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FOREWORD

The 25th Conference on the Design of Experiments in Army Research,
Development and Testing (DOE) was held 17-19 October 1979 at the

U. S. Army Natick Research and Development Command in Natick,
Massachusetts. This was the second time in the history of these
conferences that this Army base has provided the facilities to conduct
one of these scientific meetings. The fourth conference in the series
was held here. At that time, the base was called the Quartermaster

Research and Engineering Center.

The original format for the DOE Conferences, which are under the
auspices of the Army Mathematics Steering Committee (AMSC), was outlined
by the eminent statistician, Professor Samuel S. Wilks, who served as
conference chairman until his death. Through these symposia the

AMSC hopes to introduce and encourage the use of the latest statistical
and design techniques into the research, development and.testlng
conducted by the Army's scfentific and engineering personnel. It is
believed that this purpose can be best pursued by holding these meetings

at various government installations throughout the country.

Several features in this year's agenda pointed out the special
significance of this, the Silver Anniversary of these meetings. The
program was dedicated to Dr. Francis G. Dressel, formerly Professor
of Mathematics at Duke University. For the past 25 years Dr. Dressel

has coordinated the conference programming and local arrangements,



and has edited proceedings of this and other AMSC sponsored conferences.
The DOE Program Committee invited Dr. Dressel's friends to join in

expressing their appreciation for this loyal service.

The Program was to begin with an address by Dr. Frank E. Grubbs,
formerly of the U. S. Army Ballistic Research Laboratory, and a
renowned statistician. His talk was entitled, '"A Quarter Century
of Army Design of Experiments Conferences'. This was to be followed
by an address entitled, "Summarizing the Results of a Series of -
Experiments'' to be given by Dr. William G. Cochran, Professor of
Statistics Emeritus, Harvard University. Unfortunately, both of
these gentlemen were unable to attend the conference. Their
addresses were read, respectively, by Dr. Dressel and Dr. Herman
Chernoff, Professor of Mathematics at the Massachusetts Institute

of Technology. (Dr. Grubbs was also unable to serve as Master of
Ceremonies at the banquet and to make the presentation of the Samuel
S. Wilks Memorial Medal. These duties were taken over by Dr. Robert
Launer of the Army Research Office.) The other invited speakers

and their topics are noted below.

Speaker and Affiliation Title of Address

Mr. Al L. May DESIGNED EXPERIMENTS IM SENSORY
Pillsbury Research Labs TESTING

Dr. Ray E. Schafer COMPUTER AIDED HYPOTHESIS TFSTS -
Hughes Aircraft Company THE BIRNBAUM TEST



Professor Warren Stewart NEW ALGORITHMS FOR NONLINEAR LEAST

Mathematics Research Center SQUARES AND BAYESIAN PARAMETER
and University of Wisconsin ESTIMATION

Professor Marvin Zelen ETHICS AND STRATEGY IN THERAPEUTIC
Harvard School of Public INVESTIGATIONS

Sciences

The members of the AMSC take this opportunity to express their thanks
to the speakers and other research workers who participated in the
meeting; to Colonel H. F. Penny, Commanding Officer of the U. S. Army
Natick Research and Development Command, for making available the
excellent facilities of his organization for the conference; and

to Mr. Donald Kass who so ably handled the details of the local
arrangements for this meeting. The AMSC is making available most of
the papers presented at this meeting in the present form in order

to encourage wider use of modern statistical principles of the design

of experiments in research, development and testing work of concern

to the Army.
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1979
THE TWENTY-FIFTH ANNIVERSARY OF
THE CONFERENCES ON
THE DESIGN OF EXPERIMENTS IN
ARMY RESEARCH, DEVELOPMENT AND TESTING

THIS PAMPHLET CONTAINS THE NAMES OF INVITED SPEAKERS
SELECTED FROM THE PROGRAMS OF

THE FIRST TWENTY-FIVE MEETINGS IN THIS SERIES

FOLLOWED BY A LIST OF
RECIPIENTS OF THE WILKS MEMORIAL AWARD

These Conferences Are Sponsored By
The Army Mathematics Steering Committee

U. S. Army Research Office
Research Trfangle Park, North Carolina



CONFERENCES ON THE DESIGN OF EXPERIMENTS IN
ARMY RESEARCH, DEVELOPMENT AND TESTING

List of Invited Speakers at
the First Twenty-Five Meetings

First Conference: 19-21 October 1955, Diamond Ordnance Fuze
Laboratory and National Bureau of Standards

Professor W. G. Cochran
THE PHILOSOPHY UNDERLYING THE DESIGN OF EXPERIMENTS

Dr. Churchill Eisenhart
THE PRINCIPLE OF RANDOMIZATION IN THE DESIGN OF EXPERIMENTS

Dr. M. E. Terry v
FINDING OPTIMUM CONDITIONS BY EXPERIMENTATION

Professor John Tukey (Chairman)

PANEL DISCUSSION ON HOW AND WHERE DO STATISTICIANS FIT
IN. (THE OTHERS ON THIS PANEL WERE: MR. CUTHBERT DANIEL,
MS. BESSE DAY, DR. CHURCHILL EISENHART, DR M. E. TERRY,
AND PROFESSOR S. S. WILKS).

Dr. W. J. Youden
DESIGN OF EXPERIMENTS IN INDUSTRIAL RESEARCH AND DEVELOPMENT

Second Conference: 17-19 October 1956, Diamond Ordnance Fuze
Laboratory and the National Bureau of Standards

Dr. C. A. Bennett
THE PREDESIGN PHASE OF LARGE SAMPLE EXPERIMENTS

Professor R. A. Bradley
RECENT RESEARCH IN STATISTICAL PROBLEMS IN SUBJECTIVE TESTING

Professor B. G. Greenberg
APPLICATION OF ORDER STATISTICS IN MEDICAL EXPERIMENTS

Professor G. E. Nicholson, Jr.
THE PLANNING OF EXPERIMENTS IN THE PRESENCE OF VARIATION

Or. M. B. Wilk
DERTVED LINEAR MODELS IN THE ANALYSIS OF VARIANCE



Dr. Jerome Cornfield
CHOICE OF ERROR IN THE DESIGN OF EXPERIMENTS

Third Conference: 16-18 October 1957, Ciamond Ordnance Fuze Laboratory
and the National Bureau of Standards

Professor Benjamin Epstein
LIFE TESTING

Sir R. A. Fisher
PRACTICAL PROBLEMS IN EXPERIMENTAL DESIGN

Professor H. 0. Hartley

CHANGES IN THE OUTLOOK OF STATISTICS BROUGHT ABOUT BY MODERN
COMPUTERS

Dr. A. W. Marshall
EXPERIMENTATION BY SIMULATION AND MONTE CARLO

Fourth Conference: 22-24 October 1958, The Quartermaster Research
and Engineering Center, Natick

Mr. C. I. Bliss
SOME STATISTICAL ASPECTS OF PREFERENCE STUDIES

Professor A. C. Cohen

SIMPLIFIED COMPUTATIONAL PROCEDURES FOR ESTIMATING PARAMETERS
OF A NORMAL DISTRIBUTION FROM RESTRICTED SAMPLES

Dr. A. W. Kimball
ERRORS OF THE THIRD KIND IN STATISTICAL CONSULTING

Professor C. F. Kossack
THE AASHO ROAD TEST AS AN EXAMPLE OF LARGE SCALE TESTS

Mr. L. H. C. Tippett
STATISTICAL METHODS APPLIED TO THE TEXTILE INDUSTRY



Fifth Conference: 4-6 November 1959, The U. S. Army Biological
Warfare Laboratories, Ft. Detrick

Dr. Joseph Berkson
THE MEASURE OF DEATH

Dr. H. A. David
THE METHOD OF PAIRED COMPARISONS

Dr. D. B. Delury
SAMPLING IN BIOLOGICAL POPULATIONS

Dr. W. J. Dixon
MEDICAL HEALTH STATISTICS

Dr. N. E. Golovin
PREDICTION OF THE RELIABILITY OF COMPLEX SYSTEMS

Dr. Richard Weiss

THE ARMY RESEARCH AND DEVELOPMENT PROGRAM AS IT RELATES TO
THE CIVIL ECONOMY

Sixth Conference: 19-21 October 1960, The Ballistic Research
Laboratory

Dr. James R. Duffett
RELIABILITY

Professor F. J. Anscombe
EXAMINATION OF RESIDUALS

Dr. W. S. Connor
DEVELOPMENTS IN THE DESIGN OF EXPERIMENTS

Dr. J. E. Jackson

MULTIVARIATE ANALYSIS TLLUSTRATED BY NIKE-HERCULES:
1. SEPARATION OF PRODUCT AND MEASUREMENT VARTABILITY
11. ACCEPTANCE SAMPLING

Professor G. E. P. Box (Chatrman)

PANEL DISCUSSION ON COMMON PITFALLS IN THE DESIGN OF
EXPERIMENTS. (OTHERS ON THE PANEL WERE MR. CUTHBERT DANIEL,
DR. J. S. HUNTER, DR. W. J. YOUDEN AND DR. MARVIN ZELEN).

.




Seventh Conference: 18-20 October 1961, U. S. Signal Research
and Development Laboratory, Ft. Monmouth

Dr. G. A. Watterson
TIME SERIES AND SPECTRAL ANALYSIS

Dr. J. M. Hammersley
MONTE CARL" METHODS

Dr. R. L. Anderson
DESIGNS FOR ESTIMATING VARIANCE COMPONENTS

Dr. G. S. Watson
HAZARD ANALYSIS

Professor Robert M. Thrall (Chairman)

PANEL DISCUSSION ON SIMULATION. (OTHERS ON THE PANEL WERE
COL. A. W. DEQUOY, DR. JOHN HAMMERSLEY, MR. JOHN H. MOSS AND
DR. GUSTAVE ROBSON) .

Eighth Conference: 24-26 October 1962, Walter Reed Army Institute
of Research

Professor Egon S. Pearson

A STATISTICIAN'S PLACE IN ASSESSING THE LIKELY OPERATIONAL
PERFORMANCE OF ARMY WEAPONS AND EQUIPMENT

Dr. Marvin A. Schneiderman

A GENERAL SURVEY OF SCREENING THEORY

Professor Herman Chernoff
OPTIMAL DESIGN EXPERIMENTS

Dr. R. P. Abelson
AN EXPERIMENTAL DESIGN FOR DECISIONS UNDEX UNCERTAINTY

Dr. H. C. Batson
BI0-ASSAY

Dr. Harold F. Dorn (Chatrman)

PANEL DISCUSSION ON DIET AND HEART DISEASE. (OTHERS ON
THE PANEL WERE MR. JEROME CORNFIELD, AND DR. GEORGE V. MANN).



*

Ninth Conference: 23-25 October 1963, U. S. Army Missile
Command
Professor Solomon Kullback
COMMUNICATION THEORY

Professor Frank Proschan
THE CONCEPT OF MONOTONE HAZARD RATE IN SYSTEMS REALIABILITY

Dr. Churchill Eisenhart

REALISTIC EVALUATION OF THE PRECISION AND ACCURACY OF
INSTRUMENT CALIBRATION SYSTEMS

Professor H. 0. Hartley

NONLINEAR ESTIMATION

Professor D. B. Duncan

ON THE SIMULTANEOUS ESTIMATION OF A MISSILE TRAJECTORY
AND THE ERROR VARIANCE COMPONENTS INCLUDING THE ERROR
POWER SPECTRA OF SEVERAL TRACKING SYSTEMS

Professor Boyd Harshbarger (Chairman)

PANEL DISCUSSION ON WHAT TYPE OF STATISTICIANS ARE NEEDED
IN RESEARCH AND DEVELOPMENT LABORATORIES. (OTHERS ON THE
PANEL WERE DR. E. L. COX, DR. CHURCHILL EISENHART, MR. JOHN
L. MCDANIEL, DR. PAUL R. RIDER, DR. WILLIAM WOLMAN AND

DR. DONALD A GARDINER) .

Tenth Conference: 4-6 November 1964, The Army Research Office,
Washington, DC

MAJ GEN Leslie E. Simon (Ret'd)
THE STIMULUS OF S. S. WILKS TO ARMY STATISTICS

Professor Oscar Kempthorne

DEVELOPMENT OF THE DESIGN OF EXPERIMENTS OVER THE PAST TEN
YEARS

Professor H. 0. Hartley and Professor A. W. Wortham
ASSESSMENT AND CORRECTION OF DEFICIENCIES IN PERT ANALYSIS




Dr. Churchill E{senhart
SAM WILKS AS T REMEMBER HIM

Dr. W. J. Youden
AN OPERATIONS RESEARCH YARN AND OTHER COMMENTS

Professor John W. Tukey
THE FUTURE OF PROCESSES OF DATA ANALYSIS

Dr. M. G. Kendall
STATISTICS AND MANAGEMENT

Professor Gerald J. Lieberman (Chairman)

PANEL DISCUSSICN ON REGRESSION ANALYSIS. (OTHERS ON THE PANEL
WERE PROFESSORS ROBERT BECHHOFER, G. E. P. BOX, JACK C. KIEFER
AND INGRAM OLKIN),

Eleventh Conference: 20-22 October 1965, U. S. Army Munition Command,
Dover. Held on the campus of Stevens Institute
of Technology in Hoboken, New Jersey

Dr. Joan R. Rosenblatt :
CONFIDENCE LIMITS FOR THE REALIABILITY OF COMPLEX SYSTEMS

Professor J. Stuart Hunter
NONLINEAR MODELS: ESTIMATION AND DESIGN

Professor William C. Guenther
TARGET COVERAGE PROBLEMS

Professor H. 0. Hartley

MAXTMUM LTKELIHOOD ESTIMATES FOR THE GENERAL MIXED ANALYSIS OF
VARTIANCE MODEL

Professor R. E. Bechhofer

PANEL DISCUSSION ON SELECTING THE BEST TREATMENT. (THE OTHER
PANEL MEMBER WAS PROFESSOR SHANTI S. GUPTA).

XV



Twelfth Conference: 19-21 October 1966, Harry Diamond Labs,

and the National Bureau of Standards

Professor Brian W. Conolly
OPERATIONS RESEARCH

Dr. John Mandel
STATISTICS AS A DIAGNOSTIC TOOL IN DATA ANALYSIS

Professor W. G. Cochran
PLANNING AND ANALYSIS OF OBSERVATIONAL STUDIES

Professor Norman L. Johnson
SAMPLE CENSORING

Thirteenth Conference: 1-3 November 1967, The U. S. Army Mobility

Equipment Development Center and the U. S.
Army Engineer Topographic Laboratories

Professor Francis J. Anscombe
REGRESSION ANALYSIS

Professor K. A. Brownlee
SOME COMMENTS ON MATCHING

Professor 1. J. Good
SOME STATISTICAL METHODS IN MACHINE INTELLIGENCE RESEARCH

Dr. Frank Proschan
MAXTMUM LTKELIHOOD ESTIMATION OF RELIABILITY

Dr. M. B. Wilk
DATA ANALYSIS

Fourteenth Conference: 23-25 October 1968, U. S. Army Edgewood

Arsenal

LT GEN William B. Bunker .
BROADENING THE HORTZONS OF EXPERIMENTAL DESIGN

Professor Rolf E. Bargmann
STRUCTURE AND CLASSIFICATION OF PATTERNS




Professor Acheson J. Duncan
BULK SAPLING

Professor Emanuel Parzen
TIME SERIES

Dr. Walter D. Foster (Chafrman)

PANEL DISCUSSTION ON BULK SAMPLING. !OTHERS ON THE PAVEL
WERE PROFESSORS ACHESON J. DUNCAN AND BOYD HARSHBARGER AND
MESSRS. HENRY ELLNER, GENE RAY LOWRIMORE, JOSEPH MANDELSON
AND VERNON H. RECHMEYER) .

Fifteenth Conference: 22-24 October 1969, U. S. Army Missile
Command -

Dr. John E. Condon
RELIABILITY AND QUALITY ASSURANCE

Dr. Nancy R. Mann
SYSTEMS RELIABILITY

Dr. Clifford J. Maloney
A PROBABILITY APPROACH TO CATASTROPHIC THREAT

Professor Richard G. Krutchkoff

THE EMPIRICAL BAYES APPROACH TO THE DESIGN AND ANALYSIS OF
EXPERIMENTS

Dr. S. C. Saunders

ON CONFIDENCE LIMITS FOR THE PERFORMANCE OF A SYSTEM WHEN
FEW FATLURES ARE ENCOUNTERED

Sixteenth Conference: 21-23 October 1970, U. S. Ammy Logistics
Management Center

Professor Solomon Kullback
MINIMUM DISCRIMINATION INFORMATION ESTIMATION AND APPLICATION

Dr. Richard J. Kaplan
FIELD TESTING



i

Professor Gary G. Koch

THE ANALYSIS OF COMPLEX CONTINGENCY TABLE DATA FROM GENERAL
EXPERIMENTAL DESIGNS AND SAMPLE SURVEYS

Professor A. Clifford Cohen

ESTIMATION IN TRUNCATED POISSON DISTRIBUTIONS WITH CONCOMITANT
INTERVALS AND TRUNCATION POINTS

Professor Dana Quade

NONPARAMETRIC ANALYSIS OF COVARIANCE

Seventeenth Conference: 27-29 October 1971, Walter Reed Army
Institute of Research

Professor Marvin Zelen
THE ROLE OF MATHEMATICAL SCIENCES IN BIOMEDICAL RESEARCH

Professor Bernard G. Greenberg

RANDOMIZED RESPONSE: A NEW SURVEY TOOL TO COLLECT DATA OF A
PERSONAL NATURE

Dr. Geoffrey H. Ball

CLASSTFICATION AND CLUSTERING TECHNIQUES IN DATA ANALYSIS

Professor K. S. Banerjee
HOTELLING'S WEIGHING DESIGNS

Dr. John J. Gart

THE COMPARISON OF PROPORTIONS: A REVIEW OF SIGNIFICANCE TESTS,
CONFIDENCE INTERVALS AND ADJUSTMENTS FOR STRATIFICATION

Eighteenth Conference: 25-27 October 1972, U. S. Arfmy Test
and Evaluation Command

Professor John Tukey
EXPLORATORY DATA ANALYSIS

Professor G. S. Watson
ORIENTATION ANALYSIS

Professor J. Stuart Hunter
SEQUENTTAL FACTORIAL ESTIMATION

xviii
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Professor G. E. P. Box
FORECASTING AND CONTROL

Professor Raymond H. Myers
DUAL RESPONSE SURFACE ANALYSIS

Nineteenth Conference: 24-26 October 1973, Headquarters, U. S.
Army Armament Command & U. S. Army Manage-
ment Engineering Training Agency

Professor Jerome Cornfield
BAVESTIAN STATISTICS

Professor S. S. Gupta

RANKING AND SELECTION PROCEDURES FOR MULTIVARIATE NORMAL
POPULATIONS

Professor H. L. Gray

GENERALIZED JACKKNTFE TECHNIQUES

Professor Frank Proschan
RELIABILITY GROWTH

Professor S. C. Saunders
ACCELERATED LIFE TESTING

Professor W. A. Thompson, Jr.
RELIABILITY OF MULTTIPLE COMPONENT SYSTEMS

Twentieth Conference: 23-25 October 1974, U. S. Army Operational
Test & Evaluation Agency and U. S. Army
Engineer Center at Ft. Belvoir

Dr. Churchill Efsenhart
SAMUEL S. WILKS AND THE ARMY DESTIGN CONFERENCES

Professor Solomon Kullback
MULTIDIMENSIONAL CONTINGENCY TABLES



Professor Herbert Solomon
MULTIVARIANT DATA ANALYSIS

Professor H. A. David
ORDER STATISTICS

Professor Gerald Lieberman
RELIABILITY

Professor Robert Bechhofer .
RANKING AND SELECTION PROCEDURES

Drs. Marion R. Bryson and William Mallios
MAXTMUM INFORMATION FROM EXPERIMENTS

Twenty-First Conference: 22-24 October 1975, Walter Reed Army
Medical Center and the Armed Forces
Institute of Pathology

Professor Frederick Mosteller
SUCCESS IN SOCIAL AND MEDICAL EXPERIMENTATION

Professor Edmund A. Gehan
NONRANDOMIZED CLINICAL TRIALS

Professor Paul Mefer
RANDOMIZED CLINICAL TRIALS

Professor Seymour Geisser
PREDICTIVE SAMPLE REUSE

Professor Edmond Murphy
NORMALITY AND DISEASE

Twenty-Second Conference: 20-22 October 1976, Harry Diamond Labs,
Adelphi, Maryland

Professor J. Stuart Hunter
THE MEASUREMENT PROCESS

XX




Professor Benjamin S. Blanchard
MANAGEMENT OF RELTABILITY

Dr. Carl N. Morris
STEIN'S ESTIMATOR, ITS GENERALIZATIONS AND ITS APPLICATIONS

Professor Robert V. Hogg
ON ROBUST STATISTICAL PROCEDURES

Professor Nozer D. Singpurwalla
ACCELERATED LIFE TESTING

Twenty-Third Conference: 19-21 October 1977, U. S. Army Combat
Developments Experimentation Command. Held
at the Naval Postgraduate School, Monterey,
California

Professor G. E. P. Box
TIME SERTES MODELING

Professor Norman Breslow
CENSORED DATA

Professor Donald P. Gaver
MODELING AND ESTIMATION OF COMPLEX SYSTEM AVAILABILITY

Professor H. 0. Hartley (Keynote)
ANALYSIS OF UNBALANCED EXPERIMENTS

Professor Rupert Miller
THE JACKKNIFE: SURVEY AND APPLICATIONS

Twenty-Fourth Conference: 2-6 October 1978, Mathematics Research
Center, University of Wisconsin-Madison

Professor Ralph Bradley
SOME APPROACHES TO STATISTICAL ANALYSIS OF WEATHER MODIFICATION

XX i



Mr. Bernard Davis (for Professor Richard E. Barlow)
RECENT ADVANCES IN GRAPHICAL TECHNIQUES FOR ANALYZING
FAILURE DATA

Professor Norman Draper (Keynote)

RIDGE REGRESSION

Professor Brian Joiner
STATISTICAL CONSULTING

Professor Grace Wahba

DESIGN PROBLEMS IN RECOVERING FUNCTIONS OF TWO OR SEVERAL
VARIABLES

Twenty-Fifth Conference: 17-19 October 1979, U. S. Army Natick
Research and Development Command

Professor Willfam G. Cochran (Keynote)
SUMMARIZING THE RESULTS OF A SERIES OF EXPERIMENTS

Dr. Frank E. Grubbs
A QUARTER CENTURY OF ARMY DESIGN OF EXPERIMENTS CONFERENCES

Mr. Al L. May
DESIGNED EXPERIMENTS IN SENSORY TESTING

Dr. Ray E. Schafer
COMPUTER AIDED HYPOTHESIS TESTS - THE BIRNBAUM TEST

Professor Warren Stewart

NEW ALGORITHMS FOR NONLINEAR LEAST SQUARES AND BAYESIAN
‘PARAMETER ESTIMATION

Professor Marvin Zelen
ETHICS AND STRATEGY IN THERAPEUTIC INVESTIGATIONS




SAMUEL S. WILKS MEMORIAL MEDAL

The Samuel S. Wilks Memorial Medal Award, inftiated in 1964 by
the U. S. Army and American Statistical Association jointly, {is
administered by the American Statistical Association, a non-profit
educational and scientific society founded in 1839. The Wilks Award
is given each year to a statistician and 1s based primarily on his
contributions to the advancement of scientific or technical knowledge
in Army statistics, ingenious application of such knowledge, or
successful activity in the fostering of cooperative scientific
matters which coincidentally benefit the Army, the Department of
Defense, the U. S. Government, and our country generally.

The Award consists of a medal, with a profile of Professor Wilks
and the name of the Award on one side, the seal of the American
Statistical Assocfation and name of the recipient on the reverse,
and a citation and honorarium related to the magnitude of the Award
funds. The annual Army Design of Experiments Conferences, at which
the Award is given each year, are sponsored by the Army Mathematics
Steering Cosmittee on behalf of the Office of the Chief of Research
and Development, Department of the Army.

The funds for the S. S. Wilks Memorial Award were donated by
Philip G. Rust, retired industrialist, Thomasville, Georgia.

RECIPIENTS OF THIS AWARD

NAME DESIGN CONFERENCE (and year) PRESENTED

Dr. Frank E. Grubbs Tenth (1964)

Ballistic Research Laberatony

Progesson John Tukey Eleventh (1965)

Princeton University

Majon General Leslie E. Simon Twelfth (1966)

United States Awmy (Ret'd)

Progessor W. G. Cochran Thirteenth (1967)

Harvard University

Pao(uulc Jernzy Neyman Fourteenth (1968)
University of cw.‘m Berkeley

Or. W. J. Youden Fifteenth (1969)

Naticnal Bureau of Standards (Ret'd)



Progesson Gecnge W. Snedecor
Towa State University (Ret'd)

Professon R. W. Dodge
Rutgers University and
Bell Telephone Labcratornies

Professon G. E. P. Box
Univerwsity cf Wisconsin

Progessor H, 0. Hartley
Texas ASM University

Mr. Cuthbert Dardel
Consultant

Progesson Henbert Solomon
Stanford University

Professor Solomen Kullback

George Washington University (Ret'd)

On. Churchill Eisenhart
National Bureau of Standards

Professon William H. Krushal
University of Chicago

Sixteenth (1970)

Seventeenth (1971)

Eighteenth (1972)
Nincteenth (1973)
Twentieth (1974)
Twenty-Finst (1975)
Twenty-Second (1976)
Twenty-Third (1977)

Twenty-Fourth (1978)

S8 e YRR e




SAMUEL S. WILKS MEMORIAL MEDAL

The Samuel S. Wilks Memorial Medal Award, inftiated in 1964 by
the U. S. Army and American Statfstical Association jointly, is
administered by the American Statistical Association, a non-profit
educational and scientific society founded in 1839. The Wilks Award
is given each year to a statistician and 1s based primarily on his
contributions to the advancement of scientific or technical knowledge
in Army statistics, ingenfous application of such knowledge, or
successful activity in the fostering of cooperative scientific
matters which coincidentally benefit the Army, the Department of
Defense, the U. S. Government, and our country generally.

The Award consists of a medal, with a profile of Professor Wilks
and the name of the Award on one side, the seal of the American
Statistical Assocfation and name of the recipient on the reverse,
and a citation and honorarium related to the magnitude of the Award
funds. The annual Army Design of Experiments Conferences, at which
the Award 1s ?wen each year, are sponsored by the Army Mathematics
Steering Conmittee on behalf of the Office of the Chief of Research
and Development, Department of the Army.

The funds for the S. S. Wilks Memorial Award were donated by
Philip 6. Rust, retired industrialist, Thomasville, Georgfa.

RECIPIENTS OF THIS AWARD

NAME DESIGN CONFERENCE (and year) PRESENTED
Dr. Frank E. Grubbs Tenth (1964)
Ballistic Research Laberatonry

Professon John Tukey Eleventh (1965)
Princeton University

Majon General Leslie E. Simon Tweldth (1966)
United States Awmy (Ret'd)

Professon W. G. Cochran Thinteenth (1967)
Harvard University

Professon Jerzy Neyman Fourteenth (1968)
University of Califoania-Berkeley

Or, W, J. Youden Fifteenth (1969)

National Bureau of Standards {Ret'd)



Professon Gecrge W. Sredecon
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Marvin Zelen, Department of Statistical Sciences,
Harvard School of Public Sciences, Boston, Massachusetts

SOCIAL HOUR -- Maridon Restaurant

BANQUET -- Maridon Restaurant

S



***** Thursday, 18 October **x*x%
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SPECIAL SILVER ANNIVERSARY ADDRESS: A QUARTER
CENTURY OF ARMY DESIGN OF EXPERIMENTS CONFERENCES

Frank E. Grubbs
Bgllistic Research Laboratory, Aberdeen Proving Ground, Maryland

wélcome to the 25th Conference on the Design of Experiments
in Army Research, Development and Testing. A whole quarter of
a century has passed since Sam Wilks recommended that the Army
start this series of conferences, and what an excellent idea he
had, with all the vision for the future of Army statistics. As
we all know, Wilks was a very remarkable man: a gentleman, a good
leader, an outstanding scholar and research statistician, a man
who also had very vital interests in applications, and he liked to
see people work together. Sam travelled much for the Department
of Defense and he consulted widely on all probable areas of sta-
tistical application for the Government. He missed none of these
conferences, and we remember him so well in his role of selecting
many of the key statisticians in the universities to participate
in these conferences, as we met at the Cosmos Club.in Washington,
and drank and dined with Sam. I think we have a better pay-off
from these statistical conferences than the other DOD conferences,
because of the close interface with university statisticians, in-
cluding, of course, the eminent statistician who gives the keynote
address next. To the memory of Sam Wilks we owe so much, and
therefore in 1964 we devoted the Army Design of Experiments Con-
ferences to Sam's memory.

This particular conference, the landmark 25th, is. also dedica-
ted to our good friend, fellow mathematician and statistician,

teacher, and excellent administrator, Dr. Francis G. Dressel. How

would the design of experiments conferences ever have survived if



it had not been for Francis ?, who carried always the big part of
the load. I am asking him to make a few remarks next. I am glad
Francis has trained Bob Launer so well too!

Now how in the world did I ever get saddled with a "Special
Silver Anniversary Address", including the fancy title that came
from, I might say, a former friend? It is probably because some
of my colleagues saw me enjoying being too much a "free lancer"
at these conferences, so they thought! I must stretch the exact
title of my talk a bit to cover more statistics. Back in the mid-
Thirties, I was a timid, very illiterate Southerner, trying to eke
out a living by teaching engineering math at (now) Auburn University,
and it became starkly clear that we lowly instructors would hardly
ever be promoted unless we got a Ph D! But it was also made quite
clear to us that getting a Ph D would not make us a better teacher!
A quick OR study (not so-called then) convinced us that we should

. as an outlet,
seek something in applied math, 5 and statistics was the subject to
study, for it was needed and spreading fast too, for example to our
agricultural experiment station problems. I had a friend, who got
a Ph D at Cornell University, and had a good job at our experiment
station, so that he introduced me to the analysis of variance,
which seemed to be a misnomer, and he even alarmed me with the
idea of the analysis of covariance! I later heard that Karl Pearson
was the greatest statistician of all, but that one R. A. Fisher was
not sprinklihg holy water on all the things Karl Pearson had done.
My friend wanted to know if I had read any of the reputable jour-
nals on the subject of statistics, and I hadn't, of course. 1In
fact, in about 1934 a paper by a young genius on the distribution
of quadratic forms in a normal system, with applications to the

analysis of covariance had appeared in a (strange) journal called

2
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the Proceedings of the Cambridge Philosophoical Society, written

by our keynote speaker of today. Later, in the early 1940's when

I had been in uniform at the BRL during World War II, we had trouble
justifyiné a journal called "Biometrika" at first, and there was no
way the Army would ever approve the Annals of Eugenics in our Li-
brary even if it contained statistical papersl!

In any event, back in the mid- to late 30's it did seem that
statistics would be a good choice of graduate study with an out-
let. But where in the United States could one study statistics?

He certainly could not do so down South, and in fact thére were
only two, or maybe three, places to go for statistics courses - Iowa
State University, the University of Iowa, and perhaps the University
of Michigan. The latter was mostly an acturial school with well-
known voices such as Menge and Glover, with Cecil C. Craig and

Paul Dwyer'coming along, and perhaps most interesting of all an
athletic statistician and actuary, Harry Clyde Carver, who would
challenge his graduate students to beat him at any sport of their
own choice. If Carver won, there would be a stiff final exam and

no A's! bOne had to beat Carver at his own game!

