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FOREWORD

The Twenty -Ninth Conference on the Design of Experiments in Army Research ,

Development and Testing was held October 19-21, 1983 , at the Uniform

Services University of Health Sciences ( USUHS ) , Bethesda , Maryland . This

was the second Army -wide conference to be held at this university . The

first one , called the Twenty -Eighth Conference of Army Mathematicians , was

held June 28-30 , 1982 . As a result of this June meeting , Dr. David Cruess ,

a faculty member of USUHS , offered the facilities of his university for the

Twenty -Ninth Conference on the Design of Experiments. The members of the

Army Mathematics Steering Committee ( AMSC ) , sponsors of these conferences ,

were pleased to receive this invitation . They would like to take this

occasion to thank Professor Cruess for serving as Local Chairperson and for

his excellent handling of the many problems associated with a meeting of

this size . A brief history of USUHS appeared in a booklet issued to the

attendees of this conference . This interesting and informative booklet is

reproduced at the end of this Foreword .

Two days before the start of the Design Conference , a tutorial entitled ,

" Sequential Methods in Statistics , " was held . Its speaker was Professor

Michael Woodroofe of the University of Michigan at Ann Arbor , Michigan .

The main purpose of this seminar was to develop , in Army scientists , an

appreciation for and the necessary skills needed to handle some of the

statistical methods for analyzing experimental data .

Members of the Program Committee for this conference were pleased to obtain

the services of the following invited speakers to talk on topics of current

interest to Army personnel :

Speaker and Affiliation Title of Address

Dr. Marvin A. Schneiderman

National Cancer Institute

EPIDEMIOLOGY AND RISK ASSESSMENT :

COURTS , CLOCKS AND CONFUSION

Dr. William Sacco

Washington Hospital Center

INJURY SEVERITY SCORES AND

APPLICATIONS TO MILITARY TRIAGE

INTERACTIVE COMPUTER DATA ANALYSISProfessor Jerome Friedman

Stanford Linear Accelerator

Center

Dr. Charles Brown

National Cancer Institute

HIGH TO LOW DOSE EXTRAPOLATION OF

EXPERIMENTAL ANIMAL CARCINOGENESIS

STUDIES
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A broad overview of the many research areas presented in the contributed

papers can be ascertained from the titles of the various sessions :

Special Session :

Technical Session 1 :

Technical Session 2 :

Technical Session 3 :

Technical Session 4 :

Technical Session 5 :

Sequential Testing

Statistical Theory

Analysis of Longitudinal Data

Simulation Techniques and Applications

Test and Evaluation Techniques

Application in Experimental Design

In addition to the above mentioned sessions , there was a Clinical Session

which offered an opportunity to each of three Army scientists to present

unsolved statistical problems and receive suggestions and constructive

comments from the experts .

Professor Herbert A. David of the Department of Statistics , Iowa State

University , was the recipient of the third Wilks Award for contributions to

Statistical Methodologies. He received this award at the banquet held at

the Officer's Club , Naval Medical Center , on October 19 , 1983. This honor

was bestowed on Dr. David for his many significant contributions to various

fields of statistics , in particular to the areas of order statistics and

competing risks , and also for his contributions to the Army . He has

assisted many Army'scientists with their statistical problems , served as

invited speaker at two Design conferences , and provided theoretical details

for the solution of a fuzing problem for the Ballistic Research Laboratory .

The AMSC has requested that these proceedings be published and distributed

Army -wide so that the information it contains could assist Army scientists

with some of their statistical problems. Committee members would like to

thank the Program Committee for all it did in putting together this

scientific conference .

Program Committee

Carl Bates

Larry Crow

David Cruess

Walter Foster

Bernard Harris

Robert Launer

Richard Moore

James Schlesselman

Douglas Tang

Malcolm Taylor

Jerry Thomas

Langhorne Withers
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GENERAL INFORMATION
Grow USAF Medical Center, and the Naval

Hospital, Bethesda . Long recognized as being

among
the country's finest facilities for

undergraduate and graduate medical education,

these centers have large outpatient populations,

have, collectively , more than 2,000 lcaching beds,

and offer residencies in all of the major specialties .

In addition , clinical experiences are scheduled for

students at Wilford Hall USAF Medical Center in San

Antonio, Texas; Naval Regional Medical Center,

Jacksonville , Florida ; Eisenhower Army Medical

Center, Fort Gordon, Georgia; Naval Regional

Medical Center, Charleston, South Carolina, and

DeWitt Army Medical Center, Fort Belvoir, Virginia.

The School operates in close association with other

military medical facilities throughout the country

and many other Federal health resources, such as

the National Institutes of Health and National

Library of Medicine, to provide a broad range of

complementary preclinical and clinical experiences

for students .

CURRICULUM

Created by public law in 1972 , the USUHS was

founded for the purpose of training young men and

women for carcers as health care professionals in

the Uniformed Services .

In 1976, the University's School of Medicine

admitted its first class of 32 freshman medical

students . Sixty -eight medical students entered the

Uniformed Services University of the Health

Sciences (USUHS) in 1977; 108 in 1978; 124 in 1979,

and the following year 130 students gained ad

mittance . In 1981 and 1982, 156 medical students

were admitted and by the mid- 1980's , the School of

Medicine projects a first-year class of 176 students,

the planned enrollment capacity of the School .

The charter class studied for one year in in

terim facilities at the Armed Forces Institute of

Pathology on the grounds of the Walter Reed Army

Medical Center . In August 1977, the School of

Medicine commenced its preclinical teaching ac

tivities at the University's new, permanent facilities

on the grounds of the Naval Medical Command

National Capital Region in suburban Bethesda ,

Maryland . Surrounded by master-planned communi

ties, parks, and open land, the Center is adjacent to

Interstate 495, a modern freeway system that circles

the greater Washington area . The school's permanent

campus occupies an area of more than one hundred

acres .

Four connected buildings make up the per

manent complex and were built at a total cost of ap

proximately $80 million . The facilities include staff

and faculty offices, classrooms, student multi

disciplinary laboratories , a lounge and cafeteria , stu

dent study areas, departmental laboratories, and

academic support units such as a learning resources

center, an electron microscopy suite , and a vivar

ium . Instructional and study areas are equipped with

closed-cicuit television .

The preponderance of clinical instruction for

students is provided at the three major military

medical centers in the Washington, D.C. area :

Walter Reed Army Medical Center, Malcolm

The School of Medicine's four-year program ,

which culminates in the award of the doctor of

medicine degree, is aimed at : (1 ) developing

students into competent, compassionate military

physicians ; (2 ) creating and fostering a learning Cli

vironment that inspires investigative curiosity and

the advancement of knowledge; and ( 3 ) providing i

setting for the inculcation and furtherance vi

military medical professionalism .

The first two years of the curriculum consist

predominately of preclinical instruction . The last

two are devoted to the clinical disciplines . The in

tegration between the clinical and basic sciences is

progressive and proceeds with involvement in pa

tient care activities early in the curriculum , starting

with the first semester of the freshman year . While

the overall program is designed to educate

students to serve as providers of primary health

care , there is sufficient flexibility in the curriculum

to accommodate differences in interest among
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tudents and also sufficient substance to enable

raduates to pursue postgraduate activities such as

esearch . Elective courses are offered in the

linical and research facilities of this country and

Iso in areas of the world where diseases rarely

een in the United States are responsible for 80 per

ent of the morbidity and mortality . The cur

ic..um also includes basic military orientation and

oncentration on unique aspects of military

nedicine .

service or a program of study sponsored by the

Armed Forces (including ROTC ) inust obtain a " let.

ter of Approval to Apply " from their respective ser

vice as part of their application . Each military

department has established regulations governing

the procedures for initiating and processing re

quests for approval . Inasmuch as the entering

students will be commissioned officers in the

military services they must, in addition to

demonstrating the academic qualifications for the

study of medicine, present evidence of a strong

commitment to serving the United States as medical

officers .GENERAL REQUIREMENTS

FOR ADMISSION
PROCEDURE FOR

APPLICATION
Applicants must be citizens of the United

States and must meet the physical and personal

qualifications for a commission in the Uniformed

Services . An applicant should not be older than 28

years of age as of 30 June of the year that he/she

plans to enter the School of Medicine. A few waivers

have been granted , but such exceptions are rare . A

baccalaureate degree is required in addition to one

year each of college English, general chemistry, or

ganic chemistry, physics, general biology and math

ematics . The New Medical College Admission Test

(New MCAT) is also required of all applicants to the

School of Medicine. Applicants must provide test

scores that have been taken within three years of

desired matriculation . The lest is given in the fall and

spring of each year . The spring testing may not be

used for consideration iſ an individual wants to gain

admillance to the first -year class beginning the same

year, e.g. , the spring, 1984 MCAT cannot be used by

applicants who wish to cnter the School of Medicine

in July 1984 , but the spring or fall 1984 test may be

used by applicants who are applying for the 1985

first -year class . Information on registration for the

MCAT is available from the American College Testing

Program , Post Office Box 414 , lowa City, Iowa

52243 (telephone 319-337-1270) .

Civilians and military personnel are eligible to

apply . However, individuals who are in military

The School of Medicine participates in the

American Medical College Application Service

(AMCAS). Application forms should be requested

directly from AMCAS, 1776 Massachusetts Avenue,

Northwest , Suite 301 , Washington, D.C. 20036

(telephone 202-828-0600) . The School of Medicine

does not distribute application packets.

The School's Committee on Admissions will

review all AMCAS applications and will decide on

the basis of merit , taking into account both per

sonal and intellectual characteristics , which in .

dividuals should advance to further stages of

screening . Applicants should not send transcripts,

letters of recommendation, or other materials until

specifically requested to do so by the Admissions

Committee. The Admissions Office will schedule

personal interviews for those candidates that the

Committee considers to be finalists in the screenine

process . The School of Medicine does not have any

application fees ; however, applicants are responsi

ble for the AMCAS application fee and for inciden

tal expenses such as postage and cost of travel for

interview . Interviews are currently held at both the

School of Medicine and regionally in San Francisco),

California .
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Applications must be submitted directly to

AMCAS between 15 June and 1 November. Ap

plicants are advised to submit all materials , in

cluding transcripts , to AMCAS well in advance of

the deadline, as applications that are not complete

and received by the 1 November deadline cannot

be considered.

First-Year students are admitted only in July of

each year . There are no provisions for transfer

students and all students must enter at the first

year level .

Mexican Americans, Hispanics, and Puerto Ricans.

AQUA also addresses college pre -med and science

majors who have demonstrated motivation through

ROTC program participation or prior active or

reserve duty in the uniformed services .

For the 1982 freshman class 3,074 individuals

applied . All new entrants had baccalaureate degrees,

had taken the New MCAT and had been interviewed .

The 156 matriculants had the following credentials :

grade-point average, mean of 3.43; age at time of

application, mean of 23.3 ; sex, 22 percent female;

undergraduate major, 35 percent biology, with chem

istry ranking second, and engineering (biomedical and

mechanical), oceanography, nutrition, physics, busi

ness, psychology and physiology among the other

disciplines represented; residence, 40.4 percent from

northeastern states , 37.8 percent from western states,

15.4 percent from southern states, and 6.4 percent

froin central states .

GENERAL SELECTION

FACTORS

MILITARY OBLIGATION

no

:

Each year the University receives many more

applications than the School of Medicine has

positions to offer . Hence, placement in the class is

on a competitive basis , decided by action of the

Admissions Committee and the Dean , and granted

only to the best qualified candidates in terms of

demonstrated ability and potential for undertaking

the study and practice of military medicine . The

School of Medicine subscribes fully to the policy of

equal educational opportunity . There are

quotas by race , sex, religion , marital status ,

national origin , socioeconomic background, or

state of residence . There are no Congressional

quotas or appointments.

Further , USUHS is committed to removing

barriers that have made it more difficult for

minorities, women, and economically disad

vantaged college graduates to realize career goals in

medicine and the military . To that end, the School of

Medicine has established a program called " AQUA"

in its admission office. AQUA stands for Accession of

Qualified Under-represented Applicants. Through

AQUA, the School seeks to identify and encourage

applicants from groups which are under-represented

in military medicine .

These categories include U.S. citizens who are

women , black Americans , American In

dians/Alaskan natives, Asian or Pacific Islanders,

Upon entering the first-year class of the School

of Medicine, students are commissioned and serve

on active duty reserve in the grade of Second

Lieutenant in either the Army or Air Force, or Ensign

in the Navy or Public Health Service, receiving the

appropriate pay and benefits of that grade . There are

no tuition or fees for attending the School of Medi

cine . Required books, equipment, and instruments

are also furnished without charge .

At graduation , upon the receipt of the doctor

of medicine degree, students are promoted to the

rank of Captain in the Army or Air Force, or Lieuten

ant in the Navy or Public Health Service.

Graduates are obligated to serve on active duty as

medical officers for not less than seven years .

Periods of time spent in graduate medical educa

tion are not creditable toward satisfying this seven

year obligation . A student who is dropped from the

program , for either academic deficiencies or other

reasons , may be required to perform active duty in

an appropriate military capacity for a period equal

:
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o the time spent in the program .

SERVICE BENEFITS

There are numerous advantages to a career in

military medicine . The Uniformed Services, with

their vast network of health resources including

numerous hospital centers , research complexes,

specialized educational and treatment facilities ,

and consultative agencies , provide physicians with

opportunities for flexible career patterns , specialty

training , and continued professional growth .

Military medicine allows the practicing physician

to work with highly trained , dedicated supporting

staff and professionals , and to work with modern

medical equipment and facilities in meeting the

curative and preventive health care needs of the

Services' members, their dependents, and the

retired population . Moreover, military medicine is

comprehensive, consisting not only of all of the

customary specialties, but also a nuinber

of other sophisticated clinical fields such as

aerospace, tropical, preventive , and nuclear

medicine .

There also a number of personal

advantages associated with being a career Medical

Corps officer . Currently , military physicians quality

for retirement after twenty years of active service .

They do not have to contribute any part of their salary

to retirement and do not have to invest or risk capital

to ensure a relirement income in later years .

The salary schedule for military physicians is

also competitive . By mid -career, most practicing

military physicians earn in excess of $40,000 an

nually in pay, allowances, and bonuses. While this

may not compare with the gross income of physi

cians in private practice , the military physician

does not have to pay overhead expenses such as

rent, utilities , liability insurance , and payrolls .

Hence, many civilian practitioners must earn con

siderably more to net as much as the mid-career

military physician .

Opportunities for travel also make military life

exciting and attractive . An assignment abroad pro

vides the military physicians and their fainilies the

occasion to become intimately acquainted with a

foreign culture and people . The cost of moving

expenses, whether stateside or overseas, is paid by

the Services , and each of the military departments

makes every effort to accommodate the assign

ment preferences of its physicians .

Comprehensive medical and dental care is

provided by the Services for military physicians .

Dependents of active-duty personnel are also en

titled to medical treatment and care at facilities of

the Uniformed Services on a space available basis ,

or under certain circumstances , from a civilian

medical resource at partial government reimburse

ment. Charges for other types of health care for

dependents vary depending on circumstances , but

are generally much lower than they would be under

most other medical care programs .

Both abroad and in the United States , the Ser.

vices offer a wide variety of recreatior al and social

activities for military personnel and their families .

Virtually all of the large , established military posts

and bases have golf courses , gymnasiums , swim .

ming pools , bowling lanes , tennis courts , theaters ,

craft shops, auto shops, riding clubs , gun clubs ,

teen clubs , and other recreational facilities . Of

ficers' clubs offer a broad range of optional social

activities for officers and their spouses .

Military physicians are eligible for thirty days

of paid vacation annually . They also, while on

active duty , are eligible for Serviceman's Group

Life insurance , a term protection plan providing

unrestricted coverage up to $ 35,000 al a low annual

premium .

Military doctors and their dependents are en

titled to use coinmissary and post exchange facilities.

In addition, they are entitled to professional advice

and assistance without charge for a variety of prob

lems of a personal nature (e.g. , advice on income tax

matters, the execution of personal wills, etc. ) .

In sum, the Uniformed Services offer physi

cians the time to concentrate on the challenges of

medicine , and at the same time oller them a com

petitive salary , a secure financial future , and a

welcome balance between professional duties and

private life .

are
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AGENDA

for the

TWENTY-NINTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN

ARMY RESEARCH , DEVELOPMENT AND TESTING

19-21 October 1983

Host : Uniformed Services University of Health Sciences

Location : Bethesda , Maryland

***** Wednesday , 19 October *****

0815-0915 REGISTRATION

0915-0930 CALLING OF THE CONFERENCE TO ORDER

David F. Cruess , Department of preventive Medicine & Biometrics ,

Uniformed Services University of Health Sciences

WELCOMING REMARKS

0930-1200 GENERAL SESSION I ( Auditorium , Bldg . B )

Chairman :
David F. Cruess , Uniformed Services University of

Health Sciences

0930-1030 KEYNOTE ADDRESS

EPIDEMIOLOGY AND RISK ASSESSMENT : COURTS , CLOCKS AND CONFUSION

Marvin A. Schneiderman , National Cancer Institute , Bethesda ,

Maryland

1030-1100 BREAK

1100-1200 INJURY SEVERITY SCORES AND APPLICATIONS TO MILITARY TRIAGE

William Sacco , Bellaire , Maryland

1200-1315 LUNCH
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1300-1715 SPECIAL SESSION ON SEQUENTIAL TESTING ( Bldg . A , Room C )

Chairman :
Michael Woodroofe , University of Michigan and Rutgers
University

1300-1330 RELIABILITY MONITORING WITH BERNOULLI SAMPLING

Daniel Willard , Office of the Deputy Under Secretary of the Army

1330-1415 A COMBINED BAYES SAMPLING THEORY APPROACH TO TRUNCATED

SEQUENTIAL BERNOULLI TESTING

Robert L. Launer , U. S. Army Research Office and Nozer D.

Singpurwalla , George Washington University

1415-1445 SENSITIVITY TESTING IN BALLISTICS

J. Richard Moore , Ballistic Research Laboratory

1445-1515 BREAK

1515-1545 A TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST

J. Richard Moore , Ballistic Research Laboratory

1545-1630 EFFICIENT SEQUENTIAL DESIGNS FOR SENSITIVITY

EXPERIMENTS

C. F. Wu , University of Wisconsin-Madison

1630-1715 A SEQUENTIAL BERNOULLI SELECTION PROCEDURE

Robert E. Bechhofer , Cornell University

1830-1930 ***** CASH BAR AT OFFICER'S CLUB , *****

NAVAL MEDICAL CENTER

1930
***** BANQUET AND PRESENTATION OF WILKS AWARD , *****

OFFICER'S CLUB , NAVAL MEDICAL CENTER
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***** Thursday , 20 October *****

0830-1030 TECHNICAL SESSION I - " Statistical Theory "

( Bldg . A , Room C )

Chairman : Malcolm Taylor , Ballistic Research Laboratory

MODEL IDENTIFICATION OF PROBABILITY DISTRIBUTIONS USING

INFORMATIVE QUANTILE FUNCTIONS

Emanuel Parzen , Texas A&M University

ON THE LEHMANN POWER ANALYSIS FOR THE WILCOXON RANK SUM TEST

James R. Knaub , Jr . , . US Army Logistics Center

A NEW METHOD OF CALCULATING NORMAL AND t TAIL PROBABILITIES

Andrew P. Soms , University of Wisconsin-Madison

0830-1030 TECHNICAL SESSION II
O

" Analysis of Longitudinal Data "

( Bldg . A , Room B )

Chairman : Charles R. Leake , US Army Concepts Analysis Agency

COMPLEX DEMODULATION - A TECHNIQUE FOR ASSESSING PERIODIC

COMPONENTS IN SEQUENTIALLY SAMPLED DATA

Helen C. Sing , Sander G. Genser , Harvey Babkoff , David R. Thorne

and Frederick W. Hegge , Walter Reed Army Institute of Research

HOW GOOD ARE TRAJECTORY ERROR ESTIMATES ?

William S. Agee and Robert H. Turner , White Sands Missile Range

1030-1100 BREAK

1100-1200 GENERAL SESSION II ( Auditorium , Bldg . B )

Chairman : James J. Schlesselman , Uniformed Services University

of Health Sciences

TITLE TO BE ANNOUNCED : INTERACTIVE DATA ANALYSIS

Jerome Friedman , Stanford Linear Accelerator Center

1200-1330 LUNCH
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1330-1600 CLINICAL SESSION ( Bldg . A , Room C )

Chairman : Carl Bates , US Army Concepts Analysis Agency

Panelists : Robert E. Bechhofer , Cornell University

Charles Brown , National Cancer Institute

Churchill Eisenhart , National Bureau of Standards

Dennis E. Smith , Desmatics , Inc.

Andrew P. Soms , University of Wisconsin - Madison

Chien Fu Wu , University of Wisconsin - Madison

CYCLES OF SUICIDE

Joseph M. Rothberg, Walter Reed Army Institute of Research

EXPERIMENT TO DETERMINE EVALUATION OF CURRENT DATA COLLECTION

OPTICAL INSTRUMENTATION IN THE DESERT ENVIRONMENT

Robert A. Dragon , White Sands Missile Range

A TYPE OF CORRELATED DATA IN OPERATIONAL TESTING

Ellen Hertz , US Army Operational Test and Evaluation Agency

1330-1500 TECHNICAL SESSION III O

" Simulation Techniques and Applications"
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INJURY SEVERITY SCORING AND APPLICATIONS TO COMBAT CASUALTY CARE

William J. Sacco

Howard R. Champion

Washington Hospital Center

PREFACE

Injury Scales have wide applications to management of trauma victims in

civilian and military settings . They are used for epidemological studies ,

prediction of outcome , triage and monitoring , assessment of clinical

modalities, and for evaluation of patient management.

This paper is a product of over ten years of research by the authors

toward developing and validating indices that measure injury severity .
1-13

The research began in 1972 at the Maryland Institute for Emergency

Medical Systems (MIEMS ) and the Aberdeen Proving Ground with support from

the Department of Army , and since 1976 has continued at the Washington

Hospital Center ( WHC ) , Washington , D. C. , with support largely from the

Department of Health and Human Services and the Department of the Navy . A

number of severity indices were developed and tested on a computerized data

base of over 5,000 patients seen at WHC . Methods for developing and

validating indices were refined , and methods of triage , monitoring , and

evaluation of care were developed that used severity indices to describe

the patient population in terms of degree of injury and probability of

survival . The indices are based on easily attained data and have proved to

be reliable predictors of outcome in a number of trauma centers .

In this paper we describe three indices and military applications .

1



The indices are the Injury Severity Score ,
14

the Trauma

Score , 9 and the Global Index . 15,16 The Injury

Severity Score is based on injury descriptions in terms of

anatomical lesions . The Trauma Score is based on assessments of

physiological responses soon after injury . The Global Index

characterizes patient condition in the intensive care unit using

measures of organ function ..

Injury Severity Score

The Injury Severity Score is based on the Abbreviated Injury

Scale17 ( AIS ) , another well known anatomical scale . The

AIS relies on a list of lesions . Each lesion is assigned a

severity code from 1 ( for minor injuries ) to 6 ( for injuries that

are untreatable and always fatal ) . Thus , the characterization of

a multiply injured patient in terms of AIS would consist of a

string of numerical codes .

155 i :, : 0 :11 on A1: :vtverity codes for six body regions ,

head and neck , face , chest , abdominal and pelvic contents ,

extremities and pelvic girdle , and external .

The ISS ranges from 1 to 75 . The higher the score , the

poorer the patient's condition . uz victim has any injury with

an AIS value of 6 the ISS is assigned ü value of 75 . Otherwise ,

2



to compute ISS one first identifies the highest AIS code in each

of the six body regions , and the squares of the highest three of

the six codes are added to obtain the ISS .

Trauma Score

The Trauma Score is a physiological measure of injury

severity . It is based on seven circulatory , respiratory and

neurological assessments easily obtained by doctors , nurses , or

paramedics .

The Trauma Score is developed from these assessments as

shown in Table 1 . Eye opening , best verbal response , and best

motor response make up the Glasgow Coma Scale , 18 which is

used worldwide to assess central nervous system function .

ل
ی
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TABLE 1

TRAUMA SCORE

CATEGORY DEFINITIONS , METHODS OF ASSESSMENT, AND CODES

Rate Codes Score

A. Respiratory Rate

Number of respirations in 15 seconds ;

multiply by four

10-24

25-35

36 or greater

1- 9

0

4

3

2

1

0 A.

B. Respiratory Expansion

Normal

Retractive- Use of accessory muscles

Normal

Retractive

1

0 B.

c . Systolic Blood Pressure

Systolic cuff pressure- either arm ,

by ausculation or palpation

90 or greater

70-89

50-69

1-49

0

4

3

2 .

1

No pulse C.

D. Capillary Refill

Normal - Nail bed color refill

in 2 seconds

Delayed- More than 2 seconds capillary refill

None- No capillary refill

Normal

Delayed

None

2

1

0 D.

E. Glasgow Coma Scale Total

GCS Points Score

1 .

4

Eye Opening

Spontaneous

' TV ) Voice

' ) Pain

il

E

14-15

11-13

8-10

5. 7

3- 4

ا Mننه م

E.

Bit Verbal Response

Oriented

Confused

Inappropriate Words

Incomprehensible Sounds

None

5

4 .

3

2

1

3 . Best Motor Response

Obeys Cornnands

Localizes Pain

Withdraw (pain )

Flexion ( pain )

Extension (pain )

1 nó :

6

5

4

3

2 .

Total S Point ( 1 + 2 + 3 ) TRAUMA SQRE

( lotal Points A + B + C + D + E )

4



To illustrate computation of the Trauma Score , an example is

given below for a hypothetical patient :

Assessment Result Score

Respiratory rate 3 in 15 4

seconds

Respiratory expansion Normal 1

Systolic blood pressure 127 4

Capillary refill Normal 2

Glasgow Coma Scale

Eye opening Spontaneous ( 4 )

Best verbal response Oriented ( 5 )

Best motor response Obeys commands ( 6 )

Total GCS = 15 5

Trauma Score 16

5



Table 2 contains probabilities of survival for values of the

Trauma Score based on penetrating injury data .
19

d

TABLE 2 .
Probabilities of Survival , Ps , for each value of the

Trauma Score

TS
Probability of Survival

16 0.99

15 0.98

14 0.97

13 0.94

12 0.89

11 0.82

10 0.70

9 0.55

8 0.40

7 0.26

0.15

5 0.088

4 0.048

3 0.026

2 0.014
.

1 0.007

6



Global Index

The Global Index is used in the intensive care unit to

characterize patient condition :

Global Index Rn
+

On + Bn
+

Gni

where

Rn
-

1.5 x Respiratory Index

Cn =

=

O if serum creatinine is one or less

2.0 X ( serum creatinine 1.0 ) otherwise

Bn = 0.5 x serum bilirubin

Gn
=

15.0 Glasgow Coma Scale

The Respiratory Index ( RI ) , a measure of respiratory

insufficiency , is defined as follows :

RI = 713F102 - PaCO2 -PaO2

PaO2

where :

F102 fractional concentration of O2 in

inspired quis

P2O2 = arterial partial pressure of oxygen in torr

PaCO2 - arterial partial pressurs of carbon dioxide in torr

7



The numerator of the RI is an approximation of the

alveolar -arterial oxygen difference , which is an indicator of

oxygen sufficiency and an important consideration in controlling

arterial oxygenation .

The RI , serum creatinine , serum bilirubin , and the Glasgow

Coma Scale have proven to be excellent indicators of renal ,

hepatic , and central nervous system function , respectively , in

trauma patients . 1-6,10,11.

Application to management of Combat Casualties

Here we discuss applications of the indices to the triage ,

tracking , and evaluation of management of casualties .

TriagePrinciples Incorporating aPhysiological Response Score

Triage is a method of managing mass casualties including

ů :: .::::: .!.. indi
und classification of 6:4: 11alties for priorities of

trisi berjil Loint 1.118cllation . in a Wurtim : Mass Casualty situation ,

the priorities of treatment and evacuation are dependent

obviously on military objectives . The priorities can be

radically different for different objectives .

8



The triage principles discussed here , which implement

physiological response scores , are intended to maximize

survivors . As such , these principles would be appropriate after

other higher priority objectives ( if any ) had been addressed .

By definition , in a mass casualty situation , resources are

not available for meeting the needs of all casualties over a

short period of time . Hence triage is used to sequence patient

care . If the objective is to maximize survivors , establishing

urgency is the first sorting criterion .

The battalion aid station is the primary site of casualty

sorting . Under some current military protocols , casualties are

examined by the battalion aid station medical officer or

assistants . The medical officer determines the level of

treatment required and the priority of evacuation .

;; ! | 17.uallir : arc classified lov level of treatment required .

There idri loir r17::; ilication pron17 : i , rulled minimal, delayerl ,

immediate , or expectant ; defined as follows :

1 ) Minimal : Thosc casualties whose injuries are so slight

that they can be inanaged by self -help or buddy care and

· can be returned promptly to their units for full duty .

9



2 ) Delayed : Those casualties whose wounds require medical

care but are so slight that they can be managed by the

battalion aid station or in the amphibian objective area

and can be returned to duty after being held for only a

brief period .

3 ) Immediate : Those casualties whose conditions indicate

the need for immediate resuscitation , and usually

surgery .

4 ) Expectant : Those casualties that have low chances of

survival even if accorded full medical resources .

Triage in the field involves priorities for care in the field

and for evacuation to higher echelons of care . Casualties may be

triaged many times in the field . Frequency will depend upon such

factors as the intensity of combat and availability of time and

resources for resuscitation , treatment , or evacuation , or for

more definitive assessment and treatment .

Ili siedlilo ili ruins;tunce ...نا;: eriul measurements of a physiological1

response score can help provide a finer discrimination of

patients in Categories 3 and 4 at various stages of triage and

care . For example :

1 . Fach patient in Categories 3 and 4 can be assigned a

probability of survival , Ps , associated with the response

Score . The Ps is to be interpreted as the probability of

survival presuminki iminentiate definitivii care .

10



2 . Serial assessments can be used to measure the clinical

" change of state" of a casualty :

a . From scene of wounding to Battalion Aid Station ( BAS ) .

b . Awaiting resuscitation therapy at the BAS .

C. Before and after resuscitation at the BAS .

a . In the holding area at or near the BAS .

e . During evacuation .

f . Awaiting additional care in the field hospital .

The serial scores would provide evidence of casualty

deterioration , stability , or improvement .

Several studies have evaluated the Trauma Score as an adjunct

to casualty triage in the early stages of combat care . 20,21

The results showed that Navy Corpsmen were capable of obtaining

Trauma Score assessments with minimal training and their facility

and accuracy improved with repetitive virills and practice on

sinu lilisi Gualties .

Patient Tracking

The Trauma Score and Global Index can provide a permanent

record of patient condition transitions from the injury scene

through the ICU , with implications for triage , evaluation of care

in general, and evaluation of specific Therapeutic modalities at

all echelons of care .

11



One of the simplest methods for tracking the progress of a

casualty is a time series plot of the survival probability Ps ,

illustrated for a hypothetical patient in the figure below ,

1.00

0.80

Ps 0.60

0.40

0.20

Location S B H F D1 D2 D3 D4

The symbols on the horizontal axis are defined as follows :

S : Scene of injury

B : Battalion Aid Station

11 :

Holding Area

F : Field llospital

ii Definitive Carr: l'acility (ncimission and three

1: 1160;": 1:11ing days )

In the construction of such a chart , the probability of

survival estimates for , 1 , 11 , and f are based on a simple score

( Trauma Score or variant ) and those for Di are based on the

Global Incicx .

)

12



In addition , we can provide a graphical presentation of the

ICU record by means of " anatoglyphs " , like the diagram shown

below . 22,23

1
1
1
1
1
1
1

boll
In these anatoglyphs , the five body regions of greatest

physiological importance ( the brain , heart * , kidney , lungs , and

liver ) are outlined with scale markings . Shading these five

areas to a height corresponding to the severity of the individual

organ's derangement gives an anatoglyph of the patient's

condition . An example is shown below .

316

1
1
1
1
1
1

* Although the heart is included here , his version of the Global

Fostex does not contain Cirilir virschiluri vidi iintiles .

13



The number appearing near the mouth of the profile is the Global

Index .
A series of daily anatoglyphs transforms the patient's

charts into a picture sequence that can be read at a glance .

Evaluation of Care

Here we present a two-phase approach 15,24 to evaluation

of patient care .

The first level , called PRE ( from Preliminary ) , identifies

unexpected survivors and deaths . These cases may be therapeutic

triumphs or failures . PRE can be used to assess patient

management at any echelon .

The second level , the State Transition Screen or STS ,

identifies patients with unusual clinical courses in the

definitive care unit . Among these are patients who improve

subit.ontially before they diri , and patients who deteriorate

Sub :: ! iniiiills Dolore they recoveri . ''۱۱:زا Cuisies may be near

triumpis ; or neill Filures .

PRE : Semi -Quantitative Assessment of Trauma Care

Ideally the basic ingredients of the PRE methodology are two

injury severity scales , one anatomical , the other physiological .

Til ? soal of. PRE is to identify cases where the outcome was

anomulu: in torm :; of the sculos emplovil.

1
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In the discussion here , we use the Trauma Score as the

physiological assessment and the Injury Severity Score as the

anatomical assessment .

The scores are plotted on an x-y graph as in Figure 1 .
For

example , a patient with an ISS of 25 and a TS of 13 is

represented by an x or a dot at coordinates 25,13 .
The dots are

survivors and the x's , deaths . Multiple occurrences at the same

coordinates are indicated by a number near the symbol .

On such a plot , whatever the scales employed , survivors

usually predominate toward one corner of the plot , deaths at the

opposite corner ; and mixed results are seen along a sloping line

that cuts across the connecting diagonal . Such is the case in

Figure 1 , where survivors predominate at the lower left and

deaths at the upper right . The sloping line in Figure 1 is

called the S50 isobar . At each point on this line , the patient

hasis is to percent chance of survival . A patient who ::n point i:

below thi Tina : in this ligure has better than u 50 percent chance

of survival , and in a statistical sense , is expected to survive .

The survivors whose points are above the line , and the

nonsurvivors below the line , are the patients sought to be

identified by PRE : those with anomalous or " unexpected "

( ) .it comes . These are cases worthy of audit .

The dati in Figure 1. ira roli i ! 402 blunt:in'de traduillit

patients seen at the Washington Hospilul ( inter (Washington ,

15
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D.C. ) from January 1 , 1980 to December 31 , 1981.24 The S50

isobar in the figure was computed from earlier data . This

combination of current data and historic isobar illustrates

the usual implementation of PRE . In practice , a patient's ( ISS ,

TS ) pair is plotted as soon as his data are available , and the

decision whether the patient outcome was unexpected ( in a

statistical sense ) is based on an isobar from previous data . PRE

can also be implemented with two-component physiological scores .

These pairs are nearly as powerful as the physiological

anatomical pairs . The patient can be represented as as the

measures are obtained . One need not wait for an anatomical

assessment . Figure ? is an example for a two -component pair

applied to serious head injured patients .

State Transition Screen ( STS )

The cases cited by PRE are not the only ones that are

inte.tp...liisit and reserving ol ilirdil . Other interesting cases are

t :10 : 6 . Vor admission scores to definitive care facility indicate

a better than 50 percent chance of survival , but who deteriorate

substantially before they recover ; and those whose admission

scores indicate a low probability of survival , but who improve

substantially before they die . To sift out these cases , we need

easures of patient condition , and criteria for distinguishing

:lla jor from ininor Ouctuations .

17
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The survival probabilities needed are the admission value

( PA ) and daily values in the ICU . The admission value can be

based on a Trauma Score ISS combination or a two-component

physiological score , and the ICU values canthe ICU values can be based on the

Global Index .

The audit selection criteria in STS are different for

survivors and non -survivors . The survivors selected are those

for whom PA is greater than 0.50 , but whose survival

probability falls below PA by 0.25 or more during the ICU stay .

The non -survivors selected are those for whom PA is 0.50 or

less , but whose Global Index reaches 10 or less during the ICU

stay .

19
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A Combined Bayes-Sampling Theory Method

For Monitoring a Bernoulli Process

Robert L. Launer , U.S. Army Research Office

Nozer D. Singpurwalla , George Washington University

We assume a population of one-shot missiles which are stored

in ready Qr near ready state at the physical point of their

deployment . We hope that the missiles will sit in idle waiting for

many years , but this allows environmental effects to degrade the

missiles capability of successful deployment . Since even a brand

new missile may fail to operate properly , and there are no

important physical differences between the individual missiles in

the given population , we shall assume that a randomly selected

missile will have a probability Pt of successful deployment , or

reliability , at time t .

It is obviously important to monitor pt , so a sample of the

missiles is tested periodically . Since the testing is destructive ,

the population is eventually depleted by the testing . Furthermore,

defects in missile design may be uncovered , so modifications may

be , introduced which will have a tendency to increase the

reliability . For technical reasons , however , we choose to describe

test which is designed to detect a deterioration in the

reliability .

No target value for the reliability is given by management ,

that the testing at time t is used to determine if there has been

a change in the reliability since time t- 1 . The following

requirements are given . and will be used to formalize a test of

hypothesis to accomplish the goals of the testing procedure .

It is required to :

1 . detect whether
Pt has changed by an amount d since the

immediately preceeding , testing period , with a probability of at

least 1 at time t=2,3,4 , ...

2 . PE , thecompensate for the sampling uncertainty in

estimate of Pt , in constructing the test of hypothesis .

use the minimum

requirements 1 and 2 , above .

possible sample sizes in accomplishing

Since the test data are pass-fail in nature , the binomial

probability model is appropriate for describing the stochastic

sample behaviour . Suppose we choose the test size to be o for the

hypotheses :

Ho : Pt Pt- 1

Ha : P + = (Pt - 1 ) -d *

23



Requirement 1 , above , leads to a type II error , = 1-1 . We are

then lead to solve the following inequalities simultaneously for

nt and xenon as follows. Let B ( x , n ; p ) represent the cumulative

binomial probability of x or fewer successes in n trials . That is,

X

B ( x , nip ) - Egyp : ( 1 -P ) (ny)

Then the inequalities of interest are :

B ( x € , ntipe ) 0 ( 1 )

B (xt ,nt.ipt d * ) 1-0
( 2 )

For Pt - 1 known , the null hypothesis is rejected if the

current sample yields xt or fewer reliable missiles . Since Pe - 1 is

not known , however , ( 1 ) and ( 2 ) are solved after substituting Pt - 1

for Pt - 1 since we have no target value for it . We will account for

this uncertainty by averaging the pair x6 , nt with respect to the

prior distribution for Dt . First , however , we shall introduce a

sequential scheme to reduce the sample sizes required .

For practical reasons , the missiles are tested sequentially

in time . Therefore , when a critical sample value is obtained , the

sampling may be curtailed . That is , if x6+ 1 successful tests or if

nt -x + 1 failures experienced before the sample is completed ,

then the test may be curtailed ( terminated prematurely ) without

effecting the error distribution of the test . The curtailed

sampling distribution is expressed as follows . Given pt and xk ,

the probability that nt =x when a curtailed sampling procedure is

used is :

[( e-)..

nt - Xt

( 1 - P )

X- (nt - x )

Pt ne - # *xx

ne - xt - 1

X - 1

PCnt=x Ipt ] =

ne* )

next

( 1 -pe )

x- (next )

Pt ( 3 )

x - 1

(6 )

X - X - 1

( 1 - P )

x + 1

Pe , ** < x < nt
X - X - 1

In

respect

absence

order to obtain PCnt=x ) , we compute the average with

to the prior probability for pt , given by g ( pt1H ) . In the
of information to the contrary , the conjugate prior in
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Thisthe binomial case , is not only convenient , but also natural .

prior is the Beta distribution given by :

g ( pla , b , H ) = B - 1 ( a , b ) p =-1 ( 1 - P ) 6-1, ai, b21 ,

where ,

Bla , b ) = r ( a ) rib ) Irla+b )

г ( х ) is the gamma function [ 1 , p . 255 ) , and H

experimental hypothesis relevant to our situation .

process yields :

refers to the

The averaging

X - 1

( 2-2)
B- 1 ( a , b ) B ( x -nt + x + a ,nt - x + b )

int - X - 1

for ne - x *****

X - 1

P [ n = x ) =

( ** )
B- 1 ( a , b ) B ( x -nt + x + a , ne - x + b ) + ( 4 )

Int - x - 1

X - 1

( * )
B- 1 ( a , b ) B ( x + 1 + a , x - x - 1 + b )

for <<xsnt

The expected sample size , E [ nt ] , can be obtained by computing :

Eint ] = EXPInt = x ]

xmo

A full Bayesian treatment of the problem is developed as

follows . Equations ( 1 ) and ( 2 ) are averaged with respect to the

prior as shown below .

so

1

B ( x , ntipelg (PtTH ) dpt so!
( 5 )

so

1

B ( x ,ntipe - d ) g (ptiH ) dpt 21-a ( 6 )

Integrals ( 5 ) and ( 6 ) may be re-expressed in closed form which

allows them to be solved iteratively for X + and At . These values

are then used in equations ( 3 ) for computing the expected sample

sizes . We point out that ( 5 ) is related to the predictive

distribution which is used for model checking or informal

hypothesis testing in the Bayesian context [ 2 , p . 385 ) .
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Generally , prior distributions on unknown parameters involve

parameters of their ownof their own which , in turn , depend on the experimental

conditions or hypotheses . In our example the parameters are ' a ' and

' b ' . The experimental hypotheses and specific parametric values for

our situation are abtained and applied by using the following line

of reasoning . Before the initial test , little or no a-priori

information is available about pt so a flat prior distribution is

assumed . The uniform prior corresponds to the parameter values

a=b = 1 , and essentially assigns equal weights to all values of pt

in the interval ( 0,1 ) . After the first test sample has been

obtained , say Xa and the posterior distribution is a Beta

distribution with par ameters a +X1 and 6+na -xe . The mode of the

posterior may be used as an estimate for pa . This is given by

Da = ( a+x , -1 ) / ( a+b +n , -2 ) , and noted previously , is the value

against which the second sample is tested . The complete testing

strategy is outlined below .

as

1 . Before testing begins , the prior distribution is defined . This
should be based on engineering knowledge and experience and

developmental history . Since it is not usually possible to obtain

that information from engineers , it is imperative to provide a

reasonable alternative . For this suggest using an initial

sample , corresponding to time t=0 . The implied prior for the

initial sample is the uniform distribution of the Beta family .

we

2. The monitoring procedure begins with the first test sample and

proceeds as follows. At time t ( = 1,2,3 , ... ) the prior distribution ,

Stl . ) , is the posterior distribution from the test at time t- 1 , or
htu ( . ) . The mode of the prior is the value for Pt - 1 in the null

hypothesis against which the sample at time t is tested .

3 . The sample size and critical value for the test is obtained

from equations ( 1 ) and ( 2 ) . If the sample results on an acceptance

of the nuli hypothesis , then the sample values are used to update

the prior , resulting in the posterior distribution . A new modal

valle for pis obtained which will be used in the test at time

t + 1 , and a new sample size and critical value are obtained .

