 91 = 0.85 , 04 = 0.85 the inflation factor for

one step ahead prediction is only 0.5 % for sample size 50 .

The necessity to estimate the model parameters inflates forecast error vari

ance by a proportion in the neighborhood of K / n , where K is the number of

estimated coefficients . There is , of course , some variability here . A particu

lar case is in forecasting several steps ahead when the optimal predictor is

dominated by a relatively low autoregressive term . In this case the influence

of estimation error can be very slight . For example , for the ARMA (1,1) model

for φ 0.5 , 0 = -0.4 , h = 10 , estimation error in the parameters adds only

0.1 % to ( 11 ) . This factor is discussed in more detail for non-seasonal models

in ( 11 ) and ( 16 ) .

n =

For maximum likelihood estimation , the estimate ( 15 ) of residual variance

tends to be slightly biased downwards . An exception is the case where moving

average coefficients are on or very close to the boundary of the invertibility

region , when the bias is upwards . In this latter case some of the effects of

the inflation caused by only having the finite past to calculate forecasts are

cancelled out , and this explains why the estimates of error variance when moving

average terms are on the boundary of the invertibility region do not have a more

severe downward bias . For example, for the multiplicative first order moving

average quarterly model with 02 = 1 and for Q1 = 0.85 , 04 = 0.85 ,

E (62) 0.92 , while for 0101 = 1 , 04 1 , Elôa
1.05 .

h- 1

2

Finally , the term Σ in ( 11 ) is generally well estimated by substitu
j

j =1

tion of the parameter estimates , except for moderately large in models con

taining autoregressive factors close to the stationarity boundary . This is the

reason for the serious under - estimation of forecast error variance in the

ARMA ( 1,1) model for $ 0.95 , h = 10 noted in Table 11 .

50 ,

U

These factors are all discussed in more detail for a wider range of models

in ( 12 ) .

-

1
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Table 1 : Estimated coefficient biases for ARMA ( 1,1) process

(n = 50 ; 1,000 replications )

Bias ģ Bias ê

l
o

1
0

M.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S.

-0.95 -1.00 0.172 0.096 0.505 0.112 0.042 0.468

-0.95 -0.85 0.090 0.067 0.298 0.074 0.050 0.286

-0.95 -0.40 0.039 0.017 0.046 0.026 0.006* 0.029

-0.95 0.40 0.028 0.012 0.033 0.015 0.033 0.017

-0.95 0.85 0.027 0.009 0.024 0.025 0.053 -0.012

-0.95 1.00 0.026 0.007 0.023 -0.028 -0.008 -0.098

-0.50 -1.00 0.064 0.054 0.184 0.041 0.011 0.180

-0.50 -0.85 0.061 0.053 0.191 0.001* -0.017 0.143

-0.50 -0.40 0.119 0.064 0.191 0.114 0.047 0.178

-0.50 0.40 0.038 0.031 0.016 0.032 0.040 0.018

-0.50 0.85 0.007* 0.004* -0.001* 0.025 0.056 -0.016

-0.50 1.00 0.005* -0.008 -0.026 -0.032 -0.008 -0.105

0.50 -1.00 -0.013 0.006* 0.010 0.027 0.007 0.105

0.50 -0.85 -0.020 -0.010 0.007* -0.021 -0.057 0.018

0.50 -0.40 -0.033 -0.020 -0.016 -0.036 -0.034 -0.013

0.50 0.40 -0.120 -0.064 -0.181 -0.114 -0.056 -0.164

0.50 0.85 -0.072 -0.046 -0.183 -0.009* 0.025 -0.128

0.50 1.00 -0.064 -0.055 -0.182 -0.040 -0.011 -0.181

0.95 -1.00 -0.028 -0.004 -0.024 0.030 0.008 0.105

0.95 -0.85 -0.026 -0.010 -0.025 -0.020 -0.056 0.019

0.95 -0.40 -0.030 -0.007 -0.035 -0.019 -0.028 -0.018

0.95 0.40 -0.046 -0.017 -0.047 -0.034 -0.012* -0.015*

0.95 0.85 -0.096 -0.050 -0.281 -0.07 -0.028 -0.264

0.95 1.00 -0.168 -0.103 -0.526 -0.110 -0.051 -0.500

*Bias is not statistically significant at 5 % level .
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Table 2 : Estimated coefficient mean squared errors and forecast error variances

for ARMA (1,1) process ( n = 50 ; 1,000 replications ]

M.S.E. Ộ (x 103 ) M.S.E. Ô ( x 103 ) V ( 1 )

♡ 0 M.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S.

-0.95 -1.00 90.5 28.1 502 63.8 23.2 510 1.054 1.050 1.065

-0.95 -0.85 52.0 50.7 298 70.8 86.2 320 1.036 1.058 1.057

-0.95 -0.40 9.41 7.09 13.2 33.4 34.3 36.8 1.037 1.053 1.048

-0.95 0.40 4.78 4.85 5.54 22.7 30.2 23.6 1.043 1.051 1.049

-0.95 0.85 4.40 3.86 4. 36 9.04 12.5 10.1 1.039 1.063 1.047

-0.95 1.00 3.91 3.20 5.19 3.11 1.12 17.8 1.055 1.050 1.101

-0.50 -1.00 29.0 20.9 91.7 9.60 2.09 104 1.059 1.053 1.114

-0.50 -0.85 57.6 59.2 122 38.6 40.1 121 1.041 1.059 1.053

-0.50 -0.40 234 214 283 287 255 323 1.044 1.047 1.045

-0.50 0.40 34.1 35.4 29.5 40.8 43.0 40.3 1.049 1.049 1.050

-0.50 0.85 17.1 17.1 18.1 11.1 12.9 12.6 1.047 1.061 1.054

-0.50 1.00 14.4 14.7 18.4 4.18 0.95 20.0 1.066 1.047 1.100

0.50 -1.00 13.8 13.8 20.1 3.46 0.82 20.8 1.055 1.046 1.095

0.50 -0.85 19.5 17.6 17.8 10.5 13.7 12.5 1.045 1.068 1.058

0.50 -0.40 31.9 31.3 30.0 40.8 45.0 42.9 1.046 1.053 1.051

0.50 0.40 241 199 282 294 253 329 1.043 1.044 1.046

0.50 0.85 60.9 54.8 118 40.4 38.2 104 1.046 1.062 1.059

0.50 1.00 30.1 24.8 90.3 9.36 4.76 96.9 1.059 1.054 1.104

0.95 -1.00 3.71 3.08 4.08 3.72 1.10 20.3 1.056 1.049 1.101

0.95 -0.85 3.64 4.06 4.76 10.1 12.6 11.6 1.039 1.065 1.046

0.95 -0.40 5.16 4.12 6.02 23.8 23.4 23.9 1.039 1.051 1.044

0.95 0.40 14.0 9.91 13.2 38.4 38.9 38.6 1.042 1.060 1.054

0.95 0.85 67.4 39.9 258 87.6 71.7 276 1.041 1.070 1.051

1.00 5200.95 93.9 42.4 68.6 36.6 547 1.048 1.050 1.060
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Table 3 : Estimated coefficient biases for multiplicative first order

moving average quarterly models in = 50 ; 600 replications)

Bias 81 Bias 64

0
Q

M.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S.o
l

-1.00 -1.00 0.030 0.011 0.085 0.083 O* 0.257

-1.00 -0.85 0.035 0.010 0.089 -0.020 -0.133 0.128

-1.00 -0.40 0.031 0.009 0.091 0.005* -0.056 0.010 *

-1.00 0.40 0.039 0.006 0.171 0.046 0.149 -0.006

-1.00 0.85 0.048 0.004 0.256 0.033 0.142 -0.164

-1.00 1.00 0.042 0.001 0.264 -0.064 0* -0.287

-0.85 -1.00 -0.012 -0.038 0.004 * 0.082 0* 0.245

-0.85 -0.85 -0.018 -0.045 0.013 -0.014 -0.132 0.122

-0.85 -0.40 -0.022 -0.049 0.005* -0.007* -0.075 0.007 *

-0.85 0.40 -0.018 -0.054 0.062 0.030 0.105 0.000*

-0.85 0.85 -0.025 -0.094 0.141 0.010* 0.141 -0.156

-0.85 1.00 -0.029 -0.103 0.147 -0.074 0* -0.278

0 *-0.40 -1.00 -0.006* -0.010* -0.010* 0.076 0.241

-0.40 -0.85 -0.003* -0.013 0.002* -0.022 -0.130 0.117

-0.40 -0.40 -0.017 -0.015 -0.014 -0.008* -0.079 -0.007*

-0.40 0.40 0.003* -0.025 -0.001* 0.017 0.084 -0.009 *

-0.40 0.85 -0.019 -0.044 0.005* 0.007+ 0.137 -0.119

-0.40 1.00 -0.007* -0.032 0.007* -0.080 0 -0.249

*Bias is not statistically significant at 5% level .
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Table 4 :
Estimated coefficient mean squared errors and forecast error variances

for multiplicative first order quarterly moving average models

(n = 50 ; 600 replications )

M.S.E. @ (x 103 ) M.S.E. Ô4 (x 103 ) V ( 1 )

ei
04

M.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S. M.L. E.L.S. C.L.S.

-1.00 -1.00 2.83 1.46 13.2 17.4 0 80.1 1.149 1.113 1.471

-1.00 -0.85 4.30 1.13 13.7 14.9 22.4 31.1 1.077 1.055 1.250

-1.00 -0.40 3. 79 1.09 15.3 23.0 49.8 23.8 1.072 1.089 1.189

-1.00 0.40 6.42 1.09 44.4 29.6 80.1 26.9 1.066 1.133 1.272

-1.00 0.85 6.67 0.92 84.5 14.1 22.5 41.1 1.092 1.070 1.425

-1.00 1.00 6.26 0.24 90.7 13.5 0 95.7 1.182 1.134 1.503

-0.85 -1.00 7.79 12.9 9.59 17.2 O 74.1 1.126 1.124 1.410

-0.85 -0.85 8.06 12.0 9.90 16.3 23.2 28.8 1.051 1.065 1.192

-0.85 -0.40 9.39 12.9 9.38 26.9 53.6 24.5 1.051 1.108 1.140

-0.85 0.40 11 . 3 13.5 16.1 32.1 63.1 23.9 1.052 1.113 1.076

-0.85 0.85 11.8 18.2 39.3 18.2 22.6 38.5 1.057 1.068 1.178

-0.85 1.00 9.19 19.1 42.9 15.3 0 89.9 1.130 1.124 1.383

-0.40 -1.00 15.8 20.0 22.6 17.0 O 70.0 1.127 1.102 1.205

-0.40 -0.85 18.9 24.8 21.3 17.8 22.5 25.2 1.047 1.056 1.087

-0.40 -0.40 25.9 24.3 24.0 27.9 52.0 23.6 1.057 1.088 1.065

-0.40 0.40 21.7 25.5 21.1 26.6 56.3 23.9 1.045 1.106 1.048

-0.40 0.85 22 . 7 36.2 26.7 19.7 22.7 26.7 1.052 1.074 1.092

-0.40 1.00 19.5 33.4 25.3
17.80

73.9 1.128 1.121 1.218

t
e
r

1

1
1

1
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Table 5 : Percentage times an E.L.S. parameter estimate is on the boundary

of the stationarity or invertibility region for ARMA (1,1) process

[ 1,000 replications , n=50 ; 600 replications, n=100 ]

l
o n=50 n=100

오
ө n=50 n=100

0.50 -0.85 46.7 8.7 0.95 -0.85 47.4 17.3

0.50 -0.40 1.4 0 0.95 -0.40 10.8 0.3

0.50 0.40 15.2 5.5 0.95 0.40 19.8 0.8

0.50 0.85 53.0 26.8 0.95 0.85 54.0 19.8

Table 6 : Percentage times an E.L.S. parameter estimate is on the boundary

of the invertibility region for multiplicative first order moving

average quarterly models [600 replications ]

OI
OA n=50 n=100 01 04 n=50 n=100

0.40 9.3 0.2 0.85 0.40 22.20.40 57.3

0.40 0.85 92.3 73.7 0.85 0.85 98.0 78.3
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Table 7 : Empirical significance levels of the statistic time for ARMA (1,1)

models [ 1,000 replications, n = 50 ; 600 replications , n = 100 )

n = 50 n = 100

l
o 이 K 0.05 level 0.10 level 0.05 level 0.10 level

0.50 -0.85 1 0.lll 0.186 0.072 0.128

2 0.063 0.109 0.040 0.095

3 0.052 0.112 0.055 0.103

0.50 -0.40 1 0.184 0.257 0.068 0.130

2 0.050 0.105 0.055 0.100

3

0.045 0.099 0.057 0.112

0.50 0.40 1 0.147 0.195 0.197 0.248

2 0.055 0.107 0.095 0.143

س

ا

0.051 0.103 0.047 0.097

0.50 0.85 1 0.072 0.141 0.058 0.108

2 0.052 0.112 0.058 0.098

3 0.049 0.092 0.042 0.100

0.95 -0.85 1 0.066 0.133 0.053 0.100

2 0.059 0.099 0.043 0.112

3 0.065 0.110 0.058 0.110

0.95 -0.40 1 0.101 0.157 0.063 0.120

2 0.065 0.116 0.077 0.130

3 0.052 0.114 0.053 0.083

0.95 0.40 1 0.113 0.175 0.078 0.122

2 0.060 0.102 0.045 0.093

3

3

0.041 0.086 0.062 0.120

0.95 0.85 1 0.068 0.130 0.055 0.130

2 0.058 0.133 0.062 0.110

3 0.057 0.109 0.055 0.090
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Table 8 : Empirical significance levels of the statistic tk for multiplicative

first order moving average quarterly models ( 600 replications )

n = 50 n = 100

01 04 K 0.05 level 0.10 level 0.05 Level 0.10 level

0.40 0.40 1 0.060 0.100 0.053 0.102

2 0.040 0.080 0.038 0.097

4 0.067 0.125 0.047 0.102

8 0.057 0.105 0.045 0.093

0.40 0.85 1 0.105 0.152 0.063 0.133

2 0.050 0.087 0.055 0.107

4 0.085 0.150 0.050 0.107

8 0.085 0.120 0.073 0.135

0.85 0.40 1 0.052 0.100 0.050 0.093

2 0.048 0.102 0.047 0.108

4 0.107 0.163 0.058 0.122

8 0.072 0.135 0.052 0.095

0.85 0.85 1 0.048 0.108 0.052 0.125

2 0.042 0.093 0.050 0.093

4 0.093 0.162 0.045 0.087

8 0.097 0.165 0.057 0.128
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Table 9 : Empirical significance levels of the statistic Q* for ARMA (1,1) models

[m = 20 ; 1,000 replications, n = 50 ; 600 replications, n = 100 )

n = 50 n = 100

오
ө 0.05 level 0.10 level 0.20 level 0.05 level 0.10 level 0.20 level

0.50 -0.85 0.104 0.169 0.267 0.053 0.112 0.212

0.50 -0.40 0.069 0.106 0.198 0.068 0.110 0.208

0.50 0.40 0.080 0.132 0.224 0.072 0.123 0,200

0.50 0.85 0.100 0.152 0.243 0.068 0.112 0.212

0.95 -0.85 0.102 0.153 0.267 0.065 0.132 0.228

0.95 -0.40 0.092 0.146 0.256 0.072 0.128 0.208

0.95 0.40 0.078 0.123 0.218 0.077 0.138 0.248

0.95 0.85 0.106 0.179 0.272 0.105 0.167 0.275

Table 10 : Empirical significance levels of the statistic e* for multiplicative

first order moving average quarterly models [m = 24 ; 600 replications)

n = 50 n = 100

01 04 0.05 level 0.10 level 0.20 level 0.05 level 0.10 level 0.20 level

0.40 0.40 0.065 0.123 0.210 0.050 0.100 0.212

0.40 0.85 0.135 0.223 0.330 0.088 0.157 0.245

0.85 0.40 0.105 0.143 0.253 0.077 0.133 0.213

0.85 0.85 0.168 0.235 0.338 0.095 0.160 0.255

1

7
8



Table ll : Estimates of (ECô (h )) - V. (h ) )N. (h ) for ARMA (1,1) models

( 1,000 replications , n=50 ; 600 replications, n = 100 )

n=50 n=100

$.

0 h=1 h=2 h = 10 hul b = 2h=2 h=10

0.50 -1.00 -0.058 -0.060 -0.009 -0.036 -0.038 -0.010

0.50 -0.85 -0.097 -0.077 -0.013 -0.060 -0.049 -0.027

0.50 -0.40 -0.087 -0.067 -0.004 -0.038 -0.029 0.005

0.50 0.40 -0.079 -0.036 -0.005 -0.040 -0.024 -0.012

0.50 0.85 -0.077 0.007 0.022 -0.053 -0.011 -0.003

0.50 1.00 -0.068 0.009 0.005 -0.033 0.002 -0.002

0.95 -1.00 -0.062 -0.083 -0.194 -0.033 -0.045 -0.119

0.95 -0.85 -0.080 -0.076 -0.178 -0.047 -0.048 -0.136

0.95 -0.40 -0.071 -0.069 -0.180 -0.037 -0.040 -0.118

0.95 0.40 -0.098 -0.100 -0.204 -0.039 -0.046 -0.126

0.95 0.85 -0.081 -0.064 -0.067 -0.036 -0.027 -0,019

0.95 1.00 -0.069 -0.034 0.002 -0.033 -0.019 0.003

Table 12 : Estimates of (E (û (h )) - V. (h )) N . (h ) for multiplicative

first order moving average quarterly models ( 600 replications)

n = 50 n=100

04 h=1 h = 2 h = 4 h = 1 h=2 h = 4

a
l

0.40 0.40 -0.087 -0,028 -0.026 -0.046 -0.023 -0.023

0.40 0.85 -0.121 -0.078 -0.084 -0.073 -0.050 -0.048

0.40 1.00 -0.086 -0.052 -0.056 -0.052 -0.031 -0.034

0.85 0.40 -0.101 -0.064 -0.060 -0.058 -0.036 -0.032

0.85 0.85 -0.138 -0.096 -0.092 -0.068 -0.042 -0.043

0.85 1.00 -0.106 -0.066 -0.057 -0.052 -0.018 -0.018

1.00 0.40 -0.072 -0.061 -0.062 -0.041 -0.036 -0.036

-0.0901.00 0.85 -0.106 -0.087 -0.066 -0.061 -0.062

1.00 1.00 -0.105 -0.071 -0.071 -0.040 -0.028 -0.032
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STATISTICAL PROBLEMS ASSOCIATED WITH THE HORIZONTAL CHANNEL

OF THE RAPID GEODETIC SURVEY SYSTEM (RGSS )

H. Baussus von Luetzow

U.S. Army Engineer Topographic Laboratories

Fort Belvoir , Virginia

ABSTRACT

The paper discusses the estimation of deflections of the vertical along with

horizontal gyro biases from a set of given and measured data as a statistical

adjustment problem . In conjunction herewith , it presents a quasi - optimal esti

mation method and necessary covariance functions . It further outlines the

estimation of gridded deflections from RGSS data and improved stochastic

position error control .

1 . INTRODUCTION

The involvement of the U.S. Army Engineer Topographic Laboratories (ETL ) in the

field of inertial surveying and , subsequently , in inertial geodesy , can be

characterized by three phases . Phase I comprised the development of a Position

and Azimuth Determining System ( PADS ) primarily in support of U.S. Army

artillery and was completed in 1972 . Phase II was concerned with the instal

lation of a higher -accuracy vertical accelerometer for improved vertical

positioning and the inclusion of software and a data storage unit for the

determination of gravity anomalies and deflections of the vertical components

Ę and n under consideration of initial and terminal gravity vector components .

The modified PADS operates as an optimal local- level system in the Inertial

Positioning System (IPS ) mode and as a quasi- local - level system in the Rapid

Geodetic Survey System ( RGSS ) mode . The RGSS mode without Kalman platform tilt

corrections has advantages concerning gyro bias estimations and thus for the

determination of Ę and n Phase II was essentially completed after ETL tests

at White Sands Missile Range in 1976 . These tests established an RGSS capability

of determining gravity anomalies and deflection components with average rms

errors of 2 mgal and 2 arcsec , respectively for 50 km runs in comparison with

unreduced ims values of 35 mgal and 5 arcsec . Phase III concentrates essentially
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on additional RGSS testing in the vicinity of Washington , D.c. , the development

of improved methods for the determination of Ę and n and their implementation ,

improved stochastic error control for positioning , and desirable hardware

improvements , notably the installation of two A1000 accelerometers in the

horizontal channel . with sufficient funding, it could be completed in 1981

and should permit 5 , n - determinations with a mean standard error between 0.5

and 1.0 arcsec without repetitions , and improved positioning. Promising

RGSS applications are :

* Rapid Ag , 5 , n - determinations along solitary courses of about 60 km length .

* Establishment of regional Ag , 5 , n-grid information networks suitable for

use in a gravity - programmed inertial positioning system and for analytical

continuation in space in the case of flat or moderate terrain .

* Improved point positioning approaching classical surveying accuracy .

*Flood plain profiling and mapping under consideration of the underlying

geoidal structure .

* Geophysical prospecting .

Section 2 of this paper describes quasi -optimal and suboptimal methods for the

determination of Ę and n by means of RGSS and auxiliary data . Section 3 gives

a short overview as to required auto - correlation functions . Section 4 outlines

the construction of regular 5 , n-grid networks from solitary course data .

Finally , section 5 addresses essentially improved stochastic position error

control which would be particularly valuable in the context of local surveying

within a radius of about 20 km from the starting point .

8
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2 . Optimal and Suboptimal Post -Mission & , n - Estimation .

The error differential equations of interest , applicable to horizontal motion ,

are for the RGSS :

=
d

dt .. ;
( 1 )

d ŷ

=

у

dt

1 ý (2 )
R

i

SNEZ gøn + gn + ag ( 3 )
dt

åt i
S_0

E Z + 9%E
get an

(4)

o
l
i dz

=

tn pX .

R
( +

sec20) ŷ + Werde
PN WNPE + a (5 )

+ wzPe + B
( 6 )

dt

੪
।
੪

=

-Y

R

+ ω.Φ.
Z'N upz +

(7)

For simplicity , the symbol in front of the dependent variables has been

omitted .
The applicable coordinate system is evident from Figure 1 .

у (North )

X (East )

Figure 1

Applicable Coordinate System

83



Symbols used in the foregoing local level equations are :

x east angular position error

ỹ north angular position error

i east velocity error

į north velocity error

azimuth axis angular drift rate error1

B
north axis angular drift rate error1

Y
east axis angular drift rate error1

g
normal gravity

geographic latitude

R
mean earth radius

azimuth platform attitude error
Z

' n platform tilt error about north axis

de platform tilt error about east axis

ат

product of g and deflection component2

ду

9η :

g६

ат

ax

product of g and deflection componenta

SN

dy

N

dt

north acceleration of survey vehicle

SE

ave

dt

east acceleration of survey vehicle

ae
correlated east accelerometer error

an
correlated north accelerometer error

errors .

1
a = a + (a m ) , B = 6 + (B - B ) , y = + (y + 7 ) where the bar symbol

indicates constant bias and the terms in parentheses are correlated random

a a

2 T is the earth's anomalous gravity potential . The derivatives and

ax ay

are taken along the level horizon in the easter and northern direction ,

respectively .
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SEN = scos north earth rate

PN
= V_ / R north angular rate 3

E

12

N

+ p

N
= scosø + VER north spatial rateN

WE PE = -V/R east spatial rate

=

+

Wz sez + PZ
Nsing + V/RVER · tno vertical spatial rate

In inertial land navigation , terms involving we in equations ( 5 ) and ( 6 )

are neglected in Litton's Kalman error controller . The initial conditions

at time t = 0 = E.
.

3 (0) = y (0) = x (0)
50

= Yare con
= 0 , 0 (0 )

N "O " OCON =

The system ( 5 ) - ( 7 ) can be approximately solved in closed form for constant gyro biases

ā, ē, T. The solution is , with w = 12 and w

N N Z

= 12

z '

Öz (t) Ycos • 2-1 ( 1 - cosit ) + Blsino cosøt 12-1 sinnt)

+ a7sin2 • t + cos20 5-1 sinkt)

(8)

On (t) = ysino · 2-1 (cosat - 1 ) + B (cos2g • t + sin2 1-1 sinnt)

+ asino coso ( t 5-1 sinnt) ( 9 )

(t) = yn - sinat + Bsing 1-1 ( 1
.

cost)

+ acoso 1-1 ( cosnt - 1 ) ( 10)

The substitution of Öz (t ), Zn (t), and (t), respectively in equations ( 3 )
..

and ( 4 ) permits the direct assessment of gyro bias effects on y and x .

In order to provide for quasi - continuous time integration for intervals i

between stops , successive representative E's and n's for constant time

3

In the error equations , normal and meridional radii with respect to the

reference ellipsoid may be replaced by R for lvl < 100 km h- 17
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intervals At are designated by a subscript v . Subsequently , numerical inte

gration with respect to time yields the following solution

structure for the first interval between stops , identified by 1 = 1 :

ΣΑ ξ + ΣΒ n

lu v lv v

+ C a + DB

1 1

+ EY + Ea

1
Y

( α -α) + Σή ( B -B ) + c ( - )
lv 1ν * , *lv ν ν

+ ΣΑ. a + ΣΒ a

1ν Νν 1ν Εν

I
l

= X
+ ( 11 )n )

$115, no se1

ΣG ξ + EH

lv v

n + Jā + K B + L T + Ed ( α -α ) + Σe+
1 1 lv lvLY (B.,-B) + ETU(Y,-T )1ν ν V V 1i

+ EG a + EH a

1ν Νν 1νΕν = jy
+ Y. (

Y_150 no senel
( 12 )

The terms involving av , Bue Yu and stochastic accelerometer - induced errors

are only used for the computation of error covariance matrices which are

necessary for the establishment of a priori weights in a least - squares

solution . The small

The terms and Y4 represent known linear functions .

terms Svºz and Setz in equations ( 3 ) and ( 4 ) , respectively are omitted prior to

the determination of constant gyro biases and may be considered in an

iterative scheme .

६ . ni n

e

The variables & and

ņu except 50 '
as given initial and terminal

е

values are estimated by means of statistical collocation by suitably spaced

Ei and ni the number of which should be chosen to achieve sufficient degrees

of freedom in a post -mission adjustment . Accordingly , under consideration

of representative 50 = 5, [x (t) , y ( t ) ] , nu
= n [ x ( t ) , y ( t ) ] ,

.
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= Στη ६

'vi'i

( 13 )

nu = învini ( 14 )

under consideration of 50 = For no = ño, se Ee
กn .

ſe :e

For short distances no advantage is gained from estimating 5, and nu

in equations ( 13 ) and ( 14 ) by additional terms containing ñ and ŝi ,

respectively .

Substitution of Ê, and no estimates ( 13 ) and (14 ) in 1 equations of

the form (11) and ( 12 ) yields the final observational equations:

= ΣΜ + EN + c a + D , B + E , Y

di'i di'i a λ λ

( 15 )

- (sa + ab + b ñ + cFe + a ſe
= 0

( 2 )

F :

λ

= ΣΡ .

EPxi Si + EQXi'i + Hjā + J2B + KxY ( 16 )

+ h , n ) = 0
a

A weighted least - squares solution yields quasi - optimal de flections of the

vertical together with gyro biases and also makes it possible to provide

error estimates thereof. Approximate constant survey vehicle velocities

between stops and standard vehicle acceleration and deceleration would

simplify the analyses and contribute to greater accuracy .

The geometrical considerations relating to equations all ) - ( 14 ) are

evident from Figure 2 .
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Figure 2

Traverse with Stops S, and Point Estimates 5i . Ni and Segment Sors,

For the computation of mIl vi
and n it is necessary to record t , x , y , to

vi

tabulate these data together with stop and point estimation coordinates

xx Yx [X , Y , to compute distance and correlation matrices [ r ] and [ p ] ,
Vi Vi

and finally to determine mi
and nyi-regression coefficients under restriction

to five appropriate fi or ni-estimators . In a strict solution , corresponding

M ' s and n ' s differ from each other .

vi vi
In practice , it may be possible to

use isotropic correlation functions for both 5 and n because of short

distances involved (see section 3 ) . Due to the small correlation between

and
nu& and in for short distances no advantage is gained by estimating 5v

in equations (13 ) and (14 ) by additional terms containing ni and 5

respectively .
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The present quasi -optimal method is illustrated by the following : The

observable acceleration error at the first vehicle stop is

Yı g¢el g (54 - 5) + ani ( 17 )

under consideration of the initial deflection component Eo The tilt error

*El is then estimated by means of the observable velocity errors x, and yı

according to the linear regression equation

%E1 = a,x, + By, ( 18 )

The accelerometer is then biased according to

YB, = ïi - gồe1 ( 19 )

The deflection difference of interest is then estimated as

j
o
y

DN

1

& - 50
(20 )

g g

with respect to the second stop interval it is

= 9 ( 4E1 - QEL ) + gø ¢ 2 - ( E2 - 50 ) +g + 2x2 (21 )

where 80E2 is estimated in the form

SPEZ
3

арх, + В„ Ў,2
(22 )

Subsequently ,

YB, - - gô 4,

The second deflection change estimate is then

IB2
DN2

E2 - 0 (23 )
g g

The accuracy of deflection determination is thus dependent on the accelerometer

error , gyro bias error , and the cumulative tilt estimation error .
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With
as initial estimates , it is

λ

( 24 )

-5 . = 42

4-5 + 7,42 54+82-8 ....... - n-1

Following estimation of de and nd the closing errors 5-6 neando
and ne are

available for the approximate determination of average gyro biases ā, B, T.

However , at least one additional intermediate & orn is required for a unique

bias calculation . Finally , bias corrections to the initial deflection components

(2) can be applied as
a

SEX
=

( φ

Ελ

Bias ( 25 )
Ελ

In contrast to the above procedure , the prior quasi - optimal method

for the determination of & and ñ -data contains sufficient degrees of freedom

for the simultaneous estimation of gyro biases . It is , however , of significance

that x, and ŷn of the general optimization method and Xl, and YLA of the present

RGSS mechanization are different because of implemented Kalman " corrections "

s @ex and spa: It is , e.g. ,

i = 1-1

Y
λ" = yL2 + 9 8 Ei (ti -ti-1 ) ( 26 )

i=1

with 1> 2 . While the identified accelerometer " corrections " permit an

improvement in stochastic position determination , they are not beneficial with

respect to optimal E , n -determinations .

The present suboptimization method is due to Huddle (1977 ) while the quasi

optimization concept was originally formulated by Baussus von Luetzow (1977 ] .

3 . Necessary Covariance Functions

Useful and consistent covariance functions , including cross - covariances , per

taining to Ag , Ę and n are those developed by Jordan ( 1972 ) . The covariance

functions are :

r2
-r / D

oź ogg = oś ( 1 + 증Pgg (r)
( 27 )

202
7
€
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-

( r , Ꮎ)
obogg = OE ( 1 +

H
A cos? e) e - r / D

EE (28 )

2
8

2
8 -r / D

8
ann ( r , e ) = omennomienno (1 +

sin2 o) e ( 29 )

-

H
A

Suitable constant parameters are

ºg
= 0

g gܗܬ = 35 mgal , og
o

n

= 5 arcsec , D = 37 km .

Cross - covariance functions, although available and includable in the general

optimization method outlined in section 1 , are not shown here . For short

distances , cross-correlations tend to be small , and they become hardly sig

nificant for longer distances . The assumption of ( approximate ) homogeneity

applies to all covariance functions . The geometry relating to an arbitrary

2 point - correlation is evident from Figure 3 .

N

✓

2

ө

1

Figure 3

2 Point -Correlation Geometry

(r , e) and

EE

Basic , direction - independent correlation functions •

gg

Ann ' ( r , o) are shown in Figure 4 .
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gg
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( r )
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for O = 0

for e = 0

covariance functions pertaining to correlated gyro drift errors and correlated

t

accelerometer errors are approximated by A • e Parameters to be used are

0.002°/hr and t = 2 hr in connection with Litton's G200 gyroscopes , and
GG

10 ugal and I = 40 min in the case of Litton's A200 accelerometers .
A
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4 . Estimation of Gridded Ê , ñ-Data from Discrete RGSS -Determined ę, n

Information

For a mathematically satisfactory solution of the estimation problem in

question , error covariances e ( t . ) e ( t ) ē should be computed from

i k ik

time - dependent linear aggregates of correlated gyro and accelerometer errors .

In general , it is sufficient to estimate Ê , ñ-data from about 20 corresponding

E , n-values , obtained by means of the RGSS . Otherwise , the computational

load as to matrix inversion becomes too great . Under utilization of Figure 5 ,

& -estimation at P23 may be formulated as

§33 = ĝ

a11 (5117 e11 ' +
ta ( )

15 15 15

+a221522+€22 ) + . ta ( E te .

26 26 26

+ a ( E te )

3333 33 '
+az6 (536 +436e36

)

ta ( ६ te ) +

42 42 42

ta ( ६

46 46

ta ( Ę . te ) + ...
54 54 54

ta ,2561556 + 56 )

+213
(Ete ) +

73 73
(
E1373te ,

ta ( ६ te )

76 76 76

(30 )

with regression coefficients a,221 '
etc. The first line of the resulting

covariance matrix is then

£Ê 21

(var &+@ 2121
) +

il -215 (511515tēj5)

+a ६६ +

22 2211
ta &&

26 26 ° 11

ta ६ ६ +

33 33 11

ta Ę Ę.
36 ° 36 ° 11 ( con't )
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ta ६ ६ . +

42 °42'11

ta.Ę

46 ° 46'11

ta ६ .

54 ° 11

ta

5656511

+73573511+. +276576511 ( 31 )
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of significance is that " noise " covariances may be neglected as to data

from different runs . The computation of respective covariances by means

of equations (23 ) and (24 ) and the inversion of the covariance matrix

presents no computational difficulties . Simplifications as to the in

clusion of variable noise covariances may be potentially possible .

It should be noted that the midpoint Ag - estimation from Ag - data measured

at two points separated by a distance of 3 km has a mean error of 0.32 mgal

which corresponds to 0.05 arcsec . Although this theoretical estimate appears

to be optimistic , the indications are that gravity anomalies and deflection

components can be well - interpolated in non - mountainous terrain for grid

intervals Ax = 4y < 5 km .

5 . Improved Stochastic Position Error Control

The determination of gyro biases along with that of deflections of the vertical

under availability of initial and terminal deflection components o no , Fe ' Me '

makes it also possible to compute position corrections 8x (ty), dyg (ty ) . Term

inal position closure errors oxe, dye may thereafter be attributed to accelero

meter scale factors , and these closure errors are then linearly allocated as

additional position corrections . A linear allocation appears , moreover , to

be beneficial if gyro biases corrections are not explicitly available .

The geometrical framework for terrestrial inertial navigation is the applicable

reference ellipsoid . If the initial deflection components o no are known ,

leveling of the platform at the start of the survey mi sion results in the

terms g (n- no) and -g (5-6 ) instead of gn and -gg in equations ( 3 ) and (4 ) .

For the computation of var x (tz / , var x (tz / , cov (x , x ) (tz ) , etc. , 5 and n
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are considered as random variables and 50 and По
as unknown biases with

var Ę and var n , respectively . As an illustration , the variance contribution

due to -g ( 5-60 ) in the computation of var ý (tg ) is then in simplified form

tag2 siy ( t ) = gº Edt ) 2 + g var (ty-t2-1 ) 2
( 1 )

var y ( 32 )

t - 1

Actually , Ę and 5 are correlated random variables , and the correct computation

would read

(1)
t

a
• ( 2 )

var ý

Ę

= var y

It , Yę (ty ) - 2g2 (ty-t2-1 )
ſ & Edt

( 33 )

tx-1

( 2 )
The implications of eq . ( 33 ) and of corresponding correct var y and

( 2 )
COV 6 , y )-terms are the following:

*For short distances , i.e. , for local surveys within a radius of 30 km

from the initial departure point , the incremental position variances

and the total position variance are significantly reduced .

*For short distances , Kalman filter - computed regression coefficients

for position determination are not optimally computed .

*It is beneficial for vertical positioning to facilitate initial

Ag-19, elimination by appropriate calibration under consideration of

a measured go :

The above conclusions are consistent with encouraging good RGSS positioning

results .

Identified correction terms involve the consideration of cov ( 5,60 ) and

cov (nono - computations and thus require to record the coordinates X (t ) ,

Y (t ) in addition to x (0 ) , Y (0 ) . The existing computer capacity would

96



have to be moderately increased . Improved stochastic position error control

would be particularly effective in conjunction with the use of improved

accelerometers , gyroscopes and velocity quantizers and then approximately

achieve classical survey accuracies .

6 . Conclusions

Quasi- optimal determination of deflections of the vertical under simultaneous

consideration of all measured velocity component errors at vehicle stops is

feasible and computer -programmable . It has inherent advantages over the

present estimation technique and can be generalized to a fully optimal method

by the inclusion of the whole set of observed accelerometer errors at stops .

Solutions involving covariances between g , n , Ag are neither promising nor

economic . The construction of gridded 5 , n-data from RGSS - determined estimations

under consideration of non -stationary errors is possible and does not necessarily

require longitudinal and traverse surveys . Actual position errors are smaller

than Kalman - estimated position errors , particularly for distances below 30 km .

The computation of improved regression coefficients for position determination

is possible and can be facilitated without expensive complexity . Further

theoretical research and testing and the implementation of RGSS hardware

improvements are expected to achieve highly promising results in position and

gravity component determination for various military and non -military applications .
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ANALYSIS OF VARIANCE ON THE TRADE - OFF FUNCTION

RELATING ACCURACY TO SPEED OF REACTION

Walter D. Foster , AFIP

John H. Wolcott , AFIP , Lt. Col. , USAF , BSC

Terrence L. Kay , AFIP

Washington , D.C. 20306

ABSTRACT . The customary variable in the analysis of variance is

a single , continuous variable , presumed to possess the usual assumptions .

In contrast , the variable of analysis here is a function ,

Ln [P / ( 1- P ) ] = A + BT , where

P is the proportion of correct responses , T is the response time, and

A and B are parameters to be estimated from the data . This response ( or

trade - off ) function was derived from observations on P vs. Tas human

subjects were asked to operate a simple right or left-hand response to

a light signal at different levels of an altitude chamber and mood as

determined by a psychological scale .

The analysis of variance of the trade - off function took the

following form :

Source

Mean

Subjects

Altitudes

Moods

AxM

Exp Error

Pooled Devs

df

2

2 ( S-1)

2 (a-1)

2 ( m - 1 )

2 (a-1) ( m - 1 )

2 ( S-1) ( am - 1 )

ams ( n - 2 )

TOTAL amns

to ascertain if altitude or mood affected the trade - off function .

I. INTRODUCTION . Factors affecting aircraft pilots have been

extensively chronicled in the literature on aircraft safety . To a dismaying

degree , these factors are difficult both to define and to measure . A highly

bally -hooed factor currently enjoying a most lucrative existence is biorhythm

whose effect on pilots involved in aircraft accidents has been scientifically

demonstrated to be wholly fallacious (Wolcott 1977 a , b ) . Our report is concerned

with two factors , altitude and mood , their definition and measurement , and

their possible effect on reaction time. Emphasis is placed on a novel statisti

cal analysis , the analysis of variance of a function (Foster 1962 ) .

The opinions or assertions contained herein are

the private views of the authors and are not to

be construed as official or as reflecting the

views of the Department of the Army , Department

of the Air Force , or the Department of Defence .
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The laboratory experiment consisted of measuring the reaction

time of a human subject responding to two lights . If the right light

would flash , the subject should depress the right -hand button within a

specified length of time for a correct response , and similarly for the

left . An incorrect response would consist of depressing the wrong

button or exceeding the time limit . Time limits were 275 , 240 , 215 ,

180 milli seconds . The time limits were balanced and randomized in

their order of presentation to preclude an order effect . At each time

limit , the subject was challenged with 100 flashes . Simulated heights

in the altitude chamber went from 0 to 12,000 feet in 2,000 foot intervals .

While measured on a continuous psychological scale mood was condensed for

analysis here to the three levels of high , middle and low . The seven

altitudes were condensed to low , middle , and high for this analysis , thus

creating a three -by -three factorial design for treatments . There were

eight volunteers, each having at least one trial in each of the three

by three factorial to provide a completely balanced design .

The variable of analysis is defined to be the function relating

the proportion of correct responses to reaction time . Because accuracy

generally decreases as response time is decreased -- a trade - off between

accuracy and time, the function relating these two is customarily called

the trade-off function .

II . DERIVATION OF THE TRADE - OFF FUNCTION . A variety of models

have been used in similar experimentation by other researchers . A good

review of these is given by Wood ( 1976) and Lappin ( 1977 ) . None of these

was found to be outstandingly successful. The procedure followed here

was to elicit a model from consideration of the basic data . It seemed

to us after trying many approaches that a plot of successive differences

in the percent correct when divided by change in time and by percent

correct answers and then plotted against performance-- this plot was linear

for most trials and when not , it tended to be concave to the right , as

shown in the following diagram :

ΔΡ / ΔΤ

P

ΔΡ / ΔΤ

P

P P

When this dependent variable was plotted versus log performance ,

the plots were occasionally linear but usually concave to the left as

shown below .

ΔΡ / ΔΤ

P

ΔΡ / ΔΤ

P

Log P Log P
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The physical meaning of these plots was interpreted to be as

follows : Improvement rate related to performance fell off at a constant

rate as performance increased . Thus ,

ΔΡ / ΔΤ • A - BP

P

The derivation of the trade - off function was accomplished

by approximating the differences by differentials , separating variables

to give do dt, and integrating by partial fractions to give the

(A - BP ) P

following model :

P =
A/B

1 + kexp (-AT )

which is recognizable as a 3 -parameter logistic function . Plots on

logistic paper , i.e . a 2 -parameter logistic by placing A / B * 1 , were

generally linear . Some typical examples of these plots are given in

Figure 1. Therefore , the model La [ p / ( 1 - P ) ] = a + bT was adopted .

III. FUNCTION ANALYSIS OF VARIANCE (FAV ) . What is FAV ?

Perhaps it is best exemplified in an analogy to the typical analysis

variance . Note that the net sum of squares for an effect can be computed

by subtracting a correction term :
(treatment totals) 2 / (Grand total )2/10

to center the data at the mean . In the corresponding FAV on linear re

gression , the moments are taken about the origin so that not one degree of

freedom but two are allocated . However , the average regression through all

the points is used as the correction term when distinguishing between two

or more linear regressions representing groups or treatments , as illustrated

below :

A F A V.