We selected Michigan, for Iowa State University seemed too
far away, and Alan T. Craig of Iowa was scheduled to give the
basic graduate statistics course at Michigan in the summer of 1937,
and what a good start to .learn to throw dice, et al! That summer,

I tried to learn whaé a random variable was. I had known Clifford
Cohen for years back at Auburn, and at Michigan, Clifford of all
things, had elected to write his dissertation on the very obscure
subject of truncated sample theory! But how in the world could
there ever be much interest, let alone wide applications, of such
an odd topic? A colleague, who had treaded this mill before,

assured me that "Clifford Cohen was a very
3



smart man - he chose a topic no one else would ever work on!"
The advice continued, "Don't ever pick a 'hot' topic, for
a genius wiil beat you to it, and you'll never get your degree"!
The non-statistical graduat tudent /ig mathgmatics i

g uate students rowned at anyone studying
statistics, as it was not as important as topology or even dif-
ferential geometry either. One of them was somewhat friendly
though, and on occasion would drop by our "flat" with his wife.
He would pick up and continue my wife's needlepoint with much en-
thusiasm, but didn't care for statistics then, or any part of it!
His name - Jimmy Savage (!). And it goes to show you what can hap-
pen toat pure, rigorous mathematician, once he is "bitten by the
‘bug" or otherwise the clever ideas of the Reverend Thomas Bayes!

It was not easy to to find and settle upon a dissertation topic
without some guidance, but all the professors already had too |
many graduate students, and'&my had passed aiong topics to some
they never heard from, so that I had "better look around in the
library". No one then told me, for example, that concerning trun-
cated sample theory this would develop into the field of order
statistics, and moreover blossom into reliability , life-testing,
et al, and it was in fact many, many years before that did
occur. You see, no advice I had been given really sunk in, for
I decided to work on outliers, and the international situation
had gotten so gloomy that writing a dissértation would not be
done very quickly anyway, So, being a reserve officer, I was intro-
to the Army.

The physical and engineering sciences were just beginning to
make some uses of statistics, although Walter Shewhart had made

] ) o ) /at Michigan
applications of statistical quality control. 1In 1941 I got ahold

of a new book, "An Engineers's Manual of Statistical Methods" by

one Major Leslie E. Simon, and as I read it and was enlightened
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by the book, some correspondence developed, for here was an
authority who had the vision, the wisdom and the courage, of

all things, at the time of a very low cycle on the Bayesian.revo-
lution (so that we later kidded Les Simon that he had the unmiti-
gated gall) to publish in the back of his book some IQ Charts to
estimate the fraction of defectives in a lot by using Bayes'
equally likely hypothesis! Today, there seem to be no 100%
classical statisticians, so that we can chalk up another win for
Les.* And this introduced me to the Army's Ballistic Research

Laboratories, on active duty in uniform as a Lieutenant, where

there was never to be an end to all kinds of knotty statistical
problems.

As pointed out in Les Simon's book, An Engineers Manual of
Statistical Methods, Dr. L. S. Dederick had worked out the proba-
bility distribution of the sample range (largest minus smallest
observation) back in 1926, and had partially tabulated its dis-

tribution, but wouldn't submit it for publication! Sam Wilks had
ou occasion consulted with the person-
nel of the Ballistic Section of BRL at Aberdeen Proving Ground

on various statistical problems. Also, since the dispersion of
shots on a target, as from rifle firings, was often measured by
the "extreme spread", or bivariate'range, this little nasty sta-
tistical distribution had eluded statisticians, and Mr. Philip
G. Rust, an industrialist and "rifle accuracy bug", established
by sampling shot patterns the distribution of the extreme spread

for small sample sizes. Also, on the train from Washington to
Wilmington, Phil Rust had told Sam Wilks about it and had suggested

that he look into the

* In a panel discussion on Bayesian methods on reliability one time, I stated that
statistically I was 50% classical. 25% fiducial and 25% Bayesian, but Frank Proschan
promptly branded me as a hermaphrodite.



theory of the probability distribution of the extreme spread in
order to study its properties, as it was widely used in ballis-
tics and rifle accuracy competititons also.

When I arrived at the BRL at Aberdeen Proving Ground in 1941,
John von Neumann, Robert H. Kent, H. R. Bellinson, and B. I. Hart
nad just worked out and published in the Annals of Mathematical
Statistics the distribution of the mean square successive differ-
ence, and the mean square successive difference to the variance,
and B. I. Hart had calculated percentage points of both.

The "real world data", coming out of ballistic testing of all
kinds, often defied any good or "normal" analysis, and were loaded
with outliers! There was thus an applicable dissertation topic!
In the mid Forties, there existed a critical need to do something
about speeding up the production of firing tables, as about 100
female "computers" were always busy running computations on those

big, heavy desk electric Friden or Monroe calculators.

Leslie E. Simon valued brains to solve the Army's problems in
ballistics, and he had established a scientific advisory committee
with some of the best brains in the physical sciences in the
country. What a wonderful and stimulating place to work, less much
time to be in uniform and fight the "battle of Aberdeen"!

Back in the early Thirties, Simon was Chiéf of Manufacture
at Picatinny Arsenal, and had cultivated the interest and exper-

tise of Walter Shewhart to apply the principles of statistical

|
|
|
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at Pica;inny Arsenal.
quality control to the manufacture of ammunition At the BRL

in World wWar II, Simon saw'the pressing need to pass on the
principles of statistical quality control to industry in the
production of ammunition and weapons for the US Army, and he
also worked with Harold Dodge of the Bell Telephone Laboratories
to start computations of the standard sgmpling inspection tables
for the Army Ordnance Corps, later put into Military Standard 105A.

Sam Wilks had long been aware of the need for well-designed
experiments and hence suggested that the Army start a series of
annual conferences to promote statistical methods. Sam suggested
that the Design of Experiments Conferences should have three types
of sessions: First, there would be some special invited papers
by well-known authorities on the philosophy and general principles
of statistical design of experiments, then there would be some
technical papers presented by Army statisticians, and finally
there would be clinical sessions with suggestions from the experts -
and we still stick to this format today. These conferences had
their beginning 19-21 October 1955 at the Diamond Ordnance Fuze
Laboratory and National Bureau of Standards in Washington, D. C.
We note that Sam's conferences were Army Wide, and attracted DOD
interest, while a conference the Ballistic Research Laboratories
put on a year earlier (1954) on the use of statistical methods
was primarily for Army Ordnance personnel.

Within 6rdnance and the Army, Leslie E. Simon certainly was

the great stimulus to the advancement of statistical methods, for



at the BRL Les was not only its Director, but he also prepared

a large number of papers on engineering statistics or statistical
engineering - what ever you want to call it. Moreover, there was

a pressing need for these very papers to acquaint industry to

the methods of quality control and statistics in connection with
the World Wwar II effort. And Les helped promote the short courses
on statistical methods in industry. There was a great deal of
interest during this period concerning the concept of "economical
lot sizes", and also the concept of producing very large "homo-
geneous lots" so that for ammunition at least we could get rid of
the situation where at a field artillery battery site there existed
a mixture of rounds from several or many lots with different levels
of muzzle velocity and degrees of surface-finish roughness.

In the mid-nineteen Forties, a very significant and World-
Wide development occurred due to an idea of our imminent and es-
teemed Scientific Advisory Committee member, John von Neumann. He
had suggested the constructidn.of the ENIAC or Electronic Numerical

e a digital computer -
at the BRL. We saw the handwriting

Integrator and Calculator
on the wall: The ENIAC could be used to Monte Carlo anything to
death, in addition to the more straight-forward computations of
mathematical and statistically tractable functions. And so many
statistical problems were planned! First, however, there had to
be some calculations on the distributions of -outliers, and the

ENIAC staff was looking for work! It was then that I learned

about priorities and the real importance of any statistical problem

to the country!
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Once they got the ENIAC wired for my outlier problem, the Atomic
Energy Commission called on Gen Simon and Johnny von Neumann to
use the ENIAC to obtain an optimum solution to the problem of
imploding the core of a nuclear warhead, with the result, of
course, that even though our Computing Laboratory had begged for
work, my suggestion and the start of some extensive calculations
to keep them busy immediately got a vanishing priority!

In those days of a great scientific effort at the BRL and
many of the Counpry's great physicists, chemical physicists, mathe-
maticians, engineeré, et al, I felt just like Les Simon had always
said, "The engineers would call him a statistician, and the statis-
ticians would call him an engineer"! Indeed, we were trying to
apply statistical techniques to many knotty physical problems for
which there was a phisical model that applied well. Perhaps
I would have been much better off in agriculture! We survived
some way or the other and hence got away from the use of primarily
the probable error which was never to be deleted from firing tables
though!

Now; getting back to the uses of Army Statistics, which led
up to the Design of Experiments Conferences, we record that a
very good account of the statistics in the Army from the very be-
ginning has been prepared by our good friend Clifford Maloney (The
American Statistician, June 1962), who traced various statistical
interests in one way or the other from very early times - he
started out with Daniel Bernoulli in 1777. As pointed out by

Maloney, there certainly was much vital interest in medical



statistics of the Army from the beginning, and at West Point the
graduates needed to know something about the dispersion of shots
on a target,'and least squares and the adjustment of data. In
fact, in early times, the best engineers in the USA were really
coming from West Point. Then again, there was always considérable
interest in the sensitivity of explosives to impact or shock, the
sensitivity of primers and other items of Ammunition, which no
doubt brought about the so-called "Bruceton Method" of sensitivity
analysis, and later developed into the Dixon-Mood "Up and Down"
technique at Princeton, and since has been widely used. Naturally,
Dixon and Mood were students of Sam Wilks, who again enters the
general picture! So you see, the Army did indeed have the most
natural needs and demands for the application of statistical
methods, and Sam Wilks was the first university professor to recog-
nize this vital development for the good of all concerned, as he
was always in touch with so many important applications.

I think that the Army Design of Experiments (DOE) Conferences
Sam Wilks started have performed the the vital task of fulfilling
the need for cross-fertilization of statistical theory and prac-
tice, even though these conferences occurred only emce a year.
It is through the Army DOE conferences that we have become ac-
quainted with each other, discussed common statistical problems,
presented solutions to others, learned a lot from the eminent
university §tatisticians and gotten their best suggestions during

the clinical sessions. Moreover, this has all stimulated Army
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satisticians to perform very good work and publish a number

of useful results for others to apply. If it had not been for
Wilks' vision and the DOE conferences, we would have been off
to ourselves, no doubt,working very much more inefficiently.

Now all of you have the nice little pamphlet prepared by Bob
Launer for this, the Twenty-fifth anniversary of the Army DOE
conferences, and we note that the series got off with a bang in 1954
as Bill Cochran led with the philosophy underlying the the design of
experiments. Churchhill Eisenhart spoke on principles of ran-
domization (Isn't that still an unsettled topic ?) and John Tukey
headed a panel on "Where do statisticians fit in?"). Jack Youden
aided in his most interesting way of talking about the design of
experiments in industrial research and develpoment. The applica-
- tion of order statistics and problems in subjective testing came
into the Second DOE conference, and we were fortunate to have
R. A. Fisher at the Third conference! Also at the Third confer-
ence Ho Hartley spoke on changes in the outlook of statistics
brought about by modern computers, and Ben Epstein, who at one
time even worked at Frankford Arsenal, covered what was to become
a very important Army field "life-testing" - and later reliability
ahd reliability growth. Here at Natick fof the Fourth conference,
it was appropriate to have L. H. C. Tippett discuss statistical
methods in the textile industry, and the Fifth conference taught
me a lot about smoking and lung cancer (now forgottenl!) because
of the lively debates between Joe Berkson of the Mayo Clinic and

Jerzy Neyman (both smoking, I believel)
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The theme or title of these conferences was stretched many
times, I am reminded, to include many important topics of the
day or timg,'and this was necessary and good too! 1In fact, I
note that Egon Pearson gave the keynote address of the Eighth
conference on a statistician's place in assessing the likely
operational performance of Army weapons and equipment, or the
need for statistics in military operations research and weapon
systems analysis. In fact, the Army has a parallel series of
conferences, started in 1961, known as the Army Operations Re-
search Symposia. I found that the field of operations research
was being staffed primarily by mathematicians, physicists, en-
gineers and others, but not enough statisticians, who could aid
in their modelling problems of stochastic processes. For example,
for probability of hitting problems there was often the need to
have simple approximations to the distribution of quadratic forms
in normal variables, and techniques like the Wilson-Hilferty
transformation of Chi-square to approximate normality and the

/those darn that
cut-off normal integrals/were found

Polya-Wilson approximation to
to be very useful. Moreover, we also saw that the theories of
life-testing would apply to Lanchester type combat theory.
Because of the critical need for the evaluation of weapon systems,
and later many other military operations_research topics, the
Army OR symposia have attracted a large number of "high brass”
type visitors. Statistical topics have been often discussed at

the Army OR conferences and OR topics at the Army DOE conferences.

Forget titles!
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In the Spring of 1964, some six months before the Tenth con-
ference, we'got the shock of our lives with the untimely paésing
of Sam Wilks. For the Tenth conference, Les Simon came forth with
an excellent and informative paper on the stimulus of S. S. ﬁilks
to Army Statistics, and the high importance of the DOE conferences
to Army statistical endeavors.

Fortunately, the DOE conferences have proceeded to cover the water
front, and stimulate and train more statisticians.

Now although I have mentioned many of the key benefits and
much in the way of significant progress that has resulted from-
the DOE conferences, let me now jump to a look at the whole series,
or the view from an operations research eye. To begin with,
it becomes quite clear éhat we have learned a lot about modelliﬁg
processes (stochastic) or fitting models to data in order to
make more general predictions, or to summarize. "Models" ?

Yes! And this reminds me of what George Box is quoted as saying,
"All models are wrong, (but) some (even) work"! How true this
is! Aren't models competitive, and haven't we found that the
situatioh doesn't exist for which only one model is right and
all the others wrong? 1In fact, we are often lucky that any of
several competitive models may serve the purpose at hand very
well. Yes, I think we have learned how to model many important
Army areas of application,band this has also brought about model
development or better theories. .

Obviously, the great benefit to the Army from the DOE

13



conferences has been the expert counseling of in-house statis-
ticians by the eminent univérsity statisticians who have so kind-
ly given of their time and experience. One has only to look at the
little booklet of featured speakers to be very highly impreséed
with the caliber of the talent. We greatly appreciate this, as
their help, including the clinical session suggestions, has been
outstanding, and for very difficult areas of application.

This brings to mind another point. The US Army is a very
large and diversified organization. 1In case you need some con-
verting on this point, just attend one of the Army Science Con-
ferences held biennally at West Point. 1In addition to our little
corners of application we have discussed over the years, at the
Army Science conferences, they have presented papers on, for ex-
ample, sampling the polar ice caps - which brought up many sta-
tistical problems of note - or even the extraction and analysis
of snake venom! What are the main controversies about? You
guessed it: the instrumentation, the measurements and their in-
terpretation. Army investigators has grown increasingly aware
of errors of measurement, precision and accuracy, and even just
how to define these illusive concepts. And so have others. For
example, Committee E-1l1l of the American Society for Testing and
Materials has for some 20-25 years been working on the problem
of standard;zing the views of engineers, chemists, etc., on the
subjects of.precision and accuracy, and come forth with a recom-

mended practice. I still don't see an end to this effort, for
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there are enough "divinely endowed", stubbornly statistical minds

to bring about nothing but impasse's. (Incidentally, I know that I
alone am

right though, and they needn't think they can sway me to a com-
promise!). As a passing remark, there's a full time job for a
young, competent statistician for NASA, the FAA, and such agencies,
in connection with sampling the atmosphere in order to establish
temperature profiles, ozone content profiles, etc., by knowing the
capability of their instrumentation for the first time.

We have learned much about the statistical design and analysis
of scientific type experiments, and the construction of designs -
the latter, I think! Furthermore, I see evidence very frequently
of some "fancy" experimental designs that Army investigators are
using, with very sophisticated analyses, too. On the front cover
of the program of the Tenth Conference, there is a 10 x 10 Graeco-
Latin Square, and no one yet hag pointed out an error in itl!

When the nice, balanced experiments have been violated in one
way or the other, speakers like Hoh Hartley (who regréts that
his duties as President of ASA keeps him away today) have come
along to help or straighten us out. We have used linear models
mostly, but have been hit by nonlinear models at times, and
George Box has on several occasions given us his unique approach
to time series analysis.

There have been many advances over the years in the analysis
of contingenéy tables, and count data generally. We have had

many contributors on this subject speak to us, and the several
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approaches presented to us, including Kullback's information
theory approach, and some of the recent work of Feinberg in
our preceding two-day tutorial course. Perhaps the US Army'
Operational Test and Evaluation Agency has made much use of
contingency table analyses, and have benefitted from them.
I will continue to try and sort out that problem, and I note
that my experience has been primarily in connection with the
comparison of two or more binomial type proportions, and irre-
spective of Fisher's fixed marginals, and stuff like that, I
still don't want to confuse the issue by imbedding the compari-
son of binomial p's in a contingency table analysis. Maybe the
real experts have other views.

Hasn't the field of reliability and related applications
hit us with a big bang, to say the least ? And the high-level
"brass" or managers have shown the greatest of interest in it
too. Remember, I remarked that Clifford Cohen in the late 1930's
vrote his dissertation on the obscure subject of truncated sample
theory? Well, finally the area came to life and how! Although
the normal distribution was the "universal" one in the past, it
didn't "take" with the reliability analysts at all, and they
aimed for the exponential distribution. At the 1977 Monterey
Conference (23rd), a paper was given by Herback, Green and Blumen-
thal on the "curse" of the exponential model, and they quote:

"The exponential is wrong,
But works like a song.
Beware the Weibull:
It's incorrigible"” - Anon

Remember George Box - All models are wrong!
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There is some heavy interest in reliabilit% growth, and the
whole field of reliability will continue/:vnill continue to expand.
There are now so many methods or recommendations for obtaining
confidence bounds on system reliability that an appointed committee
has not been able to standardize on a technique for DOD. It
might be said that sample order statistics are of much importance
to the Army nowadays, and often even help to take care of the
outlier problem. Finally, reliability analysts have worked on
estimation and other properties of the two- and three- parameter
Weibull models so much that this has actually aided in the spread
of the Weibull distribution to many other areas of application
than reliability. Perhaps this is because of the robustness °f,
the Weibull model in representing a variety of shapes.

A very old statistical problem is that of bio-assay types of
analysis, and it borders on the estimation of risks and safety
levels in any number of other fields. There are many papers on
the subject of quantal response, "sensitivity analyses", explo-
sive sensitivity (Bruceton), ballistic limit, Up and Down method, etc.
which have been aired in these conferences. Quantal response
investigatibns, and especially the estimation of both high and
low percentage points (of unknown distributions), does indeed
cover a very important statistical efforﬁ for .the Army, and it
will continue to expand also. Maybe this is an area for which
the use of physical models is needed in addition to statistical

analyses, or at least a combination of both. We will face more
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and more safety type problems, for which there will be heavy.de-
mands for statistical treatment, while we used to avoid them al-
together. Let me mention one nasty little problem having to do
with armor protection in tanks, or penetration mechanics, and
hence for safety of tank crews as a result of armor thickness
determination and design. It is also a statistical problem the
Army continues to need help on to estimate the parameters for
zero chance of penetration. Do you like continuous distributions
that slowly change to a series of binomial and continuous models

of some kind? And even approach a binomial distribution with

parameter zero? In this case, we start firing at a piece of armor
plate of a certain thickness, and for the high-striking velocities
we will (usually) get 100% penetrations of the projectiles through
the plate, and there will be a "residual" velocity distribution
for the projectiles or pieces of projectiles which have penetrated
and come off the back.
the plate But as the striking velocity is decreased, then the
proportion of projectiles penetrating the plate will decrease,
ultimately to zero for low-striking velocities, and thus we say
that a safety level exist somewhere, or at least we would like to
know just where, for example, only 1 in a 1000 of the projectiles
would penetrate. The curve or residual velocity versus striking
velocity gets very steep near the bottom, obviously, and its a
challenge to ballisticians and statisticians to deal with the
precise and highest striking velocity for which zero penetrations
occur. What I am also indicating is that there are many problems

of interest for which statisticians and physical scientists must

work as team members, and the DOE conferences guarantee just that.
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Let us not forget the field of sampling inspection or acceptance
sampling inépection, and the DOD's use of standard sampling in-
spection tables and practices. These are important activities
that the Army initiated with the original help of Harold Dodge,
and our DOE Proceedings include a number of papers on the subject.
Thié is really the area of statistics that taught us much about
operating characteristic curves, or power curves, and the deter-
mination of sample sizes, and the like. Thus, many statistical
areas of interest spill over into other topics, and so the process
continues.

Now I have made my little choices of some of the’benefits
and topics of value thap we have been priveleged to be part of
in our twenty-five years of Army Design of Experiments Conferenées.
Perhaps you can expand or improve on what I have covered and hence
make more sense out of things. I invite you to do so. 1In any
event, it certainly seems quite clear that these conferences
have been very "cost-effe~tive" to the Army.

I think it was Cliff Maloney who once suggested that there
should be published a volume of the best papers of the proceedings
of these conferences. This assignment I was given made me look
through the whole shelf-wide proceedings, and I agree that there
are certain of the papers which indeed shonld:be brought together
in some kind of memoirs.

Maybe we can now get Francis Dressell to make a remark or
two, as we have dedicated this the landmark 25th Conference to

him. PFrancis!
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SUMMERIZING THE RESULTS OF A SERIES OF EXPERIMENTS

William G. Cochran

- Professor of Statistics Emeritus, Harvard University

I first met this problem in the thirties in agriculture. I wrote a
paper on it (1), and later a more ambitious paper with Yates (2), in which
a number of examples were worked. We tried to see in what respects the
analysis of a group of experiments resembled and in what respects it differed
from the analysis of a single experiment.

The need to summarize results of a series of experiments on the same
treatments arises in two types of application. The first type may be des-
cribed as exploratory; a number of experimeﬁts on the relative performance
of something or of two treatments have been carried out, and we are trying
to answer the question; what is the present state of knowledge about the
relative merits of the two treatments? For instahce, the recent academy
study of saccharin started with the experiments in which large doses were
given to rats; these were the prime experiments. To cite a second example,
Yates and Crowther realized at the beginning of World War II that Britain
would have to import most of her fertilizers during the war and would be
short of fertilizers. Accordingly, they summarized the experiments (4)
about the responses of the common farm crops to fertilizers in order to
answer the question: What is the present state of knowledge about the
effects of fertilizers and to provide material for an intelligent rationing
system for fertilizers?

As another example, I was in a group that studied two common methods of
surgery for duodenal ulcer--vagotomy (cutting the vagus nerves) plus a radi-
cal antrectomy (which removes the lower portion of the stomach) versus
vagotomy plus the milder pyloroplasty (which widens the outlet of the stomach

to provide better drainage).
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We found four experiments that appeared to have been carefully done
and properly randomized. We could have come across a number of comparisons
that were well done but not randomized--the type sometimes called observa-
tional studies. Since often we cannot use randomization and have to make a
comparison without it, I would have been interested in including the obser-
vational studies so as to learn whether they agreed with the randomized
studies and if not, why not? But the medical members of our team had been
too well brought up by statisticians, and refused to look at anything but
randomized experiments. In this type of surgery, we may expect the experi-
ment to be of different designs and perphaps differing numbers of replications.

The second type of application occurs commonly in agriculture. It
differs from the first in two ways. It is known that the relative perfor-
mance of a treatment (variety of a crop or fertilizer) is likely to vary
both from field to field within a year and from year to year. Thus experi-
ments are likely to be repeated in different fields and for a number of years.
Secondly, there is a better chance that the experiments, being jointly planned,
are of the same design and number of replications. For instance, when the
growing of sugarbeets was introduced into Britain after World War I, the
government conducted 3x3x3 factorials (ultimately 30 per year) at the leading
centers for a number of years.

The objective of the experiments may be a series of decisions as to which
varieties of a crop look promising and should be kept for further testing,
which varieties should be discarded, and which varieties having been fully
tested, should be part of an approved list and have their seed made available
to farmers. As an example, Patterson and Silvey (5) have described the trials

of varieties of cereals that Britain has conducted in recent years, the
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designs being incomplete blocks. This kind of screening program is not
confined to agriculture. It may be used in seeking the best drugs or
vaccines for some purpose in medicine, or in seeking persons best capable
of doing some task. In 1963, Federer gave a bibliography of some 500
papers on screening programs.

2. Miscellaneous Experiments in Exploratory Work

I'11 start wilth exploratory experiments done by different people at
different places and times. Since these experiments were not planned as
a coordinated series, we must expect them to differ in designs, and in
numbers of replications. First we must think of the question: of what
population, if any, can these experiments be considered something approaching
a random sample? Is this population relevant to future applications of any
conclusions that we draw? In same cases we may reluctantly conclude that
the experiments do not sample any population of interest to us, and decide
not to prepare any sumary. In same cases the experiments are so variable
that same must be thrown out before any summary 1s attempted. The way in
which the experiments were done also affects the nature of the population
that they sample. The nature of the experiments also affects the kind of
population that they sample. In the Natlonal Academy study of saccharin
to which I referred, the doses in the laboratory experiments were so large
that the estimates of the effects of more normal doses depended to a
substantial extent on the kind of model used in extrapolating the experi-
mental results. In experiments camparing two methods of surgery, the
experiments may be confined, for ethical or logical reasons, to the kind
of patients whose doctors state beforehand that they can safely take either
method of surgery. Otherwlse, it 1s difficult to Interpret the results of
the experiments. This restriction affects the character of the population |
to wham the conclusions apply.

In agriculture, as I have stated, we have to contend with variations
in both space and time: But in other fields of application there may be
no strong reasons to consider time as a separate source of variation, even
though the experiments will have presumably been done at different times.
So in considering a summary of miscellaneous exploratory experiments, I
shall cambine time and space and speak of treatments x places.
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experiments interactions for the ith Treatment in the jth experiment. We
may also expect experiments to have different variances o§ per observation
and to differ in number of replications nj.

For the jth experiment, a model that seems reasonable with a quantita-

tive response is that the mean of the ith Treatment in the jth experiment is

where Y4 is the treatments x experiments interaction and the variance of

J
. 2 _ . 3=
the error term ej; Is °j/"ij (i =1,2,...,t; § =1,2,...,k).

In a combined analysis of these means, a reasonable first step is to
form a two-way treatments x experiment table of these means. If all treat-

ments are present in all experiments, an analysis of variance into the

following components should be easy.

df
Experiments (k-1)
Treatments (t-1)

Treatments X Experiments (t-1)(k-1)

Pooled error

The purpose is to test the interaction. If some treatments are missing from
some experiments, a least squares analysis appropriate to missing data is
used. In this case the Treatments line is Treatments, adjusted for experiments.

The pooled error in the analysis of variance of the treatment means is

2 2
(1/k) (s /"ij)’ or if the sj

to examine whether the sg appear to be heterogeneous, since this affects the

seem to be homogeneous, sz(llnj). We will want

F-test of the ratio treatments x experiments/pooled error. For this we can




use Bartlett's test, or if the data seem nonnormal and we want a more robust
test, we can use Levene's test, based on the absolute value of the deviations
that lead to the 82, that appears to be less affected by namormality. If the

82 seem markedly heterogeneous, the F-test of the interactions against the pooled
error is not exact, but assingning a number of df to the pooled error by

Satterthwaite's approximation should provide an approximate test.

The next step is to reach one of three decisions about the Treatments x
experiments interactions. (i) that it is negligible, (ii) that it is not
negligible but has no discernable structure. By this I mean that although
the effects of the treatments vary from experiment to experiment, we have
no information for.making different predictions in different parts of the
population and must draw single overall conclusiaons about the effects of the
treatments(iii¥he third case is that in which the interaction is of a nature
that we think we understand, and is large enough so that different treatments
win in different parts of the population that can be described. In this
case we expect to recommend different treatments for different parts of the
population.

Consider first case (i) in which we judge that the treatments x experi-
ments interactions are negligible. If the experiments differ in number of
replications and in their error variances, a question to be considered is:
Should the treatment means in individual experiments be weighted in forming
the overall means, so as to give more influence to the more accurate experi-
ments? If so, what should the weights be? If the error variances o§ were
known, the weights should presumably be w; = oglnj, but the variances are

J
only estimated, unless the o§ appear to be equal so that weights n; can be
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used for the treatment in the jth experiment. Various authors have worked on
this problem of weighting with fallible weights.

The first step is to find out if there is much gain in accuracy from

the use of wejghted means. If the s§ appear to be homogeneous, and the

weights are the known values nj/§§, this can be done, because the ratio of
the variance of the weighted to the unweighted mean of the Yij is

(zwj)(z l/wj)/kz. For instance, if one-third of the experiments each have n,

with relative values 1, 1/2, 1/4, the relative value of the variance of the

weighted to the unweighted mean is 36/49 = 0.73. The situation is less

favorable to the weighting if the s§ differ, so that we have to use samething

like estimated weights nJ/si. Under normality, the maximun likelihood estimate

of the overall mean My is

n-(f- - ]) A

J ) V.. - =
z 7 = ~ 7 (.V.'j l-'.l) o .
h| .fjsj + "j(-yij - ui)

This has to be found iteratively. In this type of estimate, an experiment
2

with Tow sj and apparently high precision is prevented from dominating the
overall mean if it disagrees markedly from the value suggested by the other
experiments, since the term nj(j'/1j - ﬁi)z will be large, and will decrease
the weight given to this experiment.

Some years ago, C. R. Rao (7) brought out a new method of estimating
variances and variance components called the MINQUE (minimum norm quadratic
unbiased estimator). Since I have been interested in this problem for over
40 years, I asked J.N.K. Rao of Carleton University and P.S.R.S. Rao of the

University of Rochester if the MINQUE method would lead to improved estimates
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of the weighted mean. Both men looked into the problem--J.N.K. Rao in the
case with no treatments x experiments interactions which is now being con-
sidered and P.S. Rao in the case in which we assume a random treatments x
experiments interaction with variance 05, which also has to be estimated.
Both men discovered what I had suspected in working with MINQUE--that if one
is trying to produce an improved method of estimating variance components,
it may not be wise to make the estimates unbiased. With unbiased methods
one may get variance component estimates that sometimes take negative values
and have large variances. Both men produced adjustments to MINQUE that are
essentially positive. J.N.K. Rao's method (8) uses non-iterative weights

rather similar to the maximum likelihood weights. The weights are
W = no(F, + 1)/0Fs2 + ng(Fes - 74020
J 3] h D B Ak B B ’

where 91 is the unweighted mean of the 9ij‘ Some limited Monte Carlo studies
have shown that the weighting does better than the maximum likelihood estimates
of the treatments means except when differences in the error variances are

extreme. This estimate also does better than MINQUE and better than the

simple weights wB = nJ/s§ and is probably the best found thus far.
For estimating the gain in accuracy from the use of erroneous weights
like these, the previous figures for the relative accuracy of weighted to
unweighted means must be reduced, because of sampling error in the weights.
The Qampening factor depends both on the average df with which s§ are esti-
mated, and on the amount of heterogeneity in the weights. For the previous
example with weights proportional to‘l, 1/2 and 1/3 in thirds, and 1.36 if

the weights are known, the dampening factor is approximately (¥ + 6)(? +8),

2

vhere f is the average number of df in sJ.
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Thus if the sg have 6 df on the average, the relative efficiency of weighted
to unweighted means is estimated as (12)(1.36)/(14) = 1.18--a rather modest
gain from weighting. Before resorting to weighting, check also that weighted
means apply to the same population as unweighted means. For example, if the
weights tend to be high when the mean yields of the experiments are also
high, we may conclude that the results for weighted means apply to a popula-
tion having a higher mean yield than our actual population and decide not to
use weighted means.

For comparison between the estimated means of the treatments, we need
standard errors. With unweighted means, the estimate of their standard error
is /2(s§/nj)/k. With the experimental error variances of the individual
experiments taken as homogeneous, the estimated variance of the mean weighted
as n; is SZ/an. For Rao's estimate with fallible weights, Rao (8) has given
a rough estimate of the varilance of this weighted mean, which also implies
a dampening factor for the fact that fallible weights are being used. The

Jacknife estimate is another possibility..

