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FOREWORD

These proceedings preserve in print many of the invited addresses and con

tributed papers presented at the Thirtieth Conference on the Design of

Experiments in Army Research , Development and Testing . These meetings are

sponsored by the Army Mathematics Steering Committee ( AMSC ) on behalf of the

Office of the Chief of Research , Development and Acquisition . Members of this

Committee have requested that the guest lecturers be effective researchers who

are in frontier fields of live current interest . They feel that the addresses

by the principal speakers as well as contributed papers by Army personnel will

stimulate the interchange of ideas among the scientists attending said meet

ing . Noted below is a list of the invited speakers together with the titles

of their addresses .

Speakers and Affiliations Title

Professor John W. Tukey

Princeton University and

Bell Laboratories

Limited Randomization as the key to Taking

Advantage of Modern Summaries

Regression DiagnosticsProfessor Roy E. Welsch

Massachusetts Institute of

Technology

QuantizationProfessor James Bucklew

University of Wisconsin

Recent Work in Pattern TheoryProfessor Ulf Grenander

Brown University

Dr. Ronald L. Iman

Sandia Laboratories

Uncertainty Analysis and Sensitivity

in Risk Assessment

Professor Bernard Harris

University of Wisconsin-Madison

System Reliability

C
c
o
v
e
s
h
a

Tne V. S. Army White Sands Missile Range , on 22-24 August 1980 , served as host

for the Twenty-Sixth Conference on the Design of Experiments , and the meeting

was conducted on the campus of its co-host , the New Mexico State University

( NMSU ) in Las Cruces , New Mexico . This proved to be an ideal arrangement , and

members of the AMSC were pleased to hear it could be used for the Thirtieth

Conference . This meeting took place on 17-18 October 1984 in the Physical

Science Laboratory of NMSU . The attendees would like to thank Mr. Robert A.

Voss , the Chairman on Local Arrangements , for all his efforts in planning and

conducting this conference .
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A couple of days before the start of the Design Conference , a two - day tutorial

entitled " The Bootstrap " was presented by Professor Robert Tibshirani of

Stanford University . The main purpose of this seminar was to develop , in Army

scientists , an appreciation for and the necessary skills needed to handle this

statistical method .

Professor Nozer D. Singpurwalla , Department of Operations Research at George

Washington University , was selected by the AMSC to receive the Fourth Wilks

Award for Contributions to Statistical Methodologies in Army Research ,

Development and Testing . The citation for his award reads :

" For singular contributions to reliability theory and life

testing methodologies , for professional service to the

statistics community , and for invaluable assistance in

solving several important testing problems in the Department

of Defense .

There are many individuals and things that contribute to the success of these

scientific meetings such as the speakers , invited and contributed panelists ,

the chairpersons , members of the audience , as well as the hosts and their

facilities . Sometimes one overlooks the contributions of the members of the

Program Committees , so this year the AMSC would like to take this occasion to

express its appreciation for their valuable scientific contributions to the

stature of these conferences . The names of the committee members for the

Thirtieth Conference are :

PROGRAM COMMITTEE

Carl Bates

Larry Crow

Bernard Harris

Robert Launer

J. Richard Moore

Carl Russell

Douglas Tang

Malcolm Taylor

Jerry Thomas

Langhorne Withers
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AN INTRODUCTION TO REGRESSION DIAGNOSTICS

Roy E. Welsch

Sloan School of Management

Massachusetts Institute of Technology

ABSTRACT

A regression is constructed using prior knowledge , data , models , and a

fitting (estimation ) process of some form . It is important to know when the

resulting regression depends heavily on a small part of the prior knowledge ,

on a small part of the data , or on the exact choice of model or fitting

process . We want models that are sensitive to the issues of interest , but

perform well ( i.e. , are less sensitive ) when assumptions are violated .
In

this paper we present an overview of the theory , application , and computation

of regression diagnostics , especially those related to the analysis of

influential data .
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INTRODUCTION

Our basic goal in this paper is to learn if our regression is heavily

influenced by small subsets of data . A traditional starting point is to look

for outliers which may be viewed as observations that appear to be surprising

to the investigator , or observations that are not a realization from some

target distribution .
It is essential that all data used in regression models

be examined for outliers .
The first step is to look at the response and

explanatory variables separately to get a feeling for outliers .
At this time ,

transformations of these variables might be considered . A heavily skewed data

series may appear to have lots of outliers .
A logarithmic transformation may

make the outliers appear much more like the rest of the data . Such trans for

mations are , of course , tentative and need to be considered in light of prior

knowledge and subsequent results .

Such a univariate examination does not help us find outliers relative to a

particular model and fitting process . In fact , some of the univariate

outliers may not look so discrepant in the context of a multivariate model .

Conversely , and more commonly , multivariate outliers will arise which cannot

be seen in a univariate analysis .

A particularly useful way to detect outliers in the context of a model is

to look for overly influential subsets of data . Subsets of data are regarded

2



as influential if their deletion results in substantial changes to important

features of an analysis .

Our discussion of regression diagnostics starts with preliminary steps

that are necessary before the decision is made to use a least-squares linear

regression model . Then we introduce the idea of adjusted variables and

partial regression plots . After a brief discussion of collinearity

diagnostics , we define leverage and several different kinds of residuals .
We

then go on to measure influence and develop plots to summarize influential

data diagnostics . We conclude with a brief treatment of diagnostics for

generalized linear models and comments about some areas of research in

diagnostic methods .

PRELIMINARY STEPS

There are many reasons for performing a regression analysis . Two of the

most common are :

( a ) fitting an equation or model to data

(b ) attempting to describe local averages of y about values of x

E (ylx ) = g (x ) .

(1)

Both of these involve the response data , y , and the regressors X
1 X 23

etc. All too often , the data and (a ) and (b ) are combined into

y = XB + E ( 2 )

where X is an nxp matrix of regressors , possibly including the constant

carrier , y is nxl , Bis pxl and E is nxl . The estimated coefficients , b ,

are then obtained by a fitting process (usually least-squares ) without a great

deal of thought .
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An important first step is to look at the variables y , and XZ , X2 , etc.

separately . These data should be explored using histograms , stem-and-leaf

plots , boxplots , etc. , ( Velleman and Hoaglin , 1981 ) and granularity ( clumps ,

holes ) , outliers , and asymmetry ought to be noticed . Outliers need to be

tagged , and possible transformations considered . Of course , some outliers may

not be so prominent when we consider the multivariate nature of the data .

Transformations considered now may also be unnecessary later , but asymmetries ,

outliers , and large changes of magnitude are clues that some variables may be

in the wrong units . In short , take a hard look at the raw data . Do nothing

if you wish , but set up a list of things to check as you go further .

The response variable , y , is often supposed to be a random variable with

some probability distribution . If it has only two values , looks Poisson ,

etc. , do not try ordinary least-squares regression . You will get stupid

results . Consider other models such as the generalized linear models

discussed by McCullagh and Nelder ( 1983 ) . The probability plotting techniques

discussed by Chambers et al ( 1983 ) are useful for checking these assumptions .

When a thorough univariate analysis has been done , it is time to consider

the bivariate ( and eventually multivariate ) nature of the data .
Plots of y

versus X.
X; are always worth making , especially for considering

transformations to straighten the plot and computing rough correlations , but

can be misleading if used to develop precise models because of the effects of

other regressors . Bivariate plots of the regressors are also useful for

finding holes , outliers , etc. , but the number of plots increases rapidly with

P. However , these provide the first clues to the fact that information in the

" design " or factor space may be spotty , clumpy , have holes , or be sparse .
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Unfortunately , we cannot do this well in higher dimensions--at least not yet .

A number of people are working on this ( Chambers et al , 1983 , Chapter 5 ) .

Usually a tentative model or equation comes with the data .
While doing

our exploring we should see if the model is sensible .
Possible modifications

should be noted for later consideration .
It is always tempting to make g ( x )

linear in some proposed coefficients ( a so-called linear model ) . However ,

8 ( x ) may be quite different --clues to this effect should be noted for they may

require different approaches . The model could be nonlinear in the parameters

or perhaps a non -parametric approach is needed (Friedman and Stuetzle , 1981 ) .

The diagnostics to be discussed below assume that , at least tentatively , the

model in ( 2 ) is considered reasonable . Diagnostics may open our eyes to

further problems, but they cannot take the place of a good preliminary look at

the data , structural model ( g (x ) or , more specifically , XB ) and stochastic .

model ( distribution of y or , in some cases , E ) . When diagnostics point to

changes we should use these preliminary procedures after making changes and

again apply diagnostics to see if we have improved our analysis .

PARTIAL REGRESSIONS AND PLOTS

Most of us are used to thinking about the least-squares estimates as

b = (x +x )-2xty. ( 3 )

However , it is often more instructive to think about the estimated

coefficients in a different way . Denote the residuals found when y is fit by

th

all but the j regressor by

( 4 )

4.12 ... ( j - 1 ) ( j + 1 ) ... p * 9.13]
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Thus y

1.1j ]
is the vector of least-squares residuals obtained by regressing y

on all regressors except the ith and is often called the adjusted response

variable .
Similarly , let X; . [ j ] denote the residuals obtained by regressing

X;j

on all of the remaining regressors . These are called the adjusted

regressors It is not hard to show ( Mosteller and Tukey , 1977 , p . 344 ) that

n

Σ

i =1
Xij . [ j ] ' i . [ j ]

b

(5)

n
2

Σ X

k= 1
* kj . [ j ]

where

X; . [ j ]

andis the ith element of the vector x , is

Xij . [ j ] Yi . [ j ]

the ith element of the vector y . [ j ] : This formula should be compared to

that for simple linear regression
through the origin . A great deal of

information
about b

bi can be obtained by plotting y . [ j ] against Xj . [ j]

for each j . These are called partial regression plots (or , in some cases ,

adjusted variable plots ) . Useful references are Belsley , Kuh , Welsch ( 1980 )

and Chambers et al ( 1983 ) . Both of these contain interesting examples .

Some properties of these plots are :

( a ) The least-squares linear fit to the plotted data has slope =
= b

bi

and

intercept = 0 (when j is not the intercept variable ) .

( b ) The residuals from the least-squares linear fit are the final

multiple regression residuals , y - Xb .

( c )
It is relatively easy to see how individual data values influence the

Oestimation of b

bj

Often some information
about nonlinearity

, heteroscedasticity
and

( d )

unusual patterns can be obtained .
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An example of a partial regression plot is given in Figure 1 . The simple

linear regression line is included and some interesting points have been

marked .

Until recently , partial regression plots were thought to be hard to

obtain . Velleman and Welsch ( 1981 ) show that this is not the case .

Let

CT -= ( x +x ) -IT ( 6 )

then

T

b = C y ( 7 ) @
@

@

n

and

bi

( 8 )E

Cij'i
i=1

Using the normal equations and ( 5 ) , we can show that

Tij . [ j ] ' i

n

Σ

i= 1

n

2

Σ Χ .

k= 1

( 9 )

j

* kj. [ j]

The uniqueness of the least-squares estimates implies that

Cij

( 10 )
n

Xij.lil

2 .

Σ

* kj . [ j ]
k= 1

or equivalently

Cii

( 11 )

Xij . [ j ]
2

Σ

k=1

C
k
i

Furthermore , Mosteller and Tukey ( 1977 ) have shown that

e + ( 12 )

Y. [ j ] b ; *;. [ j ]

where

e = y - xb . ( 13 )

7
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Therefore b , c , and e are all we need to get partial regression plots . A well

organized regression program can obtain C very easily . There is no excuse for

not making these plots a part of every regression analysis . They are an

essential diagnostic tool .

COLLINEARITY

Before going further , it is advisable to get some feeling for collinearity .

A quick way is to note from ( 9 ) that

02

var ( b . )

( b;?

( 14 )

2

Σ х

i = 1
ij . [ j ]

n

2

If the sum in the denominator
is small compared to , say ,

* ij '
i= 1

then x has been

j

well fit by the other regressors . Since we are used to centering our data , we

often compute the squared multiple correlation of X ; on the other regressors ,

n

Σ

i= 1

2

Xij . [ j ]

( 15 )

2
R$ - 11

(* ij *;

where x; is the ith variable mean .

Σ

i = 1

Note that if we are interested in using

models with an explicit intercept rather than centered data , the denominator

2

of R

R?

should not be centered . One statistic often proposed as a measure

of collinearity is the variance inflation factor , VIF , found from

VIF;

( 16 )

1

2

1-R.

j
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If we just had a simple linear regression on
X ; '

+ ;

y = c + dx + E ,

then

2

(a )var

n

Σ

i = 1 - 2; ) ?

Thus

var

( b ; '

= var (a) .• VIF ( 17 )

IF ; '

and we see that VIF measures the variance inflation due to the presence of

additional regressors .

The drawbacks of the above approach (VIF; large ) are that it does not

tell us which regressors are involved or how they are involved in the

collinear relation with X ;. A very useful way to get this information is

described in Chapter 3 of Belsley , Kuh , and Welsch ( 1980 ) .

If collinearity appears to be a problem , it is wise to reduce it as much

as possible before doing influential data diagnostics . When the diagnostics

that follow suggest altering or setting aside data it is essential that the

new model be rechecked for collinearity .

LEVERAGE

One of the preliminary steps for regression analysis that we have

discussed is the making of bivariate plots of the regressors . Generally , the

eye will notice outlying points in these plots .
However , it is hard to make

higher dimensional plots and a variety of tools exist to overcome this

10



problem .
One of the easiest to use measures a type of distance from X , the row

vector of regressor means , to each observation xị :

(x - 3)(*** ) ?( - 3) ".

( 18 )

Here X is the X matrix without the intercept column and with column means

subtracted off of the remaining columns . Similarly , (x ; -x ) omits the

intercept element . Belsley , Kuh , and Welsch ( 1980 ) show that

1

-

hi (x - 7)(7% ) /(x - 3)?

( 19 )

where

1 , x2 (xx) 41

( 20 )

is the diagonal element of the projection or hat matrix ,

H = x (x +x) =2x ", ( 21 )

so-called because

y = Hy :
( 22 )

Most modern regression programs now compute h , and I would not use one that

failed to do 80 .

Often we will want to hypothesize that x; is possibly erroneous or

" strange . " Then we may wish to measure the distance from x ; to the rest of

the data . One useful way to do this is to compute .

di

= ( x

(x ; -8(i))( (i) Fx(i))– (x: - 3 ( i ) ) ?

( 23 )

where X ( i ) and X ( i ) are obtained by assuming that the i

th

observation did

not exist .

11



Sinceddi is related to Mahalanobis distance , it is not hard to show

( Belsley , Kuh , and Welsch , 1980 ) that

1
h

" i

1

n
3

di

n-1

( 24 ).

h .

Both h ; and h ;/ ( 1 -h ; ) will prove to be useful in what follows .

Hoaglin and Welsch ( 1978 ) discuss many properties of hi . In particular ,

ozhi < 1 ( or 1/nh 1 when an intercept is present ) and £ h

n

i= 1

Pso

i

that the average value is p/n . Let b ( i ) denote the least -sqaures estimates

th

obtained without using the i observation . Then simple algebra , e.g. ( 32 ) ,

shows that

y; b

= x.b =

( 1 - h. ) x; b ( i ) + hivi :

( 25 )

observation

Thus , y; is a convex combination of the prediction x; b ( i ) and the

yi : The ratio h; / ( 1 -h. ) determines the relative contribution of

When h ; is one , the ith observation completely determines y ; and

each part .

yi = yi

There is no general agreement on when h; is " large . " Hoaglin and Welsch

( 1978 ) argue that an individual hy should not be too far from a balanced

design (all h
hi

p/n ) and call the ith observation a leverage point when

h ; > 2p/n ( provided n > 2p) . Belsley , Kuh , Welsch ( 1980 ) show that when

the x. ( rows of x ) are i.i.d. multivariate Gaussian , the distribution of

h ; / ( 1 -h. ) can be related to an F-statistic . This leads to a criterion

th

that calls attention to the i observation if hy > 3p/n . Note that

these leverage criteria depend on p and n .

i

12



Huber ( 1981 ) uses ( 25 ) and suggests that when h > 0.5 , special
1

attention is called for and observations with hi > 0.2 should be noted .

These leverage criteria are independent of p and n .

A useful compromise between these two general approaches is to consider

hi , i= 1 , ... , n as a batch of data to be analyzed by exploratory data analysis

(Velleman and Hoaglin , 1981 ) . Observations with outlying values of hi would

then be considered leverage points . My own simple rule of thumb is to pay

attention when h . > min ( 0.2 , 3p/n ) .
i

Note that if all of the data is replicated n times , then the new value of

hi is the old value divided by m . Cut-offs that depend on the sample size

( such as 3p/n ) adjust for this so that replication does not affect those

points we determine to be outlying . This seems to us to be a useful property ,

especially when h; is related to distance measures .

It is also possible to compute the contribution of the individual

regressors to the leverage of each observation . Let

h =

+
n
i

( 26 )

hij ] nj

is the vector of leverage values when X, is omitted from the

regression model .

The partial leverage , n; can be found from

where hij ]

2

x

" ij

( 27 )
ij.lil

2

Σ και

kj. [ j]
k= 1

which is the leverage of the ith point in the partial regression plot for

bj . Data points with large partial leverage for a regressor can exert an

13



undue influence on the selection of that regressor in most automatic regression

model building methods . For some examples , see Henderson and Velleman ( 1981 ) .

RESIDUALS

While looking for leverage points is a relatively new tool , examining

various plots of the residuals , ej , is not .
Surely residuals should be

plotted against index ( or time ) , against fitted values , against proposed new

regressors ( it is best to adjust the new carrier for those already in the

model by using the residuals from Xnew regressed on the current model ) ,

Probability plots should also be made . An excellent discussion is
etc.

contained in Chambers et al ( 1983 ) .

We feel that the residuals should be properly scaled . Since

var ( e ; ) = o ( l-h ; ) , two useful choices are the internally studentized

residual

111

( 28 )

SV1- h .

i

and the externally studentized residual

*

( 29 )

ociwi

s( i ) 1- h .

ii

where s is the standard error of the regression
Σ

(y :- _b3 % ) and

s ( i ) is the same but with the ith observation omitted . A simple formula

relates 8 and 8 ( i ) :

( n-p ) 8² - ( n-p-1)8 (i)
( 30 )

( 1-h .)
) .

14



Under the usual Gaussian error assumptions , e ; has a t-distribution with
i

n-p- 1 degrees of freedom . If a dummy variable with zero in all positions

th

except for a one in the i position is added to the current model ( x ) , then

*

is a useful diagnostic for seeing if there should be a shift in the

intercept for the ithith observation . Further details are contained in

Belsley , Kuh , and Welsch ( 1980 ) .

Another form of residual is often useful . The predicted residual is found

by computing

ei

Yi - x;b ( i )

( ) -

( 31 )

( 1 -h.)

Hoaglin and Welsch ( 1978 ) have noted that when ( 31 ) is scaled by its standard

error , the result is just e
i

MRASURE OF INFLULICE

Looking for leverage points and examining various types of residuals form

an important step in regression analysis . However , we would like to know if

an observation is having a disproportionately large impact on our analysis .

An observation is called influential if its deletion would cause major changes

in estimates , confidence regions , test and diagnostic statistics , etc.
Usually

influential observations are outside the patterns set by the majority of the

data in the context of a regression model ( including the structural model ,

stochastic model , and fitting procedure ) . Influential data usually arise from

errors in observing or recording data , structural model failure ( for example ,

nonlinear instead of linear ) and legitimate extreme observations .
Deletion is

a way to find procedures to measure influential data .
Data should not be

15



deleted because they are influential , but should be flagged and carefully

examined . Alternative fits or forecasts may be needed , one with and one

without these data . Judgment or information external to the data will often

be necessary .

There are many ways to measure influence . Perhaps the most common is to

th th

think of all of the data but the i observation as " good " and the i as

11

potentially " strange . We want to find an influence function or measure to

th

see if the i observation really is a cause for concern . A very useful

influence function is

(xix
y
- 1 1

b-b ( i )

Xiei

( 1 -h .

( 32 )

- (x+x) *** (y - x;b ( i ) )
( 33 )

or for each estimated coefficient

°; 6;( i )( ) -

Mij.li (y; x; b(i))

( 34 )

n
2

Σ

* kj . [ j ]
k= 1

This can also be stated in terms of ( 11 ) rather than adjusted variables .

It is often convenient to scale this measure in some way . Since we are

usually interested in changes in the estimated coefficients that are a

substantial fraction of the stochastic variability of b , we divide by the

standard error of b

j

Т. -1

To estimate the standard error we use or (xºx )

jj6/(x+x);}

with

ô = s ( i ) , since we would like an estimate of o that is not subject to the

16



" possibly erroneous " įth observation . Other reasons for using s ( i ) are

given in Welsch ( 1982 ) . All this gives us

( b.-b. ( i ) )

ii i

DBETAS

ij

( 35 )

8 ( i ) (x +x ) -1)

ji

* ij.lil . * ( ).
( 36 )

2
Σ

k= 1

* kj . [ j ]

The first term is the square root of the partial leverage ( 27 ) and the second

part is related to the predicted residual ( 31 ) .

There are three basic ways to decide when | DBETAS / are large .
The first

is to note which ones are larger than , say , 0.5 or 1 . That is , setting aside

one observation causes a 0.5 or 1 standard error change in the estimation of

Bj .
A second method ( Belsley , Kuh , and Welsch , 1980 ) uses the fact that

when c.

Cij is constant for all i and the hi are balanced ,

n

Σ

i = 1

( DBETAS..) ? ~ 1 .

'ij
'

( 37 )

When IDBETAS , I is greater than , say , twice the average value i , we take
ij

note . A practical rule of thumb is to use min (0.5,2 / n ) .

The third approach is to look at the DBETAS via exploratory data analysis

or contour plots . For a fixed j , DBETASij consists of the product indicated

in ( 36 ) . We plot the partial leverage portion on the x-axis and the predicted

residual part on the y-axis . Contours of constant influence x.y
care also

plotted . Figure 2 shows such a plot for c = 0.5 , 1.0 , 1.5 , etc. The symbol +
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denotes a positive DBETAS and A a negative DBETAS . Some potentially

influential points have been tagged .

Often we are more interested in predictions than coefficients .
A

prediction is just a linear combination of the estimated parameters , say ,

It is natural to compare e to b ( i) and scale with a

T.

b

measure of the standard errors of the fit , 8 ( i) hị. However , we often do

not know & so we look for the worst case

- 25(1) - ( }}xx

8up ( 38 )

8 ( i )

le b ) ? ( b -b ( i )) *x +x (b - b ( i) )

8 ? ( i)e (x +x )" }]

hi

(e )? .

1 -hi

From ( 25 ) we also note that the difference between the fit , x ;b , and the

predicted fit , x ;b ( i ) , is just hie ;/ ( 1 -h ;) . When scaled by a measure

11

( 39 )

of standard error of the fit , slihi,
we get

xbx.
b

( i)
h .

DFITS .

i
e

( 40 )

8 (i )hi

which is the square root of ( 39 ) . Notice that DFITS is the product of a

leverage factor ( 24 ) and the externally studentized residual ( 28 ) .

Again , there are a number of approaches to deciding when IDFITS / is

large . We can use a fraction of standard error , like 0.5 , 1 , etc. , or note

that

¿ DFITS?
DFITS

р
( 41 )

i = 1

when hi “ p/n . We do not want any observation to stray too far from the

average influence so we would single out observations with IDFITS ; / > 2 / p /vn .

A reasonable rule is to use min ( 1 , plo) as a cutoff . Cook and Weisberg
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2

( 1982 ) develop a statistic similar to DFITS?, namely

h

DŹ = 1

ii

2

(42 )

8- (1-1 )

They suggest that may be considered large when it exceeds

f )

( .5 )

or , approximately , one . This seems to be an unduly

Pinop

conservative cutoff in practice . D? is also troublesome because it uses

62 instead of 82 ( i ) and hence is not robust to errors in the ith

2

observation . See Welsch ( 1982 ) for further discussion of D

on the x - axis

We prefer to look at contour plots with [ h _/ ( 1-2) } } / 2

and lel on the y-axis . Constant influence contours may be plotted as

before . Figure 3 provides an example .

Cut-offs based on sample size ad just for the fact that as sample size

increases , variance decreases so that bias caused by erroneous data becomes

the major factor in determining the mean square error . To control this bias

relative to the decreased variance requires cut-offs that are reduced as

sample size is increased .

Often in inference we are interested in confidence intervals or regions .

A confidence region consists of a center , a shape , and a scale . For example ,

in regression a confidence region might be all B satisfying

( b -B )* x+ x (b -B )

< a
2

S

Here b is the center , xfx is thewhere a is based on the F statistic and p .

shape , and 6 ? is the scale .

2
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So far we have looked at diagnostics for the center , b . To see what

happens to xfx when the ith observation is considered suspect , we can

look at

trace (x"(i)x(i)) (x +x)-2, = p - hi
(43 )

or a ratio of volumes

T

det (x * ( i) x ( i)]

det ( x+x )

1 -hi.

(44 )

These equations just provide more reasons to look at h, in its own right .
i

As for scale , we note again that

2

( n-p )s? - (n-p-1) ( i ) +

( 1-h .)

80 that

2

( e ?8

1 +

s
nop

(i )?

Again we have already looked at e extensively .

These measures can be combined by looking at the ratio of covariance

matrix determinants .

(45 )

dets

COVRATIO =

det 8² (x +x ) -1

8 (1), 28

( i) , 22 1

(46 )

i

2
2



Contour plots are possible here as well . Velleman and Welsch ( 1981 ) note that

h ; and ei
cannot vary completely independently since

2

e ?

hi + 2

( n-p ) s

< 1 (47 )

and , of course , when hi = 1 , ei
= 0 .

An important point to note is that observations with large hy decrease

the size of a confidence region while observations with large leil

increase it . Our goal should be to insure that we are alerted to potentially

influential observations . As we can see from the above , influential observa

tions can be both useful and harmful . How we treat them will depend on the

purposes of our analysis and their relation to the rest of the data and our

models .
The best rule of thumb is that there may be more than one good and

valid analysis of a data set . Sometimes an analysis with an influential

observation and one without are the only way to adequately summarize the data .

GENERALIZED LINEAR MODELS

When the response variable y is Bernoulli , binomial, Poisson , etc. ,

generalized linear models (GLM ) are appropriate .
A detailed discussion is

contained in McCullagh and Nelder ( 1983 ) . Many of the ideas discussed above

can be carried over to these models as well . Basic references are Pregibon

( 1979 , 1981 ) .
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The essential idea is to find an influence function ( b-b ( i ) ) , for the

parameters of the model .
In the GLM case , this cannot be done exactly since

the computation of b requires the solution of a system of nonlinear equations

via iterative procedures . However , b-b ( i ) can be approximated , usually by

taking one iteration away from b ( the fully iterated solution ) with the ith

observation removed in an appropriate way . Various kinds of residuals can be

defined as well as useful plots .

This is an extremely active area of research at the present time ,

especially generalizations to survival analysis (Hall et al , 1982 ) ,

proportional hazards and censured data (Cain and Lange , 1984 ) , Cox models

( Storer and Crowley , 1985 ) , matched case control studies (Pregibon , 1984 , and

Moolgavkar , et al , 1984 ) and logistic regression ( Johnson , 1985 ) .
The

bibliographies in these papers provide a good overview of work in this area .

INFLUENTIAL SUBSETS OF DATA

If there are two or more outliers in a clump , then influence functions

based on setting aside one of the observations will not work well because we

will see little change until the entire clump is set aside . The methods

discussed above generalize to subsets of data ( Belsley , Kuh , Welsch , 1980 ;

Cook and Weisberg , 1982 ; and Welsch , 1982 ) , but very large amounts of

computation are required .

To overcome the computational problems , we have developed a technique

called bounded-influence regression ( Krasker and Welsch , 1982 ) .
A bounded

influence estimator can be viewed as a procedure to find data-dependent
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weights ( for use in weighted least-squares ) so that no small subset of the

data is overly influential . The weights and related statistics then become

useful diagnostic tools . Examples and associated contour plots are given in

Krasker and Welsch ( 1983 ) . Computational details are discussed in Peters ,

Samarov , and Welsch ( 1982 ) .

Another promising approach uses cluster analysis to reduce the

computational burden . These ideas are explored more fully in Gray and Ling

( 1984 ) . Kempthorne ( 1984 ) combines clustering with direction searches to

attack these problems .

These ideas can be extended to generalized linear models in a number of

ways . Some basic references are Samuels ( 1978 ) , Krasker ( 1979 ) , Reid ( 1981 ) ,

Reid and Crepeau ( 1985 ) , Pregibon ( 1982) , and Accomando and Pagano ( 1983 ) .

Much more work needs to be done in this area .

COMPUTATION

Computational details of many of the above methods are treated in Velleman

and Welsch ( 1981 ) . They also discuss how to use package programs such as SAS

and MINITAB to obtain various diagnostics . The plots used here were made on

the TROLL system , a large data analysis and modeling system available under

license from M.I.T.

There is no reason why good diagnostics should be omitted from a packaged

program . They are essential in my view . We can all demand that they be a

part of the new generation of software for personal computers and
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workstations . Diagnostics are particularly effective on these devices because

graphical tools are readily available .
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OBJECT CORRELATION IN MULTIPLE SCENES

Robert E. Green

Programs Management Office

Instrumentation Directorate

US Army White Sands Missile Range

White Sands Missile Range , New Mexico

ABSTRACT . Recent changes in the character of missile systems has created

the situation where a large number of objects may be located in a relatively

small space volume . These randomly located objects are identified by photo

graph ing the space volume from two or more different locations . The total

number of objects in the space volume is unknown and the number of objects in

the intersection of any pair of scenes is unknown . The objective is to identify

the objects that are in the intersection of two or more scenes . It is also

desired to correlate the objects identified in two or more sequential observa

tions .

I. INTRODUCTION . The purpose of test range instrumentation is to collect

data that can be used to evaluate the performance of the object being tested .

Photography has been a standard method of collecting performance data since the

very early days of missile development . A common method of using photography

to collect performance data is to record sequential photographic images from a

telescope mounted on a precision tracking mount . The direction of a line con

necting the location of the track ing mount and the target is determined by

correcting the direction the mount is pointing (az imuth and elevation ) by the

amount the target is offset from the center of the field -of -view of the tele

scope . This yields az imuth and elevation angles for the target . If two or

more telescope equipped tracking mounts observe a target , then the position of

the object in space can be est imated by computing the point that minimizes the

sum-of-squares of the distances from the lines defined by the az imuth and

elevation angles from each mount .

Recent developments in self -contained munitions have created situations

where large numbers of objects are expected to be in the field of view of two

or more telescopes . It is possible to estimate the direction of the lines

connecting the tracking mount and each target detected in the field of view .

A large number of objects in the field - of -view tends to complicate the process

of producing data that can be used to evaluate the performance of the objects

being tested .

II . Object Correlation . Techniques for performing two types of object

correlation are desired . First , an efficient technique for identifying the

location in space of the objects in the field of view for a single scene .

The

images observed in a photograph
may not represent

a single object since it is

possible
that two or more objects may share the same direction

from an individ

ual mount . Due to differences
in aspect angle , range , or pointing

direction
,

the objects photographed
from one mount may not all appear in the field-of -view

from another mount . An algorithm
for this application

must consider
these

factors .

After the objects have been identified at each individual point in time ,

it is necessary to correlate individual objects as a function of time in order
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to estimate velocity . We are given a large number of objects traveling in

different directions and at different velocities . We sample the location of

these objects at discrete intervals in time . The number of objects identified

at each time interval may be incomplete . A procedure is needed that correctly

ident if les each individual object in each scene for the purpose of est imating

its flight performance . Bounds on the expected range of velocities and direc

tions of the objects of interest can be assumed .

III . Summary . Methods that can be used to develop estimates of the flight

performance of a large number of objects from time sequential observat ions of

These methods
space position as sensed by photo optical techniques is required .

need to be sufficiently robust to function when some of the data is incomplete .
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AN INTRODUCTION TO FAILURE MODE STRATEGY AND EFFECTIVENESS FACTORS

Larry H. Crow

US Army Materiel Systems Analysis Activity

Aberdeen Proving Ground

Abstract

The growth potential for a system design is defined as the maximum

reliability that can be attained for a particular management strategy . The

management strategy toward reliability places failure modes into two groups ,

those that are fixed when seen and those that are not fixed when seen . The

management strategy also determines how effective the fixes are . Consideration

of the growth potential focuses attention on the impact of not fixing certain

failure modes and quantifies the management strategy and engineering effort

in terms of attaining the reliability objectives .

In this paper , we discuss a management strategy framework for considering

the growth potential and show that a number of other reliability values of

interest during a development program can also be addressed within the same

framework . These various reliability parameters are all shown to be related

and this perspective can be very useful in the planning and management of a

reliability program .

Introduction

In the development of a complex system , the initial prototypes will

generally have reliability problems . Consequently , the systein is typically

subjected to a development testing program to find problems and incorporate

appropriate corrective actions . This process may involve making reliability

predictions and constructing planned growth curves . For the planned growth

curve , an initial reliability value must be determined . In addition , such

terms as inherent reliability , growth potential , the requirement , and current

reliability values all play a role in the design and reliability growth for

the system ,

In this paper , we give a practical real world structure for putting

into perspective initial , inherent , predicted , growth potential , requirement ,

and current reliability values . All of these values are shown to be related

in terms of parameters which are functions of the design strategy , the manage

ment strategy for failure modes , and effectiveness factors . When used with

reliability predictions and Failure Modes , Effects and Criticality Analysis

( FME CA ) , these results are useful for initializing and constructing planned

growth curves , for setting realistic requirements and for developing a viable

management approach to reliability .

Failure Mode Strategy

The reliability values of interest in this paper are all directly related

to the system design strategy and the reliability management strategy . In

this section , we discuss the management strategy in terms of failure mode

classification and the effectiveness of the fixes .
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Among other things , the reliability management strategy determines what

problems seen during test will or will not be fixed . The management strategy

also determines how effective the design fixes are and when the fixes are

incorporated into the system . Although the management strategy toward reli

ability growth may not be clearly defined or formally stated , it will in

fact exist . The management strategy is determined by how management acts in

regard to reliability . The system design and management strategy will deter

mine if it is possible to meet the reliability requirement . The management

strategy should be considered early in the development program . In addition ,

the impact of the management strategy on reliability can be measured from

the test data and changed if necessary . Numerical examples are given in a

later section for evaluating the management strategy .

When the system is tested and failure modes observed , management can make

one of two possible decisions , either not fix or fix the failure mode . There .

fore , the management strategy places failure modes into two categories called

Type A and Type B modes . Type A modes are all failure modes such that when

seen during test no corrective action will be taken . This accounts for all

modes for which management determines that it is not economically or otherwise

justified to take corrective action . Type B modes are all failure modes

such that when seen during test a corrective action or fix will be attempted .

The management strategy , therefore , partitions the system into an A part

and a B part . Each part has a corresponding failure rate and mean time between

failure ( MTBF) . See Figure 1 .

TYPE A

SYSTEM

TYPE B

Figure 1. Management Strategy Partitions

the System into TwoParts.

Initial Reliability

At the beginning of development testing , the initial system failure rate

SI is

Sinit

11 A + B
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where

A that failure rate due to type A failure modes .

ВІ
that failure rate due to type B failure modes .

See Figure 2 . The actual value of S is determined by the system design .

The partition into the A and B parts is determined by the management strategy .

TYPE B

TYPE A

Figure 2. Partition of Total System

Failure Rate .

The system MTBF is 1/ Failure Rate . The initial MTBF is generally low

relative to the requirement and the objective is to achieve reliability

growth through finding problems and taking subsequent correction actions .

Current Reliability and Effectiveness Factors

.
Reliability growth is achieved by decreasing the failure rate S

The failure rate A for Type A failure modes will not change . With the

management strategy , reliability growth can only be achieved by decreasing

the Type B failure rate B. It is also clear that , in general , we can

only decrease that part of the Type B mode failure rate that has been seen

during testing . See Figure 3 .

It is very important to note that once a Type B failure mode is in the

system it is rarely totally eliminated by a corrective action . After a Type

B mode is found and fixed , a certain percent of the failure rate will be

removed , but a certain percent of the failure rate will generally remain .

35



A ' fix effectiveness factor ( EF ) is the percent decrease in a problem

mode failure rate after a corrective action has been made . A recent study

by the US Army Materiel Systems Analysis Activity on EFs showed that an

average EF d was about 70 percent . That is , on the average about 30 percent ,

i.e. , 1-0 percent , of the Type B mode failure rite remained in the system

after c corrective action .

1

TYPE B

UNSEEN TYPE B

SEEN

TYPE A

Figure 3. System Failure Rate Partition at

End of Test.

Management controls the resources for corrective action . Consequently ,

fix effectiveness factors are part of the management strategy . For the Type

B mode failure rate that has been seen during development testing , we will

remove d percent and leave 1 - d percent in the system . For illustrative pur

poses , we will frequently use an average EF d to be 70 percent in this paper .

Therefore , after the corrective actions have been made , the current system

failure rate consists of the Type A mode failure rate plus the failure rate

for the unseen Type B modes , plus 30 percent cf the failure rate for the

Type B nodes which have been seen . See Figure 4 .

An important management question is : Car the requirement ever be attained

with the way we are doing business i.e. , with the management strategy ? If the

requirement can be met , then usually we also want know how long it will take .

This car. be answered by addressing the growth rate .
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TYPE B

UNSEEN

30%

REMAIN

TYPE B

SEEN

70 %

REMOVED

TYPE A

Figure 4. System Failure Rate After

Corrective Actions.

Growth Potential and Requirement

The growth potential is the maximum reliability that can be attained with

the system design and reliability growth management strategy . The growth

potential will have been attained when all Type B failure modes have been

found and a fix incorporated into the system . for the system design and

management strategy this is the limiting reliability . The growth potential

reliability may never actually be achieved in practice .

Figure 5 portrays the growth potential for a system with an average EF

of 70 percent . The growth potential failure rate , assuming an average EF of

70 percent , consists of the Type A failure rate plus 30 percent of the Type

B failure rate .

The initial failure rate S for the system at the beginning of develop

ment testing consists of the failure rate A for the Type A modes and the

failure rate B for the Type B modes . That is , O InitE init = A + B.

The growth potential failure rate is the most that the initial failure rate can

be reduced with the management strategy . It is the best failure rate attainable .

For an average EF of .70 , the growth potential failure rate is expressed by

SGP A + 1.30 ) B
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70 %

REMOVED

30%

REMAIN

TYPE A

Figure 5. Failure Rate Growth Potential.

The initial MTBF and the growth potential MTBF are shown in Figure 6 .

An important consideration is whether or not the requirement is below the

growth potential MTBF. If the requirement is not below the growth potential ,

then the requirement cannot be attained with the current system design and

management strategy . The methods presented in Ref [ 2 ] may be used to easily

estimate the growth potential from test data ,

GROWTH POTENTIAL

REQUIREMENT ? .M

T

B

F

INITIAL

TEST TIMĘ

Figure 6. Initial, Requirement and Growth

Potential MTBF.
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Example

Suppose a system is tested for 400 hours with 42 failures . According

to the management strategy , 10 failures are due to failure modes that will

not receive a corrective action . That is , these are Type A failures . Also ,

according to the management strategy , 32 failures are due to failure modes

that will receive a corrective action . These are Type B failures . See

Figure 7 .

B

А

32

10

N
U
M
B
E
R

76 %

24%

Figure 7. Management Strategy for

Type A and B Modes.

We next estimate the initial failure rate and the failure rate and the

failure rates for the A and B partition .

S
A

+
B.

The estimates for the Type A and Type B failure rates are the respective

number of failures for that type divided by 400 , the number of test hours .

Consequently with the above management strategy the Type A failure rate is

AU = 10/400

and the Type B failure rate is

B
= 32/400 .

The estimate of the initial system failure rate is

S Init = 32/400 = 42/400 or an estimate of the initial MTBF of 9.5 hours .

If we assume an average EF of 70 percent , then under the above management

strategy the growth potential failure rate is estimated by

SGP - A + 1.30 )( .30 ) B

or
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Sgp = 10/400 + ( .30 ) 32/400 .

This gives an estimate of the growth potential MTBF of 20.4 hours .

With this management strategy and these data , the initial MTBF of the

system is estimated to be 9.5 hours and the very best MTBF that may be attained

is estimated to be 20.4 hours . If the requirement is less than 20.4 hours

then there is the possibility of it being attained . However , if the require.

ment is greater than 20.4 , say , 25 hours , then it is very unlikely the goal

can ever be reached with the present management strategy , regardless of how

much testing is conducted . See Figure 8 .

GROWTH POTENTIAL

20.4

M

T

B

F

INITIAL

9.5

Figure 8. Estimated Initial and Growth

Potential MTBF.

If a requireme.it of 25 hours MTBF is to be attained with the system

design , then the management strategy must be changed . This would entail fix

ing more problems , i.e. , increase the Type B modes , and/or increase the ef

fectiveness of the fixes . However , it is noted that an average EF of about

70 percent appears to be typical for many types of systems , although individ

ual Efs may be larger . Therefore , a very large average EF may not be war

ranted .

Example

Suppose that an average EF of 70 percent is assumed but we desire to

change the management strategy so as to increase the growth potential MTB F

above 25 hours . Again , suppose that the system was tested for 400 hours

with 42 failures . With the new management strategy , 39 failures are due to

modes which will receive a corrective action , i.e. , Type B modes , and 3

failures are due to modes which will not receive a corrective action , i.e. ,

Type A modes . See Figure 9 .
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B

39

3

93 %

A

7%

Figure 9. Management Strategy for Type

A and B Modes.

The growth potential failure rate for this management strategy is estimated

to be

SGP = 3/400 + ( .30 ) 39/400

or an estimated growth potential MTBF of 27.2 hours . This is a valid estimate

of the growth potential if this management strategy is maintained . This

includes classifying , in the long term , at least 93 percent of the failures

to Type B modes ' and no more than 7 percent of the failure to Type A modes .

Also , an average EF of at least 70 percent must be achieved .

It is important to note that the growth potential does not estimate the

current reliability - it estimates the maximum reliability that will be achieved

when all Type B failures modes have been found and fixed by a corrective action .

It is showned in Ref [ 1 ] that the current failure rate , after corrective action

of Type B modes seen during test , equals the growth potential failure rate plus

a correction term for unseen Type B modes still in the system . An estimated

of the current MTBF utilizing EFs is obtained by applying the projection model

and methods discussed in Ref [ 1 ] and Ref [ 2 ] .

Example

Assume again the situation in the first example . In this case , 32 failures

will receive fixes at the end of 400 hours of testing . The various failure

times for the Type A and Type B modes in this example were ġenerate by com

puter simulation and discussed in Ref [ 1 ] . In Ref [ 1 ] , these data were used

to obtain an estimate of 14.7 hours for the current MTBF. See Figure 10 .

4
1



20.4

GROWTH POTENTIAL

14.7

CURRENT

9.5
INITIAL

TEST TIME

400 HRS

Figure 10. Estimated Initial, Current and

Growth Potential MTBF.

Inherent and Predicted

The Type A failure modes are determined by the management strategy .
The

Type A group accounts for all failure modes for which management determines

that it is not economically or otherwise justified to take corrective action .

Economically justified is , of course , relative to the design strategy . For

example , what is economically justified for one car type may not be for an

other , depending on the respective design strategies and objectives .

An inherent failure mode will exist whenever the failure rate for that

mode cannot be economically reduced further by corrective action . An inherent

mode failure rate will remain in the system . Ideally , the group of Type A

failure modes should consist only of inherent failure modes . If the Type A

group includes modes which are not inherent - 1.e. , can be economically cor

rected - then , this is indicative of bad reliability management. Also , if the

failure rate for the initial group of inherent modes at the beginning of reli

ability testing is large relative to the requirement , then this indicates a

bad system design for the requirement . When all system failure modes are

inherent - cannot be economically reduced further - then the system has at

tained its inherent reliability .

A valid reliability prediction should generally be expected to address

the inherent system reliability . This is very important because of the rela

tionship between inherent reliability and the growth potential reliability .

If the management strategy is sound such that all observed failure modes

which are not fixed are , in fact , already at their inherent failure rates ,

and those failure modes which are fixed have E Fs that reduce their failure

rates to the inherent , then the growth potential failure rate equals the

inherent failure rate . This observation can be very useful for developing

planned reliability growth curves .
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Conclusions

In this paper , we have discussed the initial , current , growth potential ,

requirement , inherent and predicted reliabilities and their relationships in

terms of the design strategy and management strategy for the system . In par

ticular , the initial failure rate is partitioned into two parts .

Sinit
Al + B

For an average EF d the growth potential and initial failure rate are related

by

SIGP
IA

+ ( 1-0 ) B

or

SIGP
Sinit - dB .

In addition , the current system failure rate , when all Type B modes which have

been seen during test have received a corrective action , is related to the growth

potential by

SICUR
S

GP + correction term for unseen Type B modes .

In term of MTBF , the requirement must be below the growth potential MTBF if

it is to be attained . Also , the predicted reliability should generally be ex

pected to address the inherent reliability . Therefore for planning purposes ,

we may equate the two , i.e. ,

[
Slinh Spred .

In general , the inherent MTBF will be greater than the growth potential , depend

ing on the management strategy . Under a sound management strategy they will be

the same , i.e. ,

[ S] ịnh = [SGGP.

Therefore , it follows that given a realistic prediction and assuming a sound

management strategy , then

SIGP -
Spred .

These relationships are very useful for developing planned reliability growth

curves and for evaluating the realism of attaining the requirement with the

management strategy . Figure 11 summarizes these relationships .
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Determination of the Design Allowable Value

Using Extreme Quantile Modeling

Donald Neal , Mark Vangel , and Luciano Spiridigliozzi
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Watertown , Massachusetts 02172

ABSTRACT

This paper describes a methodology for obtaining the A and B

material design allowable values using an extreme quantile

modeling process . The allowables represent a value determined

from a specified probability of survival with 95 percent

confidence in the assertion . The survival probabilities are .99

for the A and .90 for the B allowable . The required

representation of the small portion of the data in the left hand

tail of the distribution was obtained from the following models :

the two parameter Weibull , two parameter exponential and the

Bootstrap method .

