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FOREWORD

The 25th Conference on the Design of Experiments in Army Research ,

Development and Testing (DOE ) was held 17-19 October 1979 at the

U. S. Army Natick Research and Development Command in Natick ,

Massachusetts . This was the second time in the history of these

conferences that this Army base has provided the facilities to conduct

one of these scientific meetings . The fourth conference in the series

was held here . At that time , the base was called the Quartermaster

Research and Engineering Center .

The original format for the DOE Conferences , which are under the

auspices of the Army Mathematics Steering Committee ( AMSC ) , was outlined

by the eminent statistician , Professor Samuel S. Wilks , who served as

conference chairman until his death . Through these symposia the

AMSC hopes to introduce and encourage the use of the latest statistical

and design techniques into the research , development and testing

conducted by the Army's scientific and engineering personnel . It is

believed that this purpose can be best pursued by holding these meetings

at various government installations throughout the country .

Several features in this year's agenda pointed out the special

significance of this , the Silver Anniversary of these meetings .
The

program was dedicated to Dr. Francis G. Dressel , formerly Professor

of Mathematics at Duke University . For the past 25 years Dr. Dressel

has coordinated the conference programming and local arrangements,
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and has edited proceedings of this and other AMSC sponsored conferences .

The DOE Program Committee invited Dr. Dressel's friends to join in

expressing their appreciation for this loyal service .

The Program was to begin with an address by Dr. Frank E. Grubbs ,

formerly of the U. S. Army Ballistic Research Laboratory , and a

renowned statistician . His talk was entitled , " A Quarter Century

of Army Design of Experiments Conferences " . This was to be followed

by an address entitled , " Summarizing the Results of a series of

Experiments !! to be given by Dr. William G. Cochran , Professor of

Statistics Emeritus , Harvard University . Unfortunately , both of

these gentlemen were unable to attend the conference . Their

addresses were read , respectively , by Dr. Dressel and Dr. Herman

Chernoff , Professor of Mathematics at the Massachusetts Institute

of Technology . ( Dr. Grubbs was also unable to serve as Master of

Ceremonies at the banquet and to make the presentation of the Samuel

S. Wilks Memorial Medal . These duties were taken over by Dr. Robert

Launer of the Army Research Office . ) The other invited speakers

and their topics are noted below .

Speaker and Affiliation Title of Address

Mr. Al L. May

Pillsbury Research Labs

DESIGNED EXPERIMENTS IN SENSORY

TESTING

Dr. Ray E. Schafer

Hughes Aircraft Company

COMPUTER AIDED HYPOTHESIS TESTS -

THE BIRNBAUM TEST
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Professor Warren Stewart

Mathematics Research Center

and University of Wisconsin

NEW ALGORITHMS FOR NONLINEAR LEAST

SQUARES AND BAYESIAN PARAMETER

EST I MATI ON

Professor Marvin Zelen

Harvard School of Public

Sciences

ETHICS AND STRATEGY IN THERAPEUTIC

INVESTIGATIONS

The members of the AMSC take this opportunity to express their thanks

to the speakers and other research workers who participated in the

meeting; to Colonel H. F. Penny , Commanding Officer of the U. S. Army

Natick Research and Development Command , for making available the

excellent facilities of his organization for the conference ; and

to Mr. Donald Kass who so ably handled the details of the local

arrangements for this meeting . The AMSC is making available most of

the papers presented at this meeting in the present form in order

to encourage wider use of modern statistical principles of the design

of experiments in research , development and testing work of concern

to the Army .
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CONFERENCES ON THE DESIGN OF EXPERIMENTS IN

ARMY RESEARCH , DEVELOPMENT AND TESTING

List of Invited Speakers at

the First Twenty -Five Meetings

First Conference : 19-21 October 1955 , Diamond Ordnance Fuze

Laboratory and National Bureau of Standards

Professor W. G. Cochran

THE PHILOSOPHY UNDERLYING THE DESIGN OF EXPERIHENTS

Dr. Churchill Eisenhart

THE PRINCIPLE OF RANDOMIZATION IN THE DESIGN OF EXPERIMENTS

Dr. M. E. Terry

FINDING OPTIMUM CONDITIONS BY EXPERIMENTATION

Professor John Tukey ( Chairman )

PANEL DISCUSSION ON HOW AND WHERE DO STATISTICIANS FIT

IN . ( THE OTHERS ON THIS PANEL WERE : MR . CUTHBERT DANIEL ,

MS . BESSE DAY, DR . CHURCHILL EISENHART, DR . M. E. TERRY ,

AND PROFESSOR S. S. WILKS ) .

Dr. W. J. Youden

DESIGN OF EXPERIMENTS IN INDUSTRIAL RESEARCH AND DEVELOPMENT

Second Conference : 17-19 October 1956 , Diamond Ordnance Fuze

Laboratory and the National Bureau of Standards

Dr. C. A. Bennett

THE PREDESIGN PHASE OF LARGE SAMPLE EXPERIMENTS

Professor R. A. Bradley

RECENT RESEARCH IN STATISTICAL PROBLEMS IN SUBJECTIVE TESTING

Professor B. G. Greenberg

APPLICATION OF ORDER STATISTICS IN MEDICAL EXPERIMENTS

Professor G. E. Nicholson , Jr.

THE PLANNING OF EXPERIMENTS IN THE PRESENCE OF VARIATION

Dr. M. B. Wilk

DERIVED LINEAR MODELS IN THE ANALYSIS OF VARIANCE
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Dr. Jerome Cornfield

CHOICE OF ERROR IN THE DESIGN OF EXPERIMENTS

Third Conference : 16-18 October 1957 , Diamond Ordnance Fuze Laboratory

and the National Bureau of Standards

Professor Benjamin Epstein

LIFE TESTING

Sir R. A. Fisher

PRACTICAL PROBLEMS IN EXPERIMENTAL DESIGN

Professor H. 0. Hartley

CHANGES IN THE OUTLOOK OF STATISTICS BROUGHT ABOUT BY MODERN

COMPUTERS

Dr. A. W. Marshall

EXPERIMENTATION BY SIMULATION AND MONTE CARLO

Fourth Conference : 22-24 October 1958 , The Quartermaster Research

and Engineering Center , Natick

Mr. C. I. Bliss

SOME STATISTICAL ASPECTS OF PREFERENCE STUDIES

Professor A. C. Cohen

SIMPLIFIED COMPUTATIONAL PROCEDURES FOR ESTIMATING PARAMETERS

OF A NORMAL DISTRIBUTION FROM RESTRICTED SAMPLES

Dr. A. W. Kimball

ERRORS OF THE THIRD KIND IN STATISTICAL CONSULTING

Professor C. F. Kossack

THE AASHO ROAD TEST AS AN EXAMPLE OF LARGE SCALE TESTS

Mr. L. H. C. Tippett

STATISTICAL METHODS APPLIED TO THE TEXTILE INDUSTRY

x
i



fifth Conference : 4-6 November 1959 , The U. S. Army Biological

Warfare Laboratories , Ft . Detrick

Dr. Joseph Berkson

THE MEASURE OF DEATH

Dr. H. A. David

THE METHOD OF PAIRED COMPARISONS

Dr. D. B. DeLury

SAMPLING IN BIOLOGICAL POPULATIONS

Dr. W. J. Dixon

MEDICAL HEALTH STATISTICS

Dr. N. E. Golovin

PREDICTION OF THE RELIABILITY OF COMPLEX SYSTEMS

Dr. Richard Weiss

THE ARMY RESEARCH AND DEVELOPMENT PROGRAM AS IT RELATES TO

THE CIVIL ECONOMY

Sixth Conference : 19-21 October 1960 , The Ballistic Research

Laboratory

Dr. James R. Duffett

RELIABILITY

Professor F. J. Anscombe

EXAMINATION OF RESIDUALS

Dr. W. S. Connor

DEVELOPMENTS IN THE DESIGN OF EXPERIMENTS

Dr. J. E. Jackson

MULTIVARIATE ANALYSIS ILLUSTRATED BY NIKE -HERCULES :

1. SEPARATION OF PRODUCT AND MEASUREMENT VARIABILITY

11. ACCEPTANCE SAMPLING

Professor G. E. P. Box ( Chairman )

PANEL DISCUSSION ON COMAON PITFALLS IN THE DESIGN OF

EXPERIMENTS . ( OTHERS ON THE PANEL UERE AR . CUTHBERT DANIEL ,

DR . J. S. HUNTER , DR . W. J. YOUDEN AND DR . HARVIN ZELEN ) .
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Seventh Conference : 18-20 October 1961 , U. S. Signal Research

and Development Laboratory , Ft . Monmouth

Dr. G. A. Watterson

TIME SERIES AND SPECTRAL ANALYSIS

Dr. J. M. Hammersley

MONTE CARL " METHODS

Dr. R. L. Anderson

DESIGNS FOR ESTIMATING VARIANCE COMPONENTS

Dr. G. S. Watson

HAZARD ANALYSIS

Professor Robert M. Thrall ( Chairman )

PANEL DISCUSSION ON SIMULATION . TOTHERS ON THE PANEL WERE

COL . A. W. DEQUOY, DR . JOHN HAMMERSLEY , MR . JOHN H. MOSS AND

DR . GUSTAVE ROBSON ) .

Eighth Conference : 24-26 October 1962 , Walter Reed Army Institute

of Research

Professor Egon S. Pearson

A STATISTICIAN'S PLACE IN ASSESSING THE LIKELY OPERATIONAL

PERFORMANCE OF ARMY WEAPONS AND EQUIPMENT

Dr. Marvin A. Schneiderman

A GENERAL SURVEY OF SCREENING THEORY

Professor Herman Chernoff

OPTIMAL DESIGN EXPERIMENTS

Dr. R. P. Abelson

AN EXPERIMENTAL DESIGN FOR DECISIONS UNDEK UNCERTAINTY

Dr. H. C. Batson

B10 - ASSAY

Dr. Harold F. Dorn ( Chairman )

PANEL DISCUSSION ON DIET AND HEART DISEASE . ( OTHERS ON

THE PANEL WERE MR . JEROME CORNFIELD , AND DR . GEORGE V. MANN ) .
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Ninth Conference: 23-25 October 1963 , U. S. Army Missile

Command

Professor Solomon Kullback

COMMUNICATION THEORY

Professor Frank Proschan

THE CONCEPT OF MONOTONE HAZARD RATE IN SYSTEMS REALIABILITY

Dr. Churchill Eisenhart

REALISTIC EVALUATION OF THE PRECISION AND ACCURACY OF

INSTRUMENT CALIBRATION SYSTEMS

Professor H. 0. Hartley

NONLINEAR ESTIMATION

Professor D. B. Duncan

ON THE SIMULTANEOUS ESTIMATION OF A MISSILE TRAJECTORY

AND THE ERROR VARIANCE COMPONENTS INCLUDING THE ERROR

POWER SPECTRA OF SEVERAL TRACKING SYSTEMS

Professor Boyd Harshbarger ( Chairman )

PANEL DISCUSSION ON WHAT TYPE OF STATISTICIANS ARE NEEDED

IN RESEARCH AND DEVELOPMENT LABORATORIES . ( OTHERS ON THE

PANEL WERE DR . E. L. COX , OR , CHURCHILL EISENHART , MR . JOHN

L. MCDANTEL, DR. PAUL R. RIDER , DR . WILLIAM WOLMAN AND

DR . DONALD Á GARDINER ) .

Tenth Conference : 4-6 November 1964 , The Army Research Office ,

Washington , DC

MAJ GEN Leslie E. Simon (Ret'd )

THE STIMULUS OF S. S. WILKS TO ARMY STATISTICS

Professor Oscar Kempthorne

DEVELOPMENT OF THE DESIGN OF EXPERIMENTS OVER THE PAST TEN

YEARS

Professor H. 0. Hartley and Professor A. W. Wortham

ASSESSMENT AND CORRECTION OF DEFICIENCIES IN PERT ANALYSIS

xiv



Dr. Churchill Elsenhart

SAH WILKS AS I REMEMBER HIM

Dr. W. J. Youden

AN OPERATIONS RESEARCH YARN AND OTHER COMMENTS

Professor John W. Tukey

THE FUTURE OF PROCESSES OF DATA ANALYSIS

Dr. M. G. Kendall

STATISTICS AND MANAGEMENT

Professor Gerald J. Lieberman (Chairman )

PANEL DISCUSSICN ON REGRESSION ANALYSIS . ( OTHERS ON THE PANEL

WERE PROFESSORS ROBERT BECHHOFER , G. E. P. BOX , JACK C. KIEFER
AND INGRAM OLKIN) .

Eleventh Conference : 20-22 October 1965 , V. S. Army Munition Command,

Dover . Held on the campus of Stevens Institute

of Technology in Hoboken , New Jersey

Dr. Joan R. Rosenblatt

CONFIDENCE LIMITS FOR THE REALIABILITY OF COMPLEX SYSTEMS

Professor J. Stuart Hunter

NONLINEAR MODELS : ESTIMATION AND DESIGN

Professor William C. Guenther

TARGET COVERAGE PROBLEMS

Professor H. 0. Hartley

MAXIMUM LIKELIHOOD ESTIMATES FOR THE GENERAL MIXED ANALYSIS OF

VARIANCE MODEL

Professor R. E. Bechhofer

PANEL DISCUSSION ON SELECTING THE BEST TREATMENT .

PANEL MEMBER WAS PROFESSOR SHANTI S. GUPTA ) .

( THE OTHER
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Twelfth Conference : 19-21 October 1966 , Harry Diamond Labs ,

and the National Bureau of Standards

Professor Brian W. Conolly

OPERATIONS RESEARCH

Dr. John Mandel

STATISTICS AS A DIAGNOSTIC TOOL IN DATA ANALYSIS

Professor W. G. Cochran

PLANNING AND ANALYSIS OF OBSERVATIONAL STUDIES

Professor Norman L. Johnson

SAMPLE CENSORING

Thirteenth Conference : 1-3 November 1967 , The U. S. Army Mobility

Equipment Development Center and the U. S.

Army Engineer Topographic Laboratories

Professor Francis J. Anscombe

REGRESSION ANALYSIS

Professor K. A. Brownlee

SOME CONHENTS ON MATCHING

Professor 1. J. Good

SOME STATISTICAL METHODS IN MACHINE INTELLIGENCE RESEARCH

Dr. Frank Proschan

MAXIMUM LIKELIHOOD ESTIMATION OF RELIABILITY

Dr. M. 8. Wilk

DATA ANALYSIS

Fourteenth Conference : 23-25 October 1968 , U. S. Army Edgewood

Arsenal

LT GEN William B. Bunker

BROADENING THE HORIZONS OF EXPERIMENTAL DESIGN

Professor Rolf E. Bargmann

STRUCTURE AND CLASSIFICATION OF PATTERNS

xvi



Professor Acheson J. Duncan

BULK SAVAPLING

Professor Emanuel Parzen

TIME SERIES

Dr. Walter D. Foster ( Chairman )

PANEL DISCUSSION ON BULK SAMPLING . !OTHERS ON THE PATEL

WERE PROFESSORS ACHESON J. DUNCAN AND BOYD HARSHBARGER AND

MESSRS. HENRY ELLNER, GENE RAY LOWRIMORE , JOSEPH MANDE LSON
AND VERNON H. RECHHEYER ) .

Fifteenth Conference : 22-24 October 1969 , U. S. Army Missile

Command

Dr. John E. Condon

RELIABILITY AND QUALITY ASSURANCE

Dr. Nancy R. Mann

SYSTEMS RELIABILITY

Dr. Clifford J. Maloney

A PROBABILITY APPROACH TO CATASTROPHIC THREAT

Professor Richard G. Krutchkoff

THE EMPIRICAL BAYES APPROACH TO THE DESIGN AND ANALYSIS OF

EXPERIMENTS

Dr. S. C. Saunders

ON CONFIDENCE LIMITS FOR THE PERFORMANCE OF A SYSTEM WHEN

FEW FAILURES ARE ENCOUNTERED

Sixteenth Conference : 21-23 October 1970 , U. S. Army Logistics

Management Center

Professor Solomon Kullback

MINIMUU DISCRIMINATION INFORMATION ESTIMATION AND APPLICATION

Dr. Richard J. Kaplan

FIELD TESTING

xvii



Professor Gary G. Koch

THE ANALYSIS OF COMPLEX CONTINGENCY TABLE DATA FROM GENERAL

EXPERIMENTAL DESIGNS AND SAMPLE SURVEYS

Professor A. Clifford Cohen

ESTIMATION IN TRUNCATED POISSON DISTRIBUTIONS WITH CONCOMITANT

INTERVALS AND TRUNCATION POINTS

Professor Dana Qua de

NONPARAMETRIC ANALYSIS OF COVARIANCE

Seventeenth Conference : 27-29 October 1971 , Walter Reed Army

Institute of Research

Professor Marvin Zelen

THE ROLE OF MATHEMATICAL SCIENCES IN BIOMEDICAL RESEARCH

Professor Bernard G. Greenberg

RANDOMIZED RESPONSE : A NEW SURVEY TOOL TO COLLECT DATA OF A

PERSONAL NATURE

Dr. Geoffrey H. Ball

CLASSIFICATION AND CLUSTERING TECHNIQUES IN DATA ANALYSIS

Professor K. S. Banerjee

HOTELLING'S WEIGHING DESIGNS

Dr. John J. Gart

THE COMPARISON OF PROPORTIONS : A REVIEW OF SIGNIFICANCE TESTS,

CONFIDENCE INTERVALS AND ADJUSTMENTS FOR STRATIFICATION

Eighteenth Conference : 25-27 October 1972 , U. S. Army Test

and Evaluation Command

Professor John Tukey

EXPLORATORY DATA ANALYSIS

Professor G. S. Watson

ORIENTATION ANALYSIS

Professor J. Stuart Hunter

SEQUENTIAL FACTORIAL ESTIMATION

-
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Professor G. E. P. Box

FORECASTING AND CONTROL

Professor Raymond H. Myers

DUAL RESPONSE SURFACE ANALYSIS

Nineteenth Conference : 24-26 October 1973 , Headquarters , U. S.

Army Armament Command & U. S. Army Manage

ment Engineering Training Agency

Professor Jerome Cornfield

BAYESIAN STATISTICS

Professor S. S. Gupta

RANKING AND SELECTION PROCEDURES FOR MULTIVARIATE NORMAL

POPULATIONS

Professor H. L. Gray

GENERALIZED JACKKNIFE TECHNIQUES

Professor Frank Proschan

RELIABILITY GROUTH

Professor S. C. Saunders

ACCELERATED LIFE TESTING

Professor W. A. Thompson , Jr.

RELIABILITY OF MULTIPLE COMPONENT SYSTEMS

Twentieth Conference : 23-25 October 1974 , U. S. Army Operational

Test & Evaluation Agency and U. S. Army

Engineer Center at Ft . Belvoir

Dr. Churchill Eisenhart

SAMUEL S. WILKS AND THE ARMY DESIGN CONFERENCES

Professor Solomon Kullback

MULTIDIMENSIONAL CONTINGENCY TABLES
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Professor Herbert Solomon

MULTIVARIANT DATA ANALYSIS

Professor H. A. David

ORDER STATISTICS

Professor Gerald Lieberman

RELIABILITY

Professor Robert Bechhofer

RANKING AND SELECTION PROCEDURES

Drs . Marion R. Bryson and william Mallios

MAXIMUM INFORMATION FROM EXPERIMENTS

Twenty -First Conference : 22-24 October 1975 , Walter Reed Army

Medical Center and the Armed Forces

Institute of Pathology

Professor Frederick Mosteller

SUCCESS IN SOCIAL AND MEDICAL EXPERIMENTATION

Professor Edmund A. Gehan

NONRANDOMIZED CLINICAL TRIALS

Professor Paul Meier

RANDOMIZED CLINICAL TRIALS

Professor Seymour Geisser

PREDICTIVE SAMPLE REUSE

Professor Edmond Murphy

NORMALITY AND DISEASE

Twenty -Second Conference : 20-22 October 1976 , Harry Diamond Labs ,

Adelphi , Maryland

Professor J. Stuart Hunter

THE MEASUREMENT PROCESS

1
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Professor Benjamin S. Blanchard

MANAGEMENT OF RELIABILITY

Dr. Carl N. Morris

STEIN'S ESTIMATOR , ITS GENERALIZATIONS AND ITS APPLICATIONS

Professor Robert V. Hogg

ON ROBUST STATISTICAL PROCEDURES

Professor Nozer D. Singpurwalla

ACCELERATED LIFE TESTING

Twenty -Third Conference : 19-21 October 1977 , V. S. Army Combat

Developments Experimentation Command. Held

at the Naval Postgraduate School , Monterey ,

California

Professor G. E. P. Box

TIME SERIES MODELING

Professor Norman Breslow

CENSORED DATA

Professor Donald P. Gaver

MODELING AND ESTIMATION OF COMPLEX SYSTEM AVAILABILITY

Professor H. 0. Hartley (Keynote )

ANALYSIS OF UNBALANCED EXPERIMENTS

Professor Rupert Miller

THE JACKKNIFE : SURVEY AND APPLICATIONS

Twenty -Fourth Conference : 2-6 October 1978 , Mathematics Research

Center , University of Wisconsin -Madison

Professor Ralph Bradley

SOME APPROACHES TO STATISTICAL ANALYSIS OF WEATHER MODIFICATION
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Mr. Bernard Davis ( for Professor Richard E. Barlow )

RECENT ADVANCES IN GRAPHICAL TECHNIQUES FOR ANALYZING

FAILURE DATA

Professor Norman Draper ( Keynote )

RIDGE REGRESSION

Professor Brian Joiner

STATISTICAL CONSULTING

Professor Grace Wahba

DESIGN PROBLEMS IN RECOVERING FUNCTIONS OF TWO OR SEVERAL

VARIABLES

Twenty -Fifth Conference : 17-19 October 1979 , U. S. Army Natick

Research and Development Command

Professor William G. Cochran ( Keynote )

SUMARIZING THE RESULTS OF A SERIES OF EXPERIMENTS

Dr. Frank E. Grubbs

A QUARTER CENTURY OF ARMY DESIGN OF EXPERIMENTS CONFERENCES

Mr. Al L. May

DESIGNED EXPERIMENTS IN SENSORY TESTING

Dr. Ray E. Schafer

COMPUTER AIDED HYPOTHESIS TESTS - THE BIRNBAUM TEST

Professor Warren Stewart

NEW ALGORITHMS FOR NONLINEAR LEAST SQUARES AND BAYESIAN

.PARAMETER ESTIMATION

Professor Marvin Zelen

ETHICS AND STRATEGY IN THERAPEUTIC INVESTIGATIONS
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SAMUEL S. WILKS MEMORIAL MEDAL

The Samuel S. Wilks Memorial Medal Award , initiated in 1964 by

the U. S. Army and American Statistical Association jointly , is

administered by the American Statistical Association, a non -profit

educational and scientific society founded in 1839. The Wilks Award

is given each year to a statistician and is based primarily on his

contributions to the advancement of scientific or technical knowledge

in Army statistics , ingenious application of such knowledge , or

successful activity in the fostering of cooperative scientific

matters which coincidentally benefit the Army , the Department of

Defense , the U. S. Government, and our country generally .

The Award consists of a medal, with a profile of Professor Wilks

and the name of the Award on one side , the seal of the American

Statistical Association and name of the recipient on the reverse ,

and a citation and honorarium related to the magnitude of the Award

funds . The annual Army Design of Experiments Conferences, at which

the Award is given each year, are sponsored by the Army Mathematics

Steering Committee on behalf of the Office of the Chief of Research

and Development, Department of the Army .

The funds for the S. S. Wilks Memorial Award were donated by

Philip G. Rust , retired industrialist , Thomasville , Georgia .

RECIPIENTS OF THIS AWARD

NAME DESIGN CONFERENCE (and year ) PRESENTED

Dr. Frank E. Grubbs

Ballistic Research Laboratory

Tenth ( 1964 )

Professor John Tukey

Princeton University

Eleventh ( 1965 )

Twelfth ( 1966 )Major General Leslie E. Simon

United States Army (Ret'd )

Professor W. G. Cochran

Harvard University

Thirteenth ( 1967 )

Fourteenth ( 1968 )Professor Jerzy Neyman

University of California -Berkeley

Dr. W. J. Youden

National Bureau of Standards (Ret'd)

Fifteenth ( 1969 )

xxiii



Sixteenth ( 1970 )Professor George W. Snedecor

Iowa State University ( Ret'd)

Seventeenth ( 1971 )Professor R. W. Dodge

Rutgers University and

Bell Telephone Laboratories

Professor G. E. P. Box

University of Wisconsin

Eighteenth ( 1972 )

Professor H. 0. Hartley

Texas A&M University

Nincteenth ( 1973 )

Tuentieth ( 1974 )Mr. Cuthbert Daviiel

Consultant

Twenty - First ( 1975 )Professor Herbert Solomon

Stanford University

Professor Sclomon Kullback

George Washington University (Ret'd )

Tuenty -Second ( 1976 )

Tuenty -Third ( 1977 )Dr. Churchill Eisenhart

National Bureau of Standards

Professor William H. Kruskal

University of Chicago

Twenty -Fourth ( 1978 )
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RECIPIENTS OF THIS AWARD
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Tenth ( 1964 )Dr. Frank E. Grubbs

Ballistic Research Laboratory

Eleventh ( 1965 )Professor John Tukey
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Twelfth ( 1966 )Major General Leslie E. Simon

United States Army (Ret'd )
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Harvard University

Fourteenth ( 1968 )Professor Jerzy Neyman

University of California -Berkeley

Fifteenth ( 1969 )Dr. W. J. Youden

National Bureau of Standards (Ret'd )
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Sixtcerrth ( 1970 )Professor George W. Snedecor

Iowa State University (Ret'd )

Seventeenth ( 1971 )Professor R. W. Dodge

Rutgers University and

Bell Telephone Laboratories

Professor G. E. P. Box

University of Wisconsin

Eighteenth ( 1972 )

Professor H. 0. Hartley

Texas A & M University

Nincteenth ( 1973 )

Tuentieth ( 1974 )Mr. Cuthbert Dariel

Consultant

Professor Herbert Solomon

Stanford University

Twenty -First ( 1975 )

Twenty -Second ( 1976 )Professor Sclomon Kullback

George Washington University (Ret'd )

Dr. Churchill Eisenhart

National Bureau of Standards

Tuenty -Third ( 1977 )

Twenty - Fourth ( 1978 )Professor William H. Kruskal

University of Chicago
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A G E N D A

THE TWENTY - FIFTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN

ARMY RESEARCH , DEVELOPMENT AND TESTING

17-19 October 1979

Host :

Held :

The Natick Research and Development Command

Auditorium , Administration Building , Natio

Research Laboratories , Natick , Massachusetts

***** Wednesday , 17 October *****

0815-0915 REGISTRATION
Lobby , Administration Building

0915-0930 CALLING OF THE CONFERENCE TO ORDER Lobby

Donald Kass , Chairman of Local Arrangements , Natick

Research and Development Command

WELCOMING REMARKS

COL Robert J. Cuthbertson , Natick Research and

Development Command

0930-1200 GENERAL SESSION I

CHAIRMAN Douglas B. Tang , Chief , Department of Biostatistics /

Applied Mathematics , Walter Reed Army Institute of

Research , Washington , DC

0930-1030 Special Silver Anniversary Address

A QUARTER CENTURY OF ARMY DESIGN OF EXPERIMENTS

CONFERENCES

Frank E. Grubbs , Program Committee Chairman , Ballistic

Research Laboratory , Aberdeen Proving Ground , Maryland

1030-1100 BREAK

XXV



1100-1200 GENERAL SESSION I (Continued )

KEYNOTE ADDRESS

SUMMARIZING THE RESULTS OF A SERIES OF EXPERIMENTS

William G. Cochran , Department of Statistics , Harvard

University , Cambridge , Massachusetts

1200-1330 LUNCH

1330-1500 TECHNICAL SESSION I
O

ROBUSTNESS AND OUTLIERS

CHAIRMAN - Francis E. Dressel , Army Research Office ,

Research Triangle Park , North Carolina

APPLICATION OF ROBUST FILTERING AND SMOOTHING TO

TRACKING DATA

William S. Agee and Robert H. Turner , Analysis and

Computation Division , White Sands Missile Range ,

New Mexico

ROBUST REGRESSION ANALYSIS IN PREDICTING CERAMIC

STRUCTURAL FAILURE

Donald M. Neal , US Army Materials & Mechanics Research

Center , Watertown , Massachusetts

COMPOUND FREQUENCY DISTRIBUTIONS

Donald W. Rankin , US Army Materiel Test & Evaluation

Directorate , White Sands Missile Range , New Mexico

1500-1530 BREAK

1530-1630 GENERAL SESSION II

CHAIRMAN Donald Kass , Natick Research and Development

Command , Natick , Massachusetts

ETHICS AND STRATEGY IN THERAPEUTIC INVESTIGATIONS

Marvin Zelen , Department of Statistical Sciences ,

Harvard School of Public Sciences , Boston , Massachusetts

1830-1930 SOCIAL HOUR Maridon Restaurant

1930 BANQUET Maridon Restaurant

1
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***** Thursday , 18 October *****

0900-1030 TECHNICAL SESSION II STATISTICAL THEORY

CHAIRMAN Grady Miller , US Army Materiel Systems

Analysis Activity , Aberdeen Proving Ground ,

Maryland

ON SIMULTANEOUS INFERENCE FOLLOWING A SIGNIFICANT

KRUSKAL - WALLIS TEST

Andrew P. Soms , Mathematics Research Center , University

of Wisconsin - Madison

SOME BAYESIAN ALTERNATIVES TO SIGNIFICANCE TESTING

Thomas Leonard , Mathematics Research Center , University

of Wisconsin -Madison

VARIANCE REDUCTION IN MONTE CARLO SIMULATION

Mark Brown , Florida State University ; Herbert Solomon ,

Stanford University ; and Michael A. Stephens , Simon

Fraser University , Burnaby , B.C.

1030-1100 BREAK

1100-1200 TECHNICAL SESSION III DATA ANALYSIS

CHAIRMAN Carl Bates , US Army Concepts Analysis Agency ,

Bethesda , Maryland

SENSITIVITY OF TOLERANCE LIMITS TO SMALL SAMPLE SIZES

James R. Knaub , Jr. , US Army Materiel Test and Evaluation

Directorate , White Sands Missile Range , New Mexico

THE PERIODIC NATURE OF EXPERIMENTALLY MEASURED DATA

Michael Hacskaylo , Night Vision and Electro-Optics

Laboratory , Ft . Belvoir , Virginia

1200-1330 LUNCH

1330-1530 GENERAL SESSION III

CHAIRMAN - Edward Ross , Natick Research and Development

Command , Natick , Massachusetts

DESIGNED EXPERIMENTS IN SENSORY TESTING

Alfred T. May , Pillsbury Research Labs , Minneapolis ,

Minnesota

xxvii



COMPUTER AIDED HYPOTHESIS TESTS THE BIRBAUM TEST

Ray E. Schafer , Hughes Aircraft Company , Fullerton ,

California

1530-1600 BREAK

1600-1700 TECHNICAL SESSION IV LEAST SQUARES

CHAIRMAN Maxson Greenland , Chemical Systems Laboratory ,

Aberdeen Proving Ground , Maryland

VARIABLE TRANSFORMATIONS IN NONLINEAR LEAST SQUARES

PROBLEMS

Aivars Celmins , Ballistic Research Laboratory , Aberdeen

Proving Ground , Maryland

ANALYSIS OF DATA WITH THE NONLINEAR LEAST CHI SQUARE

ALGORITHM

Richard L. Moore , US Army Armament Research and Development

Command , Dover , New Jersey

***** Friday , 19 October *****

0800-0900 TECHNICAL SESSION V BIOMEDICAL APPLICATIONS

CHAIRMAN illiam E. Baker , Probability and Statistics

Branch , Ballistic Research Laboratory , Aberdeen

Proving Ground , Maryland

ERROR - TIME RESPONSE PERFORMANCE OF NAIVE SUBJECTS

Michael Hacskaylo and Joseph E. Swistak , Night Vision

and Electro-Optics Laboratory , Ft . Belvoir , Virginia

IMAGE INTERPRETATION PERFORMANCE IN FOUR STANDARD TYPES

OF AEROGRAPHIC FILM

Ronald L. Johnson , US Army Mobility Equipment Research

and Development Command , Ft . Belvoir , Virginia

0900-0930 GENERAI: SESSION IV

CHAIRMAN - Frank E. Grubbs , Ballistic Research Laboratory ,

Aberdeen Proving Ground , Maryland

OPEN MEETING OF THE AMSC SUBCOMMITTEE ON PROBABILITY

AND STATISTICS

Douglas B. Tang , Chief , Department of Biostatistics /Applied

Math , Walter Reed Army Institute of Research , Washington , DC

1
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0930-1000 BREAK

1000-1100000-1 GENERAL SESSION IV (Continued )

NEW ALGORITHMS FOR NON -LINEAR LEAST SQUARES AND BAYESIAN

PARAMETER ESTIMATION

Warren Stewart , Mathematics Research Center , University

of Wisconsin -Madison

1100 ADJOURN

*
* *

*

* * * * *

PROGRAM COMMITTEE

Carl Bates
Walter Foster

J. Richard Moore

George E. P. Box Frank E. Grubbs Douglas Tang

Larry Crow
Donald Kass Malcolm Taylor

Francis Dressel Robert Launer Michael White
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SPECIAL SILVER ANNIVERSARY ADDRESS : A QUARTER

CENTURY OF ARMY DESIGN OF EXPERIMENTS CONFERENCES

Frank E. Grubbs

Ballistic Research Laboratory , Aberdeen Proving Ground , Maryland

Welcome to the 25th Conference on the Design of Experiments

in Army Research , Development and Testing . A whole quarter of

a century has passed since Sam Wilks recommended that the Army

As

start this series of conferences , and what an excellent idea he

had , with all the vision for the future of Army statistics .

we all know , Wilks was a very remarkable man : a gentleman , a good

leader , an outstanding scholar and research statistician , a man

who also had very vital interests in applications , and he liked to

see people work together . Sam travelled much for the Department

of Defense and he consulted widely on all probable areas of sta

tistical application for the Government . He missed none of these

conferences , and we remember him so well in his role of selecting

many of the key statisticians in the universities to participate

in these conferences , as we met at the Cosmos Club.in Washington ,

and drank and dined with Sam . I think we have a better pay-off

from these statistical conferences than the other DOD conferences ,

because of the close interface with university statisticians , in

cluding , of course , the eminent statistician who gives the keynote

address next . To the memory of Sam Wilks we owe so much , and

therefore in 1964 we devoted the Army Design of Experiments Con

ferences to Sam's memory .

This particular conference , the landmark 25th , is . also dedica

ted to our good friend , fellow mathematician and statistician ,

teacher , and excellent administrator , Dr. Francis G. Dressel .
How

would the design of experiments conferences ever have survived if
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it had not been for Francis ? , who carried always the big part of

the load . I am asking him to make a few remarks next . I am glad

Francis has trained Bob Launer so well too !

Now how in the world did I ever get saddled with a " Special

Silver Anniversary Address" , including the fancy title that came

from , I might say , a former friend? It is probably because some

of my colleagues saw me enjoying being too much a " free lancer "

at these conferences , so they thought ! I must stretch the exact

title of my talk a bit to cover more statistics . Back in the mid

Thirties , I was a timid , very illiterate Southerner , trying to eke

out a living by teaching engineering math at ( now ) Auburn University ,

and it became starkly clear that we lowly instructors would hardly

ever be promoted unless we got a PhD ! But it was also made quite

clear to us that getting a PhD would not make us a better teacher !

A quick OR study ( not so-called then ) convinced us that we should

as an outlet ,

seek something in applied math , and statistics was the subject to

study , for it was needed and spreading fast too , for example to our

agricultural experiment station problems . I had a friend , who got

a Ph D at Cornell University , and had a good job at our experiment

station , so that he introduced me to the analysis of variance ,

which seemed to be a misnomer , and he even alarmed me with the

idea of the analysis of covariance ! I later heard that Karl Pearson

was the greatest statistician of all , but that one R. A. Fisher was

not sprinkling holy water on all the things Karl Pearson had done .

My friend wanted to know if I had read any of the reputable jour

nals on the subject of statistics , and I hadn't , of course . In

fact , in about 1934 a paper by a young genius on the distribution

of quadratic forms in a normal system , with applications to the

analysis of covariance had appeared in a ( strange ) journal called
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the Proceedings of the Cambridge Philosophoical Society , written

by our keynote speaker of today . Later , in the early 1940's when

I had been in uniform at the BRL during World War II , we had trouble

justifying a journal called " Biometrika " at first , and there was no

way the Army would ever approve the Annals of Eugenics in our Li

brary even if it contained statistical papers !

In any event , back in the mid- to late 30's it did seem that

statistics would be a good choice of graduate study with an out

let . But where in the United States could one study statistics?

He certainly could not do so down South , and in fact there were

only two , or maybe three , places to go for statistics courses Iowa

State University , the University of Iowa , and perhaps the University

of Michigan . The latter was mostly an acturial school with well

known voices such as Menge and Glover , with Cecil C. Craig and

Paul Dwyer coming along , and perhaps most interesting of all an

athletic statistician and actuary , Harry Clyde Carver , who would

challenge his graduate students to beat him at any sport of their

own choice . If Carver won , there would be a stiff final exam and

no A's ! One had to beat Carver at his own game !

We selected Michigan , for Iowa State University seemed too

far away , and Alan T. Craig of Iowa was scheduled to give the

basic graduate statistics course at Michigan in the summer of 1937 ,

and what a good start to learn to throw dice , et al !
That summer ,

I tried to learn what a random variable was . I had known Clifford

Cohen for years back at Auburn , and at Michigan , Clifford of all

things , had elected to write his dissertation on the very obscure

subject of truncated sample theory ! But how in the world could

there ever be much interest , let alone wide applications , of such

an odd topic ? A colleague , who had treaded this mill before ,

assured me that " Clifford Cohen was a very
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smart man
he chose a topic no one else would ever work on ! "

The advice continued , " Don't ever pick a" Don't ever pick a ' hot ' topic , for

a genius will beat you to it , and you'll never get your degree" !

in mathematics

The non-statistical graduate students frowned at anyone studying

statistics , as it was not as important as topology or even dif

ferential geometry either . One of them was somewhat friendly

though , and on occasion would drop by our " flat " with his wife .

He would pick up and continue my wife's needlepoint with much en

thusiasm , but didn't care for statistics then , or any part of it !

His name Jimmy Savage ( ! ) . And it goes to show you what can hap

pen toat pure , rigorous mathematician , once he is " bitten by the

bug " or otherwise the clever ideas of the Reverend Thomas Bayes !