When the treatments x experiments interaction is significant, we need
to see if we can understand the nature of the interaction. For this, a two-
way treatments x experiments table of residuals is helpful. Sometimes there
is no winner; different treatments appear to win in different parts of the
population, but either we do not fully understand the interaction or do not
wish to use it in a recommendation. Sometimes there are two distinguishable
parts of the population in which the ranking of the treatment is different,
and we understand why. Student (10) cites an example. After a long series
of experiments, the Irish Department of Agriculture introduced Spratt-Archer

barley as the best suited to the country. In one county the farmers refused
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to grow it, claiming that their native barley was superior. In order to
convince these farmers, the Department of Agriculture made some special
comparisons in this county of the native barley versus Spratt-Archer. To
their surprise, the native barley was superior. The reason also became
clear. This barley is a quick-starting variety. Now in this county,
farming is rather lackadaisical, so that the weeds flourish. The weeds
tended to smother the Spratt-Archer barley, which starts slowly, but the
native barley, starting quickly, could smother the weeds. Another maxim
from this example is make sure the experiments sample the population to which
their results will be applied.

If there are two parts which have k] and kz experiments, the following

breakdown of the interaction is relevant

df
Treatments (Part I - Part II) (t-1)
Treatments Part I experiments (t-])(k]-l)

Treatments Part II experiments (t-l)(kZ-I)

In this breakdown, we expect the first term to be large and the other parts
small. In addition, we need to analyze parts I and II separately, in order
to see if there are definite treatments differences in each part.

If the interaction is significant and is assumed to be random, the
variance of a treatment mean in an individual experiment is (o2 + oZ/nj).
which moves nearer equality because of the temm os but also means that an
extra parameter has to be estimated if weighted means are contemplated. In
a Monte Carlo study by P.S.R.S. Rao, Kaplan, and Cochran (9) several types

of weighted means including a revised MINQUE were included but the unweighted
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mean proved very hard to beat, as might be expected, unless 03 is
small and the variation in the o§ 1s extreme. Use of the umwelghted
mean has the advantage that an unblased estimate mean of the variance
of the overall mean of a treatment is E(yi,j - §)2 /k(k-1).

If the original observations are in proportions, remember that a
decision, e.g. whether a single overall mean has enough advantage overall
over the other means to recammend it, or whether two means should be
recamended for different parts of the population, must be made in
proportions. If the cambined analysis is made in some other scale,
such as angles or logits, because it is thought nearer to normality or
in same ways more sultable, remember that means in the original
proportional scale will be slightly blased when we transfer back.
Quenouille (11) has given approximate corrections for this bias, which
do not appear to be well known. ILet 32 be our estimate of the variance
of z (where z denotes the transformed scale), that is, the mean in the
transformed scale. If an angular transformation is used, Quenouille's
correctlon for bias in the transformed mean is to increase sin‘?E by
3(1 - e 2% )cos (22). If logits are used with equal welghts, the
usual procedure is to take p = e? / (1+ e?) when transforming back
to p. Quenoullle's correction for blas is to add (n—l)s2/2n to z before
taking e / (1 + &%).

3. Variations in Both Time and Space

This situation is likely to occur primarily in agriculture. Since
the experiments are llkely to be jointly planned, they may have the same
designs and number of replications, the same experiment being repeated

at the same place for four or five years. As mentioned, the number of
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years will cammonly be limited to at most four or five, since a larger
number slows up any recammendations. But the experiments may not have
the same numbers of replication - more may have been added in later years.
In varietal trials, a new variety may be added in the secord or third
years, so that different treatments may have different numbers of years
at any given time. However, unless the numbers of replications differ
greatly, a preliminary analysis of the treatment means will usually be
adequate and 1s fairly easy, although there are extra camplications and
full least squares may have to be used if same treatments are only present
in the ‘later years.

It will usually be necessary to treat the treatments x years
variation as random, with variance 02

ty
a randam variate. A good deal is known about the influence of weather

,» even if 1t does not act like

on crops, and we may have found, for instance, that in a good year
the best treatments have a greater advantage, so that the treatments x
years interaction is definitely not randam. But a superior treatment
before recamendation, must be superior, on the average, over a span
of years, taking 02

ty
treatment for different years.

into account, since we cammot recamend a different

Thé preliminary analysis of variance and the expected values of the
means squares are shown below. I have treated the treatments x places
interactions as randam as well as treatments x years, since this is
usually the assumption that has to be made if it is a question of

recamending the overall use of one treatment.
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darf Expected value of mean squares

=2 2 2 2 2
Treatments (t-1) g + mtpy + npoty + ny"tp + npyo,
-2 2 2
TxY (t-1)(y-1) o +nop.. *+npo,
Tx P (t-1)(p-1) 3° + no° + rwo2
tpy tp
-2 2
Tx PxY t-1 1)(y=-1 +
x P x (t-1)(p-1)(y-1) o notpy
Pooled error 32

In presenting the expected values, I have taken the simplest case,
in which all experiments are of the same size and design, the symbols n,

t, p, and y standing for number of replications, number of treatments,

number of places, and number of years. The symbol 32 is, of course,

the true pooled error variance. The Mstpy is tested against error, and if

F 1s about 1, this mean square may be cambined with the pooled error.
The expected values are written as if treatments are also randam, with

variance 0'3' If the effects of treatments are fixed, as they usually are,
replace 012: by what 1s usually called 312:

Fram the expected values it is clear that the treatments x years

= 1(t-E)%/(n-1).

ard treatments x places interactions are tested by an appropriate F test
(approximate if o§ varies from experiment to experiment) against the mean
square for the tpy three-factor interaction, and that an unblased estimate
of oﬁy 15 (MS,, - MS,_ )/np. For the main effects of Treatments, no
single 1line in the analysis of variance is a proper error. An unbiased
estimate of the error variance for the error of a treatment mean, if

interactions are present and random, is

MS,_ +MS,_ - MS
tp ty tpy
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and an approximate F test of the treatments mean square may be made
by taking F = Mst/(MStp + Msty - Mgtpy)’ with Satterthwaite's
approximation used to ascribe a number of df to the denominator.
However, in a small Monte Carlo study of experiments, Hudson and
Krutchkoff (13) found, somewhat surprisingly, that a rival

F = (MSt + NBtpy)/ (NBtp + Msty) using Satterthwaite, had somewhat
better power and recommended it, although it did not approximate the
5% and 1% levels of F when the null hypothesis was true.

Since whether we recammend one treatment, two treatments or suspend
Judgement for some reason depends mainly on how the treatments vary in
effects from place to place, the two-way table of treatments ard places‘
deserves careful study. The treatments x places interaction is |
sametimes heterogeneous; same comparisons of some treatments have a
higher mean square interaction than others. Subdivisions of the
treatments and places and the treatments x places sum of squares should
be tried.

Thus, as we have seen, the summary of a series of experiments calls
mainly for experience in the analysis of varilance, which we now have.
It is well to adopt samething of the attitude in exploratory analysis
ard be on the lookout for anything unexpected,since the nature of the
tp interaction 1s often a hard thing to puzzle out.
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ROBUST FILTERING AND SMOOTHING OF TRACKING DATA

WILLIAM S. AGEE and ROBERT H. TURNER
Mathematical Services Branch
Analysis and Computation Division
White Sands Missile Range, NM 88002

ABSTRACT

Robust methods provide a fresh approach to the problem of treatment of
wild observations in filtering and smoothing problems. The robust M-esti-
mates of regression are extended to filtering and fixed lag smoothing em-
ploying a pseudo-density of the observations in a conditional mean deriva-
tion of the filter and fixed lag smoother. These robust methods have been
applied to simulated and real tracking data to obtain improved estimation
performance in the presence of wild observations.

INTRODUCTION

Robust filtering and smoothing are a natural extension of the robust
M-estimates of regression developed by Huber [1]. The robust M-estimates
provide a natural treatment of outlying observations and have been ex-
tremely successful in dealing with outliers in other data reduction pro-
blems . [2] and [3]. The extension of the M-estimate methods provides a
fresh approach to the problems caused by outliers in filtering and smooth-
ing applications. Robust methods for estimation are designed to perform
well when observations from contaminating distributions are present. The
conventional estimation techniques of least squares, maximum 1ikelihood,
minimum variance, etc. may become useless when the observations are con-
taminated by gross outliers or wild data points. When using these esti-
mation methods, outliers are often treated by testing the residuals. If
it is decided that a residual is statistically too large, the correspond-
ing observation is declared an outlier and is not processed. These hypo-
thesis testing methods are often successful if only a small number of out-
1iers are present but. breakdown for larger proportions of outlying obser-
vations. Also, in order for outliers to be detected, they must be re-
latively large compared to the measurement noise. The detection methods
based on testing of residuals are relatively insensitive to small outliers
which leads to an inflation of the mean square estimation error. Thus,
methods for treating outliers should be evaluated on their ability to
achieve a small mean square estimation error as well as their ability to
offer protection from gross outliers. '

Very little development ‘has appeared on the application of robust
estimation techniques to filtering and smoothing. The most notable work
in this direction is that of Masreliez and Martin [4]. Their development
of the application of M-estimates to the Kalman filter is mainly theoret-
ical. The emphasis here is on the development of some practical results on
the application of M-estimates to filtering and smoothing. We have ap-
plied these methods to filtering and smoothing of tracking data from tra-
Jectory measurement systems at WSMR. Using simulated tracking data we
have also performed extensive Monte Carlo evaluation of filtering methods
based on M-estimates to determine the conditions for which we can expect
to benefit from the application of these methods. .

35



M-ESTIMATES FOR REGRESSION
Given scalar observations Yo i =1, Nof a 1inear model
yi = Xie + e.' . (])

where X1 is a row vector of known independent variables and ey is a random

error term we want to estimate the unknown p-vector, 8. The M-estimate
of © minimizes

121 o (g = XyoMs) - @

where o(+) is a specified function and s is a robust measure of dispersion
of the residuals, y; - X;6. Minimizing (2) by differentiating with respect

to © gives .

N .
T - -
I X v(ly - xie)/s) 0 (3)
where y-is the derivative of p and 5 is the M-estimate of o. _(3) is the

analog of the normal equations in least squares estimation. o is computed

iteratively by applying a weighted least squares algorithm to (3). For
details see [2]. ’

. Rather than specifying the function p, M-estimates are usually de-
scribed by specifying the function y. Several y functions have been pro-
posed in the literature. The only ¢ functions considered here are varia-
tions of the one proposed by Hampel [5]. The Hampel y function with break-
poirits a, b, ¢, denoted by Ha(a,b,c) is given by : .

[ x ' |x]a .
] a-sgn(x) as|x|%b 4)
bix) = a(x-c-sgn(x))/(b - ¢) bS|x|3%c - (
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The M-estimates can also be applied to regression problems having vector
observations and to nonlinear regression problems. If the probability
density function p of the observations is related to v by p*/p = -y, the
resulting M-estimate is maximum likelihood. For any y function we call

e Pa pseudo-density and derive filters in some conventional ways with the
density function of the observations replaced with a pseudo-density.

APPROPRIATE NON-GAUSSIAN FILTERING

Assume that the Statex(k) of the process being observed is governed
by the discrete linear model, '

x(k+1) = &(k+1,k) x(k) + u(k) (5)




where the state vector x(k) is an n-vector, u{k) is a Gaussian state noise
vector with zero mean and covariance Q(k). ¢(k+1,k) is an n x n state
transition matrix. Scalar observations, z(k), of the process are given by

z(k) = H(k)x(k) + v(k) (6)
where H(k) is a row vector and v(k) is a measurement noise error which may
be contaminated by outliers. .

In order to derive robust filters corresponding to the M-estimates of
regression, we use the results of Masreliez [6] on approximate non-Gaussian
filtering. Masreliez obtains an approximate conditional mean of p(x(k)jzk)
where Z¥ is the collection of observations, ZK « {z(1), z2(2), ---, z(k)}.
Using Bayes rule p(x(k)lzk) is given by

p(x(k){ZK) = plz(k) Ix(k))p(x(k)1Z¥1) (7)
 p(z(k)(zEh
In orderkto derive a useful approximation to the copgjtional mean,
E[x(k)]Z"], of (7), Masreliez assumes that p(x(k)|Z" ') is Gaussian with

mean §(k[k—1).and covariance P(klk-1). The resulting approximate condi-
tional mean, x(k|k) is given by _

x(k|k) = x(k|k=1) + P(k]k-1)H" (k)g(z(k)), (8)
where g(z(k) is the scalar
9(2(k)) = -p' (2(K) |12 )zpgpp(a(i) 127) (9)

Maireziez also derives the second moment, P(klk). of p(x(k)lzk). The re-
sult is ' .

PK|K) = P(K|k=1) - P(k|k-1)HT (K)&(z(K))H(K)P(K[k-1),  (10)

6(z(k)) = 282IK) ()

A second method for approximate non-Gaussian filtering is the.margi-
nal maximum 1ikelihood filter. In this case we find the estimate x(k|k)

which maximizes (7). In this derivation we also assume that p(x(k)le'])
is Gaussfan. .The resulting equation for x(k|k) is

x(k[k) = x(k[k-1) = PLx[k-DHT (k)P Yl Jx(k ) 2RZPALXIKD 1)

The estimate given by (12) is of the same form as the conditional mean esti-
nate given by (8). The difference in the two estimates is that the right

hand side of (12) depends on x(klk) while the right hand side of (8) depends
»ly on the predicted estimate, x(k|k-1). Thus, (12) requires iteration to

sbtain the estimate and if in the first iteration of (12), we substitute

x(k|{k-1) for x(k{k) on the right hand side, the resulting estimate on the
first iteration will be identical to the conditional mean estimate of (8).
Thus, the maximum likelihood filter may be regarded as a correction to the
conditional mean filter.

with.
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ROBUST FILTER EQUATIONS

~ The robust filtering equations corresponding to M-estimates are obtain-
ed by replacing the density function, p(z(k)lzk' ), in (9) or (12) by a

pseudo-density, e P, where p' = (z k) - H § x(kik-1 ) is a desired in-

fluence function. This substitution results in the following équatidns for
the conditional mean robust filter.

~ - i - T - » -

pun)-uubn-(}@%ﬁﬁ:)uubnﬁumuwuunnnn

vhere ¢' is the derivative of v and r(k) = z(k) - H(k)x(k|k-1). The filter
aquations are completed by the usual Kalman filter equations for the pre-
dicted moments. . '

In order to insure the robustness of the filter described by (13) and
(14), the dispersion sy of the predicted residuals must be specified so

that it is insensitive to outliers. We used the MAD estimate of s, com-
puted from past residuals as
sy = medfan | 2(k-) - HT (k-3)% (k=3 [k=3-1) | / .6745 (15)
J-O,N-] ' .
where N is a suitably chosen integer.
" The robust maximum 1ikelihood filtér is obtained by replacing the den-

sity p(z(k)lzk']) in (12) by a pseudo-density. The resulting filter is
given by

A T | >
KKIK) = AlKkcT) + Pmk’ll" .(u) . (zm - u(k)x(km) (16)

S
In (16). we use X(k|k-1) to denote the mean of p(&(k)|2k°]). We use (14) to

compute P(k|k) and use (13) to compute i{klk). Several simple methods are
available for the iterative solution of (16). The simplest of these is to

use 1 T ‘(uh
1 L e « e (_{(k) - H()x(k]k ) ' an

3
k
S - .0
starting with x(k|k) = X(k|k-1) so that the first estimate x k{k) is the
conditional mean estimate, Xx(k|k).

EVALUATION OF THE ROBUST FILTER

Evaluation of the robust filtering methods described above was done
with a view toward eventual application to trajectory estimation. The
emphasis in the evaluation was on simulated rather than real trajectory
data. This allows a quantitative determination of any advantages in the
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use of robust filtering in the presence Ot outliers ana atlso any 10ss 1n
efficiency using robust methods when no outliers are present. The simu-
lated trajectory is that of a constant velocity, level flying aircraft.

The measurements are of position in each of three cartesian components
with added measurement noise which is contaminated by outliers. The filt-
er model assumes the trajectory to have constant acceleration in each co-
ordinate. The filter for each coordinate has a small acceleration state
noise, Q(k) = 5. The outlier contamination is controlled by a two state
Markov chain with a transition possible at each measurement time. An out-
lier is added to the measurement if the Markov chain is in state two and
no outlier is added if the chain is in state one. The transition prob-
abilities, Pij, are used to determine the percentage of outliers contam-
inating the measurements and also the length of runs of outliers in the
measurements. The magnitude of the outlier contamination is C - R, i.e.,
a constant multiple of the measurement noise standard deviation.

Using the simulated trajectory data a Monte Carlo evaluation of ro-
bust filtering was performed. The rms estimation error was computed point
wise for position, velocity, and acceleration using a sample size of
twenty-five. The plots of the rms errors for each of the conditions test-
ed requires far too much space to present here. Instead, these results
are summarized by time averages of the rms error in position and velocity
for each of the conditions tested. )

Figure. 1 compares the average rms position error for two filters us-
ing the Hampel y functions Ha(2, 3, 4) and Ha (4, 4, 4). Figure 2 gives
the rms velocity error comparison for the same two filters. Also indi-
cated in Figures 1 and 2 are the ideal rms error values which were obtain-
ed with an ordinary Kalman filter with no outliers present and using a
known measurement covariance, Rk = 400. , The Monte Carlo evaluation of

figures 1 and 2 was made with a measurement noise standard deviation of
R, = 20 ft. R, was unknown to the filter. _

We note from figures 1 and 2 that neither of the robust filters lose much
efficiency from the ideal values when no outliers are present. The er-
ror curves in figures 1 and 2 behave as expected. Since outliers small in
relation to the measurement noise are hardest to detect, the error curve
rises sharply. Outliers large relative to the measurement noise are easy
to detect so ﬁf? error curve returns to zero for large outliers.
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We see from figures 1 and 2 that Ha (2, 3, 4) has a significantly smaller
mean square error than Ha (4, 4, 4). Except for the way in which the dis-
persion of the residuals is measured, i.e., the MAD estimate in (15),

Ha (4, 4, 4) is a conventional way of handling outliers in a Kalman filter-
ing application. Using Ha (4, 4, 4) any observation whose predicted
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residual is greater than 4 - s is not processed and any observations whose
predicted residual is less than 4 « s is processed as an ordinary Kalman
filter observation. The above Monte Carlo evaluation was made with Markov
chain probabilities P,; = .05 and Py, = .5 which gives an outlier probabi-
1ity of.088 and.an average outlier run length of three. In order to re-
duce the average rms errors, we pull in the breakpoints of the Hampel y

function. Figures 3 and 4 compare the average rms errors in position and
velocity for the Ha (1, 2, 3) and Ha (2, 3, 4).
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Fiéures 3 and 4 were made using the same outlier proportions and measure-
ment noise standard deviations as figures 1 and 2.

The iterated filter, i.e., the approximate maximum 1ikelihood filter
given by (14), (16), and (17) was also evaluated under the same conditions
as the conditional mean filter. Comparison of the average mean square er-

rors for the conditional mean and maximum 1ikelihood filters showed no
: digcernib]e differences. '

ROBUST SMOOTHING

A simplified robust, fixed lag smoother, was derived in a similar
manner to the robust conditional mean filter derivation. We derive an ap-

proximate conditional mean, E[x(k)|Z¥'™} of the density p(x(k)|zK*™) using
"the same methods and assumptions used by Masreliez and used in the deri-
vation of the robust filter. The robust smoothed estimate is given by

| T T .
x(k|k+n) = ;(klk)-l-P(klk-])jn ¢ (g M (kﬁ).,,(Z_Q‘ﬂW)m)

z

= Sk+3 Sk+3

In obtaining (18) the fixed lag smoother has been greatly simplified by leav-
ing out the state noise in the forward interval. x(k|k) in (18) is the ro-
bust filtered estimate described by (13) and (14). Skt is a robust measure
of dispersion of the residuals, z(k+j)-H(k+J)§(k+j|k-1). éeveral possibi-
lities exist for computing a useful dispersion measure, sk+j’ The simplist

method and the one used to obtain the smoother evaluation given below is to
make.sk+j a constant Skej = Sk and then compute s, by (15).
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A Monte Carlo evaluation of the simplified fixed lag smoother was
performed using the same simulated trajectory as was used for the filter
evaluation. Measurement noise having a standard deyiation of 50 feet was
added to the simulated positions. The measurement noise standard devia-
tion was unknown to the smoother. The forward smoothing interval had a
length of n = 20 which represents a one second smoothing time. The out-
lier proportions and run lengths were the same as for the filter eval-
vation. A sample size of ten was used for the Monte Carlo evaluation of
the smoother.

Figures 5 and 6 display the average rms position and velocity esti-
mation errors obtained using the robust, fixed lag smoother with the
Hampel y functions, Ha (2, 3, 4) and Ha (4, 4, 4). Also noted in fig-
ures 5. and 6 is the ideal average rms values which were obtained using the
smoother with no outliers and a known measurement covariance, Rk = 2500.

The robust smoother using Ha (4, 4, 4) is representative, except for the
measurement of Sk of a conventional way of handling outliers in an opti-

mal smoothing application. We note that either of the smoothers offers
good protection from very large outliers but that Ha (2, 3, 4) results in
a significantly smaller estimation error when small outliers are present.
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“ROBUST FILTERING USING GAUSSIAN MIXTURES

. Robust estimation methods deweight and/or reject outlying observations
by specifying observational densities or pseudo-densities having long,
heavy tails. We can also realize a long, heavy tailed density by using a
Gaussian mixture. Suppose we replace p(z(k)|x(k)) in (7) or (12{ by the
Gaussian mixture pseudo-density,

p(2(k)|x(K)) = T agh(z(K) = H(Ix(K) - af'), R)) Q)
i

where

. 2

N(z(k) - H(k)x(k) - a'((i), Rk) .(‘ JZGRK)EXP{-(z(k) - H(k)x(k) - 4{’)/2&14

' (20)
We do not require that Ia; = 1. Thus, we have individual Gaussians cen-

i

tered at gl)and each havin% 3tandard deviation Rk. The sum in (19) may be
infinite. The locations, al, and the amplitudes, ay, are free parameters.
Using (19) we obtain p(z(k)|Z¥"1) as | )
i



plz(k) [Z5°Y) = ;v. a,u(z(k) - H(k)i(klk-])-a'(‘”.H(k)P(ka—])HIk)ka) (21)

In obtaining (21) we have again assumed that p(x(k)lik'1) is Gaussian.

Subst1tut1ng (21) into (8) and (9) with the variance of the residuals,
H(k)P(k k-l)ka)+R rreplaced with an estimated value, sk » gives

 x(k|K) = x(klk-l) + nglk-nufk)(z(x) - H(k)x(klk-l)-a‘) . (22)

Sk
In (22) %, 3 1s the weighted average
5 = il . (23]

i
where the weights H1 are given by

c‘N(z(k) - H(KIX(k[Kk-1) = af 5,.2) (24)
N(z(k) - H{K)x(k[k-1) - au?.sk)

The filter equations (22), (23), and (24) are identical in form to the
simplified pseudo-Bayes filter by Ackerson and Fu [7] for adaptive filter- .
ing when the mean of the measurement noise is unknown. Using (10) and (11)
the conditional covariance is

—— .
P(k|k) = P(k|k-1) - P(klk-l)l-l(k)("/skz - <°I(< )s' ‘k;)ulk)P(‘klk-l).(ZS)
7 |

where

R )

Although the above sums may be theoretically infinite, we only need
to calculate the relatively few terms in the sums which have significant
values of the weights, wi. Thus, we compute only those terms in the sums
for which Iz(k)-H(k)i(klk-])-a‘(‘i)[/sk5 4. With this simplification the
amount of extra computation required to implement this robust filter is
relatively small. The locations, ak'i » produce a smooth pseudo-density

if they are chosen as zero and odd integral multiples of Sk a{o) =0,
(1) = sgn(1)(2]1] - V)5, [i] 2 1. We have also tested the filter with

ii) =4k, [1|] 20. The value of the residual dispersion, S Is

still computed by (15). Several different choices of the amplitudes have
been t 7§ted The most extensive testing has been done with ay = 1 and

(14] +1). 42



Some robust filters using the Gaussian mixture formulation were also
evaluated via Monte Carlo testing. These filters were tested using the
same simulated trajectory data and under the same outlier and measurement
noise conditions as' the robust filters using Hampel y functions. The sam-
gle size for Monte Carlo was twenty-five, the Markov transition probabi-

jties were P3; = .05 and Py, = .5 and the measurement noise standard

deviation, which was unknown to the filter and estimated by (15), was Jst
20 feet. Figures 7 and 8 present the average rms position and velocity
errors for a ‘Gaussian mixture filter with observations contaminated by
various magnitudes of outliers. The Gaussian mixture filters used in gen-

erating Figures 7 and 8 used ‘magnitudes of the Gaussians, a; = (|1| +1).

Two different Gaussian mixture filters are represented in Figures 7 and 8,
one with Gaussians at all integral multiples of Sk and one with Gaussians

_at zero and odd integral multiples of Sks +
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Each Gaussian component of P(z(k)|2 ) has standard deviation Si+ There

is very little difference in the estimation errors obtained for the two
filters of Figures 7 and 8. The filter with Gaussians at_only the odd
multiples of Sk is computationally less complex. Figures 9 and 10 give

' the results of the Monte Carlo evaluation of a Gaussian mixture filter
which places Gaussians at zero and odd integral multiples of Sk with ampli-
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This filter appears to give somewhat -smaller errors than the other Gaus-
sian mixture filters and also slightly smaller errors that the robust
filter which uses Ha(l, 2, 3). We note that using ay ® 1 with Gaussians

at all integral multiples of Sk does not result in a useful filter since

it has a zero influence function and therefore does not produce any cerror
enrrection.
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CONCLUSIONS

Two methods based on M-estimates have been presented for robust filt-
ering and smoothing, one using the Hampel y function with various break-
points and the other which models the observation error as a Gaussian mix-
ture. These robust filtering methods were subjected to a Monte Carlo
evaluation using simulated trajectory data from an aircraft tracking ap-
plication. The results of this evaluation show that both of these robust
filtering methods give a significant reduction in average rms estimation
error for small outliers compared to a more conventional way of treating
outliers in an optimal filtering application. The tests also suggest that
the Gaussian mixture robust filter methods offer the most promise for ap-
plication and future testing. Further evaluation of robust filtering
methods under more severe trajectory applications are necessary.
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COMPOUND FREQUENCY DISTRIBUTIONS
A METHOD FOR ESTIMATING STATISTICAL
PARAMETERS FROM AN ADULTERATED SAMPLE

Donald W. Rankin

Army Materiel Test and Evaluation Directorate
US Army White Sands Missile Range
White Sands Missile Range, New Mexico 88002

ABSTRACT. When a sample is contaminated by extraneous '"outliers",
computation of the higher statistical moments may contain large errors. The
proposed method treats these "outliers" as members of another '"unwanted"
population, and assumes that they perturb the distribution minimally near
the maximum ordinate (mode).

The distribution is studied only near this maximum ordinate. A simple
curve (a parabola, say) is fit by the method of least squares and the various
derivatives are evaluated at this maximum ordinate. Not only the usual statis-
tical parameters (mean, variance), but also the proportional number of "outliers"

turn out to be expressible as simple functions of these derivatives.

I. THE PROBLEM

Statistical analysis usually requires that certain a priori assumptions
be made; e.g., a certain population is normally distributed. From time to time,
however, a test will reveal that a sample has been drawn which is incompatible
with the basic assumptions.

An example which quickly comes to mind is the distribution of a2erial
bombing scores. For many samples, the assumption of a normally distributed

population appears to be invalid -- frequenCy in the '"tails" is far too high.
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Before abandoning the postulation of normality, let us address the
problem from a different point of view. Keeping the example of aerial
bombing scores, suppose that in a sample of, say, 100 bombing runs, the
bombardier misidentified the intended aiming point on ten occasions. It
is obvious that only 90 scores will be drawn from the '"correct' population
(i.e., the population for which we have postulated normality), while the
remaining ten will come from populations with displaced means. To choose
terminology, we shall say that the sample is adulterated by the ten runs
from unwanted sources.

How the density function is affected by mixing different populations
is seen in Figure I. The lower curve is simply the normal curve in which
0 =1and N=100. Adding adulteration from two extraneous populations
(0 =1,u= =2, N= 20, ando=1, u = 2, N = 10) yields the density function
for the compound frequency distribution, illustrated by the upper curve.

It is apparent at once that the '"tails'" are abnormally thick. It should
also be noted that the density function is deformed least near the mean.

If the mean of the extraneous bits of data is displaced by much more
than 20 , the effect on the center of the sample distribution is virtually
nil. Can the parameters of the desired population be recovered by studying

the sample distribution only near its center?
II. A SOLUTION

The probability density function of a standardized (u = 0, 0 = 1) normal
distribution is given by

-1/2 z2
p (2) = 1 e
/2-_
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Differentiating, we find that

9 (2) = —Z . -l/2 22

VI

and

2z -n -1/2 22
v

" (2) =

Evaluating these expressions at the maximum ordinate, we find that

Z =0
g (0) = —1
VZTI'
pr (0) =0
g (0) = —L1
V21T

Expressing § (Z) in series fomrm,

_ 1 22 YA Al z®
ﬂ(Z)‘ = [1-T+T---4T+3—8?---ooo

It is easy to see that for small values of Z -- say |Z|<0.4 -- the first two terms

form a sufficiently good approximation. Note that for

g (2) = ;’__ [-—5—2—] and Z = 0,
&
proz) = - =
V!TI'
@) = - —
I




p0) =
Vz'ﬂ'
p' (0) = 0
pr(0) = - —
I

In other words, at the point of the maximum ordinate (Z = 0), the approximating
parabola and its pertinent derivatives take on exactly the same values as the

probability density function.

Since P (Z) is a probability function,

] g (2) 4z = 1.

In an actual case, a sample of size N will be drawn, consisting of N values

of the form Yy

Each y; can be thought of as a deviation about a certain origin; i.e., as
an abscissa. Since each y; occurs with frequency 1, we have immediately

N
£(y;) = 1 and izlf(yi) = N.

Let us make two assumptions -- first that the desired population (call it the
"Z population') is normally distributed -- second that the extraneous members of the

sample are clustered about points far enough removed from the mean of the Z popu-

lation that the frequency distribution is minimally perturbed near the center.

Let Nz denote the number of members of the sample which are drawn from the
desired population. Let u and ¢ be, respectively, the mean and standard deviation

of the yi's of this Z population. Then
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Z= -lliili— is the standardized variable,
allowing our previously developed expressions in Z to hold. Note that

R EA

«=C0

[ 9@ az =

If we could identify the members of the Z population, we could
determine

Nz = Z f(yi)

merely by counting. This cannot be done. But we note that

[ ]
[ X ) o
- o p(o)dyaNz
choosing to regard y (without a subscript) as a continuous variable, and thus

considering f(y) as an ordinate rather than as a frequency, we find,

N N oy
N == P (D =—= e

ovZrw
=N, (y=H)  _ (voin?
£1y) = —2— e~ Pl

o®v2r
_Nz

e [ )] g

£'(y)

50




Evaluating these at the maximum ordinate (y = P)’ we find that

Nz
£ =
o VT
£' ) = 0
-N
f" (;) -

z
or3'\’21T

Solving for Nz and & yields two fundamental expressions.

d’z _;f_.(i)._
f" G)

27T £3(9)
f" (y)

N, = -

For actual computation, the form

N, = o f (y) 2m

may be preferable.
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It remains to evaluate the mean (¥ is the best estimate of u) and the values
of the function and its second derivative at that point. For this we use
the approximating parabola (least squares fit *),

f(y) = Ko + Kly + K,y2

' -

"(y) = 2K,
Since £'®) = o,
y-_h
2Ky
K, 2
and £@) = Ko - 1
4K2 °

0f course ") = K, .

The reader is reminded that the form of the distribution is selected
from criteria other than the appearance of the raw data. For example,
a distribution which follows (Appendix A, Table 1, Figure II) appears to

be tri-modal, due to the presence of many extraneous outliers.