Development of the exponential model is presented in detail .

The primary effort involved determining an unbiased estimator of

the LCB for the exponential sample order statistic corresponding

to the required quantile value . This was obtained in terms of

the LCB of the same ordered value from a uniform distribution and

the MLE of the exponential parameters .

Applying the Weibull censored data analysis presented in

Lawless ( 1 ) provided an effective method for weighting the lower

ordered values where at least seventy- five percent right

censoring was considered . The Bootstrap ( 2 ) method was applied

in order to obtain the variance at the one and ten percentile
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values . In the case where data was limited or contaminated an

extrapolation process involving an extreme value model was

introduced . Excellent correlation was obtained from among all

three models .

INTRODUCTION

The inability to obtain exactly the same structural properties

from all specimens obtained from a manufactured material results

in a relatively large variability in strength measurements when a

large number of specimens are considered . In the case of

designing an aircraft structure it is required to

design such that a minimum stress value exists in critical

locations and these values do not exceed the minimum guaranteed

material properties ( strength ) . Obtaining minimum strength values

will reduce possibility of some production components containing

weaker material than that from the laboratory test element . This

guaranteed minimum strength value is defined as the design

allowable by aircraft design engineers .

Osually the measured value is considered acceptable in

estimating the population parameters for predicting population

percentiles . In the case of the design engineer it is advisable

to have a prediction which will determine the accuracy of the

percentile estimate at a high degree of statistical confidence .

This is the correct interpretation of an allowable value .

example , certain military standards , e.g. , MIL-HDBR- 513 ) require

material property data to be presented on an A or B allowable

basis . A and B allowables are defined by the probability

statement providing a 95 percent confidence of the assertion that

probability of surviving the A allowable value is < .99 and < .90

for the B allowable .

AMMRC is involved in the development of a statistical chapter

for the MIL- 17 HDBK on composite material in aircraft structural

design .
The chapter will include methods for determining the

design allowable values . The inability to identify the proper

statistical model from limited or multi -modal data motivated the

authors to find new robust models .

For
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This paper presents original methods for obtaining an accurate

measure of the above mentioned design allowables involving lower

tail modeling . Breiman , Stone and Gins [ 4 ] have discussed the

difficulties existing in model identification when very small

tail probabilities are required . This is the result of parameter

estimates that usually are obtained from data in the central

portion of the distribution where most failures occur leaving the

tail region limited in representation . This is unfortunate ,

since the relatively small amount of data in the tail region is

of prime importance to the allowable computation . The lower tail

modeling presented in the paper avoids central region modeling by

modeling lower ordered values of the distribution . The

exponential and Bootstrap methods involve truncating the tail .

The Weibull model uses a censoring process for the high ordered

strength values .

When small samples or multi-modality prevents reasonable model

identification it is necessary to either apply conventional

non-parametric methods or devise some scheme similar to those

advocated by the authors . The primary difficulty in the extreme

quantile modeling technique involved determining tolerance bounds

on the quantile values in the allowable computation .

ed

ues

ng

his

The Exponential Extreme Quantile LCB Estimator

e

Breiman , Stone and Gins introduced the exponential extreme

quantile model which is the foundation of our research . The

method for estimating the LCB of an extreme quantile presented

here , however , was developed by the authors . A Monte Carlo

investigation of the original (Breiman ,et.al.) LCB estimator

disclosed a bias of about 3 % when sampling from an exponential

distribution . Since an exponential distribution satisfies the

extreme quantile model exactly , it is desirable that the LCB

estimator be unbiased in this situation . This paper presents a

new LCB estimator which is unbiased when the underlying

distribution is exponential .

:
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Consider a sample of n independent , identically distributed

random variables from the two parameter exponential distribution

.- 17 -X ) / a
O EXSI

F ( X ; 5a)
B

( 1 )

X > 1

Define the lower tail as

{X (1 ) X( 2 ) • ... , X ) , ms 2/2 ,

*

where X is the jth sample order statistic . Assuming that

( 3 )

F (8,7, a ) is approximately zero , the joint density of the lower

tail values may be approximated as

- > (X -X )/2

Ex (1).... ( )(39 .

( n - m ).

(

.e-m(7-X )/ (1-6-( -X )/ 9 D-

n !

X
e e 1

(2)

for 7 > X ( mn ) . > X ( 1 ) . Based on the lower tail values , the maximum

likelihood estimators of the exponential parameters are

m-)

az 1. (X(m)-%(4)

m - l

1-1

( 3 )

q = X (m ) + 2 ln ( a / m )

where a has been weighted with m-l rather than m in order to

yield an unbiased estimator . The maximum likelihood estimator of

the oth quantile i , a < i , is
9

• t- A l(1/4 ) • X ) - 1 in (m/nq ) .
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This is obtained by solving F (X,F (x, ; 7,8 ) for
, a X

Xq

and replacing

parameters with their MLE's . The lower 95% confidence bound on

X, with a ..1 and q * .01 determines the B and a design allowables

respectively.

If the quantile of interest corresponds to a sample order

statistic , then the true lower confidence bound on the quantile

may be obtained by applying the inverse probability transform to

the LCB of the corresponding order statistic from a uniform

distribution ; it follows that for this situation the true

allowable may be readily obtained .

In what follows , we have restricted attention to the B.

allowable , i.e. the lower 95% tolerance limit on the 10 % point .

consideration of the A allowable ( tolerance on the 1 % point ) may

be made in a similar manner . Further , we have considered

primarily samples of size 10k for k integer , since in this case

the required limit corresponds to the LCB on the kth order

statistic .

Let X , ... Xn be iid Fl • ; 7 , a ) as in equation 1 . The density of

the kth order statistic is

5 *
1
3)

(t ; 1,4 ) (2-7) =(a=k+1)( ++)/ (1-2-(+ - +)/0,(x -2)

( 5 )

and the true B allowable may be expressed as

fx

(t ; t , a ) dt = .05 .

(k )

( 6 )

with change of variable

{up

- ( 1 - t ) / a

:-( 1-X )/ a

a

(7 )
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equation 6 can be written as

n - k

( 1 -u)

-1

du .05 .
(8 )

The upper limit on the integral is therefore the lower 5% point

of the Beta ( k , n-k+l ) distribution , i.e .:

k-)

EX:) (1-*-*
: 4+ )

3.95 .
( 9 )

S=0

The allowable estimator

X - Xcm) + In (104_m / n)
( 10 )

may be obtained from equation 7 by replacing parameters with

their MLE'S .

since the MLE's are unbiased in this case , we have derived an

estimator which will provide unbiased allowable estimates when

the underlying distribution is exponential . this estimator is

computationally very simple ; the percentiles of the beta cdf

(equation 9 ) are easily obtained on a computer . We have , for

ease of reference , called this new estimator the reduced bias

estimator , or RBE .

Monte Carlo Investigation of Reduced Bias Estimator

A Monte Carlo study using the two parameter Weibull

distribution was performed in order to provide a preliminary

assessment of the RBE . since the problem of determining

allowables is particularly acute for small samples , we
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considered sample sizes of 19 , 20 , and 30 , with tail sizes of 3 , 6

and 10 respectively . The Weibull shape parameters (a ) considered

are in the range 2 < a < 10% , a range of values consistent with

those expected from test results on most materials . This

investigation is summarized in Figure 1 .

The exponential tail allowable estimator is a linear

combination of the sample order statistics . For the order

statistics of a Weibull sample , the mean and covariance matrix

may be determined exactly ( 5 ) . Unfortunately , the

covariance matrix is quite complex , therefore a simulation was

used to estimate the variance of the allowable estimator from

Weibull samples .

The exact expression for the mean of the kth order statistic is

( 1+ 1 /a)

k - l

( -218

E(/(x ) ) = 5(1+1/a)•Bon

F (:1) 0:)( 47

n - k + s + 1 .11 )

* 0

Although equation 11 appears to be relatively simple to evaluate ,

machine roundoff error prevented computation of the sum . the

reason for the difficulty is that equation 11 is proportional to

the ( k-1 ) st backward difference of ( 1/0 ) ( 1+1 / a ) that is

( 1 + 1 / a )

of-1 / ( 1/2 ) ( 1+1 / a ) ,

Σ

(-3)

-k+ s + 1

B = 0 ( 12 )

where is defined by

Of (x ) = f (x - 1 ) - f (x )

The difference operator may be expressed in terms of the

derivatives of the function and Stirling numbers of the second

kind 16 ) .

The results of the Monte Carlo study are presented in Figure 2 .

The estimated bias is expressed as a percentage of the allowable

estimate . As a measure of the variance , the estimated 90%
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confidence interval is also given as a percentage of the

estimate . These results indicate that the bias is

unacceptably large for small shape parameter but decreases

sharply as the parameter increases . This is also true for the

confidence interval as a percentage of the estimate . The mean

square error decreases with increasing sample size .

In Figure 3 , the estimated B allowable for the Weibull

distribution is plotted vs the the shape parameter . Note the

nearly vertical slope of the curve for small a . The estimated

allowable curve agrees closely with the true curve over the

entire range ; the distance between the curves measured along a

normal is always small . when measuring the bias and confidence

for small o , we are cutting the curves obliguely in a region of

rapid change in the allowable with increasing shape parameter .

in order to compare the RBE method , a standard nonparametric

estimator was applied - the first ordered value from a sample of

30 . That is , if the unspecified continuous underlying

distribution is Pl . ) , then

P (X (1) -X.2) = P (F (X (1))<F (X.2)) = P (F (X (1) 35.1)

-.930 ..95 6
( 13 )

since minimal assumptions are made with respect to distribution ,

this nonparametric estimator generally is conservative . In

Figure 4 , the RBE bias and confidence for a sample of 38 are

repeated , along with the corresponding exact results for the

first ordered sample value . Except for very small shape

parameter , the proposed estimator has much smaller mean square

error than the other nonparametric estimator .

Determining a Tail truncation Point

A problem to be addressed is the choice of a tail truncation

point ( on value ) . In the simulation just described the tail is
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approximately 1/3 of the data . This choice was made subjectively

before the analysis began . To examine the sensitivity of bias to

m value , the expression for the exact expected order statistics

(equation 11 ) was used to calculate the expected bias in the RBE

for the sample sizes and Weibull populations of figure 1 .

These results are presented in Figure 5 a , b , and c for sample

sizes 10 , 20 and 30 respectively . These plots show considerable

fluctuation in bias for small shape parameters . The bias

decreases steadily with increasing modulus , in good agreement

with the Monte Carlo results . From Figure 5 , it appears

that the optimal tail lengths are 3 , 6 , and 8 for sample sizes of

19 , 20 , and 39 respectively . For small shape parameters , a longer

tail greatly reduces the expected bias . Figure 5d is a

magnification of Figure 5c : it illustrates the expected bias for

a sample of size 39 and a modulus of less than 10 . If one takes

a tail of 12 points , the expected bias may be reduced to 5 % or

less for 3 < a < 10 . A more complete treatment of the tail

truncation problem will be presented in a forthcoming AMMRC

report .

Allowable Estimate From the Bootstrap Method

The Bootstrap method used in determining B design allowable

values involves letting F be the empirical distribution of

observed values ( strength test results ) ,i.e. the probability

distribution with mass 1/n for each x value ( X2 , X2 , Xz ... Xn ) .

The Bootstrap sample is obtained by selecting a random set of n

new values , independently with replacement from Ê ( note , some

values will be repeated once , twice , etc ) . From the ordered set

of the Bootstrap sample the 10 percent point lj ordered value

obtained consistent with the 90 percent survival number is

( 3 )

used for the allowable computation .

N Bootstrap samples are obtained with corresponding X value

,

( 10 percent points ) . The resulting sequence
X

( j ) ' ( j ) '
3 N

X estimates the distribution of the 10 percent

( j )

point of F. The 5 percent point of the Bootstrap samples results

*

x
2

21
9
)

X
19 ) " ..

. x
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in the B allowable estimate of F. N usually is greater than 500 .

If sample size is small , preventing adequate representation of

percentile values relative to the Bootstrap process , then a

smoothing method is suggested . Currently , the authors are

applying the 2 parameter Weibull tail model to the extreme

quantile region of the empirical distribution . A schematic of

this procedure is shown in Figure 6 . Applying

the regression model as shown in the figure will provide

generation of any sample size including extrapolation to lower

quantile values ( eg . .01 for A allowable ) . The smoothing

techniques has been very effective in smoothing tail region data

that contains contaminated data ( eg . outliers and bi -modality ) .

The flexibility of the Weibull model provides a good tail

representation .

3

Weibull censored Data Allowable Estimate (Lawless )

The method developed by [ 1 ] for obtaining tolerance bounds for

Weibull extreme quantile values was applied to censored data .

The data was right censored in some instances by 80 percent in

order to preserve a homogenous lower extreme quantile region .

This scheme is extremely effective if two or more modes existing

in the data and only data from lowest mode is modeled

with remainder of data censored - ( See Figure 7 ) . The B

allowable of 1.30 agrees with non-parametric solution while

complete sample solution of 1.96 is too conservative . This

technique is equally effective for unimodal data .

Results and discussion

In Figure 8a the complete ranked sample is displayed . The

allowable estimates for the functional representation are

tabulated at right of figure . The Weibull , normal and lognormal

agree quite well for the B allowable estimate of 44.0 KSI . The

tail region is not adequately represented by the three functions ,
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therefore reliance on the 44.0 KSI value could result in an

unsatisfactory B allowable estimate . The third ordered number of

44.0 KSI represents 99 percënt survivability value exclusive of

the tolerance bound . This indicates an obvious overly

non-conservative allowable estimate .

Figure 8b displays the Weibull censored data result for the

complete sample shown in Figure 8a . within the figure is

tabulated the Design B 38.8 . This number represents the B

alllowable estimate agreeing with the conventional non-parametric

solution of 38.5 which is the first ordered value when sample

size is 30 . The reliability of the non -parametric solution is

usually good except when there is limited amount of dispersion in

the data . In this case , the results will be overly conservative .

The 12 percent coefficient of variation for the sample in Figure

8a is acceptable , therefore the non-paramettic method is

acceptable and consequently the censored data result . The direct

modeling of only the first four ordered values from the sample of

38 with 26 censored number has provided surprisingly accurate

allowable estimates . The censored data method has consistently

provided accurate results for most data sets for arbitrary tail

sizes greater than 4 .

The ranked data of 18 values is displayed in Figure 9 . Note ,

the obvious bi -modality existing in the data , a result limiting

selection of an adequate model for obtaining the allowable value .

The results from conventional functional representation Weibull ,

normal , and lognormal are 43.0 , 42.3 , and 42.8 respectively.

These values appear to be non-conservative in that the 98 percent

survival value is 43.0 not including reduction due to the

tolerance estimate related to the sample size . The obvious poor

representation of the tail region has resulted in this error .

In the tabulation to the right of Figure 9 , the results of

censored data solution , Bootstrap method and the exponential

model are shown to be 38.2 , 36.1 , and 36.5 respectively. The

a greement among the three techniques is quite good . Only the

first mode ( first five ordered values ) were modeled except for

the Bootstrap process . Finally , the non -parametric 171 result is
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included in order to show lowest possible allowable value

considering all models . The result is somewhat conservative due

to the limited sample size ..

Conclusions

Three methods for estimating lower confidence bounds on extreme

quantiles have been discussed in this paper : an exponential tail

estimator developed by the authors , an application of the

Bootstrap to extreme quantiles , and a censored data method due to

Lawless . All of these methods are based on the idea of

estimating confidence on an extreme quantile from a tail model ,

as opposed to a model involving the complete sample .

Consequently , all three are potentially useful in situations

where the tail appears well behaved but the underlying

distribution is in doubt .

The method of Lawless and a Bootstrap procedure were introduced

briefly into the presentation only for comparison purposes .

Lawless's method has consistently provided good results in

obtaining the allowable values . At present , considering all

available models it is the "best " . The primary drawback of this

censored data method is its computational complexity .

Preliminary results from the Bootstrap method have been good but

inconclusive . More effort is needed in developing this method

for the allowable application .

The exponential tail estimator was presented in detail . This

new estimator for confidence on extreme quantiles has the

advantage of simplicity and intuitive appeal . A Monte Carlo

study for small samples from Weibull populations revealed

acceptable bias except in the case of small shape

parameters . Preliminary investigation of tail truncation points

suggests that modeling a longer tail reduces expected bias and

variance in the case of small Weibull modulus .

There is general agreement among the three extreme quantiles

models in determining allowable estimates . This suggests that

these models can provide effective alternatives to inadequate

conventional models where model uncertainty exists .
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FIGURE I

Monte Carlo Simulation of Reduced Bias Estimator

For the Weibull Distribution
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Figure 2

Monte Carlo Estimation of Bias and Variance (RBE )

Percent Bias Vs. Shape Parameter
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Figure 3

Exact 'B ' Allowable , Estimated Allowable and

90% Confidence Interval for N=30
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Figure 4

Comparison of Exponential Tail ( RBE ) and

Standard Non -parastric Estimator (NP )

Percent Bias Vs. Shape Parameter
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FIGURE 5

RBE Percent Bias Vs. Shape Parameter
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FIGURE 5 ( continued )
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BASIC Programs for Computing

Reliability and /or Mean Life

Donald W. Rankin

Lieutenant Colonel

US Air Force ( retired )

1. Introduction . In essence , these BASIC programs

are used to compute those definite integrals which are

associated with certain probability functions and which

yield confidence levels . A full mathematical development

of the formulae used will be found in two earlier papers .

( 1 ) and ( 2 )

2 . Binomial (Beta ) distribution . ( Sampling with

replacement . ) If L de notes the level of confidence ,

the unknown probability of observing a success ,

the sample size and k the observed number of failures ,

the required formula is

C

s Flr) arŚ
1 - L = where

r= 0

f ( r ) (n + 1) C ( n , k ) rn - k (1 -r ) k .

0 and
Obviously , z falls between 1 .

Program 1 . This program properly is used to test

for compliance with a minimuin reliability standard .

Values for z , n , and k are given , from which L is

compute
d .

Program 2 . This program determines the minimum

reliability associated with a stated confidence level .

Given are L , n , and k , from which is computed .z

Frogram 3 . This program computes a " Best Estimate "

of the reliability consistent with a stated confidence

level . It minimizes the difference

22-21

between the

limits of integration which span that confidence level .
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3. _Hypergeometric probability : ( Sampling without

replacement . ) If L denotes the level of confidence ,

N the population size , n the sample size , k the

number of observed defectives and X the unknown number

of defectives in the original population , then the re

quired formula is

X = m

L [P ( x ) where
C ( x , k ) C ( N - X , n - k )

P ( x )

CINFI, NFIT

x= k

It is found that falls between k and N- nuk .

=

= k) .

m

Program 4 . This program properly is used to test

for compliance with a specified maximum allowable number

of failures in the original population . Values for N ,

and are given , from which L is computed .n , k m

Program 5 . This program produces a listing of all

the discrete probabilities from k to M. The upper

bound can be established by specifying either m or L.

Program 6 . This program determines the maximum

number of failures in the original population which is

consistent with a stated confidence level . Given are

L , N , n and k , from which m is computed .

Program 7 . This program computes a " Best Estimate "

of the number of failures in the original population ,

consistent with a stated confidence level . All of the

included probabilities exceed every excluded one .

Program 8 . This program lists all the discrete

probabilities associated with the " Best Estimate " of

the number of failures in the original population .

( See Program 7. )

Program : 9 . This program is similar to Program 7 ,

but gives in addition the maximum likelihood estimate .
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4 . Poisson distribution . ( Constant failure rate . )

" Mean Life " is given by the reciprocal of the constant

( but unknown ) failure rate . Let T denote the duration

of the test in any suitable units , and k the number of

failures observed during test T. If X /T denotes the

( unknown ) failure rate per unit in the whole population ,

then the probability that does not exceed some value

is given by

X

z

s

k -X

х е

P ( 2 ) f ( x ) dx where f ( x )

R ?

x = 0

This integral , of course , is equivalent to a confidence

level ; i.e. , L = P ( 2 ) . únce z has been determined ,

the minimum value of Mean Life is given by T/z .

Program 10 . This program properly is used to test

for compliance with a specified minimum Mean Life in the

original population . Values for T and k are given

and T / z is specified , from which is computed .

Program 11 . This program determines the minimum

Mean Life which is consistent with a stated confidence

level . Given are L , T and k , from which Z ( and

hence T / 2 ) is computed .

Program 12 . This program computes acomputes a " Best Estimate "

of the failure rate in the original population which is

consistent with a stated confidence level . Having thus

determined

21

and
22

the corresponding values of

Mean Life are given by T / 22 and T /21

71



5 . The l.cgarithm of the factorial. The presence

of large factorials in the several formulae virtually

dictates computation by logarithms . The BASIC syntax

normally does not contain a routine for computing the

natural logarithm of the factorial of an integer . In

view of this deficiency , a representative program has

been included which achieves the desired purpose . It

can be used directly , or employed as a model when com

posing a reguired sub- routine . For single -digit inte

gers , it computes the factorial directly , then passes

to the logarithm . For integers of two or more digits ,

Stirling's complete formula is employed . ( See ( 1 ) , p .

278. ) The result is accurate to 11 or 12 significant

digits , or to the accuracy with which the machine com

putes simpler logarithms , whichever is less . It must

be remembered that the count of significant digits in

cludes both the characteristic and the mantissa of the

logarithm . But the subsequent antilogarithm will con

tain no more significant digits than does the mantissa

of the logarithm .
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APPENDIX A

BASIC Program Listings

5 DISP " The LOGARITHM of the FACTORIAL . "

10 DISP " ENTER Positive Integer (cr Zero ) "

15 INPUT N

20 FACTORIAL=1 a LOGARITHM= 0

25 IF N= 0 THEN 80

30 IF N= 1 THEN 80

35 IF N9 THEN 65

40 FOR I = 2 TON

45 FACTORIAL=FACTORIAL* I

50 NEXT I

55 LOGARITHM = LOG ( FACTORIAL )

60 GOTO 80

65 SERIES= ( ( 1/ 17 *N ^ 2 ) – , 5 ) / ( 30 * N ^ 2 ) + . 5 ) / 16 * N )

70 STIRLING=LOG ( N ) * ( N+ .5 ) -N+ ( SERIES+ .918938533205 )

75 LOGARITHM =STIRLING

80 PRINT N ; " LOGARITHM of the FACTORIAL = : LOGARITHM

85 PRINT CHR $ ( 10 )

90 END
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2 PRINT Program 1 . " , CHR $ ( 10 )

4 PRINT This program tests for compliance with "

6 PRINT " a minimum reliability standard . " , CHR $ ( 10 )

8 DISP " ENTER Sample Size " @ INPUT SAM

10 DISP " Enter desired reliability standard " E INPUT Z

12 DISP " Enter number of failures observed " INPUT K

14 IF K1 THEN 22

16 IF K= 1 THEN 20

13 CON F = 1-2 ^ ( 1 + SAM ) @ GOTO 48

20 CONF= 1-2 ^SAM * ( 1 +SAM - Z * SAM ) @ GOTO 48

22 P = l +SAM GOSUB 62

24 U = Q @ P=SAM -K @ GOSUB 62

26 V = @ P = a GOSUD 62

28 F2= EXP ( K *LOG ( 1-2 ) + ( SAM- K ) * LOG ( 2 ) +U - V- C )

30 IF Z > l - K /SAM THEN 40 ! To routine for large Z

32 T2 = 2 *F2 / ( 1 + SAM - K ) a Sz = TZ @ f = 1

34 T2 = 2 * 12 * ( 1 + R - H ) / ( ( 1 +SAN -R + H ) * ( 1-2 ) ) A Si = S2 +T2

36 H = 1 + !! @ IF TZ > .00000000004 THEN 34

38 CON F = 1 -SZ E GOTO 48 ! End routine for small Z

40 T2 = ( 1-2 ) * F2/ ( 1 +K ) @ S2= T % u H= 1

42 TZ = ( 1-2 ) * TZ * ( 1 +SAM - R - ) / ( ( 1 + k + H ) * Z ) @ S2 = 32 +TZ

44 = l + ! IF T2 > .00000000004 THEN 12

46 CONF= S2 ! End routine for large 2

18 FCON = CCHF * 100000000 ? NFCO = FCON FP ( FCUN )

50 CONE' = IP (NFCO ) / 100000000 ! Kcunes to 8 places

52 PRINT " Ecr į sancle size of " ;SA " ; " iters , crorg "

54 ETI: T "which exactly " ; % ; " defectives were observer , "

5TTI" I " a relictility exceedinc " ; 2 ; "will occur wit ? "

56 PPII " prolatility " ; ii ;CAR (19 ) ; CET ( 10 )

60 STOP

2 LIPC : IF P > ? THEN 69

64 FAC= 1 3 FOF I = 1 TOP FAC = FICI NEXT I

65 = LOC (FAC ) PETURN

63 SCFI= ( ( 1/17 * ^ 2 ) - . 5 ) / ( 30 * p ^ 2 ) + . 5 ) / 15 * P ) +.912938533205

70 O = ( P + .5 ) * LOC ( P ) -P +SERI 2 RETURN

72 END

74



3 PRINT Program 2 . " , CHR $ ( 10 )

6 PRINT

This program computes a minimum reliability "

9 PRINT " consistent with a specified level of confidence . "

12 PRINT @ DISP " ENTER Sample Size " @ INPUT SAM

15 DISP " Enter desired Level of Confidence " @ INPUT CONF

18 DISP " Enter number of failures observed " @ INPUT K

21 2 = 1 - K/SAM @ IF K > 1 THEN 39

24 IF K = 1 THEN 30

27 2 = ( 1 - CONF ) ^ ( 1 / ( 1 + SAM ) ) @ GOTO 66

30 F2 = Z ^ ( SAM - 1 ) * SAM * ( 1 +SAM ) * ( 1 - Z. )

33 S2 = 2 ^ SAM * ( 1 + SAM - 2 * SAM ) @ DL2 = ( 1 - CONF - SZ ) /FZ @ 2 = 2 + DLZ

36 IF ABS ( DLZ ) > .0000000004 THEN 30 ELSE 66

39 P = l + SAM @ GOSUB 87

42 U = Q @ P =SAM- K @ GOSUB 87

45 V= Q @ P = K @ GOSUB 87

43 F2 = EXP ( K * LOG ( 1-2 ) + ( SAM - K ) * LOG ( 2 ) + U - V - Q )

51 T2 = 2 * FZ / ( 1 + SAM - K ) @ SZ =TZ @ H = 1

54 T2 = Z * T2 * ( 1 + R -H ) / ( ( 1 + SAM- K+ H ) * ( 1-2 ) ) @ S2 =SZ +TZ

57 H = l + H @ IF TZ > .00000000004 THEN 54 ! Integral loop

60 DL Z = ( 1 - CONF-S2 ) / F2 @ 2 = 2 + DLZ

63 IF ABS ( DLZ ) > . 0000000004 THEN 48 ! Argument loop

66 X2 = 2 * 100000000 @ Y 2 =XZ+ FP ( X2 ) @ R2 = IP ( YZ ) / 100000000

69 ! Rounds 2 to 8 decimal places

72 PRINT " For a sample size of " ; SAM ; " items, among "

75 PRINT " which exactly " ; K ; " defectives were observed , "

78 PRINT " a reliability exceeding " ; RZ ; "will "

81 PRINT " occur with probability " ; CONF; CHR $ ( 10 ) ; CHR$ ( 10 )

84 STOP

87 LNFC : IF P > 9 THEN 96

90 FAC= 1 @ FOR I = 1 TO P @ FAC= FAC* I @ NEXT I

93 Q=LOG ( FAC ) @ RETURN

96 SERI = ( ( 1 / 17 * ^ 2 ) - . 5 ) / ( 30 * P ^ 2 ) + . 5 ) / ( 6 * P ) +.918938 533205

99 Q= ( P + .5 ) * LOG ( P ) -P +SERI @ RETURN

102 END
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1 PRINT Program . 3. " , CIPS ( 10 )

2 FRINT
This program computes a ; CHR $ ( 34 ) ;

3 PFINT " Best Estimate" ;CEF $ ( 34 )

4. PEINT " cf the relichility in the sense of ririr:um ."

5 PEINT cistance between bourds for a specifieč "

6 PFINI " level ci conficence . " ; CEFS ( 10 )

7 DISP " ENTER Sanple size " INPUT SEN!

E DISP " Enter iesired confidence level" @ INFUT CONE

9 DISP " Enter Pilinker cf failures observec " @ INPUIK

10 IF K > THEN 25

11 IF E = 1 111EN 15

12 PLINT CER ( 34 ) ; "lest Estirate " ; CHR $ ( 34 ) ;

13 FINT " is rct cefirecicr cerc "

14 PEINT " failures . Use Pregrar 2 fcr reliability ." & STOP

15 A = 1-2 / SAM

16 FA = ISAI - 1 ) * SAM ( 1 + SIM ) * ( 1 - A ) ! Eegir Alccp

17 SA = ; * SAN * ( 1 + SAX - A * SPN ) @ 2 = 1 - INZISAN * ( 1 + SAM ) )

18 F2 = ^ ( SAM - 1 ) * SAN * ( 1 + SAM ) * 11-2 .) ! Begir 2 lccy

19 EL2 = (FA /F2-1) * 7 * ( 1-2 ) 7 ( SAK - 1-3 * SAX )

20 < = < + CLZ @ IF AES ( L2 ) > .000 ( OCOCO04 THEN 18

21 S2 = 2 SAN * ( 1 SAM - 2 * SAN ) Y = SA - 1 / ( 1-2 )

22 DLA = 1CONF - S2 + SA ) * Y/ ( P'A * ( 2/7: * (SAN - 1 / ( 1 - A ) .) -Y ) )

23 A = ! +DLA CIF ABS ( DIA ) > SAM * .00000000001 THEN 16 ELSE 42

24 ! Enc cfrcutire for i sirole failure

25 F = l + S4M @ GOSUL 52 ! Begir routine for K > 1

26 U = @ I = SAN - GOS03 52

27 V = Ĉ P = @ GOSUB 52

2ER= l - K / SAN F2 = SCRIP ^ 2 - R * ( 1 - ! / (SAN - 1 ) ) ) A = R -RZ

29 FA = EXF ( K * LOC ( 1 - A ) + ( SAC - K ) * LOG ( A ) + U - V - C ) ! A lccp

30 = R + k2 @ TA = A * FA / ( 1 +SAX-” ) RSA = TAC J = 1

31 IA = 1 * TA * ( 1 + K - J ) / ( ( 1 + SA - K + J .) * il - A ) ) @ SA = SA + TA

22 J = l + j @ IF TAK * .00000000002 THEN 21 ! A integral lccp

33 F2 = EXP ( K * LOC ( 1-2 ) + ( SAL - F:) * LCC ( 2 .) + U - V - C )

24 CL2 = (FA /F2-1) + 2 / (SA1- \ / ( 1-2 ) ) @ 2 = 2 + DLZ

35 IF AES ( CL2 ) > K * .000 COCO0002 TFEL ?? ! F2 = FA ! ccp

36 T2 = * F 27 ( 1 + SA1 - P ) @ S % = T2 2 1 = 1

37 " 2 = 2 * 17 * ( 1 + R - H ) / ( ( 1 + SAN - K + H ) * ( 1-2 ) ) @ SZ = Sc + IZ

38 H = 1 + @ IF 12 > K * .COCOCCO0002 THEN 37 ! į integral ] cor

39 h = SAN - K / ( 1-2 )

40 DLA = 1CONF - 52 +SA ) * 5 / ( FA * ( 2 /7. * ( SAS - R / ( 1 - A ) ) - F:) ) @ A = A + DIA

41 IFES (CLA ) > SAN * .0CCOCCOOCO ) THEN 29 !DLA > . Eric C.I A
Erċ c.1 Alccp

52 XE = 7 * 100000000 @ YA = X A +FE ( 84 ) e 27 = IF ( YA ) 71000OCOCO

43 82 = 2 * 100GOOGUC @ 72 = X2 + FP ( X2 ) @ 22 = IF ( 72 ) 7100000000

44 ! Founċs results to 8 cecinal places

45 PFINT " Fcr ¿ sample size cf " ; SAM ; " items, anong "

56 FFIAT " which exactly " ; K ; " defectives were observec , "

47 EFINT " the " ; CIES ( 34 ) ; " cest Estirate " ; CEFS ( 34 ) ;

! ? PEINT " of the relickility "

59 FFIAT " falls between " ; 20 ; " src " ; 22

50 EFINT " with prckability " ;CCNF ;CUF $ ( 16 ) ;CHF $ ( 10 )

51 STOP

52 LNFC : IF P > TEEN 55 ! Leserith cf the factorial

53 FAC = ] @ FOT I = ] IOF FAC = FEC *IC NEXT I

54 ( = LOC ( FAC ) @ FITUEN

55 SEFI = ( 1 / 17 * p ^ 2 ) - . 5 ) / ( 30 * P ^ 2 ) + . 5 ) , ( 6 * 7 ) + . ? 18928533205

56 € = ( F + .5 ) * LOC ( P ) -P + SEKI
( P ) -P + SERI PITUTA

57 END
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" ** **

2 PRINT Program ļ . " , CHR $ ( 10 )

4 PRINT This program tests for compliance with a "

6 PEINT " specified maximum number of allowable failures "

8 PRINT " in the criginal population . " , CHRS ( 10 )

10 DISP " ENTER Population Size " @ INPUT POP

12 DISP " ENTER Sample Size " @ INPUT SAM

14 DISP " ENTER Maximum Number of Allowable Failures " @ INPUT MXF

16 DISP " ENTER Number of failures coserved " INPUT K

18 IF MXF > = KTHEN 22

20 DISP ERROR
Maximum already exceedeo" @ GOTO 14

22 P = l + POP @ GOSUB 60

24 REQ @ p = ] + SAM @ GOSUB 60

26 S =Q @ P = l + MXF R GOSUB 60

28 T =Q6 P = POP -SAM @ GOSUL 60

30 U =Q @ P = POP -MF © GOSUE 60

32 V =Q @ P = FOP - MXF - SAM + K @ GOSUL 60

24 =Q 2 P=SAM- K @ GOSUB 60

26 8 =Q @ PEMXF - K @ GOSUE 60

38 Y =0 @ P = l + K @ GOSUB 60

4C TX = EXE ( U + V - R -n +S +T- X-Y- 0 ) @ SX = TX

42 NU = TX * ( l +MXF - P ) * 11 + SAM - P ) @ P = 1+ 1

44 TX =NU/ ( P * IPOF -SAM- 1 - MXF + P . ) . ) @ SX = SX + IX

46 IF IX > R * .00CCOOO0002 TIEN 42

48 VX = SX *1cOCnoco @ YX = VX + FP ( VX ) @ 2X = IP ( YX ) / 100000000

50 PFINI
The population consists cf " ; FOP ; " sinilar items ,

52 PFINT " sangle of size " ; SAN ; " is cravir which contairs cxactly " ; K

54 PHINI " cefcctives . The crigiral populaticr. ccrtainec feweri "

56 PFIMI " thar." ; 1 + XF ; " dcfectives with rrobability " ; 2X

58 DISP SX PFINI CHES ( 10 ) ; CHR $ 110 ) STCP

60 LNFC : FAC= 1 @ IF F1 TEEN 64

62 [ = 0 @ FETUEL

64 IF P > TEEN 70

66 FOF I = 1 TO @ FAC = FAC * I @ NEXT I

68 O = LOG FAC ) EFETURN

70 SIFI= 1 ( 1 / 17 * F ^ 2 ) - . 5 ) / ( 20 * P ^ 2 ) + . 5 ) / ( 6 * P ) +.918938533205

72 C = 1P + .5 ) * LOG ( P ) -P + SEFI 3 RETUFN

74 END

11

A "
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2 PRINT Program 5. " , CHR $ ( 10 )

4 PRINT This program has an expanded printout which "

6 PRINT " tabulates both specific and cumulative probabilities "

8 PRINT " for various numbers of failures . The upper bound of "

10 PRINI " the listing can be established either by stating the "

12 PFINI " maximum number of allowable failures , or by specify- "

14 PPINI " ing a desired cumulative probability . " ; CHR $ ( 10 )

16 DISP " ENTER Population Size " @ INPUT POP

18 DISP " ENTER Sample Size " @ INPUT SAM

20 DISP " ENTER Number of failures observed" @ INPUT K @ A=0

22 DISP " ENTER Desired upper bound . Use integer to denote maximum

24 DISP " number of allowable failures . Or Use čecimal fraction to "

26 DISP " express appropriate confidence level.."

28 INPUT MXF @ IF MXF < 1 THEN 38

30 IF FP MXF ) = 0 THEN 34

32 DISP " ERROR " ;MXF ; " Invalid parameter " ; GOTO 22

34 IF MXF > = KTHEN 38

26 DISP " ** ERROR ** Maximum already exceeded " 2 GOTO 20

3 8 Y = 25 @ DI » B ( 99 ) ,C ( 99 )

40 P = 1 + POP @ GOSUB 82

42 REQ @ P = l +SAM @ GOSUB & 2

44 S =Q @ P = POP - K GOSUB 82

46 T=Q @ P =SAM - K @ GOSUB 82

48 BIA ) =EXF ( T - R + S - Q ) @ C ( A ). BIA )

50 PFINT
The population consists cf " ; POP ; " similar items ,

A "

52 PRINT " sanple cf size " ; SAM ; " is crawn which contains exactly " ; k

54 PRINT " defecti
ves . The various probabil

ities
are : " ; CHR $ ( 10 )

56 PFINI " Number of Probabil
ity Cumulative "

58 PRINT " failures cf occurrence
prcbability " ; CHR $ ( 10. )

60 PFINT USING 62 ; K + A ; D ( A ) ; C ( 2 )

62 IMAGE XXDDD , 108,2.80,108,2.ED

64 A= l + @ IF FE ( A / 5 ). = 0 THEN PRINI

66 EE. ) = E ( A - 1 ) * 1A + K ) * 1l + POF - SAM - A ) 7 ( 7. * ] + POP - R - A ) )

6 € CIA ) = B ( A ) +C ( A - l ) @ IF A < > Y TUEN 74

70 DISP " INSERI - EV FACE . ihen press CCNT " @ PAUSE

72 Y = Y + 35 @ GOTO 56

74 IF MXF < 1 TIEN 79

76 IF XF < A + K TEEN EC ELSE 60

78 IF ( XF > C ( A - 1 ) THEN 60

EC FRIN ? CHR ( 10 ) ; CHTS ( 10 ) CSICE

& 2 LNFC : FAC= 1 IF P > 1 THEN 86

84 C = 0 @ FETUEN

86 IF P > THEN 2

& 8 FC I = 1 TO F @ FAC = FAC * l @ NEXT I

CO C = LOG FAC ) @ RETURN

52 SEFI = 1 ( 1 / 17 * P ^ 2 ) - , 5 ) / 1.30 * F ^ 2 ) + . 5 ) / 16 * P.) + .91893& 533205

94 ( = ( F + .5 ) * LOG ( F ) -P + SEFIC REIÜFN

96 END

7
8



2 PRINT Program 6 . " ,CHR $ ( 10 )

4 PRINT This program computes the maximum number of "

6 PRINT " defectives in the original population ccrsistent"

E PRINT " with a specified confiderce level and with the "

10 PFINI " observed number cf sample failures . " ; CHR $ ( 10 )

12 DISP " ENTER Population Size " @ INPUT POP

14 DISP " ENTER Sample Size " 2 INPUT SAM

16 DISP " ENTER Number cf failures observed" @ INPUT K

18 DISP " ENTER Desired Confidence Level . ( Use cecinal fraction ) "

20 INPUT CONF @ 2 = l - K/SAM C= 0 @ D= 0 @ IF K1 THEN 32

22 IF K = 1 THEN 26

24 2 = ? ) -CONF.) ^ ( 1 / ( 1 + SAM ) ) @ GOTO 52

26 F2 = 2 ^ (SAM - 1 ) * SAM * ( 1 + SAM ) * ( 1-2 )

28 SZ = Z ^ SAM * ( 1 + SAM - Z * SAM ) @ DL2= ( 1 - CONF. -SZ ) / F2 @ 2= 2+OLZ

30 IF ABS ( DLZ ) > , 00000001 THEN 26 ELSL. 52

32 P= 1 + POP @ GOSUD 94

24 REQ @ P= 1 +SAM GOSUB 94

36 S =Q @ P = POP -SAM GOSUB 94

28 U =Q @ PESAM - K @ GOSUB 94

40 X =Q P = K @ GOSUB 94

42 F2 = EXP ( K * LOG 1-2 ) + ( SAM - K ) * LOG 12 ) + S - * - Q )

44 12 = 2 * FZ / ( 1 + SAM - K ) @ S2 =TZ @ H = 1

46 T2 = 2 * 12 * ( 1 + R - H ) / ( ( 1 + SAN - K + H ) * 11-2 ) ) @ Sz =32 +TZ

48 H= l + H @ IF IZ > .00000001 THEN 46

50 DL2 = ( 1 -CONF - SZ ) /F2 @ 2 = 2 + DLZ @ IF ABS ( DLZ ) > .00000001 THEN 42

52 MXF = INI ( K - .5 + (1-2) + ( 1 + FOF - SON ) )

54 P = FOP - MXF - SAM + K @ GOSUE 94

56 n =Q P = POP -MXF @ GOSUE 94

58 VE @ P = ] +NXF GOSUE 94

60 T = 2 í F =kXF- OFOLXF -ROCOSUE 94

62 Y = F = l + K & COSUE 94

64 IX = CXF ( U + 1 - F- + S + T - X - Y - 12 ) @ SX =TX

66 NU = 18 * 11 + uYF - F ) * l +SAN - F ) C P = l + F

68 1X = U / ( P * IPCE - SAN - 1 -RXF + F.) ) @ SX = SX + 1X

70 IF TX > K * .00CCOCCC002 TIIEI 66

72 IF SX > = CONFTIEN 76

74 J =SXF=NXF CMXF = 1 + XF @ C = 992 IF D = EE THE 78 ELSE 54

76 L = SY @ G = XF @ MXF =mXF - 1 © = EE IF C < > SG IHEN 54

72 XJ= J * 1CC000000 @ Y J = XJ + F ? ( XJ ) @ JJ = IP ( YJ ) / 10C600000

EO XL = L * 10CCOO0OC @ YL= xL+ F5 ( XL ) @ LL = ] F ( IL ) / ]Crocoon

& 2 PEINT " The populaticr ccrsists cr " ; = 0P ; " similar iters .

7.4 PFINI " Sanple ci size " ; SAN ; " is crown which certains exactly " ; K

66 PEINT " iefectives . The criginal populaticn certained fewer "

& E FFINI " trar " ; l + G ; " cefectives with probability " ; IL

CO PFINT " Orfeuer than " ; G ; "with prckability " ; JJ

92 PFINI CHE $ ( 10 ) ; CHRS ( 10 ) @ STOP

94 LNFC : FAC = 1 IF P1 THEN 98

96 C = 0 @ FETUEN

SE IF P > Ç TEEN 104

100 FCF I = 1 TOP FAC = FAC *INEXI I

102 ( = LOC FAC ) { RETUFN

104 SEFI= 1117 ( 7 * p ^ 2 ) - . 5 ) / (30 * F ^ 2 ) + . 5 ) / (6 * P ) +.918S38533205

1 C6 C = ( [ +.5 ) * LOG ( P ) - P + CEFI 3 FUTUF .

10E END

7
9



1 PRINT " Program 7 . " , CHR $ ( 10 )

2 PEINT This program yields a " " ; CHR $ ( 34 ) ; " best Estimate " ;

3 PRINT CHR $ (34) ; " cf"

¢ PRINT " the total number cf defectives in the crigiral "

5 PRINT " population , in the sense of minimum distarce "

6 PFINT " betreer bourds for a specified confiderce level . "

7 PFINT CHR $ ( 10 ) DISF " ENIEF Populaticn size " @ INPUT POP

& DISP " ENTER Sample size " @ INPUT SAM

9 DISP " Enter number cf failures cbserved " a INPUT K

10 DISP " Erter desireċ confidence level ( use Ceciral fracticn ) "

11 INPUT CONFS IF K > 1 THEN 25

12 IF K = 1 THEN 16

13 PEINT CHRS ( 34 ) ; " Best Estimate " ; CHR $ ( 34 ) ;

14 PPINI " is not defined ifcr zero"

15 PFINT " failures. Use Program 6 for probability . " @ COTC 93

16 A = 1-2 / SAM

17 FA =A ^ (SAM - 1 ) * SAM * ( 1 + SAM ) * ( 1 -A ) @ SAFA SAM * ( 1 + SAM - A * SAM )

1 € 2 = 1 - FA / (SAM * ( l + SAN ) )

19 F2 = 2 ^ (SAM - 1 ) * SAY * ( 1 + SAM ) * ( 1-2 )

20 DL2 = ( FA / F2-1 ) * Z * ( 1-2 ) / ( SAM - 1-2 * SAM )

21 2 =Z +DL2 @ IF AES ( DL2 ) > . 000000001 THEN 19

22 S2 = Z ^ SAM * ( 1+ SAN - Z * SAM ) @ Y = SAM - 1 / ( 1-2 )

23 DLA = ( CONF -S2 + SA ) * Y/ ( FA * ( Z/A * SAM - 1 / ( 1 - A ) ) - Y ) .)

24 A=A +DLA @ IF ADS ( CLA ) > .000000001 THEN 17 ELSE 43

25 P = 1 + POP GOSUL 28

26 R = C & P = 1 + SAME GOSUB 8 8

27 S =Q @ P = POP -SAM GOSDE E &

28 C=Q 2 PESAN - K @ COSUB E8

29 X =@ @ P = K @ GOSUB E8

20 F =Q @ FX = 1 - K /SAM @ RZ= SQR (RX ^ 2 - F8 * ( 1 - x / ( SAM - 1 ) ) ) @ A = PX - FZ

21 L'A = EXE OK * LOG ( 1 - A ) + ( SAM -K ) * LCG ( A ) + S - X - Q ) @ 2 =RX +F2

32 TA =A * FA/ ( 1 + SAM - K ) @ SA =TA @ J = 1

33 TA = A * TA * ( 1 + R - J.) / ( ( 1 + SAM - K + ) * ll - A ) ) @ SA =SA +TA

34 J = l +J @ IF TAK * .0000000002 THEN 3 ?

35 F2 =EXP K * LOG (1-2 ) + ( SAM - K ) * LOG 12 ) + S - Y - C )

36 DL2 = 1FA/F2-1 ) * Z / ( SAM -K/ ( 1-2 ) ) @ 2 = 2 +DL Z

27 IF ABS ( DLZ ) > K * .000COCOOC2 'IHEN 35

38 12 = 2 * FZ/ ( 1 +SAN - K ) @ S2 =T2 @ H = 1

39 TZ = 2 * 12 * ( 1 + K - H ) / ( ( 1 + SAM - K + II) * 11-2 ) ) B S2 = S2 + TZ

40 H = l + H @ IF IZK* .00COCCO002 THEN 39

41 li8 = SAM - K / ( 1-2 ) @ CLI= ( CONF - S2 + SA ) * 1X / ( FA * ( 2 /A * (SAN - K / (1-1 ) ) -NX).)