It was not easy to to find and settle upon a dissertation topic

without some guidance , but all the professors already had too

many graduate students , and tibey had passed along topics to some

they never heard from , so that I had " better look around in the

library " . No one then told me , for example , that concerning trun

cated sample theory this would develop into the field of order

statistics , and moreover blossom into reliability , life-testing ,

et al , and it was in fact many , many years before that did

occur . You see , no advice I had been given really sunk in , for

I decided to work on outliers , and the international situation

had gotten so gloomy that writing a dissertation would not be

done very quickly anyway , so , being a reserve officer , I was intro

to the Army .

The physical and engineering sciences were just beginning to

make some uses of statistics , although Walter Shewhart had made

applications of statistical quality control .

jat Michigan
In 1941 I got ahold

of a new book , " An Engineers's Manual of Statistical Methods " by

one Major Leslie E. Simon , and as I read it and was enlightened
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by the book , some correspondence developed , for here was an

authority who had the vision , the wisdom and the courage , of

all things , at the time of a very low cycle on the Bayesian revo

lution ( so that we later kidded Les Simon that he had the unmiti

gated gall ) to publish in the back of his book some le Charts to

estimate the fraction of defectives in a lot by using Bayes '

equally likely hypothesis ! Today , there seem to be no 100 %

classical statisticians , so that we can chalk up another win for

Les . And this introduced me to the Army's Ballistic Research

Laboratories , on active duty in uniform as a Lieutenant , where

there was never to be an end to all kinds of knotty statistical

problems .

As pointed out in Les Simon's book , An Engineers Manual of

Statistical Methods , Dr. L. S. Dederick had worked out the proba

bility distribution of the sample range ( largest minus smallest

observation) back in 1926 , and had partially tabulated its dis

tribution , but wouldn't submit it for publication ! Sam Wilks had

on occasion consulted with the person

nel of the Ballistic Section of BRL at Aberdeen Proving Ground

on various statistical problems . Also , since the dispersion of

shots on a target , as from rifle firings , was often measured by

the " extreme spread" , or bivariate range , this little nasty sta

tistical distribution had eluded statisticians., and Mr. Philip

G. Rust , an industrialist and " rifle accuracy bug " , established

by sampling shot patterns the distribution of the extreme spread

for small sample sizes . Also , on the train from Washington to

Wilmington , Phil Rust had told Sam Wilks about it and had suggested

that he look into the

* In a panel discussion on Bayesian methods on reliability one time , I stated that

statistically I was 50% classical . 25% fiducial and 25% Bayesian , but Frank Proschan

promptly branded me as a hermaphrodite .

5



theory of the probability distribution of the extreme spread in

order to study its properties , as it was widely used in ballis

tics and rifle accuracy competititons also .

When I arrived at the BRL at Aberdeen Proving Ground in 1941 ,

John von Neumann , Robert H. Kent , H. R. Bellinson , and B. I. Hart

nad just worked out and published in the Annals of Mathematical

Statistics the distribution of the mean square successive differ

ence , and the mean square successive difference to the variance ,

and B. I. Hart had calculated percentage points of both .

The " real world data " , coming out of ballistic testing of all

kinds , often defied any good or " normal" analysis , and were loaded

with outliers ! There was thus an applicable dissertation topic !

In the mid Forties , there existed a critical need to do something

about speeding up the production of firing tables , as about 100

female " computers " were always busy running computations on those

big , heavy desk electric Friden or Monroe calculators .

Leslie E. Simon valued brains to solve the Army's problems in

ballistics , and he had established a scientific advisory Committee

with some of the best brains in the physical sciences in the

country . What a wonderful and stimulating place to work , less much

time
to be in uniform and fight the " battle of Aberdeen" !

Back in the early Thirties , Simon was Chief of Manufacture

at Picatinny Arsenal , and had cultivated the interest and exper

tise of Walter Shewhart to apply the principles of statistical

-
-

A
R
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at Picatinny Arsenal .

quality control to the manufacture of ammunition At the BRL

in World War II , Simon saw the pressing need to pass on the

principles of statistical quality control to industry in the

production of ammunition and weapons for the US Army , and he

also worked with Harold Dodge of the Bell Telephone Laboratories

to start computations of the standard sampling inspection tables

for the Army Ordnance Corps , later put into Millater put into Military Standard 105A .

Sam Wilks had long been aware of the need for well-designed

experiments and hence suggested that the Army start a series of

annual conferences to promote statistical methods . Sam suggested

that the Design of Experiments Conferences should have three types

of sessions : First , there would be some special invited papers

by well-known authorities on the philosophy and general principles

of statistical design of experiments , then there would be some

technical papers presented by Army statisticians , and finally

there would be clinical sessions with suggestions from the experts

and we still stick to this format today . These conferences had

their beginning 19-21 October 1955 at the Diamond Ordnance Fuze

Laboratory and National Bureau of Standards in Washington , D. C.

We note that Sam's conferences were Army Wide , and attracted DOD

interest , while a conference the Ballistic Research Laboratories

put on a year earlier ( 1954 ) on the use of statistical methods

was primarily for Army Ordnance personnel .

Within Ordnance and the Army , Leslie E. Simon certainly was

the great stimulus to the advancement of statistical methods , for
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at the BRL Les was not only its Director , but he also prepared

a large number of papers on engineering statistics or statistical

engineering what ever you want to call it . Moreover , there was

a pressing need for these very papers to acquaint industry to

the methods of quality control and statistics in connection with

the World War II effort . And Les helped promote the short courses

on statistical methods in industry . There was a great deal of

interest during this period concerning the concept of " economical

lot sizes " , and also the concept of producing very large " homo

geneous lots" so that for ammunition at least we could get rid of

the situation where at a field artillery battery site there existed

a mixture of rounds from several or many lots with different levels

of muzzle velocity and degrees of surface-finish roughness .

In the mid-nineteen Forties , a very significant and world

Wide development occurred due to an idea of our imminent and es

teemed Scientific Advisory Committee member , John von Neumann . He

had suggested the construction of the ENIAC or Electronic Numerical

i
a digital computer

Integrator and Calculator at the BRL . We saw the handwriting

on the wall : The ENIAC could be used to Monte Carlo anything to

death , in addition to the more straight- forward computations of

mathematical and statistically tractable functions . And so many

statistical problems were planned ! First , however , there had to

be some calculations on the distributions of: outliers , and the

ENIAC staff was looking for work ! It was then that I learned

about priorities and the real importance of any statistical problem

to the country !
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Once they got the ENIAC wired for my outlier problem , the Atomic

Energy Commission called on Gen Simon and Johnny von Neumann to

use the ENIAC to obtain an optimum solution to the problem of

imploding the core of a nuclear warhead , with the result , of

course , that even though our Computing Laboratory had begged for

work , my suggestion and the start of some extensive calculations

to keep them busy immediately got a vanishing priority !

In those days of a great scientific effort at the BRL and

many of the country's great physicists , chemical physicists , mathe

maticians , engineers , et al , I felt just like Les Simon had always

said , " The engineers would call him a statistician , and the statis

ticians would call him an engineer" ! Indeed , we were trying to

apply statistical techniques to many knotty physical problems for

which there was a phisical model that applied well . Perhaps

I would have been much better off in agriculture ! We survived

some way or the other and hence got away from the use of primarily

the probable error which was never to be deleted from firing tables

though !

Now , getting back to the uses of Army Statistics , which led

up to the Design of Experiments Conferences , we record that a

very good account of the statistics in the Army from the very be

ginning has been prepared by our good friend Clifford Maloney ( The

American Statistician , June 1962 ) , who traced various statistical

interests in one way or the other from very early times - he

started out with Daniel Bernoulli in 1777 . As pointed out by

Maloney , there certainly was much vital interest in medical
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statistics of the Army from the beginning , and at West Point the

graduates needed to know something about the dispersion of shots

on a target , and least squares and the adjustment of data . In

fact , in early times , the best engineers in the USA were really

coming from West Point . Then again , there was always considerable

interest in the sensitivity of explosives to impact or shock , the

sensitivity of primers and other items of Ammunition , which no

doubt brought about the so-called " Bruceton Method " of sensitivity

analysis , and later developed into the Dixon-Mood " Up and Down "

technique at Princeton , and since has been widely used . Naturally ,

Dixon and Mood were students of Sam Wilks , who again enters the

general picture ! So you see , the Army did indeed have the most

natural needs and demands for the application of statistical

methods , and Sam Wilks was the first university professor to recog

nize this vital development for the good of all concerned , as he

was always in touch with so many important applications .

I think that the Army Design of Experiments ( DOE ) Conferences

Sam Wilks started have performed the the vital task of fulfilling

the need for cross-fertilization of statistical theory and prac

tice , even though these conferences occurred only once a year .

It is through the Army DOE conferences that we have become ac

quainted with each other , discussed common statistical problems ,

presented solutions to others , learned a lot from the eininent

university statisticians and gotten their best suggestions during

the clinical sessions . Moreover , this has all stimulated Army

10

.

1



satisticians to perform very good work and publish a number

of useful results for others to apply . If it had not been for

Wilks ' vision and the DOE conferences , we would have been off

to ourselves , no doubt , working very much more inefficiently .

Now all of you have the nice little pamphlet prepared by Bob

Launer for this , the Twenty - fifth anniversary of the Army DOE

conferences , and we note that the series got off with a bang in 1954

as Bill Cochran led with the philosophy underlying the the design of

experiments . Churchhill Eisenhart spoke on principles of ran

domization ( Isn't that still an unsettled topic ? ) and John Tukey

headed a panel on " Where do statisticians fit in? " ) . Jack Youden

aided in his most interesting way of talking about the design of

experiments in industrial research and develpoment . The applica

tion of order statistics and problems in subjective testing came

into the Second DOE conference , and we were fortunate to have

R. A. Fisher at the Third conference !! Also at the Third confer

ence Ho Hartley spoke on changes in the outlook of statistics

brought about by modern computers , and Ben Epstein , who at one

time even worked at Frankford Arsenal , covered what was to become

a very important Army field " life - testing " and later reliability

and reliability growth . Here at Natick for the Fourth conference ,

it was appropriate to have L. H. C. Tippett discuss statistical

methods in the textile industry , and the Fifth conference taught

me a lot about smoking and lung cancer (now forgotten! ) because

of the lively debates between Joe Berkson of the Mayo Clinic and

Jerzy Neyman ( both smoking , I believe ! )
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The theme or title of these conferences was stretched many

times , I am reminded , to include many important topics of the

day or time , and this was necessary and good too ! In fact , I

note that Egon Pearson gave the keynote address of the Eighth

conference on a statistician's place in assessing the likely

operational performance of Army weapons and equipment , or the

need for statistics in military operations research and weapon

systems analysis . In fact , the Army has a parallel series of

conferences , started in 1961 , known as the Army Operations Re

search Symposia . I found that the field of operations research

was being staffed primarily by mathematicians , physicists , en

gineers and others , but not enough statisticians , who could aid

in their modelling problems of stochastic processes . For example ,

for probability of hitting problems there was often the need to

have simple approximations to the distribution of quadratic forms

in normal variables , and techniques like the Wilson-Hilferty

transformation of Chi-square to approximate normality and the

those darn that

Polya-Wilson approximation to cut-off normal integrals/ were found
/

to be very useful . Moreover , we also saw that the theories of

life- testing would apply to Lanchester type combat theory .

Because of the critical need for the evaluation of weapon systems ,

and later many other military operations research topics , the

Army OR symposia have attracted a large number of " high brass "

type visitors , Statistical topics have been often discussed at

the Army OR conferences and OR topics at the Army DOE conferences .

Forget titles !
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In the spring of 1964 , some six months before the Tenth con

ference , we got the shock of our lives with the untimely passing

of Sam Wilks . For the Tenth conference , Les Simon came forth with

an excellent and informative paper on the stimulus of S. S. Wilks

to Army Statistics , and the high importance of the DOE conferences

to Army statistical endeavors .

Fortunately , the DOE conferences have proceeded to cover the water

front , and stimulate and train more statisticians .

Now although I have mentioned many of the key benefits and

much in the way of significant progress that has resulted from

the DOE conferences , let me now jump to a look at the whole series ,

or the view from an operations research eye . To begin with ,

it becomes quite clear that we have learned a lot about modelling

processes ( stochastic ) or fitting models to data in order to

make more general predictions , or to summarize .
" Models " ?

Yes ! And this reminds me of what George Box is quoted as saying ,

" All models are wrong , ( but ) some ( even)) work " ! How true this

is ! Aren't models competitive , and haven't we found that the

situation doesn't exist for which only one model is right and

all the others wrong ? In fact , we are often lucky that any of

several competitive models may serve the purpose at hand very

well . Yes , I think we have learned how to model many important

Army areas of application , and this has also brought about model

development or better theories .

Obviously , the great benefit to the Army from the DOE
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conferences has been the expert counseling of in-house statis

ticians by the eminent university statisticians who have so kind

ly given of their time and experience . One has only to look at the

little booklet of featured speakers to be very highly impressed

with the caliber of the talent . We greatly appreciate this , as

their help , including the clinical session suggestions , has been

outstanding , and for very difficult areas of application .

This brings to mind another point . The US Army is a very

large and diversified organization . In case you need some con

verting on this point , just attend one of the Army Science Con

ferences held biennally at West Point . In addition to our little

corners of application we have discussed over the years , at the

Army Science conferences , they have presented papers on , for ex

ample , sampling the polar ice caps - which brought up many sta

tistical problems of note - even the extraction and analysis

of snake venom ! What are the main controversies about? You

guessed it : the instrumentation , the measurements and their in

terpretation . Army investigators has grown increasingly aware

of errors of measurement , precision and accuracy , and even just

how to define these illusive concepts . And so have others . For

example , Committee E- ll of the American Society for Testing and

Materials has for some 20-25 years been working on the problem

of standardizing the views of engineers , chemists , etc. , on the

subjects of precision and accuracy , and come forth with a recom

mended practice . I still don't see an end to this effort , for

14

1

1



there are enough "divinely endowed" , stubbornly statistical minds

to bring about nothing but impasse's . ( Incidentally , I know that I

alone am

right though , and they needn't think they can sway me to a com

promise ! ) . As a passing remark , there's a full time job for a

young , competent statistician for NASA , the FAA , and such agencies ,

in connection with sampling the atmosphere in order to establish

temperature profiles , ozone content profiles , etc. , by knowing the

capability of their instrumentation for the first time .

We have learned much about the statistical design and analysis

of scientific type experiments , and the construction of designs

the latter , I think ! Furthermore , I see evidence very frequently

of some " fancy " experimental designs that Army investigators are

using , with very sophisticated analyses , too . On the front cover

of the program of the Tenth Conference , there is a 10 x 10 Graeco

Latin Square , and no one yet has pointed out an error in it !

When the nice , balanced experiments have been violated in one

way or the other , speakers like Hoh Hartley (who regrets that

his duties as President of ASA keeps him away today) have come

along to help or straighten us out .
We have used linear models

mostly , but have been hit by nonlinear models at times , and

George Box has on several occasions given us his unique approach

to time series analysis .

There have been many advances over the years in the analysis

of contingency tables , and count data generally . We have had

many contributors on this subject speak to us , and the several
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approaches presented to us , including Kullback's information

theory approach , and some of the recent work of Feinberg in

our preceding two-day tutorial course . Perhaps the US Army

Operational Test and Evaluation Agency has made much use of

contingency table analyses , and have benefitted from them .

I will continue to try and sort out that problem, and I note

that my experience has been primarily in connection with the

comparison of two or more binomial type proportions , and irre

spective of Fisher's fixed marginals , and stuff like that , I

still don't want to confuse the issue by imbedding the compari

son of binomial p's in a contingency table analysis . Maybe the

real experts have other views .

Hasn't the field of reliability and related applications

hit us with a big bang , to say the least ? And the high- level

" brass " or managers have shown the greatest of interest in it

too .
Remember , I remarked that Clifford Cohen in the late 1930's

v'rote his dissertation on the obscure subject of truncated sample

theory? Well , finally the area came to life and how ! Although

the normal distribution was the " universal " one in the past , it

didn't " take " with the reliability analysts at all , and they

aimed for the exponential distribution .
At the 1977 Monterey

Conference ( 23rd ) , a paper was given by Herback , Green and Blumen

thal on the " curse " of the exponential model , and they quote :

" The exponential is wrong ,

But works like a song .

Beware the Weibull :

It's incorrigible " Anon

Remember George Box - All models are wrong !
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and

There is some heavy interest in reliability growth , and the

whole field of reliability will continue will continue to expand .

There are now so many methods or recommendations for obtaining

confidence bounds on system reliability that an appointed committee

has not been able to standardize on a technique for DOD . It

might be said that sample order statistics are of much importance

to the Army nowadays , and often even help to take care of the

outlier problem . Finally , reliability analysts have worked on

estimation and other properties of the two- and three- parameter

Weibull models so much that this has actually aided in the spread

of the Weibull distribution to many other areas of application

than reliability . Perhaps this is because of the robustness of

the Weibull model in representing a variety of shapes .

A very old statistical problem is that of bio-assay types of

analysis , and it borders on the estimation of risks and safety

levels in any number of other fields . There are many papers on

the subject of quantal response , " sensitivity analyses " , explo

sive sensitivity ( Bruceton ) , ballistic limit , Up and Down method , etc.

which have been aired in these conferences . Quantal response

investigations , and especially the estimation of both high and

low percentage points ( of unknown distributions ) , does indeed

cover a very important statistical effort for the Army , and it

will continue to expand also . Maybe this is an area for which

the use of physical models is needed in addition to statistical

analyses , or at least a combination of both . We will face more
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and more safety type problems , for which there will be heavy de

mands for statistical treatment , while we used to avoid them al

together . Let me mention one nasty little problem having to do

with armor protection in tanks , or penetration mechanics , and

hence for safety of tank crews as a result of armor thickness

determination and design . It is also a statistical problem the

Army continues to need help on to estimate the parameters for

zero chance of penetration . Do you like continuous distributions

that slowly change to a series of binomial and continuous models

of some kind? And even approach a binomial distribution with

parameter zero? In this case , we start firing at a piece of armor

plate of a certain thickness , and for the high-striking velocities

we will ( usually ) get 100 % penetrations of the projectiles through

the plate , and there will be a " residual " velocity distribution

for the projectiles or pieces of projectiles which have penetrated

and come off the back .

the plate But as the striking velocity is decreased , then the

proportion of projectiles penetrating the plate will decrease ,

ultimately to zero for low - striking velocities , and thus we say

that a safety level exist somewhere , or at least we would like to

know just where , for example , only 1 in a 1000 of the projectiles

would penetrate . The curve or residual velocity versus striking

velocity gets very steep near the bottom , obviously , and it's a

challenge to ballisticians and statisticians to deal with the

precise and highest striking velocity for which zero penetrations

occur . What I am also indicating is that there are many problems

of interest for which statisticians and physical scientists must

work as team members , and the DOE conferences guarantee just that .
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Let us not forget the field of sampling inspection or acceptance

sampling inspection , and the DOD's use of standard sampling in

spection tables and practices . These are important activities

that the Army initiated with the original help of Harold Dodge ,

and our DOE Proceedings include a number of papers on the subject .

This is really the area of statistics that taught us much about

operating characteristic curves , or power curves , and the deter

mination of sample sizes , and the like . Thus , many statistical

areas of interest spill over into other topics , and so the process

continues .

Now I have made my little choices of some of the benefits

and topics of value that we have been priveleged to be part of

in our twenty - five years of Army Design of Experiments Conferences .

Perhaps you can expand or improve on what I have covered and hence

make more sense out of things . I invite you to do so . In any

event , it certainly seems quite clear that these conferences

have been very " cost - effective " to the Army .

I think it was Cliff Maloney who once suggested that there

should be published a volume of the best papers of the proceedings

of these conferences . This assignment I was given made me look

through the whole shelf -wide proceedings , and I agree that there

are certain of the papers which indeed should be brought together

in some kind of memoirs .

Maybe we can now get Francis Dressell to make a remark or

two , as we have dedicated this the landmark 25th Conference to

him . Francis !
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SUMMERIZING THE RESULTS OF A SERIES OF EXPERIMENTS

William G. Cochran

Professor of Statistics Emeritus , Harvard University

I first met this problem in the thirties in agriculture . I wrote a

paper on it ( 1 ) , and later a more ambitious paper with Yates ( 2 ) , in which

a number of examples were worked . We tried to see in what respects the

analysis of a group of experiments resembled and in what respects it differed

from the analysis of a single experiment .

The need to summarize results of a series of experiments on the same

treatments arises in two types of application . The first type may be des

cribed as exploratory ; a number of experiments on the relative performance

of something or of two treatments have been carried out , and we are trying

to answer the question ; what is the present state of knowledge about the

relative merits of the two treatments ? For instance , the recent academy

study of saccharin started with the experiments in which large doses were

given to rats ; these were the prime experiments . To cite a second example ,

Yates and Crowther realized at the beginning of World War II that Britain

would have to import most of her fertilizers during the war and would be

short of fertilizers . Accordingly , they summarized the experiments (4 )

about the responses of the common farm crops to fertilizers in order to

answer the question : What is the present state of knowledge about the

effects of fertilizers and to provide material for an intelligent rationing

system for fertilizers ?

As another example , I was in a group that studied two common methods of

surgery for duodenal ulcer--vagotomy ( cutting the vagus nerves ) plus a radi

cal antrectomy (which removes the lower portion of the stomach ) versus

vagotomy plus the milder pyloroplasty (which widens the outlet of the stomach

to provide better drainage ) .
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We found four experiments that appeared to have been carefully done

and properly randomized . We could have come across a number of comparisons

that were well done but not randomized -- the type sometimes called observa

tional studies . Since often we cannot use randomization and have to make a

comparison without it , I would have been interested in including the obser

vational studies so as to learn whether they agreed with the randomized

studies and if not , why not? But the medical members of our team had been

too well brought up by statisticians , and refused to look at anything but

randomized experiments . In this type of surgery , we may expect the experi

ment to be of different designs and perphaps differing numbers of replications,

The second type of application occurs commonly in agriculture . It

differs from the first in two ways . It is known that the relative perfor

mance of a treatment (variety of a crop or fertilizer ) is likely to vary

both from field to field within a year and from year to year . Thus experi

ments are likely to be repeated in different fields and for a number of years .

Secondly , there is a better chance that the experiments , being jointly planned ,

are of the same design and number of replications . For instance , when the

growing of sugarbeets was introduced into Britain after World War I , the

government conducted 3x3x3 factorials (ultimately 30 per year ) at the leading

centers for a number of years .

The objective of the experiments may be a series of decisions as to which

varieties of a crop look promising and should be kept for further testing ,

which varieties should be discarded , and which varieties having been fully

tested , should be part of an approved list and have their seed made available

to farmers . As an example , Patterson and Silvey ( 5 ) have described the trials

of varieties of cereals that Britain has conducted in recent years , the
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designs being incomplete blocks . This kind of screening program is not

confined to agriculture . It may be used in seeking the best drugs or

vaccines for some purpose in medicine , or in seeking persons best capable

of doing some task . In 1963 , Federer gave a bibliography of some 500

papers on screening programs

2 .
Miscellaneous Experiments in Exploratory Work

I'll start with exploratory experiments done by different people at

different places and times . Since these experiments were not planned as

a coordinated series , we must expect them to differ in designs , and in

numbers of replications . First we must think of the question : of what

population , if any , can these experiments be considered something approaching

a random sample ? Is this population relevant to future applications of any

conclusions that we draw ? In some cases we may reluctantly conclude that

the experiments do not sample any population of interest to us , and decide

not to prepare any summary . In some cases the experiments are so variable

that some must be thrown out before any summary is attempted . The way in

which the experiments were done also affects the nature of the population

that they sample . The nature of the experiments also affects the kind of

population that they sample . In the National Academy study of saccharin

to which I referred , the doses in the laboratory experiments were so large

that the estimates of the effects of more normal doses depended to a

substantial extent on the kind of model used in extrapolating the experi

mental results . In experiments comparing two methods of surgery , the

experiments may be confined , for ethical or logical reasons , to the kind

of patients whose doctors state beforehand that they can safely take either

method of surgery . Otherwise , it is difficult to interpret the results of

the experiments . This restriction affects the character of the population

to whom the conclusions apply .

In agriculture , as I have stated , we have to contend with variations

in both space and time : But in other fields of application there may be

no strong reasons to consider time as a separate source of variation , even

though the experiments will have presumably been done at different times .

So in considering a summary of miscellaneous exploratory experiments , I

shall combine time and space and speak of treatments x places .
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experiments interactions for the ith Treatment in the jth experiment. We

2

may also expect experiments to have different variances of에
per observation

and to differ in number of replications nj .

For the jth experiment , a model that seems reasonable with a quantita

tive response is that the mean of the ith Treatment in the jth experiment is

1
1

Уај u + t; + Yij + ēij

where

Yij
is the treatments x experiments interaction and the variance of

2

the error term e:
eij

( i , ; , ).

In a combined analysis of these means , a reasonable first step is to

form a two -way treatments x experiment table of these means . If all treat

is /

ments are present in all experiments , an analysis of variance into the

following components should be easy .

df

Experiments ( k- 1 )

Treatments ( t- 1 )

Treatments * Experiments ( t- 1 ) ( k- 1 )

Pooled error

The purpose is to test the interaction . If some treatments are missing from

some experiments , a least squares analysis appropriate to missing data is

used .
In this case the Treatments line is Treatments , adjusted for experiments .

The pooled error in the analysis of variance of the treatment means is

2 2

or if the s
,

j

2

to examine whether the appear to be heterogeneous , since this affects the
j

F - test of the ratio treatments x experiments/pooled error . For this we can

( 1 /k ) (s?/Nig),
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use Bartlett's test , or if the data seem nonnormal and we want a more robust

test , we can use Levene's test , based on the absolute value of the deviations

that lead to the s?, that appears to be less affected by nonnormality. If the

$?
seem markedly heterogeneous , the F -test of the interactions against the pooled

error is not exact , but assingning a number of df to the pooled error by

Satterthwaite's approximation should provide an approximate test .

The next step is to reach one of three decisions about the Treatments x

experiments interactions . ( i ) that it is negligible, ( ii ) that it is not

negligible but has no discernable structure. By this I mean that although

the effects of the treatments vary from experiment to experiment , we have

no information for making different predictions in different parts of the

population and must draw single overall conclusions about the effects of the

treatments (iiThe third case is that in which the interaction is of a nature

that we think we understand , and is large enough so that different treatments

win in different parts of the population that can be described . In this

case we expect to recommend different treatments for different parts of the

population .

Consider first case ( i ) in which we judge that the treatments x experi

ments interactions are negligible . If the experiments differ in number of

replications and in their error variances , a question to be considered is :

Should the treatment means in individual experiments be weighted in forming

the overall means , so as to give more influence to the more accurate experi

2

ments ? If so , what should the weights be? If the error variances were

j

2

, .

2

only estimated , unless the o: appear to be equal so that weights
j

appear to be equal so that weights n; can be

25



used for the treatment in the jth experiment . Various authors have worked on

this problem of weighting with fallible weights .

The first step is to find out if there is much gain in accuracy from

2

the use of weighted means . If the sí appear to be homogeneous , and the

weights are the known values n;/5} ,nz /šş , this can be done , because the ratio of

the variance of the weighted to the unweighted mean of the
Yij

is

(Ew;)(E 17W ;)/K?1/W;)/K?. For instance , if one- third of the experiments each have

with relative values 1 , 1/2 , 1/4 , the relative value of the variance of the

The situation is lessweighted to the unweighted mean is 36/49 = 0.73 .

s differ , so that we have to use something

like estimated weights ng/sz. Under normality, the maximun likelihood estimate

favorable to the weighting if the s

of the overall mean is

41

Σ

j

ni(f -1)

fjst + n;(iij - û ; ) ?

2 (õij Wp) = 0 .

This has to be found iteratively . In this type of estimate , an experiment

2

with low s

Jj

overall mean if it disagrees markedly from the value suggested by the other

experiments , since the term n; (inj - ú ; ) ? will be large, and willdecrease

the weight given to this experiment.

Some years ago , C. R. Rao ( 7 ) brought out a new method of estimating

variances and variance components called the MINQUE (minimum norm quadratic

unbiased estimator ) . Since I have been interested in this problem for over

40 years , I asked J.N.K. Rao of Carleton University and P.S.R.S. Rao of the

University of Rochester if the MINQUE method would lead to improved estimates

.
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of the weighted mean . Both men looked into the problem -- J.N.K . Rao in the

case with no treatments x experiments interactions which is now being con

sidered and P.S. Rao in the case in which we assume a random treatments *

experiments interaction with variance o?, which also has to be estimated .
ri

Both men discovered what I had suspected in working with MINQUE--that if one

is trying to produce an improved method of estimating variance components ,

it may not be wise to make the estimates unbiased . With unbiased methods

one may get variance component estimates that sometimes take negative values

and have large variances . Both men produced adjustments ' to MINQUE that are

essentially positive . J.N.K. Rao's method ( 8 ) uses non-iterative weights

rather similar to the maximum likelihood weights . The weights are

W ; n; (fz + 1 /[fys} + n;(+ n (71) - yºu ,

šiji
where y; is the unweighted mean of the Some limited Monte Carlo studies

have shown that the weighting does better than the maximum likelihood estimates

of the treatments means except when differences in the error variances are

extreme . This estimate also does better than MINQUE and better than the

2

simple weights w
Wg

= n./s and is probably the best found thus far .

j

For estimating the gain in accuracy from the use of erroneous weights

n /s

like these , the previous figures for the relative accuracy of weighted to

unweighted means must be reduced , because of sampling error in the weights .

2

The dampening factor depends both on the average of with which s . are esti

j

mated , and on the amount of heterogeneity in the weights . For the previous

s}

example with weights proportional to 1 , 1/2 and 1/3 in thirds , and 1.36 if

the weights are known , the dampening factor is approximately ( 7 + 6 1F + 8 ) ,

where F is the average number of df in s

'jº

2
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2

Thus if the have 6 df on the average , the relative efficiency of weighted
j

to unweighted means is estimated as ( 12 ) ( 1.36 ) / ( 14 ) = 1.18--a rather modest

s

gain from weighting . Before resorting to weighting , check also that weighted

means apply to the same population as unweighted means . For example , if the

weights tend to be high when the mean yields of the experiments are also

high , we may conclude that the results for weighted means apply to a popula

tion having a higher mean yield than our actual population and decide not to

use weighted means .

For comparison between the estimated means of the treatments , we need

standard errors .
With unweighted means , the estimate of their standard error

is vE(${/n;)/k. With the experimental error variances of the individual

experiments taken as homogeneous , the estimated variance of the mean weighted

2

as n

nj

a rough estimate of the variance of this weighted mean , which also implies

is s?/Enj . For Rao's estimate with fallible weights , Rao (8 ) has given

a dampening factor for the fact that fallible weights are being used . The

jacknife estimate is another possibility :

When the treatments x experiments interaction is significant , we need

to see if we can understand the nature of the interaction . For this , a two

way treatments x experiments table of residuals is helpful . Sometimes there

is no winner ; different treatments appear to win in different parts of the

population , but either we do not fully understand the interaction or do not

wish to use it in a recommendation . Sometimes there are two distinguishable

parts of the population in which the ranking of the treatment is different ,

and we understand why . Student ( 10 ) cites an example . After a long series

of experiments , the Irish Department of Agriculture introduced Spratt-Archer

barley as the best suited to the country . In one county the farmers refused
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to grow it , claiming that their native barley was superior . In order to

convince these farmers, the Department of Agriculture made some special

comparisons in this county of the native barley versus Spratt-Archer . To

their surprise , the native barley was superior . The reason also became

clear .
This barley is a quick-starting variety . Now in this county ,

farming is rather lackadaisical , so that the weeds flourish . The weeds

tended to smother the Spratt-Archer barley , which starts slowly, but the

native barley , starting quickly , could smother the weeds . Another maxim

from this example is make sure the experiments sample the population to which

their results will be applied .

If there are two parts which have ky and ky experiments , the following

breakdown of the interaction is relevant

df

Treatments ( Part I Part II ) ( t- 1 )

Treatments Part I experiments (t - 1) ( k ,-1)

( t- 1) (k - 1)
Treatments Part II experiments

In this breakdown , we expect the first term to be large and the other parts

small . In addition , we need to analyze parts I and II separately , in order

to see if there are definite treatments differences in each part .

If the interaction is significant and is assumed to be random , the

2 2

variance of a treatment mean in an individual experiment is (o% + o

Y

2
which moves nearer equality because of the term o but also means that an

Y

extra parameter has to be estimated if weighted means are contemplated . In

o inz),

a Monte Carlo study by P.S.R.S. Rao , Kaplan , and Cochran ( 9 ) several types

of weighted means including a revised MINQUE were included but the unweighted
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2

mean proved very hard to beat , as might be expected , unless is

r

2

small and the variation in the o is extreme . Use of the unweighted

j

mean has the advantage that an unbiased estimate mean of the variance

of the overall mean of a treatment 18 E (923 - 5 ) 2 x ( k - 1 ).

If the original observations are in proportions , remember that a

decision , e.g. whether a single overall mean has enough advantage overall

over the other means to recommend it , or whether two means should be

recommended for different parts of the population , must be made in

proportions . If the combined analysis is made in some other scale ,

such as angles or logits , because it is thought nearer to normality or

in some ways more suitable , remember that means in the original

proportional scale will be slightly biased when we transfer back .

Quenouille ( 11 ) has given approximate corrections for this bias, which

do not appear to be well known . Let s? be our estimate of the variance

of Ž (where z denotes the transformed scale ) , that is , the mean in the

е

transformed scale . If an angular transformation is used , Quenouille's

correction for bias in the transformed mean is to increase sin ? ž by

-22

*( 1 ) cos ( 22 ) . If logits are used with equal weights , the

usual procedure is to take p = e? / (1+ e? ) when transforming back

Quenouille's correction for bias is to add (n - 1) s? /2n to ī before

taking e ? / ( 1 + e? ) .

to p .

3. Variations in Both Time and Space

This situation is likely to occur primarily in agriculture . Since

the experiments are likely to be jointly planned , they may have the same

designs and number of replications , the same experiment being repeated

at the same place for four or five years . As mentioned , the number of

-

id
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years will commonly be limited to at most four or five , since a larger

number slows up any recommendations . But the experiments may not have

the same numbers of replication - more may have been added in later years .

In varietal trials , a new variety may be added in the second or third

years , so that different treatments may have different numbers of years

at any given time. However , unless the numbers of replications differ

greatly , a preliminary analysis of the treatment means will usually be

adequate and is fairly easy , although there are extra complications and

full least squares may have to be used if some treatments are only present

in the later years .

It will usually be necessary to treat the treatments x years

2

variation as random , with variance
even if it does not act like

ºty ,

a random variate . A good deal is known about the influence of weather

on crops , and we may have found , for instance , that in a good year

the best treatments have a greater advantage , so that the treatments x

years interaction is definitely not random . But a superior treatment

before recommendation , must be superior , on the average , over a span

2

of years , taking oty into account , since we cannot recommend a different

treatment for different years .

The preliminary analysis of variance and the expected values of the

means squares are shown below . I have treated the treatments x places

interactions as random as well as treatments x years , since this is

usually the assumption that has to be made if it is a question of

recommending the overall use of one treatment .
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df Expected value of mean squares

2 2 2

+Treatments ( t-1 )
?

TX Y ( t-1 ) ( y−1 ) ó + no
2

+ npo
ty

2

tpy

2

tpy

TX P ( t - 1 ) ( p - 1 )
o2 + no

2 .

+ nyotp

TX PXY
( t - 1 ) ( p - 1 ) ( y - 1 ) 82 + no

2

'tpy

Pooled error o?

In presenting the expected values , I have taken the simplest case ,

in which all experiments are of the same size and design , the symbols n ,

t , p , and y standing for number of replications , number of treatments ,

number of places , and number of years . The symbol 52 is , of course ,

the true pooled error variance . The MS is tested against error , and if
'tpy

F is about 1 , this mean square may be combined with the pooled error .

The expected values are written as if treatments are also random , with

2

variance 0 If the effects of treatments are fixed , as they usually are ,
't

2 2

replace t E - .s
't

From the expected values it is clear that the treatments x years

and treatments x places interactions are tested by an appropriate F test

2

( approximate if o )

square for the tpy three - factor interaction , and that an unbiased estimate

2of is (MS MS . , ) /np . For the main effects of Treatments , no
tpy

single line in the analysis of variance is a proper error . An unbiased

of 0.

(
MStyty

estimate of the error variance for the error of a treatment mean , if

interactions are present and random , is

MS + MS

tp
๖
ity MS.

tpy

i

.
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and an approximate F test of the treatments mean square may be made

by taking F = MS _ / (MS,MS_/ (MStp + MSty MStpy ), with Satterthwaite's

approximation used to ascribe a number of df to the denominator .

However , in a small Monte Carlo study of experiments , Hudson and

Krutchkoff ( 13 ) found , somewhat surprisingly , that a rival

F =
(MS+ + MS.tpy )/(MStp + MSty) using Satterthwaite , had somewhat

better power and recommended it , although it did not approximate the

5% and 1% levels of F when the null hypothesis was true .

Since whether we recommend one treatment , two treatments or suspend

judgement for some reason depends mainly on how the treatments vary in

effects from place to place , the two -way table of treatments and places

deserves careful study . The treatments x places interaction is

sometimes heterogeneous ; some comparisons of some treatments have a

higher mean square interaction than others . Subdivisions of the

treatments and places and the treatments x places sum of squares should

be tried .

Thus , as we have seen , the summary of a series of experiments calls

mainly for experience in the analysis of variance , which we now have .

It is well to adopt something of the attitude in exploratory analysis

and be on the lookout for anything unexpected , since the nature of the

tp interaction is often a hard thing to puzzle out .
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ROBUST FILTERING AND SMOOTHING OF TRACKING DATA

WILLIAM S. AGEE and ROBERT H. TURNER

Mathematical Services Branch
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White Sands Missile Range , NM 88002

ABSTRACT

Robust methods provide a fresh approach to the problem of treatment of

wild observations in filtering and smoothing problems. The robust M - esti

mates of regression are extended to filtering and fixed lag smoothing em

ploying a pseudo -density of the observations in a conditional mean deriva

tion of the filter and fixed lag smoother . These robust methods have been

applied to simulated and real tracking data to obtain improved estimation

performance in the presence of wild observations .