*See Appendix A
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APPENDIX A

A _SIMPL SQUARES

The application of the method of least squares is greatly facilitated

by transforming the independent variable so that its transform has a mean

of 0 and an increment of 1. By way of illustration, in Table 1, y is the

independent variable, f 1its frequency and x its transform.

x =_y - 24 , oy, = 3oy
3

In terms of the transformed variable x, since 2 x 2m -1

(m i8 any positive integer),

g(x) = A + Alx + Azx

Zf S x2
A, - | Sx%¢ le'
Z1 T X2
S x2 p
- Z xf
A
Z x?
21 Zt
\ Za Z
2 -
T > x?
Z x2 > x4

Table 2 contains numbers useful in computation.
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TABLE 1

A HYPOTHETICAL SAMPLE DISTRIBUTION

v £(y) x xf x2f
0 0 -8 0 0

3 2 -7 -14 98
6 4 -6 -24 144
9 3 -5 -15 75
12 0 -4 0 0
15 3 -3 -9 27
18 2 -2 -4 8
21 4 -1 -4 4
24 2 0 0 0
27 S 1 S S
30 2 2 4 8
33 2 3 6 18
36 0 4 0 0
39 2 5 10 50
42 1 6 6 36
45 2 7 14 98
48 i 8 8 64
)) 35 -17 635
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10

11

12

*D =

TABLE 2

SUMMED SQUARES AND FOURTH POWERS WITH OTHER USEFUL NUMBERS

11
13
15
17
19
21
23

25

RIS
RS

3.141 592 654

6.283 185 307

2.506 628 275

T 2
! x}
-1

10
28
60
110
182
280
408
570
770
1012

1300
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T L
L x¢
-i

34
196
708

1958
4550
9352
17544
30666
50666
79948

121420

*D

70

588
2772
9438
26026
61880
131784
257754
471086
814660

1345500



Suppose it is desired to fit a parabola to the 9 central points (Table 1).

1 = 4, 2f = 20, 2xf = -2, Sxf = 70 _

’zo 60
A, = 170 708 = 9960 = 3.593 074
2772 2772
Al = ~2/60 = -0.033 333
, 9 20
A, = _leo 70 - -570 = -0.205 628
2772 2772
x = A = -0.081 053
24,
y = 23,756 84
2
g = a, - 1 = 3.594 424
4A,

g" (x) = -0.411 255

s, = X - 2.95637
g'" (x)

- 8.86911
%

N = 'XS(X) ‘¢21r = 26.64 or 27
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APPENDIX B
THE ERROR INDUCED BY ASSUMING A PARABOLA TO APPROXIMATE A NORMAL CURVE

With no prior knowledge of the value of o, it usually happens that
rather large values of _y -p  are used to fit a parabola (1.38 in
o
illustration in Appendix A). When this happens, the computed values of N

and o0 will be too large. 22/2
Table 3 shows the error induced by the approximation 1 - 22 = e

2

The tabular values give the error as a proportion of g(X), the maximum
ordinate (o0 = 1).

If the mean and variance can be estimated (and the first parabola fit
will provide a rough estimate), the error at each value of the independent
variable can be computed. If these error terms are subtracted from the
corresponding frequencies, a parabola fit to these "corrected frequencies"
will exactly reproduce the desired parameters with no residual error
(except that induced by errors in the estimation of p and o).

Although the correction function is exact, it should be remembered
that on the normal curve thegre are inflection points at + o, outside of
which the parabola and normal curve diverge very rapidly. This makes
corrections computed for points outside o dependent upon accurate estimates
of P and 0. For example, a 5% error in the estimate of o will re;ult in
a correction error at 0.5 o of only 0.32 of the maximum ordinate, but
3.2 at 1.2 o -- a tenfold increase.

The histogram of the data from Table 1, with the best-fitting normal

curve and associated parabola is illustrated in Figure II.
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TABLE 3
1

yA e 2 22
0.00 1.0000
0.02 .99980
0.04 .99920
0.06 .99820
0.08 .99681
0.10 .99501
0.12 .99283
0.14 .99025
0.16 .98728
0.18 .98393
0.20 .98020
0.22 .97609
0.24 .97161
0.26 .96676
0.28 .96156
0.30 .95600
0.32 .95009
0.34 .94384
0.36 .93725
0.38 .93034
0.40 .92312
0.42 .91558
0.44 .90774
0.46 .89960
0.48 .89119
0.50 .88250
0.52 .87354
0.54 .86433
0.56 .85488
0.58 .84518
0.60 .83527
0.62 .82514
0.64 .81481
0.66 .80429
0.68 .79358
0.70 .78270

2
1-2° piss
1.000  .00000
.9998  .00000
.9992 00000
.9982  .00000
.9968  .00001
.9950  .00001
.9928 ©  .00003
.9902  .00005
.9872  .00008
.9838  .00013
.9800  .00020
.9758  .00029
9712 .00041
9662 .00056
.9608  .00076
9550 .00100
.9488  .00129
9422 .00164
9352 .00205
.9278  .00254
9200  .00312
9118 .00378
.9032  .00454
.8942  .00540
.8848  .00639
.8750  .00750
.8648  .00874
.8542  .01013
.8432  .01168
.8318  .01338
.8200  .01527
.8078  .01734
.7952  .01961
.7822  .02209
7688  .02478
7550 .02770

| ~

e o e o .

NNNNN
O HA~NO

00 00 0o O0 O
O HA~NO

[=NeNeNoNe] [=N=NoNeNe] [=N=NeNeNa)
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Lo 2
e2 2 1-2 piss
.78270  .7550  .02770
.77167  .7408  .03087
.76048  .7262  .03428
.74916  .7112  .03796
.73771  .6958  .04191
.72615  .6800  .04615
.71448  .6638  .05068
.70272  .6472  .05552
.69087  .6302  .06067
.67896  .6128  .06616
.66698  .5950  .07198
.65495  .5768  .07815
.64288  .5582  .08468
.63078  .5392  .09158
.61866  .5198  .09886
.60653  .5000  .10653
.59440  .4798  .11460
.58228  .4592  .12308
.57018  .4382  .13198
.55811  .4168  .14131
.54608  .3950  .15108
53409  .3728  .16129
.52215  .3502  .17195
.51028  .3272  .18308
.49848  .3038  .19468
.48675  .2800  .20675
47511 .2558  .21931
46357  .2312  .23237
45212 .2062  .24592
44078  .1808  .25998
.42956  .1550  .27456
.41845  .1288  .28965
.40747  .1022  .30527
.39661  .0752  .32141
.38580  .0478  .33809
.37531  .0200  .35531



Interpolation in Table 3 can be avoided by choosing values of o and

p such that
1 - 0.02 Rk

" and

p - 0.02 R'

(R and R' are integers).

This is a reasonable procedure; since the first estimate of L
probably is too high, it is legitimate to choose that lower value which
serves the purpose. Table 4 is presented for convenience in choosing

'X .

Application of the correction technique to the example of Appendix A

is shown in Table 5 and following.
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TABLE 4

VALUES OF Oy WHICH YIELD CLASS INTERVALS OF

1 1

o ° o

.02 - 50 .32 3.
.04 25 .34 2.
.06 16.66667 .36 2.
.08 12.5 .38 2.
.10 10 .40 2.
.12 8.33333 .42 2
.14 7.14286 .44 2
.16 6.25 .46 2.
.18 5.55556 .48 2
.20 5 .50 2
.22 4,54545 .52 1
.24 4.16667 .54 1.
.26 3.84615 .56 1
.28 3.57143 .58 1.
.30 3.33333 .60 1
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125

94118
77778
63158

5

.38095

.27273

17391

.08333

.92308

85185

.78571

72414

.66667



TABLE 5

CORRECTION OF A HYPOTHETICAL FREQUENCY DISTRIBUTION

y £(y) x X ; .S Factor Af f+Af  x(f+Af)  x2(f+Af)
X

12 0 -4 -1.42

15 3 -3  -1.06  .13198 -0.47  2.53  -7.59 22.77

18 2 -2 -.70  .02770 -0.10 1.90  -3.80 7.60

21 4 -1 -.34  .00164 -0.01 3.99  -3.99 3.99

24 2 0 .02 .00000 -0.00 2.

27 5 1 .38 .00254 -0.01  4.99 4.99 4.99

30 2 2 .74  .03428 -0.12  1.88 3.76 7.52

33 2 3 1.10  .15108 -0.54  1.46 4.38 13.14

36 0 4 1.46

) 20 0 -1.25 18.75  -2.25 60.01

From Appendix A, we have

x = -0.081 053

g(x) = 3.594424
o, = 2.95637
1/o, = 0.338

for correction, set l/ox = 0.36

Then 0.36 X = -0.029, set 0.36 x = -0.02
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It is observed that for x = + 4, the entering argument lies outside the
range of Table 3. This merely means that the original curve fit spanned
too much data. The values for x = + 4 are simply dropped from further
calculations.

Fitting a parabola to the "corrected" frequencies, we find

18.75 28
B, = 160.01 1961 = _1994.72 =  3.39238
588 588
28
l 7 18.75
B, = 128 60.01|] = _-104.93 = -0.17845
588 588
x = -0.22515
Yy = 23.32455

g(x) = 3.40143
g'(x) = -0.35690
6x = 3.08713

a; = 9.26138

N = 26.32 or 26

1 = 0.324 , let 1 = 0.32
6 x Ox

0.32 x = -0.072 , let 0.32x = -0.08
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The consequence here of dropping the data for x = +4 is that rarity,
too small an estimate of o . Another iteration seems in order. See

Tables 6, 7 and following

TABLE 6

FURTHER CORRECTION OF A HYPOTHETICAL FREQUENCY DISTRIBUTION

y f x - %X Factor Z&g x F = xPF xz F
oy f +4g
15 3 -.88 .06616 -0.23 -3 2.77 -8.31 24,93
18 2 -.56 .01168 -0.04 -2 1.96 -3.92 7.84
21 4 -024 ~00041 00 -1 60 —40 4.
26 2 0.08 .00001 0. 0 2. 0 0
27 5 0.40 .00312 -0.01 1 4.99 4.99 4.99
30 2 0.72 .03087 -0.11 2 1.89 3.78 7.56
19.19 28'
Co = 163.54 196 = 1982.12 - 3.37095
588 588
Cp = _-=2.72 = -0.09714
28
, 7 19.19
Cy = 128 63.54 = -92.54 = -0.15738

588 588
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% =
7 =
g(x)

g (x)

o =

o’y =

4
L}

1
%

0.30

15
18
21
24
27
30

33

65

-0.30862
23.07413
= 3.38594
= -0.31476
3.27981
9.83943
27.84 or 28
0.305 let 1 = 0.30
Ox
X =-0.093, let 0.3x = -0.10
TABLE 7 )
FINAL CORRECTION OF A HYPOTHETICAL FREQUENCY DISTRIBUTION
f X - X Factor Ag ¢ x x¢
Ox
3 -.80 .04615 -0.16 2.84 -3 -8.52
2 -.50 .00750 -0.03 1.97 -2 -3.94
4 -.20 .00020 0 4. -1 -4,
2 .10 .00001 0 2. 0 o0
5 .40 .00312 -0.01 4.99 1 4.99
2 .70 .02770 -0.09 1.91 2 3.82
2 1.00 .10653 -0.36 1.64 3 4.92
20 | -0.65  19.35 -2.73

25.56

7.88

4.99
7.64

14.76
64.83



19.35 28
D = 64.83 196
588

3.36286

D = -2.73 = -0.09750

28

7 19.35
D, = ]28 64.83

588

x = -0.32578

23.02267

<l
]

g(x) = 3.37874
g'(x) = -0.29929
6x = 3.35996

6, = 10.07988

N = 28.46 or 28
Check:

= 0.298

Al

0.298 X = -0.097

-0.14964
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APPENDIX C

EXAMPLES

To test the method,three samples of size 150 were drawn from Rand's
Table* of Gaussian deviates and were adulterated as described.

Problem 1
Sample starts with line 2206, Page 45
First 100 numbers unbiased
Next 35 numbers biased +2.5
Next 15 numbers biased -2.0
Class interval was chosen as 0.3, yielding the sample distribution displayed
in Table 8. For the population, p = O, o = 1. The "pure" portion of
the sample (N = 100) estimates these parameters as p =0.015, o = 0.943.

The total sample provides the useless estimates u = 0.332, o = 1.579

The curve-fitting technique provides a first approximation of p = 0.059,
o = 1,025, N = 109. After applying the corrections, the method yields
p = 0.062, ¢ = 0.920, N = 99, Computations are shown in Tables 9,

10 and following.

*The RAND Corporation, A Million Random Digits with 100,000 Normal Deviates,

Free Press, 1955.
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Mig-Point
-4.5
-4.2
-3.9
-3.6
-3.3
-3.0

2.7

X

-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2

-1

FREQUENCY DISTRIBUTION, PROBLEM 1

TABLE 8

Frequency
Unbiased Total
Portion Sample

1
0
0
1
0
2
0
2

2 3

3 4

3 7

6 8

7 8

9 9

12 12
12 12

68

y
Mid-Point

0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6
3.9
4.2
4.5
4.8

X

10
11
12
13
14
15

16

Frequency
Unbiased Total
Portion Sample

14 14
10 11
8 8
8 14
3 7
0 4
2 5
1 4
5

2

2

2

2

0

0



TABLE 9

CURVE FIT, PROBLEM 1

y f x
-.9 8 -3
-.6 9 -2
-.3 12 -1
0 12 0
3 14 1
.6 11 2
.9 8 3
2 74
74 zsl
A, = 1250 196 = 12.76190
588
A =  6/28 = 0.21429
7 74]
Ay - 28 2501 = -0.54762
588
x = -Aj/2hA; = 0.19565

£G) = Ay -A3/4Ay = 12.78287
6x = 3.41633
To compute corrections

1/6, = .293, Use 0.32
.32 x = .063, Use 0.06

o

= 0.05870
= 1.02490

a

N, = 109

69

xf

-24
-18
-12
0
14
22
24
6

72
36

12

14
44
72

250



-.9
-06

TABLE 10

CORRECTED CURVE FIT, PROBLEM 1

f x - x_ Factor Af
x

8 -1.02 .11460 -1.46
9 - .70 .02770 -0.35
12 - .38 .00254 -0.03
12 - .06 .00000 0.
14 .26 .00056 -0.01
11 .58 .01338 -0.17
8 .90 .07198 -0.92
74 -2.94

71.06 28
B, = 1226.46 196 = 12.90286

Blf
By

X =
y-
g(x)

ox

588

8.00/28 = 0.28571

7  71.06 ,
28 226.46
588

- -0.68786

0.20768

0.06231

12.93253
3.06604
0.91981
99.4 or 99

0.326 x = 0.068

70

g

6.54

8,65
11,97
12,
13.99
10.83

7.08
71.06

xg

-190 62
-17.30

13.99
21.66
21.24

8.00

58.86
34.60
11.97
0
13.99
43.32
63.72
226.46



PROBLEM 2

Sample starts with line 5622, Page 113. All other conditions identical to
Problem 1. Results are shown in Table 11, 12 and 13 and following. The
"pure" portion of the sample yields po- 0, o = 0.913. The total

sample gives n = 0.426, o = 1.728.

The curve-fitting technique provides a first approximation of p = -0.101,
o = 1.011, N = 112. After applying the corrections, the method yields

p = -0.106, o = 0.908, N = 102.
PROBLEM 3

Sample starts with line 8371, Page 168. All other conditions identical to
Problems 1 and 2. The "pure" portion of the sample yields p = 0.102,

o = 0.961. The total sample gives p = 0.386, o = 1.508.

The curve-fitting technique provides a first approximation of P = 0.123,
o = 1,230, N = 136. After applying the corrections, the method yields
p = 0.132, o = 1.109, N = 123. Results are shown in Tables 14, 15 and
16. It should be observed that this particular sample contains 5 'bad"
data bits in the interval 'x] = 0.6, more than 82 of the sample. The
method cannot identify these points. with the result that the computed
values of N and o tend to be too large,although they are still better
estimates of the true parameters than those obtainable from the entire

sample.
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y
Mid-Point
-3.9
-3.6
-3.3
-3.0
-2.7

-2.4

-1.8
-1.5

-1.2

0.3

0.6

X

-13

-12

-11

-10

-9

-6

-5

-4

TABLE 11

FREQUENCY DISTRIBUTION, PROBLEM 2

PFrequency
Unbiased Total
Portion Sample

2
1
0
1
0

1 4

0 2

1 1

3 3

9 12

6 8

11 11
18 18
11 12
8 9
9 10

Y
Mid-Point

0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6
3.9
4.2
4.5
4.8
5.1
5.4
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X

10
11

12

13

14

15

16

17

18

Frequency
Unbiased Total
Portion Sample

11 12



JABLE 12
CURVE FIT. PROBLEM

Mid goint x f
-0.9 -3 8
-0.6 -2 11
-0.3 -1 18
0. 0 12
0.3 1 9
0.6 2 10
0.9 3 8
76
76 28
A, = 1255 196 = 13.19048
588
Aj = -11/28 = -0.39286
: I 7 76
Ay = 128 zssl = -0.58333
588
x = -0.33673

f(x) = 13.25662
ox = 3.37088

To compute corrections,

1 = 0.297, Use 0.32

Ox

0.32x = -0.108, Use -0.10
= -0.10102

y
o, = .1.01126

-4

= 112

73

xf

=24

=22

20
24

-11

72

44

18

40

72

255



-.9
-.6
-.3
0.
.3
.6
.9

.330 x

TABLE 13

CORRECTED CURVE FIT, PROBLEM 2
f X=X Factor At g x
o
x
8 -.86 .06067 -0.80 7.20 -3
11 -.54 .01013 -0.13 10.87 -2
18 -022 000029 0. 18. "1
12 .10 .00001 0. 12, 0
9 .42 .00378 -0.05 8.95 1
10 74 .03428 -0.45 9.55 2
8 1.06 .13198 -1.75 6.25 3
76 -3.18 72.82
72.82 28
229.68 196 = 13.33619
588

-14.54/28 = -0.51929

72.82

7
'28 229.681 = -0.73333

588
-0.35406
-0.10622

13.42812
3.02581
0.90774

101.8 or 102

0.330

bd -0. 117

7h

‘21060
-210 74

-180

8.95
19.10
18.75

-14.54

64.80
43.48
18.

8.95
38.20
56.25

229.68



y
Mid Point

-300

-0.3
0.0
0.3
0.6

0.9

X

FREQUENCY DISTRIBUTION, PROBLEM 3

TABLE 14

Frequency
Unbiased Total
Portion Sample

2

1

1

1 4

3 3

4 5

3 6

8 9

9 11

10 11
13 14
13 13
12 13
10 10

75

y
Mid Point

1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6
3.9
4.2
4.5
4.8

5.1

X

&

O 00 N O Wn

10
11
12
13
14
15
16
17

Frequency
Unbiased
Portion

6

3

Total
Sample

9

(- U

- -



TABLE 15

CURVE FIT, PROBLEM 3

y £ x xf x3f X-p Factor Af
Ox
-.9 9 -3 =27 81 -.96 .09158 -1.21
-.6 11 -2 -22 44 -.68 .02478 -0.33
-.3 11 -1 -11 11 -.40 .00312 -0.04
0. 14 0 0 0 -.12 .00003 0.
3 13 1 13 13 .16 .00008 0.
.6 13 2 26 52 44 .00454 -0.06
.9 10 3 30 90 .72 .03087 -0.41
z 81 9 291 -2‘. 05
81 28
A, = 1201 196| - 13.14286
588

Ay = 9/28 = 0.32143
7 81|

A, =128 291] = -0.39286
588

x = 0.40909

f£(x) = 13.20860

o, = 4.10012

¥ = 0.12273

oy = 1.23003

N = 136

To compute Af,, use

1 = 0.28
I
’x/cr = 0.12
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TABLE 16

CORRECTED CURVE FIT, PROBLEM 3

y £ ¢ - x x@ x?9
f +Af
-.9 9 7.79 -3 -23.37 70.11
-.6 11 10.67 -2 -21.34 42.68
-.3 11 10.96 -1 -10.96 10.96
0. 14 14. 0 0. 0.
.3 13 13. 1 13. 13.
.6 13 12.94 2 25.88 51.76
.9 10 9.59 3 28.77 86.31
2 78.95 11.98 274.82
' 78.95 28
B, = 1274.82 1961 = 13.23000
588

By = 11.98/28 = 0.42786

| 7 78.95
By = 128 274.82 =—0.48786
588

X = 0.43851
f(x) = 13.32381
6, = 3.69533

¥ = 0.13155

6, = 1.10860

N = 123

Check:

= 0.271

a1

p/oc = 0.119
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Is the result affected by varying the span of data used? Let us
rework Problem 3, using all the data up to lyl = 1.8. Even though
the estimates of o and p are poor, iteration of the method quickly
puts data for |y| > 1.2 outside the range of the correction table, and
so drops them from the calculations. The remaining 9 points, when
properly corrected, should virtually duplicate the results earlier obtained
from fitting a curve tO 7 points. The results compare as follows:

9-point fit: p = 0.162, o = 1.096, N = 123

7-point fit: p = 0.132, o = 1.109 N = 123




ABLE 17

13-POINT CURVE FIT, PROBLEM 3

y f x xf x2f
-1.8 3 -6 -18 108
-1.5 5 -5 -25 125
-1.2 6 -4 -24 96
-0.9 9 -3 -27 81
-0.6 11 -2 -22 4
-0.3 11 -1 -11 1
0 14 0 0 0
0.3 13 1 13 13
0.6 13 2 26 52
0.9 10 3 30 90 -
1.2 9 4 36 144
1.5 4 5 20 100
1.8 4 6 24 144
> 112 22 1008
, 112 182 = 12.53147
A, = [1008 4550
26026
Ay = 22/182 = 0.12088
J. 13 112
Ay = 1182 1008| =-0.27972
26026
x = 0.21607

f(x) = 12.54453
6, = 4.73533

79

X-p Factor
Oy
-1.36 .32141
-1.14 «17195
-.92 .07815
-.70 .02770
-.48 .00639
-.26 .00056
-.04 .00000
.18 .00013
.40 .0@312
.62 .01734
.84 .05552
1.06 .13198
1.28 .25998
1l = 0.211, Use 0.22
Ox
0.22 x = 0.048, Use 0.04
= 0.06482

y
o = 1.42060
y

N = 149

-4.03
-2.16
-0.98
-0.35
-0.08

-0001

-0.04
-0.22
-0.70
-1.66
-3.26

-130 49



£+ Af

-1.03
2.84
5.62
8.65

10.92

10.99

14.

13.

12.96
9.78
8.30
2.34
0.74

98.51

x0

6.18
-14.20
-20.08
-25.95
-21.84
-10.99

0.

13,

25.92

29.34

33.20

11.70

4.44

30.72

TABLE 18

13-POINT CURVE FIT, CONTINUED, PROBLEM 3

x*p

-37.08
71.
80.32
77.85
43.68
10.99

0.
13,
51.84
88.02

132.80
58.50
26.64

617.56

xp

9x
-1.62
-1.36
-1.10
-.84
-.58
-.32
-.06
.20
.46
.72
.98
1.24
1.50

Factor

.32141
.15108
.05552
.01338
.00129
.00000
.00020
.00540
.03087
.09886
«23237
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JaX

-4.15
-1.95
-0.72
-0.17

-0.02

-0.07
‘0.‘0
-1028

-3.00

"llc 76

F=
f+A9

0.85
4.05
8.28
10.83
10.98
14.
13,
12.93
9.60
7.72
1.00

93.24

xF

-4.25
-16.20
-24.84
-21.66
-10.98
0.
13.
25.86
28.80
30.88

5.

25.61

21.25

64.80

74.52
43,32
10.98
0.
13.
51.72
86.40

123.52

25.

514.51



[ 98.51 182
B, = |617.56 45501 = 12.90343
26026

By = 30.72/182 = 0.16879
13 98.51
B = 182 617.56] = -0.3804095
26026
x = 0.22185
f(x) = 12.92215

o, = 4.12123

x

y = 0.06656

6, = 1.23637

N = 133

1l = 0.243, Use 0.26
o-x

0.26}.1 = 0.058, Use 0.06

14,51 1958] = 13.34688
T 9438

| 93.24 110
5

(2]
-
L]

25.61/110 = 0.23282

11 93.24]
1110 514.51] = -0.48705
9438

(2]
N
L}

0.23901

» |
[ ]

f(x) = 13.37470

= 3.70544

= 0.07170

oG = 1.11163

N = 124

= 0.270, Use 0.28

1=

.28% = 0.067, Use 0.06
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TABLE 19

9 POINT CURVE FIT, PROBLEM 3

X Factor
Ox
-1.26 «24592
-..98 .09886
- .70 .02770
- .42 .00378
- .14 .00005
.14 .00005
.42 .00378
.70 .02770
.98 .09886

= 1.10267
Ty

0.272, Use 0.28

X-} g= ' 2
b < 3 Factor AF £+AF xg x‘g
-4 -1.18 .19468 -2.60 3.40 -13.60 54,40
-3 -0.90 .07198 -0.96 8.04 -24,12 72.36
-2 -0.62 .01734 -0.23 10.77 -21.54 43,08
-1 -0.34 .00164 -0.02 10.98 -10.98 10,98
o ‘0006 .00000 o. 14. 0. 0.

1 0.22 .00029 0. 13. 13. 13.

2 0.50 .00750 -0.10 12,90 25.80 51.60
3 0.78 .04191 -0.56 9.44 28.32 84.96
4 1.06 .13198 -1.77 7.23 28.92 115.68
5 1.34  Not Used

)) -6.24 89,76 25.80 446.06

I 89.76 60 [
D, = 446.06 708 13.27074
2772
D, = 25.80/60 = 0.43000
9 89,76
D, = |60 446.06 | = -0.49461
- 2772

X = 0.43469

£(x) = 13.36419 N =123
o, = 3.67557 )
- X

y = 0.13041

.28 x = 0.122, Use 0.14

82

-1.32
-0.37
-0.05
0.
0.
-0.05
-0.37
-1.32

-6077



9 POINT CURVE FIT, CONTINUED, PROBLEM 3

TABLE 20

X fag
-4 2.71
-3 7.68
-2 10.63
-1 10.95

0 14.

1 13.
2 12.95
3 9.63
4 7.68
) 89,23

J 89.23 60

B, = 1430 T00 - 13.26004

E; = 32.42/60 = 0.54033

9 89.23|
E, = Ieo 440.30| _ _0.50184

2772

X = 0.53835
£(x) = 13.40549

O = 3.65463

y = 0.16151
= 1,09639

Oy

N = 123

xG

-10.84
-23.04
-21.26
-10.95
0
13,
25.90
28.89
30.72

32.42

83

x2G

43.36
69.12
42,52
10.95
0
13.
51.80

86.67

122.88 -

440.30

Check:

1

X

.274 X

g

0.148
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THE 1979 SAMUEL S. WILKS MEMORIAL MEDAL
Frank E. Grubbs

The Samuel S. Wilks Memorial Medal Award was initiated in
1964 by the US Army and the American Statistical Association,
and has been administered for the Army by the American Statistical
Association, a non-profit, educational and scientific society
founded 140 years ago in 11839. The Wilks Medal and Award is
given each year to a statistician - and a top-notch one! - and
is based primarily on his contributions to the advancement of
scientific or technical knowledge in Army statistics, ingenious
application of such knowledge, or successful activity in the
fostering of cooperative scientific matters which coincidentally
bpenefit the Army, the Department of Defense, the US Government,
and our country generally. The Award consists of a medal, with
a profile of Professor Wilks and the name of the Award on one
side, the seal of the American Statistical Association and the
name of the recipient on the reverse side, and a citation and
honorarium related to the magnitude of the Award funds, which
were generously donated by Phillip G. Rust of the Winnstead
Plantation, Thomasville, Georgia. Mr. Rust originglly stimulated
the interest of Sam Wilks in distributional properties of the
"extreme spread" (bivariate range), a measure. of the "accuracy"
of rifle shot on a target.

These anhualArnw Design - of Experiments Conference, at which
the Wilks Medal is awarded each year, are sponsored by the Army
Mathematics Steering Committee on behalf of the Office of the
Chief of Research, Deveiopment and Acquisition, Department of the
Army.
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Previous recipients of the Samuel S. Wilks Memorial Medal
include John W. Tukey of Princeton University (1965); Major
General Leslie E. Simon (retired, 1966), William G. Cochran of
Harvard University (1967), Jerzy Neyman of the university of
California, Berkeley (1968), Jack Youden (deceased) formerly
of the National Bureau of Standards (1969), George W. Snedecor
(deceased) formerly of Iowa State University (1970), Harold
Dodge (deceased) formerly of the Bell Telephone Laboratories
(1971), George E. P. Box of the University of Wisconsin (1972),
H. O. Hartley (1973), this year's President of the American
Statistical Association, Cuthbert Daniel, private statistical
consultant (1974), Herbert Solomon of Stanford University (1975),
Solomon Kullback of George Washington University (1976), Churchill
Eisenhart of the National Bureau of Standards (1977), and William
Kruskal of the University of Chicago (1978).

This brings us up to this year, for which the competition
for the Wilk's Medal turned out to be keen indeed, and as usual
the "best man won". The members of the 1979 Wilk's Memorial Medal
Committee consisted of individuals skilled in the art of arguing
their points and getting their best views in the minds of others!
They were: Chruchill Eisenhart, Fred Frishman, Frank Grubbs
(Chairman), Bill Kruskal, Jeff Kurkjian, and frank Proschan.
They had the job of éoncentrating on some 12 deserving candidates
from many nominees, and coming up with their best selection ac-

cording to the Wilk's Medal criteria.
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The 1979 Wilks Medalist, like Sam Wilks, was born in Texas.
He receivéd his B. A. in Physics (with highest honours) in 1934
from the University of Texas, and later his Ph. D. in Mathematics
from Princeton University in 1940, in the first cohort of Wilks
disciples. Between 1934 and 1940 he taught as a graduate assistant
or instructor at Brown University, the University of Texas, and
Princeton University, while also during that period he made the
transition from Physics through Applied Mathematics to the great
field of Mathematical Statistics. After obtaining his Ph. D. in
1940, he returned to the University of Texas as Instructor in Ap-
plied Mathematics and Astronomy, interrupting his academic career
to join the Bureau of Labor Statistics in 1942, and in 1944 a
project of the Applied Mathematics Panel of the National Defense
Research Council (I believe under Sam Wilks). Then from 1945 un-
til 1948 he was Professor of Mathematics and Statistics at Iowa
State University, and then joined the RAND Corporation, where he
served as Deputy Chief of the Mathematics Division until 1955.

At this point in time the entrepreneur emerged and the 1979
Wilks Medalist founded the General Analysis Corporation, served
as its President until 1960, when it ﬁerged with CEIR, INc. He
then became a Vice-President of CEIR and Manager of its Western
Division until 1964, when he next went to Washington as Assistant
Commissioner of Educational Statistics in the Office of Education.
He was then Director of the National Center of Educational Sta-
tistics until 1967, after which he returned to the West Coast
as Professor of Administration and Director of the Public Policy

Research Organization at the University of California, Irvine.

87



There is much, much to say about this scholar and gentleman
concerning his great contributions to the field of statistics
generally, although they should be recorded elsewhere. We should
note, however, that he wrote the best key graduate book for a
solid statistics course, and one which has trained many good
statisticians. (Introduction to the Theory of Statistics). He
has been a prolific publisher of technical papers on statistics,
operations research, education and public policy research. He
has been Presidents of both the Institute of Mathematical Sta-
tistics and the Operations Research Society of America.

A long-term friend and colleague, George W. Brown, told me
that the 1979 Wilks Medalist is an "extraordinarily and decept-
ively quiet man", so that I don't think he would win an award
as the "most talkative statistician"! Yet, he has exerted
major direct and indirect influences on an enormous number of
.individuals. And he has had many separate careers actually,
including roles as a professor, a think-tank researcher, an
operations research analyst, an administrétor, an entrepreneur
and manager, a pioneering public servant, founding director of
an important research organization, and distinguished consultant
and advosor to universities and government organizations.

By now it should be unmistakebly clear th;t we are referring

to none other than Alexander M. Mood.

i ion for Alex Mood reads: . )
Egg :i:iznder M. Mood for his many s@gnificant contributions
to the theory of statistics, an outstandlng textbook on the sub-
ject, his extensive applications to operations research and.sys-
tems analysis, and unique statistical assessments of education

and public policy research."
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Variance Reduction in Monte Carlo Simulation

Mark Brown
Florida State University

Herbert Solomon
Stanford University

Michael A. Stephens
Simon Fraser University,B. C.