42 A =A + CLA @ IF AES ( DLA ) > SAM * .0000000001 THEN 31

43 MNF EINT ( K - .5 + (1-2) * ( 1 + PCE - SAM ) . )

44 MXF = INI ( K +.5+ ( 1 - A ) * ( 1 + FOP - SAN ) )

45 PRINI

The population consists cf " ; -OP ;

46 PEINI " similar itens .

47 PRINT " A sengle cf size " ; SAN ; " is drawn which contains exactly "

1

I1
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47 PFINI " A sarple .cf size " ; SAM ; " is crawn which contains exactly "

48 P = POP -MXF - SAM + K @ GOSUB 88

49 li =Q @ P = POP -MXF @ GOSUB 88

50 V=Q @ R =MXF @ GOSUD 88

51 T=0 @ P = MXF - K @ GOSUB 88

52 Y =Q @ P = FOP. -MF- SAM + K @ GOSUB 88

53 N = @ P = POP -MF @ GOSUB 88

54 M =Q @ P =MNF @ GOSUR 88

55 L=Q @ POMNF - K @ GOSUE E8

56 G =Q @ P = ] + R

57 FX = DXF ( U +V- R -W +S + T- X -Y-F )

58 TX = PX * 11 + MXF ) / P @ SX = TX

59 IU = TX * ( 1 +MXF - P ) * ( 1 + SAM - P ) / (POP-SAM -MXF + P )

60 P = l + P @ TX =NU/ P @ SX =SX + TX

61 IF IX > K * .00CCOCO0002 THEN 59

62 CX = SX @ CF =MXF @ P = l + K

63 FY = EXF ( U + M - R - N + S + L - X - G - F )

64 TY = FY * 1l +MNF / F @ SY =TY

65 MU =TY * ( 1 + MNF- P ) * ( 1 + SAM- P . ) / (POF - SAM -MNF + P )

66 P= l + P @ TY =MU/P @ SY = SY + TY

67 IF TY > K * .00000000002 THEN 65

6Ę CY =SY CE =MNF @ P= l +K

69 DISP MF,MXF

70 IF CX + PY-CY <CONF TEEN 78

71 IF FX < PY THEN 75

72 IF CX-CY <CONF THEN 83

73 MNF =MNF + 1 @ PY = PY * MNF * POP - SAM -MNF + K + 1 ) / ( (MNF - K ) * ( 1 + POP -MNF ).)

74 CY=CY+ PY a COTO 69

75 IF CX + FY-PX -CY < CONF THEN 83

76 MXF = MXF - 1 @ CX = CX - PX

77 PX = PX * Il - K/ ( 1 +MXF ) ) * (POP -UXF ) 7 ( POF -MXF -SAM + K ) @ GOTO 69

78 IF FX < FY THEN 81

79 MXF =MXF + ] @ PX = PX *XXF * (POP -SAM -MXF + K + 1 ) / ( ( NXF - K ) * 11 + POP -MXF ) .)

80 CX = CX + PX a GOTO 69

81 MNF F - l @ CY =CY -PY

2 PY = PY * ( 1 - K / ( 1 + MNF ) ) * (POP -MNE ) 7 ( POP -MF - SAM + K ) @ GOTO 69

83 XX = ( CX + PY -CY ) * 100000000 @ YY= XX+ FP ( XX ) @ ZZ = IP ( YY )7100000000

84 PRINT K ; " defectives . At the " ;22 ; " level of confi- "

85 PEINI " dence , the criginal population containeó between "

86 PEINT MF; " and" ;NXF ; " ċefectives, inclusive . "

87 PEINT CHRS ( 10 ) @ STOP

88 LNFC : IF PS THEN 91

89 FAC= 1 @ FOR I = 1 TOP @ FAC = FACI @ NEXT I

90 Q = LOC FAC ) @ RETU PN

91 SEPI = 111/ 17 * P ^ 2 ) - . 5 ) / 1.20 * P ^ 2 ) + . 5 ) / 16 * P.) +.918938533205

92 C = ( P + .5) * LOG ( P ) -P + SERI @ RETURN

93 PFINT CHR $ ( 10 ) ; CHR $ ( 10 ) @END
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2 PRINT Program 8 . " , CHR $ ( 10 )

4 PRINT
This program has an expanded printout which "

6 PRINT " tabulates both specific and cumulative probabilities "

E PRINT " for various numbers cf failures . The upper and loweri"

10 PFINI " bounds of the listing reflect the maximum and minimum

12 PRINT " number cf failures asscciated with the ' " ;CHR $ ( 34 ) ;

14 PRINI " Eest Estirate " ;CHR $ ( 34 )

16 PFINI " consistent with a stated level of confidence . " ;CHR $ ( 10 )

18 DISP " ENTER Populaticn Size " @ INPUT POP

20 DISP " ENTER Sanple Size " @ INPUT SAM

22 DISP " ENTER Number cf failures cbservec" @ INPUT K @ A= 0

24 DISP " ENTER Conficence level . ( Use decinal fraction . ) "

26 INPUT CONF DIN P (99 ) , C ( 99 )

28 IF POP - SAMC9 THEN 98

30 P= l +POP GOSUB 84

22 R =Q @ P = l +SAM @ GOSUB 84

34 S = C 3 P= POF - K @ GOSUB 84

36 T = @ P = SAM - K @ GOSUB 84

38 PIA ) = EXP ( T- R +S -Q ) @ C ( A ). = P ( A )

40 FOF A= 1 TO POP -SAM

42 PIA ) =PIA - 1 ) * ( K + A ) * ( 1 + POF - A -SAM ) / ( 2 * 11 + POP - K - A ) )

44 C ( A ) = P ( A ) +C ( 7. - 1 ) @ NEXT A

46 PRINT

The population consists cf" ;FOP ; " similar iters , "

48 PRINI " A sample of size " ; SAM ; " is crawn which contains exactly "

50 PRINI K ; " defectives. The various probabilities are : " ; CHR $ 110 )

52 PRINI " Number of Frobability Cumulative "

54 PFINT " failures of occurrence
prcbability " ; CHR $ ( 10 )

56 B = 0 @ D = POP-SAM

58 IF P ( B.) < P ( D ) THEN 64

60 IF CID-1 ) -C ( B ) + P (B ) < CONF THEN 68

62 D = D- l @ GOTO 58

64 IF C ( D ) -C ( B . ) <CONF THEN 68

66 B = B + 1 @ GOTO 58

68 A = 0 @ FOR HEB TO D

70 PFINI USING 72 ; K + H ; P ( H ) ; C ( H )

72 IMAGE XXDDD , 10X ,2.80,108,2.80

74 A= l + A @ IF FP A / 5 ) = 0 THEN PRINT

76 NEXT H @ PRINT

78 PFINI USING 80 ; " Sum " , C ( D )-C ( B - 1 ) , " ( Conf . level ) "

80 IMAGE XXAAA , 108,2.80,78 , 13A

82 PRINT CHRS ( 10 ) ; CHR $ ( 10 ) @ STOP

84 LNFC : FAC = 1 @ IF P > 1 THEN 88

86 O= 0 @ RETURN

88 IF P > 9 THEN 94

90 FOR I = 1 TO P @ FAC= FAC * I @ NEXT I

92 C= LOG FAC ) @ RETURN

94 SERI= ( 11/ 17 * ^ 2 ) - . 5 ) / ( 30 * P ^ 2 ) + . 5 ) / ( 6 * P ) + .918938533205

96 = ( P + .5 ) * LOG ( P ) -P+SERI @ RETURN

98 DISF " ** ER FOR Population too large for array .

100 DISP Redimension on lines 26 and 28."

102 END

**
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00

1 PRINT Program 9. " , CHR $ ( 10 )

2 PRINT
This program yields a ' " ; CHR $ ( 34 ) ;

3 PRINT " Best Estimate " ; CHR $ ( 34 ) ; " of "

4 PRINT " the total number cf defectives in the original "

5 PRINT " population , in the sense of minimum distance "

6 PRINT " between tourds for a specified confidence level . "

7 PRINT " Also given is the maximum likelihood estimate . "

8 PRINT DISP " ENTER Population Size " @ INPUT POP

9 DISP " ENTER Sample Size " @ INPUT SAM

10 DISP " Enter nunber of failures observed " @ INPUT K

11 DISP " Enter cesired confidence level ( use decimal fraction ) "

12 INPUT CONF @ IF K > 1 THEN 26

13 IF K = 1 THEN 17

14 PRINT CHR $ ( 34 ) ; " Best Estimate " ; CHR $ ( 34 ) ;

15 PRINT " is not defined for zero "

16 PRINT " failures . Use Program 6 for probability ." @ GOTO 98

17 A = 1-2/SAM

18 FA = A ^ (SAM - 1 ) * SAM + ( 1 + SAM ) * ( 1 -A ) @ SA = A SAM * ( 1+SAM-A* SAM )

19 2 = 1 - FA / (SAM * ( 1 + SAM ). )

20 F2 = 2 ^ (SAM - 1 ) * SAM * ( 1+ SAM ) * ( 1-2 )

21 DL2 = 1FA /F2-1) * 7 * ( 1-2 ) / ( SAM - 1-2* SAM )

22 2 = 2 +DLZ @ IF ABS ( DLZ ) > . 000000001 THEN 20

23 S2 = 2 ^ SAM * ( 1 + SAM- Z * SAM ) @ Y = SAM - 1 / (1-2 )

24 DLA = ICONF -S2 +SA ) * Y/ ( FA * 12 /A* ( SAM - 1 / ( - A ) ) - Y ) )

25 A =A +DLA @ IF ABS ( DLA ) > .000000001 THEN 18 ELSE 44

26 P = l +POP @ GOSUB 93

27 R =Q @ P = l + SAM A GOSUE 93

28 S =Q @ P = POP -SAM @ GOSUB 93

29 U = @ PESAN- K @ GOSUB 93

30 X = C @ PEK @ GOSUB 93

31 F = @ RX = 1 - K/SAM @ R2 = SQR. (FX ^2-68 * ( 1 - K / ( SAM - 1 ) ) .) @ A=RX - FZ

22 FA =EXPOR *LOG ( 1 -A ) + ( SAM-K ) * LOG A ) + S - X - Q .) @ 2 =RX +RZ

33 IA =A * FA/ ( 1 + SAM - R ) @ SA =TA @ J= 1

34 TA=A * IA * 1l + R - J ) / ( ( 1 + SAM - R + J ) * 11 - A ) ) @ SA = SA + TA

35 J = 1 + J @ IF TAK * .0000000002 THEN 34

36 F2 = EXP K * LOG ( 1-2 ) + ( SAM- R ) * LOG 1Z ) +5-8-Q )

37 DLZ = 1FA/F2-1 ) * 2/ ( SAM - K/ ( 1-2 ) . ) @ 2 = 2 +DLZ

38 IF ABS ( DLZ ) > K * .0000000002 THEN 36

39 T2 = 2 * FZ/ ( 1 +SAM - K ) @ SZ =TZ @ H = 1

40 12 = * 12 * ( 1 + R - H ) / ( ( 1 + SAM - R + H ) * ( 1-2 ) ) @ S2 =SZ +iZ

41 H = l +H @ IF TZ > K * .000CC00002 THEN 40

42 WX =SAM - K/ ( 1-2 ) @ DLA= ( CONF- S2 + SA ) * WX/ ( FA * ( Z/A* ( SAM - K/ ( 1- A ) . ) -WX ) )

43 A = A +DLA @ IF ABS ( DLA ) > SAM * .0000000001 THEN 32

44 MNF = INI ( K - .5 + ( 1-2 ) * ( 1 + POF - SAM ) )

45 MXF = INI ( K + .5 + ( 1- A ) * ( 1 + POF - SAM ) )

46 PRINT The population consists of" ; POP ; " similar itens . '

47 PRINT " A sample of size " ; SAM ; " is drawn which contains exactly "

48 P = POP - MXF - SAM + K & GOSUE 93

49 W =0 @ P = FOP - MXF @ GOSUB 93

50 V =Q @ PEMXF @ GOSUB 93

0
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50 V=Q @ P =MXF @ GOSUB 93

51 T=Q @ P =MXF - K GOSUB 93

52 Y=Q @ P = POP - MNF - SAM + K @ GOSUB 93

53 N = @ P = POP -MNF @ GOSUB 93

54 M =Q @ POMNF @ GOSUB 93

55 L=Q @ PEMNF - K @ GOSUB 93

56 G=Q @ P= l +K @ PX=EXP ( U+V-R-W+S + I -X -Y- F )

57 TX = PX * 11 +MXF ) / P @ SX = TX

58 NU= TX * ( 1 +MXF - P ) * ( 1 + SAM - P.) 7 ( POP - SAM -MXF + P )

59 P = l +P @ TX =NU/P @ SX = SX +.TX

60 IF TX > K * .00000000002 THEN 58

61 CX =SX @ CF=MXF @ P = l+ K @ PY=EXP ( U+M-R-N +S +L-X-G-F )

62 TY =FY* Il + MNF ) / P @ SY=TY

63 MU = TY * ( 1 +MNF - P ) * ( 1 + SAM - P.) 7 ( POP - SAM -MNF + P .)

64 P = l +P @ TY=MU/P SY =SY + TY

65 IF IY > K * .00000000002 THEN 63

66 CY =SY @ CE =MNF P= l + K

67 DISP MNF ,MXF

68 IF CX +PY-CY <CONF THEN 76

69 IF PX < PY THEN 73

70 IF CX-CY <CONF THEN 81

71 MNF = MNF +1 @ PY=PY * MNF * (POF.- SAM -MNF + K + 1 ) 7 ( (MNF - K ) * 11+ POP -MF) )

72 CY =CY+PY @ GOTO 67

73 IF CX +PY-PX -CY <CONF THEN 81

74 MXF=MXF- 1 @ CX=CX -PX

75 PX = PX * ( l - K / ( 1 + MXF.). ) * ( POP - MXF ) 7 ( POP-MXF -SAM +R ) @ GOTO 67

76 IF FX < PY THEN 79

77 MXF=MXF + l @ PX = FX * MXF * ( POF - SAM -MXF + K + 1 ) 7 ( ( MXF-K ) * ( 1+ POP-MXF ) )

78 CX = CX +PX @ GOTO 67

79 MNF =MNF - 1 @ CY =CY-PY

80 PY=FY * Il - K/ ( 1 +MNF ) ) * IPOF- MNF ) / (POP -MNF - SAM + K ) @ GOTO 67

81 x8 = ( CX +PY -CY ) * 100000000 @ YY =XX + FP ( XX ) @ zZ= IP ( YY ) / 100000000

82 PRINI K ; " ùefectives. At the " ; 22 ; " level of conf ; -- "

83 PRINT " cence , the original population contained between "

84 PRINI MNF ; " and " ;MXF ; " defectives , inclusive . " ; CHR $ ( 10 )

85 MLX = ( 1 +POP ) * K /SAM

86 MLY= INT ( MLX ) @ IF MLX =NLY THEN 89

87 PFINI " The maximum likelihood estimate is" ;MLY ; " defectives. "

88 GOTO 98

89 PRINT " There are two equally likely maximum likelihcca "

90 PRINT " estimates . They are " ;MLX - 1 ; " and " ;MLX ; " defectives . "

91 GOTO 98

92 STOP

93 LNFC : IF P > 9 THEN 96

94 FAC= 1 @ FOF I = ] TO P @ FAC=FAC* I @ NEXT I

95 Q = LOG FAC ) @ RETURN

96 SERI = 1 ( 1 / 17 * P ^ 2 ) - . 5 ) / 1.30 * P ^ 2 ) + . 5 ) / ( 6 * P ) + . 918938533205

97 Q= 1P + .5 ) * LOG (P.) -P + SERI @ RETURN

98 PRINT CHR $ 110 ) ; CHR $ 110 ) @ END
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3 PRINT Program 10 . " ,CHR $ ( 10 )

6 PRINT This program tests for compliance with a "

9 PRINT " minimum mean life standard . " , CHRS ( 10 )

12 DISP " E : TER Duration of Test , UNITS Employed . "

15 DISP " ( Use comma between . ) "

18 INPUT DUR ,UNITS

21 DISP " Enter desired mean life standard in ; UNITS

24 INPUT MLSO DISP " Enter number of failures observed "

27 INPUT K @ 2 = DUR/MLS @ IF K > 0 THEN 33

30 CONF= 1- EXP ( -2 ) 2 GOTO 72

33 IF K9 THEN 54

36 FAC= 1 @ FOR I = 2 TO K @ FAC = FAC * I @ NEXT I

39 F2= Z ^ K/ ( FAC *EXP ( 2 ) ) @ T2 = K * FZ /Z

42 SZ = FZ + TZ @ IF K= 1 THEN 51

45 FOR J= 1 TO K @ TZ =TZ * ( K -J ) /2

48 SZ= SZ +TZ ® NEXT J

51 CONF= 1 -SZ @ GOTO 72

54 SERI = ( (1 / ( 7 * K ^ 2) - . 5 ) / ( 30 * K ^ 2 ) + . 5 ) / ( 6 * )

57 F2= EXP ( K * ( 1 +LOG ( 2 ) ) - ( K + .5 ) * LOG ( K ) -2- ( SERI + .9189385332 ) )

60 TZ= 2 * F2/ ( K+ 1 ) @ CON F = TZ @ L=2

63 T2 = 2 * TZ / ( K+ L ) @ CONF=CONF+TZ

66 IF TZ < .00000000001 THEN 72

69 L = 1 +L @ GOTO 63

72 XX = CONF* 100000000 @ YY=XX +FP ( 8X ) @ 22 =IP ( YY ) /100000000

75 PRINT " For a test curation of " ; DUR ; " " ;UNITS

78 PRINT " during which exactly " ; K ; " failures were observed , "

81 PRINT " a mean life exceeding "; MLS ; " ; UNITS

84 PRINT "will occur with probability " ; ZZ ;CHR $ ( 10 )

87 END
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3 PRINT
Program ll . " , CHR $ ( 10 )

6 PRINT This program computes a minimum mean life "

9 PRINT " consistent with a specified level of confidence . " , CHR $ ( 10 )

12 DISP " ENTER Duration cf Test , UNITS Employed . ( Use comma between . ) "

15 INPUT DUR ,UNIT' $

18 DISP " Enter desired Level of confidence . ( Use decimal fraction . )

21 INPUT CONF @ DISP " Enter number cf failures.cbserved "

24 INPUT K @ IF K > 0 THEN 30

27 2 = -LOG il - CONF ) @ GOTO 75

30 2= K+SQR ( K ) @ IF K > 9 THEN 54

33 FAC= 1 @ FOR I = 2 TO K @ FAC= FAC* I @ NEXT I

26 F2= Z ^ K/ ( FAC * EXP ( Z ) . ) @ T2= R* FZ/Z

39 SZ=FZ +TZ @ IF K= 1 THEN 48

42 FOR J = ] TO K @ T2=TZ* ( K -J ) / 2

45 S2=S2 +TZ @ NEXT J

48 DL2 = 2 * ( 1 -SOR ( 1-2 * ( 2- K ) * ( CONF - 1 + S2 ) / ( 2 * F2).) .) 7 ( 2 - K )

51 2 =2 +DLZ @ IF ABS ( DLZ ) «K ^ 2 * .0000000001 THEN 75 ELSE 36

54 SERI = ( ( 1 / ( 7 * K ^ 2 ) –.5) / ( 30 * K ^ 2 ) + . 5 ) / ( 6 * K )

57 F2= EXP R * ( 1+ LOG ( 2 ). ).- ( K + .5 ) * LOG ( K ) -2- ( SERI + .9189385332 ) )

60 TZ = 2 *F2/ ( K + 1 ) @ TCON=TZ @ L= 2

63 T2 = 2 * TZ / ( K +L ) @ TCON=TCON+TZ @ IF TZ < .00000000001 THEN 69

66 L=L + 1 @ GO.TO 63

69 DL2 = 2 * ( l -SOR ( 1-2 * ( 2- K ) * (CONF. - TCON )!/ ( 2 *F2 ).).) / ( 2 - K )

72 2 = 2 +DLZ @ IF ABS (DL2) «K ^ 2 * .0000000001 THEN 75 ELSE 57

75 XX = 100000 * DUR / 2 @ YY=XX + FP ( XX ) @ MLS = IP ( YY ) / 100000

78 PRINT " For a test duration of " " ; DUR ; " " ; UNITS

81 PRINT " during which exactly "" ; K ; " failures were observed , "

84 PRINT " a mean ljfe exceeding ;MLS ; '" " ; UNITS

87 PRINT " will occur with probability " ; CONF ; CHR $ ( 10 )

90 PRINT CHR $ ( 10 )

93 END
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2 PRINT Program 12. " , CHR $ ( 10 )

4 PRINT This program computes the “ ;CHRS ( 34 ) ;

6 PFINT " Best Estimate " ; CHR $ ( 34 ) ; " cf "

8 PFINT " the Mean Life consistent with a specified Level"

10 PRINT " of confiderce . " , CHR $ ( 10 )

12 DISP " ENTER Duration cf Test , UNITS employed . ( Use .comma between .. ) "

14 INPUT DUR , UNITS

16 DISP " ENTER desired Level of confidence . ( Use decimal fraction .:) "

18 INPUT CONF @ DISP " ENTER number of failures .cbserved . "

20 INPUT K @ IF KO THEN 28

22 PRINT CHR $ ( 24 ) ; " Best Estimate " ; CHR $ ( 34 ) ;

24 PRINT " is not defined for zero failures . "

26 PRINT " Use Program ll to compute probability . " @ GOTC 110

28 2 = 2 @ IF K > 1 THEN 44

30 F2= 2/EXP ( 2 ) @ A= F2

32 FA =A/EXP ( A ) @ DLA = (F2 - FA ) * A / (FA * ( 1 - A ) )

34 A=A+DLA @ ALB=A @ IF ABS ( DLA ) > K * .0000000005 THEN 32

36 TCON = FZ/A - F2/ 2

38 DLZ = 12- ( 2-1 ) . ) * ( 1 -SOR ( 1-2 * ( 2-1 ) * 1l-A ) * ( CONF-ICON ) / ( ( 2-A ) * F2 ) . ) . )

40 2 = Z +DLZ @ F2 = Z/ EXP ( 2 )

42 IF ABS ( DLZ ) > K ^ 2 * .0000000001 THEN 30 ELSE 88

44 Z = K +SOR ( K ) @ IF K > 9 THEN 66

46 A= K-SOROK ) @ FAC = 1 @ FOR I = 2 TOK @ FAC=FAC * I @ NEXT I

48 F2 = 2 ^ K / (FAC * EXP ( 2 ) ) @ 12 = R * FZ / Z @ S2 =F2+TZ

50 FOF J= ] TO K @ T2=T2 * ( K -J ) / 2 @ Sz =S2 +TZ @ NEXT J

52 FANA ^ K/ ( FAC * EXP ( A ) ) @ DLA=A * ( FZ /FA - ] ) / ( K-A )

54 A=A +DLA @ ALB-A @ IF ABS ( DLA ) > K * .0000000005 THEN 52

56 TA= R *FZ/A @ SA = F2+TA

58 FOP H = 1 TO K @ TA =TA* ( K -H ) /A @ SA = SA + TA @ NEXT H

60 TCON =SA-SZ

62 DL2 = 2 * ( l -SOR ( 1-2 * ( 2- R ) * ( K - A ) * ICONF - TCON ) / ( R * ( 2 - A ) * FZ ) . ) ) / ( 2- K )

64 Z = 2 +DLZ 2 IF ABS ( DL2 ) > K ^ 2 * .0000000001 THEN 48 ELSE 88

66 SERI= ( ( 1 / 17 * K ^ 2 ) - , 5 ) / ( 30 * K ^ 2 ) + . 5 ) 7 ( 6 * K ) @ A= R -SOR ( K )

68 LNFC= ( K+ .5 ) * LOG ( K ) -R + ( SERI + .918938533205 )

70 F2= EXP ( K * LOG ( 2 ) -Z - LNFC ) @ T2 = R*FZ/ 2 @ S2=F2+ TZ @ Q= K- 1

72 T2 =T2 * 9/ 2 @ S2 =S2 + 12 @ 9= 9-1 @ IF TZ > .00000000004 THEN 72

74 FA = EXPOK * LOG ( A ) -A - LNFC ) @ DLA = A * IFZ /FA - 1) / ( K - A ) @ A=A+ DLA

76 IF ABS ( DLA ) >K * .0000000005 THEN 74

78 SA = 0 @ IA = FA @ Q= K + 1

80 TA = A * TA / Q @ SA=SA +TA @ Q= 2+ 1 @ IF IA > .0000000OCO4 THEN 80

82 TCON = 1 - S2 - SA

84 DL2 = 2 * il-SQR ( 1-2 * 12 - K ) * ( K - A ) * ICONF - ICON ) 7 ( K * 12 -A ) * 2 ) ) ) / ( 2 - K )

86 2= 2 +DLZ @ IF ABS ( DL2 ) > K ^ 2 * .0000000001 THEN 70

88 90 = 100000 * DUR @ XX = 09/ 2 @ YY = XX +FP XX ) @ 22= IP ( YY ) 7100000

90 CC = 0Q / A @ BB=CC+FP ( CC ) @ AA= IF BB ) / 100000 @ HH=QQ/K

92 JJ= hH + FP ( HH ) @ KR = IPJJ ) / 100000

94 PRINT
For a test duration of " ; CUF ; UNITS

96 PRINT " exactly " ; K ; " failures were observed . "

98 PRINT CHR $ ( 10 ) ; " At the " ; CONF ; " Level of confidence , the "

100 PRINT CHR $ ( 34 ) ; " Best Estimate " ;

102 PRINT CHR $ ( 34 ) ; " cf the Mean Life falls"

104 PRINT " between " ; 22 ; " and"

106 PRINT AN ;UNITS ; " . The maximum like- "

108 PRINT " lihccc estimate is '" ; KK ; UNIT $ ; " . "

110 PRINT @ END
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APPENDIX B

The Programs Exercised

Program 1 .

This program tests for compliance with

a minimum reliability standard .

For a sample size of 7 items , among

which exactly 2 defectives were observed ,

a reliability exceeding .7 will occur with

probability .44822619

Program l .

This program tests for compliance with

a minimum reliability standard .

For a sample size of 21 items , among

which exactly 6 defectives were observed ,

a reliability exceeding .7 will occur with

probability . 505 82 374

Program l .

This program tests for compliance with

a minimum reliability standard .

For a sample size of 70 items , among

which exactly 20 defectives were observed ,

a reliability exceeding .7 will occur
occur with

probability .5754 343

Program 1 .

This program tests for compliance with

a minimum reliability standard .

For a sample size of 700 items , among

which exactly 200 defectives were observed ,

a reliability exceeding .7 will occur with

probability .78 981 566
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Program 2 .

This program computes a minimum reliability

consistent with a specified level of confidence .

For a sample size of 7 items , among

which exactly 2 defectives were observed ,

a reliability exceeding .53790159 will

occur with probability

Program 2 .

This program computes a minimum reliability

consistent with a specified level of confidence .

For a sample size of 14 items , among

which exactly 4 de fectives were observed ,

a reliability exceeding .59237177 will

occur with probability
.8

Program 2 .

This program computes a minimum reliability

consistent with a specified level of confidence .

For a sample size of 70 items , among

which exactly 20 defectives were observed ,

a reliability exceeding .66385031 will

occur with probability .8

Program 2 .

This program computes a minimum reliability

consistent with a specified level of confidence .

For a sample size of 700 items ,of 700 items , among

which exactly 200 defectives were observed ,

a reliability exceeding .69937687 will

occur with probability .8
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Program 3 .

This program computes a " Best Estimate "

of the reliability in the sense of minimum

distance between bounds for a specified

level of confidence .

For a sample size of 7 items , among

which exactly 2 defectives were observed ,

the " Best Estimate " of the reliability

falls between .49573206 and .87983592

with probability .8

Program 3 .

This program computes a " Best Estimate "

of the reliability in the sense of minimum

distance between bounds for a specified

level of confidence .

For a sample size of 14 items , among

which exactly 4 defectives were observed ,

the " Best Estimate " of the reliability

falls between .55515217 and .84 38256

with probability .8

Program 3 .

This program computes a " Best Estimate "

of the reliability in the sense of minimum

distance between bounds for a specified

level of confidence .

For a sample size of 70 items , among

which exactly 20 defectives were observed ,

the " Best Estimate " of the reliability

falls between .6428334 and .77920 786

with probability .8
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Program 4 .

This program tests for compliance with a

specified maximum number of allowable failures

in the crigiral population .

A
The population consists of 2 similar itens ,

sample of size 7 js iravir . vbich certains exactly 2

Ĉefectives . The criginal population contaired iewer

thar: © cefectives with probability .5502503 :

Prcore 4 .

This frcyral tests for ccrrlicrcerith

specified 128 :1 lin rurker fallchablc failures

ir the crisirel Fcpulaticr..

The rorclaticr ccrsists cf 2 € sinilar items , 2

sarilc cf sizcī is irer.r. viljich certains cxcctly 2

Cefectives . The cricirii PC5uliticri certiires reuer

ther 12 cefcctives vitt rretability . { 1 : 52657

Prcerar .

This freçrar tests fcr ccrpliarce with i

specifieć Tax T UT. rurter cfallchable failurce

in the cricire ! FCFulcticr .

R
L

The [ ciulaticr. ccrcist : CE 4F sirilar
45 Eirilar itere ,

cample cf size 1 is irörn vilicr contains exactly 2

refectives . ile crigiral populaticn certained fewer

thar 16 čefectives with probability .5229367

Program 4 .

This program tests for compliance with a

specifici raxin un runker cf allowable failures

in the orig : r.a ) population .

The populaticr . consists of 4 € similar iters ,
i

sanirde of size 7 is crawn which contains
exactly

2

Ĉefectives
, The criginal

population
contained

fewer

than 22 defectives
with probability

.8001343
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Program 5 .

This program has an expanded printout which

tabulates both specific ano cumulative pr.cbabilities

for various numbers of failures . The upper bound .cf

the listing can be established either by stating the

maxim un number cf allowable failures , cr by specify

ing a cesireċ cumulative probability .

The populaticn corsists of 26 similar itens ,

sarple cf size 7 is crawn which contains exactly 2

defectives . The varicus probabilities are :

Number cf

failures

Probability

cit Cccurrence

Cumulative

probability

i
n

'N)

0.01814530

0.04547600

0.07117057

0.00165907

C.10475 322

0.01914530

0.06461538

0.13578595

0.22744502

0.3 : 21 98246

7

E

C

1C

] ]

0.10989088

0.10806121

0.1003 : 256

0.08853755

0.07439614

0.44218912

0.5 5025033

C.65059289

0.73913043

0.61352657

12

1.4

15

16

C.05951691

0.04521729

0.03246377

0.0218 5061

0.01362116

0.8720434 €

C.91826087

0.95672464

0.972575 25

0.98619641

17

18

19

2C

21

0.00771866

0.003 ? 5933

0.00161751

0.00051350

6.OCCO9452

0.99391507

0.9977744

6.90939191

0.0SS0541

1.000000
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Prcgran 5 .

This progran hos en exparcec printout which

tabulates both specific cri .cumulative probabilities

for various aurrers of failures .of failures . The upperThe leper bound ci

the listing car be established either by stating the

Maximum number of allcwable failures , crty specify

irc a desired cumulative prchability .

A
The population consists of 4 € sinilar itens ,

carrle of size 7 is crawr which certains exactly 2

Tefectives . The vêricus prcsak ilities are :

Hunter cf

failures

Frobability

c : 1 Cocurrerce

Cumulative

frokatility

2

3

4

5

6.00302951

0.00812740

0.0144470

C.C2134457

0.02029410

0.06903551

6.61116691

0.02561561

0.02E96029

0.07525439

j

8

0.03489605

0.040F5392

0.04536067

0.6500S534

0.05316076

0.11015045

0.15 ) CO439

9.19696504

0.2470503&

C.20021114

IC

11

12

13

14

15

16

0.05517224

0.05 614 751

0.05614751

0.05525830

0.05358 380

0.35538338

0.41153089

0.46767840

0.522936 70

0.57652C50

17

18

19

20

21

0.05123951

0.048 34696

0.04502903

0.04140600

0.03759229

0.62776002

0.67610698

0.72113601

0.76 25 4201

0.80013430

22

23

24

25

26

0.0336 9383

0.02980606

0.02601258

0.0223 8 402

0.01897775

0.83 382 814

0.8636 3422

0.8896 46 80

0.91203082

0.93100857
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Program 6 .

This program computes the maximum number of

defectives in the original population consistent

with a specified confidence level and with the

observed number of sample failures .

A
The population consists of 26 similar items .

sample of size 7 is drawn which contains exactly 2

defectives . The original population contained fewer

than 12 de fectives with probability .81352657

Or fewer than ll with probability .73913043

Program 6 .

This program computes the maximum number of

defectives in the original population consistent

with a specified confidence level and with the

observed number of sample failures .

The population consists of 48 similar items . A

sample of size 7 is drawn which contains exactly 2

defectives . The original population contained fewer

than 22 defectives with probability .8001343

Or fewer than 21 with probability.76254201

Program 6 .

This program computes the maximum number of

defectives in the original population consistent

with a specified confidence level and with the

observed number of sample failures .

A
The population consists of 125 similar items .

sample of size 14 is drawn which contains exactly 4

defectives . The original population contained fewer

than 51 defectives with probability .8094822

Or fewer than 50 with
than 50 with probability .790
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a
n

Program 7 .

This program yields a " Best Estimate " cf

the total number of defectives in the original

population , in the sense of minimum distance

between bounds for a specified confidence level .

The population consists of 26 similar itens .

A sample of size î is drawn which contains exactly

2 defectives . At the .80842809 level of ccrfi

cence , the
the criginal population contained between

4 anċ 12 defectives , inclusive .

Frogram 7 .

This program yielās a " Best Estimate " cf

the total number of defectives in the criginal

population , ir the sense of minimum distance

between bounds for & specifieć confidence level .

The population consists of 48 similar items .

A sarrle cf size 7 is crawn which contains exactly

2 Cefectives . At the . ? 1667394 level of confi

cence , the origiral populatior . contained between

6 ano 23 defectives , inclusive .

Prograr 7 .

This frcgrar yields a " cest Estimate " cf

the total number cf defectives in the criginal

population , in the sense of mir imun distance

between bounds for a specified confidence level .

The population consists of 125 similar iters .

A sample of size 14 is drawn which contains exactly

4 defectives . At the .80976263 level of confi

cence , the original population contained between

20 arà 54 defectives , inclusive .

95



Program 8 .

This program has an expanded printout which

tabulates both specific and cumulative probabilities

for various numbers of failures . The upper and lower

bounds of the listing reflect the maximum and minimum

number of failures associated with the " Eest Estimate"

consistent with a stated level of confidence .

The population consists of 26 similar itens .

A sample of size 7.js drawn which contains exactly

2 defectives . The various probabilities are :

Number of

failures

Probability

of accurrerce

Cumulative

probability

4

5

6

0.07117057

0.09165907

0.10475322

0.10999088

0.10806121

0.13578 595

0.22744502

0.33219824

0.44218912

0.55025033

7

8

9

10

11

0.10034256

0.08653755

0.07439614

0.05951691

C.65059289

0.73913043

0.813526 57

0.8730434812

Sum 0.80842809 Conf. level )
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Program 8 .

I

This program has an expanded printout which

tabulates both specific and .cumulative probabilities

for various numbers of failures . The upper and lower

bounds of the listing reflect the maximum and minimum

number of failures associated with the " Best Estimate "

.consistent with a stated level of confidence .

The population consists of 48 similar itens .

A sample of size 7.is drawn which contains exactly

2 defectives . The various probabilities are :

Number of

failures

Probability

of Occurrerce

Cumulative

probability

6

7

8

S

10

0.02829410

0.034896 06

0.04085392

0.04596067

0.05008534

0.07525439

0.11015045

0.15100438

0.19696504

0.24705038

11

12

13

14

15

0.05316076

0.05517224

0.05614 751

0.05614751

0.05525830

0.30021114

0.355 38338

0.41153089

0.46 76 7840

0.522936 70

16

17

18

19

20

0.05358 380

0.05123951

0.04834696

0.04502903

0.04140600

0.57652050

0.62776002

0.67610698

0.72113601

0.76254201

21

22

23

0.03759229

0.03369383

0.02980608

0.80013430

0.83382814

0.86 36 34 22

Sum 0.81667394 ( Conf . level)
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Program. 9 .

This program yields a " Best Estimate " .cf

the total number of defectives in the origir.al

copulation , ir the sense of minimum distance

between bounds for a specified confidence level .

Also given is the maximum likelihood estimate .

The population consists of 26 similar items .

A sample of size 7 is crawn which contains exactly

2 defectives . At the .8084 2809 level of confi

dence , the original population contained between

4 and 12 defectives , inclusive .

The maximum likelihood estimate is 7 defectives.

Program 9 .

This program yields a " Best Estimate " cf

the total number of defectives in the criginal

population , in the sense of minimum distance

between bounds fcr a specified confidence level .

Also given is the maximum likelihood estimate .

The population consists of 46 sinilar items .

A sample .cf size 7 is grawn which contains exactly

2 defectives . At the .81667394 level of confi

dence , the original population contained between

6 and 23. defectives , inclusive .

There are two equally likely maximum likelihood

estimates . They are 13 and 14 defectives .

Program 9 .

This program yields a " Best Estimate " of

the total number of defectives in the original

population , in the sense of minimum distance

between bounds for a specified confidence level .

Also given is the maximum likelihood estimate .

The population consists of 125 similar items .

A sample of size 14 is drawn which contains exactly

4 defectives . At the .809762 63 level of confi

dence , the original population contained between

20 and 54 defectives , inclusive .

There are two equally likely maximum likelihocd

estimates . They are 35 and 36 defectives .
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Program 10 .

This program tests for compliance with a

minimum mean life standard .

For a test duration of 3200 hours

during which exactly 6 failures were observed ,

a mean life exceeding
500 hours

will accur with probability
.45767113

Program 10 .

This program tests for compliance with a

minimum mean life standard .

For a test duration of 3200 hours

during which exactly 5 failures were observed ,

a mean life exceeding 500 hours

will occur with probability .6162 563 4

Program 10 .

This program tests for compliance with a

minimum mean life standard .

For a test duration of 3200 hours

during which exactly 4 failures were observec ,

a mean life exceeding 500 hours

will occur with probability .76 492997

Program 10 .

This program tests for compliance with a

minimum mean life standard .

For a test Duration of 3200 hours

during which exactly 3 failures were observed ,

a mean life exceeding 500 hours

will occur with probability .88108124
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Program 11 .

This program computes a minimum mean life

.consistent with a specified level of confidence .

For a test duration of 3200 hcurs

during which exactly 6 failures were observed ,

a mean life exceeding 352.60211 hcurs

will occur with probability

Program ll .

This program computes a minimum rean life

.consistent with a specified level of confidence .

For a test duration of 3200 hours

during which exactly 5 failures were observed ,

a mean life exceeding 404.75623 hours

will occur with probability .8

Program 11 .

This program computes a minimum mean life

consistent with a specified level of confidence .

For a test duration of 3200 hours

during which exactly 4 failures were observed ,

a mean life exceeding 476.12113 hours

will occur with probability .8

Pr.cgram ll .

This program computes a minimum mean life

.consistent with a specified level of confidence .

For a test duration of 3200 hours

during which exactly 3 failures were observed ,

a mean life exceeding 580.23091 hours

will occur with probability .8

100



Program 12 .

This pricgram.computes the " Best Estimate of

the Mean Life consistent with a specified Level

of Confidence .

For test duration of 3200 hours

exactly 6 failures were observed .

At the .8 Level of confidence , the

" Best Estimate " of the Mean Life falls

between 327.58165 and

954.25284 hours . The maximum like

lihood estimate is 533.33333 hours .

Program 12 .

This program computes the " Best Estinate" .cf

the Mean Life consistent with a specified Level

of Confidence .

For a test curation of 3200 hours

exactly 5 failures were observed .

At the .8 Level of confidence , the

"Best Estimate " of the Mean Life falls

between 376.27302 and

1220.02901 hours . The maximum like

lihood estimate is 640 hours .

Program 12 .

This program amputes the " Best Estimate" of

the Mean Life consistent with a specified Level

of Confidence .

For a test duration of 3200 hours

exactly 4 failures were observed .

At the .8 Level of confidence , the

" Best Estimate " of the Mean Life falls

between 443.51195 and

1666.43711 hours . The maximum like

lihood estimate is 800 hours .
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APPENDIX C

some Notes on BASIC Programming

Like much that is utilitarian , the BASIC program

ming language is in a state of constant evolution .

Moreover , most vendors embellish it with additional

statements and commands , intended to solve real or

imagined difficulties . Some of these differences are

pointed out here . But the ultimate guide is a good

owner's manual .

1 . Capital Letters. 01der versions of BASIC re

quire the use of capital letters . Some later ones

recognize instructions written in lower case .

02 . Variable Assignment . 01der versions require

that the statement LET precede the variable name .

with later versions , its use is optional . Variables

should be assigned one at a time . In a statement such

as " A B = 4 " , many versions would regard the second

equals sign as a logical operatora

Variable Names . Most versions allow names of

some length so that they can act as prompts to the oper

ator . However , as few as two characters may be used by

the machine . Thus " DIVER " could not be distinguished

from " DISCO " . Certain reserved words such as FN ,

GO , IF , ON , OR , TO , and others should be avoided as

var i able names .

Subroutine Calls .uti
some versions allow calling

a subroutine by label . Others call by line number only .

4 .

5 . Multiple statements on a line , if allowed , are

separated by some symbol which varies among versions .

Perhaps @ and are the most common .

* Beginners ' All - purpose- Symbolic Instruction Code
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6 . Remarks are variously preceded by ! or

REM .

7 .

radix .

others .

There are many varietiesmany varieties of truncation at the

One will encounter INT , FIX , IP , FP ,FP , FRC and

8 . Perhaps the most confusing is the command

" PRINT " . In some versions it is used to address the

printer , in others to address the display . To address

the printer , we may find PRINT PRINT# LPRINT or

PR# 1 . To address the display , we might encounter ?

DISP PRINT or PR#0 . Additionally , PRINT# some

times is used to address a mass storage device .

For formatted print -out , some versions refer

ence a numbered IMAGE line . Others reference a string

variable . Thus Program 5 , lines 60 and 62 might read :

60 Y$ = ### 物# . ######## # . ########

62 LPRINT USING Y$ , K+A , B ( A ) , CIA )

10 . Note that punctuation is not necessarily the

same from version to version .
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THE APPLICATION OF EXPERIMENTAL DESIGN TO

EVALUATION OF MULTI -ECHELON STOCKAGE MODELS

Carl B. Bates

US Army Concepts Analysis Agency

Bethesda , Maryland

ABSTRACT . A long-range objective of the Army is to develop a

comprehensive stockage methodology which integrates the echelons and

optimizes cost , weapon system availability , and transportability . As

research into multi -echelon inventory models progresses , various stockage

policies ( models ) have been proposed as ways to best satisfy requirements

and constraints . The Concepts Analysis Agency conducted a study to

evaluate the utility and effectiveness of two proposed multi -echelon

stockage policies . A part of the study involved a sensitivity analysis on

each of the simulation models and a comparative analysis on the two models .

This paper discusses the experimental design employed and the statistical

analysis results of the sensitivity analyses and the comparative analysis .

1. BACKGROUND . Current Army supply policies do not relate operations

and maintenance, Army ( OMA ) funds to weapon system availability . The

long-range objective of the Office of the Deputy Chief of Staff for

Logistics ( ODCSLOG ) is to develop a comprehensive stockage policy which

integrates all echelons of support activities . The Retail Inventory

Management Stockage Policy (RIMSTOP ) Model is the current DOD inventory

stockage policy . Methodology development of multi -echelon inventory theory

is ongoing . The Inventory Research Office ( IRO ) recently developed the

Major Assemblies Stockage System ( MASS ) Model . MASS is a multi -échelon

inventory stockage model which uses an optimization process . It is a

derivative of the Multi -Echelon Technique for Recoverable Item Control

( METRIC ) Model developed by The Rand Corporation . Before further

development or implementation of MASS, ODCSLOG wanted an independent

assessment of MASS . Ultimately , the US Army Concepts Analysis Agency ( CAA )

was requested to evaluate MASS and compare it with RIMSTOP . The Multi

Echelon Stockage Analysis ( MESA ) is documented in a CAA Study Report*

published in 1984. A part of the study objectives was to conduct

sensitivity analyses of MASS versus RIMSTOP . This paper discusses the

sensitivity analyses performed on the two models .

*Blake , Robert T. , et al . , Multi-Echelon Stockage Analysis (MESA) ,

CAA -SR -84-18 , Bethesda , MD , May 1984 .
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2. EXPERIMENTAL DESIGN AND MODEL . Because both models were

relatively fast running, 250 to 300 runs were allowed for the sensitivity

analyses . Ultimately , eight input factors common to both models were

selected for the investigation . Three levels ( low , nominal , and high ) were

selected for each of the eight input factors shown in Table 1 .