4 . If the sample results in a rejection of the null hypothesis at

time t , then the current prior is discarded , and the current

sample is used to determine the prior for the following test of

hypothesis .
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Abstract

This paper describes a new closed adaptive sequential procedure

proposed by Bechhofer and Kulkarni [1982a ) for selecting the Bernoulli

population which has the largest success probability . The performance of

this procedure is compared to that of the Sobel -Huyett ( 1957 ) single- stage

procedure , and to a curtailed version of the single-stage procedure , all of

which guarantee the same probability of a correct selection . Optimal

properties of the Bechhofer - Kulkarni procedure are stated ; quantitative

assessments of important performance characteristics of the procedure are

given . These demonstrate conclusively the superiority of the new procedure

over that of the competing procedures . Relevant areas of application are

described .
Appropriate literature references are provided .

Key Words

Bernoulli selection problem , selection procedures , single-stage

procedure , closed sampling procedures , one -at - a - time sampling procedures ,

adaptive sampling procedures , curtailed sampling procedures , vendor

selection , clinical trials .
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1 . Introduction

The problem of devising statistical procedures for selecting the

Bernoulli population which has the largest " success" probability has been

the subject of intensive research by many investigators for more than

twenty -five years . Interest in this problem stems from the fact that it

arises in many areas of application of great practical importance :
It

arises , for example , in vendor selection when the purchaser seeks to

identify the vendor with the largest fraction of conforming items .

Similarly , in research and development , it arises when the scientist wishes

to identify the process or system which has the largest probability of

performing best . In clinical trials the medical researcher studies various

treatment regimes with the intent of determining the one which has the

largest probability of achieving a cure (or some other desirable effect )

for the malady under investigation . Recently it has been shown that the

problem of selecting the Bernoulli population with the largest success

probability is closely related for quantal response curves to the problem

of selecting the curve with the smallest q -quantile ; this latter problem

arises in certain military and medical settings . ( See Tamhane [ 1983] . )

The published literature on the Bernoulli selection problem and

associated procedures is vast . The interested reader is referred to an

article by Bechhofer and Kulkarni [1982a] for a recent survey of these

papers . In that article the authors proposed closed adaptive sequential

procedures for various Bernoulli selection goals . Unlike earlier

procedures which had been proposed on ad hoc or heuristic grounds , these

new procedures have certain important optimality properties and in addition

have very desirable performance characteristics . It is the purpose of this

present article to introduce the reader to the Bechhofer-Kulkarni procedure
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for the particular goal of selecting the Bernoulli population which has the

largest success probability , and to describe some of its properties .

Appropriate literature references are given for those who wish to study the

procedure in greater depth . It is perhaps of some interest to note that

all of the articles concerning this new procedure have appeared within the

past two years .

2 . Statistical assumptions and notation

Let

and of

п , ( 1 Sisk ) denote k > 2 Bernoulli populations with

corresponding single -trial " success " probabilities Pi : Denote the ordered

values of the Pi by Pri ] S ... SP[K ] the values of the Pi

and the pairing of the li with the ( 1 < i , j < k ) are

assumed to be completely unknown . The goal of the experimenter is to

select the population associated with P[ k ] ; when this population is

selected , the experimenter is said to have made a correct selection ( CS ) .

the

P [j ] '
with the Pli]

For each of the examples cited in Section 1 , it is meaningful to refer to

the population associated with P[ k ] as the " best " population .

3 . Bernoulli selection procedures

3.1 A single -stage procedure

Sobel and Hu yett [1957] proposed a single -stage procedure for

selecting the best Bernoulli population . Their procedure which was

developed while the authors were employed at the Bell Telephone

Laboratories was motivated by industrial applications . This single-stage

procedure Pss ( Rss Iss ) has a sampling rule ( Rss) and a terminal

decision rule (Tss ) which are given below .
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SINGLE- STAGE PROCEDURE ( PSS) FOR SELECTING THE POPULATION

ASSOCIATED WITH P [ k] •

independent observations
Sampling rule ( RSS ) : Take exactly n

from every population .
( 3.1 )

n

< * [k ] ( 3.2 )

Terminal decision rule ( Tss ) : Let X ;
denote the number of

" successes" in the
observations from 11;, and let

denote the ordered values of the

X [ 1 ] ? X [ 2 ] <

Xi ( 1 sisk ) . Select the population that yielded

as the one associated with

P [ k ] '
randomizing among all

populations that have x -values equal to * [ k ] :

* [ k ]

We now give two examples of Pss . In these examples we denote a success

( failure ) from li by S ; ( F ; ) ( lisk ).

Example 1 : ( k = 3 , n = 3 )

п , па пз

E
l
w
i
s
s

S2

w
w

"l
a
s

S3

5
2

52

3 ,

< * [3]
Here

which was yielded by nz Hence , select12. la

as the population associated with

*[2] =21

P [3 ]

32



Example 2: ( k = 3 , n = 3 )

пі па па

F2S.

s ,

u
n

a
n

wa
s

lo
s

S2

S2

Here : 2 < 3

X[ 1 ]
Hence ,

* [ 2 ] = X [ 3 ]
which was yielded by 1 ,by 17, and 13 .

select (117,113) with probability
,, ) as the population associated

with

P [3 ]

3.2 Sequential procedures involving one-at - a -time sampling

Throughout we limit consideration to the class of sampling rules ( R )

which take no more than n observations from any one of the k

populations; the single -stage procedure is clearly in this class . The

choice of n > 1n > 1 is arbitrary and can be arrived at using economic

considerations .

We shall describe sequential procedures in which observations are taken

at

niem

one - at -a - time ( instead of in a single-stage) and show the gains that can

be achieved by employing them . We denote a success (failure ) from ni

stage mbyby sine F ) lisisk , 15m5kn). Let denote the

total number of observations taken from ny through stage m , and let

denote the total number of successes yielded by ly through

stage m ( 1 Sisk ; i < m < kn ) .

In Section 3.2.1 we describe a sequential procedure Pc = (Rc »Scotc )

which uses arbitrary one-at -a -time sampling rules in conjunction with an

Ziem

obvious stopping rule employing what we term weak curtailment (along with
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an associated terminal decision rule ). We show by examples how Pc
can

achieve a decrease in the total number of observations to termination

relative to the kn observations required by the corresponding

single -stage procedure . In Section 3.2.2 we describe our new sequential

procedure pt = ( R * , 5 * , 7* ) which uses an optimal one-at - a -time sampling

rule in conjunction with a stopping rule employing what we term strong

curtailment (along with an associated terminal decision rule ) . Examples

are given to show how p* operates , and the savings that can be achieved

by using it . By weak curtailment we mean that a strict inequality ( > )

holds in ( 3.4 ) below , while by strong curtailment we mean that a weak

i nequality (> ) holds in ( 3.6 ) below .

In Section 4 we give some of the optimality properties of P , and

point out the ways in which p * is superior to Pc : Section 5 contains

some typical results concerning the performance of p* . We make some

concluding remarks in Section 6 .

3.2.1 Procedures
Pc = ( Re Scotc )

We now describe the procedures ( Pc ) in this class .

PROCEDURES (PC ) FOR SELECTING THE POPULATION ASSOCIATED WITH P [k ] :

Sampling rule ( RC ) : At stagem (0 < m < kn ) , take the next

observation from an arbitrary one of the k populations .

( 3.3 )

mStopping rule (sc ) : Stop sampling at the first stage

at which there exists at least one population .

satisfying

( 3.4 )

21 ,m ? j,m nj,
+ n - n for all

jui ( 1 < 1 , j < k ) .

34



Terminal decision rule (Tc): If < > !( ic ): If r > 1 populations , say

Mi ,
simultaneously satisfy ( 3.4 ) , then select

one of them at random as associated with

P [ k ] :

;Tܝ
П

i

The stopping sequences given in the following examples illustrate how

Pc = (Rco Scotc) operates .

Example 3 : ( k 3 , n = 3 )

2 3

"W
I
E

3

E
n
o
n on

sas

F
5

2

W
N

In this example we have assumed that the first six outcomes of Example 1

were obtained in the order indicated by the superscripts . Clearly one can

stop sampling after having obtained sę , and select ng as the population

associated with P [ 3 ] • He re ne has " beaten " п, 113 ,

result will not change no matter what the outcomes of the remaining three

and and this

observations .

Example 4 : ( k = 3 , n = 3 )

2

s Fe빌

E
l
m
oa밤

3

w
e

w
h
o

w
i
s

l
a
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In this example we have assumed that the first seven outcomes of Example 2

were obtained in the order indicated by the superscripts . Thus one can

stop sampling after having obtained sa , and select (77, 9813 ) with

probability as the population associated with
P [ 3 ] :

Remark 3.1 :
We see that Pc arrives at the same teminal decision as

does Pss : Therefore , it achieves the same probability of a correct

selection as does Pss: Moreover, it usually accomplishes this with a

smaller total number of observations to termination than the kn observa

tions of the corresponding Pss .

3.2.2 The procedure p * = ( R * , 5 * , 7 * )

Our procedure
pt which uses an optimal sampling rule ( R* ) in

conjunction with the stopping rule (* ) and the terminal decision rule

(T * ) is described below .

PROCEDURE ( P * ) FOR SELECTING THE POPULATION ASSOCIATED WITH
P [k ]

Sampling rule ( R* ) : At stagem ( 0 < m < kn - 1 ) , take the next

observation from the population which has the smallest

Knnumber of failures among all ni for which ni , m ?

( 1 Sisk ) . If there is a tie among such equal-number

of-failure populations , take the next observation from ( 3.5 )

that one of them that has the largest number of successes .

If there is a further tie among such equal -number - of -success

populations , select one of them at random and take the next

observation from it .
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Stopping rule ( 5 * ): Stop sampling at the first stage mat

which there exists at least one population ne

satisfying ( 3.6 )

Zi,m,m ??j , m (n-nj,m ) for allfor all ju i ( 1 [ i ,jsk ) .

Terminal decision rule (T * ) :(T * ) : If ri populations , say

II

M ,
simultaneously satisfy ( 3.6 ) , then

select one of them at random as associated with

П.

i.

r

( 3.7 )

P [k ] '

We now give two stopping sequences to illustrate how

p * = ( R * ,5 * , 7 * ) operates .

Example 5 : ( k = 3 , n = 3 )

4

n , п. п .

Fy sa

SEF

s }

In this example we have applied p * to the first five outcomes of

Example 3 . We see that at stage 5 , 12 satisfies ( 3.6 ) . Hence ,,

select la as associated with P [3 ] Here neither 1 , nor 13

do better than tiena no matter what the outcomes of the remaining

can

four observations .

Note : We point out that ( 3.5 ) is a well -defined sampling rule which

dictates the population or populations from which the next observation must

be taken. Thus, for example , if in Example 5 the outcome of the second

observation from 13 were a success (s ) instead of a failure ( F3 ) ,

then the third observation must be taken from 113.
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Example 6 : ( k = 3 , n = 3 )

3п . п . п

s} fa

si

4

san

In this example we have applied p* to the first four outcomes of

Example 4 . We see that at stage 4 , 11, satisfies ( 3.6 ) . Hence ,

select
п ,

as associated with
Here 1 , has "beaten "P [ 3] •

and

12 )

Nz cannot do better than tie II.

n ,
no matter what the outcomes of the

remaining five observations .

P *

We now point out an important property shared by Pss, Pc and

(along with many other competing procedures ) . This property is summarized

in Theorem 3.1 , below . In the theorem it is assumed that if two or more

populations have a common p -value equal to P [ k ] " then these tied popula

tions are tagged in such a way that their ordering is unique , i.e. , one is

associated with a second with

P[ k ] '
etc.

P [ k - l ] '

Theorem 3.1 : P { CS | ( Rssotss ) } = P { CS | ( R * ,S * , T* ) uniformly in (PyoP 2....sPk) .

This fundamental result was first proved ( in more generality and under very

reasonable assumptions) in Kulkarni [1981 ) , and reported in Bechhofer and

Kulkarni [1982a ] . More recently Jennison [1983] proved a much more

general result .

Note :
We have already pointed out in Remark 3.1 that P{CS|(Rssotss ) }

P [CSRC SCC) uniformly in (POP ....Pk).
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In order to have a rational basis for making distinctions between

these procedures, and in particular for deciding which one is " best " in

some reasonable sense , it is necessary to study other important performance

and N =

characteristics of the procedures . Two such performance characteristics

are EIN (1)} ( sisk) and E { N } ; here N ( i ) denotes the total number

of observations taken from the population associated with
P [i ]

( 1 < i < k )

i = 1 Ni) denotes the total number of observations taken from all=1

K populations , when a procedure terminates sampling . In Section 4 we cite

several optimality properties of stated in terms of E{N (i)}

( 1 i < k ) and E { N } . In Section 5 we give some typical results of

studies made of the performance of E { N } .

pt ,

4. Optimality properties of P *

The theorems cited below concerning the optimality of p* are proved

in their present generality (along with others ) in Kulkarni and Jennison

[1983] , and are reported on in Bechhofer and Frisardi [1983] . Earlier , more

restricted versions were proved by Kulkarni [1981 ) . Further optimality

results are contained in Jennison and Kulkarni [1984] .

In this section , R refers ( as before ) to an arbitrary sampling rule

which takes no more than n observations from any one of the k > 2 popu

lations , and which is used in conjunction with the stopping rule s * and

the terminal decision rule T * of ( 3.6 ) and ( 3.7 ) , respectively .
For

andE

k = 2 let R * denote the conjugate sampling rule in which " i ,m -2 ,m

of ( 3.6 ) are replaced by 21 , m and ni,m - ?;,m ?
respectively . We

now state several theorems concerning the optimality of R * and R* .

Zim
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Theorem 4.1 : For k = 2 , a necessary and sufficient condition that

P * :

(R * ,S* , 7* ) minimize E [ N ] (Popp)} among all procedures (R , S * , 7* )

is
Py +P2-1. For k = 2 , a necessary and sufficient condition that

P* ( R * ,s * , 7* ) minimize E{NI(PqoP2)} among all procedures (R ,S * ,7 * )

is P , +P231 .

Theorem 4.2 : For k = 2 , a necessary and sufficient condition that

p * = (R * ,5 * ,7 * ) minmi ze E { N ( 1 ) I(Popa)} among all procedures

( R ,S * ,7* ) is

3- P(1)- V43-0c1732-4
P[2]

( 4.1 )
2

Theorem 4.3 : a sufficient condition that P* =For k > 3 , ( R* , S * , 7 * )

minimize E [ N ] (P),Pq ...,Pk )} among all procedures ( R ,S* , T* ) is

k

P [ ] + ?, P [i ]/ ( k - 1 ) 21 ., 2 1 ( 4.2 )

i = 2

*

Theorem 4.4 : a sufficient condition that pt = ( R* , S* , T* )

minimize

Fork 3 ,

Lifel E{N(1)|(Pop go ...-Pk)} for all

procedures ( R , S * , 7 *) is P [ 1 ]+P [ 2 ] ? 1 .

s ( 1 ss < k ) among all

Remark 4.1 : It can be shown from ( 4.1 ) that P* minimizes E{N (1) |(P7»P2}}

among all procedures ( R , S * , 7* ) over approximately 81.55 percent of the

(P7 ,P2)-parameter space.
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Remark 4.2 : In the context of clinical trials it is desirable to minimize

the expected number of observations taken from the inferior populations ,

1.e. , those with small p -values . Hence , the relevance of Theorems 4.2

and 4.4 .

The foregoing theorems summarize some of the most important optimality

PSSproperties of P * , and show why, in particular , it is superior to

and Pc Not only is
P# superior to Pss

and Pc but also any procedure

which uses in conjunction with S* is superior to a corresponding

Pss and P

R

procedure which uses the same R
in conjunction with SSc

Remark 4.3 :
The following additional properties of P* have been shown to

hold :

+ 1 for + 1 ,

P[k ] >
+ 0 .

a ) n < N < kn -1 for all (P7 ,P 2....,Pk)

b ) P{ N = n (P) P .... spx )} P [1 ]

P { N kn - 1 | (P 1P2. PK )}Pk ) } + 1 for

As a consequence of a ) we have

c ) n < E { N } < kn - 1 for all (Py »Pq...osPK)

E { N } kn - 1

d ) < < for all ( P7 » P2.... sPk ) . The ratio E { N } / kn

can be thought of as a measure of relative efficiency , small

1

kn kn

values of the ratio favoring p* .

5 . Performance of p *

Extensive studies of the behavior of P * have been carried out in

order to obtain numerical assessments of its performance -- in particular to

study the distribution of Ni)' and E { N ( ) } ( 1 < i < k ) , the distri

bution of N , and E { N } , P
as well as the achieved P{ CS ) . Bechhofer and

41



Kulkarni [1982b) provides many tables of these quantities for k = 22 and 3

with selected

and ••••( P [ 1 ] • P [ 2 ] ” ... sPck ] ) ;P[ k ] ) ; all of the results given in

the tables are exact , having been calculated using recursion formulae .

n

Bechhofer and Frisardi ( 1983) provides a large number of analogous tables

containing very precise estimates of such quantities ( and others ) for

k 3 , 4 and 5 with selected and

(P[1]•P[2] ... P [k ]); these were

obtained using Monte Carlo (MC ) simulation since the cost of calculating

exact results would have been prohibitive .

Three typical tables taken from the aforementioned articles are

reproduced here. Table 5.1 shows for k = 3 , n = 7 how the distribution of

N ( i ) (13133) and hence EIN ( i ) } ( 3133) and E { N } change as the

differences between the

P [ i ]
( 1 < i < 3 ) become larger ; in each case the

Di ( 1 < i < 3 ) are equally-spaced around
P [ 2 ]

= 0.6 , the spacing increas

ing from 0.1 to 0.4 . We note the dramatic decrease in E{N (1) ar

and also the large decrease in E { N } as the spacing increases . The

lisis 3) values of 3.47 , 4.28 and 5.46 for the p -vector ( 0.5,0.6,0.7 ) ,

and the values 0.62 , 1.22 and 6.58 for the p -vector ( 0.2,0.6,1.0 ) are to be

compared with the 7 observations per population required by the

corresponding single -stage procedure ; the corresponding E { N } values of 13.21

and 8.42 are to be compared with kn 21 for the single- stage procedure .

As a consequence of Theorem 4.3 we note that P * is optimal for both of the

Table 5.2 shows for k = 5 ,5 , n =

p -vectors in Table 5.1 since Pti ] + ( P [2] *P [ 3] ) / 2 > 1 .

n = 50 , how E{N (i)} (13i35 )

P [5 ] of the p -vector (P [ 1 ] • P [ 2] • P [ 3] • P [ 4 ] • P [ 5 ] increases

( P [5 ] = 0.45 ( 0.1070.95 ) while the differences P[ i ] -P [ i - 1 ] ( 2 < i < 5 )

decreases as
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TABLE 5.1

Exact distribution of

N ( 1 ) and E{N (i)} (i = 1,2,3 ) andand E { N } for P*

( P [ 1 ] • P [ 2] • P[ 3 ] ) = ( 0.5,0.6,0.7 ) and (0.2,0.6,1.0 )
when K = 3 , n = 7 and

a

P [1 ] = 0.5 , P [ 2 ] = 0.6 , P [ 3 ] = 0.7 P1)-0.2, P[2]) 0.6, P [ 3) -1.0

PIN(1) PIN ( 2 ) =a}| PIN ( 3 ) =a } PIN (1) -a) PIN (2)=a} PIN (3)=a}P

0

1

2 .

3

0.054

0.180

0.173

0.149

0.045

0.123

0.123

0.117

0.018

0.054

0.064

0.070

0.505

0.396

0.079

0.016

0.500

0.200

0.120

0.072

0.014

0.000

0.000

0.000

4

5

6

7

0.118

0.087

0.081

0.158

0.103

0.085

0.109

0.294

0.071

0.066

0.146

0.512

0.003

0.001

0.000

0.000

0.043

0.026

0.016

0.023

0.000

0.000

0.324

0.662

E { N ( 1
3.47

.
.
.

0.62

-
-
-

EN(2 )

-
-
-

4.28

-
-
-

.
.
.

1.22

.
.
.

E { N ( 3 ) }

.
.
.

-
-
-

5.46

.
.
. 6.58

E { N } ( 3.47 + 4.28 + 5.46 )
- 13.21 ( 0.62 + 1.22 + 6.58 ) = 8.42

1 / Abstracted from Table 4.13 of Bechhofer and Kulkarni [1982] ].

Note : The corresponding single-stage procedure (which guarantees exactly the

same probability of a correct selection as p * ) requires seven observations
from each of the three populations .

43



TABLE 5.217

Monte Carlo estimates of EIN (1)! (13755) for
5) p *

for selected (P[1 ]•P [2] ...sP[5]
when к 5 , n = 50 for selected

Monte Carlo estimate of

(P [1 ]•P [2]....,P[5 ]

E [N ( } | E{N (2) E{N(3)} EIN(4)} E[N (5)}

( 0.05,0.15,0.25,0.35,0.45 ) 28.56 31.94
35.99 41.96 49.13

( 0.15,0.25,0.35,0.45,0.55 ) 25.74 29.33 34.03 39.96 49.10

( 0.25,0.35,0.45,0.55,0.65) | 22.33 | 25.90
30.61 37.57 48.86

( 0.35,0.45,0.55,0.65,0.75) 18.99 22.16 27.02 34.91 48.79

( 0.45,0.55,0.65,0.75,0.85) 13.26 15.86 20.40 29.50 48.75

( 0.55,0.65,0.75,0.85,0.95 ) 5.28 6.55 9.39 17.17 48.99

1/ Taken from Table II of Bechhofer and Frisardi [1983] with results for

E{N (5)} added.
.

Note : The corresponding single -stage procedure (which guarantees exactly the

same probability of a correct selection as P * ) requires fifty observations
from each of the five populations .
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TABLE 5.31 )

Monte Carlo estimates of E { N } for pit when K = 5 ,

10 , 30 and 50 for selected (P [1]•P[2]...»P[5 ]

Monte Carlo estimate of E { N }

(P [1] •P[2 ] ....P5]
kn = 50 kn = 150 kn = 250

( 0.05,0.15,0.25,0.35,0.45 ) 34.48 110.28 187.55

( 0.15,0.25,0.35,0.45,0.55 ) 31.54 104.81 178.16

( 0.25,0.35,0.45,0.55,0.65 ) 29.57 98.54 165.27

( 0.35,0.45,0.55,0.65,0.75) 26.15 89.75 151.87

( 0.45,0.55,0.65,0.75,0.85 ) 22.09 75.04 127.76

( 0.55,0.65,0.75,0.85,0.95 ) 17.46 54.40 87.38

1 / This is Table VI of Bechhofer and Frisardi [1983] .

Note : The corresponding single -stage procedures (which guarantees

exactly the same probability of a correct selection as p* ) require

exactly n observations from each population .
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remain equal to 0.1 . While p* is only known to be optimal here for the

p-vectors with

P[ 5 ]
= 0.85 and 0.95 we see that the E { N ( ) ?

E { N ( i ) } (13134)

decrease dramatically for increasing Pr5 ] " always being substantially less

than the n = 50 required from each population by the single-stage procedure

which guarantees the same P { CS ) .

Finally , Table 5.3 shows for K = 5 and n = 10,30,50 and the same

D -vectors as used in Table 5.2 , how E { N } decreases as
P [ 5 ]

increases ;

see Remark 4.3 for an explanation of this phenomenon . Here the E { N } -

values in any column are to be compared with the kn -value required by

the single-stage procedure which guarantees the same P { CS } ; thus ,

for example , each entry in the third column is to be compared to

kn = 250 .

We see from Tables 5.1 and 5.2 that p* tends to sample far less

frequently on the average from the inferior populations than it does from

the superior populations ; this is highly desirable in clinical trials .

Table 5.3 shows that E { N } decreases as the P [ i ] ( Sis 5) increase ;

this is highly desirable in vendor selection where most of the P [ i ]

( 1 < i < 5 ) tend to be large . The results cited in these tables are

typical of those given in the tables of Bechhofer-Kulkarni [ 1 9826] and

Bechhofer-Frisardi [1983] .

Remark 5.1 : General methods for estimating and bounding EE{N (i)} 11sisk )

and E{ N } for p * are given in Jennison [1984] ; these improve on earlier

results given in Bechhofer and Kulkarni [19826] .
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6 . Concluding remarks

We have demonstrated conclusively that
P * has highly desirable

performance characteristics . Very substantial savings in E { N } can be

realized if Pt is used in place of the Sobel -Huyett single- stage

procedure with both achieving the same P { CS } ; these savings increase as

the Pi -values ( 1 Sisk ) increase. In addition pa samples from the

inferior populations far less than from the superior ones thus making it

particularly attractive for clinical trials . Finally , we note that from a

practical point of view , pt is very easy to carry out , and no special

tables are needed for its implementation .
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1. The Method

We begin by introducing notation and stating the main results of Boyd

( 1959 ) and Soms ( 1980a , 1980b ) . Boyd ( 1959 ) showed that if

1

$ ( x ) (2n ) ? exp (-x ? 12) ,. F( x ) = S. & lt ) dt*exp(-x?127 >

Х

and R. = F( x ) /d ( x ) , x > 0 , then

p(x ,Ymin ) < Rx < plx , yax)

where plx,y)= (y + 13/ [ ( x2 + ( 2/1 ) ( x + 1,2,3 + Yx ] , Y,
s

2 / ( 1-2 ) ,
max

- TT -

Ymin 1 , and the bounds are the best possible in the class

{ p ( x , y ) , Y > 1 ) . This is also discussed in Johnson and Kotz ( 1970 , Ch . 33 ) .

Soins ( 1980a , 1980b ) extended the above results and showed that if for arbitrary

real k > O and x > 0 ,

rl ( k + 1 ) / 2 )
fk ( t ) = 4811 +t ?/ k ) - ( k +1 ) /2 , ck

9

1(k /2)(nk )772

F* ( x ) = 1 - F4 ( x ) = f ( t ) dt,

Rx(x) = Fx ( x ) / [ ( 1 +x ?/ K ] fk ! x ) ] ,

for k > 2. Vmax - ack/11-ac ) and Ymin z(k z/e? 1 , and for

k < 2 , ' nin and Ymax are interchanged ,

and

1 +

p ( x , y )
S
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then

p ( x ,ymin ) < RK ( x ) < plX ,Ymax)

or equivalently ,

2 2

-) f* ( x ) p ( x , ymin ) < Ēk ( x ) < (1+ ) f (* )p(x,Ymax )

and the bounds again are best in the same sense as for the normal .

2 , 7 ,Үmax Ymin
It was also shown there that if k = 2 ,

Y2 and Rklx ) p ( x , ya ) .

The numerical properties of these bounds are discussed in the above

references . The important fact to be noted here is that the bounds control

both absolute and relative error . Using the bounds as a starting point

we now develop a simple method of evaluating normal and t- tail areas that

controls both absolute and relative error , as opposed to the usual methods ,

which generally only control absolute error .

We consider estimates of the tail area of the form

cambox) p ( x , ymin ) $ (x) + ( 1
a + bx :-)plX Ymax.و ( 1.1 )Ymax )0(x)c +dx

for the tail area of the normal and

( tox)p(x,Ymin)fķ(x) + ( 1 - atox)p(x,Ymax}f (x) ( 1.2 )

for the tail area of the t . We want the estimates to lie between the upper

and lower bounds for the tail area and be strictly decreasing functions

of x and therefore impose the added restrictions that

bc > ad
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and

03
a + bx

C + dx
< 11 , all x 20.

Since f ( 0 ) = a, we may , without loss of generality , assume that c = 1 and

so our weight functions f are of the type

f( x )
a +bx

1+ dx
( 1.3 )

where 0 < a < 1 , d > 0 , bc > ad , and ģ's l . We then seek that

particular choice of f which minimizes the absolute error . A direct computer

search led to

f( x ) 1:12
.71x

1 +.71x
( 1.4 )

for the normal and

b , X

f ( x ) ( 1.5 )>

1 +bk*

ok
= .70 + 1.82/ k - .2/ k2 , ( 1.6 )

for the t , where , as noted before , k is the degrees of freedom . ( 1.6 )

was obtained by finding the optimal constants for k = 25 , 10 , 5 , 3 , 1.5 , 1 , .5

and fitting a regression line to them . However , in the interests of simplicity ,

and yo
max

for k < 2 , we did not interchange yo and so ( 1.5 ) and ( 1.6 ) are
min

understood to apply for all k with Ymin and Ymax defined as for k > 2 .

Numerical evidence indicates that , at least for k = 1 , the above optimal
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estimate is still a decreasing function of x .

The maximum absolute and relative errors of the optimal estimates are

remarkably constant over the range 1 < k < and hence we only give the

normal figures . For ( 1.4 ) , the maximum absolute error is .66x10-4 and the

maximum relative error is .97x10-3 . We emphasize once more , that , unlike

the usual methods , which generally control only absolute error , the above

controls both absolute and relative error and hence can be used to calculate

ordinary and Bonferroni descriptive levels and ordinary and Bonferroni

percentiles .

As a check , we calculated the standard textbook table of the normal ,

given , e.g. , in Brown and Hollander ( 1977 ) and found at most a difference

of 1 in the fourth decimal place . We also compared the small normal percentiles

given in Abramowitz and Stegun ( 1965 , p . 977 ) to the ones obtained from ( 1.4 )

and after rounding both to three decimal places found that there was at most

a difference of 1 in the third decimal place . Similar results apply to the

t .

2 .
Concluding Remarks

We have given a method of calculating normal and t - tail areas which controls

both absolute and relative errors . The listings of the short FORTRAN programs

are available on request from the author . Preliminary results indicate that

it is possible to improve on the accuracy of the approximations here described

at a modest increase in complexity and these results will be reported shortly .
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THE DESIGN OF A QUANTAL RESPONSE EXPERIMENT :

AN EMPIRICAL APPROACH

Refik Soyer

1 . INTRODUCTION

The U.S. Army Kinetic Energy Penetrator problem has been de

scribed by Mazzuchi and Singpurwalla ( 1982 ) , henceforth MS . Their

objective was to estimate the relationship between the striking velocity

( the stimulus ) and the probability of penetration of a projectile . This

is a quantal response experiment in which the goal is to estimate the

probability of response for a given stimulus .

The strategy used to test the effectiveness of the penetrator is

to fix an angle of fire and then to fire the penetrator at different

striking velocities . After each firing , the outcome , success or failure ,

is recorded .

The equipment used in testing is expensive , and thus testing is

kept to a minimum . Typically , an experimenter is allowed a fixed number

of tests . That is , a fixed number of copies of the penetrator can be

tested at different striking velocities . Therefore , designing the ex

periment in an optimal way is an important issue . In a quantal response
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problem , the investigator is also interested in estimating the striking

velocity (stimulus ) , say V

a

at which the probability of penetration

(response ) is α . Thus , the experiment should be designed in a way

that will provide the investigator with a " good " estimate of the va ,

for a specified amount of testing .

In this report , we attempt to present an approach that may be

helpful in designing an experiment which addresses the objectives men

tioned above . Due to the nature of the penetrator problem , interest

generally centers around V

.05
and V

.95
stimuli at which the prob>

abilities of response are 0.05 and 0.95 respectively . In our anal

ysis , we will focus attention on the former .

2 . AN OUTLINE OF THE APPROACH

Suppose that the experimenter is allowed to test k copies of

the penetrator at k distinct levels of the stimuli . Our goal is to

select the k distinct levels of stimulus in a way that will provide

us a " good " estimate of V

.05

To estimate

V.05
we first estimate the response curve based

on the k distinct firings . The approach discussed in MS is adopted .

Let V < V2 < < uk
be k distinct levels of the stimulus .

k

Since our aim is to select these k distinct levels in an " optimal"

way , different designs have to be considered in the analysis . Because

actual testing under the various designs is not practically feasible ,

our analysis is based on a simulation .
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2.1 Simulation of the Responses

The outcome of a test at Vi is described by a binary variable

i = 1,2 , ... , k
if the target is defeated and XX ,

where XL = 1 X.

i

= 0

otherwise . To simulate the outcome X.

i

of a test at stimulus V

i

we

assume that we know the " true" probability of response at Vi

i = 1,2 , ... , k .

Let V; < V2< < < Vk be the selected levels of stimulus for

the experiment ; then (V1 , V2 : V , ) is the selected design . Let

k

R (v) be the " true" response curve ; the response curves considered here

are cumulative distribution functions . Thus , the true probability of

response Pi at stimulus Vi is R ( V ) . Next we generate a random

variable , V , from a uniform distribution over (0,1 ) and set X

= 0 U. : Thus the outcome for a given

1

i

if U

i

EPI and
>

X

i

design is a k-dimensional vector of O's and i's .

X =

Xk) is obtained , the probabilities ofOnce
( X2 , X23

response , Pi's , i 1 , ... , k can be estimated using the approach>

discussed in MS .

2.2.
Estimation of V.05

To estimate the probability of response ,
Pi

for each>
V

i

i = 1,2 , ... , k , we assign a Dirichlet as a prior distribution for the

successive differences P1 , P2-P1 '
Pk-Pk-1

and the modal value of

the joint posterior distribution is a Bayes point estimate of

(P2 ... ,Ph The computation of the modal value of the joint posterior

distribution necessitates the use of an optimization algorithm ; this is

described by Mazzuchi and Soyer ( 1982 ) .
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The specification of the prior parameters of the Dirichlet

distribution is also discussed in MS .

Once estimates of the Pi's are obtained , an estimate of 1.05

can be obtained by constructing an estimated response curve .
The esti

versus

mated response curve is a plot of the levels of stimulus Vi

ội's , the estimated probabilities of response , i = 1,2 , ... , kthe .

Once such a plot is obtained , the interpolation procedure described in

MS is used to estimate V.05 ·

Specifically , for the estimation of V

.05

we first see if there

is an observed stimulus , Vi , for which fi
= 0.05 . If so , then Vi

is the estimate of V

.05
If not , the pair of observational stimuli ,

say Vi andand Vi+ 1 ; for which fi < 0.05 < fi+1 are determined .

Since the response curve is increasing , the straight line segment

joining the points 0 , Â1 : 6 , P1 +1 @k , 1
will be an in

creasing function of i . We can find the value of the stimulus , say

Î.05.05 , Vi
V, < û

< Û.05 < Vi+1 for which Ộ = 0.05 ( as indicated in Figure 1 ) .

2.3 Comparison of Designs

The goal of our analysis is to select a design ,
(V1 . VR?

>

which will provide a " good " estimate of V.05 ·

In order to determine an optimal choice of the k distinct

levels of stimulus , we consider different designs , and first obtain an

estimate of V

.05
for each design . Let

cum v ) denote design
k

j ; the superscript j indicates a particular design . Once a j is

chosen , we obtain x = (x , xo using the approach discussed in
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0.5
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0.05
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V,

k

Level of

Stimulus

V = 0

i
0

.05

Figure 1 . Interpolation procedure .

mate of 1.05 .

Section 2.2 . Then via the estimated response curve , we obtain an esti

V.05 , say pj
.05

Since the " true" response curve is assumed

to be known , the estimate Ûj
.05

can be compared with the true value of

V.05 ·

If the above procedure is repeated for a different design , a

different response curve is estimated . The various estimated response

curves provide us with different estimates of V.05 ,
and we need to

determine which of the designs gives us estimates which are closest to

V.05 · Note that , since the outcome x = (x , x) for design j

is obtained by simulation , different replications of xi can be ob

tained by using different seeds in the simulation .
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Let

N

be the number of replications which are analyzed for de

sign j . For each replication of x , a different response curve is

estimated and therefore a different estimate of V ûj
say o5(e) ,.05 )

is obtained . Since we know the true value of V

.05 ,
the mean squared

error (MSE ) for design j is computed as

N

MSE { rûj
05 ( e ) - V.05) .

:l=1

The MSE for each design can be obtained and a comparison of the

MSE's provides us with a criterion for selecting a good design . The

design with the minimum MSE is a good design for a known response curve ,

say R; ( v ) It is possible that a design which is good for R; ( v ) may

not be good for R (v) , it k .R , (v ) , it k . This possibility has also been consid

ered in our analysis .

3 . SUMMARY

The approach we presented in Section 2 is applied to some simu

lated data in the next section .

Three different " true" response curves are selected . These

curves are chosen in such a way that they will provide us with different

values of V

.05

The first response curve is specified via a Weibull distribution

function ,

2

R, ( v )
= 1 - exp

{
i

100
where V

.05
- 22 .

The second is via a lognormal distribution function ,
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10%e ' i
4.50

R2 (V )
= 0 where V.05 = 52

0.33

and Φ denotes the standard normal distribution function .

The third response curve considered is also a lognormal distribu

tion function , which gives V.05 10 ; that is ,

of108
- 3.3

- ofRz (v:) 0.6

Five different designs are selected and analyzed .

Design 1 the k observations are distributed evenly over the

entire interval of the range of testing , say I.

Design 2 all the k observations are concentrated on the

left-hand half of I.

Design 3 all the k observations are concentrated in the

center of I.

Design 4
-- all the k observations are concentrated on the

right-hand half of I.

Design 5 the observations are sequentially obtained in

three different phases .

The value of k
is (arbitrarily ) chosen as 12 , and due to the

expense of simulation , ten different replications of x are considered .

The MSE's for each design based on the ten replications are com

puted , on the basis of which it is felt that Design 3 is a suitable de

sign for the estimation of V.05 ·
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4 . APPLICATION TO SOME SIMULATED DATA

The three " true" response curves discussed in Section 3 are

analyzed separately in this section . These response curves are illus

trated in Figures 2 , 3 , and 4 . A replication , simulated from each of

these response curves , is presented in the Appendix for illustration .

We assume that the probability of a response at a striking veloc

ity of 300 is almost 1 . Thus we make an arbitrary choice for our best

prior guess of
Pi say Pi , by letting PT

= 1 exp ( -0.0307 V. )
i

The prior parameters are chosen as described in MS . In our analysis the

smoothing parameter is chosen as B = 19 .

The five different designs presented in Section 3 will be used in

the analysis . In the first four designs , the penetrator is tested in a

single phase . In Design 1 , the 12 observations are taken equally spaced

over the entire range of testing , ( 0,300 ) . In Design 2 all 12 observa

tions are taken equally spaced on the left-hand half of the interval

( 0,150 ) . In Designs 3 and 4 the 12 observations are taken equally

spaced in the center , and on the right-hand half of the interval ,

respectively .

The sequential design , Design 5 , consists of three phases . In

the first phase , six observations are taken equally spaced over the

entire range of testing . Ten different replications of the outcome

vector , X , are examined and the experimenter tries to identify two

regions : one region where the outcome is zero and another where the

outcome is one most of the time . Once these two regions are determined ,

the experimenter has knowledge about the region where the response is
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Figure 2 . Weibull response curve .
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Figure 3. Lognormal response curve I.
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Figure 4 . Lognormal response curve II .

most likely to change . In phase 1 of the experiment a new response

curve is also estimated , and this curve provides the prior values of

Pi's for the second phase . In the second phase , three observations are

taken , equally spaced over the region where the response is most likely

to change , as is indicated by phase 1 and a new response curve estimated

based on these observations and the prior ( the posterior from phase 1 ) .

In the final phase of the experiment , the remaining three observations

are taken on the left-hand end of our best guess based on phase 2 and a

new response curve is estimated using these observations and the prior

( the posterior from phase 2 ) . The estimate of V

.05
is obtained by

using this updated response curve .

The outcomes of the five different designs are presented in the

Appendix , Tables A.1 - A.3 .
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4.1 Analysis for the Weibull Response Curve

The first response curve that is considered is a Weibull distribu

tion function for which V.05 The outcome vector , xj for

j = 1 , ... , 4 . , is simulated using this response curve . Ten replications

22 .

of the outcome vector are obtained for each design . One of these repli

cations is presented in Table A.l of the Appendix . The procedure that

was discussed in Section 2.2 is adopted and the estimates of V.O.
are

obtained . The " true " response curve and the estimated response curve

are plotted in Figures 5 , 6 , 7 , and 8 for one replication , and presented

in Table A.1 . The estimates of V are obtained from these figures .
.05

For Design 1 , the estimate of V

.05

is obtained as îl
.05

= 4 from the

estimated response curve in Figure 5 . Similarly , the estimates of V

.05

for Designs 2 , 3 , and 4 are obtained as û2 = 4
[ 3

10 , and
.05 .05

♡4 = 16 .
.05

For the sequential design , the response curve that is estimated

in the first phase is presented in Figure 9 for the replication presented

in Table A.1 . The response curves estimated in phases 2 and 3 are

plotted in Figures 10 and 11 , respectively . The estimate of V.05 is

obtained from Figure 1l as
0
5

8 .
.05

l = 1 , ... , 10 forOnce the ûjCos (e) values are obtained for

MSEJ can be computed as :Design j ,

MSE)

10

1

10

l=1

ΣΙ vi

22).05 ( e)

MSEL , s for the Weibull response curve are presented in Table 1 .
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Table 1 . MSE's for the

Weibull Response Curve

Design MSE

1 360.1

2 320.2

3 126.2

4 36.0

5 ( sequential ) 196.8

The minimum MSE is obtained when Design 4 is selected ; that is ,

when all k observations are concentrated in the right-hand half of the

interval of the range of testing . The second lowest MSE is obtained

when all k observations are concentrated in the center of the interval

of the range of testing .

4.2 Analysis for the Lognormal Response Curve I

The second response curve is a lognormal distribution function

where V.05 = 52 . Again ten outcome vectors , xiis , are simulated for
>

each design . The response curves are constructed and ůlis are ob

tained . The estimated response curves can be observed from Figures 12 ,

=

13 , 14 , and 15 for Designs 1 , 2 , 3 , and 4 , respectively , for a single

replication . The estimates of V are ū1 Û2
.05 .05

5 ,
.05

and 94
.05

= 18
.05

from the corresponding figures .

ܐܛܕ

E
3 11 ,

For the sequential design , Design 5 , the response curves esti

remated in phases 1 , 2 , and 3 are plotted in Figures 16 , 17 , and 18 ,

spectively . The estimate of V is obtained as ū5 : 9 from Figure 18 .
.05

S

.05
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Table 2 . MSE's for the

Lognormal Response Curve I

Design
MSE

1 2313.7

2 2209.0

3 1714.2

4 1142.8

5 1981.1

The MSE's computed for the lognormal response curve are presented

in Table 2 . As we can observe , the minimum MSE is obtained when Design

4 is selected . The second lowest MSE is obtained for Design 3 .

4.3 Analysis for the Lognormal Response Curve II

The third response curve is also a lognormal distribution func

tion , where V.05
= 10 . The outcome vectors are simulated and the

response curves are estimated as in the previous sections . The ûj
.05

values are obtained using the estimated response curves for each design .

The estimated response curves can be observed from Figures 19 - 22 for

The estimates are obDesigns 1 , 2 , 3 , and 4 for a single replication .

tained as îl = 2 ý2
.05 .05 .05

10 , and= 3 , 03 h4 19 .>

.05

For Design 5 , the estimated response curves for phases 1 – 3 are

presented in Figures 23 - 25 . The estimate of is obtained as

.05

5
5

3 for the sequential design .
.05
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Table 3 . MSE's for the

Lognormal Response

Curve II

Design MSE

1 53.7

2 55.0

3 0.4

4 144.0

5 46.8

The MSE's for the second lognormal response curve are presented

in Table 3 . We can observe from Table 3 that the minimum MSE is ob

tained for Design 3 , where all 12 observations are concentrated in the

center of the interval of the range of testing . The MSE obtained for

Design 4 is the highest among them all .
This indicates that the form of

the " true" response curve affects the results significantly .