1. Introduction.

Monte Carlo simulation is employed in a large variety of problems. Fre-
quently, one is interested in the expectation of a function g(xl,... ,XN)
vhere < xi

i
stopping time (often a constant). The procedure followed is to generate

» 1>1 > is i.i.d. with known distribution F and N is a

a large number of samples (X](.i),..., (i)), i=1,2,...,M, and estimate
i

the expectation of interest by

16 n(1) (1)
Migl B(xl f AR 4 )'

An interesting aspect of the simulation estimation problem is that
F 1is known. Thus functions of the form z(r,xl,...,xn) can be employed
as estimators, while in statistical estimation problem with F unknown
£ cannot be camputed from the data and is thus not considered to be an
estima;tor. Thus the class of estimators is considerably wider in Monte
Carlo problems.

One approach avallable to reduce the variance of the Monte Carlo
estimator is to find a function z(F,xl,...,xN) with the same expectation
as g, and with smaller variance. Then £ rather than g 1is averaged

over the M samples. Of course, £ = EFg fits this description but were

Partially supported under U.S. Army Research Office Grant DAAG-29-77-G-0031
and issued as Technical Report No. 35.
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it directly computable one would not need to simulate in the first place.
Thus an important requirement of £ 1is that it be simply computable.

We 1illustrate the above remarks by considering the problem of Monte
Carlo estimation of M(t) = EN(t), the expected number of fenewals in
{0,t] for a renewal process with known interarrival time distribution F.
Several unbiased estimators which compete favorably with the naive estimator,
N(t), are presented and studied.

We believe that our approach and methodology, although only applied to
renewal function estimation in this paper, can be useful in a large
variety of Monte Carlo simulation problems.

2. Assume that <X;, 1 >1> is i.i.d. with cdf F where F(0) = 0.

Define So

M(t) = EN(t), t > 0. Sometimes we consider the point t = O as a renewal

n
=0, 8 = { X B = 1,2,.0.,N(t) = max(n: 5, < t}, and

epoch. In this case we use No(t) = N(t)+1 and Mo(t) = M(t)+l. The

renewal age at time t 1is defined by A(t) = t- ; Pr(A(t)=t) = F(t)

N(t)
and dFSzt);) = F(x)aM(t-x) for O <x<t, thus d'ngt);) = f(x)d.Mo(t-x)
for 0<x<t.

Define

1 if 5, <t

i

o if Si>t.

=§F(i)(t), where F(i) is the 1@

Then N(t) = %86, and M(t) EX &
en = an =E Y
1 & 111

convolution of F.
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To estimate F(i)(t) = E5, we will use

i
E(®y 1X)50000X 3) = E(5; 18, ;) = F(t-8, ) .

We then estimate M(t) by:

o0 N(t)+1
1) M (%) = 1’:31 F(t-s; ;) = 1)=:1 F(t-8; ;) -

Since Var(F(t-s; ,)) = Var[E(aiISi_l)] < Var 8;, we have replaced
each component, 81’ by a component with the same expectation and
smaller variance. Intuitively we would expect that if we reduce the
variability at each stage (given the past) then we should reduce the
variability of the overall estimator. However, the computation of
variance involves covariance terms, and if these are increased while
variances are decreased there can conceivably be an increase in variance.
Theorem 1 (below) demonstrates that MF(t) does indeed have lower variance
than M(t).
Theorem 1. MF(t) is an unbiased estimator of M(t) and Var N(t) -Va.rMF(t) =
E[2M(A(t)) -F(A(t))] >0, with strict equality if F(t) > 0.

Before proving theorem 1 we comment that the reduction in variance
is unsatisfactorily small for large t. If By = Ex2 < o then
E[2M(A(t)) -F(A(t))] =0(1), thus Var N(t) and Var MF(t) are of the
form 7t + Q(1) with common 7, and we improve only the asymptotically
negligible O(1) term. Estimators considered in later sections do

considerably better for large t.
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Proof of Theorem 1. Express MF(t) as

t t
F(t) +fo F(t-x)aN(x) =L F(t-x)an,(x) .

Then
t t t _
EM,(t) =j;) F(t-x )M, (x) =j; 1dM, (x) -j; P(t-x)am, (x)
t
(t-x)
= t - dr = t - = .
() - [ alt® e - ue)
Now,
B (t) - f * PR (ser )y (o)
0
+2 f! F(t-r)l"(t-s)dno(r)duo(s-r) .
r 8

We evaluate this expression in several steps:

t t t
1) fo Fz(t-x)dMo(x) =fo F(t-x)dMo(x) -fo F(t-x)i(t-x)duo(x)

= M(t) - EF(A(t)) .

(11) F(t-r)F(t-8) = 1-F(t-r) - F(t-s) + F(t-r)F(t-s) .

t 2)
(111) 2 L{ 1aM, (r )M, (s-r) = 2 ] M(t-r)aM,(r) = 2M(t) +2M'°/(t) .
r 8 (0]

-— t -—
(iv) -2 jj F(t-r)dMo(r)dMo(s-r) -2f F(t-r)M(t-r)d.Mo(r)
r<s r=0 |

-2EM(A(t)) .
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t
( ) ‘2 ‘f t ( - ) -2 F t-
v r_[!g (t-8)aM, (r)aM, (s-r jr=0 (t-r)am,(r)

-2M(t) .

- -— t -
(vi) 2 ﬂ F(t-r)r(t-l)dllo(r)dMo(l-r) =2 f_or(t-r)r(t-r)duo(r)
r=

r<s

= 2EF(A(t)) .
Combining (i)-(vi) we obtain:
@  BE®) =) + @ (r) - BEHA®)) - FA®))) -
Furthermore

t
(3) EN(t) = E[ fo 1a8(t)1°= M(t) +2 ﬂ aM(r )aM(s-r)

r<s

=) + 2v@ ) .

Thus from (2) and (3):

Var N(t) - Var Mp(t) = E[2M(A(t)) - F(A(t))] .

Since

M) = FF3)(s), 2M(s)-F(s) = F(s) +2 § FPa) >0 ;
i=1 i=2
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thus E[2M(A(t))-F(A(t))] >0 for all t and is strictly positive
for F(t) > o.

3. In this section we assume that F is continuous. The cumulative
hazard H 1is defined by H(t) = -log F(t). When F is absolutely
contimious with density f then H(t) = [S h(y)dy where h 1is the
hazard function, h(t) = L&) .

Our next estimator 1§(:lsed on the intuitive idea that
E(aN(s)|past) = @H(A(s)). Thus instead of using N(t) = [ aN(s) we

try

.f t N(t) N(t)+1
M, (t) =j; W(AE)) = LHK,) + HAR)) - ;1: Hy

vhere H, = H( (t'si-l) A X:l] (wvhere a A b = min(a,b)).

00 [ ]
Note that N(t) = zl': 5, while Mﬂ(t) = § Hy;. Thus 5, is replaced
by H;, and E(8[S; ;) = E(H|s, ;) = F(t-s, ) .
The process MH(t) is a cumulative process in the sense of Smith
[3]. Thus (Smith [3])

var My (6) ~ & Bin(x) - EE )2

where u = EX. But H(X) = -log F(X) 1is exponentially distributed with
parameter 1, thus:
2

enex) - EE g2 oy 4 52

’
m B
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vhere p is the correlation coefficient between X and H(X) and 02

is the variance of X. Thus Mﬂ(t) is asymptotically better than N(t)
for p > u/20, asymptotically worse than N(t) for p < u/20.

In general if we have two unbiased estimators of a parameter, T1
and T2, with covariance matrix A, then the minimum variance unbiased

estimator of the form ar, + (1-0)T2 is the one with

2
L Ay
121 j= A
The variance of this estimator is
1
Z Al;,

The idea now is to let A be the asymptotic covariance matrix of

RION MF(t)
7/t /t

and to employ the above result to obtain an unbiased estimator which
improves on both MH(t) and N(t) for large t. We already know the
O(t) terms for Var N(t) and Var MH(t). We only need the leading

term for Cov(N(t), MH(t)). This is given in lemma 1 below.

Lemma 1. If 0'2 is finite then

CoviN(t), My(t)) = £ (%5 - £8) + o(t) .



Proof.

Var(N(t) - My(t)) = Var °lfj (by-H(t-8,_, A X))

E Var(s,- H(t-8; , A X)Is; ;] =E ?F(t-si_l) = EN(t) = M(t) .

=iM8

Thus
M(t) = Var(N(t) - M,(t)) = Var N(t) + Var(M,(t)) - 2Cov(N(t),My(t)) ,

and therefore

Cov(N(t),My(t)) = 3 [Var N(t)+Var M (t)-M(t)]

2 2 »
[ +5S+1 - 1400)]
TR "




Note that the asymptotic relative savings in variance is p2 the
square of the correlation coefficient between X and H(X). Summarizing:

Theorem 2. The estimator
MI(t) = (L-SR)N(e) + Z My(t)

is an unbiased for M(t) with variance

2
B @1-0%) + o(t)
"

(p is the correlation coefficient between X and H(X)). It follows

that:

*

2
Example: Let H(x) = xa, F(x) = e* . fhen,

2

o 2 ©
u=f e'xdx='£;f —ie.xdxa
0 -oo,/:lt

ol

© _x2
Ex2=2j xe & =1,
0

&,p2=ﬂﬁt-y=.915.

=

2
1 4 -x B
&-[Iaxe dx41] = 3= =

qQ
]
[
'
Sk
[}
W
©
[}

97



Thus in this case (Weibull with shape parameter 2) the unbiased estimator
M*(t) has an asymptotic relative reduction in risk over N(t) of
91.5 percent. || .

Integration by parts shows that

o = %f: H(x)F(x)ax

since H(x) = -log F(x) the integral can probably be given an enthropy
interpretation. Also p = %‘Eﬁ(x) vhere H(x) = [: H(z)dz. This is

true since

Note that both p and ;;E are invariant under a change of time scale,

t ®ct, ¢ >0.

y o0
4. In section 3 we estimated M(t) by a weighted average of N(t) = E 8y

N(t)+1
and MF(t) = 2]? H((t'si-l) A xi). Now we apply the same idea but

stagewise. At stage i, having observed X,,...,X; N(t) adds the

component &, = I.X1 < t-8, )’ while M. (t) adds H, = H((t-8;_;) A X;).

Each of &;, H; are conditionally (given Si-l) unbiased for F(t's:l-l)
and unconditionally unbiased for F(i)(t). The approach we now follow is

to use the weighted average of 5, and H

s which has smallest conditional

i
variance given x1,. . ’xi-l'
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Define F, = F(t-Si_l), C = H(t's:l-l)' Then:
Var(s, |, ) = ¥y -F)
Cov(s,,H, |8, ;) = F, (F;C;)
Va.r(Hi|Si_l) = 1='1+i?'i (P -2C, ) .

The minimm conditional variance (given X)see- ,xi_l) unbiased linear

combination is then:

C,F C,F
171 174
L = (1"'1?_'i )51+—ri H .

The corresponding estimator of M(t) is:

N(t{l H(t-8; ; )F(t-8; ;)

M (6) = N(s) - e

(8, -H,) -
11/ 11

We do not know how M.L(t) compares with the other estimators we

have looked at. The variance of an estimator of the form I K, 1s

ZVar K +2 123 Cov(l(i,l(:j ) L, wvas chosen from among a class of

estimators X lcl to minimize X Var Ki' However we know very little

about Cov(Li ,L._J ). This 1latter quantity must be shown to be' suitably

small in order to demonstrate that ML(t) has desirable variance
properties.



5. We next consider an unbilased estimator with asymptotic variance
O(1). Thus it asymptotically enjoys a 100 percent reduction in
variance over N(t).

As is well known N(t)+1 is a stopping time and thus by Wald's
identity:

N (t%-'-l

X, =n(M(t)4) .
1

ESy(t)n = E

s
ﬁ(t)z_“.g.‘.ﬂ-l

is unbiased for M(t). Now Var(SN ) = Var(t+Z(t)) = var Z(t),

(t)
vhere Z(t) is the forward recurrence time at t. If Mg = Ex‘3 < o

then Var Z(t) converges to

V'} - Hg _ ,"1-"“5'3“2
TuP 12
a8 t + o . Thus
ar h g -5
12,

and is thus Q(1).
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SMALL SAMPLE SIZE EFFECTS ON

TOLERANCE LIMITS, EXCEEDANCES

JAMES R. KNAUB, JR.
ARMY MATERIEL TEST AND EVALUATION DIRECTORATE
US ARMY WHITE SANDS MISSILE RANGE
WHITE SANDS MISSILE RANGE, NEW MEXICO
ABSTRACT - Tolerance Limits, exceedances and includances,
are useful indications of the adequacy of a sample size.
However, for very small sample sizes, such results become very
sensitive and may require a thorough analysis before con-
cluding whether sample sizes are édequate. Some measures of

sensitivity are investigated in this paper.

1. Introduction - When dealing with missile systems or any

other materiel which consists of a relétively small number
of very expensive items which will not survive a test, one
would not like to destroy any more materiel than necessary,
80 sample sizes are made small. Time may also be a factor
in keeping sample sizes small. When testing to specified
test objectives, however, small sample sizes cause large un-
certainties in the results obtained. 1In hypothesis testing,

for example, a small sample size means that the power of the
test is low, and therefore one's ability to discriminate be-

tween an untrue null hypothesis and a true alternative hypo-
thesis may be low even when the two hypotheses are very dif-

ferent. Although the power of a test is very important in

103



missile work, as it shows the sensitivity of results to small
sample sizes, it is often ignored. An example is the use of
Wilcoxon's Rank Sum Test which is often used with no power

calculated, even though it is easily obtainable from a paper
written by E. L. Lehmann in 1953 (Lehmann, "The Power of Rank

Tests," Annals of Mathematical Statistics, 24 (1953), 23-43).

Any measure of sensitivity which provides the likelihood
of confusing one result for another would be analogous, to a
degree, to power. The central question is, "Is the sample
size sufficient to reduce to an acceptable level, the risk
of saying that more is known than actually is known?"

From Gumbel, Statistics of Extremes, pages 97 and 103-104

(see also Hoel, Introduction to Mathematical Statistics, pages

274-277), the following equation is produced (due to S.S. Wilks):

-1

P = l-nyn + (n-l)yn

P[at least 100y% of the population is between the

where P
smallest and largest observation of the sample of size nJ].
A first approximation (which appears to be low for small sample

sizes) is given as

1, V2p'
Y I

The previous equation can be solved iteratively from here
using small increments.
This is useful information. However, for very small

sample sizes, perhaps a measure of sensitivity as described
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earlier'may be desired. To make one further analogy, when
sample sizes are very large, point estimates may be suffi-
cient, however, when sample sizes are small, lower confidence
limits are needed in order to avoid misleading decision
makers. What is to follow is based upon the theory of exceed-

ances. (See Bradley, Distribption-FreeVStatistical Tests,

pages 216-218.)

2. A Measure of Sensitivity - Consider an initial sample X,

made up of n observations, ranked from r equal 1 to n, from

which one wishes to make predictions about the next m obser-

vations in a sample, Y. If b represents the number of observations in Y
which have values lower than the rth lowest value in X, then (from Bradley,
pages 216-218),

P[exactly b of the Y's will be <xr]
=,(r-1+b)(n+m-r-b)

r-1 n-r
+ L ]
("™
b b
Letting P, = lim —l-a“—and Py = lim .Fo' where p <p,rone can in-
m+e mee

vestigate the’case of n, a finite sample size, but n+m, the
infinite population size. Now let B be used to represent a
measure of sensitivity for tolerance limits, in some ways
analogous to, but not the same as, the probability of a type
II error. Here,
B = P[lOOp]% or more Y's < Xr]
r[100p ¢t or fcwer Y's <xr].

8, here, is not a probability, but a ratio of probabilities.
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It shows the relative probability of having an unacceptable
(lOOpl%)percent of the population values for a certain para-
meter (e.g., missile lethality), or more, fall below the rth
lowest value in the X sample, as compared to a hoped forlOOpo%
or fewer members of the population falling in that category.
Therefore, the smaller B, the more sensitive the results are
to implying more is known than can be known from a certain
sample size. (i.e., the smaller B8, the better.)

The following briefly sketches the derivation of B8:

m
b (r-1+3)(n+m-r-3)
B = lim j=by  r-1 n-r
me b,
.z ( 1;1)(n+m r 1)
i=o
m 0
£ [(r=14§) (£=243) ... (3+1) (ntm-r-3) (n+m-r-j-1) ... (m-3+1) ]
= lim 3j=by
me b
); [ (r=1+i) (r=2+i) ... (i+1) (nm-r-i) (ndm-r-i-1)... (m=-i+l)]
i=o

For m large, bl=p1m and boépom, so sum in the numerator from

=T o m® l(n-r)!, and in the denominator from

(%w)r-l[m(l-%)]

(r-1) 'm"" T to (pom)r-l[m(l-po)]n"r Since there are an infin-

ite number of terms, these summations become integrals. For

. m
r=1, n=5, the numerator becomes lim r (4+m-j)(3ﬂn-j)(2+m—j)(lﬂn—j)dj,

m>o
p,m
which makes the integral approach m 1 For r=2, n=5, the
f(m=3) "d3°
m Pm
integral is f(j+1) (3+m-j) (2+m-3j) (1+m=-j)dj -+ f)(m-)) dj.
p;m pm
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In general then, the integrals will be of the form

fjr'l(m-j)n'rdj.
The only difference between numerator and denominator are the
limits of the integration.

For r=1, n=5, one has

4

- 1. 2_ o 3 14l 5
B = 1-py+2(p;"-1)+2(1-p, ) +p, -1+z(1-p,”)

2 3 4 1 5
+2p, “Po *5P,

Py~2P,

As an example, letting p1=0.3 and po=0.2, B (r=1, n=5, p°=0.2,
pl=0.3)=0.42. This means that the probability that 30% or
more of the population will have values below the lowest in
the sample of size 5 is 42% of the probability that 20% or
less of the population will be that low. If one does not wish
to tolerate having more than 20% of the population that low,
then there is cause for a great déal of alarm, especially if
30% is an unreasonable alternative.

One can determine the exact probability of having 100a%
or more of the population fall below the rth value of the
sample, and also the exact probability of having 100a% or
less of the population fall there. Call the first prob-
ability x and the éecond y. Then, one has

x+y = 1, and

B (p =p1=100a%) =

A

(e}
Therefore, for such a 8, x and vy,

. B 1
x—m and y—m
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As an example, B (r=1, n=5, po=0.2, p1=0.2) = 0.55,
P[20% or more of the Y's < x1] = 0.36, and P[20% or less of
the Y's < Xl] = 0.64.

For r=2, n=5, one has

3 1 5 1)

1 2 3 4
'f(l-pl ) + pl - 1+E(I'Pl ) + g(pl = .

1 2 3 3 4 l 5
3P ~ P * 3Pg ~ 5Po

As an example, for po=0.4 tested against the alternative that

p,=0.5, 8 = 0.28.
As can be seen from the above, one may calculate, a priori,

what ranges of values of n and r may be used in order to have
an adequate degree of faith in the accuracy of results. A
major advantage in this approach is that one may use r>1l.
Often one can not obtain an adequate sample size without a
large probability that at least one of the observations will
be lower than a value toward which one would like to test.

3. A More Subjective Approach to Sensitivity. When planning

sample sizes for a test, there is an additional approach which
may be helpful. Consider Danziger and Davis, "Tables of Dis-

tribution-Free Tolerance Limits," Annals of Mathematical Sta-

tistics, 35 (1964), 1361-1365. From Danziger and Davis,
"The probability that NJ of the Yi's lie above X, is given by:
_ N _+n-r, N-Notr-1, , Ntn,
P(No) = ( oy )( N-N )/ ( n ).
o o
Here, i denotes a ranking of the Y sample, N is what has been

labelled m, and Ng is the number of Yi's above xr’ where b
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has been used earlier to represent the number of them below
it.

From the table by Danziger and Davis, with probability at
least 0.75, at least 0.752 of a population will lie above the
second lowest value in a sample of ten. With probability at
least 0.75, however, the proportion of the population above
the third lowest in a sample of ten is only at least 0.644.
Therefore, if X =X, is very small, then a sample of size ten
is not adequate in that it can not distinguish very well be-
tween 0.752 and 0.644 as lower probability bounds to the pro-
portion of the population values above such a point. Examin-
ing the table by Danziger and Davis shows that, in the cases
shown, this form of sensitivity, as are most forms of sensi-
tivity, is extremely sample size dependent.

As a practical example of how this approach could be used,
consider the case of determining whether targets are detected
by a certain range. Imagine that the same number of targets
are detected before a critical range in each of two tests
using equal sample sizes. In one case, say all (or many) of
the detections before the critical range were just barely
before it, but in the other case, they were very early. Thus,
a slight change incritical range would cause a large change
in the proportion of the former population values believed to
be above this point, but no change in the latter case. (This

situation is expected when dealing with rank procedures.)
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4. Conclusion - When analyzing data, one must be particularly

careful in dealing with small sample sizes. It is highly
desirable to obtain every bit of information possible from
such samples, but it is equally desirable to avoid claiming
more knowledge of the population than the sample can actually
provide. Balancing cost considerations against information
obtainable can only be accomplished by careful consideration
of all aspects. Tolerance limits and exceedances hayve a role

in such considerations.

110



THE PERIODIC NATURE OF EXPERIMENTALLY MEASURED DATA

Michael Hacskaylo
US Army Electronics Research and Development Command
Night Vision and Electro-Optics Laboratory
Infrared Technology Division
Fort Belvoir, Virginia 22060

ABSTRACT. There is a phenomenon that appears to exist in the portrayal
of measured data for nearly all types of experiments. It is observed that
when experimental data points are plotted as a function of a variable, the
data points are portrayed periodically rather than randomly about the theo-
retical curve. This is in contrast to an expected random distribution of
the measured data. Although not always well defined, two distinct periodic
characteristics canbe pointed out: The first is a sinusoidal characteristic
that appears to be cyclic in 10-12 measured events, and the second is the
"cusp" characteristic that appears to be cyclic in about every three to
four measurements. A method, which is based on a heuristic equation that
relates a "periodic" probabilityof the arithmetic deviation with the associated
measurement, generatesdata points whichare in agreement with some published
experimental values.

I. INTRODUCTION. There is a phenomenon that appears to exist in the
portrayal of measured data for nearly all types of.experiments. The phenomenon
is that when experimental data points are plotted as a function of a variable,
the points aremanifested in a periodic fashion about some smoothly drawn curve.
The periodic appearance of the data pointsis in contrast to an expected random
distribution of the measured data. The periodicity, althoughnot glways well
defined, can be seen upon examination of such plots in various technical
journals. Two distinct periodic characteristics canbe pointed out. The first
is a sinusoidal characteristic that appears to be cyclic in 10-12 measured
events (1, 2, 3, 4). The second is the "cusp" characteristic (5) that appears
to be cyclic in about every three measurements, (6, 7, 8, 9) whereas other
curves appear to be a combination of both characteristics (10). The cited
references are specific examples selected from the literature that clearly
exhibit the periodicity. However, most other figures show data points.
that exhibit the periodic deviations of the data points less clearly, but nearly
all of the experimental plotted data points show the phenomenon regardless
of the physical parameters that were measured. This phenomemon is based on
observation devoid of a priori concepts of the randomness of events and asso-
ciated measurements. It is thus concluded that there is a non-random re-
lationship between the experimentally measured data and the sequence of meas-
uring events. In order to develop a mathematical treatment for the periodio-
dicity of experimentally measured data, the following postulated 1is made:
If for awell-ordered experiment, the experimentally measured data are taken in
an identical manner at equal increments of the independent parameter,
the data points will be periodic as a function of the (measuring) events about
the average curve. Thus, the experimentally measured data can be determined
- from the probability of the associated measuring event, in conjunction with

111



the equation for the experiment, it 1is, in principle, possible to predict
the experimental data points as a function of measurements.

The purpose of this paper is to present a heuristic method that generates
a periodic form for data points which are in general agreement with published
experimental values. Three examples in which the "periodic'" data points
exhibit close agreement with published experimental data points will be
shown.

II1. DEVELOPMENT. The deviation of a ‘datum point from theoretical
curve (considered to be the mean) is, by definition, the arithmetic deviation.
The arithmetic deviation of a measured value of a physical property of
an experiment is dependent upon the experimental procedures, and if enough
measurements are made, the distribution of the arithmetic deviations will
follow the Gaussian curve. From the Gaussian distribution curve, it can
be readily seen that the arithmetic deviation is proportional tp_the standard
deviation. This proportionality factor is the only variable in the Gaussian
distribution equation and thus is a key parameter for the comprehension of
this paper. The proportionality factor, derived as a function of the
probability of the Gaussian distribution equation, will also be derived
from a heuristically developed periodic "pseudo-Gaussian" distribution for
the generation of periodic distribution of the data points.

The Gaussian distribution equation 1is
Pp = 1/(oVZm)expl-(a-1)2/202] (1)

where Pp 1s the probability of the measured value, m is the measured value, -
M is the mean and o is the standard deviation.

Let . m = Mo 2)

where kO is the arithmetic deviation and k, the multiplier of 0 , 1s defined
as the arithmetic deviation coefficient. By substitution,

Pm = 1/(ov 77 Jexp(-k2/2). (3)

Now p, is normalized so that the area under the curve is unity and thus
Pp = 0.399/0 when m = M, the peak of the Gaussian. However, by letting
P, = pm(GJZF), a comparative probability is obtained such that P, = 1 when

kc= 0, ioeo, m = M,

Now P, = exp(-k2/2) (4)
and k=+vV-21nP, . (5)

Eq. (5) can be rewritten as

k = +/21 (6)
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where I = -1n P_ and is a form of the self-information equation (11) of the
measurement which is associated with the arithmetic deviation coefficient.
Thus, if the comparative probability associated with a measurement can

be determined, the arithmetic deviation coefficient, k, of that measurement
can be calculated from Eq. (5). Sinceo 1is a constant, k is proportional to
the arithmetic deviation.

Since the portrayal of the experimentally measured data indicates that
the measured values are a periodic function of the measurement and since the
comparative equation developed from the Gaussian equation is not periodic, a
heuristic periodic expression which closely matches the Gaussian distribution
(to about + 2.50) was developed for the probability of the measured value as
a function of measurement.

The empirical equation is

Py = coszen (7)
where Py 1is the probability associated with measurement N,
N’123, xXx] and

oy = 30 Ky + 8/TKy| (8)

where —®< Ky<+w~ and is dependent upon N. This dependence will be discussed
later.

. Comparisons of the probability values of Eqns. (4) and (7) are shown in
Fig. 1 for Ky and k in the range -3.00 <k =Ky < +3.00. The comparison shows
Eq. (7) is an approximation to the Gaussian to about + 1 750 and a reasonable
approximation from + 1.750 to about + 2.50. When P =+ 2.5723¢ .,
and for the comparable value of + 2.57230 nearly 99§ of the measured data
points would ‘be included. An extension of Fig. 1 would show that P, would
asymptotically approach zero, whereas Py would oscillate in a cosine
squared manner periodically in about every 5.2 Ky but the period would
increase with increasing (and decreasing) Ky

. The term Ky is selected such that Ky = a; + (N-1) (ay-a ) where aj is
heuristically selected for P, associated with N-l, the fi%%t measured event,
and a; is similarly selected for P, associated with N=2, the second measured
event. Note that Ky is not necessarily an integer associated with the
corresponding Nth measurement and thus (°2°°1)' may nor may not be an integer.

In the empirical expression for Py (Eq. 7) the standard deviation
coefficient per measurement does not appear. However, since P, and Py serve
comparable functions, and since k can be determined from P.» it is postulated
that the arithmetic deviation coefficient per measurement, ky, can be
determined from Py by a similar expression as Eq. 5. The expression is

kN = ;t'-Z ln PN ’ (9)
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where ky 1is a function of KN through Eqs. (9) and (8) in a transcendental
fashion.

The measured value, m, i{s now expressed as

m=M+kop (10)

for each measurement N, where o 18 a constant and defined as the experi-
mental standard deviation. Thus if M and °E are known, m can be determined
as a function of measuring events.

The polarity of k is selected as either + or - for the cusp
portrayal of the data points, whereas the polarity is alternating in sign
(+ and -) corresponding to the alternating periods of Py for the sinusoidal
portrayals.

Eq. (10) is also a simplified form of an equation for a specific
physical phenomenon when the experimentally measured data are plotted as

a function of the independent parameter. Formally, each measured value
will be '

Y = F(X) + kg (11)

‘where Y is the measured value, F(X) is the equation governing the physical
phenomenon and kyop is the arithmetic deviation. Thus assuming for any
experiment the equation F(X) and the dependent constants gre kgown, the
evaluation of F(X) as a function of the independent variable would be the
mean and corresponds to the theoretical curve. The arithmetic deviation,
hence Y, can be made as a function of measuring events if an a priori
determination of 0 can be made.

_ III. EXAMPLES. Eq. (11) shows that experimentally measured data are
periodic as a function of measurement events about some smooth curve
governed by-the physical equation. If F(X) is well-behaved and if o
can be a priori determined (at least heuristically if not by other means)
the experimental data points should be, in principle, predictive. The
predictiveness of the method was not subjected to experimental verification.
The reason is obvious since there can be no a priori determination of o )
and ky for Eq. (11) for an experiment. However, the published data points
of three experiments have been closely duplicated bv the described method.
Three examples indicate a posteriori verification that experimentally
measured data are periodic as well as predictive. (The calculations were
accomplished with a pocket calculator, and thus the duplication of the data
points were not optimized.) T

The first example is a relative easy one: The sinusoidal data portrayal
of Ref. 1. The equation of the line was determined to be

F(X) = 1(t) = 9.40 - 0.49t (12)
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where 1(t) is the relative transient current and t is in units of equal
increments of time corresponding to the time of 1.37 nsec (average) between
‘each measured datum point. The first point was at 2.74 nsec (or the 3rd
experimental point) which selected for the N=1l. Note that the logarithmic
representation of the ordinate was portrayed in linear units. The terms
a1, a9 and o for this example were heuristically chosen which generated
the points tEat were in agreement with the experimental points. The terms
and generated points are listed in Table I and the curve is shown in Fig. 2.
The generated data points are nearly in exact agreement.

Table I. Constants and "periodic" data points generated as a function
of measurement for the sinusoidal example for Ref. 1.

@; = 0.00, @, =1.00,0p, = 0.05

N Ky By ky kWp  1(t)  1(t)+kpp
1 0 1.000 0.00 0.00 8.06 8.06
2 1 0.607 -0.98 -0.05 7.39  7.34
3 2 00103 -2015 -0011 6071 6060
4' 3 0-057 -2037 “0012 600“ 5082
5 4 0.517 -1.15 -0.06 5.37 5.33
7 6 0.888 +0.49 +0.03 4.03 4.06
8 7 0.393 +1.37 +0.07 3.36 3.43
9 8 0.016 +2.87 +0.14 2.69 2.83
10 9 0.165 +1.90 +0.10 2.02 2.12

The second example is to duplicate Ref. 6 for the cusp periodicity. The
equation of the line is F(X) = R(t) =98.0where R(t) is the counting rate and
is a constant value as a function of time. The measurements were made in
units of equal increments of time of 200 seconds (average) between each
datum point. The first point was at 600 seconds (or the fourth experimental
point) which was selected for Ny. Again a;, a, and o were heuristically
chosen. The constants and the calculated values are listed in Table II
and the "predictive" points are shown in Fig. 3(a) by the solid dots.

The open circles are the relative positions of the experimental data
points as estimated from Ref. 6 with which the predictive points are

not in agreement. The first twelve predictive points are nearly in exact
agreement with the experimental points numbers 4 through 15. However,
the 13th predictive point must be moved to the 18th experimental point
for the cusp periodicity to agree with increasing measurements. With
the exceptions of experimental points 16, 17 and 30, the other points
are either in nearly exact or close agreement.
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Fig. 2. Duplication of the sinusoidal portrayal of experimental points.
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Table II. Constants and "periodic" data points generated as a
function of measurement for the cusp example for Ref. 6.