Table 1. Input Factors

Direct Support ( DS ) Units

A Repair cycle time ( days)

B Demand ( failed major assemblies removed)

C - Percent of failed assemblies repaired

locally

D - Order ship time ( days )

General Support (GS ) Unit

Repair cycle time ( days )

F - Demand ( failed major assemblies removed)

G - Percent of failed assemblies repaired

locally

H - Order ship time ( days)

This gave 38 = 6,561 factor level combinations . A 1/27 x 38 fractional

factorial design was developed which contained 243 design points . The

design permitted testing of the 8 main effects and the 28 first order

interaction effects . The fixed effects analysis of variance (ANOVA ) model

for the fractional factorial design was :

y = u + A + B + C + + H + AB + AC + AD + GH + HOI .

The dependent variable ( y) represents the model output variable Inventory

Cost ; uis a true but unknown common effect ; the letters A , B , ... , H

represent the eight model input factors ; HOI represents the Higher Order

Interactions . The ANOVA table is illustrated in Table 2. The design may

appear somewhat wasteful because only 128 of the total 242 degrees of

freedom were fitted . The design was employed , however , because of the

desire to measure all first order interactions .
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Table 2 . ANOVA Table for 1/27 x 38 Fractional

Factorial Design

Degrees of

freedom

Sum of

squares

Mean

squares
Source F -ratio

А

B

С

2

2

2

SS ( A )

SS ( B )

SS ( C )

MS (A )

MS (B )

MS ( C )

MS (A ) /MS(HOI)

MS ( B ) /MS(HOI)

MS (C ) /MS (HOI)

:

MS (H )H

AB

AC

AD

2

4

4

4

SS ( H )

SS (AB )

SS ( AC )

SS (AD )

MS ( AB )

MS ( AC )

MS ( AD )

MS ( H ) /MS (HOI)

MS (AB ) /MS (HOI)

MS (AC )/MS (HOI)

MS (AD ) /MS(HOI)

SS ( GH ) MS ( GH ) MS(GH ) /MS(HOI)

Higher order

interactions 114
Ss ( HOI ) MS (HOI)

Total 242
SS (T )

3 . ANALYSIS . The single output variable of interest was the cost of

inventory required to achieve an anticipated level of operational

availability . Analyses were performed for two end items ( the M60A3 tank

and the . M561 truck ) . The data were obtained from 1982 maintenance records

from the Vth and the VIIth Corp in USAREUR . The ANOVA illustrated in Table

2 above was performed on the M561 and the M60A3 data from both models .

Main effects and two - factor interaction effects were tabulated , and

significant two -factor interaction effects were graphically illustrated .

The significant two-factor interactions for the M561 system and the M60A3

system are shown in Tables 3 and 4 , respectively . Table 3 shows 11

interactions significant from MASS and 9 interactions significant for

RIMSTOP . All main effects except A and F are contained in the interactions

shown . The main effect A was significant for MASS , but it was not

significant for RIMSTOP . Main effect F was not significant for either

models ; therefore , based upon the M561 data , input factor F ( GS Demand )

does not have a significant influence upon inventory cost from either

model .
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Table 3. Significant Interaction Effects for M561

Significance

Interactions

MASS RIMSTOP

0.001

0.001

BC DS assembly removals X DS percentage repaired

BD - DS assembly removals X DS order ship time

BE DS assembly removals X GS repair cycle time

BG - DS assembly removals X GS percentage repaired

BH - DS assembly removals X GS order ship time

CD - DS percentage repaired x DS order ship time

CG - DS percentage repaired x GS percentage repaired

CH - DS percentage repaired x GS order ship time

DE - DS order ship time X GS repair cycle time

EG - GS repair cycle time X GS percentage repaired

GH - GS percentage repaired x GS order ship time

0.001

0.001

0.05

0.001

0.001

0.001

0.01

0.001

0.05

0.001

0.001

0.001

0.001

0.05

0.05

0.001

0.05

0.001

Table 4. Significant Interaction Effects for M60A3

Significance

Interactions

MASS RIMSTOP

0.001

0.001

0.01

0.001

0.001

BC DS assembly removals X DS percentage repaired

BD - DS assembly removals X DS order ship time

BE - DS assembly removals X GS repair cycle time

BG - DS assembly removals x GS percentage repaired

BH - DS assembly removals X GS order ship time

CD - DS percentage repaired x DS order ship time

CE - DS percentage repaired x GS repair cycle time

CG - DS percentage repaired x GS percentage repaired

CH - DS percentage repaired x GS order ship time

DE - DS order ship time x GS repair cycle time

EG - GS repair cycle time x GS percentage repaired

GH - GS percentage repaired x GS order ship time

0.001

0.001

0.01

0.001

0.001

0.001

0.05

0.001

0.001

0.01

0.001

0.001

0.001

0.001

0.05

0.001

0.001
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Table 4 for the M60A3 data shows there were 12 significant

interactions for MASS and 10 for RIMSTOP . Most of the interactions in

Table 4 are the same as those in Table 3 ; however , the two lists are not

identical . Again , all input factors are contained in the interactions in

Table 4 except A and F. This time the F main effect is not significant for

MASS , but it is for RIMSTOP . As with the M561 data , the three largest

interactions in Table 4 are GH , BH , and BC .

Figures 1 and 2 illustrate the GH ( GS percentage repaired x GS order

ship time) interaction for the M561 data for MASS and RIMSTOP ,

respectively . The figures show the similarity of the interactions from the

two models. Figures 3 and 4 show the same interaction ( GH ) for the M60A3

and the two models . Again , similarity of the interactions is shown .

Figures 1 and 3 show the comparison of the M561 with the M60A3 data for the

MASS Model . Figures 2 andFigures 2 and 4 show the comparison of the two data sets for

the RIMSTOP Model .

4 . SUMMARY. The utilization of experimental design permitted an

efficient evaluation of the MASS Model and a comparison of MASS with the

RIMSTOP Model . Experimental design should be an integral part of the test

and evaluation of computer simulation models . Analysts involved in the

exercise of simulation models for the purpose of generating data for

analysis should be apprised of the need for experimental design and

continually reminded of its importance .
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Figure 2 . GH Interaction , RIMSTOP , M561
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LEAST - TIME ANALYSIS : A METHODOLOGY FOR

EXPERIMENTAL DESIGN IN LOGISTICS SYSTEMS TESTING

AND EVALUATION

Clarence H. Annett

TRADOC Independent Ev al uation Directorate

US Army Combined Arms Center

Fort Leavenworth , Kansas 66027-5130

Abstract : This " work in progress" paper describes the background and

development of a distinctly new methodology for the design of tests and

objective ev al uations of logistics
of logistics systems . The method is based on the

physical principle known as Fermat's Principle of Least Time , and on the

practical reality that " supplies delivered too late are worthless . " The

problem of logistical support is formulated mathematically using variational

calculus . Rather than rigorously solving an abstract , general problem , an

information theory approach is used to chart the flow of logistical materials

and requests in time and space , segment the flow into discrete serial units ,

and
each unit separately . In this way , both the specific flow unit

where a delay in delivery occurs and the reason for the delay can be

identified . The optimal solution is achieved when the materials pass through

all serial units in the least possible time . Tests can be designed , and

criteria for ev al uation of the tests can be constructed by comparing measured

results to the optimal solution . In particular , the method can be used to

produce specific " target values " which constitute an objective yard stick for

ev al uation .

analyze

I. Introduction . The design and conduct of any test of new , improved , or

modified Army materiel , concepts , force structure , or doctrine are governed by

a set of issues and criteria ( Stevens , 1979 ) . The issues are simply questions

about the performance , reliability , safety , usability , efficiency , or other

aspects of the tested item . The criteria are objective standards which the

tested item must meet if itit is to be judged acceptable for use ( and for

procurement / distribution subsequent to testing) . There is a rule of thumb

that says that the best test and the most objective eval uation will result

when the criterion is one which can be quantified and the test can produce

quantitative results for comparison to the criterion . Quantitative criteria

are orten referred to in the test / evaluation literature as measures of

effectiveness ( MOE ) or measures of performance ( MOP ) , although these terms are

often used more loosely than they should be ( 1.e. , to denote subjective or

non - quantitative criteria ) . Together the issues and criteria form the

building blocks which govern the design of the test , execution of the test

plan , and anal ysis of the test data .

Quantitative criteria usually are obvious or follow logically from an

examination of the tested item's purpose or intended use . For instance , if it

is desired to have a larger-caliber howitzer because more range is needed , one

of the test criterion should speak to the amount of improv ement in range

( either absolute ; in km , or percent ) which will be expected when the new

howitzer is compared to the one it will replace . Indeed , for most functional

areas in the Army ( infantry weapons , tube artillery , ground communications ,

etc. ) , a set of "generic" issues and criteria can be developed . When the test
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item is prepared , the specific performance numbers can be added to the generic

criteria and the testing can proceed . Adherence to the criteria will be

especially important for some issues , depending on the function of the tested

item ; these issues are designated as "critical" issues and the system will not

be judged acceptable unless it meets all the criteria for all critical issues .

Thus the importance of having numerical , objective criteria for critical

issues is clear .

In some instances , however , it is not at all easy ( even with logic and

common sense ! ) to determine objective or numerical criteria for a given test

item . This is particularly true for items , systems , or concepts in logistics

and supply . Part of the difficulty arises because logistics cuts across all

functional areas rather than having a single functional area of its own with a

well - defined , limited mission . The question of logistics supportability

arises in the consideration of all Army systems , but the truth of the matter

is that it is never really addressed properly in testing . Typically , the only

logistics issue which is usually written is :

Issue : Is the test system logistically supportable?

And its associated criterion is almost always :

Criterion : The system must be logistically supportable .

From a logical point of view, the issue and associated criterion are

unassailable ; the Army cannot tactically or economically afford a system that

the logistics supply system cannot support , no matter how well the system

works . However , it is equally obvious that this issue and criterion are badly

flawed on several counts . First , the criterion begs the issue and does not

read ily admit any other conceivable answer , which violates the principle of

objectivity in test design . Secondly , the criterion cannot be quantified , and

as the issue is written no quantifiable criterion can be readily determined .

These factors alone would preclude any reasonable , objective , believable

test of the system's logistic supportability. TRADC Independent Evaluation

Directorate ( Ft . Leavenworth ) has attempted on at least two occasions to

alleviate this problem by constructing generic issues/criteria for logistic

supportability , with appropriate measures of performance and / or effectiveness ,

but these efforts have not succeeded because of the exceptionally broad scope

of logistics problems encountered in Army test and evaluation .

Hidden within the problem of testing logistic supportability is a dilemma

which is neither widely recognized nor completely understood by test

designers . It is true that a system should not ( and in fact , often cannot ) be

issued to the Army in the field unless logisticlogistic support ability is

demonstrated . Logistic supportability cannot be demonstrated until the total

complement of systems is fielded and the total supply system is exercised .

However , for testing and evaluation only a few systems ( typically five or ten )

are proc ur ed , so the logistics support systems and procedures are never fully

exercised . This creates chicken - and - egg dilemma : the total number of

systems desired must be purchased and deployed in order to demonstrate

logistic supportability , but the decision to buy more than just a few systems

for testing cannot properly be made until logistic supportability is

a
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demonstrated by a test ! This dilemma would be solved if a method for

assessing logistic supportability using a limited number of systems could be

found .

an

The answer to both these problems -- non-quantifiable criteria and the

dilemma of logistic supportability demonstration - appears to be in finding

alternate way of looking at the logistics supply problem . " Conventional"

logistics analysis more or less relies on examining the quantity of supplies

in the supply system and their availability at various supply points .

Quantitative anal ytical tools and measures of effectiveness exist for

determining how well the system works ( Engel , 1980 ) . However , the proper use

of these quantitative measures and tools depends on the full utilization of

the logistics supply system , which again implies full fielding of the

materiel . Thus conventional anal ytical tools are not expected to be useful in

resolving problems which fall outside of the situations for which they were

designed , and the implication is that new tools will have to be developed .

.

to

II . Development of Least - Time Analysis . There is an alternate way of looking

at the logistics supply problem . Instead of a conventional or " inventory"

analysis , in which the functioning of the supply system is determined by

monitoring the supplies on hand at certain pointspoints in the system , the

alternative is examine the delivery time for supplies and analyze the

effects of the logistics supply system on the delivery time . On their face ,

these two analyses would appear to be quite different ; however , with a little

thought one can convince oneself that in fact they are really two ways of

looking at the same thing and should give the same results . The advantage to

avoiding any " inventory" analysis is that without the constraints of counting

supplies , the method should be easily extended to any quantity of supplies ,

large or small , and the supportability dilemma may be overcome .

Using an anal ysis based on delivery time has the distinct advantage that

it can embrace a " guiding principle" of logistics supply that every soldier in

the field knows : Supplies and logistical materials delivered too slowly are

worth no more than no supplies at all . To put this simply but graphically ,

the ammunition delivered to the soldier in the foxhole is of no use if the

supply system is so slow that the soldier is killed before he gets it .
This

principle
provides

provides powerful motivation for the development of the method of

Least - Time Analysis .

The first step in Least - Time Analysis is illustrated in Figure 1 . Using a

map model , the flow of supplies from manufacturer ( 1 ) to depot (2 ) to port ( 3 )

to foreign port ( 4 ) to staging area ( 5 ) to the using unit ( 6 ) is plotted and

the distances and travel times ( including loading , unloading , refueling , and

all delays ) are noted . For convenience , the map model ( upper half of Figure

1 ) is converted to a linear delivery model ( lower half of Figure 1 ) involving

only times and locations . This idea is borrowed from information theory and

is al so called a Shannon model . The Shannon model is appropriate for this

because the flow ofof supplies can be modeling as linear or serial , supplies

flow in discrete units or packages which can be traced , and the locations of

the supply terminals are fixed but the travel time between them is

unconstrained .
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Once the times T1 , T2, ... have been determined from the linear delivery

model , Space-Time diagram is plotted as in Figure 2. The location of each

node " in the linear delivery model is plotted on the horizontal ( X ) axis and

is treated as a discrete variable with only certain allowed values ( the

discrete values come from notingnoting that depots , ports , etc. are fixed in

location and do not move frequently) . Each location is represented on the

graph by a vertical line . Time is treated as a continuous , cumulative

variable and is plotted on the vertical (Y ) axis . As shown , the time it takes

for the supplies to pass between two nodes is plotted on the graph , and a

curve is obtained from which the total time ( called delivery time) for

supplies to travel from the start point to the end point can be determined .

Delays at any location are represented vertical gaps which make the

space-time diagram discontinuous .

as

III . Analysis using the Space - Time Diagram . After the space-time diagram is

constructed for the situation being considered , it is analyzed according to

three rules . These rules are based on the " guiding principle " of logistics

defined two paragraphs previously .

a ) The optimal path for moving logistical materiel is the path for which

the space-time diagram gives the shortest delivery time .

b ) Each segment of the optimal path is self - optimal ; that is , each path

segment by itself takes the minimum possible time to go from its

beginning point to its end point .

c ) Any path segment which does not take the minimum tíme is not optimal .

It follows from these rules that test , evaluation , and modification activities

need to be directed only ( and especially ) toward those activities , which make

up the path segments which are identified as not optimal . These segments can

almost always be identified as the " choke points " which hinder the proper and

timely flow of logistical materials .

IV . Mathematical Foundation for Least-Time Analysis . Least - time analysis was

inspired by a well-known principle of physics , Fermat's Principle of Least

Time ( Marion , 1970 ) . Fermat's principle was originally applied to optical ray

tracing , and later to classical kinematics and dynamics of moving bodies . It

states that if a system is initially in one state or condition , and at some

later time is in a different state or condition , the path taken to go from the

initial state to the final state will be the path which allows the transition

to occur in the shortest possible time period . A formalism called variational

calculus was later developed to describe these kinds of transitions between

states . Variational calculus is
extensive and complex ; only a few details

necessary to form the basis of least-time analysis will be presented here .

notation follows the basic text on the subject ( Gelfand and Fomin , 1963 ) ,

and the reader is referred to this book for further details .

The
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Consider the problem illustrated here :

same path between points A and B.on

À

a ball is to roll frictionlessly

The path which allows the ball to

complete the trip in the least

possible time must be

determined . This famous

problem ( known as the

brachistoch
rone problem ) is

solved in many textbooks , and

is referred to here because it

illustrates the basic

structure or all such

problems . Both coordinates

are constrained ; the locations

of points A , Bare fixed in

both х and y . In they

direction , the additional

constraint of a rixed force

( gravity) is imposed . These

type problems are solved by

defining a functional

B

X

F ( y (x ) , x ; y ' (x ) )

where y ( x ) defines the curve which provides the least travel time between A

and B ( called the optimal path ) , and y ' is defined by

y ' (x ) y (x) + an (x)
( 1 )

y ( x ) is assumed to be continuous , and y ' ( x ) represents the functions which

describe all paths between A and B which are not the optimal path y ( x ) . Thus ,

( x ) represents a "difference" function between any non- ideal path and the

ideal path , a ' is assumed to be small .

The task appears complicated because we do not know the optimal path y ( x ) ,

but rather are trying to solve for it . Recognizing that ni ( x ) can have an

infinite number of forms , the equation to solve is

J =

- "

F (y (x) , x ; y ' (x) )dx ( 2 )

So that

aJ
( 3 )

= 0 .

aaa + o

These two equations basically say the following : Ex an ine all possible

paths y ' ( x ) . For each one , look at the first derivative of J over the entire

and rind the extremal path ( first derivative equal to zero ) . If thepath
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first derivative becomes zero when the value of a becomes zero , the function

y'( x ) is actually y( x ) , the optimal path we are searching for .

Gelfand and Fomin demonstrate that the problem is mathematically solvable

for virtually all y( x ) and n ( x ) , and they describe exhaustively how it is

done . For the purpose of least-time analysis , only 3 results need to be

noted :

a )
There is always an optimal path , and it can always be found .

b ) The optimal path is unique ; there cannot be more than one " optional "

path for a given set of constraints .

c ) If y ( x ) is not continuous but is piecewise continuous with n pieces ,

the optimal path is found by substituting for J :

a 2 -Вa 1

F ( )dx +

А

F ( ) dx . ( 4 )FO ) dx +

a1

a

аThis says that if path is not continuous , the optimal path can still be

found by finding the optimal path for each segment which is continuous .

This is sufficient to establish a mathematical basis for least- time

analysis . Although the methodology clearly belongs to the class of tools

known as ' critical path " methods , its development and motivation are quite

different fram methods in this class . In fact , least-time analysis

appears to be the first critical path method derived solely from a variational

calculus approach .

most

Before leaving this section , it is appropriate to compare , least-time

analysis with another and perhaps more familiar critical path method , Program

Ev al uation Review Technique ( PERT ) . As applied to logistics and simiļar

scheduling problems, PERT attempts to identify the slowest among multiple

paths so that coordination can be effected which will bring all the paths to a

common end point at the same time . Least - time analysis , in contrast , takes a

situation where single path exists and attempts to identify the slowest

segment ( or , perhaps , the slowest among possible alternate paths ) in order to

reduce the time required for ( and thus optimize) the total path . Because of

this essential difference , least-time analysis appears to have at least two

advantages over PERT : the data requirements are less , and the answer derived

from least-time anal ysis is unique ( there is only one optimal path ) .

a

Application of Least - Time Anal ysis . It is not necessary to use the

extensive mathematical formalism behind least-time analysis in order to obtain

useful results ( although the existence of a mathematical background is

tantalizing for logistics modelers ) . Application of least-time analysis

requires basically four steps .

First , the level of application must be determined . Depending on how much

detail is desired in the analysis , the method can be applied to parts ,

subassemblies , systems , supply classes , or adjuncts to systems .
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Next , a linear delivery model ( Shannon model; see figure 1 ) is constructed

for the supply path at the chosen level of application , This model is used to

identify each handling step or path segment in the supply process .

Next , the time required for each step is determined . This determination

can be made by "desk-top" analysis , literature research , or

testing / observation . When these times are known , a space- time diagram such as

figure 2 can be plotted .

Finally , from the space-time diagram and the principle of analysis given

in
section III , all path segments which are not believed to be optimal can be

identified . If the time required for each step was determined by a literature

search or by desk-top analysis , appropriate issue s/ criteria for testing can be

written . If the times required for each step were found by testing or

observation , they can be analyzed to see if new issues/criteria or further

testing will be necessary .

In addition to being potentially useful for attacking problems which are

not easily handled by other methods , least-time analysis fits nicely within

the conventional framework of logistics and thus allows quantification of some

concepts which are widely considered to be only qualitative in nature . For

instance , the logistician speaks of the three products of logistics :

readiness in time of peace , surge at the outbreak of hostilities , and

sustainability until the fighting is ended . Intuitively the meaning of these

terms is obvious , but they have not previously been quantified for use by the

test/ ev al uation community . Figure 3 illustrates how least-time analysis

combines with a little common sense to make these terms quantitative .

Readiness represents the " relaxed" or " natural" state of the supply system ,

with logistics materiel being delivered only at the rate required for normal

operation of the military unit . Hence the required times for each step ( and

the over all delivery time ) can be determined reliably and with high precision

fram simple analysis of records already existing . In the surge mode , the

curve on the space-time diagram flattens out greatly because the delivery time

for any materiel must decrease ( note how this is equivalent to the

conventional method of representing surge as a drastic increase in the

quantity of all supplies) . In the sustainability mode , the curve is not as

flat because the delivery of supplies is not so critical as in the initial

surge , but the delivery time must still be shorter than in the readiness

phase . Using figure 3 , the logistician could now quantify these - for

instance , by requiring the delivery time during surge to be one- half of the

delivery time during readiness . This gives the tester a quantitative way to

ev al uate the logistics supply system .

It is also of interest to note that some other types of information may be

extracted fram a least-time anal ysis . For example , same estimate of

vulnerability of a system can be obtained by recognizing that the steps on the

supply path which require more time are more vulnerable to enemy attack and

disruption than steps which proceed more rapidly . The caveat to this is that

vulnerability isis actually more complex and involves more factors than simply

the time spent on one path or in one place , so any vulnerability derived from
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least-time analysis is strictly an estimate and should be used only with great

care .

VI . An Example: Logistics over the shore. Logistics over the shore ( LOTS )

was a major Army-Navy joint test which presented particular problems to the

test community because it initially lacked good issues , criteria , and measures

of effectiveness or per formance. Some retrospective analysis of LOTS using

least-time anal ysis will illustrate the usefulness of the method . LOTS

represented the sustainment phase of logistics , with the beachhead secured and

the threat from enemy
fire or troops to logistics units not significant .

Using several fully - loaded ships , the exercises made use of all possible

methods to unload cargo of all types and move it to the beaches in the most

expedient way possible . The test was to answer two general questions :

a ) What is the most efficient method among all possible ways to transfer

cargo from ship to shore?

b ) Where is improvement needed in all methods to make them more

efficient?

The results of the test were assigned special significance because they

would be used to rewrite doctrine for beachhead supply and standard operating

procedures ( SOPs ) for logistics units in ship - to - shore operations, make

revisions to tables of organizational and equipment (TOEs ) , make possible

changes in force structure , and support production decisions for amphibious

lighters and other ship - to - shore watercraft . Because of space limitations ,

the example considered here is somewhat abbreviated and does not represent the

entire LOTS exercises .

The decision was made to break down the analysis to the " type of cargo"

level , and accordingly the first two classes to be considered were breakbulk

cargo and containerized ( non - liquid ) cargo . Figure 4 shows the linear

delivery model
for breakbulk cargo , constructed

to show all possible

combinations
of handling methodsmethods used transfer the cargo from ship to

shore . An al ysis then shows that containerized cargo is handled in exactly the

same ways , so the linear delivery model would be the same .

to

For breakbulk cargo , several questions can immediately be generated from

figure 4 . These include :

a ) which path represents the most efficient delivery method ?

b ) What improvements can be made to each path to decrease its delivery

time?

c )
What safety hazards are present on each path?

d ) Is sufficient equipment and rigging available to execute all paths

without delay ?
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And , when containerized cargo is considered , the above questions remain

and there are additional questions :

e ) Is it more efficient to move containerized cargo than breakbulk cargo?

f) What improvements to breakbulk cargo handling would increase its

efficiency to be competitive with containerized cargo handling?

A combination of testing and desktop analysis would be used to construct

space-time
diagrams for each path and for each cargo type , and from these

diagrams the questions listed above could be turned into testable issues with

quantitative
criteria . As either a test planning aid or a data analysis aid ,

least- time analysis is ver y useful because the problem could not easily be

attacked with any other method available . The analysis would be continued in

the same manner for all other types of cargo ( gasoline , vehicles , etc. ) .

VII . Conclusion . As stated in the abstract , lea : t- time analysis is still in

development . It has demonstrated its usefulness in generating issues and

criteria for logistics -related testing , and it shows some promise of being

useful to logistics systems designers and modelers . Much of its utility comes

fram the property of fitting into a conventional framework of logistics ( that

is , having the same point of view and not requiring new language or ways of

thinking about logistics) but taking some what different approach than

conventional methods of analysis . Part of its strength comes from its solid

mathematical foundation , and future development will involve further

exploration of the underlying mathematics to identify useful results which

increase the method's applicability .

a
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COMPARING SHOCK SENSITIVITY FOR TWO EXPLOSIVES

Gary W. Gemmill

and
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ABSTRACT

Sample

A procedure for comparing shock sensitivity of two explosives for

small sizes is described . In this context , shock sensitivity

refers to the probability of detonation when an explosive unit is

exposed to a shock stimulus . The comparison between explosive

sensitivities is made by testing the hypothesis that the 100pth

percentile of the population of critical shock values for a standard

explosive is greater than the 100pth percentile of critical shock

values for an experimental explosive . The logisticlogistic function is

assumed as the distribution function for both explosives , and equality

of variance ( paralleli sm ) between distributions need not exist . The

procedure utilizes three fixed levels of stimulus to which explosive

units are exposed and a quantal response , detonation or

non -detonation , observed for each . Monotonized and truncated

estimates of the detonation probabilities are used to compute minimum

logit chi -square estimates of the logistic function parameters for

each explosive . The test is based on the estimated difference between

the
100pth percentiles of the two explosives . Monte Carlo simulation

has been used to evaluate the discriminatory power of the procedure

over a wide range of parametric values . Examples are given for

comparisons made at the 20th and 10th percentiles .

1. INTRODUCTION

During the development of
experimental explosives for gun -fired

projectiles ,
one of the critical concerns is the sensitivity of an

explosive
to shock . Shock in this sense refers to the rapidly

developed pressure
that the explosive sees when it is loaded into a

projectile and fired from a gun . If the explosive is sensitive to

this type of
shock , a premature de tonation may occur . The explosive

will detonate while the projectile is still in or just being expelled

from the gun barrel . This , of course , is a very hazardous and
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undesirable situation .

In order to
test explosives for shock sensitivity , a premature

simulator test
facility was fabricated at NSWC , Dahlgren , Virginia .

The simulator
essentially consists of a 1000 pound drop vehicle which

can accommodate a scaled down projectile loaded with explosive . The

test is conducted by droppingby dropping the vehicle and projectile from a

predetermined height onto
a heavy steel plate . At impact a plunger

is forced into
the projectile thus simulating the rapidly increasing

pressure that occurs in conventional gun systems . The test result is

either a de tonation or non -detonation . For each test unit the

observed
outcome is associated with a given drop height . This kind of

data has been collected for standard explosives which are used in Navy

projectiles . Newly developed experimental explosives are also tested

for shock sensitivity in this manner . A requirement exists for a

procedure which can collect and analyze this data to determine if a

given experimental explosive is less sensitive than a standard

explosive ,

2. EXPERIMENTAL CONDITIONS AND ASSUMPTIONS

The experimental conditions and assumptions under which this

comparison will be made are as follows :

a . The
response

is a quantal - type response ; that is , there is

either a de tonation or no de tonation . This quantal response is

related to the drop height stimulus level by some probability

distribution . This
probability distribution governs the probability

of de tonation
for all drop heights for a particular explosive .

b . Knowledge of the standard explosive is assumed both with

respect
to the type of distribution and also the value of the

distribution parameters . This information will have been gained
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through sufficient testing of the standard explosive .

The experimental explosive is an unknown . For the purposes of

the present
discussion we shall assume that it has the same type of

probability distribution
as the standard . However , the robustness of

this assumption is а question which can be investigated under the

proposed comparison procedure .
The

values of the parameters of the

experimental distribution are unknown .

d . The number of test units of the experimental explosive is

severely restricted . The number of units available will be between 10

and 15 .. This restriction arises mainly due to a high cost per test

and the large number of test conditions that need to be evaluated .

e . The measure of sensitivity is defined as the 100pth percentile

of the probability distribution for
a particular explosive , where

O < p < .5 .
That is the

value of drop height ( stimulus level ) at which

1000 percent of the population of experimental units would detonate .

The smaller
the value of the 100pth percentile , the more sensitive is

the explosive .

The comparison

procedure should protect against selecting an

experimental explosive over the standard explosive unless the data

indicates with
high probability that the experimental is less

sensitive than the standard .

3. INITIAL EFFORTS

A computer program was written whereby sensitivity test data could

be
simulated and analyzed under certain distributional assumptions and

for particular data collection designs . A normal distribution was

assumed as the governing probabilityprobability distribution . Available data

provided no evidence to seriously question this assumption . Maximum

likelihood estimation was used to estimate the parameters of the
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distribution for the experimental explosive .

Three data
collection designs , the up -and - down , Langlie and probit

designs were evaluated for sample sizes of 10 and 20. A brief

description of each design is given below .
More detailed information

can be found in references 4 , 5 and 6 .

The
up - and - down design consists of choosing a starting height and

test increment . Then the stimulus level is raised or lowered by the

amount of
the test increment according to whether a non-detonation or

a detonation , respectively , was obtained on the previous test .

The Langlie design requires choosing two heights initially , one

at which no
test units are expected to detonate and one at which all

test units are expected to detonate . The first stimulus level is the

average
of

these two heights . Subsequent heights are chosen based on

the type and
sequence of outcomes from previous tests . Accordingly ,

the next stimulus level
is obtained by counting backwards until a

prior stimulus leve 1 is found which has inclusively encompassed an

equal number of de tonations and non -detonations . The average of this

stimulus level and the most recent stimulus level becomes the next

level . If ПО such prior level can be found then the next stimulus

level
is obtained by averaging the most recent stimulus level with the

upper bound or lower bound depending on whether the previous outcome

was a non-detonation or a detonation , respectively .

The
probit design is the simplest of the three and requires only

that a prescribed number
of stimulus levels are chosen a

designated number
of items are tested at each level . Data collection

designs of this type are usually associated with probit analysis which

is discussed in reference 5 .

The maximum
likelihood estimation procedure requires that a zone
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of mixed results < ZMR ) exists in the data before estimates of the

parameters of the distribution can be estimated . A ZMR is simply an

interval on the stimulus scale defined by the maximum non-detonation

and the minimum detonation where the former exceeds the latter . Table

1 shows
the percentage of simulated evaluations of a total of 400

which actually yieldedyielded ZMR'S or usable data under optimal design

conditions .

TABLE 1

Probability of ZMR

z
l
o
s

N

10

20

Up & Down

65 %

90%

Langlie

75 %

95 %

Probit

60%

95 %

For the
probit design the values of N were actually 9 ( 3 observations

each of 3 stimulus levels ) and 21 ( 3 observations at each of 7

stimulus levels ) . As one can see
the percentage of

time that

estimates were not obtainable ranges from 40% to 25 % for a sample size

of 10 .
A sample size of 20 performs somewhat better . However , the

figures
shown are for optimal choices of design parameters .

The

choices for these designdesign values must be made with respect to the

unknown parameters of the distribution for the experimental explosive .

This makes an optimal choice unlikely . For less than optimal choices

of
the design parameters the percentage of time a ZMR is obtained may

go as low as 40% .. This is unacceptable .

4. PROPOSED PROCEDURE

Based on
the preceding results ,

we turned to a different

distribution , the logistic function ,
and a different estimation
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technique which can be easily applied when using a probit design . The

logistic function closely approximates the normal distribution and , as

stated in
reference 5 , there is little difference between conclusions

drawn from an analysis based on either distribution . The cumulative

distribution function is

P = 1 / ( 1 + expi- a - B x ) ) ,

where a and Bare distribution parameters , x represents the value of

the stimulus level ( height ) , and p is the probability of de tonation

for a test
projectile dropped from height x . The function is easily

linearized by taking the logit p = in p / ) , where a = 1 - p to obtain

L = logit p = in < p/q ) =
a + B x .

The
parameters of this distribution can be estimated using the minimum

logit chi -square technique . The
probit design is particularly

appropriate for this estimation procedure , especially for the small

sample size
restriction . The 100pth percentile can then be estimated

by substitution in the linearized form and solving for x to get

x ( p ) = 100pth percentile = ( in ( p/q )
a ) / B .

This application was discussed by J. Berkson in references 2 and 3 .

The comparison hypothesis is stated as follows :

H : The 100pth percentile of the standard explosive is greater

than or equal to the 100pth percentile of the experimental

explosive .

Accepting H , of course , implies that one concludes the standard

explosive
is less sensitive than the experimental explosive . The

alternative hypothesis is :

H ( a ) :
The 100pth percentile of the standard explosive is less

than the 100pth percentile of the experimental explosive .

The alternative hypothesis is accepted if His rejected and this
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conclusion implies that the standard explosive is more sensitive than

the experimental
explosive .

We assume that the distribution

parameters , as and Bs 1 for

the standard explosive are known .

Therefore , the
100pth percentile for the standard distribution , S ( p )

can be calculated .

A number , n ( less than or equal to 5 ) , of experimental explosive

units are tested at
each of three equally spaced heights making the

total sample size , N , equal to 3n . An estimate of probability of

de tonation , P , is obtained at each height by dividing the number of

de tonations at that height by n . These estimates are monotonized to

be non-decreasing thus satisfying the requirement of a non -decreasing

cumulative distribution function . Monotonization , in this respect , is

discussed in reference 1 . Probability estimates of 1 and 0 may occur

because of the small sample sizes used . When this happens a

substitution must be made
so that the logit value can be computed.

The values of .95 for 1 and .05 for 0 are recommended as truncated

estimates to be substituted such instances . These values were

chosen based primarily on an empirical rulerule given in one of the

earlier Berkson
papers

and the fact that they provide a workable

result for the small sample sizes of interest .
Estimates of a, and B

E BE

for the experimental explosive can then be computed using the minimum

logit chi -square techniques given by Berkson in reference 3 .
These

estimates are designated a and b , respectively .

If b
is non -zero we can estimate the 100pth percentile , E ( p ) , of

the distribution for
the experimental explosive by substitution as

shown ,

Elp ) = ( incp/a >( in ( p/q ) - a ) /b .

The estimated difference between the 100pth percentile for the
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standard explosive and
the 100pth percentile for the experimental

explosive is given by

D = S ( p ) - EPP ).

The variance of this difference is given by

11/02 , (< 1/ E nw ) + ( G/ [ nwsx - 3 )2 ) ,

2

ss

where

w = ( 1-0 ) , x = drop height , x = { nwx/ nw
and

G = ( - ESPN

The summation is taken over the
three values of height . We shall

reject H D
is less than or equal to c *s where c is chosen by the

experimenter to give an acceptable probability of rejecting H when it

is actually true . This is a Type I error and for the stated H is

equivalent to rejecting
the

standard explosive when it is actually

less sensitive than the experimental explosive . The value of cis

chosen to be negative because we want to reject
H with 1 ow

probability if H is actually true . If Dis greater than *s , all

possible test outcomes with more detonations at the test level of

greatest stimulus must be considered before H can be accepted .
If any

lead to a rejection , H must be rejected . The rationale for this is

that it any of these more sensitive outcomes yield a rejection of H

then less sensitive outcomes should not contradict that result by

accepting H.

Figure 11 is
an illustration of the comparison procedure for the

case where b is non -zero . The stimulus levels have been scaled in

approximate units of the standard deviation of the distribution for

the standard explosive . The experimental explosive was tested at

2 and 3 . 56.2 ) and E4.2 ) represent the 20th) E2 )stimulus levels of 1 ,

percentile and the estimate of the 20th percentile for the standard

and experimental explosives , respectively .
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An alternative procedure is required when b = 0 since we then

cannot estimate a
100pth percentile for the experimental explosive .

Consequently ,
we assume all experimental tests are conducted at the

1 owest of the three test levels . The lowest test level is the level

of
least stimulus and , therefore , the level with the least probability

of detonation . This is a conservative position
terms of the

experimental explosive . If all tests had been done at the lowest test

level
(LTL ) , certainly

no greater number of detonations would have

occurred than the number actually observed . Next we compute an

estimate , Ô , for the probability of de tonation at this stimulus level .

An upper 95 % confidence bound
for the probability of de tonation at

this test level is computed and , if necessary , truncated at .95 . The

logit of this
upper confidence bound is calculated and designated as

the logit truncated bound or LTB . The LTB value is substituted into

the logit function for the
standard explosive to estimate an upper

bound
for an equivalent stimulus level , sco ) , required by the standard

explosive . If the
difference between this equivalent stimulus level

and the
lowest test level , D = s ( ô ) - LTL, is less then k , then H is

rejected . As with k is
chosen as a negative value in order to

achieve . an
acceptable probability of rejecting H when it is true . The

value of
K must be adjusted in magnitude when the value of the lowest

test level changes .

Figure 2 illustrates graphically the procedure for b = 0 .
This

example is for
design with test stimulus levels of 1 , 2 and 3 and

the stimulus levels have been scaled as before . LTL represents the

lowest test level
and sco ) represents an estimate of an equivalent

stimulus level for the standard explosive .
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5. EVALUATION OF PROPOSED PROCEDURE

Computer simulation was used to evaluate the proposed procedure .

A computer model was written to
generate sample data from an

underlying logistic distribution for the experimental explosive .
The

simulated
data are then compared to a nominal standard explosive using

the proposed procedure . The comparison procedure determines an

acceptance or rejection of the hypothesis H.
By replicating this

process many times one can obtain an estimate of the probability of

accepting H under a given set of distributional assumptions .

The main . objective of the evaluation was to demonstrate the

feasibility of the
proposed comparisoncomparison procedure and determine the

acceptance/rejection behavior over a wide range of distributional

assumptions for the experimental explosive . The distribution for the

nominal standard explosive was
chosen to be a logistic distribution

with

as 0 , Bs
= 1.668 . These parametric values were chosen because

they matched a logistic distribution to a standard normal distribution

(mean 0 , variance 1 ) at minus one -sigma and plus one - sigma

abscissa values . This , in effect , provided a standardization with

respect to the parameter
s

of the standard explosive .
In order to

pursue the evaluation systematically withwith respect to possible

experimental
distributions , two relative quantities , R and delta , were

defined .
R represents the ratio of Bs to Be and is equivalent to the

the standard deviation of the experimental explosive to theratio of

standard deviation of the standard explosive . Experimental

distributions with values of R from .54.5 ) 2 ( 1 ) 4 were chosen to cover a

wide
range of relative variation . Delta represents the median of the

experimental distribution minus the median of the standard

distribution , that is , delta E6.5 ) S4.5 ) . This provided a
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convenient means of
relating an assumed experimental distribution to

the standard distribution with respect to location . For each value of

R the evaluation was done for values of delta from -16.5 ) 2 (15 . This

generated 60 experimental distributions to be compared to the standard

distribution .

Two probit designs were selected for comparison . The first design

used stimulus levels of 1 , 2 and 3 , C = -1.5 and K = -1.5 . The second

design used stimulus levels of 3 , 4 and 5 , C = -1.5 and K = -2.5 .
in

terms of the assumed standard distribution , the stimulus levels for

the first
design correspond to approximately one- , two and

three - sigma units above the median value , whereas the stimulus levels

for the second design correspond to approximately three- , four- and

five - sigma units
above the median value .

These designs were chosen

with the idea
of " overtesting " the experimental explosive . This was

an attempt to provide additional protection against rejecting the

standard explosive unless the experimental explosive were clearly less

sensitive . The values of с and k
were determined empirically by

running the simulation with arbitrary trial values . Both designs were

evaluated with Р .2 for all 60 combinations of Rand delta .

Additionally , the
first design was also evaluated with p = .1 for all

combinations of Rand delta . The evaluations were done with n = 5 and

10 which correspond to total sample sizes of 15 and 30 , respectively .

The probability of acceptance of H was estimated for a particular

condition
by replicating that

condition 800 times . This number of

replications en sures that the estimated probability is within .03 of

the true probability with 95 % confidence .
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6. RESULTS

The results are shown in
Figures 3-11 . For both sample sizes

each
figure displays the plot of estimated probability of accepting H

ver sus delta for a
particular design , R-value and p -value . Figures

3-5 and 6-8
show the results for the first design for p -values of 2

and .1 , respectively . Figures 9-11 show the results for the second

design for р = .2 . Only the results for R-values of .5 , 1 and 4 are

shown the interest of saving space .
These

R-values , however ,

encompass
the range used in the evaluation and are sufficient to show

the effect of relative variation upon the estimated probability .

As stated above delta is the median of the
probability

distribution for the experimental explosive minus the median of the

probability distribution for the standard explosive . For an

experimental explosive with specified variability , a decrease
in

sensitivity is associated with an increase in delta . A comparison

procedure based
on sensitivity , as defined previously , should yield a

decrease in the probability of accepting the standard explosive as

delta increases . Also , a particular value of delta exists below which

H is true ( the experimental explosive is more sensitive ) and above

which His false ( the standard explosive is more sensitive ) . The

probability of accepting the standard explosive should go from one to

zero at this value of delta ,
of course , for an ideal comparison

procedure .
These critical values of delta are given in Table 2 for

the indicated values of R and p .
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TABLE 2

Critical Deltas

R. p = .1 g = .2

0.5

1.0

4.0

-.66

0.00

3.95

-.42

0.00

2.49

The closeness to which the procedure approaches the ideal varies

for the illustrated examples . The capability to discriminate between

explosives of different sensitivity is
reasonably precise for the

situations where the variation of the experimental explosive is less

than or equal to the
variation of the standard explosive , that is ,

when R .5 and 1 . This is shown in Figures 3 , 4 , 6 and 7 for the

first design and Figures 9
9 and 10 for the second design . The

probability of
accepting the standard explosive drops quickly as the

sensitivity of the experimental explosive lessens , that is , as delta

increases . When the
variation of the experimental explosive exceeds

the variation of the
standard explosive , that is , when R = 4 , the

discriminatory capability is much less
precise for both designs as

shown
in Figures 5 , 8 and ii . Here the probability of accepting the

standard explosive lessens very gradually as delta increases .

Because of the severe consequences of incorrectly rejecting the

standard explosive ( Type I error ) , specific measures were incorporated

to reduce
the probability of this happening .

However , as a result of

reducing the probability of a Type
I error , the probability of

committing a Type II error is increased . In this context a Type II

error
means accepting the standard explosive when the experimental

explosive is actually less sensitive . This effect is clearly

demonstrated
in Figure 3 . In this case the standard explosive and the
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experimental explosive are of equal sensitivity when delta is -.42 .

This is the critical value of delta from Table 2 for R = .5 and p =

.2 . For delta less than -.42 , H is true . That is , the standard

explosive is less sensitive than the experimental explosive and should

be accepted . The
probability of doing that

is near 1 for delta

smaller than -.42 . As delta increases to .5 ( the experimental

explosive becomes less sensitive than the standard ) , the probability

of accepting HH remains high . Under these conditions a Type II error

would be very likely because H is not true but
would be accepted with

high probability . In terms of explosives , this means the standard is

more sensitive than
the experimental but would be accepted with high

probability . However , this kind of error is not as serious as

incorrectly rejecting a less sensitive standard explosive in favor of

accepting a more sensitive experimental explosive ( Type I error ) .
The

price for keeping the probability of a Type I error small is accepting

an increase in
the probability of a Type 11 error .

For both designs

the
desired small probability of a Type I error is attained for R = .5

and 1 ; and , as expected , this is accompanied by a relatively large

probability of a Type 11 error , Additionally , the large probability

of
a Type

11 error extends over a greater range of delta for the

second design . This is an effect of the increased stimulus values

used in the second design . When the variation of the experimental

explosive becomes relatively large , that is , when R = 4 , neither

design produces small probabilities of a Type
I error . This is

particularly true as delta approaches the critical value . This was

noted earlier the Comments concerning precise discrimination

between explosives with
different sensitivities .sensitivities . This is caused by

the relatively large variability of the experimental explosive .
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Smaller values of cand k would decrease this probability of a Type I

error but
the precision of the discriminatory capability would remain

low . Decreases in с and K may cause an intolerable increase in the

probability
of incorrectly accepting the standard explosive

for

R-values of .5 and 1 .

The two values of P
used with the

first design provide an

opportunity to observe the effect of the value of P upon
the

compariso
n

procedure . The probability of accepting H for p = .2 is

equal to or slightly lower than the probability of accepting H for p =

.
.1 across all values of delta . This means that for delta less than

the critical value , the probability of wrongly rejecting the standard

explosive is greater for р .2 .
When delta is greater than the

critical value , the probability of wrongly accepting the standard

explosive is greater for p = .1 . A comparison using the smaller value

of р would be of more interest and consistent with making the Type 1

error probability small . However , choosing too small a value of p may

result in a less precise comparison . Additional simulations would be

needed to offer more understanding of this situation .

Comparing the simulation results for the two sample sizes shows

that for most values of delta the Type I and Type 11 error

probabilities are less for 10 than for n = 5 . This would be

expected since the rejection values of cand K were held constant for

both sample sizes . However , some exceptions do exist for certain

regions of
delta . These exceptions are also dependent upon the value

of R. Ideally , the
probability of accepting the standard explosive

would be
greater for n = 10 than for n = 5 when delta is less than or

equal to the critical delta . For delta
values greater than the

critical value the reverse would be true .
The probability of Type I
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and Type 11 errors would then be less for the larger sample size in

all cases . One can note that for R = .5 and 1 the curves for n = 10

cross below the curves for n = 5 after the critical value of delta has

been reached . This means that for delta between the critical value

and
the cross-over point the probability of a Type Il error is greater

for 10 than for 5 . When R = 4 and the variation of the

experimental explosive is larger than the variation of the standard ,

the two curves cross before the critical value of delta . Here the

probability of wrongly rejecting the standard explosive ( Type I error )

is greater for 10 than for n = 5 when delta lies between the

cross-over point and the critical value . Adjustment could be made on

the values of с and K
to reconcile some of the apparent anomalies

between the sample sizes . However , the effect of any adjustment is

dependent upon
the valve of R. If adjustments are made to force a

more consistent
response for R = .5 and 1 , the anomalies are spread

over a
greater range of delta for R = 4 , and vice versa . This is one

of the difficulties imposed by the initial ground rules which allow

for differences in the variation
for the standard and experimental

explosives .