INTRODUCTION

Robust filtering and smoothing are a natural extension of the robust

M - estimates of regression developed by Huber [ 1 ] . The robust M-estimates

provide a natural treatment of outlying observations and have been ex

tremely successful in dealing with outliers in other data reduction pro

blems. [ 2 ] and [3] . The extension of the M-estimate methods provides a

fresh approach to the problems caused by outliers in filtering and smooth

ing applications. Robust methods for estimation are designed to perform

weil when observations from contaminating distributions are present . The

conventional estimation techniques of least squares , maximum likelihood ,

minimum variance , etc. may become useless when the observations are con

taminated by gross outliers or wild data points . When using these esti

mation methods, outliers are often treated by testing the residuals . If

it is decided that a residual is statistically too large , the correspond

ing observation is declared an outlier and is not processed . These hypo

thesis testing methods are often successful if only a small number of out

liers are present but, breakdown for larger proportions of outlying obser

vations . Also , in order for outliers to be detected , they must be re

latively large compared to the measurement noise . The detection methods

based on testing of residuals are relatively insensitive to small outliers

which leads to an inflation of the mean square estimation error . Thus ,

methods for treating outliers should be evaluated on their ability to

achieve a small mean square estimation error as well as their ability to

offer protection from gross outliers .

Very little development has appeared on the application of robust

estimation techniques to filtering and smoothing. The most notable work

in this direction is that of Masreliez and Martin [4] . Their development

of the application of M-estimates to the Ka Iman filter is mainly theoret

ical . The emphasis here is on the development of some practical results on

the application of M - estima tes to filtering and smoothing. We have ap

plied these methods to filtering and smoothing of tracking data from tra

jectory measurement systems at WSMR . Using simulated tracking data we

have also performed extensive Monte Carlo evaluation of filtering methods

based on M - estimates to determine the conditions for which we can expect

to benefit from the application of these methods .
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M - ESTIMATES FOR REGRESSION

Given scalar observations Уі ?
i : 1 , N of a linear model

У; * X : 0 + ex
( 1 )

where X , is a row vector of known independent variables and ei is a random

error term we want to estimate the unknown p-vector , e . The M - estima te

of o minimizes

N

Σ ρ ( !Y - 0)/s) , ( 2 )

1 = 1

where el . ) is a specified function and s is a robust measure of dispersion

of the residuals , Y; - X70 . Minimizing (2 ) by differentiating with respect

to e gives

XI
( 3 )

1 = 1

where v - is the derivative of e and ē is the M - estimate of e . . ( 3 ) is the

analog of the normal equations in least squares estimation . e is computed

iteratively by applying a weighted least squares algorithm to (3 ) . For

details see [2] .

N

Σ

+ ( y - x 6)/s) =
= 0

Rather than specifying the function p , M - estimates are usually de

scribed by specifying the function y . Several ħ functions have been pro

posed in the literature . The only y functions considered here are varia

tions of the one proposed by Hampel [ 5 ] . The Hampel y function with break

points a , b , c , denoted by Ha ( a , b , c ) is given by

1x1-a

v (x ) =
a.sgn (x ) a-1x16

a (x-c • sgn (x ) ) / ( b - c ) 6+ 1x1 -c ·

0 1x1-c

X

(4)

os -b -a

a с

Humpel y

e

The M- estimates can also be applied to regression problems having vector

observations and to nonlinear regression problems. If the probability

density function p of the observations is related to y by pi / p = -V , the

resulting M-estimate is maximum likelihood . For any w function we call

e Pa pseudo-density and derive filters in some conventional ways with the

density function of the observations replaced with a pseudo -density.

APPROPRIATE NON -GAUSSIAN FILTERING

Assume that the sta tex ( k ) of the process being observed is governed

by the discrete linear model ,

x ( k+ 1 ) = 0 ( k+ 1 , k ) x ( k ) + ulk ) ( 5 )
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where the state vector x( k ) is an n-vector , u (k ) is a Gaussian state noise

vector with zero mean and covariance Ock ) . ( k+1 , k) is an nxn state

transition matrix . Scalar observations , z (k ) , of the process are given by

z (k ) = H ( K )x ( k ) + v (K ) (6 )

where H ( k ) is a row vector and v ( k ) is a mea surement noise error which may

be contaminated by outliers .

In order to derive robust filters corresponding to the M - estimates of

regression , we use the results of Masreliez [6] on approximate non -Gaussian

filtering. Masreliez obtains an approximate conditional mean of p (x ( k) 17“ )

where zk is the collection of observations, zk = { 2 ( 1 ) , 2 (2 ) , ---, 2 (k)}.

Using Bayes rule plx ( k ) izk) is given by

p (x ( k ) jzk ) = P(z(k )[x (k) p(x (k).izk -1, (7 )

p (z (k)izk -1

In order to derive a useful approximation to the conditional mean ,

E[x ( k ) ſzk] , of (7 ), Masreliez assumes that p (x (k )jzka ) is Gaussian with

mean X (kpk - 1).and covariance P (k./k-1). The resulting approximate condi

tional mean, x (klk ) is given by

( k\k) - ( k |k- 1) + P (k\k-1)HT (K)g(z(k )), (8 )

where g (z ( k ) is the scalar

g ( z (k ) ) - -p' ( z( k ) IZK-1)az kyp[z(k)[ZK-1)

Masreliez also derives the second moment, plk / k ) , of p (x (k ) ] zk ) . The re
sult is

P (klk ) = P(klk-1 ) - P (klk -1)HT(K)G(z(k))H(K)P(k\k-1), (10 )

with

(9)

G (z (k ) ) = 39 (2 (k ) )aalehti) ( 11 )
az (K )

A second method for approxima te non - Gaussian filtering is the margi

nal maximum likelihood filter . In this case we find the estimate x ( klk )

which maximizes (7 ) . In this derivation we also assume that plx ( k ) 12k- 1 )

is Gaussian. The resulting equation for å ſkIk) is

(12 )
az ( k )

The estima te given by ( 12 ) is of the same form as the conditional mean esti

nate given by (8 ) . The difference in the two estimates is that the right

hand side of ( 12 ) depends on x ( klk) while the right hand side of (8 ) depends

only on the predicted estimate , xlk Ik - 1) . Thus , (12) requires iteration to

obtain the estimate and if in the first iteration of ( 12 ) , we substitute

X( kik- l ) for (kik ) on the right hand side , the resulting estimate on the

first iteration will be identical to the conditional mean estimate of (8 ) .

Thus , the maximum likelihood filter may be regarded as a correction to the

conditional mean filter .
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ROBUST FILTER EQUATIONS

The robust filtering equations corresponding to M -estima tes are obtain.

ed by replacing the density function , plz ( k) l2k- 1 ) , in ( 9 ) or (12 ) by a

(266) -Hík)ück!k-1))H(k ck = is a, , e = x is a desired in

fluence function. This substitution results in the following equations for
the conditional mean robust filter .

( 13 )

sk Sk
& (k | x) = ( k / k- 1 ) + P(k{k=1}H?(k) w(Z(k) –H(k)*(k/k-12)

P (x / x ) = P ( k / k- 1 ) = (a(14/03*)PCkJk-1 )} " cu ]HCR )PCk/ R -1 ), (14 )

Sk com

- median, [ z(k-j) – HFCK- 3J8Ck-j|k-5-1)| /..

vhere w ' is the derivative of x and r ( k ) = 2 ( k ) - H ( k )x ( klk-1 ) . The filter

equations are completed by the usual Kalman filter equations for the pre
dicted moments .

In order to insure the robustness of the filter described by ( 13 ) and

( 14 ) , the dispersion sy of the predicted residuals must be specified sosk

that it is insensitive to outliers . We used the MAD estimate of s

puted from past residuals as

Sk
6745 ( 15 )

j=0 ,N-1

where N is a suitably chosen integer .

The robust maximum likelihood filter is obtained by replacing the den

sity plz ( k ) Izko ? y in (12 ) by a pseudo-density. The resulting filter is
given by

&( klk ) = 3 (klk-1 ) +
P klk 1) ( z(k) - H(K)x(klk)

(16 )

sk Sk

In ( 16 ) . we use ž (k \ k- 1 ) to denote the mean of plx ( k ) Izk-1 ) . We use ( 14 ) to

compute P (klk ) and use ( 13 ) to compute X ( kſk ) . Several simple methods are

available for the iterative solution of ( 16 ) . The simplest of these is to

la )

nla + 1 )
Pakk-1) (K )

X ( KIK ) = xiklk - 1) +
3 (k ) - HCC

(17 )

Sk sk

101
( 1 )

starting with X (klk ) = älklk- 1 ) so that the first estimate xlkík ) is the

conditional mean estimate , X ( klk ) .

use

EVALUATION OF THE ROBUST FILTER

Evaluation of the robust filtering methods described above was done

with a view toward eventual application to trajectory estimation . The

emphasis in the evaluation was on simulated rather than real trajectory

data . This allows a quantitative determination of any advantages in the
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use of robust filtering in the presence of outiders and a iso any loss in
efficiency using robust methods when no outliers are present . The simu

lated trajectory is that of a constant velocity , level flying aircraft .

The measurements are of position in each of three cartesian components

with added measurement noise which is contaminated by outliers .by outliers . The filt

er model assumes the trajectory to have constant acceleration in each co

ordinate . The filter for each coordinate has a small acceleration state

noise , Qlk ) = 5 .= 5. The outlier contamination is controlled by a two state

Markov chain with a transition possible at each measurement time . An out

lier is added to the measurement if the Markov chain is in state two and

no outlier is added if the chain is in state one . The transition prob

abilities , Pij , are used to determine the percentage of outliers contam

inating the measurements and also the length of runs of outliers in the

measurements . The magnitude of the outlier contamination is c • VR , i.e. ,

a constant multiple of the measurement noise standard deviation .

Using the simulated trajectory data a Monte Carlo evaluation of ro

bust filtering was performed . The rms estimation error was computed point

wise for position , velocity , and acceleration using a sample size of

twenty-five. The plots of the rms errors for each of the conditions test

ed requires far too much space to present here . Instead , these results

are summarized by time averages of the rms error in position and velocity

for each of the conditions tested .

Figure. 1 compares the average rms position error for two filters us

ing the Hampel y functions Ha ( 2 , 3 , 4 ) and Ha (4 , 4 , 4 ) . Figure 2 gives

the rms velocity error comparison for the same two filters . Also indi

cated in Figures 1 and 2 are the ideal rms error values which were obtain

ed with an ordinary Kalman filter with no outliers present and using a

known measurement covariance , Rk = 400 .. The Monte Carlo evaluation of

figures 1 and 2 was made with a measurement noise standard deviation of

VRE -= 20 ft . Rk was unknown to the filter .

We note from figures 1 and 2 that neither of the robust filters lose much

efficiency from the ideal values when no outliers are present . The er

ror curves in figures 1 and 2 behave as expected . Since outliers small in

relation to the measurement noise are hardest to detect , the error curve

rises sharply . Outliers large relative to the measurement noise are easy

to detect so the error curve returns to zero for large outliers .
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We see from figures 1 and 2 that Ha ( 2 , 3 , 4 ) has a significantly smaller

mean square error than Ha ( 4 , 4 , 4 ) . Except for the way in which the dis
persion of the residuals is measured , i.e. , the MAD estimate in ( 15 ) ,

Ha ( 4 , 4 , 4 ) is a conventional way of handling outliers in a Kalman filter

ing application . Using Ha ( 4 , 4 , 4 ) any observation whose predicted
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residual is greater than 4.s is not processed and any observations whose

predicted residual is less than 4 • sis processed as an ordinary Ka Iman

filter observation . The above Monte Carlo evaluation was made with Markov

chain probabilities P21 = .05 and P12 = .5 which gives an outlier probabi
lity of.088 and an average outlier run length of three . In order to re

duce the average rms errors , we pull in the breakpoints of the Hampel

function , Figures 3 and 4 compare the average rms errors in position and

velocity for the Ha ( 1 , 2 , 3 ) and Ha (2 , 3 , 4 ) .
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Figures 3 and 4 were made using the same outlier proportions and measure

ment noise standard deviations as figures 1 and 2.

The iterated filter , i.e., the approximate maximum likelihood filter

given by ( 14 ) , ( 16 ) , and (17) was also evaluated under the same conditions

as the conditional mean filter . Comparison of the average mean square er

rors for the conditional mean and maximum likelihood filters showed no

discernible differences .

ROBUST SMOOTHING

A simplified robust , fixed lag smoother , was derived in a similar

manner to the robust conditional mean filter derivation . We derive an ap

proximate conditional mean , E [x ( k ) Izk+n), of the density plx( k ) Izk+n ) using

the same methods and assumptions used by Masreliez and used in the deri

vation of the robust filter . The robust smoothed estima te is given by

(2013) ( 311-1) 18
Z(k+j)-H (k+ jjåck+j/k-1

n + .
j= 1 Sk + j Sk + ( 18 )

In obtaining (18 ) the fixed lag smoother has been greatly simplified by leav

ing out the state noise in the forward interval. x ( klk ) in ( 18 ) is the ro

bust filtered estimate described by ( 13 ) and 114 ) . Sk+j is a robust measure

of dispersion of the residuals , z (k + j) -H (k+ j ){ (k+ j /k- 1). Several possibi

lities exist for computing a useful dispersion measure, Sktj. The simplist

method and the one used to obtain the smoother evaluation given below is to

make
a constant Sktj = Sk and then compute sk by ( 15 ) .Sk +j
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A Monte Carlo evaluation of the simplified fixed lag smoother was

performed using the same simulated trajectory as was used for the filter

evaluation. Measurement noise having a standard deviation of 50 feet was

added to the simulated positions . The measurement noise standard devia

tion was unknown to the smoother . The forward smoothing interval had a

length of n = 20 which represents a one second smoothing time . The out

lier proportions and run lengths were the same as for the filter eval

uation . A sample size of ten was used for the Monte Carlo evaluation of

the smoother .

Figures 5 and 6 display the average rms position and velocity esti

mation errors obtained using the robust , fixed lag smoother with the

Hampel y functions , Ha ( 2 , 3 , 4 ) and Ha ( 4 , 4 , 4 ) . Also noted in fig

ures 5 and 6 is the ideal average rms values which were obtained using the

smoother with no outliers and a known measurement covariance , Rk = 2500 .

The robust smoother using Ha (4 , 4 , 4 ) is representative, except for the

measurement of sko of a conventional way of handling outliers in an opti

mal smoothing application . We note that either of the smoothers offers

good protection from very large outliers but that Ha ( 2 , 3 , 4 ) results in

a significantly smaller estimation error when small outliers are present .
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ROBUST FILTERING USING GAUSSIAN MIXTURES

Robust estimation methods deweight and/or reject outlying observations

by specifying observational densities or pseudo-densities having long ,

heavy tails . We can also realize a long , heavy tailed density by using a

Gaussian mixture. Suppose we replace plz (k )lx ( k )) in (7 ) or (12) by the

Gaussian mixture pseudo - density ,

p ( z ( k ) 1x ( k ) ) = { 0 ; N (z ( k ) - H ( k )x ( k ) - 0, " , RK )) (19 )

i

where

M ( 2014) – HOK ! « cx) = 44 ", 2 ) =(1/76,Jexp{-(204Y2ER, JExp{-(z(k)- HCK ) x( 47 - 49728,
(20 )

We do not require that ca 1. Thus , we have individual Gaussians cen

( )
1

tered at a'and each having standard deviation Rk : The sum in ( 19 ) may be

infinite . The locations , ák ,and the amplitudes , aj , are free parameters .

Using ( 19 ) we obtain piz(k) izk -l, as
41



( 21 )p(z ( k ) ] zk-1 ) - $ 2,8(z(k) - H(k)ăck /k-1)-2_") HCK/P(k/K=1)HTK)+Rx)

In obtaining (27 ) we have again assumed that plx (k ) lżk-1 , is Gaussian .

ºk

Substituting ( 21 ) into (8 ) and ( 9 ) with the variance of the residuals,

H(k ) P ( k k-1)HTK)+R\"replaced with an estimated value , sk?, gives

(klk ) = k( k / k- 1 ) + P(kIk=U]HZK)(z(K) – H(K)ĂCk|x -1)-7 ) ( 22 )

In ( 22 ) Ök is the weighted average

ak ( 23 )

where the weights We are given by

QxN (zlk) - H ( k äck \ k- 1 ) - a ("), sk ) (24 )

Wq

50 ,N(zlk) - H ( K )& ( k / k-1 ) - om? ,5x2))

11 ),8 EW ga

i

' K

The filter equations ( 22 ) , ( 23 ) , and ( 24 ) are identical in form to the

simplified pseudo-Bayes filter by Ackerson and Fu [7] for adaptive filter

ing when the mean of the measurement noise is unknown. Using ( 10 ) and ( 11 )

the conditional covariance is

( i )

P ( k / k ) = P ( k ] k- 1 ) - P(k/k-1)H(k)()5,2 - ( HTK)P(k/k-1), ( 25 )| k' k

where

(ext) -ārdo - foc" -ada
( 26 )

Although the above sums may be theoretically infinite , we only need

to calculate the relatively few terms in the sums which have significant

values of the weights , Wį . Thus , we compute only those terms in the sums

for which [ z ( k ) -H ( k ) [ k ] k- 1 ) -act / sk* 4. With this simplification the
amount of extra computation required to implement this robust filter is

( i )
relatively small . The locations , ak produce a smooth pseudo - density

( 0 )

if they are chosen as zero and odd integral multiples of sks ako : 0 ,

( 1 )

ak sgn ( 1 ) ( 2/11 - 1 ) ske 191 ? 1 . We have also tested the filter with

( i )

ak = i . k , lil ? 0 . The value of the residual dispersion , Sky is

still computed by ( 15 ) . Several different choices of the amplitudes have
been tested . The most extensive testing has been done with

ay
= 1 and

af

8

17 ( 11] + 1 ) . 42



Some robust filters using the Gaussian mixture formulation were also

evaluated via Monte Carlo testing . These filters were tested using the

same simulated trajectory data and under the same outlier and measurement

noise conditions as the robust filters using Hampel y functions . The sam

ple size for Monte Carlo was twenty - five , the Markov transition probabi

lities were fz1 = .05 and P12 : .5 and the measurement noise standard

deviation , which was unknown to the filter and estimated by ( 15 ) , was

20 feet . Figures 7 and 8 present the average rms position and velocity

errors for a Gaussian mixture filter with observations contaminated by

various magnitudes of outliers . The Gaussian mixture filters used in gen

erating Figures 7 and 8 used magnitudes of the Gaussians , ( lil + 1 ) .

Two different Gaussian mixture filters are represented in Figures 7 and 8 ,

one with Gaussians at all integral multiples of sk and one with Gaussians

at zero and odd integral multiples of
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Each Gaussian component of P (z ( k ) izk 1 } has standară deviation ski There

is very little difference in the estimation errors obtained for the two

filters of Figures 7 and 8. The filter with Gaussians at only the odd

multiples of s
Sk is computationally less complex . Figures 9 and 10 give

the results of the Monte Carlo evaluation of a Gaussian mixture filter

which places Gaussians at zero and odd integral multiples of sy with amplisk
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This filter appears to give somewhat smaller errors than the other Gaus

sian mixture filters and also slightly smaller errors that the robust

filter which uses Ha(1 , 2 , 3 ) . We note that using an 1 with Gaussians

at all integral multiples of sk does not result in a useful filter since

it has a zero influence function and therefore does not produce any error
correction .



CONCLUSIONS

Two methods based on M-estimates have been presented for robust filt

ering and smoothing, one using the Hampel y function with various break

points and the other which models the observation error as a Gaussian mix

ture. These robust filtering methods were subjected to a Monte Carlo

evaluation using simulated trajectory data from an aircraft tracking ap

plication . The results of this evaluation show that both of these robust

filtering methods give a significant reduction in average rms estimation

error for small outliers compared to a more conventional way of treating

outliers in an optimal filtering application . The tests also suggest that

the Gaussian mixture robust filter methods offer the most promise for ap

plication and future testing. Further evaluation of robust filtering

methods under more severe trajectory applications are necessary .
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COMPOUND FREQUENCY DISTRIBUTIONS

A METHOD FOR ESTIMATING STATISTICAL

PARAMETERS FROM AN ADULTERATED SAMPLE

Donald W. Rankin

Army Materiel Test and Evaluation Directorate

US Army White Sands Missile Range

White Sands Missile Range , New Mexico 88002

ABSTRACT . When a sample is contaminated by extraneous " outliers " ,

computation of the higher statistical moments may contain large errors . The

proposed method treats these " outliers" as members of another " unwanted"

population , and assumes that they perturb the distribution minimally near

the maximum ordinate (mode ) .

The distribution is studied only near this maximum ordinate . A simple

curve ( a parabola , say) is fit by the method of least squares and the various

derivatives are evaluated at this maximum ordinate . Not only the usual statis

tical parameters (mean , variance ) , but also the proportional number of " outliers "

turn out to be expressible as simple functions of these derivatives .

I. THE PROBLEM

Statistical analysis usually requires that certain a priori assumptions

be made ; e.g. , a certain population is normally distributed . From time to time ,

however , a test will reveal that a sample has been drawn which is incompatible

with the basic assumptions.

An example which quickly comes to mind is the distribution of aerial

bombing scores . For many samples, the assumption of a normally distributed

population appears to be invalid frequency in the " tails" is far too high .
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Before abandoning the postulation of normality , let us address the

problem from a different point of view . Keeping the example of aerial

bombing scores , suppose that in a sample of, say, 100 bombing runs ,
the

bombardier misidentified the intended aiming point on ten occasions . It

is obvious that only 90 scores will be drawn from the " correct" population

( i.e. , the population for which we have postulated normality ) , while the

remaining ten will come from populations with displaced means .
To choose

terminology , we shall say that the sample is adulterated by the ten runs

from unwanted sources .

How the density function is affected by mixing different populations

is seen in Figure I. The lower curve is simply the normal curve in which

o = 1 and N = 100. Adding adulteration from two extraneous populations

(o 1 , U = -2 , N = 20 , and o = 1 , H = 2 , N = 10) yields the density function

for the compound frequency distribution , illustrated by the upper curve .

It is apparent at once that the " tails " are abnormally thick .
It should

also be noted that the density function is deformed least near the mean .

If the mean of the extraneous bits of data is displaced by much more

than 20 the effect on the center of the sample distribution is virtually3

nil .
Can the parameters of the desired population be recovered by studying

the sample distribution only near its center?

II . A SOLUTION

The probability density function of a standardized (u = 0 , 0 = 1 ) normal

distribution is given by

-1/2 22
1

0 (Z )

V2T
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Differentiating , we find that

-Z

O ' ( Z )
-1/2 z2

and

2T

-1/2 22
Ø " ( Z )

(z2 -1)

2T

Evaluating these expressions at the maximum ordinate, we find that

Z = 0

1

0 ( 0)

✓21

Øi ( 0) = 0

-1

Øl (0)

2T

Expressing Ø (z ) in series form ,

1

Ø ( Z )

[ - * • • * ...2T

It is easy to see that for small values of Z say 12 / <0.4 -- the first two terms

form a sufficiently good approximation . Note that for

1

Ø (2 )

[1-4 ]
and Z = 0 ,

2

Z

g ' ( Z ) =

2T

1

O " ( Z )

I
l

V2 TT

#
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1

0 ( 0)

2T

Ø ' ( 0 = 0

1

gh ( 0) =

2T

In other words , at the point of the maximum ordinate (Z - 0) , the approximating

parabola and its pertinent derivatives take on exactly the same values as the

probability density function .

Since 0 ( Z ) is a probability function ,

1 Ø ( z ) dz = 1 .

In an actual case , a sample of size N will be drawn , consisting of N values

of the form yi .

Each y: can be thought of as a deviation about a certain origin ; i.e. , as
i

an abscissa ,

Since each y; occurs with frequency 1 , we have immediately

N

f (y;?
= 1 and

[ f (y ) = N.

i = 1

Let us make two assumptions first that the desired population (call it the

" Z population " ) is normally distributed second that the extraneous members of the

sample are clustered about points far enough removed from the mean of the Z popu

lation that the frequency distribution is minimally perturbed near the center .

Let N, denote the number of members of the sample which are drawn from the

desired population . Let u and o be , respectively, the mean and standard deviation

of the yi's of this Z population . Then
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z = Yö is the standardized variable ,

allowing our previously developed expressions in Z to hold . Note that

iSØ (2 ) DZ = I = )( you dy = 1 ..

.00

If we could identify the members of the Z population , we could

determine

NZ • { fly?]

=

merely by counting . This cannot be done . But we note that

N

Z

dy = N

Z

choosing to regard y (without a subscript) as a continuous variable, and thus

2

considering f (y ) as an ordinate rather than as a frequency , we find ,

N N ( y - u )

f (y) 0 ( 2 ) 202

O v2T

Z Z

=

o

f ' (y)

-N_ (4-1)

03/27

e ( y- 4) ^
202

-N

Z

f" (y)
1

(***)].
( y -W ) ?
20203/27

-
-

5
0



Evaluating these at the maximum ordinate (y - u) , we find that

Nz

f ( 9 )

O V27

f ' ( y ) -0

-NZ

f " (y)

3
o 2 TT

Solving for Nz and o yields two fundamental expressions .

-f (6 )

f " (y )

2TTF30

N₂
f " (y )

For actual computation , the form

N₂ o f (5) V2 TT

may be preferable .

5
1



It remains to evaluate the mean (9 is the best estimate of u ) and the values

of the function and its second derivative at that point . For this we use

the approximating parabola (least squares fit * ) .

f (y ) K Kqy
+

Кру2

f ' ( y )
Ky + 2K2 y

f " (y)
2K2

Since f ' ( 5 ) 0 ,

y - .

2K2

2

and f (F ) K

4K2

of course f " ( Y ) 2K2

The reader is reminded that the form of the distribution is selected

from criteria other than the appearance of the raw data . For example ,

a distribution which follows (Appendix A, Table 1 , Figure II ) appears to

be tri -modal , due to the presence of many extraneous outllers ,

* See Appendix A
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APPENDIX A

A SIMPLIFIED METHOD FOR FITTING A PARABOLA (LEAST SQUARES )

The application of the method of least squares is greatly facilitated

by transforming the independent variable so that its transform has a mean

of 0 and an increment of 1 . By way of illustration , in Table 1 , y is the

independent variable , f its frequency and x its transform .

х
3

24
су • 30 x

3

2m -1
In terms of the transformed variable x , since

Σ

-

O

1

(m is any positive integer) ,

8 (x) A. + A X

+

Az *?

Ef

Ex² €
A.

Σχ2

Ex *

Σχ2

Ext

Σ1

Ex?

Σ Χf

A,

Σ x2

Ei

A2

Ex?

Σ1

Ei

Σx26

E x?

E x4

2 .

Table 2 contains numbers useful in computation .
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TABLE 1

A HYPOTHETICAL SAMPLE DISTRIBUTION

V f ( y ) х xf x2f

0 0 -8 0 0

3 2 -7 -14 98

6 4 -6 -24 144

9 3 -5 -15 75

12 0 -4 0 0

15 3 -3 -9 27

18 2 -2 -4 8

21 4 -1 -4 4

24 2 0 0 0

27 5 1 5 5

30 2 2 4 8

33 2 3 6 18

36 0 4 0 0

39 2 5 10 50

42 1 6 6 36

45 2 7 14 98

48 1 8 8 64

į 35 -17 635
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TABLE 2

SUMMED SQUARES AND FOURTH POWERS WITH OTHER USEFUL NUMBERS

i

i

1

-i

{ x?

W
T

*D

1

*

2 5 10 34 70

3 7 28 196 588

4 9 60 708 2772

5 11 110 1958 9438

6 13 182 4550 26026

7 15 280 9352 61880

8 17 408 17544 131784

9 19 570 30666 257754

10 21 770 50666 471086

11 23 1012 79948 814660

12 25 1300 121420 1345500

*D -

ΙΣ 1 Σχ2

{ x2 { x4

T
T

= 3.141 592 654

21 = 6.283 185 307

V2T = 2.506 628 275
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Suppose it is desired to fit a parabola to the 9 central points ( Table 1) .

i -2 , x?f· 4 , Ef 20 , Exf 70 .

A.

20 60

70 708)

2772

3 3.593 0749960

2772

Al
-2160 B -0.033 333

9 20

60 70

2772

1Az
-0.205 628-570

2772

X

N

E

-0.081 053-A1

2A2

3

у
23. 756 84

A12

8 (* ) A. = 3.594 424

4A2

g " (x) = -0.411 255

N 2.95637

ox

. ( x )

8 " ( x)

8.86911

८
१

N 998 ( ) V2T 26.64 or 27

N

1

56



APPENDIX B

THE ERROR INDUCED BY ASSUMING A PARABOLA TO APPROXIMATE A NORMAL CURVE

With no prior knowledge of the value of o , it usually happens that

rather large values of you are used to fit a parabola (1.38 in

illustration in Appendix A) . When this happens , the computed values of Nz

and o will be too large .
-2212

Table 3 shows the error induced by the approximation 1

2;ܐ-.

The tabular values give the error as a proportion of g (x) , the maximum

ordinate (o 1) .

If the mean and variance can be estimated ( and the first parabola fit

will provide a rough estimate ) , the error at each value of the independent

variable can be computed . If these error terms are subtracted from the

corresponding frequencies, a parabola fit to these " corrected frequencies"

will exactly reproduce the desired parameters with no residual error

(except that induced by errors in the estimation of u and o ) .

Although the correction function is exact , it should be remembered

that on the normal curve there are inflection points at to, outside of

which the parabola and normal curve diverge very rapidly . This makes

corrections computed for points outside o dependent upon accurate estimates

of u and o .
For example , a 5% error in the estimate of o will result in

a correction error at 0.5 o of only 0.3% of the maximum ordinate , but

3.2% at 1.2 o
a tenfold increase .

The histogram of the data from Table 1 , with the best-fitting normal

curve and associated parabola is illustrated in Figure II .
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܂ܪܐܐ܂1.?:2)
22

TABLE 3 1 22

ܝ
ܕ
ܝ

22

Z

. .
1

ܝ
ܐ
ܢ

Z

Diff

Z

ܘܨܐ1
Z2

2

Diff

0.00

0.02

0.04

0.06

0.08

1.0000

.99980

.99920

.99820

.99681

1.000

.9998

.9992

.9982

.9968

.00000

.00000

.00000

.00000

.00001

0.70

0.72

0.74

0.76

0.78

.78270

.77167

.76048

.74916

.73771

.7550

.7408

.7262

.7112

.6958

.02770

.03087

.03428

.03796

.04191

0.10

0.12

0.14

0.16

0.18

.99501

.99283

.99025

.98728

.98393

9950

.9928

.9902

.9872

.9838

.00001

.00003

.00005

.00008

.00013

0.80

0.82

0.84

0.86

0.88

.72615

.71448

.70272

.69087

.67896

.6800

.6638

.6472

.6302

.6128

.04615

.05068

.05552

.06067

.06616

0.20

0.22

0.24

0.26

0.28

.98020

.97609

.97161

.96676

.96156

.9800

.9758

.9712

.9662

.9608

.00020

.00029

.00041

.00056

.00076

0.90

0.92

0.94

0.96

0.98

.66698

.65495

.64288

.63078

.61866

.5950

.5768

.5582

.5392

.5198

.07198

.07815

.08468

.09158

.09886

0.30

0.32

0.34

0.36

0.38

.95600

.95009

.94384

.93725

.93034

.9550

.9488

.9422

.9352

.9278

.00100

.00129

.00164

.00205

.00254

1.00

1.02

1.04

1.06

1.08

.60653

.59440

.58228

.57018

.55811

.5000

.4798

.4592

.4382

.4168

.10653

.11460

.12308

.13198

.14131

.

0.40

0.42

0.44

0.46

0.48

.92312

.91558

.90774

.89960

.89119

.9200

.9118

.9032

.8942

.8848

.00312

.00378

.00454

.00540

.00639

1.10

1.12

1.14

1.16

1.18

.54608

.53409

.52215

.51028

.49848

. 3950

3728

.3502

.3272

.3038

.15108

.16129

.17195

.18308

.19468

0.50

0.52

0.54

0.56

0.58

.88250

.87354

.86433

.85488

.84518

.8750

.8648

.8542

.8432

.8318

.00750

.00874

.01013

.01168

.01338

1.20

1.22

1.24

1.26

1.28

.48675

.47511

.46357

.45212

.44078

.2800

.2558

.2312

. 2062

.1808

206 75

.21931

.23237

.24592

.25998

0.60

0.62

0.64

0.66

0.68

.83527

.82514

.81481

.80429

.79358

.8200

.8078

.7952

.7822

.7688

.01527

.01734

.01961

.02209

.02478

1.30

1.32

1.34

1.36

1.38

.42956

.41845

.40747

.39661

.38589

.1550

.1288

.1022

.0752

.0478

.27456

.28965

. 30527

32141

.33809

0.70 .78270 7550 .02770 1.40 .37531 .0200 .35531
.
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Interpolation in Table 3 can be avoided by choosing values of o and

such that

1 0.02 R

and

1 0.02 R '

(R and R ' are integers) .

This is a reasonable procedure ; since the first estimate of
x

probably is too high , it 18 legitimate to choose that lower value which

serves the purpose . Table 4 18 presented for convenience in choosing

x

Application of the correction technique to the example of Appendix A

is shown in Table 5 and following .
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TABLE4

VALUES OF O WHICH YIELD CLASS INTERVALS OF .02R
X

1 1

아

능
o 0

.02 50 .32 3.125

.04 25 .34 2.94118

..06 16.66667 .36 2.77778

.08 12.5 .38 2.63158

.10 10 .40 2.5

.12 8.33333 .42 2.38095

.14 7.14286 .44 2.27273

.16 6.25 .46 2.17391

.18 5.55556 .48 2.08333

.20 5 .50 2

.22 4.54545 .52 1.92308

.24 4.16667 .54 1.85185

.26 3.84615 .56 1.78571

.28 3.57143 .58 1.72414

.30 3.33333 .60 1.66667
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TABLE 5

CORRECTION OF A HYPOTHETICAL FREQUENCY DISTRIBUTION

x - X
у f (y) х Factor Δf f + af x ( f + Af ) x2 (f+Af)0

4

12 0 -4 -1.42

15 3 -3 -1.06 .13198 -0.47 2.53 -7.59 22.77

18 2 -2 -.70 .02770 -0.10 1.90 -3.80 7.60

21 4 -1 -.34 .00164 -0.01 3.99 -3.99 3.99

24 2 0 .02 .00000 -0.00 2 .

27 5 1 . 38 .00254 -0.01 4.99 4.99 4.99

30 2 2 .74 .03428 -0.12 1.88 3.76 7.52.

33 2 3 1.10 .15108 -0.54 1.46 4.38 13.14

36 0 4 1.46

Σ 20 0 -1.25 18.75 -2.25 60.01

From Appendix A, we have

x = -0.081 053

g (x) = 3.594424

ox
= 2.95637

х

1 / 0x
=

0.338

for correction , set 1/ 0x
= 0.36

Then 0.36 X = -0.029 , set 0.36 X = -0.02
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It is observed that for x
B

+ 4 , the entering argument lies outside the

range of Table 3 . This merely means that the original curve fit spanned

too much data . The values for X = + 4 are simply dropped from further

calculations .

Fitting a parabola to the " corrected" frequencies , we find

18.75 28

60.01 196

588

IBo
3.392381994.72

588

B1
3 -0.08036-2.25

28

12:B2

7 18.75

28 60.01

588

-0.17845-104.93

588

Х

1 1 -0.22515

у 23.32455

8 ( )
3.40143

g ' ( x ) -0.35690

Ох
3.08713

Оy
9.26138

N 26.32 or 26

0.324
B

0.32
>

let 1

og6x

0.32 х
3 -0.072 let 0.32 x -0.08

>
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The consequence here of dropping the data for X +4 is that rarity ,

too small an estimate of Another iteration seems in order . See

Tables 6 , 7 and following

TABLE 6

FURTHER CORRECTION OF A HYPOTHETICAL FREQUENCY DISTRIBUTION

у
f X - X Factor Δg X x? FX FF

f +Ag+
ox

15 3 -.88 .06616 -0.23 -3 2.77 -8.31 24.93

18 2 -.56 .01168 -0.04 -2 1.96 -3.92 7.84

21 4 - 24 .00041 0 . -1 4 . -4 . 4 .

24 2 0.08 .00001 0 . 0 2 . 0 0

27 5 0.40 .00312 -0.01 1 4.99 4.99 4.99

30 2 0.72 .03087 -0.11 2 1.89 3.78 7.56

33 2 1.04 .12308 -0.42 3 1.58 4.74 14.22

Σ 20 -0.81 19.19 -2.72 63.54

Co

19.19 28

63.54 1961

588

3.370951982.12

588

Ci -
-0.09714-2.72

28

cz -
|23

7 19.19

28 63.54)

588

-0.15738-92.54

588
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x -0.30862

у 23.07413

8 (x)

g

3.38594

g ' ( x) -0.31476

ox
3.27981

9.83943

z2१

2 27.84 or 28

0.305 0.30

/

let 1

охOx

0.30 = -0.093 , let 0.3x -0.10

TABLE 7

FINAL CORRECTION OF A HYPOTHETICAL FREQUENCY DISTRIBUTION

fу хх Factor Ag

2

хx20

X

x®

Ox

15 3 -.80 .04615 -0.16 2.84 -3 -8.52 25.56

18 2 -.50 .00750 -0.03 1.97 -2 -3.94 7.88

21 4 -.20 .00020 0 4 . -1 -4 . 4

24 2 .10 .00001 0 2 . O 0 0

27 5 .40 .00312 -0.01 4.99 1 4.99 4.99

30 2 .70 .02770 -0.09 1.91 2 3.82 7.64

33 2 1.00 .10653 -0.36 1.64 3 4.92 14.76

Σ 20 -0.65 19.35
-2.73 64.83
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28

D.

19.35

64.83 196

588

D1

-?? ?
-2.73

28

D2

7 19.35

28 64.83

588

х -0.32578

C

y 23.02267

8 (x ) 3.37874

g ' ( x )
2 -0.29929

ox 3.35996

3

oy
10.07988

N = 28.46 or 28

Check :

-
7
6*

0.298 x

3.36286

-0.09750

-0.14964

0.298

-0.097
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APPENDIX C

EXAMPLES

To test the method, three samples of size 150 were drawn from Rand's

Tablet of Gaussian deviates and were adulterated as described .

Problem 1

Sample starts with line 2206 , Page 45

First 100 numbers unbiased

Next 35 numbers biased +2.5

Next 15 numbers biased -2.0

Class interval was chosen as 0.3 , yielding the sample distribution displayed

in Table 8 . For the population , 0 , o 1 . The " pure " portion of

the sample (N = 100) estimates these parameters as p = 0.015 , o 0.943 .

The total sample provides the useless estimates u
= 0.332 , o = 1.579

The curve -fitting technique provides a first approximation of = 0.059 ,

9 1.025 , N 109 .
After applying the corrections , the method yields

M
- 0.062 ,

3

0.920 , N 99 . Computations are shown in Tables 9 ,

10 and following .