F(X) = R(t) = 98.0

Cl = 1.00. Gz = 3'00“3E = 0.8

N Ky Py ky ke R(t)+kyog
1 1 0.607 -0.98 -0.78 97.22 .
2 3 00067 -2.39 -1091 96009
3 5 0.956 =0.30 -0.24 97.76
4 7 "0.393 -1.37 -1.10 96.90
5 9 0.165 -1.90 -1.52 . 96.48
6 11 0.996 -0-09 -0007 97.93
7 13 0.268 ~1.62 -1.30 96.70
8 15 0.265 -1.63 -1.30 96.70
9 17 0.997 -0.07 -0.05 97.95
10 19 0.180 -1.85 -1.48 96.52
11 21 00357 -1044 -1015 96.85
12 23 0.979 -0.21 -0.17 97.83
13 25 0.117 -2.07 -1.66 96.34
14 27 00440 -1028 -1002 96098
15 29 0.949 -0132 -0.26 97.74
16 31 0.071 -2.30 -1.84 96.16
17 33 00517 -1015 -0092 97008
18 35 0.911 -0.43 -0.34 97.66
19 37 0.039 =2.55 -2.04% 95.96
20 - 39 0.586 -1.03 -0.82 97.18
21 41 0.869 =0.53 -0.42 97.58
22 43 0.017 -2.85 -2.28 95.72
23 45 0.640 -0.93 -0.74 97.46
24 47 0.824 -0.62 =0.50 97.50
25 49 0.005 =-3.26 -2.61 95.39
26 51 0.706 -0.84 -0.67 97.33
27 53 0.776 -0.71 -0.57 97.43
28 55 0.001 ~4,22 -3.38 94.62
29 57 0.756 -0.75 -0.60 97.40
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The third example is to duplicate Ref. 10 for a curve of experimental
points that are less regular than Refs. 1-4 in the periodic portrayal.
The smooth curve of Ref. 10 could not be fitted to an exponential or power
equation. However, for F(X) the point by point estimated values for each equal
increment of t = 200 sec are listed in Table III. The first point was
at 200 seconds (the second experimental point) which was selected for
N;. The parameters aj,ay and o Wwere heuristically selected. The
constants and calculated values are listed in Table III, and the points
are shown in Fig. 3(b) by the solid dots. The polarity of the 17th
through 29th data points were reversed from the expected polarity to
exhibit agreement with the reconstructed experimental values. The open
circles are the experimental values as estimated from Ref. 10 with which the
predictive points are not in agreement. The positions of the periodicities
of the two sets of data are in close agreement with the exceptions at the 8th,
20thand 25th points. The values of most of the data points, 21 of the 29,
are nearly identical, and with the exception of predictive point No. 8,
the other seven are in reasonably close agreement.

IV. DISCUSSION. The subject of this- paper encounters a paradox in the
distribution of the measured values of a physical parameter of an experiment. The
binomial distribution is a mathematical treatment of random events whose
measured values are discrete, whereas the Gaussian distribution is a mathe-
matical treatment of random events whose measured values are not discrete
and cannot be exactly duplicated. The measured values of a measurement
are considered to be independent of the sequence of the measurements and the
values randomly distributed about some mean. The independence and randomness
of the measured values from event to event "vary in an irregular manner that
defies all attempts at prediction" (12). However, since it was pointed
out in this paper that most plots of data points are portrayed in some
periodic manner, the data points, in principle, should be predictive.

The predictiveness was demonstrated in this paper, albeit ex post facto.
The data points for three experiments were closely duplicated after
heuristically determining three constants. It must be stated that the
mean (tbe equation of the experiment) was known. Thus, in this context,
the measured data points are predictive, hence the paradox.

The Gaussian distribution is one (of two primary concepts) equation used
in this paper. The treatment of the equation to obtain the comparative
probability eliminated the dependence of the probability from all parameters
except one: The arithmetic deviation coefficient. Solving for the co-
efficient, it was found that the coefficient was a function of the probability
which was identified as a form of the self-information equation. The signi-
ficance of the relationship between the coefficient and the information
equation cannot be developed at this time, but that the Gaussian distribution
equation is a form of the information equation can be recognized.

The second concept is the heuristic equation relating the probability of
a measured value as u function of sequential measurement. If a well ordered
experiment is performed such that upon equal increments of an independent
parameter, the measured value is recorded in the identical manner, including
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Fig. 3. Duplications of (a) the cusp portrayal and (b) the cusp-sinusoidal
portrayal of experimental data points.

120



Table III.

Constants and "periodic" data points generated as a
"~ function of measurement for the cusp-sinusoidal example for Ref. 9.

F(X) =

ay= 0.00,

02 = 2'00’08 = 0.3

R(t)

1 0 1.000 0.000 0.00 66.2 66.2
2 2 0.103 +2.13 - +0.64 59.0 59.6
3 4 0.517 - +1.15* +0.35 53.7 54.1
4 6 0.888 -0.49 =0.15 49.3 49.1
5 8 . 0.016 -2.87 -0.86 46.6 45.7
6 10 0.676 “0089 -0027 . 4402 43.9
7 12 0.783 +0.70 +0.21 42.0 42,2
8 14 0.000001 +5.20 +1.56 40.3 41.9
9 16 0.655 +0.92 +0.28 38.7 39.0
10 18 0.688 -0.86 -0.26 37.4 37.1
11 20 0.010 -3.03 -0.91 36.2 35.3
12 22 0.854 -0.56 -0.17 35.1 34.9
13 24 0.601 +1.01 +0.30, 34.2 34.5
14 26 0.035 +2.59 +0.78 33.4 34.2
15 28 0.908 +0.44 +0.13 32.6 32.7
16 30 0.521 -1l.14 =0.34 31.9 31.6
17 32 0.069 +2.31 +0.69 31.3 32.0
18 34 0.947 +0.33 +0.10 30.7 30.8
19 36 00448 -1027 -0-50 30-2 2907
20 38 0.109 -2.10 -0.63 29.9 29.3
21 40 - 0.973 -0.23 =0.07 29.4 29.3
22 42 0.382 +1.39 +0.42 29.0 29.4
23 44 0.153 +1.94 +0.58 28.7 29.3
24 46 0.990 +0.14 +0.04 28.4 28.4
25 48 0.322 -1.51 -0.45 28.2 27.7
26 50 0.200 -1.79 -0.54 28.0 27.5
27 52 0.998 +0.06 +0.02 27.8 27.8
28 54 0.269 +1.62 +0.49 27.6 28.1
29 56 0.248 +1.67 +0. 50 27.4 27.9
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time lapses, the data points appear to be portrayed in a periodic fashion in
about either every 3-4 or every 10-12 measurements. The probability of the
measured value is a function of the measurements for -3.00 < k=Ky < +3.00
and follows a cosine-squared law that nearly duplicates the Gaussian distri-
bution probability. The probability dependence on measurements cannot be
derived from first principles but is heuristically justified by the fact it
enables the "predictive" values to agree with the experimental data.

The duplication of the experimental data points that are portrayed in a
sinusoidal fashion is in itself not too profound. In fact, for Refs. 1-4,
the points can be readily duplicated by nearly any periodic mathematical
treatment.. However, the heuristic method, when applied to the duplication
of the points that are portrayed in cusps (as in Refs. 6-9) and combination
of cusps and sinusoidal periodicities (as in Ref. 10), the method must be
considered as being significant. The significance is emphasized when form a
cursory examination some of the data points appear to be random but are
duplicated by the method. Obviously, all of the published data points
cannot be duplicated by the limited treatment of the heuristic method
described in this paper.

It is postulated that the sinusoidal portrayal of data points in
which the measured parameter does not have a fixed bound or physical
barrier. Examples of the sinusoidal characteristic would be the measure
of electron trapping as a function of time (Ref. 1), and the determination
of the beam displacement of a reflected electromagnetic wave as a function
of distance (Ref. 3).

It is postulated that the cusp—type portrayal of data points is charac-
teristic of an experiment in which the measured parameter (the dependent
variable) has a fixed bound or physical barrier. Examples of the cusp
characteristic would be the "no influence" effect of source strength as a
function of time (Ref. 6), and the measurement of the length of ameter stick
by the eclipsing of the position of a light source by the end of the stick.

There are two baffling considerations that were required for obtaining
agreement of the points in two of the examples. The first is that two
experimental points had to be by-passed in Ref 7, and the second is that a
change of polarity for the arithmetic deviation coefficient for Ref. 10.

These considerationsmay be resolved if the constants of the heuristic equation
were evaluated simultaneously with the experimental data points of an
experiment performed in a human factors evaluation laboratory. In such a
laboratory, the constants may be determined from the nature of the experiment
and the experimental procedures, and thus in conjunction with the equation
governing the experiment, the measured data points may be indeed predictive.
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VARIABLE TRANSFORMATION IN NONLINEAR LEAST SQUARES
MODEL FITTING

Aivars Celmip$
Interior Ballistics Division
U.S. Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland

ABSTRACT. The numerical treatment of nonlinear model fitting
problems often can be simplified by manipulating the model equations.
Algebraic manipulations, including nonlinear transformations of model
parameters, do not change the numerical result of the adjustment.
Therefore, such manipulations can be a powerful method to improve
the performance of solution algorithms. Nonlinear transformations of
the observations, on the other hand, do change the numerical results
unless the normal equations are transformed accordingly. The latter
transformation has been neglected by previous authors and this article
provides a complete set of formulas that are needed to implement
transformations of observations. The transformations are, however,
in general less useful than parameter transformations but may have
applications in particular situations.

1. INTRODUCTION. A mathematical model fitting problem arises
when one compares real observations with theoreical predictions. The
observations always contain observational inaccuracies and, likewise,
the theory of the prediction can be inadequate. If discrepancies
between observations and predictions are unacceptably large for a
particular situation then one is faced with the task to adjust in a
rational manner either the observations, or the theory, or both so
that an acceptable mathematical description of the event can be
established. The problem can be subdivided conveniently into three
subtasks, each of which requires a different approach and background
information.

First, one has to chose a model. Normally, this requires
supporting information from engineering, physics, geometry, etc.,
which may suggest or postulate a reasonable mathematical description
of the observable event. We shall assume in this article that the
model is formulated as a system of equations containing observations
and, possibly, also some undetermined model parameters.

Once the model is selected, one can compare predicted values
of observable quantities with corresponding observations. The
comparison provides the basis for a rational adjustment of the
observations and/or of the model. This subtask of the problem is a
purely mathematical part of model fitting and it belongs to the
category of ill-posed problems. Its mathematical/numerical treatment
is independent of the other two subtasks, i.e., of applications. We
shall be concerned with this part of the problem in the present article.
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After the adjustments have been carried out, one has to validate
the mathematical model, unless it has been prescribed, e.g., by the
geometry of the event. The validation involves typically, but not
necessarily, a statistical analysis of the discrepancies between ob-
servations and predictions. The result of the validation process may
be a new formulation of model equations and subsequent fitting, i.e.,
a repetition of the whole task until some validation criterion is
satisified. We shall not discuss this part of the problem, noticing
only that the results of the second subtask provide the data basis
necessary for a validation.

If the model equations are not linear then the model fitting
problem generally leads to systems of complicated simultaneous equations
and corresponding numerical difficulties may arise. Often the numerical
treatment can be simplified by a reformulation of the model equations,
particularly by introduction of new variables through variable trans-
formations. Such manipulations have been suggested in textbooksl=7 and
are routinely used in applications. Examples of recently published
applications where variable transformations have been used are refer-
ences 8, 9, and 10.

A closer investigation of variable transformations in model fitting
problems suggests that the formulations should be used more cautiously
than some of the texts suggest. Therefore, we shall present in this
article an investigation of some consequences of the transformations
and draw conclusions about their usefulness for the simplification of
the numerical treatment of model fitting problems.

In Section 2 we shall formulate the mathematical model fitting
problem in general terms and discuss the effects that can be anticipated
from manipulations of model equations. In Section 3 we shall specialize
the considerations to nonlinear least squares problems and produce
explicit formulas that are needed in such problems. Some examples will
be presented in Section 4, and Section 5 will summarize the conclusions
that can be drawn from the theoretical discussions and from examples.

2. GENERAL ASPECTS OF MATHEMATICAL MODEL FITTING. Let the model
equations be

A(X)6 = O, (2.1)
where XERp is the vector of all observations, BeRP is a model parameter
vector, and A(X) is an operator that operates on 6 and has a range
R . We assume that the following relations hold between the dimensions
n, r, and p:

n>r>p>0. (2.2)
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By permitting the dimension p to be zero, we include in our consider-
ations also cases in which the model equations do not contain free
parameters. Then equation (2.1l) reduces to A(X)=0.

Typical for applications are cases in which the r equation (2.1)
for 6 are independent and, because of (2.2), do not have a solution.
Then one replaces the model equations by another system

A(X)0 = O, (2.3)

chosing the operator A(X) such that it approximates A(X) and has a
solution. The determination of A(X) can be considered as the central
part of the model fitting problem.

In order to have a measure for the approximation we introduce
a metric for the operators. Let p[A(X), A(X)] be a metric. Then one
can formulate the mathematical model fitting as the following con-
strained minimization problem:

~

A(X)0 =0, W{pIA(X), A(X)] = min., (2.4)

where W{p} is generally a convex object function. The choice of the
metric p and of the object function W{p} determines the type of the
model fitting, e.g., least squares, maximum norm, etc.

- We shall now discuss the selection of an approximate operator

A(X). First, we notice that the model operators A(X) and A(X) are
generally needed and defined only within a finite neighborhood of the
observations X. Therefore, assumptions about properties of the operators
need to be made for that neighborhood only. Let the neighborhood
consist of all points Z = X+C, whereby C is restricted component-wise

by

Y, <C,

€ ST, . i=1,2 ..oy n. | (2.5)

1

The intervals (Y., ') normally contain zero, but exceptions are
possible and do Sccuf in applications. Second, we assume that within
the neighborhood (2.5) A(2Z) is a continuous function of 2. Then a
reasonable choice of A(X) is

A(X) = A(X+C). (2.6)
The choice achieves a natural parametrizationnof the approximatign.
The approximation parameter is the vector CeR and the operator A(X)
depends continuously on the parameter within the restrictions (2.5).

The parametrized model fitting problem can be formulated as
follows:

127



A(X'.'C)e = 0'

Wip[A(X+C), A(X)])} = min. (2.7)

The quantities to be determined by equation (2.7) are the approximation
parameter C and the model parameter 6. We assume that the solution
vector C is within the limits specified by equation (2.5).

We will need in the sequel some differentiability properties for
the model operator. As far as X is concerned, we assume the properties
to hold within the neighborhood (2.5). With respect to 0 we assume
that a similar neighborhood exists in the vicinity of the solution of
equation (2.7) in which A(X)6 is a continuous function of 6. The
differentiability assumptions are that A(X+C)6 is twice differentiable
with respect to all its n+p arguments within the cartesian product
space of the neighborhoods of X and 6. We also assume that within
that space

rank %%-s r, (2.8)

and define

pla(z), a(x)) = ||z - x|]. (2.9)

p is a metric within the neighborhood in which (2.8) holds. We also
assume that the model equations do not contain redundant parameters.
The assumption may be expressed as the requirement

BA(X) 0 _

rank 26 = p.

(2.10)

With the specialization (2.9), the model fitting problem becomes

A(X+C)6 = O,

wip[a(x+c), a(x)1} = w{||c||} = min. (2.11)

Equation (2.11) is an abstract formulation of common model fitting
problems. The difference C between the observations X and the
"corrected observations" X+C is called the residual vector. 1In the
formulation (2.11) we require that a norm of the residual vector be
minimized, subject to model equations which have to be satisfied at

X+C. The model parameter vector 0 is not essential in this formulation.
The number of model parameters may be zero and it is normally orders

of magnitudes smaller than the number of approximation parameters, i.e.,
residuals. The determination of 6 can be, of course, in some applica-
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tions more important than the determination of C, but this is not
always the case.

A least squares model fitting problem is a special case of (2.11),
characterized by a particular choice of the norm in the definition
(2.5), and of the object function W{p}. The least squares metric is

pla(z), A(X)] = ||z-x|| = Lz-x) TR z-x01% ' (2.12)

where R is an estimate of the variance-covariance matrix of the
observations. The least squares object function is

wip} = p2 . (2.13)

Therefore, the least squares model fitting problem is defined by

A(X+c)t = 0,
w=||c II = 'R Yc = min. (2.14)

In equation (2.14) we have used c and t instead of C and 6, respectively,
thus indicating the least squares values of both parameter vectors.

The use of R-l as a norm matrix in the definition (2.11) makes
the norm ||C|| and W dimensionless, which is very convenient when
fitting results are compared. If the variance-covariance matrix R
is known exactly, then the solution of equation (2.14) is a maximum
likelihood solution of the approximation problemll. The same
maximum likelihood solution is obtained if R approximates the variance-
covariance matrix up to an unknown factor. 1In applications one has
to be content with an estimate of R. Then often the off-diagonal
elements are assumed to be zero as a matter-of-course. Because the
results of the model fitting depend on R, such assumptions should
not be made without having reasons that zero is a better approximation
than a non-zero value. The theoretical treatment is not complicated
by the assumption that R is not diagonal, nor are the numerical
complications unsurmountable. Realistic estimates of R are, however,
important for the interpretation of the results, and for the validation -
of the fitting.

We solve the optimization problem (2.11) or (2.14) using Lagrange
multiplier technique, and call the multipliers correlates, as usual
in adjustment problems. Let KeR be a correlate vector and let the
modified object function be

~

W= %w{l lel |} - KTax+cre . (2.15)
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Necessary conditions for the solution of the optimization problem

are obtained by setting zero the partial derivatives of W with respect
to the unknown C, 6, and K. This yields the following set of normal
equations.

19 3 T

55 wi||c||} - 3¢ [KA(x+C)0] =0, (2.16a)
%5- [KTA(X+C) 8] = 0, (2.16b)
A(X+C)8 = O. (2.16¢)

The solution of the model fitting problem (2.11) is among the solutions
of equations (2.16). On the other hand, one cannot guarantee that a
particular solution of the normal equations corresponds to the
absolute minimum solution of equation (2.11), nor is the uniqueness

of the solution given. An investigation of these complications is not
the subject of this paper. Mostly, such problems can be, and are
taken care of by ad hoc measures based on background information from
the application. Therefore, we simplify our present theoretical dis-
cussion by assuming in this section that a numerical solution of
equations (2.16) can be obtained, and that it has been verified as the
absolute minimum solution of equation (2.11).

In least squares problems, the first term 9W/3C in equation (2.16a)
is linear with respect to C. Nonlinear expressions which could be
possibly simplified by algebraic manipulations may occur in the second
term in equation (2.16a), and in equations (2.16b) and (2.16c). The
structure of these terms strongly depend on the form in which the model
equations (2.16c) are cast, and it is obvious that simplifications can
be achieved by proper formulations. Particularly, one does not have
to insist that each model equation be solved for a "dependent" observa-
tion. Such a form is assumed in most textbooks on data reduction and
postulated in computer programs for data reduction problems. Quite
often an implicit formulation of the equations (2.16c) can be simpler,
producing also simpler expressions for the derivatives in equations
(2.16a) and (2.16b). The solution of the problem (2.11) is, of course,
independent of the particular form in which the model equations are
cast. This remark is trivial in the present context, and it is a
consequence of the formulation of the model fitting problem by equation
(2.11). Reference 12 reports about numerous unsuccessful attempts to
achieve a similar invariance statement when the problem was formulated
differently.

The aforementioned manipulations of the model operator A(X)6 can
also include nonlinear transformations of the parameter 6. Such
transformations do not affect the definition of the metric p, because
the metric of the operator is independent of the operand. Therefore,
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the transformations do not affect the first term in equation (2.16a)
either and are a powerful tool for the simplification of the rest of
the equations. An example in which nonlinear parameter transformations
are used to linearize the model equations is reported in reference 9.
In Section 4 we shall give other examples.

The formal procedure of replacing parameters is as follows:
Suppose that one wants to replace the parameter 6 by ¢ whereby both
parameters are related by a nonsingular function

6 = w(o). (2.17)
(Regularity of the transformation need to be assumed only within a
neighborhood of the solution.) Let the model equations be in terms
of ¢

A(X)o = 0. (2.18)
The operator A can be obtained from A always by the definition

A(X)o = A(X)w(0), (2.19)
however, often one can find other equivalent formulations that are

simpler. The metric p associated with A is defined as in equation
(2.9)

b [A(2), A(X)]) = ||2z-x|]. (2.20)

With this definition and the same object function W{pl} as before one
obtains the normal equations

22 wllel - & ®R xS0l = 0, (2.21a)
ac ac

g—o (KTA(X+C) o] = 0, (2.21b)

A(X+C)o = 0. (2.21c)

The solution vectors of equations (2.16) and equations (2.21) are
related by

c=C, 6 =w(o) (2.22)
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The vectors K and K can be computed from these values using formulas
given in the next section.

The relation (2.22) is again a simple consequence of the formula-
tion (2.11) of the model fitting problem. Bender? proves the
correspondence (2.22) for a particular transformation and application,
and indicates that previous developers of software for such problems
were not aware of the relation.

If the solution of the model fitting task has been found from
equation (2.21) in terms of o, but the parameter vector 6 is of
interest, then one needs in addition to equation (2.22) another formula
for the accuracy of 6. Let us assume that the solution algorithm for
equation (2.21) has also provided information about the accuracy of
o in form of an estimate Vg of the variance-covariance matrix of the
components of o. (In Section 3 we shall give formulas for Vg5 in least
squares problems.) Then an estimate of the variance-covariance matrix
Vg of the components of 6 can be obtained by applying the linearized
law of variance propagation to the relation (2.22). The result is

ow (aw T

ve = EEVU %) . (2.23)

More complicated are consequences of such manipulations of the
model equations that involve transformations of the observations. This
is so because the transformations now affect the definition of the
norm p. Next, we shall consider such transformations.

Let a transformation of observations be

Y = v(x) (2.24)
with the inverse

X = u(y).

We assume that the transformation is reqular within the neighborhood
(2.5), including the solution X+C, and that the function u(Y) is
there twice differentiable. The model equations (2.1) are replaced
by equivalent (usually simpler) equations

A(Y)0 = 0. (2.25)

The operator A(Y)e can be obtained, e.g., by the definition
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A(Y)® = A(u(Y))e, (2.26)

but, as in the case of parameter transformations, usually other
equivalent formulations can be found that are simpler.

When we formulate the model fitting problem in terms of Y, we
have to keep in mind that the goal is to minimize the distance C
between the actual observations X and their corrected values X+C.
In least squares problems, only such a minimization yields under

conditions a maximum likelihood solution. Then the minimization
problem (2.11l) is

Y= V(X),
A(y+B)6 = 0, : (2.27)
w{[|u(y+B) - x||} = min.

The normal equations for the problem (2.27) are

123 3 . Ta
-2--5—B-W{||u(Y+B)-x||} - o5 [K'A(y+B)e] = O, (2.28a)
ﬁ [K"A(Y+B)6] = O, (2.28b)
A(Y+B)@ = O. (2.28c)

The first term in equation (2.28a) is not linear with respect to the
unknown B unless the transformation (2.24) is linear. Therefore, a
nonlinear transformation that produces an operator A(Y)6 which is
simpler than the original operator A(X)6, introduces nonlinear terms
in equation (2.28a). The new nonlinearities may offset the advantages
gained by a simplification of the other terms in the equations.

We shall pursue this point further in the next section and show
in detail how the normal equations and algorithms are affected by
transformations of observations specifically in least squares problems.

3. LEAST SQUARES MODEL FITTING. We consider in this section
the effects of variable transformations on least squares model fitting
problems. We shall first derive the basic equations for nonlinear
least squares problems in terms of the original observations, and then
show how the equations are affected by a transformation of the
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observations. We simplify our notation by defining a vector function
F(X,0) by

F(X,08) = A(X)6. (3.1)
Then the model equation (2.1) is

F(X,0) = 0, (3.2)
and the least squares model fitting problem (2.14) is

F(X+c,t) = O,

|le || = ¢"’ Yc = min. (3.3)

In the sequel we will use subscripts to denote derivatives.
Also, because derivatives of F(X+c,t) with respect to c are identical
to derivatives with respect to X we shall use the subscript X for both.
Thus, e.qg.,

F(X+c,t) = 3—'F(x+c,t)

9
Fx(x+c,t) = 3c

X
and
2 2

3 T
X [K F(X+c,t)] =

T
[K F(X+c,t)x 3cat [K'F(X+c,t)]

are matrices with the dimensions rxn and nxp, respectively.

Using this notation, the normal equations corresponding to the
problem (3.3) are

R lc - kTFx(x+c,t) = 0, (3.4a)
T

k'F,_(X+c,t) = 0, (3.4b)
F(X+c,t) = O. (3.4c)
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The normal equations are in general nonlinear with respect to ¢
and t. Therefore, their numerical solution will require some kind of
iteration. We obtain second order iteration equations for equations
(3.4) by expanding the normal equations at an approximation to the
solution and keeping the linear terms of the expansion. Let the
approximation to the solution be C, K, and T, and that the corresponding
corrections be €, x, and T. Then the expansion yields the following
Newton equations for the corrections:

T T T
[I-R(K F)xx]e - Rl"‘x' (K+k) - R(K F)Xt‘rﬂ - C, (3.5a)
T T T
(K F)txe + Ft (K+k) + (K P)ttr = 0, (3.5b)
er + Ftt = - F. (3.5¢)

The argquments of F and its derivatives in equations (3.5) are X+C and T.

Newton-Raphson iteration equations can be established by suitable
manipulations of equations (3.5)8,13,14,15, A set of such iteration
equations are given in the Appendix. Most authors simplify equations
(3.5) by neglecting all terms that contain second order derivativesl,11,16,17,
This yields so-called Gauss-Newton procedures that have theoretically
only linear convergence and that also may have other peculiaritiesl3.

The final step in a model fitting problem is to obtain variance
estimates of the solution in terms of the estimated variances of the
observations. We shall restrict ourselves in this article to the
estimation of the accuracies of the least squares value t of the
parameter vector, and show how the estimation formulas change due to
transformations of observables. We shall use the linearized variance
propagation formula for the estimates. Estimates of the accuracies
of the corrected observations x=X+c can be obtained by analogous
processes.

The formulas can be derived from the linear terms of an expansion
of the normal equations (3.5) at the solutionl3. Let dx, dk, and dt
be the differentials of the solution vectors x=X+c, k and t,
respectively. Then the expansion yields

T T T
(I-R(k F)xx]dx - RFx dk - R(k F)xtdt ax, (3.6a)
T T T
= 3.
(k F)txdx + Ftdk + (k F)ttdt o, (3.6b)
dex + Ftdt = 0, (3.6c¢)
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The arguments of F and its derivatives in equations (3.6) are x and t.

By manipulations of equations (3.6) that can be done in various
waysl3,18 one obtains linear relations between dt and dX, and
between dx and dX, respectively. Let the former relation be

N dt = s ax. (3.7)

(Explicit formulas for N and S are given in the Appendix.) Then the

estimated variance-covariance matrix Vt of the parameter vector t is

1l T

v. =nsrsTon YT, (3.8)

t

It is obvious from the derivation of equation (3.8) that Vi which
itself is only a linearized approximation depends on second order
derivatives of F. (The formulas in the Appendix show explicitly this
dependency.) Neglect of the second order derivative terms renders a
formula that is theoretically less than first order accurate. Therefore,
such a neglect has to be justified in each application by providing
estimates of the magnitudes of the neglected terms. Of the cited
references, only in references 13, 14, 15, and 18 complete first order
formulas are used.

Next, we introduce variable transformations into the least squares
model fitting problem. We can restrict ourselves to transformations
of observations because, as shown in Section 2, transformations of
model parameters have the same effects as simple algebraic manipulations
of the model equations.

Let, as in Section 2, the transformation be given by

Y = v(X) (3.9)
with the inverse

X = u(Y).
In terms of Y, the least squares model fitting problem is defined by

Y = v(X), (3.10a)

H(Y+b,t) = O, (3.10b)
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1

| [u(x+b)-x| |2 = [u(¥+b)-x1TR™} [u(¥+b)=X] = min. (3.10c)

Equation (3.10b) is a model equation, equivalent to equation (3.2)
and expressed in terms of Y.

The normal equations for the problem (3.10) are

(uy(y+a)1Tn71 [u(Y+b)-X] - kTHy(Y+b,t) =0 (3.11a)
T .

kTH, (¥+b,t) = 0, (3.11b)
H(Y+b,t) = O. (3.11c¢)

Corresponding Newton equations for corrections B8, k, and T of approxi-
mate solutions B, K, and T, respectively, are

[I-QE]B-QH$°(K+K) - Q(x?a)ytr = - A, (3.12a)

(x?n)tye + He (k) + (K'H) T = 0, (3.12b)

H 8 +HT = - H, (3.12¢)
where

Q= vav*T = (uy)'lR (uﬁ)'l ' (3.13)

A=v :[u(+B)-X] = v_-C = (uy)-l'c, (3.14)

E = (K.TH)Yy - (uTR.'IC)yy . (3.15)

The arguments of the functions H and u in equations (3.12) through
(3.15) are Y+B and T, and the last term in equation (3.15) is differ-
entiated assuming C=u(Y+B)-X to be constant. The term is a symmetric
nxn matrix containing second order derivatives of the transformation
function u(Y).
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A comparison of equations (3.12) with equations (3.5) shows that
the important changes in the Newton equations due to the transformation
(3.9) are in equations (3.12a). The rest of equations (3.12) is formally
identical to the corresponding terms in equations (3.5), if F(X,0) is
is replaced by H(Y,6). In equations (3.12a) we see three other replace-
ments: the estimated variance-covariance matrix R is replaced by Q,
the right hand side -C is replaced by -A, and the term (KTF) is
replaced by =. o

The replacement of R by Q corresponds to an application of the
linearized variance propagation formula to the transformation (3.9).
The replacement of the right hand sides is a linearized transformation
of the residuals C into the Y-space. If the transformation (3.9) is
linear, then only these two replacements occur. If, however, the
transformation is nonlinear, then the last term in equation (3.15)
does not vanish and, because it contains second order derivatives of
u(Y), it can be quite complicated. This complication can offset
algorithmic advantages gained by a simplification of other terms in
the Newton equations.

Iteration algorithms and formulas for the variances of the solution
again can be obtained by manipulations of the Newton equations. Explicit
formulas are given in the Appendix. We notice that second order
Newton-Raphson algorithms necessarily contain second order derivatives
of the model function H as well as of the transformation function
u(Y). The coding of the second order derivatives can, of course, be
avoided if first order Gauss-Newton algorithms are used. However,
variance estimates of the solution can be calculated to a first order
accuracy only if all the csecond order derivatives are available.

The author has carried out numerical experiments to determine
whether a solution of equations (3.11) instead of equations (3.4)
has algorithmic advantages. The experiments were done with the
utility programs described in reference 15. The programs permit one
to carry out the calculations either in terms of X, or in terms of Y,
and to use either Newton-Raphson, or Gauss-Newton algorithms. The
experiments were inconclusive. In some examples the algorithms con-
verged better when the problem was formulated in X, in other examples
a formulation in Y¥=v(X) produced better algorithms. However, the
differences in performance were never significant. This result is in
strong contrast to similar experiments involving transformations of
parameters. In those experiments, a suitable parameter transformation
often had a dramatic effect on the performance of the solution algorithm.
Some examples are given in the next section.

Another possible benefit from nonlinear transformations of
observations could be a simpler problem formulation. The complexity
of the normal equations is thereby of secondary importance, if one
uses an available general utility program for their solution. However,
the model equations must be made available to the utility program,
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which means that the equations must be programmed. Then one has the
choice to program either the function F(X,0) with its first and second
order derivatives, or the two functions H(Y,6) and u(Y) with their
derivatives. If the transformation is nonlinear, then normally the
programming of H and u will not be simpler than the programming of F.
An exception may be the situation where the same transformation u(Y)
(e.g., polar-cartesian) is used for several problems with different
model functions H(Y,0), so that u(Y) has to be programmed only once.