7. SUMMARY

The proposed procedure offers a
methodology for comparing an

experimental explosive to a standard explosive with respect to

sensitivity under the stated ground rules . The procedure
is

particularly applicable
to a situation where a limited number of

experimental test units are available . The results of the simulated

examples demonstrate the discriminatory capability of the comparison

procedure . The computer model written to simulate the procedure can
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be used to de termine optimal design parameters with regard to

probabilities of Type I and II errors . Also , the simulation model can

be used to evaluate robustness of the procedure with regard to the

assumed probability distribution of the experimental explosive .

In conclusion , the proposed procedure appears to provide a

reasonable answer for every set of test outcomes . Additionally , by

properly choosing values for the design and test parameters , the

required protection against Type
I and Il errors can be obtained ,

This is a decided improvement over current comparison procedures being

used in sensitivity testing of new explosives .
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ABSTRACT :

The first author conducted a study to investigate racial differences in skinfold

thickness measurements and the calculated percent body fat for normal weight and

overweight soldiers . It was hypothesized that there was no significant

differences between skinfold measurements and percent of body fat between black

and white soldiers . Multivariate analysis of variance and discriminant analysis

was used to analyze the data and test the experimental hypotheses . Different

combinations of dependent variables were considered in the analysis to

investigate the consistency of the statistical decisions between and within

racial and weight groups . This study shows that the multivariate procedures

used yielded consistent decisions for various combinations of the dependent

variables .

INTRODUCTION :

Nutritional assessment using skinfold calipers to evaluate leanness/fatness

has been used extensively since the development of calipers . For several years

the United States Army has used skinfold measurements to screen its members for

leanness/fatness and physical fitness . When an individual exceeds the weight

for height required maximum , that person isthat person is evaluated on the basis of a

percentage body - fat standard .

This research was designed to compare and evaluate the skinfold measurements

and body -fat percent determination of male soldiers . It was hypothesized that

( a ) there is no significant difference between skinfold measurements taken from

black soldiers and those taken from white soldiers , and (b ) there is no signifi

cant difference in percent body fat between black soldiers versus white soldiers

as determined by the established method . Skinfold measurements were made during

routine physical examinations on basic trainees , and during an overweight
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screening of career soldiers . Each group was divided by race and age .

PROCEDURE :

Subjects for the study were male soldiers at Fort Benning , Georgia , between

17 and 39 years of age . The purpose and procedures involved in the study were

explained to each soldier before the participant signed a volunteer consent

form . Four hundred fifty-two soldiers volunteered for the study . However , only

302 soldiers were used because those over 40 years of age , or members of other

ethnic or racial groups were not included in the analysis .

Subjects were divided into two groups : Group I young trainees from

Regular Army , National Guard , and Reserve units who had just completed seven

weeks of infantry basic training and Group II - career soldiers from an infantry

brigade who had been identified as overweight by Army height-weight tables .

Subjects for Group I were selected at random during a routine physical examina

tion . The number of each race per group was keptkept equal for statistical

comparisons , Each group is subdivided by race . Race was determined visually ,

by questioning the participant , and from medical history forms . The composition

of each group is given in Table 1 .

TABLE 1 . Distribution of the Subjects by Race & Age

Number of

Subjects

( NORMAL WEIGHT )

Group I

Black White

( OVERWEIGHT )

Group II

Black
White

Age ( Yrs )

17-22 208 92 92 12 12

23-29 84 21 21 21 21

30-39 10 5 5

TOTALS 302 113 113 38 38

ANTHROPOMETRIC MEASUREMENTS :

Height was measured in stocking feet with feet together , back and heels

against the upright bars of a height scale , head in the Frankfort horizontal

plan ( "look straight ahead" ) and stand erect ( " stand up straight" ) . All weights

were recorded to the nearest quarter pound .

Four skinfold thickness measurements were taken with a Lange skinfold

caliper calibrated to exert a pressure of 10g / sqmm of jaw surface . All

skinfold measurements were taken by the first author . All measurements were

taken on the right side of the body , with the subject standing . The sites

selected were as follow :

1 .
Biceps : over the midpoint of the muscle belly with the arm hanging

vertically at rest .

156



2 . Triceps : over the midpoint of the muscle belly , midway between the

olecranon and the tip of the acromion , with the arm hanging verti

cally at rest .

3. Subscapular : Just below the tip of the inferior angle of the

scapula , at an angle of about 45 to the vertical .

4 .
Suprailiac : Just above the iliac crest in the mid-axillary line .

A reading was taken and recorded at each of the four skinfold sites and then

repeated twice more in succession . Readings were taken to the nearest 0.5mm .

The three readings at each site was averaged to the nearest tenth of a

millimeter and the average values totaled to give the sum of four skinfolds for

obtaining percent body - fat value from the Durnin and Womersley table ( Reference

2 ) .

ANALYSIS OF DATA (GENERAL ) :

The data analysis was conducted using the statistical package for the Social

Sciences ( SPSS ) Update 7-9 . The normal plots for the different variables in the

study all had linear trends indicating normal distributions . The test for

homogeneity of the variance/covariance matricies , Wilk's Lamda and Bartlett's

test of sphericity were some of the statistical tools used in the analysis .

Hypothesis testing was conducted at the 5% level of significance .

RESULTS AND DISCUSSION :

1 . Analysis of Group 1 (Normal Weight Group ) .

The results of the data analysis for the normal weight group are shown

in Table 2 ( next( next page ) . The differences are marked by an ( * ) . These

differences in skinfold measurements are examined more closely in Table 3 below .

The dependent variables are the skinfold measures and the independent variable

is race ( i.e. , black , white ) .

TABLE 3 . DIFFERENCES BETWEEN BLACK/WHITE

NORMAL WEIGHT GROUP

VARIABLE UNIVARIATE

F Р

MANOVA CORRELATION

BETWEEN DEPENDENT

AND CANONICAL VARIABLE

TRICEP 25.6 .000 .80

BICEP 16.7 .000 .64

RELATIVE

MAGNITUDE

REFLECTS

UNIVARIATE

RESULTSSUBSCAPULAR 1.2 .280 .17

SUPRAILIAC 9.5
.002 .49
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2 .
Analysis of Group 2 (Overweight Group ) .

Similar data for the overweight group are shown in Tables 4 ( next page )

and 5 below .

TABLE 5 . DIFFERENCES BETWEEN BLACK /WHITE

OVERWEIGHT GROUP

VARIABLE UNIVARIATE

F Р

MANOVA CORRELATION

BETWEEN DEPENDENT

AND CANONICAL VARIABLE

TRICEP 20.4 .000 .94

BICEP 6.2 .015 .52

RELATIVE

MAGNITUDE

REFLECTS

UNIVARIATE

RESULTSSUBSCAPULAR 3.0 .087 .36

SUPRAILIAC 6.8 .011 .54

3 .
Summary :

For both the normal and overweight groups there is a consistent

difference between the black and white soldiers with respect towith respect to skinfold

measurements of the triceps , biceps , and suprailiac . The white soldiers have

consistently larger measurements on these variables .
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4 . Excursion 1 .
Consistency of MANOVA Results for Normal Weight Group .

The consistency of the MANOVA for detecting differences between racial

groups ( black , white ) and identifying the variables which contributed to these

differences ( skinfold measurements , percent body fat ) are indicated in Table 6 .

Note that the results are consistent for the five combinations of variables

using MANOVA and univariate t-tests ( combination d ) . Combination ( e ) is the

MANOVA that considers all the variables examined in the previous combinations .

The variables which are identified as contributing to the differences between

the races for the normal weight group are completely consistent with the

findings of the other combinations ( a through d ) .

TABLE 6

EXCURSION 1 : MANOVA CONSISTENCY WITHIN NORMAL

WEIGHT GROUP BETWEEN RACES

WILK'SVARIABLES

CONSIDERED

IN MANOVA

RELATIVE MAGNITUDE OF

CORRELATION BETWEEN

DEPENDENT AND CANONI

CAL ; UNIVARIATE F

SPHERITY

I
M

X

( a ) Skinfold only 35.7

0.000

639

0.000

.848

0.000

TRI , BICEP , ILIAC

( b ) Ht , Wt only No Difference2.9

.41

79.1

0.000

.987

. 15

( c ) a and b above 39.3

.012

881.1

0.000

TRI , BICEP , ILIAC.787

0.000

( d ) % Body fat and

Age

2 Separate T-Tests % Body Fat

( e ) a , b , d above 161.5

0.000

1566

0.000

.780

0.000

TRI , BICEP , ILIAC

% Body Fat

NOTE : ( Statistic/P value )

5 . Excursion 2 :
Consistency of MANOVA Results for Overweight Group Table 7

The same findings were obtained for excursion 2 ( see excursion 1 ) . The

same variables were identified as contributing to differences between the racial

group , and the results were consistent for all combinations of factors

considered in the different analyses ( a through d ) .
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EXCURSION 2 :

TABLE 7

MANOVA CONSISTENCY WITHIN OVERWEIGHT

GROUP - BETWEEN RACES

WILK'SVARIABLES

CONSIDERED

IN MANOVA SPHERITY

I
M
O

RELATIVE MAGNITUDE OF

CORRELATION BETWEEN

DEPENDENT AND CANONI

CAL ; UNIVARIATE FX

( a ) Skinfold only 7.6

.714

121.4

0.000

.761

.001

TRI , BICEP , ILIAC

( b ) Ht , Wt only .989 No Difference3.6

.320

74.2

0.000 .674

(c)

a and b above 18.2

.737

239.8

0.000

TRI , BICEP , ILIAC.754

.003

( d ) 2 Separate T-Tests% Body fat and

Age

% Body Fat

( e ) a , b , d above 46

.273

450.1

0.000

.734

.006

TRI , BICEP , ILIAC

% Body Fat

NOTE : ( Statistic/P value )

6 . Excursion 3 : Factorial MANOVA .

A full factorial MANOVA was conducted on the independent variables of

race ( black , white ) and weight group ( normal weight , overweight ) . The dependent

measures were the four skinfold measurements , height , weight , age , and percent

body fat . The results were entirely consistent with the findings discussed so

far .

Race Effect . Wilk's Lamda was significant . The variables that contributed

to the differences between races were again identified as the tricep , bicep ,

suprailiac , and percent body fat .

Weight Group Effect . As expected , Wilk's Lamda was significant on all the

dependent variables except for height .

The interaction effect was not
Race and Weight Group Interaction .

significant .

7 . Excursion 4 : Discriminant Analysis ( All Data and a 50% Random Cut )

The results of discriminant analysis , using all data , and classifying

individuals as belonging to either the normal weight or overweight group are

shown below in Table 8 .
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TABLE 8

DISCRIMINANT ANALYSIS

GROUPS WEIGHTS (NORMAL , OVERWEIGHT )

VARIABLES TRICEP , BICEP , SUPRAILIAC , RACE

DATA ALL ( N = 302 )

ACTUAL

GROUP

PREDICTED MEMBERSHIP

NORMAL OVERWEIGHTN

226NORMAL

WEIGHT

193

85.4%

33

14.6%

OVERWEIGHT 76 5917

22.45 77.69

1 . CORRECT CLASSIFICATION = ( 193 + 59 ) /302 = 83.4% .

2 .
REFERENCE : AAKER, C max = Max { @q, Group 1 , ê, Group 2 }

= Max { .748 , .252 } -
.748

3 . SINCE .834 > .748 , CLASSIFICATION IS ACCEPTABLE .

According to a criteria by Aaker ( reference 1 ) , the classification is

acceptable . Note that the variable used were those determined to be significant

contributors as determined from other analyses . The 50% random / stratefied cut

scheme is shown in Table 9 .

TABLE 9

DISCRIMINANT ANALYSIS

50% RANDOM CUT ( STRATIFIED BY RACE , WEIGHT GROUP )

ORIG CUT

NORMAL WEIGHT 226 113 ( 56 BLACK , 57 WHITE )

OVERWEIGHT 76 38 ( 19 BLACK , 19 WHITE )

VARIABLES
TRICEP , BICEP , ILIAC , RACE
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The results of the discriminant analysis based on a single 50% random

cut and classifying the remaining data not used to construct the discriminant

functions are shown in Table 10 . Note there is only a 3% difference in the

percentage of correct classification when compared to the results using all data

presented in Table 8 .

TABLE 10

DISCRIMINANT ANALYSIS - CLASSIFICATION BASED

ON A 50% RANDOM CUT

ACTUAL

GROUP

PREDICTED MEMBERSHIP OF

REMAINING DATA

NORMAL OVERWEIGHTz
l

N

NORMAL 113 91

80.5%

22

19.5%

OVERWEIGHT 38 8

21.1 %

30

78.9%

CORRECT CLASSIFICATION 91 + 30

151

.801

2 . cmax = .748 <.748 .801

Brief Summary : This single case study indicates that multivariate procedures

( MANOVA , discriminant analysis ) yield consistent decisions for various combina

tions of data . The decisions were consistent for several excursions within and

between groups . Although these results are not theoretically conclusisve , and

represent only one set of data , they add confidence to drawing conclusions from

data analysis that are driven to answer a series of " what if" questions .
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DESERT CAMOUFLAGE PAINT EVALUATION

FOR SAUDI ARABIAN NATIONAL GUARD

GEORGE ANITOLE AND RONALD L. JOHNSON

US Army Belvoir Research and Development Center

Fort Belvoir , Virginia 22060-5606

ABSTRACT

This paper describes the procedure for selecting candidate

desert paint colors , the field test , and statistical

analysis procedures which enabled the final color selection .

Eleven tactical vehicles were painted in camouflage

colors and viewed by ten ground observers at four different

color backgrounds in Saudi Arabia . The method of testing

involved a ranking technique using a direct comparison

between two vehicles . This is more sensitive and discerning

than measurements on a scale of values and overcomes the

problem of inconsistency of judgements expressed by the

same observer . The observers were presented with every

possible combination of paired vehicles and forced to

choose between them . The data was summarized for each

observer and test location and analyzed statistically to

determine preferred colors in the order of rank , establish

confidence limits , and establish color groupings for each

site .
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1.0 INTRODUCTION

In April 1980 , the Project Manager ( PM ) , Saudi

Arabian National Guard ( SANG ) , Modernization , requested

assistance to provide camouflage for SANG . A fact finding

team visited Saudi Arabia in September 1980 to gather

specific information required to develop a camouflage

program including desert colored paints , nets , and uniforms .

This paper presents the paint development effort and

the selection of the final camouflage paint colors for

SANG .

The color used on SANG vehicles at the time of

the fact finding visit , resembled a battleship gray ,

high luster paint . This color contrasted greatly with

the Saudi Arabian desert backgrounds , and the vehicles

could be seen from great distances . It was considered

an immediate requirement by PM , SANG to develop a desert

colored paint suitable for the Saudi Arabian deserts .

The following sections describe the procedure used in

selecting candidate paint colors , the field test , and

data analysis that enabled the final selection of the

color ( s ) .

2.0 COLOR DETERMINATION

During the fact finding trip , soil samples and

35mm color slides were taken at each of 32 locales visited .

The color determination process was a subjective process

based on an evaluation of the soil samples and slides ,

tempered by notes and mental recall of the terrain and

background by the fact finding team . Spectrophotometric

analysis of the soil samples was used to determine the

proper visual and near-infrared reflectance values .

Hundreds of color chips in selected color areas were

procured from commercial and government sources 1 / .

These chips were matched against the soil samples and

the backgrounds as viewed in the slides . The evaluation

of soil sample colors took into account that soil samples

represented the color slightly below the surface . This

color is in most cases , different from the color seen

by an on-site observer , because the fine sand particles

have been blown away by the desert winds , leaving the

heavier particles behind . The surface layer , therefore ,

appears slightly different in color than a soil sample

which is drawn from below the surface . Based upon the

color determination process described , nine camouflage

colors were selected . A sample quantity of paint was

procured under paint specification TT-E- 529 with a 15-18 %

reflectance at 60 ° . This paint would provide sufficient

surface hardness , while still being acceptable ( from
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the camouflage point of view ) in terms of gloss . The

test vehicles consisted of eleven V- 150 armored vehicles .

Nine of the vehicles were painted monotone colors and

two were painted in a two-color pattern specially designed

for the V- 150 .

3.0 SITE SELECTION

At the request of SANG , all field testing was restricted

to areas around Riyadh and Hofuf . A survey of the local

terrain around Riyadh and Hofuf showed that there were

four general terrain colors : tan , gray , buff , and tan -red .

Two elevated viewing stations for the observers were

selected for each of the four sites of interest . All

target vehicles ( V - 150's ) were viewed against the background

of the terrain and not against the sky . Table 1 shows

the four sites with the viewing ranges and site color .

TABLE 1

Site Description

SITE NEAR RANGE FAR RANGE

Tan

Gray

Buff

Tan- Red

720 Meters

587 Meters

778 Meters

738 Meters

1,020 Meters

853 Meters

1,050 Meters

911 Meters

The near range was selected to allow observers close

study of the colors . The far range was selected to

represent a quasi -realistic combat distance .

4.0 TEST METHOD

The method of testing involved a ranking technique

using direct comparisons between two vehicles .
This

technique
is more sensitive

and discerning
than actual

measurement
on a scale of values and helps overcome

the problem of multidimensional
judgements

, i.e. , inconsist

ency of judgements
expressed

by the same observer
.

In this paired method of ranking , an observer
is presented

with every possible
combination

of two vehicles
from

the set to be evaluated
. The observer

is forced to

choose between the two vehicles , and must decide either

way , even if he thinks the other is just as good . The

data was recorded by each observer and was summarized

for each test location . It was analyzed
statistically

to determine
preferred

colors in the order of rank ,

established
confidence

limits , and color groupings
for

each site . All observations
were a minute in duration

,

and were performed
between the hours of 1000 and 1400

for proper sun angle and minimum shadows .
Each day
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was clear and hot with temperatures between 120 and

130 degrees Fahrenheit . Table 2 summarizes the number

of observers for each site and range . All observers

were screened for 20/20 visual acuity and normal color

vision before selection .

TABLE 2

Number of Observers for Each Site and Range

SITE RANGE

NEAR FAR

Tan

Gray

Buff

Tan -Red

10

11

10

10

11

11

10

10

15.0 RESULTS

The mean preference and 95 % confidence interval

was calculated for each V- 150 color . These results

are presented as descriptive data for each viewing range

for each test site .

TABLE 3

Descriptive Data , Tan Terrain , Range 1,020 Meters

Vehicle Mean 95 % Confidence Interval2/

Color Number Preference Lower Limit Upper Limit

1

2

3

4

5

6

7

7/6

7/10

10

SAUDI SAND

2.90

3.70

5.00

2.10

3.10

8.30

2.30

7.70

4.10

7.40

8.40

1.86

2.66

3.96

1.06

2.06

7.26

1.26

6.66

3.06

6.36

7.36

3.94

4.73

6.04

3.14

4.14

9.34

3.34

8.74

5.14

8.44

9.44

The higher the mean preference number , the greater the

number of times the color was preferred by the observers .

That is , Color Saudi Sand was selected as being the

most preferred color with a mean preference of 8.40 .

The associated confidence interval states that there

is 95 % confidence that the true mean preference rests

between 7.36 and 9.44 . The remaining Tables 4 through

10 can be interpreted in the same manner as Table 3 .
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TABLE 4

Descriptive Data , Tan Terrain , Range 720 Meters

Vehicle

Color Number

Mean

Preference

95 % Confidence Interval

Lower Limit Upper Limit

1

2

3

4

5

6

7

7/6

7/10

10

SAUDI SAND

1.45

4.55

4.64

4.00

3.64

8.91

1.91

7.36

3.75

6.55

8.27

0.47

3.56

3.65

3.01

2.65

7.92

0.92

6.37

2.74

5.56

7.28

2.44

5.53

5.63

4.99

4.63

9.90

2.90

8.35

4.72

7.53

9.26

TABLE 5

Descriptive Data , Gray Terrain , Range 853 Meters

Vehicle

Color Number

Mean

Preference

95 % Confidence Interval

Lower Limit Upper Limit

1

2

3

4

5

6

7

7/6

7/10

10

SAUDI SAND

7.91

6.64

2.36

7.27

3.55

1.36

7.82

5.36

6.91

4.91

0.91

' 7.07

5.79

1.52

6.43

2.70

0.52

6.97

4.52

6.07

4.07

0.07

8.75

7.47

3.21

8.12

4.39

2.21

8.66

6.21

7.75

5.75

1.75

169



TABLE 6

Descriptive Data , Gray Terrain , Range 587 Meters

Vehicle

Color Number

Mean

Preference

95 % Confidence Interval

Lower Limit Upper Limit

1

2

3

4

5

6

7

7/6

7/10

10

SAUDI SAND

9.18

8.00

2.45

7.45

5.18

1.91

5.91

3.73

5.91

4.55

0.73

8.34

7.16

1.61

6.61

4.33

1.07

5.07

2.88

5.07

3.70

0.00

10.03

8.84

3.29

8.29

6.03

2.75

6.75

4.57

6.75

5.39

1.57

TABLE 7

Descriptive Data , Buff Terrain , Range 1,050 Meters

Vehicle

Color Number

Mean

Preference

95 % Confidence Interval

Lower Limit Upper Limit

1

2

3

4

5

6

7

7/6

7/10

10

SAUDI SAND

2.60

1.60

4.60

3.40

1.60

7.70

4.00

8.80

6.50

7.60

6.60

1.67

0.67

3.67

2.47

0.67

6.77

3.07

7.87

5.57

6.67

5.67

3.53

2.53

5.53

4.33

2.53

8.63

4.93

9.73

4.43

8.53

7.53
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TABLE 8

Descriptive Data , Buff Terrain , Range 778 Meters

Vehicle

Color Number

Mean

Preference

95 % Confidence Interval

Lower Limit Upper Limit

1

2

3

4

5

6

7

7/6

7/10

10

SAUDI SAND

1.80 .

1.10

4.00

3.40

3.10

8.50

3.90

7.30

6.70

7.20

8.00

0.87

0.17

3.07

2.47

2.17

7.57

2.97

6.37

5.77

6.27

7.07

2.73

2.03

4.93

4.33

4.03

9.43

4.83

8.23

7.63

8.13

8.93

TABLE 9

Descriptive Data , Tan-Red Terrain , Range 911 Meters

Vehicle

Color Number

Mean

Preference

95 % Confidence Interval

Lower Limit Upper Limit

1

2

3

4

5

6

7 .

7/6

7/10

10

SAUDI SAND

0.70

2.90

5.30

4.80

2.50

8.60

1.50

8.20

4.60

7.00

8.90

0.00

2.12

4.52

4.02

1.72

7.82

0.72

7.42

3.82

6.22

8.12

1.48

3.68

6.08

5.58

3.28

9.38

2.28

8.98

5.38

7.38

9.68
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TABLE 10

Descriptive Data , Tan -Red Terrain , Range 738 Meters

Vehicle

Color Number

Mean

Preference

95 % Confidence Interval

Lower Limit Upper Limit

1

2

3

4

5

6

7

7/6

7/10

10

SAUDI SAND

1.90

1.40

5.90

4.00

4.60

8.40

1.60

7.30

3.40

7.40

9.10

1.12

0.62

5.12

3.22

3.82

7.62

0.82

6.52

2.62

6.62

8.32

2.68

2.18

6.68

4.78

5.38

9.18

2.38

8.08

4.18

8.18

9.88

An analysis of variance was performed upon the data

to determine the effect upon the two ranges as to color

preference . These results are shown in Tables? 11-14 .

TABLE 11

Analysis of Variance to Determine the Effect of Range

and vehicle Color Upon Color Preference Tan Terrain

Degrees of

Freedom

Sum of

Squares

Mean

SquaresSource F -Ratio

Range
1 0.000 ** 0.000 ** 1.00

10Vehicle Color

Number

1,240.914 124.091 44.81 *

Interaction 10 4.178 0.418 0.15

Error 209 578.800 2.769

* Significant at a = 0.01
** Less than 0.001

Conclusion : The data indicated highly significant differences

in vehicle color preferences , and that these preferences

are not affected by range distances . The significant

interaction is only the result of the variable vehicle

color .
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TABLE 12

Analysis of Variance to Determine the Effect of Range

and vehicle Color Upon Color Preference Gray Terrain

Degrees of

Freedom

Sum of

Squares

Mean

SquaresSource F-Ratio

Range
1 0.000** 0.000 ** 1.00

10 1,434.181 143.418 71.24 *Vehicle Color

Number

Interaction 10 76.909 7.691 3.82 *

Error 220 442.909 2.013

* Significant at a
= 0.01 ** Less than 0.001

Conclusion : The data indicated highly significant differences

in vehicle color preferences , and that these preferences

are not affected by range distances . The significant

inte : > ction is only the result of the variable vehicle

color .

TABLE 13

Analysis of Variance to Determine the Effect of Range

and Vehicle Color Upon Color Preference Buff Terrain

Degrees of

Freedom

Sum of

Squares

Mean

Squares
Source F -Ratio

Range 1 0.000* * * 0.000** *1.00

10 12,297.200 129.720 58.64 **Vehicle Color

Number

Interaction 10 42.800 4.280 1.92 *

Error 198 438.00 2.212

* Significant at a = 0.05 *** Less than 0.001

** Significant at a = 0.01

Conclusion : The data indicates highly significant differences

in vehicle color preferences , and that these preferences

are not affected by range distances . The significant

interaction is only the result of the variable vehicle

color .
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TABLE 14

Analysis of Variance to Determine the Effect of Range

and Vehicle Color Upon Color Preference Tan-Red Terrain

Degrees of

Freedom

Sum of

Squares
Source

Mean

Squares
F-Ratio

Range
1 0.000** 0.000+ 1.00

10 1,563.800 156.380 99.82 *Vehicle Color

Number

Interaction 10 58.000 5.800 3.70 *

Error 198 310.200 1.567

* Significant at a = 0.01
** Less than 0.001

Conclusion : The data indicates highly significant differences

in vehicle color preferences , and that these preferences

are not affected by range distances . The significant

interaction is only the result of the variable vehicle

color .

The above Tables 11-14 have indicated that the

significant differences found in this study are due

solely to the variable color . For this reason , the

data was collapsed for the range variable . This new

data will then have the effect of doubling the sample

size within each cell to enable more positive conclusions .

Tables 15-18 present this data for each of the four

test sites .

TABLE 15

Descriptive Data , Collapsed Across Ranges , Tan Terrain

Vehicle

Color Number

Mean

Preference

95 % Confidence Interval

Lower Limit Upper Limit

1

2

3

4

5

6

7

7/6

7/10

10

SAUDI SAND

2.14

4.14

4.81

3.10

3.38

8.62

2.10

7.52

3.90

6.95

8.33

1.42

3.43

4.09

2.38

2.66

7.90

1.38

6.81

3.19

6.24

7.62

2.86

4.86

5.53

3.81

4.10

9.34

2.81

8.24

4.62

7.67

9.05
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The higher the mean preference number the greater the

number of times the color was preferred by the observers .

That is , vehicle 6 was selected by the observers as

being the most preferred vehicle with a mean preference

of 8.62 . The associated confidence interval states

that there is 95 % confidence that the true mean preference

rests between 7.90 and 9.34 . The remaining Tables 16-18

can be interpreted in the same manner as Table 15 .

TABLE 16

Descriptive Data , Collapsed Across Ranges , Gray Terrain

Vehicle

Color Number

Mean

Preference

95 % Confidence Interval

Lower Limit Upper Limit

1

2

3

4

5

6

7

7/6

7/10

10

SAUDI SAND

8.55

7.32

2.41

7.36

4.36

1.64

6.86

4.55

6.41

4.73

0.82

7.95

6.72

1.81

6.77

3.77

1.04

6.28

3.95

5.81

4.13

0.22

9.14

7.91

3.01

7.96

4.96

2.23

7.46

5.14

7.00

5.32

1.41

TABLE 17

Descriptive Data , Collapsed Across Ranges , Buff Terrain

Vehicle

Color Number

Mean

Preference

95 % Confidence Interval

Lower Limit Upper Limit

1

2

3

4

5

6

7

7/6

7/10

10

SAUDI SAND

2.20

1.35

4.30

3.40

2.35

8.10

3.95

8.05

6.60

7.40

7.30

1.54

0.69

3.64

2.74

1.69

7.44

3.29

7.39

5.94

6.74

6.64

2.86

2.01

4.69

4.06

3.01

8.76

4.61

8.71

7.26

8.06

7.96
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TABLE 18

Descriptive Data , Collapsed Across Ranges , Tan -Red Terrain

Vehicle

Color Number

Mean

Preference

95 % Confidence Level

Lower Limit Upper Limit

1

2

3

4

5

;

0.70

2.90

5.30

4.80

2.50

8.60

1.50

8.20

4.60

7.00

8.90

0.11

1.92

4.23

4.06

1.53

7.47

0.99

7.26

3.33

6.66

8.19

1.29

3.88

6.37

5.54

3.47

9.73

2.01

9.14

5.87

7.34

9.61

7

7/6

7/10

10

SAUDI SAND

The confidence intervals for the collapsed data are displayed

graphically in order to obtain a better idea of the

groupings of color preference for each of the four terrains .

These graphs are shown in Figures 1-4 .
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A view of the graphs indicated the following vehicle

colors were preferred for the listed sites :

O

Tan Terrain
6 , 7/6 , 10 and Saudi Sand

O Gray Terrain 1 , 2 , 4 , 7 , and 7/10

O Buff Terrain 6 , 7/6 , 7/10 , 10 and Saudi Sand

Tan-Red Terrain 6 , 7/6 , 10 and Saudi Sand

Paired comparisons were performed for the most preferred

vehicle colors for each of the sites to determine signifi

cant differences . The results are shown in Tables 19-22 .
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TABLE 19

Paired Comparisons of the Most Preferred Vehicle

Colors on the collapsed Data - Tan Terrain

Vehicle

Color Numbers F -Ratio Significance Levels

6 and 7/6 4.548 a = 0.03412

6 and 10 10.532 a 0.00137

6 and Saudi Sand 0.310 0.57858

1.238 a = 0.267137/6 and 10

8 and Saudi Sand 2.485 a = 0.11647

10 and Saudi Sand 7.230 a = 0.00775

Conclusion : Vehicle color 6 differs significantly from

vehicle colors 7/6 and 10 , and vehicle color 10 differs

significantly from vehicle color Saudi Sand .

TABLE 20

Paired Comparisons of the Most Preferred Vehicle

Colors on the collapsed Data - Gray Terrain

Vehicle

Color Numbers F-Ratio Significance Levels

1 and 2 8.230
a = 0.00452

1 and 4 7.631 = 0.00622

1 and 7 15.455
a = 0.00011

1 and 7/10 24.937
a = 0.00000

2 and 4 0.011 a = 1.00000

2 and 7 1.129 = 0.28918

2 and 7/10 4.516
a

= 0.03470

4 and 7 1.366 = 0.24377

4 and 7/10 4.978 a
= 0.02667

7 and 7/10 1.129 a 0.28918

Conclusion : Vehicle color i differs significantly from

vehicle colors 2 , 4 , 7 , and 7/10 ; vehicle color 2 differs

significantly from vehicle color 7/10 ; and vehicle color

4 differs significantly from vehicle color 7/10 .
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TABLE 21

Paired Comparisons of the Most Preferred Vehicle

Colors on the collapsed Data Buff Terrain

Vehicle

Color Numbers F -Ratio Significance Levels

6 and 7/6 0.011 a = 1.00000

6 and 7/10 9.734 a = 0.00207

6 and 10 2.120 a = 0.14691

6 and Saudi Sand 2.769 a = 0.09763

9.096 a = 0.002887/6 and 7/10

7/6 and 10 1.828

a

= 0.17786

7/6 and Saudi Sand 2.433 a = 0.12029

7/10 and 10 2.769 a = 0.09763

2.120 a = 0.14691
7/10 and Saudi Sand

10 and Saudi Sand 0.043 a = 1.00000

Conclusion : Vehicle color 6 differs significantly from

vehicle color 7/10 , and vehicle color 7/6 differs signifi

cantly from vehicle color 7/10 .

TABLE 22

Paired Comparisons of the Most Preferred Vehicle

Colors on the collapsed Data - Tan -Red Terrain

Vehicle

Color Numbers F-Ratio Significance Levels

6 and 7/6 3.590 a 0.05957

6 and 10 10.787 Q = 0.00121

6 and Saudi Sand 1.596 a = 0.20799

7/6 and 10 1.931 a = 0.16623

7/6 and Saudi Sand 9.973

a

0.00184

10 and Saudi Sand 20.681 a = 0.0001

Conclusion : Vehicle color 6 differs significantly from

vehicle color 10 ; vehicle color 7/6 differs significantly

from vehicle color Saudi Sand ; and vehicle color 10

differs significantly from vehicle color Saudi Sand .

The analysis of the data indicated that the color

preferences fell into two distinct groupings . The colors

6 , 7/6 , 10 , and Saudi Sand were most preferred for the
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tan , buff , and tan-red terrains ( Figures 1 , 3 , and 4 ) .

The colors 1 , 2 , 4 , 7 , and 9 were the most preferred

for the gray colored terrain ( Figure 2 ) . A review of

Tables 19 , 21 , and 22 show that a ranking of the best

colors for the tan , buff , and tan-red terrains would

be :

o Colors 6 and Saudi Sand - Best

Colors 7/6 and 10 Next Best

A review of Table 20 for the gray color terrain shows

that the ranking of the preferred colors would be as

follows :

0 . Color 1 Best

o Colors 2 and 4 Average

Colors 7 and 7/10 Worst

6.0 DISCUSSION

Observations by the test team made during this

trip and during the fact finding trip in September 1980 ,

indicated a predominance of the tan , buff , and tan-red

backgrounds around the Riyadh and Hofuf vicinities .

The gray test area was the exception . Although the

Belvoir Research and Development Center field test personnel

did not have the opportunity to determine the physical

extent of the gray colored terrain , this color was not

prevalent at Hofuf or anywhere else in the Riyadh area .

The overall color selections should be based on

what is considered to be the predominant terrain background

colors . The data analysis indicated that the best color

selection for the predominant terrain background ( i.e. ,

tan , buff , tan -red ) are the colors 6 and Saudi Sand .

The data analysis further indicated that there is no

significant statistical difference between these colors .

Color 6 tends to blend in slightly better with the tan

and buff backgrounds , whereas color Saudi Sand is slightly

ahead in the tan-red background . A forced selection

between the two colors would probably favor color 6

based upon the test results in the tan and buff sites ,

and the overall preponderance of tan and buff backgrounds

in the Riyadh and Hofuf areas .

.
If for some reason the gray colored background

cannot be discounted , then a color should be selected

which is a compromise for all sites . Table 19 indicates

that colors 5 , 7/6 , and 10 are in the second grouping

of best colors . Colors 7/6 and 10 are also in the next
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best grouping of colors for the tan , buff , and tan-red

sites as indicated in the previous section . Data analysis

also indicates that color 7/6 does not differ significantly

from color 10. Colors 7/6 and 10 could therefore serve

as overall compromise colors across all sites . Although

color 7/6 has a slight edge in preference across all

sites , the preferred color is color 10. This is based

upon the camouflage guideline of selecting the lighter

color when confronted with a choice for a desert background .

The lighter color tends to counteract some of the natural

on-vehicle shadows which contribute to giving the vehicle

a dark appearance .

7.0 SUMMARY

A total of eleven V- 150 vehicles painted in camouflage

colors were viewed by a minimum of ten ground observers

at tan , buff , gray , and tan -red colored backgrounds

in Saudi Arabia . Each site had a near and far range .

Every possible color pair combination was viewed at

each site and range . In each case , the observer was

forced to make a choice as to which color blended best

with the background .

Analysis of the data indicated two preferred colors

for the predominant background terrains found in the

Riyadh and Hofuf areas , namely color 6 and color Saudi

Sand . The data analysis also indicated that there is

no significant statistical difference between these

colors . A subjective forced choice between these colors

favors the selection of color 6 .
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TETRACHORIC CORRELATION FOR MESOSCALE

AREAL PERSISTENCE OF CLOUD CEILINGS

Oskar M. Essenwanger

Research Directorate

US Army Missile Laboratory

US Army Missile Command

Redstone Arsenal, Alabama 35898-5248

ABSTRACT : The correlation coefficient of attributes ( tetrachoric correlation

for 2X2 contingency table ) in a useful tool in the study of areal persistence .

This correlation permits us to evaluate persistence for subgroups ( classes of

attributes ) while the ordinary linear correlation coefficient is a summary

of the total data set . From the examination of the tetrachoric correlation

it is learned that little persistence is found for low visibility and low

cloud ceiling conditions in a selected mesoscale area . Clouds with a ceiling

over 8000 ft , however , display an apparent wider coverage of this area and

show persistence . Thus the vertical structure of persistence is confirmed

in quantitative numbers by the tetrachoric correlation coefficient .

1. INTRODUCTION : The tetrachoric correlation coefficient of a 2x2 contingency

table is not used very often in statistical analysis because many statisticians

have pointed out its limitations , especially the problem of determining

its statistical significance . In turn , the ordinary linear correlation

coefficient may be of limited value if applied to non - Gaussian distributions

such as cloud amounts ( sky cover ) and ceiling . Furthermore , areal persistence

as judged by the ordinary linear correlation coefficient is not suitable to

disclose vertical stratification of areal persistence. In this particular

case the tetrachoric correlation is not only a useful tool to measure areal

persistence in the mesoscale , but can reveal the vertical structure of areal

persistence . We learn from cloud data of a mesoscale area in Central Europe

that fog and low ceilings follow a joint probability which is virtually

equivalent to randomness . However , ceilings above 4000 feet exhibit non

random behavior , and cloud ceilings extend over a much larger area with

consistency . This interpretation is obtained in quantitative form from the

use of the tetrachoric correlation coefficient .
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2 . THEORETICAL BACKGROUND . Let the four fields of a 2x2 contingency table

be called a , b , c , d (Fig 1 ) . Then the marginal distribution can be written :

a b R1

R2
R7 = a + b ( 1a )cd

S1 S2
Tot

R2 = c + d ( 16 )

S1 = a + c ( 10 )

Fig 1 Contingency Table

S2 = b + d ( 10 )

Let us assume that the field attributes are given as fractions of the total N ,

namely :

a + b + c + d = 1.0 ( 2a )

and

R1 + R2 = S1 + S2 = 1.0 ( 2b )

The tetrachoric correlation coefficient as defined by Kendall and Stuart ( 1958 )

is :

d =
T;(h)tj

( 3a )

where Tr
Tr ( x ) is the tetrachoric function :

tr ( x ) = Hr - 7 . ( x ) + ( x ) / ( r ! ); ( 36 )

and $ ( x ) is the Gaussian integral value integrated from -oto X.

Hr ( x ) represents the Tchebycheff Hermite polynomials , and h = Szok R2 :

It is evident that p cannot readily be calculated and is usually determined by

iterations and/or the aid of tables . Approximations have been suggested such

as :

rt = [ ( 7/2) ( Vad - Vbc )/( Vad + bc )] ( 4 )

The form which is used here is based on the x2 calculation and is sometimes called

the phi -coefficient . The ( linear ) correlation coefficient of attributes in a

contingency table is :

ra = [1 x ? / N )/(m-1) ] ( 5 )

and for a 2x2 contingency table with m = 2 , we find :
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X?/ N = ( ad - bc ) 2 I ( R1 R2 51 52 )
( 6a )

although Yates has suggested a corrected form ( adjusted to eqn 2a , b ) :

X? /N = ( lad( lad - bel - 1 /2N ) 2 ( 66 )

which must be used for small N. In our case N>200 and the correction can be

neglected . Hence :

r ? = ( ad - bc ) 2 / ( R7 R2 S1 S2 ) ( 7 )

which can be transformed into :

re = rf ( a - R751 ) / ( R1 R2 S1 S2 )
( 8 )

This has also been called the tetrachoric correlation by various authors .

The reader will notice that rt = 0 for a = S1 R1 and rt = 1.0 for S1 = R1 = a .

The first case a = S1 R7 represents the joint probability of two events

occurring at random . The second case implies a perfect match of the two

events , or complete association . The size of rt for a 2x2 contingency table of

the joint probability of cloud cover expresses the degree of persistence .

Caution must be exercised , however .

Similar to e or rt the establishment of the statistical significance for rt

is not simple . This is supported by the fact that for S27 R1 the correlation

rt has a maximum value rmax <1.0 ( see Table 1 ). Thus the interpretation

of persistence from the use of rt is not trivial . In order to evaluate the

effect of the asymmetry R1 * S1 we may define a ratio :

nt rt/rmax ( 9 )

r2max

or

Assume R1251 , the field a FR7 , then amax R1 ; for R1 = Sy we have amax = 51 .

R1 S2 /R2 S1
( 96 )

inn = ( a - Rp 57 ) 2 / [ R ? ( 1 - 51 ) 2 ] ( 90 )

For an observed dobs we finalize :

nt ( aobs - R1 S7 ) / R7 S2 ; ( 90 )dobs = R1

Table 1 displays the maximum rt for R7 and 51. Since the values of rt are

symmetric around the diagonal only one part is provided . Evidently the lower

the ratio R1 /S2 the lower is rmax : However , rmax is not linearly related to

R1 /S1 ( see egn. 9b ) .

The ratio nt provides an evaluation whether rt has rendered its maximum

value , and can be considered an adjusted measure of persistence .
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The utilization of rt has some advantages compared with the application

of the ordinary linear correlation coefficient . The calculation of rt is based

on a contingency table . Thus the correlation ( and implicitly the persistence )

can be determined for specific groups of cloud conditions by establishing

the contingency tables for these groups and comparing rt for them . In our case

these groups are arranged by classes of the cumulative frequency of occurrence

of cloud ceiling by altitude , although the contingency tables needed for

comparison can be established for any grouping of attributes . The grouping

of cloud cover by ceiling height permits us to study the variation of the

persistence as a function of ceiling altitude , information which would not

readily be available from the ordinary linear correlation coefficient which

is calculated for the entire data set .

For the referenced data sample the correlation coefficient can be considered

as significantly different from zero at the 95% level of significance for r ? 0.055

( one- sided ) or r £ 0.067 ( two - sided ) . The respective significance for the three

sigma level would be r £ 0.10 and 0.11 , respectively . These values will be

referred to in the subsequent text .

3. GROUPS OF CLOUDS . As previously outlined the question is whether persistence

is the same irrespective of ceiling height and conditions designated as

"adverse weather " . Ceiling in this connection is defined as cloud cover of

0.5 of the sky . The following cases were of interest .

visibility f1 km ( fog )

ceiling < 500 ft

ceiling = 500 ft and /or visibility 2 mi

O

o

O

ceiling ? 800 ft

o

O

ceiling
3

800 ft and /or visibility { 3 mi

ceiling € 2000 ft and /or visibility S4 mi

ceiling $ 4500 ft and /or visibility S4 mi

ceiling 8000 ft and /or visibility 5 mi

V
I
I

The frequency of occurrence and the joint ( empirical ) probabilities have been

compiled in reports by Essenwanger and Levitt ( 1984 ) and Levitt and

Essenwanger ( 1984 ). Table 2 is an example of these joint probabilities . The

joint ( empirical) probability of " adverse weather " is reasonable as displayed

in Table 2 for the selected groups . The question remains whether this is the

lowest possible joint probability . It would be if random association can be

assumed but it would not be if the area persistence of adverse weather is high

between the two stations . This will be investigated now .

4. TWO STATION AREAL PERSISTENCE . As a first example the condition for fog

(visibility 1 km ) is examined . Table 3a exhibits the occurrence of fog at

four stations ( central Europe ) in fall . Table 3b lists the joint probabilities

for the six possible combinations of pairs arranged by distance . This table

exhibits a decrease of the joint occurrence with distance and a slight increase

of the probabilities in the last two columns .
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How much is this increase caused by a higher persistence ? This question

can be answered from Table 3c which discloses rt for the six station pairs .

The first apparent difference between Tables 3b and c is the fact that the

joint probability displays a different diurnal trend . While the highest joint

probability is found at 7h in the morning the highest persistence is found

between 19h to 01h except for the last two columns where highest persistence and

peak of joint probability coincide . These variations as depicted are caused

by the differences of terrain conditions within the mesoscale area . These

differences are again evident in the comparison of the station pairs as function

of the distance .

It can be noticed that the correlation ( and persistence ) shows a tendency

to decrease with distance although the last two columns disclose again a slight

increase in rt in comparison with the middle range of 70 miles . This small

increase may be a terrain effect . Apparently fog conditions in the Rhine Valley

show a small tendency to occur also in the Saar Valley while Hahn which is

located in a mountain area does not correlate as well with Frankfurt and

Heidelberg . The small value of rt indicates very little persistence .

surprise that even Heidelberg and Frankfurt , both in the Rhine Valley , display

only a moderate persistence, i.e. a maximum association of 38% (from rt = 0.62 ) ,

and this only at 22h ( local time ).

It may

Table 4 is selected to show the variation of persistence with altitude and

distance . Only two levels of ceiling are shown , under 800 and 8000 ft . A

comparison of rt for the top and the lower part of Table 4 reveals that for

all but one column the correlations are generally higher if the ceiling height

is higher . This result is not changed by the ratio nie ( egn . 9d ) .

Again , a marked decrease is evident with distance implying that persistence

decreases with distance . Although this result is expected it is a quantitative

formulation exhibited in Table 4. The high correlation for ceiling = 800 ft

for the station pair Heidelberg Frankfurt contrasting the lower value for

ceiling under 8000 ft ( column three ) may be somewhat unexpected . It has some

explanation in the terrain conditions within the mesoscale area , however .