5 . CONCLUSION

The application of our approach to simulated data from three

types of response curve indicates that the shape of the " true " response

curve is a significant factor in the evaluation of the estimate of V.05

In real life , the " true " response curve is never known ; therefore the

experimenter should select his design based on his prior knowledge of

the problem . Depending on the shape of the " true" response curve that is

unknown to us , the V

.05
level might be underestimated or overestimated .

9
0



SumoLincos Llic discrepancy 1.:; !ill lindile Lliuli olle unds up willı ü high MSK

for a given design , which is uridesinable .
The results obtained in

Section 4 ind :Lcate that Design 2 , where all

k observations are concen

trated in the left - hand half of the interval of the range of testing ,

lias a tendency to underestimate V.05 On the other hand , Design 4 hus

a tendency to overestimate V.05 For the response curve that is con

sidured in Section 1.3, this caused a high MSU for Design 4. The possi

billity of large discrepancies for these two designs inakes thein undesir

ab.l.c!. The resules of Section 1 il.so indicate that Design 3 , wheru all.

k observations are concentrated in the center , gives better estimates

oli V.05 l.n general. The discrepancies due to overestination or under

@ 8Cimation are not large . This makes Design 3 more desirable than the

others .

However , one should note that there is the difficulty of deter

mining the region where the
k observations will be concentrated .

If

the experiment has to be performed in a single phase , this region can

be determined by using past information available to the Investigatur .

Another possibility is to choose the iniddle portion of the interval of

the range of testing .

On the basis of the analysis made , we can conclude that a design

where the observations are concentrated in a region that provides the

experimenter with more information is suitable for this problem . Theil

fore , in our analysis Design 3 lu suggested as a suitable design for the

estimation of V.05 · However , one should recall that the selection of

the design must always be mide on the basis of prior information that

is available to the experimenter .
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INFORMATIVE QUANTILE FUNCTIONS AND

IDENTIFICATION OF PROBABILITY DISTRIBUTION TYPES

Emanuel Parzen

Department of Statistics

Texas A&M University

S

ABSTRACT . A problem of great importance to statistical data analysts is

quick identification of possible probability distributions for observed data ,

and classification of tail behavior of probability distributions . This paper

discusses the informative quantile function IQ ( u) { Q (u ) - Q (0.5 ) } :

2 { Q ( 0.75 ) - Q (0.25) } , and its use to identify probability models for observed

data and its use to provide concepts of " representative
distributions

" which

illustrate the different types of shapes and tail behavior that real

distributions
can have .

KEY WORDS : Quantile data analysis , informative quantile function , tail

exponents , Weibull distribution , hazard function .

1 . QUANTILE AND SAMPLE QUANTILEFUNCTIONS . The probability distribution

of a random variable x is described in general by its distribution function

F (x ) Pr [ X <x ) , -00 < x < 0 . When F is continuous it is described by its

probability density f ( x) = f ' (x) , -00 < x < oo .

Quantile data analysis (Parzen ( 1979 ] ) describes a probability distribution

by

quantile function Q (u)
= FF- 1 (u) , 0 < u < 1 ;

quantile density function
=

;q (u ) Q ' ( u ) , 0<u< l

fQ (u) =f (F- 1 ( u) ) { q (u) } - 1 ,density-quantile function 0 < u < 1 ;

score function J (u) = - ( fQ ) ' (u) 0 <u< 1

Let X, ,X2,... , x. be a data set . To gain insight into the processes

generating the data we form the sample distribution function F (x) and sample

quantile function Q (u) . In terms of the order statistics Xin = X2n =스 <X

of the sample they are defined by

nn

F (x)
j

n

X

jn
< x < X [ j+1) n

;

Q ( u) j- l cus= j 1 j
< u <

n n

X.

jn

In practice we prefer to use a sample quantilefunction Q (u) which is piecewise

linear between the values

Research supported by the U.S. Army Research Office Grant DAAG29-83- K - 0051 .
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= X , j =1 , ... , n .
jn

For graphical data analysis , we transform Q (u ) to a normalized version, a
IQ (u) , called the sample informative quantile function . The value of IQ (u) ,

as u tends to 0 and 1 , provide diagnostic measures of the type of probability

distribution . An important classification of " type " is in terms of tail

exponents (defined in section 5 , but its concepts are used in the example in

section 2 ) .

2 . UNITIZED AND INFORMATIVE QUANTILE FUNCTIONS . A normalization of the

quantile function which depends only on its shape (and is independent of location

and scale) is

Q ( u )
Hi

=

Q (u)
°1

where 41 Q ( 0.5 ) , 01 - Q ' ( 0.5 ) q ( 0.5 ) . We call Qı (u ) the unitized quantile

function . It is the original quantile function normalized to have value 0 and

slope l at u = 0.5 .

HIOne can distinguish three kinds of estimators of parameters ( such as

and 0 , ] : fully non-parametric ( denoted ūį and õi ] , fully parametric ( denoted

î, and " ô , ], and functional ( estimators ú , and ó , which are the parameters of

smoothed quantile functions u ) obtained by smoothing the raw or fully

non - parametric estimator õ (u) ) . The shape of Q (u) must be inferred before one

can efficiently estimate u and o using fully parametric (or robust parametric )

estimators .

A fully non-parametric estimator of Q (0.5 ) is 0 (0.5) . A fully non

parametric estimator of 9 (0.5 ) is more difficult to define . We therefore

consider quick and dirty approximators of q ( 0.5 ) of the form

Q (0.5 + p )

2p

Q (0.5 - p)

р

where O < p < 0.5. We usually take p = 0.25 ; then we approximate q (0.5 ) by

00.25
2 { Q (0.75 ) - Q (0.25 ) } >

which provides a " universal" scale parameter .

An alternative normalization to Q_ (u) is

IQ (u)
Q ( u )- 0 (0.5 )

2 { Q (0.75 ) Q (0.25 ) }

>

It provides both graphical andwhich we call the informative quantile function .

numerical statistical diagnostics .

Graphically , we plot the truncated informative quantile function
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TIQ (u ) = -1 if IQ ( u ) < -1 ,

1 if IQ (u) > 1 ,

IQ (u ) if ( IQ( u) | < 1< l .

Numerically , we report the values of IQ ( u) at u=0.01 , 0.05 , 0.10 , 0.25 , 0.75 ,

0.90 , 0.95 , 0.99 .

Truncating the values of IQ ( u) in our graphics enables us to see the "middle"

of the distribution . The ends ( tails ) of the distributions are described

numerically by the extreme values of IQ ( u) .

For convenience in seeing at a glance in a plot of IQ ( u) its behavior ,

especially as u tends to 0 and 1 , we plot on the same graph the IQ (u ) of a

uniform distribution ( it is a straight line with values -0.5 and 0.5 at

u = 0 and 1 respectively ) . An empirical example is given in Section 4 .

Example : Super Short Distributions . An important example of a super-short

distribution ( a < 0 ) is X = -cos U where U is uniform [ 0,1 ] . Since -cos tu is

an increasing function of u , the quantile function of x is Q (u ) = -cosmu ,

with quantile density and density-quantile

sin tu

q ( u) fQ ( u )

TT

sin muTT

so do
= -1 .

al V2 ;

-1

As u + 0 , fQ ( u ) v u The distribution is symmetric , in the sense

that q ( 1 -u) = q ( u) ; therefore = -1 . The interquartile range IQR

the informative quantile function is IQ ( u ) (-.35 ) cos u . Therefore IQ ( 0 )

-.35 , IQ ( 1 ) = .35 . These values are taken as typical values of super-short

distributions .

Outlying data value interpretation of IQ ( u ) . The sample informative

quantile function is defined by

IQ ( u) { õ (u ) - õ 0.5 ) } : 01

where = 2 IQR and IQR = (0.75 ) - Q (0.25) . The truncated sample

informative quantile function TIQ (u) is defined to be IQ (u) truncated at +1 .

01

Hoaglin , Mosteller , Tukey ( 1983 , p . 39 ) introduce techniques for

identifying outlying (or outside) data values as those lying outside the

interval

(0 (0.25 ) - ( 1.5) IQR , ( 0.75) + ( 1.5 ) IQR)

We regard as outlying data values those lying outside the interval

( (0.5) - 2 IOR , Q (0.5 ) + 2 IQR)

The fraction of data values which are outlying are represented on the plot of

TI (u ) as values truncated to +1 .
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3 . TABLES OF TAIL VALUES OF INFORMATIVE QUANTILE FUNCTIONS . One use of

the informative quantile function IQ ( u ) of a sample is to determine quickly

probability distribution that might fit the sample . One can readily distinguish

whether the data could be fit by a normal distribution or an exponential

distribution ( and thus determine the " probability of success" if one were to

apply a more formal goodness of fit test ) . However no standard parametric

model may fit the data , and statistical data analysis must identify significant

features of the data "non-parametrically . "

Statistical scientists are seeking to define concepts which illustrate the

different types of shapes and tail behavior that real distributions can have .

Hoaglin , Mosteller , and Tukey (1983 , p . 316 ) use language such as " neutral

tailed (Gaussian ) " and " stretch -tailed ( Cauchy ) . " To describe the notion of

tail weight , they write that it " expressed how the extreme portion of the

distribution spreads out relative to the width of the center . As an index of

tail behavior , they introduce (p . 323)

(0.9) - ( 0.1)} = { 60.75) - 2(0.25) } = 2410 (0.9 ) - T (0.1) }

As indices of tail behavior , this paper proposes IQ (u) at u = 0.01 , 0.05 ,

0.1 , 0.9 , 0.95 , 0.99 . The true values of these indices for various familiar

distributions are given in the tables . These indices are useful for

exploratory data analysis of what's unusual or extraordinary about a data set ,

and help provide estimates of the tail exponents and tail types of distributions

that might have generated the data .

Tail Values of Informative Quantile Function IQ (u)

Standard Distributions

ܐ.

Approximate value of u at which IQ (u )

Distribution
.05u .01 .10 .95.90

.99

.475 .862

.95

.99

.97

Normal

Exponential

Logistic

Double Exp

Cauchy

Extreme Value

Log Normal

Super Short

..862

..311

-1.046

-1.411

-7.955

-1.346

-.310

-.353

..610 -.475

-.292 • .268

-.670 -.500

-.830 -.568

-1.578 -.769

-.828 ..599

-.278 -.278

-.349 ..336

.610

1.048

.670

.830

1.578

.465

1.438

. 349

.732

.500

.580

.769

.382

.895

.336

1.780

1.046

1.411

7.954

0.602

3.178

0.353

.92

.91

-
-
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Tail Values of Informative Quantile Function IQ (u)

Weibull Q ( u) - ( log ( 1-0) -1 ; 8

* - Approximate value of u at which IQ (u) : 1 .

B * .01 .05 .10 .90 .95 .99

.409

ii

.438

.468

.

.500

.1

.2

.3

.4

.5

.6

.7

.8

1.0

.98

.97

.96

.534

.570

..607

.647

.689

.732

.95

.94

.93

.9

1.0

1.1

1.2

1.3

1.4

.778

.827.93

.92

.91

• .735

• .655

..585

..525

-.473

..427

..387

..351

* . , 320

-.292

..267

..245

..225

..207

-.191

..177

-.163

..151

-.140

..130

..121

..112

..104

..097

..550

-.506

..466

..430

..396

• .366

-.338

..312

-.295

..273

-.252

..233

..216

..200

-.185

..172

..159

-.147

..137

-.128

-.119

-.111

-.103

-.096

.505

.549

.595

.646

.701

.760

.824

.893

.967

1.048

1.135

1.229

1.331

1.440

1.559

1.687

1.825

1.974

2.135

2.309

2.497

2.700

2.919

.668

.743

.826

.919

1.024

1.142

1.275

1.424

1.592

1.780

1.993

2,232

2.502

2.806

3.148

3.54

3.969

4.459

5.012

5.635

6.338

7.130

8.023

: 878

: 931

.90

.8
9

.89

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

.88

.88

.87

.87

.987

1.046

1.107

1.172

1.240

1.311

1.386

1.464

1.546

1.633

.86

.86

.85 3.155 9.031

Tail Values of Informative Quantile Function IQ (u)

Lognormal Q (u) - exp 10-1 (u)

Approximate value of u at which IQ (u) • 1 .

* ..05 .10 .90 .95 .99

.5

1

1.5

.96

.92

.88

.86

.84

.82

2

2.5

3

.81

• .408

- , 278

..192

..134

..094

..067

-.047

-.034

..024

..017

..012

-.009

-.006

..004

-.003

..002

..344

-.246

..179

-.128

-.092

-.066

-.0

-.034

..024

-.017

-.012

-.009

-.006

-.004

-.003

-.002

1.600

3.178

6.655

14.449

32.083

72.169

163.511

371.883

847.538

.653

.895

1.223

1.666

2.266

3.077

4.175

5.661

7.673

10.398

14.089

19.087

25.858

35.029

47.452

64.280

.928

1.438

2.260

3.594

5.761

9.284

15.012

24.322

39.454

64.041

103.988

168.886

274.315

445.586

723.814

-
-

-1.107

• .921

•.ווו

-.662

-.571

..498

..437

-.388

..346

-.311

..281

..255

-.232

-.212

-.195

..179

-.165

..153

..141

-.131

-.121

-.112

-.104

..097

u- .01

.80

.80

-.500

..310

-.203

..138

-.096

..067

-.048

-.034

..024

..017

..012

-.009

-.006

-.004

-.003

-.002

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

.79

.79

.79

.78

.78

.78

.78
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4 . EXAMPLE OF SAMPLE INFORMATIVE QUANTILE ANALYSIS . A data set

extensively discussed in a recent book on graphical methods of data analysis by

Chambers , Cleveland , Kleiner , and Tukey ( 1983 ) consists of Stamford ( Conn . )

Monthly Maximum Ozone levels . Sample size n =136 , sample median ū1 = 80 , sample

mean ù = 89.7 , twice interquartile range oi = 147.5 , and standard deviation

õ = 52.1 . Rather than reporting the original data X1 , ... ,n we report the

normalized values ( Xj - u1 ) õ ] which are used to plot Iſ (u) ; a plot of q (u) is

given on p . 15 of Chambers et al . Numerical statistical signals are provided

by the tail values :

u 0.05 1 .90 .95

IQ (u) -.38 -.33 .61 .83

By consulting the table of Weibull informative quantile values , as a first guess

of a distribution to fit this data one takes Weibull with parameter B = 0.8 .

The graph of IQ (u) also suggests to us that a Weibull distribution provides a

good first approximation . How to refine this approximation is a problem treated

by our ONESAM data analysis program.

An alternate approach to modeling this data is to find a transformation to

normality ; one would then report as one's conclusion that cube root of Stamford

Ozone data is normally distributed . We believe that this conclusion must be

considered curve fitting , while a conclusion that the data is fit by a Weibull

distribution with B in a specified range represents a curve fit with scientific

insight (which may help to explain the physical mechanisms generating the data ) .

BELLOZON DATA - TEST FOR WE IBULL 1.8 )
INFORMATIVE QUANTILE • ORIGINAL , UNGROUPED DATA .

ORDER STATISTICS IN QUARTERS

SEQUENCE

VITHIN

QUARTILE FIRST QUARTER SECOND QUARTER THIRD QUARTER FOURTH QUARTER

1

2

3

5

6

7

8

9

10

12

13

14

15

16

17

10

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

-0.4475

-0.4475

-0.3864

-0.3797

-0.3797

-0.3797

-0.3797

-0.3661

-0.3593

-0.3525

-0.3525

-0.3525

-0.3322

-0.3322

-0.3254

-0.3254

-0.3186

-0.2915

-0.2847

-0.2847

-0.2847

-0.2847

-0.2847

-0.2847

-0.2847

-0.2847

-0.2712

-0.2576

-0.2508

-0.2005

-0.2237

-0.2237

-0.2237

-0.2237

-0.2102

-0 . 1966

-0.1898

-0.1890

-0 . 1898

-0 . 1898

-0.1695

-0.1424

-0.1356

-0.1288

-0 . 1288

-0 . 1085

-0 . 1085

-0 . 1085

-0 . 1085

-0.0949

-0.0949

-0.08 14

-0.08 14

-0.08 14

-0.0746

-0.0610

-0.0610

-0.0619

-0.06 10

-0.0610

-0.06 10

-0.0542

-0.0542

-0.0475

-0.0339

-0.0339

0.0

0.0

0.0

0.0136

0.0136

0.0203

0.0339

0.0407

0.0407

0.0475

0.0475

0.0475

0.06 10

0.0746

0.08 14

0.0949

0.0949

0.1220

0. 1286

0.1288

0.1356

0.1424

0. 1559

0.1559

0.1559

0. 1898

0.2102

0.2237

0.2237

0.7305

0.2576

0.2644

0.2644

0.2847

0.2847

0.2983

0.2983

0.2983

0.3051

0.3051

0.3458

0.3593

0.3661

0.3797

0.4136

0.4203

0.4271

0.4475

0.4746

0.4881

0.5085

0.6034

0.6034

0.6 102

0.6305

0.6373

0.7322

0.7593

0.7864

0.6203

0.8271

0.8271

0.8542

0.8949

0.9153

1.0169

1.0047
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5 . TAIL EXPONENTS CLASSIFICATION OF PROBABILITY LAWS . From extreme value

theory , statisticians have long realized that it is useful to classify

distributions according to their tail behavior (behavior of F (x) as x tends

to + c ) . It is usual to distinguish three main types of distributions , called

( 1 ) limited , ( 2 ) exponential , and ( 3) algebraic . This classification can also

be expressed in terms of the density quantile function fQ (u) ; we call the

types short , medium, and long tail .

A reasonable assumption about the distributions that occur in practice

is that their density-quantile functions are regularly varying in the sense

that there exist tail exponents do and aj such that , as u + 0 ,

ao

fQ (u) Lo (u) fQ ( 1-u) L ( u)

where Lj ( u) for j =0,1 is a slowly varying function .

al

= u = u

A function L (u ) , 0< u< l is usually defined to be slowly varying as u+0 if ,

for every y in O <y < 1 , L (yu) /L (u) + 1 or log L (yu) log L ( u) + 0 . For

estimation of tail exponents we will require further that , as u + 0 ,

sd ( log L (yu ) - log L ( u) } dy + 0
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An example of a slowly varyingwhich we call integrally slowly varying.

function is L (u) { log uu - 1 }ß.=

Classification of tail behavior of probability laws. A probability law

has a left tail type and a right tail type depending on the value of do
and

al . If a is the tail exponent , we define :

a < 0 super short tail

0 < a < 1 short tail

a = 1 medium tail

a > 1 long tail

limMedium tailed distributions are further classified by the value of J*

J ( u) :

a =
1 ,

J* = 0 medium long tail

a = 1 , 0 < J* < 0 medium -medium tail

a =1 , J* = O

medium - short tail

One immediate insight into the meaning of tail behavior is provided by

the hazard function

h (x) f (x) = { 1-F (x) }

with hazard quantile function hQ (u) = fQ (u) ; l-u . The convergence behavior

of h (x) as x + is the same as that of hQ (u) as u + 1 . From the definitions

one sees that h* lim h (x) satisifies

X + 0

=

h* = 00

( increasing hazard rate) Short or medium - short tail

O < h * < 00 ( constant hazard rate ) Medium -medium tail

h* = 0 ( decreasing hazard rate ) Long or medium - long tail

Formulas for computing tail exponents . The representation of fQ ( u)

suggests a formula for computation of tail exponents a and ai (which may be
0

adapted to provide estimators from data) .

Theorem : Computation of tail exponents

-O

0 = lim 5. { log fQ (yu) log fQ (u) } dy

uto
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Equivalently

-ao
lim

le (t)
log fQ ( t ) dt - log fQ (p )

р

P + O

Similarly

ai = lim

u + 0

lim [] ( log fQ ( 1-yu) log fQ (1-u) } dy

lim

p + 1
ILP 10g

log fQ ( t ) de log fQ ( 1-P)

Proof :

log Lo (u) .

log fQ (u) = ao log u + log Lo (u) ,

log fQ (yu) log EQ (u) = do log y + log Lo (yu)

si log y dy = -1 , we conclude that

1 ( log fQlyu ) - log fQ ( u) } dy do + o (u)

Since

3

Similarly one derives formula for aj .

Because the density-quantile and quantile - density functions are reciprocals ,

we obtain similar formulas for q (u) which may be easier to implement in

practice :

-do

q ( u) = U

Lo (u)
as uno

q ( u )

-1
( 1-u) 4 (1 - u ),

as u + 1 ;

ao lim 1. ( log g (yu) log q (u) } dy ;

u + 0

01 - 11m 1d ( log g ( l-yu) log q (1-u) } dy .

u + 0

Practical implementation of the foregoing estimators of tail exponents

remains to be investigated . Related estimators are given in Mason (1982 ) and

the papers referenced there .
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ON THE LEHMANN POWER ANALYSIS FOR THE WILCOXON RANK SUM TEST

James R. Knaub , Jr.

US Army Logistics Center

ABSTRACT

The Wilcoxon Rank Sum ( or Mann -Whitney ) Test is among the most useful

and powerful of the non- parametric hypothesis tests . However , as with many

hypothesis tests , when a clear alternative hypothesis and corresponding

power analysis is not present , the practical interpretation of results

using this test suffers greatly . This paper presents and clarifies an

alternative suggestd by E. L. Lehmann in 1953 and provides tables of

practical use which have not prviously been calculated due to computational

difficulties .
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On theLehmann Power Analysis for the

Wilcoxon Rank Sum Test

The Wilcoxon Rank Sum ( or Mann-Whitney) Test is among the most useful and

powerful of the non-parametric hypothesis tests . However , as with many hypo

thesis tests , when a clear alternative hypothesis and corresponding power

analysis is not present , the practical interpretation of results using this

test suffers greatly . This paper presents and clarifies an alternative sug

gested by E. L. Lehmann in 1953 (Annals of Mathematical Statistics [7 ] ) and
provides tables of practical use which have not previously been calculated due

to computational difficulties . This work has recently been applied to survey

data gathered for the US Army Logistics Center . ( See reference [ 5 ] . )

When sample sizes are small , and a power analysis is not available , one may

fail to reject the null hypothesis when the true state of nature is very

different from what is stated in the null hypothesis . With a small sample size

and smalld , it may be impossible to reject H. Further , when sample sizes are

very large , the null hypothesis may be rejected at a very small significance

level when actually the null hypothesis is so nearly true , that it is close

enough for all practical purposes . Taken to the extreme , with infinite sample
sizes , the attained significance level will be zero , even when there is only a

very small , but finite difference between H. and the true state of nature .

Thus significance level can be very misleading if used alone .

o

When a null and a definitive alternative hypothesis can both be stated , and

probability distributions found under each , the results of an hypothesis test

can be stated similarly to a confidence interval if the " point estimate" from

the observed values falls between the two hypotheses . In the case of the

Wilcoxon Rank Sum Test , only one alternative hypothesis has been well developed

and will be presented here. Due to the nature of this test , however , even if

the evidence may strongly indicate that the true state of nature is not bounded

between this alternative and the null hypothesis , this power analysis can still

be used to obtain a reasonable estimate of what the actual state of nature

happens to be . ( In the case of the Multiple-sample Westenberg - type tests of

reference (4 ) , an alternative must be picked such that the true state of nature

is indicated to be bounded by the null and alternative hypotheses . Fortun

ately , that is not the case here , nor was it the case in reference [6 ] , which

is a multi - sample test . )

Consider that the null hypothesis , H. , of the Wilcoxon Rank Sum Test

indicates that P( X<Y ) = 1/2 . That is , under Ho , any value picked at random

from the Y population , is larger than any value picked at random from the X

population , with probability of 1/2 . Here an alternative hypothesis , Hz . is

used such that P ( X<Y ) = 2/3 .= 2/3 . ( The exact form of Hy is discussed in [ 7 ] . )

Graph 1 illustrates a possible configuration for this alternative hypothesis .

For this example , consider that under H. , all observations are taken from a

N ( r , s ) distribution such as the N ( 5,1 ) shown on the left in graph 1 , but under

Hy , the Y sample comes from the N ( r+0.61s , s ) distribution , while the X sample

comes from the N ( r , s ) distribution .

-

1
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Another example of a possible situation satisfying the alternative hypo

thesis , Hz , given approximately by comparing a gamma ( 4,1 ) with a gamma ( 3,1 ) ,

is illustrated by graph 2 .

Note that the Wilcoxon Rank Sum Test is most sensitive to location , a

little sensitive to shape , but not to dispersion ( except as it relates propor

tionately to differences in location ) . Therefore , it is the differences in

location that are of primary importance in graphs 1 and 2 .

In order to determine the probability of drawing a value from distribution

A which is larger than a simultaneously drawn value from distribution B , the

following may be used :

p = falt ) dtdx

X = -00 tex

where f and fe represent density functions .

For the case where A and B are both gamma distributions ,

r + 1

BB-'1 - BA
р

BB

- A -AB
lax + ap - 2 - r ) !

(on -15 rei Tag - 1 - r )!
( [QA + BgJ/ BABB ?

aAtap- 1-1
B

For gamma ( 4,1 ) and gamma ( 3,1 ) , P 21/32 0.650 .

For normal distributions , use [ (HA - Mp)/Vo + o ) , as in the Church-Harris
Downton ( C-H-D ) method of missile motor satety testing [ 2 ] . ( Note : This

reference to the C-H-D method should not be construed as the author's endorse

ment of this method for the purpose of missile motor safety testing . )

The calculation of power under this alternative involves a summation over a

typically large number of products . Calculation of this value can become

extremely time consuming , even for a high speed computer. A program was

written for the author at White Sands Missile Range which will calculate these

exact values , however , in general , the sample sizes must be very small .

Recently , however , the author constructed a simulation which provides estimates

of the power for much larger sample sizes . A number of the " products" men

tioned earlier are calculated and the mean is computed . The number of products

involved in the exact calculation can be determined , and it is multiplied by

this mean . Comparison to values calculated exactly ( when practical ) , and a

study of the sensitivity of the results to increased replications , as well as

comparison to other simulated values bounding the results in the tables, led to

the use of from 1 to 20 million replications to simulate values for the tables

found in this paper . (Work has been done , reference [ 3 ] , to determine the

number of simulation replications needed under less radical circumstances .

Here , however , a larger number of replications appears necessary . ) ( For n = m
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= 50 , up to 35 million replications were used . It appeared , however , that

fewer replications using a number of different seeds yielded mean answers which

more quickly converged to reasonable results , especially when using antithetic

seeds . )

In the tables , n is the sample size of the X sample , mis the sample size

of the Y sample , RS is the rank sum for which type I and type II error proba

bilities are calculated , PA is the former of those probabilities , and PB is the

later . Specifically , PÅ is the attained probability of making an error ifFH.

is rejected , and PB is the attained probability of error if Hy is rejected ,

both corresponding to the same RS value . RS is always calculated by adding the

ranks of the Y elements in the comb in ed sample . Note that for smaller sample

sizes , power +PB is noticeably larger than unity due to the discrete nature of

this test . That is , the probability of obtaining exactly the event observed

( and no other) is non-zero .

Three significant digits are given for PA and only two for power and PB

simply because it takes fewer replications of the simulation to satisfactorily

obtain a value for PA than for the others .

From the annex to table 1, it is found empirically that if x is the size of

each of the two samples , and f (x) is the probability of a type II error

under the alternative used here; adjusted to correspond to a specific signif

icance level , then , as a continuous representation of actually a discrete process ,

fo.10 ( x ) exp ( -x/ 16 )

for at least 3 < x < 40 , and perhaps this approximation could

be trusted for x = 45 or larger . However , extrapolations are always more

dangerous than interpolations , so caution is advised for further extensions .

For a = 0.05,

f0.05 (x) exp ( -x/[ 26exp 720 -x )
5x

for at least 4 < x < 40 , and perhaps for x substantially larger . Using this

approximation , it is conjectured that for n = m = 66 , when PA is approximately

0.05 ( RS = 4751 ) , then PB for this alternative is also approximately 0.05 and

the true state of nature would then quite safely be said to ( probably ) lie

between the null and alternative hypotheses . (At the 0.1 probability level for

PA and PB , this could be said when n = m = 37 , and RS = 1507. ) An extrapola

tion to n = m = 66 is questionable , however , and further extrapolation is not

advised . Computer simulation for n = m = 50 indicates that for the top curve

( PA = 0.05 ) in Annex I to table 1 , true values in this area for PB may be

somewhat smaller than this curve predicts . For PA = 0.10 , PB values for large

n and m may be somewhat larger than predicted .
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In Conover's book ſil, an approximation is given to find RS for a given PA

value . ( RS m ( m + n + 1 ) / 2 + X7-cVmn (n + m + 1)/ 12 , where x1 -a is from

the table of the cumulative normal distribution .) The two functions given

earlier can be used to estimate PB values when PA 0.10 or 0.05 .

The final graphs , 3-7 , are taken from work the author directed at White

Sands Missile Range in order to study this alternative for the Wilcoxon Rank

Sum Test with emphasis on simulation validation for missile flight simulations .

When comparing a very few live firings to a substantially larger number of

simulations for each scenario , it can be seen from these graphs that once one

sample is substantially larger than the other , increasing the larger sample

size further does very little to improve the power . These graphs are contin

uous representations of what are actually discrete points . The values for

those points were calculated analytically as noted in the acknowledgements .

0.1 ,

くく

Finally , when nem , PB can be bounded using the exponential formulations

found earlier in this paper . If , for example , RS is such that PA = and

Xy , is the smaller of n and m , and xz is the larger , then one has that approx

imately exp ( -x2/ 16 ) < PB < exp ( -xy ) , with PB somewhat closer to

exp ( -x7 /16 ) , especially when X , « X2:

For larger sample sizes than are handled here , parametric methods may be

used . However , in addition to the probability of error associated with any

conclusion drawn from a parametric test , there is the additional risk involved

in assuming the distributional forms used in such a test . Hypothesis tests

should also be used to study these distributional assumptions to provide a more

complete risk analysis .

EXAMPLE :

Consider two sources of data , X and Y , where it is suspected that Y may

represent a population of larger location than X , but this is not clear . If 11

observations are taken from the X population , and 19 observations taken from Y ,

then the critical value of the rank sum ( RS ) of the Y sample observations

within the combined sample which represents the point at which rejection of the

null hypothesis would occur using a = 0.10 , is approximately

RS ? m ( m + n + 1 ) / 2 + 1.2816 /mn(m + n + 11/12

( 19 ) ( 31 ) / 2 + 1.2816 / 719 )711) ( 31 ) / 12

324.3

Therefore , if RS > 325 , H, would be rejected at the al = 0.10 level . However ,

should RS =

325 , and H. not be rejected, then the probability of making a type

II error with respect to the alternative hypothesis illustrated in graphs 1 and
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2 is approximately bounded by exp ( -19/16 ) and exp ( -11/16 ) , so 0.30< PB<0.50 .

Note that , from table 2 , when PA = 0.099 , PB ( 10,20 ) 0.43 .0.099 , PB ( 10,20 ) = 0.43 . Using 4,000,000

replications in the program given in Appendix A , for m - 19 , n = 11, and RS =

325 , resulted in PA = 0.100 and PB = 0.42 .
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Table 1

n = m RS PA PB

3

3

5

5

5

5

5

10

10

10

10

10

15

15

15

15

20

20

20

20

20

25

25

25

25

30

30

30

30

35

38

power

12

14

15

32

34

35

36

39

122

123

127

128

136

264

265

273

289

458

459

471

472

496

704

705

723

758

1002

1003

1027

1073

0.350

0.100

0.050

0.210

0.111

0.075

0.048

0.008

0.108

0.095

0.052

0.045

0.009

0.101

0.094

0.049

0.009

0.101

0.096

0.051

0.048

0.010

0.101

0.098

0.050

0.009

0.101

0.099

0.050

0.010

0.62

0.27

0.15

0.54

0.37

0.29

0.21

0.05

0.52

0.49

0.36

0.34

0.13

0.63

0.61

0.47

0.21

0.71

0.70

0.58

0.57

0.30

0.79

0.78

0.66

0.38

0.85

0.84

0.74

0.47

0.56

0.85

1.00

0.55

0.71

0.79

0.86

0.97

0.51

0.54

0.67

0.69

0.89

0.39

0.41

0.55

0.80

0.30

0.30

0.43

0.44

0.71

0.22

0.23

0.35

0.63

0.16

0.16

0.27

0.54

1383 0.050 0.79 0.21

1587 0.100 0.91 0.09
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Table 2

ng

nem RS PA PB

5,10

5,10

5,10

5,10

5,10

10,5

10,5

10,5

10,5

10,5

5,25

5,25

5,25

5,25

25,5

25,5

25,5

25,5

10,20

10,20

10,20

20,10

20,10

20,10

5,50

5,50

5,50

50,5

50,5

50,5

10,50

10,50

10,50

50,10

50 , 10

50,10

power

85

91

92

94

99

45

51

52

54

59

412

418

429

430

102

108

119

120

340

348

363

185

193

208

1444

1457

1480

184

197

220

1590

1608

1643

370

388

423

0.297

0.103

0.082

0.050

0.010

0.297

0.103

0.082

0.050

0.010

0.094

0.048

0.009

0.008

0.094

0.048

0.009

0.008

0.099

0.050

0.009

0.099

0.050

0.010

0.105

0.050

0.008

0.105

0.050

0.008

0.101

0.051

0.009

0.102

0.051

0.009

0.70

0.42

0.37

0.27

0.10

0.71

0.41

0.35

0.26

0.08

0.45

0.33

0.13

0.12

0.44

0.29

0.09

0.08

0.58

0.44

0.20

0.59

0.44

0.18

0.50

0.36

0.14

0.50

0.32

0.09

0.65

0.52

0.26

0.68

0.52

0.22

0.35

0.63

0.68

0.77

0.93

0.34

0.65

0.70

0.79

0.95

0.57

0.69

0.88

0.89

0.59

0.73

0.92

0.93

0.43

0.58

0.81

0.43

0.58

0.84

0.51

0.65

0.87

0.52

0.69

0.92

0.36

0.49

0.75

0.33

0.49

0.79
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APPENDIX A

FORTRAN CODE FOR

SIMULATION :

" LEHMANN POWER ANALYSIS

FOR THE .

WILCOXON RANK SUM TEST"

( LPAWRST )
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1.1

o
Q

" 111

C

C " I

10

7

101

C.
1.

"102

।

100

* 105

INTEGER PREVC 317 ) ...

DIMENSIUN TIIVOUS,TEXTC1000 ) , 17( 3 ) ,MIN ( T7) ,MAX13177
LOGICAL | FLAG ( 3.1.7 )...

REAL4 1.11 , " INVAL , MAAVAL

REALY BOUND ( 318 ) ., XX.PS..TPS, PIPS , PAC , PRY... C2 , CI , PAC?

phc3 , PUCH

DATA ISLF.0 / 781252IVIRZIY1254 ,
M = 0 .

WRITE ( 19,111 ).

FUP i111 ( 1X , LEIMANIN POWER ANALISIS FOR THE WILCOXON

RANK SUH TESTLPAWRST )

WRITE ( 19,1 )

WRITE (6,1 )

FORHAT (1X, ENIEK NO . OF OUSERVATIONS, NU , YO )

READ ( 5 ... + NOUS , NX.

WRITE ( 19 , )NOUS , NY

WHILF .(19,100.

PRINS 101

FORMAT ( 1X , INPUT_TEST_STATISTIC ).
READ ( 5 , * ) IX

WRITE.CLS. 2X

RITE ( 19,102 )

· PHIIT 102

FUMBAT( 1X ' INPUT NO . OF REPLICATIONS

REAL ( 5. ) IREPO .

WRITE ( 19 , * ) REPS

IS1) FRANCISEFUL

JYRNK = 0

DU 105 J = 1,311

FLAG ( U ) = FALSE .

CUI: 1 INIE

MINVAI = 1 ( 1 ) * ILIR

VAXVAL = 0

DU 10 J = NUAS

ISJ ) =RANCISLED )

11 ( 1 ) : 1 ( J ) * IDIR

IF ( ! ).(.1 )...CIAXVAL)MAXVALO110.1 ) ;

IF ( I1 ( 1 ).T.INVAL )MINVAL = 11 ( 1 )

CONTINUE

J=J - 1

NUNOJ

X = NUM

NCELLS = ( X ? ( SORT ( X ) ) ) + . 5.

RANGE = NAX VALMINVAL

TUUR ( 1 ) = :11NVAI,

XXEK Ali Git /NCELLS

DU ON 1 = 2 , NCELLS

BUURD ( J ) = WOUND ( J - 1 ) + XX

CONTINUE

HUVID ( CELLS + 1 ) = " AXVAL

DU 50 JEI ,NUM

XX = 1 ( J ) IUIR

DO 70 JJ = 1 ,NCELLS

TrixxiGei .NUNUC JUDAND.XX.T.T.DOUNDCJJ* 17 ) GO TO 75

CONTINUE

JJEJJ - 1

IF (FLAG ( 11EU..FALSE , THEN

MIN (JI) = J

MAX ( JJ ) = J..

FLAG ( JJ ) , IRUE ,

1
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í " 20

C

( " 30 UJJEJ

3
3

*50

21

X

10

r.

40

END IF

ii ) = xx

U1 ( 2 ) : 1 (MINGJU ) ) UIDIR

II ( 3 ) : 1 (MAX ( 1J1 ) ) * IDIR

IF ( II ( 1 ) .LF.. !! ( 21 ) THEN

MEXT ( ) : MIN ( JJ )

HATH ( JJ ) = J

ELSE IFili (1.67,11 ( 3 ) ) THEN

NF.AT (MAX . )

HM ( JJ ) = J

ELSE

PREV (JJ ) =HIN ( JJ )

K =WFXT (AIN ( JJ

I1 ( 1 ) : 1 ( J ) + IDIR

II.( ? ) - 1 ( K ) IDIR

IF (I1 ( 1 ) .12.11 ( 2 ) ) GO TU 30

PREV ( JJ ) : K

K = EXT ( K )

GO TU 20

NEXT ( PREV ( JJ ) ) = J

NEXT ( J )ER

END IF

CONTINUE

L= 0

PS : 1 ,

IIY = 0

DU HOJJE ! CELLS

IF ( LAG ( JJ ) .EU..FALSE , ) GO TO 80

KEMIH ( JJ )

ITY = I1Y + 1

If' ( ^ . LE.NY ) THEN

+ 1

TYKMK : LYKNK + IIY

PSEPS. ( I1Y + 1,-1 )7100 .

IALPMOY '

ELSE

JALPH : ' X

END IF "

HRILE (6,2 ) ( K ) , ALPH

FORHAT ( IX , F15,7,5X ,A1)

IF ( EO ,MAX (JJ ) ) GU 10 80

KWEXI ( K )

GU 10 40

CONTINUE

* RITE (6,3 ) IYKNK

FORMAT ( 1X , SUM OF Y - RAIKS :

IF ( IIP.N.K.GE.IX ) X = M + 1

IF ( TYKNK.L.O.IX ) THEN

PTPS :PTPSPS

NPIPS =IPTPS + 1

END IF

IF ( TYRAKLE , IX) GU TO 200

IPS = [ "' S + PS

VPTP:; = 11P5P8 * 1

ITPS =NIPS + 1

PTPSPTPS PS

ITRACKET PRACA I

XN = 14

CIFCUPACK - IHCPS ) 100,201,201

XHUIS IOUS

1
XNYANY
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CI = IKEPS

PA = XH /C1

XRIPSETOS - XNIEo

O

M

С

С 00_203لایدارنالا
00

3

Ĉi " 203

©

WRITE ( 19 , ) XNIPS

XNPTPS =NPTPS

IF ( TPS , F.0.0 . ) THEN

ATPS : ,

' ELSE

ALPSEPSZYNTRS

END IF

IE (PIPS , t ? .02IHEN

APTPS :0 .

ELSE

APTPS: PIPS / XNPTPS

ENDIF

C2 = ( ANONS + XNY ) + ( 10 , * + 20 )

- 1 .

XI : IL

C2 =C2 * ( XivO05 + .XIY - X1) 2100

CONTINUE

W JIE (6 ) C2

XNYF= 1 .

PH : AIPSIPA

PyDEAPTPS + PA

PBC1 : 12.j) ( 10 . **20 )

PBC2 = ( 2 . ** 30 ) POP

PBC ! :(10 , * + ? * 2 , ** (NY -60 ) ).

PB04 = POC3 / 02

POWEREPBCI PBC2# PUC 1

WRITE ( 19 , * ) ITY , L , PB ,C2

IE (ATLS.E.U.0 . ) THEN

Po: V .

ELSE

POEPOER ( PN / PBP ) + ( ANTPS/ XM )

END IF

Po : 1.0 - PO

WRITE ( 6 , * )PA ,PUWER , PD

ARITU ( 19 , * ) PA ,POWER , PB

STOP

END
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ADDENDUM

Multiple applications of this test can be used to compare two levels of a

factor under a number of conditions . If , for example , manufacturer A produces

a machine which is suspected to have higher reliability under most scenarios

than a similar machine made by manufacturer B , then under each of the y

scenarios , m , is the sample size of A's machines and ng is the sample size

of B's machines, for 1 = 1 to g . PAy and PBycan be calculated for each of the

scenarios . Consider olacyConsider 0 Sasy and O303Y

PA 1s the probability of a or . more PA , ' s being less than PA

( t = 1 ; ), when He is true .

PB is the probability of b or more PB , ' s being less than Po

( t = 1 , y ) , when Hy is true .
Therefore ,

PA I
l

and

xča ( ) - Pabr-*

Ž (at) på ( 1 - Pg)***
PB

x= b

Pe and P

Eases .
B

are chosen to be reasonable considering sample sizes for each of the y

If
PA

PB
- 1 then the evidence shows that , in general , the true state of nature

is just as 11kely to be equivalent to Hy as H.

If

PA

PB = 2 then the evidence indicates that , in general , the true state of

nature is twice as 11kely to be equivalent to Ho as Hy . If På and

PB are small , then the indication is only that the true state of

nature is closer to H. than Hy , although possibly not very close

to either .

(Note that another paper in this conference , " Numerical Validation of

Tukey's Criteria for clinical Trials and Sequential Testing, " by C. R. Leake ,

also deals with this type of problem , and was of interest to this author .)
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At this time , this methodology is being used to determine whether survey data

from a presumably less reliable source is compatible with a presumably superior

data source . Difficult to obtain data on U.S. Army warehousing activities have ,

as one obvious characteristic , a very flat "peak ." Therefore , a sample median

value can be changed drastically by the addition or deletion of one data point .

If the secondary data source proves to provide values distributed closely

enough to that of the primary source , the advantage of including this source

may outweigh the disadvantage. The current situation is more complex

than this . However , some results employing the methodology of this addendum .
have been realized .

ADDENDUM 2

.

Two approximations for the power of this test which apparently are good

for a wide range of normal alternative hypotheses are to be found in

E. L. Lehmann , Nonparametrics: Statistical Methods Based on Ranks , Holden -Day ,

1975. Although restricted to normal alternatives in the format in which they

are written , these approximations can be used to extend the tables given here

to larger n and m . The easier of the two approximations to apply , in its

simplest form , is found on page 73 of the above reference and is essentially as
follows :

A - MB
power

[

3mn

(m + n + 1 ) X1-a ?

where in our case we have (wa - Mb) / o ã 0.610 .