ووب
B

MEAN REGRESSION 2

A vs B 2

DEVIATIONS 2 (n - 2 )

2n

The complete analysis of variance of the trade - off function is

shown in Table 1 in which the degrees of freedom are allocated as indicated

above; tests of the effects of altitude, mood , and the AXM interaction are

seen to be not statistically different . However , the graphs of these

effects ( in Figure 2) show a distinct ordering of the effects as expected

If the effects are real .
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Low altitude is taken as the reference or ground level compared to

which the curves for the higher altitudes are displaced downward re

flecting a depressed performance . Similarly with respect to a good

mood (as reference) poorer moods are associated with curves with down

ward displacement. That both mood and altitude should have the ordering

as discussed above under the null hypothesis has a significance probability

of 1/36 as shown at the bottom of Table 1 .

IV . COMPARISON OF FAV TO AN ALTERNATE ANALYSIS ON EFFICIENCY .

Efficiency was defined as the proportion correct divided by the average

reaction time . This definition is able to be compared to the trade-off

function by considering the following plot in which proportion of correct

answers is plotted against time ,

P

T

Assuming a linear model to be appropriate with intercept at the origin ,

efficiency can be seen to be the slope of this plot . Recall that the

logistic model plotted the logarithm (percent correct /percent wrong ]

versus time but the line was not forced through the origin .

For efficiency , the alternate analysis consisted of a multiple

regression in which efficiency as the dependent variable was related

linearly to altitude and mood both in the original scales . In that

analysis , both altitude and mood were found to be statistically signifi

cant , primarily because of a larger number of trials and about double

the number of subjects . However , the multiple correlation coefficient

was found to be less than .45 and R2 usually less than .20 . Thus , less

than 20% of the variation in efficiency was accountable by mood or

altitude . Because of the presumed advantage of the trade - off function

and its putative sophistry , it was something of a surprise to have it

perform not as well as the simple efficiency approach . To pursue the

question further , the intercept of the trade - off function was plotted

against slope for each of the 72 individual regressions in the FAV

analysis . Because these 72 points were incredibly linear , it was concluded

that a very large experimental (not statistical) correlation existed

between intercept and slope . It is clear from this very high correlation

that virtually all of the information in the FAV analysis was contained

either in the intercept or the slope parameter , but certainly not both .

Thus no advantage was derived from a two - paramter model for these data .
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TABLE 1. FAV ON TRADE - OFF FUNCTION

Source df SS MS F

MEAN 2 1700.8420

SUBJECTS 14 492.2826 35.16 30

ALTITUDES 4 8.1274 2.0318 1.17

MOODS 4 8.1038 2.0259 1.16

A x M 8 6.6508 .8313

EXP ERROR 112 195.2660 1.7434

DEVIATIONS 432 398.6270 .9227

576 2808.8996

ALTERNATIVE APPROACH TO SIGNIFICANCE PROBABILITY

1. MOOD : Number of ways of ordering results = 6

Number of ways if effect exists = 1

P ( Observed result ) 1/6

2. ALTITUDE : Same as above .

3. JOINT PROBABILITY : 1/6 x 1/6 1/36

104



9
9

F
I
G
U
R
E

1
.
L
O
G
I
T

(%C
O
R
R
E
C
T

)V
S
R
E
A
C
T
I
O
N

T
I
M
E

, M-S
E
C
S

:N
I
N
E

T
R
I
A
L
S

0

9
8

9
7

O

9
6

p
l
a

9
5

TO

P
l
o

9
0

8
0

V
A

B

no

7
0

6
0

PERCENTAGE(1-740-t)

4
0

V
.

3
0

2
0

OT
r
i
a
l

#5
0

VT
r
i
a
l

#5
5

T
r
i
a
l

#5
8

OT
r
i
a
l

#5
2

T
r
i
a
l

#5
6

OT
r
i
a
l

#7
5

1
0

OT
r
i
a
l

#6
6

♡T
r
i
a
l

#6 DT
r
i
a
l

#6
3

5 3 2
2
0
0

2
2
0

2
0
0

2
2
0

2
0
0

2
2
0

105



F16 2. EFFE OF ALTITUDE AND

MOOD ONTRADE- OFF FUNCTION
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THE ANALYSIS OF PARTIALLY FACTORIAL EXPERIMENTS

J. Robert Burge

Walter Reed Army Institute of Research

I. INTRODUCTION .

It frequently happens in factorial experiments that one or more of

the factors is of such a nature that certain treatment combinations are

identical . To illustrate this point , a problem commonly encountered by

blood banks involved in platelet transfusion therapy has been selected

(Table 1 ) . The two variables of interest affect the integrity and

function of platelets . One of the factors involves two different

methods of storing blood . The other consists of three different times

of storage ( including fresh blood or NO storage ) , so there will be no

differences between storage methods at the ZERO level of time .

TABLE 1

Relationship Between Storage Time and

Storage Method on Platelet Integrity

Concentrates Stored At

Room Temperature FrozenStored For

0 hours
y11 Y12

24 hours Y21 Y22

48 hours
У31 y32

This experiment falls into a class of experiments in which the

treatment combinations have an appearance of consisting of a full

set of factorial combinations when in fact this is not so . Under such

circumstances , when testing different types of storage , the storage

method is irrelevant when a zero amount of storage time is administered .

Consequently , there will be additional degrees of freedom for error

arising from comparisons between identical combinations and correspondingly

fewer treatment degrees of freedom . The partition of the treatment

degrees of freedom into their separate components will also be different .

Computing the Analysis of Variance Table for Experiments Involving

Qualitative Factors and Zero Amounts of Quantitative Factors :

A short summary of this type of analysis is given by Addelman (1974 ) .

Let factor A (holding time ) represent the quantitative factor and

factor B ( storage method ) denote the qualitative factor . If we assume

that the first level of factor A is the zero amount , the appropriate

AOV table is given below (Table 2 ) where factor A has a levels and

factor B has b levels :
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TABLE 2

AOV for an axb Partially Factorial Experiment

(one observation per cell)

Source of

Variation df SS

a-l aFactor A

(Time )

2

Y

Σ

i= 1

.

2

i .

ъ
1

ab

b-1 a
Factor B

(Method )

b a

Σ ( Σ

j =l i=2

a-1

M
D

YU ) 2

b

( Σ Σ

i=2 j =1

(a-1) b

Y

ij

A X B ( a-2 ) ( b-1 )
2

a b

Σ Σ

i= 2 j =1 *
2

Yij

a

Σ

i=2

Yi .

b а

Σ ( Σ Y

j -l i= 2

a-1

b

a ъ

+ ( Σ Σ

i= 2 j =1

( a-1 ) b

2

Y )

ij

.

b-1Controls

( Exp . Error)

2 2

b

Σ

j =1

Yuj 1 .

b

Total ab-1 a

2

b

Σ Σ

i=l j =1

Yli Y 2

ab

Note that the ss due to factor B is computed only for the nonzero

amounts of factor A. Similarly , the ss due to interaction of the

two factors is utilizing only the nonzero amounts of the quantitative

factor A.
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It may be helpful to illustrate the Addelman algorithm with an

example (artificial data) :

EXAMPLE ONE

TABLE 3

Storage Method

S.

1

Row Totals

S2

T 49.5 61 110.5

0

Holding

Time Т24

M
N

18 41

3 2

Σ

i=1 j =1

59 . Y

Yij
= 222 .

T48
29 23.5 52.5

Column Totals 47* 64.5* 111.5*

Source df SS

T

A

2

=

1,009.75( 110.52 +592 + 52.5% ) / 2 - (222)
(222)

(472 + 64.5% ) / 2 - ( 111.5 )?

2

SB
1 76.5625

4

T. X S

A B

1 182 + 412 + 292 + 23.52 - 592 + 52.52
2

-472 4 64.52 + 115.52
203.0625

2
Error 612 + 49.52 - (110.5)1

+

66.125

2

Total

2

49.52 + 612 + 182 + 412 + 292 + 23.55 -- ( 222) 2 1,355.1

6

* (An asterisk was utilized to indicate that the totals involve only the

nonzero amounts of the quantitative factor holding time . )
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II . REGRESSION APPROACH (An Alternative Method ) .

The standard analysis of variance model for the two -way

classification considered in Section 1 is :

E [Y13]
ut a + B + Ô

i j ij

Where + +

a1 a2 аз
0

821 + 022 = 0

By + B2B
= 0 = 0

32031 +0

821 ++ & = 0

031

822 + 032
= 0

Thus if H , az az : B1 and 021 are known or estimated , all other

parameters or their estimates can be found from the restrictions .

We can write the regression model :

E [Y1j] - H + a ,* 1 + a2X2 + B4
+ 6 x E ( ) хв

13 21 4

or

Where :

Y

11

1

ܢ
ܐ

1 0 0 0

1 1 0 0 0Y12
and B =

ai

Y =
=

Y

21

; X = 1 0 1 1 1 02

82222 1 0 1 -1 -1
B1

Y

31

1 -1 -1 1 -1 821

132 1 -1 -1 -1 1
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One should note the following :

( i ) For all observations belonging to the zero level

X2 = x3 = X4
= 0

( ii) The elements of the 821 column are obtained as a product

of the corresponding elements of the a2
and B. columns .

1

( iii) Because of the orthogonality in X , we can obtain separate

orthogonal sums of squares which are additive for the estimates of

H , ay , and a2 , By , and 821 These will be the usual sums of squares
for the mean , rows , columns , and interaction .

( iv ) Two column vectors , a and ß , are orthogonal if and only if

their inner product is zero ( i.e. , a'R = 0 ) .

Using the RC ) notation for reductions in sum of squares when

fitting linear models :

A more complete summary of RC ) - notation is given in Searle (1971) .

The RO ) notation is defined by denoting as R (b) the reduction

in sum of squares due to fitting the familiar linear model

b ( 1 )E [y] = X

Let bº be any solution to the normal equations

X'Xbº = x'Y ( 2 )

say bº (x'x ) x'Y ( 3 )

where (x'x)" is a generalized inverse of x'x , meaning that it

is a matrix satisfying X'X (X'x)ºx'x = x'x , then

R(b) = bºx'Y . ( 4 )

It can also be expressed as

R (b) Y'X (X'X ) " x'Y

(5)

We take (4) and (5 ) as our formal definition of R ( b ) .

Now suppose b is partitioned into two vectors by and be
so that the model is (full model )

E [x ] - X1 by + X2 £2 ( 6 )
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The reduction in sum of squares for fitting this is denoted by :

R (67 ) 12) = Y ' (X, X2 )
( 7 )

This being the direct analogue of :

R (b) Y'X (X'X ) X'Y

In connection with ( 6 ) consider the submodel (reduced model ) :

E [:] - Ab (8 )

For the fitting of this model :

R ( bz) = Y'X, (x,x2) x4Y
( 9 )

Differences between reductions in sums of squares are also accommodated

by the notation :

3

R (b2 10.) R (67 , 62 R (bz) ( 10)

This indicates the reduction in sums of squares due to fitting the

full model over and above that due to fitting the reduced model .

The RO notation is quite general and can be used for regression

models , for familiar linear models involving main effects and interactions ,

and for combinations of the two .

In order to demonstrate this notation , it has been applied to the data

given in Table 3 and summarized in Table 4 .

TABLE 4

AOV for a 3x2 Partially Factorial Experiment

(One Observation /Cell )

Source of

Variation df SS RO ) Notation

น 1 8,214.00 R ( u )

2 1,009.75 Factorܐܢܕ A

( Time)
R (@j , azl - , B2 , 021 ) = R (an , az ?

R (B, H , az az ? R ( B2 )
1 76.56Factor B

(Method )
27)21

A XB 1 203.06 R (021)

Full Model 5 9,503.375

R (821 ) H , aq , Q2 , B1 )

R ( H , Q1 , Q2 , B1 , 821 )

Y'Y - R (H , Q , Q2 , B1 : 021 )
Error 1 66.125

Total 6 9,569.5 Y'Y
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PARTIAL FACTORIAL EXPERIMENTS WITH MORE THAN ONE OBSERVATIONIII .

PER CELL .

A. BALANCED CASE

Whenever the experimental plan involves one observation in each

subclass, Addelmann's article applies . The following.example illustrates

how to treat a 3x2 partial factorial experiment when cell frequencies

exceed one . Specifically, the zero treatment has been replicated

4 times . All of the other subclass frequencies equal 3 .

EXAMPLE TWO

(Cell Frequencies Greater Than One)

Storage

Time

Storage Method

s,

Row

Totals
S2

To : 0 hours 63

61

49.5

47

220.5 = Y

1 .- Y1 ..

Ta: 24 hours 23

13

18

54 =

40

41

42

123Y11.
= Y

12 .

177
- Y2 ..

Tz: 48 hours
40

18

29

87

22

23.5

25

70.5 = Y22 .Y21 . 157.5 = Y3 ..
3

Colum

Totals 141 =
- Y+1 .

193.5 =
Y*2 .

334.5 = Y* ..

555
= Y

Analysis of Variance Computations :

Factor A

SS (T)

220.5* + 12 + 157,5? - 1592
2,259.375

Factor B

SS (S) 1412 + 193.52 - (334.5) 2 229.6875

6 12
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Interaction

SS ( TxS ) 5a ?+ 87° ,1232+ 70.5² – 1972 157.5? -1412 193.s?

2

+ (334.5 ) 609.1875

12

Error 632 + 612 + 49:52 + 472+ 61 (220.5) 2 + ... + 22? + 23.52 + 252
4

2

3 492.6875

(2015)

(555) - 19,251.5625

25

Mean
B

2

+ 25Total 632 + 22,842.50

TABLE 5

AOV for an 3x2 Partially Factorial Experiment

( Cell Frequencies Exceed One )

Source of

Variation df SS RC ) - Notation

น 1 19 , 251.562 R (u )

2 2,259.375Factor A

( Time )
R (ay , az us Bj 021 ) = R (az , az u + R(@z, ay )

R (B /H, az, az , 021
1 229.6875Factor B

(Method)
8:,,) = R (B,)

АҳВ 1 609.1875

Full Model 5 22,349.812

R (821H, aj , aq , B2 ) = R ( 821 )

R(H , Q,, ay, B2 821

R(H , aq , Q2 , B2 , 821)
Error 11 492.6875 Y'Y

Total 16 22,842,50 Y'Y
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B. UNBALANCED CASE

The analysis of variance (AOV ) table has been used to summarize

the results from the analyses performed up to this point . The results

from an analysis of balanced data are frequently summarized in this way

because researchers automatically associate each sum of squares (SS )

line item in the table with testing a particular hypothesis in the

linear model .

In the axb partially factorial experiment with one observation per

cell , the regression approach offers a computationally convenient

alternative for generating the various entries in the AOV table . This

situation is analogous to balanced data (equal subclass frequencies ) ,

80 there is no confusion as to what is being tested in each line item of

the table . However , when the cell frequencies exceed one , as they did in

example two , a complication ensues (viz . , R (ay , ay) # R (aj , az 1v ) as the

result of an emerging non-zero off-diagonal element in the x'x matrix ) .

The situation becomes more complicated when further unbalance arises

through missing observations , With unbalanced data hypotheses tested

under such headings as row, column , and interaction effects cannot be

uniquely presented by paralleling (merely extending) the methods of analysis

for balanced data .

In order to illustrate these points consider the following example :

EXAMPLE THREE

Missing Observations

Storage

Time

Storage Method

S1 S2

To 0 hours 61

49.5

11 24 hours 23

13

41

(41) 1

T , 48 hours (40) +

18

22

25

+ The two numbers in parentheses will be treated as missing observations .
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We can write the regression model e [y] - Xe

As

น61

Y = 49.549.51 ; X

1 -1 0 0

1 1 0 0

0

0 and

R

♡
♡

22

B23

13

1 0 1 1 1

1 0 1 1 1

1

8
21

41

1041)

1 0 1 -1 -1

1-1-ht

o
o

1640 )

18

1

1

--

-1 -1 1 -1

22

25

1

1

-1

-1

-1 -1

-1 -1

1

1

In the situation with unbalance created through missing observations ,

the two rows of the X matrix corresponding to the missing observations

(lines drawn across them ) will be deleted .

The upper triangular x'x matrix based on all 10 observations is :

น

a a2
В.

1 021

X'X (10) = 10 2

6 4

8

OOOO

O
O

OO
O
O

While in the case of 2 missing observations we have :

X'X (8) 8 2-1

5

0

3

6 2

6

2
1
0
0

%

6

In general , for a 3x2 partially factorial experiment with the following

cell frequencies:

Stored

For

Storage Method

si
S

2

Row Totals

To
f

fo

f

f

12
1 .Ti

T2

& 17

토 2 그
f ff

22
2 .

Column

Totals

f.1
4.22
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x'x will have the following structure :

B

1 0211 2

N

ff - f

0 .2

.
1 f

.2

f

1 . - 12 .
f

11
-f

21

f

12

+ 22

fo + 1.2 f .2 f22 - f12 f12 - f22

fi .
f

£
12 £ 42 - £ 2 .

-f21 + f 22

f
f.1 f.2

f

where N = fo + f + £ 2 .1 .

and f - f

1. + f2 .

The effect of unequal subclass frequencies produces sum of squares

that are not orthogonal . Thus , the influence of missing observations

can be readily observed by examination of the off-diagonal terms in the

above generalized x'x matrix for a reparameterized 3x2 partially

factorial experiment .

Table 6 allows one to examine the various reductions in sums of

squares that are easily generated as a result of the R ( ) -notation .

The problem now becomes one of relating the associated sums of squares

to the testing of " appropriate" hypotheses about the parameters in the

model . Obviously , care must be taken so as not to incorrectly describe

what is being tested . To better understand how this can be achieved ,

has prompted a number of articles in the recent statistical literature .

However , it is recommended that you turn first to Speed , Hocking , and

Hackney (1978 ) .
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STATISTICAL ANALYSIS OF EXPERIMENTS IN SORPTIVITY

Richard N. Macnair

Edward W. Ross , Jr.

U. S. Army Natick Research and Development Command

Natick , Massachusetts 01760

Abstract . This paper describes several experiments about the apparatus and

procedure used in testing materials from which chemical - protective clothing

is made .
The purpose of the work is ultimately to reduce the variability and

cost of such testing by clearer understanding of the processes involved . The

design and analysis of three experiments are outlined , and some tentative

conclusions are stated .

I. Introduction . This paper has to do with the military problem of defending

a soldier against attack by chemical agents (usually poison vapor) . This de

fense takes the form of special , protective clothing which absorbs large

quantities of the agent . For this purpose large rolls of material from which

the clothing is made are purchased and samples from these rolls are tested for

their sorptivity , i.e. their absorbing power . This testing is slow , expensive

and somewhat unreliable . The present paper is a study of the test-methodology

(apparatus and procedure) with the objective of improving the process , in the

sense of obtaining greater reliability or lower cost .

Specifically , a certain standard test procedure and apparatus has been

used in the past .
Recently , a simpler apparatus of the same general type has

been tried and found to give acceptable results in a shorter time than the

standard method .
However , the results were irregular enough to raise questions
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about the entire process , so it was thought desirable to conduct the more

systematic tests described here .

II . Background . The two apparatuses , sketched schematically in Figure 1 ,

are generally similar . Instead of a toxic agent CCL , is used as a repre

sentative vapor in these tests . A calibrated mixture of this vapor and an

inert gas flows through the sample at a standard rate , and a test for de

tection of CCL4 is done on the downstream side of the sample. The result

of each test is the length of time (in minutes) before detectable CCL4 ap

pears , i.e. before "breakthrough" . The sorptivity or amount absorbed at

breakthrough is then calculated .

The two vapor-penetration apparatuses , which we describe as standard

(std ) and simplified (sim ) , respectively , differ in the following respects :

(a ) Nitrogen (N2) is used as the inert gas in the std and air in the

sim.

(b )
On the upstream side of the sample the gas is heated to 32°C in

std but maintained at ambient (usually 20°C) in the sim ,
The tests are

both conducted in a room with coarse temperature control but no humidity

regulation .

(c ) The methods of detecting CCLL on the downstream side of the sample

In std the gasare notably different , but both involve a human observer .

is pyrolized and bubbled through a tube containing a starch - potassium iodide

In sim the

solution , which turns blue when products of CCL4 are present .

gas flows over a copper disc in the flame of a propane torch , and the flame

turns green in the presence of CCL4.

(d)
The human operators obserye the color changes in the two apparatuses .

For std , the observer records the time at which the liquid in the bubbler tube
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first shows blue .
For sim, he records the time at which the flame - color is

perceptibly "more green " than a comparison flame located near the test flame

but not in the flow - stream . An additional complication is the following :

it is thought (based on previous experience ) that the std tends to give false

positive readings . The operators are , therefore , instructed to replace the

bubbler tube , when the first blue color is observed , with a fresh bubbler

tube . The time is recorded only if the fresh bubbler tube shows blue within

two minutes . Otherwise , the fresh bubbler tube is left in place until it

shows blue . This process is repeated as many times as necessary until a blue

color is obtained within two minutes . No analogous routine is applied to the

sim .

III . Objectives : We would like to answer the following questions about these

test methods :

(1 ) Do the apparatuses give the same results ?

( 2 ) Is there an effect due to the initial concentration of the agent CCL4 ?

( 3 ) Do the operators have an effect on the results ?

( 4 ) What other factors are important ?

Concerning (1 ) and ( 2 ) , if the apparatuses and concentrations have an

effect , then we want to know whether some combination of sim and con

1

centrations gives results that can be reliably used in place of the std at

Concerning (4 ) , some other factors that mayits traditional concentration .

have effects are material properties , ambient conditions and the treatment

of the material samples prior to testing .
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IV . Variables . The variables in the tests are as follows :

A, apparatus , takes on values ( 1 ) sim , and ( 2 ) std .

C , concentrations takes on values (1 ) , low or 5 mg / l , and

(2 ) , high or 15 mg/1 .

D , day of test 1 to 4 .

G , sample group , ( 1 ) and ( 2 ) .

0 , operator , ( 1 ) and ( 2 ) .

R , repetition number , 1 to 12 .

W , week of test , 1 to 2 or 3 .

V. Design of Tests . Three different tests in all were run .

Test 1 : In this test each operator remained with the same apparatus

throughout the experiment. To minimize the effects of material variability ,

samples were re-used over and over again , In order to restore samples as

nearly as possible to their original condition , they were heated overnight

in an oven at 50°C prior to each day's tests (including the first day's ) .

We surmised that this cycle of heating and testing might affect sorptivity ,

so the test plan involved periodic repetition of tests in order to find and

eliminate any trend .

Twenty - four samples were taken as close together as possible from a

large roll of material and divided into two groups of twelve samples each .

The groups are labelled 1 and 2 and chosen in the irregular , but not random ,

sample - pattern shown in the sketch .

1 2 1 2 1 2

2 1 2 1 2 1

2 1 2 1 2 1

1 2 1 2 1 2

-
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The test plan for each week is as follows :

D G
A с

1
calibration , no tests

heat overnight (16 hrs )

رک1
1 2

{
2

2 2 2

heat overnight

1 1 1

3

{ 2 2 1

heat overnight

1

N

2

4

{2 1 2

heat overnight

1 2 1

5

2 1 1

This test was run for two weeks , then , after a lapse of about a month ,

for a third week .

Test 2 : This was nearly a repetition of Test 1 . The only differences

were :

( i) A different set of 24 samples was used from the large roll .

( ii) The test lasted only two weeks .

Test 3 : This differed substantially from the two preceding tests . Samples

The
were not re - used , and the effect of operator was specifically investigated .

samples , 96 in all , were obtained from two sheets of the same large roll used
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in Tests 1 and 2 . Each sheet was divided into 6 rectangular sets , and 8

samples were taken from each set . From each of these 12 sets , one sample

at a time was randomly chosen , and these 12 samples formed a group . In

this way 8 groups of 12 samples each were obtained and tested according

to a plan that was identical with that of Test 1 except that the variable

O replaced the variable G.

Test 3 differed from Tests 1 and 2 in one other important respect .

Since the samples were not re-used , there was no need to heat them overnight .

Consequently , they were simply kept at 65% relative -humidity for several

days prior to test . This is a much higher humidity (about 600% ) than that

of the samples heated in the oven prior to test , which was about 10% .

VI . Results and Discussion . The statistical analyses of the data were

done using principally the routines of the Statistical Package for the Social

Sciences (SPSS ) , edition 2 . The main results are shown in Figures 2 and 3

as graphs of sorptivity , y , versus various variables ,

Figure 2 shows graphs of the daily averages of the results for

Experiments 1 and 2 . The main reason for studying these is to see whether

there is any overall trend in the tests where samples were re - used . No

significant quadratic effects were found. Weak but significant (95% level ) ,

and nearly equal, downward linear trends were found in the data from Test 2

and the first two weeks of Test 1 , labelled (14 ) in Figure 2 . When the

third week's data was appended to Test 1 , the trend disappeared .

Since about a month elapsed between the second and third weeks

of Test 1 , it is not clear how to interpret the trend .
The most plausible
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explanation is that re -heating has an effect , but that effect was washed out

by the simple passage of time between weeks 2 and 3 .

In any case the trends

are rather weak , and no further effort was made to correct for them .

Figure 3 shows the effect of apparatus , A , and concentration , c , on

the sorptivity in the form of estimated means and 95% confidence limits for

the three different tests .

Figure 3 (1 ) shows that the three tests gave inherently different

results . Tests 1 and 2 differed only slightly , but Test 3 gave lower and more

variable results . Possibly these differences are due to both material yari

ability and the different pre - conditioning of the samples in Test 3 .

Figure 3 (ii ) and 3 (iii ) show the main effects of A and C on sorp

tivity . Clearly , the std A produces higher readings than the sim A , the size

of the difference being much greater in Test 3 than in the others . The ef

fect of C is less clear . Tests 1 and 2 show no difference , but Test 3 sug

gests that higher C gives lower sorptivity ,

Figure 3 (iv) exhibits the interaction between the effects of A and

C. These are somewhat confusing . First , we notice that in Test 1 there was

no effect of A at low C , i.e. the overall effect of A was due entirely to the

effect at high C. Related to this is the fact that in Tests 1 and 2 , the

result of increasing C is to increase the sorptivity measured by std A and

decrease that by sim A. This effect is not observed in Test 3 , and is not

always significant in Tests 1 and 2 .

An ANOVA of Test 3 showed that there was no main effect of operator .
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However , operator 1 gave consistently higher readings on the std A and operator

2 on the sim A.

Most of the statistical tests ( F - tests, t- tests ) are based on assumed

normality of the data . Some rough estimates of departure from normality

(skewness and kurtosis ) were made for the three sets of data . The data of

Test 1 were not perceptibly non -normal; Tests 2 and 3 were less satisfactory

but not outrageously non - normal .

It was thought that there might be some effect of the time of the day

on the results , but a plot of the overall means for each repetition number

showed no effect that could not be attributed to randomness .

VII . Conclusions .

The results of these tests are somewhat fragmentary and suggest that our

understanding of the process is incomplete . One thing which emerges is that

the effect of sample pre-conditioning is very important . Generally , the

std A gives higher results than the sim A , the size of the difference being

much affected by C and by the preconditioning . The std A gives somewhat more

stable values than the sim A.

Tests in which one tries to observe the first non-zero value of a con

tinuous variable are notoriously unreliable .
Some of the present difficulties

might be avoided by using comparisons with standard color cards , or some

spectral analysis .
Obviously much remains to be done in this area .
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ON COMBINING PSEUDO - RANDOM . NUMBER GENERATORS

0Mark Brown(1) and Herbert Solomon (2 )

SUMMARY

A technique used in pseudo - random number generation is to combine two

or more different generators with the goal of producing a new generator

with improved randomness properties . We study such a class of generators

and show that in a strong sense the combined generator does offer

improvement. Our approach applies results from majorization theory .

AMS 1970 subject classification . Primary 65010 ; Secondary 68A55 .

Key words and phrases . Pseudo - random number generators , Monte Carlo

simulation , majorization , uniform distribution , Markov chains .
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On Combining Pseudo - Random Number Generators

Mark Brown and Herbert Solomon

1 . Introduction .

Many methods have been proposed , tested and employed for generating

pseudo - random numbers ( [ 2 ], [3 ] , [4 ] , [ 5 ] , [ 8 ], [ 9 ] , [ 11 ] , [ 12 ], [ 14 ], [ 16 ], [ 18 ],

[19 ] ) . The goal is to produce strings of numbers which behave like inde

pendent uniform ( 0,1 ) random variables . The generators yield integers in

the set ( 0,1 , ... ,m-1 ) , which are then transformed to [ 0,1 ] by division

m.by Suppose that X4 ,X2, ... and Y ,Y2, ... are strings of numbers

generated by two separate generators. Various suggestions have been made

for combining the two strings to produce a new string 4,22,... which

hopefully improves upon X and Y. One method , discussed in Knuth [ 8 ] ,

p . 26-27 , is to set 2 = xy + Y ;= X , + Y, (mod m ) . Another , due to Maclaren and

Marsaglia ( 11 ) , which Knuth reports to be excellent ( [ 8 ] , p . 31 ) , uses th

Y string to randomly permute, the x string .

z . ) . Let PA: 9A and

A

For the additive generator Z = X:+Y (mod m ) we obtain the following

result (Corollary 2 ) . For any k and corresponding choice of indices

ii < ia < ... < ik consider the vectors YA = (*. /....,Xin
X ),

YA - (Y17 ,YD ) and 2A = (2 , .., 2 , ). Let

denote the respective distributions of YA YA ZA: PA: A

are probability distributions on n where toi = { 0,1, ... ,m-1 ) . Define

rk
to be the uniform distribution over nk ; r. components

each equal to Let Il·ll be an arbitrary symmetric norm on RM (11x || = |||1x ||

Ix is any permutation of x ) . Then ls -rxll < min (llpa-rxl, 194-rull ) .

Y. and and S

A

k

is a vector of

k

m

k

k
-k

m

where
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For the generator suggested by Maclaren and Marsaglia a similar but

weaker result is obtained . Using Y to shuffle (Xy ... ,xn) results in

improvement for the joint distribution of X2 ,..., m but not necessarily

for the marginal distributions of subsets,

The potential value of our approach is that it can provide additional

justification for some generators currently in use , and perhaps suggest

new generators which would then be analyzed by traditional methods .

In our analysis we treat the strings X and Y as independent random

vectors . In practice X and Y are deterministic strings of numbers .

This creates a problem in the strict application of our results to pseudo

random number generation .

2. Majorization .

By definition ( [ 6 ] p . 45 ) an n -vector a is said to be majorized by

an n - vector b andif upon reordering to achieve a ang ... ? an

bz ? ba ? ... ? on it follows that E14 E21 by for k = 1 , ... , n-l

and & 1 a = £ 1 bz . A function V , R + R,

convex ( [13 ] p. 1189) if whenever a is majorized by b , v (a ) < V (b ) .

is defined to be Schur

Schur convex functions include symmetric convex functions which in turn

include symmetric gauge functions and symmetric norms ( ( 1 ) , p . 229 ) .229 ) . By

a symmetric norm on R we mean a function lill, R + R,R + R, satisfying :

llxll > 0 for all xe R " with equality if and only if x = 0,

llax || lall\x |l for all a € R, XE R ", llx + y || < || xl| + llyll for all x ,yen",

and ||xl!llx || = || IIx|| for all and for all permutations Ix of

note that if is the uniform distribution over { 1,2 , ... ,n } (r (i )n =

i = 1 , ... , n ) and loll is a symmetric norm on R ", then g (x ) = llx -rll

n

XE RC X. We

r B
l
o

is a symmetric convex function and is thus Schur convex . Some references

for majorization are [1 ] , [ 6 ] , [ 13 ] , and ( 17 ) .

135



Lemma I below contains four equivalent statements relating to

majorization . The equivalence between ( i ) and (ii ) is due to Hardy ,

Littlewood and Polya ( [ 6 ] p . 49 ) ; the fact that (ii ) implies (iii )

is found in (1 ) p . 183 and (iii ) = > (ii ) in [ 1 ] p . 181 ; the fact

that (i ) = > (iv) is the definition of Schur convexity and (iv ) → (i )

because y (x ..., x ) = { į * ( i ) is the i

'
largest

component of X, is symmetric and convex , and therefore Schur convex .

th

where

* (i )

Lemma 1 . The following statements are equivalent :

(i ) a is majorized by b

(ii ) a = Pb where P is doubly stochastic

(iii ) a is a mixture of permutations of b , i.e. , a = ΣΡ,( π. b )

where (Ryg...sPn) is a probability vector and each 1,5 is a permu

tation of b .

(iv ) v (a ) < vb ) for all Schur convex functions V.

хTheorem 1 . Suppose that is a discrete random variable taking values

in the set X = (Xq.... mind with probability distribution (P2....sPn),

where pz = P (xx ), and Y is a random variable , independent of X, taking

values in the set 4. For each yey e 4 let Ty
be a 1-1 transformation

of H onto itself . Define Z = T ,X and let

TX
be the distribution of Z.

T.

S

Then S is majorized by p.

Proof . Since T

уTy is l -1 and onto the distribution of my is a permuta

tion of p. Thus S is a mixture of permutations of p . By lemma 1 S

is majorized by P.p. I
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3.

Applications to pseudo -random number generation .

of k indices A to be the

XI;} ; PA

Suppose that X = ( ... , ) and Y are independent random vectors ,

with each X , assuming values in m : ( 0,1 , ... ,m - 1 ) . Consider a subset

( 1 Siz < ia < o .. < ix < N ). Define PA

distribution of XA = (x__ ***s
is a probability distribution on

ank. For each
in the support of Y let Ty be a 1-1 transformation

of ank onto mk, and let denote the distribution of TyX.

Ik to be the uniform distribution over 4 ( rx (x)

X € nenek ).

у

S

A

k

Define =
-k

= m for

each

Let and P is

А

k
m

Corollary 1 . SA be as defined above . Then
SA

majorized by PA: Thus x (sq) = V (PA ) for all Schur convex functions

V , and in particular \lsa-Ixell s llpa -rall for any symmetric norm , lil,

on R

k

Proof . The majorization of by
PA

follows from lemma 2 with n = m *

and

关 ¥ = nek. The other statements are consequences of majorization

(see lemma 1 and our remarks on Schur convex functions ).

.

S

A

х

Remark 1 . Consider 2 = Xx+ Yų (mod m ) i = 1,2 ,... , N , where X , and

Yi both assume values in m = { 0,1 , ... ,m-1 ) . In this case and Y

play symmetric roles . It follows from corollary I that if
9A

denotes

the distribution of Y ,Y ) then is majorized by 9A
1 . A

k

Thus visa) < min (v (PA),v (9 , )) for all Schur convex functions . Also

note that this conclusion applies to any subset A of the index set .

I A (ܐܪܕ

Thus for all kn,
all kk dimensional marginal distributions of Z

are as least as uniform , in the sense we described, as are the corresponding

distributions of X and Y.
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If is of the form (TY,* y )Remark 2 . х is of the form T , X where each

N

1 ' N

is a mixture of 1-1 onto transformations and X andT ,
Y are

i

independent , then the conclusion of corollary I will hold for all A.

In addition if we have an m X m matrix B with rows labeled 0 , ... ,m- ]

and columns 0 ,... , m - l , with each row and column containing each of the

numbers

for all A. The

0 , ... ,m-1, m-l exactly once (an mx m Latin square ) then defining

CY, ; = ) v + 4B (Xq ,Y ) leads to vs.) < min (v (PA ),V (92) ) for all

additive generator, 2Z = Xi + Y: (mod m) ,(mod m ) , is of this form .

Remark 3 . We briefly consider a generator proposed by Maclarin and

Marsaglia (11 ) , and discussed in Knuth [ 8 ] , p . 30-31 . Knuth remarks

that the method produces sequences with excellent randomness properties

and is quite efficient in terms of computer time usage . Under this method

the first k elements of X are used to form a table . We observe Y.
1

which tells us which element of the table to choose as 2. We replace

this element by Yk + 1° The process is then repeatedly applied to

generate the string . Suppose that a string of numbers 4 , ..., Zn?

is generated by this method . We artificially
enlarge this set to size

n

nuk by setting Inti equal to the entry which sits in the i - th place

in the table after the string of n numbers has been generated .
The

l - l onto trans

-

new string (22, ... ,Intk ) is thus a random permutation of (X_ ....,Intk ),

induced by Y. Since a permutation of coordinates is a

formation , mint matk, theorem 1 applies . Thus , the distribution

of (27, ..., 2n +k) is at least as uniform in our sense as is that of

(X , .... ,X+k ) .

In general , improving the uniformity of a joint distribution does not

necessarily improve the uniformity of marginals . For example let
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= .1

Then
P

p (0,0 ) = P (1,0 ) and p (0,1 ) = p (1,1 ) = .4, Pr ( Y = 0 ) = Pr ( Y = l ) = .5 ,

To (i, j ) = (inj ) , Tz (i, j ) = (-3,1) , (27,22) = Ty (X2 X2). Then s (0,0 ) = .1 ,

s (1,1 ) = .4 and S (1,0 )and S (1,0 ) = s (0,1 ) = .25 . s is majorized by

and the joint distribution of ( 27,22) is more uniform on ( 0,1 )x (0,1 )

than that of (X4 ,X2 ). Nevertheless X is perfectly uniformly distributed

2
while is not .

Remark 4 .

In theorem 1 we show that w (sk ) = v (PA) for all Schur convex

y. The Schur convex functions of greatest interest to us are distances

from Ik under symmetric norms . There are other relevant Schur functions

a

a а .

which arise from information theory considerations . If is a probability

k

distribution over 774 then g (arn ) & a (a ) log(ma(a )), the Kullback

e

Leibler information number for discriminating between and when

rk

is true, is Schur convex ; g (a, rk ) > 0 with equality if and only if

and in interesting ways can be interpreted as a measure of discrepancy

between and (Kullback ( 10 ) ). Similarly 8 ( ka) -klog (m -k /aa)),Σ
k

αε

the Kullback - Leibler information number for discriminating between and

' k

a = r,

- IK'

a

' k

a

when

between

Ik is true , is Schur convex , as is g (a, fin ) + g (rka), the divergence

rk
Substituting these Schur convex functions into the

inequality v (sa ) su(PA), derived in corollary 1 , strengthens the assertion

a and .

that S is as least as uniform as p.

4. Combining several generators.

22 ,A'

Suppose we have a sequence of independent random vectors 17.12....,

We combine 11, and to form a vector
then combine 22,1 and

to form

33 ,A'
etc. Assume that at each stage the transformation is

of the form a mixture of 1-1

-1A
transformations of memi

-n , -n - 1 , A

Z = T
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Define

Sn, A
Then

$n,A

and S P

n
n , A

onto mk. Represent the transition from stage n-l to stage n by

the matrix Pn where P( 0., B ) = Pr (Zn, A =B12,-1,A=a) for 2, ß € mk.

to be the distribution of
Zn,a $ n - 1, An

is majorized by s .

Sn-1 , A
by theorem 1; thus by lemma l

is doubly stochastic .
The process (Zn ,A:n =1,2,... } is thus a non time

homogeneous doubly stochastic Markov chain on the state space ink.

assume that min Pn,a , ßn,a, l =420 > 0 for all = max s ( a ),

, B

mn뀜 = min sm (a ). We will show that M. -mm 5 (1-mks) which implies

maxls , (Q )-m -K , goes to zero at a geometric rate.
a

employed below is well known in the theory of Markov chains .

ALSO

Define Minn.

n

a

and m

a

that The method
n

Now :

(1 ) MSM -2 (1-(mk -2 4 ) + 4 (1-M -2)

- M-1 (1-4) + 4

(2 ) m . 201-1 (1-( k-1)4 ) + 4 / (1-7-1)

(1-mky )
+

+ 4n-]

n n

= 0
= O but

Thus by (1 ) and (2 ) , M.- n = (Mn -1-4-1 )(1-mks) and thus by iteration

M.-m. < ( 1-mks)", which prove the result.

Under the weaker condition & 14 we get tim (MM)

the convergence need not be geometric . The condition ΣΔ:

necessary for convergence of Mm
convergence of Mamma to zero (and thus of to rk) .

For example if 4 for any i

$n, A = Ik
for all n > i .

n to oo

= 0 is not

Sn, A
-k

= m then

-
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SIMPLIFIED POINT AND INTERVAL ESTIMATION

FOR REMOVAL TRAPPING

+

Andrew P. Soms

Abstract

A regression technique , based on the limiting normal

distribution of the multinomial , is given for point and

interval estimation of the parameters in the removal

trapping method of determining animal and insect popula

tions . Pooling is described for using the method even

when the individual catches are small and a simulation

approach to the calculation of bias is described .
TWO

examples of estimating spider populations are given .
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Key Words : Removal Method ; Regression Estimation ; Asymptotic

Confidence Intervals .
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1 . Introduction

A thorough discussion of the removal trapping method of

estimating animal and insect populations , together with limita

tions , is given in [ 7 ] , pp . 182-6 . It is pointed out in [ 5 ] that

this method is particularly suited for insect populations .

Briefly , there are assumed to be m organisms in some fixed area ,

k trapping or sweeping periods , k ? 2 , and each organism is

assumed to have a constant probability p of being captured in any

of the k periods , independent of the other organisms ( the organ

isms are not released when captured ) . If the trapping probability

is p , 0 < p < l , then , as pointed out by Moran [ 6 ] , p . 308 , the

joint density of the ni , işi ? k , the number of organisms

trapped in each of the periods , is

k

m !

P [ n , = si ! <m , 1 < i < k ] (p(1-p )) 2...k
P

..5 !( m- { s .S ; !
1

k

m-{ ' i

· (p( 1-p) -1 ,**{(1-2 )} ;( " 2
m !

si ! ... sk ! ( m-{ 5 :) !

k k

i ( i - 1 ) s , + k (m
$ )

P (1 - P )

The above is seen to be a multinomial distribution , with k + 1

1i
р

k k

Pk +1
(1-2 ) = 1 : 1 į pl1 - p ) i - 1 . It is desired to

1 1

estimate m and p and give asymptotically exact confidence intervals .

A Bayesian approach has been considered by Carle and Strub ( 2 ) .