It was pointed out in the discussion of Table 3c that Heidelberg and

Frankfurt , both in the Rhine Valley , show a high correlation ( and persistence )

for fog . This high persistence is extended to include the conditions ceiling

800 ft . However , if ceiling = 8000 ft is considered both stations show a

more independent pattern . This conclusion could not be deduced from inspection

of Table 2 where the joint probabilities are of the same magnitude and little

distance dependency is shown .

5 .
THREE STATION AREAL PERSISTENCE . Examples of three station areal correlations

are presented in Tables 5 and 6. In the case of three stations we have the

option of utilizing a 2x2 or 3x3 contingency table . For the 2x2 contingency

table we start with the joint probability for one station pair as R1 or 51

( see egn.'s 1 ) and " ' denotes the joint probability of the three stations . This

scheme is similar to the algorithm which was discussed before . An example is

given in Table 5 .
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We learn from Table 5 that the correlation increases with increasing

ceiling altitude . This implies that cloud layers in higher altitudes show

a larger areal persistence or area coverage . This fact can be confirmed

from inspection of daily weather maps and study of their frontal systems .

This persistence depends , however , on the size of the mesoscale area . In

Table 5 the diurnal variation was eliminated by averaging although from a point

of theoretical statistic Fisher's z -function should have been used . The

calculation did not alter the exhibited relative magnitude within Table 5 and

is therefore omitted .

It is noted that the condition of ceiling = 2000 ft without inclusion of

visibility displays a slightly smaller correlation than with inclusion of the

visibility except for the last column . This increase of the persistence is

reasonable because good visibility appears to prevail over a larger area than poor

visibility . The latter is a predominant effect of local terrain which is

quantitatively confirmed by the correlation .

Table 6 exhibits an additional feature . While part A of the table

provides the tetrachoric correlation part B shows the correlation based on

egn . 5 and the 3x3 contingency table . In the latter case the total area coverage

is judged . Part A permits us to study the persistence in segments of the

mesoscale area . The three station correlation in part B is only one single

measure for the total area cover . Both measures reflect the increase in areal

persistence from lower to higher ceiling threshold . Furthermore , Table 6A

also discloses some seasonal variations . For low ceiling ( under 800 ft )

little areal persistence exists in summer while the winter season shows

relatively strong persistence . Again , this is expected . During the summer

months low ceiling is limited to small areas associated with terrain conditions .

In Central Europe fog and low ceiling prevail often over even larger areas

in wintertime than the mesoscale area under study here . The tendency of lower

persistence in summer for low ceiling is also confirmed in Table 68 .

5 . FOUR STATION AREAL PERSISTENCE . Again , several choices are available how

to produce a 2x2 contingency table for four stations and examine the areal

persistence . The first example is given in Table 7. The joint probability of

adverse weather is compared with R1 and 51 being the joint probability of two

stations . This permits us a study of areal persistence in the zonal and

meridional direction . The correlation and ratio of correlation to the maximum

possible correlation is exhibited in Table 7 for four seasons .

We learn that again low visibility and ceiling show little areal persistence

in the zonal direction while in the meridional direction areal persistence is

low in spring . Areal persistence improves with higher altitude of the ceiling .

Apparently the persistence is about equal in the zonal and meridional direction

for higher ceiling. The numerical values increase for the ratio nt but the

general trend of the areal persistence remains the same . The higher areal

persistence in the meridional than the zonal direction for low visibility and

ceiling altitude may be a consequence of frontal systems predominantly moving

in the meridional direction in this particular mesoscale area .
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Table 8 provides a summary of the diurnal trend for selected groups of

adverse weather in fall . This time the correlation is calculated from R1

being the joint probability of three stations and Sy the probability of the

fourth station . Four conditions ( one for each station as S1 ) can be construed .

The correlations for these four conditions have been arranged for specified

hours . It is evident that a definite diurnal trend exists . The minimum

persistence is underlined in Table 8. The diurnal difference of the correlation

appears to be reduced with increasing ceiling altitude but the minimum persistence

does not display a uniform pattern .

7. CONCLUSION . It has been illustrated that the correlation coefficient of

attributes for a contingency table ( for a 2x2 contingency table also called

tetrachoric correlation ) can be useful in the study of areal persistence of

cloud , and visibility conditions . Since the fields of theSince the fields of the contingency table

can reflect the probability of occurrence for specified classes it is possible

to study the vertical structure of the areal persistence while the ordinary

linear correlation coefficient can only express the persistence for the total

set of data .

It has been shown that persistence for a mesoscale area depends on ceiling

altitude . It was deduced that low visibility ( 31 km ) and low ceiling ( 1000 ft )

is predominately terrain dependent with only a small areal persistence . However ,

clouds with ceiling - 8000 ft tend to cover more than the mesoscale area under

investigation . Thus they depict areal persistence . As Table 7 exhibits there is

little seasonal fluctuation for ceiling = 8000 ft .

The data on cloud cover over a mesoscale area in Central Europe produce

asymmetric 2x2 contingency tables . In this case the maximum possible correlation

is smaller than unity . A correction can be made to evaluate this bias by

calculating a ratio nt of the correlation coefficient to the maximum correlation .

As it proved the result concerning the areal persistence does not change

significantly by examination of this ratio .
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TABLE. 1 MAXIMUM TETRACHORIC CORRELATION

R1

51 10.01 b.50 " 40.600.05
0.10 10.20

0.30 0.40 6.70 10.80 10.90 0.95 0.99 0.999

0.01 1.0

0.05 0.438 1.0

0.10 0.302 0.688 1.0

0.20 10.201 0.459 0.667 1.0

0.30 10.153 0.350 0.510 10.764 1.0

0.40 0.123 0.281 0.408 0.612 0.801 1.0

0.50 0.100 0.229 0.333 10.500 0.655 0.816 1.0

0160 0.080 0.187 0.272 0.408 0.535 0.667 0.816 1.0

0.70 0.066 0.150 0.218 10.327 0.429 0.535 0.655 0.802 1.0

0.80 0.050 0.114 0.167 0.250 0.329 0.408 0.500 0.612 0.764 1.0

0.90 0.034 0.076 0.111 0.167 0.218 0.272 0.333 0.408 0.509 0.667 1.0

0.95 0.0231 0.053 0.077 10.115 0.150 0.187 0.229 0.281 0.350 0.459 0.688|1.0

0.99 0.010 0.023 0.034 0.050 0.066 0.082 0.101 0.123 0.154 0.201 0.302.438 1.0

0.999 0.003 0.007 0.011 0.0160.021 0.026 0.032 0.039 0.048 0.063 0.0950.138 |0.315 1.0
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TABLE 3A VISIBILITY < 1 KM (PROBABILITIES)

FALL

HOUR FRANK SAAR

1

HEID

5.32

6.2

9,2

4

4.42

7.9

10.0

6.9

7

8.22

12.0

16.9

12,4

4.3 :

2.2

10 5,9

HAHN

10.7%

13.8

19.3

13.7

6.6

5.6

6.5

8.1

13 2.6
3.1 .

16 2.6 2.4

2.319 2.9 3,8

22 4.2 3.2 4.1

HE I DELBERG

FRANKFURT

SAARBRUECKEN

HAHN

TABLE 3B JOINT PROBABILITIES OF VISIBILITY SIKM FOR STATIONS OF TABLE 3A

FALL

Miles

Hour

40 ( N-S )

SA -HA

50( N -S )

HEI -FR

70 ( E-W )

HEI -HA

70 ( E -N )

FR -HA

80 ( E -W )

HEI - SA

90 (SW -NE )

SA - FR

1 3.7 2.9 1.9 1.4 2.3 2.2

5.5 3.3 2.2 2.1 2.8 3.1

7 7.7 4.1 3.8 3.5 5.6 5.6

10 4.8 2 : 8 2.1 2.0 2.9 3.3

13 1.3 1.0 0.6 0.4 0.6 0.8

16 1.2 1.1 0.3 0.6 0.3 0.4

19 2.4 1.5 0.7 0.6 0.4 0.7

22 2.4 2.3 0.9 0.9 0.9 1.0

SA - Saarbruccken

HA - Hahn

HEI = Heidelberg

FR - Frankfurt
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TABLE 4 TWO-STATION CORRELATIONS ( FALL )

C & 800 FT

Tetrachoric Correlation

MILES : 40 50 70 70 80 90

HOUR SA-HA HEI - FR HEI -HA FR-HA HEI -SA SA -FR

1

7 .

13

19

.44

.37

.39

.47

.58

.46

.37

.46

.17

.09

.11

.20

.22

.21

.25

.35

.21

.15

.19

.19

.30

.19

. 28

.24

RATIO

1

7

13

.58

.53

.53

.46

.44

.56

.32

.18

.24

.39

.41

.42

.53

.70

.34

.25

.37

.32

.48

.27

.41

.33

.4
8

.55

C < 8000 FT

Tetrachoric Correlation

MILES : 40 50 70 70 80 90

HEI - FR

.23

HOUR

1

7

13

19

SA - HA

.66

.60

.66

.59

.20

.23

.22

HEI -HA

.31

.31

.09

.37

FR- HA

.34

.29

.15

.32

HEI -SA

.29

.24

.15

. 19

SA-FR

.31

.23

.19

.25

1

7

13

19

.73

.64

.72

.62

.25

.22

.24

.22

RATIO

.36

.33

. 10

.42

.42

.34

.16

.37

.30

.26

.15

.20

.31

.24

.20

.26

C CLOUD CEILING

194



T
A
B
L
E

5
T
H
R
E
E

S
T
A
T
I
O
N

M
E
A
N

C
O
R
R
E
L
A
T
I
O
N

(F
A
L
L

)

F
R
A
N
K
F
U
R
T

-H
E
I
D
E
L
B
E
R
G

(5
0
M
I
L
E
S

)
H
A
H
N

-S
A
A
R
B
R
U
E
C
K
E
N

(4
0
M
I
L
E
S

)

H
A
H
N

(6
0
M
I

)

S
A
A
R

(8
0
M
I

)

H
E
I
D

(7
0
M
I

)

F
R
A
N
K

(8
0

M
I

V§ 1 K
M

.
0
7

.
1
9

.1
5

.1
6

C5
0
0

F
T

.
0
8

.
1
7

.
1
3

.
2
5

C
S

8
0
0

F
T

.
1
1

.
1
8

.1
7

.
2
3

C2
0
0
0

F
T

.
2
0

.
2
5

.
2
6

.
3
4

C=4
5
0
0

F
T

.
3
6

.
3
9

.
4
4

.
4
4

C=8
0
0
0

F
T

.
4
4

.
4
6

.
4
6

.
4
6

CS2
0
0
0

/V
S
A

M
I

.
2
7

.
3
6

.
3
8

.
3
3

C8
0
0
0

/V
5
5

M
I

.
3
9

.
3
9

.
4
4

.
3
7

(H
O
U
R
S

O
F
D
A
Y

A
V
E
R
A
G
E
D

)

195



T
A
B
L
E

6T
H
R
E
E

-S
T
A
T
I
O
N

T
O
T
A
L

A)T
E
T
R
A
C
H
O
R
I
C

C
O
R
R
E
L
A
T
I
O
N

S
P
R
I
N
G

S
U
M
M
E
R

F
A
L
L

W
I
N
T
E
R

1
2

3
1

2
3

1
2

3
1

2
3

C
.

8
0
0

F
T

.
2
4

.
2
3

.
2
0

.
0
8

.
1
1

.
0
5

.
2
3

.
2
9
.
2
3

2
5

.
3
8

.
4
4

C<2
0
0
0

F
T

.
3
3

.
3
1

.
2
8

.
3
0

.
2
6

.
2
5

.
3
4

.
4
0
.
3
4

.
2
8

.
3
9
.
4
6

C<8
0
0
0

F
T

.
4
5

.
4
3
.
4
3

.
3
7

.
3
8

.
3
5

.
4
7

.
5
0

.
4
8

.
2
3

.
3
3

.
4
3

1=H
a
h
n

-S
a
a
r
b
r

.V
e
r
s
u
s

F
r
a
n
k
f
u
r
t

(W-E) 2=H
a
h
n

-F
r
a
n
k
f
u
r
t

V
e
r
s
u
s

S
a
a
r
b
r

.(N-S)

3
S
a
a
r
b
r

.-F
r
a
n
k
f
u
r
t

V
e
r
s
u
s

H
a
h
n

(S
E

-N
W

)

B)T
O
T
A
L

T
H
R
E
E

-S
T
A
T
I
O
N

C
O
R
R
E
L
A
T
I
O
N

S
P
R
I
N
G

S
U
M
M
E
R

F
A
L
L

W
I
N
T
E
R

C38
0
0

F
T

.
3
9

.
2
4

.
3
3

.
3
3

C<2
0
0
0

F
T

.
4
0

.
4
2

.
4
2

.
3
9

C8
0
0
0

F
T

.
4
7

.
4
0

.
4
9

.
4
7

C=C
E
I
L
I
N
G

196



TABLE 7 FOUR STATION PERSISTENCE

A ) CORRELATION

E -W N - S

SP SU FA WI SP SU FA WI

VS1 KM .06 6.05 ) .13 .12 .09 .32 .25

C4800 FT .09 .10 .14 .15 .12 .31 .34 .27

C $ 2000 FT .25 .21 .25 .31 .32 .27 .43 .43

C $4500 FT ..43 .36 .42 .42 .44 .36 .48 .45

C28000 FT .46 .40 .50 .47 .47 .41 .50 .48

CS500 FT/ V42 MI .16 .17 .24 .24 .17 .23 .41 .32

C2000 FT / VS4 MI .36 .33 .35 .34 .43 .36 .46 .43

C $ 8000 FT / V55 MI .45 .41 .43 .40 .47 .44 .45 .39

B ) RATIO

E-W N - S

SP SU FA WI · SP SU FA WI

V 1 KM .25 ( .30 ) .16
.27 .10 .39 .33

C 800 FT .40 .30 .28 .36 .16 .51 .41 .35

C 2000 FT .67 .61 .45 .56 .35 .28 .54 .49

C 4500 FT .63 .62 .56 .52 .46 .39 .52 .50

C 8000 FT .55 .47 .52 .50 .48 .44 .52 .49

CS500 FT/ VEL MI.39 .47 .33 .43 .21 .30 .45 .38

C = 2000 FT / V54 MI .64 .57 .48 .57 .50 .40 .49 .49

C 38000 FT /V65 MI .55 .49 .48 .50 .50 .49 .48 .42

E -W = Hahn/Saarbruecken Frankfurt/Heidelberg

N- S = Frankfurt /Hahn Saarbruecken/Heidelberg
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TABLE 8 FOUR STATIONS, FALL

AREA PERSISTENCE (MEAN CORRELATION )

HQUR CS 500 FTVs1 KM

26

CS 8000 FT /Y 3 5 MI

.41.28

CS 8000 FT

.50

.45

1

4 .22 .23

7 .17 .16

, 10

.46

.45

.35

32

.3410 11

, 1413 .40 .07

.17

.38

.4316 , 17 .41

.4519 20 .20 .440

22 .26 .23 .50 .42

( CORRELATIONS OF FOUR COMBINATIONS "THREE -STATION

VERSUS ONE STATION" AVERAGED )
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NONPARAMETRIC MEDIAN ESTIMATION

( With Application to Number of Simulation Replications Needed )

J. R. Knaub , Jr.

U.S. Army Logistics Center

When the variance of results from replications of a simulation is small , it

is intuitively apparent that a small sample size ( small number of replications )

will be sufficient . If four replications are made , for instance , and the

difference between the smallest and largest of the four observations is of

little or no practical importance , this sample size may be sufficient .

Often , ten observations can be thought of as a minimum sample size ,

because , using distribution- free tolerance limits , there is a 75.6% confidence

that 75.0% or more of the population lies between the extremes of the ten

values observed . With four observations , this confidence is only 26.2% .

If , as in the example above , the difference between the smallest ( , ) and

the largest ( 02 ) of four observations is of little or no practical importance ,

it is of interest to find the probability that the median of the population

lies between the extremes of the four observations . This probability is

1-2 ( 15 )4 = 0.875 . If the central limit theorem is applicable then the median

is approximately equivalent to the mean . Thus , the mean of the sample , in this

case , is very likely to be very close to the mean of the population .

Suppose that seven replications are made instead of four . There is a

probability of 0.875 that the population median ( M ) will fall between the

second smallest ( oz ) and second largest ( 061 observations , which is the same

probability that M falls between 0 , and 04 out of four observations . The

difference is that 06-02 in the case of seven observations , is probably

smaller than 04-0 , for the case of four observations . See Table I for

details . Column 1 in this table is the sample size . Column 2 is the probabil

ity that M will be located between the extremes of the sample of size n .

Columns 3 and 4 provide the probabilities that the 10% and 5% tails , respec

tively , of the population will be drawn from at least once in n attempts .

Columns 5 , 6 , and 7 provide similar information , but for the case where ºn

and

on are ignored . Columns 8 and 9 are distribution- free tolerance limit results .

They provide the probabilities that 50% or more , or 75% or more of the popula

th

tion is to be found between

° 1

the first and n ordered observations

( ordered from smallest to largest ) .

Although a fixed sample size approach could be taken using the tables

provided here , and some prior knowledge as to what variance will be experienced

in most cases , a sequential approach would appear to often be more appropriate .

Consider the following equation :

and o
On'

rne central 11 tilt theoren is applicable 11 each observation is actually

the mean of a number of observations .
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Plog

EMS

ºn+1-1

= probability that the median of the

population lies between the j
ith

smallest and jth largest of n

th

observations , where o
ºj

ordered observation .

is the ith

j

1 - ( 1/2 ) n - 1

n

n + 1

Proj

EMS On+1- ;?

then one

If one first determines the minimum acceptable value for

and the maximum acceptable value for
ºn + 1 -joj

may increase n and j until these conditions
are satisfied

.

Table II contains
values for P [ 0

MS

On+1-31
for selected

values of n and j . The rows are labelled by sample size ( n ) and the columns

by the number of ordered observations ( j - 1 ) eliminated from both the low

and high ends of the set of ordered observations . (Therefore 2j -2 observa

tions are eliminated . )

To use Table II in a sequential manner, first determine the value of

ºn + 1-3 - og

to be used , or perhaps
or perhaps Ton +1-3

Ton+1-3 - Ogl/

and the value of PCO SMS On+1-31 will be read from the table to deter

mine the minimum sample size which could possibly satisfy the former criterion .

If conditions are not satisfied , look in the table to see how many more obser

vations must be taken so that į may be incremented by one , and the criterion

for

n +1
met . After those additional observations

are taken , the other criterion (e ,g , m +1- : 03 )
can be checked for the

Plo
g
EM
S

new case .
This process is repeated until both criteria are met .

Example :

Let the criteria be that
EM &

ontlog? must be greater than

Ploj

On + 1 -j - Ojor equal to 0.90 , and that be less than or equal to

2.0 , where the observations are number of personnel required to operate a

given unit as structured by a computer model . Looking at Table Il, 1t is

seen that at least five observations ( replications ) are needed .Suppose the

following observations are obtained : 42.6, 41.8 , 41.9 , 42.1 , and 43.9 .
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Since

° 1

= 41.8 , and

°5
= 43.9 , and 43.9 - 41.8 = 2.1 > 2.0 , more observa

tions must be taken . From Table II , it is seen that at least three more

observations are needed . Suppose that the next three observations are 42.4 ,

43.0 , and 40.7 . Now , og = 41.8 , 07= 41.8 , og = 43.0 , and 43.0 - 41.8 = 1.2 < 2.0 .

Therefore , both criteria are met , and sampling ceases . A sample size of eight

observations ( replications ) has therefore been found to be adequate . Suppose

further that the central limit theorem is applicable in this simulation

analysis . The mean is 42.3 and the median is 42.4 . Therefore , 42.3 is the

mean value to be reported .

Note that in many other applications , such as values collected in surveys ,

the median is a far more appropriate measure to use . It would limit the

influence of any outliers , and since median estimation is the focus of the

theory provided here , the application is exact .
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FORMULATIONS FOR TABLE I :

COL . 2 :

COL . 5 :

COL . 1 : self - explanatory

1 - (* ) n - 1

COL . 3 : ( 0.8 ) "

COL . 4 : ( 0.9 ) "

1 - ( n + 1 ) ( * ) n- 1

* COL . 6 : ( 0.8 ) " + 0.20 ( 0.8 ) n - 1 + 0.01n ( n- 1 ) ( 0.8 ) " -2

* COL . 7 : (0.9)" + 0.1n ( 0.9 ) n- 1 + 0.0025n ( n- 1 ) ( 0.9 ) n -2

** COL . 8 : 1 - ( 0.5 ) n - 1 + ( n - 1 ) ( 0.5 ) "

** COL . 9 :

1 - 1 ( 0.75 ) "- 1 + ( n- 1 ) ( 0.75 ) "

( 1-2p ) " + 2 pn ( 1-2p) ™-1 p?n ( n - 1 ) ( 1-2p ) "-2

where p = 0.10 for column 6 and 0.05 for column 7

+ ( n - 1 ) yn

Y = 0.5 for column 8 and 0.75 for column 9

n 1

l -nyn
o

where
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Appendix A

100

10

200

DIMENSION ARRAY ( 30,11 )

OPEN ( 8 , FILE= ' FAC.DAT' STATUS= " OLD ,DISP = 'KEEP ' )

OPEN( 12 , FILE= ' FAC.OUT ' STATUS= 'NEW DISP = 'KEEP ' )

READ( 8 , 10 , END = 1000 ) N , J

FORMAT ( 1X , 12,14,12 )

SUM = 0

ANS = 0

DO 200 1= 1,3

A = N + 1-1

CALL FACT ( A )

B = 1-1

CALL FACT (B )

C= 1.0/( A*B )

SUM=SUM+C

CONTINUE

XN=N

CALL FACT ( XN )

D = ( . 5 ) ** (N - 1 )

ANS = 1 - D * XN * SUM

ARRAY ( N , J ) = ANS

GO TO 100

CONTINUE

WRITE ( 12,15 )

FORMAT( 1X,33-1', 4x, '0',6% ,' 11,6X , '2', 6X ,' 3',6X,' 4' ,6X ,' 5',

& 6X, '6 ' ,6x , ' 7 ' ,6X , ' 8 ' ,6x, ' g ' , 6 % , ' 10 ' ,/ , 4 % , ' N ' )

DO 116 N = 1,30

WRITE (12,16 ) , ( ARRAY( N , J ) , J= 1,11 )

FORMAT ( 3X , 12,11( 1X , F6.4 ) / )

CONTINUE

STOP

END

1000

15

16

116

с

SUBROUTINE FACT( D )

PROD = 1

DO 100 1= 1,0

PROD=PROD* I

CONTINUE

D=PROD

RETURN

END

100

Mrs. Ida D. Price , et . al.
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Appendix B

Finally , note the following : Suppose n , observations are taken , and then

ngon , additional observations are taken in the event that the first n , have an

unacceptable range . Let P[o,sMSOn ?x Plozs MS On-2). This is the procedure

recommended in this paper . It is of interest to note that the probability

of saying the median has been bounded is larger in this two step method than

if all

п2

observations were taken at once . This is explained in the

unlikely event that the first n , observations have an acceptable range ,

but the first na ( ngong ) are such that
ºng-1 °°2 ' s too large . However , if

the first ng are acceptable , it is more likely that these ny values are closer

to the true median than any other value . This is analogous to applying a

chi -square goodness-of- fit test and calculating a very small chi - square

statistic . There may be a very small probability of having that value under

the null hypothesis ; however , there is an even smaller probability of having

such a value under any alternative hypothesis . Thus , the null hypothesis is

the most likely candidate . Similarly , here it would have been appropriate to

quit after ny such observations as described above . The true median is

probably indicated , although it was not likely that this would happen when the

underlying population probably was more disperse than indicated by such an

early finish to this sequential procedure . Thus , one could stop after the

first step with a savings in sampling , because the median may be located more

quickly than expected .

The above considerations affect the number of observations needed ; however ,

it does not affect table II which gives the probability that the true median is

bounded by two specific values found in the sample . The considerations of this

appendix deal with the probability that the specific values will be close

enough at some step along the way .

B- 1
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FAC , FOR :

100

10

REAL 8 A , B , C , D , XN , SUM , ANS

OPEN ( B ,FILEO'FAC.DAT' , STATUS.'OLD ' ,DISP = 'KEEP ' )

OPEN ( 12 , FILE= ' FAC , OUT ' , STATUS : NEW ' ,018PO'KEEP ' )

READ (8,10 , END : 1000 ) N , J

FORMAT ( 1X , 13,1X , 13 )

XXNEN

SUNRO

ANS 0

DO 200 1 : 1 , J

A :NI- I

CALI, FACT ( A )

B : 1-1

CALL FACT ( B )

C : 1.07 ( A + B )

SUMESUMC

CONTINUE

XNEN

CALL FACT2 ( XN )

0 : 2 .

ANS : 1. - XN DOSUM

WRITE (12,16 ) N , J ,ANS

FORMAT (1,4X , 2 (34,13 ) ,5X ,76.4.1)

GO TO 100

CONTINUE

STOP

END

200

16

1000

SUBROUTINE FACT ( D )

REAL 8 DE PROU

PROD: 1 .

DO 100 1 : 1,0

II.D- 1.1

PRODOPRODIT

PRODOPRON / 30 .

CONTINUE

DOPROD

RETURN

END

100

SUBROUTINE PACT2 ( N )

REAL 8 D , PROD

PROD: 1 .

DO 100 ( -1,0

II :D- 1.1

PRODOPROD II

PRODOPROD/ 6n .

CONTINUE

DOPROD

RETURN

END

100
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PAC , OUT!

2 1 0.5000

3 1 0.7500

1 0.8750

2 0.3750

TAC , DAT :

2 1

3 1

1

2

6 3

3

9

10 1

10 2

10 3

10

10 5

15 2

16 7

20 10

30 11

80 32

33

BO 34

120 51

120 52

125 53

125 54

6 3 0.3125

3 0,8203

0,4922

10 i 0.9980

10 2 0.9785

10 3 0.8906

10 0.6563

10 5
0,2461

15 2 0.9990

26 7 0,5455

20 10 0.1762

30 11 0.9013

80 32 0,9433

80 33 0,9071

80 0.8544

120 51 0.9176

120 52 0,8797

125 53 0.9268

125 0.0930

209



SIUPACALL , FOR : SIMFACALL.COM :

1

SRUN SIMFACALL

100000 , 78125

2,1

100000,65557

2,1

100000 , -13

2.1

100000,78125

3,1

100000.78125

100000,78125

DIMENSION Y ( 5000 )

READ ( 5 , * , END: 90 ) N , I

II-

READ ( 5 , * ) NC , JI

IF ( NC.GE. 5000 ) GO TO 99

J2UNC-JI

2: N

DO 10 J: 1 , N

NX30

DO 20 K : 1 , NC

NOK ) ORAN ( I )

IF ( Y ( K ) ,G1,0.5 ) G . TU 20

NXENX + 1

CONTINUE

IF ( ( NX.GE.J1 ) .AND . ( NX.LE , J2 ) ) x3x + 1 .

CONTINUE

PoX7Z

WRITE ( 6 , ) N , II

WRITE ( 6 , )NC , 11 , P

WRITE ( 7 , ) N , II

WRITE ( 7 , )NC , 11, P

X : 0 .

GO TO I

STOP

END

20

10

100000 , 78125

6,3

250000,78125

9,3

250000,65557

9,3

250000 , -13

9,3

250000,78125

99 250000 , 71125

10,1

250000 , 78125

10,2

250000 , 78125

10,3

250000,78125

10,4

250000 , 78125

10,5

500000 ,, 78125

15,2

500000,78125

16,7

500000,78125

20,10

500000 , 78125

30,11

1000000 , 78125

80,32

1000000 , 78125

80,33

1000000,78125

80,34

1000000,78125

120,51

1000000,78125

120,52

1000000,78125

125,53

1000000,78125

125,54

5000000,78125

200,88

5000000,78125

200,89

55,55

5555555,55

SEXIT
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FOR007.DAT :

0.3023000

10 0 0 0 0

2

100000

2

10 0 0 0 0

2

0 0 0 0 0

3

100000

2R125

1

6555 )

1

• 13

0.4989200

0.4981800

8125

0.15 20 400

0.8771000

10 0 0 0 0

0.3773400

0.31 328 0 0

18125

1

18 125

2

78125

3

R125

3

6355 )

3

• 13

3

28125

0.8190960

0.8194000

0.8208720

0.4912520

0.9982160

78125

1

78125

2

18125

3

78125

0.978 2400

0.8899640

0.6562600

0.2466600

0.999078 0

100000

6

โ 50000

9

230000

9

250 0 0 0

9

250 0 0 0

9

250000

10

250000

10

250000

10

130000

10

230000

10

30 0 0 0 0

15

500000

16

30 0 0 0 0

20

500000

30

1000000

80

10 0 0 0 0 0

80

1000000

80

10 0 0 0 0 0

120

10 0 0 0 0 0

120

1000000

125

1000000

125

3000000

200

3000000

200

18 125

5

18125

2

18125

า

18125

10

โอ125

0.5458920

0.1169040

0.9012580

0.9434850

18125

32

18125

33

18125

0.9071030

0.8546970

0.9116350

0.8796290

18125

51

18125

52

า ย125

53

28125

54

18125

อย

28125

R9

0.9265160

0.8922570

0.9232314

0.8962938
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QUANTILE - INFORMATION - FUNCTIONAL STATISTICAL INFERENCE

AND UNIFICATION OF DISCRETE AND CONTINUOUS DATA ANALYSIS

Emanuel Parzen

Department of Statistics

Texas A&M University

ABSTRACT . This paper presents results from our research

program on the development of statistical methods based on

quantile - information - function estimation statistical

inference . Its major goal is to define , and to apply the

comparison quantile function D (u ; F, G ) of two distribution

functions F and G. We outline how standard methods of fitting

a parametric model F (y , ) to one or two random univariate

samples can be developed in terms of the empirical quantile

function p (u ) by suitably defining the sample comparison

quantile function D ^ ( u , 0 ) = D (u ; F ^ , F ( , 0 ) and the sample

comparison density function d ^ ( u ; e ) = D ~ ' (u ; e ) for both

continuous and discrete data . In the continuous case we define

Dº (u ) ; 6 ) F (Q ^ ( u ) ; 0 ) . In the discrete case we define first

d “ (u ; ) and then define Dº (u ; e ) to be its integral . Other

concepts defined include : continuous versions of discrete

quantile functions , identification quantile function .

information distributions , and scientific statistical science .

Emphasis is placed on developing a notation which applies to

both discrete and continuous data analysis .

KEY WORDS . Quantile function quantile density function ,

information , entropy , function estimation functional

inference . comparison quantile function . comparison density

function , identification quantile function , goodness of fit .

probability model identification scientific statistical

science .

1 . PROBABILITY MODEL IDENTIFICATION AND COMPARISON QUANTILE

FUNCTIONS

Given data which one regards as a random sample (of size

n) of a random variable Y. one would like to infer the

probability law of Y.

Ensemble Probability Laws. The probability law of Y is

described in general by its distribution function

F ( y ) = PROBLY < y ) . Ky < a , and / or its quantile function

Q (u) F- 1 (u ) defined by

Q (u ) inf { y : F (y ) > u } . 0 < u < 1
S

Research supported by the U , S. Army Research Office Grant

DAAG29-83 - K - 0051 .
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F ^ (y )

Sample Probability Laws (Nonparametric Estimators ) . The

first step in statistical data analysis of a random sample is

to form the sample distribution function

fraction of sample < y .

and the sample quantile function Q ( u )
F ~ - ? (u ) . The

probability
theory required to develop statistical

theory based

on F ^ (y ) and Q (u) is given in Durbin ( 1973 ) and Csorgo ( 1983 )

respectively
.

Parametric Probability Laws . One approach to identifying

F (y ) and Q ( u ) is to assume a parametric family of distributions

F (y ; 0 ) indexed by a parameter a which is an m- dimensional

vector belonging to a parameter space smº

This paper develops a general definition of the comparison

quantile function D (u ; F.G ) of two distribution functions F ( y )

and G ( y ) . The ensemble or population comparison quantile

function is defined D ( u ; 0 ) D ( u ; F , F ( • ; e ) ) .

The maximum likelihood estimator can be shown to be

definable as minimizing a measure of distance between F (y ; )

and F^ (y ) or equivalently the distance between the sample

comparison quantile function Dº (u . o ) = D (u ; F ^ , F ( 0 ) and the

uniform distribution Do (u )
u .

2 . GOODNESS OF FITAND COMPARISON QUANTILE FUNCTIONS

The role of sample comparison quantile functions is best

introduced by considering the goodness of fit problem : test

the hypothesis Ho : F (y ) F ( y. 00 ) for some specified

parameter value oo .

When F (y ; 00 ) is continuous one transforms Y to 2 =

F (Y.00) , called the probability integral transform . Then

Ho is equivalent to H0 : 2 is uniform on the interval 0 to 1 .

When the sample consists of observations Y ( 1 ) , ... Y (n ) one

transforms to 2 ( j ) = F (Y ( j ) ; 00 ) . Let Gº (u ) , 0 < u < 1 ,

denote the sample distribution function of 2 ( 1 ) , ... , z (n ) . The

Kolmogorov -Smirnov statistic for testing Ho is defined by

D

n

rn sup | F ^ (y ) - Fly : oº ) |

-- < y<<

or

D

nDn

= Vn

sup, 1G * (u ) - u
0KuK1
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One can show that

D = Vn

n

0<u< i
sup 16 ~ -d (u) - 1

We propose that the sample quantile function G* - ? (u) is

the most useful way to express statistics to test Ho . One

reason for this is the elegant formula expressing G~ - | (u) in

terms of the sample quantile function Q * ( u ) of Y ( 1 ) ,. . Y (n )

and the comparison quantile function .

G~ - (u)
Dº (u ; 00)

.

To make this formula concrete . let us consider the

realistic case of samples described by empirical probabilities ,

using notation such as the following :

K , number of distinct values in the sample ,

V (1 ) < ... < V (K ) , ordered distinct values in the sample ;

NV ( J ) , number of sample members equal to V (J ) . for

J= 1 ... K

PV (J ) NV ( J ) / n . empirical probability of V (J ) ;

FV (J ) PV (1 ) + ... +PV ( J ) . FV (0 ) 0 .

Note that F (V (J ) ) FV (J ) and FV (K ) - 1 .

The sample quantile function ( ^ (u ) has the elegant

formula :

Q ^ ( u ) = V (J ) . FV ( J - 1 ) < u < FV ( J ) for J= 1 ... K .

The sample comparison quantile function has the formula

Dº (u ) = F (V (J ) .e ) , FV ( J - 1 ) < u < FV ( J ) for J= 1 ... K .

To calculate the Kolmogorov-Smirnov statistic Dn let

2 ( J ) = F (V (J ) ; 40 ) . Then

D

n

vn max

J= 1 , ... , K

max ( 12 (J) -FV ( J ) | | 2( J ) - FV (J - 1 )

To perform a goodness of fit test one needs both

numerical and graphical procedures . A rejection region for

Ho at the 95% significance level for large sample sizes n is :
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Dn > 1.36 for a simple hypothesis . and Dn > .89 if the null

hypothesis is the composite hypothesis of a normal distribution

with mean and variance estimated from the sample . A numerical

procedure compares the value of Dn with these critical

values . A possible graphical procedure is : plot , on the same

graph , F^ (y ) and F ( y ; 80) . More insight is obtained by

plotting Dº (u ; 00) and D. (u ) = u . In addition many

additional numerical procedures for testing Ho can easily be

defined in terms of DÎ (u ; 00) -u . For example one might use

the Wilcoxon type statistic

WL = 872 55 D ( 0.8 ° )

u } du

Quick graphical procedures for identifying the probability

law of a random sample are provided by QI(u ) , the sample

identification quantile function defined below ( section 4 ] .

3 . CONTINUOUS VERSION OF DISCRETE QUANTILE FUNCTIONS

Moments can be expressedelegantly in terms of Q ( u ) ; thus

Mean M = SiQ (u) du ,

Variance VAR = s ! { Q (u ) -M } ? du .

Standard deviation DS VAR .

We use a notation for mean and standard deviation which

provides analogies for measures of location and scale based on

the quantile function

Median MQ Q (0.5 ) ,

Quartile deviation DQ 2 { Q (.75 ) - Q ( .25 ) } .

Our concept of quartile deviation (which equals twice the

inter - quartile range ) is, motivated by the concept that in the

case that Q (u) has a derivative Q ' (u) , the derivative Q ' (0.5 )

is a useful universal measure of scale ; DQ is a difference

quotient which can be regarded as a very rough approximation to

Q ' (0.5 ) .

An important step in our program for unifying discrete and

continuous data analysis is to associate to a discrete quantile

function a continuous quantile functon which is used to define

the median and quartile deviation of a discrete distribution .
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The distribution function and quantile function of a

discrete random variable Y are piecewise constant . For

example let y be Bernoulli with PROB ( Y = 0 ) = q .

PROB [Y 1 ) P , where pta = 1. Then F ( y ) = 0 , q . 1 according

as y < 0 , 0 < y < 1. 1 < y . Further Q(u ) = 0 , 1 according as

0 <uq, a iu < 1 . We propose a method of associating with

a discrete quantile function Q (u ) a continuous quantile

function denoted QC (u ) , which for the Bernoulli distribution

has value o at u = 9/2 , value 1 at u = 1 - (p / 2 ) , is a line of

slope 2 between these points , and has value pat u = 0.5 .

Consequently the median MQ = p . in agreement with the fact that

the mean M = p .

We use the following notation :

K , number of discontinuity points of F (y ) ,

V ( 1 ) < ... < V ( K ) values at which F (y ) jumps ,

FV (J ) F ( V (J ) ) ; FV ( 0 ) = 0 ; PV (J ) FV ( J ) -FV ( J - 1 ) ;

U (J ) FV (J ) - ( PV (J ) / 2 ) .

We call UF (J ) , J= 1 ... k , the midranks of the discrete

distribution F (y ) ; they play a (two-) key role in data

analysis . We call V (J ) . J = 1 , ... ,K , the probable values of the

discrete distribution .

The discrete quantile function Q (u ) is given by

Q (u ) = v ( j ) . FV ( J - 1 ) < u < FV (J )

The continuous quantile function QC (u) associated with a

discrete quantile function Q (u ) is defined to be piecewise

linear between its values at u = UF (J ) where it is defined to

satisfy

QC (UF ( J ) ) = V (J ) , J = 1 ... K .

For 0 < u < UF ( 1 ) , define QC ( u )

define QC (u ) = V (K ) .

v (1 ) ; for UF (K ) < u < 1 ,

For a discrete quantile function , we define its median and

quartile deviation by

MQ = QC (0.5 ) . DQ = 2 {QC (.75 ) - QC ( .25 ) }

The mean and variance of the midranks U are denoted MU and

K

VARU : MU =

K

Į U (J ) PV ( J ) , VARU =

J= 1

į { U (J ) -MU } PV (J ) .

J = 1
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Always MU = 0.5 . VARU is approximately 1/12 ( the variance of a

uniform distribution on 0 to 1 ) .

IDENTIFICATION QUANTILE FUNCTION

To a quantile function Q ( u ) , one associates a quantile

function . denoted QI ( u ) . We call QI (u ) the identification

quantile function because its values near 0 and 1 and its

overall shape can be shown to provide quick heuristic methods

for identifying the type of distribution (normal . exponential ,

etc. ) and its tail behavior (short tail medium tail , long

tail ; within medium tail , one can distinguish medium- short ,

medium -medium , medium - long ) . An excellent discussion of these

concepts is given by Schuster ( 1984 ) .

When Q (u ) is continuous , we define QI (u ) = { Q ( u ) -MQ } / DQ .

When Q (u) is discrete , we define QI (u ) = {QC ( u ) -MQ } / DQ . One

may similarly define the sample identification quantile

function QI( u ) .

The definition and applications of QI (u ) was pioneered by

Parzen ( 1984) under the name of informative - quantile function.

Transforming a random sample by subtracting its mean M ,

and dividing by the standard deviation DS , is equivalent to

forming the 2 -Quantile function QZ (u ) { Q ( u ) -M } / DS .

5 . COMPARISON QUANTILE AND COMPARISON DENSITY FUNCTIONS

CONTINUOUS CASE

Let G (y ) and F (y ) be continuous distribution functions .

We define the comparison quantile function to be

D ( u ; F.G ) = GF - 1 ( u ) .

Measures of distance between D ( u ; F , G ) and Do (u )

measures of distance between F (y ) and G ( y ) .

= u provide

Although the mathematical definitions require no

interpretation for G and F. We usually think of G (y ) as a

probability model for Y and think of F (y ) as the true

distribution function of Y. The quantile function of 2 =

is GF- 1 (u ) .

G (Y )

The quantile density d (u : F , G ) = D ' (u ; F , G ) is called a

comparison density function . Explicitly ,

d (u ; F , G ) gF - 1 (u ) | fF- 1 (u )

Its interpretation is more evident by writing it as a

likelihood ratio :

d (u ; F , G ) g ( x ) / f ( x ) when F (x) = U.
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6 . INFORMATION DIVERGENCE , ENTROPY , CROSS ENTROPY

When F and G are both continuous, with respective

probability density functions f ( y ) and g ( y ) , information

divergence is defined by

I (F ; G ) So [ -log { g (y ) / f (y ) } ] f (y ) dy

Information divergence has a fundamental decomposition

I ( F ; G ) H ( F ; G ) - H ( F )

defining cross - entropy H ( F ; G ) and entropy H (F ) by

H ( F ; G ) so { -log g ( y ) } f (y ) dy

H ( F ) H ( F , F ) { -log f (y ) } f ( y ) dy .

It should be noted that

H ( F )
H (Q ) = 1. ( -log £ Q (u ) } du = so { log g (u ) } du

where q (u ) = Q ' (u ) is the quantile -density function .

An important measure of the distance between D (u ; F , G ) and

Do (u) = u is the negative of the entropy of d ( u ; F.G ) :

-H ( d )

1 log d (u ; F , G ) du.

By making a change of variable u = F (x ) , X = Q (u ) one can

verify that -H ( d ) I ( F ; G ) . This fact provides a new

interpretation of information divergence as a measure of

distance between D ( u ; F , G ) and u . Minimizing information

divergence I ( F ; G ) is equivalent to maximizing entropy H ( d ) .

7 . COMPARISON DENSITY DISCRETE DISTRIBUTIONS

Let F (y ) and G ( y ) be discrete distributions with the same

probable values V ( 1 ) < ... < V (K ) . Their probability mass

functions are denoted PF (J ) and PG (J ) respectively . In terms

of FV (J ) = F (V (J ) ) and GV (J ) = G (V (J ) ) we define

PF (J ) FV (J ) - FV (J - 1 ) , PG (J ) = GV (J ) -GV (J - 1 ) .

We define the comparison density function d (u ; F , G ) by

d (u ; F , G ) PG (J ) / PF (J ) for FV ( J - 1 ) < u < FV ( J ) .
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We define the comparison quantile function

D (u ; F , G ) = 80 d ( t ; F.G ) dt

As an example of how d ( u ; F . G ) provides a unified notation

for concepts that usually are defined separately for continuous

and discrete random variables , consider the information

divergence of discrete distributions

I ( F ; G )

K

{ [ -log { PG (J ) / PF (J ) } ] PF (J )

J= 1

One may verify that

I ( F ; G ) = 5 ( -log d (u ,F , G ) } du

The chi - squared statistic is interpreted by

K

{PG (J)-PF (J)}2 - [ d (u ; F , G ) -1 ] ? du .

PF ( J )
J = 1

Empirical probabilities are denoted PF “ ( J) . The

asymptotic distribution theory of chi - squared statistics can be

expressed as properties of the stochastic process D (u ; F ^ , G ) -u ,

assuming PG (J ) is the true probability mass function .

8 . WILCOXON STATISTICS

An important measure of the " distance " of D (u ; F , G ) from u

is

WL ( F ; G )
-S ( D (u ; F.G )

) - u } du

The Wilcoxon statistic used in two - sample nonparametric

statistical inference has mathematical similarities to WL ; we

therefore call WL a Wilcoxon statistic .

By integration by parts one may show that

WL ( F ; G )

sou

u d ( u ; F . G ) du 0.5

When F and G are both discrete , WL has an important inter

pretation in terms of midranks :
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sou
u d (u ; F.G ) du

K

Į is

F ( J )

FIJ - 1 )
J= 1

u du } { PG ( J ) / PF ( J ) }

=

K

Σ

J= 1

PG (J ) UF (J )

where we write UF (J ) for the midranks of F (y ) and UG (J ) for the

midranks of G (y ) .

We can interpret WL as a difference of means of midranks

UF :

WL

EG [UF] EF ( UF ]

One can also show that

WL = EGIUG ] - Ep [ UG ]

9 . BIVARIATE AND TWO SAMPLE PROBABILITY LAW MODELING

Techniques of comparing univariate distribution functions

can also be used to model the relations between several

variables X and Y. Relations between Y and X can be expressed

as relations between the conditional distribution functions

FY : X ( y : x ) and the unconditional distribution function F (y ) . We

use : rather than to denote conditioning and we define

FY : X (y : x ) PROB ( Y < y : X == x ] .

The concepts and algorithms of conditional distributions

can be interpreted to apply even when X and Y are not random

variables . An example of this approach is the problem of

comparing two samples .

The problem of the comparison of the distributions of two

random variables Y , and Y2 given random samples

Y , ( 1 ) , ... , Y , (ny ) and Y2 ( 1 ) , ... Y2 (ny) can be formulated as a

comparison of empirical conditional distributions with

empirical unconditional distributions . Let n = ng +
nzi

Define n observations ( x ( 1 ) , Y ( 1 ) ) ..... ( x (n ) , Y (n ) ) of a pair of

hypothetical random variables X and Y by :

( x ( 3 ) .x (j ) ) - ( 1,9 , (j ) ) if j
1 , ... , ng

- ( 2.92 ( j - n , ) ) if j - n , + 1 , ... , n .
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The unconditional distribution of Y is the empirical

distribution , denoted F™Y , of the pooled sample

Y , ( 1 ) , .... Y , (ny ) , Y2 ( 1 ) , ... Y2 (ny ) . The conditional distribu

tion of Y given X= 1 . denoted FạY X = 1 , isis the empirical

distribution of the first sample Y , (1 ) , ... , Y ; (n ) •

In terms of the comparison distribution function

D ^ (u ) D (u FºY , FÀY : X = 1 )

one can express the Kolmogoroy-Smirnov two - sample statistic as

essentially the supremem of D (u ) ul , and the Wilcoxon

two -sample statistic as essentially the integral of D ™ (u )
u .