We may conclude that in general a transformation of observations
offer little or no advantages over a formulation of the model equations
in terms of the original observations. There are, however, other
useful applications of such transformations. First, a graphical
display of the results can be clearer in terms of Y then in terms of
X. Second, and more importantly, the transformations can be a con-
venient method to derive a "falsified" problem that can be solved
easily and that provides initial approximations to the unknown least
squares solution vectors. One can falsify the problem, e.g., by using
a nonlinear transformation but linearizing its effects on the problem
formulation. A simple and effective falsification is to replace the
problem (3.10) by

Y = v(X), (3.16a)
H(Y+b,t) = O, (3.16b)
bT[u;'(Y)R-luy(Y)]b = min. (3.16c)

The formulation is identical to the correct formulation (3.10) only
if the transformation is linear, but the normal equations for the
false problem (3.16) are simple:

Q'lb - K?Hy(v+b,t) = 0, ’ (3.17a)
KTHt(Y-!-b,t) =0, (3.17b)
H(Y+b,t) = O, (3.17¢)
where
~ -1_.T -1
= Y . 3.18
Q [uy(y)l R[uy (Y)] ( )
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This system can be much simpler and easier to solve than equations
(3.4) or the equivalent equations (3.11). 1Its solution is, however,
not the least squares solution but an approximate solution of unknown
quality.

Initial approximations to the solution also can be obtained by
other falsifications in addition to the one described, or instead
of it. Such falsifications are, e.g., assumptions that certain
observations are error free, that some correlations are zero, that
some model parameters have prescribed values, etc.

4. EXAMPLES. The first example is a case involving transformation
between polar and cartesian coordinates. We shall compare results
that are obtained using the approach of the previous section with
results that are obtained by following suggestions by other authors.
In data processing literature one finds different suggestions. The
simplest one is to treat the problem after transformation as if the
transformed quantities were observed. It is clear from the discussions
in Section 2 that such an approach does not produce the least squares
solution, i.e., it does not minimize W{||c||}, even if the transfor-
mation is linear. The most sophisiticated suggestionl:8.10 js to
apply the transformation (3.18) to R, i.e., to solve the system (3.17).
As we have seen in the previous section, this approach yields the
least squares solution only if the transformation Y=v(X) is linear.
The following example illustrates the practical consequences of such
a problem falsification.

Let the observations be distances rj and azimuth angles ¢j, and
let the model equations represent a straight line in cartesian
coordinates. Then the model equations are in terms of the original
observations

( rlsz.mbl - a- brlcosd)1 =0
rzsind)2 - a - brzcos¢2 =0
F(r,¢;a,b) = ¢ (4.1)
rn51n¢n -a- brncos¢n =0
.

The transformation of the observations into cartesian coordinates are

x r, cos, .

i i

-
]

i ri sin¢i ,1=1, 2, ..., n, (4.2)
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and the model equations are in terms of the transformed observations

( -a- =
yi a bxl (0]

y2 -a- bx2 = 0
H(X,Y;a,b) = < (4.3)

e 0ceo0e0cs0voe

Y, - a- hxn = 0

\

The Jacobian matrix of the transformation is

J = ’ (4‘4)

where

(4.5)

5 a(xi,yi) (rcosd’i -r;sing,

i a(ri,¢i) cos¢i

sin¢i ri

We assume for simplicity that all observations are independent
with estimated standard errors erj and egj, respectively. Then the
estimated variance-covariance matrix R is the diagonal matrix

exzrl
eil o \
eiz
332
R = . (4.6)
o .
)
rn e2 /
¢n
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The transformed variance-covariance matrix Q is according to equation
(3.18) the block diagonal matrix

[ |

2
9 = gr® = " (4.7)
(o) .
\ "
where

2 2 2 2 .2 2 2 2

e _;c0s ¢i+e¢ir151n ¢i (eri-e¢iri)sin¢icos¢i
Q.= (4.8)

i 2 2 2. . 2 ., 2 2 2 2
(eri-e¢iri)s:.n¢icos¢i e ;sin ¢i+e¢iricos ¢i

For a numerical example we take the ten points listed in Table
I as observations and assume that their standard errors are

e = 0.048, e,. = 27.5°, i =1, 2, ..., n. (4.9)

¢i

We made three adjustments. First, the r,¢-data were used
together with the model equations (4.1). 1In the second adjustment,
the x,y-data were used together with the model equations (4.3) and
the transformation function (4.2) in a utility programl5 based
on the normal equations (3.11). The results of both adjustments were
identical, as they should be, and they are listed in Table II. The
listed standard errors of the parameters are the square roots of the
diagonal elements of V_, computed with formula (3.8). The correlation
coefficient c,p is the off-diagonal element of the correlation matrix

Ct, defined by

(4.10)

where Dy is the diagonal matrix of V¢. The standard error of weight
one is defined by

e A Trlot o Lt
mo = [ n-p CR C] = [ n-p W] . (4011)
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Figure la shows the result of the adjustment in the ¢,r-plane,
i.e., in the plane of the original observations. The accuracies of
the observations are indicated by error ellipses around the observed
points. The adjustment is indicated by connecting the observed points
with the corresponding corrected locations on the fitted curve. The
figure shows that all adjustments are in the direction of largest
uncertainties.

Figure 1lb shows the same result in the x,y-plane. The accuracies
of the transformed observations are again indicated by error ellipses,
corresponding to the transformed variance-covariance matrices Qi. In
this presentation the adjustments seem to be in directions other than
those with largest uncertainties. This is typical for nonlinear
transformations of observations. The object of the fitting is to
minimize residuals of the original observations. The presentation in
the x,y-plane is distorted by the nonlinearity of the transformation.

In a third adjustment we used the x,y-data, the model equation
(4.3), and the variance-covariance matrix Q, defined by equation (4.7).
The treatment, suggested by Deming and other authors, was described
in Section 3, equations (3.16) through (3.18), as a falsification of
the problem. The numerical results of this adjustment are listed in
Table II. They are different from the previous results, and the
increase of m_ indicates that the solution is not optimal. We notice
also that the®correlation coefficient cab has changed its magnitude
and sign.

Figure 2b shows the results of the adjustment in the x,y-plane.
It indicates that the_adjustment would indeed be optimal, if x,y were
the observations and Q was their variance-covariance matrix. However,
when the same results are plotted in the ¢,z-plane, Figure 2a, then
it becomes obvious that the adjustment has not achieved the goal to
minimize the residuals of the original observations ¢,r. The treatment
of transformations of observations in this form is a falsification
of the problem. The results are approximations to the least squares
solution, but since the quality of the approximations are not known,
they may be useful only as initial approximations for a least squares
algorithm. However, in a case like this example, an initial approxi-
mation could be simpler obtained, e.g., graphically by drawing a
straight line in the x,y-plane through the observations.

Next, we present an example for the linearization of parameters.
Let the model equation be

Yy - AxP exp (%) =0, (4.12)
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where x and y are observations and A, B, and C are model parameters.
An equivalent model formulation is

1ny-a-b1nx-§--o. (4.13)

In equation (4.13) the parameters a, b, and c enter linearly. One
can expect a much better performance of solution algorithms if
equation (4.13) is used. The parameter transformation is in this
example

A= 2,

B =b, (4.14)

cC=9c,

and the Jacobian matrix, needed in equation (2.23) is

.

a

e o o

9(aA,B,C)

oiA,B,0) _

3(a,b,C) (0] 1l (0] . (4.15)
0 0 1

Another example is the trigonometric model
y - A cos £ = 0. (4.16)
An equivalent model is

y - a sin(cx) - b cos(cx). . (4.17)

The corresponding parameter transformation is

]
[l

A sin(B/C),
A cos(B/C), (4.18)
1/C,
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with the Jacobian matrix

a(a,B,C) = d(a,b,c) ]-1 -
9(a,b,c) 9(a,B,C)

sin(B/C) (A/C)cos(B/C) -(AB/Cz)cos(B/C) -1
= [ cos(B/C) -(a/C)sin(B/C)  (aB/C?)sin(B/C) (4.19)
0 0 -1/C2 / ’

In this example, the model (4.17) is linear only with respect to two
parameters. However, the difference of numerical treatments of the
problem is dramatic if one uses equation (4.16) or equation (4.17),
respectively. In numerical experiments we found that in order to
achieve convergence, one had to start with parameter values A,B,C
within few percent of their least squares values. Using the parameters
a,b,c and the model equation (4.17), one achieves fast convergence,
e.g., with the initial values a=b=0.

5. SUMMARY AND CONCLUSIONS. Manipulations of model equations
that produce simpler but equivalent equations can greatly facilitate
the preparation of the problems (e.g., computer programming) for
utility routines. The manipulations can also improve the performance
of numerical algorithms. If the manipulations are merely algebraic
and/or involve nonlinear transformations of the model parameters,
then their application is straight forward and their implementation
simple. If, however, the manipulations include transformations of
observations, then one has to transform also the normal equations
correspondingly. Neglect of this transformation falsifies the problem
and produces results that are of unknown quality and equally reliable
as, e.g., a graphical construction of a fitting curve. A correct
implementation of transformations of observations requires the pro-
gramming of the transformation function, including its first and second
order derivatives. It also does not improve the performances of
algorithms. Therefore, in most cases, it is more efficient to formulate
the model equations in terms of the original observations, thereby
avoiding the programming of the transformation function.

The need for second order derivatives of the model equations has
been often overlooked. 1In order to avoid the programming of these
derivatives, most authors suggest to use a first order Gauss-Newton
algorithm for the solution of the normal equations, instead of a
second order Newton-Raphson algorithm. The performance of the former
may be often comparable to the latter, because even with more iterations,
the computing effort can be less due to the simpler equations. Second
order derivatives of the model equations (and of the transformation
function) are, however, needed to compute the linear terms in formulas

145



for variance estimates of the results. Their neglect cannot be
justified cursory by the argument that linearized model equations are
already second order accurate and, therefore, their second order
derivatives are not needed. It can be shown that the linearized normal
equations do contain these derivatives and, therefore, are needed in
the linearized variance propagation formula. Formulas for variance
estimates that do not contain second order derivatives are less than

first order accurate.
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TABLE I. OBSERVATIONS ¢ AND r AND CORRESPONDING
CARTESIAN COORDINATES

¢ x x Y
206.6° 0.559 -0.50 -.025
26.6° 1.342 1.20 0.60
26.6° 2.236 2.00 1.00
26.6° 3.354 3.00 1.50
26.6° 4.472 4.00 2.00
123.7° 1.803 -1.00 1.50
92.9° 1.952 -0.10 1.95
68.2° 2.693 1.00 2.50
52.4° 4.100 2.50 3.25
42.0° 6.727 5.00 4.50

TABLE II. ADJUSTMENT RESULTS

Case 1 and 2 (Original and Transformed Problem)

a = 0.381 + 0.298
b=1.141 + 0.744 Cab = 0.015065

m = 1,24541
[

Case 3 (Falsified ?roblem)
a = 0.680 *+ 0.407
b =1.837 + 0.259 Cab = -0.568659
mb = 1.75646

The standard error of weight one, mo, is not included in the standard
errors of the parameters.
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Figure la. Adjustment in ¢,r-space.
The data are shown with their one standard error ellipses and the

adjusted curve is shown with one standard error confidence limits.
The same results are shown by Figure 1lb in the cartesian x,y-plane.
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Figure 1lb. Adjustment in ¢,r-space.

The transformed data are shown with their one standard error
ellipses and the adjusted line is shown with one standard
error confidence limits. The same results are shown by
Figure la in the ¢,r-place of observations.
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Figure 2a. Falsified Adjustment in x,y Space.

The data are shown with their one standard error ellipses
and the adjusted curve is shown with one standard error
confidence limits. The same results are shown in Figure
2b in the cartesian x,y-plane.
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Figure 2b. Falsified Adjustment in x,y-space.

The transformed data are shown with their one standard error
ellipses and the adjusted line is shown with one standard
error confidence limits. The same results are shown in Figure
2a in the ¢,r-plane of observations.
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APPENDIX
We provide a set of iteration formulas that are derived from

‘the Newton equation (3.6) by algebraic manipulations. First, we define
the following matrices:

T, -1

G= (PxRFx) (ar.1)

A= RFTGF -I 2
X X (.2)

T -1

T [I+AR(K F)xx] (a.3)

E = I« [AC-RF.GF ] (.4)

o X X ¢

E, = I+ [RF-GF_+AR(K'F)__] (A.5)

1 Xt Xt °
T T T

Do (K F)tx - FtGFxR(K F)xx (A.6)
T T T

Dl (K P)tt - FtGFxR(K E‘)Xt (A.7)

N = FTGF - D, + D.E (A.8)
tSF¢ = Dy + DoFy A.

The iteration equations are

NT = FLG(F C-F) + D_E (A.9)

t x 00 *
T T
K+K G(FxC-F)+G[Ft+FxR(K F)Xt]‘t-GFxR(K F) xx© (A.10)
€ = E "E T . (Aoll)

01

Numerical experiments have shown that the convergence of the
iteration is enhanced if the equations are used in a subiteration
mode by iterating alternatively on the parameters and residuals,
respectively. For parameter subiteration only equations (A.9) and
(A.10) are used, assuming €Z0. For residual subiteration one sets
720 and uses equations (A.10) and (A.ll).
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In the variance formula (3.8) one uses N, defined by equation
(A.8) and

T
S = FtGPx + DOI'A. (R.12)

Another equivalent set of Newton-Raphson iteration equations are
given in reference 13. None of the sets are numerically superior to
the other, and both require subiterations of parameters and residuals
for efficiency.

Gauss-Newton iteration equations can be obtained from Newton-
Raphson iteration equations by setting all second order derivatives
zero. The convergence of Gauss-Newton algorithms is inferior, but
in some applications they have a larger domain of convergence.

Iteration equations for least squares problems with transformations

of observations can be obtained from the formulas in this Appendix
by substituting

Q for R
A for C

and

[£3]

T
for (K l-‘)xx .

Expressions for Q, A, and £ in terms of the model and the transformation
functions are given in Section 3, equations (3.13), (3.14), and (3.15).
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ANALYSIS OF DATA WITH THE NONLINEAR LEAST CHI .
SQUARE ALGORITHM

Richard L. Moore
US Army Armament Research and Development Command
System Evaluation Office
Dover, NJ 07801

ABSTRACT. This paper reports on the use of the least chi-square
algorithm for fitting data to non-linear functions of the parameters.
A well known computer program of the National Institutes Health,
SAAM-27, has been modified to use this algorithm. Comparison of the
ordinary least-squares algorithm with the new algorithm have been
made on four different problems as follows: Pressure waves in gun
chambers, control of aircraft yaw, a biomedical kinetic reaction
involving four measured components, and a very non-linear nuclear
reactor kinetics problem. The preliminary results indicate that the
least chi-square algorithm is practicable, that the computing time is
increased for short problems, but evens out for long problems.

The least chi-square algorithm appears to be less failure prone
than least squares and a test has been inserted in the program to
preclude any iterations which might tend toward maximizing the
autocorrelations as could occur when their initial value is large.

I. INTRODUCTION. It is accepted procedure in analysing the
goodness—-of-fit of experimental data to a theory which is nonlinear
in the adjustable parameters to estimate whether the residuals are
consistent with being drawn from a normally distributed population in
a random sequence. A common statistic to test the random sequence
hypothesis is the sum of the squares of the normalized autocorrelation
coefficients frequently called the Box-Pearce test. However, if
these tests indicate a lack of agreement with the hypothesis, no
rationale has been available to modify the parameters to obtain a
better fit. A solution to this problem has been provided by the use
of a least chi square algorithm which estimates the parameters which
give the greatest probability that the residuals arise from a popula-
tion with variance aé , and are sampled from a random sequence.

II. SUMMARY OF MATHEMATICS.

Following the notation of Aitken (1) and as previously derived by
Moore (2, 3), we define the following:

The transpose of a vector or matrix is indicated by a ' on the
symbol u'.

157



u is the vector of observed values. -

y is the vector of theoretical values corresponding to u.
o* is the vector of the estimates of the unknown parameters.
P* is the matrix of the partials of y* with respect to g*.
. r 7 - Ny
v;‘-—- 010...01{, Vs '={o0l0...0
" loolo0..0 0001
00010.0 0oo0o
' L
. . -
- R
vj"= 00. ol .
000..... ol
L e o o ‘J
2r.v.-!
1. J
a. =

— -
I @ @eg - 2E Y,

s
r=1+% arV™?
=t 0

' -1
The term Vj is the inverse of the variance of rj’.

3 _ -2 . S 3
x.r % d d+'jz}___i rj /Vj
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The calculaton of {60} is done from the following expression which

is the same as the usual non-linear least square interation except
for the matrix I ,

(86*] = [P*' I' P*]-1 P*' T u*.

In the usual case, f equals I.

This expression has been programed into the Simulation And
Analysis Modeling (SAAM-27) (4, 5) program of Berman et al, by post-
multipying P*', by I' , and letting the program proceed from that
point, with the data for p*!' being replaced in the memory by the
product P*'T. The usual iteration continues from this point. The
computer program resulting from this change has been designated for
control purposes as SAACH, and has been tested on the CDC 6600 at
ARRADCOM, Dover, to determine the following questions:

1. How much change is there in the final parameter estimates?
2. What change, if any, is there in the number of iterations?
3. What change is there in the time per iteration?

III. EXAMPLES. Four problems of different origin which use
different mathematical models have ‘been run on the SAACH program to
answer the above questions. In the first example: Gun Chamber Pre-
ssure Waves, the mathematical model used is the superposition of two
pressure waves generated by analytic models in the program, with the
adjustment of up to eight parameters to obtain the best fit to ob-
served data. In the second example, an aircraft control system
simulation, the mathematical model is a set of four linear differen-
tial equations, simulating the Yaw Damper system on an aircraft.
These equations were solved by a special procedure developed for
SAAM-27 by Berman et al. (6), with up to four adjustable parameters.
In the third example, a biomedical problem furnished as a test case
by Miss Rita Straub of Brookhaven National Laboratory, the mathema-
tical model was a set of seven coupled linear differential equations
with five adjustable parameters; this was solved by the same method
as used in the second case. In the fourth and final example: KEWB
Kinetics, a simulation of the nuclear reactor transients of the
Kinetic Experiment Water Boiler, the mathematical model was an ex-
tremely non-linear set of coupled differential equations as described
by Hetrick and Gamble (7). These equation were integrated by the
fourth order Runge-Kutte integration procedure of SAAM-27, with only
one adjustable parameter.
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II1I-1 Gun Chamber Pressure Waves. Unusual pressure waves sug-
gestive of an acoustic wave supcrposed on the normal gun chamber
pressure—time curve, have occurred in tests of the XM21l propellant
charges at zone 3 for the M10l projectile in the 155mm gun,
(Knutelski, (8)). Analysis of these waves was initiated by Mr. B.
G. Knutelski of the Large Caliber Weapom Systems Laboratory using the
SAAM-27 program. A parallel analysis was made by the author using
the SAACH program. In order to have as little bias as possible
injected into the comparison, the Knutelski model, data, and
procedure was followed as closely as possible. The resulting data
fit was later improved by using more data and improved models. The
history of this analysis is important because it illustrates the
problems which arise when no prior knowledge is available about the
best-fitting model.  (This example is the only one of the four
examples for which prior knowledge was not available.)

The first case was run using the data shown as asterisks in Figure
1. This figure shows the theoretical fit by the following model:

P = P(l)sin{2n(P(2)t + P(3))}
+ P(4)sin{2n(P(5)t + P(6))} .

Fig. 2 shows the theoretical fit by the same model as above using the
Least Chi Program (SAACH) with five autocorrelation coefficients (BGK
1.101). Table 1 indicates the number of iterations to convergence
and the final values of the parameters (the initjial values were the
same). The value of the sum of the squares (Xlz) is given for
comparison, as well as the autocorrelation coefficients up to rank 5.
Case BGK had slightly lower values of sums of squares, but the chi
square was much smaller for BGK 1.101. (The symbol X will be used
for the greeck letter Chi for the rest of this report.)

Recause not all the data points available were used in this
preliminary analysis, additional data were obtained and entered into
the computer using the same model and same initial conditions as in
the previous runs. In this case (BGK 3.002) the least squares
iteration stopped at seven iterations; as shown in Figure 3, the fit
was poor and the convergence obviously false. The least chi square
iteration, BCGK 3.102, using the same data terminated at 14 iterations
with an obviously better fit (Fig 4), but yet not a good eyeball fit.
The results of both cases are also shown in Table 1. The
autocorrelation coefficients are large for case 3.102, and indicate
the general lack of fit.
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Because of this obvious lack of fit in BCK 3.102, the model was
changed to the following,

P =P, exp{ - (t-t;) 2/_2012'}

+P, exp { - (t-t,)?/20,% )} X sin{2nf (t-tj) + w/z}

Three parallel cases were computed once the fit was gnod enough
to permit iteration. Because of computing difficulties which arose
when trying to converge on six or seven parameters, the iteration was
initially restricted to four parameters: Once the fit was good and
had converged using these four parameters, their final values were
used as initial values for a six-parameter fit. Finally, all eight
parameters were allowed to vary.

The results of this series of analysis are plotted in Figs 5, 6,
and 7. The case numbers are BGK-3.30356301-0, 3.30356511-5 and
3.30356511-10 respectively. The first has no autocorrelation
coefficicnts; the second, 5; and the third, 10, The parameters for
these cases are given in Table 2, (note that the last three digits
only of the identifier are used lere). The estimated errors are the
estimated standard deivations based on the value of the sum of the
squares. In the case of 511-5 and -10, the value of XTz was used
rather than the sum of squares. The statistical validity of this
procedure has not yet been established. '

Results shown in Figures 5, 6, and 7 indicate that the apparent
fit to the data is best for the case of five autocorrelations, (Fig
6). In this figure the autocorrelations were weighted higher than in
Fig 7, where ten autocorrelations were used, and of course much higher
than in Figure 5, where no weight was given to the autocorrelations. '

It is clear from Table 2 that ordinary least squares, case 301
indicates a small fractional standard deviation as compared to the
other two cases, but yet the fit to the data is not as good as seen
from its plot, (Figure 5). '

The last row of Table 2, gives the values of og , the experi-
mental vari{ances assumed for these cases. These were arbitrary
numbers in this case, because the precision of the measurement system
is probably much greater than the value given i.e., the -variances
should be smaller. However, if smaller values were used, such as
-when casc 511-10 is compared to 511-5, the weight on the sum of the
squares is greater but the goodness of fit appears to decrease.
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Table 2 also shows the effect of least chi-~square in terms of
number of iterations, and computing time. When five autocorrelations
were used, as in case 511-5, only a small increase in number of
iterations is found and a moderate increase in computing time as com-
pared to 301. If ten autocorrelations were used, as in 511-10, the
number of iterations increased, and the time increase was 1.8 times
greater, giving about double the increase in time for double the
number of autocorrelation coefficients.

Table 3 shows the autocorrelations up to order 20 for the three
cases. The values of Xlz, x22, and X7“ for the number of
autocorrelations used (0, 5, 10) is shown in the last rows of this
table.

The difference in the assumed experimental variances accounts for
most of the difference between Xlz for cases 511=5 and 511-10. If
the experimental variances had been the same, X;“ would have been
62.96 or 57.62, Case 511-5 appears (in the figures) to fit better
because the first five autocorrelations as well as most of the later
autocorrelations are smaller.

II1I-2 Aircraft Control Systems. The block diagram of a typical
problem of this type is shown in Fig 8. To optimize the design four
parameters may be adjusted to give the best fit to a desired response
curve. These parameters are 6,,Ky,T1, and Kg . These correspond
to the parameters L(0,4), L(4,1), L(4,2) and L(4.3). A previous
analysis of this example tsing SAAM-23 was available. As a result, a
completely unbiased comparison of least squares and least chi squares
prodecures was difficult to ensure. Two different approaches were
used on this example. First, the "data"--corresponding to the desired
curve--was used "as is” for comparison with the calculated response.
Second, a vector of a random sequence of normally distributed errors
from a population with variance of (. 033)2 was added to the data
vector to simulate the effects of sampling error; this may be
considered to represent an allowable error or tolerance in fitting
the curve.

In the first approach, the cases to be compared are 2-6 and 4.
Case 1-6 was a reference run which adjusted four parameters, and
started near to the final values. It iterated three times and took
23.6 sec to complete. A similar case, 2-6 used the same starting
point and used six autocorrelations coefficients. It failed to im-
prove the fit in but one iteration, primarily because it attempted to
increase the autocorrelations in its attempts to improve the fit.
(Several cases of this type were found which led to a modification in
the least chi-square algorithm, to be discussed later). The data on
the parameters, autocorrelations, and chi square are given in the
first column of Table 4, The fit to these data are shown in Fig 9.
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In an attempt to understand this problem various strategies were
tried, but the results were nearly all similar. Case 4 and 4.1 are
typical. In these comparisons the number of adjustable parameters
was reduced to three, the value of the experimental variance was
increased to 1.0 and the rank of the autocorrelations was taken as 5,
6, and 12. In the least squares case, case &4, as indicated in Table
8, the calculation converged in six iterations, taking 11.2 sec. In
case 4.1, with the same initial point, the three attempts iterated
for six iterations, for the same time, 11.2 sec, but because the
autocorrelations were large, and the value of x22 was large

compared to xlz, they all eventually diverged from a good fit.

These results indicated that the algorithm was not reliable when the
autocorrelations were large at the outset. To correct this, an
internal algorithm will be added so that value of a which is
l/(Xl2 -2X2“°) will not be allowed to be greater than .5. It is
believed that this change will prevent situations of this kind from
arising in the future, but the effect of this change has not yet been
fully tested. To determine whether the least chi-square technique is
valid for the Yaw Damper calculation, the second approach, the
addition of Monte Carlo errors to the desired response curve, was
used as a test, '

For this second approach, a random sequence was added to each of
the data points. The value of 02 was set at (.033)2, six autocorre
lations were used for the problem which was identified as CONRLM
4.011-6. Another run was used on the same data with the standard
least squares algorithm. Fig. 10, (CONRLM 4.012) shows the fit
obtained for the data and is typical of the results. Table 4 shows
the number of iterations for each case. It took 4 iterations for the
ordinary algorithm to converge, and only two for the least chi-sq.
algorithm with six autocorrelation coefficients (CONRLM 4.011-6).

The time for one iteration was 8.2 and 8.5 sec respectively. (Part of
the increase in time for the least chi-square case was due to several
attempts in both iterations to improve the fit by reducing the step
size.) As shown in Table 4 the parameters L(0,4), L(4,2) and L(4,3)
appear to be different by significant amounts, and the difference

in the "significance” of the two results is considerable. (The
autocorrelations for case 4.,011-6 appear well within the random
range.)

III-3 Brookhaven Example. A sample test case was received from
Miss Rita Straub of Brookhaven National Laboratory. The exact nature
of the problem was unspecified but from the form of the differential
equations given in table 5, it appears to be a kinetic problem in
which the material in component one decays into components two to
five, and component two may change into component one. Component
seven is composed of components three, four, and five. Although the
"8"” and "K" parameters may actually be unknown, they were assumed
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known, because the present version of the program will not iterate
either type of linear parameters with the least chi-square algorithm.
The data were available for the amount of components 1, 3, 4, and 6
as a function of time, (where component 6 is the sum of components 1,
2, and 5).

Both the run with no autocorrelations and the run with 5
correlations (KJE 1.0023-5), took 7 iterations to converge. The
results for the two cases are compared in Table 6. Since the value
of Xlz, (31.24) is large compared to Xzz (3.04), the major
emphasis in this case was on reducing the sum of squares, and thus it
is similar to the case run with no weight on the autocorrelations,

As would be expected, there is only a small difference between the
final values of the parameters of the two cases. Figs 10, 11, and 12
show the graphs of the data fit to the components 1, 3, and 4.
(Component 6 shows an exact fit to data points and therefore a graph
of this component is not provided.)

I111-4., Reactor Kinetics Example. This example illustrates two
things: First the use of the least chi-square algorithm, and second
a good fit between data and a physically incorrect model. Hetrick
and Gamble (7) proposed a non-linear feed~back term proportional to
the energy in the reactivity of the KEWB reactor to describe the
effect of void on reactor shutdown. Although this model gives a good
fit, later experiments (9) where the void amount was inferred from
measurements and where the thermal effects on reactivity were also
carefully measured, showed that shutdown was due to thermal, not void
effects. In the simulation, the effect of the energy on void forma-
tion was simulated by the parameter L(11, 1). The functions corres-
pond, in numerical order, to the functions used in the simulation:
(1) Nuclear reactor power level, (2) Mean temperature, (3) Mean void
volume, (4)-(9) Delayed neutron groups, (10) Not used, (11) Energy
released to that time. The result of the iterations is shown in
Figure 13, a logarithm plot of theoretical and experimental nuclear
power. In Table 7, three different cases are shown:

Case 1.003-0 was ordinary least-squares. The values of the
autocorrelations and chi-squares are shown for comparison with the
other two cases. Case 1.005-3 used three autocorrelations with a
small value of the experimental variance thus resulting in a large
value of Xlz. Both case 1.007-6 and 1.003-0 use 1 x 107 for the
experimental variance thereby reducing the emphasis on the sum of the
squares of the errors. All of these runs took four iterations to
converge.

Cases 1.003~0 and 1.005-3 give almost exactly the same results.
On comparing 1.003-0 with 1,007-6, a difference is found in the value
of the adjustable parameter L(11,1). The value of chisquare total is
smaller for 1.007-6, and thus this result would be chosen over that
of the other case.
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The value of the chi-square for the au%ocorrelation (Xzz) is
much smaller for case 1.007-6, although X;“ is slightly larger for
the same case-—-thus illustrating the trade-off between getting the
minimum as in ordinary least squares, and reducing the autocorrela-
tions as in least chi-squares. The data for Case 1,003 show the
values for R(1) to R(6) for comparison purposes. The data show that
the sum of squares does not increase from one to other appreciably,
but Xzz, the Box-Pearce statistic, does change appreciably. Each
of the calculations gives a total chi square which 1is too large to be
consistent with the residuals being drawn from a random sample.

III-5. Comparison of Computing Time. Table 8 summarizes the
comparison of the number of iterations to converge, and the computing
time required. As seen in the previous discussions, the number of
iterations was usually about the same, except for two cases——the case
4,1 under the Yaw Damper, where the iteration with least chi square
failed to properly converge, and for the XM2ll Pressure Curves where
the ordinary least squares took more iterations or failed to converge
As seen in the last column, for all the cases except the case 4.l
under the Yaw Damper, the computing time is comparable, with a ten-
dency for the computing time to be longer for least chi square than
for least squares. The relative difference is greater when the
original total computing time is short. This just means that, as
would be expected, it takes a larger fraction of the camputing time
to compute the matrix T and post multiply it into P*' for cases where
the time of iteration is short.

IV CONCLUSIONS. Based on four different types of non-linear
theoretical models for data analysis, our results indicate that:

(1) Least chi-square is practicable for non-linear analysis,

(2) The computing line for least chi square is longer for the
models which use less computing time, but because the convergence of
this iterative procedure is somewhat better, the number of iterations
(and particularly the number of "tries” per iteration) is reduced,
thus keeping the total computing time about the same. Models with
longer integrating time would expect to benefit more from least chi-
square,

(3) With one exception as given below, the least chi-square
procedure appears to be less prone to failure to converge.

(4) When the autocorrelation are large and their weighted sum is
large compared to the chi-square for the residuals, the iteration

tends to produce a maximum value of the autocorrelations. A test has
been devised to prevent this situation from occuring.
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(At the time of final editing and review of this paper, an error

was discovered in the programming of the calculation of the variance
of the autocorrelations, V} + The error amounts to only a few
if

percent but would make it

ficult to reproduce the present results.

It is believed that the main thrust of the results of this paper
remain valid.)
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CASE BGK BGK 1,101 BGK 3,002 BGK 3,102
NUMBER OF

ITERATIONS 14 11 7 14
P(1) 15.95 15.89 15.0 19.48
P(2) 209.9 203.7 332.6 308.00
P(3) 722 .767 -4,16 2,97
P(4) 1.719 1.700 +5.67 1.38
P(5) 2,93 x 103 3,00 X 103 3.06 X 103 3,27 x 103
R(I) 1 .614 .586 - .843
2 9275 0252 - 0646
3 “e 077 “e 076 - .428
4 -.186 -.175 - .219
5 -.209 -.192 - .046
X,2 15.5 16.1 - 27.6
Xp2 30.018 25.0 - 81.6
SIGNIFICANCE —_— b 3.5

Table 1. Results of computer runs on XM21ll Pressure Oscilations
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CASE 301 511-5 511-10

ORDER
1 717 .680 696
2 477 427 443
3 .286 0247 248
4 .058 .027 .013
5 “e 113 “e 136 -9160
6 -.246 -.258 -.291
7 e 303 “e 315 “e 346
8 e 322 e 334 e 361
9 -.307 -.312 -.342
12 -.011 .031 -.035
13 069 .130 048
14 137 217 123
15 .110 .203 .106
16 .075 .168 .085
17 -.028 .057 0004
18 e 141 e 068 e 090
19 -.202 -.149 -.130
20 -.235 -.205 -.145
X,2 57.9 62.96 116.2
X52 - 33.01 62.4
Xror? - 95.97 178.6

Table 3. Autocorrelations and Chi-Square for final model of XM21l
Pressure Oscillations.