Here an attempt will be made to remedy some of the problems in [ 6 ]
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in which a method based on maximum likelihood is proposed , which

is elaborated upon by Zippin [ 8 ] . In addition to replacing m ! by

Stirling's approximation , the effect of which is not clear , both

Moran [ 6 ] and Zippin [ 8 ] state that the usual regularity condi

tions for the joint asymptotic normality of the maximum likelihood

estimators are not satisfied in this case ( in addition to other

assumptions , it is assumed that the parameters being estimated , m

and p , remain constant , which is not true here , since the

a symptotic behavior is for fixed p as m + ) , and then they pro

ceed in the hope that somehow a justification may be produced

without giving it . Further , even if these difficulties are

neglected , the estimating equations are either implicit , requiring

iteration , or after some approximations , require charts .
Here a

theoretically justifiable intuitive method is discussed , based on

the limiting distribution of the multinomial , which gives the

estimates explicitly as functions of na ' ... , nk .

The author was introduced to this problem by Joan Jass of

the Milwaukee Public Museum , who , as a part of her Master's thesis

wanted to estimate spider populations . She found the existing

literature somewhat complicated and confusing and wondered whether

there was a simpler and more intuitive approach available . The

subsequent sections are an attempt to do this .

2 . The Modified Moment Estimates

for Two Trapping Period3

Sometimes the
n are so small as to cast doubt on the validity

of the asymptotic method to be described . Alternatively , it may

be desired to produce quick and simple estimates and to determine
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whether biases exist ( this will be discussed later ) . With this

objective in mind , we will assume that there are 2t trapping

periods and divide them into two groups consisting of the first t

and second t . Then the assumptions of the removal method are met

with 2 periods , ni # caught in first t periods , na
= # caught

in second t , and

p . 1- (1- D. ) , ( 2.1 )

where P. is the original trapping probability . Hence estimates

and confidence intervals for p can be immediately converted to

those for P. and this will be done after obtaining estimates for

m and p .

Note that En, - mp and Eną = mp( 1 -p ) , hence a ratio estimate â

of q = l - p is

â = na'nı ( 2.2 )

and a moment estimate în of mis

= ni n2

1

( 2.3 )2

and
It is readily seen that it

ni n2
are replaced by their

expected values in ĝ and îm, q and m are obtained ( E ( n, + n2 )

mp+ mp ( 1 - P ) = m ( 1-2? ) ) , hence the name " modified moment estimates " .

Let be the natural estimator of p, ô 1 - Ậ here and throughout .

The limiting distribution of Ộ and ĝ will be now obtained .

The reader who is not mathematically inclined can jump to the

results , but it must be pointed out that the derivations are

straightforward and can be checked by anyone with a modest back

ground in statistics .
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Consider the problem of asymptotically exact confidence inter

vals a reasonable assumption is that p and k stay constant and

m +
. Note that in [ 2 ] , p . 626 , it is required that also k + ..

For later use , instead of two trapping periods , k will be

considered and then specialized to two . The asymptotic distribu

tions of Ộ and i will be obtained by using two results - the joint

a symptotic normality of ñ = Inq ;, ... , n , ) and a result given in

Anderson [ 1 ] , pp . 76-7 . It is well known that as ( P ...,Pk )

stays constant and m + o for a multinomial distribution ,

[a horien 3*.. ].(a ) ,1418) :
* Nlõ , R ) , ( 2.4 )

W

( " * " means convergence in distribution ) , where ő is a k - tuple of

O's , = ( 0,0 , ... , 0 ) , R =
[ Pij ) , Pii

= 1 and for i * j ,

Pij - ( PzPj / ( 979 ; ) ) * ( see , e.g. Johnson and Kotz [ 4 ] , p . 284 )

recall that here Pi p ( 1-0 ) -1, isisk ( also for notational con

venience always Pi q ) , and hence it suffices to

=

=

= D , 91 1 - PT

keep p constant . The result cited in Anderson is : Let f ( x ) be a

function of x = ( x2 ) , x , ) with continuous first and second
k

derivatives existing in a neighborhood of x ő , ( ba , ..., b )

a fixed vector , and suppose V ( ū ( n )-5 ) N ( õ , T ) . Then

W

( 2.5 )von ( Plū ( n ) )- f ( b ) ] I N (0,8570 ) ,

where oporte ...

(Px/9x ) ), and ( n ) = (n /m( 8,9,1 ,...,nk/MP4QK! ). Let us now

f_ ))

k ъ

In all that follows , ő
. [ ( 87/92 ) . , ... ,

assume that k = 2 and take f ( x ) to be

2 P29292

f ( x ) = ( 2.6 )

1
P 191
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1
2

Note that for k = 2 , fló ) = the estimator of Q. Using ( 2.5 ) ,
ni

L
E- a ) * N(0,9 1779)) = N ( 0,0% ) ,

since

(
af

- ) .
x

b

-9/ 9 /p ) ,

af

:)

2 b

q [ ( 1 - pg )/ ( pg ) ] } ,

R !

2

o

р

Therefore alsoO

and ºő R

von ( ə- p ) ? N ( 0,0 % ) ,

or , equivalently , - p is asymptotically N( 0,02 /m ) . Using the

( 2.7 )

Using the same

technique on m , let

xz(P197)* + x2( p292)
)* ",g ( x ) 1

1

( 2.8 )

1-f ( a ) 2

It can be seen that for k = 2 ,with flã ) given by ( 2.6 ) .

g( ū ( n ) ) = m/m and 8 ( ö ) = 1 . Then

fag ( ă) , (279 ) -2694 / 7,3*,?
axy b 1-42

fag (ă ) ,
(P292)* + 2x92/P2) ?

2х2 ъ -b 1-92

and

Φ .:

2

σ

2

9

2 [ 1 ]] ,
1-9

and so by ( 2.2 ) ,

vm ( 1 ) * N ( 0,02 ) ,
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2 2 2

and 0 and o

pЛ m
P

2

are obtained from O

m

m

2

or equivalently m- m is asymptotically N ( 0,002 ) . Since Ô + p and

îmi + m in probability , or converge to o , respectively ,

P 밀
in probability ( or and o 0?영 and 02 by replacing

p by Ộ and a by â ) , and so the limiting distribution of both

( @-P)/(0%/n) and (m -m 1/602 m) is the standardized normal .

asymptotically exact ( marginal ) 1 - a confidence intervals for p

P

Hence

and mare

( 2.9 )

and

Ộ = fala conferinte

în • %a12 (hoz , ( 2.10 )

where za is the upper 100ath percentile of the standardized normal .

Simulation results indicate that for Ộ the asymptotic dis

tribution is attained faster than for în . An alternative approach

to obtaining accurate 95 % confidence intervals form ( coverage

probability close to but bigger than .95 even when m is small ) is

to use an actual standard deviation obtained by simulation . In

this approach Ô and în are regarded as the true values and a large

number ( say 1000 ) of samples is drawn and the sample standard

deviation and bias calculated . This is , in fact , recommended in

any case , since the comparison of the two standard deviations ( the

limiting and the simulation ) will indicate whether it is safe to

use the asymptotic theory . In addition , m can be corrected for

bias . This point will also be discussed in subsequent sections .

In order to convert the estimate and confidence interval for

p 1
P to Po ' note that p = - ( 1 - P. ) * and hence â. = ģž / t . Also , if

the confidence interval for p is ( a , b ) , then the corresponding

interval for p. is ( 1- ( 1 - a ) ] / t , 1- ( 1-0 ) 1 /t ) .
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The lack of fit discussion will be given after the general

estimates are obtained , since it will be seen that the and în

here are a special case when k= 2 .

3 . Regression Estimates for Arbitrary k

While the method discussed in 2. is useful when the catches

in the individual periods are small , it is often desirable to use

ani - 1

pg

the original data if , e.g. , ali ini ? 5 , where Ộa and ê and

în are suitable estimates of p and m . An estimate of p , the

regression estimate , can be obtained as follows . It is suggested

in [ 5 ] that a simple graphical check of the validity of assumptions

is to plot ny against i on semi - log paper and check whether the

plot approximates a straight line . It is pointed out in [ 6 ] that

1

the log Eni log mp ( 1 - p ) i - 1 lie on the straight line
log Mi

log Vi
=

i log ( 1 - P ) - log ( 1 - p ) + log p + logm , ( 3.1 )

but this method is then dismissed by saying that the usual assump

tions of regression theory are not satisfied . Here a different

approach is taken
.

namely , the point estimator of p suggested by

regression theory is used but then , in place of the usual regres

sion theory , the limiting distribution is obtained from ( 2.5 ) .

The regression equation suggested by ( 3.1 ) is

log ni = iß + a + Ei isisk ,

-

where B log ( 1 - p ) ( to any base ) , a a constant , and
Ei

the error

term which will be of no interest here . The least squares estim

ate Ô of B is

not»-8ܕܨ'1-;)-(:.ܐܠܙܐ܂
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k

Since ſ i ?

12
= ( k ) ( k + 1 ) ( 2k + 1 ) /6 ,

1

B = { ( 108 mg / 1 - **1970.20x2-1)/12).

Then the corresponding estimator â = 1 - f of a = 1 - p is

Ci

1 -

k

II

1

n ( 3.2 )
li

where ci ( 1- ( x + 1 ) / 2 ) / ( k ( - 1 ) / 12 ) . Note that replacement of na

by En , in ( 3.2 ) gives q . In order to show that ( 3.2 ) is consis

tent for p and to obtain its a symptotic variance , it is just as

easy to consider general estimates of l - p of the form ( 3.2 ) with

the c

ci
arbitrary and to determine the conditions on

ci
needed for

consistency . Let

k

ra܊܀ܫܨܟܨܘܨܙܪܙ-(Rܬܐ
h ( )

1 x ( 3.3 )
ili

1

Then , using ( 2.5 ) and Pi p ( 1 - p ) i - 1 ,

k

с ' i k

' i

k

mm ( In
ni

1ten
[ (i -1 ) ;

( 1 - P )Ci) = V (in
П
Р
і

/ m ) .

1

Therefore a sufficient condition for consistency is

W
a
y

= 0 and

{ ici
= 1 ( 3.4 )

and in this case

Ci
k

m (

1an
n
i - (1-p)) I N ( 0,0% ) ,

2

where o

P

is determined in the usual way from ( 3.3 ) using ( 2.5 ) .

It is noted that for ci ( i- ( k + 1 )/ 2 ) /( k ( K - 1 )/ 12) ( 3.4 ) is satis

fied , since clearly = 0 and , letting c k ( k - 1 )/ 12,

k

i
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k

10 - 161-441)/0 - [(x)(x+2)(2x+2) X(X+212] . - 1 .

So , for any choice of eq satisfying ( 3.4 ) , om Top

( ۵h (x ), an( ã ), and since

Poten . (Ogrzybiczy(p? ydd,

Φ-ΤΦ.

b

05
əxi

2 * 15.
ъ

i

we have that

cand
an ( x )

:), I
l qcz197 /P2 ) ( 3.5 ).

axi ъ

Therefore , after some short algebra ,

2 2

a Calpe ( 3.6 ).

р

A satisfactory estimator of is obtained by the same argument as

for the moment estimator , namely ,

Σ{ nz/( 1- ak ) , ( 3.7 )

where â is given by ( 3.2 ), with the ci arbitrary and satisfying

( 3.4 ) . It is seen that replacement of random variables by their

expectations in ( 3.6 ) gives m . As before , let

8(T)= xyvprez/(1- ( † (22Verlo)*9 *) . ( 3.8 )

Then , by ( 2.5 ) ,

>v ( -2) ? N ( 0,02 ) ,

o? - 05705 , 95. .

(P19; )* + kez(az/P}}}(1-2 )*

ag )
where o and

ах .
къ

ag )

1
1

( 3.9 )
ax ; б

k

1-4
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Using ( 3.9 ) , after some simple algebra ,

29

i

k

q

k

2

o

m

1 +

2 k k

ka

k

1-9

( 3.10 )

1-2
B오호

The regression estimates â and în are obtained from ( 3.2 ) and

( 3.7 ) by choosing c ( i-( k + 1 )/ 2 )/ ( k ( K - 1 ) / 12 ), and their var
i

p +

iances from ( 3.6 ) and ( 3.10 ) . It then follows , exactly as in 2. ,

that asymptotically exact l - a confidence intervals for @ and in are

+ 2a/2 for ( 3.11 )

and

în + 2
2

( 3.12 )

where o are obtained from o? and o ? by replacing p by ộ .
р р

It is interesting to note that if k = 2 , the estimates given

2a/2
o în )

2 2

and o
m

here coincide with those in 2 .

It should also be pointed out that there is an alternate way

of estimating m from ( 3.1 ) , namely by equating the estimate of the

constant term with what it estimates . Without going into the

details , the resulting estimator în is

k

Сп
ni

i = 1

,, 175

( 3.13 )

pat(k -1 )

and the asymptotic variance oſ
of ( i ) is

2
9-( k - 1 ) p / 2

=

( 3.14 )
P

The

where ci correspond to the regression estimator of q .

estimator given by ( 3.13 ) has an interesting form - it is the

ratio of the geometric mean of the ne to the geometric mean of
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the Ộg . If random variables are replaced by their expectations

in ( 3.13 ) , m results . The asymptotic variance ( 3.14 ) is very

close to ( 3.10 ) with the regression ci
Simulation studies indi

cate , however , that ( 3.13 ) has a substantially bigger bias and

sample variance than ( 3.7 ) , which is the preferred estimator .

4 . Lack of Fit

Having estimated the parameters , using the regression method

as in 3. ( recall 2. is a special case ) , it is natural to ask how

good the fit is . The customary statistic used to test the ade

k

quacy of the model is 2 = {
i i i

1

It is not at all clear , in this or , of course , the maximum likeli

2

hood case , that Z has an asymptotic ( p and k fixed , m + oo ) x

į ( ng - mpz 12/1mộz ), where oa = P ( 1-0 ) 1-1 .

distribution with k- 2 degrees of freedom ( 0.f. ) , since the usual

regularity conditions ( see [ 3 ] , pp . 500-1 , 506 ) are not satisfied .

The empirical approach given here consists of using ( 2.5 ) to obtain

the expected value of the limiting distribution of Z and then to

fit a x? distribution ( as is done with good results in fitting

the distribution of sums of x ? random variables ) by estimating

the dif . from the parameter estimates . The observed value of Z

2
is then compared to the upper 100ath percentile of the fitted x

( using interpolation of the d.f. , since in general the fitted d.f.

will not be integral ) . Specifically , consider

fz ( ã ) = x ; ( p; 92 ) ? - g( ã ) ( 1-1 ( ã ) ) ( f ( ) ji - 1 ,

where f ( x ) and g ( x ) are given by ( 3.3 ) and ( 3.8 ) , respectively .

Note that fz15 ) O and thus from ( 2.5 ) ,
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vm fq(ng /(m( P79, ) * ) ...,ng /(m( P69K)* ))

- rm ((n - pa -1 /m) ( 0,02) ,

ar , ( )

as əxs 'õ '

( 4.1 )

2

where o
iܘܽܨ

af . ( x )
i

:)
-

obTº16ib

Φ

ib .

* 1

Using ( 3.5 ) and ( 3.9 ) and the chain rule ,

ܢ:
af . ( X )

i

) . is

ax ; b

+ 91-1 af ( )
j b

af . ( x )
i )

. ) .
ag ( x )

- ( , :
( 4.2 )

ax

j b j ax ; в

if i + j, and (Pz9;) is added to ( 4.2 ) if i = j . From this , o

去

can be computed . By ( 2.5 ) , since (m /m ) + 1 and fi + p in

probability , it follows from ( 2.5 ) and ( 4.1 ) that

2

2

N ( 0,0 ; /
Di

)

k

(n -mpa1-1)/(m2) +

and therefore the asymptotic mean of z į (ne-mpa 1-2,2 /(mộz) isn
- { oflpa : Replacing the parameters Pi 91

ates Ộz , â in gives the estimated d.f. of the distribution of

I
l

:1

and
W = by their estim

2 , and using these dif . a cut - off point for the adequacy of fit

test can be obtained from tables . Even though explicit expressions

do not appear practical , the ož and u are easily evaluated by

means of a short computer program .

5 . Numerical Examples

We illustrate the preceding theory by two data sets or

thomisid ( crab ) spiders furnished by Joan Jass . The first set has

k = 5 and (ny,na,ng,nying) = ( 37,29,17,15,12 ) and the second k = 6 and

Inq,ną,ng,ni,nging) ( 46,29,36,22,26,23 ) . The results , using

the regression estimators , are in Table 1 .
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Table 1

st
1 Data Set 2nd Data Set

>

.253 .115

s.d. .056 .040

143 350

s.d. 17.4 88.2

Test of Fit

Z .71 4.06

d.f. 3.14 4.04

It might be guessed that because of the small value of Ô in

the 2nd set there would be a serious bias in the estimate . A

simulation was done , for both data sets , using 4000 samples and

the estimates in Table 1 as the true values , conditional on 1 - ak

being equal to or bigger than .001 while this value is arbitrary ,

the bias was not sensitive to it . As expected , the bias in Ô was

negligible for both sets . The bias in any was 5.7 for the first

set and 60 for the second . Thus while it is satisfactory to

subtract 5.7 from in the first set to obtain 137 as an estimate

and use this in the confidence interval procedures , it is clearly

desirable to pool the intervals in the 2nd set . After this was

done , using k = 2 , the estimate of m was 308 , with sid . 66.5 , quite

close to what would have been obtained by subtracting the bias

from the original estimate . The actual sampling variance of ſm was

340.1 as compared to the theoretical limit of 88.2 . For the

reduced set the two values were 212.5 and 66.4 , indicating that
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the confidence intervals based on the limiting distribution should

be viewed with caution . For the first set the sampling variance

was 24.6 and the limiting value 17.23 .

Simulation studies support the view that if the bias is not

large ( equivalently if p is not close to o ) , replacement of the

limiting variance by the sampling variance yields realistic ( in

fact , slightly conservative ) 95 % confidence intervals , even when

mis as small as 100 .

The listings of the two short computer programs used for the

above analysis , the estimation and simulation , are available on

request from the author .

6 . Summary and Concluding Remarks

For ease of use , we list the estimation and confidence

interval formulas in 2. and 3 . If k = 2 , then

â = n2ny , b . 1- ĝ , . ( n +n2)/(1-62)

and

2
^^ 2

ma2

S

P
osa - ģ )ĝ (1 +ậ ) ,

Ô

2

S

m

1
1 în o ( 1 +

1- ? eta)

and asymptotic 100 ( 1 - a ) % confidence intervals for p and mare

p + = a / 2 ° p
and în 1

? a / 2 sm

where Z

2a/ 2
is the 100a/ 2 upper percentile of the standard normal .

If k> 3

k

П

1

ni , Ộ = 1- ĝ , M

• { ng/(1-ą ) ,

where cz • (! -**2)/(*{ ?-1)/12), and

=
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2 - k k

( á ? / m ) { czippo

2

i2

S

P

ank

ma

nk

ka2

S

m

+

1-9

ak

1-9

and asymptotic 100 ( 1-2 ) % confidence intervals for p and m are

$ + a / 2 ° p
and m + 2

2a/2 sm

with Z

?a/ 2
as before . To calculate the lack of fit statistic and

its d.f. , it is simplest to use the short computer program referred

to above .

In summary , the purpose of this paper has been to give a

statistically justifiable and conceptually and computationally simple

method , the regression , as an alternative to the maximum likelihood

approach which suffers from three deficiencies : the standard

regularity conditions for the joint asymptotic normality of the

maximum likelihood estimators are not satisfied , the estimating

equations are either implicit or require the use of charts , and

it is complicated appearing to non - specialists .

The methods discussed here should also be useful in other

cases where the data is multinomial and the standard maximum

likelihood regularity conditions are not satisfied .

|
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REGRESSION FOR MARKOV BERNOULLI RANDOM VARIABLES

Edmond H. Inselmann

US Army Combined Arms Combat Development Activity

Fort Leavenworth., Kansas

1. INTRODUCTION . The problem studied was that of regression on Bernoulli

random variables in the case where some of the random variables were

dependent . The interest in this case arose from a problem of trying to

fit probability of hit curves to data generated by repeated missile

simulations performed at US Army Materiel Systems Analysis Activity using

tracking data from the Antitank Missile Test (ATMT). Hit /miss data were

generated one second apart. Because overlapping tracking data were used ,

successive shots were dependent . This caused problems that seemed in

surmountable until the author became aware of Klotz's papers ( 1) (2) .

In these papers the parameters of a sequence of Bernoulli dependent

random variables satisfy the Markov chain property . In the case of

successive shots , the assumption of Markov chain seemed reasonable and

was used to solve the problem . Klotz's technique was extended to the

regression problem .

2 . PRELIMINARIES . In the generated data the following occurred : for

several different ranges, a number of gunners (the number was not the same

for all ranges) fired a sequence of shots (not all the same sequence

length) . The shots were fired a second apart. Let X( 1 , J ,R) be the results

of the Ith shot of the Jth gunner at range R. A hit caused X to be 1 and

a miss caused it to be 0. The notation that is now introduced is that of

Klotz but modified to the needs of the problem under consideration. The

first probability of hit is:

P (R) : Pr

{ *tgR } 60 + byR + b2R? Eq 1

which , as shown in the above equation , is taken to be a second degree

polynomial in R. Next, the probability of a hit given that the previous

shot was a hit , is :

Puz(R) 4 ( R) – Pr { *15R * 1 /Xg-1 3R 1 } -29 + a R + 2zR? Eq 2

which is also taken as a second degree polynomial in R and which is the

lower right hand term in the transition matrix . Clearly, equations 1 and

2 hold only when the sequences are stationary , which was a reasonable

assumption for the problem considered. The remaining three terms of the
transition matrix are :

POI(R) = 1 - (R) = Pr
|{x138- 0 /Xg-1 JR-1

Eq 3
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P20(R) - PARIS )).
Prx

: {Xijr 11X4-1 jR -0 }of Eq4

Poo R) - 1 - P20(R ) – Pr { X13R = 0 [ *7-1 gr -0 }
Eq 5

3 . LIKELIHOOD . Having the above machinery , the joint probability of the

data is :

pr}*13*5*- { Pres%158 [1- POR]
1 - X9jR

NjR

TT Plurry*tJR * 7-2 GR PLO R * JR (1 - *4-2 SR)

1=2

Poy(R)l
a( 1 - XqjR) X7-1 je (1 - 445R) 12 - *4-1 FR)}POOR )

Eq 6

where :

NR number of gunners firing at range R

NjR
number of shots by the jth gunner at the Rth range .
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and t
Substituting r

jR SjR '

equation 6 becomes :

tjr as described in equations 8 through 10 ,

pr {*45 's) -
2 (SjR - PjR? - tyr

* {uce,*J (1 - A (R )Rj= 1

1 - 25
jR 25jR + PjR + tgR !

[1 - 2P ( R ) + X(R)P (R)]

P ( R ) ( Sje – PIR? [1 - P(R)] "3R = 2 - Sje-ingr - 2 - Syr typ?

Eq 7

Where :

"R

PjR
Σ

j-2
X: -1 jR Xijr Eq 8

NjR

SjR XqjR Eq 9

j=1

tyr • X1JR * *NgR JR
Eq 10
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Then the likelihood function is :

N ( R )

L : Σ Σ

Rj=1
rzelnack) + [2183R = Fgp] - typ] in (1 -4 ( R )

+ (ngr - 1 - 2SjR + PjR + tjr?rjr + tjR ) in ( 1 - 2P (R ) + 1 ( R )P (R ) )

(SjR - PjR) InP (R )

Eq 11

- ( njR - 2 - SjR + tje) in ( 1 - P(R))

+

Now , substituting 1 (R ) and Py (R) in the likelihood function one has :

N (R)

L : Σ Σ

Rj=1 {rse anche la

+ [2(Syr - rýR ? - tzr] in ( 1 - i

2

k=0

aapk
y

+ [njR - 1 - 2S3R + PjR + tyr]

In (1-2 ,

2

Σ

k=0

aapk
y

2

+ (Sjr - PR) in EBRO)
q=0

Eq 12

- (NjR -2-5
JR * tgR ) in ( 1. E
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To find the max imum likelihood estimates of the regression coefficients ,

partial derivatives of the likelihood function with respect to the a's and

b's are required . These partials are :

NCR) [DL

да

N ( R )

Σ Σ

Rj=1

2(SzR -FR) - tgR ]tgR]R"
Li
pp
i

Σ &a

k = 0

2

1 - Σ

k=0

子f
e
t

OR
A

Eq 13

(njr - 1 - 22jR ++ tje!

R
m

2

E b

9 = 0

BOR
O

22

1. 2.2 Σ

byR9 +
Σ BOR

I
2

Σ

k = 0

a Rk

q = 0 9 = 0

and

Qark ,Stom

njr - 1 - 25 je *
"jR * tjr)(-2R" + R"N (R)

Σ Σ

Rj=1Ř ja 2

1-21 6p
9

2

Σ

k=0
920 9

q=0

84
84

Eq 14

(S

(njeEjr - PjR)A" 2 - SjR
+ t

2

Σ 6

2

1 - Σ 6

& jp ) Rh

BORYBORO
9-
09

q=0

These expressions are set to zero and solved for the a's and b's . It is clear

that the solutions must be obtained by iterative methods . A program was written

to do this using the Newton Raphson method ( 3) .
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4. CONCLUSION . Recall that the problem discussed in the introduction was

the problem of fitting probability of hit curves to data generated by re

peated missile simulations . The curves were assumed to be quadratic

functions of R expressed as follows :

P ( R ) = bo + b R + bąR? Eq 1

P11 (R ) = ao ayR + a_R? Eq 2

Hence , utilization of the maximum likelihood technique , given by equations

11 through 14 above , and subsequent solution by the Newton Raphson method ,

provides the values of the coefficients , a's and b's , necessary to achieving

a maximum likelihood " best fit“ of equations 1 and 2 to their respective

data points .
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How to Smooth Curves and Surfaces With Splines and Cross-Validation

Grace Wahba

Department of Statistics

University of Wisconsin-Madison

Madison , Wisconsin 53706

ABSTRACT

We briefly review the use of smoothing splines and the method of

generalized cross validation (GCV ) for smoothing discrete noisy data from an

unknown but smooth curve . Then we describe the use of " plaque mince " or

Laplacian smoothing splines with GCV for smoothing discrete noisy data from an

unknown but smooth surface . A numerical algorithm for this ( non - trivial ! ) computational

problem is described , and an example from a Monte Carlo study is presented to

show how the method works on simulated data . The results are extremely

promising. Some design problems are briefly mentioned . Some conjectures are

made concerning optimality properties of Laplacian smoothing splines and

Laplacian histosplines .

Note : This report was written for the Proceedings of the 24th Design of

Experiments Conference , held at Madison , Wisconsin , May 3-5 , 1978 ,

and sponsored by the U.S. Army Research Office .

TYPIST: Mary E. Arthur

This work was sponsored in part by the U.S. Army under Contr ct No. DAAG29-77 - G - 0207

and in part by the Office of Naval Research under Grant No. 00014-77 - C - 0675 .
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How to Smooth Curves and Surfaces With Splines and Cross - Validation

1 . Introduction

In the conference talk we considered four problems . The first two had

to do with estimating curves when they are observed discreetly and with

error . The model is

Y ; = f ( t ; ) + Ej , i = 1,2 , ... , n

where f ( t ) , te [0,1 ] is an unknown curve , only known to be " smooth " ,

0 < t , < ... tn = 1 , and e ; are independent zero mean random variables

with a common unknown variance o?. The {y; } are observed .The {y ; } are observed . The first problem

is : How should f be estimated nonparametrically from y
( yyy ... syn ) ? The

second ( or design ) problem is : How should the points { t ; } be chosen so that

the estimate of f is as good as possible? The third and fourth problems have

to do with estimating surfaces . The model is

2 ; = u ( x ; »Y ; ) + € ;
i = 1,2 , ... , n ,

>

where u ( x ,y ) , ( x ,y ) € some region in the plane , is only known to be " smooth " .

( x ; » y ; ) , i = 1,2 , ... , n are n points in this region , the e ; are zero mean

independent random variables with common unknown variance o?, and

? = (27, ... ,2n)'is observed . The third problem is : How should u be

estimated nonparametrically from z . The fourth ( or design ) problem is : How

should the points ( ;,Y; ) , i = 1,2 , ... , n be chosen so that the estimate of u

is as good as possible . We will not discuss the design problems here . The

design work mentioned in the talk has appeared in Athavale and Wahba ( 1978 )

and Wahba ( 1971 , 1974 , 1976 , 1978c ) . That work ( and the work of others ,

mentioned there ) represents only some first steps in design problems for
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nonparametric curve and surface fitting . There are many open problems .

Very good and relatively complete results for the first ( curve estimation )

problem are available ( Craven and Wahba ( 1979 ) , ( CW ) and Golub , Heath and

Wahba ( 1977 ) ( GHW ) , and transportable code is available from at least three

sources Fleisher , ( 1979 ) , Merz ( 1978a ), and Paihua ( 1978 ) . We will briefly

summarize those results , because they will aid in understanding our discussion

of the third problem , that is , surface smoothing . The remainder of this paper

will then be devoted to the problem of smoothing of surface data non

parametrically . Some very nice theoretical results are available , and we have

turned them into a computer program which delivers very pleasing pictures .

The development of the program is the work of Mr. James Wendelberger , and it

and other results will appear in his Ph.D. thesis .

2. Curve Smoothing

f

For curve smoothing, we recommend that f be estimated by the solution

fn,men of the minimization problem : Find fetim = { f : f , f ' , ... , f ( m- 1 ) abs .

f (m )
L2 [0,1 ] } to minimizecont . , E

1 { (fey)-xp2 + a fcemywy)?du .
( 1 )

The first term represents infidelity of f to the data , and the second term

represents " roughness " of the solution . The parameter 1 represents the

tradeoff between the two . m=2 represents " psychological" smoothness (we

think ! ) and is frequently used , and gives good results . We briefly discuss

the determination of m from the data later.

The solution fnom , is known to

be a polynomial spline of degree 2m- 1 . The parameter 1 is chosen from the

data by the method of generalized cross -validation ( GCV ) . GCV is derived

from CV ( " ordinary " cross validation ) . CV goes as follows :
Let fik)

n ,m , a
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be the solution of the minimization problem of ( 1 ) with the kth data point

omitted . The value 1 will be a good choice if forekomea ( tk ) comes close , on

the average , to yk • We measure this by the " ordinary " cross validation

function Vo(1) = výca ),

. į ( folk)

For fixed m the parameter 1 is chosen by minimizing vo(a). For technical

reasons involving convergence proofs , we replace Vo ( 1 ) by the generalized

n

Vo (a) = ™
k=1 1.(t )- 2 .

cross validation function

v ( 1 ) = 1 { (fekem, a (tx ) )Park( 1 )
k= 1

where the {wk (1)} are certain weights to reflect unequally spaced data , end

effects , etc. Details are given in CW and GHW . It turns out that V ( ^ ) is

much easier to compute than Vola ) , and V ( ^ ) has the representation

11|(1-A(1)lg112
v ( a )

Trace ( I -A ( 1 ) ) ) ?

3

where A ( n ) is the nxn matrix which is uniquely determined by

)

: A( A )ý •

fnement( !

nem , alt,

Pleasing results have been obtained using smoothing splines with GCV in both

Monte Carlo studies and various applications , Benedetti ( 1977 ) , CW , GHW , Merz ( 1978a ,

1978b ) , Stutzle ( 1977 ) , Utreras ( 1978a ) , Welch ( 1979 ) . These results are not

surprising in the light of the following theoretical result ( CW , GHW ) . Let

R ( 1 ) į ( fnym , 4 / t; ) -f ( t; ) ) 2 . R( ) is the "true mean square error"

averaged over the data points . Before data are observed both R ( 1 ) and V ( ^ )

n

1

,n

j = 1
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can be considered functions of the unknown f and random functions of the

{ € ; t . Let 1* be the minimizer of ER ( 1 ) and à be the minimizer of EV ( 1 ) .

We have under rather general circumstances ( see CW , GHW )

ERC )
lim

ER ( 1 * )
1 . ( 2 )

ntoo

Thus ( very loosely ) , the mean square error with the estimated i tends to the

minimum mean square error achieveable with any i . Let î be the minimizer of

( 1 ) . Numerical results based on Monte Carlo studies with m=2 reported in CW ,

with n=50 and equally spaced data points , show the achieved inefficiency

RC ) /min R ( 1 ) in the range 1.01 to 1.42 .
a

Some numerical experiments to assess the effectiveness of choosing m

by GCV have been done . ( Lucas , 1978 ) . One obtains vM ) for each m and

minimizes v " ) over m . The results indicate that this procedure does a

good job of picking out the m and î which minimize R ( x ) = RM ( a ) , and that

there are classes of f's for which it is worthwhile to do this , that is ,

min R" (1) is usefully less than min R? (1) for some m + 2. Efficient

transportable code is not presently available , however . Depending on f ,

reduction in inefficiency of several percent can be obtained .

3. Surface Smoothing

We now turn to the third problem , that of recovering smooth surfaces .

We recommend that u be estimated by the solution Un ,m ,1 of the minimization

problem : Find u E H ( an appropriate space , to be described ) to minimize

1

n cu(xsoxyl-2pp2 + 1 ] sson -3)?dxdy .
( 3 )

and that , ( and possibly m ) be estimated by GCV . We now describe how to do

this . For mathematical convenience the limits on the double integral in
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.( 3 ) are taken to be and H is taken as H = HMCR² ) = { u : UE D ,

m.

au

axlaym -je lz (R2 ), j = 0,1 , ... , m . ( d'is the dual of the Schwartz space D of

infinitely differentiable functions with compact support , this need not concern

us here , see Meinguet ( 1978 , 1979 ) , Schwartz ( 1966 ) . )

Theorem :

Let t ; = ( x ; » y; ) , t = ( x ,y ) and It-t;} = { ( x =x ; ) 2+ (y-Y; 12 ; 1/2 .

Let m 2 2 and n > M = (mt?). The solution uUn ,ma
to the problem : Find

U E H to minimize

n m

amu

[, ( ult ; ) -2 ; ) 2 + 1 ss cc
j? dxdy , ( 4 )

i =1 j =0 axPaym

is given by

=

un ,m, alt ) of cs totz)+0,0,(e),
( 5 )

where

Em (svt) = Orls- t | 2m-2 10g | s - ti , Om ( 22m- 1 - [ (m- 1 ) ! ]? ) - 1

Øy ( t ) = x ^yB v = 1,2 , ... , M

where a , Brun over all the M combinations of non -negative integers with

a+B < m- 1 , provided the nxM matrix I with ivth entry ©,(t;) is of rank M.

The coefficients c = ( Cyp ... scn) ' and o ( d, ....,dm )' are determined by

( K+pI ) c + Td = z ( 6 )

T'c = 0 ( 7 )

th

where K is the nxn matrix with jk
entry Em (tj.tk ), and p = n1 .

This theorem is essentially due to Duchon ( 1976a , 1976b ) . Meinguet ( 1978 ) )

has also proved very similar results in a reproducing kernel Hilbert space

setting . For completeness , in the Appendix we outline a proof which roughly

follows Meinguet's argument. By putting the minimization problems of ( 1 ) and

(4 ) in a reproducing kernel Hilbert space setting , fn ,m ,, and Un ,m, can be
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shown to be Bayes estimates with a certain ( partially improper ) prior on f

or u , see Wahba ( 1978a ) .

4. An Algorithm for Computation of the Smoothing Surface

We now want to compute un ,m,, efficiently , and choose a land possibly m )

by GCV . Our algorithm below has benefited from the algorithmic work of

Paihua ( 1978 ) . However it is different and seems especially well adapted to

determining the generalized cross validation function v ( a ) for this case .

We next derive the equations behind our computational approach .

Let R be any nx ( n -M ) dimensional matrix of rank n -M satisfying R'T = 0
° (n -M ) xM

Subscripts indicate the dimensions of the subscripted matrix . Since T'c = 0 ,

we have

c = Ry (8 )

for y a unique n -M dimensional vector . Left multiplying ( 6 ) by R ' and substituting

( 8 ) into ( 6 ) gives

( 9 )

Y

R ' ( K +pI)Ry = R'z

( R ' (K+pI)R) -'R'z

R ( R'KR+pR'R) - ' R'z .

The vector d is then given by d = ( T'T)"'T'(2-Kc), obtained by left

multiplying ( 6 ) by T ' . To estimate 1 ( equivalently e ) by GCV , we want to

( 10 )

( 11 )C =

choose a to minimize

V ( ^ )
h1 | 11 -A ( 1 ) ) ; 112

Trace (I-A (- )))

.

2

where A ( ) is the nxn matrix determined by
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unmity)

: A ( 1 ) z .

\ n,n, (2 )

To talk about good properties of GCV here , we suppose the { t ; } will be in a

bounded region of the plane Rą ( even though the minimization is over functions

in R2). The basic property ( 2 ) of GCV can then be shown to hold as the ti

become dense in this region - the proof (CW ,GHW ) is independent of the nature

of the region .

To obtain a convenient representation for A ( 1 ) , we see from ( 5 ) that

7.Z = Z Kc . Td .O

( 11 )

2

un , m, alty )

:

Un, m , alten !

From ( 6 ) , we have

z - Td = ( K +pI)c

so that the right hand side of ( 11 ) equals pc . Thus ,

- PC = ( 12 )( I -A( 1 ) ) PR( R'KR+pR'R) - ' R'z

We need to compute c , || ( I - A ( 1 ) 3112 , and Tr ( I -A( 1 ) ) . Any R.Rnx(n -M)

have a singular value decomposition

will

R =

Unx(n-M )º(n-M )x (n -M )Vin-M )x (n-M ) ( 13 )

where U'U = V'V = I
In -M and D is diagonal . Then

R( R'KR +PR'R )- 'R = UDV ' (VDU'KUDV '+pVDDV ') - VDU'

U (U'KU+pI) -10. ( 14 )

Define

B( n-M ) x ( n - M)
UKU
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and define rand o by

B = ror ,

where I and 8 are the orthogonal and diagonal matrices in the eigenvalue

decomposition of B. Then the right hand side of ( 14 ) becomes

U (rori+ p ) ( 15 )

Ur'(6 +pI)-TUru ' ( 16 )

1

tp

0

Ur ' TU ' ( 17 )
1

0

b
п - м *р

where by ..., b are the diagonal entries in 8 li.e. the eigenvalues of B ) .
n-M

Given Ur ' , { b ; } we compute

1

bit
tp

C = Ur ' TU'z
1

bn -MTP

|| ( 1 - A( 1 ) ) z / 12 - 0211(6#pl) ' ru'z/12

and

n -M

+ Tr(I-A(A)) - ch금 bi toplei = 1

We now discuss the determination of U. It can be seen that U

is any matrix whose n-M columns are orthonormal and perpendicular to the M

columns of T, Min-M) xn T = 0° ( n -M) xM • We obtained U as follows . Let

I - TIT'T) - ' T ' = ŪS Ü ' . ( 18 )

where ū is orthogonal and s is diagonal . Since I - T ( T'T ; -' T' is a projection

matrix of rank n -M , A is a matrix with M zeroes and n-M ones on the diagonal .

We used EISPACK ( Smith et. al . ( 1976 ) ) to perform the eigenvalue decomposition

Ū A Ū ' and the n-M columns of U are taken as the columns of Ū corresponding

to the n-M ones in A.
Each such vector is perpendicula to the columns of T ,
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as can be seen by right multiplying ( 18 ) by T. The EISPACK computation of the

entries of A was good to seven figures . Given U , B is computed and r and 8 are

also computed using the eigenvalue decomposition routines in EISPACK .

5 . Numerical Results

We present the results of a single Monte Carlo experiment , with m=2 .

Figure 1 gives a picture of the true function u that was the subject of the

first experiment,

boz<(x-2)2=v2)
+((x +2)2 +y?)

1 2 ( 1.3 )
u ( x , y )

211.3 )
e

21 (1.3) 2

A regular 7x7 square array of 49 points t ;, i = 1,2 , ... , 49 was selected , with

the middle point being ( 0,0 ) and the point spacing being 1.0 .
Data Yi

were generated as

Ej
i = 1,2 , ... , 49Y; = ult; ) + , t; = ( x; »Y ) ,

were pseudorandom N( 0,0% ) random variables with o = .01 .where the o is
Ei

about 1/8 of the maximum height of u . Figure 2 presents aFigure 2 presents a picture of the

data points , which have been joined by straight lines . Figures 3 and 4 give

un , 2,1 for two values of 1 , in Figure 3 , 1 is too large , and in Figure 4 , 1 is

too small. Figure 5 gives un , 2 , î , where î is the minimizer of v(1). Figure 6

gives a plot of R ( 1 ) and V ( ^ ) against log i . It is seen that , in the

neighborhood of the minimizer of R ( 1 ) , V ( ^ ) roughly follows R ( ^ ) . Theoretically ,

we have min EV ( 1 ) - min ER( 1 ) + ?, for large n , see Ch , and this relationship
à

is roughly approximated here . The achieved inefficiency , defined by

RC )/min R ( 1 ) , where î is the minimizer of V ( ^ ) , was 1.54 . Note that

min Rû) = .25 ?. If we were fitting a surface which is known to be a linear

combination of given functions by regression we would expect the mean square error
2

o

to be proportional to Here numerical and theoretical results in the one
n

λ

a

2
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dimensional case for reasonably regular arrangements of data points indicate

that min R ( x ) ~ const . (o?/n) where p is some power slightly less than one . р

depends on the rate of decay of eigenvalues of an appropriate reproducing

Ifkernel . See Wahba and Wold ( 1975 ) , CW , and Wahba ( 1975b, 1977 ) .

H2M (R ?),U € H4 , p = 2m / ( 2m + 1 ) . ( In preparation ) .

Mr. Wendelberger's program is running for n = 120 and quite reasonable

results have been obtained for this case , with randomly chosen points { t ; } .

One cannot increase n with impunity , however . In the n = 49 case reported

i
here the condition number of B , namely max bi /min b ; was around 200 , and in the

irregularly spaced n = 120 case this condition number was of the order of

4x105 . ( Irregularly spaced points will increase the condition number . )

For large n and a condition number somewhere around (we guess ) 106 or 10% ,

the computation errors will begin to take over . Thus , in theory , a plot of

log ( min R ( 1 ) ) vs. n should be approximately linear with slope -p , however , as
λ

roundoff error gets large , this plot will flatten out . Laurent and colleagues

( 1978 ) have developed a procedure for patching together surfaces of this type

so that groups of points may be handled separately .

The cost of running a program designed just to produce Figure 5 from

data , we estimate to be about $4.00 at weekend rates at our computing center .