11 ) ,Note that in the example in the main body of this paper (m = 19 , n =

that this approximation gives power * 0,60 , which is consistent with what

was shown earlier .
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COMPLEX DEMODU LA TI ON A TECHNIQUE FOR ASSESSING

PERIODIC COMPONENTS IN SEQUENTIALLY SAMP LED DA TA

Helen C. Sing , Sander G. Genser , Harvey Babkoff *,

David R. Thorne, and Frederick W. Hegge

Department of Military Medical Psychophysiology

Division of Neuropsychiatry

Walter Reed Army Institute of Research

Washington , D. C. 20307

Bar - Ilan University

Ramat -Gan , Israel

ABSTRACT . Circadian and other rhythmic components in data obtained from a

sleep deprivation study are detected and characterized by complex demodulation

( CD) . The output of this analytical technique yields both frequency and time

domain representation of each periodic component of interest . Non - stationarity

introduced by an experimental treatment such as progressive sleep loss , may be

observed and quantified .

The analytical results provide a common basis of comparison for data as

diverse as cognition responses from a performance assessment battery ( PAB ) ,

moodscale scores , and physiological data such as oral temperature .

The procedure operates on the entire data set and variance accounted for

by each component may be calculated .

I. INTRODUCTION . Our laboratory has been involved in probing the problems

dealing with sleep discipline that are directly pertinent .to soldiers in

battlefield situations . In the process of conducting a series of experiments

of continuous sleep deprivation over 48 and 72 hours , a massive amount of data

has been collected ( 1 ) . These data sets are of such diverse nature as

electrocardiography , actigraphy based on measurement of movement on a non

dominant wrist , oral temperature , self scored reports of mood/activation and

cognitive /visual difficulties , a computerized battery of performance assessment

tasks , and a computerized lexical decision task .

Taken in synchrony , these data have in common the characteristic of equal

interval time sampling , whether imposed or extractable , that is to say ,

temperature , test results , self reports are taken at scheduled intervals while

continuously recorded data such as electrocardiographs and actigraphs may be

extracted with the same time intervals .

How can their commonality in time be exploited so that the subtle changes ·

from an intervention , i.e. , sleep deprivation , may be observed in each type of

data , and what are the relationships among data sets .

Standard statistical analyses such as ANOVA , MANOVA , etc. , are helpful in

pointing out general significance or non significance among data sets but are

not helpful in pinpointing exact locations of similarities or differences in
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the time oriented dimension . Other time series analyses such as Fourier

transforms , auto or cross correlations are global in nature and again do not

yield local parameters .

Towards this end , we have taken a technique more commonly used in signal

analysis and adapted it to our specific needs so that the resulting analysis

provides information on an epoch by epoch basis over the entire sampling period

[ 2,3 ] . We have made some simplifications , perhaps taken some liberties , but

our emphasis has been more on practical applications rather than on

mathematical rigor . Nevertheless , our analyses have yielded faithful

approximations to the original data sets and have provided us with the local

parameters of power , amplitude , phase , and remodulate for each epoch ( 4 ) .

II . THE METHOD OF COMPLEX DEMODU LA TI ON ( CD ) .

The data set comprising measurements taken in equal time increments

( epochs ) , is given as :

X( t )
* 1 X2

X

N
( 1 )

where each x element is the value of the measurement at that epoch and X1
is

the first epoch value at time , t = 0 . The epoch length may be 1 minute , 15

minutes , 1 hour , etc. Although oral temperature was taken hourly and ECG and

actigraph epoch lengths were less than 1 min for the data collected here , the

computerized tasks were given at alternate hour intervals . The epoch length

used in the CD analysis for all data except the computerized tasks was 1 hr ,

while a 2 hr epoch was used for the computerized tasks . However , comparisons

of all data types were standardized to 2 hr epochs .

Subtraction of the data series ' mean value from each epoch datum yields

the set :

Y( t ) = 1 * 2

(2)

N

where

N

yz = *1

Z
I
N

តិ
Σ καιх ( 3 )

1 = 1 , 2 , .... N

The new data set oscillates around the mean level or what is commonly referred

to as the " zero frequency " .

Time series are implicitly infinite in length , but actual analysis of

data requires a finite set of data and hence we are faced with abrupt

truncation at the beginning and end of the data set which has consequences of

" end effects " resulting in distortion of local parameters at these locations

-

132



after analysis . Our experience indicates that these end effects may be

minimized and or eliminated by extending the data sets at both these locations

in the following way :

z( t )
Ym : Ym - 1 ' ••• Y Y1 Y2 ' • YN YN YN- 1 ' ••• YN-k

( 4 )

4

where

m = number of folded-out data epochs

k = m 1

This is reasonable in light of other alternatives , one of which adds zeroes to

both ends ( 5 ) . The number of data points folded-out varies according to the

length of the data set . Our rule has been to use 20% of the total values if

the series is long (> 100 epochs ) , and 5% , if a shorter segment .

All subsequent mathematical operations are made on the folded-out

series . However , the final output retains only the parameters of the original

epochs for statistical analysis and display .

Mapping of each data value to the complex domain follows with generation

of real ( re ) and imaginary (im ) components for each epoch in which the

arguments of the respective functions contain the frequency to be elicited .

These functions are :

2 ( re ) = y1- Yu • cos2 fyt/s
( 5 )

i

( im)
i

= y
1

sin2 T f.t/ s

j
( 6 )

where

i = 1,2 , .... N + 2m ( indexed for extended data set )

f

= jth frequency selected for demodulation ,

j = 1,2 ,1,2 , ...... s/ 2

t = 1 - 1

s = number of epochs sampled in the chosen period , T

For example , if period , T = 24 hr , frequency to be demodulated = 3 cycles , and

sampling rate = 2 /hr , then

fj/s = 3/ ( 24• 2 ) = 3/48

Since our procedure involves incremental sampling time of equal intervals , then

t increments by 1 from time zero , which corresponds to the first data point .
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Implicit in each datum is the collective value of all inherent

frequencies contained in the series . Multiplication by the sine and cosine

terms preserves not only the frequency demodulated , but also generates

additional frequencies from the sums and differences of products between the

modulating frequency and the inherent frequencies . This transforms the data

from the time to frequency domain and visualized as a Fourier spectrum , places

the frequency being demodulated at the zero frequency position . In a step-wise

process , each frequency of the period chosen ( in our cases , we have generally

used the circadian period which is the 24 hr cycling most common to man ) may be

individually demodulated .

For a given data set , the highest frequency demodulable is the Nyquist

frequency ( 6 ) and is equal to one-half the sampling rate , i.e. , sampling at

hourly intervals in a 24 hr period allows demodulation of frequencies i

through 12 per day . This limitation is due to discrete equal sampling

intervals in which frequencies higher than the Nyquist are enveloped by lower

frequencies with which they coincide at crossover points , and are therefore

" aliased " and not true frequencies .

Extraction of the desired frequency at the zero frequency position

necessitates exclusion of not only the sums and differences of the products

mentioned above , but also of other noise constituents . This is accomplished by

a filter which is moved sequentially along both sine and cosine components of

the series first in a forward pass , then a reverse pass and the entire process

repeated . The forward pass causes a shift of one in the data set which is

corrected by the reverse pass , thereby preserving true phase values . The

filter employed in this process is exponential and consists of two parts :

F, - (A2 + B2312 Part 1 ( 7 )

F2

-Q

= e Part 2 ( 8 )

where

A = 1.0 - -2 cos2 TT y / S ( 9 )

-

B = e sin 27 y/ ( 10 )

and Y = gain factor ( variable from 0.1 to 0.9 )

a = 2 TTS

s = number of epochs sampled in the chosen period

The gain factor , y , may be varied from 0.1 to 0.9 depending on the magnitude

of the original data values i.e. , smaller values require higher gain . Direct

comparisons of different records require that the same gain factor be used .
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A new value is obtained for each datum in the series as a consequence of

filtering so that for the forward pass :

z

6 * 2.
30

2 (re) 24(re ). F1 + 21-1 ( re ) . F2 ( 11 )

zi (im ) 2 (1m)• F, + 21-1(1m ). F2
( 12 )

i - 1,2 , ....N + 2m (indexed for extended data set )where

and for the - reverse pass :

2 * + 20 24 + 20

( 13 )
21-1 ( re) - 21-1(re ). F1 + z (re). F2

21-1(1m) - 21- (1m ). F. + 3"(1m). F2
( 14)

where 1 = N + 2m , N + 2m - 1 , .... 2

The low pass characteristics of this filter allow passage of power at and

near the zero frequency in the spectrum while excluding other frequencies .

Inevitably , there will be some " leakage " of power from frequencies located

adjacent or near to the zero frequency position . For this reason , in our

analysis of human data where the strongest frequency is the circadian ( 1 cycle

per 24 hr ) , epoch values obtained from remodulates ( to be defined shortly ) of

frequency 1 , are substracted from their corresponding values in the folded-out

data set before demodulating in the usual way for all subsequent frequencies .

In practice , the filter operation involves summing a proportion of each

epoch value with a proportion of the previous one . The outputs of each filter

pass are used as new Inputs for the next pass in the reverse direction .

The final outputs from the filter operations are used for computing the

local parameters or properties of each epoch . These are :

Power : ( 15 )

Amplitude : ( 16 )

P4 - 2.0[ <?( re) + 2*?(10)]

1/2

- arctan [z (in )/z" (re)

Remodulate : R 2.0 [ z " ( im) sin2wf, t/ s + z (re) co82nfyt/s )

Phase : ( 17 )
1

( 18 )

where 1 = 1,2 , ..... N ( indexed for original data set )

f

j

= demodulated frequency , j

j 1,2 , ...... , 5/2

t = 1 - 1

8 = number of epochs sampled in the chosen period
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The remodulate values , after truncation of the folded-out epochs at the

beginning and terminus of the data series , comprise a smoothed function of the

desired demodulated frequency with the proper phases . The remodulates are used

in all subsequent comparisons . Peak and trough amplitudes and their

corresponding real times may be determined over the entire length of the series

for every frequency demodulated . Actual length ( in hours ) of the circadian

period may be calculated either from peak to peak , trough to trough , or zero

cross over points depending on the interest . Instantaneous changes in phase

( from phase plots ) signal changes in period length , i.e. , frequency , and may be

detected from records taken over several cycles .

III . ILLUSTRA TI ONS .

Graphical representations best illustrate the method and results of the

various types of data we have analyzed .

Figure 1 ( top ) depicts the original data series and ( bottom ) illustrates

how the data set is folded out at the beginning and terminal ends .

Figure 2 is the representation of transformation to the complex domain of

sine and cosine components of the data set with the circadian ( 1 cycle / 24 hr )

filtered output from these superimposed in heavy outline .

Figure 3 summarizes the CD procedure , as plots , from the original input

data to output parameters of amplitude , phase , and remodulate of the ciracadian

component along the time scale in epoch intervals .

In our 72 hr sleep deprivation study , the subjects ' oral temperatures

were converted to z-scores to facilitate comparisons across subjects . Since a

strong linear component with negative slope was observed over the 3 days '

running , CD was performed on the residual ( fig . 4 ) from the least squares

regression of the 2-scores . Frequencies of 1 through 12 cycles per day (cpd )

were demodulated and plots of their remodulates generated . Some of these plots

are presented here . Figure 5 shows the circadian with its daily rhythmic

cycling of temperature rising slowly during the morning , peaking in early

evening and then dropping to its lowest point usually between 2 and 4 A. M.

Moreover , there is broadening of wave shape on the 2nd and 3rd days of sleep

deprivation , indicating changes in phase and period . There is an accelerated

decline at the close of Day 2 in the raw data and this is reflected in the

steeper trough for the circadian rhythm . The remodulate of 2 cpd shown in

Figure 6 may represent the post-prandial dip that is sometimes seen as bimodal

in the raw data . Figures 7 and 8 are the 4 cpd and 12 cpd components

respectively . Increase in amplitudes of higher frequencies components may be

signals of intrinsic system instability i.e. , subjects ' reports of feeling cold

despite normal room temperature , of appetite loss , and of eating and

drinking Summation of the circadian remodulate with the 2 cpd is presented in

Figure 9 and of all remodulates in Figure 10. Note that in the final summation

( Fig . 10 ) , there are no ' end effects ' distortion and the summed remodulates

follow the raw data shaping almost identically .

-
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The variance accounted for by each individual frequency demodulated
ang

by cumulative frequencies are given as R - squared values in Table 1. These RC

values are derived from regression of each remodulate with the original

detrended data set . The total power from the summed data epochs for each

frequency is listed in Table 2 along with the cross correlates of each

remodulate frequency with the detrended data set . The cross correlates are

measures of peaks and troughs correspondence between the original detrended

series and each of the remodulate frequency .

Other applications of complex demodulation have been to " throughput "

measures of performance ( 7 ) , during the same sleep-deprivation studies . This

is a single-valued performance index derived from the ratio of accuracy to mean

reaction time and describes the rate at which the subject gives " effective"

performance as a function of time on task . There is increasing performance

deficit over time as seen in plots of the original data ( Figure 11 ) , however ,

the rhythmic components are evident and are elicited from the CD procedure

( Figure 12 ) . A comparison of the circadian remodulate of the PAB scores with

the subject's oral temperature is shown in Figure 13 . Note the phase

difference between performance and temperature with the latter leading

performance . CD of scores from a mood scale check list taken by the subjects

before each administration of PAB , indicates the same decline in activation and

afect over the time the subject is sleep deprived . This is shown in Figure 14 .

However , the capacity to maintain the circadian rhythm is still apparent as is

seen in Figure 15 .

Finally , scores from a five point self-scoring computerized questionnaire

containing fifty six queries relating to hallucinations , delusions , and

illusions ( 8 ) , grouped as to either : 1 ) cognitive ( C ) , 2 ) Visual perceptual

( V ) , 3 ) non-visual perceptual ( N) , are analyzed by CD and the results for the

circadian rhythm are shown as remodulates along with oral temperature in Figure

16 . Note that at the beginning of the study , circadian rhythmicity for non

visual perceptive problems and cognitive difficulty is not well defined since

the subject's response was mostly at the same low level to those factors over

the first 30 hours or so . On the other hand , visual perceptual problems are

rhythmic , but out of phase with temperature , which is logically reasonable ,

that is to say , when the subject is at the peak of his cycle and feeling

generally well or better , he experiences no visual problems of perception .

Note that the other measures of cognitive difficulty and non-visual perceptual

problems when finally reported as occurring also vary rhythmically but again

out of phase with oral temperature .

IV . CONCLUSIONS .

The entire procedure of CD is computerized . There are other refinements

such as use of a spline fitting program ( 9 ) to calculate for missing values and

also to obtain finer resolution of times of peak or trough occurrences by

interpolation between epochs . We have in addition , set strict. criteria for

accepting frequencies demodulable within the Nyquist frequency range as " true"

or noise elements by eliminating those frequencies whose peak amplitudes are

not within the ten percent population of highest peak values .
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TA BLE 1

VARIANCE CONTRIBUTED BY EACH FREQUENCY DEMODU LA TED

Frequency (cpd ) R2

1 ( circadian )

2

3

4

5

6

7

8

9

10

11

12

0.5804

0.0336

0.1531

0.1362

0.1134

0.0934

0.0707

0.0678

0.0502

0.05 40

0.0591

0.04.42

Cumulative Frequencies R2

( Thru )

2

3

4

5

6

7

8

9

10

11

12

0.7003

0.7618

0.7729

0.8002

0.8123

0.8329

0.8473

0 8621

0.8751

0.9002
*

0.8625

*

Addition of the 12 cpd component decreased

total variance accounted for .
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TABLE 2

POWER OF EACH FREQUENCY AND CROSS CORRE LA TI ON OF REMODU LA TES ·

WITH ORIGINAL DETRENDED DA TA

Cross Correlate

of Remodulate

with Detrended DataFrequency ( cpd ) Power

1

2

3

4

5

6

7

8

9

10

11

12

47.5827

5.1613

3.7997

5.0920

4.3713

2.3933

1.8397

2.3014

4.0929

1.3038

2.5519

6.4367

36.8280

3.1835

5.9312

6.5174

4.74 35

3.9863

3.3279

2.6159

2.7306

1.7613

2.7066

5.2931
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CYCLES OF SUICIDE

JOSEPH.M.ROTIIBERG

WALTER REED ARMY INSTITUTE OF RESEARCH

WASHINGTON , DC 20307

Today's clinical presentation is the comparison of suicides

in United States Army personnel , 1975-1982 , and in the United

States , 1972-1978 . I intend to present our current

opidemiological approach and point out some as - yet unresolved

uspects of this work in order to solicit comments from this

audience .

* DETERMINE IF THERE ARE ARWY - SPECIFIC

FACTORS AMONG SUICIDE IN ARMY PERSONNEL

Ho : THERE ARE NO DIFFERENCES IN THE

TIMING OF ARMY AND US SUICIDES .

*

Figure 1. Research goal and working hypothesis.

The goal of this observational study is to try to determine

if there are meoningful fluctuations in the suicide data and to

provide on analysis of the data base that identifies the corre

lotes of any of these changes in the rates .

li

!: .

1

30 71
78

77 76
76

Figure 2. Weekly values of the numbers of suicides in United

States Army personnel , 1975-1982 ( note reversou scale ) .
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Our Ariny data are the 834 suicides recorded during calendar

years 1975 through 1982 . These were 93 % enlisted soldiers and

95 % male . This is a sparse data set for the analysis of day - to

day troncs since 105t of the 2922 days had no Suicides . Figuri 2

shows the number of suicides per week ( the range is 0 to 7 ) from

1975 on the right edge thru 1982 on the left .

SUICIDE IN UNITED STATES ARMY PERSONNEL 1975-1982

ANNUAL RATE OF SUICIDES PER 100.000 AVERAGE STRENGTH

27,50 !

23 )

22 5 .
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TIME ( ONTHS )

Figure 3. Monthly values of the annual rate of suicide ( per

100,000 ) in United States Army personnel , 1975-1982 .

Figure 3 shows the annual rate of suicides ( per 100,000 average

strength ) in each month from January 1975 ( ' 7501 ' ) through

December 1982 ( ' 8212 ' ) .
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As a starting point , we make the assumption that a popula

tion of soldiers will have the same suicide rate as the civilian

population of the same age and sex .
On a bi - annual basis , this

turns out to be not entirely true . For each of the four bi

annual suicide reports ( 1,2,3,4 ) , the male suicide rate is

uniformly lower for the Army . For the females in the Army , their

rate is not as reduced as is their male counterpart . Over all ,

the interpretation that the Army is a supportive social institu

tion that protects against suicide is not contradicted .

Beyond this " zeroth level " comparison , the next set of

questions were prompted by the paper of MacMahon ( 5 ) who reported

on 185, 887 suicides registered in the United States during

1972-1978 . Her data presentation used the standard social units

of time ( week , month , year ) and the lunar month . The percentage

departure from the mean was plotted against the time span and

cycles are apparent in the plots for all but the lunar month

data .
The Army data have been similarly arrayed and plotted

along with the MacMahon data . The overlap of these two data sets

is not complete since suicides by soldiers outside of the United

States are only reported in the Army data . I will discuss these

in order of increasing variability ( distributing the same 836

C2SOS into more intervals results in an increase in the

variability ) .
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DAY OF WEEK

Figure 4. Deviation from the mean by day of the week for United

Statas civilian population , 1972-1978 ( U.S. ) and United States

Army , 1975-1982 ( ARMY ) ,

The day of the week data is shown in Figure 4. The two

distributions appear to be quite similar , Both the Army and

United States data show a Monday increase and a dip in the end of

the week . For the United States , Saturday is the minimum while

Friday is the minimum for the Army . The maxiIllumi departure from

the mean is about the same for both data selis ,
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DAY OF WEEK

CHI - SQ 1.24 , N - 7

P ( 1.24 , 6 ) . 0.97 , NOT SIG .

Figure 5. Statistical test of day of Icek urrect .

There is no significant difference between the two distribucions

on a chi - squared test .
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Figer 6. Deviation from the mean by month of the year for United States civilian

population ,1972–1978 (U.S. ) and United States Army , 1975-1982 (ARMY ) .

The month of year data are shown in Figure 6. Although both

distributions have two relative peaks , they do not occur at the

same time nor are they of the same amplitude , For the United

States data , the peaks are less than 5 % and occur in May and

August September . The Army has a peak in June that is almost 30 %

ab'ove the mean and a Jaunary peak is almost 25 % above the mean .
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MONTH OF YEAR

N = 12CHI - SQ = 22.56 ,

P 122.56 , 11 ) == 0.02 , S i G.

Figure 7. Siatistical test of month of year effect .

The probability that these distributions are the same is only

0.02 . Some military reassignments to new posts occur at about

those times . The stress of relocation is a plausible precipitant

of suicide .
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Figure 8 . Deviation from the mean by day of the month for United States civilian

population , 1972-1978 (U.S. ) and United States Army , 1975-1982 . (ARMY ) ..

The day of month data are shown in Figure 8. The United

States data shows a peak on the fifth of the month followed by

decreasing values until the end of the monthi . The Army data have

11 great deal of variability but , using a five day sliding average

( not shown ) there appears to be a set of peaks early in the month

con the 4th , 677th , and 10th ) and a peak late in the month con

the 22nd ) and a dip at the end of the month ( on the 28th ) .
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DAY OF MONTH

N = 31
CHI - SQ = 26.03 ,

P ( 26.03 , 30 ) = 0.67 , NOT SIG

Figure 9. Statistical test of doy of allonth effect .

There is no significant difference between the distributions

using a chi - squared test . Pay day in the Army is the last

working day of the month and some of the suicides may be due to

financial problems that become apparent close to pay day and the

First - of - the -month bills .

What we have done in discussing these figures was to average

the eight years of data assuming that there are cycles of

psychosocial events occurring at specified timo : which drive

these suicides . The increased rates at the start of the week ,

the start of the nonth and the start ( and middle ) of lie year

lend support to the assumption that there are cycles .

The question of cycles within the Army suicide data was

looked at directly but only briefly . We did a spectral decom

position of the daily suicide counts, using the SAS procedure

SPECTRA .
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SAS

PROCEDURE SPECTRA WH I TETEST

Ho :

2916 DAYS , 831 SUICIDES

THE LARGEST OBSERVED PERIODOGRAM

ORDINATE IS THE LARGEST IN A

SIMILARLY SIZED RANDOM SAMPLE

H'o : THE FREQUENCY SPECTRUM IS NOT

DIFFERENT FROM WHITE NOISE .

FISHER'S KAPPA = 7.66 , 1457 D.F.

P ( 7.66 , 1457 ) > 0.10 7 NOT SIG .

Figura 10 . Statistical test of periodogram randomness .

Since the fast fourier transforin algorithm of that procedure

requires that the number of data points have a largest primo

divisor less than or equal to 23 , the analysis was done with thi:

first 2916 days , The null hypothesis that the largest observed

periodogram ordinate is the largest in a similarly sized random

sample was tested with Fisher's Kappa . The value of 7.66 with an

n of 1457 two - degree -of - freedom periodigram ordinates has a p >

0.1 .
with that negative result , it appears that any search for

further structure within the Army suicide data would be inap

propriate .

The inability to proceed further with the analysis of the

Ariny suicides for cycles in a direct fashion shouldn't interfero

with having clever ideas about the cyclic properties of the

United States data and then testing if the Army data looks like

the United States data . And it is at this point , needing some

clever ideas , that I solicit the audience to suggest ways to loois

at this.relatively small but i inportant data set .
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EVALUATION OF OPTICAL DATA COLLECTION

INSTRUMENTATION IN THE DESERT ENVIRONMENT

A.Robert Dragon

National Range , Data Collection Division

US Army White Sands Missile Range

White Sands Missile Range , IM ४४002

ABSTRACT The integration of new technologies such as video

systems in place of current high- speed film cameras is
discussed . Eor a great percentage of daytime activity the

desert atmosphere is shown to be a limiting factor for the

collection of visual data . The atmosphere and instrument

focal lengths are hypothesized to be major considerations

for instrument design both with film and video systems .

An experiment using existing data and analysis of variance

is suggested to evaluate the hypothesis .

INTRODUCTION The data collection task at White Sands Missile

Range (WSMR) often relies on a photographic record consisting

of accurate images of test projectiles . Photography has been

the common method of securing these records , usually through

the use of tracking telescopes , cinetheodolites , television ,

and fixed cameras . As new technologies become available , it

is natural to expect them to be rapidly integrated into the

full complement of existing optical instrumentation .

New technologies and instrument performance have been

important considerations at WSMR for more than thirty-five

years . Consideration of the atmospheric environment and its

interaction withthe optical system has always been consid

ered important , liowever , until the midninteen seventies

field implementation of video systems was not entirely

practical because of low frame rate: During this periga
projected video requirements were discussed in detail .

Various articles have recently appeared comparing the
advantages of video over photographic systerns , Although

these discussionsare both timely and appropriate , many

researchers fail to include the actual field conditions as

a significant factor which contributes to image quality .

This is a ' best case ' analysis . That is , only some of

the factors which may degrade optical system performance have

been considered . Other factors such as mechanical vibration

and photographic processing are outside the scope of this

paper ,
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THE ATMOSPHERE The desert atmosphere can be one of the best

and well behaved components of any optical system . However ,

meteorological deterioration can be significant , especially

in the daytime . For long distances ( and even short distances

if one is viewing close to the ground ) one can expect some

sort of image degradation . Local ground heating , wind , and

dust can seriously degrade images at both low and high angles

of observation . Excellent night seeing resolution is about

one arc - second ( " ) . Poorer seeing resolution is often the case

over most of the daytime southwest desert .

THE RECORDING MEDIUM The effect of the recording medium

on the recorded image is important . Two common recording

media , photographic film and video will be compared . In this

analysis Ektachrome film with a high contrast resolution of

70 line pair per millimeter ( lp / mm ) is used . If the entire

tape-playback system is considered , the resolution of most

current video systems is about 17 lp / mm .

When atmospheric seeing is degraded each point is imaged

as a much larger point . The image size is given by :

lens

focal lengthImage size x angular resolution [ 1 ]

x 4.85x10-
6

arc- sec

where I arc-second = 4.85x10-6 radians .

The following seeing resolutions can thus be translated

into linear resolutions and lp /mm at the photographic or

video reciever as follows .

Seeing

laressec

5 arcsec

10 arc-sec

Table 1

Image size Resolution

81 lp / mm

16 lp / mm

124 μη 8 lp /mm

12 um

62 μη

System

100- inch

focal length

1 arc-sec

5 arc- sec

10 arc-sec

24 um

124 um

248 um

40 lp / mm

8 lp /mm

4 lp /mm

200 - inch

focal length

System resolution is computed by the following

1 / Pong 1/R, + 1/R2
+

1/RN
( Ref 6 ) [ 2 ]
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the system zesolution ?
are the component resolutions and Rep is

This relationship between atmospheric seeing , system focal

length , and resolution can be shown graphically by the figure

below .

70

Atmospheric Seeing

60

1
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r
o
š
e
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m Color

Photographic

film

R
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S
O
L
U
T
I
O
N

30 1
5

20 TV

Arcses

10
10

1 . 10 100

FOCAL LENGTH inches

Figure
1

ANALYSIS
If this hypothesis ( i.e. the above relationship )

is to be tested , large amounts of data regarding the the

instruments and quality of optical data will be required .

Fortunately this data is currently available in the form of

film /video analysis records for each test mission . These

records cover about one year of previous testing . The

following have been selected as relevant variables to deter

mine any relationship between record quality and any of the

variables . They are :

1 . Recording Medium ( film or TV )

2 . Lens Focal length

3 . Weather

4 . Time of Day

5 . Test name

6 . Equipment operator

7 . Instrument Site

Instrument number8 .
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Analysis of variance methods are proposed for the analysis

of this data .

FILM VIDEO

LENS FOCAL LENGTH

50 inches

50 100 inches

100 inches

200 inches

WEATHER

CLEAR /GOOD

WIND/DUST

WIND/NO DUST

CLOUDY

TELESCOPE OPERATOR

NUMBER 1,2 , ... etc.

TELESCOPE NUMBER

NUMBER 851, 852 , ... ect .

TIME OF DAY

HOUR 06:00 , 07:00 , ... etc .

The data is a record of image quality . Although somewhat

subjective , sufficient records should show the hypothesized

relationships clearly .

ANALYSIS OF DATA
It is proposed to analyze the data by

use of multivariate Analysis of Variance . An excellent

treatment of this subject arranged for use on computer is
given by Jeremy D. Finn

CONCLUSIONS With little additional input sufficient data can

be extracted from existing data records to show relationships

between the use of film or video and other variables .

Advantages (or disadvantages ) between the use of photographic

film (other than cost ) should be clearly shown .

170



REPERINCES

1 . Sixby , S.R. , Long Focal Length Dallistic Cancréa Study ,

Perkin Elmer Electro -Optic Division , Norwalk , Conn . ,October 196.1

2 . Fahay , Thomas P. , Astro -optical Tracker Study , APGC - TR - 60-2,

perkin Elmer Corp. , Norwalk , Conn . , March 1960 .

3 . Newton , Henry L. and Davidson , Charles W. , High Resolution

Television , Data Systems Technical Memorandum 71-8 , White Sancis

Missile Range , New Mexico , July 1974 .

4 . Scrivener , C.B. Jr. , Film to Video Conversion Study , Pan

Am World Services , Inc. and RCA Corp. , Eastern Space and Missile

Center , Air Force Systems Command , Patrick Air Force Base ,

Florida , December 1982 .

5 . Baker , Ralph L. , An Assessment of the Feasibility of Con

verting Cinetheodolites to Videotheodolites at White Sands

Missile Range , Baker Electronic Systems, Tucson , Arizona ,
October 1980 .

6 . Arnold , C.R. , Rolls , P.J. , Stewart , C.J. , Applied Photo

graphy The Focal Press , London , 1971 .

7 . Armore , Sidney J. , Elementary Statistics and Decision Making ,

Charles Merrill Co. , Columbus , Ohio , 1973 .

8 . Cooper , B.E. , Statistics for Experimentalists, Pergamon
Press , Oxford , 1969 .

9 . Volk , William , Applied Statistics for Engineers ,McGraw

Hill , New York , 1969 .

10 . Finn , Jeremy D. , Multivariate Analysis of Variance and

Covariance Statistical Methods for Digital Computers , Ed .

Kurt Enslein , Anthony Ralston , Herbert S. Wilf , Wiley , New

York , 1977 .

171





A TYPE OF CORRELATED DATA

IN OPERATIONAL TESTING

Ellen Hertz

U.S. Army Operational Test ú Evaluation Agency

Falls Church , VA

ABSTRACT . During a portion of a test , N gunners fired two rounds apiece .

The overall proportion of hits on first rounds was very close to the overall

proportion of hits on second round shots . However , an individual gunner's

performance on his second shot was positively correlated with his performance

on the first round .

The parameter of interest was p , the probability of hit using the firing

device . The proportion of hits among the 2N shots was the natural point

estimate of p . However , in calculating interval estimates for p at a given

confidence level , or tests of hypothesis of the form pap, at a given

significance level , the situation became more subtle . Since the first round

outcome did not deterministically predict the second round outcome , we

clearly had more information than just the N first round shots . On the

other hand , the assumption that we had 2N independent trials was not

justified .

In this paper , a model is proposed for the analysis of this and similar

situations . This model generalizes the " two round " case and considers data

in blocks when the observations within blocks are not independent .

I. INTRODUCTION . During a portion of the test of a firing device , each

gunner fired a volley consisting of two rounds . The outcome of each round

was either hit ( H ) or miss (M ) , and one of the purposes of the test was to

draw inferences about p , the probability of hit .

The following table depicts a typical segment of the results :

Gunner

Rnd 1

1 H

2 H

2

HI

H

3

M

H

4

M

M

5

H

H

6

M

M

7

H

H

8

H

M

9

M

M

10

I

H

Here , the overall proportion of hits on a first round is .6 and the

overall proportion of hits on a second round is also : 6 . The probability of

hit on a first round appears to be the same as the probability of hit on a

second round , so the overall proportion of hits is an unbiased point

estimate of p . However , the conditional probability of hit on a second

round after having scored a hit on the first round of the volley is 5/6

which is greater than .6 . In other words , performance on the second round

is not independent of performance on the first round . Suppose n volleys

were fired . We do not have 2n independent rounds . On the other hand , since

the outcome on the first round did not predict the outcome on the second

round deterministically , we have more information than just the a first

round shots . The problem 18 to calculate confidence intervals and tests of

hypotheses about p that reflect our true amount of knowledge realistically ,
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II . THE MODEL . n players are selected at random . The probability of hit

for a player comes from a distribution with mean p and unknown

variance 02 Then P1,..., Pns the players ' hit probabilities ,

are independent and identically distributed random variables with mean p .

The data is

and X are

The l'th player fires k , shots , k , £ 1,1= 1 ,.1,1-1 , ... , n .
,1 1

{X
X13 : 1-1,. ,n, j-1, ..,ky} where X2j-1 1f the l'th player scored a hit

on the j'th trial and 0 otherwise . If 1 m j then X2
ir Xjs

independent . Yir and X25 are correlated but are conditionally

independent Bernoulli variables with parameter Pt given ( P4 Ped .

ki
THE TEST STATISTIC

.

Set Gi" gli Xiy , 1-1 , .. , n and let

I -Ž (G / )/ n. Then , using the law of conditional expectation ,

E (G ) -EE (G ) - Eck,P2 ) - kypE ( ky??? - kyp so that T is an unbiased estimate

III .

of p.

+

ECG ) - EEC 21 xžst soft Xigmap/ ?q ) =

E(k,Pz+k,(ky-1)p ) - kąp+ k (ky -1)(p +o?) so that

Var (G, ) - k7 ( p-p? ) +o? ką (P-p2)+o?(ką ką).

1/k, then

Var (T) -(A (P-p2)+ o? (---) )/ 2

(2)

( 1 )

If we set A

( 2 )

To utilize T as a test statistic , it is necessary to estimate Var ( T ) .

n

a then E , . ; ( Y ,
1 = 1 1-732

The following lemma is easy to verify: If Y7º ... Yn are independent

with a common mean and Var (Y_ ) -0 , 1-1 , .. , n thenE

( n-1 ) / 2 ] o Applying the lemma with Y,"G / and using ( 1 ) ,

E di G /kg-1)2-((n- 1)/n)(A[p-p?)+o?(n-a)).

(

( 3 )

174



Letting D

E ( G /kg-1 ) 2 , 1t follows from ( 2 ) and ( 3 )

that D / ( n ( n- 1 ) ) is an unbiased estimate of Var T. The statistic that is

proposed is , then , T / E where E= 7n ( n - l ) . If PIU < x ) -1- a/ 2 for U

standard normal then T -Ex <p < T + Ex is an approximate l-a.confidence

interval for p . Another application would be to test the hypothesis Ho:

p2.9 vs. Hi: p < .9 using the rejection criterion ( T- .9 ) / E <

to achieve a significance level of approximately a/ 2 .

IV . A REFINEMENT .
If C2...., n are any real numbers such that

х

)

The choiceŽiczky-1 then T* = € 2764 is an unbiased estimate of p .

of C2-1/ (nk ,) was made
to facilitate estimating the variance of T* .

This corresponds to weighting each player equally . Another possibility would

be C1 =1 / N , N= Ek
1 : ie . weighing each shot equally . Usiog Lagrange

multipliers to minimize Ec , Var G , subject to the condition

E Cqkq=1 yields the result Cz-K/(p-p?+o?(kg-1) ) where K 18 a

constant of proportionality .

V. A SIMULATION . Since normal approxomation was used , a simulation was run

to test the accuracy of this method . A situation was considered in which

four players were selected . Their probabilities of success were distrubuted

uniformly on 1.5,1 ) so that the overall probability of success was .75 . Each

player fired 5 shots . 95% confidence intervals were constructed using both

the proposed statistic and using ( 4 ) T + 1.967T( 1 - T ) / N 1.e. neglecting the

heterogeneity of the players . The program calculated the proportion of times

the confidence interval contained .75 , the true value of p .

For three runs , the results were .97 , .96 and .97 for the proposed

interval and .81 , .77 and .78 using ( 4 ) .
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APPENDIX SIMULATION PROGRAM

5

10

15

20

X=0 : Y-0

DIM P ( 4 ) , X ( 4,5 ) , G ( 4 )

CNT=0

FOR (-1 to 4

30 P ( I ) = . 5 * RND ( 1 ) + . 5

40 FOR J-1 to 5

50 X ( I , J ) -0

60 HERND ( 1 )

70 IF H =P( I ) THEN X ( I , J ) = 1

80 NEXT J : NEXT I

85 T-0

90 FOR I 1 to 4

100 G ( I ) =0

110 FOR J-1 to 5

120 G ( I ) = G ( I ) + X ( I , J ) : NEXT J

130 T = T + G ( I ) : NEXT I

140 T-T/ 20

150 D=0

160 FOR I=1 to 4 : D = D + ( G ( I ) / 4 - T ) 12

170 NEXT I

180 EESOR (D / 12 )

200 IF ABS (T-.75 ) <1.96*E THEN X-X+1

210 IF ABS (T- .75 ) (-1.96 * SQR (T* ( 1-T ) / 20 ) THEN Y=Y+1

220 CNT - CNT + 1

230 IF CNT <500 THEN 20

240 PRINT " XBAR = " ; X/ 500 ; " YBAR = " ; Y / 500

250 END
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A Simulation Process for Determining Reliability

of Cyclic Random Loaded Structures

D. Neal , W. Matthews and T. DeAngelis

Any Materials and Mechanics Research Center

Abstract

A unique application of the Monte Carlo method was developed for determining

reliability vs. cycles to failure of the M60 tank torsion bar . In applying the

method , material torsional fatigue and spectrum loads were modelled such that

variability in the functional parameters and operational loads were represented .

Random torsional displacement values obtained from the amplitude displacement

distributions applied to the fatigue equations resulted in an exponential distri

bution for cycles to failure of the in service bar . The number of simulations in

the Monte Carlo process was determined from a convergence criteria involving

stability of the third and fourth moments of the cycles to failure distribution .

Reliability vs. bar life computations indicated a negligible amount of life

after flaw initiation . Assuming a design change involving a twenty percent

reduction in bar stresses increased the life estimates by a factor of three . An

increase in reliability can also be realized if computations are made by assuming

a bar has been in operation for a specified number of cycles . A comparison of

minimum life (ninety nine percent probability of survival ) between predicted and

in service results showed excellent agreements (less than eight percent difference ) .
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Introduction

The current need for establishing reliabiity of various components and

systems for U.S. Army weapon vehicles is being realized . The consequences of

over.or under design are often reflected in either premature failure or excess

ive costs and poor performance due to excessive weight. The mean life estimates

used as a criteria for defining acceptability of cyclic loaded component will

often provide a false sense of security regarding its capability . The applica

tion of higher strength ferrous materials or the less conventional structural

materials such as composites and ceramics will often result in premature

failure because of the inability to recognize the inherent variability of the

materials strength .

The objective of this paper is to determine a methodology which will

circumvent the present deterministic approach used in establishing an acceptable

design for cyclic random loaded structure . Instead of analyzing the worst case

situation related to the spectrum loads , S /N curve , or crack propagation laws ,

the authors introduce a method which simulates the variability in loading and

materials capability . Use of this methodology eliminates the over (worst case )

or under design (mean life ) situation by introducing a probabilistic design

criteria . Recognition of the reliability values as a function of the life cycles

of operation can provide the opportunity for selecting a specified life value

corresponding to the probability estimate . The remaining component life can then

be determined as related to its probability number .

The recommended ASTM procedure for determining acceptable design , involves

establishing a lower confidence 3 Standard Deviation bound on the S /N Curve then

selecting cycles to failure from the bounded curve consistent with predetermined

maximum stress obtained from the spectrum load results . This procedure can often

result in an over design situation since the maximum load may rarely occur in

addition to the fact there is a small chance that the lower S/N Curve bound is

representive of the True S /N Curve .

The Monte Carlo process used in predicting life time versus reliability of the

M60 torsion bars had a prior application in a report by ( 1 ) . Conceptually , this

method is quite simple , requiring modelling of the spectrum loads and the material

fatigue life with respect to crack propagation or stress /cycles to failure .

Amplitude Displacement Model

In figure 1 , a schematic of the torsion bar in the M60 Tanks is shown . The

amplitude distributions of three bars from tests conducted at Aberdeen Proving

Grounds ( APG ) is shown in figure 2 • Positive and negative angular displacements of

the bars as function of tank travel are shown in figure 2a . In figure 2b the amplitude
distributions are listed in a manner describing percent time less than by a plus

sign (+) and percent time grater than by a minus sign (- ) , (eg . 25% level equals a

-75% level . The + peak represents maximum angular displacement under load , the

negative peak is maximum unloaded angular measure . In order to eliminate

considering positive and negative peak values in figure 2a for determining angular

displacements in the cyclic loading process , the angular displacement is defined

as follows ,
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-
-

A = 6 + 101

where e : maximum negative angular displacement
(1 )

displacement from figure 2b

AO
represents the adjusted angular displacement

The Beta distribution provided the best representation of the skewed

amplitude distribution . The dampening effects that occured under load resulting

from a stop used in preventing further angular twist of the bar producing a highly

skewed discrete cumulative probability values . The Beta function is defined as :

f 20 ) =
( P + )

( r ( P ) r ( Q )
(00 , P- (1-60 , - 1

( 2 )
and O S AA EI P , Q > 0

The P and Q values are selected in a manner that provides the best Probability

Density Function (PDF ) for representing the data . Figure 3 describes a typical

distribution and Table 1 shows the excellent correlation between predicted

(Beta representation ) and actual test results . Angles less than 20° represent

stresses sufficiently low that infinite torsion bar life could be expected ,

therefore ,a good representation below this angle is not essential .

Crack Growth Law For Estimating Torsion Bar Life

Initial efforts in applying the Monte Carlo Method for determining reliability

vs cycles to failure of the tor sion bar involved using the crack propagation laws.

The da / dn relationships for materials metallurgically similar to the specified

material were obtained from ( 2 ) , ( 3 ) , and ( 4 ) and is shown in figure 4 . The dry

air results made available by Bar som ( 4 ) provided the most representative estimates

of crack growth vs stress intensity (AK) described in figure 4 since the torsion

bar is protected from the environment . From the basic da / N relationship , N cycles

to failure as a function of crack growth , angular displacemeat and the geometry

of the region where the crack initiates in the bar , may be obtained from the

following relationships :

dc

N =

66 x 10-8.22
.25 ( 3 )
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A. 4 8 VTC
where AK = A.

j

and A = 4.91 (Key Way )

Az = 3.29 (Other Spline Regions )

Az = 3.26 (Shaft Section )

Note , a percent reduction in Ar's will provide a decrease in the stresses in the

specific region of the torsion-bar . The C, and the Cc parameters are initial and

critical crack size respectively . The C, is obtained from critical stress inten

sity value K, for thematerial considered . The angular displacement of the bar ean

be also represented by the equivalent stress value t as

Max T = r ( 10 ) / L

r = radius of shaft

( 4 )

G = torsional modulas

A = max . allowed angle

L = length of torsion bar

The Monte Carlo Process

(A) Crack Propagation Analysis

A schematic of the process is outlined in figure 5 for determination of

frequency of occurence vs. cycles to failure of the torsion bar using the crack

propagation law . An assumed normal distribution is used to represent variability

in the Ajo Cz , and
and Cc parameters . A coefficient of variation (C.V. ) defined as

f

S.D
C.V.

mean

( 5 )

establishes the standard deviation S.D. for the corresponding known mean value
(eg C , for initial crack size ) . C.V. values of 5 , 10 and 15 percent were

considered in developing the distributions in order to examine the effects of
variability ( inherent errors in measurements , flaw size assumption or the stress
analysis ) in the parameters . By selecting the above c.v. ' S a sensitivity

analysis can be developed , thereby providing a method for recognizing the impor

tance of the parameters as related to cycles to failure number . The Beta dis

tribution as shown in figure 5 has been previously defined in equation ( 2 ) .