* The RAND Corporation , A Million Random Digits with 100,000 Normal Deviates ,

Free Press , 1955 .
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TABLE 8

FREQUENCY DISTRIBUTION , PROBLEM 1

y

Mid -Point

Frequency

Unbiased Total

Portion Sample

у

Mid-Point

Frequency

Unbiased Total

Portion Sampleх х

-4.5 -15 1 0.3 1 14 14

-4.2 -14 0 0.6 2 10 11

-3.9 -13 0 0.9 3 8 8

-3.6 -12 1 1.2 4

8

14

-3.3 -11 0 1.5 5 3 7

-3.0 -10 2 1.8 6 0 4

-2.7 0 2.1 7 2 5

-2.4 -8 2 2.4 8 1 4

-2.1 7 2 3 2.7 9 5

-1.8 -6 3 4 3.0 10 2

-1.5 -5 3 7 3.3 11 2

-1.2 -4 6 8 3.6 12 2

-0.9 -3 7 8 3.9 13 2

-0,6 .2 9 9 4.2 14 0

-0.3 -1 12 12 4.5 15 0

0.0

O

12 12 4.8 16 1
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TABLE 9

CURVE FIT , PROBLEM 1

y f
X xf x² €

-.9 8 -3 -24 72

-.6 9 -2 -18 36

-.3 12 -1 -12 12

0 12

o

0 0

.3 14 1 14 14

.6 11 2 22 44

.9 8 ب
ی
ا

24 72

Σ 74 6 250

A

3

74 28

1250 196

588

12.76190

A1
6/28 0.21429

7 74

28 250

588

1
A2 -0.54762

х 0.19565-A1/2A2

A. -Aſ/4A2f ( x ) 12.78287

ox 3.41633

To compute corrections

1 / 0x .293 , Use 0.32

0.32 x = .063 , Use 0.06

у
0.05870

Oy
1.02490

NZ
109
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TABLE 10

CORRECTED CURVE FIT,PROBLEM 1

f
y Af Nx - X Factor

ox

8

X

xg x?g

-.9

8

-1.02 .11460 -1.46 6.54 -3 -19.62 58.86

-.6 9 - . 70 .02770 -0.35 8.65 -2 -17.30 34.60

-.3 12 - .38 .00254 -0.03 11.97 -1 -11.97 11.97

0 .

1
2

- .06 00000 0 . 12 . 0 0 0

.3 14 26 .00056 -0.01 13.99 1 13.99 13.99

.6 11 .58 .01338 -0.17 10.83 2 21.66 43.32

.9 8 .90 .07198 -0.92 7.08 3 21.24 63.72

Σ 74 -2.94 71.06 8.00 226.46

71.06

226.46

588

28

196 12.90286

B1 8.00/ 28 0.28571

B2
0

7 71.06

28 226.46

588

-0.68786

X = 0.20768

y = 0.06231

8 ( x ) 12.93253

ox 3.06604

ry
0.91981

N 3 99.4 or 99

Check :

1 0.326

be

0.326 x 0.068

7
0

w
a

1

-



PROBLEM 2

Sample starts with line 5622 , Page 113 . All other conditions identical to

Problem 1 . Results are shown in Table 11 , 12 and 13 and following . The

" pure" portion of the sample yields o , oo = 0.913 . The total

sample gives
3

M
0.426 , 1.728 .

The curve - fitting technique provides a first approximation of p
= -0.101 ,

2 1.011 , N = 112 . After applying the corrections , the method yields

-0.106 , o = 0.908 , N = 102 .

PROBLEM 3

Sample starts with line 8371 , Page 168 . All other conditions identical to

Problems 1 and 2 . The " pure " portion of the sample yields p 0.102 ,

o = 0.961 . The total sample gives |p = 0.386 , o = 1.508 .

The curve -fitting technique provides a first approximation of р
0.123 ,

= 1.230 , N 136 . After applying the corrections , the method yields

P 0.132 , o = 1.109 , N = 123 . Results are shown in Tables 14 , 15 and

16 . It should be observed that this particular sample contains 5 " bad "

data bits in the interval 1x1 = 0.6 , more than 8% of the sample.
The

method cannot identify these points , with the result that the computed

values of Nando tend to be too large , although they are still better

estimates of the true parameters than those obtainable from the entire

sample .
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TABLE 11

FREQUENCY DISTRIBUTION , PROBLEM 2

у

Mid- Point

Frequency

Unbiased Total

Portion Sample

у

Mid-Point

Frequency

Unbiased Total

Portion Sampleх х

-3.9 -13 2 0,9 3 6 8

-3.6 -12 1 1.2 4 11 12

-3.3 -11 0 1.5 5 2 3

-3.0 -10 1 1.8 6 3 7

-2.7 0 2.1 7 1 3

-2.4 -8 1 4 2.4 8 4

-2.1 -7 0 2 2.7 9 1

-1.8 -6 1 1 3.0 10 1

-1.5 -5 3 3 3.3 11 7

-1.2 -4 9 12 3,6 12 4

-0.9 -3 6 8 3.9 13 4

-0,6 -2 11 11 4.2 14 0

-0.3 -1 18 18 4.5 15 1

0 . 0 11 12 4.8 16 0

0.3 1 8 9 5.1 17 0

0.6 2 9 10 5.4 18 1
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TABLE 12

CURVE FIT , PROBLEM 2

y

Mid Point X f xf x2 €

-0.9 -3 8 -24 72

-0.6 -2 11 -22 44

-0.3 -1 18 -18 18

0 . 0 12 0 0

0.3 1 9 9 9

0.6 2 10 20 40

0.9 3 8 24 72

Σ 76 -11 255

AO

76 28

255 196

588

13.19048

A1 -11/28 -0.39286

A2

7 76

28 255

588

-0.58333

х
3 -0.33673

f ( x ) 13.25662

Ox 3.37088

To compute corrections ,

न
ा

0.297 , Use 0.32

x

0.32 % -0.108 , Use -0.10

-0.10102

2१दा

..1.01126

112

7
3



TABLE 13

CORRECTED CURVE FIT , PROBLEM 2

fy x - X Factor Af 8 X xg X 8

-.9 8 -.86 .06067 -0.80 7.20 -3 -21.60 64.80

-.6 11 -.54 .01013 -0.13 10.87 -2 -21.74 43.48

-.3 18 -.22 .00029 0 . 18 . -1 -18 . 18 .

0 . 12 .10 .00001 0 . 12 . 0 0 0

.3 9 .42 .00378 -0.05 8.95 1 8.95 8.95

.6 10 .74 .03428 -0.45 9.55 2 19.10 38.20

.9 8 1.06 .13198 -1.75 6.25 3 18.75 56.25

Σ 76 -3.18 72.82 -14.54 229.68

1223 :
72.82 28

1229.68 196

588

1
B.

13.33619

B1
= -14.54/28 -0.51929

28 229:88)
B2

72.82

229.68

588

-0.73333

1х -0.35406

y -0.10622

8 ( X ) 13.42812

ox
3.02581

o
y

0.90774

N 101.8 or 102

Check :

0.3301

ох

.330 X -0.117
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TABLE 14

FREQUENCY DISTRIBUTION , PROBLEM 3

у

Mid Point

Frequency

Unbiased Total

Portion Sample

y

Mid Point

Frequency

Unbiased Total

Portion Sampleх Х

-3.0 -10 2 1.2 4 6 9

-2.7
-

- 9 1 1.5 5 3 4

-2.4 8 1 1.8 6 2 4

-2.1 - 7 1 4 2.1 7 1 6

-1.8 - 6 3 ب
ی
ا

2.4 8 O 6

-1.5 5 54O

2.7 9 2 6

-1.2. - 4
3 6 3.0 10 4

-0.9 - 3 8 9 3.3 11 5

-0.6 - 2 9 11 3.6 12 0

-0.3 - 1 10 11 3.9 13 1

0.0 0 13 14 4.2 14 0

0.3 1 13 13 4.5 15 0

0.6 2 12 13 4.8 16 2

0.9 3 10 10 5.1 17 0
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TABLE 15

CURVE FIT PROBLEM 3

у f X xf x2 € FactorX -

Ox

-.9 9

-
3

-27 81 -.96 .09158 -1.21

-.6 11 -2 -22 44 -.68 .02478 -0.33

-.3 11 -1 -11 11 -.40 .00312 -0.04

0 . 14 0

o

0 ..12 .00003 0 .

.3 13 1 13 13 .16 .00008 0 .

.6 13 2 26 52 .44 .00454 -0.06

10 3 30 90 .72 .03087 -0.41.9

Σ 81 9 291 -2.05

A

81 28

1291 196

588

B

A1
9/28

A2

7 81

28 291

588

o 13.14286

0.32143

-0.39286

х
3

0.40909

f (x ) 13.20860

of
4.10012

у 0.12273

by
1.23003

N 136

To compute Af,, use

0.28

1/4

ulo
0.12

1
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TABLE 16

CORRECTED CURVE FIT , PROBLEM 3

у f х xØ x20

f + Af

-.9 9 7.79 -3 -23.37 70.11

x
-

-.6 11 10.67 -2 -21.34 42.68

- . 3 11 10.96 -1 -10.96 10.96

0 . 14

A
A

4
3

3

14 . 0 0 . 0 .

.3 13 . 1 13 . 13 .

.6 12.94 2 25.88 51.76

.9 10 28.77 86.31

Σ 11.98 274.82

B.

78.95 28

1274.82 196

588

B1 11.98/28

3

B2

7 78.95

28 274.82

588

x 0.43851

f ( x ) 13.32381

ox
3.69533

у
0.13155

2

бу
1.10860

N B 123

Check :

0.2711

OX

p / o

9.59 ب
ی
ا

78.95

13.23000

0.42786

8-0.48786

0.119
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Is the result affected by varying the span of data used? Let us

rework Problem 3 , using all the data up to Jyl • 1.8 . Even though

the estimates of o and pi are poor , iteration of the method quickly

puts data for lyl > 1.2 outside the range of the correction table , and

so drops them from the calculations . The remaining 9 points , when

properly corrected , should virtually duplicate the results earlier obtained

from fitting a curve to 7 points . The results compare as follows :

9- point fit : v
3

0.162 , 1.096 , N 123

7- point fit : p = 0.132 ,
1. 109 N

N

123

-

1
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TABLE 17

13 - POINT CURVE FIT , PROBLEM 3

у f X xf x? f
X

Factor

섈
Δf

-1.8 3 -6 -18 108 -1.36 .32141 -4.03

-1.5 5 -5 -25 125 -1.14 .17195 -2.16

-1.2 6 -4 -24 96 -.92 .07815 -0.98

-0.9 9 -3 -27 81 -.70 02770 -0.35

-0.6 11 -2 -22 44 -.48 .00639 -0.08

-0.3 11 -1 -11 11 -.26 .00056 -0.01

0 14 0 0 0 -.04 .00000 0

0.3 13 1 13 13 .18 .00013 0

0.6 13 2 26 52 .40 .00312 -0.04

0.9 10 3 30 90 .62 .01734 -0.22

1.2 9 4 36 144 .84 .05552 -0.70

1.5 4 5 20 100 1.06 .13198 -1.66

1.8 4 6 24 144 1.28 .25998 -3.26

M
E

112 22 1008 -13.49

12.53147

A.

112 182

1008 45501

26026

B 0.211 , Use 0.22

-/64

A1
22/182

3 0.12088 0.22 X 0.048 , Use 0.04

у
B

|182

0.06482

A2

13 112

182 1008

26026 1.42060

= -0.27972

y

N =х 0.21607 149

f (x ) 12.54453

ох
4.73533

7
9



TABLE 18

13 - POINT CURVE FIT , CONTINUED , PROBLEM 3

2

X ft Af

F =

f+AØxos x²0 X Factor A0

x

XF X F?

-6 -1.03 6.18 -37.08 -1.62 -6

-5 2.84 -14.20 71 . -1.36 .32141 -4.15 -5 0.85 -4.25 21.25

-4 5.02 -20.08 80.32 -1.10 .15108 -1.95 -4 4.05 -16.20 64.80

-3 8.65 -25.95 77.85 -.84 .05552 -0.72 -3 8.28 -24.84 74.52

-2 10.92 -21.84 43.68 -.58 .01338 -0.17 -2 10.83 -21.66 43.32

-1 10.99 -10.99 10.99 -.32 .00129 -0.02 10.98 -10.98 10.98

0 14 . 0. 0 . -.06 .00000 0 0 14 . 0 . 0 ,

1 13 . 13 . 13 . .20 .00020 0 1 13 . 13 . 13 .

2 12.96 25.92 51.84 .46 .00540 -0.07 2 12.93 25.86 51.72

3 9.78 29.34 88.02 .72 .03087 -0.40 3 9,60 28.80 86.40

4 8.30 33.20 132.80 .98 .09886 -1.28 4 7.72 30.88 123.52

5 2.34 11.70 58.50 1.24 .23237 -3.00 5 1.00 5 . 25 .

6 0.74 4.44 26.64 1.50 6

Σ 98.51 30.72 617.56 -11.76 93.24 25.61 514.51
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( 61B.

98.51 182

617.56 4550

26026

12.90343

B

B1
2

30.72 /182 0.16879

B2
B

13 98.51

182 617.56

26026

-0.3804095

*1 B
0.22185

f (x)
2 12.92215

4.12123

у
2 0.06656

Oy
1.23637

N 3
133

3

0.243 , Use 0.261

OX

0.26 V
0.058 , Use 0.06

Co

93.24 110

514.51 1958

9438

B 13.34688

Ci 25.61 / 110 0.23282

11 93.24

1110 514.51

9438

11C2
= -0.48705

X 0.23901

f ( x ) 13.37470

3.70544

3 0.07170

бу
1.11163

N 124

0.270 , Use 0.28

x
o
l
n

.28 X = 0.067 , Use 0.06
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TABLE 19

9 POINT CURVE FIT , PROBLEM 3

X

X= 1
Factor AF xg x ? g

*

X - 4

ox

Factor Δg
f+AF

-4 -1.18 19468 -2.60 3.40 -13.60 54.40 -1.26 .24592 -3.29.

-3 -0.90 .07198 -0.96 8.04 -24.12 72.36 ... 98 .09886 -1.32

-2 -0.62 .01734 -0.23 10.77 -21.54 43.08 - .70 .02770 -0,37

-1 -0.34 .00164 -0.02 10.98 -10.98 10.98 - .42 .00378 -0.05

0 -0.06 .00000 0 . 14 . 0 . 0 . .14 .00005 0 .

1 0.22 .00029 0 . 13 . 13 . 13 . .14 .00005 0 .

2 0.50 .00750 -0.10 12.90 25.80 51.60 .42 .00378 -0.05

3 0.78 .04191 -0.56 9.44 28.32 84.96 .70 .02770 -0.37

4 1.06 .13198 -1.77 7.23 28.92 115.68 .98 .09886 -1.32

5 1.34 Not Used

Σ -6.24 89.76 25.80 446.06 -6.77

89.76 60

446.06 708

1
1

D.
13.27074

2772

D1 = 25.80/60 0.43000

D2 =

9 89.76

60 446.06

2772

-0.49461

I
X

= 0.43469

Oy
= 1.10267

f (x) 13.36419 N = 123

Ox
= 3.67557 1

x
a
l
m

0.272 , Use 0.28

х

y = 0.13041

.28 X = 0.122 , Use 0.14

8
2



TABLE 20

9 POINT CURVE FIT , CONTINUED , PROBLEM 3

X

G =

f+ Δg

XG x2G

-4 2.71 -10.84 43.36

-3 7.68 -23.04 69.12

-2 10.63 -21.26 42.52

-1 10.95 -10.95 10.95

0 14 . 0 0

1 13 . 13 . 13 .

N

12.95 25.90 51.80

3 9.63 28.89 86.67

4 7.68 30.72 122.88

Σ
89,23 32.42 440.30

89.23 60

440.30 708

2772

E = 13.26004

Ei = 32.42/60 = 0.54033

9 89.23

60 440.30

2772
Ez = = -0.50184

x = 0.53835 Check :

f (x) = 13.40549

= 0.274

Ox
3.65463

х

.274 X 0.148

у 0.16151

Oy
= 1.09639

N = 123
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THE 1979 SAMUEL S. WILKS MEMORIAL MEDAL

Frank E. Grubbs

The Samuel S. Wilks Memorial Medal Award was initiated in

1964 by the US Army and the American Statistical Association ,

and has been administered for the Army by the American Statistical

Association , a non-profit , educational and scientific society

founded 140 years ago in 11839 . The Wilks Medal and Award is

given each year to a statistician and a top-notch one ! and

is based primarily on his contributions to the advancement of

scientific or technical knowledge in Army statistics , ingenious

application of such knowledge , or successful activity in the

fostering of cooperative scientific matters which coincidentally

benefit the Army , the Department of Defense , the US Government ,

and our country generally . The Award consists of a medal , with

a profile of Professor Wilks and the name of the Award on one

side , the seal of the American Statistical Association and the

name of the recipient on the reverse side , and a citation and

honorarium related to the magnitude of the Award funds , which

were generously donated by Phillip G. Rust of the Winnstead

Plantation , Thomasville , Georgia . Mr. Rust originally stimulated

the interest of Sam Wilks in distributional properties of the

" extreme spread " ( bivariate range ) , a measure . of the " accuracy "

of rifle shot on a target .

These annual Army Design of Experiments Conference, at which

the Wilks Medal is awarded each year , are sponsored by the Army

Mathematics Steering Committee on behalf of the Office of the

Chief of Research , Development and Acquisition , Department of the

Army .
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Previous recipients of the Samuel S. Wilks Memorial Medal

include John W. Tukey of Princeton University ( 1965 ) , Major

General Leslie E. Simon ( retired , 1966 ) , William G. Cochran of

Harvard University ( 1967 ) , Jerzy Neyman of the university of

California , Berkeley ( 1968 ) , Jack Youden ( deceased ) formerly

of the National Bureau of Standards ( 1969 ) , George W. Snedecor

( deceased ) formerly of Iowa State University ( 1970 ) , Harold

Dodge ( deceased ) formerly of the Bell Telephone Laboratories

( 1971 ) , George E. P. Box of the University of Wisconsin ( 1972 ) ,

H. 0. Hartley ( 1973 ) , this year's President of the American

Statistical Association , Cuthbert Daniel , private statistical

consultant ( 1974 ) , Herbert Solomon of Stanford University ( 1975 ) ,

Solomon Kullback of George Washington University ( 1976 ) , Churchill

Eisenhart of the National Bureau of Standards ( 1977 ) , and William

Kruskal of the University of Chicago ( 1978 ) .

This brings us up to this year , for which the competition

for the Wilk's Medal turned out to be keen indeed , and as usual

the " best man won " . The members of the 1979 Wilk's Memorial Medal

Committee consisted of individuals skilled in the art of arguing

their points and getting their best views in the minds of others !

They were : Chruchill Eisenhart , Fred Frishman , Frank Grubbs

( Chairman ) , Bill Kruskal , Jeff Kurkjian , and Frank Proschan .

They had the job of concentrating on some 12 deserving candidates

from many nominees , and coming up with their best selection ac

cording to the Wilk's Medal criteria .

I
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The 1979 Wilks Medalist , like Sam Wilks , was born in Texas .

He received his B. A. in Physics (with highest honours ) in 1934

from the University of Texas , and later his Ph . D. in Mathematics

from Princeton University in 1940 , in the first cohort of Wilks

disciples . Between 1934 and 1940 he taught as a graduate assistant

or instructor at Brown University , the University of Texas , and

Princeton University , while also during that period he made the

transition from Physics through Applied Mathematics to the great

field of Mathematical Statistics . After obtaining his Ph . D. in

1940 , he returned to the University of Texas as Instructor in Ap

plied Mathematics and Astronomy , interrupting his academic career

to join the Bureau of Labor Statistics in 1942 , and in 1944 a

project of the Applied Mathematics Panel of the National Defense

Research Council ( I believe under Sam Wilks ) . Then from 1945 un

til 1948 he was Professor of Mathematics and Statistics at Iowa

State University , and then joined the RAND Corporation , where he

served as Deputy Chief of the Mathematics Division until 1955 .

At this point in time the entrepreneur emerged and the 1979

Wilks Medalist founded the General Analysis Corporation , served

as its President until 1960 , when it merged with CEIR , INC . He

then became a Vice-President of CEIR and Manager of its Western

Division until 1964 , when he next went to Washington as Assistant

Commissioner of Educational Statistics in the Office of Education .

He was then Director of the National Center of Educational Sta

tistics until 1967 , after which he returned to the West Coast

as Professor of Administration and Director of the Public Policy

Research Organization at the University of California , Irvine .

87



There is much , much to say about this scholar and gentleman

concerning his great contributions to the field of statistics

generally , although they should be recorded elsewhere .
We should

note , however , that he wrote the best key graduate book for a

solid statistics course , and one which has trained many good

statisticians .
( Introduction to the Theory of Statistics ) .

Не

has been a prolific publisher of technical papers on statistics ,

operations research , education and public policy research . He

has been Presidents of both the Institute of Mathematical Sta

tistics and the Operations Research Society of America .

A long - term friend and colleague , George W. Brown , told me

that the 1979 Wilks Medalist is an " extraordinarily and decept

ively quiet man " , so that I don't think he would win an award

as the " most talkative statistician " ! Yet , he has exerted

major direct and indirect influences on an enormous number of

individuals . And he has had many separate careers actually ,

including roles as a professor , a think- tank researcher , an

operations research analyst , an administrator , an entrepreneur

and manager , a pioneering public servant , founding director of

an important research organization , and distinguished consultant

and advosor to universities and government organizations .

By now it should be unmistakebly clear that we are referring

to none other than Alexander M. Mood .

The citation for Alex Mood reads :

" To Alexander M. Mood for his many significant contributions

to the theory of statistics , an outstanding textbook on the sub

ject , his extensive applications to operations research and sys

tems analysis , and unique statistical assessments of education

and public policy research . "
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Variance Reduction in Monte Carlo Similation

Mark Brown

Florida State University

Herbert Solomon

Stanford University

Michael A. Stephens

Simon Fraser University , B. C.

1. Introduction .

Monte Carlo simulation is employed in a large variety of problems . Fre

F

quently , one is interested in the expectation of a function 8 (X2 ... X )

where < Xq; i > 1 > is i.i.d.
with known distribution and N is a

stopping time (often a constant ). The procedure followed is to generate

a large number of samples (x ++ ), (i )), i = 1,2 ,..., M, and estimate

the expectation of interest by

... mer

M

1M (1 ) ,.8( 2), ...
i = l

An interesting aspect of the simulation estimation problem is that

F is known .
Thus functions of the form é (F ,X7 ,...,X ) can be employed

as estimators , while in statistical estimation problem with F unknown

cannot be computed from the data and is thus not considered to be an

estimator .
Thus the class of estimators is considerably wider in Monte

Carlo problems .

One approach available to reduce the variance of the Monte Carlo

estimator is to find a function e (F ,X7 ,...,Mpy with the same expectation

as 8, and with smaller variance . Then rather than 8 is averaged

over the M samples . Of course ,
= Enefits this description but were

Partially supported under U.S. Army Research Office Grant DAAG - 29-77 - G - 0031

and issued as Technical Report No. 35 .
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it directly computable one would not need to simulate in the first place .

Thus an important requirement of l is that it be simply computable.

We illustrate the above remarks by considering the problem of Monte

Carlo estimation of M(t ) = EN (t ), the expected number of renewals in

(0 , t ] for a renewal process with known interarrival time distribution
F.

Several unbiased estimators which compete favorably with the naive estimator ,

N (t ) , are presented and studied .

We believe that our approach and methodology , although only applied to

renewal function estimation in this paper , can be useful in a large

variety of Monte Carlo simulation problems.

Define So S

n Xq, n =

2 . Assume that < Xy ; i > 1 > is i.i.d. with cdf F where F (0 ) = 0 .

0 , 1,2, ... , N ( t ) = max ( n : So st ) ,{ Sn t and

M (t ) = EN ( t ), t > 0 . Sometimes we consider the point t = 0 as a renewal

epoch . In this case we use No (t ) = n ( t )+1 and Mo (t ) = m ( t ) +1 . The

renewal age at time t is defined by Alt ) t -Sn (t); Pr ( A ( t ) = t ) = (t )

x
=and

( x )
F (x ) am ( t -x ) for

)

A ( t)
for 0 < x < t , thus

)

for 0 < x < t.

dR (A )
df

Define

i if Sist

oi

O

if
S, > t .

Then n (t ) & 8 and t = .M(t)-B 0 , - (4 )(t),
' (t ) , where f (1 ) is the ith= Σδ

comvolution of F.

9
0



( i

To estimate Fp (1 ) ( t ) = ES亞Es we will use
i

B (8,1%,...,x_2) = E(8451-1) + F (-8,-1 ) .

We then estimate m(t ) by :

(1 )

Mẹ(+) -§ Ft-8-2)= P(t-sg -1).

N (t ) +1

i=1

Since Var(F (t -S2-2)) = Var [E( 848-1 ) ] = Var 84 ,Var[E (84 \82-1 )] < Var 84 , we have replaced

each component , oq , by a component with the same expectation and

smaller variance . Intuitively we would expect that if we reduce the

variability at each stage (given the past ) then we should reduce the

variability of the overall estimator . However , the computation of

variance involves covariance terms , and if these are increased while

variances are decreased there can conceivably be an increase in variance .

Theorem 1 (below ) demonstrates that m (t ) does indeed have lower variance

than M ( t ) .

M(t ) is an unbiased estimator of M (t ) and Var N(t ) - Varm (t ) =

E [2M ( A (t ) ) - F (A (t ) ) ) > 0 , with strict equality if F (t ) > 0 .

Theorem 1 .

Before proving theorem l we comment that the reduction in variance

If
is unsatisfactorily small for large to

EX ? < 00 then

Ha

E [ 2M (A (t ) ) - F (A (t ) ) ] = 0 (1 ) , thus Var N ( t ) and Var m (t ) are of the

form yt + O (1 ) with common y , and we improve only the asymptotically

negligible 0 (1 ) term . Estimators considered in later sections do

considerably better for large to
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Proof of Theorem 1. Express y (t ) as

8 (t ) + $*So* r ( t -x )aN ( x) - 1* t ,F (t -x )an , (x ) .

Then

2x_ ( 8) - S* (t-xjamg( ) - S* say, (x ) - 5* [t-xJax (a

- Mg ( t) - $*
df ( t -x)

A (t) = m (t )-1 = m(t ) .

Now ,

26(t) - ** (t-x)am, (x )

+ 2
F (t-r )F (t-s )am ( r )am (8-r ) •

We evaluate this expression in several steps :

(1 )

$* * (t - ) any (x ) - 5* <tx)an (x ) - $* p < t - x ] ( -x }ay (2 )

M(t ) - EF (A ( t ) ) .

(ii ) F (t-r )F (t-s ) = 1 - F ( t -r ) - F ( t-8 ) + F (t -r )F (t -8 ) .

(iii ) 2 1. ,(a angco- r) - 2 $ * t r , (2)(e).

Ft-rang (x)ax,co-r)-2 %, le-ar Joct= jang(ry
(iv )

-
2

r < s

-2EM (A ( t ) ) .
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( v ) -2

r < s

Il t , rF(t-s ) amy (r)am (s -r )
= -2

2 * F (tor )am (r )
r = 0

-2M ( t ) .

( vi ) 2

1 ] , ,F(t-r )F ( t - s )am ( r )am (s -r ) = 2 F(t-r) (t -r)am (r )
r < s r = 0

= 2EF (A (t)) .

Combining ( 1 ) - (vi ) we obtain :

(2 ) ENÇ(t) = M (t ) + 2m12) (t ) - E(2M(A(t)) - F (A(t ) ) ) .

Furthermore

(3 ) EN (t ) = EL dM ( r ) am ( s -r )

So* t
N (t ) ] 2= m (t ) + 2 iņa

M(t ) + 2M (2)(t)

r < 8

Thus from (2 ) and (3 ):

Var N (t ) - Var M.(t ) = E (2M (A (t ) ) - F (A (t ) ) ] .

Since

M(6 ) - Ž (4)(6),20 ( s ) +F(s)+ F (e ) +2 ]
f(1 )(8) 20 ;
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thus E [ 2M (A(t ) ) - F (A (t ) ) ) > 0
for all t and is strictly positive

for F (t ) > 0.

3 . In this section we assume that F is continuous . The cumulative

is the

f ( t ) .

hazard H is defined by H (t ) = -log F(t ) . When F is absolutely

continuous with density f then h ( t ) = 5* n (y )dy where h

hazard function , h ( t )

F(t )

Our next estimator is based on the intuitive idea that

E (AN(8 ) past ) = dH(A(s)). Thus instead of using r (t ) = set an ( s ) we

try

M.(t)= $*--$ *akca ( )

N (t )

& H (X ) + H ( A ( t ) )

N ( t ) +1

Σ H.

1

where Hy

00

8
W
a
t Thus is replacedO

1
i

by Hq

Hy = H [(t-$4-2 ) 1 xz] (where an b = min ( a , b ) ).

Note that n (t )

1 81
while M (t )My (t) = & H 8

and E (844-1 ) - E(H, $,-1) + F ( -84-1 ) .

The process My (t ) is a cumulative process in the sense of Smith

13 ) . Thus ( Smith ( 3 ] )

Var My (t) ~ ECH(X)– (CH(X))x322 ,

where H = EX . But H (X ) = -log F(x ) is exponentially distributed with

parameter 1 , thus :

2

EH (X ) x )2 = 1 +
E [ H (X )

2σρ

.EX 2

9
4



where p is the correlation coefficient between X and H (X ) andx o?

is the variance of X.
Thus My (t) is asymptotically better than n (t )

asymptotically worse than N ( t ) for p < u/20.for ρ > μ / 2σ ,

In general if we have two unbiased estimators of a parameter , Ty

and Tz, with covariance matrix A, then the minimum variance unbiased

estimator of the form CT2 + (1-4 )T, is the one with

2
-1

Σ Α.
a =

jul

2 2

-1

Σ ΣΑ35
i=l j =1

The variance of this estimator is

1

E2. Ajj
i , j

The idea now is to let Abe the asymptotic covariance matrix of

N (t )
M (t )

VEE

and to employ the above result to obtain an unbiased estimator which

t .improves on both My (t) and N (t ) for large We already know the

O(t ) terms for Var n (t )Var N ( t ) and Var Mi (t ). We only need the leading

term for Cov ( n (t ), M (t ) ) . This is given in lemma 1 below .

Lemma 1 . If

2

o is finite then

2

Cov (N (t ), Mg (t ))

1
1

Molla

s
l + o ( t ) .
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Proof .

Var(N(t)= x (+ ) ) = verſ (8,_H(t+S4 x )

- ver(,-H& E Var[67- H ( t - 84-1 ^ X2 ) 51-2 ) = E { F(t=54-2)= EN ( t ) = m (t ) .

=

Thus

M(t ) = Var (N (t )- Mr (t )) = Var n (t ) + Var(M /(t))- 2Cov(N(t),M/(t )) ,

and therefore

Cov ( N ( t ),My (t )) = { [ Var n (t ) + Var M./(t)- M(t)]

2 2

+1

2po

I
I -1 + 0 (1 )]

M

- P)+0(t). I

Now

2

p

M

A =

O

+1
20p

μ

u

2

-1

£ 4A;
a =

j=1

2 2

1

8
1
2

-1

Σ ΣΑ3
1 = l jul

and
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1

- ]
(1-6 ?) .

Σ Α3
i, j

Note that the asymptotic relative savings in variance is é ? the

square of the correlation coefficient between X and H (X ) . Summarizing :

Theorem 2 . The estimator

M *( t) = (1 - )N(t) + 4 ( )

is an unbiased for m(t ) with variance

+ o (t )

( o is the correlation coefficient between x and H ( x ) ) . It follows

that :

O

Var n ( t ) Var m * (t ) .2+ (1 ) .
Var (e )

2

Example : Let H (x ) = x?, F (x ) = e Then ,

--6.41.4

2

EX? = 2

S

00

-X

xe dx = l ,

thus

2

-X

o2 = 1--**T ; D = dx4 ] • ਕੁੰਡ' ਹੈ, , 6 ·· .925.
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Thus in this case (Weibull with shape parameter 2 ) the unbiased estimator

*

M (t ) has an asymptotic relative reduction in risk over N (t ) of

91.5 percent . I

Integration by parts shows that

р

es
9
1
1

H (x )F (x )dx ;

since (x ) = -log F (x ) the integral can probably be given an enthropy

interpretation . D = IEŃ ( ) where ñ (x ) = 5 *So .H (z )dz. This isAlso

true since

X

H (x )F (x )dx
* A( x) = xxxH (x )EIX > x dx = E $.* ( x

H (x )Ix > xdx = E So
H ( x )dx = Ñ (x ).

Note that both o and
po

are invariant under a change of time scale,
u

t + ct , c > 0 .

O

울

1

stagewise .

4. In section 3 we estimated m (t ) by a weighted average of n (t ) = 1 84
N ( t ) + l

and m (t ) = (t& H ((t -84-1) 1 X ) . Now we apply the same idea but

At stage i , having observed X72... ,81-1' N (+ ) adds the

component 84 = kx St- - 1' while m (t ) adds Hy = H ( (t - S4-2) 1 x ) .

Each of 62 , Hy are conditionally (given $4-2 ) unbiased for F (t -S1-1)

and unconditionally unbiased for f (1 ) (t ) . The approach we now follow is

to use the weighted average of $ and Hy which has smallest conditional

variance given X, ... , x1-1
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Define Fz = F (t -S1-1), C4 H (t -$ - 1 ). Then :

Var(8,151-1 ) = F -

Cov(87 H491-1 ) = 7 , (F -C )

Var (H ,\ S - 1) = Fz +F_ (F4-202 ) .

The minimum conditional variance ( given Xx .... ,x2-1) unbiased linear

combination is then :

F C.F

ii

L = (1 .)81
Hy ·

i

The corresponding estimator of M(t ) is :

N (t )+1 H (t-S- 1) ( t-S1-1 )

M (t ) = N (t ) - Σ

F (t -si .
(84 -H ) .

1 i-l

have looked at .

We do not know how m(t ) compares with the other estimators we

The variance of an estimator of the form E ky is

Σ Var K + 2 Σ Cov (Ky,Kg); I was chosen from among a class of
i < j

estimators EK to minimize E Var Ky. However we know very little

about Cov(Iy, L ). This latter quantity must be shown to be suitably

small in order to demonstrate that m ( t ) has desirable variance

properties .
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5. We next consider an unbiased estimator with asymptotic variance

0(1 ) . Thus it asymptotically enjoys a 100 percent reduction in

variance over N (t ) .

As is well known N ( t ) + ] is a stopping time and thus by Wald's

identity :

ESN (t )+1

Nệt ) +1

Σ

1

+= E

Xi = u (M (t ) +1 ) .

Thus

t( ) ºx(t)+ ..
M

is unbiased for m(t ) . Now Var (Sn(t)+1) Var (t + z ( t ) ) = Var z (t ) ,

where z (t ) is the forward recurrence time at t . If

I Hz
Ex < 0= EX

then Var z (t ) converges to

2 2

p3 44143 -343years
4u

2

124

as

م
ا

8

Thus

2

var fice) Sung
124

and is thus 0(1 ) .
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SMALL SAMPLE SIZE EFFECTS ON

TOLERANCE LIMITS , EXCEEDANCES

JAMES R. KNAUB , JR.

ARMY MATERIEL TEST AND EVALUATION DIRECTORATE

US ARMY WHITE SANDS MISSILE RANGE

WHITE SANDS MISSILE RANGE , NEW MEXICO

ABSTRACT
O

Tolerance Limits , exceedances and includances ,

are useful indications of the adequacy of a sample size .

However , for very small sample sizes , such results become very

sensitive and may require a thorough analysis before con

cluding whether sample sizes are adequate . Some measures of

sensitivity are investigated in this paper .

1 . Introduction When dealing with missile systems or any

other materiel which consists of a relatively small number

of very expensive items which will not survive a test , one

would not like to destroy any more materiel than necessary ,

so sample sizes are made small . Time may also be a factor

in keeping sample sizes small . When testing to specified

test objectives , however , small sample sizes cause large un

certainties in the results obtained . In hypothesis testing ,

for example , a small sample size means that the power of the

test is low , and therefore one's ability to discriminate be

tween an untrue null hypothesis and a true alternative hypo

thesis may be low even when the two hypotheses are very dif

ferent . Although the power of a test is very important in
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missile work , as it shows the sensitivity of results to small

sample sizes , it is often ignored . An example is the use of

Wilcoxon's Rank Sum Test which is often used with no power

calculated , even though it is easily obtainable from a paper

written by E. L. Lehmann in 1953 ( Lehmann , "The Power of Rank

Tests , " Annals of Mathematical Statistics , 24 ( 1953 ) , 23-43 ) .

Any measure of sensitivity which provides the likelihood

of confusing one result for another would be analogous , to a

degree , to power . The central question is , " Is the sample

size sufficient to reduce to an acceptable level , the risk

of saying that more is known than actually is known? "

From Gumbel , Statistics of Extremes , pages 97 and 103-104

( see also Hoel , Introduction to Mathematical Statistics , pages

274-277 ) , the following equation is produced ( due to s.s. Wilks ) :

: + (n-1 ) yn

where P = P ( at least 100y of the population is between the

smallest and largest observation of the sample of size n ) .

A first approximation (which appears to be low for small sample

sizes ) is given as

2P

n =1/ l-y

The previous equation can be solved iteratively from here

using small increments .

This is useful information . However , for very small

sample sizes , perhaps a measure of sensitivity as described
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earlier may be desired . To make one further analogy , when

sample sizes are very large , point estimates may be suffi

cient , however , when sample sizes are small , lower confidence

limits are needed in order to avoid misleading decision

makers . What is to follow is based upon the theory of exceed

ances . ( See Bradley , Distribution -Free Statistical Tests ,

pages 216-218 . )

2.. A Measure of Sensitivity - Consider an initial sample x ,

made up of n observations , ranked from r equal i to n , from

which one wishes to make predictions about the next m obser

vations in a sample , Y. If b represents the number of observations in Y

which have values lower than the rth lowest value in X , then ( from Bradley ,

pages 216–218) ,

P [ exactly b of the Y's will be < x ]

16-17b , in+m-r-b ,

inum ,

r- 1 n-r

b b

Letting P1 = lim and Po where P.-P10one can in= lim

m +

m

m + 00

vestigate the case of n , a finite sample size , but n+m , the

infinite population size .
Now let B be used to represent a

measure of sensitivity for tolerance limits , in some ways

analogous to , but not the same as , the probability of a type

II error . Here ,

B = P [ 100p, % or more y's < Xxx ]

: P [ 100P, & or fewer Ÿ's < x/ ] .

B , here , is not a probability , but a ratio of probabilities .
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It shows the relative probability of having an unacceptable

( 100p, ) percent of the population values for a certain para

meter ( e.g. , missile lethality ) , or more , fall below the rth

lowest value in the x sample, as compared to a hoped for 100p . %

or fewer members of the population falling in that category .