} one
To produce Figure 5 from a second set of data at the same points { t ;

would retain U , r and { b ; } , which depend on the { t ; } but not 2 , and then the

cost would be very small .

6. Miscellaneous Remarks

We hope to implement the m = 3 and m = 4 cases . can then be selected

from the data by comparing VC ) for each of the m = 2 , 3 and 4 cases . For

m = 2 , the roughness penalty
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2

2 2

au

[ . SS G j2- j
axºay

dxdy

j =0

is the bending energy of a thin plate . For this reason , Duchon christened the

solutions " plaque mince " splines . We have reason to believe that the m = 3 case

will be appropriate for the smoothing of certain meteorological data . In some

cases the nature of the physical phenomena being smoothed may provide insight

into a choice of m .

We note that the solutions un,m ,n satisfy

m

A u

هم,m,ذاو
0 , t # ty , ... stn

t

2

a
+

ax

a²u
where A is the Laplacian operator au =

22
The smoothing splines

ay

nm (t) = 0 , t + tys..., tn. For this reason , Prof. Iso

Schoenberg has suggested to us that the functions un ,m , n be called " Laplacian

Smoothing Splines " .

fnom ,a satisfy f (2m )

We have recently obtained what might be called the Laplacian histosplines ,

m

by analogy with Boneva , Kendall, and Stefanov ( 1971 ) . These are functions

which minimize the roughness penalty { } (5 ) 12 dxdy subject to
j =0 A

volume matching conditions of the form

m

au

maxlay!

I u dxdy =

Ai

Pi ,
i = 1,2 , ... , n

where the A. are n bounded areas in R ™ whose union is A. These functions satisfy

" U = constant on each A;

( Dyn , Wong , and Wahba ( 1979 ) ) , and , in preparation ) .

Various optimality properties of smoothing splines and histosplines in one

dimension are known . For example , it can be shown from CH and Wahba ( 1975b ) that

(2m ) f € (

0 (n-(4m)/(4m+1)), f e H2M ( 0,1 )
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and f satisfies some boundary conditions . It is part of the folklore that

these rates cannot be improved upon . Density estimates determined

1

( m )
by the minimizer of dt subject to the area -matching conditions

titl

[ f ( t ) dt = fraction of observations in [t ;,ti+ 1]

are known to achieve the best possible convergence rates over fet provided

are chosen properly . See Wahba ( 1975c , 1976 ) . Stone ( 1978 ) has given
the

i

some results on best possible pointwise convergence rates in d dimensions .

We conjecture that all the nice convergence properties of polynomial splines

can be extended to the Laplacian smoothing splines and Laplacian histosplines .
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APPENDIX

Outline of Proof of Theorem

Let ry,rzu...sram be a subset of M points selected from typ .... tn

th

with the property that the MxM matrix T with jv entry P , Irj ) is of full

rank . The space H = { u : UE D ' ,
i € L2 , j = 0,1 , ... ,m- 1 } can be

ax'ay

decomposed into the direct sum of two spaces :

m.

au

m

H = X ,
"m-1

where m -1 is the M dimensional space of polynomials of total degree m- 1

or less and X = { u : u € H , ulr, ) = 0 , v = 1,2 , ... , M } . It can then be shown

that

Uvqus I, ore the
av

dxdy

әхәym- j əxlay
maj

m- 1

defines an inner product on X. If an inner product is defined on a by

M

<u , v> { ulr )ver ) , then and X are orthogonal subspaces . X ( and
" m - 1

"-1 v= 1

and hence H ) are reproducing kernel spaces .
TT

'm - 7

If the reproducing kernel K ( s , t ) for X can be found , then the solution

un , m ,, to the minimization problem of ( 4 ) will have a representation

n

Un,m ,1 ( t ) {, C; Klt,tz) + Į, d., p. ( t ) .)+ , ) (A.1 )

j =1

( See , e.g. Kimeldorf and Wahba ( 1971 ) ) . Un,m, , will , of course , be

independent of the choice of ry ... rm . The reproducing kernel K has been

found by Meinguet ( 1978 , 1979 ) and is given by
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M

K ( s , t ) - Ems,t) - 2, P. ( s ) Emt , ru )
u= 1

M

{ po ( t ) Em ( s ,r ))v= 1

M

+ Σ P. (s) po ( t ) Emrvorul , ( A.2 )

H , v= 1

M

where {pub =1 span a" m - 1 and are chosen so that pu (r ,) = 1 , y = x ,= 1 , y = x , = 0 , u # v .

Substituting (A.2 ) into ( A.1 ) , it is seen that a representation of the form

( 5 ) for
Un ,m , 1

holds .

To show that K is the reproducing kernel for X, it is necessary to show

that

i ) Kls , :) e X , each s

ii ) < K( s , · ) , klt,•) = K ( s , t ) ,
( A.3 )

where

M

am

m
dxdy . ( A.4 )

j=1

amu

<u,
į

axlaym-j əxlay"

Ms ( t ) = m (s,t) - ļ Pu(s) Em( mot)

Define

M

H= 1

Then

M

K (s, t) = Hg ( t )Hs - { po ( t ) Hs(ru ) .i )
( A.5 )

v=1

The hard part is to show that Hs E H.€ H. ( Note that En ¢ H. ) Meinguet showsEm

that H € H , for each s , and we omit the proof . It then follows that

M

K( s , • ) € H , and , since ļ, pulo ) Hs Iro ) is the polynomial interpolating to
v= 1

Ms at ryg ... , rmo Kls ,r_) = 0 , v = 0,1 , ... , M , and so kls ,. ) e T.

To establish (A.3 ) , first note that

gom am

K ( s , :)

on
( A.6 )

i

əxlaym
aj "aym- j hs(o ) .
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Consider the Green's formula

( - )" į SS
au

m-j
axay

m .

" ' v

1

ax ay

dxdy = "/ "uv dxdy ( A.7 )

j =0

2

where A =

2
a

2
ax

+
.

2 2

ay

This formula holds provided , e.g. VEH N Lą and u € D.

If u € 0 , then the potential formula

ssloMul(t) Em (s,t)dt = u ( s )

holds ( see Schwartz ( 1966 ) ) and in particular

M

Iso " u • Hs u ( s ) - { puls ) uir, ) ( A.8 )

V

Meinguet argues that , in fact ( A.7 ) and ( A.8 ) hold for u = H ,Ht ; v = Hs , giving

m

a

( -1 )" į HT
Н.

m

j = 0 əx ay

m

a

əxlaym - 5 as

m

= Ht ( s ) - Į, Puls ) Hs(ru ) = K (s, t) ,
v=1

which , combined with ( A.6 ) , gives ( A.3 ) .

Equation ( 7 ) can be obtained as follows : Considering Klt,t;)
as a function

of t ,

M

Kitotz)- Emlt,t ;) - ļ Pultz ) Em(t,r. ) +
v= 1

( A.9 )

a polynomial of degree m-1 or less .

Now , if • is any element of
" m - 1)

we have

M

$ ( t ) Pult ) ory) = 0 .0 ( A.10 )

v=1

Letting ay (j), (j),...,an (j) be the coefficients of Em(•,ty), E (•,tą),

Em (:,tn), in ( A.9 ) , it can be verified from (A. 10 ) that
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n

ļ, ax ( j ) o ( tk ) = 0 , j = 1,2 , ... , n ,
k= 1

which results directly in the conditions ( 7 ) on the coefficient vector c in

( 5 ) , namely , Tc = 0. Equation ( 6 ) is obtained as follows : One substitutes

( A.1 ) into (4 ) , and then uses (A.3 ) to evaluate the expression (4 ) to be

minimized . By repeatedly using T'cBy repeatedly using T'c = 0 , one obtains that c and d are chosen

subject to T'c 0 , to minimize

2

1/2-Kc-Ta |1% + nackc .

Differentiating this expression with respect to c and setting the result equal

to zero , and using T'c = 0 , gives ( 6 ) .
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METHODOLOGY FOR ACCEPTANCE CRITERIA FOR

TARGET DISPERSION CHARACTERISTICS OF THE

ARMOR PIERCING DISCARDING SABOT (APDS ) ROUNDS

1. INTRODUCTION

1.1 General

The estimation of target dispersion characteristics of Armor

Piercing Discarding Sabot (APDS) ammunition in acceptance testing is

accompanied by a number of difficulties. Test costs are high ; therefore

sample sizes are limited . Since dispersion patterns are subjected to

relatively large variations , small sample sizes produce undesirable

levels of inaccuracy in estimating dispersion characteristics . Control

of test conditions throughout the test is limited to control of only a

few factors such as tube aim point , cant , stability of the firing plat

form and tube condition , at the start of the test . Even with maximum

possible control of such factors , they still exert a degree of error in

round - to - round target impact points . In addition , there are several

uncontrollable factors , such as wind and weather conditions , tube wear

from round to round , droop , jump and other unknowns , which make it

impossible to obtain uniform conditions throughout the test . These

problems have accompanied every acceptance test conducted on APDS

ammunition and have been exacerbated by two factors :

o The lack of established test procedures designed to

minimize the effects of uncontrollable test condition

variations and

The lack of established acceptance criteria and

estimation procedures designed to minimize consumer

and producer risks .

The result has been that a large number of lots of APDS

ammunition with very poor target dispersion characteristics have been

accepted for use .

1.2 Purpose

This report develops methodology which can be used to derive

acceptance plans for target dispersion characteristics of APDS rounds .

In developing the methodology, the effect of test condition variations

upon target dispersion patterns and the lack of established acceptance

criteria and estimation procedures are addressed . Examples of inadequate

firing procedures in accuracy tests of APDS rounds are presented , and

corrective measures are proposed . Examples of acceptance criteria and

estimation procedures which minimize consumer's and producer's risks are

developed .. Several acceptance plans , derived from the proposed method

ology are presented .

- -
-
-
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2 . TEST PROCEDURES

2.1 Background

The objective of an accuracy acceptance test of APDS rounds is

to assess the dispersion pattern which characterizes a lot of ammunition

and accept or reject the lot . The acceptance test requires firing a

group of rounds at a vertical target some distance from the gun . The

coordinates of the impact points of each round in the group are obtained ,

and estimates of the dispersion about the center of impact are determined .

When firing a group of rounds to assess dispersion character

istics , it is desirable to have identical test conditions for each round .

In this manner , the differences in impact points of each round are the

result only of inherent differences between the rounds . Inherent

differences between rounds in a lot of APDS ammunition are due to chance

variation within a stable pattern caused by manufacturing procedures and

physical characteristics of the round and propelling charge . These

inherent differences lead to different flight characteristics , and cause

rounds to impact at different points on the target . If identical test

conditions are obtained , the dispersion characteristics of the group of

rounds fired reflect the degree of round - to - round uniformity in the

manufacturing process and provide an estimate of quality control .

Unfortunately , test conditions from round to round are not

identical . Gun elevation and deflection vary regardless of efforts to

maintain a constant aim point . Weather conditions and other factors

which effect accuracy also vary from round to round . Consequently ,

the dispersion pattern of a group of rounds on a target is not

representative of the inherent round-to-round differences . The

dispersion pattern consequently represents the combination of the

inherent differences in rounds and the variability in test conditions

from round to round .

2.2 Firing Procedures

The method of firing employed in an acceptance test of a lot of

APDS ammunition must be conducted in a way that minimizes the effect of

round - to -round variability in test conditions . In past acceptance

tests , gun elevation and deflection settings have been controlled

to a great extent , and severe weather conditions have been avoided .

However , the method of firing in acceptance tests has not been one which

minimized round-to-round variability in test conditions . The length

of time required to fire a group of rounds has been as great as four

hours . Test conditions such as tube droop , cant , ambient environmental

conditions and other unknowns vary more over a long time interval than

they do in a short one . Hence , as shown by an analysis of past acceptance

tests of 105mm , APDS ammunition , a group of rounds fired over a long

time period will tend to exhibit higher probable errors than would be

observed over a short time period .
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Figure 1 shows the accuracy results of an acceptance test of

105mm , APDS rounds conducted at Jefferson Proving Ground . Horizontal

and vertical probable errors are presented as a function of time between

rounds . The wind ranged from 2-10 knots and varied in direction from

140° to 180° during the course of the test . The probable errors for the

entire 25 round group were calculated at 0.47 mils in the horizontal

direction and at 0.29 mils in the vertical direction . Probable errors

as a function of time between rounds were obtained by analyzing all

combinations of two round groups in the test. The probable errors for

each two round group were calculated and correlated with time between

rounds fired . Although the trend in Figure 1 is linear , other shapes

may be expected from the testing of other lots .

Figure 1 clearly illustrates that during an accuracy test the

dispersion of impacts is greatly affected by the test conditions , which ,

in turn , vary with time .

The firing procedures employed in acceptance tests have not

been designed to minimize the time over which a group of rounds is to be

fired . In the past , as many as three different lots were often tested

simultaneously , with rounds from each lot fired alternately , with

reference rounds . The effect quadrupled the amount of time required

to fire each test group of each lot. Consequently , the effect on

dispersion due to variations in round - to - round test conditions , has

been greater than that which could have been obtained if the time for

firing each group were reduced .

In conducting an acceptance test , the individual groups of

rounds from a test lot should be fired sequentially with no alternate

firing of reference rounds or rounds from other test lots between

rounds within a group . The time for firing each group of rounds

can thus be minimized to the greatest extent possible. If reference

rounds are to be fired , each group of reference rounds should be fired

either before or after each group of test rounds . For example , if two

ten round samples from a single lot are to be tested with fifteen

reference rounds , the order of firing could be :

Five Reference Rounds

Ten Sample Rounds

Five Reference Rounds

Ten Sample Rounds

Five Reference Rounds

Estimates of probable errors for each group of rounds would

then be calculated and pooled accordingly .

-
-

- -
- -
-
-
-

-
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3. CALCULATION PROCEDURES

When a group of rounds is fired over a short time interval , the

effect of nonuniform test conditions from round to round will still

persist . Movement of the mean center of impact from round to round may

occur , and , if so , the effect of this trend on calculated probable errors

may be eliminated by the method of successive differences ( Reference 1 ) .

For example , suppose the following impact coordinates , measured in inches ,

are obtained for a group of ten rounds fired at a vertical target 1000

meters from the gun :

Round

Number

Horizontal

Coordinate (x ).

65

Vertical

Coordinate ( y )

1101

2 70 120

3 60 115

4 75 100

70 105

6 85 95

i
n
60N

0
0
0

7 . 80 90

95 95

8590

10010 75

Calculating probable errors in the usual manner for the entire

ten -round group ( References 2 and 3 ) yields ,

Horizontal probable error = 0.23 mils

Vertical probable error = 0.24 mils

Circular probable error = 0.41 mils .

Calculating probable errors using the method of successive

differences yields ,

Horizontal probable error = 0.13 mils

Vertical probable error = 0.11 mils

Circular probable error = 0.21 mils .

The method of successive differences results in approximately

a 50 percent reduction in probable error estimates in this particular

example . The probable errors calculated by the standard method include

the effects of test condition variability over the entire ten - round

group , while the probable errors calculated by the method of successive
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differences include only the test condition variability between successive

rounds . Whenever the variation in test conditions is nonrandom , the

result is a nonrandom dispersion pattern of shots about the center of

impact . A trend of this type indicates that test condition variability

over the entire group is greater than the variability between successive

rounds . When this type of trend occurs , the use of the method of success

ive differences provides dispersion estimates which include only the effects

of round -to -round test condition variability. In this manner , the effect

of variability over the entire group is eliminated .

In determining the dispersion characteristics of a lot from a

group of rounds , it is therefore desirable to limit the effect of test

condition variability on the estimates of dispersion to that variability

which occurs only between rounds .

It can be shown that the method of successive differences

provides an unbiased estimate of the square of the probable error ( PE ) .

From statisticaltheory, an unbiased estimate of the variance ( ) in
the x direction of a two - round sample is obtained by

G = { (xy - x2 )?, where

X, and If three rounds

.

X2 are the coordinates of impact on the x axis .

are fired and have coordinates of impact X7 , x2 and xz on the x axis ,

Sik Ž (xy - x2)2 and 52 - { xz - xz )?

2

provide two unbiased estimates of the variance , o The sample variance
х

2 2

calculated by the method of successive differences is s . = 1/2 sıx +
х

1/2 szko and it is an unbiased estimate of or Since

E (53) = E (1/2 SEX + 1/2 5231

E ( 1/2 573 ) + E ( 1/2 523 )

= 1/2 E ( 573 ) + 1/2 E ( 523 )

8

of 2 + ok 12

OPE
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Similarly , for a sample of size n

X147 ) 2 , 1 -
= 1 , 2 ,

2

S
ix = 1/2 (xi n - 1 .

Then 53

n- 1

n - T i =1

2

S

fix ' the sample variance calculated by the method of

2

ix )

nat ļ,

successive differences , provides an unbiased estimate of or because

E( ) 5

in -1
[ E( :3)

Σ σε

n-1

j = 1

n - 1

- int inj = 1

2 .
2 0

Since ( PEX) 2 = Kombi

where PE

constant,

probable error in the x direction and K is the appropriate

E ( PEZ) = E (KS) = Ko = PEA

where PE = KS, and E ( 5% ) = o .

Hence , the method of successive differences gives an unbiased estimate

of the square of the probable error between rounds in the x direction .

A similar proof shows that the method of successive differences

also provides an unbiased estimate of the probable error squared between

rounds in the y direction and also in the radial direction ( circular

probable error ) .

Consequently , the use of the method of successive differences

provides unbiased estimates of the probable error squared and eliminates

the effect of nonrandom test condition variation upon the dispersion

results of an entire group of rounds.

Whenever the variation in test conditions is nonrandom and ,

thus , results in a dispersion pattern which is not random about the

center of impact , the method of successive differences should be employed .
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4. ACCEPTANCE CRITERIA

4.1 Applicable Parameters

In the development of acceptance criteria for dispersion character

istics of APDS rounds, parameters appropriate to an accept/reject decision

must be selected . Horizontal and vertical probable errors could be the

basis for a decision with independent criteria for each . This has the

disadvantage , however, of not utilizing all available information . For

example , the observed horizontal and vertical probable errors in a test

could be 0.10 mils and 0.35 mils , respectively. The pooled average of

these is 0.26 mils . If the reject criterion is to reject lots when either

horizontal or vertical probable error is greater than 0.30 mils , this lot

would be rejected . The problem with this type of accept/reject criteria

is that it ignores good dispersion characteristics in one direction when

dispersion in the other direction is poor .

Results of acceptance tests and life cycle evaluations of 105mm ,

M392 , APDS rounds have shown that target dispersion patterns are approx

imately circular . In Reference 4 , for example , horizontal and vertical

probable errors were 0.19 mils and 0.21 mils , respectively for 803

rounds fired from a mid-life tube . Hence , the use of circular probable

error , which effectively combines all dispersion information in both the

horizontal and vertical directions , is appropriate . Use of this parameter

simplifies the accept/reject criteria . Another advantage of using the

circular probable error in estimating target dispersion rather than the

present technique of computing independent horizontal and vertical

probable errors , is that the sample size requirement is reduced

significantly for the specified risk .

4.2 Distribution of Circular Probable Errors

A lot has an inherent circular probable error , CPE ,, which

describes its expected performance when random samples from the lot are

fired under identical test conditions . If CPE, is the circular probable

error observed for a random sample fired under identical test conditions ,

then

3 CPEIE ( CPE )

Since circular probable error is a multiple of the radial

standard deviation it follows that ,

2

CPEZ

en

B
a
l
d
o

CPE
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where So is the observed radial standard deviation , and oSR
is the

R.

expected radial standard deviation for a random sample fired under

identical conditions .

2(n-1)CPE
The distribution of will therefore be Chi -square ,

CPE

with 2 ( n-1 ) degrees of freedom for a random sample of size n fired under

identical test conditions .

(

Identical conditions from round to round are not attainable

CPE?

during testing , however . Therefore , will not have a chi -square
2

CPE
I

distribution during tests . In fact , CPE , cannot be adequately estimated

from test results , since the effects of round - to -round variability in

test conditions will always be included in circular probable error

estimates .

To develop acceptance criteria for APDS rounds , it is necessary

to know the form of the distribution of CPEo . It is also necessary to

estimate a circular probable error , characterizing a lot , which can be

determined from test data .

During acceptance testing , the effect of variation in test

conditions from round to round on circular probable error estimates will

vary from one occasion to another . On some days , test condition

variability has little effect on dispersion patterns , while on other days ,

the effect of variable test conditions is comparatively large . Obviously ,

measurements which characterize a lot or its expected dispersion should

not be based on days when test condition variability is unusually small

or large . The measurement which adequately characterizes the performance

of a lot should be based on the outcome expected on a randomly selected

day , given that the day satisfies the meteorological requirement for

conducting an acceptance test .

To define characteristic circular probable error , i.e. , the

probable error which is expected from a lot on a random day , we assume

that a lot of infinite size is available . Let N random samples be

selected from the lot and let each sample be tested on a random day .

Let CPEc denote the characteristic circular probable error of the lot .

Then ,

CPEC * N

N

Lim 1

Ntoon
Σ ( CP

j =1(CPe ), 1/2

- -

1

-
-
-

-
-
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defines the characteristic circular probable error of the lot . In the

above equation , ( CPEZ ) ; is the square of the circular probable error

observed on the ith occasion . Since
Lim1

f
1/2

N to Ñ
equals the

j = 1

expected value of the observed circular probable error on a randomly

selected day, it is clear that CPEc adequately defines the performance
of the lot .

On some days , E (CPE ) # CPEc , since variability in test conditions

such as wind and weather , tube wear from round to round , droop , jump ,

etc. , may be unusually large or small . Suppose conditions on a given

day are such that E ( CPE ) = CPEc for the random samples fired on that

day . Call this an average day .

Now , looking only at tests conducted on average days ( days for

which E (CPE ) - CPEC ) , there is a characteristic radial standard

deviation , oc , which describes the dispersion characteristics of the lot .

Since circular probable error is a multiple of radial standard deviation ,
then ,

s2CPEZ

CPEZ
Žoca

The

where CPE, is the circular probable error observed for a random sample

tested on an average day , and s2 is the estimate of the variance .

distribution of
2 ( n-1 ) CPEPeś will therefore be chi -square with 2 ( n-1 )

CPEZ

degrees of freedom for a random sample of size n tested on an average

day .

Acceptance tests , however , are not usually conducted an average

days , and

CPES

CPEŽ

has in actuality greater variability than that predicted by the

Chi -square distribution . To assess how this ratio varies during acceptance

tests , the dispersion results of 176 groups of 105mm , APDS , M392 reference
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rounds were analyzed . Eight of these groups had target misses and

were excluded from further analysis . The remaining groups were tested

on 168 different days over a twelve year period . Each group consisted

of a ten round sample from one of two reference lots , and was fired at

a target 2000 meters from the gun . There was no significant difference

in the distribution of circular probable errors of each reference lot

and results from the two lots were therefore combined . The estimate

of the characteristic circular probable error of the reference lots ,

CPEC , was obtained from the following equation .

168
1

CPEC
1/2

168
Σ (CPE );

i = 1

where (CPE ); was the square of the circular probable error observed
th

on the i occasion .

CPEO
In order to facilitate the analysis , was defined to be a .

CPEC

Assuming that CPEc for the 168 reference groups was equal to the

characteristic circular probable error of the reference lot , then

CPE

di CPEC

For each of the 168 groups, d , was determined and the observed cumulative

distribution of the ni's was plotted . Figure 2 presents the observed

cumulative distribution of 1, and compares it to the cumulative

distribution which would result if ? were distributed as a chi- square

with 18 degrees of freedom .

From Figure 2 , it is evident that if 2 (n-1 ) 1 — were distributed
as a Chi -square distribution with 18 degrees of freedom , 80 percent of

the observations would be between 0.78 and 1.20 . The observed cumulative

distribution of the 1 ;'s, however , shows that 80 percent of the

observations were between 0.46 and 1.44 , a considerably wider spread than

that predicted by the Chi -square .

х

The Gamma distribution of the form Gamma (x )

( a- 1 ) : 89

was fitted to the observed . 1 ;' s. With a = 7.4558 and B = 0.1261 , the

Gamma distribution fits the data very well . The Chi- square , Cramer - Von

Mises and Kolmogorov -Smirnov goodness of fit tests gave no reason to

reject the Gamma distribution . A summary of the observed dj's and of

the fitted Gamma distribution are presented in Figure 3. Each data

xa-l
3

e B

-
-
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point, denoted by a triangle , represents the number of observations

within an interval of length 0.10 . Points from the Gamma distribution

were multiplied by 16.8 so that the data and fitted curve could be shown

on the same scale. In Figure 4 , the cumulative Gamma distribution is
compared with the observed cumulative distribution of the dy's . The

data points , denoted by triangles , represent the observed cumulative

probability that hisi .

4.3 Criteria for Acceptance Plans

Assuming that 1 follows the Gamma distribution with a = 7.4558

and B = 0.1261 for random samples of size 10 , acceptance plans can be

derived with various levels of consumer's risks ( probability of accepting

a lot with poor quality) and producer's risks ( probability of rejecting

a lot with good quality ). The limitation of using this Gamma distribution

is that it can only be used to calculate consumer's and producer's risks

for acceptance plans with sample sizes which are multiples of ten .

Derivations of distributions applicable to sample sizes other than multi

ples of ten are beyond the scope of this report . To develop an acceptance

plan , it is necessary to specify the levels of characteristic circular

probable errors associated with both good and poor quality . The sampling

procedures and associated decision criteria must then be designated .

Once this is done , the Gamma distribution can be used to derive the

operating characteristics (OC ) , i.e. , the probability of accepting a lot

with a specified quality , associated with the plan . Comparisons of the

OC of various plans can also be made , and the best plan can thereby be

determined .

4.4 Development of Acceptance Plans

CPEg!

To develop the acceptance plans , CPE, is defined as the level

of circular probable error which represents good quality of a lot . Poor

lot quality can be characterized by any multiple of CPE as long as the

multiple is greater than one . In order to develop examples of acceptance

plans it is assumed in this report that poor quality is characterized by

values of circular probable error greater than 2 CPEEg . One possible

acceptance plan is to test a ten round random sample from a lot and to

calculate the observed circular probable error , CPE , and then , decide

to accept or reject the lot . One set of decision criteria includes

accepting the lot , if CPE < 1.2 CPE, or rejecting the lot , if

> 1.2 CPE This plan will be designated as Acceptance Plan A.

Given a circular probable error , CPEL , which characterizes the lot ,

CPEO

СРЕ.
is distributed as the Gamma distribution discussed in section 4.2 ,

provided CPE, is not very different from the pooled circular probable

CPE g
gº
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error of the 168 reference round groups . Further discussion of this

point is presented later in this section . For now , it is assumed that

СРЕО

is distributed as the Gamma distribution of section 4.2 .

CPEL

To derive the consumer's and producer's risks associated with

this plan, first assume that CPE, - CPEG Then , based on the cumulative
Gamma distribution of Figure 4 ,

P (A/CPEÇ = CPEG )CPEG ) = P (CPE) < 1.2 CPEL ) = 0.80 .

Based on the cumulative distribution of 1, when is distributed as

Chi- square with 18 degrees of freedom ( Figure 2 ) , the probability of

accepting the lot , P (A ) , is 0.90 . Assuming that CPEL 2CPEG , then based

on the Gamma distribution , P (A/CPE, = 2CPEG ) = (PCPE, < 0.6 CPE_) = 0.16 .

Using the chi -square of Figure 4 , P (A/CPE, = 2CPEG ) = 0.00 .= 0.00 . The consumer's

and producer's risks for this plan are summarized in Table 1 .

Table 1. Consumer's and Producer's Risk for Acceptance Plan A

Distribution Used Consumer's Risk Producer's Risk

Gamma 0.16 0.20

Chi -square 0.00 0.10

As noted in Table 1 , the Gamma derived consumer's risk for

Acceptance Plan A is 0.16 compared with the consumer's risk of 0.00

predicted by the Chi -square distribution . Thus , use of the Chi -square

distribution for obtaining the consumer's risk for this plan would

mislead one into thinking that Plan A is very good with respect to the

consumer's risk , while the Gamma distribution shows that it is not .

where CPEC

Figure 5 presents the OC curves for Plan A based on the Gamma

and Chi -square distributions . Note that the OC curve derived from the

Chi -square distribution crosses the Gamma derived OC curve at the point

:

gº
When CPEL < 1.12 CPEg , the chi -square derived oC

curve overestimates the probability of acceptance the lot , misleading

the manufacturer into believing that this risk is smaller than it actually

is . When CPEL > 1.12 CPE,, the Chi -square derived OC curve underestimates

the probability of accepting the lot . Therefore , for lots with poor

circular probable error characteristics ( CPE, > 2CPE,), the chi -square

derived OC curve misleads the consumer into believing that his risk is

smaller than it actually is .
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In Table 2 several acceptance plans are presented . It should

be noted that these plans represent only a finite subset of an infinite

set of acceptance plan strategies.

Table 2. Acceptance Plan Alternatives B Through H Based On Multiples Of

Ten Round Samples

Acceptance Plan

Designation Description of Acceptance Plan

B
Test a single ten round random sample from

a lot . Accept the lot if CPE, < 1.4 CPEg .

Otherwise reject the lot .

C Test a single ten round random sample from

a lot . Accept the lot if CPE, < 1.6 CPEg .

Otherwise reject the lot .

o

D Test a single ten round random sample from

a lot. Accept the lot if CPE, - 1.8 CPEg .
Otherwise reject the lot .

E
Test two ten round random samples from a

lot . If the pooled CPE < 1.4 CPE

'
accept

the lot . Otherwise reject the lot .

PEGo

F

CPEO

G

o

Test a ten round random sample from a lot .

Accept the lot if CPE, < 1.4 CPE
CPEG :

Reject

the lot if CPE. > 1.8 CPE> 1.8 CPEg . Otherwise, test
a second ten round random sample. Then ,

accept the lot if the pooled CPE. - 1.4

CPE,. If the pooled CPE ? 1.4 CPEg : reject

the lot .

Test a ten round random sample from a lot .

Accept the lot if CPE < 1.2 CPE
CPE,

Reject

the lot if CPE. > 1.54 CPE Otherwise , test

a second ten round random sample. Then , accept

the lot if the pooled CPE, < 1.2 CPE If the

'gº

pooled CPE, ? 1.2 CPEg , reject the lot ..
Test a ten round random sample from a lot .

Accept the lot if CPE, < 1.6 CPE, Reject

the lot if CPE > 2.0 CPeg . Otherwise, test a
second ten round random sample . Then , accept

the lot if the pooled CPE < 1.6 CPE If

gº

the pooled CPE, ? 1.6 CPE,, reject the lot .

CPE g

o

H

:PEgo

0
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Figures 6 through 12 present the OC curves for acceptance

plans B through H described in Table 2 . In each figure , the consumer's

risk is determined from the probability of accepting the lot when

CPEL
= 2CPE

'gº CPEg , the producer's risk is given by 1 -P ( A ) ,

where P ( A) is the probability of accepting the lot . The OC curves for

all of the plans show that the chi -square derived consumer's and producer's
risks are lower than those derived from the Gamma distribution .

When CPEL

Table 3 summarizes the consumer's and producer's risk for

acceptance plans A through H. The consumer's risks are presented as

ranges . The lower bound in each case is obtained from the Chi -square

derived OC curve , while the upper bound is obtained from the Gamma

derived OC curve . The producer's risks are presented as point estimates

and are obtained from the Gamma derived OC curves .

Table 3. Consumer's and Producer's Risks for Acceptance Plans A

Through H

Acceptance Plan

Designation

Consumer's

Risk

Producer's

Risk

I
n

T
i
m
o

OD

0.00 - 0.76

0.04 - 0.25

0.14 - 0.40

0.32 - 0.50

0.00 -0.09

0.03 - 0.28

0.00 - 0.16

0.17 - 0.55

0.20

0.10

0.13

0.07

0.07

0.04

0.11

0.02

СРЕО
It was previously assumed that would be distributed as

CPEL

the Gamma distribution with a = 7.4558 and B = 0.1261 .0.1261. If CPELIf CPE, equals

the characteristic circular probable error of the reference Tot used to

obtain the fitted Gamma distribution , the assumption is reasonable . The

Gamma distribution was obtained from the actual distribution of observed

circular probable errors over a twelve year period . It is reasonable to

assume that this is representative of the distribution which will occur

in the future . However, as CPE, deviates from the characteristic circular

probable error of the reference lots , the distribution of CPE, deviates

from the Gamma distribution . The derived Gamma distribution represents

the deviation in observed circular probable errors due to both inherent

round - to - round differences and occasion-to-occasion test condition

differences . As inherent round - to - round differences increase , which is

the case for poor quality control during manufacturing , they tend to have

an increasingly dominating effect on the distribution of CPE, relative

-
-

-
-
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to the effect of occasion-to-occasion test condition variation . As the

inherent differences increase without bound , the relative effect of

occasion-to-occasion variation in test conditions upon CPE, tends towards

CPE?
zero , and the distribution of

ģ approaches the Chi -square . On the

CPEL

other hand , as inherent round - to -round differences decrease , the scatter

of observed probable errors is increasingly dominated by the effect of

CPE

test condition variation , and CPE will tend to have greater variation

than that predicted by the Gamma distribution . Consequently , as CPEL

increases towards poor lot quality , the true probability of accepting

the lot lies somewhere between the probabilities obtained from the

Chi -square and Gamma derived OC curves as shown in Figures 5 through 12 .
As CPE improves beyond good lot quality , the probability of accepting

2

the lot decreases below that predicted by the Gamma derived OC curve .

For these reasons , the consumer's risks in Table 3 are presented as

ranges , with the Chi -square and Gamma derived risks being the lower and

upper bounds, respectively . The producer's risk , since it is based upon

lots of good quality , is presented as a point estimate based upon the

Gamma derived OC curve . If CPE, is approximately equal to the

characteristic circular probable error of the reference rounds, the

Gamma derived risk is a reasonably good estimate of the producer's risk .

However , if CPE, is better than the characteristic circular probable

error of the reference rounds , the Gamma derived producer's risk is a

lower bound . This could happen if future APDS rounds are markedly more

accurate than the reference rounds .

Reviewing the acceptance plans in Table 3 , it is evident

that Plan E provides the best combination of consumer's and producer's

risks . However , twenty rounds are always needed for this plan . Plan G

is the next best plan and is less costly than Plan E. If lots are

produced wità CPE, equal to CPE,, the average sample size for this plan

is 11.5 . This is due to the fact that retests would occur only 15

percent of the time .
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5. CONCLUSIONS AND RECOMMENDATIONS

In past acceptance tests , firing procedures have not been designed

to minimize the effect of occasion-to-occasion variability in test

conditions upon target dispersion characteristics . Future tests should

be designed to minimize the time required to fire a group of rounds ( see

Section 2.2 for a detailed discussion ) .

Even when the time to fire a group of rounds is minimized , nonrandom

dispersion patterns about the center of impact can occur . In this case

the method of successive differences eliminates the effect of nonrandom

trends on probable error estimates . This method of calculating probable

errors should be employed whenever nonrandom trends in shot patterns

occur ( see Section 3 for a detailed discussion ) .

Decision criteria for acceptance plans , which are based on the use

of circular probable error estimates , provide the optimum utilization

of test data . Circular probable error estimates should therefore be

used as the basis for decision criteria in future acceptance plans ( see

Section 4.1 for a detailed discussion ) .

CPE ?

The distribution of has not followed the Chi -square distribution

CPE?

in the past . The ratio of observed circular probable error to the

characteristic circular probable error of the two reference lots

followed a Gamma distribution with a = 7.4558 and B = 0.1261 . This

distribution was used to obtain the consumer's and producer's risks for

several acceptance plans . These risks were then compared with the

CPE?
corresponding consumer's and producer's risks obtained when

2
CPE

follows the Chi- square distribution . It was shown that the actual

consumer's risk of accepting poor lots is greater than the Chi -square

derived risk and less than the Gamma derived risk . It was also shown

that the Gamma derived producer's risk will provide a lower bound if

the dispersion characteristics of future APDS rounds are superior to

those of the reference rounds used in obtaining the Gamma distribution .

From Table 3 , it was evident that acceptance plan E provided the best

combination of consumer's and producer's risks ( see Section 4 for a

detailed discussion ) .
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The acceptance plans presented in this report represent only a sma 11

portion of the plans which could be developed for APDS type of ammunition .

Undoubtedly it will be necessary to develop different acceptance plans

for new types of APDS rounds undergoing development . These plans should

be developed with recognition that the OC curves underestimate both the

CPEZ follows the chi - square
consumer's and producer's risks , assuming that

CPE ?

distribution . The gamma distribution should be used for developing OC

curves for the various plans . The consumer's and producer's risks

associated with each plan can be compared and the best plan can then be

selected ( see Section 4.3 for a detailed discussion ) .
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APPENDIX

Horizontal , vertical and circular probable errors observed for two

reference lots of 105mm , APDS , M392 rounds on 168 occasions . A sample

size of ten was used on each occasion .

223



Probable Error In Mils

Occasion Horizontal Vertical Circular

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

0.47

0.14

0.25

0.28

0.28

0.12

0.19

0.16

0.35

0.21

0.10

0.21

0.13

0.26

0.20

0.14

0.20

0.30

0.23

0.09

0.25

0.19

0.30

0.05

0.14

0.14

0.22

0.10

0.08

0.14

0.16

0.23

0.11

0.16

0.32

0.13

0.10

0.18

0.26

0.24

0.37

0.47

0.20

0.29

0.24

0.23

0.18

0.13

0.15

0.13

0.25

0.15

0.18

0.13

0.06

0.12

0.16

0.24

0.15

0.17

0.16

0.16

0.15

0.10

0.14

0.12

0.11

0.23

0.28

0.12

0.16

0.17

0.13

0.33

0.08

0.21

0.18

0.14

0.18

0.16

0.29

0.15

0.15

0.20

0.62

0.39

0.42

0.44

0.41

0.22

0.30

0.25

0.53

0.32

0.25

0.30

0.18

0.35

0.31

0.34

0.31

0.42

0.34

0.22

0.36

0.26

0.40

0.16

0.22

0.33

0.44

0.19

0.22

0.27

0.25

0.49

0.17

0.32

0.45

0.23

0.25

0.29

0.48

0.35

0.49

0.62
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Probable Error In Mils

Occasion Horizontal Vertical Circular

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
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63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

0.24

0.26

0.22

0.14

0.39

0.26

0.18

0.10

0.20

0.18

0.18

0.12

0.30

0.22

0.25

0.12

0.17

0.20

0.15

0.33

0.37

0.29
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0.20

0.20

0.25
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0.16

0.18

0.21

0.22

0.33

0.14

0.15

0.10

0.11

0.10
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0.26

0.16

0.12

0.14

0.33

0.33

0.18

0.29

0.17

0.16

0.20

0.23

0.20

0.22

0.15

0.08

0.14

0.20

0.25
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0.18

0.14

0.15

0.30

0.30

0.29

0.23

0.18

0.14

0.15

0.13

0.12

0.33

0.15

0.19

0.27

0.07

0.09

0.27

0.09

0.13

0.09

0.17

0.13

0.11

0.21

0.50

0.51

0.35

0.39

0.52

0.37

0.33

0.31

0.35

0.35

0.29

0.18

0.40

0.36

0.43

0.22

0.30

0.30

0.26

0.55

0.58

0.50

0.54

0.33

0.30

0.36

0.41

0.24

0.46

0.32

0.36

0.52

0.19

0.21

0.35

0.17

0.20

0.13

0.38

0.25

0.20

0.31
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Occasion

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

Probable Error In Mils

Horizontal Vertical Circular

0.32 0.14 0.43

0.20 0.14 0.30

0.19 0.18 0.32

0.11 0.08 0.17

0.15 0.11 0.23

0.30 0.14 0.40

0.13 0.18 0.27

0.12 0.18 0.26

0.22 0.19 0.36

0.11 0.12 0.20

0.21 0.16 0.32

0.09 0.11 0.17

0.15 0.22 0.33

0.24 0,13 0.33

0.30 0.17 0.42

0.12 0.11 0.20

0.11 0.11 0.19

0.26 0.09 0.34

0.25 0.15 0.36

0.18 0.15 0.29

0.26 0.17 0.38

0.10 0.19 0.26

0.22 0.16 0.33

0.20 0.07 0.26

0.22 0.32 0.48

0.17 0.15 0.28

0.20 0.16 0.31

0.25 0.19 0.38

0.30 0.21 0.45

0.14 0.10 0.21

0.18 0.09 0.25

0.09 0.16 0.22

0.15 0.18 0.29

0.21 0.20 0.35

0.20 0.53 0.69

0.16 0.16 0.28

0.21 0.18 0.34

0.19 0.13 0.28

0.11 0.06 0.15

0.10 0.13 0.20

0.12 0.18 0.26

0.18 0.16 0.29
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Probable Error In Mils

Occasion Horizontal

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Average

Vertical Circular

0.22

0.13

0.34

0.22

0.29

0.40

0.50

0.43

0.54

0.10

0.33

0.30

0.27

0.38

0.43

0.40

0.17

0.18

0.33

0.25

0.20

0.07

0.18

0.19

0.16

0.29

0.19

0.35

0.18

0.15

0.24

0.25

0.25

0.31

0.21

0.26

0.23

0.29

0.16

0.35

0.28

0.17

0.15

0.11

0.17

0.27

0.31

0.17

0.34

0.32

0.44

0.17

0.31

0.27

0.27

0.14

0.42

0.31

0.43

0.14

0.26

0.14

0.28

0.18

0.11

0.13

0.23

0.24

0.24

0.32

0.14

0.22

0.08

0.22

0.15

0.23

0.14

0.23

0.37

0.21

0.23

0.44

0.18

0.25

0.33

0.21

0.47

0.43

0.52

0.53

0.74

0.66

0.85

0.24

0.55

0.49

0.47

0.50

0.74

0.62

0.57

0.28

0.51

0.35

0.42

0.24

0.26

0.28

0.34

0.46

0.37

0.58

0.28

0.33

0.31

0.41

0.36

0.47

0.31

0.42

0.53

0.44

0.34

0.69

0.41

0.37

0.22 0.19 0.38
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SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES
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ABSTRACT

An approach to the sequential estimation of the fiftieth

percentage point of a quantal response curve is discussed . A

comparison of this method with some standard methods , using

Monte Carlo simulation are presented and its ease of application

and high efficiency demonstrated . The potential advantages of

this scheme in the estimation of the slope of a response curve

are also examined .

1 . INTRODUCTION Experimental investigations often deal with

quantal response variables conditioned on a continuous variable .