The random numbers used in the Monte Carlo process are obtained from

solving for X in

dx = R

i

( 6 )
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where R is a uniform random number and f, corresponds to the desired type of
1

frequency distribution for the parameter . A probability density function for the

N cycles to failure can be obtained by randomly selecting from czy Cei A. , and 40
distributions of discrete sets of numbers and substituting them intofequition 3.

Note , there should be an equal amount of random numbers for each parameter

have proper amount of numbers for the N distribution .

to

(B) S/N Curve Analysis

Torsional bac life expectancy was obtained using the Monte Carlo process

applied to the S /N Curve relationship . The procedure provided a method for

obtaining life time estimates of the bar by combining the effects of crack

initiation and propagation . A description of the S /N Curve is shown in figure

6 , where the base line data was obtained from a literature survey for material

metallurgically similar to the torsion bar material . The survey provided a set

of S/N Curves for torsional fatigue shown below for best representing the current

materials used in the bar .

(7 )L0810N
N = B + .068 AO

where B = 7.70

The slope value of .068 was essentially the same for all curves in the set .

The adjustment in B from 7.70 to 8.06 made on the basis of M60 torsion bar quality

assurance tests at a single AB value performed at the Scranton manufacturing

facility (See figure 6 ) . A single load equivalent to a 42 degree angular dis

placement was applied during the quality assurance torsional fatigue test . Using

the mean value and the cycles to failure in Figure 7 provided a more accurate

estimate of (B) . The curves representing a range of 10 and 20 percent reduction

in bar stress are shown in figure 6 .

The S/N Curve Monte Carlo process is similar to the previously outlined

method for da / N relationships. The primary difference involves using Models

for ( B ) and A from figure 6 and 2 respectively . A schematic of the basic S /N

representation is shown in figure 8a and 8b . In figure sa simulation of S /N

curve variability is shown for a specific value . Figure 8b describes probability

density function (PDF ) for ( B ) . A random selection of a discrete set of numbers

from Am and (B ) distributions is then applied to equation 7 in order to obtain

LogoN value . The process is repeated until all values from the two distributions

are selected . This process will then provide a PDF to represent 10810N.

Torsion Bar System Reliability

By assuming a tank with a N torsion bar system the following procedures

would be applied in order to establish reliability of the system . If any one

bar could cause failure ( independence ) then reliability R will be

Prob . of Survival
R =

j

SP;

lu

==

th

j Torsion Bar
(8 )
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if it is assumed that all torsion bars must fail for system failure (dependence )

then ,

R • P, XRoll P2 / PAX ...X Py/P,PNPN-1/.../ P , (9 )

where

of N-1 ---- ,

Pr /PN- 1/.../P, is the reliability of Nth bar , given reliabiiities

1 bars .

Reliability of Operation After Specific Number of Cycles

The reliability of operating an additional number of cycles when a

specified number of cycles of operation has been completed is obtained in

the following manner . Initially it is assumed that a specified distribu

tion function say f (N ) is known . For example the distribution of LogoN

from Monte Carlo method previously described . The reliability R (ng , )

is a conditional probability requiring the probability of operating for
+ n cycles when n, cycles have been completed . That is

.

f (x ) N ( 10 )

Rin, + n )
+ n

Rin, + n )

R (n. ) *' f (N )IN

onni

where n is the additional mission in cycles after nz cycles of operation .

The number N (ng, n ) of components ( torsion bars ) that will survive an

additional nºcyctes is given by

N. (n, n ) = N.(ny) . R (n, n ) (11 )

where N( n )

cycles .

= number of components starting the mission of n additional

Results and Discussion

The proper number of simulations for the Monte Carlo Method depended on the

models under consideration . For example 5000 and 3000 were required for the

da / dN and S /N curve models respectively . Using a convergence rate criteria for

the calculated 1 percent values ( see Ps in figure 9 ) and recognition of the third

and fourth moment stability of the Log , N distribution provided an excellent

method for determining required number of simulations. Differences in percentile

values for C.Ya's of 10 and 15 percent were minimum . The 10 percent value was

used for all on calculations .
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The torsion bar reliability results from the da/N relationship as shown in

figure 10 . The current design results were obtained from equation 3 , with A, =

3.29 . They indicated relative limited lifetime range of 14 to 500 miles , with a

probability of survival values of .99 and .01 respectively . An appropriate incr

ease in CF from equation 3 represents the 40 % increase in K, value . This

'IC

represents an improvement in materials capability with respect to acceptance of

larger flaw sizes prior to failure . The slight improvement in the bars

capability indicates that an improvement in material will not significantly

improve bar performance . The 25 and 50 % reduction in K, (stress intensity ) in

figure 9 is obtained from reducing A, in equation 3 by the respective percentages .

These reductions represent improvements in the design of spline section of the

bar as shown in figure 1 . The K failure in the shaft represents situations

where failure occurs in shaft rather then spline region .
III

The maximum life of 70 miles at 25 mph achieved from 50 percent improvement

in spline design with.99 probability of survivability indicates that there is a
very limited life of the bar after crack initiation . Table 2 describes minimum

life estimates ( 99 percent survivability ) for the torsion bar with respect to

various tank velocities and the design improvements . Tank travel at 5 mph

( lowest speed ) with a 50% reduction in K, value shows propagation life expectancy

of only 341 miles at .99 Ps :

In figure 11 , the frequency distribution obtained from S/N curve - Monte

Carlo application is shown . The resultant exponential form is consistent with

that expected from the S/N modelled in the analysis .

A graphical display of Ps vs miles to failure is shown in figure 12 for the
25

mph
tank velocity . The life expectancy of the bar is somewhat greater then

that obtained from the da /ds analysis . The minimum life estimates (.99Ps ) of 292

miles is 21 times greater than 14 miles determined from the da / dN results . This

result indicates that most of bar life occurs prior to crack initiation . Therefore

the torsion bar should be manufactured in such a manner that flaws are minimized .

The current shot peening used in the manufacture of the bar indicates recognition

of this fact by the manufacturer . The bar reliability estimate obtained after

an assumed 741 miles of tank travel (see figure 12 ) , was obtained from equation

10 . The increase in Ps from .90 to .99 if the bar survives the initial 741

miles does not provide a sufficient gain to warrant re-using bars since the

minimum increase in expected life is reduced very rapidly . The results from a

20 percent reduction in design stress of 865 miles for a Ps of .99 , is a

considerable improvement when comparing that of 292 miles using in the

current design . In table 3 the results from velocity ranging from 5 mph to

25 mph in increments of 5 mph are shown with respect to current 10 and 20

percent improvements in design . Reducing velocity of tank operation obviously

improves reliability of the torsion bar . In this report , the experimental data

and reliability calculations refer to failure of the first bar .

Examination of current design mileage capability of the bar for 20 and 25

indicates a range from 276 to 292 miles . These results agree with the

262 miles minimum life obtained from Aberdeen Proving Ground ( APG ) test results

(Report MT -5376 of bar failure from 3 mile test course ) , ( see figure 13 ) .

This course and tank velocity were similar to those used in obtaining the

spectrum load results . The excellent agreement between the predicted and actual

life expectancy of the bar indicates the desirability of Monte Carlo Process for

modelling variability of spectrum loads (design stress ) and S /N curve (material

capability ) results .
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Although excellent agreement has been obtained , the authors would have

preferred representing the spectrum load consistent with an individual peak to

peak angular displacement. The simplification applied using the negative peak

as base and representing the displacement relative to this value was a good

approximation to the available individual displacements . This approximation would

provide a slightly conservative estimate in the reliability values . Using the

ASTM recommended practice of representing lower 3 standard deviation band of the

S/N curve as measure of material fatigue loading capability combined with max

imum angular displacement (46 degrees ) for 25 mph . The tank operation resulted

In a minimum life estimate of 112 miles for the bar . Selecting this number as a

design allowable could result in an overly conservative estimate . The chance that

this maximum displacement could occur and the S/N curve was the actual lower band

described above is extremely small .

A minimum life of 575 miles was obtained from using the maximum a displacement

value with original S/N curve where B = 8.06. This result is obviously wrong

since the limited samples of 23 bar failures two of them failed at mileage less

than 400 miles ( See figure 13 ) .

Conclusions

1 .
A methodology for obtaining reliability of the M60 tank torsion bar

subjected to cyclic random loads has been developed where probability of

survival is represented as function miles of tank travel .

2 . The developed methodology could be applied to other structures with

cyclic random loads .

3 .
The use of the method appears justified from recognition of the excellent

agreement between predicted reliability estimates and those obtained from the

actual bar life (miles to failure ) experienced during the tank operation .

4 . Determination of minimum bar life was 21 times greater from application of

S /N curve model than that of the assumed da / DN model . This indicates most of

the bar life exist prior to crack initiation .

5 .
Application of deterministic procedures , ( use of lower 3 S.D bound for S /N

curve (ASTM method ) and mean S /N curve providing over and under design allowable

estimates while Monte Carlo method outlined in the text values accurately

described acceptable design values .
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Spectrua Load (Profile IV Course )
O Beta function Representation

Cumulative

Probability

( Degrees )

Test Results

e (Degrees )

Beta

Representation

Run 40 ( 5 bph )

.10 .86

.25 5.8

.34 5.0 7.2

.50 8.6 9.3

.66 12.5 11.5

.75 14.2 12.7

.99 17.0 16.7

Run 42 ( 10 mph )

14.0.10 6.1

.25 16.0 19.2

.34 22.8 21.5

25.8 24.8.50

.66 29.7 27.6

.75 30.6 29.0

.99 32.6 32.5

Run 48 ( 25 pph )

.10 2.3 10.8

.25 22.7 26.2

.34 27.2 29.1

.50 33.7 33.3

.66 39.5 37.1

.75 41.6 39.3

.99 46.0 46.9

Cummulative Tine Probabilities of Torsional Bar Angular Displacement

o adjusted to positiverange by 0 0 10 1 where 0

negative angular displacement .

s nax .

TABLE 1
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Minimun Life Estimates ( 998 Survivability )

da / UN Curve Results

Velocity

(MPH )

Nileage Expected (Function of Spline Stress )

Current 25: Reduction 501 Adition

5

71.0 138 341

10 29.9 51.9 143

15 15.2 29.3 72.3

20 14.0 26.9 66.3

25 14.2 28.4 70.2

TABLE 2

200



Monte Carlo Results for S/N Curve Minimum Life

Estimate (998 Probability of Survival) vs Velocity (MPH )

Velocity

(HPH )

Mileage

Current Design

Expected

10% Design

Improvement

20% Design

Improvement

12970

5 9474

10

6,974

2,000

345

3138 4420

15 638 1089

20 276 515 860

25 292 557 865

* Note : A 998 survivability estimate of 262 miles was obtained from

cummulative APG mileage on vehicles at time of torsion bar

failure . Velocity of vehicle during tests was approximately

15 to 25 mph .

TABLE 3
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RANDOM NUMBERS FROM SMALL CALCULATORS

Donald W. Rankin

Army Materiel Test and Evaluation Directorate

US Army White Sands Missile Range

White Sands Missile Range , New Mexico 88002

ABSTRACT . Random number generators are notoriously wasteful of digits ;

however , applying an augmented precision technique to a linear congruential

generator enables one to produce on even a small calculator a set of pseudo

random numbers which contains a useful number of elements . This paper sets

forth such a method .

1 . INTRODUCTION . Most modern computers and many programmable calcu

lators include in their softwares a function for generating "random " numbers .

Such numbers are required any time a "Monte Carlo " test technique is

employed .

It is usual to tailor each algorithm to a specific type of use , and to a

specific size of computer . Probably it is not feasible to transfer such a

tailored algorithm to a calculator of smaller size --particularly to one of

shorter word length .

Perhaps the most efficient and certainly the most popular of these

algorithms is the " Linear congruential Generator ." Mathematically stated ,

Xi + 1 = ( ax ; + c ) mod m .

All quantities are considered to be integers . If the modulus be taken as

some power of ten ( or of two if in binary ) , the modular operation is effected

by simple truncation .

Most calculators have the ability to truncate at the decimal point . A

decimal point , therefore , is inserted solely for this purpose. Conceptually ,

the numbers remain integers .
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Given that the modulus m is some ( positive integer ) power of ten , it is

found that the algorithm generates a full set of m integers ( ranging from

zero to m- l , inclusive ) whenever both

a : 1 (mod 20) and

C : ( 1 , 3 , 7 , or 9 ) ( mod 10 ) .

a and c is an important part of adapting theThe selection of values for

algorithm to a specific case .

M

2 . PSEUDORANDOM NUMBERS . Let us suppose that we have defined a set of

integers , all different . A random selection from the elements of this set

requires that for any element , the probability of selection be 1 /m . Since

this probability remains unchanged for subsequent selections , sampling with

replacement is indicated .

We wish to develop an algorithm that does not depend upon an outside

stimulus . However , it remains necessary to provide a value for Xos so that

the process can begin . This value should be an element of the set , but the

choice can be arbitrary . It is called the " seed . " After each Xi is

computed and used , it serves in turn as the " Seed " for the next calculation .

To avoid repetition , some programmers employ a date -time group from which to

extract a value for xo .

If any computed value of

X i + s + 1 = ( ax ;= ( axi + S + c ) (mod m )

is ever equal to some previously used value of xi , the algorithm will repeat

itself over a subset of size ( s + 1 ) , exactly duplicating the previous cycle .

Xin it isis found that s = 0 , and the algorithm has already

degenerated into uselessness . To circumvent this , sampling without replace

ment is used . But this causes the probability of selection to increase as

If Xj + 1

1 1 1 1

S S 1 S. 2 s • ( s - 1 )
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canThus , the

certainty .

last remaining element of the subset be predicted with

it is , of course , equal to Xin the seed which began the cycle .

How then can we presume to use these sequences of numbers as "random "

sequences ? It is found that if the cycle length is very large ( two hundred

fold would not be excessive ) when compared with the quantity ( of numbers )

required , the sequence selected will exhibit certain of the characteristics

associated with random sequences :

isThe term " pseudorandom " is used to indicate that

generated byby anan algorithm SO that each element is a

predecessor .

the sequence

function of its

3 . PARAMETER SELECTION . At this point , let us limit the discussion to

the case

n = 102e ,

" e " heing a small , positive integer . Immediately

vm - 10 .

It was observed in Section 1 that , under these conditions , maximum cycle

length is achieved if C and are relatively prime , and additionally a = 1

(mod 20 ) .

There are other requirements , however . Foremost among these is the

restriction that axi must never overflow the computer word length .

Should this occur , digits will be lost from the right , interrupting the flow

of the algorithm and seriously shortening the cycle length .

The formula for serial correlation is

1-0 ( ) (1-1) .+ E

a
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where lek å

It can be seen that the numerator varies from -0.5 to +1.0 and that the two

terns are of the same order of magnitude when

a 2 * M.

The numerator can be reduced to zero by solving the associated quadratic in

c /m . It is found that

C.It ! 13.

2 6

1 vizNow
0.28867 51345 94812 88225 45743 90 ... is irrational , so that

6

no element of the set can furnish a value for с which will reduce the

numerator exactly to zero . It can , however , be made quite small , whence " a"

can be set to a value somewhat less than Vm without adversely affecting the

serial correlation .

At this point , it will be instructive to examine the sequence generated

by the following parameters : *

1
0

хо 0

a : 81

с : 788677

m = 1000000

This sequence is found in Table 1-1 . The entries are to be read as integers .

It is easy to observe that the least significant digit ( units digit ) is

not " random " at all , since it can be predicted exactly . In the case at hand ,

*All examples in this paper will assume an 8-digit calculator .
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TABLE 1-1 .

CYCLES OF DIGITS

a = 81 с

E

1
1

1,000,000
Хо

= 788677

0.733677

9.671514

0.181311

0.474868

0.252985

0.280462

0.506099

0.782696

0.137053

0.939970

9.634957

0.220194

0.624391

0.364348

0.300865

0.158742

0.646779

9.177776

9.198533

0.059350

G.137237

9.9943774

0.083471

0.549828

0.324745

0.993322

0.323459

0.988856

0.886013

0.555739

9.926247

9.814634

0.773091

9.313238

0.660955

0.326032

0.197269

0.767466

0.953423

0.915940

0.636527

0.347364

0.225161

0.726713

0.652835

0.668312

0.921949

0.466546

6.578993

0.679820

0.362867

0.916044

01.888241

0.736198

0.420715

0.366592

0.982629

0.381626

0.700383

9.519790

0.079817

0.253854

0.350851

0.297609

0.694925

0.787602

0.584439

0.128236

0.175793

9,027910

0.854097

0.970534

0.491931

0.345088

0.740805

0.793882

0.093119

0.331316

0.625273

0.435790

0.884377

0.423214

0.069011

0.378568

0.452685

9.456162

0.737799

0.550396

0.370753

9.819670

0.949387

0.789924

0.699621

0.457978

G.384895

0.465172

0.467609

9,66596 6

6.654163

0.775880

0.087667

0.989794

0.854701

0.019453

0.364775

9.335452

0,960289

0.572086

0.127643

0.127769

9. 181947

0.526384

0.425781

0.276938

9.220655

0.661732

0.388969

9.295166

6.697123

0.255640
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it cycles through all ten digits , then repeats itself exactly . The two least

significant digits , viewed as a single number , exhibit a similar cycle . А.

good generator will continue this effect until a cycle of length m is

achieved . If is a power of 10 , this maximum cycle length is obtained

whenever both of the following conditions are met :

m

1. a : 1 ( mod 20 )

2 . C and m are relatively prime.

that the final (uniisi digit of

This requires only

с be 1 , 3 , 7 , or 9 .

As an aid to continuing the study of the cycling effect , let us define

as
as (mod m )

and

cs = < ( 1 + a + a2 + ... + as -1 )(mod m ) .

Given a = we find

alo

81 , s = 10 , c : 788677

= 928801

= 939970cio

Note that , since Xo = 0 , C10 appears in the tenth position in Table 1-1 .

Now cho may be viewed as having only five digits . It is therefore completely

exercized by a five -digit multiplier , and we need merely use the last five

digits of a 10 The parameters

хо 0

= 28801a10

cio = 93997

mo = 100 000

will generate the sequence X 100 X 203 X 30
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At first glance , this appears toto exceed the calculatorthe calculator word length .

However , if we multiply xi ( 2,0-1 ) and then truncate , the algorithm will run

without difficulty. To express the complete formula

X

i +10

x ( a

i 10

1 ) ( mod m ) + x

i

+ C

10

( mod m )

It is convenient to compute as by means of the binomial expansion .
Hence

( 1 + 80 ) 10 1 + 10 ( 80 ) + 45 ( 6400 ) +

+ 120 ( 80 ) 3 + 210 ( 80 ) 4 +

+ 252 ( 80 ) 5 + immaterial terms

S is a multiple ofThe previous strategem will thus be available whenever

ten . The sequence thus generated is found in Table 1-10 .

In a similar manner , the procedure can be reiterated and the sequence

* 100 X200 , X300 )?
generated . Required values of the parameters are :.

Xo
= 0

2100
: 8001

C100
: 5197

m100
= 10 000 .

This sequence is illustrated in Table 1-100 .

1000

The process . can be carried no farther . To do so results in a1000 1 , and

the algorithm degenerates to the successive multiples of x , This can be

observed by looking at every tenth entry in Table 1-100 . The phenomenon can

be called a " quasi -cycle " of length 1000 and additive constant 197 . 1ι

appears that original values of " a " congruent to 1 ( mod 100 ) will hasten this

effect and therefore should be avoided . Further scrutiny reveals that the

" quasi -cycle" is actually of length 500 and additive constant 598.5 .
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TABLE 1-10 .

CYCLES OF DIGITS

a 10 = 28801
C10 : 93997

m

= 100,000 Хо
: 0

5.939970

0.015940

0.027910

0.775380

0.959950

0.679820

0.435790

0.127760

9.555739

0.519798

9.058779

0.974740

0.926719

0.214680

0.938650

9.998223

9.194590

0.326560

0.194530

0.598509

G.777570

0.733546

9.625519

0.253480

0.417450

0.917420

0.553399

0.125360

0.433330

0.277300

0.319670

0.255649

0.627610

0.735589

0.379SSO

0.359520

0.475490

0.527460

0.315439

0.639400

0.338473

0.214440

0.026410

0.574380

0.658350

0.078320

0.634290

g . 126260

0.354230

0.118200

0.457270

0.773240

0.925210

0.913180

0.537150

0.397120

0.393090

9.325069

0.993930

0.197000

0.299370

0.095340

0.827319

0.295280

0.299250

0.639229

6.115190

0.527160 .

0.675130

0.359100

0.218170

0.454140

0.626119

0.534989

0.978050

0.758020

0.673990

0.525960

0.113930

0.237900

0.736970

0.412940

9.024919

0.372880

0.256856

0.476320

0.832790

0.124760

0.152739

0.716709

0.379979

0.535143

9.627910

0.454980

0.918950

0.518929

0.354890

9.126860

0.63483

0.679800

0.697870

0.293840

6.825810

0,093780

0.897750

0.037720

0.313690

0.525660

0,473630

0.957609

9.616670

0.652640

0.624610

0.332580

0.576550

0.156520

0.872490

0,524460

6.912430

0.836490
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TABLE 1-100 .

CYCLES OF DIGITS

a 100
: 8001 C100

= 5197

= 10,000 Хо = 0
m 100

0.519700

0.639400

0.359190

0.678300

0.598500

0.118200

0.237900

0.957600

0.277300

0.197000

0.30770G

0.427400

0.147100

0.466809

0.386500

0.906200

0.025900

0.745600

0.065.300

0.985000

0.095700

0.21540G

0.935199

0.254800

0.174500

0.694200

0.813900

0.533600

0.853300

0.773000

0.716700

0.336400

0.556100

0.875800

0.795500

0.315200

0.434900

0.154600

0.474390

0.394000

0.504700

0.624400

9.344100

0.663800

0.583500

0.103200

9.222909

0.942600

0.262300

0.182000

0.292700

0.412490

0.132190

0.451800

0.371500

0.891200

0.019900

0.730600

0.050300

0.970000

0.913709

0.033400

0.753100

0.072800

0.992500

0.512200

0.631900

0.351609

0.671300

0.591000

0.701700

0.821400

0.541100

0.860800

0.780500

0.300200

0.419900

0.139690

0,459300

0.379000

0.489700

0.609400

0.329100

0.648800

0.568500

0.988200

0.207900

0.927600

0.247300

0.167000

0.110700

0.239400

0.950190

0.269800

0.189500

0.709200

0.828900

0.548690

0.868300

0.788000

0.898700

0.018400

9.738100

0.057800

0.977500

0.497200

0.616909

0.336600

0.656300

0.576000

0.686700

0.806400

0.526190

0.845900

0.765500

0.285200

0.404900

0.124600

0.444300

0.364000
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сThe conclusion to be drawn is this : Even though the values of a and

be chosen so that the algorithm generates the full cycle of m . integers

before repeating , the number of elements of any " useful" subset probably does

1
no Vm What is needed is a device to increase the effective word

Z2

length of the calculator . How this can be done forms the subject matter of

the next section .

In letsummary , US view the number + c before truncation .axi

Obviously , the left -hand ( most significanti digits are lost via the modular

operation , leaving

Xi + 1 = ( axi + c ) ( mod m ) .

Now the Xi can assume , at most , " m " different values . Therefore , since both

" a " and " C " are fixed , the quantity axi + c also can assume , at most , " m "

different values . What this means is that , provided the values of " a " and " C "

are selected to produce maximum cycle length , the act of truncation does not

reduce the quantity of numbers --only their size . It also shuffles their

order .

What remains is , of course , Xi + 1 . It is usual to regard several of

the right -hand ( least significant ) digits as " not significantly random . " They

are retained , however , for smooth operation of the algorithm , and to ensure

that the full complement of " m " different numbers is delivered .

A AUGMENTED PRECISION ARITHMETIC .

" Double precision arithmetic is available in the software ofof many

computers , and even in some calculators . It is cumbersome to program and

executes very slowly . This is particularly
true with division .

However , the algorithm for the linear congruential generator does not

employ division . Moreover , since a2 < m , the word length ( m Vm - 1 ) is

sufficient .
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Let 1024 , where e is any small positive integer . The

" augmented " word consists of three parts , each of which consists of " e "

digits .

Let us express Xi in the form

X ; = u ; * 100+
Vi

Thus a , ui , and Vi are all integers less than Vm , and the product of any

two of them will not cause overflow .

Some calculators will compute ( but not necessarily display ) an extra

digit . For them , the procedure is extremely easy . First , compute

(
laui x 10 ° ) (mod m ) .

The result isTo this quantity , add ( avi + c ) and truncate again .

Xi + 1

When place for an extra digit is lacking , it is necessary to devise a

procedure which avoids overflow . The following method , which assembles

Xi + 1 by parts , beginning at the right , works quite well .

As before , express x ; in the form

X ; - u ;
x 10° + vi

In analogous fashion , express " C " as

C = p * 10 € + a ,

Store p , q , U ;, and vi separately . Select " a " so that

a < 10€

a = 1 ( mod 20 )

a # 1 ( mod 100 )
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18 .It will be found that a < 100

parts will not produce overflow ,

Consequently , multiplication by

We have immediately

Vi + 1 = ( av ; + q ) mod 100 .

Since we wish to retain both parts of ( avi + 9 ) , we compute ( avi

a ) * 10 - , then " FRC" ( lav ; + a ) * 10-€ ) . *

is now vi :
Then Uit 1 = ( aui + P +Vi + 1 stored , replacing

1000 av ; + q - Viti ) ) mod 10€ .

The sequence of numbers generated by

-

Xo
0

a = 9941

с = 2113 2487

m = 100 000 000

is displayed in Table 2-1 .

5. RANDOM SELECTION . RANDOM ORDERING ,

So far , an algorithm has been developed which will generate a full set of

pseud orandom numbers . However , the length of a useful sequence of these

1

m .

If a subset of far smaller but exactly known size is to be placed in

random order , or if random selections from its elements are to be made , the

following can be done .

* " FRC " means " fractional part of . "
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Storage space must be provided to accommodate all the elements of the

subset , plus oneone more . It may be possible that scratch - pad storage is

adequate .

Let us illustrate the method by example. Suppose the task at hand is to

shuffle a pack of 52 playing cards , i.e. , to place them in random order . We

thus require 53 storage registers , which we number from 00 to 52 , inclusive .

The individual card names are entered into registers 00 through 51 in any

arbitrary order , N = 52 is the subset size .

m .

We employ the generated sequence of numbers given in Table 2-1 . These

numbers ( integers ) should be distributed uniformly on the interval 0 to

Dividing by m , then multiplying by 52 , yields a sequence uniformly distri

buted on the interval 0 to 51.99999 The " integer" portion of this

number is used as an address for selecting a card . That card is then placed

in stor age register 52 .

.

Next , all cards withwith location numbers greater than the " selected "

location are cascaded downward one position . This includes the card placed in

register 52 . So far , the illustrative example has given 52 x 0.21132487 =

10.988 The card in location 10 was drawn and stored in location 52 .

Say it is the Spade Jack .

.

After cascading , only 51 cards are of interest . Hence 51 * 0.99185754 =

50.584 The card in location 50--the King of Clubs-- is drawn and

placed in register 52 . Ag ain after cascading , the subset of unshuffled cards

is reduced to 50 in number . Hence 50 0.26713001 - 13.356 ...... The card

now in location 13 -- the deuce of Hearts -- is drawn and placed in register 52 .

Continuing as above ,. 49 x 0.75075428 = 36.786 . The card in

location 36-- say the King of Di anonds-- is selected and placed in location 52 .

When the size of the unshuffled subset is reduced to unity , that card

certainly will be found in location 00 , and it certainly will be selected for

transfer to location 52. Consequently , that transfer can be effected without

215



TABLE 2-1 .

CYCLES OF DIGIT'S

a
-

9941 C == 2113 2487

m = 100,000,000 0
Хо

0.24103567

9.34692034

0.94642431

3.ان.113=

0.21132487

0.99185754

0.26713001

0.75075428

0.45962235

0.31710622

0.56425789

0.499099.36

0.86337263

0.99863970

0.22082115

0.39437792

0.71328669

0.93466416

0.70773943

0.84899359

0.22722647

0.06966314

0.73259961

0.98494788

0.63129995

0.96412782

0.60598349

0.29319896

0.90218623

0.84463730

9.68858257

0.41665324

0.51518371

0,65258598

0.56855295

0.18725392

0.70254359

9.19715306

0.10989433

9.67085940

0.10541337

0.12563694

0.15919951

0.80371273

0.92007095

0.63564472

0.15548639

0.90152736

0.29978113

0.33553820

0.75072417

0.16029884

9.74209331

0.36091958

0.11286965

0.24851552

0.70419919

0.76078266

0.15174793

0.73749700

9.22462027

0.16142894

9.97641741

9.77679768

0.35796175

9.76218162

0.05880929

0.83447676

0.74479693

0.22365910

0.79657197

9.92433174

0.99315221

0.13744448

0.54690055

9.94969242

0.10367299

0.91557156

9.80920283

9.55565790

0.66990187

0.75891454

0.58076701

0.61617129

0.57901935

0.77368322

0.39621489

9.98354636

9.64568963

0.01193670

9.31143797

0.21618464

9.30283111

0.65538938

0.43715145

0.93383932

0.00505499

0.46298046

0.70007773

9.68403883

0.00650877

0.91500744

9.30028591

0.35355618

9.91331025

0.42852312

9.12933779

0.92879526

0.36500453

9.72135769

0.87405957

0.23751024

9.30062071

0.68180298

9.01474905

9.83163092

0.45436959

0.4 1349006

0.71601133

9.07995640
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employing the algorithm . Further , cascading can be omitted or not , at the

pleasure of the programmer .

The final result is the shuffled deck , in order of selection , in the

designated storage locations . Omitting thethe final cascading , the example

leaves the Spade Jack in 01 , the Club King in 02 , the Heart deuce in 03, the

Diamond King in 04 , etc. The shuffled deck can now be put to the use for

which it was intended .

If there is a requirement to " deal " the cards one at a time , it is

suggested that the card in the highest numbered location be taken first . Not

only is the prograinming simpler , but the stigma is avoided which usually is

attached to dealing from the bottom .

In summary , a set of uncertain size has been used to produce a much

smaller subset of known , fixed size .

6 . STATISTICAL TESTS . There is much to be found in the literature on

the subject of testing sequences of numbers to determine whether or not a

These
sequence could have been produced by a random selection process .

methods will not be repeated here .

It is enough to be reminded that the answers to these statistical tests

will be stated as probabilities . We should read nothing into the result

beyond the probability statement itself .
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ABSTRACT. A paper was presented at the Twenty-Eighth Conference on the Design

of Experiments about estimating the variance of the loss exchange ratio ( LER ) .

The LER is a measure of force effectivenessof force effectiveness that is often used in military

analysis of combat . Two methods of estimation were discussed : ( 1 ) the method

of error propagation , and ( 2 ) the application of Fieller's theorem . The

discussion that followed the presentation and further references to the

literature pointed to Fieller's method as the preferred methodology to use

estimate confidence intervals about this measure of force effectiveness .

Professor Bradley Efron ( Stanford University ) presented an overview of bootstrap

methods . Dutoit and Shannahan have applied bootstrap methods to data to compute

an estimate of the LER . Confidence intervals were also determined . The

distribution of LERs about the mean value derived from the bootstrap have been

compared to results using error propagation and Fieller's theorem . The results

of this comparison as well as the bootstrap sensitivity to different replication

sizes are presented .

1 . INTRODUCTION AND BACKGROUND .

a . Error Propagation and Fieller . As pointed out in reference ( 2 ) , the

LER is defined as the ratio of Red casualties ( R ) to Blue casualties ( B ) :

LER = R/B . ( 1 )

Usually the values of R and B are obtained by replicating a stochastic wargame

model . The average LER (LÊR ) is computed as :

LER R/B ( 2 )

Because the generators of these average values are the results of a stochastic
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wargame , it would be useful to determine a confidence interval around the

measure for various forms of hypothesis testing . Using error propagation

methods , reference ( 2 ) shows that the variance of the ( LER ) can be estimated as :

2.2 2.2

VAR ( LER ) 1 -R 25 + 2 1 -R S. ( 3 )
R B -2 B

B B

)
n

The appropriate 100 ( 1

calculated as :

-a ) confidence interval ( c.1 . ) for the LER would be

100 ( 1 a ) C.I. ( LER ) = LER + t VVARVAR (LER ) ( 4 )

Similarly , reference ( 2 ) also shows that Fieller's theorem can be used to find

the fiducial limits of the ratio of two means . In this case , the upper and

lower limits (Ry, L can be found as the solution of a quadratic equation and

are :

2 . 2 2 2 2 2

+ ? S
2V

BR t RS s BR B. t s R t S ( 5 )
BR ᏴᎡ B R

)

RU , L

u
pla

n n n

B? - t?

งt
o
u
r

B

n

In operations ( 2 ) , ( 3 ) , ( 4 ) , and ( 5 ) the following notation is used :

R, B are the average number of Red( a )

respectively .

and Blue casualties ,

This is( b ) n is the number of stochastic Wargame replications .

used to calculate Ã , B , Sg , SR , and R.

( c ) SR ' are the sample standard deviations for Red

casualties .

S.

B
and Blue

( d ) R is the correlation between Red and Blue casualties based on n

replications of the wargame .

( e ) t is the two tailed value of the student's t with ( n- 1 ) degrees

of freedom .

The discussion that followed the presentation of this paper and further

references to the literature pointed to Fieller's method as the preferred way

( compared to error propagation ) to compute a confidence interval about a ratio

although there an indication that both errorerror propagation and Fieller's

method to give " reasonably " consistent results .

was

b . Bootstrap . The purpose of this paper is not to provide a detailed

description of bootstrap methods . Reference ( 1 ) , entitled " Computer -Intensive

Methods in Statistics " is a readily available and clearly worded explanation of

the bootstrap method co-written by one of the bootstrap inventors ( Efron ) .

Figure 1 below shows how the bootstrap method was applied to sets of data to

compute estimates of the LER and the frequency distribution of these estimates .
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Paired Data
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Paired Data

R E
RE 1

3Seiect random

number ( RN )

1 Rn

2
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F
u

។ Compute , B and

LER of sample .

Store LES,

Do this n times

Do tnis a large number of times

( i.e. , 3000, 1000 , etc. )

Print Output

* Frequency distribution

*Histogram

*10011-0 ) C.1 .

FIGURE 1 . APPLICATION OF THE BOOTSTRAP METHOD TO

ESTIMATE THE LOSS EXCHANGE RATIO ( LER )

Each replication ( 1,2,3 , ... , n ) of the stochastic wargame provides a set of

paired data ( i.e. , Red and Blue casualties ) . Through random selection ( with

replacement ) , another set of data of n paired observations is selected from the

original data set . From this additional sample , the values of ħ and B are

obtained and the value LER is computed . This value of LER is stored in the

computer memory . This bootstrap process is done a large number of times ( 3000 ,

1000 , etc. ) and the sample LER is stored for each additional sample . At the

completion of a large number of bootstrap runs , the frequency distribution is

printed and the average LER , as well as the appropriate confidence limits , are

determined from this empirical distribution . These LER estimates ,estimates , and the

confidence limits derived from the bootstrap , were comparedwere compared to results using

error propagation and Fieller's theorem . The results of this comparison as well

the bootstrap sensitivity to different replication sizes ( 3000 , 1000 , 750

500 , 250 , 100 ) was studied .

as

The following assumptions and constraints2 . ASSUMPTIONS AND CONSTRAINTS .

apply to this study .

aa . This is case study based on actual data obtained from the

CARMONETTE stochastic wargame . The findings or observations should be

interpreted as emerging trends with respect to LERs within the constraints of

the forces and systems modeled using this wargame . Perhaps this paper will

serve as a catalyst for somesome additional theoretical studies using bootstrap

methods to estimate measures of force effectiveness .
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b . It is assumed that the Radio Shack TRS-80 Modoel II ( 64K ) system

random number generator produces a statistically valid stream of 36,000 random

numbers ( minimum ) .

trends apply to 99 , 95 , 90 and 85%c . The emerging findings or

confidence intervals .

d . Estimates of the average value of the LER ( LER ) are carried out to

the nearest tenth . This measure of force effectiveness is a rough indicator and

estimates made with any greater precision are not considered to be operationally

meaningful .

3 . THE SOURCE OF DATA USED IN THIS STUDY . The data used in this case study

were obtained from a force- on- force evaluation of several medium antiarmor

systems which were employed within an Infantry force and scenario . Twelve

medium antiarmor concepts were examined ( denoted as case A , B , C , ... , L ) . All

medium antiarmor concepts were inserted in the same force and fought against the

same threat on the same terrain . All other factors were held constant ,

therefore the differences in average Red and Blue casualties are attributed to

the performance factors and synergistic influence of the different antiarmor

systems . Table 1 below shows the input to this casecase study for each of the

twelve antiarmor systems ( cases A through L ) . The Red and Blue casualties are

given in the format ( xx/xx ) . Therefore , case A , replication 1 had 112 Red

casualties and 24 Blue casualties . The other variable notation has been defined

earlier in this paper . This represents the total input required to do the

bootstrap experiment and compute the confidence interval estimates using error

propagation and Fieller's theorem .

4 . RESULTS . Tables 2 , 3 , 4 and 5 show the results of the bootstrap

experiment and the error propagation and Fieller's theorem results for 99% , 95% ,

90% and 85% confidence intervals , respectively . The results of the bootstrap

method are based on 3000 , 1000 , ... , 100 replications . The upper limit ( UL ) and

lower limit ( LL ) are given for the stated level of confidence for all estimates .

The average value of the LER (LER) is given for each bootstrap replication size

in addition to the estimates obtained from error propagation and Fieller's

theorem . The width of the confidence interval is given as the difference

between UL and LL . For example , refer to Table 2 . The case A 99% confidence

statement of the bootstrap estimate based on 3000 replications is 5.2 for the

LER . The upper and lower 99 % confidence limits are 6.1 and 4.6 , respectively.

The width of the confidence interval is 1.5 . Fieller's theorem gives upper and

lower 99% confidence limits of 6.5 and 4.3 with an interval width of 2.2 . Error

propagation statistics were 5.2 for the estimate of the LER and 6.2 and 4.1 for

the 99% confidence limits .

5 . EMERGING TRENDS . The following emerging trends are based on the results

shown in tables 2 through 5 . These trends should be interpreted with respect to

LERs appropriate to the forces and systems modeled using this wargame .

a . The upper and lower confidence limits and the LER estimate ( LER ) are

relatively insensitive to the replication size ( from 3000 to 100 ) for the four

levels of a examined in this study . This was true for all 12 cases ( A through

L ) for the 95 , 90 and 85% confidence levels and true for about 3/4 of the cases

at the 99% confidence level .
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b . The bootstrap confidence interval is consistently shorter than

intervals generated by either the error propagation or Fieller's theorem method .