One can give explicit formulas relating various statistics

which one forms in a comprehensive data analysis computer

program , and which are in fact equivalent to the Wilcoxon rank

sum statistic . Let

S
2

sum of ranks of first sample in pooled sample ,

M

mean of pooled sample midranks UFⓇY in first

sample (M = conditional mean of UF Y under

FY : X = 1 ) ;

RU rank correlation of midranks UF ~Y and UF X .

( for truly bivariate samples , RU is the

Spearman rank correlation statistic ) .

One can show that :

M
(s /n , n ) - ( 1 / 2n)

(RU ) 2 = (M-0.5 ) ? ( 12n , / n2 )

10 . INFORMATION DISTRIBUTIONS AND APPROXIMATIONS TO t AND F

DISTRIBUTIONS

Another aspect of the unification made possible by a

quantile - information - functional approach is that statisticians

may be able to approximately compute sigificance levels of

standard statistical tests without having to consult a large

array of statistical tables .

To test Ho : Y is N ( H , 02 ) , H = 0 against H1 : Y is

N ( 4.0 % ) one should use the log likelihood ratio test statistic

iog A for testing H = 0 versus # # 0 , which can be shown to

satisfy ( see Rohatgi . ( 1984 ) , p . 723 , 725 )
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-2 log A = n jº J ^= ln ( 1 +

VARⓇY

(MºY) 3

)

The distribution of J " is called an information distribution .

It can be described symbollically by writing

J " = ln ( 1 + not tå- 1 )

where tn- 1 denotes a random variable obeying a t distribution

with (n- 1 ) degrees of freedom .

The sample correlation coefficient R ^ of a bivariate

normal sample has the property that the log likelihood ratio

test statistic for testing R = 0 against R # 0 satisfies ( see

Rohatgi , ( 1984 ) , p . 724 )

-2 log A = - n In ( 1 - R ~ 2 ) = nJ

defining J ^ ln ( 1 - R ~ 2 ) The distribution of J ™ is

an information distribution which can be described symbolically

J "
= ln ( 1 + n - th- 2 )

One
Asymptotic distribution of information distributions .

can show that asymptotically

n ln (1 + áta ) xi , chi - square 1
d.f.

More generally , Let Fm , n denote a random variable obeying an F

distribution with degrees of freedom (df ) equal to m and n in

the numerator and denominator respectively . Then

n ln ( 1 + F

n

d.f.

x chi- square mmi
n

)

To obtain a finite sample approximation to the

distribution of the information distribution we write

(* ) n ln ( 1 +
F

2

X / h (m.n )
xn

where h (m , n ) (which tends to 1 as n+c) is a constant given

explicitly by

h (m.n) = h = X 1111 - (1 + m2)-2/m);
-1
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n - 2.

n
For n large , h = For m = 1 , h =

( n - 1 ) 2

nin - 1.5 ) .

The constant h is determined by equating the means of both

sides of the representation for F implied by eq . (* ) :

x /nh

F -1

m , n

e

n

which determines h to satisfy

( 1 - în) -(m /2)
1 .

O

n - 2

The high degree of accuracy of formula (* ) in the case

m = 1 is discussed in a paper by Gaver and Kafadar ( 1984 ) .

2

X1

If one uses the fact that the t - distribution enjoys a

close approximation ( for n > 7 ) by the distribution of /nh

then one need never consult tables of the t - distribution to

form tests of the hypothesis Ho : u = 0 . One can directly

interpret without any table lookup the statistic NJ “ defined by

NJ " =
(3.84 ) /h (1 , n - 1 ) J "

Reject Ho at the 5% level if NJ ^ < 1 The interval

.5° < NJ X 1.5 corresponds linearly to levels of significance

.995 > a > .905 . The statistic NJ " is useful for sample size

determination ; the minimum sample size at which the observed

value of J ^ would reject the hypothesis that J = 0 is

approximately equal to NJ “ times the observed sample size .

11 . SCIENTIFIC STATISTICAL
SCIENCE

This paper has presented results from our research program

on the development of new statistical methods based on

quantile - information - functional statistical inference (which we

abbreviate FunStAT and call FUNctional Statistical Analysis

Technology ) . The overall goal of this research program is to

contribute to the development of scientific statistical

science .

We propose that statistical science be called " scientific "

( as opposed to " artistic " ) when it attempts to develop

statistical methods in a unified way that can be systematically

applied in many different fields of statistics . Scientific

statistical science is desirable for its elegance ( in order to

help dispel the impression among applied scientists and

engineers that statistical reasoning is at most a bag of
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tricks ) . Scientific statistical science is desirable for its

utility , since it enab les statisticians to adapt statistical

me thods ( in order to deve lop for different problems innovative

me thods customized to the unique features of each problem ) .

Scientific statistical science may be a necessity in the

emerging era of " PC /STAT" , personal portable computing

statistical analysis technology . Statistical computing for

personal computers can be developed to be interactive for ease

of use and for effective integration of classical and currently

emerging styles of statistical data analysis . The high cost of

data relative to computing makes it sensible and wise to

analyze one's data from as many points of view as possible . A

unified framework for statistical reasoning will make it

possible to more rigorously comb ine the results yielded by

different algorithms which are applied to the same data .

Examples of identification quantile functions and

comparison quantile functions generated by our IBM PC program

EPSTAT are given in a separate report available from the

author .
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THE DISTRIBUTION OF A WEIGHTED VISIBILITY

MEASURE ON A LINE SEGMENT UNDER SHADOWS

CAST BY RANDOM DISKS HAVING A BIVARIATE

NORMAL SCATTERING *

M. Yadin and S. Zacks

Technion , Israel Institute of Technology and

State University of New York at Binghamton

ABSTRACT

The present paper develops formulae for the computations

of moments of a weighted measure of visibility along

short line segments in the plane , when the shadowing

objects consist of N ( fixed number ) of disks , which

are randomly scattered around the origin , according to

a bivariate normal distribution . These moments are

based on visibility probabilities of points on the line

segment . Formulae for the computation of these prob

abilities are derived . These formulae are based on the

probabilities of general rectangles , half circles and

triangles when the points have a bivariate normal dis

tribution . The appendices provide formulae and FORTRAN

subroutine functions for the computation of the required

functions . An approximation is given to the distribution

of the random measure of weighted visibility . The results

of this research are applicable in various areas . In

particular in the evaluation of the performance of laser

range finders and other similar problems , when random

objects in the field cast their shadows on a target .

Key words :
Visibility , weighted measure of visibility ,

multinomial . random field , shadowing : process,

probabilities of convex sets under bivariate

normal distributions .

* Partially supported by Contract DAAG 29-83 - D - 0176 with the U. s .
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1 . Introduction

The present paper is motivated by the following actual problem .

A laser beam is oriented from a source at a point ( x..Y.) t

line segment, T , whose center is located at the point ( x+ 1Y+ ) .

The energy in the beam is maximal at its center and is tapering

off fast as the distance from the center increases . A common

model for the distribution of the intensity of the energy around

the center of the beam is the spherically symmetric Gaussian

distribution , with very small standard deviation . Certain portions

of the beam may be obstructed by obstacles which are randomly dis

persed in the field . These obstacles could consist of different

types of objects which are in the field , such as trees , bushes ,

piles of dirt , etc. The ray does not penetrate through such

objects . If such an obstructing object intersects any ray from

(x..Y. ) to T , we say that the object casts a shadow on T. There

may be different , sometimes overlapping shadows which are cast on

T by different objects in the field . Thus , certain points on T

are in the " light " and certain ones might be in the " dark " .
Let

(XRYR) denote the right hand limit point of T and ( XL'YL ) its left

hand limit point . Let A = *R*L : We assume that the intensity

of a ray connecting ( x , y ) with a point (x , y ) on T is proportional

to the normal (Gaussian ) probability density function ( PDF ) .

intensity function , w ( x ) ; is normalized, so that its integral from

The

*t-A
-A to x . +4 is equal to 1 .

A
We define an integrated measure , W ,

of the random amount of light ( energy ) that reaches T from the

source . w is a random measure having a distribution which depends

on the characteristics of the random field of the shadowing objects .
.

In our previous studies ( Yadin and Zacks [ 3,4 ] ) we discussed
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properties of random visibility measures when the shadowing objects

are disks of random radii and random location . Furthermore , we

assumed that the number of centers of disks falling within any

specified ( Borel ) set , B , in theplane has a Poisson distribution

with mean ( B ) . The radii of disks may or may not depend on the

location of their centers . Such a model is called a Poisson

random field of shadowing objects . The present study follows a

different scattering model . First , we assume that the number of

disks , N , is fixed ( finite ) . Furthermore , given any partition of

J

m 'm

В.

m '

the plane to ( Borel ) sets Bi ' Bm ' the number of disks Ji '

whose centers belong to B1 ' , respectively , have a multi

nomial distribution , with probability vector ( 17 , m ) which

depends on the specified sets and on the stochastic scattering

m

mechanism. In addition each disk has a radius which is a reali

zation of a random variable with a specified distribution .
Such a

model is called a multinomial field of shadowing objects .

In the present paper we further assume that the centers

of disk have coordinates which are independent random vectors

having a given bivariate normal distribution , and that the radii

of disks are independent and identically distributed random variables ,

independent of the center locations . The motivation for studying

such a model is due to a particular military application , in which

the shadowing objects are artillery rounds . N rounds are scattered

according to a bivariate normal distribution around an aim point

(x* , y* ) . Each round when exploded creates a cloud of dust and

debris of random size . A planar cut of such a cloud is modeled
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as a disk .
The model of the present paper can be further generalized

to cases of several clusters of N disks , each one characterized by

a different bivariate normal distribution .

In Section 2 we formally present the structure of the field

and the probability models of the associated random variables .
In

Section 3 we discuss methods for computing the probability that

any specified point on T is in the light , and the probabilities

that any n . specified points of T are simultaneously in the light .

These are called visibility probabilities . The visibility prob

abilities are required for the computation of the moments of the

random measure W.
In Section 4 we discuss some properties of the

distribution of W and the computation of its moments .
A beta

mixture approximation to the distribution of wis discussed in

Section 5 . In Section 6 we discuss the subroutines which were

programmed for computing the moments of w and the parameters of

the beta-mixture approximation . Numerical examples are presented

in Sections 3-5 .
As shown in Section 3 , the computation of the

visibility probability of a point requires subroutines to compute

the probabilities of arbitrary rectangles and half-circles , under

a standard bivariate normal distribution . The determination of

the simultaneous visibility probability of n points , n > 2 , requires

subroutines for the computation of probabilities of arbitrary

triangles under standard bivariate normal distributions . Formulae

of these probabilities are derived in Appendices A and B.
A.R.

Didonato and R. K. Hageman ( 2 ) published a method for computing

the probability of an arbitrary polygon under a bivariate normal
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distribution . Their method is based primarily on the computation

of probabilities of angular sectors . The leading factor in such

2

computations is exp ( -Rʻ / 2 ) where R is the distance of the vertex

of the angle from the origin ( the center of the bivariate normal

distribution ) . The main formula cannot be applied if R is large

and some asymptotic approximations are provided .
As shown in the

examples, we are interested in triangles having at least one

vertex which is very far away from the origin ( R = 100 ) .
The

direct calculations which are presented in the appendices do not

require computations of angular probabilities , as in Didonato et al

[ 2 ) . The subroutines provided in the present paper yield very

accurate results in a matter of a few seconds of computer time .

2 . The Theoretical Model

Let Pox. Y. ) denote the source of the light ( laser ) beam .

Let T be a line segment of width w = 24 centered at Ft (x+ 18+ )

and perpendicular to the line segment P Pt. Furthermore , let

PR ( XR ' Yr ) and PL (XL'YL ' denote the right and left end points

of T respectively . Thus , if bt denotes the slope of the line

through P. and P the coordinates of P and P, are given by
Pt

R

XR = x + + 01671/ (1+b ?, 1/2

*1 = x+ - 016 +1/ (1+52, 1/2

( 2.1 )

YR = Yt + sgn (64) 0/ (1+ 2,1/2

Yų = 't - sgn (b_ / 4 / ( 1+2 , 1/2
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where sgn ( bt ) is the sign of the slope. bt :
Let D1 , D2

be N random disks . Each random disk is characterized
by the

D.

N

triplet ( X;, Y Ril , i = 1 , N , where ( X; ' Yi ) are the

coordinates of the center of the disk Di and Ri is its radius .

We assume that ( Xy , Yi , ( Xn , Yn ) are independent and identi

cally distributed ( IID ) random vectors having a bivariate normal

distribution centered at the origin ( 0,0 ) .
Without loss of

generality we assume that the bivariate normal distribution has

zero correlation , i.e. , p=0 . Indeed , if p#0 , one can apply the

orthogonal transformation (xi, y ' ) = ( X , Y ) ( B ) , where ( B ) is a 2x2

matrix consisting of the eigenvectors of the covariance matrix

of ( X , Y ) . The orthogonal transformation B maps the random disks

into random disks having the same radii .
Furthermore , the dis

tribution of ( X , Y ' ) is bivariate normal centered at ( 0,0 )

with correlation zero and variances 11 and 12 , respectively where

11 and 12 are the eigenvalues of the covariance matrix

2

a

ρσ σ .

x ху

ρσ σ . ~
*

ху Y

t
o

These eigenvalues are

+02

º
x

2

0

X

1 ,

1 1/2

2 2 2

+ 400.0

ху
1 2

( 2.2 )

a

of one 1 [com

1/2

12 ر?
ه

0 )

2,2

у

2 2 2

+ 40 ° 020

X Y
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The elements of Bare B
Bij '

i , j = 1,2
where

po..o

ху

( 2.3 )

Þaj oo

bajo coz - igo
)

c ; -llo - ; ) 2 + 2003)1/2

j = 1,2 .

The points ( x , x ), (XRYR) and (XL'YI ) are transformed to

corresponding points ( Econo ) . ( R'n'R , 16L'NI ) . The line segment

T is transformed to the line segment T ' , connecting 15'NI' with

( EjonR!.

Gr ( r) ,

The radii of the random disks , Ry ' Rri are assumed to be

independent random variables , having a common distribution , G ,

concentrated over the interval (a , b ) , where osa < b < c . It is

also assumed that { Ri ; i=1 , N } are independent of { (x ; ,Y ;) ; i= 1 ,...,N }.

The randomly scattered disks may cast shadows on T. In Figure 1

we illustrate a possible realization of such a random shadowing

process , in which N = 4 disks are randomly scattered .
Two disks

cast shadows on the line segment T. Thus , creating two dark

intervals at the edges of T and one visible interval in the middle .
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P

T

९ ०

FIGURE 1 .
The Light (Laser ) Beam .. and the Shadowing Disks

Let P = ( x , y ) be a point on T , and let I ( x ) = l or 0 if P is

in the light (visible ) or in the dark . The integrated measure of

visibility on T is

x +4

t

( 2.4 )
W =

ΑτAs Oy

* + -4

X-X+

h) x
I (x ) dx

τ

A / T

17 s 0 (u ) I (x + +Tu)du

-Δ/ τ

where OST < 00
is the standard deviation of the dispersion of the

beam , and ( u ) =

127 exp ( -u ?/ 2 ) , - «<u« , is the probability
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density function ( PDF ) of the standard normal distribution .

Moreover , A = 201$ , - 1 ,2014 ) -1 , where 0 ( z ) is the standard normal integral .

Notice that w is a random variable assuming values in the interval

[ 0,1 ] . W = 0 if T is completely in the dark and W = 1 if t is

completely visible . The distribution of W has two jump points ,

at 0 and at 1 . In the open interval ( 0,1 ) the distribution of W

is absolutely continuous . Let Fw (w ) denote the cumulative distri

bution function ( CDF ) of W and let P. = Pr {W = 0 ) , P1
Pr {W = l } , then

Po+(1-86-P2" w(Y)dy

for O < w < 1

( 2.5 ) Fw1W )

for w > 1 .

where gw (w ) is the PDF of the absolutely continuous component of

Fw (w ).

3 .
Visibility Probabilities

In the present section we develop formulae for the probabilities

that rays connecting Po with n ( n > l) specified points on T are not

intersected by any one of the N random disks . The methodology

always follows the following algorithm :

S.l.
Determine the set B ( r ) of (x , y ) points such that ,

if a random disk of radius R=r has a center (x , y )

in B ( r ) then at least one of the n specified rays

is intersected by the disk .

S.2
Determine the probability of B ( r ) , i.e.

Príb(r)}= ŽE SI exp ( - {(x²+y?))dxdy

B ( r )
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S.3 . Compute the total probability

b

j

H =

Pr { B (r ) ] agrir ) .

a

S.4 .
Compute the simultaneous visibility probability of the

n points .

N

= ( 1 - H )

.

Two

The

3.1 The Visibility Probability of a Single Point on T.

Let P = ( x , y ) be a point on T. Let POP be the line segment

connecting Po
with P. The set B ( r ) is the union of a rectangle

c . (r ) and two half circles C, ( r ) and C2 ( r ) ( see Figure 2 ) .

sides of C. ( r ) are parallel to PoP and at distance r from it .

half circles C, ( r ) and Cz ( r ) are each of radius r , and are attached

to co ( r ) at the sides perpendicular to PPOP .
In Appendix A we

provide the formula for the computation of Pr { B ( r ) } in the case

that Gr ( r ) is a uniform distribution on [ 0 , b ] . Let H, (X , Y. , X , Y )

denote the H-function corresponding to the present case . This

function provides the probability that a random disk intersects

P.P. The visibility probability of the point P is

( 3.1 )
¥y ( X 90 X ,Y ) - ( 1-H , (XY ,x ,y)) N

Notice that for large values of N ,

( 3.2 )
41 (x..Y . , , Y ) =exp (-42 (XO'Y. , x , y ) )

where A ( x • , y ) = NH (xsY, x , y)
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A Y

PF

Х

B(r ) = Shaded Set

FIGURE 2 .
The Set B ( r ) for the. Visibility Probability of a

Single Point .

3.2 Simultaneous Visibility Probability of n = 2 Points on T

Consider three points Po= (x Y.) , P = ( x2.91 ) and P2= ( x2-92 )

in the plane . Let T (x , Y. X1,41,42,92) denote the bivariate

normal probability that a random vector (X , Y ) belongs to the set

inscribed by the triangle AP P1P2 : We adopt the convention that

Po is the vertex having the smallest y coordinate , and P2 , P2

are reached from Po in a counterclockwise direction . In Appendix

B we provide the formula for determining T(X , Y.,X1141142142' .

The set B ( r ) corresponding to the simultaneous visibility of two

points , P , and P2 on T is shown at Figure 3 .
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FIGURE 3 .
The Set B ( r ) for the simultaneous Visibility of

PL

and P2
2

i=0,1,2 be the vertices of the

parallel to those of

Let p; (r) = (x} ( r ) , y:(r))

triangle opt ( r ) p ( r ) pt ( r ) . The sides of this triangle are

AP P1P2 and at distance r from them .

Apt ( r ) Pi ( r ) pį (r)is an outer-triangle of distance r . Similarly , we

define an inner-triangle of distance r , 1P ( r ) Pī ( r ) P ( r ) . The

inner triangle is contained in AP P1P2, with sides parallel ,

respectively , to those of AP P2P2 and at distance r .
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Pop, and
The set B ( r ) corresponding to the points P. and P2 is contained

in the set apt(r)p; (r)e ;(r) -AP7 ( )P ] ( r ) ez ( r ) , which is the r-outer

triangle minus the r-th inner triangle .

point P. from the origin is greater than 4 the probability of B ( r )

is given to a high degree of approximation by

If the distance of the

( 3.3 )

Pr { B ( r ) ] = T(x *(r), yt (r),x ; (r ),y (r) ,xi (r),y (r ))

- T(x ( r) ,y . (r ),x7(r) ,Y7 (r ),xz(r) ,y ? (r )) .

We remark here that in certain instances the inner triangle does

not exist .
In such cases we say that the inner triangle is an

empty set , and its probability is zero .
We further remark that

in the many actual applications the source of light is more than

4 units away from the origin , and formula ( 3.3 ) provides excellent

approximation . The conditions under which the inner triangle does

not exist is given in formula ( 3.4 ) below .
The H-function

corresponding to ( 3.3 ) will be denoted by H2 (x'Y.. * 1'91 * 2.92).

For the
This function is evaluated by numerical integration .

determination of x (r),y: (r) ( i=0,1,2 ) and of x; ( r ) , Y7 ( r ) ( i = 0,1,2 ),
ܪ

we distinguish between five cases :

Case I :

X2< * . * ;

Case II :

* 2 * 1-* ;

<x , =X

Case III : X2<* 1
x1 .

Case IV :

* = X2 < 1 ;

Case V :

*.** 2 **1
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and P2 '

and Po

Let y=a+ b , * be the formula of the line passing through Po

let y=a2+b2x be the formula of the line passing through P, and PP2

and let y=a3+b3X be the formula of the line through P2

The line passing through pt ( r ) and P ( r ) has in Case I the formula

y =a , -r ( 1 +b ?, 1 / 2+b, x . Similarly , the line through pt ( r ) and P7(r)

has in Case I the formula y=az -r ( 1+b3 , 1 / 2+bz* . x )

x-coordinate of the point of intersection of these two lines .

x' ( r ) is the

In this manner one can obtain explicit formulae for the coordinates

x (r), y; ( r ) , i= 0,1,2 ; and of x; (r), y; (r). These formulae are

listed in Appendix c . In all the above five cases , the condition

under which the r-inner triangle is empty is

( 3.4 )

az+r ( 1+52 , 1 / 2+b2x5 (7)sy. ( r ) .

3.3
Probabilities of Simultaneous Visibility of n Points on T.

Let Pi= (x ; Yį), i=l ,
n , be n points on T , such that

Xn<*n- 1 ? < x2 : Generalizing the results of the previous

section , the probability of B ( r ) is given approximately by

( 3.5 )
P: { B ( r ) ] = Textir ).yt(r) ,x + (r), y (r ),x (r) ,y (r ))

n-l

& T (x0, i(r), yo, i (r) ,x ;(r), y; (r),xī+1 (r),Y7+ 1 (r )) .
i=1
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Notice that some or all the r-inner triangles might be empty and

the corresponding T-functions are then equal to zero .
The condition

under which the i - th inner triangle is empty is

( 3.6 ) n- 1 .

a and b

n

2,+r(1+ 2,1/2 +bxX6, (r) < vori ( r )
( r ) , i=1 ,

bn are the intercept and slope of the line passing through P, and Pa

The coordinates xo , i ( r ) and yo , i ( r ) can be obtained in the following

Consider the triangle AP.P.Pi+1 : The coefficients az and b

Pri

manner .

in the formulae of Appendix C should be replaced by aan

and bni

az and bz should be replaced by the intercept and slope of the

line through P and Pi+1 ' i.e. , ai+1 and biti : Finally , the

o

H- function corresponding to ( 3.5 ) is denoted by Hn (xo'90-81.91 '

XnYn ). The probability that n points are simultaneously

visible is

( 3.7 )

Yn (x..Y..X1191.....*n'Yn! ( 1-H. (XY.(X, Y ,...,X7.9.!!ON

EXAMPLE 3.1

In the present example we illustrate some of the visibility

probabilities . The parameters of the calculations are :

N=20
* + = 0

X = 0

Yo = -33.
3

x=1 Y+=

-.333

o = 1

уOy =

A= .167 b= .333

Gr ( r ) is uniform on ( 0 , b ) .
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We consider k=7 triplets on T , having coordinates ( *1,1197 ) ,

( x1,21Y + ) and ( x1,3,9 % ) , where

*1,3

Ati / 4

: * 1,2

= iid / 8 and 1,1
= 0 , i = 1 , ... , 7 .

Let

41 , i - , ( . 'Y *1,318+

2 ,i = 42 (X , YOX1,11Y + -X1,3197)

43, i = 13 (xYX1,11Y + * 1,21Y ++ * 1,318+) .

The values of these visibility probabilities are :

i

ܐܢn,ܪ 42,1

43,1

1 . 3080 .1233 .1108

2 . 3064 .1360 .1262

3 .3055 .1516 .1439

4 . 3052 .1692 .1642

5 .3055 .1927 .1885

6 .3064 .2201 .2186

7 .3080 .2539 .2534

Notice that 41 ,i
is symmetric around the origin ( i=4 ) . The

simultaneous visibilities of two and three points increase as

and
the points become closer . Notice also that V2 , i

quite close , for each i , and that their difference diminishes as

43 , i are

the distance between the three points decreases .
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P1= (1 - H (X , Y . ' * R YR *L'YLIN

The probability P, that the line segment T is completely visible

is determined in the following manner .
Let

( 3.8 )

HI (XY, XR1YR XL YL) =

b

si T (x+ (r),yt(r ),x (r), y (r), xi (r), y (r))dGR (r).

a

HŽ (X , Y . , * R "YR-XL'YI' is the probability that a random disk will

cast a shadow on T. Hence , the probability that T is completely

visible is

( 3.9 )

4 . The Moments of the Random Measure W.

The k-th moment of w is given according to ( 2.4 ) by the formula

( 4.1 )
Hk E { 1 (u) I (X_ +Tu) du)" }

Δ / τ

-A / T

k !

k

A s )
II 0 (u ; )EX I. I ( x++ou; ) } dui

Sk

where Sk= { ( u / , ... , UK ) ; -A /T <uk < 4k - 1 ...< u2 <u2 <0/7} .

Moreover

( 4.2 )
E { 1 (x++tu; ) )

k

i = 1

PkxhYkxt+Tuy • xt+Tuk/Yk) .

is the probability of simultaneous visibility of the k points .
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Making the transformation z ; = į uş , i=1 ,
k , the k-th moment

of W can be expressed as

1 1 1 1

( 4.3 )
Рk

k

k ! A

kk

AⓇT socą zy) s 6$32x -2)

0 ( '
1 06422).

-1
2
x 2k-1 22

Vk ( xs : Yo * t +02171xt + zxYk2, *++42kYk ) dzı ... dzk

Notice that y;=a+ BA2 ( i= 1 , ... , k ) , where a and B are the intercept

and slope of the line segment T. In particular , the expected

value of Wis

1

( 4.4 )

12 - A S (42)47 (X ,Y ,*&+02,84+ B4z)dz.

-1

The second moment of Wis

1 1

( 4.5 )
42

2

21

2 2

Ατ

-1

solązz ! s 01ęzy)42(X -40-84+424•94 +AB21:

22

*++6221Y ++AB22 ) dz dzz

These integrals have to be computed numerically , as discussed in

Section 6 .
The computation of a high order moment according to

One
( 4.3 ) , with a high degree of accuracy , is time consuming .

can obtain , however , lower and upper bounds for Hk (k > 3 ), in a

manner which will be readily discussed . We precede this discussion

with the following comment :
As k + Hk approaches Pi :

Indeed ,
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according to ( 2.5 ) ,

1

( 4.6 )

Hk = ( 1 -P.-P1 ' s y gw (y)dy +

Hence , by applying the Dominated Convergence Theorem , *k*P1 as

k+ .

To obtain bounds for Mk ( k > 3 ) consider the inequality

( 4.8 )

(xYX1Y1.XKYK 3

к
k (xsY •x1Y1X2Y2 ,XxYk2 3

421x40 X1 91 *k'Yk)

for every k > 3 , where y (x . 40,X71911 *k'YK
( 1-H* (X ,Y ,X7192,XX+YK ))N .

This follows directly from ( 3.5 ) and ( 3.8 ) .
We remind that

4 * ( xo'Yo X1 " 91. *k Yk ) is the probability that the entire interval

between ( X, Y, ) and ( xk » Yk ) is visible .

Substituting these lower and

upper bounds of Yk (xo'Y..X11911 ...,xk'Yk) in ( 4.3 ) we obtain lower

HKEL Hkru
and upper bounds for ukº Thus , if and denote the lower

and upper bound for Mk one obtains , for every k > 3 ,

1 1

( 4.9 )

"K,L-

2

k (k - 1 ) ^ 2

k 2

A τ
Solak'

s 01&22 )

-1
Zkк

v (XO'Y..* ++421 Y ++062, - *++Azk'Y ++AB2 ) .

( 01ęzy ) -01$2x ) ] k- 2dz ,dzk
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where 0 ( • ) is the standard normal integral.Hk, u is obtained from

( 4.9 ) by replacing the function um by 42 : The proof that sub

stitution of vin ( 4.5 ) yields ( 4.9 ) can proceed by induction .

Indeed , for k= 3 we obtain from ( 4.3 )

( 4.10 )
H3,1

3

3 ! A

3 3

Ατ

1 zz) | 01922 ) F5 01927 ) F (27:23)dz, dządzz

-1

23 22

where F ( 27,23 ) = y * (x0,90, * 4+02, ,Y++AB2, -*++623.9++AB23)

Furthermore

1 1

I
D

( 4.11 )
ď s ocą z2 ) 01$2,)F(27123)dz,dz2

23 22

1

=

H
I
D

s )

Ac$ 2 ,1P(2,123) o14 zz)dz,az

23 22

1

s orx 24 ) F ( 27:23 ) 014 22 ) -014 zz ) ] dzı

23

Substitution of ( 4.11 ) in ( 4.10 ) yields ( 4.9 ) for k=3 . For k > 4

one obtains from the induction hypothesis ,

1 1 1 1

( 4.12 )

01$2j+1 ' ocązz) S s 01422)F (22:25)dz ...d2j+1

2j+2 aj 2j - 1 22

1

- S 044 27)F(27.7x)101922 ) -0 (423 +2) 33

2j +2

for all j =1,2 , ... , b , esk - 3 , that
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( 4.13 )
s orsze+27 01 24+1 ° 5 ... 01&2_ ) F ( 27,2k ) " d27 .

28+3 22+2 2 &+1 22

1

A

I ! T
s orąze+2) 5 0 (422 ) F ( 27,2x ) [ 06922 ) -0 (422+2 ) ] ºaz,dze+2}

,

26+3 28+2

1 21

s 0 (424 ) F ( 27.2K ) S 01Şze+2) 6014211-01$2e +z)]laze + zdzı< !!

28+ 3 28+3

But ,

21

( 4.14 )
Δ

τ
s $ 1$22 +2) [01922)-0142e+2]]'az) +2

z

6+3

et1 101$22)-01472+ z) ]+ 1

Substituting ( 4.14 ) in the right hand side of ( 4.13 ) we obtain

1 1
1

( 4.15 )
101f²e+2 ' s

24+2

s ( 2 ,) F (27,2k ) dz , dzz...dze

22Z +&+3

I ) $ ($z_ ) F ( 27,2% ) 101922)-01922+ 3) ]@+laz ,

26+3

In particular , for l=k- 3 , ( 4.3 ) and ( 4.15 ) yield ( 4.9 ) .

Example 4.1

In the present example we illustrate numerically the bounds

for the first 10 moments in a given case .
The first two moments

are computed exactly according to formulae ( 4.4 ) and ( 4.5 ) .
The
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* o

bounds to the moments of order k > 3 were computed according to ( 4.9 ) . The

parameters of the computation are :

x

1

х

o

у

333

Yo

= -100 .

=

xt

0

Yt

-.333

A = .167

T = 1/3

and a = 0 , b = .333 .

The first two moments are Hi = .3057 and 12
= .2375 . The lower and

upper bounds for uk ' k=3 ,
10 are given in the following table .

k 3 4 5 6 7 8 9 10

Lower .2099 .1950 .1847 .1771 .1711 .1662 .1622 .1588

Upper ..2147 .2014 .1924 .1858 .1806 .1765 .1731 .1703

TABLE 2 .

Lower and Upper Bounds for uk ' k=3 ,

10 .

A good estimate of Hk can be obtained as the midpoint between

the lower and upper bounds . The limit of Hk as kro is Pi= .0855 .
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a

5 .
.

Approximating the Distribution of W and Determining Po

The CDF of w is a mixture of a discrete and absolutely con

tinuous component , as presented in formula ( 2.5 ) . The only element

of that formula which we have already discussed is Pi ' as

specified in formula ( 3.9 ) . We provide here an approximation for

P. and for the absolutely continuous component of Fw (w ) , which is

called the beta-mixture distribution .

The beta CDF is represented by the incomplete beta function ratio

( 5.1 )

14 (vyvuz) - Blvdrve
t
$ _7 * 2-w7°27

du ,

where 0 < v2.02x00, and B ( vy , vy ) is the complete beta integral .

This

two -parameter family of distributions can represent a variety of

different shapes and forms of distributions on the interval ( 0,1 ) .

We , therefore , approximate Fw (w ) by the beta -mixture .
W

( 5.2 )
Fw ( w) - P. + (1- P.-PI(V1.02)

, 0 < w < 1

and , obviously Fw (w ) = 1 for x > 1 . The parameters Po ' Vi
and

V2

of

( 5.2 ) are determined by equating the first three moments of ( 5.2 )

to those of W.
The solution of these moment equations ( see ( 3 ) ) is

Vi ( 20 % -uş ( vi+u2 ) ) / Det .

( 5.3 )
V2 - (Hi - w ) ( - ) / Det.

and

P. = 1 - P1- ; (V7+v21 /01

2

where
Hi=vi-P, ( i=1,2,3 ) and Det .

Hius - ( 3 )
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Example 5.1

In Table 3 we provide a numerical illustration of the beta

O
mixture approximation , under the parameters on = 0

parameters 0 , = 0 , = 1 , x = -.333 ,

у

Yo= -100 . , xt=0 , .333 , .666 , 1.000 , 1.333 , Y+= -.333 , 1= .167 , T=0 / 5

and a=0 , br.333 .

х

t Mi H2 рз Po Pi Vi V2

.000 .3057 .2375 .2126 .6928 .0855 53.3 .357

.333 .3257 .2570 .2314 .6728 .0980 52.9 .353

.667 .3864 .3170 .2898 .6120 .1404 52.2 .340

1.000 .4854 4190 .3914 .5131 .2261 55.1 .324

1.333 6105 5538 .5287 .3884 .3633 67.6 .312

TABLE 3 . The First Three Moments and the Parameters of the

Beta -Mixture Distributions

The beta distributions with vz > 1 and 0 < V2 < 1 have PDF's which are

monotonically increasing from 0 to c . They are called J-shaped

distributions .

In the cases of Table 3 , since v , is very large ,

most of the mass of the absolutely continuous component is concen

trated near the value w = l . This means that the distribution of W

is almost a 2 -point distribution . For example , X+=0 , W=0 with

probability Po= .693 and with probability .307 W2.95 .

The values of ( 5.2 ) in the case of x+= 0
are given in

Table 4 .
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W O .90 .950 .955 .975 .985 .995 1.000

Fw (w )
.693 .693 .694 .698 .707 .719 .744 1.000

TABLE 4 .

The Beta -Mixture Approximation to Fw (w ) , in the

Case of x = 0 .

t

6 . Numerical Computations

The numerical computations of Tables 1-4 were performed on an

IBM- 370 system . The programs were written in FORTRAN . They consist

of the main parts and the following subroutine functions .

1 . FUNCTION VPT (X , Yº ,XT ,YT , B )

2 .
FUNCTION TRL (X0,40,41,41 , x2,42 )

3 .
FUNCTION SVP ( K , X , Y ,X1 , Y1 ,x2,82,83,73 , B )

4 .
FUNCTION TVP ( X¢ ,Yº ,x1, x1 ,x2,72 , B )

5 . FUNCTION CNDX ( Y )

6 . FUNCTION BETA ( X , V1 , V2 )

and

7 . FUNCTION GAMA (V ) .

V

Subroutine functions 5-7 compute the standard normal CDF ,
the beta

CDF and the gamma function , respectively . Subroutine VPT ( X , Yº , XT , YT , B )

computes the visibility probability of the point ( XT , YT ) from the

source ( X , Y0 ) , where the distribution of the disks radii , R , is

uniform ( rectangular ) on the interval ( 0 , B ) . The subroutine TRL

( X , Y ,X1 , Y1 , X2 , Y2 ) computes the standard bivariate normal probability

that a point ( X , Y ) falls within the triangle with vertices
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Po= ( X° , ) , P1 = ( X1 , Yl ) , P2= ( x2Y2 ) . Po is always the point with the

smallest y-coordinate . The vertices Pı and P2 are reached from

Po in a counter clockwise direction . The subroutine

SVP ( K , X0,70,81,41 , x2,82 , X3,73 , B ) computes the probabilities Hy or

for the simultaneous visibility of k=2 or k=3 points ( see
H

3

formula ( 3.7 )) . K=2 or K=3 is the argument for the number of points .

If K=2 , the only arguments which are taken into account are

X0,70 , X1 , Yl , X2 , Y2 and B. The values of x3 and Y3 can be arbitrary .

The points Po= ( XQ , Y0 ) , P = ( X1 , Y1 ) and P2= (X2,72) are the vertices

of the triangle , while P3= ( X3,43 ) is a point in the line segment

connecting PL
and PP2 : The function TVP ( X , Y ,X1,81,82,72 , B )

computes the probability H† (X , Y.-X1191-82.92) .
The subroutine

functions VPT and TRL were programmed for the standard bivariate

normal model with zero correlation , i.e. , a bivariate normal dis

Х

tribution centered at the origin , with 0,=0,,=l and p=0 . In actual

Y

problems the variances of X and Y are generally unequal . In such

cases we make the additional transformation * + x /0x and y y / oy . This

reduces the model to a standard bivariate normal . The random disks

are transformed to random ellipses . However , we replace each such

random ellipse by a random disk having a radius equal to the large

radius of the corresponding ellipse .

k
The moments Hl : H2 and the lower and upper bounds for u ( k > 3 )

are computed according to formula ( 4.9 ) by employing the subroutine

functions TVP and SVP and using a Gauss quadrature 12 -point numerical

integration ( see Abramowitz and Stegun ( 1 ) pp.916 ) .
The FORTRAN

programs of these subroutine functions are given in Appendix D.
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The main program reads the parameters of the problem and reduces

it to the standard bivariate normal model under which all the

computations are performed . For example , suppose that a source of

a laser beam is located at the point ( -1 , -3000 ) and a target of

width l is centered at ( 0 , -10 ) . N=20 disks are scattered according

to a bivariate normal distribution centered at ( 0,0 ) with parameters

0 = 3 , 0 ..= 30 and p=0 . The radii of disks are uniformly distributed
х y

in the interval ( 0,1 ) . The transformation x ' =x/ 0x ' y '=yloy, b ' =blox '

w ' =w /oy reduces the above parameters to those of Table 3 .
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APPENDIX A. The Bivariate Normal Probability of a Rectangle with

Two Half Circles and The Probability that a Random

Disk Intersects a Line Segment

We develop here formulae for the computation of the standard

bivariate normal probability of the set B ( r ) described in Figure 2 .

The set B ( r ) is the union of a rectangle Co ( r ) and two half circles

Ci (r ) and C2 ( r ) , having a radius r . The rectangle Co ( r ) has two

sides which are parallel to the line segment PoPt, where Po= 1 *0.9. )

and P + = ( x + Y + ) . Moreover , these sides are of distance r from

P P

o't We provide now a formula for Pr{co ( r ) } . We distinguish

between three cases :

Case I :

* + < * ,

Case II :

* + =

Case III : x > x

In Case II we have

( A.1 )

P {C. ( r ) } = ( º (x++r)-4(x + -r ) ] [0 (y ) - (y ) ] ,

where 0 ( z ) is the standard normal integral . In Cases I and III we

consider the orthogonal matrix

1 B -1

(A. 2 ) A =

(1 +B2, 1/2
1 B

where B = (y + -Y. ) / (x + - ) is the slope of the line segment PPE ·

It is easy to verify that the orthogonal transformation

у

( )

x
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yields points P' and Pi having the same x-coordinate .
Furthermore

y£ > Y; if xx> x. and yt < y: if x + < * . Accordingly ,

[0 ( x4+r ) - ( x4-r ) ] [019 ) - ( + ) , in Case I

( A.3 )
Pr { C. ( r ) }

10 ( x + r ) (x !-r) ] [ ( y ! ) - (y ]
in Case III .

Indeed , the distribution of ( x ' , Y ' ) is a standard bivariate normal

distribution , with correlation p=0 . The half circle C, ( r ) is centered

at (x4-8+ ) and C2( r) is centered at (x, y ! ) . Consider Case III ,

in which yt> • The probability of C, ( r ) is

(A.4 ) Pr

r { CZ(r)} =Pr { \ x ' -x4 | <1,7€ < Y ' < Y¢ + ( r2- ( X ' -x: ) 2,1 / 27

saya 0 ( x ) (y!+(r?-(x-x )2,1/2,dx -

* to
r

0 [ Y_ ) ( 0 (x4+r ) - 0 ( x4-r ) ] .

Similarly ,

(A.5 )

Pr {cz (r) } = 0 { y' ) 10 (x{+r)-° (x4-r) ] -

*++ 1

notto

$(x) - x
10146-152- ( x -x! ) 2 , 1 /2dx

*+-r

From ( A.3 ) - ( A.5 ) one obtains in Case III ,
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2

( A.6 ) Pr { B ( r ) } =

& Pr{ c ; (r ) ]

i=0

J*** ( +
° ( x ) [° (74+ (x2-(x-x !) 2,1 /2,

X - r

-

- 019:-172- ( x-x! ) 2,1 / 2 , jdx .

Formula ( A.6 ) applies also for Case II , by sutstituting xt for x+

and Y. Yt for Yo - Y+ : In Case I we interchange
yo and yć in ( 1.6 ) .

We remark also that if y' <-4 , the term oly.- 172- ( x-xx ) 2 , 1/2 )
can

be dropped from formula (A.6 ) .

Finally , the probability that a random disk intersects the

line segment P P.
Pt is , in Cases II and III ,

( A.7 )
2

H, ( X , Y .- * + 9+)

b Xt+r

s 5 ° (x) [ ° (94+(r?-(x-x!)2,112,-014-62- x-x +
)2,1/2 ,1dxdr

* x) , /2 )

o *+-

1 1

= b ju f *( x[ +buz) [ $ (y +bu ( 1-22 , 1/2 )-0 ( :-bu ( 1-22 , 1 / 2,1 dzdu

o -1

The double integral in (A.7 ) was evaluated by a double 8 -point

Gaussian integration ( see Abramowitz and Stegun ( 1 ; pp.916 ) .

Attempts at 20-point integration yielded negligible difference .
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APPENDIX B. The Bivariate Normal Probability of Triangles,

T ( X, Y.-* 1.41.42.92) .

Consider the triangle AP P2P2
where Pi= \ x; Y; ' , i=0,1,2 .

We make first an orthogonal transformation of the plane ( x , y ) so

that the side PiPż of the triangle AP'PiPż is parallel to the

x-axis and y ' =min (y ) . The orthogonal matrix applied for this

o i 2

purpose is :

1 B

1

( B.1 ) A =

[ ]

if x2+x2

(1 + B2, 1/2

-B

where B =172-94 ) / (x2 -x2 ).
If x1=x2 we use the transformation

0 -1

A =
if x. < 81

1 0

( B. 2 )

--6 : 33 ) .

if x

*

>
X2

Let ( X ' , Y ' ) ( X , Y ) A ' . The distribution of (x ' , y ' ) is like that

of ( X , Y ) .
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Let T ( x -45 -xjYjxY9) be the standard bivariate normal probability

Notice that y;=yż , and Yo< vi( p=0 ) of the triangle APP Pż

Furthermore, T (* . '90-X1-91-82.92)

= x

T (x -45 -x1,71 x2.ya) .

We distinguish between five cases .

Case 1 : x < * * i:

Let y ' =a2+bxx ' be the line connecting P' with Pż and let y ' =a2+b,x '

be the line connecting P' with Pi . The probability of AP'PiP is then

( B.3 )

T (X , YOX1191.X2.92) =

Prix <x '< x , ag+ byx'sy'sy ;} +

Pr{xxx'< x • +bx'< Y' <xi }

= (yi) [* (x1) -0 (x )]

xi

( ( x a +

x2

The integral in ( B.3 ) was evaluated numerically according to the

formula

EN

( B.4 ) 0 ( x ) 0 ( a+bx ) dx =

N

Σ

irl

0 ( a +b5_) [ 015;70151-1 ) ] ,

)

Eo

where N=20 , & į are the endpoint of equal subinterval partition of

(6 6N ) and 7:=(5; + $ 3+ 2 ) / 2 .
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Case 2 : x = x :

As in Case 1 , let y = a, +b , * be the line connecting P with P1 :

Then ,

( B.5 )

T (xsY : * :* : *2 + y2 )

Pr{ x 3 xị 3 x , a +bxx ' : Y ' 3 xi } =

xi

( Y ) [ 0 (x1) -0 ( x ) ] - (x) (a + b , x )dx.

-fhoc

Case 3 : xż > *

Let y=az+b2x denote the line connecting P.

with

P2

and

y = a , +b x denote the line connecting Po with P2 •

Then

( B.6 )

T (X'YO'X1.41-42.92)

x2

$ ( x) • ( ay+b2x ) dx

QlY; ) (0 (x ; ) - $ (x2) ]

xi

[ Ⓡ ( x ) ° (a, +byx )dx .

*

+

Case 4: * ; = x

with

As before , let y=a2 +b2X designate the line connecting Po

Pi '

then

( B.7 )

T (
XY *7-91.42.92) - ( y ) [ (x ) - (x )]

x :

5 $ ( x ) * ( a , b , x )dx .

x-
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ON SEGMENTATION OF SIGNALS , TIME SERIES , AND IMAGES

Stanley L. Sclove

Department of Quantitative Methods

University of Illinois at Chicago

ABSTRACT

Signals and time series often are not homogeneous but rather are

generated by mechanisms or processes with various phases. Similarly ,

images are not homogeneous but contain various objects . " Segmentation "

is a process of attempting to recover automatically the phases or

objects . A model for representing such signals , time series, and images

is discussed . Some approaches to estimation and segmentation in
this

model are presented .