For example , in testing the tolerance to a poison in a species

of animal , we test animals at various drug levels . Here the

response variable Y for a given animal will be survival ( Y= 0 )

or death ( Y= 1 ) and the conditioning variable х will be dosage

of poison . Thus we are interested in the curve P ( Y ( x ) = 1 ) .

In this paper our primary concern is with the sequential

estimation of the fiftieth percentage point of the response curve

x = L.5denoted L.5 and the slope of the curve at
Section 2

discusses some sequential and non-sequential approaches to this
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problem . Section 3 introduces a new sequential approach related

to the Mood-Dixon Up - Down method ( 1948 ) . It's goal is to allow

more efficient estimation of 1.5 and the slope of the curve

for a fixed small sample size n The relative efficiency of

this method compared to the Up -Down method and Wetherill's sug

are

gested " best " small sample technique for estimation of 1.5

examined using Monte Carlo methods and the results summaried in

Table 1 .

we briefly discuss
Although our primary interest is in 5.5

percentage point , Lp
estimation of the

th

p for arbitrary P in

Section 4 .

This paper represents only preliminary results .
More ex

tensive investigation of the relative merits of the methods sug

gested here are required and underway

2 . STANDARD DESIGNS For most applications the response curve

is sigmoidal and two forms are commonly used to represent

P { Y ( x ) = 1 } , the probit form

P { Y ( x ) : 1 } B ( x- a) exp (-bt ? V2.dtI

and the logit form

P { Y ( x ) = 1 } = { 1+ exp ( -B ( x - 2 ) } - 1

Since , in practice ( Finney , 1952 , p . 47 ) , there is little to choose

between the two forms , we will limit our discussion to the logit

form because of its computational advantages .
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Basically our problem is to take a sample ( x2,87 ) , ( x2-92 )

( *nuyn) and estimate and the slope of the response

curve at which is B in the logit form . There are

L.5 = a

X = L1.5

two important aspects to this problem . First , how do we select

the xi'sXi's and second , what estimators to use for a and B .

We are primarily interested in the first aspect .

The standard non - sequential experimental design for this

case involves selecting k values of xy hopefully about
a

and obtaining ng observations at this
X1

The maximum

liklihood estimators of a and B are easy to calculate for

such a sample .

Sequential designs for this problem , which allow the choice

of
*1+ 1 after observing the result for the previous

i obser

vations , allow one to obtain a specified accuracy in estimation

with a smaller sample size than that required with a non -sequent

ial design . Thus sequential designs are useful when testing is

expensive or when candidates for entry into the testing procedure

are scarce .

In order to explore some of the difficulties encountered

in sequential designs for the estimation of parameters of a

response curve , we will briefly discuss some well known sequential

designs .

Robbins and Monro ( 1951 ) introduced a method of stochastic

estimation suitable for the general regression situation , and

Chung ( 1954 ) considered the choice of parameters in the process
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to obtain certain asymptotically optimum properties . Hodges

and Lehmann ( 1955 ) extended Chung's work to cover the quantal

>
response problem . If an estimate is required for Lp the

level of at which P ( Y ( x ) 1 ) = then a series of obser

vations yf ( xp )yf ( xp ) is taken at levels X such that

X
p >

r

*rt 1

n

Xs - ap (yp ( x ) -p )

where the ar's are positive constants and after
observations ,

* n + 1 is taken as the estimate of Lp . This method works best

p = .5 .
for

Although this method has certain asymptotically optimal

properties , it also has some practical drawbacks when applied

with small to moderate sample sizes . First , it is usually difficult

to apply the conditioning variable at arbitrary levels as required

by this method . Secondly , if the starting value for the process

is far from top a substantial bias may be introduced in the

estimate .

Another approach to the design problem , which alleviates the

first of the drawbacks described above , was introduced by Dixon

and Mood ( 1948 ) . The method involves a grid of equally spaced

values of the conditioning variable . A value *. is picked as

close to as possible and the response observed , if the responseL.5

is positive at *. the next х value is taken one step lower

and if the response is negative at
х

o

the next х value is taken

one step higher on the grid . The same process is utilized for

each subsequent X4 This design causes the sampled Xy's to
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cluster about 1.5 ' thus yielding a more accurate estimate of

:

1.5 whether the estimate is obtained by maximum liklihood ,

minimum chi- square or the Brownlee , Hodge approach ( 1953 ) .

With the proper choice of starting value near Los
and

step size near 1 / B , this scheme yields a highly efficient

estimate of 2.5 · However , if the step size is too large

the efficiency decreases rapidly and if the starting value is

chosen too far from 1.5 significant bias is introduced with

small to moderate sample sizes . Thus with small sample sizes

the mean square error of the estimate will increase with the size

of the step and the difference between the starting value and

1.5 Another interesting observation noted by Wetherill ( 1963 ).

is that for the joint maximum liklihood estimators of a = L1.5

A

and B for the logistic curve , the efficiency of B increases

with increased step size while as noted above the efficiency of

ê decreases . The schemes presented in Section 3 represent an

attempt to reduce these difficulties .

3 . A MODIFIED UP - DOWN PROCEDURE There have been numerous modi

fications of the up - down method discussed in the literature , the

purpose of which being to reduce the problems involved in estimat

ing L.5 A number of these modifications are considered by

Wetherill ( 1963 ) .

The modification we present here is motivated by a hope

that it will yield improved estimates of the slope B as well
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as

1.5 .
The rational for this scheme is that we use large

steps in the beginning when searching for 2.5
and smaller

steps as we narrow in on L.5 . The variable step size makes

the estimate of 1.5 less sensitive to large errors in starting

value and hopefully will increase the accuracy of our estimate

for В .

A generalized Up - Down method can be described as follows :

1 . Pick a minimum allowable step size 8

2 . Pick m such that the maximum allowable step

size will be m.8

3 . Pick a starting value X

4 .
If the response at any value Xi of the

conditioning variable is positive , take the

next x value ki 8 units lower . If the

response is negative take the next X

value l ; 8 steps higher , where 15 kism

and

1 < li < m .

This generalized Up-Down method might be considered an Up-Down

me thod with memory since ki and li at any step are functions

of the entire past history of the trial .

In order to investigate the effect of variable step size on

the estimation of 1.5 two easily applied examples of the above

scheme were considered :

METHOD I

In Method I , step size starts at one and increases by one as

-

-
-
-

-
-
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long as the outcomes remain the same ( i.e. all positive or

negative ) up to a maximum step size of 3 . Once a sign change

occurs , step size reverts back to one and the process continues

for a predetermined number of steps . In the generalized scheme

this would correspond to defining m= 3 , k = 1 =

and

min (K +1,3) if y yi - 1-1

ki := { i = 1,2 , ... , n

1 if y.. = 1 and yif y.q= 1
= - 1=0

min [1 +1,3) if y = Y -1-0

if y ; = 0 and Yi- 1-1

i = 1,2 , ... , n

li
= {

1

METHOD II

In Method II , step size starts at 3 and remains at three as

long as the outcomes are the same . The step size is reduced by

one for each change in outcome down to a minimum of one ) and

increased by one whenever the outcome is the same as the previous

one ( up to a maximum of 3 ) and the process continues for a pre

determined number of steps . In the generalized scheme this would

correspond to defining m= 3 , k = 1 = 3ko= = 3 and

ܪ-1

ki

min [k +1,3 ] ' if Y - Y1-1-1

max[kq-1,1 ] if Y -1 and Y1-1 = 0

i

= { i = 1,2 , ... , n

min (1;+1,3] if y2 = '1-1= 0

i = 1,2 , ... , n
1

i
= {

maxx [1: -1,1) if y = 0 and y: . -1 = 1
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To compare these two modifications with the standard Up

Down method a Monte Carlo simulation was done assuming the popu

lation sampled was logistic with
a= 0 and B= 1 . Starting

values of x =0,3 and sample sizes n = 34 and 9 were con

sidered with a 1000 replications generated for each combination

X n .of

*
and

For ease of computation in this initial investi

gation , the following estimator of L.5 due to Brownlee and

Hodges ( 1953 ) was used .

Î.5

n

Σ Χ

i = 1

i

n

It should be noted that this estimator although easily calculated

is asymptotically equivalent to the maximum liklihood estimator

of 1.5 The basis for comparison between the modified and

unmodified approaches was bias and mean square error . The results

of this computer simulation are presented in Table 1 .

The following observations should be made regarding Table 1 :

1 . The modified methods I and II reduce the bias for

starting value x. -3 , for all three step sizes

considered and do not substantially increase it

for
* 6 = 0 .

2 . The MSE is far more stable with respect to starting.

value for the modified methods as opposed to the

unmodified method . ( Recall , this was one of the

major difficulties with the unmodified Up - Down

method . )
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3 . The modified methods with step size = .5 are

comparable to the unmodified method with step

sizes 1.0 and 1.5 and to Wetherill's recommended

technique ( 1963 , p.34 ) . The MSE's for this

approach are given in the ( ** ) column of Table

1 for a comparable set of parameters .

Thus the modified schemes allow estimation of 1.5
with

>

small final step size , which is fairly stable with regard to

starting value , even for relatively small sample sizes and com

parable to Wetherill's "best" approach with regard to mean square

error .

.4 .
ESTIMATION OF GENERALL

An extension of the generalized

Up - Down method which might prove useful for estimation of general

Lo can be described as follows : Steps 1 , 2 and 3 are the same

as for the case discussed in Section 3 .
p3.5

4 .

Pick an initial number n. of observations

Xto be taken at
X

After each trial estimate the proportion p '5 . of

positive responses at the level used for the

current trial and consecutive with it , that is ,

back to the last change of level . If p ' > P

and p ' is estimated on

no
trials or more

decrease the level by kid steps . If p ' < P

increase the level li8 steps ,steps , where 0 Ekim

m

238



and
o Elim.

Both 1 .

i

and ki are usually

set equal to zero if p ' = p .

This scheme is a generalization of the inverse sampling

rule described by Wetherill which was the most efficient approach

he considered for the general L

P

problem .

Empirical studies on this scheme and some possible alter

natives will have to be done in order to justify its usefulness .

5 . CONCLUSION . The two special cases of the generalized Up

Down method presented here are easily applied sampling schemes ,

which go a long way in reducing one of the main difficulties in

the Up - Down method , that is the effect of starting value on

efficiency and are themselves comparable in efficiency to Wether

ill's " best " scheme for estimating 1.5 •

A careful investigation of other special cases of the gener

alized scheme , the efficiency of such schemes in estimating the

slope and the usefulness of the generalized scheme for general

Lp
are currently underway .

P
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A MONTE CARLO SIMULATION OF A

PROBABILITY RATIO SEQUENTIAL TEST ( PRST )

PLAN FROM MILITARY STANDARD 781C

William J. Broemm

Reliability , Availability and Maintainability Division

U. S. Army Materiel Systems Analysis Activity

Aberdeen Proving Ground , Maryland 21005

1. INTRODUCTION

The topic of my presentation is a Monte Carlo Simulation of

sequental test plans . The sequential test plans I am referring to are

the Probability Ratio Sequential Test Plans , the PRST Plans , located in

Military Standard 781C ( Figure 1 ) . In the literature, the PRST plans

come under the category of the Reliability Design Qualification and

Production Acceptance Tests (Exponential Distribution) . Simply stated ,

these tests deal with items that have exponential times between failures .

The computer program discussed in this presentation is offered as an

aid to test planners and those who are concerned with the application of

the PRST plans . The utilization of the methodology proposed should

permit the test planner , equipped with a reasonable amount of practical

experience with the PRST plans, to make certain probabilistic statements

regarding termination points in the plans , namely ( 1 ) the likelihood of

reaching the last failure and (2 ) the likelihood of reaching the maximum

test time.

Historically , the PRST plans have no provision for estimating the

true MTBF of an item of equipment , and therefore , the total test time

expected to be consumed during testing may vary significantly ( Figure 2) .

Consequently , program costs and schedules have to be planned to compensate

for this range of uncertainty . However , with the help of the methodology

delineated herein , one may be able to choose an appropriate test plan

from MIL-STD 7810 , select a lower test MTBF (@g) , select a realistic

range of true MTBF's for consideration , implement the simulation , and

finally obtain measures of the two likelihood estimates aforementioned

all of this in order to reduce the range of uncertainty and therefore

minimize program cost overruns .

1
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II . STATEMENT OF THE PROBLEM

A typical PRST plan from MIL-STD 781C , regardless of the total

number of failures and the total test time in the plan , will basically

assume an appearance as depicted in the following ( Figure 3 ) . Inherent

in the design of the PRST arrow , if you will , are such things as

decision risks , a discrimination ratio , and accept-reject criteria .

Given that all of these things are in harmony , of concern is not the

general shape or length of the PRST arrow but the two termination

vectors located in the arrowhead . For simplicity , we may designate the

last failure as Fl and the maximum total test time as Tm. The problem ,

then, becomes the following: When testing an item of equipment with the

PRST plans , how often is the last failure reached (Figure 4 ) ? In other

words, what is the likelihood of reaching Fl ( Figure 5 ) ? In a similar

manner , when testing an item of equipment with the PRST plans , how often

is the maximum test time reached ( Figure 6 ) ? That is , what is the likeli

hood of reaching TM ( Figure 7 ) ? These kinds of inquires can be taken a
M

step further and translated into probabilistic statements ( Figure 8 ) .

Symbolically, we may ask : What is P ( FL )What is P ( FL ) and what is P ( TM ) ?
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A GENERALIZED PRST PLAN
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TOTAL TEST TIME

FIGURE 3. A Generalized PRST Plan
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LAST FAILURE CONSIDERATION

F
L

REJECT

CONTINUE TEST

ACCEPT

FIGURE 4. Last Failure Consideration
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III . A DESCRIPTION OF THE ALGORITHM

The purpose of the simulation , then , is to ascertain how often F
FL

and TM are reached . The vehicle for doing this resides in the algorithm

a set of instructions that simulates the testing of an item of equipment

using a typical PRST plan ( Figure 9 ) . The code , that is , set of

instructions, makes use of two program counters . One counter corresponds

to the last failure , Fly and the other counter corresponds to the maximum

test time , T. During each iteration of the simulation , an item

of equipment can be either rejected , accepted or put to further

test ( as exemplified by the continue test strip) . If the item is rejected

or accepted prior to reaching truncation , then no counters are incremented ,

and a new iteration is begun . If the item falls within the continue

strip without a rejection or an acceptance , then another failure time is

called for , and the above process is repeated .

In order to test against the maximum test time value, a particular

failure time is compared with the TM value ( Figure 10 ) . If that

particular failure time is greater than or equal to the Tuvalue , thenTM

the TM counter is incremented by one and a new iteration is begun . If

that particular failure time is less than the TM value , then another

failure time is called for and queried in the same manner .

Similarly , in order to test against the last failure , a particular

failure number is compared with the maximum failure number , Fl : to

determine equality . If equality exists , then the F, counter is

incremented by one and a new iteration is begun . If equality does not

exist ; that is , if the particular failure number is less than the F,

value , then another failure is called for and queried in the same manner .

Now , if we allow each iteration to be an independent event , and if

We conduct a large number of these trials , then the FL and TM counters

can be shown to be likelihood estimates for reaching the last failure

and the maximum total test time , respectively . Furthermore, these

likelihood estimates can be viewed in probabilistic terms , as stated

previously .

s
a
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A GENERALIZED PRST PLAN
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FIGURE 9. A Generalized PRST Plan
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IV . A PARTICULAR EXAMPLE FROM MIL -STD 781C

Upon selection of an appropriate PRST plan ; that is , one that

incorporates the desired decision risks , discrimination ratio , and

accept-reject. criteria , upon selection of a lower test MTBF value ( º , ) ,

and upon specification of a range of true MTBF's for consideration , one

is in a position to run the simulation in order to obtain likelihood

estimates for reaching the last failure and the maximum total test time

( Figure 11 ) .

In order to demonstrate some of the results found , consider Test

Plan III from MIL -STD 781C ( Figure 12 ) . Test Plan III is based on

sixteen ( 16 ) failures , decision risks of 10 percent and a discrimina

tion ratio of 2.0 : 1 . If the lower test MTBF is chosen to be 100 hours ,

then the upper test MTBF will be 200 hours . If we select a range of

true MTBF'S between 60 and 300 hours , then this plot ( Figure 13 )

demonstrates the likelihood of reaching the last failure . Consider an

item of equipment with a true MTBF of 60 hours . More than likely that

item of equipment will be rejected prior to reaching truncation .

Consider an item of equipment with a true MTBF of 300 hours . More than

likely that item of equipment will be accepted prior to reaching truncation .

Clearly , it is when an item of equipment has a true MTBF between the

lower test MTBF value , Øy , and the upper test MTBF value , , that the

item will most often be tested to truncation .

Similarly , this plot ( Figure 14 ) demonstrates the likelihood of

reaching the maximum total test time. The same set of arguments hold

for this plot .

-
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-

-
-
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V. SUMMARY

In summary , the intent of my presentation has been to promulgate a

methodology for determining the likelihood of reaching the truncation

points in the family of PRST plans ( Figure 15 ) . With the knowledge of

how often an item may be tested to truncation ; that is , ( 1 ) the last

failure in the plan and ( 2 ) the maximum total test time in the plan , a

test planner may be in a better position to formulate and execute a

well -conceived test plan package so that test costs and schedules can

be reduced and so that program cost overruns can be kept to a minimum .
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STATISTICAL CONSULTING

OR

THERE ARE NO STANDARD PROBLEMS, ONLY STANDARD SOLUTIONS

Brian L. Joiner

Statistical Laboratory

University of Wisconsin -Madison

1210 W. Dayton Street

Madison , Wisconsin 53706

Abstract

Statistical consulting involves solving non- standard problems on a

time scale such that optimal solutions are not feasible even if one could

specify the problem concisely enough . One must seek to understand

each problem properly and resist the temptation to slap it into the

fold of an already existing solution . Here we give a small collection

of examples where " standard " solutions , blindly applied would likely

have proved worse than useless .

THE ITERATIVE NATURE OF ANALYSIS

Exhibit 1 is a schematic of the key steps in the iterative process

of data analysis and model building . The importance of the core

triangle of MODEL IDENTIFICATION , MODEL FITTING and DIAGNOSTIC CHECKING

has been forcefully indicated by George Box and colleagues , especially

in Box and Jenkins ( 1970 ) . Additional key components illustrated in

Exhibit 1 that all too often get overlooked in statistical practice are

the need to pay careful attention to the data and its quality and-

to the underlying theory or structure of the problem .
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Implicit in Exhibit 1 is the all important distinction between

" assuming " and " pretending " . The American Heritage Dictionary includes

the following definitions .

Assume : " To take for granted , " and

O

Pretend : " To play like , to make believe " .

There is a subtle , but very important distinction between these two words .

When doing statistical analysis our life is complicated by the fact

that we must continually shift back and forth between these two concepts ,

and in the past have tended to rely on only one word assume to

describe both .

When we tentatively define a plausible model INCLUDING THE NATURE

OF THE DISTURBANCES , we put on our mathematicians hat and ask " What

is an optimal , or at least defensible , way of fitting this model to data

having the indicated error structure . " To seek such answers , we must

ASSUME that we know the nature of the model and the error structure

perfectly . The mathematics takes us literally and treats the model

as if it could " take for granted " everything we have said .

Having thus developed a fitting procedure , we proceed to apply it

to the data at hand , but in so doing we switch from acting as mathematicians ,

and turn to being scientists . As scientists we can only PRETEND that

the data can be completely described in the fashion ASSUMED in the

mathematics . Of course , nature cares not at all about our play acting .

Our pretending does not change the underlying model , nor the error

structure . It will be what ever nature has chosen , and invariably

nature has chosen a more complex structure than that described by the

mathematics we have been able to accommodate .
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We then move around the bend in Exhibit 1 to the analysis loop

and begin DIAGNOSTIC CHECKING . There our role is to ask if there are

serious DETECTABLE differences between nature and what we PRETENDED was

true . Even while doing DIAGNOSTIC CHECKING we need to switch back and

forth asking questions like , IF the disturbances were uncorrelated ,

what are the chances of observing a first order autocorrelation this

high or higher .

Perhaps a useful way to sum this up is to say that it seems to

be helpful to use two different words for the two different roles .

Let us ASSUME when we're doing mathematics and let us PRETEND when

we're fitting models to data . Using these two different words may

help us keep from taking too seriously what we ordinarily ASSUME , but

in fact can only PRETEND .

Vitamin B in turnip greens

Another important feature of the Exhibit 1 is the need for

continued data checking . The following two examples provide useful

insight .

Both Anderson and Bancroft ( 1959 , page 192 ) and Draper and Smith

( 1966 , page 229 and 339 ) report analyses of some data on the effect

The
of three variables on the amount of vitamin B2 in turnip greens .

model given by D&S contains three terms X2 , Xz and xz? and gives an

( unadjusted ) R of 90% which is somewhat higher than the 75% given by
2

A & B's model. Even relatively careful analyses of the residuals from

the D&S model , such as the residual plots in Exhibit 2 , reveals no

serious problems with the fitted model.

However , if one plots the original DATA in the ORDER they were

presented in the textbook a very striking pattern co be seen . See
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Exhibit 2F . The data drop off nearly linearly . In fact , a simple

straight line fitted to the plot in Exhibit 2F gives an R of 90% !?

What is the explanation ? The answer is not clear and attempts to get

more details about the original experiment have not been successful .

My conclusion is that there was some other factor not recorded that was

the primary responsible party . It may have been that the values are

reported in the order measured and that reagents or the greens themselves

decayed over time . There is not other ready explanation . The Y values

are not merely listed in decreasing order since a number of inversions

are apparent in Exhibit 2F .
The argument that xz is the most important

factor loses credibility on at least two accounts . A quadratic is

needed to fit the three levels of X2 , and the Y values in Exhibit 2F

seem to continually drop off unaffected by changes in X2 :
Careful

data checking has opened serious questions about the quality of those

data .

Oxygen in steel

Another example of important but not easily detectable time order

decay of measurements is provided in Joiner and Campbell ( 1976 ) .

( Oxygen is there inadvertently misspecified as Nitrogen . ) Two key plots

are reproduced here as Exhibits 3A and 3B . Note again the serious

data problems uncovered by careful checking , In this case a careful

timely search for causes was made , but no explanation was found .

At least the fact that the problem existed had been brought to light by

the data checking .

This leads us to list the following caveats .

n
e
g
o
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" Yet to calculate is not in itself to analyze . "

Edgar Allen Poe , The Murders in the Rue Morgue .

" There's less there than meets the eye ."

Joseph M. Cameron .

There are no standard problems , only standard

solutions .

Checking residuals is not always enough , the data

must also be checked .

Using least squares tells the mathematics to

make the residuals orthogonal to all included terms ,

and to try to make them have a Gaussian distribution .

Beware of LURKING VARIABLES

Operators change

Analysts take breaks

Reagents decay

Voltages vary

Connections are made

and broken

Etc. , etc. , etc.

TIME ORDER is often a proxy for LURKING VARIABLES

RANDOMIZATION of time order often helps , but

will still need to check data , residuals ,

for time order effects , and

simple randomization may be too expensive

in time consumed , materials used or

complexity of organization , so

compromises may be desirable

Even very similar plots often show quite

different things .

There is no substitute for making a wide variety

of plots .

One of the chief benefits of computers is the ability

to make many plots , easily .

" The standard practice in which the mode of analysis

determines the assumptions about the data must be

avoided . " David A. Kenny , Psychological Bulletin , 1975 .

" We cannot expect certainty from data , only fallible

information . David A. Kenny , Psychological Bulletin , 1975 .
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Using high powered statistical methods is seldom

the most important contribution a good practicing

statistician makes toward the solution of a problem .

A Non -standard design problem

How do you find out how much a wildlife preserve is worth? Exhibit 4

gives much of the background for a study designed to help find out .

Randomly selected hunters who were successful in obtaining a goose

hunting permit were to be offered varying amounts of cash for their

permit . The responses from these actual offers were to be compared

with those from another group to which hypothetical questions were

posed of the form " If we were to offer you $100 for your permit , would

you take it ? "

The design problem posed to us was how to distribute the actual

cash offers over the range from $ 1 to $200 . We had a dose - response curve

to design for with the dose being $ . A novel feature was that higher

doses were much more expensive than lower doses . Existing data from

hypothetical questions suggested a standard logistic model . If p is

fraction accepting offer , then

loglip) = a + Blog ( $ )

seemed to be a reasonable model . However there was reason to believe

that higher percentages would accept actual cash offers , than would

accept hypothetical offers . However , the magnitude of the difference

was unknown .

-
-
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The problem was as usual non-standard . There were multiple

objectives :

Estimate area over curve (expected value of the resource to a Hunter ) ,

Compare this area with that obtained by two cheaper and

more standard methods (hypothetical offers and travel costs ) ,

Compare the whole curves for the three methods ,

Compare some particular points on the curves .

There were multiple constraints :

A maximum of $16,000 in offers would be made ,

We would lose part of our fee for services if the actual

payments to hunters totalled over $12,000 .

There was a fixed cost of about $ 5 per offer .

- A design was needed quickly - hunted season was about to open .

What we did

First we made several false starts , each time helping to clarify the

problem . Other steps included :

-

Identified " worse plausible case " (many people accept our $ ) ,

Identified " expected case" ,

Under these and other scenarios we computed a wide variety

of things of interest for a variety of designs ,

We selected two candidate designs to discuss with researchers ,

The desire to keep from going broke became one primary

consideration .

The somewhat surprising answer was that the average selling price

turned out to be $160 , for the permit alone . Even if every hunter got

his limit of one goose , the cost per pound would be over 10 times that

in local stores .
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Another design problem

In another situation we sought to develop procedures for creating

small fractions of 24364°5º6e designs " on the fly ". One such example

was to create a fraction of a 223²5'6 ' design in about 60 runs . A

careful search of the literature gave little useful information so we

developed some ad hoc procedures . To see how well they worked we tried

them on a 2333 design with 72 runs in which we wanted to estimate all

interactions up through linear by quadratic . Here a Connor-Young (1961 )

design was available as a benchmark .

The most important practical conclusion we reached was that simple

random sampling without replacement of the rows from the full design ,

gave designs with about 80% efficiency . Since this was a simple

procedure and since no other procedure did markedly better without a

lot of work , it was decided that simple random sampling was good enough .

Literature

Since we frequently need to locate articles on some new topics ,

we make extensive use of the Current Index to Statistics. * Volume 3

covering 1977 , for example , gives convenient access to over 5000

journal articles , books and conference proceedings .

Available from American Statistical Sssociation , 806 15th St. , N.W. ,

Washington , D.C. 20005 .
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Teaching

Most students learn only how to solve text book problems--and

worse yet-- learn to think that all problems should be text book problems .

Appendix A reproduces a syllabus from a course designed to counteract

this shortcoming of our educational system .

Concluding remarks

Those of us who practice data analysis and design have an

obligation to keep reminding those who teach and do statistical research

that most problems do not fit into any standard mold . I hope that these

brief descriptions help some , but I know that more detail on many more

problems is necessary if the message is to be brought home , where it matters .
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Exhibit 2 ( continued )

17.00
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B2

DATA vs X2
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.
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Letters denote values of Xz : A = 0.070 , B = 0.020 , C = 0.474 .
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Exhibit 3A

Measurements of oxygen content of steel rods , in order data taken .
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Exhibit 3B

Measurements of oxygen content of steel rods plotted

versus time order within the day .
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Chance to Shoot a Canada Goose

Is Worth $??? to a Hunter
ByRALPH OLIVE

orThe Journal Stati

HOWMUCH, In hard cash , is your hobby worth

to you ?

if you like to golf, would you be willing to fore

go the links for one summer if some mysterious

benefactor paid you not to play ? And if so , how

much money would it take ?

Two University of Wisconsin -Madison profes

sors are trying to determine what financial value
recreation has. They have taken goose hunters as

their subject, and are putting the hunters to a test.

The project is being conducted by Richard C.

Bishop and Thomas A. Heberlein , both associate

professors in the Madison College of Agricultural

and Life Sciences. Bishop explained the purpose of

the research, and the way it is being conducted , in

a telephone interview .

THE PROFESSORS obtained names of Wiscon

sin residents who were successful in obtaining the

highly prized permits to hunt geese in the Horicon

zone during the early session this your . The early

season openstoday and closes Oct. 13. A permit
entitles ahunter to take one goose.

Letters and checks were sent to a number of

hunters holding earlyseason permits. The checks

vary in amount. Bishop declined to reveal the

range, but one person who contacted the Journal

said he had been offered $ 200, and another $ 150.

Each letter said , in part:

" Enclosed in this letter you will find a check

from the University of Wisconsin , This check is

negotiable and is made out in your name. We are

offering to pay you this amount for foregoing the

use of your early season Horicon Zone goose hunt

ing permi....

" If you decide to forego the use of your permit

at this price, you must put the permit and tag in

the enclosed self-addressed stamped envelope and

return it to us . If you decide not to forego the use

of the permit, send us the check instead. If you

return the check you should keep your permit. "

Bishop said the transaction was legal, because

the university will not use the permit. It will be

returned when the hunting season is over .

Although depending on the honor system to

some extent, Bishop said , if anyone tries to keep

the permit and alsocash the check, efforts will be

made to recover the money .

A SECOND PART of the experiment involves
sending a questionnaire to other goose hunters.

Membersof the second group are not being asked

to give up their permits, but only to answer ques

tions, such as how much they enjoy hunting, why

they doit, and how long they havebeen interested

in goose hunting. Each person who fills out a

questionnare will be paid $ 5 .

Altogether 900 persons are being contacted.

Some are being asked toHU out the questionnaire,

andothers to give up their permits.

Bishop dechned to discuss the amounts being

offered the hunters to give up their permits, say

ing he was afraid that knowledge might affect the

results. The amounts vary , because part of the

object of the research is to determine how much

money is required before a person will forego

something heenjoys.

LATER IN the season, the two professors plan to

interview a number of people who do participate

la the guose hunt. They will ask the hunters how

much they spent, and how valuable the hunt was

to them as a recreational experience. Bishop and

Heberlein received a grant of $ 22,000 from the

Wildlife Management lastitute and Resources for

the Future, both private groups with offices in

Washington , D. C.

" We are not using any tax money , " Bishop sand

The National Wildlife Federation's Consei V &

tion Directory lists the Wildlife Management In

stitute as a “ national, nonprofit, private, member

ship organization, supported by industries, groups,

and individuals, promoting better use of natural

resources for the welfare of the Nation ." Re

sources for the Future is listed as an organization

that " works to advance the development, conser

vation , and use of natural resources and improve

ment of the quality of the environment through

research and education programs."

Not all of the money is being used for payment

to hunters. Bishop said there were other expenses,

including clerical help and use of computers in

compiling the results.

Bishop said the Wisconsin Department of Natura

ral Resouces was not involved in the study , al

though department officials know of it. Anthony

Earl, DNR secretary, said the matter had been
cleared with his office, and that the department,

while not involved , had made no attempt to inter.

fere .

Milwaukee Journal , Sunday, October 1

Discovery section ( about page 5 or page 7 )

Exhibit 4
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APPENDIX A

Syllabus for

STATISTICAL CONSULTING

Fall 1978

Instructor : Brian Joiner

GOALS OF COURSE

Students will increase their knowledge of how one : -

A. analyzes data ;

B. gathers data ;

consults ;

D. uses the methodology literature ;

E. writes good reports .

GENERAL APPROACH

O

We will tackle problems together , developing needed methodology as

we go .

We will work on :

old data sets ;

live consulting data sets ,

old data gathering situations ;

live consulting data gathering situations .

O

.

O

BENEFITS OF APPROACH

It could be a very exciting learning mode ;

It is well suited to my goals for the course .

CONCERNS OF HINE

It will be a lot of continuous work for me ;

It will lead into areas that I know little about (could be embarassing );

Students may resent me not "teaching " them anything.

FALL BACK POSITION

Like recent semesters

Hand out data sets for student analyses ;

Talk about relevant methodology in class .

Implications :

The specific techniques covered will not be considered as important

as the general problem solving approach .

We must assume students can cope with the literature under some

guidance from me .

It will be almost like "the real world " , with attempts to maximize

learning opportunities while working under my loose supervision .

-
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MORE DETAILS

A. How to Analyze Data

-

start from questions and data --not from statistical method ;

check data carefully and continually;

formulate goals and questions precisely ;

formulate tentative models

mechanistic

empirical

specify analytical approaches ;

use graphical techniques liberally

on data

on residuals

organize hand work ;

use computers effectively , and intermix with hand work ;

bear in mind that summarizing and estimation should almost always

be much more important than testing ;

finding the real uncertainty is often very difficult

multiplicity of procedures tried

complexity of structure of variation

communicating results is an integral part of the analysis

Useful references ( see below for details ) :

M&T ; T ; D&W ; D ; BH?; M- HB ; FPP

B. How to gather data

-

formulate goals precisely ;

quantify goals ;

specify variables precisely

specify classes of candidate models

describe blocking , realm of generalizability ;

consider alternative means of exposing true uncertainty ;

specify how you will seek to estimate

- precision

- bias

describe plan for data gathering , in detail ;

describe randomization procedure in detail ;

describe data logging procedures in detail ;

if data will be computerized , describe process ;

specify ways that data will be checked ;

specify how data will tentatively be explored , summarized and

otherwise analyzed ;

communicating alternative , tentative data gathering plans is an

integral step .

-

Useful references :

BH“ ; S&C ; Slonim ; Williams ; Kish ; 5 ; C&S ; Unobtrusive ; FP ? C&C ; C.
s ?
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C. How to consult

how to interact productively ;

searching out the real problem ;

not limiting oneself to statistics

helpful , resourceful attitude ;

sharing the work ;

proper level of sophistication of analyses/designs ;

communicating your understanding of problem ;

communicating your intended analysis/design strategy ;

- communicating results of your analyses or plans for design ;

importance of good written communication ;

References :

Schuchany ; Joiner cryogenics

D. How to use methodology literature

importance of not having to reinvent the wheel ( especially

square ones ) ;

how to find references of interest ;

References :

Preface to CIS ; CIS ; NBS Index

E. Writing good reports

Good writing is a skill that can and must be learned . Practice and

organization are key ingredients .

Some elements of a good report are often :

executive summary

description of problem ; motivation ; goals ;

description of data ( and listing if appropriate ) ;

data checking procedures and results ;

non- technical overview of analysis strategy ;

results of analyses ;

recommendations for improvements in future data gathering ;

appendix : technical discussion of analyses

appendix : data listing ( if too long for body of report )

In this class only 83x11 inch paper can be used . Computer printout
must be cut or xeroxéd to this size ; or if smaller , may be taped

firmly to regular paper like part of the text of your report .

NOTE :
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Some indicators of goal achievement

A.
How to analyze data

Reports of data analysis

data sets I hand out

data from consultations

B. How to gather data

Reports of data gathering plans and results

situations handed out

consultations

C. How to consult

O

diary -like reports of consultations ( see Joiner Cryogenics )

brief, one-half page personal reactions to consulting articles

D. How to use methodology literature

brief annotated bibliography of key articles on some subject ( e.g.

errors in X's )

- brief revie: of 2 recent ( appeared in last six months )

methodology articles

actual use of literature as evidenced in reports in A , B , C above .

E. How to write reports

reports prepared for A , B , C and D above

Some work steps in learning to use computer effectively

On both UNIVAC 1110 and DEC 11/70 (WITS ) :

-

O

enter data into a file and save ;

list file , edit some data and save corrected version ;

delete old file ;

on UNIVAC print TOC of :

Joiner Data

MACC *MINITAB

copy an element of JOINER * DATA or MACC *MINITAB and modify

delete one row

change several values

save modified version

make Minitab runs using at least the following commands :

all types of plots ; INDIC ; EXECUTE ; store K ; LOG ; NOBRIEF ;

ONEWAY ; REGR ; analyze residuals

save a Minitab program , then execute it

create an STJBANK using Minitab

use Minitab to enter data from STJBANK & PRINT & PLOT

use STATJOB to do regression and regression on logs

use STATJOB to do BANKPRINT

transfer data set from WITS - 1110

1110 -WITS

-

11
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References :

M-HB

M -RM

EDIT manual

STATJOB manuals

WITS manuals

To provide evidence of work you do in learning to use the computer :

keep a diary , and write a report chronologizing your experience

including listings of work steps , computer programs and output .

Some bench marks

By the end of the indicated week each student should have handed

in documentation of the following:

Week Progress

1 Proficiency on one computer ( UNIVAC or DEC ) .

First data analysis or design report .

2
Brief annotated bibliography on some subject .

Second data analysis or design report .

3
Proficiency on second computer .

- Brief summaries of two recent methodology articles .

4

Brief report on two papers on consulting

Should be able to use S&C and M&T ( separate documentation

not required )

Ideally should be involved as a consultant on some

project (will depend on availability of projects ) .

Third data analysis or design report

-

5-15

At least four more reports on data analysis projects ,

design projects or consulting projects of increasing

complexity .

A FEW IMPORTANT CONCEPTS IN ANALYSIS, AND KEY REFERENCES

Data checking : Critically important but no really good references .

See Daniel and D&W and Pollack & Joiner

Transformations (re -expression ): M&T Ch . 4-6 ; ETA Ch . 3-6 ; Draper &

Hunter ( Tech . 1969 ) ; S&C ; Box & Tiao ,

Plotting data : M - HB ; M&T ; ETA .

Plotting and other analysis of residuals : D&S ; M&T ; Anscomb & Tukey ,
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Using computers : M-HB ; M - RM ; STATJOB manuals ; BMDP manual ; SPSS

manual ; SAS manual ; Rummage manual ; other special purpose programs .

2

Analysis of variance : Winer ; BH“ ; M&T ; Kirk ; Hicks ; Scheffe ; Searle ;M ;

MINITAB ; Rummage ; STATJOB ; BMDP and other computer packages .

Outliers and seriously heavy tailed data ; M&T ; Denby & Mallows ; Duter's

computer program .

Missing Values : ( See me and I'll get bibliography from Jock E. )

Categorical data : ( ... from Camil ) .

Non- independently distributed observations :

2

Time series : B&J ; BHJ

Components of variance situations : Anderson & McLean ( 3 places ) ;
Fuller & Battese ;

Other problems : Joiner & Campbell

Ethics : see 1977 CIS

Mechanistic model building : BH?

Empirical model building : D&W ; BHBH2

Finding the real uncertainty: M & T; BH2

Variation in non -linearly transformed functions: PH?; ku paper in Ku volume

GRADING

Each report ( or other write- up ) will be graded on three criteria

quality of work ,

amount of work ,

quality of exposition .

Each criteria will be assessed on a three point scale

+ = well above average for course ,

✓ = as expected ( average ) ,

= below expectation .

At the end of the semester you must return all of your work to me

so I can review it and assign a grade for the course . You may pick up

your materials after I have turned in the grades .

In assigning a final grade I consider all of the evidence you have

submitted during the semester as to your potential as a practicing

statistician . Grading is roughly as follows :

Á very fine niring opportunity for most anyone .

AB = Definitely above average . Would be well suited for some

jobs but might have weaknesses in some others .

2
0

!
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B = Average overall performance . Might be average in every respect

or very good in some respects with critical weaknesses in

others .

BC = Below average . Usually serious weaknesses in an important

area , frequently due to low productivity , tardiness , poor

exposition or repeated serious undetected " goofs " in analyses

or designs .

C = Even further below average .

below C = ??

A few comments . I tend to reward hard creative work more than I

punish the lack of. If you work hard and think a lot , you will probably

get two benefits :

1. You will learn a lot , and

2 . You will get a good grade .

If you don't work hard , you will surely suffer in the first

and perhaps in the second . In short , you can gamble . In this course

(and probably in others ) the odds are probably about 50-50 of a decent

grade with little effort . But if you choose to gamble , remember the

possible loss in ( 2 ) , and the sure loss in ( 1 ).
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LASER BEAM WAR GAMES : DESIGN , ANALYSIS , AND

MODELING CONSIDERATIONS

W.S. Mallios , R.D. Batesole , and D.R. Leal

The BDM Corporation

ABSTRACT . Concepts in classical design , analysis , and modeling require

reexamination under force on force experimentation with real time casualty

assessment . The degree of allowable free play between opposing sides must be

prespecified in the design and conduct of encounters . Severely limiting free

play can degrade whatever realism is achieved through such games , while maxi

mizing free play leads to imbalances in the evaluation of treatment effects .

Regarding analysis, adjustments are required for imbalances . However , adjust

ments through standard covariance analysis can be misleading since treatments

affect many of the covariables . Regarding development of simulation models,

a broad class of cause and effect relations can be estimated and evaluated in

terms of the experimental data . Methods of structural regression are used in

developing a data based simulation model for mounted combat .

1 .
. Force on Force Experimentation .

"Hoping to add a touch of battlefield realism to its

peacetime training exercises , the Army is developing

a complex laser beam system that permits two forces to

shoot at... each other without hurting anyone... When

the system goes into operation ...it will for the first

time advance scorekeeping in war games significantly

beyond the level of children shouting , ' Bang , bang ,

you're dead ' . " Los Angeles Times , 8/23/76 .

In force on force experimentation , the trend is towards real time casualty

assessment ( RTCA ) . Opposing forces utilize weapons equipped with low intensity

laser guns , laser -sensitive devices ( sensors ) , and automatic telemetric links

to and from a computer . When a combatant detects a target and engages it , he

fires his weapon activating the laser gun . If he is on target, that target's

sensors are activated . The physical parameters of the engagement ( weapon type ,

target type , target exposure , range , etc. ) are automatically transmitted to the

computer which records the data , assesses the results , and , if a casualty is

indicated , transmits that information to the target for attrition .

The objective of one such experiment was to evaluate the effectiveness of

foxhole fortifications in dismounted combat . The scenario called for a threat

force to attack and penetrate defense positions under a variety of conditions .

Preliminary analyses indicated that threat tactics -- a free play variable --

had a major effect on threat penetration . The desigritor " free play " for tac

tics means that a threat team leader was free to chocse tactics he thought best
in the particular trial . Composed of 24 men -- 3 squads of 8 men each -- threat

teams commonly employed two tactics with variations on each : ( i ) two maneuver

squads and one fire squad , and ( ii ) one maneuver squad and two fire squads . The

latter led to considerably greater threat success , a result which illustrates

that serendipitous effects are a by-product of free play , force on force experi .
ments .
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Currently on the drawing board is an experiment planned to evaluate the

effectiveness of a force guarding a nuclear facility to deter an attacking

terrorist force . The scenario calls for a surprise attack by terrorists with

the intent of securing and removing mock nuclear materials stored on site . The

perimeter is brightly illuminated, open terrain . The terrorist force obscures

its detection by attempted entry disguised as delivery vendors , innocuous trav

elers , or other deception . Engagement commences upon detection , identification ,

or overt act . A free play fire fight ensues until the terrorists are defeated

or the terrorist mission is accomplished . Factors to be varied in this scenar

io include guard -terrorist forces sizes , weapons mixes , defense configuration

(elevated guard tower , submerged pill box , or no special structure ) , ard pene
tration distances from the outer perimeter to the storage area .