X22 based on the first 5 Autocorrelations for Case 511-5,
and the first 10, for case 511-10
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NO., of ITER. 1 4 2
L(0, 4) 18.6 17.70 18.58
L(4, 4) 53.1 53.11 53.02
L(4, 2) .605 1.094 0.605
L(4, 3) 10,27 6.204 10.26

R(I) 1 .769 -.111 -.110

2 .431 -.230 -.232
3 144 .013 014
4 -. 040 .061 .068
5 -.159 -.124 -.124
6 — .029 .030

Sum of sqgs .00275 «03147 .03138
x;2 .011 28.90 28.82
Xp2 24,78 2,77 2,49
Xp2 24,79 31.67 31.31
o2 . +250 (.033)2 (.033)2

e

Table 4,Results of Yaw Damper Calculations
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ITEM/CASE KJE 1.0021-0 KJE 1.0023-5

L(1, 2) .2155 .2199
L(2, 1) 4527 <4442
L(3, 1) .0431 .0431
L(4, 1) .0252 .0251
L(5, 1) .0743 .0824
R(1) .122 -.086
R(2) .065 -.052
R(3) .009 .034
R(4) .227 -.223
R(5) .179 -.168
X;2 31.22 31.24

X52 3.99 3.04

Xror 35.21 34,28

Significance -.026 -.086

Table 6. Results of Brookhaven example calculation. Autocorrelation,
Xzz, and XTZ for case KJE 1.0021-0 computed for comparison.

ITEM/CASE KWB 1,003-0 KWB 1,005-3 KWB 1.007-6
L(11,1) 5.318 X 10~4 5.3183 x107% 5.262 X 1074
R(1) .782 .782 .786

R(2) 44 .44 453

R(3) .098 .098 -.122

R(4) ~-. 204 - -.170

R(5) -.316 - -.274

R(6) -.235 - .290

X2 121.14 1.2 X 109 121.89

X52 36.71 35.0

X2 157.85 156.89

TABLE 7. Results of Kinetic Experiment Water Boiler Calculations
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ADJUST AUTO-CORR NO OF

CASE PARAM RANK ITER TIME (SEC)
KEWB KINETICS
1,003 1 0 4 84,
10005-3 1 3 4 81.
1.007-6 1 6 4 89.
YAW DAMPER
1=6 4 0 3 23.6
4 3 0 6 11.2
4,1 3 5,6,12 6 11.2 (FAILED)
4,011 4 6 2 8.5
4,012 4 0 4 8.2
BROOKHAVEN
1.0021 5 0 5% 14.9
1.0023-5 5 5 7 21.5 (15.2)
XM211 PRESSURE
BGK 6 0 14 6.5
BGK1.101 6 5 11 11,

3.002 6 0 7 11.31-/FAILED

3.102-5. 6 5 15 23,

3.102-5 6 5 11* 18.2

TABLE 8. Comparison of Computing Time.
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ON THE POWER OF BIRNBAUM'S TEST

Ray E. Schafer
Hughes Aircraft Co., Fullerton, CA 02634

ABSTRACT

Z. W. Birnbaum has proposed a hypothesis test procedure which, under fairly
general conditions, does not require explicit lm;wlédge of the critical values

of the test statistic. In this paber we investigate the power of the test in a
;ariety of situations. In particular we have considered situations in which the
underlying observations have normal and chi-square related distributions, We
show that the asymptotic power of this test is identical to the classical test using
the same statistic and that the Birnbaum test achieves its asymptotic power very

rapidly.

The normal case is considered both for complete and censored samples,

1,0 INTRODUCTION

The classical hypothesis testing problem involves the sampling distribution of

the test statistic (say S). For example, to test

H

o DF (distribution function) is N (po, 1)

versus

H;: DFisN@p, 1) u, > g,
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where N(u, 02) inegns normal with mean u and variance 02 .

the test statistic is S = X, the sample mean, and the CRITICAL VALUE, say S*,

is

* = XK = i -
S* = X* u0+. Zl_ 4/~fﬁ' Here Zl_ ol the 1 -a)
quantile of the standard normal distribution and n is the random sample size.

The sampling distribution of S = X is well tabled so that it is easy to obtain
S* = X* the critical value.

In many situations however the sampling distribution of S is analytically
intractable. For example consider the Weibull DF:

Fy(x) =1~ exp f— (x/b)(j , b,¢,x > 0,

= 0 elsewhere.

The sampling of the maximum likelihood estimate of ¢, say ¢, is intractable.
Howeover, the sampling distribution of é/c, while intractable has a distribution
free of b and c. Thus, the DF of &/c could be obtained (indeed was obtained by
Thoman, Bain and Antle, 1969, Technometrics 11, 445-460) by Monte Carlo
methods., The Monte Carlo approach is quite expensive; involving some 10, 000

to 50,000 ¢/c's for each n,

Z. W, Birnbaum ("Computers and Unconventional Test Statistics,' 1974,
Reliability and Biometry, Eds.: F. Proschan and R, J. Serfling, SIAM, 441-458
and ""Testing for Intervals of Increased Mortability, "' 1975, Reliability and Fault
Free Analysis, Eds,.: Richard E. Barlow, Jerry B. Fussell and Nozer, D.
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_ Singpurwalla, SIAM 413-426) has proposed a remarkedly simple procedure in the
situation of testing

Ho: DF of S = Go(s)

versus

Hy: DF of S = G(s)
where G is analytically intractable. Birnbaums test avoids the expense of a large
Monte Carlo simulation, Here we will investigate the power of the Birnbaum
test (B. T.) in a variety of situations,

2,0 B, T, DESCRIPTION

We discuss in this section a right (upper) tail hypothesis test., Obvious modifica-
tions lead to left-tail and two-tail situations.

Let F(x, 0) be the distribution function for random variable X and let S,bea
test statistic for 6, based on a sample' of size n. Suppose Go(sn) and Gl(sn)
are the distribution functions for Sn when 6= oo and 0 = 01 respectively. The
B.T. requires that, for all real S| G, (%) s Gg(s,)- and for at least one S
Gl(sn)fGo( s,)- Suppose that a random sample of n observations, x,, ..., X
is available which has been used to calculate a single value of S, say s"!‘l, and

we wish to choose between H.:0 =0,_ and H_: 0= ¢

0 0 1 1 on the basis of this observation.

Birnbaum has shown that, if it is possible to obtain a random sequence of N
observations of Sn using only F(x, 00), a hypothesis test may be performed by
selecting a number, ¥ 0< Y < 1, and observing the number, M, of these N

189



: *
observations which are greater than 8, with rejection of Ho if and only if M/N = y.
Birnbaum shows that the size of his test is

a=q@+[NY1+N)

where [N7Y] is the greatest integer £ N7,

In practice, one performs a B, T. of exact size ¢ as'follows. Choose 0< ¥ <1,
the size desired, and choose an integer N such that (N + 1) is a positive integer.
Generate N observations of Sn under H, and observe M/N, Reject H, if M/N

= (a@N+1)-1)/N=7,

3.0 CASES INVESTIGATED

The advantage of the B, T. is that a knowledge of Go(sn), the sampling distribution

of Sn under H_ is not required. The N values of S n May be generated by Monte

0
Carlo methods directly from F(x, 0o The cost of the B. T. is a function of both
n and N, and may be substantial (although much cheaper than a "full" Monte
Carlo simulation of Go(sn))if calculation of s, must be performed by iterative
methods, Hence, it is important to know how the power of the B, T, varies with

n and N,

We have investigated the power of the B, T. for test sizesa = 0,01, 0,05 and

0.10: for sample sizes n=5, 10, 20, and 50 and for N= 9, 19, 39, 99, 199 and
499, It should be noted that, fora = 0,01, no B, T, exists with N=9, 19, 39 and
for = 0,05, no B, T, exists with N=9, Infact, no B.T, of size @ can be obtained
unless (N+ 1) "1 s @, |
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We have restricted our investigation to maximum likelihood estimators (or
functions thereof) and to the following distributions and parameters.
a) Normal distribution - tests for the mean, 6 (known ¢), with complete
samples, and tests for the mean (unknown o) with Type II censored samples.
b) The general class of tests for which S, has a chi-square distribution
This includes tests for o (known or unknown 6) in t-he normal distribution and

tests for the mean of a one-parameter exponential distribution.

4,0 POWER OF THE BIRNBAUM TEST

Intuitively, it is clear that letting N—» «is tantamount to obtaining the exact sam-
pling distribution of Sn: hence, the asymptotic power with respect to N should be

o

identical to the classical power based on the same stat:lstl(_:.

The B, T. power under Hl is |

1-B@) = PM/Ng7|H,).
w.[NY] .
S (7)o oy,
= j (1 = Gy(8)) Gy(s)) 'd Gy(s).
- a0 j=0

1 [N7]

N |
=I E (1)(1-1;)j W4 7, (u)
0 j=0

where J, (u) = Gl(Gal(u)). Birnbaum has proven that
Hm( - A(N) =1 -J,(1 7).

N=+ o :
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It is easy to show that this is equal to the power of the classical test based on the
same test statistic.

5.0 METHOD OF CALCULATIONS

A étatistician is seldom interested in knowing the power of a test to even three
decimal places. Clearly, the requirement of éxtreme accuracy in power deter-
mination increases the cost of computation. We have chosen to relax the accuracy

requirement so that more distributions and sample sizes could be studied.

All of the results were obta.tnéd ‘on a CDC Cyber-173 computer. Where power was
obtained by numerical integration, the trapezoid rule was used with 200 equal
intervals over the domain of integration. Where the limits of integration extended
to £, the heuristic limits used were the 0, 0001 and 0, 9999 quantiles (3. 895, for
example, with the .normal distribution). As a check on the numerical accuracy of
the integrations, both "tails' were evaluated, That is, we determined 1 - 8 and

B separately. In every case, the sum of the two was in the domain (0. 995, 1. 005).

Where Monte Carlo methods were employed, the random number generating
algorithm was the multiplicative congruential method suggested by Knuth
using modulo 248 arguments, For the Monte Carlo simulations:

a) If it was necessary to determine classical power by simulation, 10,000
observations of Sn when 0=00 were obtained and utilized to estimate the 0.90, 0.95,

and 0. 99 quantiles of the distribution under H,. Then 10, 000 observations of Sp

o.
when =6, were generated and compared with these quantiles.
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b) To determine the power of the B T. by simulation, a single observation of
S, (9=91) was obtained and compared with N observations of Sn (o=oo). The number
M of these N observations greater than Sn(0=01) was recorded, and if MN g
' ((N + 1) - 1)/N, the null hypothesis was rejeci;ed. This complete procedure was
repeated 2500 times,

It appears that a B. T. using N=199 or greater could substitute for a classical
test on the mean of a normal distribution with virtually no loss in power. This
may give a practicing statician some confidence in using the B, T. for problems
where the distribution of Sn is not obtainable, or obtainable only at great expense,

6.0 NORMAL MEANS (KNOWN¢)

Of course, no one would ever use a B, T, in place of a Neyman-Pearson test for a
hypothesis about the mean of a normal distribution with known ¢. The p.d.f. of
S, (i.e., the sample mean) under both the null and alternative hypotheses and
hence the power, is known analytically. But such an artificial case is valuable
for studying the B. T. for precisely this reason. We may observe the relative
power of the B, T. in comparison to the classical test as a function of N, n, and
the classical power, to get a ''feel" for the behavior of the B.T. as a function of

sample size.
Let X be N(9, 02). We chose as the null hypothesis N(0, 1) and as alternatives

60.1, 0.2, 0.5, 1.0, and 2.0. The power of the B.T. was obtained analytically
by numerical integration.
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The efficiency of the B, T; Relative to the classical test was remarkabl’ high, even
for small N. Over the entire domain of samples sizes, n, the B, T, power was
never less than 85% of the classical power., For N = 199 and 499, the B, T, power

was never less than 95% of the classical power. As an example, for N = 199, we
obtained: .

n=95 n= 10
6=0.5 6=1.0 6=0.5 6=1.0
B.T. Power 0.29 0,71 0.46 0.93
Classical Power 0.300 0.723 0.475 0.935
n_= 20 n_=_ 50
B.T. Power 0.71 0.99 0.97 1,000
Classical Power 0.723 0.998 0,971 1,000
7.0 NORMAL MEANS (UNKNOWN ¢) WITH CENSORE S

The classical power for hypothesis tests on normal means with the standard
deviation unknown, but constant, is available for complete random samples
through tables of the non-central t-distribution. Here, we examine Type I.I cen-
sored samples, where no such power distributions are available. Given a cen-

sored sample.

),X r<n,

*ay Xy e X

: 2o Loy - 2
the sample mean, » and standard deviation 8 © = (x(i) - x")°/r are calculated.
An auxiliary function A is needed. The value of A depends only on r/n and on

/& - x The M. L. E. for 6 is X' - A(x' - x

2
@ @
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Hypothesis tests of the form Hy: 6 =00 vs. H1:0 >0, were examined for the cases
(6; - 65)/0=0.1, 0.2, 0,5, 1.0 with sample sizes 5, 10, 20, 50 and censoring
at 0,8n for n=5, 10, 20 and at 0,4n for n = 10, 20, 50. Both the classical power

and B. T. power were obtained by Monte Carlo simulation, as described previously,

The B, T, with N =199 or 499 will provide essenfially equivalent to that of the
classical test for a.ll of the parameters and sample sizes examined.

8.0 THE CHI- ARE CASE
Many hypothesis testing situations involve test statistics which have a )(2 distri-

bution., e.g., tests on the variance of a normal distribution (known or unknown
mean) and tests on the mean of an exponential distribution. The power of the
classical X 2 test is available in the literature from tables of the non-central

x2 distribution. But we have explored this case for the same reason that the .
normal distribution was examined — the B, T, pbwer may be obtained analytically
and its behavior with respect to N may lend credence to the assertion that the
B.T. is essentially as powerful as the classical test for a variety of probability

distributions.

Many hypothesis tests involving the x2 distribution are equivalent to

d 2
- Hot S) = ym

d 2

H = Xm

1¢ aSn

where S 1s the test statistic, m is degrees of freedom and O<a<l for a right-
tail test. a >1 for a left-tail test. We examined right-tail tests for m = 5, 10,
20 and for a=2/3, 1/2, 1/3, 1/4. a = 0,10, 0,05, 0,01,
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The B, T, power was remarkably close' to the classical power, even for N = 9,

In fact, the smallest ratio of B. T.( power to classical power for all the combina-

tions investigated was 0.87. A sample of results for N = 199 anda = 0,05 is:

me=S5
a 1/4 1/3 1/2
B.T. Power 0.72 0.59 0.34

Classical Power 0,736 0.595 0.354

m=20
al/4 1/3 1/2
B.T. Power 0.99 0.96 0.78

Classical Power 1.993 0.960 0.735

. m=10
2/3 | 174 1/3 1/2 2/8
0.19 10,91 0.8 0,51 0.27

0.194} 0.918 0,807 0.518 0,272

2/3
0.39
0.401

Hetice, the 12 data support earlier conclusions that the B. T, with a reasonable

value for N, say 199, is essentially as powerful as a classical test.

9.0 CONCLUSIONS

We have investigated the power of the B. T. with respect to the power of the cor-

responding classical test in a variety of situations. These situations included

complete and Type II censored samples forthe commonly used test sizes and

frequently used sample sizes.

It seems clear that the B. T. offers cost savings when the sampling distribution of

the test statistic is unknown and must be obtained by expensive methods.
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In addition to the fact that the asymptotic power of the B, T., as N« , is equal
to the power of the classical test based on the same statistic, the B.T. has some
interesting characteristics. In all cases the relative power of the B. T, was quite
large even for N as small as 9 and generally for N =199 the power was 95% of

the asymptotic power or greater. Also, generally, the relative power of the B. T.
increased as the alternate hypothesis got further away-from the null hypothesis.
Finally the B.T. relative power increased with N,
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ERROR-TIME RESPONSE PERFORMANCE OF NAIVE SUBJECTS

Michael Hacskaylo and Joseph E. Swistak
Night Vision and Electro-Optics Laboratory
Fort Belvoir, Virginia 22060

Abstract. An experiment was conducted in which the error and time
response performance for designating the angular location of a single
flash of light on a circular pattern of lights were measured. Fourteen
naive subjects were instructed to record as accurately and rapidly as
possible the angular position of an activated light. They were allowed
only one attempt for each of six consecutive trials. The data are
presented in terms of mean time of each response per trial and mean
error per trial. The mean error, as a function of mean time, appears
to be bounded by an error-time response equation; E = -20.88 log(t/15.37),
where E Is the mean angular error in degrees and t is the mean time in
seconds. Surprisingly, the subjects responses as measured in either
time or error did not follow classical reaction time or learning patterns.
That is, while time of response remained fairly consistent from trial
to trial, the lowest error occurred on the first trial while maximum
error consistently occurred on the fourth trial. Based upon the six
trial limit used in the experiment, it Is believed that the naive
subjects, first trial performance is the best for designating the
angular location of a single flash of light.

Introduction. The philosophy which tank crewmen have always adopted
has been ''make your first shot count because you may not get a second
chance.'" This philosophy has become more acute with the recent advent
of "'SMART' weapons which ride beams of light to a target. A system was
designed which would allow tank crewmen to detect and radially demarcate
the source of designation by a coherent light source. The system is
designed to operate by having a tank crewman observe a circular array
of lights on a panel. When the tank is illuminated by a laser beam,

a corresponding azimuthal light is activated. The crewman would interpret
and record the azimuthal position for appropriate tank action. The
effectiveness of the crew would depend upon (1) the speed and accuracy
with which the azimuth is read out, and (2) the panel configuration used
to display the azimuthal information. The panel used in this experiment
was designed from a technical consideration based on the circular
representation of equally spaced light bulbs (Fitts and Seeger, 1953).

Method.

Subjects. Fourteen U. S. Army enlisted men of various ranks were
randomly selected from a large group of individuals to serve as subjects.
None had prior training in tanks or tank related equipment and none had
prior experience with the display panel being tested. The fourteen subjects
were then randomly assigned to one of two groups comprised of seven subjects
each.
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Apparatus. The stimulus display panel consisted of a 9cm diameter
ring oE 36 equally spaced light bulbs. This panel, portrayed in Figure 1,
was positioned on the front panel of a box 20cm long, 10cm high and 5cm
deep. The light bulbs were angularly marked from zero to 360 in ten
degree increments in a clockwise direction with zero at the top.

Responses were recorded on a response panel. This consisted of a
12cm circle drawn on a 20x25cm sheet of plain paper. The circle was
divided Into quadrants and marked Into degrees as follows: Zero degrees
(0°) was marked at the top. In a clockwise direction, each quadrant
was successively marked 90°, 180°, 270°, and again at the top, 360°.

A pencll was used for marking angular positions with an 'X'" on the circle.

Procedure. Each subject was briefed Individually prior to his
participation in the experiment. They were brought into a room which
contained the stimulus display panel, a bench, chalr and assocliated
equipment required to activate the lights of the panel. Each subject
was briefed as follows:

"As accurately and as rapidly as possible, determine the angular
location of a 1ight when it comes on and mark with an "X', that position
on the circle on the sheet of paper In front of you. The sheet of paper was
referred to as the response panel for purposes of the study. Each subject
was allowed two familarization trials to be sure they understood the
Instructions. Each subject was then given six trials. The sequence of
lights for trials one to six are presented in Figure 2.

FIGURE 1. 2-D REPRESENTATION OF STIMULUS
PANEL COMPRISED OF 36 LIGHTS
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AIGURE 2. SAMPLE RESPONSE PANEL SHOWING THE ORDER I WHICH
THE LIGHTS WERE RLASHED AND THE ASSOCIATED DEGREES
OF ARC FROM THE ORIGIL. -

Each subject saw this same sequence. A new response panel was supplied
for each trial. The time interval from when the light came on to when
the subject marked the panel was measured by a stop watch to 0.01 seconds.
The stop watch was controlled by the experimenter and It was assumed

that the reaction time error Introduced was fairly constant.

Upon completion of a set of six trials, the subject was dismissed.
The subjects tested versus those not tested were kept in separate rooms
until all seven subjects in a group were finished. One group (A) of
seven subjects was tested on one day, the other group (B) of seven
subjects was tested on the following day.

The angular positions marked on the response panels were scored
in degrees by using a transparent template graduated to 0.5 degrees and
superimposed on the marked response panel. The accuracy of the marked
position was then measured to + 0.5 degrees which was the resolution
of the scoring template.

" Results and Discussion.

. The mean time of response for each trial are presented In Figure 3.

[
S
5

3

FIGURE 3. MEAN RESPONSE TIME TO DESIGNATE ANGULAR LOCATION
OF A FLASH OF LIGHT ON SIX CONSECUTIVE TRIALS.
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These mean times and associated standard deviations are presented in
Table 1. In general, It appears that the mean time to respond did not
vary significantly over the six trials. There does appear to be a gradual
decrease In response time from trial one to trial five, but an increase
on trial six. There was no readily obvious reason for this increase

on the sixth trial, l.e., no subject took an Inordinate amount of time

It would also seem that fatique could not be a factor with only six
trials having elapsed. :

TRIAL NO. 1 2 3 4 S 6

MEAN TIME (SEC) 379 1 394 | 3.21 | 3.34 | 260 | 332

STANDARD DEVIATION | 1.41 | 2.03 | 1.31-] 149 ] 1.00 | 1.23

TABLE 1. MEAN TIME AND RELATED STANDARD DEVIATION REQUIRED
TO DETECT AND DESIGNATE THE ANGULAR LOCATION OF A
LIGHT FLASHED WITHIN A 360° ARRAY OF LIGHTS ON SIX
CONSECUTIVE TRIALS.

The mean error In degrees for each trial are presented in Figure 4.

The numerical values and associated standard deviations are presented in
Table 2. Trial one had the smallest angular error. The amount of error

A

N R R R R
. ThAS
IGURE & MEAN ERROR I ESTIMATES OF ANGULAR LOCATION OF &
© FLASH OF LIGHT ON SIX CONSECUTIVE TRIALS.
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then increased with the greatest error occurring on the fourth trial,
after which, the error decreased. The error on the sixth trial was

very near the error on the first trial. A large part of the error

on trial four can be attributed to the performance of two subjects who had

TRIAL NO. 1] 21 31a4a]s]s6

MEAN ERROR (DEGREES) | 7.8 | 119 | 16.9

B

103 ] 86

STANDARD DEVIATION 62 ] 66 | 94 | 265 102] 66

TABLE 2. MEAN ERROR AND RELATED STANDARD DEVIATION ASSOCIATED
WITH THE ANGULAR DETECTION AND DESIGNATION OF A LIGHT
FLASHED WITHIN A 360° ARRAY OF LIGHTS ON SIX CONSECUTIVE
TRIALS.

errors of 94.5 and 68.0 degrees, on that trial. However, even with these
two values removed from the data, the mean degrees of error for trial
four remains at 16.2. If this level of error Is the more accurate, then
it can be said that the third and fourth trials were the worst in terms
of performance, and the dotted portion of Figure & would more aptly
represent the performance on this task. The mean error, as a function

of mean time, (Figure 5) appears to be bounded by an error-time response
equation: E =-20.88 log(t/15.37), where E Is the mean time In seconds.
This curve provides somewhat of an upward estimate of angular error given

an elapsed period of time for a response - the greater the time, the lower '
the error.
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However, regardless of which curve In Figure & most accurately
represent the performance which could be expected on the task described
in this study, it Is Interesting to note that nelther set of data
follows the expected learning pattern described in learning 1iterature.
Normally, one could expect accuracy to be poorest on the first trial,
rapidly Improve on the next few trials and then continue to improve
at a slower rate until some maximum level was reached. The number of
trials required for asymptotic performance to occur would depend upon
the degree of difficulty of the task. The present task should have
required 6-8 trials. It appears that asymptotic performance was being
approached on the sixth trial, but what Is truly interesting is that
the performance on the first trial was actually better than on the sixth.

in terms of an untrained subject being able to determine angular
direction of designation, the first attempt he made would be the most
accurate of his Initial six attempts.

The conclusion of this study must be that the initlal attempt
by an untrained gunner would be at least as accurate as one who Is
starting to asymptote.

References

Fitts, P. M. and Seeger, C. M., S-R Compatibility: Spatial Charactefistics

of Stimulus and Response Codes, J. Experimental Psychology, 1953, 46,
199-210. ) '

A}

204




IMAGE INTERPRETATION PERFORMANCE
ON FOUR STANDARD TYPES OF AEROGRAPHIC FILM

RONALD L. JOHNSON and PAUL J. SCHOOL

US Army Mobility Equipment Research and
Development Command, Ft. Belvoir, Virginia

ABSTRACT

This study involved trained operational image interpreters who
analyzed highly controlled aerial imagery from which the effects of
type of film upon target detection were determined. One-hundred-and-
one operational image interpreters generated the following mean target
detection probabjlities: Color Infrared - 58.6%, Color - 55.4%,
Panchromatic - 44.7%, and Black and White Infrared - 43.4%. At the
0.05 significance level, target detections were affected by film type
as follows: Color Infrared differed significantly from both Panchro-
matic and Black and White Infrared films. Color differed from Black
and White Infrared. The combined mean of target detection for Color
Infrared and Color differed significantly (0.01 level) from the combined
mean for Panchromatic and Black and White Infrared. Therefore, use of
Color and Color Infrared imagery results is significantly more accurate
day image interpretation.
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1.0 INTRODUCTION

The purpose of this study was to quantitatively determine the target
acquisition capabilities by image interpreters (II) of the following film
types: Aerochrome MS 2448 (Color), Aerochrome Infrared 2443 (Color Infrared),
Plus X Panchromatic 2042 (Black and White), and Infrared Aerographic 2424
(Black and White Infrared). Image interpretation is defined 1/ as the
examination of images of objects on film for the purpose of identifying
the objects and deducing their significance.

Approximately 90 percent of the intelligence gathered in World War II
was derived from aerial photography. The requirement for accurate imagery
intelligence is escalating as weapon systems and tactics develop and become
more refined. To obtain this information, it is becoming increasingly more
common to use color, color infrared, and black and white infrared film.
Strandberg 2/ states " color aerial photography offers much promise in the
gathering of imagery intelligence, because humans have the capability of dis-
criminating between an almost infinite number of different colors, but at most,
only a few hundred different shades of gray".

2.0 TEST SITE

An 820 acre site was selected. This site is used for equipment
evaluation by the US Army. Military equipment and camouflage devices
such as nets were randomly located throughout the study area. The
soil contained a high moisture content and the color was reddish-tan. The
brush was gray and brown in color. Included within this site were building
complexes, open fields, dense woods, and clumps of green grass. The
forest composition was a mixture of oak and pine.

3.0 TEST IMAGERY

Photographic images consisted of a 13 frame series of 9" X 9" positives
taken with 60% forward overlap. One frame series was acquired for each
of the four standard types of aerial film. Film and filter characteristics
are summarized in Table 1.
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TABLE 1
FILM CHARACTERISTICS

RESOLVING SPECTRAL RESULTANT
POWER (T.0.C.)* SENSITIVITY FILTER SPECTRAL
FILM TYPE 1000:1 1.6:1 RANGE (NM) CUT-OFF SENSITIVTY (NM)
Plus X
Panchromatic | 100 50 250-700 Zeiss Yellow 490-700
2042 490 NM
(Black &
White)
Infrared
Aerographic 80 40 Zeiss Orange 550-900
2424 400-900 550 NM
(Black
& White)
Aerochrome
MS 2448 80 40 400-700 Zeiss Clear 400-700
(Color) Activig
No cut off
Aerochrome 63 32 400-900 Zeiss Orange | 550-900
Infrared 550-NM
2443
(Color)

*Target Object Contract

A KC-4B camera system with a 6 inch focal length lens was used. 1In all
cases except black and white infrared film, standard film/filter combinations
were employed. A zeiss orange filter was used with the black and white
infrared film instead of a red filter; to increase the spectral response,
and therefore, the information content of this film type. A1l imagery was
gathered during four overflights (one per film type) at an altitude of 1500
feet above ground between the hours of 1100 and 1400. Therefore, the sun
angle effect was negligible. The photographs were taken in February, and the
weather was clear and sunny. Each 9 inch photograph covered a land area
of approximately 124 acres. The total number of targets present or detected
for each strip of imagery were determined by three senior image interpreters.
They performed detailed and exhaustive analysis upon the imagery. The
results of which are presented in Table 2.
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TABLE 2
TOTAL MILITARY TARGETS DETECTED FOR EACH TYPE OF FILM

FILM TYPE NUMBER OF TARGETS
Plus X Panchromatic 2042
(Black and White) 46
Infrared Aerographic 2424 50
(Black and White
Aeochrome MS 2448 44
(Color)
Aerochrome Infrared 2443 | 47
(Color)

Variations in the number of targets detected between film types
(ground truth) are not significant. They were apparently due to slightly
different flight lines flown by the photgraphic aircraft.

4.0 METHODS OF PROCEDURE

The Pseudo-Isochromatic Plates for Testing Color Perception, developed
by the American Optical Corporation, were given to each II in order to
insure that the interpreters were not color deficient. A total of 101
operational US Marine Corps image interpreters participated in this study.
The participants were randomly divided into four groups, one group for
each type of film. The assumption was made that the four groups, due to
the Central Limit Theorem, contained interpreters of equal ability. Each
IT was instructed to perform detailed image analysis to detect military
targets such as jeeps, trucks, etc., and was allotted 45 minutes to analyze
a selected film strip. Each II viewed only one strip of film, and
consequently only one film type.

5.0 RESULTS

The percentage of military targets detected by the image interpreters
for each of the four types of film was calculated. These data, along
with the associated standard deviations, 95% confidence intervals, and
sample sizes are presented in Table 3.
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TABLE 3
STATISTICAL SUMMARY FOR MEAN PERCENTAGE OF TARGETS DETECTED BY FILM TYPE

FILM TYPE MEAN PERCENTAGE STANDARD 95% CONFIDENCE SAMPLE SIZE
OF TARGETS DEVIATION LEVEL (# of observers)

DETECTED
Lower Upper

Plus X

2325“’°mat‘° a7 16.2 38.1 | 51.2 26

(Black &
White)

Infrared

éigzgzg?glﬁ . 43.4 18.4 35.9 | 50.8 26

& White)

Aerochrome

?§°$::§ 55.4 22.2 46.1 | 64.8 24

Aerochrome

(frarsd 24831 5506 17.6 51.4 | 65.9 25

An analysis-of-variance 4/ of the mean values shown in Table 3 was
performed and the results are presented in Table 4.

209

— - 4 e — — — - —— e ar em e . -



TABLE 4

ONE WAY ANALYSIS-OF-VARIANCE FOR MEAN PERCENTAGE OF TARGETS DETECTED
FROM FOUR TYPES OF AERIAL FILM

E SUM OF DEGREES OF

| OQURCE OF VARIATION  SQUARES FREEDOM MEAN SQUARE F-RATIO
pres of Aerial Film| 4,428.8864 3 1,476.2955 f4.2351
Vithin Types of

Aerial Film 33,812.6291 97 348.5838

hotal 38,412.5125 100

Critical F
* 0.05, 3, 97 = 3.

27

The data presented in Table 4 revealed significant effects between the mean

percentages of targets detected and the type of aerial film.

The degree of

this relationship was determined by individual comparison employing the t
statistic. These results are presented in Table 5.

TABLE 5
INDIVIDUAL COMPARISONS UPON THE MEAN PERCENTAGES OF TARGETS DETECTED
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