Therefore , the smaller B , the more sensitive the results are

to implying more is known than can be known from a certain

sample size . ( i.e. , the smaller B , the better . )

The following briefly sketches the derivation of B :

n- r

m

Σ

B = lim j =b1 r-1

m + bo

r - 1 +

r-1

i=o

E ir lti , ( n+m-r-i ,
n-r

m

E [ (r-1+j ) ( r - 2 + j ) ... [ j+1 ) (ntm - r - j) ( n + m - r - j - 1 ) ... ( m - j+ 1 ) ]

= lim j =b1

mtoo

& [ ( r - l + i) ( r - 2 + i ) ... ( i + 1 ) (ntm - r - i ) (ntm - r - i - l ) ... (m - i + l) ]

iro

For m large , biop,m and boxpm, so sum in the numerator from

(qm) +-2 [m ( 1-2 ) jnerjn- r to m ( n-r ) !, and in the denominator from

( r - 1 ) ! m to (pom )r - 1 [m ( 1-poljn - r .

to mn
i

n - r
Since there are an infin

ite number of terms , these summations become integrals .
For

m

r=l , n= 5 , the numerator becomes lim
5 (4 +m - j) ( 3 + m - j ) ( 2 + m - j ) ( 1 + m - j ) dj ,

m +

Pim

which makes the integral approach m
For r= 2 , n= 5 , the

s (m - j) di :

Pim

integral is ( j + 1 ) ( 3+m- j ) ( 2+m- j ) ( 1+ m - j) dj + lj (m- ; ) aj .

Pim

m m

Pim
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In general then , the integrals will be of the form

sjr-1 (m- j ) n- raj .

The only difference between numerator and denominator are the

limits of the integration .

For r= l , n=5 , one has

2 3 5

B = 1-P2+2(p,?-1)+2(1-22°/+p 9-1+ }(1-2,5 .

P. -2p . +2p . -P. +50

As an example, letting P =0.3 and p =0.2 , B ( r= 1 , n= 5 ,P. P.=0.2,

P2= 0.3 ) -0.42 .

more of the population will have values below the lowest in

This means that the probability that 30 % or

the sample of size 5 is 42 % of the probability that 20 % or

less of the population will be that low . If one does not wish

to tolerate having more than 20 % of the population that low ,

then there is cause for a great deal of alarm , especially if

30 % is an unreasonable alternative .

One can determine the exact probability of having 100 %

or more of the population fall below the rth value of the

sample , and also the exact probability of having 100a% or

less of the population fall there . Call the first prob

ability x and the second y . Then , one has

x+y l , and

x
1

B ( Po=P,=100a8 )
у

Therefore , for such a B , x and y ,

1

X =

B

1 + B y = 1 + B
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As an example , B ( r= 1 , n= 5 , P.=0.2 , P2=0.2 ) * 0.55 ,

P [ 20 % or more of the Y's < XXi ) 0.36 , and P [ 20 % or less of

the Y's <. X a 0.64 .

x2 ]

For r= 2 , n= 5 , one has

1

2 3 3 4 5

Ž(1-P2?).+ PZP - 1+ 1-P1 ) + Prº-1)B =

1

ZPO P.

As an example , for P = 0.4 tested against the alternative that

+ APO PO

P1=0.5 ,
B 0.28 .

As can be seen from the above , one may calculate , a priori,

what ranges of values of n and r may be used in order to have

an adequate degree of faith in the accuracy of results . A

major advantage in this approach is that one may use r> l .

Often one can not obtain an adequate sample size without a

large probability that at least one of the observations will

be lower than a value toward which one would like to test .

3 . A More Subjective Approach to Sensitivity : When planning

sample sizes for a test , there is an additional approach which

may be helpful . Consider Danziger and Davis , " Tables of Dis

tribution-Free Tolerance Limits , " Annals of Mathematical Sta

tistics, 35 ( 1964 ) , 1361-1365 . From Danziger and Davis ,

" The probability that No of the Yi's lie above X, is given by :

N +n -ry(N -Notr -1 )/ (NIN) ."
P ( NO ) ( ,

ºn.
n

N-NO

Here , i denotes a ranking of the Y sample , N is what has been

labelled m , and No is the number of Yi's above Xr , where b
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has been used earlier to represent the number of them below

it .

From the table by Danziger and Davis , with probability at

least 0.75 , at least 0.752 of a population will lie above the

second lowest value in a sample of ten . with probability at

least 0.75 , however , the proportion of the population above

the third lowest in a sample of ten is only at least 0.644 .

Therefore , if X2-X3 is very small , then a sample of size ten

is not adequate in that it can not distinguish very well be

tween 0.752 and 0.644 as lower probability bounds to the pro

portion of the population values above such a point . Examin

ing the table by Danziger and Davis shows that , in the cases

shown , this form of sensitivity , as are most forms of sensi

tivity , is extremely sample size dependent .

As a practical example of how this approach could be used ,

consider the case of determining whether targets are detected

by a certain range . Imagine that the same number of targets

are detected before a critical range in each of two tests

using equal sample sizes . In one case , say all ( or many ) of

the detections before the critical range were just barely

before it , but in the other case , they were very early . Thus ,

a slight change in critical range would cause
a large change

in the proportion of the former population values believed to

be above this point , but no change in the latter case . ( This

situation is expected when dealing with rank procedures . )
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4 . Conclusion
When analyzing data , one must be particularly

careful in dealing with small sample sizes . It is highly

desirable to obtain every bit of information possible from

such samples , but it is equally desirable to avoid claiming

more knowledge of the population than the sample can actually

provide . Balancing cost considerations against information

obtainable can only be accomplished by careful consideration

of all aspects . Tolerance limits and exceedances haye a role

in such considerations .
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THE PERIODIC NATURE OF EXPERIMENTALLY MEASURED DATA

Michael Hacskaylo

US Army Electronics Research and Development Command

Night Vision and Electro - Optics Laboratory

Infrared Technology Division

Fort Belvoir , Virginia 22060

ABSTRACT . There is a phenomenon that appears to exist in the portrayal

of measured data for nearly all types of experiments . It is observed that

when experimental data points are plotted as a function of a variable , the

data points are portrayed periodically rather than randomly about the theo

retical curve . This is in contrast to an expected random distribution of

the measured data . Although not always well defined , two distinct periodic

characteristics can be pointed out : The first is a sinusoidal characteristic

that appears to be cyclic in 10-12 measured events , and the second is the

" cusp" characteristic that appears to be cyclic in about every three to

four measurements . A method , which is based on a heuristic equation that

relates a " periodic " probability of the arithmetic deviation with the associated

measurement , generates data points which are in agreement with some published

experimental values .

I. INTRODUCTION . There is a phenomenon that appears to exist in the

portrayal of measured data for nearly all types of.experiments . The phenomenon

is that when experimental data points are plotted as a function of a variable ,

the points are manifested in a periodic fashion about some smoothly drawn curve .

The periodic appearance of the data points is in contrast to an expected random

distribution of the measured data . The periodicity , although not always well

defined , can be seen upon examination of such plots in various technical

journals . Two distinct periodic characteristics can be pointed out . The first

is a sinusoidal characteristic that appears to be cyclic in 10-12 measured

events ( 1 , 2 , 3 , 4 ) . The second is the " cusp" characteristic ( 5 ) that appears

to be cyclic in about every three measurements , ( 6 , 7 , 8 , 9 ) whereas other

curves appear to be a combination of both characteristics ( 10 ) . The cited

references are specific examples selected from the literature that clearly

exhibit the periodicity . However , most other figures show data points .

that exhibit the periodic deviations of the data points less clearly , but nearly

all of the experimental plotted data points show the phenomenon regardless

of the physical parameters that were measured . This phenomemon is based on

observation devoid of a priori concepts of the randomness of events and asso

ciated measurements . It is thus concluded that there is a non - random re

lationship between the experimentally measured data and the sequence of meas

uring events . In order to develop a mathematical treatment for the periodio

dicity of experimentally measured data , the following postulated is made :

If for a well -ordered experiment, the experimentally measured data are taken in

an identical manner at equal increments of the independent parameter,

the data points will be periodic as a function of the (measuring ) events about

the average curve . Thus , the experimentally measured data can be determined

from the probability of the associated measuring eventi in conjunction with
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the equation for the experiment , it is , in principle , possible to predict

the experimental data points as a function of measurements .

The purpose of this paper is to present a heuristic method that generates

a periodic form for data points which are in general agreement with published

experimental values . Three examples in which the " periodic" data points

exhibit close agreement with published experimental data points will be

shown .

II . DEVELOPMENT . The deviation of a datum point from theoretical

curve ( considered to be the mean) is , by definition , the arithmetic deviation .

The arithmetic deviation of a measured value of a physical property of

an experiment is dependent upon the experimental procedures , and if enough

measurements are made , the distribution of the arithmetic deviations will

follow the Gaussian curve . From the Gaussian distribution curve, it can

be readily seen that the arithmetic deviation is proportional to the standard

deviation . This proportionality factor is the only variable in the Gaussian

distribution equation and thus is a key parameter for the comprehension of

this paper . The proportionality factor , derived as a function of the

probability of the Gaussian distribution equation , will also be derived

from a heuristically developed periodic "pseudo-Gaussian" distribution for

the generation of periodic distribution of the data points .

The Gaussian distribution equation is

Pm = 1/ (o ) expl- (m_M )21202 ( 1 )

where Pm is the probability of the measured value , m is the measured value ,

Mis the mean and ois the standard deviation .

Let m = M +ko ( 2 )

where ko is the arithmetic deviation and k , the multiplier of o , is defined

as the arithmetic deviation coefficient . By substitution ,

Pm 1 / (ov2T ) exp(-k2 /2 ) . ( 3 )

Now Pm

S

Pm

P.
с

k =

is normalized so that the area under the curve is unity and thus

0.399/0 when m = M , the peak of the Gaussian . However , by letting

Pm Cor2TT) , a comparative probability is obtained such that P. = 1 when
0 , i.e. , m M.

Now Pc = exp( -k2/2 ) (4 )

and k = + V -2 In Pc ( 5 )

Eq . ( 5 ) can be rewritten as

k = IV21 ( 6 )
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where I = -ln P. and is a form of the self - information equation ( 11 ) of the

measurement which is associated with thearithmetic deviation coefficient.

Thus , if the comparative probability associated with a measurement can

be determined , the arithmetic deviation coefficient , k , of that measurement

can be calculated from Eq . ( 5 ) . Since o is a constant , k is proportional to

the arithmetic deviation.

Since the portrayal of the experimentally measured data indicates that

the measured values are a periodic function of the measurement and since the

comparative equation developed from the Gaussian equation is not periodic , a

heuristic periodic expression which closely matches the Gaussian distribution

( to about $ 2.50) was developed for the probability of the measured value as

a function of measurement .

The empirical equation is

( 7 )Py = cosen

where PN is the probability associated with measurement N ,

N = 1,2,3 , and

on = 30 kn + 8V Ky! ( 8 )

where -coc Kx < + - and is dependent upon N.
later .

This dependence will be discussed

When PN

Comparisons of the probability values of Eqns . ( 4 ) and ( 7 ) are shown in

Fig . 1 for Kn and k in the range -3.00 Sk = kn +3.00 . The comparison shows

Eq . ( 7 ) is an approximation to the Gaussian to about $ 1.750 and a reasonable

approximation from + 1.750 to about $ 2.50 . = 0 , Ky = $ 2.5723... ,

and for the comparable value of £ 2.57230 nearly 99% of the measured data

points would be included . An extension of Fig . 1 would show that P, would

asymptotically approach zero , whereas Pn would oscillate in a cosine

squared manner periodically in about every 5.2 Kw but the period would

increase with increasing (and decreasing ) Kno

The term Ky is selected such that kn = a1 + ( N - 1 ) (a2-91) where ai is

heuristically selected for P1 associated with N = 1 , the first measured event ,

and az is similarly selected for P2 associated with N=2 , the second measured
event . Note that kn is not necessarily an integer associated with the

corresponding Nth measurement and thus ( a2-a1 ) , may nor may not be an integer .

In the empirical expression for Pn ( Eq . 7 ) the standard deviation

coefficient per measurement does not appear . However , since Pc and PN serve

comparable functions , and since k can be determined from P.c '
ič is postulated

that the arithmetic deviation coefficient per measurement, kg , can be

determined from Pu by a similar expression as Eq . 5. The expression isN

kn = tv - 2 In PN ,

(9)

( 9 )
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where kn is a function of Ky through Eqs . ( 9 ) and ( 8 ) in a transcendental
fashion.

The measured value , m , is now expressed as

m = M + kpoe ( 10 )

for each measurement N , where oe is a constant and defined as the experi
mental standard deviation . Thus if M and ce are known , m can be determined

as a function of measuring events .

The polarity of kn is selected as either + or - for the cusp

portrayal of the data points , whereas the polarity is alternating in sign

(+ and - ) corresponding to the alternating periods of PN for the sinusoidal

portrayals .

Eq . ( 10 ) is also a simplified form of an equation for a specific

physical phenomenon when the experimentally measured data are plotted as

a function of the independent parameter . Formally , each measured value

will be

Y = F (X ) # kjoe ( 11)

where Y is the measured value , F (x) is the equation governing the physical

phenomenon and kpoe is the arithmetic deviation . Thus assuming for any

experiment the equation F (x) and the dependent constants are known , the

evaluation of F (x ) as a function of the independent variable would be the

mean and corresponds to the theoretical curve . The arithmetic deviation ,

hence Y , can be made as a function of measuring events if an a priori

determination of oe can be made .

III . EXAMPLES . Eq . ( 11 ) shows that experimentally measured data are

periodic as a function of measurement events about some smooth curve

governed by the physical equation . If F(X ) is well - behaved and if oe

can be a priori determined (at least heuristically if not by other means)

the experimental data points should be , in principle , predictive . The

predictiveness of the method was not subjected to experimental verification.

The reason is obvious since there can be no a priori determination of o E

and kn for Eq . ( 11) for an experiment. However , the published data points
of three experiments have been closely duplicated by the described method .

Three examples indicate a posteriori verification that experimentally

measured data are periodic as well as predictive . ( The calculations were

accomplished with a pocket calculator , and thus the duplication of the data

points were not optimized . )

The first example is a relative easy one : The sinusoidal data portrayal

of Ref . 1 . The equation of the line was determined to be

F(X )
i( t )

= 9.40 -0.490 ( 12 )
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where i ( t ) is the relative transient current and t is in units of equal

increments of time corresponding to the time of 1.37 nsec (average ) between

each measured datum point . The first point was at 2.74 nsec ( or the 3rd

experimental point) which selected for the N=1 . Note that the logarithmic

representation of the ordinate was portrayed in linear units . The terms

aq , d2 and og for this example were heuristically chosen which generated

the points that were in agreement with the experimental points . The terms

and generated points are listed in Table I and the curve is shown in Fig . 2 .

The generated data points are nearly in exact agreement .

Table 1 . Constants and " periodic" data points generated as a function

of measurement for the sinusoidal example for Ref . 1 .

F (x ) = i ( t ) = 9.40 0.490

ai = 0.00 , 2 =1.00,0 E '
= 0.05

N KN PN kn kpoe i ( t ) i( t )+kpe

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

1.000

0.607

0.103

0.057

0.517

0.956

0.888

0.393

0.016

0.165

0.00

-0.98

-2.15

-2.37

-1.15

-0.30

+0.49

+1.37

+2.87

+1.90

0.00

-0.05

-0.11

-0.12

-0.06

-0.02

+0.03

+0.07

+0.14

+0.10

8.06

7.39

6.71

6.04

5.37

4.70

4.03

3.36

2.69

2.02

8.06

7.34

6.60

5.82

5.33

4.68

4.06

3.43

2.83

2.12

The second example is to duplicate Ref . 6 for the cusp periodicity . The

equation of the line is F (x ) = R ( t ) = 98.0 where R ( t ) is the counting rate and

is a constant value as a function of time . The measurements were made in

units of equal increments of time of 200 seconds ( average) between each

datum point . The first point was at 600 seconds ( or the fourth experimental

point ) which was selected for Ni. Again aj, a 2 and op were heuristically
chosen . The constants and the calculated values are listed in Table II

and the " predictive " points are shown in Fig . 3 ( a ) by the solid dots .

The open circles are the relative positions of the experimental data

points as estimated from Ref . 6 with which the predictive points are

not in agreement . The first twelve predictive points are nearly in exact

agreement with the experimental points numbers 4 through 15 .
However ,

the 13th predictive point must be moved to the 18th experimental point

for the cusp periodicity to agree with increasing measurements . With

the exceptions of experimental points 16 , 17 and 30 , the other points

are either in nearly exact or close agreement .
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Fig . 2 . Duplication of the sinusoidal portrayal of experimental points .
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Table II . Constants and " periodic " data points generated as a

function of measurement for the cusp example for Ref . 6 .

F(x ) R( t ) = 98.0

al 1.00 , a 2 3.00,0 E
= 0.8

N
KN PN kn KNE R ( t ) + kpoe

1

W
N

.

-0.98

-2.39

-0.30

-1.37

-1.90

-0.09

-1.62

-1.63

-0.07

-1.85

-1.44

-0.21

-2.07

-1.28

-0132

-2.30

-1.15

-0.43

-2.55

-1.03

-0.53

-2.85

-0.93

-0.62

-3.26

-0.84

-0.71

-4.22

-0.75

-0.78

-1.91

-0.24

-1.10

-1.52

-0.07

-1.30

-1.30

-0.05

-1.48

-1.15

-0.17

-1.66

-1.02

-0.26

-1.84

-0.92

-0.34

-2.04

-0.82

-0.42

-2.28

-0.74

-0.50

-2.61

-0.67

-0.57

-3.38

-0.60

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.21

22

23

24

25

26

27

28

29

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

· 39

41

43

45

47

49

51

53

55

57

0.607

0.067

0.956

0.393

0.165

0.996

0.268

0.265

0.997

0.180

0.357

0.979

0.117

0.440

0.949

0.071

0.517

0.911

0.039

0.586

0.869

0.017

0.640

0.824

0.005

0.706

0.776

0.001

0.756

97.22

96.09

97.76

96.90

96.48

97.93

96.70

96.70

97.95

96.52

96.85

97.83

96.34

96.98

97.74

96.16

97.08

97.66

95.96

97.18

97.58

95.72

97.46

97.50

95. 39

97.33

97.43

94.62

97.40
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The third example is to duplicate Ref . 10 for a curve of experimental

points that are less regular than Refs . 1-4 in the periodic portrayal .

The smooth curve of Ref . 10 could not be fitted to an exponential or power

equation . However , for F (x) the point by point estimated values for each equal

increment of t 200 sec are listed in Table III . The first point was

at 200 seconds (the second experimental point ) which was selected for

N1 . The parameters 01.02
and

СЕ
were heuristically selected . The

constants and calculated values are listed in Table III , and the points

are shown in Fig . 3( b) by the solid dots . The polarity of the 17th

through 29th data points were reversed from the expected polarity to

exhibit agreement with the reconstructed experimental values .

circles are the experimental values as estimated from Ref . 10 with which the

predictive points are not in agreement . The positions of the periodicities

of the two sets of data are in close agreement with the exceptions at the 8th ,

20th and 25th points . The values of most of the data points , 21 of the 29 ,

are nearly identical , and with the exception of predictive point No. 8 ,
the other seven are in reasonably close agreement .

The open

IV . DISCUSSION . The subject of this paper encounters a paradox in the

distribution of the measured values of a physical parameter of an experiment . The

binomial distribution is a mathematical treatment of rand om events who se

measured values are discrete , whereas the Gaussian distribution is a mathe

matical treatment of random events whose measured values are not discrete

and cannot be exactly duplicated . The measured values of a measurement

are considered to be independent of the sequence of the measurements and the

values randomly distributed about some mean . The independence and randomness

of the measured values from event to event " vary in an irregular manner that

defies all attempts at prediction " ( 12 ) . However , since it was pointed

out in this paper that most plots of data points are portrayed in some

periodic manner , the data points , in principle , should be predictive .

The predictiveness was demonstrated in this paper , albeit ex post facto.

The data points for three experiments were closely duplicated after

heuristically determining three constants . It must be stated that the

mean ( tbe equation of the experiment) was known . Thus , in this context ,

the measured data points are predictive , hence the paradox .

The Gaussian distribution is one ( of two primary concepts) equation used

in this paper . The treatment of the equation to obtain the comparative

probability eliminated the dependence of the probability from all parameters

except one : The arithmetic deviation coefficient . Solving for the co

efficient , it was found that the coefficient was a function of the probability

which was identified as a form of the self - information equation . The signi

ficance of the relationship between the coefficient and the information

equation cannot be developed at this time , but that the Gaussian distribution

equation is a form of the information equation can be recognized .

The second concept is the heuristic equation relating the probability of

a measured value as a function of sequential measurement . If a well ordered

experiment is performed such that upon equal increments of an independent

parameter , the measured value is recorded in the identical manner , including
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Table III . Constants and " periodic " data points generated as a

function of measurement for the cusp - sinusoidal example for Ref . 9.

F(x ) R ( t )

a 1= 0.00 , 02 - 2.00,0 e
2

0.3

N
KN PN kn kNE R ( t ) R ( t ) +kNE

.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

0

2

4

6

8 .

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

1.000

0.103

0.517

0.888

0.016

0.676

0.783

0.000001

0.655

0.688

0.010

0.854

0.601

0.035

0.908

0.521

0.069

0.947

0.448

0.109

0.973

0.382

0.153

0.990

0.322

0.200

0.998

0.269

0.248

66.2

59.0

53.7

49.3

46.6

44.2

42.0

40.3

38.7

37.4

36.2

35.1

34.2

33.4

32.6

31.9

31.3

30.7

30. 2

29.9

29.4

29.0

28.7

28.4

28.2

28.0

27.8

27.6

27.4

0.000

+2.13

+ 1.15

-0.49

-2.87

-0.89

+0.70

+5.20

+0.92

-0.86

-3.03

-0.56

+1.01

+2.59

+0.44

-1.14

+2.31

+0.33

-1.27

-2.10

-0.23

+1.39

+1.94

+0.14

-1.51

-1.79

+0.06

+1.62

+1.67

0.00

+0.64

+0.35

-0.15

-0.86

-0.27

+0.21

+1.56

+0.28

-0.26

-0.91

-0.17

+0.30

+0.78

+0.13

-0.34

+0.69

+0.10

-0.50

-0.63

-0.07

+0.42

+0.58

+0.04

-0.45

-0.54

+0.02

+0.49

+0.50

66.2

59.6

54.1

49.1

45. 7

43.9

42.2

41.9

39.0

37.1

35.3

34.9

34.5

34.2

32.7

31.6

32.0

30.8

29.7

29.3

29.3

29.4

29.3

28.4

27.7

27.5

27.8

28.1

27.9
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time lapses , the data points appear to be portrayed in a periodic fashion in

about either every 3-4 or every 10-12 measurements . The probability of the

measured value is a function of the measurements for -3.00 < k=KN < +3.00

and follows a cosine-squared law that nearly duplicates the Gaussian distri

bution probability . The probability dependence on measurements cannot be

derived from first principles but is heuristically justified by the fact it

enables the " predictive" values to agree with the experimental data .

The duplication of the experimental data points that are portrayed in a

sinusoidal fashion is in itself not too profound . In fact , for Refs . 1-4 ,

the points can be readily duplicated by nearly any periodic mathematical

treatment . However , the heuristic method , when applied to the duplication

of the points that are portrayed in cusps (as in Refs . 6-9 ) and combination

of cusps and sinusoidal periodicities ( as in Ref . 10 ) , the method must be

considered as being significant . The significance is emphasized when form a

cursory examination some of the data points appear to be random but are

duplicated by the method . Obviously , all of the published data points

cannot be duplicated by the limited treatment of the heuristic method

described in this paper .

It is postulated that the sinusoidal portrayal of data points in

which the measured parameter does not have a fixed bound or physical

barrier . Examples of the sinusoidal characteristic would be the measure

of electron trapping as a function of time ( Ref . 1 ) , and the determination

of the beam displacement of a reflected electromagnetic wave as a function

of distance ( Ref . 3) .

It is postulated that the cusp - type portrayal of data points is charac

teristic of an experiment in which the measured parameter (the dependent

variable) has a fixed bound or physical barrier . Examples of the cusp

characteristic would be the " no influence" effect of source strength as a

function of time (Ref . 6 ) , and the measurement of the length of a meter stick

by the eclipsing of the position of a light source by the end of the stick .

There are two baffling considerations that were required for obtaining

agreement of the points in two of the examples . The first is that two

experimental points had to be by-passed in Ref 7 , and the second is that a

change of polarity for the arithmetic deviation coefficient for Ref . 10.

These considerations may be resolved if the constants of the heuristic equation

were evaluated simultaneously with the experimental data points of an

experiment performed in a human factors evaluation laboratory . In such a

laboratory , the constants may be determined from the nature of the experiment

and the experimental procedures , and thus in conjunction with the equation

governing the experiment , the measured data points may be indeed predictive .
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VARIABLE TRANSFORMATION IN NONLINEAR LEAST SQUARES

MODEL FITTING

Aivars Celmiņš

Interior Ballistics Division

U.S. Army Ballistic Research Laboratory

Aberdeen Proving Ground , Maryland

ABSTRACT . The numerical treatment of nonlinear model fitting

problems often can be simplified by manipulating the model equations.

Algebraic manipulations , including nonlinear transformations of model

parameters , do not change the numerical result of the adjustment .

Therefore , such manipulations can be a powerful method to improve

the performance of solution algorithms . Nonlinear transformations of

the observations , on the other hand , do change the numerical results

unless the normal equations are transformed accordingly . The latter

transformation has been neglected by previous authors and this article

provides a complete set of formulas that are needed to implement

transformations of observations . The transformations are , however ,

in general less useful than parameter transformations but may have

applications in particular situations .

1 . INTRODUCTION . A mathematical model fitting problem arises

when one compares real observations with theoreical predictions . The

observations always contain observational inaccuracies and , likewise ,

the theory of the prediction can be inadequate . If discrepancies

between observations and predictions are unacceptably large for a

particular situation then one is faced with the task to adjust in a

rational manner either the observations , or the theory , or both so

that an acceptable mathematical description of the event can be

established . The problem can be subdivided conveniently into three

subtasks , each of which requires a different approach and background

information .

First , one has to chose a model . Normally , this requires

supporting information from engineering , physics , geometry , etc. ,

which may suggest or postulate a reasonable mathematical description

of the observable event . We shall assume in this article that the

model is formulated as a system of equations containing observations

and , possibly , also some undetermined model parameters .

Once the model is selected , one can compare predicted values

of observable quantities with corresponding observations . The

comparison provides the basis for a rational adjustment of the

observations and/or of the model . This subtask of the problem is a

purely mathematical part of model fitting and it belongs to the

category of ill - posed problems . Its mathematical /numerical treatment

is independent of the other two subtasks , i.e. , of applications . We

shall be concerned with this part of the problem in the present article .
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After the adjustments have been carried out , one has to validate

the mathematical model , unless it has been prescribed , e.g. , by the

geometry of the event . The validation involves typically , but not

necessarily , a statistical analysis of the discrepancies between ob

servations and predictions . The result of the validation process may

be a new formulation of model equations and subsequent fitting , i.e. ,

a repetition of the whole task until some validation criterion is

satisified . We shall not discuss this part of the problem , noticing

only that the results of the second subtask provide the data basis

necessary for a validation .

If the model equations are not linear then the model fitting

problem generally leads to systems of complicated simultaneous equations

and corresponding numerical difficulties may arise . Often the numerical

treatment can be simplified by a reformulation of the model equations ,

particularly by introduction of new variables through variable trans

formations . Such manipulations have been suggested in textbooks1-7 and

are routinely used in applications . Examples of recently published

applications where variable transformations have been used are refer

ences 8 , 9 , and 10 .

A closer investigation of variable transformations in model fitting

problems suggests that the formulations should be used more cautiously

than some of the texts suggest . Therefore , we shall present in this

article an investigation of some consequences of the transformations

and draw conclusions about their usefulness for the simplification of

the numerical treatment of model fitting problems .

In Section 2 we shall formulate the mathematical model fitting

problem in general terms and discuss the effects that can be anticipated

from manipulations of model equations . In Section 3 we shall specialize

the considerations to nonlinear least squares problems and produce

explicit formulas that are needed in such problems . Some examples will

be presented in Section 4 , and Section 5 will summarize the conclusions

that can be drawn from the theoretical discussions and from examples .

Let the model
2 . GENERAL ASPECTS OF MATHEMATICAL MODEL FITTING .

equations be

A ( X ) = 0 , ( 2.1 )

where Xer " is the vector of all observations, ERP is a model parameter

vector , and A ( X ) is an operator that operates on 0 and has a range

We assume that the following relations hold between the dimensions

n , r , and p :

r

R.

n > r > p > 0 .
( 2.2 )

.
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By permitting the dimension p to be zero , we include in our consider

ations also cases in which the model equations do not contain free

parameters . Then equation ( 2.1 ) reduces to A ( X ) = 0 .

Typical for applications are cases in which the r equation ( 2.1 )

for are independent and , because of ( 2.2 ) , do not have a solution .

Then one replaces the model equations by another system

Ã ( x) = 0 , ( 2.3 )

chosing the operator Ã (x ) such that it approximates A (x ) and has a
solution . The determination of Ã ( x) can be considered as the central

part of the model fitting problem .

In order to have a measure for the approximation we introduce

a metric for the operators . Let pÃ ( x ) , A (X ) ] be a metric . Then one

can formulate the mathematical model fitting as the following con

strained minimization problem :

Ã ( x ) = 0 , w { p [A (X ) , A (x) ] = min . , ( 2.4 )

where w{ p } is generally a convex object function . The choice of the

metric p and of the object function w{ p } determines the type of the

model fitting , e.g. , least squares , maximum norm , etc.

We shall now discuss the selection of an approximate operator

A (X) . First , we notice that the model operators A ( x ) and Ã ( x ) are

generally needed and defined only within a finite neighborhood of the

observations X. Therefore , assumptions about properties of the operators

need to be made for that neighborhood only . Let the neighborhood

consist of all points Z = X + C , whereby cis restricted component -wise

by

Yi = Çili , i = 1 , 2 ,
• , n . ( 2.5 )

The intervals ( Y;, ! , ) normally contain zero , but exceptions are

possible and do occut in applications. Second , we assume that within

the neighborhood (2.5) A ( Z ) is a continuous function of 2 . Then a

reasonable choice of A (X) is

Ã (X) = A ( X + C ) . ( 2.6 )

The choice achieves a natural parametrization of the approximation .

The approximation parameter is the vector Cer " and the operator Ã ( x)

depends continuously on the parameter within the restrictions ( 2.5 ) .

The parametrized model fitting problem can be formulated as

follows :
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A ( X + C ) = 0 ,

W { p (A ( X + C ) , A (x ) ] } = min . ( 2.7 )

The quantities to be determined by equation (2.7 ) are the approximation

parameter C and the model parameter 0 . We assume that the solution

vector c is within the limits specified by equation (2.5 ) .

We will need in the sequel some differentiability properties for

the model operator . As far as X is concerned , we assume the properties

to hold within the neighborhood ( 2.5 ) . With respect to we assume

that a similar neighborhood exists in the vicinity of the solution of

equation ( 2.7 ) in which A ( X ) is a continuous function of 0 . The

differentiability assumptions are that A ( X + C ) o is twice differentiable

with respect to all its n + p arguments within the cartesian product

space of the neighborhoods of x and 0 . We also assume that within

that space

rank

aa

ax

= r , ( 2.8 )

and define

P [A ( Z ) , A ( x ) ] = 1 | 2 - xll . ( 2.9 )

p is a metric within the neighborhood in which ( 2.8 ) holds . We also

assume that the model equations do not contain redundant parameters .

The assumption may be expressed as the requirement

rank

a A ( X )

an
= p . ( 2.10 )

With the specialization ( 2.9 ) , the model fitting problem becomes

A ( X + C ) 0 = 0 ,

W {p [A (X +C ) , A (x) ] } = wł || 0 || } = min . ( 2.11 )

Equation ( 2.11 ) is an abstract formulation of common model fitting

problems . The difference C between the observations X and the

" corrected observations" X + C is called the residual vector . In the

formulation ( 2.11 ) we require that a norm of the residual vector be

minimized , subject to model equations which have to be satisfied at

X + C . The model parameter vector o is not essential in this formulation .

The number of model parameters may be zero and it is normally orders

of magnitudes smaller than the number of approximation parameters , i.e. ,

residuals . The determination of can be, of course , in some applica
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tions more important than the determination of C , but this is not

always the case .

A least squares model fitting problem is a special case of ( 2.11 ) ,

characterized by a particular choice of the norm in the definition

( 2.5 ) , and of the object function w{ p } . The least squares metric is

( A ( Z ) , A ( X ) )
3

112-x ||
-

[(2-x) *R --(2-x)] } , ( 2.12 )

where R is an estimate of the variance - covariance matrix of the

observations . The least squares object function is

W{p } = 82 . ( 2.13 )

Therefore , the least squares model fitting problem is defined by

A ( X + c ) t = 0 ,

W == || 0 || 2
T - 1

= CR = min . ( 2.14 )

In equation ( 2.14 ) we have used c and t instead of C and 0 , respectively ,

thus indicating the least squares values of both parameter vectors .

-1

The use of R as a norm matrix in the definition ( 2.11 ) makes

the norm || 0 || and w dimensionless , which is very convenient when

fitting results are compared . If the variance - covariance matrix R

is known exactly , then the solution of equation (2.14 ) is a maximum

likelihood solution of the approximation problemli.oblemii . The same

maximum likelihood solution is obtained if R approximates the variance

covariance matrix up to an unknown factor . In applications one has

to be content with an estimate of R. Then often the off -diagonal

elements are assumed to be zero as a matter - of - course . Because the

results of the model fitting depend on R , such assumptions should

not be made without having reasons that zero is a better approximation

than a non-zero value . The theoretical treatment is not complicated

by the assumption that R is not diagonal , nor are the numerical

complications unsurmountable . Realistic estimates of Rare , however ,

important for the interpretation of the results , and for the validation

of the fitting .

We solve the optimization problem ( 2.11 ) or ( 2.14 ) using Lagrange

multiplier technique , and call the multipliers correlates , as usual

in adjustment problems . Let KER* be a correlate vector and let the

modified object function be

W = { wi || 0 | 1 } - k *A ( x +c )e .
( 2.15 )
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Necessary conditions for the solution of the optimization problem

are obtained by setting zero the partial derivatives of ñ with respect

to the unknown C , 0 , and K. This yields the following set of normal

equations .

z àc wł || 0 || 3 -
a

ac

T

(KA (X + C ) 0 ) = 0 ,+ C = ( 2.16a)

a

ao

T

[KA ( X + C ) 0 ] =X 0 , ( 2.16b )

A ( X + C ) = 0 . ( 2.160 )

The solution of the model fitting problem ( 2.11 ) is among the solutions

of equations ( 2.16 ) . On the other hand , one cannot guarantee that a

particular solution of the normal equations corresponds to the

absolute minimum solution of equation ( 2.11 ) , nor is the uniqueness

of the solution given . An investigation of these complications is not

the subject of this paper . Mostly , such problems can be , and are

taken care of by ad hoc measures based on background information from

the application . Therefore , we simplify our present theoretical dis

cussion by assuming in this section that a numerical solution of

equations ( 2.16) can be obtained , and that it has been verified as the

absolute minimum solution of equation ( 2.11 ) .

In least squares problems , the first term aw / ac in equation ( 2.16a )

is linear with respect to c . Nonlinear expressions which could be

possibly simplified by algebraic manipulations may occur in the second

term in equation ( 2.16a ) , and in equations ( 2.16b ) and ( 2.16c ) . The

structure of these terms strongly depend on the form in which the model

equations ( 2.16c ) are cast , and it is obvious that simplifications can

be achieved by proper formulations . Particularly , one does not have

to insist that each model equation be solved for a " dependent " observa

tion . Such a form is assumed in most textbooks on data reduction and

postulated in computer programs for data reduction problems . Quite

often an implicit formulation of the equations ( 2.16c ) can be simpler ,

producing also simpler expressions for the derivatives in equations

( 2.16a ) and ( 2.16b) . The solution of the problem ( 2.11 ) is , of course ,

independent of the particular form in which the model equations are

cast . This remark is trivial in the present context , and it is a

consequence of the formulation of the model fitting problem by equation

( 2.1l ) . Reference 12 reports about numerous unsuccessful attempts to

achieve a similar invariance statement when the problem was formulated

differently .

The aforementioned manipulations of the model operator A ( X ) 0 can

also include nonlinear transformations of the parameter 0 . Such

transformations do not affect the definition of the metric pe because

the metric of the operator is independent of the operand . Therefore ,
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the transformations do not affect the first term in equation ( 2.16a )

either and are a powerful tool for the simplification of the rest of

the equations . An example in which nonlinear parameter transformations

are used to linearize the model equations is reported in reference 9 .

In Section 4 we shall give other examples .

The formal procedure of replacing parameters is as follows :

Suppose that one wants to replace the parameter 0 by o whereby both

parameters are related by a nonsingular function

0 = w ( o ) . ( 2.17 )

( Regularity of the transformation need to be assumed only within a

neighborhood of the solution . ) Let the model equations be in terms

of o

A( X) o = 0 . ( 2.18 )

The operator A can be obtained from A always by the definition

A (X ) = A ( X) w ( 0 ) , ( 2.19 )

however , often one can find other equivalent formulations that are

simpler . The metric passociated with A is defined as in equation

( 2.9 )

Ő (A ( Z ) , A ( x) ] = || 2-x || . ( 2.20 )

With this definition and the same object function w { p } as before one

obtains the normal equations

a

w { ||||} KA (x + C ) 0)

ac

0 . ( 2.21a )

ac

a

do
IKA(X +C ) 0) 0 , ( 2.2lb )

A ( x + c ) 0 = 0 . ( 2.21c )

The solution vectors of equations ( 2.16 ) and equations ( 2.21 ) are

related by

C = č 0 = wlo) ( 2.22 )
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The vectors K and K can be computed from these values using formulas

given in the next section .

The relation ( 2.22 ) is again a simple consequence of the formula

tion ( 2.11 ) of the model fitting problem . Benderº proves the

correspondence ( 2.22 ) for a particular transformation and application ,

and indicates that previous developers of software for such problems

were not aware of the relation .