2. The Experiment Under Study. Data used in model building are drawn

from TEMAWS * , an experiment on the effectiveness of scatterable mines on an

attacking armor force . The tactical scenario was an attack by a Soviet tank

company through a scatterable** , antitank minefield against a defending U.S.

mechanized infantry team . Simulating the Soviet force were 15 M60 tanks rein

forced by three APC TOWS . One M60 tank , two TOWS , and two Dragons simulated

the U.S. force . A trial consisted on one complete attack through the minefield .

The trial ended when the last attacking tank had penetrated the minefield or

when all threat tanks had been killed . Figure 2.1 depicts a typical trial

where the Cs denote the center of mass , in successive 30 second increments , of

threat tanks advancing towards the defense . Minefield dimensions are 300 meters

by 1000 meters . Threat configurations during minefield entry are illustrated

for two trials in Figure 2.2. Figure 2.3 depicts an end of trial result where

M denotes a mine or mobility kill , F denotes a direct fire kill on a threat

tank , and I denotes a Dragon kill by threat artillery .

3 . Statistical Design Considerations . In designing force on force ex

periments , there are constraints imposed by priorities , the budget , time , and

the state of the art of the experimental technique . The constraints usually
limit the number of treatments which can be evaluated in the experiment . Ac

cordingly , there are two schools of thought regarding the conduct of the ex

periment once treatments are selected :

( 3.1 ) limit free play by controlling more of the uncontrolled variables ; i.e. ,

neutralize the effects of certain uncontrolled variables as opposed

to expanding the number of treatments . ;

( 3.2 ) allow free play to a maximum possible extent .

Those advocating ( 3.1 ) are usually motivated by imbalances arising from free

play - imbalances which complicate evaluation of treatment effects . Imbalan

ces are illustrated by a partial listing of the TEMAWS design matrix in Table

3.1 .

* TEMAWS is an acronym for tactical effectiveness of scatterable mines in the

antiarmor weapons system .

** In tactical situations , mines may be scattered by artillery or helicopter
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Minefield density refers to the number of mines scattered uniformly over an

area of 1000 meters by 300 meters . Visibility refers to the visibility of

the mines to the oncoming threat force . Baseline trials are those for which

there was no minefield . Numbers contained within the cells summarize events

up to the time the first threat tank enters the minefield . In comparing , for

example , low and high visibility at the .005 density , it is seen that for all

five trials of low visibility , at least one TOW was killed before the first

tank entered the minefield . Thus, for all trials of this treatment , the de

fense was one weapon short during the main part of the battle where synergis

tic effects of the minefield and defense fire on threat attrition were to be

examined . Conversely , for all six trials of high visibility , both TOWs were

available on first threat entry into minefield .

Without adjustment for imbalances , differences between the effects of

these two treatments on end of trial dependent variables -- such as total

threat casualties or casualty exchange ratios -- could be due to the differ

ence in mine visibility , to the shortage on one TOW , to a combination of the

two , or to other imbalances . With such complications brought on by imbalan

ces , it is tempting to severely limit free play ; e.g. , conduct trials under the

condition of no kills on either side prior to threat entry into the minefield .

The difficulty with this recourse is that it runs counter to the purpose of

RTCA -- attempted parity with realism . Sacrificing realism to attain greater

balance is generally unacceptable since this recourse elevates the method of

analysis to a higher level than the experimental objectives .

Aside from greater realism , an additional feature of ( 3.2 ) is the emer

gence of serendipitous effects . Notice , for example , the difference in threat

configurations in Figure 2.2 . One configuration shows a single cluster* of

tanks and the other , three rather loose clusters . Entry and passage through

the minefield in a single , tight cluster tends to reduce minefield kills but

increases direct fire kills ; i.e. , a single , tight cluster draws more defense

fire . Conversely , a highly scattered threat configuration , as quantified by

a number of loose clusters, tends to increase minefield kills but reduce direct

fire kills . Thus , there is a trade-off between minefield kills and direct fire

kills on the threat which is dependent on threat clustering . This result was

not anticipated in planning the experiment and would not have been uncovered

had the configuration of threat tanks been prescribed and nearly constant be

tween trials. In fact , it has become increasingly evident that , not only can

serendipitous effects be expected to occur , but their effects on trial outcomes

can be greater than that of treatments .

4 . Analysis Considerations . When effects of treatments on end of trial

dependent variables are analyzed without adjustment for free play variables , a

common result is that treatments are insignificant . This result can be mislead

ing since , under ( 3.2 ) , effects of free play variables can dominate effects of

treatments on trial outcomes ; e.g. , the loss of a defense weapon prior to threat

minefield entry can have a greater effect on trial outcome than the visibility

of mines . Moreover , adjustments for free play variables in terms of standard

* Threat force configuration , excluding reinforcements , is quantified in terms

of clusters and non clusters within each of the areas prior to the minefield ,

within the minefield , and beyond the minefield . Clusters are updated every 30

seconds and are determined by the single link method ( 1 ) . Within each area , a

tank is part of a cluster if it is within 100 meters of a cohort . Also within

each area , a tank is a non cluster if it is greater than 100 meters from the

closest cohort .
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covariance analysis are misleading when treatments affect the free play co

variables and treatment effects on the covariables are neglected* ; see ( 4 ) ,

( 5 ) .

An example of treatments affecting a covariable , say , the number of TOWS

remaining on first threat entry into the minefield , is as follows. Suppose the

TOW firing rate prior to threat entry into the minefield is negatively correla

ted with minefield density . Since the TOW firing signature is pronounced , its

increased fire draws increased threat fire which decreases the TOW'S chance of

survival . Thus, minefield density has an indirect effect on the number of TOWS

prior to threat minefield entry -- indirect in the sense that the effect of

minefield density of TOW survival is through the TOW firing rate and the sub

sequent threat firing rate :

+Minefield

Density

TOW Firing

Rate Prior to

Threat Mine

field Entry

Threat Firing

Rate Prior to

Threat Mine

field Entry

Number of TOWS

Remaining on

Threat Mine

field Entry

where x + y reads " x has a positive , direct effect on y " . When the flow of

events are characterized by this path diagram , a separate equation must be con

sidered for each variable ( other than minefield density ) in evaluating treat

ment effects on dependent variables of interest .

The recourse to situations where treatments have possible effects on co

variables is the analysis of direct , indirect , and overall treatment effects as

quantified through a structural regression system ; see Appendix A. In such an

analysis , each trial may be partitioned according to time intervals , whether

fixed , random , or a combination thereof , and relevant variables are measured

from each of successive intervals . To partition according to random time in

tervals is to partition according to events . For example , a scheme for ever

partitioning is the division of trials into before and after first threat en

try into the minefield . A model for this scheme is as follows :

the wht ( 0 ) = { xons * * obh

Σ'ahe ho ( ) - Σ.

( 4.1 )

ah * Yh * ( b ) +

Erons*j* &ah

where ynt ( b ) and yn* ( a ) denote the h*-th endogenous variables during the be

fore and after periods , respectively , h , h* = dyn (f) /dynt ( f ) ,

the direct effect of Yh+ ( f ) on yn ( f ) , f = a , b ; afhh 1 ; Tant = dyn ( a ) /dynt ( b ) ,

1 , ... , P ; afhh*

-

* Even when treatments do not affect covariable , high correlations between co

variables can lead to poor treatment estimates ; see ( 2) , ( 3 ) .
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the direct effect of Yn+ ( b ) on yhla ) ; the x; include treatment effects which

are assumed constant within trials ; ' fhj - dyn (f)/dxg, the direct effect of xj

on yn (f); ofn is the model error . In evaluating treatment effects , note that

may have direct effects on both yn ( a ) and yn ( b ) and , hence , an indirect

effect on yn ( a ) through yn(b). The overall *; effect on yp ( a ) is the sum of

*; on yn ( a ) ; see ( 5 ) .
the direct and all indirect effects of

While simple , model ( 4.1 ) has the disadvantage that variables may be over.

aggregated which leads to a loss in information . For example , suppose a key

factor in trial outcomes is the number of threat losses in the first minute

after threat minefield entry . Aggregating this variable over the entire after

period may obscure its importance . As such , the partitioning of TEMAWS trials

employs both fixed and random time intervals . The random intervals ( or event

segments ) are :

( i ) the time segment to to , the time the first threat tank enters the
minefield

( ii ) to to to + 150 seconds ( 4.2 )

( iii ) the time segment beyond to + 150 seconds .

The time line within each event segment is incremented into successive 30 sec

ond intervals from which relevant variables are measured :

[ to -30 , to ) , [ to , to +30 ) , ... , [ to +120 , to +150 ) , [to +150 , to +180 ) , ...

First Event Segment Second Event Segment Third Event Segment

A model for this partitioning is as follows :

p rnn* q rhj

Σ Σ «esh ; Μην (t-1) - Σ Σ Αeni ; 8, (t-1) + 6 .
( t ) ( 4.3 )

ht = 1 i =0 j =11 *=0

where yn ( t ) is the h -th endogenous variable in the t- th time interval and

Ynlt- i ) is its i -th lag ; denn*; - dyn ( t ) /dyn* ( t- 1 ) , the e'rect effect of
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1; 8en

Yn* ( t- i ) on yn ( t ) in event segment e ; e = 1 , 2 , 3 as defined in ( 4.2 ) ;

denho
( t ) is the model error . Contrary to model ( 4.1 ) , exogenous

variables ( other than lags of endogenous variables ) are written as x to

allow for variation in x ; within trials* ; 1

within trials* ; tenij = dyn ( t ) / dx; ( t - i * ) , the

direct effect of xj ( t - i * ) on yn ( t ) , where xj ( t- i * ) is the value of x ;
x

time interval t- i * .

in

Treatment effects which are constant within trials tend to have decreasing

direct effects on yn ( t ) with increasing time; i.e. , as trial time increases ,

treatment effects on yn ( t ) are generally indirect and through yn ( t - i ) and

Yn* ( t - i ) . Put simply , as the encounter progresses , performance variables tend

to reflect the initial effects of treatments . Another reason for the decreas

ing effect , at least regarding minefield density , is that mines expended through

encounters are not replaced . With a large threat force , the density would tend

to decrease with increasing threat penetration . Effects of the decreasing den

sity are reflected through , not only lagged variables for mine encounters , but

through a variable measuring cumulative mine encounters .

The event segments in ( 4.2 ) are chosen such that coefficients in model

( 4.3 ) remain stable within segments for key uncontrolled variables**. The ob

jective is to attain stability of coefficients with as few event segments as

possible ; i.e. , since coefficients are unstable between event segments , a

structural system is estimated for each segment . The 30 second intervals with

in event segments were chosen to prevent an over - aggregation of variables and

to avoid causal feed backs whenever possible ; i.e. , the 30 second intervals

are sufficiently small so that the structural system is largely recursive ; see

Appendix A.

5 . Data Based Simulation Models . With the constant monitoring and RTCA

of weapon systems throughout the encounter , laser beam war games have a major

impact on modeling: ( i ) a broader class of cause and effect relations*** can

be examined relative to non -RTCA experiments and ( ii ) cause and effects rela

tions can be estimated in terms of the experimental data . The negative side

of data based models is that there exist artificialities in field experiments .

* An example of xj varying within trials is artillery fire which varies ac
cording to a prespecified rate for a portion of the encounter .

** It is not feasible to establish stability of coefficients for all endogenous

variables due to their large number .

*** The term " A causes B " can be defined in terms of " A affects B " , which im

plies that a change in the level of B is associated with a change in the level
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These , however , can be_largely mitigated through subjective adjustments of

estimated relations . Thus , at the very least , sensitivity analyses can be

performed on the mitigation of artificialities .

The alternative to data based models are non -data based models which were

the only recourse prior to RTCA . These include deterministic models such as

the original Lanchester modèl ( 6 ) and stochastic models which utilize data in

puts ( 7 ) , ( 8 ) . Generally , these models do not or cannot address a number of

relevant cause and effect relations . Take , for example , the number of mine

encounters in the t-th time interval , say, ME ( t ) . A non -data based model may

predict ME ( t ) conditional on minefield density and , perhaps , on mine visibil

ity . Under (4.3) , the data based model predicts ME (t ), not only in terms of

density and visibility, but on the clustering of tanks in the minefield in t - 1 ,

on the dispersion of these clusters , on the rate of movement of tanks into and

out of the minefield in t- l , on the firing rate of tanks in the minefield in

t - 1 , and on cohort kills among threat tanks in the minefield in t- 1 . Moreover ,

ME ( t ) is affected by ME ( t- 1 ) , ME ( t -2 ) ,... ; i.e., the data based model does

not assume that the present is independent of the past as do many of the non

data based models ; events which occur at one time interval can have a major

effect on events occurring at subsequent time intervals .

Cause and effect relations comprising the data based model are estimated

in terms of ( 4.3 ) . There are advantages to this type of model . Firstly , struc

tural regression is a well established , rigorous method of data based modeling

as evidenced by its use in econometric modeling ; see ( 9 ) , ( 10 ) . Secondly , when

the linearity assumption is invalid ( or when coefficients are not stable from

one event segment to the next ) , a separate system can be fitted per event seg

ment ; i.e. , rather than having to convert to a non - linear system, the time line

is partitioned according to event segments such that response surfaces are ade

quately fitted by hyperplanes within segments* . Thirdly, ( 4.3 ) is a vehicle

for evaluating treatment effects under the scenario of the experiment from which

the data are drawn . This is an important feature in the presence of imbalances .

Fourthly , ( 4.3 ) provides a solid foundation for excursions to other scenarios

in evaluating treatments not considered in the experiment ; e.g. , weapon trade

off analyses can be performed , as in Section 8 ; or " dirty battlefield" scenarios

can be simulated with varying degrees of obscuration and suppression . Finally,

( ***cont'd ) of A. There are two types of association .There are two types of association . Either A is a mechanism

through which B changes or A reflects ( or is correlated with ) some unknown , un

measured, unused , or unavailable variable U which is a mechanism through which

B changes . Note that only in the first type of association does A necessarily

preceed B in the sequence of events . Note also that knowledge of the type of

association may be more likelihood than certainty .

* The transition from one event segment to the next or from one system of equa

tions to the next is smooth due to the use of lag variables ; i.e. , lagged effects

from the previous event segment are used in the equations for the current event

segment .
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this type of data based model provides a means of quantifying effects of player

psychological profiles on encounter outcomes* .

6. A Path Diagram for TEMAWS. To avoid under identification in ( 4.3 ) ,
additional information is required on a number of parameters per equation .

Usually , this information is derived from a subjective assessment that certain

direct effects do not exist . In TEMAWS , this assessment is partially summa

rized by the path diagram in Figure 6.1 wherein all arrows denote direct effects .

Threat configuration is tol affects threat fire , mine encounters , and defense

fire in t . In listing the following variables which comprise threat configura

tion , P , W , and B denote , respectively , all threat positions prior to , within ,

and beyond the minefield :

( 6.1 ) the number of clusters** and non-clusters in each of P , W , and B

at the end of each time interval

( 6.2 ) minimum ranges*** between each defense weapon and both clusters

and non-clusters within each of P , W , and B

( 6.3 ) the dispersion *** of those clusters in ( 6.2 )

( 6.4 ) the change in the number of clusters and non-clusters from t- 2 to

t- 1 and from t-3 to t- 2 .

In model (4.3 ) , these configuration variables are not only predictors in t- 1 ,

but are individually predicted in t .

Within t , firings affect pairings , pairings affect attrition , and attri

tion affects threat configuration . In turn , configuration in t affects firings
and mine encounters in t+ 1 .

* In linear , reduced models , player or team effects are often quantified in

terms of dummy variables whose coefficients are random effects . If , prior to

the experiment, each participant responds to an appropriate psychological in

ventory , the responses can be converted to scores in terms of principal compo

nent or factor analysis ; the scores become covariables which replace the dummy

variables ; see ( 1) . In applying model ( 4.3 ) to TEMAWS data , player effects are

reflected by performance data ; i.e. , dummy variables for player or team effects

were not introduced and no psychological inventory was utilized in TEMAWS. Mod

eling in future RTCA experiments could be enhanced by utilizing an inventory , by

quantifying players in terms of " psychological covariables " , and by using these

covariables as exogenous variables which are constant within trials . Proper ro

tation of personnel allows for these covariables to vary between trials .

** The threat reinforcements are not included in the threat tank clusters .

*** The reciprocals of the ranges and dispersion are used in the model; i.e. ,

when a cluster or non-cluster is not present in P , or W , or B , the correspond

ing range and dispersion are set equal to zero .
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Within t , mine encounters affect mine kills* . Each defense weapon is modeled

individually regarding firings , pairings , and attrition** . Threat reinforce

ments and artillery are modeled individually regarding firings , pairings and

attrition . For each t , threat tank firings*** are aggregated and modeled as

an entity within each of P , W , and B , as are threat tank pairings and attri

tion .

The path diagram does not depict lagged effects . Lags of each variable

extend back to at most five time intervals . Generally , the lags of ( t )Yen *

do not have a direct effect on Yen ( t ) , h * n* . Exceptions to this are lags

of mine kills affecting mobility kills and lags of pairings affecting firings
for certain defense weapons .

The length of the interval t is sufficiently small such that causal feed

backs**** within t are largely avoided . Exception to this are feedbacks be

tween firings of certain defense weapons which reflect position effects .

Through adjustment of these coefficients , these feedbacks could also be used

to simulate communications between defense weapons .

7.1 The Method of Simulation . Following estimation of parameters in ( 4.3 ) ,

encounter outcomes are generated by converting predicted values in t to observed

values in t which become predictors for other variables in t and lagged varia

bles for predictions in t+ 1 . For example , the predicted number of firings for a

given defense weapon in t is taken as the expected value of a conditional Poisson

distribution . Sampling therefrom provides an observed value which becomes ( i )

the first lag in predicting expected firings in t+ 1 and ( ii ) a predictor for ex

pected pairings by this weapon in t . Observed pairings in t , obtained analogous

to observed firings , become ( i ) the first lag in predicting expected pairings

t+ 1 and ( ii ) a predictor for variables comprising threat attrition in t ; these

variables include individual threat reinforcements and threat tanks aggregated

within each of P , W , and B.

Variables not following conditional Poisson distributions , such as ranges

and cluster dispersions , are assumed to follow conditional normal distributions .

For example , the predicted minimum range between a given defense weapon and all

threat clusters within the minefield becomes the expected value of the condition

al normal ; the variance is taken as the estimated variance of the model errors

( 4.3 ) . Sampling from this distribution provides the observed value for this par

ticular range in t . This value , as an observed , threat configuration variable

* For mine kills in t , mobility kills are modeled separately from mine kills .

**

Attrition on the weapon system is modeled separately from personnel kills .

***

Primary and secondary firings and pairings by the threat tanks are mod

eled separately .

****

A casual feedback between two variables A and B within t , denoted by AB,

means that A affects B and B affects A sequentially over time within t .

300



in t , is a predictor for both mine encounters and firings in t+ 1 .

This recursive procedure is followed in generating all predicted , ob

served , and lagged values for each Yen ( t ) in ( 4.3 ) * . Only initial conditions** ,

in terms of the earliest lags in the first event segment, must be prespecified .

Simulations are conducted under the following ground rules . Regarding end

of trial criteria , the defense wins if the number of defense weapons remaining

is greater than or equal to the number of live threat tanks plus the number of

mobility killed tanks . The threat wins if the number of threat tanks penetrat

ing the minefield is greater than three times the number of defense weapons re
maining , excluding the Dragons . The threat also wins if all defense weapons

are killed . The trial is termed no decision if 38 minutes have elapsed and

neither side has won .

The following constraints are imposed on defense firings . After two fir

ings from the same position , one Dragon moves to a new position ; the other

Dragon moves after one firing . Movement time is three minutes . One TOW will

assume a new position after two firings , the other after three firings . Move

ment time is two minutes . If the tank fires as many as three rounds in one

minute , its firing is deterred in the following thirty seconds*** .

The firing constraint imposed on the defense tank reflects obscuration of

its visibility due to its own firing . The present simulations do not account

for obscuration occurring when a weapon has been paired . Nor do they account for

suppressive reactions of personnel of a paired weapon . Moreover , the ground rules

allow mobility killed tanks to continue firing . This creates a dual between

*

For causal feedbacks , where Yen (t) Yen * ( t ) , initial , observed values

of Yen ( t ) and Yen* ( t ) are obtained through the reduced system . These ob

served values become, then , predictors in the structural system where ( t )

( t ) and Yen* (t ) — > Yen ( t ) .

** These conditions include make -up and numbers of opposing forces , initial

threat formations , and initial ranges .

Yen

Yent

*** Opinions regarding constraints on defense firings are varied and will be

subject to future sensitivity analyses . Due to the pronounced firing signature

of both Dragons and TOWs , there is general agreement that each will relocate

" frequently". The consensus is that Dragon personnel will change positions

usually after one or, at most , two firings and that relocation will take approx

imately three minutes . TOWs are said to relocate after two or , at most , three

firings and that the relocation time is roughly two minutes .
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mobility killed tanks and defensive weapons , particularly for a large threat

force in a high density minefield . The dual can lead to unrealistic results

if , in fact , tank crews are likely to bail out of mobility killed vehicles .

It should be recognized , however , that constraints can be imposed to deal with

these situations based on the foundation provided by model ( 4.3 ) .

Table 7.1 presents selected results from a simulated trial with double

the average number of threat tanks employed in TEMAWS . The threat is declared

a winner after seven minutes since threat tanks penetrated the minefield with

a greater than 3 to 1 ratio ; i.e. , seven tanks penetrated against a remaining

defense ( excluding Dragons ) of one tank and one Tow . Note that had the threat

been declared a winner by penetrating the minefield with a ratio of at least

3 to 1 , the trial would have terminated at the end of the thirteenth time in

terval .

8. Simulation Results . TEMAWS was intended to establish whether effects

of the minefield and defense fire on the threat are additive or interactive .

A means of resolution is through the relation between minefield density and

the number of direct fire kills on non-disabled threat tanks . If there is a

relation between the two , effects are interactive . No relation indicates ad

ditivity of effects .

In adjusting for imbalances , model ( 4.3 ) was exercised under the TEMAWS

scenario with 100 simulated trials for densities of low visibility minefields .

A plot of the average number of direct fire kills on non -disabled tanks versus

minefield density is presented in Figure 8.1 for force sizes of 13 , 26 , 31 ,

and 39 tanks . For 13 tanks , the average number* used in TEMAWS , the slope is

negative . Positive slopes result for other force sizes .

These slopes can be explained through the following path diagram :

+

Delay

Defense

Fire

Direct Fire Kills
Minefield

Density
on

Non-Disabled Tanks

Minefield

Encounters

Target

Availability

A positive effect of density on direct fire kills follows logically from the

upper path : the greater the density , the more the evasive action by the threat

and the greater the delay time ; greater delays lead to more defense fire and ,

hence , to make more direct fire kills . Positive slopes in Figure 8.1 indicate

that the upper path dominates ; the lower path dominates with a negative slope . These

* Although 15 tanks were targeted for use , 13 were available , on the average .

-
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results indicate that , given the force size in TEMAWS, target availability

prevented the occurrence of a positive slope . This illustrates the utility

of a data based model such as ( 4.3 ) . Excursions can be made to encounters

with larger threat forces so as to remedy the problem of target availability .

The slopes for these larger threat forces are positive indicating a synergistic

effect between density and direct fire kills .

Simulation results in Table 8.1 summarize encounters of threat forces**

matched against each of three defense forces : the TEMAWS force ( 2 TOWS , 2

Dragons , i tank ) , the TEMAWS force excluding Dragons , and the TEMAWS force

including a second tank . It is seen , for example, that a threat force of 13

tanks wins in 33% of the encounters against (2 TOWS, 2 Dragons , 1 tank , den

sity = .0005 ) and against ( 2 TOWS , O Dragons , 1 tank , density = .001) . Since

150 mines were utilized for a density of .0005 , there is a trade-off between

the extra 150 mines required to achieve a .001 density and 2 Dragons . Other

trade-offs are presented in Table 8.2*** .

* At the time of the TEMAWS experiment , a larger number of tanks could not

be instrumented for RTCA .

** Each threat force size includes the same reinforcements as in TEMAWS .

*** A word of caution is in order . Ground rules affect results of simulations .

Results from a given set of ground rules should be held in abeyance until

changes in ground rules are evaluated through sensitivity analyses .
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Appendix A. A number of assumptions are usually associated with model

( 4.3 ) . Regarding Senit ) , it is assumed that E ( sen ( t ) ) = 0 and that

ellence) lenocery] turnsen(t) Sen * (t) = 0 for t + ťt '

( A.1 )

Penh * for t = t :

Evaluation of residual crossproducts , based on ordinary least squares ( OLS )

estimation on a per equation basis in model ( 4.3 ) , support ( A.1 ) . For tests

of significance , normality of distribution is imposed on Sen ( t ) .

The lagged variables in ( 4.3 ) . serve the purpose of quantifying the de

pendence of the present on the past . In doing so , the lags also reinforce

assumption (A.1 ). Regarding assumptions on the lags , let

hh*

- i

Σ Qehh* ; o enntle ),

i =0

and let the p xp matrix o

( @enn* ( e ) ) .

It is assumed that all roots of the equation o = 0 are smaller than 1 in

absolute value for each event segment e ; see ( 12 ) . Estimated values of the

qehh* ; support this assumption .

The structural system in ( 4.3 ) is rewritten as

dex = Te? + de
( A.2 )

where the p x 1 vector y = (yh ( t ) ) ; the q* x 1 vector z contains all exo

genous variables including Yn# t - i ) and X ; ( t - i ) , i # 0 , i * 20 ;

Σ Er.q* = q + 3

hhh
h
* hoj hj

- -
-
-
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the p x 1 vector e = ( en ( t ) ) ; the p * p matrix de = ( Qennt ) , where aehh *

is the direct effect of Yht ( t ) on yn ( t ) in event segment e ; denn 1 ;

the p X q* matrix le contains direct effects of exogenous variables on endo

genous variables . The structural system uniquely determines the reduced
system and is given by

-1

ya
T. Z +

-1

e ce = Be ?

+

Ee

-1

where
2

8
e

elle
and

be
From ( A.1 ) ,o

l

: (0 , Ees ) where E(86)είς, ε ) - Σ., - loennt ) .

Thus , ε : (2. Σ .
Sed where Σ . α. Σε α-1 .

OLS estimation in the reduced system leads to consistent estimates of

Be and Application of OLS estimation in the structural system yields

In pracinconsistent estimates unless the system is diagonally recursive* .

tice , however , assumptions underlying such as system are difficult to justify ;

see ( 13 ) . As such , alternative structural estimation techniques , such as two

stage least squares estimation** ( 9 ) , ( 10 ) , are applied in obtaining consistent

estimates , assuming identification . The drawback of these estimation tech

niques is that the resulting estimates can be inefficient , especially when

values of R2 in the reduced system are low . For this reason , OLS estimation

is applied in model ( 4.3 ) under the justification that mean square errors will

be smaller relative to other estimation techniques .

is triangular* The structural system is termed diagonally recursive if ade

and Σ is diagonal .
es

** In experimental situations where the structural system in not well estab

lished , full information estimation techniques are risky ; i.e. , a bias in one

equation is carried over to other equations . As such , only limited information

techniques , such as two stage least squares estimation , were considered .
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DETERMINATION OF STRUCTURAL RELIABILITY USING A

FLAW SIMULATION SCHEME

Donald M. Neal and Donald S. Mas on

Army Materials and Mechanics Research Center

Watertown , Massachusetts 02172

ABSTRACT

Reliability Calculations are made for both an anti - tank projectile

and a fragmentation shell using fracture mechanics concepts in conjunction

with the Monte Carlo method . Reliability estimates are evaluated and

compared for both Weibull and Warner stress strength diagram definitions .

IC

A probability density function representation of allowable stress

( strength ) is obtained from a fracture mechanics K. relationships where

specific random form of the parameters is assigned . A normal density

function is obtained for the structural element stresses by using results

from a two - dimensional finite element solution .

In both Weibull and Warner diagram methods strength density distribu

tions and parameters are the results of laboratory tensile tests . In the

Weibull model the scale and shaped parameters were obtained from the Max

imum Likelihood method . The Warner diagram method required a normal and

best fit density function for stress and strength respectively .

Both the "weakest link " and series-parallel system are evaluated for

desirability in estimating structural reliability . The "weakest link "

approach which introduces reliability independence between elements will thereby

describe a much more conservative reliability estimate then the series

parallel system which requires at least two adjacent elements to fail in

order to have structural failure .

1

1
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INTRODUCTION

This paper describes structural reliability from an idealized linear

elastic fracture mechanics ( F.M. ) model . It is assumed that flaws exist

in structural elements and are remote from any other flaws . These hypo

thetical flaws are described by random variations in size and orientation .

Although these assumptions somewhat idealize the actual flaw distributions ,

they do provide a reason able good qualitative analysis of failure probabil

ity as compared to the conventional de terministic approach which considers

only one type of a singularly oriented crack (transverse to maximum applied

stress ) of a determined critical size .

Present fracture mechanics procedures as applied to structural relia

bility depend on determination of critical crack sizes by using proper K
IC

relationships in conjunction with known stress distributions in the struc
ture Once the critical crack sizes and locations are established a

NDT (Non-Destructive Test) procedure is applied to the structure in order

to establish if this crack exists . If a critical crack is located , the

structure is rejected . It should be noted that an excessively large re

jection rate can occur by applying this method since the probability of

cracks oriented in this manner is very small One of the primary

objection to the conventional ( F.M. ) procedure is the inability of ADT
[

methods to detect cracks less then a certain size (e.g. .10 inch )

If the critical size computed to be less then this size then the F.M.

procedure will not be able to determine potential failure in the structures .

.

The uncertainties existing in the use of the analytic tools (such as

Finite Element analysis ) ( F.E. ) in obtaining the structural stress distri

bution can introduce considerable error in obtaining the critical flaw size .

For example ; the accuracy of the F.E. solution depends on the severity of stress

gradients , mesh size , types of elements used and the effects of averaging

stresses within the element .

The flaw simulation scheme (FSS ) introduced in this paper attempts to

provide alternatives to conventional methods described above , the authors

do not consider this scheme as the ultimate answer in the application of

F.M. to structural reliability but rather an alternative . When more know

ledge is available regarding flaw types and their orientation in structures ,

this method can provide an excellent tool for establishing structural relia

bility .

[ 4 ]
In using the Monte Carlo method , the flaw simulation scheme provides

for variations in crack orientation and size in addition to computed stress

values in the structure . Crack orientations are assumed to vary from 0 ° to

90 ° in a uniform random manner . The crack size variation is defined in ex

ponential functional form where sizes vary from a large percent of very

small cracks to a relatively small number of larger detectable cracks [ 5 ] , The

stress values obtained for cracked structural element is assumed to be a

normal distribution where Coefficient of Variation ( CV) is varied in order

to determine the effect of errors in the F.E. analysis .

312



The types of cracks and their locations are the through center crack ,

near cut-out edge , corner crack and surface crack (center ) . The struc

tural configuration determines the types of cracks and their locations .

Types of Structures Considered

The model problems chosen to illustrate the technique proposed in this

paper is the determination of structure reliability for an Anti - Tank Pro

jectile control section ( fig . 1) and a fragmentation shell ( fig . 2 ) . Both

structures are made from relatively high strength brittle steel . The con

trol section is subjected relatively large compressive loads at the aft

section and tension stresses in the vicinity of the cut-out region where

the fins are attached . The shell is internally loaded with a uniform

pressure of 14KSI . This load represents a proof test used in evaluating

shell quality . Reliability determination of the control section provided

the opportunity to evaluate the series-parallel system approach because of

the complex stress state introduced by the relatively large tension and

compressive stresses in the structure . The weakest link approach is more

readily adapted to the fragmentation shell loading state .

Statistic Evaluation of Variable Strength

The lack of ductility characteristic of brittle materials has two

un desirable consequences for the engineer . Firstly any misfit or missel

ignment produces local high stresses which cannot be relieved by plastic

flow , unlike in ductile material. Brittle component designs differ from

those for similar ductile components in that extra attention must be paid

to detail , especially in highly stressed areas . The second consequence

is more fundamental ; all materials contain flaws such as microscopic

cavities and dislocations and , in loaded brittle materials , these result

in local stress concentration within the material . The strength of a

component is governed by the chance that a severe stress concentration ( c )

will be subjected to a stress (o ) such that the local stress co exceeds

the material strength . The occurrence of this is a matter of chance and

explains the marked variability generally observed in brittle material

strengths . It also explains why brittle material failures may start away

from the maximum continuum stress ; if no severe flaws coincide with the

maximum stress , failure may occur at a severe flaw subject to a lower

stress at a position where co is a maximum .

To overcome the strength variability by drastically reducing the

applied loading is not an attractive engineering proposition . What is

needed is an estimate of the likelihood of failure of the component under

a specified load . requires a detailed knowledge of the stresses in

the structure , and the flaw distribution in the material . Well established

techniques are available for the stress analysis , some of which are mentioned

later .

1

1
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The variation in material strength due to the flaws in a particular

material can be illustrated by fracture tests on a sample of specimens .

A histogram of the fracture stresses of both brittle and ductile material

subjected to uniform tension is shown in Fig . 3.1 ; the frequency of failure

( F ) is the fraction of the sample failing within the stress range o to

o #so . In the limit , as the number of specimens (N) becomes large , the

stress interval (80 ) in fig . 3.1 can be reduced to give a continuous dis

tribution curve . Note the relatively large variation in strength of the

brittle material as compared to the corresponding ductiles material of

similar test specimens . Structures with large variations in material

strength , as shown for the brittle material , require a probabilistic

approach in the design procedures .

A complementary form of fig . 3.1 is obtained if the data is

presented in terms of the cumulative failure probability ( P ) . This

quantity is the fraction of the sample failing at or below the stress o ;

in the limit it is the integral of the frequency distribution with respect

to stress , i.e. ,

P. (O ) - SF do ( 1)

In practice the cumulative failure probability is usually found from the

data using the " mean ranking" approach . The N failure stresses of the

sample are arranged 1th ascending order : the cumulative failure probability

associated with the i failure stress in the list is ,

P (0.)
f i

( 2 )

seeThe probability distribution of the data can be plotted from this

fig . 3.2 .

Conventional Fracture Mechanic Approach to Structural Reliability

Fracture Mechanics in the design process requires the consideration

of three factors : a stress analysis ( F.E. ) , a measure of fracture toughness

(Kid) and the capability of inspecting for cracks. The stress analysis can

require elaborate analysis using advanced F.E. or simpler closed form solu

tions depending on loading conditions and structural geometry . Since plane

strain fracture toughness is a structure sensitive material characteristic

similar to tensile and impact properties , it is dependent upon material

condition , strain rate and temperature . In describing the fracture tough

ness of a material, determinations are necessary under a sufficiently wide

variety of conditions to allow realistic assessment of the minimum value

likely to be encountered in design conditions . Some of the crack detection

techniques include ultrasonics , dye penetrents , magnetic particles and visual

inspection .
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Analytically , the critical flaw size is defined by an expression of

the type shown below :

IC

= fa ( 3 )

where :

a

с

= critical flaw depth .

Q a parameter which takes into account the shape of the flaw .

RIC = plane strain fracture toughness of the material.

O = the tensile component of stress acting normal to the plane

of the flaw .

The depth a and orientation of flaws which , on the basis of the

fracture toughness and stress factors , can result in catastrophic crack

propagation . It should be noted that o as defined above assumes flaw is

normal to acting stress (see figure 4 ) . This assumption rejects the pos

sibility that flaw could be oriented in other directions , thereby neglect

ing obvious possibilities in favor of an unlikely one . This could result

in incorrectly determining critical flaws size a
Present flaw detection

methods in many instances are not capable of detecting critical flaws of a
relatively small size . In fact , comments by indicate flaws less then

.1 inch of the time cannot be found in a structure . Of course the other

difficulty involves not finding a detectable flaw size in a structure

although it does exist .

Flaw Simulation Method

An alternative to the previously described conventional Fracture

Mechanics approach is made by introducing variation in crack orientation

and length by means of the Monte Carlo me thod . Initially four types of

cracks are to be considered in an element (see fig . 5 ) . The type and

location of cracks depends on the structural configuration .

In the simulation scheme the allowable stress o

ships is written as :

from K.

IC

Kqc relation
с

O = f

f (KIC ; l , e ) ( 4 )

where :

l = crack length .

0 = angle of inclination of crack .

-
-
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It is assumed that o represents the material strengths and depends on

the parameters K, € , o . The variations in Kıc is representedbya
IC '

normal probabilit
y density function (P.D.F) ( fig . 6a) . The angle o is

represente
d

by uniform random numbers in range of 0 to 90 ° ( fig . 6b ) .

The distribu
tion of sizes l is of an exponent

ial P.D.F. form shown in

fig. 6c . The o distribution is obtained from generating a set of

uniform random numbers and solving for x in the relation ,

S*, = R , ( 5 )

where R = uniform random number and f, corresponds to the desired type of

frequency distribution . The K, distribution requires test results for
IC

material used in the structure in order to obtain the necessary mean and stan

dard deviation values . In figure 6c the maximum crack length l , is repre

sented by the smallest detectable crack consistent with the capábility of

present available NDT methods . The assumed exponential form has been sub

stantiated by [ 5,6 ] in laboratory tests .

A PDF can be obtained for the allowable stress o by randomly selecting

K o and l distributions discreet sets of numbers and substituting
IC

them into equation 4. Note , there should be an equal amount of say N random

numbers for each parameter in order to have N numbers representing the o
distribution .

с

The Kic relationships for os are written as :

( a) Through crack

° c = K[c (2/1) 1/2 ( e sing ) -1/2

( 6 )
where K.

KIC
= K

K 'K + KII )

ų
= 0(2012) 1/2

2

sin and

KII

1/2

O (2/2 )so sin cos o .

(

(b ) Corner crack

* = 2 /K7c (1.28) ( 1/1) 1/2 .

(7)

3
2
1



3

ОС f(Kla, l , 8 )

X

f( t ) dtRu
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fi
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0
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900

Figure 6a

Exponential

li e l2

Figure 6c

je
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( c ) Surface crack

o - Kc/1.1(ta/Q) 1/2
(8)

where Q = E (K) ? - .212(0/0y3)2,

K? 46a/ ) ?= 1

osa ? .10 inches

and

0 ElE.05 inches .

In order to use occ5& lationship forthe inclined edgecrack a solu
tion was obtained from where a Modified Mapping Collocation scheme

was used . The results are tabulated in Table 1 . The appropriate inter

polation procedure was applied in order to use Monte Carlo method as

outlined in equation 4 .

Structural Stress Analysis

In order to obtain the stress distributions in the Anti - Tank projectile

( ATP ) and fragmentation shell a finite element ( F.E. ) method was applied .

As described previously the loading consists of a set -back type compressive

load acting at a base of ATP and a internal pressure proof test load applied to

the shell . Rectangular elements were used in the analysis for both struc

tures where shell and ATP contains 693 and 601 elements respectively . The F.E.

solution determines the average maximum and minimum principal stresses in

each element . The maximum stress is used in the reliability determinations .

These stresses should not be confused with critical stresses obtained from

the Kin relationships previously described . Having availability of element

stresses and corresponding o or strength values the reliability of the

elements can be determined .

с

I. Element Reliability Calculation Methods

Element Reliability as related to the stress - strength (Warner) diagram
[ 8 ]

method (see Appendix A) assumes that the probability of survival (Reliabil

ity) is the probability that material strength will be greater then the

stress in a given structural element over a range of stress values . The

uncertainties in the F.E. solution are represented by a normal distribution

f2 , where calculated mean stress and assumed c.V. are the functional para
mēters . The distribution f , is obtained from known strength data (e.g.

laboratory tests ) . This distribution does not necessarily have to be a
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8 Hn - Kilvate Ho - Kuliah

0.000

.160

.296

.461

10

20

30

40

45

50

60

70

80

90

.680

. 705

.781

.920

1.028

1.098

1. 124

0.000

.170

.280

.335

.372

.365

.354

.305

.224

. 118

.000

OC - Kic/HnVTE

Table 1

324



normal function . It can be any P.D.F that accurately represents the

empirical ranked data . In Appendix A , the probability of say s occurring

15 f2ds while the probability of strength greater then Sy is repre
sented by the integral , with fi integrand and limits of $, and .. Multi

plication of these elements provides the necessary independence between

the two conditions . Finally , integration over entire range of stress

values defines probability of survival Ps of each element .

с

Element reliability numbers were obtained from a approach similar

to the one previously described except that discreet values obtained from

the Monte Carlo simulation were used to represent both o and element

stress density functions . This is a reasonable approaz!.3ince distribution

of strength values do not necessarily conform to any known density function .

The tails of the two density functions are also more accurately represented

then by some crude approximating function . This method is outlined in

Appendix B where the probability of element survival is defined as follows ;

a . 1 , when strength is greater then stress values otherwise it is zero .

This process is completed when all combinations are considered . The re

lationship Psk therefore defines the Kth element reliability number.

Since the Weibull function is well adopted to brittle material sub

jected to uniform tension state it was included for comparison purposes

in the probability of survival calculations of the fragmentation shell .

The Weibull P.D.F. is common used in ceramics and other brittle materials

evaluation . It uses the "weakest link " concept which is consistent with

failure phenomenon of brittle materials which are subjected to tensile

stresses primarily . A plot of strength vs cumulative density function

( C.D.F. ) for HFl steel used in the fragmentation shell construction is

shown in fig . 7 . Note the excellent correlation between emperical data

and the Weibull function [ 9 ] .

The Weibull probability of survival Ps4 for individual stressed
components is written as ,

exp [-KV /vº (o 10")

*

( 9 )P

1

S
V maxi

2

where K = 1 for simple tensile stress , V, volume of element , V* = volume

of test specimen , omax = maximum principal stress in the element , o and

i

m are functional parameters obtained from test data using the maximum

likelihood method .