C. Regarding the 99% and 95% confidence intervals , the bootstrap and

Fieller's theorem interval estimates tend to yield LER distributions with

positive skews . This effect is slightly stronger for the 99% confidence

interval than for the 95% confidence interval. This same effect is also true

for 90% and 85% interval estimates but not to the same degree as for the 99% and

95% intervals . In fact , thethe effect is relatively negligible for these two

cases .

d . Regarding the 99% confidence interval . the bootstrap lower limit is

better approximated by the Fieller's theorem estimates and the bootstrap upper

limit is better approximated by the error propagation estimate . Although these

findings are relatively consistent across all 12 cases , the degree of agreement

is not always good .

e . Regarding the 95% confidence interval , neither the error propagation

or Fieller's method has a strong advantage in approximating the bootstrap

interval estimates . However , when the error propagation results do a better job

in approximating the bootstrap estimates , it generally better approximates the

upper confidence limit . The Fieller's theorem method most often approximates

the bootstrap lower confidence limit . These 95% findings are consistent with

the findings for the 99% confidence interval .

f . Regarding the 90% and 85% confidence intervals ,

propagation and Fieller's theorem estimates for the most

approximations to the bootstrap results .

are ,

the error

part , good
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TABLE 1 . INPUT DATA REQUIRED FOR CASE STUDY

( Based on Force-on- Force Model )

CASES :

A B с D E F G H I J L

1

Rer il

1 112/24 68/34 79/24 99/21 112/15 128/23 99/21 103/26 98/20 56/72 64/22 57/29

2 108/15 '72 / 24 103/21 108/26 105/22 110/21 77/30 120/16 100/17 75/69 70/24 80/24

3 110/17 93/24 95/23 119/18 93/21 85/23 86/28 118/24 105/21 71/55105/21 71/55 . 67/25 88/19

4 103/21 83/30 99/22 104/24 112/23 91/23 88/28 112/24 96/18 73/57 121/21 59/24

5 109/20 56/29 92/23 102/21 92/25 101/23 83/25 116/13 109/20 51/21 74/25

6 112/25 68/31 105/27 98/25 111/17 66/30 17/26

7 100/22 96/23 110/18 105/22 66/26 70/23

8 108/23 70/30 99/25 70/27 -3/27

9 74/34 108/17 52/25 71/29

10 68/29

11 78/25

12 56/28

N 8 9 5 9 6 7 5 5 5 4 12 9

R 107.75 75.56 93.60 106.00 102.00 104.43 86.60 113.80 101.60 68.75 69.08 69.89

S

' R
4.23 12.85 9.15 6.20 9.01 14.14 8.08 6.72 5.32 8.66 18.13 11.56

20.08 28.78 22.60 21.90 21.83 21.71 26.40 20.60 19.20 63.25 25.25 25.11

3.44 4.21 1.14 3.80 3.71 2.21 3.51 5.73 1.64 8.50 2.96 3.14
" В

R .11 -.58 -.93 -.4'7 -.56 -.27 -.84 -.62 .55 -.55 - .31 -.63

LER 5.16 2.63 4.14 4.84 4.67 4.81 3.28 5.52 5.29 1.09 2.74 2.78

t

.99
3.499 3.355 4.604 3.355 4.032 3.707 4.604 4.604 4.604 5.841 3.106 3.355

2.365 2.306 2.776 2.306 2.571 2.447 2.776 2.776 2.776 3.182 2.201 2.306
1.95

t

.90
1.895 1.860 2.132 1.860 2.015 1.943 2.132 2.132 2.132 2.353 1.796 1.860

L

.85
1.617 1.592 1.779 1.592 1.699 1.628 1.779 1.779 1.779 1.925 1.549 1.592
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TABLE 2 . 99 % CONFIDENCE INTERVALS FOR LER

CASE BOOTSTRAP

750 500

FIELLER'S

THEOREM

ERROR

PROP .3000 1000 250 100

A UL

LER

LL

Width

6.1

5.2

4.6

1.5

6.2

5.2

4.6

1.6

6.1

5.2

4.6

1.5

6.1

5.1

4.6

1.5

6.0

5.2

4.6

1.4

5.8

5.1

4.7

1.1

6.5

( 5.2 )

4.3

2.2

6.2

5.2

4.1

2.1

B UL

LER

LL

Width

3.4

2.6

2.1

1.3

3.3

2.6

2.2

1.1

3.4

2.6

2.1

1.3

3.6

2.6

2.2

1.4

3.4

2.7

2.2

1.2

3.4

2.7

2.2

1.2

3.6

( 2.6 )

1.9

1.7

3.5

2.6

1.8

1.7

с UL

LER

LL

Width

4.7

4.1

3.6

1.2

4.7

4.1

3.5

1.2

4.7

4.1

3.6

1.1

4.8

4.2

3.5

1.3

4.8

4.2

3.3

1.5

4.7

4.1

3.5

1.2

5.5

( 4.1 )

3.0

2.5

5.4

4.1

2.9

2.5

D UL

LER

LL

Width

5.8

4.9

4.2

1.6

5.8

4.9

4.1

1.7

5.9

4.9

4.2

1.7

5.8

4.9

4.2

1.6

5.9

4.9

4.2

1.7

5.7

4.8

4.3

1.4

6.2

( 4.8 )

3.9

2.3

6.0

4.8

3.7

2.3

E 6.3UL

LER

LL

Width

6.2

4.7

3.9

2.3

6.1

4.7

3.9

2.2

6.3

4.7

3.8

2.5

5.9

4.7

3.9

2.0

6.1

4.7

3.9

2.2

4.7

3.9

2.4

7.1

( 4.7 )

3.3

3.8

6.4

4.7

2.9

3.5

F UL

LER

LL

Width

5.7

4.8

4.0

1.7

5.7

4.8

4.0

1.7

5.7

4.8

4.1

1.6

5.8

4.8

4.0

1.8

5.8

4.8

4.1

1.7

5.4

4.8

4.2

1.2

6.2

( 4.8 )

3.6

2.6

6.1

4.8

3.5

2.6

G UL

LER

LL

Width

4.3

3.3

2.7

1.6

4.4

3.3

2.7

1.7

4.1

3.3

2.7

1.4

4.4

3.3

2.7

1.7

4.0

3.3

2.7

1.3

4.4

3.4

2.7

1.7

5.3

( 3.4 )

2.1

3.2

4.7

3.4

1.8

2.9

H UL

LER

LL

Width

8.3

5.6

4.2

4.1

8.0

5.6

4.2

3.8

7.6

5.6

4.3

3.3

8.4

5.7

4.2

4.2

8.0

5.6

4.3

3.7

7.2

5.5

4.1

3.1

13.9

( 5.5 )

3.2

10.7

9.1

5.5

1.9

7.2

I UL

LER

LL

Width

5.7

5.3

5.0

.7

5.8

5.3

4.9

.9

5.7

5.3

4.9

.8

5.7

5.3

4.9

.8

5.7

5.3

5.0

.7

5.8

5.3

5.0

.8

6.2

( 5.3 )

4.6

1.6

6.1

5.3

4.5

1.6

J 1.3

1.1

UL

LER

LL

Width

1.3

1.1

.8

.5

1.3

1.1

.8

.5

1.3

1.1

.9

.4

1.3

1.1

.9

.4

1.3

1.1

.9

2.2

( 1.1 )

.5

1.7

1.8

1.1

.4

1.4.5 .4
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TABLE 2 . 99% CONFIDENCE INTERVALS FOR LER ( CONT'D )

CASE BOOTSTRAP

750 500

FIELLER'S

THEOREM

ERROR

PROP .3000 1000 250
100

K UL

LER

LL

Width

3.5

2.7

2.3

1.2

3.5

2.7

2.3

1.2

3.5

2.7

2.3

1.2

3.5

2.8

2.4

1.1

3.6

2.7

2.3

1.3

3.4

2.7

2.3

.9

3.6

( 2.7 )

2.0

1.6

3.5

2.7

2.0

1.5

L UL

LER

LL

Width

3.5

2.8

2.3

1.2

3.5

2.8

2.3

1.2

3.5

2.8

2.3

1.2

3.5

2.8

2.3

1.2

3.5

2.8

2.3

1.2

3.5

2.8

2.4

1.1

3.7

( 2.8 )

2.1

1.6

3.6

2.8

2.0

1.6
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TABLE 3. 95% CONFIDENCE INTERVALS FOR LER

CASE BOOTSTRAP

750 500

FIELLER'S

THEOREM

ERROR

PROP .3000 1000 250 100

A UL

LER

LL

Width

5.9

5.2

4.7

1.2

5.8

5.2

4.7

1.1

5.8

5.2

4.7

1.1

5.9

5.2

4.7

1.2

5.8

5.2

4.7

1.1

5.8

5.2

4.7

1.1

5.9

( 5.2 )

4.5

1.4

5.9

5.2

4.4

1.5

B UL

LER

LL

Width

3.2

2.6

2.2

1.0

3.1

2.6

2.2

.9

3.1

2.6

2.2

.9

3.1

2.6

2.2

.9

3.2

2.6

2.2

1.0

3.2

2.7

2.3

.9

3.3

( 2.6 )

2.1

1.2

3.2

2.6

2.1

1.1

C UL

LER

LL

Width

4.6

4.2

3.7

.9

4.6

4.1

3.7

.9

4.6

4.1

3.7

.9

4.6

4.1

3.7

.9

4.6

4.1

3.7

.9

4.6

4.2

3.8

4.9

( 4.1 )

3.4

1.5

4.9

4.1

3.4

1.5

DUL

LER

LL

Width

5.6

4.9

4.3

1.3

5.5

4.9

4.3

1.2

5.6

4.9

4.3

1.3

5.6

4.9

4.3

1.3

5.4

4.8

4.3

1.1

5.4

4.9

4.4

1.0

5.7

( 4.8 )

4.2

1.5

5.6

4.8

4.1

1.5

E UL

LER

LL

Width

5.7

4.7

4.0

1.7

5.7

4.7

4.0

1.7

5.6

4.7

4.1

1.5

5.7

4.7

4.0

5.7

4.7

4.0

1.7

5.8

4.6

4.0

1.8

6.0

( 4.7 )

3.7

2.3

5.8

4.7

3.5

2.31.7

F UL

LER

LL

Width

5.5

4.8

4.2

1.3

5.5

4.8

4.2

1.3

5.5

4.8

4.3

5.4

4.8

4.2

1.2

5.5

4.8

4.2

1.3

5.4

4.8

4.2

1.2

5.7

( 4.8 )

4.0

1.7

5.7

4.8

4.0

1.71.2

G UL

LER

LL

Width

4.0

3.3

2.8

1.2

3.9

3.3

2.8

1.1

4.0

3.3

2.8

1.2

4.0

3.3

2.8

1.2

4.0

3.3

2.8

1.2.

4.0

3.3

2.8

1.2

4.3

( 3.3 )

2.5

1.9

4.2

3.3

2.4

1.7

н
H

UL

LER

LL

Width

7.3

5.6

4.4

2.9

7.3

5.6

4.5

2.8

7.4

5.6

4.3

3.1

7.2

5.5

4.3

2.9

7.4

5.6

4.3

3.1

7.4

5.5

4.4

3.0

8.8

( 5.5 )

3.9

4.9

7.7

5.5

3.3

4.4

I UL

LER

LL

Width

5.6

5.3

5.0

.6

5.6

5.3

5.0

.6

5.6

5.3

5.0

.6

5.6

5.3

5.0

.6

5.6

5.3

5.0

.6

5.7

5.3

5.1

.6

5.8

( 5.3 )

4.9

.9

5.8

5.3

4.8

1.0

J UL

LER

LL

Width

1.3

1.1

.9

.4

1.3

1.1

.9

.4

1.3

1.1

.9

.4

1.3

1.1

.9

.4

1.3

1.1

.9

.4

1.2

1.1

.9

.3

1.6

( 1.1 )

.8

.8

1.5

1.1

.7

.8
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TABLE 3 . 95% CONFIDENCE INTERVALS FOR LER ( CONT'D )

CASE BOOTSTRAP

750 500

FIELLER'S

THEOREM

ERROR

PROP .3000 1000 250 100

K UL

LER

LL

Width

3.3

2.7

2.4

.9

3.3

2.7

2.4

.9

3.3

2.7

2.4

.9

3.3

2.7

2.4

.9

3.3

2.7

2.4

.9

3.2

2.7

2.4

.8

3.3

( 2.7 )

2.2

1.1

3.3

2.7

2.2

1.1

L UL

LER

LL

Width

3.3

2.8

2.4

.9

3.3

2.8

2.3

1.0

3.3

2.8

2.4

.9

3.3

2.8

2.4

.9

3.3

2.8

2.3

1.0

3.2

2.8

2.5

.7

3.4

( 2.8 )

2.3

1.1

3.3

2.8

2.2

1.1
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TABLE 4 . 90 % CONFIDENCE INTERVALS FOR LER

CASE BOOTSTRAP

750 500

FIELLER'S

THEOREM

ERROR

PROP .3000 1000 250 100

A UL

LER

LL

Width

5.7

5.2

4.8

.9

5.7

5.2

4.8

.9

5.7

5.2

4.8

.9

5.7

5.2

4.8

.9

5.7

5.2

4.7

1.0

5.7

5.2

4.8

.9

5.8

( 5.2 )

4.6

1.2

5.7

5.2

4.6

1.1

B UL

LER

LL

Width

3.1

2.6

2.3

.8

3.0

2.6

2.3

.7

3.1

2.6

2.3

.8

3.1

2.6

2.3

.8

3.0

2.6

2.3

.7

3.1

2.7

2.3

.8

3.1

( 2.6 )

2.2

.9

3.1

2.6

2.2

.9

с UL

LER

LL

Width

4.5

4.1

3.7

.8

4.6

4.1

3.7

.9

4.5

4.1

3.7

.8

4.5

4.1

3.7

.8

4.6

4.2

3.8

.8

4.6

4.1

3.8

1.8

4.7

( 4.1 )

3.6

1.1

4.7

4.1

3.6

1.1

D UL

LER

LL

Width

5.4

4.9

4.4

1.0

5.4

4.9

4.4

1.0

5.5

4.9

4.4

1.1

5.5

4.8

4.4

1.1

5.4

4.8

4.4

1.0

5.3

4.9

4.4

.9

5.5

( 4.8 )

4.3

1.2

5.5

4.8

4.2

1.3

E UL

LER

LL

Width

5.5

4.7

4.1

1.4

5.4

4.7

4.1

1.3

5.4

4.7

4.1

1.3

5.3

4.7

4.1

1.2

5.5

4.7

4.1

1.4

5.5

4.7

4.2

1.3

5.7

( 4.7 )

3.9

1.8

5.6

4.7

3.8

1.8

F UL

LER

LL

Width

5.4

4.8

4.3

1.1

5.4

4.8

4.3

1.1

5.4

4.8

4.3

1.1

5.4

4.8

4.3

1.1

5.3

4.8

4.3

1.0

5.3

4.8

4.3

1.0

5.5

( 4.8 )

4.2

1.3

5.5

4.8

4.1

1.4

G UL

LER

LL

Width

3.8

3.3

2.9

.9

3.8

3.3

2.9

.9

3.8

3.3

2.9

.9

4.0

3.3

2.9

1.1

3.8

3.3

2.9

.9

3.9

3.3

2.9

1.0

4.0

( 3.3 )

2.7

1.3

4.0

3.3

2.6

1.4

H UL

LER

LL

Width

7.1

5.6

4.5

2.6

7.1

5.6

4.5

2.6

7.1

5.6

4.5

2.6

7.1

5.6

4.6

2.6

6.9

5.5

4.5

2.4

7.1

5.6

4.5

2.6

7.8

( 5.6 )

4.2

3.6

7.2

5.6

3.8

3.4

I UL

LER

LL

Width

5.6

5.3

5.1

.5

5.6

5.3

5.1

.5

5.6

5.3

5.1

.5

5.6

5.3

5.1

.5

5.6

5.3

5.1

.5

5.6

5.3

5.1

.5

5.7

( 5.3 )

5.0

.7

5.7

5.3

4.9

.8.

J 1.4

1.1

UL

LER

LL

Width

1.3

1.1

.9

.4

1.2.

1.1

.9

.3

1.3

1.1

..9

.4

1.2

1.1

.9

.3

1.3

1.1

.9

.4

1.3

1.1

.9

.4

1.4

( 1.1 )

.8

.6 .6
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TABLE 4. 90% CONFIDENCE INTERVALS FOR LER ( CONT'D )

CASE BOOTSTRAP

750 500

FIELLER'S

THEOREM

ERROR

PROP .3000 1000 250 100

K UL

LER

LL

Width

3.2

2.8

2.4

.8

3.2

2.8

2.4

.8

3.2

2.7

2.4

.8

3.2

2.7

2.4

3.2

2.7

2.4

.8

3.2

2.7

2.4

.8

3.2

( 2.7 )

2.3

.9

3.2

2.7

2.3

.9.8

L UL

LER

LL

Width

3.2

2.8

2.4

.8

3.2

2.8

2.4

3.2

2.8

2.4

3.2

2.8

2.4

.8

3.1

2.8

2.4

.7

3.2

2.8

2.4

.8

3.3

( 2.8 )

2.4

.9

3.2

2.8

2.3

.9

)
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TABLE 5. 85% CONFIDENCE INTERVALS FOR LER

CASE BOOTSTRAP

750 500

FIELLER'S

THEOREM

ERROR

PROP .3000 1000 250 100

A UL

LER

LL

Width

5.6

5.2

4.8

.8

5.6

5.2

4.8

.8

5.6

5.2

4.8

.8

5.6

5.2

4.8

5.7

5.2

4.8

.9

5.6

5.2

4.9

.7

5.7

( 5.2 )

4.7

1.0

5.6

5.2.

4.7

.9.8

B UL

LER

LL

Width

3.0

2.6

2.3

.7

3.0

2.6

2.3

.7

3.0

2.6

2.3

.7

3.0

2.7

2.3

.7

3.0

2.7

2.3

3.0

2.6

2.3

.7

3.0

( 2.6 )

2.3

.7

3.0

2.6

2.2

.8.7

с UL

LER

LL

Width

4.5

4.2

3.8
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TABLE 5. 85% CONFIDENCE INTERVALS FOR LER ( CONT'D )
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Postscript submitted by

Joseph M. Tessmer

1947 th HQ Support Group

SAGF

Directorate for Theater Force Analysis

Fighter Division

USAF

Washington , DC 20330

Subject : Unusual Data Sets

The following results were obtained from a force- on- force evaluation .

Replication Red Casualties Blue Casualties

1

2

3

4

5

6

7

.9687

.5069

.5086

.1362

O

. 1405

0

O

0

0

.3274

O

0

0

Note that the number of Blue casualties is zero six times out of seven and both

Red and Blue casualties are zero two times out of seven . The application of

equation ( 5 ) , Fieller's theorem , yields 90 % confidence limits of -7.41 and .62 .

The estimate of the LER ( equation 2 ) is 6.93 . In this case , the upper and lower

confidence limits do not include the point estimate of the LER . The results of

the bootstrap are also seemingly anomalous . The mean LER value is about 1200

across different replication sizes ranging from 250 through 3000 and the upper

and lower 90% confidence limits average about 7000 and 2.5 , respectively . This

observation does not negate the use of the bootstrap and Fieller's method , but

does indicate that some unusual data sets ( i.e. , containing a preponderance of

zeros and numbers less than one ) should not be analyzed in this fashion . More

theoretical work needs to be done concerning the make-up of the data before

subjecting them to analysis . Of course , this is true for any statistical

procedure .
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ACCEPTANCE OF A MEAL AND ITS COMPONENTS – AN EXERCISE IN MISSING DATA

Edward W. Ross

Staff Mathematician

US Army Natick R&D Laboratories

ABSTRACT

This paper is a study of the relation between the consumer acceptance

of a meal and of the items that make up the meal . The primary purpose is

to find a way of predicting overall meal -acceptance scores from the scores

for the individual items in the Army field- ration system called the Meal ,

Ready-to-Eat . Attempts to do a linear regression encounter difficulties

because of the large and non- random fraction of missing data . This problem

is treated by a procedure that leads eventually to a single formula for the

predicted overall meal scores . These predicted meal scores are then

analyzed by the same methods used for the item scores . Stability results

for meals are found using data from a storage study of the items after 24

months .
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Introduction

This paper describes the study of the relationship between the food

items in a meal and the meal considered as a whole , in terms of the

scores which the item and meal receive in a consumer-acceptance test .

The purpose is to derive and apply a formula that will permit

estimation of meal scores from scores of the items in the meal .

This effort has its origins in a storage study of a military

ration.system called the Meal , Ready-to-Eat ( MRE ) which is now in

progress at the U. S. Army Natick R&D Laboratories . In this study

consumers are asked to evaluate the items in a meal but do not give an

evaluation of the overall meal . However , when the meal is used in the

field , it will be judged as a whole . Consequently , it is desirable to

have a way of estimating the acceptance score for a meal from the

scores of the items in the meal . Such an algorithm allows one to study

how meal-acceptance is affected by storage time and temperature .

Previous work on this question is described in a report by

Rogozenski and Moskowitz ( 1974 ) , which also mentions earlier efforts

in this direction . Their principal finding was that meal score was

governed primarily by the entree score ; the other meal components

( starch , vegetable , salad and dessert ) had less than one-third as much

influence as the entree . This accords well with intuition . Their

procedure was , as ours will be , mainly a statistical regression

analysis of a large set of data on items and meals ,
The military
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meals used in their analysis were typical of those served in a

garrison setting , i.e. a mess hall , which are much different from

combat rations like the MRE . The present study differs from theirs

also in the important role played by the treatment of missing data in

the analysis .

Materials and Methods

In this section we describe the storage study , then discuss the

resulting data and finally present the procedure for predicting meal

scores and analyzing them to find their storage-stability .

Sketch of the Storage Study

The storage study of the MRE ration is described by Ross et al

( 1983 ) . We give here a brief summary of this investigation .

The MRE consists of 12 meals or menus , each containig roughly six

items , not all of which are evaluated in this test . There are 39

different items in all , a number of which occur in more than one meal .

Each menu contains an entree plus items of other types . These types

are as follows :

type 1 • entrees

2 - pastries

3 - vegetables

4 fruits

5 - spreads

6. beverages
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7 candies

8 - miscellaneous ( catsup , crackers , etc. )

In the storage study these meals were obtained through the usual

Defense Department procurement system . Some of the meals were tested

when received , and the rest stored at temperatures of 4 , 21 , 30 and 38

degrees C. The meals were withdrawn from storage and served to test

subjects according to the schedule shown in Table 1. In these tests

each of 36 consumers evaluates at one sitting all the items in a meal ,

assigning to each a score on the 9-point hedonic scale

9 means " like extremely"

.

5 means " neither like nor dislike"

1 means "dislike extremely"

After a withdrawal the scores for each item at all the preceding and

current withdrawals are analyzed by a variety of statistical tests to

estimate their shelf- lives and various other characteristics of their

storage stability .

Ordinarily each item is analyzed apart from all others . Indeed , if

an item is present in more than one meal , it is studied as a separate

item in each meal where it occurs . However , at the withdrawal

following 24 months of storage test subjects were asked to furnish

evaluations of the meals as a whole in addition to , and on the same

scale as , the items in the meal . We use these data to develop a model

for predicting the overall meal scores . Thereafter the model is

applied to data at other withdrawal - times to predict meal scores , and
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the meal scores for all times and temperatures for which we have data

are then analyzed by the same routines used for the individual items .

Data Structure

The data on which the model is based are item-scores and meal

scores , obtained after 24 months of storage at three temperatures , 21 ,

30 and 38 deg . c . ( Table 1 shows that meals stored at 4 deg C. were

not tested at the 24-month withdrawal ) . For each menu at each of the

three storage temperatures the data were placed in an array of 36 rows

and 9 columns , a row containing the scores given by a test-subject ,

and the column designating the food type , 1 through 8 . Column 9

contains the meal scores . Each meal includes items of certain types

and not of others . The symbol O ( zero ) is used as a missing-data

indicator and appears in columns for food-types absent from a meal .

The description of the data is furthered by Tables 2 and 3. Table

2 lists each of the 52 items by name and gives its item- index , the

index of the menu in which it occurs and the food-type . Table 3 is an

array showing for each menu the food-types present and the indices of

the items . E.g. we see that Menu 10 includes items of Type 1 ( Item

10,meatballs ) , Type 2 ( Item 22 , chocolate nut cake ) , Type 3 ( Item 28 ,

potato patty ) and Type 8 ( Item 52 , crackers and jelly ) , but no items

of Types 4 , 5 , 6 nor 7. Table 2 makes clear that several foods

(brownies , cookies , etc ) occur as different items in different menus .

Table 3 shows that entrees occur in every menu , but the other types do

not .
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We shall see in the next sub-section that the estimation and

prediction is based ( at least initially ) on the following model of

linear regression :

j = 8

X = SUM ( X B ) + e

19 j = 1 ij j

1 : 1,2 , .. 36

(1)

i .

is the score given for the item of type j by the i - thHere X

ij

respondent , and j : 9 denotes the meal score . The B's are the

regression-coefficients to be estimated , the e's are assumed to be

independent , Gaussian random variables with

mean ( e ) : 0 ( 2 )

stddev ( e ) : S ( 3 )

and s is also to be estimated . We are , therefore , attempting to fit

the vector of meal -scores by a linear combination of vectors of

type-scores . Any line of data which lacks one or more type - scores is

incomplete and will be classified as missing data by most of the

common computer algorithms for treating data . We see from Table 3 that

every menu , and hence every line of data , has some missing types , and

so our entire data- set will be classified as missing ! This suggests

that our way of handling missing-data will have an important effect on

the results of
the regression .

If we examine this data-set , we are struck by the inherent nature

of the missing data as well as its prevalence . Ordinarily , when data

are missing in an experiment , it is accidental and occurs in

relatively few cases . In the present context , it is by no means
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accidental ; on the contrary , it results from the desire to introduce

variety into the meals and is completely intentional . Also , roughly

45% of the data-cells are missing , see Table 3 , hardly a small

fraction of the total data .

Either of these circumstances is sufficient to rule out

successful application of the usual procedure for handling missing

data , the EM - algorithm , see Dempster et al ( 1977 ) and Laird and Louis

( 1982 ) . Some other approach is needed in such problems of structural

missing data .

Moreover , the situation is in fact somewhat worse than so far

depicted for several reasons . First , the data at 24 months were

censored in the following way . The test-monitors decided that the

following items were unfit for consumption by the test-subjects :

Strawberries , Items 31 and 32 at 38 degree storage

Brownies , Items 13 and 14 , at 21 , 30 , and 38 degrees

Data for these cases also appear as missing in the data array .

Second , the test monitors forgot to ask for overall meal scores for

Menus 1 and 2 at 24 months from 21 and 30 degree storage although

scores were obtained for the individual items in those meals . Finally ,

there was one instance of more-or-less ordinary missing data , i.e. in

Menu 7 for 30 storage only 35 lines of data were taken .

Thus we have missing data for a variety of causes . The situation

is depicted in the missing-data map , Table 4 , which shows for each

menu and storage temperature whether the various food-types have
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missing data , and , if so , the reason . In this chart blank entries

imply that we have data , the symbol s denotes structural or inherent

missing data , C indicates censored data , f the forgotten cases and

numerical entries specify the number of missing scores due to

unexplained or random mishaps . The number of missing scores is 35

( 1.e. all scores ) in the cases marked by letter symbols . Το

reiterate , the extent and complexity of the missing data have a major

effect on the estimation and prediction procedures that we use .

Estimation and Prediction

The fact that the data consist of discrete scores suggests that we

could do either a regression analysis or one based on some form of

contingency tables . We choose the former because its methods are more

completely available in computer software but remain cautious about

the applicability of its underlying assumptions .

If missing data were not a problem , we would do a stepwise re

gression , bringing in one food-type at a time and ceasing when

additional food-types caused no improvement in the fit . If we

attempted this in the present situation , we would find that bringing

in a new type would perhaps improve the fit but would usually also

reduce the number of data cases on which the estimates are based .

Eventually , bringing in a new food type would have no effect because

all the data would be classified as missing . For example , any

regression involving both Type 3 ( vegetables ) and Type 4 fruit ) would

have missing data in every line , see Table 3 .

-

-
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In deciding how to proceed , we list the characteristics that we

would like the final method to have , keeping in mind that we intend to

use the results for predicting meal scores where none have een

measured .

1. The fit should be good .

2. The fit should be based on as large a data-set as possible .

3. The fit should be free of peculiarities caused by correlated

columns ( near rank-deficiency ) or excessively influential data points .

4. The resulting predictor should use only item scores that are

available .

5. The predictor should be as simple as possible .

Clearly these desires conflict , and we must seek a compromise among

them . Many different procedures are possible , some which produce an

excellent fit for a small data-set , others a poorer fit applicable to

a large data- set etc.

We describe now the procedure that was finally used . It is based

on ( a ) pooling food-types and ( b ) estimating missing data from entree

scores . To be precise we introduce a vector , Y , of transformed scores

as follows :

j = 1,2Y • X

ijij

• X

(4

( 4 )Y

13

+ X

14

Y : X + X

14 15 1813

• XY

15

: x

i6

Y

i6 i7
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In these formulas we explicitly use the missing-data symbol, i.e. the

X value is taken as 0 if the data is missing . This tansformation

amounts to pooling types 3 and 4 ( vegetables and fruits ) into a new

type , 3 , and similarly pooling Types 5 and 8 ( spreads and misc

ellaneous ) into another new type , 4 , and re- indexing Types 5 and 6 to

avoid confusion . The reasons for these choices are visible in Table 3 .

Types 3 and 4 are almost perfectly complementary in the sense that one

has data where the other lacks it , and there are no cases where both

have data . Likewise for Types 5 and 8. Types 6 and 7 lack these

desirable properties . Moreover the pooling of scores for fruits and

vegetables makes some sense from a food-technological viewpoint since

both are plant products . The pooling of spreads and miscellaneous

types lacks as clear a justification , but we argue that the original

classification of these types is somewhat arbitrary , and the present

pooling is no more so .

The pooling creates a new set of types which show much less

missing data than the original classification . The Y-variables

numbered 2 , 3 and 4 are each missing from only one menu , respectively

6 , 9 and 12. We estimate the missing scores for each of these cases by

regressing the variable on the ubiquitous variable for entrees , number

1 , over the 11 meals where data are present . Then that relation is

used to predict the scores for the lone missing case . We find
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( r : 0.21 )Y

2

( 5 ): 5.65 + 0.172Y

1

(5 )

( r = 0.33 ) ( 6 )Y

3

: 4.77 + 0.282Y

1

( r : 0.34 ) ( 7 )Y : 4.17 + 0.326Y

4 1

In all cases the t-values for the coefficients exceed 6 .

With these procedures we obtain a set of data for Y-variables

number 1,2,3,4 and 9 that is complete except for the one randomly

missing data-point of meal 7 and the forgotten sets of meals 1 and 2 .

That is , we have filled in the censored and structurally missing data .

This rather large data- set ( 1151 values ) is used as the basis for

a linear regression with model

4

SUM ( YB )

j = 1 ij j

X : B +

190

( 8 )

i

The resulting estimates and their t-values are

: -0.684 : -4.25B

0

T

0

: 0.398 : 26.8B

1

T

1

: 0.217 : 10.4B

2

( 9 )T

2

9

: 0.257 : 14.9B

3

T

3

= 0.234 : 13.7B

ú

T

4

The regression has r : .838 , S : 0.920 , and the residuals are
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distributed in reasonably Gaussian fashion . The Y-variables 5 and 6 do

not make a major improvement to the fit .

The purpose in deriving these estimates is to generate predicted

menu scores which can then be subjected to the same storage-stability

calculations as the individual items . These algorithms require integer

values as input , so the predicted scores obtained from the regression

must be rounded to whole numbers . When this is done , and the predicted

integers compared with the meal-scores of the data , we find that their

differences are distributed as follows :

Difference Number of Values

24 3

7

اهدب

41

-1 208

0 621

1 226

2 40

3 6

The predictor obtained from the regression and missing-data

procedure can be written
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X

9

: -0.684 + .398Y

1

+ 0.217 {U Ý

2 2

+ ( 1-0 ) (5.65 + 0.1722 ) }

2 1

+0.257 { U Ý

3 3

+ ( 1 - U ) ( 4.77 + 0.282Y ) }

3 1

( 10 )+0.234 { U Ý

4 4

+ ( 1-0 ) (4.17 + 0.326Y ) }

4 1

where U

j

: 0 if Y

j
: 0 ( i.e. data for Y is missing )

j

U : 1 if Y > O ( 1.e. data for Y is present )

j j j

is rounded to the nearest integer after the calculation .and X

9

This predictor is used on the data through 24 months from the MRE to

create for each item and temperature a set of predicted scores in

exactly the same form as for an item . These data are then run through

the calculations that produce estimates of storage stability at the

various temperatures .

In predicting meal scores for the cases where censored data occur

( items at various temperatures in menus 2 , 3 , 8 and 12 ) there is an

element of uncertainty in the above procedure . The predictor ( 10 ) was

derived by omitting these items , i.e. regarding them as missing data .

To be perfectly consistent , prediction should be done in the same way .

However , we do in fact know that the test - monitors thought that the

items were too bad to be served , which implies that the scores would

have been very low had the items been tested . Accordingly , the scores

for these items were set to 1 , the lowest possible score , prior to

using ( 10 ) to estimate the scores of the menus in which they occur .
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Results and Discussion

Table 5 shows estimates of shelf-lives for each menu when stored

at the four test-temperatures , based on the meal data through 24

months generated by the procedure described in the preceding section .

The shelf-lives in Table 5 are the shortest of three found by doing ,

respectively , linear and non-linear regressions and a multinomial

logit fit for the time-dependence of the data . The procedures are

described by Ross et al ( 1983 ) . Since these are based on data only

through 24 months , large estimates of shelf-life are likely to be

erratic ; consequently , we do not enter shelf-lives predicted to be

longer than 48 months in this table . We see that all the meals had

shelf lives exceeding 48 months at 4 degrees , as did most of the meals

at 21 and 30. At 38 degrees half the meals had lives less than 36

months, the shortest being 19 months for Meal 2 . The most stable

menus appear to be 1,5,6,7 and 10 though 4 and 9 are also quite good .

Another way of looking at storage-stability is by means of the

average scores after some fixed storage time , say 24 months . These are

listed in Table 6. In a coarse way we expect that menus with short

shelf-lives will have low scores , and this effect can be seen by

comparing Tables 5 and 6 .

In general the least stable menus appear to be 3 and 8. Much of

their instability seems to be caused by imputing scores of 1 to the

censored data for brownies , Items 13 and 14 , which are part of these

meals . For , when we repeat the prediction with brownies excluded , i.e.
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treated as missing data , we find that these meals show little or no

change over time at any of the temperatures . A similar effect is found

for strawberries , Items 31 and 32 , in Menus 2 and 12 at 38 degrees

although the effect is weaker in Menu 2 than for the others .

It appears then , that there can be a sizeable difference in the

time-behavior of menu- Scores resulting from the two ways of treating

the censored data for an individual item in a menu . In both

procedures the censored data for the item is regarded as missing when

the regression ( 8 ) is done , i.e. artificial scores for the missing

item- type are calculated , using Equations ( 5 ) or ( 6 ) , as appropriate .

The difference arises in the prediction stage where Equation ( 10 ) is

used to generate a menu- score from the item-scores . If the scores for

an item are thought to be missing , then U : 0 , and the artificial

score for the item is used . If we think that the item scores are 1 ,

then we are taking them as known , U = 1 , and the 1's rather than the

artificial scores are used .

It is not surprising that these procedures lead to different

outcomes , and it is also possible to suggest further methods that will

give still other results . For example , perhaps assigning all 1's is

too extreme . Some different distribution of low scores might be more

plausible and lead to less abruptly different results . What is lacking

is a rationale for choosing the most plausible distribution . It is

clear , however , that the censored data are not randomly missing . We

know something though not everything about what these scores would

have been had the items been served .
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It is also possible to imagine a large number of alternative

procedures for handling structural missing data . For example , we could

simply do a separate regression for each menu . In that case there is

no missing data , but we have 12 different regressions , each based on

only 1,08 scores . Across all menus this leads to a slightly better fit

than the procedure in Materials and Methods . Out of 1151 scores there

were 85 , as opposed to 97 , with absolute differences exceeding 1 , an

improvement that is not significant at the 90% confidence level

according to the chi-square test . The procedure in Materials and

Methods is at the opposite extreme from the one just given , for we

have only a single regression but have had to deal extensively with

missing data .

It is also worth inquiring whether the regression results , ( 9 ) ,

have been adversely affected by correlations among the variables .

There are significantly non-zero correlations among the Y-variables ,

for we used them in obtaining the results ( 5 ) to ( 7 ) . However , the

relations depicted there seem too weak to cause much difficulty with

the solution of the normal regression equations . This is confirmed by

an eigenvalue analysis of the correlation matrix , which shows no

indication of ill-conditioning .

The results shown in Table 5 are not strictly comparable with

those found earlier for the MRE by Ross et al ( 1983 ) and Ross ( 1983a ) .

However , in general we might expect the meal results to resemble those

for all items pooled in the earlier papers , and they do . For example ,

in ( 1983 ) all items pooled were found to have a shelf- life of 42
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months at 38 degrees . Again , in ( 1983a ) a time-temperature model led

to an estimated shelf-life for all items of 44 months . The median of

the shelf lives for the 12 meals at 38 in Table 5 is 36.5 months . Both

the previous efforts suffer from large enough standard errors so the

present results are not inconsistent with them .

TO conclude , the procedure in Materials and Methods appears to be

a plausible one for dealing with problems suffering from large amounts

of structural or censored missing data . It is reasonably simple to use

and gives results that seem to be sensible . Tentatively , we adopt it

for current use and expect to test it against measured data at some

future withdrawal .
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NUMERICAL VALIDATION OF TUKEY'S CRITERION FOR CLINICAL

TRIALS AND SEQUENTIAL TESTING

Charles R. Leake

USA Concepts Analysis Agency

ATTN : CSCA-ROR

8120 Woodmont Avenue

Bethesda, Maryland 20814

Abstract . A basic problem in conducting either clinical or sequential

trials is to determine which or when statistical significance for a

predetermined level of a has occurred . The criterion of

a , = a/K

for k nonoverlapping comparisons is mentioned in a paper by Tukey ( 1 ) . The

consequences of not using this criterion are developed . The use of this

criterion might be too stringent , however , and an alternative statistic is

given .

Introduction . Tukey ( 1 ) presented a paper at the Birnbaum Memorial Sympo

sium in May 1977. This paper was later published in Science. In this

paper , Tukey mentions a criterion to determine whether or not one can say

that he has observed statistical significance other than some random noise

when making a number of comparisons on a set of data . This criterion , with

all apologies to Professor Tukey , has been bestowed with the name Tukey's

Criterion through common usage in a number of circles in the military

analytical community.

The criterion is , for a given level of significance say a where k is

the total number of plausible comparisons, a , = a/k . Thus, if one observes

a difference which has a probability of occurring of a , or less when one is

comparing k nonoverlapping classes ( or subsets ) of a sample space , then one

can say that this difference is statistically significant at the a level .

т

The converse shows why this is necessary . Table 1 gives a sample of

the probability of not reaching statistical significance at a = .05 ( 5% )
and a = .05 /k ' for a selected number of comparisons , as well as the prob

ability of observing at least one statistical significance for a = .05 .

Clearly for a fixed a level , the greater the number of comparisons which

one makes , the more obvious it becomes that one will observe at least one

statistical significance . Thus , the practice of conducting a test , making

pair-wise comparisons , and reporting the significances for a fixed level
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of a shows a certain statistical naivety . When done deliberately , it

raises an obvious ethical question . To quote Tukey on this subject ,

" The moral seems to me to be abundantly clear : Knowing

that , for one class of patient , a clinical inquiry has

reached some specific level of significance , such as

4% , is not evidence of the same strength as knowing that

a focused clinical trial , involving a prechosen question ,

has reached exactly that level of significance , even if

both the inquiry and the trial involved the same number

of patients exposed to risk , and the same total number of

end points , distributed in the same way . ( 1 , p . 681 )

Table 1. Sample of Probabilities of Not Reaching Significance

Sample number of

comparisons

Probability of not

reaching significance Probability of at least

one significance at 5%

At 5% At 5%/K

1

2

3

4

5

10

20

50

100

95.0

90.2

85.7

81.5

77.4

60.0

35.8

7.7

0.6

95.0

95.1

95.1

95.1

95.1

95.1

95.1

95.1

95.1

5.0

9.8

14.3

18.5

22.6

40.0

64.2

92.3

99.4

What then can one do , when one is conducting an inquiry on a set of

data that might not even have been created by the inquirer ? There is one

obvious answer to this question , use Tukey's Criterion to determine which

comparisons are statistically significant .

In order to use Tukey's Criterion , one must first divide a by the num

ber of comparisons to be made . Let's assume for illustrative purposes that

a = .05 and k , the number of comparisons is 20 . It follows , then , that the

a - level , adjusted for Tukey's Criterion becomes a , = a /k = .05 /20 = .0025 .

Thus , the probability of rejecting Ho is not .05 but .0025 when a is ad

justed in accordance with Tukey's Criterion . The effect of this change in

a - level is reflected by a corresponding change in the rejection region of

the statistic being used . For example , if a Z-score is being used , for a

-

-
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.05 , the critical Z is 1.64. On the other hand , if a = .0025, as Tukey's

Criterion specifies , then the critical Z is 2.81 . Thus , the observed dif

ference must be over 1.1o greater than would be required if the a were not

adjusted for Tukey's Criterion . As a result , the data may not be compat

ible with such a requirement for statistical significance . Another would

be to use another statistic such as Scheffe comparisons in conjunction with

an analysis of variance . However , in order to use analysis of variance ,

there are certain data requirements such as equal or proportional cell size

in a two or more way analysis of variance . That available data does not

always lend itself to such an analysis goes without saying .

It appears more likely that choosing either of these alternatives is

unsatisfactory to the inquirer . Either Tukey's Criterion is too stringent ,

or one does not have the required prerequisities for an analysis of

variance or a similar nonparametric substitute . What then ?

Alternative Statistic . An examination of the problem raised by Tukey leads

to an alternative approach to attempt to attach meaning to making compari

sons on a set of data . Consider the following problem :

How many observed statistical significances made on k , nonoverlapping ,

and statistically independent comparisons must be made in order to say that

the number observed has less than a 5% probability of occurring ?

The answer to this question can be found by using the binomial distri

bution and solving for x , where

b ( x : N , 1 - a) < .05 .

As shown in this inequality , x is the desired number of statistical signi

ficances , N the number of comparisons , and a , the significance level .

If this number of statistical significances is achieved , one could

imply that factors other than chance were involved in obtaining that number

of statistical significances . Moreover , this statistic could be used for

parametric and nonparametric comparisons as well as a substitute method for

an analysis of variance where such an analysis was unfeasible due to sample

considerations .

Table 2 , which was obtained by using the binomial theorem for n < 100 ,

is shown below for a = .05 . For n > 100 , a normal approximation of the

binomial theorem can be used . The number of observed significances were

obtained from a binomial table ( 2 ) . This table , or the one below , can be

used for N < 100 to determine whether or not the number of observed statis

tical significances occurred by chance alone .
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Table 2 . Number of Observed Statistical Significances for a = .05 for N

Comparisons to Occur with Less than 5% Probability

N , number of comparisons Observed significances

1

2-7

8-17

18-28

29-40

41-53

54-66

67-79

80-96

97-100

n 100

1

2

3

4

5

6

7

8

9

10

Use normal

approximation
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FIRE SUPPORT TEAM EXPERIMENT

Jock O. Grynovicki

Jill H. Smith

Virginia A, Kaste

Ann E. McKaig

Experimental Design and Analysis Branch / ACE Team

Systems Engineering and Concepts Analysis Division

Ballistic Research Laboratory

Armament Research and Development Center /USAAMCCOM

Aberdeen Proving Ground, MD , 21005

ABSTRACT

The Army is fielding a new digital communications system , the TACFIRE system ,

shown for the brigade - area in Figure 1. In order to investigate the command, control, and

communications issues associated with the new devices, the Artillery Control Environment

(ACE ) was developed. ACE is a real -time, multiplayer, interactive simulation system run on

a commercial computer that interfaces with the tactical equipment through a bit box

(modem ). This paper discusses the preparations, experimental design , data collection ,

analysis methods, and results for the first experiment with military players interfaced with the

Artillery Control Environment software conducted 8 May - 10 June 83 .
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1. INTRODUCTION

A. Background

In May 1982, the HELBAT (Human Engineering Laboratory Battalion Artillery Test)

Executive Committee agreed that the Ballistic Research Laboratory Artillery Control

Environment (ACE ) and HELBAT activities should be combined to develop a Command

Post Exercise Research Facility (CPXRF ). The CPXRF will primarily be used for research ,

development, testing and evaluation (RDT & E ) work in automatic data processing ( ADP ) fire

support control systems using commercial ADP technology, a secondary usage is the training

of the tactical ADP operators under controlled conditions. Further, an ACE /CPXRF

Subcommittee was formed to provide joint DARCOM - TRADOC guidance in the

development of ACE technology and use of the CPXRF. The ACE software is a key tool in

the CPXRF. The software features the ability to automatically load live players with messages

produced by target acquisition and fire direction simulators while recording all the message

traffic that flows between the live and simulated players.

An overview of the CPX Research Facility and ACE program is given in the 1982 Sept

Oct issue of the Field Artillery Journal in an article "HELBAT /ACE Fire Support Control

Research Facility " by Mr. Barry Reichard . The layout of the facility is shown in Figure 2.

B. Purpose

The experiment detailed in this report was the first test in which military players were

interfaced with the Artillery Control Environment (ACE ) software. The purpose of this

experiment was to demonstrate the feasibility of using the automated techniques of the CPX

Research Facility for fire support control experiments.

To demonstrate this capability, a study of the effects of message intensity and

communication degradation on the Fire Support Team Headquarters' ( FIST HQ ) ability to

perform fire support coordination was performed . Message intensity was defined to be a

function of message type , message rate, and message content.

II. TEST CONCEPT

A. Obiectives

1 ) To determine the effect of message intensity on the FIST HQ's ability to perform fire

support coordination .

2 ) To determine the effect of communication degradation on the FIST HQ's ability to

perform fire support coordination .
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3) To determine if message intensity and degraded communication have a combined

effect on fire support coordination .

B. Measures of Performance

A measure of performance (MOP ) is a response that is used to quantify the effects of

the factors to be evaluated . Because all of our objectives investigated the effect on fire

support coordination, the measures of performance were the same for all three objectives.

The following measures of performance were computed on each two hour cell of the test:

1 ) Number of messages serviced by the FIST HQs ( i.e , messages for which a response

was generated ). This number provides information on the message traffic at the FIST HQs

under the different conditions and can be translated into net usage.

2) Service time distribution, where service time is defined to be the time required for

the FIST HQ to service a message starting from the time the ACK is sent from the FIST

DMD acknowledging receipt of a message to the time the response message is first

transmitted . This measure indicates the combined time a message spends in the FIST DMD

message queue and the processing and decision time of the FIST HQs.