If the solution of the model fitting task has been found from

equation ( 2.21 ) in terms of o , but the parameter vector 0 is of

interest , then one needs in addition to equation ( 2.22 ) another formula

for the accuracy of o . Let us assume that the solution algorithm for

equation ( 2.21 ) has also provided information about the accuracy of

o in form of an estimate Vo of the variance-covariance matrix of the

components of o . ( In Section 3 we shall give formulas for Vo in least

squares problems . ) Then an estimate of the variance - covariance matrix

Vo of the components of o can be obtained by applying the linearized

law of variance propagation to the relation ( 2.22 ) . The result is

aw , Taw

V

ao o lão
( 2.23 )

More complicated are consequences of such manipulations of the

model equations that involve transformations of the observations . This

is so because the transformations now affect the definition of the

norm p . Next , we shall consider such transformations .

Let a transformation of observations be

Y = v ( x ) ( 2.24 )

with the inverse

X = u (Y) .

We assume that the transformation is regular within the neighborhood

(2.5 ) , including the solution X + C , and that the function u (Y ) is

there twice differentiable . The model equations ( 2.1 ) are replaced

by equivalent (usually simpler ) equations

Â ( Y) == 0 . ( 2.25 )

The operator Â ( Y ) e can be obtained , e.g. , by the definition
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Â ( Y ) = A (u (Y ) ) , ( 2.26 )

but , as in the case of parameter transformations , usually other

equivalent formulations can be found that are simpler .

When we formulate the model fitting problem in terms of y , we

have to keep in mind that the goal is to minimize the distance c

between the actual observations X and their corrected values X + C .

In least squares problems , only such a minimization yields under

conditions a maximum likelihood solution . Then the minimization

problem ( 2.11) is

Y = v (x ) ,

Â ( Y + B ) 0 = 0 , ( 2.27 )

w {|| u (Y + B ) - x [ ] } = min .

The normal equations for the problem ( 2.27 ) are

1 a

2 ƏBde wi || u (Y+B) -x | 3 - Q (x "Â (Y+ B) e) = 0 , ( 2.28a )

a

an

[K ( Y+B) 0 ] = 0 , ( 2.28b )

Â ( Y + B ) 0 . ( 2.280 )

The first term in equation ( 2.28a ) is not linear with respect to the

unknown B unless the transformation ( 2.24 ) is linear . Therefore , a

nonlinear transformation that produces an operator A (Y ) A which is

simpler than the original operator A (X ) , introduces nonlinear terms

in equation ( 2.28a) . The new nonlinearities may offset the advantages

gained by a simplification of the other terms in the equations.

We shall pursue this point further in the next section and show

in detail how the normal equations and algorithms are affected by

transformations of observations specifically in least squares problems .

3 . LEAST SQUARES MODEL FITTING . We consider in this section

the effects of variable transformations on least squares model fitting

problems . We shall first derive the basic equations for nonlinear

least squares problems in terms of the original observations , and then

show how the equations are affected by a transformation of the
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observations .

F (x , 0 ) by

We simplify our notation by defining a vector function

F (x , 0 ) = A ( X ) . ( 3.1 )

Then the model equation ( 2.1 ) is

F ( x , 0 ) = 0 , ( 3.2 )

and the least squares model fitting problem ( 2.14 ) is

F ( X + c , t ) = 0 ,

2 T -1

= CR C = ( 3.3 )

In the sequel we will use subscripts to denote derivatives .

Also , because derivatives of F (X + c , t ) with respect to c are identical

to derivatives with respect to X we shall use the subscript X for both .

Thus , e.g. ,

Fx ( x+c , t ) ox
a

əx
F ( X + c , t ) =

a

ac
F (X+c , t )

and

[x+r(x+c,t)xt - a x+ r ( x + c, t )) = 2 (x+r(x+c,t))

are matrices with the dimensions rxn and nxp , respectively .

Using this notation , the normal equations corresponding to the

problem ( 3.3 ) are

R -Pc - kff, ( x + c , t ) = 0 , ( 3.4a )
X

T

k F. ( X+c , t )
t+ ( + t = 0 ,

( 3.4b )

F ( X + c , t ) = 0 . ( 3.40 )
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The normal equations are in general nonlinear with respect to c

and t . Therefore , their numerical solution will require some kind of

iteration . We obtain second order iteration equations for equations

( 3.4 ) by expanding the normal equations at an approximation to the

solution and keeping the linear terms of the expansion . Let the

approximation to the solution be c , K , and T , and that the corresponding

corrections be E , K , and t . Then the expansion yields the following

Newton equations for the corrections :

T = - C , ( 3.5a)( I-R (x* r) xx RFT. ( K + K ) R (K * F) xt"

(K F FT: (K+k ) + (x * F) [+(x "r) -1.0,F )tx
+ F ( 3.5b )

F. ε

X

+ F. τ =

t?
· F. ( 3.5c )

The arguments of F and its derivatives in equations ( 3.5 ) are x + c and T.

Newton - Raphson iteration equations can be established by suitable

manipulations of equations (3.5) 8,13,14,15 . A set of such iteration

equations are given in the Appendix . Most authors simplify equations

( 3.5 ) by neglecting all terms that contain second order derivatives1,11,16,17 .

This yields so-called Gauss - Newton procedures that have theoretically

only linear convergence and that also may have other peculiarities13.

The final step in a model fitting problem is to obtain variance

estimates of the solution in terms of the estimated variances of the

observations . We shall restrict ourselves in this article to the

estimation of the accuracies of the least squares value t of the

parameter vector , and show how the estimation formulas change due to

transformations of observables . We shall use the linearized variance

propagation formula for the estimates . Estimates of the accuracies

of the corrected observations x = X + C can be obtained by analogous

processes .

The formulas can be derived from the linear terms of an expansion

of the normal equations ( 3.5 ) at the solution13 . Let dx , dk , and dt

be the differentials of the solution vectors x = X + c , k and t ,

respectively . Then the expansion yields

( I - R (KF) ] dx
XX

RF ,Tak R (k "F ) dt = dx , ( 3.6a )
х Xt

T

( k F )
tx

F dx + Flak + (k + F)( k * F) dt = 0 , ( 3.6b )

t tt

Exaxdx + Fidt
dt = 0 . ( 3.6c )
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The arguments of F and its derivatives in equations ( 3.6 ) are x and t .

By manipulations of equations ( 3.6 ) that can be done in various

ways13,18 one obtains linear relations between dt and dx , and

between dx and dx , respectively . Let the former relation be

N dt = S dx . ( 3.7 )

Then the(Explicit formulas for N and s are given in the Appendix . )

estimated variance - covariance matrix Vt of the parameter vector t is

V

tV
=NSRS (Ns (N - 1,1. ( 3.8 )

It is obvious from the derivation of equation ( 3.8 ) that Vt which

itself is only a linearized approximation depends on second order

derivatives of F. ( The formulas in the Appendix show explicitly this

dependency . ) Neglect of the second order derivative terms renders a

formula that is theoretically less than first order accurate . Therefore ,

such a neglect has to be justified in each application by providing

estimates of the magnitudes of the neglected terms . of the cited

references , only in references 13 , 14 , 15 , and 18 complete first order

formulas are used .

Next , we introduce variable transformations into the least squares

model fitting problem . We can restrict ourselves to transformations

of observations because , as shown in Section 2 , transformations of

model parameters have the same effects as simple algebraic manipulations

of the model equations.

Let , as in Section 2 , the transformation be given by

Y = v ( x ) ( 3.9 )

with the inverse

X = u ( Y ) .

In terms of y , the least squares model fitting problem is defined by

Y = v ( x) , ( 3.10a )

H ( Y + b , t ) = 0 , ( 3.10b )
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||u (Y +b) -x|12 [ u ( Y + b)-xTR -1 [ u ( Y + b ) -x ] = min . ( 3.100 )

Equation (3.10b ) is a model equation , equivalent to equation ( 3.2 )

and expressed in terms of Y.

The normal equations for the problem ( 3.10 ) are

( u , (Y +B ) ] ? R - 1
4

TR - 1 ]
[ u ( Y + b ) -x ] - k**,( +b,t) = 0

( 3.lla )

k*H_ ( Y + b , t ) = 0 , ( 3.llb )

H ( Y + b , t ) = 0 . ( 3.1lc )

Corresponding Newton equations for corrections B , K , and I of approxi

mate solutions B , K , and T , respectively , are

(I - QE ]B -QHT. (KK ) Q (k + h) τ = A , ( 3.12a )

у yt

T

( k + h ) B + H

ty

τ

tt
= 0 , ( 3.12b )

н В

уHyB
+ H. T

t+ 받
H , ( 3.12c )

where

T

2 3 V RV = ( u

x x у

( 3.13 )

A = v ( u ( Y + B ) -x ) == v • C =

х хVxC (ų ) .c,
( 3.14 )

E = (KH)
уу ( Fr- ?C) yy ( 3.15 )

The arguments of the functions H and u in equations ( 3.12 ) through

( 3.15 ) are Y+B and T , and the last term in equation ( 3.15 ) is differ

entiated assuming C=u ( Y+B ) -X to be constant . The term is a symmetric

nxn matrix containing second order derivatives of the transformation

function u (Y ) .
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A comparison of equations ( 3.12 ) with equations ( 3.5 ) shows that

the important changes in the Newton equations due to the transformation

( 3.9 ) are in equations ( 3.12a) . The rest of equations ( 3.12 ) is formally

identical to the corresponding terms in equations ( 3.5 ) , if F ( x , 0 ) is

is replaced by H (7,0 ) . In equations ( 3.12a) we see three other replace

ments : the estimated variance - covariance matrix R is replaced by Q.

the right hand side -c is replaced by -A , and the term (KTF) is

replaced by E.

XX

The replacement of R by Q corresponds to an application of the

linearized variance propagation formula to the transformation ( 3.9 ) .

The replacement of the right hand sides is a linearized transformation

of the residuals Cinto the Y - space . If the transformation ( 3.9 ) is

linear , then only these two replacements occur . If , however , the

transformation is nonlinear , then the last term in equation ( 3.15 )

does not vanish and , because it contains second order derivatives of

u ( Y ) , it can be quite complicated . This complication can offset

algorithmic advantages gained by a simplification of other terms in

the Newton equations .

Iteration algorithms and formulas for the variances of the solution

again can be obtained by manipulations of the Newton equations. Explicit

formulas are given in the Appendix . We notice that second order

Newton - Raphson algorithms necessarily contain second order derivatives

of the model function H as well as of the transformation function

u ( Y ) . The coding of the second order derivatives can , of course , be

avoided if first order Gauss -Newton algorithms are used . However ,

variance estimates of the solution can be calculated to a first order

accuracy only if all the second order derivatives are available .

The author has carried out numerical experiments to determine

whether a solution of equations ( 3.11 ) instead of equations ( 3.4 )

has algorithmic advantages. The experiments were done with the

utility programs described in reference 15. The programs permit one

to carry out the calculations either in terms of X , or in terms of Y ,

and to use either Newton -Raphson , or Gauss -Newton algorithms. The

experiments were inconclusive . In some examples the algorithms con

verged better when the problem was formulated in x , in other examples

a formulation in Y=v ( x) produced better algorithms . However , the

differences in performance were never significant . This result is in

strong contrast to similar experiments involving transformations of

parameters . In those experiments , a suitable parameter transformation

often had a dramatic effect on the performance of the solution algorithm .

Some examples are given in the next section .

Another possible benefit from nonlinear transformations of

observations could be a simpler problem formulation . The complexity

of the normal equations is thereby of secondary importance, if one

uses an available general utility program for their solution . However ,

the model equations must be made available to the utility program ,
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which means that the equations must be programmed . Then one has the

choice to program either the function F (x , 0 ) with its first and second

order derivatives , or the two functions H ( Y , ) and u ( Y ) with their

derivatives . If the transformation is nonlinear , then normally the

programming of H and u will not be simpler than the programming of F.

An exception may be the situation where the same transformation u (Y )

( e.g. , polar - cartesian ) is used for several problems with different

model functions H (Y , 0 ) , so that u (Y ) has to be programmed only once .

We may conclude that in general a transformation of observations

offer little or no advantages over a formulation of the model equations

in terms of the original observations . There are , however , other

useful applications of such transformations . First , a graphical

display of the results can be clearer in terms of Y then in terms of

X. Second , and more importantly , the transformations can be a con

venient method to derive a " falsified " problem that can be solved

easily and that provides initial approximations to the unknown least

squares solution vectors . One can falsify the problem , e.g. , by using

a nonlinear transformation but linearizing its effects on the problem

formulation . A simple and effective falsification is to replace the

problem ( 3.10) by

Y = v ( x ) , ( 3.16a )

HY+b , t) = 0 , ( 3.16b )

b *lu"(v) ( Y ) ] b = min .
( 3.16 )

The formulation is identical to the correct formulation ( 3.10 ) only

if the transformation is linear , but the normal equations for the

false problem ( 3.16) are simple :

ö-/b - K *H (Y +b ,t) = 0 , ( 3.17a )

у

K *H_ ( Y + b , t ) = 0 ,
( 3.17b )

H ( Y + b , t ) = 0 , ( 3.17c )

where

0 - 14,(y)] +r( ( x) ] -?.
( 3.18 )
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This system can be much simpler and easier to solve than equations

( 3.4 ) or the equivalent equations ( 3.11 ) . Its solution is , however ,

not the least squares solution but an approximate solution of unknown

quality .

Initial approximations to the solution also can be obtained by

other falsifications in addition to the one described , or instead

of it . Such falsifications are , e.g. , assumptions that certain

observations are error free , that some correlations are zero , that

some model parameters have prescribed values , etc.

4 . EXAMPLES . The first example is a case involving transformation

between polar and cartesian coordinates . We shall compare results

that are obtained using the approach of the previous section with

results that are obtained by following suggestions by other authors .

In data processing literature one finds different suggestions . The

simplest one is to treat the problem after transformation as if the

transformed quantities were observed . It is clear from the discussions

in Section 2 that such an approach does not produce the least squares

solution , i.e. , it does not minimize wł || c || } , even if the transfor
mation is linear . The most sophisiticated suggestion1,8,10 is to

apply the transformation ( 3.18 ) to R , i.e. , to solve the system ( 3.17 ) .

As we have seen in the previous section , this approach yields the

least squares solution only if the transformation Y = v ( ) is linear .

The following example illustrates the practical consequences of such

a problem falsification .

Let the observations be distances ri and azimuth angles di , and

let the model equations represent a straight line in cartesian

coordinates . Then the model equations are in terms of the original

observations

risind,
- а

br, cos 1
= 0

rasind, - a- a - brącoso2
= 0

F ( r . $ ; a , b ) = ( 4.1 )

rosinon - a - br cosa .
= 0

n

The transformation of the observations into cartesian coordinates are

х

i ricosợi

=

Yi ri sindi
, i 1 , 2 , ..ni ( 4.2 )
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and the model equations are in terms of the transformed observations

Yi
- а

bx
= 0

Yz - a - bxz
= 0

H ( X , Y ; a , b ) = (4.3 )

Yn - a - bx = 0
n

The Jacobian matrix of the transformation is

3
2

3
2

J = ( 4.4 )

o
ç

.
.
.

where

Ji

a ( x y :)
i

alri..? - (
cosợi -risindi

ricosti

( 4.5 )
sindi

We assume for simplicity that all observations are independent

with estimated standard errors eri and epi , respectively . Then the

estimated variance - covariance matrix R is the diagonal matrix

2

e

rl

e o 22
ec2

2
es2

R = ( 4.6 )

O

.

2

e

rn

2

e

on
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The transformed variance - covariance matrix ő is according to equation

( 3.18 ) the block diagonal matrix

Qu

1

0

ܐ

ܘ
JRJT ( 4.7 )

O i
n

where

e

e cos? o , temu misin?o lecose amžisind ,coso,

i-ext sind.cooo, o sin’o,tea - cos og

O

=

( 4.8 )

( e

2

ri

For a numerical example we take the ten points listed in Table

I as observations and assume that their standard errors are

e

ri
= 0.048 , e

a

epi
27.5 ° , i = 1 , 2 , n . ( 4.9 )

We made three adjustments . First , the r , $-data were used

together with the model equations (4.1 ) . In the second adjustment ,

the x , y - data were used together with the model equations (4.3 ) and

the transformation function (4.2 ) in a utility programl5 based

on the normal equations ( 3.11 ) . The results of both adjustments were

identical , as they should be , and they are listed in Table II . The

listed standard errors of the parameters are the square roots of the
diagonal elements of V+ computed with formula (3.8 ) . The correlation

coefficient cab is theoff - diagonal element of the correlation matrix

ct defined by

- Ž
с

-
= D

일 DET VE DE ( 4.10 )
t

The standard error of weightwhere Dt is the diagonal matrix of Vt .

one is defined by

1

m [ chr-2c71 = [

1
1

W] ( 4.11 )
n-p
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Figure la shows the result of the adjustment in the .r -plane ,

i.e. , in the plane of the original observations . The accuracies of

the observations are indicated by error ellipses around the observed

points . The adjustment is indicated by connecting the observed points

with the corresponding corrected locations on the fitted curve . The

figure shows that all adjustments are in the direction of largest

uncertainties .

Figure lb shows the same result in the x , y - plane . The accuracies

of the transformed observations are again indicated by error ellipses ,

corresponding to the transformed variance - covariance matrices õi. In

this presentation the adjustments seem to be in directions other than

those with largest uncertainties . This is typical for nonlinear

transformations of observations . The object of the fitting is to

minimize residuals of the original observations . The presentation in

the x , y -plane is distorted by the nonlinearity of the transformation .

In a third adjustment we used the x , y-data , the model equation

(4.3), and the variance-covariance,matrix Ở , defined by equation (4.7) .
The treatment , suggested by Deming and other authors , was described

in Section 3 , equations ( 3.16 ) through ( 3.18 ) , as a falsification of

the problem. The numerical results of this adjustment are listed in

Table II . They are different from the previous results , and the

increase of m indicates that the solution is not optimal . We notice

also that the correlation coefficient c has changed its magnitude
ab

and sign .

Figure 2b shows the results of the adjustment in the x , y - plane.

It indicates that the adjustment would indeed be optimal, if x , y were

the observations and Ở was their variance - covariance matrix . However ,

when the same results are plotted in the 0,2 -plane , Figure 2a , then

it becomes obvious that the adjustment has not achieved the goal to

minimize the residuals of the original observations , r . The treatment

of transformations of observations in this form is a falsification

of the problem . The results are approximations to the least squares

solution , but since the quality of the approximations are not known ,

they may be useful only as initial approximations for a least squares

algorithm . However , in a case like this example , an initial approxi

mation could be simpler obtained , e.g. , graphically by drawing a

straight line in the x , y - plane through the observations .

Next , we present an example for the linearization of parameters.

Let the model equation be

y - Ax® expexp şi
= 0 , ( 4.12 )
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where x and y are observations and A , B , and c are model parameters .

An equivalent model formulation is

lny - a - b Inx = 0 .

X

( 4.13 )

In equation (4.13 ) the parameters a , b , and c enter linearly . One

can expect a much better performance of solution algorithms if

equation ( 4.13 ) is used . The parameter transformation is in this

example

A = ea ,

B = b , ( 4.14 )

C = C ,

and the Jacobian matrix , needed in equation ( 2.23 ) is

a

O

a (A , B , C )

a ( a ,b , c)

0 1 0

:)
( 4.15 )

0 0 1

Another example is the trigonometric model

X-B

y - A cos X -8쯩
= 0 . ( 4.16 )

An equivalent model is

y - a sin ( cx ) - bcos (cx ) . ( 4.17 )

The corresponding parameter transformation is

a = A sin (B/C ) ,

b = A cos ( B / C ) , ( 4.18 )

C = 1 / c ,
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with the Jacobian matrix

a ( A , B , C )

a ( a ,b , c)

2 (a ,b ,c ) 1-1
a (A , B , C )

.

-1

sin ( B/C ) ( A / C ) cos ( B / C )

:(
cos ( B / C )

- (AB /c ?) cos (B / C )

( AB / C”) sin (B/C)

-1/ c?

C

- ( A / C )sin ( B / C )

)
( 4.19 )

0 0

In this example , the model (4.17 ) is linear only with respect to two

parameters . However , the difference of numerical treatments of the

problem is dramatic if one uses equation ( 4.16 ) or equation (4.17 ) ,

respectively . In numerical experiments we found that in order to

achieve convergence , one had to start with parameter values A , B , C

within few percent of their least squares values . Using the parameters

a , b , c and the model equation (4.17 ) , one achieves fast convergence ,

e.g. , with the initial values a = b = 0 .

5 . SUMMARY AND CONCLUSIONS . Manipulations of model equations

that produce simpler but equivalent equations can greatly facilitate

the preparation of the problems (e.g. , computer programming ) for

utility routines . The manipulations can also improve the performance

of numerical algorithms . If the manipulations are merely algebraic

and / or involve nonlinear transformations of the model parameters ,

then their application is straight forward and their implementation

simple . If , however , the manipulations include transformations of

observations , then one has to transform also the normal equations

correspondingly . Neglect of this transformation falsifies the problem

and produces results that are of unknown quality and equally reliable

as , e.g. , a graphical construction of a fitting curve . A correct

implementation of transformations of observations requires the pro

gramming of the transformation function , including its first and second

order derivatives . It also does not improve the performances of

algorithms . Therefore , in most cases , it is more efficient to formulate

the model equations in terms of the original observations , thereby

avoiding the programming of the transformation function .

The need for second order derivatives of the model equations has

been often overlooked . In order to avoid the programming of these

derivatives , most authors suggest to use a first order Gauss - Newton

algorithm for the solution of the normal equations , instead of a

second order Newton - Raphson algorithm . The performance of the former

may be often comparable to the latter , because even with more iterations ,

the computing effort can be less due to the simpler equations . Second

order derivatives of the model equations ( and of the transformation

function ) are , however , needed to compute the linear terms in formulas
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for variance estimates of the results . Their neglect cannot be

justified cursory by the argument that linearized model equations are

already second order accurate and , therefore , their second order

derivatives are not needed . It can be shown that the linearized normal

equations do contain these derivatives and , therefore , are needed in

the linearized variance propagation formula . Formulas for variance

estimates that do not contain second order derivatives are less than

first order accurate .
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TABLE I. OBSERVATIONS AND r AND CORRESPONDING

CARTESIAN COORDINATES

6 r х
Y_

206.6° 0.559 -0.50 -.025

26.6 ° 1.342 1.20 0.60

26.6° 2.236 2.00 1.00

26.6° 3.354 3.00 1.50

26.6° 4.472 4.00 2.00

123.7 ° 1.803 -1.00 1.50

92.90 1.952 -0.10 1.95

68.2 ° 2.693 1.00 2.50

52.40 4.100 2.50 3.25

42.00 6.727 5.00 4.50

TABLE II . ADJUSTMENT RESULTS

Case 1 and 2 (Original and Transformed Problem )

a = 0.381 $ 0.298

b = 1.141 + 0.744 = 0.015065

ab

M = 1.24541

Case 3 ( Falsified Problem )

a = 0.680 + 0.407

b = 1.837 [ 0.259 = -0.568659
ab

m = 1.75646

The standard error of weight one , m , is not included in the standard
errors of the parameters .
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Figure la . Adjustment in $ , r - space .

The data are shown with their one standard error ellipses and the

adjusted curve is shown with one standard error confidence limits .

The same results are shown by Figure lb in the cartesian x , y - plane .
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Figure lb. Adjustment in $ , r - space .

The transformed data are shown with their one standard error

ellipses and the adjusted line is shown with one standard

error confidence limits . The same results are shown by

Figure la in the $ , r-place of observations .
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Figure 2a . Falsified Adjustment in x , y Space .

The data are shown with their one standard error ellipses

and the adjusted curve is shown with one standard error

confidence limits . The same results are shown in Figure

2b in the cartesian x , y-plane .
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Figure 2b . Falsified Adjustment in x , y - space .

The transformed data are shown with their one standard error

ellipses and the adjusted line is shown with one standard

error confidence limits . The same results are shown in Figure

2a in the $ , r -plane of observations .
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APPENDIX

We provide a set of iteration formulas that are derived from

the Newton equation ( 3.6 ) by algebraic manipulations. First , we define

the following matrices :

G = ( F RF
x(F_RF -1 (A.1 )

T

A = RFGF -I

X X

( A.2 )

r = ( I+AR(KF) (A.3 )

(A.4 )
X

[I+AR(K*r)xx)-1

3. - • (AC-RPG

= S • (RF GF +AR ( K * r) xt?

D. - (x"pex - PEG_R (x" >! xx

B1 - ( x +r) tt - CF_R (K+F) xt

EL
( A.5 )

(A.6 )

( A.7 )

N = F GF - D2 + Do 1 (A.8 )

The iteration equations are

T

NT = F G ( F C-F ) + D

xFIG (F_C-F) + DEO
(A.9 )

K+K = G (F C - F ) + G ( F . + F R (KF)

G (F_C-F ) +G [F_+F_R(K+F) xt ] -GF_R (K"F) xx®
( A.10 )

E = E

E.- E, .
(A.11 )

Numerical experiments have shown that the convergence of the

iteration is enhanced if the equations are used in a subiteration

mode by iterating alternatively on the parameters and residuals ,

respectively . For parameter subiteration only equations (A.9 ) and

(A.10 ) are used , assuming e=0 . For residual subiteration one sets

TE0 and uses equations (A.10 ) and (A.ll ) .
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In the variance formula ( 3.8 ) one uses N , defined by equation

( A.8 ) and

S =

Ex + Do A.
(A.12 )

Another equivalent set of Newton - Raphson iteration equations are

given in reference 13 . None of the sets are numerically superior to

the other , and both require subiterations of parameters and residuals

for efficiency .

Gauss -Newton iteration equations can be obtained from Newton

Raphson iteration equations by setting all second order derivatives

zero . The convergence of Gauss - Newton algorithms is inferior , but

in some applications they have a larger domain of convergence .

Iteration equations for least squares problems with transformations

of observations can be obtained from the formulas in this Appendix

by substituting

& for R

A for C

and

E for (kºr )
XX

Expressions for Q , A , and in terms of the model and the transformation

functions are given in Section 3 , equations ( 3.13 ) , ( 3.14 ) , and ( 3.15 ) .
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ANALYSIS OF DATA WITH THE NONLINEAR LEAST CHI

SQUARE ALGORITHM

Richard L. Moore

US Army Armament Research and Development Command

System Evaluation Office

Dover , NJ 07801

ABSTRACT . This paper reports on the use of the least chi - square

algorithm for fitting data to non-linear functions of the parameters .

A well known computer program of the National Institutes Health ,

SAAM - 27 , has been modified to use this algorithm . Comparison of the

ordinary least -squares algorithm with the new algorithm have been

made on four different problems as follows : Pressure waves in gun

chambers , control of aircraft yaw , a biomedical kinetic reaction

involving four measured components , and a very non - linear nuclear

reactor kinetics problem . The preliminary results indicate that the

least chi-square algorithm is practicable , that the computing time is

increased for short problems , but evens out for long problems .

The least chi -square algorithm appears to be less failure prone

than least squares and a test has been inserted in the program to

preclude any iterations which might tend toward maximizing the

autocorrelations as could occur when their initial value is large .

I. INTRODUCTION . It is accepted procedure in analysing the

goodness -of -fit of experimental data to a theory which is nonlinear

in the adjustable parameters to estimate whether the residuals are

consistent with being drawn from a normally distributed population in

a random sequence . A common statistic to test the random sequence

hypothesis is the sum of the squares of the normalized autocorrelation

coefficients frequently called the Box - Pearce test . However , if

these tests indicate a lack of agreement with the hypothesis , no

rationale has been available to modify the parameters to obtain a

better fit . A solution to this problem has been provided by the use

of a least chi square algorithm which estimates the parameters which

give the greatest probability that the residuals arise from a popula

tion with variance oa , and are sampled from a random sequence .

II . SUMMARY OF MATHEMATICS .

Following the notation of Aitken ( 1 ) and as previously derived by

Moore ( 2 , 3 ) , we define the following :

The transpose of a vector or matrix is indicated by a ' on the

symbol u ' .
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u

у

0*

is the vector of observed values .

is the vector of theoretical values corresponding to u ,

is the vector of the estimates of the unknown parameters .

is the matrix of the partials of y* with respect to
p*

* .

V :-?
010 . 0 ; V, - ? 0010....

0010..0 0001

00010.0 ооо

vi
00 ... 01 ..

ооо .01oi ..

I
l

a;

2r , V -1

(d )'(d)/02-2 , (r ; ) ? V;?

S

S = 1 + , ar,V :-?
i= 1

The term

-1

V is the inverse of the variance of r .

;.

Xq' = 0,4 d'a + ; ; ! ;
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The calculaton of { 10 } is done from the following expression which

is the same as the usual non-linear least square interation except

for the matrix r .

(60 *) = (P* ' rp*] - p * ' r u * .

In the usual case , s equals I.

This expression has been programed into the Simulation And

Analysis Modeling ( SAAM - 27 ) ( 4 , 5 ) program of Berman et al , by post

multipying p* ' , by r , and letting the program proceed from that

point , with the data for P* ! being replaced in the memory by the

product P* ' r . The usual iteration continues from this point . The

computer program resulting from this change has been designated for

control purposes as SAACH , and has been tested on the CDC 6600 at

ARRADCOM , Dover , to determine the following questions :

1 .
How much change is there in the final parameter estimates ?

2 .
What change , if any , is there in the number of iterations ?

3 .
What change is there in the time per iteration ?

III . EXAMPLES Four problems of different origin which use

different mathematical models have been run on the SAACH program to

answer the above questions . In the first example : Gun Chamber Pre

ssure Waves , the mathematical model used is the superposition of two

pressure waves generated by analytic models in the program , with the

adjustment of up to eight parameters to obtain the best fit to ob

served data . In the second example , an aircraft control system

simulation , the mathematical model is a set of four linear differen

tial equations , simulating the Yaw Damper system on an aircraft .

These equations were solved by a special procedure developed for

SAAM - 27 by Berman et al . ( 6 ) , with up to four adjustable parameters .

In the third example , a biomedical problem furnished as a test case

by Miss Rita Straub of Brookhaven National Laboratory , the mathema

tical model was a set of seven coupled linear differential equations

with five adjustable parameters ; this was solved by the same method

as used in the second case . In the fourth and final example : KEWB

Kinetics , a simulation of the nuclear reactor transients of the

Kinetic Experiment Water Boiler , the mathematical model was an ex

tremely non-linear set of coupled differential equations as described

by Hetrick and Gamble ( 7 ) . These equation were integrated by the

fourth order Runge-Kutte integration procedure of SAAM - 27 , with only

one ad justable parameter .
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III- 1 Gun Chamber Pressure Waves . Unusual pressure waves sug

gestive of an acoustic wave superposed on the normal gun chamber

pressure -time curve , have occurred in tests of the XM211 propellant

charges at zone 3 for the M101 projectile in the 15 Sinm gun ,

( Knutelski , ( 8 ) ) . Analysis of these waves was initiated by Mr. B.

G. Knutelski of the Large Caliber Weapom Systems Laboratory using the

SAAM - 27 program . A parallel analysis was made by the author using

the SAACH program . In order to have as little bias as possible

injected into the comparison , the Knutelski model, data , and

procedure was followed as closely as possible . The resulting data

fit was later improved by using more data and improved models . The

history of this analysis is inportant because it illustrates the

problems which arise when no prior knowledge is available about the

best -fitting model . ' ( This example is the only one of the four

examples for which prior knowledge was not available . )

The first case was run using the data shown as asterisks in Figure

This figure shows the theoretical fit by the following model :.

P B

P ( 1 ) sin { 2T (P ( 2 ) t + P ( 3 ) ) }

+ P (4 ) sin {21 ( P ( 5 ) t + P ( 6 ) ) } .

Fig . 2 shows the theoretical fit by the same model as above using the

Least Chi Program ( SAACH ) with five autocorrelation coefficients ( BGK

1.101) . Table 1 indicates the number of iterations to convergence

and the final values of the parameters ( the initial values were the

same ) . The value of the sum of the squares ( X1 ' ) is given for

comparison , as well as the autocorrelation coefficients up to rank 5 .

Case BGK had slightly lower values of sums of squares , but the chi

square was much smaller for BGK 1.101 . ( The symbol x will be used

for the greek letter Chí for the rest of this report . )

Recause not all the data points available were used in this

preliminary analysis , additional data were obtained and entered into

the computer using the same model and same initial conditions as in

the previous runs . In this case ( BGK 3.002 ) the least squares

iteration stopped at seven iterations ; as shown in Figure 3 , the fit

was poor and the convergence obviously false . The least chi square

iteration , BGK 3.102 , using the same data terminated at 14 iterations

with an obviously better fit ( Fig 4 ) , but yet not a good eyeball fit .

The results of both cases are also shown in Table 1 . The

autocorrelation coefficients are large for case 3.102 , and indicate

the general lack of fit .
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Because of this obvious lack of fit in BCK 3,102 , the model was

changed to the following,

P
= P , expl

+P2 exp ?

( t- ti ) '/ 20 ,

( t- tz ) ?/20 ,? } x sin { 27 € ( t- tz ) + 1/2)

Three parallel cases were computed once the fit was good enough

to permit iteration . Because of computing difficulties which arose

when trying to converge on six or seven parameters , the iteration was

initially restricted to four parameters : Once the fit was good and

had converged using these four parameters , their final values were

used as initial values for a six-parameter fit . Finally , all eight

parameters were allowed to vary .

The results of this series of analysis are plotted in Figs 5 , 6 ,

and 7 . The case numbers are BGK-3.30356301-0 , 3.30356511-5 and

3.30356511-10 respectively . The first has no autocorrelation

coefficients ; the second , 5 ; and the third , 10 . The parameters for

these cases are given in Table 2 , ( note that the last three digits

only of the identifier are used licre ) . The estimated errors are the

estimated standard deivations based on the value of the sum of the

squares . In the case of 511-5 and -10 , the value of xy? was used
rather than the sum of squares . The statistical validity of this

procedure has not yet been established .

Results shown in Figures 5 , 6 , and 7 indicate that the apparent

fit to the data is best for the case of five autocorrelations , ( Fig

6 ) . In this figure the autocorrelations were weighted higher than in

Fig 7 , where ten autocorrelations were used , and of course much higher

than in Figure 5 , where no weight was given to the autocorrelations ,

It is clear from Table 2 that ordinary least squares , case 301

indicates a small fractional standard deviation as compared to the

other two cases , but yet the fit to the data is not as good as seen

from its plot , ( Figure 5 ) .

The last row of Table 2 , gives the values of oe , the experi

mental variances assumed for these cases . These were arbitrary

numbers in this case , because the precision of the measurement system

is probably much greater than the value given i.e. , the variances

should be smaller . However , if smaller values were used , such as

when case 511-10 is compared to 511-5 , the weight on the sum of the

squares is greater but the goodness of fit appears to decrease .
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Table 2 also shows the effect of least chi -square in terms of

number of iterations , and computing time . When five autocorrelations

were used , as in case 511-5 , only a small increase in number of

iterations is found and a moderate increase in computing time as com

pared to 301. If ten autocorrelations were used , as in 511-10 , the

number of iterations increased , and the time increase was 1.8 times

greater , giving about double the increase in time for double the

number of autocorrelation coefficients .

|

Table 3 shows the autocorrelations up to order 20 for the three

cases . The values of x ? , xz ?, and Xq2 for the number of

autocorrelations used (0 , 5 , 10 ) is shown in the last rows of this

table .

The difference in the assumed experimental variances accounts for

most of the difference between x 2 for cases 511-5 and 511-10. If

the experimental variances had been the same , X1 " would have been

62.96 or 57.62 . Case 511-5 appears ( in the figures ) to fit better

because the first five autocorrelations as well as most of the later

autocorrelations are smaller .

III-2 Aircraft Control Systems . The block diagram of a typical

problem of this type is shown in Fig 8 . To optimize the design four

parameters may be adjusted to give the best fit to a desired response

curve . These parameters are Oy, Ky , Tl , and Kg · These correspond

to the parameters L ( 0,4 ) , L( 4,1 ) , 2( 4,2 ) and L (4.3 ) . A previous

analysis of this example using SAAM - 23 was available . As a result , a

completely unbiased comparison of least squares and least chi squares

prodecures was difficult to ensure . Two different approaches were

used on this example . First , the " data "--corresponding to the desired

curve--was used " as is " for comparison with the calculated response .

Second , a vector of a random sequence of normally distributed errors

from a population with variance of ( .033 ) 2 was added to the data

vector to simulate the effects of sampling error ; this may be

considered to represent an allowable error or tolerance in fitting

the curve .

In the first approach , the cases to be compared are 2-6 and 4 .

Case 1-6 was a reference run which adjusted four parameters , and

started near to the final values . It iterated three times and took

23.6 sec to complete . A similar case , 2-6 used the same starting

point and used six autocorrelations coefficients . It failed to im

prove the fit in but one iteration , primarily because it attempted to

increase the autocorrelations in its attempts to improve the fit .

( Several cases of this type were found which led to a modification in

the least chi-square algorithm , to be discussed later ) . The data on

the parameters , autocorrelations , and chi square are given in the

first column of Table 4. The fit to these data are shown in Fig 9 .
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are

In an attempt to understand this problem various strategies were

tried , but the results were nearly all similar . Case 4 and 4.1

typical . In these comparisons the number of adjustable parameters

was reduced to three , the value of the experimental variance was

increased to 1.0 and the rank of the autocorrelations was taken as 5 ,

6 , and 12 . In the least squares case , case 4 , as indicated in Table

8 , the calculation converged in six iterations , taking 11.2 sec .
In

case 4.1 , with the same initial point , the three attempts iterated

for six iterations , for the same time , 11.2 sec ,, but because the
autocorrelations

were large , and the value of X2C was large
2

compared to X1 they all eventually diverged from a good fit .

These results indicated that the algorithm was not reliable when the

autocorrelations were large at the outset . To correct this , an

internal algorithm will be added so that value of a which is

1 / ( X1 -2X24) will not be allowed to be greater than .5 . It is

believed that this change will prevent situations of this kind from

arising in the future , but the effect of this change has not yet been

fully tested . To determine whether the least chi-square technique is

valid for the Yaw Damper calculation , the second approach , the

addition of Monte Carlo errors to the desired response curve , was

used as a test .

For this second approach , a random sequence was added to each of

the data points . The value of 02 was set at ( .033 ) 2 , six autocorre

lations were used for the problem which was identified as CONRLM

4.011-6 . Another run was used on the same data with the standard

least squares algorithm . Fig . 10 , ( CONRLM 4.012 ) shows the fit

obtained for the data and is typical of the results . Table 4 shows

the number of iterations for each case . It took 4 iterations for the

ordinary algorithm to converge , and only two for the least chi -sq .

algorithm with six autocorrelation coefficients ( CONRLM 4.011-6) .