It is obvious from equation 9 that Ps
i

That is , larger volume smaller P numbers :

is functionally volume dependent .

S

i
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Structural Reliability

In order to obtain P of the entire structure the weakest link

concept is applied , that is it assumed that each event or probability

of survival of element is independent of any other one in the structure .

Therefore the total P is written as

S

N

P

S
= II PSK' ( 10 )

K = 1

where N = number of elements in the structure and Psy is the Probability

of Survival of the individual element . The corresponding probability of

failure is defined as Pf = 1 - Ps :

A series-parallel approach is introduced in order to examine the

case where more then one element is required to failure in order to have

total structural failure . This method is described by examining a four

element structure where two elements must fail (see Appendix C) .

values are determined for the elements by one of the methods previously

described . The resultant P for the four elements is determined from

application of the series approach . It should be noted that this method

is somewhat less conservative then the conventional weakest link method .

It is possibly more realistic , especially so for the complex states that

exists in the ATP structure .

The Psi

Numerical Results and Discussion

Numerical reliability ( R ) results are tabulated in Table II for the

fragmentation shell subjected to an internal pressure of 14KSI (Proof test

load) as a function of minumum detectable crack size . The Warner Diagram

method as outlined in the text is represented by a normal stress-strength

P.D.F. determined from F.E. solution and laboratory strength tests results

respectively . The Monte Carlo Fracture Mechanics ( F.S.S. ) results are

obtained from applying the scheme presented in the text where both stress

and strength P.D.F. are the results of using the simulation scheme described

in Appendix B. The Weibull R values were obtained from application of

equation 9 . It should be noted that both Warner and Weibull methods do not

show variation due to changes in cracks sizes , which is expected.

Results from the Monte Carlo me thod indicate the importance of finding

a crack of at least .025 inches or less in order to establish at least 92 %

probability of survival. The Warner Diagram and Weilull methods show much

less conservative estimate of 1 and 22 failures in 16.00 respectively . Since

Warner and Weibull methods do not consider ( F.M. ) , the Rindependency due to

crack size is expected. Although it is assumed that cracks do exist in each

element and the weakest link argument is used , a gooa qualitative measure of

assessing the importance of finding cracks of a relatively small size is
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Shell ( Proof Test Load)Probability of Survival

Minimum Detectable

Warner Diagram

Crack Size ( in . )

Monte Carlo (F.M.) Weibull

0.100 0.999 0.059 0.778

0.050 0.999 0.451 0.778

0.025 0.999 0.920 0.778

C.V. (Element Stress ) 10 %

= C. V. = 12 %
IC

Yield Strength = 140KSI

Table 11
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available . Coefficient of Variation ( C.V. ) of 10% represents the variation

in element stress values obtained from the finite element solution .

In table III Probability of survival estimates are for variation in

crack size and element stress C.V. numbers . It should be noted that with

crack sizes of .020 in . the effects of F.E. solution errors ( e.g. C.v. values )

are less than for larges cracks of .100 inch . Mean and C.V. values for K,

were obtained from laboratory test data . The materialyield strength of I& o

KSI provided an upper bound for calculated o ( allowable stress ) obtained from

the Monte Carlo Fracture Mechanics Method ( F.s.s. ) .

Table IV provides a partial listing of reliability for the ATP system

where crack sizes are .100 and .050 inches with variations in C.v. of 5 %

to 20% . The effects of F.E. errors are noted as in Tables III , small

variation better reliability , large variation poorer reliability . The

reliability numbers in parenthesis are results from application of the

series-parallel method described in the text .

The series-parallel method which requires failure of all adjacent

elements in order to have structural failure provides much less conservative

estimate of reliability . It is possible that an upper and lower bound on

reliability of this structure for the specified crack sizes could be a

series-parallel system and the weakest link approach respectively . With

tension and compressive stresses existing in this structure it does not

seem advisable to consider structural failure in terms of any given

element failure . It also unreasonable to assume that all adjacent elements

must fail to have structural failure particularly if a bending stress exists

in the structure .

Although the Monte Carlo ( F.M. ) is hypothetical method for estimating

structural reliability , it does provide a desirable alternative to the

present Fracture Mechanics approach which assumes cracks oriented transverse

to maximum principal stress resulting in an unnecessarily high rejection

rates . The ability of examining at least qualitatively the reliability of

structures as related the ability of detecting flaws or cracks of various

magnitudes can provide a guide for future NDT development procedures . If

more information was known regarding structural flaw distributions the

Monte Carlo method could provide an excellent reliability tool certainly

superior to the present lab test procedures applied to brittle materials .

In laboratory testing surface flaws are often removed from material thereby

preventing an accurate representation of the materials strength as it is

related to the structural component .

In application of the Monte Carlo method . Determination of proper

number of simulation in Monte Carlo was obtained from examing the con

vergence rate for the calculated reliability numbers . Instead relying on

some elaborate formulation for establishing proper number of simulations ,

a chart similar to the one shown in fig . 8 was used . All functional

parameters were increased equally in number in order to examine over all

-
-
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effects of the simulation . In order to examine the acceptability of this

method , a comparison was made for R using the Warner diagram approach where

normal -normal P.D.F.'s were calculated from a prescribed mean and S.D. for

stress-strength values . Results show excellent agreement with Monte Carlo

simulation method using the convergence rate approach .
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Appendix B

Critical Stress - Strength

Design Stress ( Element)

fi

M
Normal

S S

M M.

PSK 1 /M21/M2ΣΣ where ai 1 , Sj > siM

ai

j -l i = 1 10 otherwise

M = Number Simulations

Psk - Probability of Survival of Element K
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Appendix C

Series - Parallel Concept (Tension -Compression )

Assume simply four element structure

Psi Psz Psz Ps.

P

PS2
PS3

2

Psi

PS12

PS2

P523
PS34

PS3
PSA

e.g. , PS12 Psi + Psz - Psi
PS2

Survival Probability for Structure

Ps - Psiz . Ps23
Ps34

For large structures all elements considered with

their corresponding adjacent elements.
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PREDICTED MECHANICAL BEHAVIOR OF MATERIALS WHEN

SUBJECTED TO WEAPON SETBACK FORCES

Richard S. Simak

Munitions Development Branch

Munitions Division

Chemical Systems Laboratory

US Army Armament Research and Development Command

Aberdeen Proving Ground, Maryland 21010

ABSTRACT. Methods were investigated for estimating the mechanical behavior of various

materials when subjected to weapon setback forces. A mathematical model was developed for

predicting the dynamic behavior of the materials from which predictions concerning certain

material-geometry combinations were made. Tests were carried out with aluminum and steel

specimens and the resultant data were compared with results predicted by the mathematical model.

The mathematical model selected was a viscoelastic model involving viscous, elastic, and, in one

instance , plastic parameters.

1. INTRODUCTION. The design of chemical munitions involves several factors, among

them is the structural behavior of the munition components when subjected to various loads . One

important factor is the forces imposed by the launch environment which , for artillery rounds, is

referred to as setback . At present, the developmental emphasis is on system testing which yields

information on a specific configuration ; and, if the configuration is changed, the system must be

retested. In a few cases, bench testing supplements system testing and although the information

obtained from the bench tests is more general than from system tests , it is limited to the

geometry -material configurations tested . These two methods have resulted in increased project

costs and , at times, in schedule slippages.

What is required is an alternate and somewhat more general method for analyzing the effects

of the launch environment on munition components. Therefore, an investigation was undertaken to

develop such a method and, thereby, reduce the amount of munition flight testing and/ or dynamic

testing required with its associated costs.

II. BACKGROUND. Although the plastic deformation of solids at high strain rates was

commented on as early as 1904 by Hopkinson , it was not until 1941 when Von Karman2 and

Taylor each independently established the theory of plastic propagation in metals that this

phenomenon was seriously studied. Since the publication of this theory, a body of research data has

grown . In general, these data can be summarized into four general statements which are : ( 1 ) The

displacement mechanisms for metals subjected to impact loads are similar to those for statically

applied loads but they have different distributions;3 (2) there exists a time delay between the

application of impact loads and subsequent plastic yielding ;' (3 ) materials' strength increases when

subjected to impact loads, but by varying relative amounts for various materials, and the strain rate

affects both the strength and ultimate elongation of a material,4,5 and (4) previous investigations

showed that flow or viscous parameters are important.

III . MODELING EFFORT. Based on the information obtainedobtained during the

above -mentioned literature search , a mathematical model has been developed to predict the

time-dependent behavior of material. This model assumes that materials behave in an elastic manner
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below the proportional limit (arbitrarily set at 2% elongation ) and in a viscoelastic manner above

the proportional limit . In addition, the viscoelastic element must have a time delay or, in this case , a

viscous resistance feature which is known as a Voigt element. The mechanical analog of the model is

given in figure 1 .

o

o = Ee

o
3

8
1
5

de

ni

dt

+

Ee

Figure 1. Mechanical Analog of Elastic - Viscoelastic Model

The response equation for this model is the sum of the two equations given to the right of

figure 1. The time-dependent strain for this system is found by solving this equation for the model

when excited by the forces due to the launch environment. Once the strain relationship is known,

the other dynamic values can be determined . The dynamic values can , in turn , be substituted into

the equations describing the specific geometry of interest which will yield predicted values. This

methodology requires two types of data : first, an estimate of the forces imposed by the weapon

system which can be obtained from acceleration /pressure histories of the weapons system and

second the elastic and viscous constants of the material, which may be obtained from a statically

obtained true stress -strain diagram by assuming that the material behaves elastically below the

proportional limit and in a viscous manner above it. The graphical representation of this behavior is

shown in figure 2.

IV. EXPERIMENTAL. To compare the model predictions with experimental data, a

series of dynamic bench tests was performed involving two geometries ( the thin flat plate as shown

in figure 3 and the solid pin as shown in figure 4) and four materials (AISI 1018 and 1020 low

carbon steel, type 316 austenitic stainless steel, and 6061- T6 aluminum alloy ). The stress - strain

diagrams for all four materials were generated to provide elastic and viscous material constants, as

shown in figure 5 .
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deo
de

T.

dt

I
l

M

( 1 + Eo dt
S
T
R
E
S
S

(0)

EE

0

STRAIN ( e )

Figure 2. Idealized True Stress -Strain Diagram

PLATE

Figure 3. Flat-Plate Configuration
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PIN

Figure 4. Solid -Pin Configuration
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Figure 5. Statically Obtained True Stress -Strain Diagrams
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The bench -test machine used in this work was a drop table shock machine which produces a

controlled and reproducible acceleration at a constant pulse rate . The acceleration history for the

bench -test machine used is a half sine wave pulse ( a(t) = ap sin t ) . The response equation for

this system is :

de

n

dt7 을
Ee = map

sin

( ).

where the material response characteristics are on the left and the excitation forces are on the right

side of the equal sign . The time dependent strain for this system is :

Esin (1)+52 (5)
map n

e(t)

( ) t - 1 cos( )

(3) + (3)

17

which was obtained by solving the response equation. The dynamic modulus, that is, the stress

divided by the strain , for this system is :

[(#)*+ (*) ] náin( )

sin(4) - cos (*) + 10
(三 )

t

E
sin

ก

In this work , the burst strength of a flat plate or the shear strength of a solid pin was to be

measured; consequently , the system was evaluated at the peak stress This occurs when the

2

trigometric function in the numerator is equal to one. In addition, for these tests the pulse

duration (T) was in the millisecond range which further simplifies the modulus to

*(1-2)

φ

*-( ) .

The stress on a flat plate can then be found by solving the equation of motion for that

geometry

22w

at?

2 K2 222
24w

дх4

subject to theequation ofcontinuity v. = (*)e which is:

o = covoP (ar )

e
s
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(3) ( )
;

%½ 12

where the stress wave propagation velocity, co, equals ; radius of gyration, K , equals

Vhalf wave length , 1 , equals voT; and 2'equals ( 1 which accounts for radial and

20

circumferential displacement. The stress on a solid pin can also be found by solving the equation of

motion for that geometry , which is analogous to that for a flat plate.

V. RESULTS. The results of the dynamic bench - test effort are given in the table. This

work involved five material-geometry combinations and because of the “ go, no-go " nature of the

test setup only upper and lower strength values are reported. Along with the test values are

estimates of the precision of the shock machine, the elastic -viscoelastic model predictions, and, for

comparative purposes, strength predictions based on statically obtained material properties using

standard formulas.

VI. DISCUSSION. In comparing the elastic -viscoelastic model predictions with the

bench -test values for low carbon steel and aluminum alloy , it is seen that the two - element model

does adequately predict the behavior of these two metals. In comparing the two methods of

predicting strength values, it is seen that the predictions based on the elastic -viscoelastic model are

far superior to those made using standard strength values and formulas .

For the austenitic stainless steel type 316, the elastic -viscoelastic model predicted values

considerably higher than the upper bench -test value for the solid-pin geometry (9,232 lb versus

2,552 lb) . The most obvious explanation for this discrepancy is that the model as proposed does not

adequately account for the behavior of 316 whereas it does so for low carbon steel and the

aluminum alloy.

Both the low carbon steel and 6061- T6 aluminum alloy are basically pure metals doped with

small percentages of other elements to achieve certain desirable mechanical properties. In the case

of the aluminum alloy, the presence of these impurities in the crystal lattice tends to produce

barriers to metal flow which can be modeled as a viscous drag element. In the case of low carbon

steel, the presence of these impurities plus a susceptibility to strain hardening6 likewise tend to

produce barriers to metal flow which can be modeled as a viscous drag element.

On the other hand, austenitic stainless steel type 316 is a mixture of iron , chromium , and

nickel where the chromium and nickel atoms substitute for iron in the crystal lattice. Because of the

high nickel content (10 % -14 % ), this steel does not appreciably strain harden and is sometimes

referred to as free spinning steel .? This relative lack of strain hardening has been, in part, explained

by an “easy glide ” mechanism where the density of dislocations rises linearly with plastic strain.8 In

fact, the presence of impurities would be the only serious barrier to metal flow and is overshadowed

by the plasticity of the metal.

Since the austenitic stainless steel does not follow the elastic -viscoelastic model previously

stated , a new and more general model which accounts for the behavior of this material must be

postulated. Based on the above discussion, a three -element model shown in figure 6 is proposed .

This model involves an elastic element to account for the behavior below the proportional limit ,

followed by a Voigt element to account for the impurities, followed by a friction element to

account for the “ easy glide" phenomenon. The response equation for this system is the sum of the

three individual equations given in figure 6. The solution for the three -element model is analogous to

that for the previously discussed elastic-viscoelastic model .
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o = Ee

o0
de

η :

dt

+

1
5

Ee

oO = de

Figure 6. Mechanical Analog of Elastic -Viscoelastic-Plastic Model

In analyzing the true stress -strain diagram , three regions must be considered elastic

( 0 % -2 % strain ), viscoelastic ( 2 % -3.9 % strain ) or transitional, and plastic ( 3.9 % -59 % strain ) - instead

of two regions as in the previous model. This, in effect, reduces the value of the viscous constant,

thereby reducing the predicted shear strength from 9,232 to 2,833 lb. In comparing the three

methods of predicting strength values for stainless steel , type 316 , it is seen that the prediction

based on the three -element model is superior to those made using both the standard formulas and

the two-element model.

VII. SUMMARY. The mechanical behavior of materials subjected to impact loads can be

predicted by using relatively simple mathematical models to describe their behavior, two of which

have been discussed . The selection of model depends on the general form of the true stress -strain

diagram of the candidate material. The model parameters can also be obtained from a true

stress - strain diagram .

344



LITERATURE CITED

Clark, D. S. The Behavior of Metals Under Dynamic Loading. Met . Prog. 64( 5 ) , 671 .

( 1953 ) .

2. Von Karman, Theodore. OSRD No. 365. NDRC Report on the Propagation of

Plastic Deformation in Solids . January 1942 .

3 . Rinehart, J. S. , and Pearson , J. Behavior of Metals Under Impulsive Loads. Dover

Publications, Inc. , New York , New York . 1965 .

4. Clark, D. S. , and Wood, D. S. The Tensile Impact Properties of Some Metals and

Alloys. ASM Trans. Q. 42, 45-74 ( 1950).

5 . Wood, W. W., et al . Final Report. Advanced Theoretical Formability , Manufacturing

Technology. Contract No. AF33 (657 ) - 10823. USAF, AdvancedUSAF, Advanced Systems Manufacturing

Technology Division . January 1965 .

6. Guy, A. G. Introduction to Materials Science . McGraw -Hill Book Company, New

York , New York . 1971 .

7. Zapffe, C. A. Stainless Steel. American Society of Metals, Cleveland, Ohio . 1949.

8 . McClintock , F. A. , and Argan, A. S. Mechanical Behavior of Materials.

Addison -Wesley Publishing Company, Reading, Massachusetts. 1966.

345



GLOSSARY

o Stress

E True strain = ln ( 1 + € )

eo Engineering strain

E Modulus of elasticity

n Viscous parameters

8 Plastic modulus

p Density

A Shear area

I Moment of inertia

v Poisson's ratio

0 Dynamic tensile modulus

=

Dynamic shear modulusΦς

2( 1 + v)

W Displacement

t Time

A Half wave length = voT

vo Impact velocity

ap
Peak acceleration

T Half sine wave period

X Radial component of flat plate

12

со Initial stress wave propagation velocity =03*p

12

K Radius of gyration =

-(1)
m Mass

12 Factor equal to ( 1 +(1 12/2201

- - -
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SUCCESSFUL APPLICATION OF STEWARTSON'S LIQUID INSTABILITY /STABILITY

CRITERIA TO THE DESIGN OF ARTILLERY PROJECTILES

John M. Ferriter

Munitions Development Branch

Munitions Division

Chemical Systems Laboratory

US Army Armament Research and Development Command

Aberdeen Proving Ground, Maryland 21010

ABSTRACT. The use of Stewartson's instability theory, in the design of liquid -filled

projectiles, is a valuable tool for the munitions designer. A summary of Stewartson's theory,

expanded to include viscous and liquid spin-up effects, is presented . Design procedures for applying

the theory with an example are shown. Three examples, where the theory has been successfully

applied , are also given .

I. INTRODUCTION. Early efforts in the design of liquid - filled projectiles gave engineers

problems primarily because there was not a clear understanding of the liquid instability mechanism .

When early projectile designs became unstable during flight, it was postulated that the failure of

liquid to attain full spin (i.e. , rigid body rotation ) prior to shot exit was the chief cause for

projectile instability . Longitudinal baffles were designed which effectively compartmentized the

projectile cavity . The baffles spun the liquid up as the projectile casing spun up in the tube ;

however, this was not sufficient to ensure that the projectile would be dynamically stable. Two

problems encountered were : ( 1 ) Even though the liquid was completely spun up prior to shot exit,

the baffles in the projectile could have been positioned so that asymmetries existed between the

center axis of the projectile and the center of the baffles and because of this asymmetry , which could

cause the projectile to be unstable, the designer could not predict whether or not two similar

projectiles would be ballistically stable ; (2) difficulties were also encountered in fabricating the

transverse baffles due to projectile internal tolerances.

In an effort to observe the effect of liquids on the stability of projectiles, experiments were

conducted in which lightweight projectiles were fired at low velocities . Low launch velocities

enabled visual observations of projectile flight behavior. The problem encountered with this

technique was that, unless flight behavior was dramatic, it could not determine if the wind and /or

liquid caused the observed behavior.

The only theory explaining the effect of liquid in a spinning body was Greenhill's work

related to spherical cavities. The theory showed that , if a spinning spherical top containing liquid

was disturbed , the liquid was disturbed to a lesser degree. The liquid disturbance created natural

oscillations which were characterized by discrete eigenfrequencies. The important aspect of the

theory was that, if the natural frequency of the liquid coincided with a natural frequency of the

top, the top could exhibit unstable motions. The coincidence of the two frequencies created a

hydrodynamic couple, known as resonance . It turns out that, for a spinning spherical liquid -filled

cavity , only one characteristic frequency causes resonance .

Stewartson's theory analyzed the liquid effect on a spinning top. The interior geometry of

the spinning top was a right circular cylinder. Stewartson found a double infinite number of modes

of oscillation which would affect top stability unlike the sphere with only one mode . The modes are

.
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characterized as radial (n) or axial ( i) halfwaves. Resonance between the nutational frequency of the

projectile and a natural frequency of the liquid causes dynamic instability. However, an important

outcome of Stewartson's theory was that the designer could control resonance by varying the fill

ratio and cavity fineness ratio ( internal length/diameter ratio ). Stewartson's theory has been a

primary design tool in the design and development of liquid - filled munitions. The purpose of this

paper is to show how the theory has been utilized for the design of liquid -filled projectiles. No

mathematical derivation of Stewartson's theory will be provided as it is available in literature .

II . DYNAMICS OF LIQUID-FILLED PROJECTILES. The paper will not discuss in detail

the dynamics of liquid -filled projectiles but will just mention a few key principles. The spinning

liquid exerts pressure forces on the inner wall of the projectile and also is excited to a lesser degree

when the projectile is subjected to an external disturbance. These two points show that there exists

a complex interaction between the spinning projectile and internal liquid . The Navier -Stokes

equations describe the perturbed fluid motion within the spinning projectile. The following

boundary conditions are used with the Navier-Stokes equation : ( 1 ) Pressure is a constant on a free

surface, (2) tangential components of the flow velocity and the velocity of the wall are equal, and

(3) the normal components of the flow velocity and surface velocity are equal . A complete

mathematical derivation can be found in literature .

III. STEWARTSON'S THEORY. When Stewartson's theory was applied to the design of

liquid -filled projectiles, the results were twofold : ( 1 ) The theory provided the knowledge of the

instability mechanism -resonance between the liquid eigenfrequency and projectile nutational

frequency and (2) the theory provided designers a quantitative means for designing liquid -filled

projectiles. The theory does not definitely predict the design will be stable but it does definitely

state if a design is unstable.

Stewartson developed his theory using the following assumptions : 2

1 . The internal cavity is a right circular cylinder – this limits the shape where the theory

is applicable. However, in the case of binary projectiles, currently in development, right circular

cylinders are used to contain the liquid.

2. The overturning moment is the only significant aerodynamic force . By neglecting the

other aerodynamic moments, we can concentrate on the one force which will affect projectile

stability with a liquid -filled payload.

3 . The projectile flies with constant velocity and spin. In actuality , projectile spin

decreases throughout flight where projectile velocity will decrease until apogee and then increase

until impact. This assumption is chosen mainly for convenience ( steady state ).

4 . The liquid is in rigid body rotation at shot exit with its spin identical to that of the

projectile. This neglects liquid spin -up which does vary depending on liquid and launch conditions.

However, it is a good assumption for first approximations.

5 . The centrifugal force of the liquid is so much larger than the gravitational or drag

forces – the other forces can be neglected in the analysis.

6. The mass of liquid is small compared to the mass of the total projectile ( this was taken

for convenience ). However, in actuality, it is a good assumption since most binary liquid payloads

are approximately 10 % of total projectile weight.

-
-
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7. The liquid is incompressible and inviscid . Incompressibility is a good assumption for

the liquids used ; however, viscosity plays an important role in liquid spin-up.

8 . External shell disturbances are restricted to small yaw amplitudes and the liquid

experiences only small perturbations due to this external disturbance – the projectile can

experience large yaw amplitudes. However, the assumption is acceptable to initial design procedures

for liquid -filled projectiles.

Stewartson's theory provides the designer with two important facts:

1 . The projectile yaw will grow without limit under certain conditions . Figure 1 depicts

normal projectile yaw, whereas figure 2 shows yaw growth without limit.

2 . The liquid conforms to cavity motions through excitation of small amplitude

oscillations superimposed on the rigid body rotation .

Stewartson's instability criterion for minimizing resonance is : 3

Τη- Το
-1 < < 1

S

where
in = nutational frequency of projectile

То = natural frequency of liquid

S = Stewartson's parameter

p [2R ] 2a5

Ixo c / a

where p = density of liquid

2R = pole value, Stewartson table

a = cavity radius

C = cavity length

Ix = axial moment of inertia

o = ( 1 - 1/ 8g) %

Sg = gyroscopic stability
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IV . VISCOUS EFFECTS.4 Stewartson assumed the liquid to be inviscid. However, the

viscosity of the liquid changes Stewartson's overall theory in the following ways : ( 1 ) The viscosity

of the liquid will shift any liquid eigenfrequency slightly , and (2) the instability band for resonance

is broadened . The inviscid eigenfrequency is

+ TOin
T =

2

IDI
-TO)?$

:["
+

4 OL

When viscous effects are included , the eigenfrequency becomes

5

q = 'n + Tov
IDI

(In- Tov)?

[
+ +

2 4 OL

where

дто с da 8c дто 262 ба

Tov = TO
+

+

ac /a (2j + 1 ) ( 2j +1 ) a с 3b2/a2 a2 a

The difference of the viscous and inviscid liquid eigenfrequency, Ato, is composed of a real and an

imaginary part ( Tov -To = AT0 = € - id ) . The real part is added to the liquid eigenfrequency to shift

it slightly where the imaginary part broadens the resonance band. Stewartson's instability criterion

is modified to

8

-4*
to + e - in

✓s < (1 mi)S

when viscosity is taken into account.

V. SPIN -UP . One of Stewartson's assumptions was that the liquid is at rigid body rotation

at shot exit. This assumption has been experimentally shown (using on-board. telemetry in

projectiles) to be invalid . The liquid spin -up - defined as the process where the liquid acquires

angular momentum – varies depending on liquid viscosity and projectile launch conditions. As the

liquid spins up, the projectile casing spins down until liquid rigid body rotation is attained . The

liquid close to the wall will spin up due to the frictional force between the liquid and the projectile

casing. A second spin -up phenomenon exists which is defined as Eckman layers. An Eckman layer is

formed when the canister ends act as centrifugal fans sucking the liquid from the nonrotating center

core and throwing the liquid outward. The question is how to include liquid spin -up in the analysis

of a liquid -filled projectile. Wedemeyer has shown that eigenfrequencies in a partially spinning fluid

are the same as an equivalent cylinder having the same angular momentum . Knowing this, the

designer can determine the stability of the projectile as liquid acquires angular momentum . The

designer can evaluate spin -up at various stages; i.e. , 10 % spin -up, 20 % spin -up.

The curves in figures 3 and 4 depict liquid spin -up.
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VI . APPLICATION OF STEWARTSON'S THEORY. The designer must apply

Stewartson's theory modified for viscous effects to the steady state condition (no liquid spin-up)

and then examine projectile stability during liquid spin-up. The following design steps may be used

as a guide.

1 . First a liquid fill must be chosen. The internal cavity dimensions will be designed

dependent on the liquid chemistry and the fact that the liquid -filled projectile should weigh the

same as conventional munitions of the same external shape.

2 . The physical characteristics of the proposed design (moments of inertia, weight) are

then used to calculate gyroscopic stability. Gyroscopic stability predicts projectile stability at shot

exit.

3.

effects.

The viscosity of the liquid should be checked to see if it is sufficient to produce viscous

4. Determine Stewartson's instability criteria.

5 . If the projectile is stable in steady state , the stability during liquid spin-up should then

be examined .

The following example will illustrate the first four steps. The fifth step is lengthy due to the

number of iterations needed to determine stability during liquid spin -up.

155 -mm Projectile

Step 1 : Determine the initial physical characteristics.

Ix = 19.525 slug-ft2

ly = 198.224 slug- ft2

m = 3.20 slug

n = 20 cal /turn

pa = 0.002378 slug/ ft3

d = 0.51 ft

a = 0.17 ft

c / a = 4.65

CMa= 5.96

Mp = 0.236 slug

The above constants are projectile physical characteristics calculated from step 1 or initial

launch conditions; i.e. , air density , bore rifling, and static moment coefficient.
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Step 2 : Next, calculate the rigid body gyroscopic stability.

Sgr
p2

4M

р

Ix 24

Iy n

0.0309

4M = 4
pas'd

ky
2n

-2Cma
= 0.00049

Sg . = 1.95

The nutational frequency of the projectile is then calculated .

Tn

Ix

ly

( 1 +0)

o = ( 1 - 1/882)S = 0.698

In = 0.167

The liquid gyroscopic stability is checked .

Ixo 2

S8L
SET

Ixo + ixo

ixo
= 0.696 slug- ft2

Ivo
I.

ixo
= 18.829 slug -ft2

Xх

SgL = 1.81

354



Step 3 : Determine viscous effects.

v = launch velocity = 1027 ft /sec

2017

12 = v = 632.6 radians/sec

nd

a = 5.2 cm

v = 1.1 X 102 stoke

Re = 1.55 X 106

E = 0.0003

8 = 0.0007

€ & 8 are sufficiently small that effects due to viscosity may be neglected .

Step 4 : Calculate Stewartson instability at steady state .

Cavity is 90% full or b2 /a2 = 0.02

c/a = 4.65

Construct the following table :

j 4.65/2j + 1 To (n, j) 2R

0 4.65

-

1 1.55 0.35 (1,1) 1.359

2 0.93 0.45 (2, 2) 0.343

3 0.664 0.24 (2, 3) 0.119

Stewartson's table (b2 /a2 = 0.02) is entered knowing columns 1 and 2 above, where radial

modes n = 1 , 2 , 3 are checked to find to (column 3 ) and 2R (column 4) .

Stewartson's parameter is calculated

S = 0.38 x 10-2 (2R )2

for n = 2 , j = 3

S = 5.38 x 10-5 5 = 7.33 X 10-3

To - Tn
-1 < < 1

✓s

-1 < 9.96 < 1
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The instability criteria show the projectile should be stable at steady state .

VII. PROJECTILES DESIGNED USING STEWARTSON'S THEORY. Designers must keep

in mind that the chemical -filled round is normally required to be ballistically similar to a

conventional round in the same family. This allows the use of conventional rounds as spotter rounds

and also allows the use of the same firing tables with minor corrections. Projectiles are ballistically

similar when the following are nominally the same: ( 1 ) external shape, (2) drag, (3 ) weight, and

(4) internal ballistic characteristics. However, differences in physical characteristics may exist ,

provided that the effect of these differences on the means of the burst point distribution are

predictable and can each be compensated for by the application of constant corrections for each

charge.

A. M687 Projectile . The first binary round to apply Stewartson's theory was the M687

projectile. The advanced development round (see figure 5 ) was designed using a computer model of

Stewartson's theory . Initial dispersion differences for impact points were attributed to

miscalculation of range or the use of a faulty propellant or both . At the same time, failure of the

burst disks to shear (which allows mixing of the liquids) and also changing the internal cavity

from two to one right circular cylinder masked an instability problem. Increased instrumentation

( on -board telemetry packages and high -speed tracking cameras) showed that the M687 round had

stability problems. The M687 projectile used the same aerodynamic shape as the M483 improved

conventional munition , a stable design . Therefore, the instability was attributed to the liquid

payload. Analyses of the computer model revealed that liquid spin-up was neglected. The model

predicted steady state behavior. The model was revised to incorporate the liquid spin-up

phenomenon. The incorporation of the liquid spin -up resulted in the shortening of the internal

cavity by 3.8 cm. Subsequent field trials showed the design to be stable under the severest launch

conditions. Figure 6 shows the final design .

B. XM736 8 -Inch Projectile. The XM736 8 -inch projectile is currently in the development

cycle . It has the same aeroballistic configuration as the M509 improved conventional munition . The

mputer model of Stewartson's theory , including viscous corrections and liquid spin-up, was used

to arrive at the present design ( figure 7 ). The use of Stewartson's theory minimized the possibility

of a liquid stability problem . The XM736 projectile has a very stable aerodynamic shape ; that fact,

plus the adaptation of Stewartson's theory , produces a stable design even under the severest launch

conditions.

C. 155-mm IVA Projectile. The 155-mm IVA projectile is currently in exploratory

development. Stewartson's theory has been adapted for a number of liquid fills. All the designs have

been successfully flight tested . A typical configuration is shown in figure 8.

Even though Stewartson's theory can only predict unstable rounds, the use of the theory has

minimized costly testing by eliminating poor designs on the drawing board prior to fabrication .

Tremendous success has been achieved in the design of liquid - filled projectiles by adapting

Stewartson's theory. Currently, at Chemical Systems Laboratory , an independent laboratory

in -house research project is in progress to expand Stewartson's theory for an internal step design.

Stewartson's theory assumes a constant inside diameter. Current projectile designs may require a

step design – two different inside diameters. The current approach for design of such projectiles is

to assume a mean diameter. So far this has been successful. However, it is anticipated that a

quantitative method will result from this research study.
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Figure 5. Advanced Development Round Design
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Figure 6. M687 Projectile Final Design
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VIII. CONCLUSION. Stewartson's instability /stability theory modified to include viscous

effects and liquid spin -up provides the designer with a useful tool in liquid -filled projectile design .

The use of Stewartson's theory in the design of binary chemical rounds has been very successful.

The theory has reduced costly testing by computer modeling prior to fabrication and subsequent

flight tests.

LITERATURE CITED

1 . Stewartson , K. On the Stability of a Spinning Top Containing Liquid. J. Fluid

Mech . 5, Part 4 ( 1959).

2. Karpov, B. G. BRL Report 1477. Dynamics of Liquid -Filled Shells – Aids for

Designers. May 1963.

AMCP 706-165. Engineering Design Handbook . Liquid - Filled Projectile Design .3.

April 1969.

4. Wedemeyer, E. H. BRL Report 1287. Dynamics of Liquid -Filled Shell: Theory of

Viscous Corrections to Stewartson's Stability Problem . June 1965.

359



-



TOTAL TIME ON TEST PLOTS

Richard E. Barlow and Bernard Davis

University of California , Berkeley

Berkeley , California

1 . INTRODUCTION

In this paper we present a particular graphical technique which is

very useful in analyzing failure and survival data . The central concept

in reliability theory is that of the failure rate . This is a feature of

the life distribution . In fact , if the life distribution is continuous ,

which is very often the case , the failure rate uniquely determines the

life distribution .
Failure rate and aging are two very closely related

concepts . For instance , if the unit which is being tested or is in

service does not age with time , that is , its residual age is independent

of its present age , we might say its life distribution has constant

failure rate . This is the well - known characteristic property of the

exponential distribution i.e.

F (x) = 1 - exp {-x / 0 } 0 > 0

x > 0

Then ,

Prob (x > x + y 1 X > x ] -
Prob ( X > x + y )

Prob (x > x)

= exp { - ( x + y ) / 0 } / exp {-x / 6 )

= exp {-y/0 )

3

Prob { X > y ) .

This research was supported by the Air Force Office of Scientific Research

( AFSC ) , USAF , under Grant AFOSR - 77-3179 with the University of California .

361



It can be shown quite easily that the only continuous life distribu

tion with the non-aging property

Prob [X > x + y | X > x ] P [X > y ]

is the exponential [ 3 ) .

This is an ideal life distribution where the units of every age have

the same residual life distribution as new units .

We have used the term " failure rate " earlier and we shall give a

precise definition of the term below .

The conditional probability that a unit of age t will fail in the

next interval of length х is

F (x/ t )
F ( t + x ) - F ( t )

F ( t )

where ( t ) = 1 - F ( t ) is the survival function .

The failure rate r ( t ) at time t is defined to be

r ( t )
1 F (x + t) - F (t )

= lim

F (t )
x

x + 0

f ( t )

F (t )

where f ( t ) is the density function of F . Note that f ( t ) will exist

if F is an absolutely continuous distribution . Most of the life distribu

tions of interest are absolutely continuous , so , unless we specify otherwise ,

we shall assume that the density function exists for all the distributions

under consideration .

If we integrate the failure rate function between O and x

we get
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х

So
f (t ) dt

r ( t ) dt =

F ( t)

Log F (x)

i.e.

х

F (x) = exp r ( t ) dtat ?!

So we see that the survival function ] , and hence the distribution

function F is uniquely determined by the failure rate function r ( t ) .

For the exponential distribution ,

r ( t )
1/0 exp { -x / 0 }

exp { -x / o }

= 1/2

i.e. the exponential distribution has constant failure rate .

Other classes of life distributions of interest are the Increasing

Failure Rate ( IFR ) distributions and the Decreasing Failure Rate (DFR)

distributions . As the name suggests , a life distribution F is IFR if

r (x) is increasing and similarly ,
F is DFR if r (x) is decreasing .

Usually , items which during their life-span are subjected to wear tend to

have life distributions which are IFR . The closest to a constant failure

rate is exhibited by life distributions of electronic components which

degrade very slowly and then only at the atomic level .

The interpretation of IFR is that as the item on test gets older , the

distribution of the residual life tends to get closer to zero in some sense .
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In terms of probabilities ,

Prob [X > x + y | X > x ]

decreases in х for all y > 0 , assuming , of course , Prob ( x > x ) > 0 .

A similar explanation applies to DFR distributions . For a rigorous

treatment of the above see [ 8 ] .
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II . TOTAL TIME ON TEST

This classification of life distributions into IFR , DFR and constant

failure rate distributions is of particular interest in reliability

engineering and maintenance planning . For example , in formulating replace

ment policies , if it is known that the life distribution is either

exponential or DFR , then clearly the optimal policy is to replace only

upon failure .

Let us now suppose that we have a random sample

X2,82
X

n

from a life distribution F.

Let X (1 ) < * (2) < X (n)

be the ordered observations . Then ,

T (X (i)
).

- *9)
{, *(4 ) + (n - 1) x

* ( 1 )
j = 1

is defined to be the total time on test till the ith failure .

In general , if we denote by n (u) the number of items on test at

time u ,

T (x) =

---
n (u) du

is the total time on test till X.
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The total time on test we have defined above is not scale-independent

so usually it is scaled by dividing by T (X (n) )

Define

T (X4)(1 .
H (i/n)
n T (X

(n) )

Then H. (1/ n)
is called the scaled total time on test till the ith

failure and the plot of (i/n, 4. ( 1 /n) )( i / n , H ( i /n) ) where adjacent points are joined

by straight lines is known as the empirical scaled total time on test .

We define H. (0) = 0 so that the plot lies in the unit square and is

0 at O and 1 at 1 .

If the underlying life distribution were really exponential it can be

quite easily shown (see [ 2 ] ) that
(H) ,

H

n

are jointly

distributed like the order statistics from a sample of size n - 1 from

a Uniform [ 0,1 ] distribution . Hence , we might expect H to lie

close to 1 /n so that the plot would be quite close to the diagonal .

Figure 1 shows an empirical scaled total time on test computed from a

simulated exponential distribution with n = 20 .

The theoretical basis for considering this plot as an exploratory

tool for determining whether the underlying distribution is IFR , DFR or

exponential is as follows :

Let F. (n) be the empirical distribution function determined by
n

the sample .
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i.e.

0 if x < X
X (1)

S

F ( x )
n

i / n

if * ( i ) < * < x ,* (1 + 1)

1 if

* (n ) { x .

Then it can be shown quite easily that

X (1)

. 108/13) ļ
S F( 1 - F. (u)) dn .

Now define a transform of the actual distribution function as

follows

F-1( t )

1+ ( t ) = 5 ( 1 - F ( u) ) du 0 < t < l .

0

The slope of (t)( t ) at
t = F (x) can be shown to be

)

1

r ( x )

Suppose that F has finite expectation , then the plot of

-1

H- (t )

(t , is known as the scaled total time on test plot of F.

Н. ( 1 )

Figure 2 shows scaled total time on test plots of selected Weibull

distributions . The significance of this plot is that the total time on

test plot of an exponential distribution is the diagonal , that of an IFR

distribution is a concave curve and that of a DFR distribution is a convex

curve . Note that the Weibull family has both IFR and DFR members

depending on the shape parameter .
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It has been proved (see [ 2 ] ) that as the sample size increases the

empirical plot converges to the total time on test plot of the actual

distribution so that the empirical scaled total time on test is a very

valid graphical tool to study the failure rate with .

Figure 3 is based on failures of engines of a certain model tractor .

Data on 22 tractors were available and we had the times of failures of the

tractors due to engine failure . When the original engine failed it was

replaced by a reconditioned one and when it failed it was replaced by yet

another reconditioned engine . An analysis of the life times of the engines

showed that the original engines had life times which were quite IFR but

the reconditioned engines were not quite as IFR (see [ 4 ] ) . For a related

paper which contains several kinds of data see ( 1 ) .

When the underlying life distribution is exponential we saw that the

empirical scaled total time on test tends to lie close to the diagonal .

This fact can be exploited to formulate a very simple test for exponential

ity . If the plot were to follow the diagonal we might expect it to cross

the diagonal a number of times . Then the number of crossings of the diagonal

by the plot could be used as a test statistic . This was proposed by

Barlow and Campo [ 2 ] and they computed the sampling distribution of the

number of crossings when n = 20 using simulation . The exact distribution

of the number of crossings has been computed by Bergman [ 5 ] .
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III . APPLICATIONS

One application of the total time on test plot is a method for

determining graphically optimum replacement policies .
We will use the

tractor engine data for an example . Suppose C1 is the cost of a

tractor failing in service and c2 is the cost of pulling out a tractor

and replacing it during a planned maintenance period . We will assume that

Ci
F Rdenote the underlying life distribution and letC2 · Let be

the planned operating time between overhauls of the engine . Then the

expected long run cost of using the maintenance policy R is

C F (R) + c2 ( 1 - F ( R ) )
C ( R)

R

ſ(1 - F (u) ) du

Since F is unknown we replace it with F

n

the empirical distribu>

tion function . Then , given
C1

and
C2 we want to determine the optimal

R by minimizing

c2Fn (R) + c2 ( 1 - F. (R ))
C (R)

R

( 1

Fn ( u ) ) du

0

Usually this is done numerically but we can use the total time on

test plot to do it much more easily .

Recall that the total time on test till the ith failure was

defined to be

X

X ( i )

T(X(1) - [ n (u) du
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X (1)

- 1 F( 1 - F. (u ) ) du .

So that ,

X(1)

(A)=7(x_x))= { 1 - (w))du

Now , minimizing C (R) is equivalent to maximizing

CIR)
1

C (R)

( 1 / n ) T (R)

Fn (R ) + c2 ( 1 - F. (R ))1n

( 1 / n ) T (R)

C2

( cy - C2 )
+ F ( R )

1 C2enܐ
n

T(R)/T(% ( )
T (X )

nie , - cz) 6.2 cm+ )

Clearly , maximizing the above is equivalent to maximizing

T (R) /T (% (n)

(*)

c2

+ F (R)

Ci - C2
n

To get the R which maximizes the above , draw the tangent from

C2

to the empirical scaled total time on test plot .

Ci - C2
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.
.

Let s denote the abscissa of the point of tangency .