3) Manual transmission time distribution , where manual transmission time is defined to

be the time from first transmission of the response message by the operator to the time an

acknowledgement (ACK ) is received for that message. The FIST HQs have completed the

decision making at this point, but must continue to send the message until an

acknowledgement is received , In degraded communications this time may not be

inconsequential. Also , the FIST HQs cannot process other messages while transmitting

manually.

4) Frequency count by number of tries for messages acknowledged . The FIST DMD

has a one character field for try number that cycles modulo 4 ( i.e. 0,1,2,3,0,1,2,3,0 , ...). It

was noticed in HELBAT 8 data, that more than four tries were sometimes necessary to get an

acknowledgement back on a message . TACFIRE uses the try number in the FIST DMD

message to determine what authenticator to select for comparison to the DMD message.

Therefore, if the number of tries exceeds four the FIST DMD displays a message to the

operator to contact destination by voice to resynchronize the authenticator codes. This

voice -digital contention then causes more problems to a net that is already experiencing

communications problems.

5) Number of fire missions completed /number of fire missions initiated . The FIST

HQs were given two hours and ten minutes to complete two hours of scenario . A completed

fre mission, by definition , is a call for fire ( FR GRID ), a message - to -observer (MTO ), at

least one SHOT and an end -of -mission (EOM ).
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6) Number of fire missions completed /number of fire missions expected. The number

of fire missions expected is the number of fire missions in the database. This was to measure

if the FIST HQs could complete all fire missions in the two hour scenario database within the

two hours and ten minutes allotted .

C. Scope

The fire support team was a four -man team consisting of:

1 ) the fire support team chief

2) the fire support sergeant

3) two radio telephone operator / drivers.

The FIST chief was available to the FIST HQ for initial supervision only. As per typical

operating procedures, the FIST chief may be absent for extended periods of time

( hypothetically accompanying the company commander ).

The FIST HQ was task -loaded by software interactively simulating three platoon -level

forward observers . The software FOSCE (Forward Observer SCEnario ) used tactical

scenarios developed by Mr. Arthur Long of the US Army Field Artillery Board. This scenario

or input database is detailed in the Section III-D, " Input Data Base" .

The FIST HQ had direct access to fire support from a company - level mortar platoon fire

direction center ( FDC ) and a generic field artillery fire direction center . All FDC operations

were simulated interactively by software. The FIST HQ determined the proper action (based

on the FIST chief's guidance and training) for each fire request; either to deny the request,

service the request with mortars or forward the request. Fire support was unlimited , that is,

not constrained by ammunition resupply.

All members of the FIST Headquarters were trained in the operation of the FIST DMD

to give the FIST chief flexibility in managing his team .

D, Limitations

1 ) All observers were placed in the review mode in the FIST DMD subscriber table .

2 ) After ceciding a fire request should be handled either by the mortars or forwarded to

the FCC, the fire mission was forwarded in the automatic mission mode. That is, all

subsequent messages for that fire mission are automatically routed through the FIST DMD .

Operator intervention is needed only if a message does not get acknowledged in four tries.

He is then notified that a message did not get ACKed after four tries, the message is placed

in his message queue and must be forwarded manually .
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3) No FIST HQ initiated missions were included.

4) No tactical chores were performed, e.g., guard duty , close station march order,

emplacement, etc.

5) All communication was digital, no voice communication.

E. Test Configuration

Figure 3 shows the nodes that were played in the first military player test. The FIST HQ

equipped with the FIST DMD in the mock -up vehicle interacting through ETHER , the

intracomputer communications network , with three forward observer scenario programs, the

mortar fire -direction simulator and battalion fire -direction simulator. Figure 4 shows how

these players communicated together and the net assignments.

III, RESOURCE REQUIREMENTS

A. Software

ACE software permits real-time fire support command and control functions to be

exercised in a controlled laboratory environment. The software is written in the C

programming language and is designed to run under the 4.1bsd ( Berkeley) UNIX operating

system . The major components of the ACE software are described below .

1 . ETHER ETHER is a single program which functions as an intra -computer

communications network . Computer ports are assigned to communication nets. ETHER

accepts a message from a port and transmits it to all other ports on the assigned net. Message

collisions are prevented by separately buffering each message within ETHER .

Each net is assigned a probability of message loss which ranges from zero to one. If the

probability of message loss is zero , the net was an ideal net and all messages are sent to each

port on the net. If the probability of message loss is greater than zero , a uniform random

number generator is used to decide whether or not a message is lost. Lost messages are not

transmitted to any port on the net. Acknowledgements are treated the same as any other

message .

ETHER maintains a log file of each message which it receives. In addition to the raw

message, the log contains the times ( Julian day, hour, minute , second ) for the start of the

message, the end of the preamble and the end of the message .

2. Ace Display (ADIS ), ADIS utilizes a CRT ( cathode ray tube) terminal to display in

real time the messages being transmitted through ETHER . The terminal screen is divided

into eight columns which are labeled for the players ( see Figure 5 ) . Each message is

displayed as two lines in both the sender's and receiver's columns. The message first appears

in the sender's column. The first line contains the message type and target number if it has
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been assigned . The second character in the second line is a "a" , indicating " sender " and the

time sent is given . The message will then appear in the " receiver's " column. The first line is

the same as in the " sender's" , the second character in the second line gives the address of

the " sender" and the time received is displayed . When the acknowledgement is sent by the

" receiver" an is displayed as the first character in the second line of the " receiver " and

when the acknowledgement is received by the " sender " an " is displayed as the first character

in the second line of the " sender". If the message is degraded by ETHER "MSG LOST"

appears in the receiver's column. Below the columns, the last message sent is interpreted .

At the bottom of the screen , the time from the start of that run is displayed.

3. Forward Observer Scenario ( FOSCE ). Forward observer scenario program reads a

database of forward observer (FO ) messages and transmits the messages as if they were being

generated by a real FO . Each message is time-tagged in the database and sent by FOSCE at

the appropriate time. FOSCE will retransmit a message up to four times if an

acknowledgement is not received . FOSCE , after sending a request for fire , will wait for a

message - to -observer (MTO ) and SHOT message before transmitting subsequent adjust (SA)

messages. Because no voice communication was allowed , FOSCE was made smart enough to

respond to freetext messages asking for the status of a particular fire mission by target

number or the status of FOSCE itself, that is, active or not active.

4. Fire Direction Simulator ( FDS). The fire direction simulator consists of four

programs which perform a limited number of TACFIRE/ BCS functions. FDS accepts fire

request messages, prioritizes them , assigns target numbers and generates MTO and SHOT

messages. The number of simultaneous missions which the FDS will process may be

specified. If the number of missions exceeds the maximum , the FDS will process missions

based on mission priority. During this experiment, the FDS could handle up to 10 missions

simultaneously, which was not a limitation on the system . The FDS could be queried by the

FIST HQs as to the status of a particular fire mission by target number or by observer

identification number and mission buffer.

S. Mortar Fire Direction Simulator (MFDS) . The mortar FDS simulates

communication with the 81 mm company mortars. It is a special version of the FDS program

which will only accept one fire mission at a time.

6. Bit Box Program (BBP ). The bit box interface program accepts messages from

ETHER and transmits them to a computer port which is connected to a bit box . The program

also reads messages from the computer port and trapsmits them to ETHER .

B. Hardware

1 . Two Bit Boxes , Bit boxes are microprocessor based modems which enable

TACFIRE hardware to communicate with commercial computers. Bit boxes accept TACFIRE

messages from wire line or radio , perform error correction and convert the messages to

RS232 ASCII characters which commercial computers can accept. They will also accept a

message from the computer, add the error correction bits , time disperse the message and

transmit it over wire line or radio in TACFIRE format ( FSK ).
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2. FIST DMD , The FIST digital message device that was used in the experiment is

one of four experimental design models (EDM #2) that are in existence . It is a prototype

model, and not a production model.

3. VAX 11/750 Computer. The VAX 11/750 computer was dedicated to running the

experiment and had no other processes running during the test. The operating system was

the 4.1 bsd ( Berkley ) UNIX .

C. Training

Test participants were collectively trained at the Human Engineering Laboratory in the

operation of the FIST DMD by CPT Gahagan, an instructor from the Gunnery Department

of the US Army Field Artillery School. The Human Engineering Laboratory provided

training equipment for the students. The test participants were trained Fire Support Teams

(MOS 13F ) from the 82nd Airborne Division, Ft. Bragg.

D. InputDatabase

The tactical scenario database contained all fire support control messages for a limited

scenario of a mechanized infantry battalion of an armored division. The SCORES , Europe III,

Sequence 2A was used to generate targets expected to be fired by a battalion in sustained

combat operation. The battalion is constrained by ammunition resupply under normal

operations, however, it was decided that ammunition resupply should not be a limiting

condition in this test. The entire scenario was played in retrograde mode,

The data base consisted of 36 two hour cells of messages, 12 two hour cells of low

intensity, 12 two hour cells of medium intensity and 12 two hour cells of high intensity .

Intensity is defined by the number of initiating messages per two hour cell as given in

Figure 6 and the message stream that follows each initiating message as given in Figure 7. It

can be seen that intensity is a function of the number of initiating messages and their

subsequent messages. The 36 two hour cells of data were arranged such that all permutations

of the three intensities ( L - M - H ) appeared twice . Ninety percent of the fire missions had

normal priority and the other ten percent had urgent priority.

IV. DATA COLLECTION

A. Experimental Design

1. Factors The two factors that were tested in this experiment are message intensity

and communication degradation. Three levels of message intensity were tested with each of

the three levels of communication degradation giving nine test combinations. The levels of

each factor were desned as follows:
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FACTORS

1 ) INTENSITY (per two hour block )

MESSAGE TYPE LEVELS

Low Medium High

4

2

Fire Mission 1 , Fire For Effect

Fire Mission 2 , Adjust Fire

Fire Mission 3, Immediate Smoke

Artillery Target Intelligence

8

4

1

12

6

1

618

1
2

2) COMMUNICATION DEGRADATION

00 % Message Loss

15% Message Loss

30 % Message Loss

FIGURE 6
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INTENSITY

LEVELS

MESSAGE SEQUENCE . L M H

18 12 61 ) Artillery Target Intelligence

ATI FO - FIST - FDC

4 | 8 122) Fire Mission, Fire for Effect:

FR GRID FOFIST - FDS

MTO FOEFISTK FDS

SHOT FOAFISTE FDS

EOM FOFIST - FDS

2 4 63) Fire Mission, Adjust Fire

FR GRID FOFIST -- FDS

MTO FO - FIST FDS

SHOT FOR FIST - FDS

SA( 1) FO -FIST - FDS

SHOT FO + FIST FDS

SA(2) FOFIST - FDS

SHOT FOF FISTE FDS

SA(3) FO --FIST - FDS

SHOT FOR FIST_FDS

EOM FO - FIST - FDS

0 1 14) Fire Mission, Immed . Smoke

Same as Adjust Fire Mission

FIGURE 7
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Message Intensity

L low

ME- medium

H - high

Communications Degradation

0-0% degradation

1 - 15 % degradation

2 - 30 % degradation

2. Design Matrix It was decided that the smallest period of time reasonable to test any

one of the nine treatment combinations was two hours. Since the testing of all nine

treatment combinations require a minimum of 18 hours of testing and realistically could not

be completed in one day, a randomized incomplete block design was constructed so that the

day - to -day variability would not influence the results. The nine treatment combinations were

divided into blocks of three and the three blocks were run over a three day period . The

assignment of the treatment combinations into blocks was based on a confounding scheme.

This scheme assures that the effects of message intensity (I ) and communication degradation

(C) and the interaction of these two factors ( I x C) on a FIST HQ's ability to perform fire

support coordination can be measured . Because time constraints permitted only two

replications, part of the precision of the estimate of the interaction was sacrificed ( i.e. blocks

within replicate 1 were confounded with the linear component of the I x C interaction and

blocks within replicate 2 were confounded with the quadratic component of the IxC

interaction ). Randomization of treatment combinations within blocks and blocks within days

was performed .

The experiment was repeated for four FIST teams, so that team - to -team variability was

included. In addition , software changes were implemented between teams 2 and 3 as a result

of information from a pilot test. The pilot test was conducted before the actual test and

resulted in changes to the software to make it tactically more realistic. One significant change

was to have the FDS send one SHOT message per call - for -fire rather than one SHOT message

per volley, Capability for status requests was implemented in the FDS at this time also .

Because of these changes, software was made a factor in the experiment so that the variability

could be accounted for due to the software changes.

The design matrix is shown in Figure 8. The FIST teams were tested sequentially, one

at a time for six days. The six days are shown in the design matrix and the tests were run in

the order given within each day.
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DESIGN MATRIX

FIST REPI REP2

SOFTWARE TEAM DAYI DAY2 DAY3 DAY4 DAYS DAY6

TEAM

ONE

L2

MI

HO

MO

H2

Ll
S
m
w

MO

HI

L2

LO

MI

H2

НО

LI

M2

识

SI

MI

TEAM

TWO

HI

10

M2

H2

MO

LI

L2

HO

MI

M2

HO

LI

HI

MO

L2H2

B
W
u

B
W
u

W
S
B
S
M
B

MIM2

HI

LO

H2

MO

L1

HI

MOTEAM

THREE

ܐܐ

M2

HO

LIHO H2 ܐܝܐ

S
2

TEAM

FOUR

H2

MO

LI

MI

L2

HO

M2

HI

LO

HI

MO

L2

LI

HO

M2

LO

MI

H2

COMMUNICATION

DEGRADATIONINTENSITY

L- LOW

M- MEDIUM

H- HIGH

0= 0 % DEGRADATICN

1 - 15% DEGRADATION

2- 30 % DEGRADATION

Figure 8
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V. DATA ANALYSIS

A. Statistical Analysis

1. Effect of Factors on Message Traffic. The total number of messages generated for

each experimental condition over a two hour cell was used to evaluate and validate the effect

that the different factors and their interactions had on message traffic . Based on the way

intensity and communication degradation were defined in planning this experiment, we would

expect these two factors to have a significant effect on message traffic . An increase in

intensity levels should result in an increase in the number of messages generated. Similarly,

an increase in communication degradation should result in an increase in the number of

messages it takes to complete a fire mission or to forward an artillery target intelligence

message . To some this may seem counter intuitive, however, in degraded communications

the messages are being sent but not received and this results in retransmissions increasing the

message traffic . The other factors specified in the design, including the two different Fire

Direction Simulator software programs, were also included in this analysis.

The number of messages observed in each test cell are shown in Figure 9. An analysis

of variance was performed on this measure with all replicate interaction terms pooled for the

error term . A second analysis of variance procedure was then performed with additional

interaction terms found not to be significant also being pooled with error . The ANOVA table

for the final reduced model is shown in Figure 10. It should be noted that since block was

confounded with components of the intensity -degradation interaction, it is not meaningful to

test any term in the model containing block . A star next to the F -statistic indicates that the

factor is significant. Based on the calculated F -values, intensity, degradation , intensity

degradation interaction , software, and intensity - software interaction , were found to have a

significant effect on the message traffic.

The effect that intensity, degradation and their interaction have on message traffic is

summarized in Table 1. Table 1 gives the average number of messages per two hour cell, My

and the number of cells in the average , N, for the given factors and their marginal effects

(averages over the rows and columns). Looking at the average number of messages generated

for each level of intensity presented in the right hand column of Table 1 , one sees that there

is a significant increase from 361.46 to 882.50 as intensity increases. Similarly , an increase in

communication degradation increased the average message traffic flow from 462,13 to 798.58.

In addition , in comparing the mean change between the different levels of communication

degradation for each level of intensity, a positive interaction effect can be noted . There was an

increase in the mean of about 200 messages between 00 % and 30 % degradation for low

intensity compared to an increase of over 300 messages for medium and 500 messages for

high intensity,

The effect that software and the software - intensity interaction has on message traffic is

summerized in Table 2. The average number of messages generated per two hour block for

the original FDS software program was 704.67 compared to 545.83 for the modified program .

The software was changed to produce a shot message every call for fire instead of every
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Communication Degradation

00 15 30Fist

Team
Software Intensity Total

Repl Rep Repl RepIT Repl Rep

Team1 297 281 410 335 508 494

L 4648

Team2 285 279 353 413 516 475

Team1 512 468 742 723 761 782

S
I

M 8531

Team2 552 564 781 649 1146 852

Team1 811 700 890 1191 1276 1303

H 12368

Team2 778 808 996 1076 1216 1323

Team3 300 230 329 288 SOS 441

L 4097

Team4 245 238 316 390 393 419

Team3 393 396 599 512 727 750

S2 M 6722

Team4 411 402 556 558 730 688

Team3 530 544 684 746 1005 972

H 2004

Team4 563 S48 725 701 881 1104

TOTAL 11135 14966 19270 45370

Figure 9
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ANALYSIS OF VARLANCE (EFFECT ON MESSAGE TRAFFIC )

ANALYSIS OF VARIANCE

(ANOVA)

DEGREES OF

FREEDOM

SUM OF

SOUARES

MEAN

SQUARE

F

RATTOSOURCE

Replication 1 288.00 288.00 0.08

Software 1 454104.50 454104.50 128.19 **

Block within

Rep 4 67391.34 16847.54

Software X Block

within Rep 4 8701.11 2175.28

Team within Soft

х

Block within Rep

8

40628.52 5078.56

Intensity 2 3259353.58 1629676.79 460.04 **

Software

X

Intensity 2 152010.75 76005.37 21.46 **

Degradation
2 1362202.08 681101.04 192.27**

Intensity

X

Degradation 4 103933.83 25983.41 7.33**

Pooled Error 43 152325.79 3542.46

Total 71 5600939.55

Figure 10
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TABLE 1. Intensity by Degradation

Average Number of Messages

Per Two Hour Cell

Communication Degradation (%)

Intensity

0
0

15 30

8

266.88

8

351.88

8

465.63

24

361.46LOW

8

461.00

8

636.00

8

798.38

24

631,79MEDIUM

8

658.50

8

857.25

8

1131.75

24

882.50HIGH

24

462,13

24

615.04

24

798.58

I
Z

volley which is a more realistic representation of how TACFIRE /BCS functions. Therefore,

one would expect the average message flow to be less for software 2 than 1. Also , one would

expect a greater change between low , medium and high intensity for software 1 than 2. From

Table 2, the difference between means for low and high intensity for software 1 is over 600

messages compared to a difference of less than 400 for the modified software. To obtain a

realistic description of the effect that message intensity and communication degradation have

on network message traffic flow and on the Fire Support Teams' ability to perform effective

fire support coordination , the analysis from this stage on will be based on the second half of

the experiment using the modified software.
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TABLE 2. Software by Intensity

Average Number of Messages

Per Two Hour Cell

Intensity

Software Low Medium High

12

386.5

12

707.58

12

1019.02

36

704.671

12

336.42

12

556.00

12

745.08

36

S45.832

N24

462.13

24

616.04

24

798.58

2. Frequency Count by Number of Tries of Messages Acknowledged . Theoretically ,

the number of tries it takes for a message to successfully reach its destination and for an

acknowledgement to be received by the sender should only be affected by the percent of

communication degradation in the communication networks. Providing one knows what the

actual percent degradation is, one can determine the theoretical distribution of how many

times a message is sent before it is acknowledged for each level of communication

degradation. When there is no communication degradation , one would expect that all

messages would be acknowledged on the first try. In 15% degradation the probability that a

message gets through and is acknowledged on any try is ( 1 -.15 ) ( 1-15 ) - .7225. The

probability that a message does not get acknowledged on a given try is 1-.7225. Using these

probabilities, we can compute the probability that a message is acknowledged in a given

number of tries. Table 3 gives the theoretical distributions for the probability a message gets

acknowledged in n tries for 15 and 30 % degradation.

Using the theoretical probabilities from above and the total number of messages actually

acknowledged under each degradation level, we can check the actual effect of communication

degradation with the expected effect as a check on the laboratory system . Figure 11 shows

the distribution of messages acknowledged by try number in " perfect" communications ( 0 %
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TABLE 3. Theoretical Distributions for Messages Acknowledged

Number of

Tries

Degradation LevelGeneral

Formula

15% 30 %

1

1

р .7225 .4502

2 p ( 1 - P ) .2005 .2499

3 p( 1 –p) | .0556 .1274

4 p (1 - p)3 | .0154 .0650

n p( 1 - P)

degradation ) for software 2. " Perfect" communication was not quite perfect since the bit

boxes did not have net monitoring and message collisions resulted . Figures 12 and 13 give

the same distributions for 15 and 30 percent degradation. Very good agreement was

observed, and as shown in Appendix B , when tested statistically the distribution of messages

acknowledged by number of tries is a function of communication degradation only and is not

influenced by intensity, team variability or learning.

3. Time Required to Service a Message. This section investigates the effect that

degradation and intensity had on the time it took for FIST HQs 3 and 4 to service a fire

request ( FR ) message and an artillery target intelligence (ATI) message . Since fire requests

are given a higher priority than ATI's and require more processing by the FIST team ,

message type had to be considered a factor in this analysis.

As the data was being checked for completeness, it was noted that the distribution of

service time was skerred and that the variance of the observations under various experimental

condicions exhibited discrepancies. A check for homogeneity of variance using Bartlett's test

ceritag ] ihe latter cbservation . In addition, several experimental groups had observations

190 219 extremely large ( over four star.dard deviations from the group mean ) and atypical

che majority of the service times coserved under the same experimental conditions. These
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observations comprised slightly more than four percent of the total service times observed.

They were removed from the analysis of variance procedure found below , but were

considered in interpreting the final results. The median for each experimental condition with

the outliers removed is given in Table 4 below .

TABLE 4. Median Service Time

by Experimental Condition

Degradation

Rep Message Team Intensity 0 15 30

3

L

M

H

9.2

10.5

9.0

12.0

14.0

14.5

27.0

8.5

23.0

1

1 ATT

4

L

M

H

6.1

6.5

9.0

9.3

6.5

6.5

9.0

9.5

3.5

6.0

9.0

9.0

9.2

9.5

40.0

L

3 M

H

4.2

10.3

8.3

2 ATI

4

L

M

H

6.3

5.3

7.5

15.S

18.3

17.3

7.8

9.0

6.5

22.0

20.5

16.0

S.S

8.1

11.5

46.0

15.0

21.5

3

L

M

HFire

Request1

4

L

M

H

12.5

6.3

6.7

8.0

8.5

11.0

9.0

9.3

10.5

L

3 M

H

14.5

14.3

13.3

14.5 18.3

16.7 18.5

14.5 22.8Fire

Request2

4

L

M

H

8.0

9.8

11.3

9.5

10.9

8.8

8.0

8.4

17.5
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Further investigation of the data revealed a positive correlation between the standard

deviations and the experimental group means. Correlation between the standard deviations

and group means is often accompanied by marked non -normality and non -homogeneity of

variance , and indicates that the particular form of the original observations is unsuitable for

ANOVA procedures. However, a transformation can be determined which makes the

standard deviation independent of the mean , corrects non -homogeneity and also results in

the observations being distributed more normally. In general, if a significant functional

relationship between the standard deviation and the group means can be determined, then the

transformation is the integral of the reciprocal of this functional relationship. Following this

procedure, the following transformation was developed:

1.3 In ( -2.6 +.8 ( service time ))

The transformed data became more normal and the assumption of homogeneity of variance

was confirmed .

An analysis of variance procedure was performed on the transformed data . One slight

modification to this procedure was that due to unequal experimental group sizes, the sum of

squares for all terms in the model, except the error term , was weighted by the harmonic

mean . The final reduced ANOVA Table is presented in Table 5.

The most significant term in the analysis was team . The median service time for team 3

was 14.5 seconds which is substantially higher (73 percent) when compared to the 8.5 seconds

for team 4. This trend is prevalent for both fire requests and ATI messages, but is magnified

when one considers just fire requests. As suspected , type of message also influenced service

time. Although fire requests have a higher priority than ATIs, they contain more information

that has to be recorded and verified by the FIST HQs. Therefore, it was not surprising that

the median time ( 13.5 seconds) for fire requests was 55 percent higher than the median

service time (8.5 seconds) for ATIS.

From Table 6, which considers both fire requests and ATIs, it is obvious by examining

the marginals of this table that an increase in intensity or degradation resulted in an increase

in the FIST's service time. There was a 37 percent increase in median service time as

degradation increased from 0 to 30 percent and a 37 percent increase in median service time

as intensity increased from low to high. However, the effect that intensity had on the FIST

HQs service time is not as predominant or does not exist when considering ATIs and fire

requests separately. The median service time for ATIs increased 12 percent from low to high

intensity as observed in the right marginal of Table 8. Contrary to this trend, the FIST HQ's

ability to service fire requests remained essentially the same in either low or high intensity as

shown in Table 7. One possible explanation is that as intensity increased , more effort was

made to service the fire request messages that have a higher priority than ATIs.

Consequently, ATIs were not serviced as quickly.

The effect that degradation had on service time is consistent with the above trend for

both ATIs and fire requests. As observed in examining the bottom marginals of Tables 7 and

8, an increase in degradation from 0 to 30 percent resulted in the FIST HQ's median service
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TABLE 5. Analysis of Variance

( Effect on Service Time)

DEGREES OF

FREEDOM

1

SOURCE

SUM OF MEAN

SQUARES SQUARE

5.62 5.62

F

RATIO

Replication 8.64 **

Message Type 1 6.01 6.01 9.25**

Block within Rep 4 16.45 4.11

Message Type X

Block within Rep 4 7.36 1.84

Team 1 150.98 150.98 232.3 **

Team X

Block within Rep 4 17.1 4.28

Intensity
2 14.77 7.38 11.2 **

Intensity X

Message Type
2 9.48 4.74 7.18 **

Intensity X

Team 2 7.25 3.63 5.5 **

Degradation 2 52.68 26.34 39.91**

Degradation X

Message Type 2 5.52 2.76 4.18**

Degradation

X Team 2 2.60 1.30 1.96

Intensity X

Degradation 4 31.68 7.92 12.01 **

Intensity X

Degradation

X Team

4 11.99 3.00 4.84**

Pooled Error 790 520,9 .66

Total 825 860.39
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time increasing 29 percent and 13 percent for fire request and ATIs, respectively.

TABLE 6. Intensity by Degradation

Median Service Time

Fire Requests and ATIS

Communication Degradation (%)

Intensity

0
0

15 30

LOW 9.0 9.5 9.0 9.5

MEDIUM 9.3 11.0 11.0

1
0
.
5 10.3

HIGH 10.5 12.5 18.0 13.00

9.5 11.0 13.0

The ANOVA table showed a significant interaction intensity degradation effect on service

time. As observed in Table 6, this trend was slight in low or medium intensity as degradation

increased from 0 to 30 percent. However, in high intensity, the increase from 0 to 30 percent

degradation resulted in a 71 percent increase in service time which was substantially higher

than the increases observed in low or median intensity as degradation increased . This

interaction effect was prevalent for both ATIs and fire requests .

For ATIs, the median service time increased only slightly as degradation increased from

0 to 30 percent for low or medium intensity as shown in Table 8. Similarly, for fire request

messages, the increase in degradation from 0 to 30 percent was only 4 percent in medium

intensity . This trend was more noticeable in low intensity where the median FIST HQ's

service time for fire requests increased almost 28 percent as degradation increased from 0 to

30 percent. However, in high intensity, the increase from 0 to 30 percent degradation

resulted in a substantial increase in service time for both ATIs and fire request messages

when compared to any increase observed in low or medium intensity. The median service

time for fire requests increased 46 percent from 0 to 30 percent degradation and for ATIS

increased 179 percent. This was due to the fact that the largest median service time observed
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TABLE 7. Intensity by Degradation

Median Service Time

for Fire Requests

Communication Degradation (%)

Intensity

0
0

15 30

LOW 12.5 13.5 16.0 14.5

MEDIUM 11.5 13.5 12,0 12.0

HIGH 12.0 13.0 17.5 14.0

12.0 13.0 15.5

for ATIs and fire requests occurred under 30 percent degradation and high intensity. In

addition, it was only under this condition that the median service time ( 19.5 seconds ) for

ATTs was higher than for the median service time ( 17.5 seconds) for fire requests. This seems

to substantiate the hypothesis that under increased workload , the FIST HQs spends more

time trying to service fire request messages while ATIs are left in the DMD queue.

Although replication ( learning) was significant, only a slight decrease ( 8 percent) in

service time was observed between replicate 1 and replicate 2 .

The final step in this analysis was to categorize the removed data by various

experimental conditions. The following trends were worth noting. Of the 36 service times

removed from the data base, over one third were observed under 30 percent degradation and

high intensity. In addition , 75 percent were observed from 30 percent degradation with over

92 percent coming from two hour cells that were run under 15 or 30 percent degradation .

These observations substantiate that increased degradation and the combined effect of 30

percent degradation and high intensity caused delays for the FIST HQs in servicing messages .

292



TABLE 8. Intensity by Degradation

Median Service Time

for ATIS

Communication Degradation (%)

Intensity 00 15 30

LOW 8.5 8.5 8.5 8.5

MEDIUM 7.5 9.5 9.0 9.0

HIGH 7.0 9.5 19.5 9.5

8.0 9.0 9.0

IV . CONCLUSIONS

Software, intensity , communication degradation, software - intensity interaction and

intensity -degradation interaction all have a significant effect on message traffic through the

FIST HQs. A change from 0 to 15 percent communication degradation resulted in an average

increase of 33 percent in the number of messages generated . A change from 0 to 30 percent

communication degradation resulted in an average increase of 73 percent in the number of

messages generated . Medium intensity generated 75 percent more messages than low

intensity and high intensity generated 144 percent more messages than low intensity, on the

average. Software was added as a factor in the experiment to control for the variance induced

by the change in software. Knowing that the change was significant and the second set of

software was more correct tactically , only the second half of the test was analyzed for the

other measures.

The number of transmissions of a given message before an acknowledgement is received

is important because the FIST DMD allows only four tries and then voice contact must be

made to synchronize authenticator codes. Voice transmissions on digital nets cause

contention. In 15 percent degradation .2 percent of the messages required more than four

transmissions and in 30 percent degradation 2.4 percent of the messages required more than

four transmissions. Although these percentages are small, because of the large number of

messages on any net the actual number of voice transmissions required may be tactically

significant.
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The median service time for messages was influenced significantly by team , message

type, replication , intensity, degradation , and many of the interaction terms. It is not

surprising that when measuring a human response time that the humans, or FIST HQs, are

the most significant factor. Replication being significant in this instance can be translated to a

slight learning effect since the first replicate occurred on the first three days of testing and the

second replicate occurred on the last three days. An increase of 32 percent in median service

time for fire requests and ATIs combined was observed from 0 to 30 percent degradation and

an increase of 34 percent was observed as intensity increased from low to high. The

combined effect of intensity degradation is most noticable in high intensity. That is,

communication degradation has little effect within low intensity or medium intensity, but has

a very large effect in high intensity. Because intensity is defined by weighing the initiating

message types ( fire requests and ATTs ) when we breakout service time by message type, we

no longer observe the effect of intensity . What we do notice , however, is that although fire

requests take longer to processes in general than Alls, as communication degradation

increases within high intensity the rate at which service time increases for ATIS is

considerably higher than the rate of increase for fire requests until finally at 30 percent

degradation ATIs take longer to process than fire requests. Service time in high intensity

increases 179 percent for ATIs and 46 percent for fire requests. What this would indicate is a

queueing problem at the FIST HQs. Fire requests are higher priority than ATIs and are

selected out of the queue before ATIs for processing. Therefore, although it may not take as

long to process ATIs they are remaining in the queue longer until finally their service time

exceeds that of fire requests because service time is both the time spent in the FIST DMD

queue and the human processing time.

At the time this paper was presented, the complete analysis of the data produced was not

completed and is, therefore, not presented in these proceedings. Complete analyses will be

published in a BRL report upon completion and can be requested from the authors.
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APPENDIX A

General Analysis of Variance Procedure

Analysis of variance (ANOVA ) is a common procedure which tests the hypothesis that

there is no statistical difference between the mean value of data drawn from two or more

populations. One can think of a population as data collected under the same experimental

conditions. This procedure utilizes the F -statistic which is a ratio of the estimated variance

(mean square ) of the factor or interaction one is testing divided by its associated error. The

number of factors evaluated and their associated error is dependent upon the model one

chooses, and if the different factors in the model are fixed or random . A factor is considered

random if it contains categories or levels which are considered samples from a larger group .

A fixed factor is one in which its categories or levels exhaust the cases in which there is

interest. Also , the categories are not merely samples.

Corresponding to the F -statistic is a significance level ( 1 -a) where a is the probability of

rejecting a true hypothesis. For this analysis, a will be equal to .05 . If the calculated F

statistic is larger than the tabulated F - value, then the hypothesis that the factor has no effect

in a given measure of performance (MOP), is rejected. However, the test of significance

using the F distribution is valid if the observations (MOPS) are from normally distributed

populations with equal variances. Investigation has shown that results of the analysis are

robust to the departure from the assumption of normal distribution but the homogeneity of

variance assumption should be checked .

The model on which our analysis is based contained all possible treatment combinations

as specified by the design except interaction terms that contained replication . If only one

observation per experimental condition was available, the interaction terms containing

replication were assumed not to be significant and were included in the estimate of error, If

more than one observation per cell was available, then Bartlett's test was performed on the

these cells sample variances. If these mean squares or variances were found to be different,

then an appropriate transformation was performed on the MOP being evaluated so that these

estimates can be used as the error term in the model.

Based on the above described model and the fact that replication was the only term

considered random , the expected mean squares were determined as shown in Table A - l.

Examining the components of the error mean square, the F -ratio can be determined for

each treatment combination . For example, the expected mean square for replication contains

a source of variation for replication and pooled error . Therefore, the proper denominator for

the F -ratio is the mean square for error . Due to the model specifications, the pooled error

term happens to be the proper denominator to use for every term in the model. The

estimated mean square for each treatment combination is obtained by calculating each effects

sum of squares and dividing by its associated degrees of freedom .

The degrees of freedom used to calculate mean squares for each treatment combination

are given in Table A - 2 . By comparing the calculated F - statistic to the tabulated F - value one

can determine if each treatment combination had an effect on fire support coordination based

on the MOP being evaluated .
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TABLE A-1. Analysis of Variance

(Expected Mean Squares)

ANALYSIS OF VARIANCE

(ANOVA )

EXPECTED MEAN

SOURCE SQUARE

108.0 +0?

108.6s + o ?

360. $bto ?

18.05bto?

54.& to ?

9.4.bto?

72.0ito?

36 • sito?

Replication

Software

Block within

Rep

Software X Block

within Rep

Team within

Software

Team within Soft X

Block within Rep

Intensity

Software X

Intensity

Intensity X

Team w Software

Degradation

Software X

Degradation

Team within Software

X Degradation

Intensity X

Degradation

Soft X Intensity

X Degradation

Team within Software

X Intensity

X Degradation

Error

18.dieto?

72.04 + o ?

36.0sd to?

18.didto?

24.didto ?

27. Asid to ?

60.drid to ?

02
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TABLE A - 2 . Analysis of Variance

( Degrees of Freedom )

ANALYSIS OF VARIANCE

(ANOVA )

DEGREES OF

SOURCE FREEDOM

1

1

4

4

2

8

2

2

Replication

Software

Block within

Rep

Software X Block

within Rep

Team within

Software

Team within Soft X

Block within Rep

Intensity

Software X

Intensity

Intensity X

Team w Software

Degradation

Software X

Degradation

Team within Software

X Degradation

Intensity X

Degradation

Soft X Intensity

X Degradation

Team within Software

X Intensity

X Degradation

Pooled Error

4

2

2

4

4

4

8

19

Total 71
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The final step in the ANOVA procedure is that the interaction terms found not to be

significant can also be pooled with the error component of the model and the analysis redone.

This procedure reduces the model and increases the degrees of freedom for error and

subsequently increases the confidence in conclusions reached if both analyses agree.

>
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APPENDIX B

( Contingency Table Analysis)

Contingency table analysis is a method used to make direct inferences about whether

two or more population distributions are identical to some theoretical form . Ordinarily, the

reason for comparing such distributions is to find evidence for independence of attribute or

experimental conditions. In short, we are going to employ a test for independence for each

experimental unit in our design matrix . The general procedure is to statistically compare the

sample or observed frequency for each experimental unit to the theoretical expected

frequency.

The statistic used to test if the observed frequency for each treatment combination is

equal to the expected frequency is the chi-square statistic . This statistic is defined as

1- N ( fi - e :)?
I
M ei

where N is the number of experimental units and f; and e; are the observed and expected cell

frequencies. The calculated statistic is then compared to a tabulated value which is based on

an alpha level equal to .05 and the number of degrees of freedom associated with the analysis.

The number of degrees of freedom is equal to the number of experimental unit minus one,

minus the number of parameters estimated from the sample data which are needed to

determine the expected frequency. If the calculated chi-square statistic is larger than the

tabulated value, the hypothesis that the experimental treatments are not associated with the

MOP being analyzed is rejected. One restriction is that the sample size must be sufficiently

large so that none of the theoretical frequencies are less than 1 and not more than 20 percent

are less than 5.

For MOP4, which is the frequency count of the number of times a message is sent

before it is acknowledged , the theoretical distribution can be determined for each treatment

combination without any sample results. At zero percent degradation , the probability of

having a try number greater than zero , which can be interpreted as the probability of a

message not getting through and /or an acknowledgement not being returned on the first try ,

is zero . At fifteen percent degradation the probability of a message getting through and an

acknowledgement returned on the first try is recorded for each two -hour block run with 15%

degradation to have a try number of zero . Similarly, with 30 % degradation , one would expect

49 percent of the total messages recorded per two hour block to have been tried only once .

The theoretical probability by try is given in Tables B - 1 and B - 2 .

If needed three separate contingency analyses will be performed for each level of

communication degradation. However, at zero percent degradation all of the messages should

be acknowledged after the first try. The expected number of messages by try number for the

24 calls run at each level of communication degradation is presented below . It is worth

acting that since no parameter estimation is needed to determine these theoretical

distributions the degrees of freedom for each analysis is equal to the number of cells minus

one. These theoretical frequencies were compared to the observed frequencies using the
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TABLE B - 1 . Probability of a Message Being

Acknowledged by Try

( 15% Degradation )

Try

greater

3Degradation 1 2 3

15 % .723 .201 .056 021

TABLE B - 2 . Probability of a Message Being

Acknowledged by Try

( 30 % Degradation )

Try

greater

3Degradation 1 2 3

30 % .490 .250 .128 .132

above described procedure.Then , using contingency table analysis outlined above , one can

determine if the other experimental factors had an effect on the number of tries it takes

before a message is acknowledged.

The first step of this analysis was to verify that the uniform number generator did

produce fifteen and thirty percent total message lost for each set of twelve cells run under the

modified software. Using the chi-square statistic defined above, one can test if in fact the

observed and expected number of messages never degraded under 15 and 30 percent

degradation are statistically the same.

For fifteen percent degradation , the chi- square statistic was calculated as 2.257 with 11

degrees of freedom and found not significant at alpha equal to .os . Similarly , at 30 percent

degradation, the statistic was calculated as 1.175 with 11 degrees of freedom and again found

not to be significant. In fact, over each set of twelve cells, it was calculated that .8525 and

.7054 of the messages were never degraded for 15 and 30 percent degradation, respectively.

Having verified that ETHER was producing the desired degradation levels in our

communication network, the next step is to determine if intensity and team variability had an

effect on the distribution of message tries for acknowledged messages at each degradation

level.

At O percent degradation, one would expect all of the messages to be acknowledged on

the first try . As seen from Table B-3 below , almost all (98.6%) of the messages had

successfully been sent and acknowledged. It is obvious that intensity and team variability had

no effect on a message reaching its destination at zero percent degradation. The 1.4 percent
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TABLE B-3. Observed Number ofMessages Acknowledged

by Try

( 00 % Degradation )

Try

Rep Software Team Intensity 1

1

2 3

3

L

M

H

134

192

265

9

3

0

1

0

0

1 2

4

L

M

H

121

201

277

م
م
ب
ی
ا

ب
ی
ا

O
o
o

L

M

H

3

112

192

269

2

4

0

0

02

2 2

2L

M4

116

198

271

2

0

0

0H 2

of the messages that did not get through on the first try can be attributed to bit box

collisions which is a hardware phenomena. This phenomena occurs when two messages enter

the bit box on opposite ends simultaneously, collide and then are lost.

A contingency table analysis was performed on the 12 two -hour cells run at 15 percent

communication degradation . The observed number of messages acknowledged for try one,

two, three and tries greater than three were compared to the expected number. The

ca'culate chi-square statistic was 44.2 with 47 degrees of freedom . This statistic was not

statistically significant and one can only conclude that the observed and theoretical

distributions are the same,

For 30 percent degradation the contingency table analysis again revealed that intensity,

team variability and replication did not influence the number of tries it took for a message to

be acknowledged . The chi- square statistic was 30.29 with 59 degrees of freedom ,

301



In conclusion, based on our experiment, we have demonstrated that the number of tries

it took before a message was acknowledged is a function of the percent degradation exhibited

in the communications network and it is not statistically influenced by intensity, team

variability or replication . The theoretical and actual frequency distributions by try number are

given in Tables B - 4 through 7 for 15 and 30 percent communication degradation , respectively.

TABLE B - 4 . Observed Number of Messages

Acknowledged by Try

( 15% Degradation )

Try

greater

Rep Software Team Intensity 1 2 . 3 3

3

L

M

H

96

153

194

29

57

47

5

17

18

3

2

6

1 2

4

L

M

H

76

166

197

35

41

69

6

11

12

3

3

6

3

L

M

H

92

143

197

22

48

71

2

8

14

3

4

7

2 2

4

L

M

H

88

150

206

37

45

61

12

10

13

5

8

4
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TABLE B - S . Observed Number of Messages

Acknowledged by Try

( 15% Degradation )

Try

greater

Rep Software Team Intensity 1 2 3 3

3

L

M

H

96

165.5

191.5

26,7

46.0

53.3

7.5

12.8

14.8

2.7

4.7

5.4

1 2

4

L

M

H

86.7

159.7

205,2

24.1

44.4

$7.1

6.7

12.4

15.9

2.5

4.5

5.8

*
*
*

3
9
3

3

L

M

H

86

146.6

208.8

24

40.1

58.1

6.7

11.4

16.2

2.4

4.2

5.9

2 2

4

L

M

H

102.6

153.9

205.2

28.5

42.8

57.1

7.9

11.9

15.9

2.9

4.4

5.8
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TABLE B -6 . Observed Number of Messages

Acknowledged by Try

( 30 % Degradation )

Try

greater

Rep Software Team Intensity 1

1 2 3 4 4

3

L

M

H

68

94

154

34

71

63

26

29

41

8

13

23

12

12

19

1 2

4

L

M

H

67

106

150

34

62

73

14

30

33

8

14

13

8

12

18

3

L

M

H

64

115

150

23

52

74

18

32

43

11

10

18

10

16

17

2 2

L

4 M

H

65

111

161

34

56

101

15

24

32

7

14

27

9

14

22
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TABLE B - 7 . Expected Number of Messages

Acknowledged by Try

(30 % DEGRADATION )

Try

greater

Rep Software Team Intensity

1 2 3 4 4

3

L

M

H

72.6

107.4

147

37

54.7

75

18.9

27.9

38.3

9.6

14.2

19.5

10

14.8

20.3

1 2

4

L

м

H

64.2

109.8

140.6

32,7

56

71.7

16.7

28.6

36.6

8.5

14.6

18,7

8.8

15.1

19.4

L

M

H

61.7

110.3

148

3

31.5

56.2

75.5

16.1

28.7

8.2

14.6

8.5

15.2

20.4
38.5 19.6

2 2

4

L

M

H

63.7

107.3

168.1

32.5

54.7

85.7

16.6

27.9

43.7

8.5

14.2

22.3

8.8

14.8

23.1
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A TECHNIQUE TO APPROXIMATE COMPLEX COMPUTER MODELS

An Approximation of the Teisberg Model

Joseph M. Tessmer

This paper was prepared while the author was employed by the Office of the Stra

tegic Petroleum Reserve within the Department of Energy .