The time for one iteration was 8.2 and 8.5 sec respectively . ( Part of

the increase in time for the least chi-square case was due to several

attempts in both iterations to improve the fit by reducing the step

size . ) As shown in Table 4 the parameters L ( 0,4 ) , L( 4,2 ) and L( 4,3 )

appear to be different by significant amounts , and the difference

the " significance of the two results is considerable . ( The

autocorrelations for case 4.011-6 appear well within the random

range . )

III-3 Brookhaven Example . A sample test case was received from

Miss Rita Straub of Brookhaven National Laboratory . The exact nature

of the problem was unspecified but from the form of the differential

equations given in table 5 , it appears to be a kinetic problem in

which the material in component one decays into components two to

five , and component two may change into component one . Component

seven is composed of components three , four , and five . Although the

" S " and " K " parameters may actually be unknown , they were assumed
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known , because the present version of the program will not iterate

either type of linear parameters with the least chi - square algorithm .

The data were available for the amount of components 1 , 3 , 4 , and 6

as a function of time , ( where component 6 is the sum of components 1 ,

2 , and 5 ) .

of X1

Both the run with no autocorrelations and the run with 5

correlations ( KJE 1.0023-5) , took 7 iterations to converge . The

results for the two cases are compared in Table 6 . Since the value

2

( 31.24 ) is large compared to X2? ( 3.04 ) , the major

emphasis in this case was on reducing the sum of squares , and thus it

is similar to the case run with no weight on the autocorrelations .

As would be expected , there is only a small difference between the

final values of the parameters of the two cases . Figs 10 , 11 , and 12

show the graphs of the data fit to the components 1 , 3 , and 4 .

( Component 6 shows an exact fit to data points and therefore a graph

of this component is not provided . )

III-4 . Reactor Kinetics Example . This example illustrates two

things : First the use of the least chi - square algorithm , and second

a good fit between data and a physically incorrect model . Hetrick

and Gamble ( 7 ) proposed a non-linear feed-back term proportional to

the energy in the reactivity of the KEWB reactor to describe the

effect of void on reactor shutdown . Although this model gives a good

fit , later experiments ( 9 ) where the void amount was inferred from

measurements and where the thermal effects on reactivity were also

carefully measured , showed that shutdown was due to thermal , not void

effects . In the simulation , the effect of the energy on void forma

tion was simulated by the parameter L ( 11 , 1 ) . The functions corres

pond , in numerical order , to the functions used in the simulation :

( 1 ) Nuclear reactor power level , ( 2 ) Mean temperature , ( 3 ) Mean void

volume , ( 4 ) - ( 9 ) Delayed neutron groups , ( 10 ) Not used , ( 11 ) Energy

released to that time . The result of the iterations is shown in

Figure 13 , a logarithm plot of theoretical and experimental nuclear

power . In Table 7 , three different cases are shown :

Case 1.003-0 was ordinary least-squares . The values of the

autocorrelations and chi - squares are shown for comparison with the

other two cases . Case 1.005-3 used three autocorrelations with a

small value of the experimental variance thus resulting in a large

value of x12 . Both case 1.007-6 and 1.003-0 use 1 x 107 for the

experimental variance thereby reducing the emphasis on the sum of the

squares of the errors . All of these runs took four iterations to

converge .

Cases 1.003-0 and 1.005-3 give almost exactly the same results .

On comparing 1.003-0 with 1.007-6 , a difference is found in the value

of the adjustable parameter L ( 11,1 ) . The value of chisquare total is

smaller for 1.007-6 , and thus this result would be chosen over that

of the other case .
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The valueof thechi -square forthe autocorrelation (X22 ) is
much smaller for case 1.007-6 , although X12 is slightly larger for

the same case--thus illustrating the trade -off between getting the

minimum as in ordinary least squares , and reducing the autocorrela

tions as in least chi-squares . The data for Case 1.003 show the

values for R ( 1 ) to R ( 6 ) for comparison purposes . The data show that

the sum of squares does not increase from one to other appreciably ,

but x2 ?, the Box - Pearce statistic , does change appreciably . Each

of the calculations gives a total chi square which is too large to be

consistent with the residuals being drawn from a random sample .

III-5 . Comparison of Computing Time. Table 8 summarizes the

comparison of the number of iterations to converge , and the computing

time required . As seen in the previous discussions , the number of

iterations was usually about the same , except for two cases--the case

4.1 under the Yaw Damper , where the iteration with least chi square

failed to properly converge , and for the XM211 Pressure Curves where

the ordinary least squares took more iterations or failed to converge

As seen in the last column , for all the cases except the case 4.1

under the Yaw Damper , the computing time is comparable , with a ten

dency for the computing time to be longer for least chi square than

for least squares . The relative difference is greater when the

original total computing time is short . This just means that , as

would be expected , it takes a larger fraction of the computing time
to compute the matrix r and post multiply it into P* ' for cases where

the time of iteration is short .

IV CONCLUSIONS . Based on four different types of non-linear

theoretical models for data analysis , our results indicate that :

( 1 ) Least chi - square is practicable for non - linear analysis ,

( 2 ) The computing line for least chi square is longer for the

models which use less computing time , but because the convergence of

this iterative procedure is somewhat better , the number of iterations

( and particularly the number of " tries " per iteration) is reduced ,

thus keeping the total computing time about the same . Models with

longer integrating time would expect to benefit more from least chi

square .

( 3 ) With one exception as given below , the least chi-square

procedure appears to be less prone to failure to converge .

( 4 ) When the autocorrelation are large and their weighted sum is

large compared to the chi-square for the residuals , the iteration

tends to produce a maximum value of the autocorrelations . A test has

been devised to prevent this situation from occuring .
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( At the time of final editing and review of this paper , an error

was discovered in the programming of the calculation of the variance

of the autocorrelations , V The error amounts to only a few

percent but would make it difficult to reproduce the present results .

It is believed that the main thrust of the results of this paper

remain valid . )

Streiche
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BGK BGK 1.101 BGK 3.002 BGK 3.102CASE

NUMBER OF

ITERATIONS 14 11 7 14

P ( 1 )

P ( 2 )

P ( 3 )

P ( 4 )

P ( 5 )

P ( 6 )

15.89

203.7

.767

1.700

3.00 X 103

-2.196

15.0

332.6

-4.16

+5.67

3.06 x 103

-1.80

19.48

308.00

2.97

1.38

3.27 x 103

-6.0

R ( I ) 1

2

3

4

5

X13

Χη

15.95

209.9

.722

1.719

2.93 x 103

-1.885

.614

.275

-.077

-.186

- 209

15.5

30.018

.586

.252

-.076

-.175

-.192

16.1

25.0

.843

.646

.428

.219

.046

27.6

81.6
2

SIGNIFICANCE .44 3.5

Table 1 . Results of computer runs on XM211 Pressure Oscilations
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CASE 301 511-5 511-10

ORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

.717

.477

.286

.058

-.113

-.246

-.303

-.322

- . 307

- 245

-.130

-.011

.069

.137

.110

.075

-.028

-.141

- 202

- 235

.680

.427

.247

.027

-.136

-.258

- 315

- 334

-.312

- 240

-.104

.031

.130

.217

.203

.168

.057

-.068

-.149

- 205

.696

.443

.248

.013

-.160

-.291

-. 346

- 361

- 342

-.276

-.155

-.035

.048

.123

.106

.085

.0004

-.090

-.130

-.145

X15
2

57.9

X2

хтот?

62.96

33.01

95.97

116.2

62.4

178.6

Table 3 .
Autocorrelations and Chi -Square for final model of XM211

Pressure Oscillations .

2

based on the first 5 Autocorrelations for Case 511-5 ,

and the first 10 , for case 511-10

४१२
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CASE

No. of ITER .

2-6

1

4.012-0

4

4.011-6

2

L( 0 , 4 )

L ( 4 , 4 )

L ( 4 , 2 )

L ( 4 , 3 )

18.6

53.1

.605

10.27

17.70

53.11

1.094

6. 204

18.58

53.02

0.605

10.26

R( I ) 1

2

3

4

5

6

.769

.431

.144

-.040

-.159

-.111

-.230

..013

.061

-.124

.029

-.110

-.232

.014

.068

-.124

.030

Sum of ses .00275 ..03147 .03138

X15
422

2

2

XT

.011

24.78

24.79

-.959

.250

28.90

2.77

31.67

.273

( .033 ) 2

28.82

2.49

31.31

-.087Signif

ga
2

( .033 ) 2

Table 4. Results of Yaw Damper Calculations
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ITEM / CASE KJE 1.0021-0 KJE 1.0023-5

L( 1 , 2 )

L ( 2 , 1 )

L ( 3 , 1 )

L ( 4 , 1 )

L ( 5 , 1 )

.2155

.4527

.0431

.0252

.0743

.2199

.4442

.0431

.0251

.0824

R ( 1 )

R ( 2 )

R( 3 )

R ( 4 )

R( 5 )

.122

.065

.009

.227

.179

-.086

-.052

.034

-.223

-.168

2

812
X2

Хтот

31.22

3.99

35.21

31.24

3.04

34.28

Significance -.026 -.086

Table 6 . Results of Brookhaven example calculation . Autocorrelation ,

x2?, and xq2 for case KJE 1.0021-0 computed for comparison .

ITEM / CASE KWB 1.003-0 KWB 1.005-3 KWB 1.007-6

L ( 11,1 )

R ( 1 )

R ( 2 )

R ( 3 )

R ( 4 )

R ( 5 )

R ( 6 )

5.3183 x10-4

.782

.44

.098

5.318 x 10-4

.782

..44

.098

- 204

- 316

- 235

121.14

36.71

157.85

5.262 x 10-4

786

.453

-.122

-.170

-.274

.290

121.89

35.0

156.89

1.2 x 109

N
N
N

XI

TABLE 7 . Results of Kinetic Experiment Water Boiler Calculations
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AUTO - CORR

RANK

NO OF

ITER TIME ( SEC )

41

1

1

ܘ ܗܚ

4

4

84 .

81 .

89 .

4

3

3

4

4

0

0

5,6,12

6

0

3

6

6

2

4

23.6

11,2

11.2 (FAILED )

8.5

8.2

5

5

0

5

5*

7

14.9

21.5 ( 15.2 )

6.5

О
л
л
о
л
о

14

11

7

15

11*

ADJUST

PARAMCASE

KEWB KINETICS

1.003

1.005-3

1.007-6

YAW DAMPER

1=6

4

4.1

4.011

4.012

BROOKHAVEN

1.0021

1.0023-5

XM211 PRESSURE

11 .

BGK

BGK1.101

3.002

3.102-5 .

3.102-5

6

6

6

6

6

11.31-/FAILED

23 .

18.2

TABLE 8 . Comparison of Computing Time .
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ON THE POWER OF BIRNBAUM'S TEST

Ray E. Schafer

Hughes Aircraft Co. , Fullerton , CA 02634

ABSTRACT

2. W. Birnbaum has proposed a hypothesis test procedure which , under fairly

general conditions, does not require explicit knowledge of the critical values

of the test statistic . In this paper we investigate the power of the test in a

variety of situations. In particular we have considered situations in which the

underlying observations have normal and chi - square related distributions. We

show that the asymptotic power of this test is identical to the classical test using

the same statistic and that the Birnbaum test achieves its asymptotic power very

rapidly.

The normal case is considered both for complete and censored samples .

1.0 INTRODUCTION

The classical hypothesis testing problem involves the sampling distribution of

the test statistic ( say S) . For example, to test

H.: DF (distribution function ) is N (Mo. 1)

versus

Hy: DF is N (4 1: 1) "1 ? MO
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where N(4,02) means normal with mean y and variance 02 .

the test statistic is S = X, the sample mean , and the CRITICAL VALUE , say S* ,

is

S* = X * = Hn + Z.
= Mo 21-01 Here 21- qis the (1 - @ )

quantile of the standard normal distribution and n is the random sample size.

The sampling distribution of S = X is well tabled so that it is easy to obtain

S* = X* the critical value.

In many situations however the sampling distribution of Sis analytically

intractable . For example consider the Weibull DF :

Fx (x) == 1 - exp [- (x/bloj , b , c , x > 0 ,

= 0 elsewhere .

The sampling of the maximum likelihood estimate of c , say ĉ , is intractable .

However , the sampling distribution of ĉ/c , while intractable has a distribution

free of b and c . Thus , the DF of c/c could be obtained ( indeed was obtained by

Thoman , Bain and Antle , 1969 , Technometrics 11 , 445-460) by Monte Carlo

methods. The Monte Carlo approach is quite expensive; involving some 10,000

to 50,000 c / c's for each n.

Z. W. Birnbaum ( " Computers and Unconventional Test Statistics , 1974 ,

Reliability and Biometry, Eds.: F. Proschan and R. J. Serfling , SIAM , 441-458

and " Testing for Intervals of Increased Mortability , " 1975 , Reliability and Fault

Free Analysis, Eds.: Richard E. Barlow , Jerry B. Fussell and Nozer , D.
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Singpurwalla , SIAM 413-426 ) has proposed a remarkedly simple procedure in the

situation of testing

Ho: DF of S =- Go (s)

versus

H : DF of S = G (8)

where G is analytically intractable . Birnbaum's test avoids the expense of a large

Monte Carlo simulation . Here we will investigate the power of the Birnbaum

test (B.T.) in a variety of situations .

2.0 B. T. DESCRIPTION

We discuss in this section a right (upper ) tail hypothesis test. Obvious modifica

tions lead to left - tail and two - tail situations.

Let F ( x , ) be the distribution function for random variable X and let S, be a
n

test statistic for 0 , based on a sample of size n. Suppose Go(sn) and G (sn!

are the distribution functions for So when 0 = 0, and 0 = 0 , respectively. The
n

B.T. requires that, for all real Sn G (8 ) Go ( s) . and for at least one Sn

Gy($n &Golsp . Suppose that a random sample of n observations, x7 , n'

is available which has been used to calculate a single value of S. say 5* , and
n

we wish to choose between H.:8 = and H ,: 0 = 0, on the basis of this observation .

Birnbaum has shown that, if it is possible to obtain a random sequence of N

observations of S , using only F (x, 00), a hypothesis test may be performed by

selecting a number, v OC V < 1 , and observing the number , M, of these N
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*

observations which are greater than s with rejection of H , if and only if M /NY.
n

Birnbaum shows that the size of his test is

a = ( 1 + [NY ] (1 + N )

where [Ny] is the greatest integer = ny .

In practice , one performs a B.T. of exact size a as follows . Choose 0 < V <1 ,

the size desired , and choose an integer N such that ( N + 1 ) is a positive integer .

Generate N observations of Sn under H. and observe M / N , Reject H, if M / N

= (a ( N + 1) - 1 ) / N = y .

3,0 CASES INVESTIGATED

n 0

The advantage of the B. T. is that a knowledge of Go (sn ), the sampling distribution

of Sunder H, is not required. The N values of S. may be generated by MonteSn

Carlo methods directly from F (x , 0 ). The cost of the B. T. is a function of both

n and N , and may be substantial (although much cheaper than a " full " Monte

Carlo simulation of Go(sm ) if calculation of sn must be performed by iterative

methods. Hence , it is important to know how the power of the B. T. varies with

n and N.

We have investigated the power of the B.T. for test sizes a = 0.01 , 0.05 and

0.10 : for sample sizes n = 5 , 10 , 20 , and 50 and for N = 9 , 19 , 39 , 99 , 199 and

499. It should be noted that, for Q = 0.01 , no B, T, exists with N = 9 , 19 , 39 and

for a = 0.05 , no B, T , exists with N = 9. In fact, no B. T. of size a can be obtained

unless (N + 1) -1sa.
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We have restricted our investigation to maximum likelihood estimators (or

functions thereof) and to the following distributions and parameters.

a ) Normal distribution - tests for the mean , 0 (known o ), with complete

samples , and tests for the mean (unknown o ) with Type II censored samples .

b) The general class of tests for which Sn has a chi-square distribution

This includes tests foro (known or unknown 8) in the normal distribution and

tests for the mean of a one - parameter exponential distribution .

4.0 POWER OF THE BIRNBAUM TEST

Intuitively , it is clear that letting Nis tantamount to obtaining the exact sam

pling distribution of Sp: hence , the asymptotic power with respect to N should be

identical to the classical power based on the same statistic .

The B. T. power under H, is

1 - B (N ) = P (M /N $ Y |H4).

[Ny]

Σ
j=0

N

)a - Google Govom N-j

(1 - usi UN - Ja J,( u )

where J, ( u ) = G , (Gö (u)). Birnbaum has proven that

lim (1 - B (N )) = 1 - J / (1-7 ).

NO
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It is easy to show that this is equal to the power of the classical test based on the

same test statistic ,

5.0 METHOD OF CALCULATIONS

A statistician is seldom interested in knowing the power of a test to even three

decimal places. Clearly , the requirement of extreme accuracy in power deter

mination increases the cost of computation. We have chosen to relax the accuracy

requirement so that more distributions and sample sizes could be studied .

All of the results were obtained on a CDC Cyber - 173 computer. Where power was

obtained by numerical integration , the trapezoid rule was used with 200 equal

intervals over the domain of integration . Where the limits of integration extended

to too , the heuristic limits used were the 0.0001 and 0.9999 quantiles (+3.895 , for

example , with the normal distribution ). As a check on the numerical accuracy of

the integrations , both " tails" were evaluated . That is , we determined 1 - B and

B separately . In every case, the sum of the two was in the domain (0.995 , 1.005) .

Where Monte Carlo methods were employed, the random number generating

algorithm was the multiplicative congruential method suggested by Knuth

48

using modulo 2 arguments . For the Monte Carlo simulations:

a) If it was necessary to determine classical power by simulation , 10,000

observations of S. when =0, were obtained and utilized to estimate the 0.90, 0.95,
Sn 0

and 0.99 quantiles of the distribution under Ho. Then 10,000 observations of S.n

when 0= 0 , were generated and compared with these quantiles.
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b) To determine the power of the B.T. by simulation , a single observation of

Sn (0= 0,) was obtained and compared with N observations of Sn (0=0). The number

M of these N observations greater than Sn (8 = 07) was recorded , and if MNS

( Q N + 1) - 1 ) / N , the null bypothesis was rejected . This complete procedure was

repeated 2500 times.

It appears that a B. T. using N = 199 or greater could substitute for a classical

test on the mean of a normal distribution with virtually no loss in power . This

may give a practicing statician some confidence in using the B.T. for problems

where the distribution of S. is not obtainable, or obtainable only at great expense .
n

6.0 NORMAL MEANS (KNOWNO

Of course , no one would ever use a B.T, in place of a Neyman -Pearson test for a

hypothesis about the mean of a normal distribution with known 0. The p.d.f. of

n
Sn (i.e. , the sample mean) under both the null and alternative hypotheses and

hence the power, is known analytically . But such an artificial case is valuable

for studying the B.T. for precisely this reason . We may observe the relative

power of the B.T. in comparison to the classical test as a function of N, n, and

the classical power, to get a "feel " for the behavior of the B.T. as a function of

sample size.

Let X be N (o , o ). We chose as the null hypothesis N(0, 1) and as alternatives

0 =0.1, 0.2 , 0.5 , 1.0, and 2.0. The power of the B.T. was obtained analytically

by numerical integration .

1
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The efficiency of the B.T. Relative to the classical test was remarkably high , even

for small N. Over the entire domain of samples sizes , n , the B. T. power was

never less than 85% of the classical power . For N = 199 and 499 , the B. T. power

was never less than 95 % of the classical power . As an example, for N = 199, we

obtained :

n = 5 n = 10

0 = 0,5 =1.0 = 0.5 41,0

B.T. Power 0,29 0.71 0.46 0.93

Classical Power 0.300 0.723

n 20

0.71 0.99

0.475 0.935

n 50

0.97 1.000B.T. Power

Classical Power
0.723 0.998 0,971 1,000

7.0 NORMALMEANS (UNKNOWN g )WITH CENSORED SAMPLES

The classical power for hypothesis tests on normal means with the standard

deviation unknown , but constant, is available for complete random samples

through tables of the non - central t -distribution . Here , we examineType II cen

sored samples, where no such power distributions are available . Given a cen

sored sample .

* (1) X (2)
X

( r )
r < n.

12

the sample mean , and standard deviation s

Em) - 502/rare calculated.
An auxiliary function is needed . The value of a depends only on r / n and on

so27 @?– Xry) 2. The M. L. E. for is X ' - 1 ( ' - * (r)).
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Hypothesis tests of the form Ho: 0 = e. vs.0 = % vs. Hy: 8 > were examined for the cases

( 94 - 00)/0 = 0.1 , 0.2 , 0.5 , 1.0 with sample sizes 5 , 10 , 20 , 50 and censoring

at 0. 8n for n = 5 , 10 , 20 and at 0. 4n for n = 10 , 20, 50. Both the classical power

and B.T. power were obtained by Monte Carlo simulation, as described previously .

The B.T, with N = 199 or 499 will provide essentially equivalent to that of the

classical test for all of the parameters and sample sizes examined .

8.0 THE CHI-SQUARE CASE

2

Many hypothesis testing situations involve test statistics which have a x “ distri

bution , e.g. , tests on the variance of a normal distribution (known or unknown

mean ) and tests on the mean of an exponential distribution . The power of the

classical x2 test is available in the literature from tables of the non -central

x2 distribution . But we have explored this case for the same reason that the .

normal distribution was examined
C

the B.T. power may be obtained analytically

and its behavior with respect to N may lend credence to the assertion that the

B.T. is essentially as powerful as the classical test for a variety of probability

distributions .

2

Many hypothesis tests involving the x distribution are equivalent to

Ho: Sn

d 2

Xm

H : asn
d 2

Xm

where she is the test statistic , m is degrees of freedom and 0<a<l for a right

tail test. a > 1 for a left - tail test . We examined right - tail tests for m = 5 , 10 ,

20 and for a =2 / 3, 1/2 , 1/3 , 1/4 , a = 0.10 , 0.05 , 0.01 .

1
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The B.T. power was remarkably close to the classical power , even for N = 9.

In fact, the smallest ratio of B.T. power to classical power for all the combina

tions investigated was 0.87. A sample of results for N = 199 and a = 0.05 is:

m = 5 m = 10

a 1/4 1/3 1/2 2/3 1/4 1/3 1/2 2/3

B.T. Power 0.72 0.59 0,34 0.19 0,91 0.80 0.51 0.27

Classical Power 0.736 0.595 0.354 0.194 | 0,918 0.807 0.518 0.272

m = 20

a 1/4 1/3 1/2 2/3

B.T. Power 0.99 0.96 0,73 0,39

Classical Power 1.993 0.960 0.735 0.401

2

Hence , the X data support earlier conclusions that the B. T. with a reasonable

value for N , say 199 , is essentially as powerful as a classical test.

9.0 CONCLUSIONS

We have investigated the power of the B.T. with respect to the power of the cor

responding classical test in a variety of situations. These situations included

complete and Type II censored samples forthe commonly used test sizes and

frequently used sample sizes .

It seems clear that the B. T. offers cost savings when the sampling distribution of

the test statistic is unknown and must be obtained by expensive methods.
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In addition to the fact that the asymptotic power of the B.T. , as N
is equal

to the power of the classical test based on the same statistic , the B.T. has some

interesting characteristics . In all cases the relative power of the B.T. was quite

large even for N as small as 9 and generally for N 2199 the power was 95% of

the asymptotic power or greater. Also , generally , the relative power of the B. T.

increased as the alternate hypothesis got further away from the null hypothesis.

Finally the B.T. relative power increased with N.

i
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ERROR-TIME RESPONSE PERFORMANCE OF NAIVE SUBJECTS

Michael Hacskaylo and Joseph E. Swistak

Night Vision and Electro-Optics Laboratory

Fort Belvoir , Virginia 22060

Abstract . An experiment was conducted in which the error and time

response performance for designating the angular location of a single

flash of light on a circular pattern of lights were measured . Fourteen

naive subjects were instructed to record as accurately and rapidly as

possible the angular position of an activated light . They were allowed

only one attempt for each of six consecutive trials . The data are

presented in terms of mean time of each response per trial and mean

error per trial . The mean error , as a function of mean time , appears

to be bounded by an error - time response equation ; E = -20.88 log( t/ 15.37 ) ,

where E is the mean angular error in degrees and t is the mean time in

seconds . Surprisingly , the subjects responses as measured in either

time or error did not follow classical reaction time or learning patterns .

That is , while time of response remained fairly consistent from trial

to trial , the lowest error occurred on the first trial while maximum

error consistently occurred on the fourth trial . Based upon the six

trial limit used in the experiment , it is believed that the naive

subjects , first trial performance is the best for designating the

angular location of a single flash of light .

Introduction . The philosophy which tank crewmen have always adopted

has been "make your first shot count because you may not get a second

chance . " This philosophy has become more acute with the recent advent

of " SMART" weapons which ride beams of light to a target . A system was

designed which would allow tank crewmen to detect and radially demarcate

the source of designation by a coherent light source . The system is

designed to operate by having a tank crewman observe a circular array

of lights on a panel . When the tank is illuminated by a laser beam ,

a corresponding azimuthal light is activated . The crewman would interpret
and record the azimuthal position for appropriate tank action . The

effectiveness of the crew would depend upon ( 1 ) the speed and accuracy

with which the azimuth is read out , and ( 2 ) the panel configuration used

to display the azimuthal information . The panel used in this experiment

was designed from a technical consideration based on the circular

representation of equally spaced light bulbs ( Fitts and Seeger , 1953 ) .

Method .

Subjects . Fourteen U. S. Army enlisted men of various ranks were

randomly selected from a large group of individuals to serve as subjects .

None had prior training in tanks or tank related equipment and none had

prior experience with the display panel being tested . The fourteen subjects

were then randomly assigned to one of two groups comprised of seven subjects

each .
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Apparatus . The stimulus display panel consisted of a 9cm diameter

ring of 36 equally spaced light bulbs . This panel , portrayed in Figure 1 ,

was positioned on the front panel of a box 20cm long , 10cm high and 5cm

deep . The light bulbs were angularly marked from zero to 360 in ten

degree increments in a clockwisé direction with zero at the top .

Responses were recorded on a response panel . This consisted of a

12cm circle drawn on a 20x25cm sheet of plain paper . The circle was

divided into quadrants and marked into degrees as follows: Zero degrees

(0° ) was marked at the top . In a clockwise direction , each quadrant

was successively marked 90° , 180° , 270° , and again at the top , 360° .

A pencil was used for marking angular positions with an " X " on the circle .

Procedure . Each subject was briefed individually prior to his

participation in the experiment . They were brought into a room which

contained the stimulus display panel , a bench , chair and associated

equipment required to activate the lights of the panel . Each subject

was briefed as follows :

" As accurately and as rapidly as possible , determine the angular

location of a light when it comes on and mark with an " X " , that position

on the circle on the sheet of paper in front of you . The sheet of paper was

referred to as the response panel for purposes of the study . Each subject

was allowed two familarization trials to be sure they understood the

instructions . Each subject was then given six trials . The sequence of

lights for trials one to six are presented in Figure 2 .

FIGURE 1. 2 -D REPRESENTATION OF STIMULUS

PANEL COMPRISED OF 36 LIGHTS
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ğ

FIGURE 2 SAMPLE RESPONSE PANEL SHOWING THE ORDER IN WHICH

THE UGHTS WERE FLASHED AND THE ASSOCIATED DEGREES

OF MC FROM THE ORIGIN .

Each subject saw this same sequence . A new response panel was supplied

for each trial . The time interval from when the light came on to when

the subject marked the panel was measured by a stop watch to 0.01 seconds .

The stop watch was controlled by the experimenter and it was assumed

that the reaction time error introduced was fairly constant .

Upon completion of a set of six trials , the subject was dismissed .

The subjects tested versus those not tested were kept in separate rooms

until all seven subjects in a group were finished . One group (A) of

seven subjects was tested on one day , the other group ( B) of seven

subjects was tested on the following day .

The angular positions marked on the response panels were scored

in degrees by using a transparent template graduated to 0.5 degrees and

super imposed on the marked response panel . The accuracy of the marked

position was then measured to + 0.5 degrees which was the resolution

of the scoring template .

Results and discussion .

The mean time of response for each trial are presented in Figure 3 .
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FIGURE 3. MEAN RESPONSE TIME TO DESIGNATE ANGULAR LOCATION

OF A FLASH OF UGHT ON SIX CONSECUTIVE TRIALS
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These mean times and associated standard deviations are presented in

Table 1 . In general, it appears that the mean time to respond did not

vary significantly over the six trials . There does appear to be a gradual

decrease in response time from trial one to trial five , but an increase

on trial six . There was no readily obvious reason for this increase

on the sixth trial , l.e. , no subject took an inordinate amount of time

It would also seem that fatique could not be a factor with only six

trials having elapsed .

TRIAL NO. 1

1

2 3 4 5 6

MEAN TIME (SEC ) 3.79 3.94 3.21 3.34 2.60 3.32

STANDARD DEVIATION 1.41 2.03 1.31 - 1.49 | 1.00 1.23

TABLE 1. MEAN TIME AND RELATED STANDARD DEVIATION REQUIRED

TO DETECT AND DESIGNATE THE ANGULAR LOCATION OF A

LIGHT FLASHED WITHIN A 360 ° ARRAY OF LIGHTS ON SIX

CONSECUTIVE TRIALS.

The mean error in degrees for each trial are presented in Figure 4 .

The numerical values and associated standard deviations are presented in

Table 2. Trial one had the smallest angular error . The amount of error

IA

oa
m
o
R
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D

FIGURE 4. MEN ERROR IN ESTIMATES OF ANGULAR LOCATION OF A

FLASH OF UGHT ON SIX CONSECUTIVE TRIALS
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then increased with the greatest error occurring on the fourth trial ,

after which , the error decreased . The error on the sixth trial was

very near the error on the first trial . A large part of the error

on trial four can be attributed to the performance of two subjects who had

TRIAL NO . 1 2 3 4 5 6

MEAN ERROR ( DEGREES) 7.8 11.9 16.9 25.5 10.8 8.6

STANDARD DEVIATION 6.2 6.6 9.4 26.5 10.2 6.6

TABLE 2. MEAN ERROR AND RELATED STANDARD DEVIATION ASSOCIATED

WITH THE ANGULAR DETECTION AND DESIGNATION OF A LIGHT

FLASHED WITHIN A 360 ° ARRAY OF LIGHTS ON SIX CONSECUTIVE

TRIALS.

.

errors of 94.5 and 68.0 degrees , on that trial . However , even with these

two values removed from the data , the mean degrees of error for trial

four remains at 16.2 . If this level of error is the more accurate , then

it can be said that the third and fourth trials were the worst in terms

of performance , and the dotted portion of Figure 4 would more aptly

represent the performance on this task . The mean error , as a function

of mean time, ( Figure 5 ) appears to be bounded by an error -time respons

equation : E = -20.88 log ( t / 15.37) , where E is the mean time in seconds .

This curve provides somewhat of an upward estimate of angular error given

an elapsed period of time for a response - the greater the time , the lower

the error .
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However , regardless of which curve in Figure 4 most accurately

represent the performance which could be expected on the task described

in this study , it is interesting to note that neither set of data

follows the expected learning pattern described in learning literature .

Normally , one could expect accuracy to be poorest on the first trial ,

rapidly improve on the next few trials and then continue to improve

at a slower rate until some maximum level was reached . The number of

trials required for asymptotic performance to occur would depend upon

the degree of difficulty of the task . The present task should have

required 6-8 trials . It appears that asymptotic performance was being

approached on the sixth trial , but what is truly interesting is that

the performance on the first trial was actually better than on the sixth .

In terms of an untrained subject being able to determine angular

direction of designation , the first attempt he made would be the most

accurate of his initial six attempts .

The conclusion of this study must be that the initial attempt

by an untrained gunner would be at least as accurate as one who is

starting to asymptote .
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IMAGE INTERPRETATION PERFORMANCE

ON FOUR STANDARD TYPES OF AEROGRAPHIC FILM

RONALD L. JOHNSON and PAUL J. SCHOOL

US Army Mobility Equipment Research and

Development Command , Ft . Belvoir , Virginia

ABSTRACT

This study involved trained operational image interpreters who

analyzed highly controlled aerial imagery from which the effects of

type of film upon target detection were determined . One- hundred -and

one operational image interpreters generated the following mean target

detection probabilities: Color Infrared - 58.6% , Color - 55.4% ,

Panchromatic - 44.7% , and Black and White Infrared - 43.4% . At the

0.05 significance level , target detections were affected by film type

as follows: Color Infrared differed significantly from both Panchro

matic and Black and White Infrared films . Color differed from Black

and White Infrared . The combined mean of target detection for Color

Infrared and Color differed significantly ( 0.01 level ) from the combined

mean for Panchromatic and Black and White Infrared . Therefore , use of

Color and Color Infrared imagery results is significantly more accurate

day image interpretation .

.
.
.
.

-
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1.0 INTRODUCTION

The purpose of this study was to quantitatively determine the target

acquisition capabilities by image interpreters (II) of the following film

types: Aerochrome MS 2448 ( Color) , Aerochrome Infrared 2443 (Color Infrared) ,

Plus X Panchromatic 2042 ( Black and White ) , and Infrared Aerographic 2424

( Black and White Infrared ) . Image interpretation is defined i / as the

examination of images of objects on film for the purpose of identifying

the objects and deducing their significance .

Approximately 90 percent of the intelligence gathered in World War II

was derived from aerial photography . The requirement for accurate imagery

intelligence is escalating as weapon systems and tactics develop and become

more refined . To obtain this information , it is becoming increasingly more

common to use color , color infrared , and black and white infrared film .

Strandberg 2/ states " color aerial photography offers much promise in the

gathering of imagery intelligence , because humans have the capability of dis

criminating between an almost infinite number of different colors , but at most ,

only a few hundred different shades of gray" .

2.0 TEST SITE

An 820 acre site was selected . This site is used for equipment

evaluation by the US Army. Military equipment and camouflage devices

such as nets were randomly located throughout the study area . The

soil contained a high moisture content and the color was reddish- tan . The

brush was gray and brown in color . Included within this site were building

complexes, open fields, dense woods , and clumps of green grass . The

forest composition was a mixture of oak and pine .

3.0 TEST IMAGERY

Photographic images consisted of a 13 frame series of 9 " x 9 " positives

taken with 60% forward overlap . One frame series was acquired for each

of the four standard types of aerial film . Film and filter characteristics

are summarized in Table 1 .
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TABLE 1

FILM CHARACTERISTICS

RESOLVING

POWER ( T.0.C . ) *

1000 : 1 1.6 : 1

SPECTRAL

SENSITIVITY

RANGE ( NM)

FILTER

CUT-OFF

RESULTANT

SPECTRAL

SENSITIVTY ( NM )FILM TYPE

5
0

250-700 490-700

Plus X

Panchromatic 100

2042

( Black &

White )

Zeiss Yellow

490 NM

80 40

Infrared

Aerographic

2424

( Black

& White )

Zeiss Orange

550 NM

550-900

400-900

Aerochrome

MS 2448

( Color)

80 40 400-700 400-700Zeiss Clear

Activig

No cut off

63 32 400-900 Zeiss Orange

550 - NM

550-900Aerochrome

Infrared

2443

( Color )

*Target Object Contract

A KC-4B camera system with a 6 inch focal length lens was used . In all

cases except black and white infrared film , standard film/filter combinations

were employed . A zeiss orange filter was used with the black and white

infrared film instead of a red filter ; to increase the spectral response ,

and therefore , the information content of this film type. All imagery was

gathered during four overflights ( one per film type ) at an altitude of 1500

feet above ground between the hours of 1100 and 1400. Therefore , the sun

angle effect was negligible . The photographs were taken in February , and the

weather was clear and sunny . Each 9 inch photograph covered a land area

of approximately 124 acres . The total number of targets present or detected

for each strip of imagery were determined by three senior image interpreters .

They performed detailed and exhaustive analysis upon the imagery . The

results of which are presented in Table 2 .
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TABLE 2

TOTAL MILITARY TARGETS DETECTED FOR EACH TYPE OF FILM

FILM TYPE NUMBER OF TARGETS

Plus X Panchromatic 2042

( Black and White ) 46

50Infrared Aerographic 2424

( Black and White)

44Aeochrome MS 2448

( Color )

47Aerochrome Infrared 2443

( Color)

Variations in the number of targets detected between film types

( ground truth ) are not significant . They were apparently due to slightly

different flight lines flown by the photgraphic aircraft .

4.0 METHODS OF PROCEDURE

The Pseudo- Isochromatic Plates for Testing Color Perception , developed

by the American Optical Corporation , were given to each II in order to

insure that the interpreters were not color deficient . A total of 101

operational US Marine Corps image interpreters participated in this study .

The participants were randomly divided into four groups , one group for

each type of film . The assumption was made that the four groups , due to

the Central Limit Theorem , contained interpreters of equal ability . Each

II was instructed to perform detailed image analysis to detect military

targets such as jeeps , trucks , etc. , and was allotted 45 minutes to analyze

a selected film strip . Each II viewed only one strip of film , and

consequently only one film type .

5.0 RESULTS

The percentage of military targets detected by the image interpreters

for each of the four types of film was calculated . These data , along

with the associated standard deviations , 95% confidence intervals , and

sample sizes are presented in Table 3 .
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TABLE 3

STATISTICAL SUMMARY FOR MEAN PERCENTAGE OF TARGETS DETECTED BY FILM TYPE

FILM TYPE MEAN PERCENTAGE STANDARD

OF TARGETS DEVIATION

DETECTED

95% CONFIDENCE

LEVEL

SAMPLE SIZE

( # of observers )

Lower Upper

44.7 16.2

Plus X

Panchromatic

2042

( Black &

White )

38.1 51.2 26

Infrared

Aerographic

2424 (Black

& White )

43.4 18.4 35.9 50.8 26

Aerochrome

MS 2448

( Color )
55.4 22.2 46.1 64.8 24

Aerochrome

Infrared 2443

( Color )
58.6 17.6 51.4 65.9 25

An analysis- of-variance 41 of the mean values shown in Table 3 was

performed and the results are presented in Table 4 .

-
-

-
-

1

1

-
-

1

209



TABLE 4

ONE WAY ANALYSIS -OF - VARIANCE FOR MEAN PERCENTAGE OF TARGETS DETECTED

FROM FOUR TYPES OF AERIAL FILM

SUM OF DEGREES OF

SOURCE OF VARIATION SQUARES FREEDOM MEAN SQUARE F -RATIO

*

Types of Aerial Film 4,428.8864 3 1,476.2955 4.2351

Within Types of

Aerial Film 33,812.6291 97 348.5838

Total 38,412.5125 100

Critical F

* 0.05 , 3 , 97 = 3.27

The data presented in Table 4 revealed significant effects between the mean

percentages of targets detected and the type of aerial film . The degree of

this relationship was determined by individual comparison employing the t

statistic . These results are presented in Table 5 .