Then ff (s ) is

the desired value of R. From the graph (Figure 4 ) it is seen that the

slope of the tangent is the maximum value of ( * ) .

This procedure can be implemented on an interactive computer graphics

system to determine the sensitivity of R to different values of the costs

ci
and

C2
Of course , the major drawback of this method is that

if the empirical total time on test plot is based on a very unrepresentative

sample then the resulting value of R may be worthless . On the other hand ,

if F were known we would use the transform of the actual distribution

and the same method can be applied to the plot of the transform to compute

R.
In Figure 4 we have taken cı - 3c2 and the optimum replacement

policy is to overhaul the engines after 4815 operating hours . For related

work see [ 4 ] , [ 6 ) .

1
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IV . THE BIVARIATE CASE

One area of reliability theory where not much work has been done is

in graphical analysis of multivariate data . The problem has been to

represent higher dimensional data or statistics on paper or any 2 - dimensional

medium . Some initial attempts have been made to tackle the problem in

the bivariate case . We present below a technique for extending the total

time on test concept to bivariate data .

In the univariate case the life distribution was completely determined

by the failure rate function r (x) and the total time on test plot was

used to determine the behaviour of f ( x) . In the bivariate case , in

addition to aging we have the added complication of dependence .
So instead

of having just the failure rate we have a hazard gradient which is written

as

f (x , y)
3

(r, (x , y) ,r2 (x, y ))

As in the univariate case , if the underlying life distribution

F (x , y) on [0,00 ) x ( 0,00 ) is absolutely continuous , then f (x, y) determines

F (x ,y ) uniquely . In fact it can be shown [9 ] that

(x, y)

r ( z ) dzF (x , y ) = exp

where + (x, y) = Prob {X > X , Y > y}= Prob {X > X , Y > y} and the line integral is

path-independent .

The interpretation of the hazard gradient is as follows :

ri (x, y)
Conditional failure rate of

X given Y > y .
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r2 (x , y)
= Conditional failure rate of

Y given X > X.

One of the properties of the hazard gradient is that the behaviour

of as y asvaries and the behaviour of r2 (x , y) х

f (x , y)
varies

describe the nature of the dependence between X and Y. For instance ,

if ry (x , y ) is decreasing in y
then the conditional failure rate of

X given Y > y decreases as у increases , which is a form of positive

dependence .

Now let us suppose we have a sample

( X,,Y,) ( X. Yn

from absolutely continuous bivariate distribution F on [0,00) x (0,00 ) .

Let

Y ( 1 ) < Y ( 2 ) : <
< Y

Y (n)

be ordered Y-values . Let X (1 ( 1 ) ) be the order statistic of the

X -values associated with ¥ ( 1) ·

Now define a sequence of subsamples of the X - values as follows :

x = {x (1)) . X

X ( (n )) }

x?
1

X {X (+ (2));
X

Xam( n))

x2 = {X (11(3)); X ( (n)) }

:

xn-1 . { X (+(0 )
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Define

T“ ( j )J

{ }, * )+ (n- K - 12
j)xk

//
X

i

i=1

0 < n - k

0 < k < n - 1

where exk xkm-ko? are the ordered observations in xn-k .
( 1 )

Now plot

slrk(3), ):

{ *
0 < k « n - 11

0 < j < n - kl .

We call this the empirical conditional scaled bivariate total time on

test plot of X given Y. From this plot , as in the univariate case , we

can determine the behaviour of 14 ( x , y ) . We do a similar plot with

in order to study r2 (x , y ) ·
the Y's

Figure 5 shows a bivariate plot based on running and down times of

the Yankee Nuclear Power Plant . We present the conditional plot of the

down times given running times . The plot indicates that the down and

running times are positively dependent and the down times are DFR .
А

Bivariate Weibull appears to be a likely model . The bivariate case is

discussed in detail in [ 7 ] .
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ABSTRACT

When there are available several point estimators of component or

system reliability , it would be of interest to compare such estimators

through some "closeness to the true value of reliability" criteria .

Along these lines , the concept of Pitman -closeness efficiency is

introduced . Essentially , when comparing two estimators of reliability

for a given situation , Pitman - closeness efficiency gives the odds in

favor of one of the estimators being closer to the true value of

reliability than is the other . Theory is developed which provides a

straightforward way to evaluate this measure of efficiency under

fairly general conditions on the estimators . Based on this methodology ,

a comparison is made of several estimators of reliability based on

Type II censored data from the one-parameter exponential failure model .

Key words : Pitman -closeness efficiency ; Reliability function ;

Exponential failure model; Comparison of estimators.

This paper was presented ( under a different title ) at the 23rd Conference

on the Design of Experiments in Army Research , Development and Testing .
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PITMAN - CLOSENESS EFFICIENCY OF ESTIMATORS

OF RELIABILITY WITH APPLICATION TO THE

EXPONENTIAL FAILURE MODEL

Danny Dyer and Jerome P. Keating

1 . INTRODUCTION

Point estimation of component or system reliability at time t ,

R(t ) = Prob { X > t } where X is the failure time , is a frequently con

sidered problem . Generally speaking , for the commonly assumed failure

models , there are various methods by which an estimate may be abtained .

When there are available several point estimators of R(T ) , the tradi

tional method of comparing such estimators is mean squared efficiency

( 1.e. , the ratio of mean squared errors ) . However , except for a few

cases (e.g. , Zacks and Even 1966 , Sinha 1972 : exponential failure

model ; Zacks and Milton 1971 : normal failure model ) , the determination

of a closed - form expression for mean aquared error can prove to be a

difficult task . Furthermore , mean squared efficiency compares the

average performance of an estimator relative to another ; consequently ,

its usefulness isn't always clear , especially when a single estimate

is to be made . Finally , mean squared efficiency can be misleading and

unrellable ( see , e.g. , Dyer , Keating , and Hensley 1977 ; Box and Tiao

1973 , p . 307 ) .

We , therefore , propose another measure of efficiency motivated by

the following idea due essentially to Pitman ( 1938 ) . Let
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failure model with unknown parameter e.

Ry(t) = 8 ;( X37 ,n ), 1 = 1,2 , be two estimators of reliability

R ( t ) = h(1,0) based on a random sample X of size n from a given

Then & ( ) is said to be

a Pitman - closer estimator of R( + ) than 18 R ( ) LF

Probllß ( ) - R ( 7)la R (1) - R( 7 ) | ) 2.5 ( 1.1)

for all ( 1,0 ,n) with strict inequality for some ( 79 @gon ). [ Note:

Under Pitman's original concept , ProblÃ (1) - R( 0 ) 1 < 1R ( ) - R( + ) / 1

would be a fiducial probability statement . In this paper , however ,

ProblIR (1) - R( 7 ) / < IR ( ) - R( q ) ] ) is determined in the classical

sense and , therefore , has a relative - frequency interpretation . ] We

define the Pitman -closeness (PC ) efficiency of Â ( ) relative to

R$ (1) as

rel.eff.pc(R ( ), ( );7,0,0 )

Probl/R,(2) - R( ) } < TR (2) - R( 1 ) | 1 (1.2)

Problli (2) - R (x )} < IR (1) - R( = ) ) }

1
1

Pitman - closeness efficiency gives the odds that one estimator is

closer (in absolute value ) to the true value of reliability than is

the other estimator . For example , if rrel.eff.pcl ,( ),R (T);

7,0,0) = 1.5 , then the odds are 3 to 2 in favor of R2(c) being closer

to R(q ) than is R (1). When rel.eff.pclk,(1), (1 ; 1,0,1 ) > 1

for some (709@ gono we shall say that Ã,(+) is more Pitman - closeness

efficient than Ry(«) at ( 70,90,90 ) . If rel.eff.pc( (o),

R ( );7,0,0 ) 1 for all (1,0 ,n ) with a strict inequality for
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some ( TO , BDO 70 ) , then R,(T) is said to be Pitman - closeness inad

missible relative to R,( ).

In this paper , we develop theory which provides a straightforward

way to evaluate ( 1.2 ) under fairly general conditions on the esti

mators . Through the use of Pitman -closeness efficiency , we then

compare several estimators of reliability based on Type II censored

test data from the ( one - parameter ) exponential failure model . The

estimators considered are based on (a ) the method of maximum 11kellhood ,

(b ) minimum variance unbiasedness , and ( c ) the mean and median of

Fraser's structural distribution of R( T ) .

2 . THEORY AND METHODOLOGY

Let RCT ; n) be an estimator of reliability R( T ) which depends on

( i ) the sample size n, and ( ii ) and the life - test data only through

a statistic T whose range is I. We shall say that ( T; n) is a non

decreasing full -range estimator of R( t ) if , for fixed n,

( 1 ) Ř : I onto [0,1] ( it may be that one or both endpoints of

[0,1] are attained only by considering the extended range

( 11 )

of T ) , and

ŘCT ;n ) is a nondecreasing function of T on I but is strictly

increasing on I ' C I , where 0 < ŘCT ;n ) < 1 whenever I EI ' .

We assume Prob { T EI ' } 0 .

A nondecreasing full - range estimator of RC T ) is necessarily continuous

on I.

384



estimators of R( t) .

.

Definition 2.1 Let Ry (T ;n ) , 1 =1,2 , be nondecreasing full -range

For fixed n , xo is said to be a point of inter

section of & (Tin ) and R,(Tin) provided

( 1 ) R (Xoin) = R (xoin);

( 11 ) for arbitrarily small e > 0 , R, (Xo + € ;n ) - R (X0 + 6 ;n )

and R,(xo - 6in ) - R2 ( x , - € ;n ) have opposite signs .

Definition 2.2 Let R,(Tin ), 1=1,2 , be nondecreasing full- range

For fixed n , y , is said to be a switching point

of R (T;n) and R (Tin) at R( T ) provided Rz(yoin) + R (99;n) = 2R( 7 ) .

хо depends only on the sample size n ; y , depends on

n as well as R( T ) . For fixed n , let IC I be the set of points for

which Ř (T;n) and R (Tin ) are not both zero or both one .

TEI , R (T;n) + R (Tin) is continuous and increasing , thus the

switching point of R (Tin) and R (T;n) at RCT ) is unique.R ( ) We now

estimators of R( T ) .

Note that

When

prove the main result of this section .

Theorem 2.1 Let

mators of R( T) .

( T ;n ), i=1,2 , be nondecreasing full -range esti

In In : ( a ,b ) , let yo be the unique switching point

at r( t ) and suppose that Ř (t;n) = Â (t;n) only at a finite number

of points of intersection , say , xq ....,X. IF R,(t;n) > Â (t;n)when

ever t € ( a , min (x2 , ... ,xn )), then

ProblIR (T;n) - R(1) < IR,(T;n) - R ( + )- 11

[ (N+1 ) /2 ]

=

{ problx (2x) **< I < *(2k +1) },
( 2.1 )

k=0

.

4
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where x( 0) = a , *(1)

; b .

Assume that

<

holds .

= min (ypoxy ,...so.. * (N + 1)

max (y qoxqp ... sxg), * (N+2 )

Proof If yo- xq for some 1 , the result follows immediately by

taking *( 3 ) * *( 4+1)*( 4 +1 ) - Yo - Xy , where there are exactly j -1 of the

*q's less than yo .

yo *1 for any i . Consider the partition of I,

determined by the distinct points a =

*( 0 ) < *( 1 ) < *(N +1 )

*( N+2 ) = b . We identify those open intervals In (1) = ( %( ) * ( + 1)

such that whenever t Ein( j ) , the inequality

IR (t;n) - R( t ) ) <R( ) | < iÂ (t ;n) - R(T ) ! ( 2.2 )

When t E (x( 0 ) • *( 1 ) ) , ( 2.2 ) holds by hypothesis . Conse

quently , the theorem will follow by showing that ( 2.2 ) holds over

exactly one of two adjacent open intervals , say , In (1 ) = ( *( 1 ) • *( 1+1 )

and 1,( i+1 ) = ( *( 1+1 ) • *( 1+2 ) ) .

case 1: Yo < *( 1 ) : When yo s *( 1 ) , then R,(t;n ) + Ry ( t ;n ) > 2R(t ) ;

thus Řz(t ;n ) - R( 1 ) > R( T ) - (t;n ), where t eIn( 1 ) UL. (1+ 1).

Suppose R,(t;n) > R (t;n), t € 1_( 1 ) . Then R,(t;n) - RCT ) >

R (t ;n) - t tR( t ) , and R( t ) - Ř (t;n) < Ř (t;n) - R(t ) < Ry(t;n) - R( ) .

Consequently, lĩ (t;n) - R( 1 ) | < (t;n) - R( t ) | since Ř (t;n) > R(t ) .

Furthermore, R (t;n) < Ř (t;n), t e I.(1+1); hence R (t;n) - R( t ) <

Ř (t;n) - R( t ) .R ( ) . It follows that r( t ) - Ř (t ;n) < Ř (t;n) - R(T ) <

R (t;n) - R( 7 ) or, equivalently , IR,(t;n) - RCT ) | < IR (t;n) - R(x)]

since R (t ;n ) > R( t ) . On the other hand , if Â (t;n ) < î (t;n ),

t € 1,( 1 ) , then ( 2.2 ) clearly holds over 1. (1 ) but not over In (i+1 ).

)

- -

-

1
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Case 2 : Yo 2 *( 1+2 ) . When y, 2 *( 1+2 ) , then f (t;n) + R (t;n) < 2RCT ) ;

thus Ř (t;n) - R( I ) < RCT ) - R/( t ;n ) , where t € 1 (1) UIT R (T ) (1 +1 ). If

R (t;n) > Řy(t;n), t € 1. ( I ) , then R,(t;n) - R( 1 ) > Â (t;n) – r( t ) .

Thus Ry (t ;o) - R( 1 ) < Ry( t ;n ) – R( t ) < R( t ) - Ř (t;n), and

Â (t;n) - R( 7 ) | < lſ (t;n) - R(+)/ since R( + ) > Ry(t;n). Moreover,

R (t;n) < R (t;n), t € I_( 1+1 ) ; hence R,(t;n) - R( t ) < R (t;n) - R(+).

Consequently, R]( t ; n ) - R( t ) < (t;n) - R( T ) < R( T ) - R,(t;n), and

|R,(t;n) = R(1)| < 1 ,(+;n) - R( + ) | since R( 1 ) > /(t;n). On the

other hand , if R_ (t;n) < Ry( t ;n ) , t Eln( i ) , then ( 2.2 ) clearly holds

over 1 ( 1+ 1 ) but not over In( 1 ) .

Case 3 : yo = * ( 1+1 ) :* yo * *(1+1 )*( 1+1 ) , then Rq(t;n) + R (t;n) < 2R( + ) ,

t € 1,( 1 ) ; however, Ř (t;n) + R,(t;n) > 2R( + ) , t € 1,( 1+1 ) . If

,(t;n) < ( t;n), t € 1.( 1 ) , then (t;n) < Ry (t;n), t er,n ( € (1+1),

and ( see Cases 1 and 2 ) ( 2.2 ) holds over 1 (1 +1) but not over 1,( 1 ) .

IF R (t;n) > R (t;n), t € 1 ( 1 ), then (t;n) > R (t;n), + € 1 (1+1),

and ( see Cases 1 and 2 ) ( 2.2 ) holds over In( i ) but not over In( i+1 ) .

When yo

The proof is now complete .

If , for a given n , there are no points of intersection of

R,(T ;n) and R (T;n) in In , we then have the following

Corollary 2.1. Let Ř (T ;n ), 1=1,2 , be nondecreasing full - range

estimators of R( ) . Suppose there are no points of intersection of

& (T;n) and R (T;n) in 1to = (a ,b ) . If & (t;n) > R (t;n), t € 1. '

Probl/R (T;n) - R( + ) < PR (T;n) - RC =) )}
( 2.3 )

- Prob fa < I < yol,

then
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where yo is the unique switching point of R (T;n) and Ř (Tin) at R( q ) .

We point out , in passing , that if ( in the theorem as well as

the corollary ) ,(t ;n) < R (t;n) whenever t e ( a , min (xq.... os xy)),

then Probllß, (T ;n) - R( + ) / < IR (T;n ) - R( + ) / } clearly equals one

minus the right hand side of ( 2.1 ) or , in the case of the corollary ,

( 2.3 ) .

3 . ESTIMATORS OF RELIABILITY

We consider a specific failure model , namely , the one- parameter

exponential.
Let X( 1) = X( 2 ) = < X( k ) be the ordered first k

failure times in a random sample of size n ( i.e. , a Type II censored

sample ) from fx( x ;€ ) = ( 1/0 ) exp ( -x / 0 ) , x > 0 . The reliability at

time to is given by R( T ) = Prob {X > 1 ) = exp ( -4/0) . The

statistic

-- [..x
+ ( n-k )X (X )

( 3.1 )

is complete sufficient for R( T ) . Furthermore , it is well known

( Epstein and Sobel 1954 ) that T has a gamma distribution with shape

parameter k and scale parameter [ -InR ( 1 ) ] - 7 . We point out that , for

a given k , the distribution of T depends on t and only through R ( t) .

In other words , we need only specify the value of R( q ) and not that

of i and o to index the distribution of T. Consequently , we hence

forth write R instead of R( T ) . It follows that 2 (-1nR ) T has a chi

square distribution with 2k degrees of freedom .

By the invariance property of maximum likelihood estimators , the

maximum likelihood estimator ( MLE ) of R is
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RMLECT ;k ) = exp ( -k / T ) , T > 0 , k 1 . ( 3.2 )

Basu ( 1964 ) has shown that the minimum variance unbiased estimator

(MVUE ) of Ris

BMVUE (T;k ) = 0 , OSISI

= ( 1 - 1/7 )*-1 , 1 > 1 , k 2 1 .
( 3.3 )

We now discuss two other estimators of R based on Fraser's

( 1968 ) structural inference ( a group - theoretic approach to Fisher's

fiducial theory ) . In the structural approach , as in the Bayesian

approach , the given data induce a probability measure ( called the

structural density ) on the parameter space . Unlike the Bayesian

approach , however , this is achieved by assuming the existence of a

structural model rather than a prior probability measure . The

structural density of R , given T = t > 0 , is (Maxwell 1973 )

g ( r / t ) = tf( -Inr )t-10-1/ (k ), o < rc1 , k = 1. ( 3.4 )

Expression ( 3.4 ) is also the Bayesian posterior density of R under

Jeffreys ' noninformative prior for a scale parameter ( see Box and

Tiao 1973 , p . 44 ) .

Measures of central tendency of the structural density of R

Since
would seem natural choices for point estimators of R.

E ( RIt ) $ +8(rſt )dr = [ 1 - 1/ ( t + 1 ) ] , an estimator of R based on

the mean ( SMN ) of the structural density of R is

PSMN ( T;k )
REMN( T ;k ) = ( 1 - 1/ ( T+1 ) ]k , T > 0 , k > 1 . ( 3.5 )
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In addition, by solving the equation souscrſt )dr = .5 form , we ob

tain an estimator of R based on the median ( SMD ) of the structural

density of R. The solution is

RSMD ( T ;k ) = exp (-mx/ 2T ), T > 0 , k = 1 ( 3.6 )
SMD

where m.mak is the median of a chi - square distribution with 2% degrees

of freedom . For specified k , the value of mak can be found in

Harter ( 1964 ) . It is interesting to note that RSMD(T ;k ) could also

be obtained by a classical argument. Since 2 ( -InR)T has a chi -square

distribution with 2k degrees of freedom , RSMD (T ;k ) is a 50 percent

lower (upper ) confidence bound on R. Thus , RSMD(T ;k ) is as likely

to underestimate as to overestimate the true value of R. In this

SMD

sense , RSMD( T ;k ) is sometimes called a median unbiased estimator

(Lehmann 1959 , p . 83 ) .

For k 2 1 , we note that RMLECT ;k), Ⓡsmv(T;k), and R ( T ; k ) are

each nondecreasing full -range estimators of R. Furthermore, RyVuF (T ;k)

also has this property provided k > 2 . When k = 1 , Ruvue (T ;l) is a

zero - one estimator of R and , as such , is of no practical interest .

Henceforth , any discussion concerning Ruvue (T ;k ) will assume( k > 2 .

4 . PAIRWISE COMPARISON OF ESTIMATORS

The theory and methodology of Section 2 will now be applied to

the estimators of Section 3 .

4.1 RALE(T;k) and Ruvue(T;k)

We show that RMLECT;k) and RMVUE(T ;k ) have a single point of

A
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.

intersection in IK ( 0,700) , k > 2. There is clearly no point of

intersection in ( 0,1) . When t > 1 , Rule(tik ) RMVUE (t;k ) isMLE

equivalent to

h ( t ) = t In [ t / ( t - 1 ) ] = k / ( k-1 ) . ( 4.1 )

Since
exp [ 1 / ( t - 1 ) ] > t/ ( t-1 ) , t > 1 , then h ' ( t ) < 0 ; thus , h( t )

is decreasing . The existence of a unique root for ( 4.1 ) follows

since l < h( t ) < too and h ( t ) is continuous . By Theorem 2.1 ,

Probll RMLECT;k) - R1 < I RAVE(T;k) - Rl }

= Probło < t < min ( xp ,Yo )} + Prob { T > max (xg oyo )}

x ? [2 (-1nR) min (xo»vo ) ; 2k ]

x ? [ 26 -InR) max(xo »90 ) ; 2k] ,

=

+ 1 ( 4.2 )

• 2R

where for specifiedk2, Xy is the solution to exp ( -k /xg) -

( 1 - 1/40 ]k-2 ; yo is the solution to exp ( -k /y ,) + ( 1 - 1 /y,)k-1

whenever R > .5 exp ( -k ) , otherwise, yo = -k/ln ( 2R ) .
-k/In ( 2R) . We write

x ? c . ;m ) as the chi - square distribution function with m degrees of

freedom . When k = 2,3,5,7,10 , and 20 , expression ( 4.2 ) has beenو

evaluated numerically for R = 0 ( 0.01 )1.0 . Based on these results

versus R
the graphs of rel.eff.pri R

' PC''MLE (T ;k ) ,RMVUF( T;k ) ;R ,k }

are given in Figure A.

4.2 RMLECT;k) and RSMD(T;k )

There are no points of intersection of RMLECT ;k) and RSMD(T;k)

IK = ( 0,0 ) , k = 1 .
in This follows since the median is less than

3
9
1



the mean of a chi- square distribution (Groeneveld and Meeden 1977 ) ;

consequently , ŘSMD(t ;k) • exp (-mak /2t) > exp ( -x /t ) = RMLE(t;k),

t > 0. By Corollary 2.1 ,

Probll ŘSMD(T ;k ) - RI < PRALE (T ;k) - R13

= Prob { T < yo } = x?[2(-1nR)yo ; 2k ] , ( 4.3 )

: 2R.

where for specified k ? 1 and R , YO is the solution to exp (-2k/2y . )

+ exp (-k /yo?

For fixed ka 1 , RSMD(t;k) > Role(t;k), + > 0 ; furthermore ,

RSMD(T;k) underestimates R , on the average , 50 percent of the time .

It follows that RsMD(T ;k ) is closer to the true value of R than 18

Rive( T;k ), on the average , at least 50 percent of the time .
It will

be instructive to prove

Theorem 4.1 RE(T ;k ) s Pitman - closeness Inadmissible relativeMLE

to ÅSMD( T ; k ) .

Proof For fixed k and R ,

[ exp( -k /Yg) expl-mar /290 )1*

( exp ( -k / ,) + exp ( -mak( -my/2y) ] /2

< exp (-mak / 2y .),

<

since the geometric mean of two unequal positive real numbers is less

than their arithmetic mean .
By simplification ,

Tak < 26-1nRly , < (m 2% + 2k ) / 2 .

Hence , for k = 1 and 0 < R < 1 ,

-
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.5 < [ 26-1nR)yo; 2k] < x?t (max + 2k ) / 2 ; 2k ]

< x?[ cm, + 2 ) /2 ; 2 ] = (1/2) exp ( -x / 2 ) dx 2 ,571.

pl + ln2

0

By (4.3 ) , It follows that

1 < rel.eff.pcPŘSMD(T;K),RMLECT;k);Rok} < 1.331 .

From the proof of Theorem 4.1 , the odds in favor of RSMD (T;k ) being

closer to R than is RMLE(T ;k) range from slightly better than even

to approximately 4 to 3 . The exact extent of this efficiency can

be determined from the graphs ( based on numerical evaluation of

( 4.3 ) ) of rel.eff.pclßsmo(T;k),RALE(T;k);R,k} versus R given in

Figure B.

4.3 RSMD(T ;k) and R/VUE(T;k )

We use an argument similar to that of Subsection 4.1 to show

that RsMD (T ;k ) and RMVUE (T ;k) have a single point of intersection

in (1,7 ). When t > 1 , RSMD(t;k ) Rruf (t ;k) is equivalent to) =

h ( t ) = t In[t/ ( t-1 ) ] = m , / 2 (k -1 ) .
2k

( 4.4 )

However , h ( t ) is continuous and decreasing ; furthermore , 1 hết ) to .

Since 2 (k-1 ) is the mode of a chi -square distribution with 2k degrees

of freedom and is less than m
m2K

( Groeneveld and Meeden 1977 ) , it

follows that a unique root for ( 4.4 ) exists . By Theorem 2.1 ,

Probil ŘSMD(T;k ) - RI < RMVUE(T;k ) - R | }

- x ?[ 2(-InR) min ( xy , ) ; 2k ]

+ 1 - x ?[ 26-1nR) max (x0,80) ; 2k ] , ( 4.5 )

C

.
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3 Уо

where for specified k = 2 , xo is the solution to exp ( -mxk / 2x0)

= ( 1 - 17x9 )k-1 is the solution to exp( -m2K /240) + (1 - 1/80)k -1

R > .5 exp ( -mxk/ 2 ),
otherwise , Yo = -mxk / 21n ( 2R )..

For fixed k 2 , RSMD(t;k ) > Rywuf(t ;k ) if and only if

t € ( 0,7 ) . Consequently , a conclusion similar to that which immedi

: 2R whenever

ately preceded Theorem 4.1 cannot be made . Nevertheless , we have the

following

Theorem 4.2 RMVUE:(T;k ) is Pitman - closeness Inadmissible relative

RSMD(T;k).
to

< yo '

Proof For fixed k , let to be the unique point of intersection and

Rg(k ) = exp ( -mox /2xg) = ( 1 - 1/x0 )k -1. When R > Ro (k ), then 1 < xo

where yo is the switching point at R. exp (-xx /290)

< [ exp ( -max / 240) + ( 1 - 1/80 )4-11/2 or , equivalently , mak > 26-1nR)yo.

From ( 4.5 ) ,

Thus ,

Prob {IRSMD(T;k) - R | < |RAVE(T;k) - R11

x?[26-10R)xoj 2k ] + 1 - x?C26-1nR) x ; 2k ]

> x?[26-1nR)xpi 2k ] + 1 - x?(moxi 2k ) > .5 .

<

X%
and exp ( -mWhen R < RR (k ), then yo

+ RMVUE (Yo ;k ) ]/ 2 . Thus ,

( m2K / 2y ,) > [ exp ( -mak / 250 )

< 21- InR )yo . From ( 4.5 ) ,mMak

Probl .RSMD(T;k ) - RI < 1 RMVUE(T;k) - R| }

x?[26-1nR)y,; 2x ] + 1 - x?[26-1nR)Xg; 2k ]

> x ?(mak; 2k ) = .5

While Theorem 4.2 says that RSMD(T;k ) is to be preferred over

394



RAVE(T;k) from a Pitman -closeness efficiency point of view , the

extent of this efficiency can be determined from the graphs (based

on numerical evaluation of ( 4.5 ) ) of

4.4

rel.eff.poŘSMOD (T ;X ),

BMVUE(T;k);Rok } versus R given in Figure c .

RSMD(T;k)and RSME

We show that RSMD(T;k) and RSMY(T;k ) have a single point of

Â (tik )
Ik = ( 0 , +c) , k > 1. When t > 0 ,

( T ; k )

intersection in
SMD

- Remarlt ;k ) is equivalent to

a ( t ) - t ln ( 1 + 1/t ) = m, /2k .
2kтук2x

( 4.6 )

Since exp ( -x ) > 1 - X , 0 < x < 1 , 1 ' ( t ) = ln ( 1 + 1/t ) 1/( t+1 ) > 0

and Alt ) is continuous and increasing . For fixed k > 1 , it follows

that a unique root for ( 4.6 ) exists since 0 < i ( t ) < 1 , t > 0 , and

< 2k .

2k
Denote the root by xo . When t < xos alt ) < 2x/2k ;

consequently , Rsmar (t ;k ) > RSMD (t ;k ). By Theorem 2.1 ,

Probl I smer (T;k) - R1 < IRSMD(T;k) - R | }

x ? [26 - InR) min (xp 990 ) ; 2k ]

+ 1 - x ? [2(-1nR) max (xp ,vo ) ; 2k ], ( 4.7 )

- X

1 ))* :

where for specified k = 1 and R , Xo is the solution to

exp (-max /2xg) = [ 1 1 / ( xo + Yo is the solution to

exp (-mak / 240) + (1 1 / (yo + 1 ) ]* = 2R. The graphs ( based on

numerical evaluation of ( 4.7 ) ) of rel.eff.orŘSMO (T ;k) ,Raw (T;k ); R,k }' PC'SMD SMN

versus R are given in Figure D.
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4.5 Řgway(Tik)Rsmor ( T;k) and RMLECT ;k)

There are no points of intersection of RSMA (T ;k) and RMLECT ;k)

Ik = ( 0 , too ) , k = 1 . exp ( 1 / t ) > 1 + 1/t ,

Rume (t;k) = exp ( -k / t ) < [ 1 - 1/ ( t+1 ) ]* = ßspor (t ;k), t > 0 .
/ { By

Corollary 2.1 ,

in Since then

: 2R .

R > R ; (K)
where for

Probilismy(T;k ) - R1 < IRALE(T;k) - R| }

= ProblT < yo} = x?[26- InR )y, ; 2k ),
( 4.8 )

where for specified k 2 1 and R , y, is the solution to exp ( -k / ,)

+ ( 1 - 1/ (y,+2 ) 3k

Theorem 4.3 RSMANIT;k) 18 more Pitman - closeness efficient than

Rye (Tik ) if and only if exp (-2k /2x ),

specified k = 1 , x is the solution to exp (-mak/ 2x ) = {exp (-k /xy) +

[1 - 1/(x +1)]{}/2. .199 < R$(k ) < e ** .368 , k > 1 .

Proof The average of RMLECT;k) and Rsmv(T;k) is a nondecreasing full

ke first show that RSMD (T;k ) and CRMLE (T ;k)

RSMY(Tik ) ]/2 have a single point of intersection in ( 0 , + c ). When

t > 0 , RSMD(t;k) = CRMLE(t;k) + Řſsmu(t;k )]/2 is equivalent to

h ( t ;k ) = t 1n2 - t In { exp ( -k / t ) + (1 - 1/ (t+1 ) ]k)

Furthermore ,

range estimator of R.

( 4.9 )
24/2.

For fixed k = 1 , h ( t ;k ) is continuous and increasing over ( 0 , to ) .

SinceFurthermore , lim h ( t ;k ) = k ; thus 0 < h ( tik ) < k , t > 0 .

ttoo

mak < 2k , the existence of a unique root , say *;, for ( 4.9 ) is

established .
Let Ry ( x ) = exp (-M2K/2x ) . When t < xó , h(t ;k ) < m2k / 2 ;
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thus , R

let yo

When >

Sup(t ;k ) < [RME(t;k) + ÁSMAME(t;k) + Rsmrét;k)]/2. For specified R,

be the switching point of Ryle( T; k ) and ŘEMY(T;k) at R.

R > RÖ ( ) , RSMD(Yojk) [RLE(Yoik) + Rsmar Yojk) )/2 = R

or , equivalently , < 26 - InRlyo. By ( 4.8 ) ,

Probl if may (Tik) - RI < PRAELECT;k) - R | }

- x ?[2( -1nR)yo; 2k ] > x ?(mak; 2k ) = .5 .

m2k

-1

The last inequality is reversed when R < R (k ) .

For fixed k 1 , exp (-2k /m2k ) + [mg /(m +2)j* < 2e-?; thus ,

h (m2K / 2;k) > m2K / 2. Since h( t ;k ) is increasing in t , then

xó < 2x/2 and R; (k ) * .368 , k > 1 . Furthermore , Mak /2x)

decreases with increasing k . The solution to

h( x;; 1 ) = m / 2 18

xó • .4289 ; thus , min Rf ( K ) R ; ( 1) = exp[ -my / 20.4289) ] = .199.

Although the true value of R is unknown , most situations of

4e-2

k

interest would presuppose that reliability is at least 37 percent .

In these situations , R. ( T ; k ) would be preferred over R
RALENT ;K)SMN

from a Pitman -closeness efficiency point of view . The extent of

this efficiency may be determined from the graphs (based on numerical

evaluation of ( 4.8 ) ) of rel.eff .•PC RSMN (T;k ) ,Rurf( T; k ) ;R ,k }

versus R given in Figure E.

4.6 Rswap(T ;k ) and Ryue(T;k)

For specified k > 2 , we show there is exactly one point of

intersection of RsMar(T;k) and RMVUE T;k) in ( 1 , too ) . There is clearly

no point of intersection in ( 0,1) . When t > 1 , Rsmrít;k) = ŘBarue(t;k)

is equivalent to

i
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uk -ICH + 23
k

= ( H + 1 )2k-2 , (4.10 )

where u = t-l > 0. Equation ( 4.10 ) may be written as a polynomial

equation in u of degree 2k-2 , i.e. ,

,2k - 1-3 2k - 1 - j

j =1 j j =k+1 | j

be the coefficient of y2k-1-4 . For i = 1 , ... ok ,
ay

Let

ay = 2067- (2017) (2 -*2) 3-1(41) - ( *= (3-1)
3

for j = k+1 , ... , 2k-1 ,

ag

= 1 ; az
Then

1.
- k-1 ; and since az :-(k-1 ) , it follows that

az < 0 , j = 3 , ... , 2k-1 . Consequently , by Descartes ' rule of signs

there is exactly one positive root for ( 4.11 ) , and thus for ( 4.10 ) .

By Theorem 2.1 ,

<

= X

( 4.12 )

Probllismu(T;k) - R1 RYVUE(T;k ) - RO )

x ?[26-1nR) min (xo, Yo) ; 2x ]

+ 1 - x ?[ 26 -InR ) max (xo, yo) ; 2k ) ,

where for specified k -2 , xo is the solution to [1 - 1 /(x ,+1)]* =

( 1 - 1/x0)(-2 ; yo is the solution to [ 1 - 1/(y +1) * + ( 1 - 177034-2

= 2R whenever R > ( 1/2 )*+1 , otherwise , y , = [ 1 - ( 2R ) ?/kg-2 - 1 .o

As previously mentioned , when the true value of reliability is

at least 37 percent , Rsm (T;k ) would be preferred over Rule( T;k ) from

a Pitman -closeness efficiency point of view . A similar statement can
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Theorem 4.4

Proos

where

be made with regard to RSMNRSMMST;k) and RUVUE(T;k).

When R > e-?, smar(T;k) is more Pitman -closeness efficient

than Ryvue(T ;k ).

For specified k > 2 , let R (k ) - Row sk ) - RUE( x +k ) ,

хо is the point of intersection of RsMr(T;k ) and RMVUE(T;k).

By a Padé rational approximation of index 2 to the binomial series

( 1.e. , ( 1 + x )" . [ 2 + (n+1 )x]/ [ 2 - ( n-1 )x) , Ralston 1965 , pp . 278-280 ) ,

xock .5 ; thus, Ro(k) s e-?, k2 2. Let yo be the switching

point of RsMoy T;k) and RMVUE (T;k) at R. Note that when R > e-?, then

to yo

The average of RsMxOT;k) and Revue(T;k) is a nondecreasing full

When k > 4 , there are no points of intersection

of RSMD (T ;k ) and CⓇSMv(T;k) + RMVUE(T;k) ]/2 in ( 0 , to ) since

RSMD (t ;k) < CRsmr(t;k) + Revue (t;k)]/2, t > 0. Thus , RSMD (yo ik )

[Rspor(Yojk) + RMVUE(YO ök ) )/ 2 or , equivalently , > 21-1nR ) yo ,

From ( 4.12 ) , for k ? 4 and R > e-?,

ProblIRMLECT;k) - R\ < Rsmu( Tik) - RO )

= x ? [26-1nR ) max(xo» , ); 2k ]

- x ?[26-1nR) min(xp ,YO ) ; 2x ]

= x ?[26-1nR)yo; 2x ] – x ?[2(-10R )xx ; 2x ]

x? imgki 2k ) - x ?[2(-10R)X, ; 2k ] <.5.

range estimator of R.

<

: R
I2k

k = 4 .

( 4.13 )

When k = 2 or 3 , there is a unique point of intersection , say

of RsMD (T;k ) and [ŘSMV(T;k) + RMVUE(T;k) ]/2 in ( 0,1 ) . However ,

the inequality ŘSMD(t;k) < CŘSmar't ;k) + Ryvue(t;k) ]/2
still holds

1

399



for t > 1. Since **** < 1
< l < X

< * 0
then ( 4.13 ) holds for k = 2 .

Theorem 4.4 is somewhat conservative in the following sense . For

a given k 2 2 , it is quite likely that ismer(T ;k ) is more Pitman

closeness efficient than RMVUEST;k) for values of R considerably

The extent of this efficiency is shown in the

graphs ( based on numerical evaluation of (4.12))ofrel.eff.prŘowy (T;k ),rel.eff.pc

RAVE(T;k); Ryk} versus R given in Figure F.

less than .368 .

5 . DISCUSSION OF RESULTS

Pitman - closeness efficiency is inherently dependent upon the

probability that an estimator underestimates (or overestimates ) the

Since

A

R > .368 .

note that Tak

true value of the parametric function being estimated .

ProDIRALE(T;k) < R}( T ; k ) < R} = x² ( 2k ;2k ) > .5 , k21 ,
= x +( 2k ;2k ) > .5 , k21 , then Rule ( T ;k ) tends

to underestimate R.

On the other hand , RMVUE(T ;k ) tends to over

estimate R whenever > e-1 To see that this is so , first

> 2k - .7 , k > 1; thus [m2K/ (m2K 2034-1 .드

[1 1 /(k -1.35 )]k -1 se or , equivalently , 211 - exp [-1/ ( k - 1 ) ];-)

mak
For fixed k , q ( R ;k ) = 26-1nR ) [ 1 - R1/ (k-1 ) , -1 is a de

creasing function of R. Thus, for fixed k = 2 and R > e-?,

q( R ;k ) < gle-?;k ) = 2 { 1 exp [ -1 /(x - 1 ) ]3-15
П2k "

The result now

follows since Prob{RvVUERuvue(T ;k ) > R } = 1 - x?[q ( R ;k ) ; 2k ].x?Ca( R ;k ) ; 2x ]. Moreover ,

as R decreases from e to 0 , both Ruvue ( T ;k) as well as ,

RULE(T;k) tend to underestiinate R. Generally speaking , from Figure

A , RWLE ( T;k ) is more Pitman - closeness efficient than RMVUEST ;k ). For

<

-1

of course ,
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even .

low to moderate reliability , the odds in favor of RMLECT;k) being

closer to the true value of R are quite high . For high reliability ,

the odds still favor Rule ( T ;k ) but are only slightly better than

This result is somewhat consistent with a mean squared efficiency

comparison given by Zacks and Even ( 1966 , Figure 3 ) . They show

graphically that RMLECT;k) is more mean squared efficient than Prvue(T;k)

over the interval .03 < R < .61 (n = * = 4,8 ) .4,8 ) . Maximum mean squared

efficiency is reached at approximately R = .22 . And although RMVUEST ;k)

is more mean squared efficient than RMLE (T ;k) when R >> .61 , the

mean squared error of RMVUE ( T;k ) is only slightly less than that of

RyLE( T;k ).

When R > e-?, Fraser's structural inference provides estimators

which fall between the maximum likelihood estimator (which tends to

underestimate R ) and the minimum variance unbiased estimator (which

tends to overestimate R ) . In other words , when R > e-? ( i.e. ,

tik .5 ) , either ( a ) RuLF(t;k) < ŘSMD (t ;k ) < Rsmar (t;k) < RMVUERwvUE (tik)

or (b ) RMLE (t ;k) < RSMM(t;k) < RSMD(t;k ) < Ruvue (t ;k ) holds .

the latter inequality , i.e. , ( b ) , that is true if reliability is high .

When R as e-?, the structural estimators give estimates of R which

It is

are larger than those given by the maximum likelihood or minimum

variance unbiased estimators both of which tend to underestimate R.

In any event , by Theorems 4.1 and 4.2 , RMLECT ;k) and Ruvue( T;k )

are both Pitman -closeness inadmissible relative to RSMD( T ; k ) . Con

sequently , from a Pitman - closeness efficiency point of view , the

preference among the estimators RMLE (T;k ), ByVUE (T;k),; Ř
( T ;k ) , and

SMD
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RSMY(T ;k ) reduces to comparing only the latter two except in the

following relatively minor situation . When k = 2 and .17 < R < .22 ,

ŘSMV(T ;k ) is more Pitman -closeness efficient than RSMD(T;k ); in turn ,

ŘSMD(T ;k ) is more Pitman -closeness efficient than RMLE(T ;k ); yet ,

RuLF(T;k) is more Pitman - closeness efficient than Ř ( T ;k ) . A
SMN

similar statement can be made when k = 3 and .20 < R < .22 , Fortu

nately , this circular paradox vanishes when k > 4 . It is because

of this apparent absence of a general transitivity property that

pairwise comparisons of the estimators were made in Section 4 .

For fixed k , a preference set for RsMD(T ;k) (RSMV(T;k) is the

subinterval ( s ) of the R -interval , i.e. , (0,1) , over which ŘSMD (T ;k )

(ŘSMF(T;k )) is more Pitman -closeness efficient than RsMar(T ;k )

(RSMD (T;k )). Preference sets as well as the specific odds in favor

of being closer to the true value of reliability may be determined

from Figure D. Regardless of the number of failures , RSMD(T;k) is

preferred when reliability is high or low . The odds are slightly

better than even , in this case , that RSMD( T;k ) will be closer to

the true value of reliability . On the other hand , regardless of the

number of failures , RSMN(T;k ) is preferred for the middle values of

reliability , i.e. , the component is about as reliable as it is unre

In this case , the odds favoring RSMA(T ;k ) being closer to

the true value of reliability are , generally speaking , quite high .

liable .
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