The author is currently assigned to :

Headquarters , US Air Force

ACS/ Studies and Analyses
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Washington , DC 20330

Telephone : 202-697-5677

A/V 227-5677

Abstract

This paper presents a technique which was used to produce an approximation of a

complex computer model , the Teisberg Model . The technique employs a complete

24 factorial design and uses the statistically significant effects as coeffi

cients of the estimating equation .

Disclaimer

The assumptions , procedures , analysis , conclusions , and recommendations con

tained in this paper are solely those of the author and do not represent any

official policy of the Department of Energy , the Department of Defense , or US

Government .
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An Approximation of the Teisberg Model

Background

An approximation was constructed of the Teisberg model which estimates the

economic benefit of constructing and maintaining a Strategic Petroleum Reserve .

Tour input factors , which replicated significant independent economic

assumptions were identified as candidates for inclusion within the simplified

model . The four variables were :

1 .

2 .

3 .

4 .

р

e =

b =

d =

Annual probability of a major oil disruption

The short run price elasticity of demand for oil

The BAU price of crude oil

The discount rate

Using a one variable at a time approach three of these variables were set at

the center , of their range of interest , and the Teisberg Model estimated

the net economic benefit (Y ) for a low , medium , and high value of the remaining

variable .

This was done for the four candidate variables . An estimate of the rate of

percent of change of the economic benefit Y to the percent change of the input

factor X was calculated i.e. , dY /Y .

dx / x

The results of this effort were :

Input factor dY / Y

dX / X

Probability of a major disruption 0.543

Short run price elasticity -2.196

BAU price of crude oil 0.330

Discount rate -0.864

It was determined that only the short run price elasticity for demand need be

considered when estimating the results of the Teisburg Model .

A linear regression was then performed on the three observations of the

Teisberg Model with the low , medium , and high values for the elasticities and

the three remaining variables set at the center of their range of interest .

The resulting equation was Y = 275.85 e + 83.67 where e is the elasticity of

demand , -0.3 < e < -0.1 and Y is the estimate of net economic benefit . The

R2 value was 7.86 which seems to indicate a good approximation . However ,

only three observations were used and two are required to determine a straight

line , leaving only one degree of freedom , and thus a high R2 .

The Alternate Estimate

At the request of the principal investigator the sound principles of

experimental design were applied to the same problem with the hope that an

improvement might be made in the estimating equation . The remainder of this

paper and the appendixes are the result of that request .
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The estimate of the net economic benefit using the techniques of experimental

design is :

O

y = 119.57 1137.878 + 398.00 e + 2148.00 P

- 4216.00de - 7488.00 dp + 5246.00 ep where

d = discount rate 0.025 < d < 0.1

e = elasticity of demand -0.3 < e < -0.1

p = annual probability of a major disruption OSPS 0.1 .

Details of the theory and construction of this estimate appear in the

appendixes . The relative merits of the two estimates may be established by

examining the estimates of both equations using the observations used in this

study .

Teisberg

Value

Original

Estimate

Estimate

Residual

Alternate

Estimate

Estimate

ResidualObservation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

3.48

14.69

2.56

15.72

18.71

50.06

17.28

49.97

7.95

27.01

27.01

43.39

67.62

169.16

113.90

275.48

0.92

0.92

0.92

0.92

56.09

56.09

56.09

56.09

0.92

0.92

0.92

0.92

56.09

56.09

56.09

56.09

2.56

13.77

1.64

14.80

-37.38

-6.00

-38.83

-6.12

7.03

28.09

11.60

42.47

11.53

113.07

57.81

219.37

12.86

3.34

12.86

3.34

8.14

61.86

8.14

61.86

0.40

47.04

0.40

47.04

100.60

210.48

100.60

210.48

-9.38

11.35

-10.30

12.38

10.57

-11.80

9.14

-11.89

7.55

-20.03

12.12

-3.65

-32.98

-41.32

13.30

65.00

Sum of squared residuals ( x - y )2 70,564.85 8,767.37

mean square error { ( x - y )2/16
( unad justed for degrees of freedom )

4410.30 547.96

Table 1

Caveat

This estimate or approximation of the Teisberg Model was based on assumptions

for several input factors which were not varied during this exercise . Changes

in the values for these input factors may alter the quality of this estimate .

Next Steps

There are some promising techniques that may lead to additional improvements in

an estimate of the Teisberg Model . The first is the application of response

surface analysis to estimate the coefficient of higher ordered terms . The

second involves various transformations, of the data , as the first step of the

analysis . Thirdly , additional input factors might be included in the analysis .

These techniques used independently , or in conjunction with each other , should

improve the quality of the estimate .
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Appendix A

METHODOLOGY

Al Factorial Design Methodology

An experiment was performed to measure the effect of four sets of

input factors on the average net economic benefit associated with four

SPR alternatives , as represented by the Teisberg model . Two levels , for

each set of input factors , were chosen and all 16 possible combinations

of these input factors , were used as model input to the Teisberg model .

This procedure , a 24 factorial design was chosen since it is economi

cal , easy to use and provides a great deal of valuable information .

Specifically a two ( 2 ) level factorial design has the following

advantages :

1 . If sets of input factors are varied one set at a time , with

the remaining factors held constant , it is necessary to assume that the

effect would be the same at other settings of the other sets of

input factors . Factorial designs avoid this assumption .

2 . If the effects of input factors act additively , a factorial

design estimates those effects with more precision . If the effects of

the input factors do not act additively , factorial designs can detect

and estimate the interactions which measures the non - additivity .

3 . Factorial designs require relatively few runs per set of

input factors studied and can indicate major trends and determine

promising direction for further investigation . To obtain the same

precision of the estimate of the effects measured , in this effort , forty

runs would have had to be run , using the traditional , one factor at a

time approach , rather than the sixteen used in the experiment .

4 . If a more thorough local exploration is needed , it can be

suitably augmented to form composite designs .

5 . These designs and their corresponding fractional designs may

be used as building blocks so that the degree of complexity of the

finally constructed design can match the sophistication of the

problem .

To perform a 24 factorial design the two extreme levels ( or

versions ) , as defined by the principale investigator , were selected for

the four ( 4 ) sets of input factors and all sixteen ( 16 ) possible

combinations were run , which created sixteen observations . The four

sets of input factors and their levels ( or versions ) are listed in Table

A - 1 on the following page .
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Input Factor Levels

1 , Probability of a major oil

disruption

la , 0.0 , no chance of a major

oil disruption during any year

of the study .

1b , 0.1 A ten percent chance in

any given year of a major oil

disruption

2 , The short run price elasticity 2a , 0.3 a low short run

elasticity of demand for oil

2b , - 0.1 a high short run

elasticity of demand for oil

3 , The business as usual price

for crude oil

3a , $52.00 per barrel ,

a low price

3b , $90.00 per barrel , a

a high price

4 , The discount rate 4a , 10.0% the conventional

government discount rate

4b , 2.5% a low discount rate

TABLE A-1

The selection of the above levels were determined by the parent study and do

not represent the policy of the Department of Energy . These levels were used

solely to evaluate the reaction of the Teisberg Model to changes in the input

factors .
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These input factors combine to produce the following design matrix :

Design Matrix

OBS .

NUMBER

PROB .

DISRUPT

PRICE

CRUDE

DISCOUNT

RATE

TEISBERG

NET BEN .ELAS .

1

W
N

4

5

6

7

8

9

10

11

12

13

14

15

16

la

la

la

la

la

la

la

la

lb

lb

lb

1b

1b

lb

lb

lb

2a

2a

2a

2a

2b

2b

2b

2b

2a

2a

2a

2a

2b

2b

2b

2b

3a

3a

3b

3b

3a

3a

3b

3b

3a

3a

3b

3b

За

3a

3b

3b

4a

4b

4a

4b

4a

4b

4a

4b

4а

4b

4a

4b

4a

4b

4а

4b

3.48

14.69

2.56

15.72

18.71

50.00

17.28

49.97

7.95

27.01

12.52

43.39

67.62

169.16

113.90

275.48

Table A - 2

The interpertation of the observations in Table A - 2 is easily illustrated by

observation number 6 which assumes that the annual probaility of a major oil

disruption is 0.0 1.e. there will not be a major disruption during this study .

There is a high elasticity of demand for curde oil of -0.1 with a business as

usual price for crude oil of $ 52.00 per barrel . Finally a low discount rate of

2.5% is assumed .

The sixteen observations of the design matrix , may be visualized geometrically

as two cubes . One possible visualization appears in figure A - 1 on the

following page . The observation number is at each vertex .
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A2 Calculation of Main Effects

The "main effect" of a set of input factors is the change in the response i.e. ,

Che net economic benefit , y , as we move from the "a" case to the " b" case

version of that set of input factors . To examine the effect of each of the

selected input factors a table of four column vectors was constructed ( see

table A - 3 ) . Each column contrasts eight pairs of estimates of the net economic

benefit . As ide from experimental error , the difference between the upper

number of a pair and the lower number of the same pair is due to the change of

the input factor that heads the column . For each column the average of these

eight differences is the main effect due to the associated input factor that

heads the column . Note that the only difference between the four columns is

the order in which the observations appear .

Geometrically speaking , using Figure A - 1 the main effects are calculated from

the corresponding vertices of the two cubes as described below.

Input factor

Probability of a major oil

disruption

Left side of both cubes vs.

the right side of both

cubes

Demand elasticities The front of both cubes vs.

the backs of both cubes

Business as usual crude price The bottom of both cubes

vs. the tops of both cubes .

Discount rate The left cube vs. the right

cube .

-
-
-

-
-

-
-
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Main Effects

Table of Contracts

Prob . of

major oil

disruption

Discount RateDemand

Elasticities

BAU Crude

Price

Obs .

Number

Net Econ .

Benefit

Obs .

Number

Net Econ .

Benefit

Obs .

Number

Net Econ .

Benefit

Obs .

Number

Net Econ .

Benefit

3.481

9

1

5

3.48

18.71

1

3

3.48

2.56

1

2

3.48

14.69

2

6

14.69

50.06

2

4

14.69

15.72

3

4

2.56

15.72

3

7

2.56

17.28

5

7

18.71

17.28

5

6

18.71

50.06

4

8

15.72

49.97

6

8

50.06

49.97

7

8

17.28

49.97

7.97

2

10

14.69

27.01

3

11

2.56

12.52

4

12

15.72

43.39

5

13

18.71

67.62

9

13

7.97

67.62

9

11

7.97

12.52

9

10

7.97

27.01

6

14

50.06

169.16

10

14

27.01

169.16

10

12

27.01

43.39

11

12

12.52

43.39

7

15

17.28

113.90

11

15

12.52

113.90

13

15

67.62

113.90

13

14

67.62

169.16

8

16

49.97

275.48

12

16

43.39

275.48

14

16

169.16

275.48

15

16

113.90

275.48

TABLE A-3
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A3 2nd-Order Interaction Effects

Suppose that one is interested in examining the effects of two sets of

input factors ; for example , the probability of a major interruption and

the discount rate . Then the sixteen runs of the factorial design can

be grouped into four sets of four runs each . Each run in the group

would have the same value for the input factors studied , although other

input factors would vary within each group . Assume that if there is no

chance for a major oil disruption and the discount rate is 10% , that

the average value for the output variable being studied is 100 . This

will be the base point . Also assume that the main effects for the

probability of a major interruption and the discount rate are 25 and 10

respectively . This means that , on the average , changing from no chance

of a major interruption to an annual probability of an interuption of

0.10 will increase the output variable under study by 25 . Likewise a

change in the discount rate from 10% to 2.5% , will on the average ,

increase this same output variable by 10 . If the input factors act

additively , then the average value of the output variable with 0.10

chance of an interruption and a 2.5% discount rate would be

100 + 25 + 10 135 .

This artificial case is represented by the upper diagram in figure A - 2 .

Note that the quantity

( b + c -a -d ) / 2 = ( 110 + 125 -100 -135 ) /2 = 0

i.e. , there is no interaction .

Suppose that the input factors do not act additively , and the base

point of 100 and main effects are the same . Then the resulting

measurements could be described by the lower diagram in figure A - 2 .

The input factors are now said to interact . By convention a measure of

this interaction is

( b + c -a -d ) /2 = ( 145 + 160 -100 -135 ) / 2 = 35

This is a second order interaction and is called the probability of a

major oil interruption X discount rate interaction ,

Like a main effect , a 2nd order interaction is the difference between

two averages , eight of the sixteen results being included in one

average and eight in the other . Analogous explanations are easily

constructed for all other 2nd order interaction effects .

A4 Higher -Order Interaction Effects and the Standard Error .

Similar procedures to those above can be given for deriving the third

and fourth-order interactions . Due to the similarity of response

functions it is reasonable to assume that higher-ordered interactions

are negligible and measure differences arising principally from

experimental error . Thus the mean , of the sum of squares , of these

interactions give an estimated value for the variance of an effect ,

having five degrees of freedom . The square root of this value is an

est imate of the standard error .
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The level of statistical significance chosen for this study was p=0.10 .

In order to select the statistically significant main effects and

second order interactions multiply the standard error by tl- p/ 2 =2.015 .

Any main effect or interaction with absolute value greater than this

product is considered statistically significant .

A5 The Plot of Effects

If the output from the model had simply occurred hy chance , the

' observations would be normally distributed about some fixed mean , and

the changes in the input factors would not have a real effect on the

estimate of the net economic benefit . The fifteen effects , main

effects plus all interactions , could then be ploted on normal

probability paper as straight line . One may conclude that the effects

that are not roughly on this straight line , are due to changes in the

input factors and have a significant effect on the output variable

being studied .

A6 The Binary Estimates

-1 if ia is the value of the i th input factor

( see table A- 1 ) .

Define Xi =

1 if ib is the value of the i th input factor

( see table A- 1 ) .

Let ai be the main effect of the i th input factor

Let aij be the 2nd order interaction of the i th and j th input

factors .

Let I index the set of significant main effects at a fixed level of

significance p .

Let IJ index the set of significant 2nd order interactions at the same

fixed level of significance . The binary 2nd order estimates of the process

is

+

Y = y + [ ( az / 2 ) X1 + £ (24j / 2 ) XuX;
ij EIJiEI

AZ The Residual Plot

If the number of significant effects is small compared to the total

number of residuals then one can interpert the plot of residuals on normal

probability paper . If the residual points lie more or less on a straight

line then one may conclude that the unexplained variation is due to random

noise and that the identified significant effects explain the process . If

this does not happen then the proposed binary estimate does not fully

capture the underlying process and more work needs to be done .
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A8 The Continuous Estimate

If an input factor , is in fact a continuous variable , with an interval or

ratio scale , then the binary estimate may be transformed to a continuous

estimate . be the continous input factor such that :Let zi

ia in the a case

21

{ ib in the b case

Note that X1X1 = (221 - 1a - 1b) / ( ib - ia )

has the following property :

a ,
if z = ia then X1 = -1

b , if z = ib then X1 = 1

To construct the continuous estimate replace X4 in the binary estimate

with (221 - ia - ib) / ( ib - 1a ) .
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Appendix B

APPLICATION

Bl Analysis of the Net Economic Benefit

The main effects of three of the input factors , the discount rate , the demand

elasticities and the probability of a major disruption are statistically

significant at the p < .10 level . In addition there are perceptible 2nd order

interactions between each pair of the input factors which had statistically

significant main effects . Therefore each pair of these input factors must be

evaluated jointly . The two way diagram of figure B-1 depicts the nature of

these interactions .

Assuming a conventional discount rate of 10% the Teisberg Model estimates

that an increase of the BAU price of crude oil from $ 52.00 per barrel to $ 90.00

per barrel will increase the net economic benefit from $6.63 billion to $ 54.38

billion . If a discount rate of 2.5 % is assumed , the identical change in the

price of crude oil will increase the net economic benefit from $ 25.20 billion

to $136.17 billion .

Given the assumption that their is virtually no chance of a major disruption

the Teisberg Model estimates that a change of the discount rate from 10.0% to

2.5% will increase the net economic benefit from $ 10.51 billion to $ 32.61

billion . If the annual probability of major disruption is 0.10 then the

identical change in the discount rate increase the probability of a major

disruption from $ 50.50 billion to $ 128.76 billion .

If one assumes that there is virtually no chance of a major disruption the

Teisberg Model estimates that a change in the BAU price of oil , from $52.00 per

barrel to $ 90.00 per barrel will increase the net economic benefit from $9.11

billion to $34.01 billion . An increase in the annual probability of a major

interruption to 0.10 causes the Teisberg Model to estimates that a change in

the price of crude oil from $ 52.00 per barrel to $90.00 per barrel will

increase the net economic benefit from $22.72 billion to $ 156.54 billion .

Figure B-2 is the normal probability plot of the effects which appear in Table

B- 1 and represented by Figure B- 1 . If the fifteen effects from the model were

not due to changes of the input factors then the effects are due to some random

variation which is assumed to he normal . If this is the case the normal

probability plot of effects should appear more or less as a straight line .

Figure B - 2 suggests that effects 3 , 4 , 10 , 1 , and possibly 6 and 7 are not on

the same " straight " line formed by the remaining effects . This plot tends to

confirm the identification of significant effects by the method outlined in

paragraph A4 .

320



The Teisberg Model

Average Net Economic Benefit

Mean Estimate

55,59

Main Effects

1 . Discount rate 50.18*

2 . BAU crude price 21.52

3 . Demand elasticities 79.36*

4 . Probability of a major disruption 68.07 *

2nd Order Interactions

5 . 9.39Discount rate X

BAU crude price

6 . Discount rate X

Demand elasticities 31.61 *

7 . Discount rate X

Probability of a major disruption 28.08*

8. BAU crude price X

Demand elasticities 16.25

9 . BAU crude price X

Probability of a major disruption 21.87

10 . Demand elasticities X

Probability of a major disruption
54.46*

3rd Order Interactions

11. Discount rate X

BAU crude price X

Demand elasticities 5.95

12. Discount rate X

BAU crude price X

Probability major disruption 8.57

13. Discount rate X

Demand elasticties X

Probability of a major disruption 21.69

14. BAU crude price X

Demand elasticities X

Probability of a major disruption 16.66

4th Order Iiteraction

15. Discount rate X

BAU crude price X

Demand elasticities X

Probability of a major disruption
6.10

Estimated standard error 13.37

Level of statistical significance at p < 0.10 26.95

* Significant effects at p < 0.10
Table B- 1
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B2 The Binary Estimate

1 if d = 10.0 %Define :

x=

1 if d = 2.5%

-1 if e = -0.3

Xe

1 if e = -0.1

-1 if p = 0.000

Xp

1 if p = 0.100

Where d is the discount rate , e is the elasticity of demand , and p is the

probability of a major oil disruption .

With the definitions above and the information contained within the analysis of

the net economic benefit ( section Bl ) one can construct the following binary

estimate :

Y =
55.59 + ( 50.18 ) / 2 x2 + ( 79.36 ) / 2 xe + ( 68.07 ) / 2 xp

( 31.61 ) /2 xdxe + (28.08 ) / 2 xdxp + (54.46 ) / 2 xexp

or

Y = 55.59 + 25.09 xd + 39.68 Xe + 34.04
+

хр

15.81 xdxe + 14.04 x2^p + 26.23 xe xxp

A normal probability plot of the residuals , figure B-3 can be used to examine

the adequacy of this estimate of the Teisberg Model . The residuals for this

estimate , are found in Table 1 . If all of the variation is expalained by the

proposed estimating equation then the normal probability plot of residuals will

lie more or less on a straight line . clearly the residual from observation 16

and most likely observations 14 and 13 do not lie on the " straight " line formed

by the remaining observations . This suggests that although an improvement in

the original estimate has been accomplished , more work remains to be done .

Promising avenues of investigation include transforming the data before the

application of a factorial design as proposed by Daniel and/ or the use of

response surface analysis .

-
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B3 The Continuous Estimate

To construct the continuous estimate from the binary estimate replace :

Xd with 2d – 0.025-0.1 = 2d - 0.125

0.025 0.1 -0.075

Xe with 2e + 0.1 +0.3 = 2e + 0.4

-0.1 + 0.3 0.2

Xp with 28.72p - 0.1

0.1 -0

2p - 0.1

0.1

to obtain :

Y = 55.59 + 25.098 ( ( 2d - 0.125 ) /- . 075 )

+ 39.68 ( ( 2e + 0.4 ) ) / 0.2 ) + 34.04 ( (2p - 0.1 ) /0.1 )

+ 15.81 ( ( 2d - 0.125 ) / -0.75 ) ) ( (2e + 0.4 ) /2 )

+ 14.04 ( ( 20 - 0.125 ) / - 0.75 ) ( ( 2p - 0.1 ) /0.1 )

+ 26.23 ( ( 2e + 0.4 ) /1.2 ) ( ( 2p-0.1 ) /0.1 )

which simplifies to :

Y = 119.57 1,137.87 d + 398.00 e + 2198.00 P

-4216.00 de - 7488.00 dp + 5246.00 ep

B4 The Differential Estimate

If c ( w) denotes the change in the variable w , then the estimate of the change

of the net benefit is :

cly ) -1137.87 c ( d ) + 398.00 cle ) + 2198.00 c ( p)

-4216.00 d c ( e ) 4216.00 c ( d ) e

-7888.00 d c ( p ) - 788.00 c ( d ) P

+5246.00 e c ( p) + 5246.00 c ( e) P

Although this was developed as a global estimate it can be used for local

approximations. If the model has been evaluated for a set of input factors

( d , e , p ) and one wishes to estimate the net economic benefit for a point

( d ' , e ' , p ' ) which is close to ( d , e , p) then calculate the c ( y ) , the change in the

net economic benefit and add that value to the model's estimate for the point

( d , e , p ) .

- -

-
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HIGH TO LOW DOSE EXTRAPOLATION OF EXPERIMENTAL ANIMAL CARCINOGENESIS STUDIES

Charles C. Brown

National Cancer Institute

Bethesda , MD 20205

ABSTRACT

Quantitative risk assessment requires extrapolation from results of

experimental assays conducted at high dose levels to predicted effects at

lower dose levels which correspond to human exposures . The meaning of this

high to low dose extrapolation within an animal species will be discussed ,

along with its inherent limitations . A number of commonly used mathematical

models of dose-response necessary for this extrapolation , will be discussed .

Other limitations in their ability to provide precise quantitative low dose

risk estimates will also be discussed . These include : the existence of

or responses ;thresholds ; incorporation of background , spontaneous

modification of the dose-response by pharmacokinetic processes .
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In recent years , as the serious long- range health hazards of

environmental carcinogens have become recognized , the need has arisen to

quantitatively estimate the effects upon humans exposed to low levels of these

agents. Inherent in this estimation procedure is the necessity to extrapolate

evidence observed under one set of conditions in one population group or

biological system to arrive at an estimate of the effects expected in the

population of interest under another set of conditions .

The quantitative assessment of human health risk from exposure to

carcinogenic agents is often approached by relating the exposure level of the

agent to a measure of the cancer risk as determined from experimental data on

animals or other biological systems . For the extrapolation of animal study

results to man , much care should be placed in the design and conduct of these

studies , since many factors may influence their results . These factors

include the dosage and frequency of exposure , route of administration ,

species , strain , sex and age of the animal , duration of the study , and various

other modifying factors as deemed important for the particular agent and

effect being studied .

Experimental animal bioassays to measure the dose-response of the agent

in question must necessarily be based on exposure levels higher than those for

which the risk estimation is to be made . A limited number of experimental

animals requires high exposure levels in order to measure a carcinogenic

effect if it exists . Some consideration has been given to the possibility of

conducting extreme ly large experiments at very low dose levels . However, as

Schneiderman , et al . (1) remark , " purely logistical problems might guarantee

failure . " Therefore, to obtain reliably measureable effects , the experimental .

information must be based on levels of exposure high enough to detect positive

results . Since large segments of the human populations are often exposed to
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much lower levels , these data at high exposure levels must be extrapolated to

lower levels which correspond to human exposure . The purpose of this

presentation is to describe the current statistical methods used for this

"high to low dose " extrapolation in experimental animal species and to

emphasize the uncertainties necessarily attached to the estimates made with

these methodologies .

The high to low dose extrapolation problem is conceptually straight

forward . Since the risk at low exposure levels cannot be measured by direct

experimentation , an assumed mathematical relationship between dose (exposure )

and response ( risk ) must be used to extrapolate from the high experimental

doses to the low environmental levels . The probability of a toxic response is

modeled by a dose -response function P ( D ) which represents the probability of a

carcinogenic response when exposed to D units of the carcinogenic agent .
A

general mathematical model is chosen to describe this functional relationship ,

its unknown parameters are estimated from the available data , and this

estimated dose -response function P ( D ) is then used to either : ( i ) estimate

the response measure at a particular low dose level of interest ; or

( ii ) estimate that dose level corresponding to a desired low level of response

(this dose estimate is commonly known as the virtually safe dose , VSD ) .

Many mathematical dose -response models have been proposed for this

problem . The following section describes the more commonly used models .

Mathematical Models of Dose -Response

To estimate the effects expected outside the range of observable

experimental data , a mathematical model relating dose , i.e. , level of exposure

to the toxic agent , to response , i.e. , a quantitative measure of the

deleterious effect produced , is necessary . In general terms , dose -response is
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the relation between a measureable stimulus , physical, chemical or biological ,

and the response of living matter measured in terms of the reaction produced

over some range of the degree or level of the stimulus .

Tolerance Distribution Models

When the response is quantal (whether or not a specific effect is

produced ) , its occurrence for any particular subject will depend upon the

level of the stimulus . For this subject under constant environmental

conditions , a common assumption is that there is a certain dose level below

which the particular subject will not respond in a specified manner , and above

which the subject will respond with certainty . This level is referred to as

the subject's tolerance . Because of biological variability among subjects in

the population , their tolerance levels will also vary . For quantal responses ,

it is therefore natural to consider the frequency distribution of tolerances

over the population studied . If D represents the level of a particular

stimulus , or dose , then the frequency distribution of tolerances , f ( D ) , may be

mathematically expressed as

f ( D ) = dP ( D ) / D ,

which represents the proportion of subjects whose tolerances lie between D and

D+dD , where do is small . If all subjects in the population are exposed to a

dose of Do , then all subjects with tolerances less than or equal to Do will

respond , and the proportion , P ( DO ) , this represents of the total population is

given by

P(do)= Gºr(D)aD .

Assuming that all subjects in the population will respond to a sufficiently

high dose level , then
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og

P ( 60)
3

f ( D )dD = 1 .

The function P ( D ) can be thought of as representing the dose-response either

for the population as a whole , or for a subject randomly selected from the

population . The notion that a tolerance distribution , or dose- response

function , could be determined solely from consideration of the statistical

characteristics of a study population was introduced independently by Gaddum

(2) and Bliss (3) .

The results of toxicity tests have often shown that the proportion of

responders increases monotonically with dose and often exhibits a sigmoid

relationship with the logarithm of the exposure level . This observation led

to the development of the log normal , or probit , model for the tolerance

frequency distribution ,

f ( D ; v , o ) = ( 2102) -1/2 exp 14109(D) -4 );?, o>0

2 0

while the dose-response function is given by the cumulative normal

probability ,

P ( D ; 4,0 ) = 0 [ ( 10g ( D ) -v ) / o] .

where u and oſ represent the mean and variance of the distribution of the log

tolerances . This method was put into its modern form by Bliss (4) , and Finney

(5) gives a brief history of its development.

Other mathematical models of tolerance distributions which produce a

sigmoid appearance of their corresponding dose -response functions have been

suggested . The most commonly used is the log logistic function ,

P ( D ; a , b ) = ( 1+ e xp (a + b log ( D ) ) ]- 1 , b <0 ,

which , like the log normal model is sigmoid and symmetric about the 50%

response level , but approaches the extremes, 0% and 100% response , more slowly
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than does the log normal. The logistic function has been derived from

chemical kinetic theory , and was proposed as a dose-response model by

Worcester and Wilson ( 6 ) and Berkson ( 7 ) . The log logistic and log normal

functions are similar in appearance so that discrimination between them is

nearly impossible.

Models Derived From Mechanistic Assumptions

A number of dose-response models have been suggested on the basis of

assumptions regarding the mechanism of action of the toxic agent upon its

target site. The "hit theory" for interaction between radiation particles and

susceptible biologic targets has generated a general class of these models

( 8 ) . This theory is also applicable to the action of chemical toxicants upon

their target sites . In general , this theory rests upon a number of

postulates , which include : ( 1 ) the organism has some number M of " critical

targets " (usually assumed to be infinitely large ) ; ( 2 ) the organism responds

if mor more of these critical targets are " destroyed " ; ( 3 ) a critical target

is destroyed if it is "hit " by k or more toxic particles ; and ( 4 ) the

probability of a hit in the low dose region is proportional to the dose level

of the toxic agent, i.e. Prob (hit) = 1D, 10.

Some commonly used special cases of this general theory are the single

hit model ,

P ( D ; 1 ) l -exp (-1D ) ,

where the subject responds if a single critical target is destroyed by a

k--exp(-x)dx ,

single hit ; and the multihit model,

AD K - 1

х

P ( D ; 1 , k ) = 5 dx

0
r ( k )

where r ( k ) denotes the gamma function , and the subject responds if a single

1
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critical target is destroyed by k hits . For a discussion of the single -hit

model as applied to the high to low dose extrapolation problem , see (9,10 ) ;

the Report of the Scientific Committee of the Food Safety Council ( 11,12 ) and

Rai and Van Ryzin ( 13,14 ) discuss the application of the multihit model for

dose extrapolation .

Other mechanistic models have also been derived from quantitative

theories of carcinogenesis. The multistage carcinogenesis theory ( 15-17 )

assumes that a single cell can generate a malignant tumor only after it has

undergone a certain number , k , of heritable changes . This theory leads to the

multistage model,

P ( D ; Aq , ... , 4k ) = 1-exp(-(1,D+A2D?+.oot A4D y), 1;30 i =1 , ... , k .

The use of this model for extrapolation purposes has been described by Brown

( 18 ) and Guess and Crump ( 19,20 ) .

The multicell carcinogenesis theory of Fisher and Holloman ( 21 ) leads to

a dose- response function having extrapolation characteristics similar to the

multihit model,

P(D ;1,k ) = 1- exp (-10 ) , d , k > 0 .

This model has also been termed the Weibull model and Van Ryzin ( 22 ) discusses

its application to extrapolation problems .

Discrimination among dose - response models

Given a postulated functional form of the dose-response relationship , the

experimental data is used to estimate the unknown parameters . It might be

thought that the basis for selection of one particular model over the others

would be provided by the observed dose-response. However, this is often not

the case , as many dose- response models appear similar to one another over the
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range of observable response rates . Figures 1 and 2 compare the dose-response

relationships of the more commonly used models; Figure 1 compares the 10g

normal , log logistic and single -hit models ; Figure 2 compares the multinit ,

Weibull and multistage models .

In the left panel of Figure 1 , the parameters for these models were

chosen to make the response rates equal at dose levels of 1 and 1/4 ; in the

left panel of Figure 2 , the parameters for the models were chosen to make the

response rates equal at dose levels of 2 and 0.5 . These figures clearly show

that it would take an inordinately large set of experimental or observational

data to be able to conclude which of the models provide a significantly better

fit to an observed dose-response .

If the estimated dose-response is to be used to predict the response rate

that would be expected from an exposure level within the range of observable

rates , then the models within each of the two sets compared will give similar

results . However , extrapolation to exposure levels expected to give very low

response rates is highly dependent upon the choice of model , as shown in the

right panels of Figures 1 and 2. These figures extend the dose-response in

the left panels to much lower dose levels . The further one extrapolates from

the observable response range , the more divergent the models become .
At a

dose level which is 1/1000 of the dose giving a 50% response , the single-hit

model gives an estimated response rate 200 times that of the lognormal model ,

and the multistage model gives an estimated response rate over 210 times that

of the multihit model .

Krewski and Van Ryzin ( 23 ) examined the extrapolation characteristics of

these six commonly used dose-response models . They applied these models to 20

sets of toxic response data that were taken from the Report of the Scientific

Committee of the Food Safety Council ( 11,12 ) . The toxic responses were both
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carcinogenic and noncarcinogenic in nature . Of the 19 data sets showing an

convex ( i.e. upward curvature ) dose- response , all estimates of the virtually

safe dose ( VSD ) at a response rate of p = 10-5 or smaller had the ordering,

single-hit < multistage < (We ibull , log logistic , multihit ) < log normal.

That is , the We ibull, log logistic , and multihit produce VSD's of

approximately the same order of magnitude , the single-hit model produces the

smallest VSD , and the log normal model the largest VSD . In addition , the

difference between the extremes , the single -hit and log normal models , is

often several orders of magnitude.

Table I and Figure 3 give an example of this behavior for these models

applied to the incidence of liver hepatomas in mice exposed to various levels

of DDT ( 24 ) . Table I shows that each of the six dose-response models fit the

observed data nearly equally well (the multistage model fits the data as well

as the others ) . Therefore , the data in the observable response range ( for

this study , between 2 and 250 ppm DDT in the daily diet ) cannot discriminate

among these models . Based on the goodness -of -fit statistics , the We i bull

model fits the best ( P = 0.22 ) , but not significantly better than any of the

other models . However, there is a significant difference among the VSD

estimated from these models ; the log normal model estimates a VSD over 3000

times as large as the single-hit model . Therefore , these experimental data

leave the true VSD open to wide speculation .

The fact that an experimental study conducted at exposure levels high

enough to give measureable response rates cannot clearly discriminate among

these various models , along with the fact that those models show substantial

divergence at low exposure levels present one of the major difficulties for

the problem of low dose extrapolation . Since the multistage model has the

extrapolation characteristics of most other models , Brown (25 ) has suggested
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its use to provide estimates of both sampling and model variability for this

low dose extrapolation problem.

Adjustments for Natural Responsiveness

The mathematical dose -response models described in the preceding sections

have assumed responses of the subjects to be due solely to the applied

stimuli . However , many toxicity experiments and observational studies show

clear evidence that responses can occur even at a zero dose. Thus , any

mathematical dose-response function should properly allow for this natural , or

' background ' , responsiveness .

Two methods have been proposed to incorporate the possibility of response

due to factors other than the stimulus in question . The first is common ly

known as ' Abbott's correction ' which is based on the assumption of an

independent action between the stimulus and the background (26 ) . If the

probability of response in the absence of any stimulus is denoted by Po , then

the overall response probability at dose level D , assuming independent

actions , becomes

P ( D ) - po= Po + ( 1 -P ) P * ( D ) ,

where P* ( D ) represents the dose - induced probability of response . The second

method assumes that the dose acts in an additive manner with the background

environment, producing the overall dose-response model ( 27 )

P ( D ) = P * ( D +Do) ,

where Do represents some unknown background level of the stimulus (or other

stimuli that produce the response in a mechanistically dose -additive manner ) .

It is often difficult to discriminate between the independent and

additivity assumption on the basis of dose -response data .
Figure

4
compares

the theoretical dose-response relationships of these two assumptions where
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P* ( D ) is a log logistic model. The parameters of these models were chosen to

minimize their difference . Clearly , a large set of data would be required to

determine the proper manner to incorporate background response. To describe

the dose-response in this observable response range , this figure shows that

this assumption is not an important issue , as both will describe equally data

in the observable response range . However, for purposes of low - dose

extrapolation , this assumption can have important consequences . Crump , et al .

( 17 ) have shown mathematically , that no matter what dose -response model,

P* ( D ) , is sed , the additivity assumption will lead to a linear dose -response

in the low dose region . This will not be true for the independent action

assumption . Hoel ( 28 ) compares low dose risk extrapolations based on the two

assumptions applied to a log normal dose -response model. His results are

given in Table II . This table clearly shows the low -dose linearity of the

additive assumption , and the substantial difference between the additive and

independence assumptions at low dose levels . Hoel also examined models which

incorporate a mixture of independent and additive background response , and

found that low dose linearity prevails except when the background mechanism is

totally independent of the dose -induced mechanism .

Pharmacokinetic Models

Pharmacokinetic hypotheses concerning toxicity from foreign chemicals

state that biological effects are manifestations of biochemical interactions

between the foreign substances (or substances derived from them ) and

components of the body . A critical problem in the application of

pharmacokinetic principles to risk extrapolation is the potential change in

metabolism or other biochemical reactions as external exposure levels of the

toxic agent decrease . Linear pharmacokinetic models are often used .
However ,
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there are numerous examples of nonlinear behavior in the dose range studied ,

and these nonlinear kinetics pose significant problems for quantitative

extrapolation from "high " to " low " doses if the kinetic parameters are not

measured ( 29-31 ) .

As shown in Figure 5 , linear Kinetics assume that the reaction rate per

unit time of a chemical reaction is proportional to the concentration C of the

substance being acted upon ; whereas nonlinear Kinetics are most often

described in the form of a Michaelis - Menten expression , often referred to as

" saturable " kinetics . If all processes are linear , then the concentration

rate of the toxic substance at its site of action ( ' effective dose ' ) will be .

proportional to the external exposure rate ( ' administered dose ' ) . However,

saturation phenomena may produce different results depending upon the

processes affected ; if elimination and /or detoxification pathways are

saturable , then the effective dose will increase more rapidly with the

administered dose than linear kinetics would suggest ; if the distribution

and /or activation pathways are saturable , then the effective dose will

increase less rapidly with the administered dose .

Gehring and Blau ( 32 ) and Gehring, et al . ( 33 ) discuss pharmacokinetic

models with respect to extrapolation of carcinogenic risk from high to low

doses . As an example , Gehring et al . ( 29 ) applied pharmacokinetic principles

to the dose -response of hepatic angi osarcomas in rats exposed to different

concentrations of atmospheric vinyl chloride over a period of 12 months.
The

results of their study are shown in Figure 6. Since the metabolic activation

of vinyl chloride appears to be a saturable process , the observed relationship

between response , as measured by the proportion of rats with hepatic

angi osarcomas , and dose , as measured by the external atmospheric exposure

level of vinyl chloride , is clearly nonlinear , showing a leveling out at the

-
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highest exposure levels which cannot be explained by a number of the

previously discussed dose -response models ( e.g. log normal and multistage ) .

However, if dose is measured in terms of the amount of vinyl chloride

metabolized , then the dose- response becomes much more linear , and most models

provide an adequate fit to the data .

Summary and Conclusions

The preceeding sections have discussed the general problem of high dose

to low dose extrapolation. The purpose of this extrapolation is to estimate

the effects of low level exposure to carcinogenic agents known to be

associated with undesired effects at high dose levels .

Mathematical models of dose- response are necessary for this extrapolation

process since the low dose effects , expected to be on the order of response

rates of 10-6 , are too small to be accurately measured with limited study

sample sizes . A number of mathematical dose -response models have been

proposed for extrapolation purposes ; we previously saw how similar they can

appear to one another in the range of observable response rates , yet how

different they become at lower , unobservable response rates , the region of

primary interest . This is the single , most important limitation of this

extrapolation methodology . An estimate of risk at a particular low dose , or

an estimate of the dose leading to a prespecific level of risk is highly

dependent upon the mathematical form of the presumed dose-response ; we have

seen that differences of 3 - 4 orders of magnitude are not uncommon .

Pharmacokinetic information on the fate of a toxic agent once it enters

the body is beginning to be incorporated into the high to low dose

extrapolation process . Nonlinear kinetics may be an important determinant of

the nonlinear dose -response relationships often observed in experimental

341



studies of toxic agents . As noted in previously , Gehring et al ( 29 ) have

shown that the metabolism of inhaled vinyl chloride is a saturable process

that provides one explanation of the concave liver carcinogenesis dose

response observed in animal studies . In a study of urethane - induced pulmonary

adenomas shown in Figure 7 , White ( 30 ) found that the convex relationship

between the amount of urethane injected into a mouse lung and the number of

subsequent lung adenomas could be explained by nonlinear kinetics of

excretion . Such pharmacokinetic models and dose -response studies of the

kinetics of physiological processes might considerably strengthen the ability

to extrapolate from high to low dose levels .

Uther sources of uncertainty in high to low dose extrapolation include:

( 1 ) the possible existence of thresholds ; ( 2 ) heterogeneity of sensitivity to

the toxic agent among members of the exposed population ; and ( 3 ) mechanisms of

action for carcinogens li.e. whether the agent initiates the process or acts

at a later stage). The existence of a single threshold for the entire exposed

population should allow for estimation of a clearly safe level of exposure .

However , its estimation could be associated with a high degree of uncertainty .

Heterogeneity in individual thresholds and sensitivity to the toxic agent

induces additional uncertainty in high to low dose extrapolations . The

theoretical relationship of dose rate and duration of exposure to cancer risk

indicates that similar exposure patterns ( i.e. same dose rate and duration )

will not necessarily lead to similar levels of risk since the age at exposure

may also be an important determinant of risk . Thus , uncertainty in the

mechanism of toxic action induces another potentially large uncertainty into

risk extrapolations .

Therefore , all these sources of uncertainty , ( 1 ) dose-response model ,

( 2 ) pharmacokinetic behavior of the toxic agent , ( 3 ) thresholds ,

( 4 ) heterogeneity , and ( 5 ) mechanisms of action , lead to potentially enormous

variation in estimates of risk from high to low dose extrapolations .
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Table I : Comparison of Virtually Safe Doses ( VSD )

Leading to an Excess Risk of 10-6

for Various Dose-Response Extrapolation Models

models applied to data from (24 )

Goodness - of -fit Statistic

Extrapolation VSD* of Model to Observed Data

Model ( ppm DDT in daily diet ) x2 ( d.f. ) P- value

Log norma 1 3.93 0.14

Wei bull 0.223.01

3.31

( 2 )

( 2 )

( 2 )

( 2 )

Multihit

6.8 x 10-1

5.0 x 10-2

1.3 x 10-2

6.6 x 10-3

2.5 x 10-4

2.1 x 10-4

0.19

3.45 0.18Log logistic

Multistage

Single-hit 5.10 ( 3 ) 0.16

* 97.5% lower confidence limit on VSD

** no goodness -of-fit statistic since the number of parameters

equals the number of data points

- - - -
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Table II : Excess Risk P ( D ) -P ( 0 ) for Log Norma 1 Dose Response

Model Assuming Independent and Additive Background

Type of Background

Dose ( D ) Independent Additive

100

10-1

10-2

10-3

10-4

4.0 x 10-1

1.5 x 10-2

1.6 x 10-5

3.8 x 10-10

1.8 x 10-16

4.0 x 10-1

5.2 x 10-2

5.2 x 10-3

5.1 x 10-4

5.1 x 10-5

*P ( 0 ) 0.1 ; log normal model slope = 2 from ( 28 )
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