TABLE 5

INDIVIDUAL COMPARISONS UPON THE MEAN PERCENTAGES OF TARGETS DETECTED

Plus X

Panchro- Degrees Infrared

Matic
of Aerographic

2042 B /W Freedom 2424 B /W

Degrees Aerochrome DegreesDegrees Aerochrome Degree

MS of Infrared of

Freedom 2448 Color Freedom | 2443 Color Freedo

of

Plus X

Panchro

matic 2042

B / W

Infrared

Aerographic

2424 B /W
0.279

5
1

Aerochrome

MS 2448

Color
1.938 43 2.0085* 46

Aerochrome

Infrared

2443 Color
2.932* 50 3.028*

Critical value for significance : th.05,43

to.05,50 = 2.010 ; ty.05,51 = 2.009 .

* Indicates significance < 0.05 level .

50 0.553 45

2.017 ; 70.05,45 = 2.15 ; t0.05,46 2.014 ;
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The data in Table 5 indicates that at the significance level a = 0.05 ,

the mean detection of targets on the color and Color Infrared film , was

greater when compared to the mean detection of targets in the Black

and White Infrared film type. The mean detection of targets by image

interpreters on color infrared film was also significantly greater

(< 0.05 ) when compared with the mean detection of targets on Panchro

matic film . An even more significant relationship (a = 0.01 ) was found

when the means of the Color and Color Infrared films were combined and

compared with the combined means of the Panchromatic and Black and White

Infrared. Table 6 contains the means for the number of targets detected ,

as well as the 95% confidence intervals and sample size . Table 7 contains

the results of the analysis -of-variance performed on the data of Table 6 .

6.0 DISCUSSION

From these results , and assuming the interpreters to be of equal

experience levels , it was statistically (a = 0.05 ) determined that

the use of Aerochrome Infrared 2443 film resulted in a greater mean

percentage of target detections than that of either Plus X Panchromatic

2042 or Infrared Aerographic 2424 . Aerochrome MS 2448 film also allowed

statistically (a = 0.05 ) greater mean number of targets detected than that

of Infrared Aerographic 2424 . The mean number of targets detected was

combined for the two color films and also for the two black and white films .

They were then statistically compared against each other ; it was determined

that they differed at the 0.01 level . The task involved in this study

was basically one of searching an unknown area of film for the detection

of military targets , some of which were embeded in trees . The resulting

mean percentage for target detection on color films complements some of

the conclusions of a US Naval Technical Bulletin 5/ which states that

color photograph provides the most benefits in a area being searched for

unknown or unlocated targets . The bulletin also states that the detect

ing of partially hidden targets is aided by the use of color imagery which

provides details within the shadows . Strandberg stated that atmospheric

haze reduces the advantages of color film over black and white when high

obliques or horizon- to-horizon panoramics are taken . Therefore , both color

and black and white imagery may be required . It is interesting to note

that 64% of the image interpreters who analyzed the Aerochrome Infrared

2443 film stated that , with the exception of a brief session in school ,

they have not had further experience with it . Forty - two percent of the

image interpreters made a similar statement concerning the use of color

film . Accordingly , it may be that given additional experience with these

films , the mean percentage of targets detected would show an even greater

disparity between color and black and white aerial film than the results
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TABLE 6

STATISTICAL SUMMARY FOR PERCENTAGE OF TARGETS DETECTED FROM THE COMBINED

MEANS OF COLOR AND BLACK AND WHITE AERIAL FILM

Mean Percentage

of Target Detected

95 % confidence interval Standard Sample

Lower Upper Deviation SizeFilm Type

Combined

Color 57.1 50.5 63.6 19.8 49

Combined

Black &

white 44.0 38.5 49.5 17.2

5
2

Table 7 , below , contains the results of the analysis -of- variance performed

in the data of Table 6 .

TABLE 7

ONE WAY ANALYSIS- OF- VARIANCE FOR PERCENTAGE OF TARGETS DETECTED FROM THE

COMBINED MEANS OF COLOR AND BLACK AND WHITE AERIAL FILM

Mean

Square

Source Sums of Degrees of

Squares Freedom

Between Combined

Color and Combined

Black and White Film 4,282.0657 1 4282.0657 12.4833

Within Types of

Aerial Film 33,959.4467 99 343.0247

Total 38,241.5125 100

Critical Value : F = 8.29

.01,1,99

* indicates significance < 0.01 level
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obtained from this study . Therefore , the quality of day imagery intelli

gency should increase with the increased use of Aerochrome MS 2448 and

Aerochrome Infrared 2443 film by image interpreters. The use of Infrared

Aerochrome 2424 film for gathering of day imagery intelligence is not

justified by the results of this study . Should Aerochrome Infrared 2443

not be available , or night photography using artificial light sources is

desired , Infrared Aerographic 2424 film may be of value .

7.0 SUMMARY

We quantitatively compared the target detection capabilities of 101 ,

US Marine trained , operational II's . They analyzed the same targets

photographed with the following four types of film :

Aerochrome MS 2448

Aerochrome Infrared 2443

Infrared Aerographic 2424

Plus X Panchromatic 2042

We found :

a . Aerochrome infrared images resulted in significantly greater

(as 0.05 ) mean percentages of targets detected than Plus X Panchromatic

and Infrared aerographic images .

b . The mean percentage of targets detected with aerochrome

images was significantly ( < 0.05 ) greater than that of the Infrared

Aerographic film .

C. The combined mean number of targets detected with image types

Aerochrome MS and Aerochrome Infrared was significantly ( a= 0.01 ) greater

than that of the combined mean number of targets detected from Plus X

Panchromatic and Infrared Aerographic imagery .

From the above results it is concluded that the accuracy of day

imagery intelligence will increase with usage of Aerochrome MS and Aero

chrome Infrared imagery by II's .
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NEW ALGORITHMS FOR NONLINEAR LEAST SQUARES

AND BAYESIAN PARAMETER ESTIMATION

Warren E. Stewart and Jan P. Sørensen

Chemical Engineering Department

and Mathematics Research Center

University of Wisconsin

Madison , Wisconsin 53706

New algorithms are described for Bayesian estimation of parameters in

nonlinear models of multiple -response systems . Modal and interval estimates

are provided for the parameter vector of the predictor model , and for the

variance-covariance matrix of a Normal error distribution . Allowance is

made for gaps (missing values of responses ) , such as commonly occur in

practice . Two chemical examples are analyzed .

INTRODUCTION

Realistic models of multivariate phenomena often relate several predicted

responses to a common set of parameters . Multiresponse experiments are re

quired to establish such models , but frequently yield irregular data which

are difficult to analyze by classical methods .

Bayes ' theorem is a good starting point for parameter estimation in these

situations . The multivariate error distribution can be estimated concurrently ,

whereas it has to be prescribed when least-squares methods are used . Thus ,

the Bayesian approach allows more objective parameter estimates , if sufficient

data are provided . An excellent general account of this approach is given by

Box and Tiao (1973 ) .

Bayesian inference deals with a data array { yui } = y , a model for E (y )

with parameter vector 2 , and an error distribution model. If a Normal error

model is used , with variance - covariance matrix oo
the unknown elements of

o will appear as additional parameters. The full set of parameters can be

-
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estimated optimally by maximizing the posterior density p10,0ly ) ; confidence

regions can also be calculated from this function .

In certain cases , the posterior density can be integrated analytically

to obtain the marginal density poly). Box and Draper ( 1965 ) accomplished

this for multivariate Normal error distributions and rectangular data structures

( Table la ) .
For block-rectangular structures ( Table lb ) , proly )

is the prod

uct of the Box-Draper densities for the individual rectangles . More compli

cated data structures often occur , however , such as that in Table lc , for

which proly ) cannot be expressed in closed form . Therefore , in this paper

we use the full posterior density p (0,0 ), which has a closed form for any

finite data structure .

Inspection of the parameter estimates and residuals often suggests

Therefore , parameter estimation shouldalternatives to the postulated model .

not be viewed as an end in itself , but should be followed by critical examina

tion of the model and investigation of any promising alternatives . Interesting

predictions or unresolved differences between models will naturally lead to

further experiments .
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PROBLEM FORMULATION

Consider a set of independent experiments , u = 1 , ... , n , in which a

table { yui } of observed responses have been obtained at known settings

{ xu } of the independent variables . linearly independentThere are m

kinds of observations ; thus the index i ranges from 1 to m but in

each experiment some values may be missing as in Tables lb and lc .

The observations in the uth experiment are regarded as a sample from

a population of the form

Yui ( 1 )
= f: (Xu'9 ) + Eui

The functions fi (* ) are models for the expected responses Elyuil
o
),

The residuals in the

Eui
uth experiment are treated as a random sample

from an m - variate Normal distribution ; this gives the probability density

-1

Here • εE
um

(Wilks , 1962 )

-m / 2
w /

ple, g) ( 2 ) 19,1-1/2 exp ( - + U Su .
( 2 )

ชั้น
is the column vector of error variables with dummy

Eul ' ...

zeroes inserted where observations are missing . Correspondingly , ºu
is

obtained from the full variance - covariance matrix , O = { o . , } by sub

ij

stituting dummy elements Pij whenever observation
Yuj

is

missing . Here is unity when i=j , and zero otherwise .

Yui or

ܪܪ
6

The joint error density model for the set of
n experiments follows

directly from Equation ( 2 ) :

plel 0,0 )

n -m / 2
u

II ( 2 )

u=l
18,1-2/2 exp ( -1 su Eu? "

( 3 )

Insertion of Equation ( 1 ) gives the corresponding density in observa

space :

n

p (y10,0 ) = [ 1

-m 12
( 21 ) lou, 1-1/2 ,

u=1

( 4)

n

ij
oexp ( -3 Σ Σ Σ

url i=l j=1
[Yui - fui (O) ] [Yuj - fuj ( 0 ) ] ) .
(
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ui

The
u

Here the functions fui ( ) stand for f: ( * ) evaluated at the known

ij

settings u of the independent variables . are the elements of

the precision matrices ?. The right - hand term may also be regarded ,

by Bayes ' theorem , as the likelihood function for and 0
when eval

uated with given observations у
M

The usual factorization of the prior density p ( 0,0 ) is assumed ,

p ( 0,0 ) = p ( 9 ) plo )
( 5 )

and a locally uniform density p ( ) is assumed in the region of appreci

able likelihood . The latter assumption requires some care in the parame

trization of the model . The prior density of o is taken from Box and

Draper (1965 ) :

(m+ 1 ) /2

plo )
a

101
( 6 )

Bayes ' theorem then gives the posterior density

plg , g1x ) = pl @ , g ) pſy | 0,0 )

c /g / -(m + 1) / 2

n

[ II

u=1

19,1-1/2,

(7)

n m m

exp -4 Ï Ï Ï odlYui - fui (Ⓡ)][Yuj
.

fuj ( O ) ] }
u=l i=l j=1

in which с is a proportionality constant . All that the data reveal about

the parameters Ꮎ and
g is contained in this density function ,

Point estimates of and
o are obtainable by maximizing the posterior

density just described , or by minimizing the function

s ( x ) = S ( 0,0 ) = -2 In p (0,0ly ) + 2 Inc

(m+ 1 ) in 101

n

į in locul+ ( 8 )

u=l

n m m

( - ( Ꮎ) ] [fui(O) lyuj - fuj ( 9 ) ]

ij

Σ Σ Σ
ui

url i=l j= 1

over the permitted region of ө and o Here V is a column array of
N M

the model parameters 02 and the independent elements of .

p
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The latter are taken from the lower triangle of o in row order , i.e.

is j
and k = j + i ( i-1 ) /2 . Thus , the total number

Yp+ k = 'ij
with

of parameters is q = p + m (m + 1 ) / 2 .

If the matrix
o were believed to be known , i.e. , if a sharply focussed

prior density p (g ) were assumed , then S ( 4 )
) would reduce to s ( 9 ) and we

would have a least - squares estimation problem with just p parameters . In

practice , one seldom knows o accurately ; hence , the full Bayesian solution

is recommended .

-
-

1

---

1
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PARAMETER ESTIMATION ALGORITHMS

Several algorithms are described here for obtaining summary informa

tion from Equation ( 8 ) . These algorithms are part of a Fortran IV package

available from the authors .

1. Counting Algorithm

Before analyzing S
we count Equations ( 1 ) to see which parameters

can plausibly be estimated from the data . We first try to match each

parameter in

ºkj
♡ with an observation pair

(Yuk'Yuj !
of a replicate

experiment ( i.e. , an experiment which has the same expected response values

as a prior experiment in the data set ) . If this process cannot be completed

for a given k , we then try to match each remaining error parameter Okj
1

[ f

ukand each model parameter ºr in the function pairs ( 0 ) , fuj ( C ) ] , with

a non-replicate observation pair ( Yuk'Yuj ) . Finally , any remaining model

are matched with remaining non - replicate observations ,parameters ө

r

If

the matching can be completed for all elements of we proceed with the

estimation . otherwise , the full set of parameters cannot be estimated from

the data .

The counting algorithm is a logical Gaussian elimination . This test

is a useful diagnostic , but is not infallible , since the actual rank of the

estimation equations depends on the numerical values of x , y , and y .

2 . Minimization Algorithm

A modified Newton method is used to find a minimum of s ( ) . Let to

be the value of V at the start of an iteration . A correction vector

( VI - VOYYol is computed by minimizing the local quadratic expansion ( see

Appendix for derivative expressions )A

Š ( 4 ) = S

s ( yo ) +

as

ay ( v - % )+ + y - you - You
( 9 )
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over a user-specified rectangular region around to · The region is chosen

small enough to ensure that Š ( 4) is a good approximation to the function

s ( V)
of Equation (9 ) . A search is then made for a minimum of S in the

interval of positive definite o on the line from

yo through yy ; this

gives the starting point for the next iteration . The calculation continues

until two successive line-minima agree within confidence intervals calculated

from Equation (14 ) for each parameter .

3 . Response - Independence Test

Box and co -workers (1973 ) have pointed out the need to test the responses

for linear independence . Preferably , one should perform this test on the

residuals [Yui - fui( 0) ] , which might become linearly dependent in certain

regions of o In the present procedure , such linear dependence is readily

detected during the inversion of o at the start of each iteration , The

N

calculation can continue if all pivot elements (Stewart , 1973 ) found in this

inversion are greater than a specified fraction , say 0.1 , of the corresponding

elements
Pii

4 . Confidence Regions

Equation ( 8 ) gives the simple form

p ( yly )
a

exp (-3 S ( y ) ] ( 10 )

for the posterior density function , or " confidence density" . Use of Equation

( 9 ) gives the approximation

p ( vly )
a

exp(-114 - ľ) * Â ( y – ♡ ) ,
( 11 )

valid in the neighborhood of the minimum point . Here Â is the qxa

matrix (positive definite since S is at a minimum ) with elements

2

a s

를 ( 12 )
km

a4a4m
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computed as described in the Appendix . Thus , near the optimum , the param

-1

eters are Normally distributed with variance-covariance matrix A If.

Equation (11 ) is used as an approximation for all values of then the

confidence intervals for Normal distributions can be applied . For example ,

the ellipsoidal region

( 4 - 0) ? Â Cų – ) < x? (q , a )) )
( 13 )

roughly approximates the 100 ( 1 - a ) percent highest - posterior - density region ,

The intervalsor joint confidence region , for ♡ based on the given data .

kk -1

"x 11 12 ) erfc ( a ) ( 14 )

roughly approximate the 100 ( 1 - a ) percent confidence intervals for the indi

vidual parameters . For symmetric 95 percent confidence intervals la = 0.05 ) ,

erfc-1 ( a ) has the value 1.96 .

Equation ( 14 ) is more reliable than ( 13 ) , since the integration used to

obtain it is less affected by the tails of the posterior density function .

More accurate intervals can be obtained , but with greater effort , by numerical

integration of Equation ( 7 ) or ( 10 ) .
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RESULTS FOR RECTANGULAR DATA STRUCTURES

If every experiment gives a full set of observations

Yul ! ... Yum

m

then Equation ( 7 ) takes the form

- (m+n+1 ) /2

p ( 0,0ly ) 101 exp (-ų į į
i=l j=1

ox
y

( 15 )

'ij (0) ]

in which

و(9)-الین-؟يب(9)19ہو-ید(9).
( Ꮎ ) fΣ

u=1

f ( Ꮎ)] .

uj

( 16 )

Integration of Equation (15) over the region of positive definite o gives

the marginal density function

p ( oly ) « lv ( 0 )lv (0 ) | -n/2 ( 17 )

as shown by Box and Draper (1965 ) . We wish to compare the estimates based

on this function with those obtained from the full density function of

Equation ( 15 ) .

Setting p1oly ) stationary with respect to its parameters gives

a in lv (0 ) av

= {
vij ܪܪ

= 0 k = 1 , ... , P ( 18 )

a .

k i j

ӘӨ.

k

when use is made of the Laplace expansion of | v + dvl. Here the vij are

-1

the elements of the matrix

Setting p10,0ly ) stationary with respect to its parameters gives , after

use of Equation (15 ) ,

-2 Ξ Σ Σ σ '

i j

a in p ( 0,01y )ə

әөк

a in ple , oly )

av . ( Ꮎ )

ij

ae .
k

o k = 1 , ... , ( 19 )

-2 a

5 (m+n+1 )

( in 101 ) * moto elect% 2310rs

ao

rs

до

= ( 2 - 0 ) ( - (m+n+1 ) O
rs rs

+ V

rs
( 9 ) ] = 0 ( 20 )

r 1 , ... ,m s = 1 , ... , r .

1

1

-
-

i
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Equation ( 20 ) gives , at the stationary point ,

V ( 6 )
rs

rs m+n+l

S

( 21 )

Hence ,

örs
(m + n + 1 ) v“ cô .

( 22 )

Insertion of Equation ( 22 ) into ( 19 ) gives Equation (18 ) at the stationary

point of ple , 0 \ Y ) . Hence , for rectangular data structures , the same values

of Ô and
and Ô

are obtained whether one maximizes p ( 0,0 | y ) or p ( oly ) .

Of course , the marginal confidence regions for 0 can be estimated more

directly in the latter case . The normal equations based on proly) , given

by Stewart and Sørensen (1976 ) , are convenient for this purpose .

The covariance estimates in Equation (21 ) are maximum - density values ,

rs

and thus differ from the expectation values Elorsly ) unless n - m - p is

very large . If expectation estimates of the Ors are desired , one can com

pute them as the corresponding moments of the normalized posterior density

p ( 8,0ly ) .

EXAMPLE 1 . Kinetics of a Three - Component System

Consider the chemical conversion of initially pure species 1 to species

2 and 3 in a batch isothermal reactor . Simulated data for the system are

given in Table 1 , reproduced from Box and Draper ( 1965 ) ; here Yui
is the

yield of species i in experiment u . The system is modelled by the differ

ential equations

af I

at -k, fi

dfa
t 2

dt kı f1 - kz F2

af 3

dt

= k

2

f

2

which have the solution
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O

fi = exp (-k , t )

f2 = (exp (-x, t )

f3 = 1 - f1 - 2

exp (-k2 t ) ] ky/ (ką - ki ?

under the indicated initial conditions . As noted by Box and Draper , it is

natural to regard the parameters i = In ki as uniformly distributed a priori.

There are three responses per experiment . Only two would be linearlyYui

independent if the yields were mass - balanced (i.e. , if the yields in each row

added up to unity ) . The data in Table 2 are clearly not mass-balanced , so we use

all three columns of responses .

The replicates in Table 2 allow preliminary estimation of the parameters

°ij , by the relation

n

R

Sij

1

2n (yri - Yri ) (Yrj - Yrj
' . )

Rr =1

Here Yri
and Yri are the observations of response i in the first and

second tests of replicate pair r and

AR
n

R

is the number of such pairs .

This procedure gives

0.00102 -0.00128 0.00025

{ s .. } -0.00128 0.00351 0.00024

0.00025 0.00024 0.00101

as a preliminary expectation estimate of O. This is a well - conditioned

matrix , so our choice m = 3 was correct .

The parameter vector for the present example consists of 04 , 02

and the six elements on and below the diagonal of O. To test the conver

gence of the estimation from a poor initial guess , the calculation was started

from the initial value shown in Table 3 . Convergence was obtained in eight

iterations , to the point estimates and 95 percent confidence intervals given

there .
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A second calculation was made with the same initial values , but with

second-order 0 -derivatives neglected . Convergence was obtained to the same

point estimates in nine iterations . The confidence intervals differed

slightly , as shown in Table 3 .

A third calculation was made by minimizing the determinant lv ( o ) l . Box

and Draper (1965 ) did this by a search procedure; we used the modified Newton

algorithm of Stewart and Sørensen ( 1976 ) , but neglected the second - order 6

derivatives of the functions fui ( 9 ) Convergence was obtained in seven

iterations , to the same point estimates @z · The point estimates for the

ºij
, computed from Equation (21 ) , also agreed exactly with the two preceding

solutions . The one-parameter confidence intervals ( computed in this case only

for 9 and 02빌 are wider than before , and are considered more accurate

since in this case the

Pij
have been integrated out exactly (Box and Draper ,

1965 ) .

EXAMPLE 2 . Kinetics of a Five -Component System

Fuguitt and Hawkins (1945 , 1947 ) did extensive experiments on the liquid

phase thermal reactions of a - pinene and its decomposition products . The

following products , in order of boiling point , were identified .

A. a-Pinene

B. a - and B - Pyronene

C20H16

C10416

C20H16
C. Dipentene

D. allo-Ocimene - н .

'10 " 16

E. Dimer н .

20 ° 32

The reaction conditions and yields are reported in Table 4 .

We have normalized the yields to obtain exact mass balances ; this makes

the yields linearly dependent , and accordingly we have omitted species

The remaining species are grouped as cumulative distillation fractions :
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A , A+B , A+B+C , and E. Each of these responses represents essentially the total

mass fraction distilling above or below a particular temperature . The yields

.

of originally reported in tests 1-15 have been deleted , since they were

interpolated values rather than observations (Fuguitt and Hawkins , 1947 ; Box

and co -workers , 1973 ) .

There are numerous gaps in the data . a - Pinene (A) was reported in experi

ments 1-16 , but was considered negligible in the remaining experiments . Pyronenes

( B ) were reported only in experiments 16-31 ; they proved difficult to isolate

except at small concentrations of a-pinene . Only the dimer fraction (E ) was

reported in the experiments with allo -ocimene (D) or dimer (E) as feed .
The

simplified reaction scheme proposed by Fuguitt and Hawkins ( 1947 ) implies that

d - pinene (A) and dipentene (C ) would not be formed in the latter experiments ,

but that the other three species would be present ,

The first eight experiments were used for parameter estimation according

to Equation (17 ) with
m = 3 by Box and co -workers (1973 ) , and by the present

authors ( 1976 ) . The full 41 experiments could not be so analyzed because of

their irregular structure; therefore , only rough estimates were obtainable for

several of the reaction parameters . With Equation (8 ) , on the other hand , all

41 experiments can be analyzed .

We postulate the following reaction scheme ,

ki

A С

K
56

K
A

H

3

E D B

k- 4
k

-3
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with the following differential equations for the concentrations :

24 2

- (k + ką! PAdt 2k5 0

dBB

dt
-k k

0B-3 k Фр

doc

dt ky PA

афр 2

k , ФА
+ k

Adt

+ 2k

2%4 00-3 ° B - k3 D -4 PE

doe 2E

dt kg 8

2

+ k

A 8
k
-4 PE

Here we have assumed equal densities for the reaction mixture and all species .

The 0 are molar concentrations relative to the molar density of pure liquid

a-pinene at the reaction temperature . The resulting initial 0 .

i

values for the

pure reactants are : 1.0 for a -pinene , 1.0 for allo - ocimene , and 0.5 for

dimer . The rate coefficients are represented as Arrhenius functions ,

ln ( k . )

i

i = 1 , ... , 5

-

011/ 1B

ei - ( 1 / T – 1 /TB' ºi +5

in (kz/k- 3 ) :
+ ( 1 / T -

1 / TB' 013

in (ky/* _ 4)
1 / T8' 914

ki values in min
Kelvins , and a base temperature TB

-0 .
12/ T3 + ( 1 / T

-1

with T in of
1

478.5 K.

The data and parameters were paired to check the feasibility of the

estimation . This indicated a sufficient amount of data for estimation of all

( u = 18-19,20-21 ,
parameters except 021 · However , the replicate comparisons

22-23,24-25 ) involving Yu2 all give duplication of Yu3 : furthermore each of

these comparisons gives a duplication of either
Yu2 Yu4 •

or with these

results , we find that neither 032
nor ancan be estimated ; indeed ,

° 42

attempt to estimate them was terminated by the linear independence test

described above . Thereafter , 021 ' 32 ' and

042
were all fixed at zero , and

the remaining parameters were estimated by minimization of S.
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Initial values of the 0 - parameters were chosen from the results of

Fuguitt and Hawkins (1945 , 1947 ) , Box and co -workers (1973 ) , and the present

authors (1976 ) .
Initial variance estimates Oii were calculated from repli

cate data available in Table 4 , and zeros were inserted initially as covariances .

The model was integrated , for each experiment , by the method of Guertin

et al (1977 ) with 6 mesh points . The coefficients in Equation ( 9 ) were com

puted as described in the Appendix , with first-order sensitivities 20 .. : / 20
ui k

computed by the method of Stewart and Sørensen ( 1976 ) .

A first minimization , with reaction 5 omitted , converged within 20 itera

tions . This gave ŝ = 41.06 with parameter estimates as shown in Table 5 .

The confidence intervals show the o's to be estimated quite precisely . The

'ij are estimated less precisely , as anticipated from the limited number of

data on several combinations of responses . The deviations of the data from

the fitted model are shown in Table 6 .

A second minimization of S was done with the full 5-reaction model .

This calculation converged to a very flat minimum at ŝ = 34.09 , with param

eter estimates as shown in Table 5 . The deviations of the data from this

fitted model are also shown in Table 6 .

The 5-reaction model is better able to describe the polymer yields from

a-pinene at short times , as can be seen in Table 6 . We can also test the

significance of the added parameter ºg by use of the confidence intervals .

Table 5 gives Ꮎ

5
= -11.945 + 0.698 , based on Equation ( 14 ) ; this implies the

limits ( 1 + 0.698 ) exp (-11.945 ) for kg with the alternate prior p (ks ) = C.

Hence , the 95% confidence interval for k

5

does not include zero .

On the other hand , Equations ( 9 ) and ( 13 ) give the following approximate

expression for the 95% confidence region of the 20 fitted parameters of the

5-reaction model :

1
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S ( ) - 34.09 < x ( 0.05 ) = 31.41 .

All values such that S ( V ) < 65.50 lie within this estimated 95% joint

confidence region .
By this criterion , the model with ks = 0

= 0 is acceptable .

However , as indicated earlier , Equation ( 14 ) is more reliable than ( 13 ) . From

this , and a study of the residuals , we conclude that the 5-reaction model is

to be preferred .
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APPENDIX : DERIVATIVES OF S.

The matrices

ou
are real and symmetric ; furthermore , s is defined only

when these matrices are positive definite . The following derivative relations

then hold :

a in loul
( 2

ij
o Do

ij
jsi (Al )

до

uij

ij
a o

u

ao

uke

ik lj

-Ž ( 2 Oke ) louis on
il kj

+ 0 o ]
u*

I < k . (A2 )

The relations for second derivatives follow by combination of (Al ) and (A2 ) :

2

a

ik lj il

6 ) 8 . okj ,+ 0

ou jsi , lak
ao ao

ij kl u

ukluij

(A3 )

u

2 ij
ao

u

ao ao

ust ukl
+ 12 - Oke ? ( 2 - ost?

tk

o + o

u
it osk , olj

tiik

+ 0

u

ls

lo o

u

lt

+ o

u 0$u u

kjis

+ ( o

u

ose, o
kste it

o + O

u

il

+ 0

u

ole lo
tj
o

kt

+ 0

uoft og )
:) ]

u

lak , t < S. (A4 )

As indicated earlier , if response is absent from experiment the

elements o and o

•
are replaced by the constant dummy values

Snjuhj

Note also that the symmetry of u has been used to express these deriva

ujh

tives in terms of elements on and below the diagonal .

The derivatives required for Equation (9 ) are obtained as follows :

- 2/2

as

ao

r

= ij

- ΣΣ Σ Σ Α ( 2( 2 - 8 .. ) o- & ; ) on
a

ao

r

( E ( A5 )u

i jsi
ui ťuj!

2/를

2

2 s

ӘӨ ӨӨ

r V

ij

8..) o
2(2-هنز

ΣΣ Σ

u i j < i

2

a

Ꮎ Ꮎ Ꮎ Ꮎ

r

( €ui Euj )
( A6)

ij
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do
žj

u

2 를

so

2

as

ao do,
r kl

1 ( 2ΣΣ Σ

u i j < i

8 .. )

ij

colo

a

ӘӨ

r

до

ukl

(A7 )

( Eui Euj !

n a in

a in g . loul
- 3

as

ao

st

- ( m + 1 )
до

st

Σ 를

u = 1

do

st

ij
до

u

ao
ΣΣ Σ 4 ( 2 - δ..)

u i j < i
ij

(A8 )
Eui Euj

st

2

a's in lou !Ž

를 * ( m + 1 ) + {
do

st

a ln

ao ao.

st kl

до, δσ

kl ust

ao

ukl

+ ΣΣ Σ Α ( 2

u i ji

8 .. )

ij

ao

u

до ao

ust uke

Eui Euj
(A9 )

Equations (A6 ) , (A7 ) , and (A9 ) evaluated at and
co

provide the coef

ficient matrix A of the normal equations . Equations (A5 ) and (A8 ) give the

right -hand column vector .

N

The residuals
Eui

and

Euj
are expressed as functions of O by use

of Equation ( 1 ) . The e-derivative in Equation ( A6 ) is expanded to give :

deui

Jeni
deuj

2

ə

ao

ir

δε
ui

) =
ao

r

( Eui Euj ! 20
+

ao

r

δε
ui

an

Vv

a²eui
2

ui
+ E

2

ο εE

ui

r

(All )
Cui 20 ao

9aer20,* & uj 29.26

The second-derivative terms are unimportant if the data are well fitted ;

compare Solutions 1 and 2 in Table 3 .

If the experiments have different weights Wu as in Table 4 , then

Eui Euj
and its derivatives should be multiplied by W

u

throughout the

development . As usual , the matrix o is defined for experiments of unit

weight .

-
-

233



Table 1 . Examples of Data Structures with m = 4 and n = 8

la. Rectangular lb. Block - rectangular lc . Irregular

u

Yul Yuz Yu3 Yu4 Yul Yuz Yu3 Yu4 Yul Yuz Yuz Yu4

1 +

+ + +

+ + +

2

+ + +

+

+

+ + ++
+

+
+

3

+ +

+

+ +

+

4

+

+

+

+

+

+ +

5

+

+ +

6

+
+

+

+ + x

7

+ +

+

+

+ + +

8

+

+ +

+

+ + + +

Table 2 . Data for Example 1 , from Box and Draper ( 1973 )

t

u

Y
u
l

Yu2
Yu3

0.5 0.959 0.025 0.028

0.5 0,914 0.061 0.000

1 . 0.855 0.152 0.068

1 ,

0.785 0.197 0.096

2 . 0.628 0.130 0.090

2 . 0.617 0.249 0.118

4 . 0.480 0.184 0.374

4 . 0.423 0.298 0.358

8 . 0.166 0.147 0.651

8 . 0.205 0.050 0.684

16 . 0.034 0.000 0.899

16 . 0.054 0.047 0.991
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Table 3 . Parameter Values for Example 1

Initial

Value

Solution 1

Eqs . ( 8,14 ) *

Solution 2

Eqs . ( 8,14 ) *

Solution 3

Eqs . ( 18,21 ) *Parameter

61
-2.3026 -1.572320.0567 -1.5723+0.0558 -1.5723+0.0800

0

2

0 . -0.7023+0.1374 -0.7023+0.1346 -0.7023 +0.1931

-3

°11
0.01 ( 0.76+0.52 ) 10

-3

0.76 10

021
0 . - (0.50-0.63 ) 10-3

-3

-0.50 10

( 0.76+0.53 ) 10-3

- (0.50-0.63 ) 10-3

( 1.86+1.29 ) 10-3

( 0.32+0.41 ) 10-3

022
0.01 ( 1.86 + 1.28 ) 10-3 1.86 10-3

031
0 . (0.32 +0.41) 10

-3

0,32 10-3

-3

032
0 . ( 0.40-0.62 ) 10

-3

(0.40+0.62 ) 10 0.40 10-3

0.77 10-3
033

0.01 ( 0.77 +0.54) 10-3 (0.77 +0.54 ) 10-3

*

All intervals are 95% highest posterior density regions . In Solution 3 , the

intervals are computed from the normal equations with " residual mean square"

lucê ) \ / (n-2 ) and n-2 = 10 residual degrees of freedom . In Solution 1 , the

second -derivative terms of Equation (Alo ) are included .
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Table 4 . Data for Example 2 , from Fuguitt and Hawkins ( 1945,1947 )

Normalized yields , weight percent
**

Feed T , C.Expt .

u

turmin Yul Yu2
Yu3

YuA
u

(A) ( A+B ) ( A + B + C ) ( E )

-

***

***

.

***

***

2.2

1.3

2.8

5.8

9.3

12.0

17.0

21.0

***

***

***

88.3

88,2

76.4

64.8

50.3

37,5

25.9

14.0

86.6

75.0

66.0

59.4

48.9

32.8

11.5

4.5

***
.6

***

***

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

***

2 *

3

4

5

6

7

8

9

10

il

12

13

14

15

16

17

18

19*

20

21*

22

23 *

24

25*

26

27

28*

29

30

31

32

33

34

35

36 *

***

96.2

95.7

92.7

88.9

84.7

82.0

77.1

73.9

95.3

91.5

88.8

86.4

83.0

77.8

70.4

70.5

66.2

66.0

66.0

65.0

65.0

65.0

65.0

66.0

66.0

-

189,5 1230 .

189.5 1230 .

189.5 3060 .

189.5 4920 .

189.5 7800 .

189.5 10680 .

189.5 15030 .

189.5 22620 .

204.5 440 .

204.5 825 .

204.5 1200 .

204.5 1500 .

204.5 2040 .

204.5 3060 .

204.5 6060 .

189.5 36420 .

204.5 16020 .

225.0 3000 .

225.0 3000 .

245.0 630 .

245.0 630 .

265.0 120 .

265.0 120 .

285.0 30 .

285.0

189.5 1020 .

189.5 3990 .

189,5 3990 .

189.5 6780 .

189.5 8220 .

189,5 13260 .

189.5 14760 .

204.5 3480 .

204.5 5700 .

189.5

189,5 8880 .

189.5 14340 .

189.5 23400 .

189.5 23400 .

204.5 5700 .

204.5 8100 .

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

7.4

3.1

3.0

4.0

4.0

5.0

7.0

7.0

11.0

9.030 .

1.6

3.4

5.1

8.3

13.8

22.5

25.7

28.6

28,0

28,0

27.0

27.0

23.0

24.0

19.0

19.0

80.0

87.3

87.3

87.5

86.5

88.5

89.8

87.5

86,8

91.9

92,0

89,8

89.7

88.5

88.4

87.9

-

D

1

D

D

8880 .

37

D
D
E
E
E
E
E
E
E

.

.38

39 *

40

41

*

Replicate of the preceding test .

**

w is the number of independent tests combined to obtain each observation Yui 'u

***

Originally reported but not observed ; see text .

- No value reported .
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Table 5. Parameters for a - Pinene Conversion

**

Estimates for

4 - Reaction Model

Estimates for

5-Reaction ModelParameter

-8.331 + .024 -8.333 – .025

1

02
-8.898 + .029 -8.961 + .054

0
3 -8.242 + .341 -8.196

1
+ .325

0 -5.389 + .081 -5.438

I
t .087

Ą

0
5 -11.945 † .698

0
6 19814 . + 428 . 19785 .

+
1

457 .

0
1 20828 . + 474 . 20890 . + 536 .

og 17336 . † 4079 . 17212 . + 4203 .
8

0 10321 . 915 . 10322 . + 918 .

19957 .
**

010
022 269 . + 83 . 279 .

+
1 83 .

-1976 . + 64 . -1985 . +
1

63 .
12

013
-336 . † 950 . -259 .

I+

958 .

014
-3873 . I 1624 . -3781 . + 1555 .

611 .696 + .419 .784 .492

**

21

**

.000 .000

. 391 .359 .376

+

.348

.358 + .412 .426

I+

.456

022

031

°32

033

.000
** **

.000

.706 + .426 .732

+

.444

041
- . 248 + .344 -.294 + .354

.000
**

.000
**

042

043
-.504 † .317 -.493 † .314

ود
ه

.744 + . 304 .654

I+

.282

95% highest posterior density intervals calculated from Equation ( 14 ) .14 ).

**

Posterior estimates were not obtained for these parameters .

7
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Table 6 .
Final Residuals Evi ( @ ) for Example 2 .

4-Reaction Model 5 - Reaction Model

Eu2Expt . ,

u

Eul

(A )

Eu3

( A + B + C )

Eu4

( E )

Eul

(A )

u2

( A+B )

Eu3

( A + B + C )

Eu4

( E )( A + B )

-.26

-.76

.43

.06

.12

.78

-.29

.7
4

-1.22

-1.32

.43

.45

.48

-1.12

-.43

.47

1.00

.24

.45

.38

.01

-1.52

-.70

.44

0

1.69

.79

.45

.72

-.04

-.96

-.18

-.92

-.ll

- . 38

-.34

-.23

.08

75

.77

-.14

-

1

-

- -
-

-1.32

-1.42

.26

.28

.38

-1.13

-.32

.66

.88

.10

.31

.27

-.04

-1.44

-.47

.60 .78

-.12

-.81

.19

-.89

.ll

-.54

-.54

1.54

-.46

-.37

-.87

.24

-.15

-.04

.70

-.26

.89

.21

-.17

-.07

-.51

-.86

-1.56

-1.47

.98

-.67

.51

.51

.29

.29

-.31

-.31

.49

.49

- -

-

1

2 .

3

4

5

6

7

8

9

10

il

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

.50

1

. 35

.04

.15

-.29

-.69

-1.49

-1.61

.74

-.87

. 38

.38

.22

.22

-.32

-.32

.58

.58

-

2.00

1.10

.88

1.10

.22

-.81

-.17

-1.06

.30

.14

.16

.23

.42

.90

.63

-.36

.34

-.48

-.48

-.56

-.56

-.37

.63

-.15

-.15

1.12

-.92

-.92

-1.31

-2.37

-.41

.90

.67

-.31

1.26

1.36

.24

.91

-.29

.42

.51

.72

-.07

-.76

.24

-.88

.13

-.58

-.58

1,51

-.49

-
-

-.39

-.39

-.47

-.47

-.28

.72

-.20

-.20

1.95

-.61

-.61

-1.16

-2.27

-.42

.86

.72

-.40

1.17

1.27

.16

-

- -

1

-

-
-

.80

-.40

.27

.35

* 3558-6-20 - A

5-07

CO
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