Key
words and phrases : statistical pattern recognition ,

classification ; temporal correlation , spatial correlation ; optimization

by relaxation method .
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ON SEGMENTATION OF SIGNALS , TIME SERIES , AND IMAGES

Stanley L. Sclove

Department of Quantitative Methods

College of Business Administration

University of Illinois at Chicago

1. Introduction

About ten years ago , Professor James Osterburg, a colleague at the

University of Illinois at Chicago and an expert on physical evidence

(Osterburg and O'Hara , 1949 ; Osterburg , 1968 , 1982 ) , consulted me in

regard to establishing probability estimates for partial fingerprints .

We have had a very interesting collaboration which resulted in several

papers (Osterburg, Parthasarathy , Raghavan , and Sclove, 1979 ; Sclove,

1979 , 1980 , 1981a ) and may , thanks to Professor Osterburg's continuing

efforts , result in changes in practices regarding the evaluation of

fingerprints as evidence . For the present paper the point about

fingerprints is this : When at professional meetings I would talk about

the subject , certain people ( usually electrical engineers or computer

scientists ) would tell me that what I was doing was " image processing . "

The
reason that our fingerprint work resembles image processing is

this . Osterburg treated fingerprint analysis by placing a grid of cells

over the print . One then notes the locations of any occurrences of the

" Galton details , " the minutiae of the ridge lines , such as ridge endings

and forks . In numerical image processing a real image is divided into

cells ( "pixels" : picture elements ) and
one notes numerically what

occurs in each cell . The real image is expressed as a matrix rows by

columns of cells , just as the TV screen has a matrix of dots which

are illuminated with various colors and intensities .
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2 .
Images

An important aspect of image processing is image " segmentation , "

the location of objects in the image .

Examples . ( i ) A picture of a house and yard is to be labeled using

the labels , brick , glass , tree , grass , sky . ( ii ) An image is to be

labeled using the labels , tank , mud , tree , sky . ( iii ) A medical image

is to be labeled using the labels , tumor , or normal tissue .

Segmentation involves labeling each pixel according to the name of

the object of which it is a part ,
in turn involves

the grouping of

neighboring pixels . Since I had earlier worked on cluster analysis , the

grouping of observations ( Sclove 1977 ) , it was natural to concentrate on

segmentation . The labeling process can
be made explicit in a model

which states that at each pixel
we observe the value of a random

variable X , but also along with X there is an unobservable variable , the

label . ( I tend to treat the labels as parameters. Others treat them as

missing data , 1.e. , random variables . ) In the context of this model ,

segmentation is merely estimation of the labeling parameters .

The random variable х is often a vector of several measurements .

Examples . ( 1 ) A familiar example of a vector of measurements

(though it would not be measured across a two - dimensional array ) is

blood pressure , which is a vector of the two measurements , systolic and

diastolic . ( 11 ) In color television , X is a vector of three

measurements , the red level , green level , and blue level . ( iii ) In

Landsat satellite data , there are four spectral channels , one in the

green /yellow visible range, a second in the red visible range , and the

other two in the near Infrared range . ( iv ) For a black - and - white image ,

the random variable X which is simply a scalar consisting of a single

gray - level measurement , rather than a vector .

Images are two -dimensional; I decided
first to consider a

one - dimensional version of the problem . An image is a two -way series ; a

one -way series is a " time series . " So I began this research by thinking

about segmentation of time series.
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3. Time Series

The problem of segmentation considered here
is : Given a time

series

{ x ( t ) , t = 1,2 , , n } ,

partition the set of values of t into subseries (segments , regimes ) for

which the values x ( t ) are relatively homogeneous in some sense . The

segments are assumed to fall into several classes .

Examples . ( i ) Segment a received signal into background , target ,

background again , another target , etc. ( ii ) Segment an
EEG of a

sleeping persion into periods of deep sleep and restless or fitful sleep

( two classes of segment ). ( iii ) Segment an ECG into rhythmic and

arhythmic periods ( two classes of segment ). ( iv ) Segment an economic

time series into periods of recession , recovery , and expansion ( three

classes of segment ) .

Next , several simulated time series will be shown .
The first is

relatively smooth ; the second ,second , relatively rough or jumpy . ( They are

simulated first -order autoregressions with autoregression coefficients

equal to +.8 and -.8 , respectively . )

Y ( T )

1

2

32.500 +
2 4 7 3

7 01 5 2 6 89

6 3 34 6 1 4

0 3 5 0 0

1 89 9 5 9

30.000 + 2 5 892 8 6 8

34
4

7

67 1 7

5 0

27.500 +

----+ T

5010

-t

30
20 40

first-orderSmooth time series ( simulated

autoregression with coefficient +.8 )
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Y(T )

6

32.500 +

6 80 2 8

0

6

4 0

82
24 704

5

78

30.000 + 534

7

5

2

1

23 6

1

3
47

5

0

81

3 6 9 5 7 9

27.500 + 9 1
3

9

-t-oc

40

---+ T

5010 20 30

first-orderRough time series (simulated

autoregression with coefficient -.8 )

The next series has alternating smooth and jumpy segments .

Y ( T )

3

1 1 5

0 78 123

4 79

30.000 + 12 6 8 2 0

3 5 9 4

3 0 6 5 89 67 0

24 5 9

4 7 9 67

27.500 + 6 01 4 8

8 23

5

25.000 +

--+ T

5010 20 30
40

three segmentsSimulated time series with

( smooth , then rough , then smooth )

It is a simulated series , with
three segments . Each segment

is a

first-order autoregression . For t = 1 to 20 the coefficient is +.8 ; for
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t : 21 to 30 the coefficient is -.8 ; then
for t : 31 to 50 the

coefficient is again +.8 . In actual data analysis one would not know

the segments but would have to find them and estimate their parameters .

Now let us consider a real example , rather than simulated data .
The

graph below is quarterly GNP (Gross National Product ) for 55 quarters ,

starting with the first quarter of 1946 .

LOG GNP

2.700 +

2.550 +

45

123

34567890

89012

01 67

789 2345

123456

0

9

123 78

890 456

67

345

12

- + ----- * ----+ T

10 20 30 40 50 60

2.400 +

Plot of Y(T ) , where Y (T ) is log ( base ten ) quarterly GNP in

billions of current (unadjusted ) dollars. T: 1 is 1946-1 , T=2

T=5 is 1947-1 , etc. (N=55 )
is 1946-2 , ... ,

Here is a second difference of the log quarterly GNP . Do you see

anything particularly interesting?
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1000D104

2

4

3 53.500 +

12 78

-

93

56

40.000 +

1

0

3 0 3

45 4 0 6

6 2
9 2 5

7 9 5 78 1

6 8

91 6 3

0 4

8 7

1

0

- 2

-3.500 +

7

89

10 20
30

40 50

Plot of mixed second difference of log GNP :

Vertical scale , labeled ' 1000D1D4 ' , is Z ( T ) , where

Z ( T ) = 1000 [ ( Y ( T ) -Y ( T - 1 ) ) - ( Y ( T-4 ) -Y( T-5 ) ) ] and

Y ( T ) = log GNP ( base 10 ) ; T= 1 is 1947-2 , T-2 is

1947-3 , T:9 is 1949-2 , etc. ( N -50 )

A first difference corresponds to a velocity . The difference

y ( t ) - y ( t- 1 ) : d ( t ) ,

is (y ( t ) = y( t- 1 ) ] / [ t- ( t- 1 ) ] , which is the change insay , у over the

one time unit from time t- 1 to time t . A second difference

d ( t ) d ( t- 1 ) ,

which in terms of an original series of y's is

{ ty ( t )-y ( t- 1 ) ] - [y( t- 1 ) -y ( t-2 ) ] } ,

is proportional to the change in velocity across the indicated time

periods and hence is essentially an acceleration . Thus a second

difference
is perhaps a natural transform to analyze . (Note , however ,

that the second difference used here is a mixed second difference ,

namely ,
the

ordinary
difference of the

lag - four difference

y ( t ) -y ( t-4 ) . ] The second -difference series appears level .

What I think

is particularly interesting is that the acceleration of the economy
due
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to the Korean conflict of the 1950's is readily apparent .
(T : 12 is

1950-1 , T = 13 is 1950-2 , etc. )
I think that the need for

segmentation

is clearly indicated . One needs to give some sort of special treatment

to those four exceedingly high values .

An alternative approach to such observations is to identify them as

" outliers . " However ,
" outlier " connotes spuriousness . If outlying

observations are non-spurious or are associated with a recurring cause ,

perhaps they should not then
be termed " outliers . " They should be

modeled .

In other cases , where, e.g. , equipment failure is suspected , one

truly wants to look for outliers . Here , too , segmentation
can be

useful.

De Alba and Zartman ( 1979 ) analyzed radiotelemetric measurements of

COWS ' temperatures , in order to locate the periods of high estrus , with

a view toward more optimally timed breeding and efficient milk

production . A technique of de Alba and Van Ryzin ( 1979 , 1980 ) was

used . In the de Alba - Zartman report the analysis of the temperatures of

one cow over 133 days is discussed in detail . Eleven observations were

detected as coming from distributions with means shifted relative to the

rest of the observations . Inspection of the data showed that some of

these temperatures were high and some extremely low . It is concluded

that the high temperature readings correspond to times of active estrus .

( Perhaps the low readings correspond to instrument failure and hence are

true "outliers" in that sense . )

Here , as in de Alba and Zartman ( 1979 ) , the raw data were

pre - processed by differencing . Model-selection criteria ( see below )
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estimated the number , k , of classes of segment as two , but k = 3 and

k = 6 scored almost as well . Since the numbers analyzed were

differences , it is
is perhaps especially interesting to consider three

classes , particularly since the segmentation yielded one
class for

positive differences , one for negative differences ,
and one for

differences close to zero . The results obtained are similar to those

obtained by de Alba and Zartman . They identified eleven observations as

" outliers ; " 7
of these were high and 4 were low .

The segmentation

algorithm run with three classes of segment identified 4 observations as

high ; these were among the 7 identified by de Alba and Zartman . Use of

six
classes provided even

closer agreement to the de Alba - Zartman

results . The upper two of the six classes captured 66 of the 77 high

observations ; the 4 low observations were located by the lowest class .

( In discussion after the paper Professor Parzen mentioned that at

Texas A&M University also they had dealt with the analysis of bovine

estrus and found by spectral analysis that a filtered Poisson

process see , e.8 . , Parzen ( 1962 ) provided a good fit to the data . )

Now , having discussed some examples , let me
be a little more

specific about the model and the algorithm . ( More formal presentations

are found in Sclove ( 1983a , c , d ) . )
The

elements of the segmentation

model are the class-conditional time series or distributions , with their

parameters ;
the labels;labels ; and the transition probabilities between the

labels . Correspondingly , the algorithm alternates between estimation of

the distributional parameters, estimation of the labels , and estimation

of
the transition probabilities . That is , given a tentative labeling ,
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one can obtain tentative estimates of the parameters of the

class-conditional distributions and of the transition probabilities .

One then relabels the observations , using these updated parameter

estimates . The relabeling is done as follows : If X ( t )x ( t ) ( i.e. , if time

period t ) is currently labeled as class c , then x ( t+ 1 ) is labeled as

that class d for which the product

p ( c to d )f( x ( t+ 1 ) ld )

is maximal , where plc to d ) denotes the current estimate of the

probability of a transition from c to d and f ( x1d ) denotes the

tentatively estimated class - d probability density, evaluated at
X.

This makes sense because , under
the assumptions of the model ,

the

likelihood is the product of these terms .

To illustrate
the algorithm , let us consider a short, artificial

time series .

t :
1 2 3 4 5 6 7 8 9 10 11 12

x ( t ) : 1 113 1 2 1 2 6 7 1 11

Suppose it is specified that there are two classes and that the

class-conditional distributions are exponential. Suppose the initial

guesses of the parameters are equal prior probabilities for
the two

classes and means of
2 and 3. Then initially the class - conditional

f ( xla ) = ( 1/2 )exp( -x/2 ) f ( xlb )densities are taken as and

= ( 1/3 )exp ( -x/3 ) .
In the first iteration , using equal prior

probabilities of .5 , one labels
X as

having come from Class A if

.5f( xla ) > .5f( x1b ) , which simplifies to x < 2.43 . This gives the

following estimated labels at the end of the first iteration .
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t :
1 2 3 4 5 6 7 8 9 10 11 12

x ( t ) :
1

1 3 1 2 1 2 6 7 1 1 1

label : а а ь а a a
a b b a a a

Now the transition probabilities can be estimated from the sequence of

estimated labels . The 11 transitions are :
a to a , a to b , b to a ,

a to a , a to a , a to a , a to b , b to b , b to a , a to a , a to a .
These

give the following estimates of the transition probabilities .

p (a to a ) = 3/4 p (a to b ) = 1/4

p ( b to a ) = 2/3 plb to b ) = 1/3

The class means are estimated as follows (but see Section 6 : Plans for

Further Research , for a discussion of this point ) .

Mean of a's : ( 1 + 1 + 1 + 2 + 1 + 2 + 1 + 1 + 1 ) /9 = 11/9 = 1.22

Mean of b's : ( 3 + 6 + 7 ) /3 16/3 = 5.33

Now the condition for labeling the current x
as

" a " , given that
the

preceding x has been labeled as "a" , is

pla to b ) f( x1b ) < pla to a ) f( xla ) ,

or

( 1/4 ) ( 1 /5.33 ) exp ( -x/5.33 ) < ( 3/4 ) ( 1 / 1.22 )exp( -x/ 1.22 ) ,

which simplifies to x < 4.075 . Similarly , the condition for labeling x

as "a" , given that the preceding observation has been labeled as "b" , is

plb to b ) f ( xlb ) < prb to a ) f ( xla ) , which simplifies to
X < 1.24 .

These second-iteration classification rules change only the
label of

x (3 ) from "b" to "a" .

At this point let
me mention a possible improvement to the

algorithm . At the relabeling stage , where the labels are
re - estimated ,

based on tentative parameter estimates and transition probabilities , the
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problem is one of estimating a finite sequence , given the transition

probabilities . The dynamic programming approach to this problem is

known as the
Viterbi algorithm . (Forney ( 1971 ) is perhaps the most

readable reference on this ; the references Viterbi ( 1967 ,
Viterbi ( 1967 , 1971 ) and

also given . ) This approach will beViterbi and Odenwalder ( 1969 ) are

applied in the future . The present approach is perhaps somewhat simpler

but has its advantages . It adapts itself to operation in
the purely

sequential mode , and it is relatively easy to program .

An algorithm ,
such as the present one , which alternates between

optimizing different sets of variables ,
is known as a " relaxation "

method
( Southwell 1940 , 1946 ; Ortega and Rheinboldt 1970 ) .

In the

present case the different sets of variables are different parameters,

namely , the distributional parameters , the transition probabilities , and

the labels .

We note in passing that the EM algorithm -- see Dempster , Laird and

Rubin ( 1977 ) is such a relaxation method , where at the "E" step the

estimation is by expectation and at the " M " step the estimation is by

maximization .

An alternative approach to the presently-implemented relaxation

method would involve equating partial derivatives ofpartial derivatives of the likelihood

function
to zero and solving the resulting equations . It is clear that

results analogous to those of Wolfe ( 1970 ) will be obtained by
this

approach , with transition probabilitie
s

replacing
his mixture

probabilities.
be

In any case , the resulting equations have to
solved

by
an iterative , numerical method , and it is not clear whether it would

be any better than the the presently-implemented relaxation method .
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4. Image-segmentation experiments

Conventional approaches toto segmentation ( see , e.g. , Ahuja and

Rosenfeld ( 1982 ) for a survey of image models ) include ordinary

clustering ; edge detectors
such as the two -dimensional filters of

Irwin Sobel or Judy Prewitt ; and
a pixel - labeling method that has

( perhaps inaccurately ) been called a relaxation method .
This involves

updating the current estimate of

Pr ( label of t is c data ) ,

the ( conditional ) probability that the true label of pixel t is class c ,

given the data , by an updated version of these estimated probabilities ,

where the updating takes into account the current labels of neighboring

pixels . This is done by means of " compatibility coefficients , "

measuring the consistency of label c for pixel t with the current

labelings of neighboring pixels . ( See, e.g. , Eklundh , Yamamoto and

Rosenfeld 1980. ) More precisely , to estimate Pr (label of t is cldata ),

one moves from stage s- 1 to stage s as follows . Let

Pr ( label of t is cldata ; s )

be the s-th stage estimate .
Then

Pr ( label of t is cldata ; s )

Pr ( label of t is c ) | data ; 3-1 ) c ( t , c ; s- 1 ) /C ,

where с
is a normalizing factor equal to the sum of the denominators

in this expression and c ( t , c ; s- 1 ) is the compatibility coefficient ;

e.8 . , c ( t , c ; s- 1 ) could be related to estimated transition probabilities

for the labels or taken as the proportion of the neighbors of pixel t

which are labeled с at stage 5-1 . A problem with this relaxation
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method , noted by various researchers , is that the image gets good ,
then

" fades , " so there is a problem of knowing when to stop the iteration .

This approach is intuitively attractive .
The approach I use seems

to have the same intuitive attraction , plus the advantage of being

embedded in a
Markov model which gives a likelihood function , putting

the problem in the context of parameter estimation
in

a probability

model and making performance evaluation possible . ( For instance , one

can consider asking questions such as , " What if we worked with

first-order neighbors and the model were really second-order?"
I'm not

saying that such questions are easy to answer ; I'm merely stating that

it is only in
the presence of a model that their formulation is even

possible . )

The idea of the model in the case of images is the same as for time

series , but the transition matrix is more complicated .
The transition

probabilities are , even in the simplest , first-order , one-sided case

( where one conditions only on pixels to the north and west of the given

pixel , rather than those to the north , west , south , and east ) , functions

pl ( c , d ) to e ) of three arguments , where this represents the probability

of a transition to class e in pixel t , given that the pixel to the north

of t is class c and the pixel to the west of t is class d . ( The Markov

approach used here is not unrelated to that presented by Professor

Grenander at
this conference (Grenander 1985 ;

see also Grenander

1983 ) . ] The segmentation algorithm discussed in the present paper , like

the " relaxation " method using compatibility coefficients , also has the

property
that each iteration is not necessarily

necessarily better than the

preceding , but there is a likelihood value
associated with each
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iteration , and these values can be used to pick out the best iteration .

Here are results of some experiments with the segmentation

algorithm .

The Fisher iris data consist of 4 variables observed for each of

150 irises , 50
in each of three species . In order to form an

experimental image ,
these 150

were arranged into 15 rows of 10 ,
the

first 5 rows being species 1 , rows 6-10 being species 2 , and rows
11-15

being species 3. Thus the true segmentation looks like this .

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
1

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

The measurements on flowers 50 , 100 , and 150 were used as initial

estimates for the distributional
parameters, namely , means of

multivariate normal distributions . А Common covariance matrix was

assumed . (Actually, statistical tests and model - selection criteria

suggest that different covariance matrices should be used ; my algorithms

do allow for this . ) The initial estimate of the common covariance was

taken to be proportional to the identity matrix . Equal prior

probabilities for the three classes were assumed as initial estimates .

After onlyonly three iterations , no label
changed . The segmentation
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obtained was as follows .

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

2 3 2 3 2 3 2 3 2 3

2 2 2 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

Experiments
were run with different configurations of these data .

Below is the true configuration for Experiment
1 . The four -by - four

block
of 2's in the middle can be thought of as a target to be located .

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 2 2 2 2 1 1 1

1 1 1 2 2 2 2 1 1 1

3 3 3 2 2 2 2 3 3 3

3 3 3 2 2 2 2 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

The segmentation produced was as follows .

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 3 2 3 2 1 1 1

1 1 1 3 2 2 2 1 1 1

3 3 3 2 2 2 2 3 3 3

2 3 3 2 2 2 2 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3
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The following was the true configuration for Experiment 2 .
Note

the small " target " of four 2's .

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 1 1 1 1

3 3 3 3 2 2 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

The segmentation obtained was as follows .

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 3 2 1 1 1 1

3 3 3 3 3 2 3 3 2 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

Note the algorithm worked reasonably well in detecting even a small

sametarget , even with the
initial (equal) estimates of prior

probabilities , quite different from the true probabilities of .48 , .04 ,

.48 for the three classes . Thus perhaps the algorithm will not have to

be well " tuned " in order to work well .

Note there are problems at the northwest edges , due to the way
the

algorithm is set up . In future software development I might program a

procedure analogous to Box and Jenkins ' back - forecasting ( " backcasting " )

to take care of this .
Then , after a first segmentation , the data would

be
read through in reverse order ,

SO that northwest pixels become

southeast pixels , easy to label correctly .
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5. Model - selection criteria

A question of obvious importance is that of
how many classes of

segment to use , that is , what should be the value of the parameter k?

Maximum likelihood estimation alone cannot provide an answer , because it

is model-conditional ; that is , maximum likelihood applies to the problem

of estimating the other parameters , for a fixed value of k .
It does not

apply to the problem of estimating k
because the likelihood itself

changes as
k does . An approach to the problem of estimation of k is

provided by model-selection criteria , such
as Akaike's , Schwarz ' and

Kashyap's . These
criteria add a penalty for using extra parameters to

the negative log -likelihood function . Thus a small score is a good

score on these criteria . Akaike's criterion is based on a heuristic

estimate of the cross-entropy of the true model and the model with k

classes . ( See Parzen , 1982. ) Schwarz ' criterion , perhaps more

convincing , is based on a Bayesian approach . Kashyap obtains Schwarz '

criterion by a relatively simple expansion , then takes this expansion a

term further to obtain another criterion , which
I

call Kashyap's

criterion . The additional term
seems to be particularly meaningful.

These model - selection criteria take the form

-2 log L ( k ) + a ( n )m (k ) + b (k ) ,

where "log" here denotes the natural (base - e ) logarithm , and

L (k ) likelihood under the k-th model, maximized

with respect to the parameters ,

a ( n ) : 2 , for all n , b (k ) 0 , for Akaike's criterion ,

a (n ) log n , b ( k ) 0 , for Schwarz ' criterion ,

a ( n ) log n , b ( k ) log [ det B(k ) , for Kashyap's criterion ,

det
determinant ,
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and

B ( k ) matrix of second partial derivatives of

with respect to the parameters.

log L ( k )

( The mathematical expectation of B ( k )
is the Fisher information

matrix . )
The optimal k is that value which minimizes the criterion .

Akaike's criterion generally chooses а higher value of k ( more

parameters ) than do the others . Since for n greater than 8 , log n is

greater than 2 , Schwarz ' criterion will choose a value of k no larger

than that chosen by Akaike's , for n greater than 8 .

6 . Plans for further research

Several items for future research have already been mentioned ,

including programming of backcasting and use of the Viterbi algorithm .

Some other plans for additional research will be mentioned now .

First there is the matter of improved estimation of the distributional

parameters .
For purposes of

discussion focus on
the example of

segmenting a
time series into two classes , i.e. , labeling

each

as anobservation
" a " or a "b . " There is a truncation resulting from

the present implementation of the algorithm . Namely , only those

observations labeled " a " will be used in updating the current estimate

of the mean of Class A. But these observations are a truncated sample

from Distribution A , and the algorithm does not treat them as such . ( At

the Conference , Professor Tukey very kindly sought me out the day after

my presentation to point this out to me , and also to remark on the

limitations of the unidirectional approach of the algorithm ; see below . )

Rather than
deal with the truncation per se , I had planned in the next

stage of the work to modify the estimators byby doing them Bayesianly ,
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e.g. , estimate the mean of Group A as N/D , where

N x ( 1 ) Pr ( a ) x ( 1 ) ) + x ( 2 ) Pr (a ) x ( 2 ) ) + + x (n ) Pr (a ) x ( n ) )

and

D = ( Pr (alx ( 1 ) ) + Pr ( a ) x ( 2 ) ) + ... + Pr (a ) x ( n ) ) )

( In this expression , Pr ( alx ) can be replaced by Pr ( xla ) since Pr (alx ) =

f ( x / a ) Pr ( a ) /f ( x ) and Pr ( a ) / f ( x ) is a common factor which will cancel

out . ) In this estimate , all the observations playplay a role , whether

labeled as " a " or " b , " so that at least some of the bias will be removed

by allowing the larger " b " observations to enter .

I obtain the likelihood function by
a one-sided approach ,

conditioning any given pixel on the results in the pixels to its north

and west . A two - sided , full neighborhood approach seems preferable to a

unidirectional one . The unidirectional approach is a device for writing

down the likelihood , but this does not mean one has to be wedded to that

approach in the iterative updating . That is , the parameters can be

estimated with a full neighborhood approach .

Another bit of further research is to calculate Kashyap's criterion

for various clustering and segmentation models . Also , SO far the

method , algorithm and software have been developed only for the case

where the observations within a class are independent ( and Gaussian ) . A

next step will be autoregression within classes . This is of obvious

importance in time series , and in the context of images , it can be used

to model textures . Still another generalization is to allow some

forms

of time or state dependency in the transition probabilities .
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RECENT RESEARCH IN EXPERIMENTAL DESIGN FOR QUALITY IMPROVEMENT

WITH APPLICATIONS TO LOGISTICS

George E. P. Box

1 . LOGISTICS AND QUALITY CONTROL

A traditional philosophy of quality control has been to " inspect bad

quality out" and indeed there are famous military standards that employ this

philosophy W. Edwards Deming ( 1982 ) has likened this to making toast

according to the recipe "you burn it and I'll scrape it " , and has urged the

alternative philosophy of assuring that good quality has been built in to the

product in the first place . In particular he attributes to the latter

philosophy the success of Japanese industry in producing high quality products

at low cost . A typical example of the dramatic consequences that have been

attributed to these differences of approach are the air-conditioner defect

rates shown in Table 1 and quoted by David Garvin ( 1983 ) .

( In the factory :

Total

Leaks

Electrical

Assembly line defects per 100 units )

American
Japanese

63.5 0.95

3.1 0.12

3.3 0.12

( In the field :

Total

Compressors

Thermostats

Fan motors

Service call rate per 100 units under

first year warranty coverage )

American Japanese

10.5 0.6

1.0 0.05

1.4 0.002

0.5 0.028

TABLE 1 .
Defect rates in US and Japanese air conditioners

Similar comparisons have been made between defect rates in American and

Japanese automobiles .

The same United States industry that makes air conditioners and motor

vehicles also makes military hardware . It seems clear therefore that a major

change in quality philosophy could produce a major improvement in the

reliability of the Army's equipment . The philosophy of "building quality in "

employs a policy of never ending quality improvement which may be typified in

terms of the traditional statistical model

Sponsored by the United States Army under Contract No.
DAAG29-80 - C - 0041 .
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f ( x ) te

e

y = f ( xy ?

where у 13 a quality characteristic believed to depend on a set of variables

denoted by 1 whose identity is known , and is the difference Y - £ 181 )

usually referred to as error . ( Such " errors" are often somewhat arbitrarily

imbued by the theoretician with properties of randomness , normality

independence and homoscedasticity ) . In reality e is a function elxz? of a

number of additional
variables , 2 say , which affect the system but whose

identity is usually unknown . In general , quality improvement
is achieved by

transferring
elements of the unknown factor vector into the known factor

vector
21

as indicated below

X2

f ( x ) + elxz '

known unknown

The effect of such transfer is two-fold

( 1 )
to reveal effects of previously unknown factors which may then be

adjusted to levels yielding higher quality and/or used to control the

process .

( 11 )
to remove variation previously caused by haphazard changes in these

factors .

Some of the statistical techniques which contribute to this transfer are

quality control charting ( including Shewhart , Cusum , Pareto and Fishbone

charts ) and designed experimentation on line and offline ( employing in

different and 2720piate contexts factorial , fractional factorial and

orthogonal array designs , evolutionary operation and response surface

methods ) .

2 . SCIENTIFIC METHOD AND QUALITY

Charting and experimentation are examples respectively of passive

surveillance and active intervention both of which are important elements in

scientific method which it is desirable to consider further .

Humans differ from other animals most remarkably in their ability to

learn . It is clear that although throughout the history of mankind

technological learning has taken place , until three or four hundred years ago

change occurred very slowly . One reason for this was that in order to learn

something - for example , how to make fire or champagne - two rare events

needed to coincide : ( a ) an informative event had to occur , and ( b ) a person

able to draw logical conclusions and to act on them had to be aware of that

informative event .

Passive surveillance is a way of increasing the probability that the rare

informative event will be constructively taken note of and is exemplified by

quality charting methods . Thus a Shewhart chart is a means to ensure that
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possibly informative events are brought to the attention of those who may be

able to discover in them an " assignable cause " ( Shewhart 1931 ) and act

appropriately .

Active intervention by experimentation ains , in addition , to increase the

probability of an informative event actually occurring. A designed experiment

conducted by a qualified experimenter can dramatically increase the

probability of learning because it increases simultaneously the probability of

an informative event occurring and also the probability of the event being

constructively witnessed . Recently there has been much use of experimental

design in Japanese industry particularly by Genichi Taguchi ( Taguchi and Wu

( 1980 ) ) and his followers . In off-line experimentation he has in particular

emphasized the use of highly fractionated designs and orthogonal arrays and

the minimization of variance .

In the remainder of this paper we briefly outline some recent research on

the use of experimental design in the improvement of quality .

3 . USE OF SCREENING DESIGNS TO IMPROVE QUALITY

Table 2 shows in summary a highly fractionated two - level factorial design

employed as a screening design in an off-line welding experiment performed by

the National Railway Corporation of Japan ( Taguchi and Wu , 1980 ) .

column to the right of the table is shown the observed tensile strength of the

weld , one of several quality characteristics measured .

and e2

The design was chosen on the assumption that in addition to main effects

only the two - factc : interactions AC , AG , AH , ani GH were expected to be

present . On that supposition , all nine main effects and the four selected

two - factor interactions can be separately estimated by appropriate orthogonal

contrasts , the two remaining contrasts corresponding to the columns labelled

e 1
measure only experimental error . Below the table are shown the

grand average , the fifteen effect contrasts , and the effects plotted on a dot

diagram . When the effects are plotted on normal probability paper , thirteen

of them plot roughly as a straight line but the remaining two , corresponding

to the main effects for factors B and C , fall markedly off the line ,

suggesting that over the ranges studied , only factors B and с affect

tensile location by amounts not readily attributed to noise .

If this conjecture is true , then , at least approximately , the sixteen

runs could be regarded as four replications of a 2 " factorial design in

factors B and C only . However , when the results are plotted in Figure 1

so as to reflect this , inspection suggests the existence of a dramatic effect

of a different kind when factor C is at its plus level the spread of the

* 10 facilitate later discussion we have set out the design and labelled the

levels somewhat differently from Taguchi .
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data appears much larger* than when it is at its minus level . Thus , in

addition to detecting shifts in location due to B andand C , the experiment

may also have detected what we will call a dispersion effect due to C. The

example raises the general possibility
of analyzing unreplicated

designs for

dispersion effects as well as for the more usual location effects .

1

40 42 46 40 42 44 46

M

t

1

1

1

so 42 44 46 40 42 46

+

Drying period B

Figure 1 .
22 factorial

Tensile data as four replicates of a

design in factors B and C only .

Data of this kind might be accounted for by the effect of one or more

variables other than B that affected tensile strength only at the "plus

level" of C ( only when the alternative material was used ) . Analysis of the

eight runs made at the plus level of c does not support this possibility ,

however .
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4 . RATIONALES FOR USING SCREENING DESIGNS

Before proceeding we need to consider the question , " In what situations

are screening designs , such as highly fractionated factorials , useful? "

4.1 . Effect Sparsity

A common industrial problem is to find from a rather large number of

factors those few that are responsible for large effects . The idea is

comparable to that which motivates the use in quality control studies of the

" Pareto diagram . " ( See , for example , Ishikawa ( 1976 ) ) . The situation is

approximated by postulating that only a small proportion of effects will be

"active" and the rest " inert " . We call this the postulate of effect

sparsity For studying such situations , higly fractionated designs and other

orthogonal arrays ( Finney ( 1945 ) , Plackett and Burman ( 1946 ) , Rao ( 1947 ) ,

Taguchi and Wu ( 1980 ) ) which can screen moderately large numbers of variables

in rather few runs are of great interest . Two main rationalizations have been

suggested for the use of these designs; both ideas rely on the postulate of

effect sparsity but in somewhat different ways .

4.2 . Rationale Based on Prior Selection of Important Interactions

It is argued ( see for example Davies ( 1954 ) ) that in some circumstances

physical knowledge of the process will make only a - few interactions likely and

that the remainder may be assumed negligible . For example , in the welding

experiment described above there were 36 possible two - factor interactions

between the nine factors , but only four were regarded as likely , leaving 32

such interactions assumed negligible . The dificulty with this idea is that

in many applications the picking out of a few " iikely" interactions is

difficult if not impossible . Indeed the investigator might justifiably

protest that , in the circumstance where an experiment is needed to determine

which first order (main ) effects are important , it is illogical that he be

expected to guess in advance which effects of second order ( interactions ) are

important .

4.3 .
Projective Rationale Factor Sparsity

A somewhat different notion is that of factor sparsity . Thus suppose

that , of the k factors considered , only a small subset of unknown size d ,

whose identity is however unknown , will be active in providing main effects

and interactions within that subset . Arguing as in Box and Hunter ( 1961 ) a

two - level design enabling us to study such a system is a fraction of

resolution R * d + 1 ( or in the terminology of Rao ( 1947 ) an array of

strength d ) which, produces complete factorials ( possibly replicated ) in

d = R - 1 dimensions . For example , we have

seen that on the assumption that only factors B and с are important , the

welding design could be regarded as four replicates of a 22 factorial in

just those two factors . But because the design is of resolution R : 3 the

same would have been true for any of the 36 choices of two out of the nine

factors tested . Thus the design would be appropriate if it were believed that

not more than two of the factors were likely to be "active" .

everyone of the (5) spacesof
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Columns
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15

( a )
215-1

1

III

8-4

( b )
2
IV

5-1

( c )

( d ) 24

TABLE 3 . Some alternative uses of the orthogonal array of Table 2 .

For further illustration we consider again the sixteen - run orthogonal

array of Table 2 and , adopting a roman subscript to denote the resolution R

of the design , we indicate in Table 3 various ways in which that array might

be used . It may be shown that

2
III

( a ) If we associated the fifteen contrast columns of the design with

fifteen factors , we would generate a

15-11

design providing four- fold

replication of 2 factorials in every one of the 105 two - dimensional

projections .

( b ) If we associated only columns 1, 2 , 4 , 7 , 8 , 11 , 13 , and 14 with

eight factors we would agenerate a 2iv design providing two-fold

replication of 23 factorials in every one of the 56 three - dimensional

projections .

( ci If we assuciated only columns 1 , 2 , 4 , ö , and 15 with five factors

5-1

we would generate a design providing a factorial in every one of

the four - dimensional projections .

?

2
9

( d ) If we associated only columns 1 , 2 , 4 , and 8 with four factors we

would obtain the complete 24 design from which this orthogonal array was in

fact generated .

9-5

2
III

Designs ( a ) , ( b ) and ( c ) would thus be appropriate for situations where we

believed respectively that not more than 2 , 3 , or 4 factors would be

active Notice that intermediate values of k could be accommodated by

suitably omitting certain columns . Thus the welding design is a

arrangement which can be obtained by omitting 6 columns from the complete

Notice finally that for intermediate designs we can take advantage of
' III

both rationales by arranging , as was done for the welding design , that

particular interactions are isolated .

.

The designs give partial coverage for a larger number of factors , for example

( Box and Hunter ( 1961 ) ) 56 of the 70 four-dimensional projections of the

28-4

IV

yield a full factorial in four variables .
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A discussion of the iterative model building process by Box and Jenkins

( 1970 ) characterized three steps in the iterative data analysis cycle

indicated below

identification fitting diagnostic checking

r

Most of the present paper is concerned with model identification - the search

for a model worthy to be formally entertained and fitted by an efficient

procedure such as maximum likelihood . The situation we now address concerns

the analysis of fractional designs such as the welding design in the above

context when only a few of the factors are likely to have effects but these

may include dispersion effects as well as location effects .

DISPERSION EFFECTS

si

We again use the design of Table 2 for illustration . There are 16 runs

from which 16 quantities the average and 15 effect contrasts -- have been

calculated . Now if we were also interested in possible dispersion effects we

could also calculate 15 variance ratios . For example , in column 1 we can

2

compute the sample variance

for thoseobservations associated with a

minus sign and compare it with the sample variance
S9+ , for observations

associated with a plus sign to provide the ratio F , **sx_/sit. If this is

done for the welding data we obtain values for inF1* given in Figure 21a ) .

It will be recalled that in the earlier analysis a large dispersion effect

associated with factor с ( column 15 ) was found , but in Figure 2 ( a ) the

effect for facius C is not especially extreme , instead the dispersion effecü

for factor D ( column 1 ) stands out from all the rest . This misleading

indication occurs because we have not so far taken account of the aliasing of

location and dispersion effects . Since sixteen linearly independent location

effects have already been calculated for the original data , calculated

dispersion effects must be functions of these . Recently ( Box and Meyer 1984a )

a general theory of location-dispersion aliasing has been obtained for

factorials and fractional factorials at two levels . For illustration , in this

particular example it turns out that the following identity exists for the

dispersion effect F11 that is the F ratio associated with factor D and

hence for column 1 of the design .

P1
( 1 )2-3)*+(4+5)*+(6-7 ) +(8-9)2+(10-11)2+(12-1312

+ + (14-15 )

( 2 +3,2+ +5,2+ (6 +7 ; 2+ 18 +9,2+ 10 + 11,2 + 112 + 13,2+ 14 + 15,2

14
is - Ĉ

Now ( see Table 2 ) * B8 2.15 and - C = 3.10 are the two largest

location effects , standing out from all the others . The extreme value of F ,

associated with an apparent dispersion effect of factor D ( 1 ) is largely

In this figure familiar normal theory significance levels are also shown .

Obviously the necessary assumptions are not satisfied in this case , but these

percentages provide a rough indication of magnitude .

299



5
9

C
o
l
u
m
n

E
f
f
e
c
t

e
n
PP
L

1 2

D

2
.
7
2

-
.
1
4

3

•1

.
1
0

G
I
L

7

A
C

2
6

8 a

.
2
5

1
0

A
H

.
3
7

1
1

e
z

.
4
2

1
2

A
G

.
1
7

1
3
1
4

.
1
5

JBC

.
1
3

.-1
3 :5
1

.
4
1
•3
7

.
5
0

.
2
3

c(1
5

)

D(1)

1

-
1

0
1

2
3 0
.
1
4

l
u

.
.
0
3

1
.
8
1

.
2
3

1
.
0
6

-
.
8
9

.
6
4

-
.
7
0

-
.
7
1

.
6
5

-,9
0

-
.
9
0

1
.
0
7

.
1
2

1
.
6
3

-
.
1
9

2
.
9
2

b

(2)
f
r
2

(1
5

)

ed

-
1

0
1

2
3

F
i
g
u
r
e

2
.
W
e
l
d
i
n
g

e
x
p
e
r
i
m
e
n
t

l
o
g

d
i
s
p
e
r
s
i
o
n

e
f
f
e
c
t
s

(a)b
e
f
o
r
e

,a
n
d

(b)a
f
t
o
r

e
l
i
m
i
n
a
t
i
o
n

o
f
l
o
c
a
t
i
o
n

e
f
f
e
c
t
s

f
o
r

Ba
n
d

C
.

300



8

accounted for by the squared sum and squared difference of the location

effects B and C which appear respectively as the last terms in the

denominator and numerator of equation ( 1 ) . A natural way to proceed is to

compute variances from the residuals obtained after eliminating large location

effects . After such elimination the alias relations of equation ( 1 ) remain

the same except that location effects from eliminated variables drop out .

That is zeros are substituted for eliminated variables . Variance analysis for

the residuals after eliminating effects of B and с are shown in Figure

21b ) . The dispersion effect associated with C ( factor 15 ) is now correctly

indicated as extreme . It is shown in the paper referenced above how , more

generally , under circumstances of effect sparsity a location-dispersion model

may be correctly identified when a few effects of both kinds are present .

6 . ANALYSIS OF UNREPLICATED FRACTIONAL DESIGNS

Another important problem in the analysis of unreplicated fractional

designs and other orthogonal arrays concerns the picking out of " active"

factors . A serious difficulty is that with unreplicated fractional designs no

simple estimate of the experimental error variance against which to judge the

effects is available .

In one valuable procedure due to Cuthbert Daniel ( 1959 , 1976 ) effects are

plotted on Normal probability_paper . For illustration Table 4 shows the

calculated effects from a design used in an experiment on injection

molding ( Box , Hunter and Hunter , 1978 , p . 399 ) . These effects are plotted on

normal probability paper in Figure 3 .

2 IV

• -0.7 + 1

T2
- -0.1 + 2

T3
5.5 + 3

-0.3 + 4

15
• -3.8 + 5

T6
2 -0.1 + 6

12
0.6 + 7

Tg
1.2 + 8

IA

mold temp

moisture content

holding pressure

cavity thickness

booster pressure

cycle time

gate size

screw speed

19 11.2

110 T1.3

1,1 T1.4

T12 •
T1.5

T13

T14 -
11.7

=
11.8

= -0.6 + 1.2 + 3.7 + 4.8 + 5.6

0.9 + 1.3 + 2.7 + 4.6 + 5.8

= -0.4 + 1.4 + 2.8 + 3.6 + 5.7

4.6 + 1.5 + 2.6 + 3.8 + 4.7

3 -0.3 + 1.6 + 2.5 + 3.4 + 7.8

• -0.2 + 1.7 + 2.3 + 6.8 + 4.5

5 -0.6 + 1.8 + 2.4 + 3.5 + 6.7

11.6

T15

TABLE 4 . Calculated effects from a

8-4

2IV
design showing

alias structure assuming three factor and higher order

interactions negligible . Injection molding experiment .
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5
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InjectionFigure 3. Normal plot of effects .

molding experiment .
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Let

An alternative Bayesian approach (Box and Meyer , 1984b ) is as follows :

77.720..only

be standardized effects with

if effect active

T4 ex 1f effect inert

Ti * +111

+ N ( 0,0 % ) ,

o2 +

21 N10.0.23 k?

2

+ 0

e

Suppose the probability that an effect is active is

a ( r ) :

Let a ( r ) be the event that a particular set of r of the
factors

are active , and let Iir ) be the vector of estimated effects corresponding to

active factors of Then , ( Box and Tiao , 1968 ) with plo ) the

posterior probability that Irr ) are the only active effects is :

- Ž

Pla , a

k

where Six ) = fic ,f ( t ) and
S = I'm . In particular the marginal probability

that an effect i is active give T , a and k is proportional to

S

< -
a
l

lo

-
1

( 1 -
S

ak
- 을

Spy( 1 - 11

& (3 )

k

i active

A study of the fractional factorials appearing in Davies ( 1954 ) , Daniel

( 1976 ) and Box , Hunter and Hunter ( 1978 ) suggested that might range from

0.15-0.45 while k might range from 5 to 15 . The posterior probabilities

computed with the ( roughly average ) values . a = 0.30 and k = 10 are shown

in Figure 4 ( a ) in which N denotes the probability ( negligible for this

example ) that there are no active effects . The results from a sensitivity

analysis in which Q and k were altered to vary over the ranges mentioned

above is shown in Figure 4 ( b ) .

It will be seen that Figure 4 ( a ) points to the conclusion that active

effects are associated with columns 3 , 5 and 12 of the design and that column

8 might possibly also be associated with an active factor . Figure 4 ( b )

suggests that this conclusion is very little affected by widely different

choices for a and k . Further research with different choices of prior ,

with marginization with respect to k , and with different choices of the

distribution assumptions is being conducted .

For three-level and mixed two and three level designs for example , this

analysis is carried out after the effects are scaled so that they all have

equal variances .

303



3
12

5

1.0

Posterior

Probability

0.5

8

w

N 1 2 3 4 5 6
7 8 9 10 11 12 13 14 15

Figure 4 (a)
Welding experiment . Posterior probability that factor

i is active (a : 0.30 , k = 10 ) .
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Figure 4 (b) Sensitivity analysis for posterior probability

a • .15 - .45 , k - 5 - 15 .
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7 . OTHER RESEARCH

Topics which are emphasized in Taguchi's approach to "off line quality

control" are ( a ) reduction of variation by error transmission studies and ( b )

the choosing of a product design so that it is robust with respect to

environmental variables .

These topics are also receiving attention in further research .
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ABSTRACT . Section 794 of the 1984 Defense Appropriations Act requires

written guarantees from prime contractors that weapon systems were designed

and manufactured to conform to the government's performance requirements .

While warranties covering defects in material and workmanship and even product

performance agreements with contingent liabilities extending up to 5 years

are not new on defense equipment , the scope of this law far exceeds past

contracting regulations . Since compliance must be determined using

operational experience rather than controlled test data , the experimental

design , data collection , screening and analysis techniques are all critical

aspects in negotiating agreements . Technical problems also arise on certain

types of equipment where the data collected must be from surrogate

population or some subset of the population whose performance may be affected

by non- uniform environmental or operational conditions .

a

а on

INTRODUCTION AND CLINICAL POCUS . The aspect that was most disturbing

to the Department of Defense in Section 794 was not the requirement to cover

defects in material and workmanship but the ambiguous aspect of the law

requiring contractors to provide written guarantee weapon system

performance . Much of the initial activity responding to this requirement

has centered around the potential legal ramifications of contractors accepting

long - term contingent liabilities for the operational performance of their

products . The underlying technical issue that lies at the heart of any

commitment to guarantee weapon system performance has been largely ignored

to date . The basic issue that needs to be understood is how does the

requirement dictated by legislation change the way in which the Government

determines that a contractor's product meets specified performance

requirements in satisfying a military need . Therefore , the focus should

really be onon developing sound experimental designs when planning contract

strategies so that an adequate evaluation can be made of both proposed

warranty price as well as contingent risk and liabilities .

II . BASIS OF THE REQUIREMENT. The Department of Defense issued guidance

on 14 March 1984 to attempt to clarify the nature of the requirement . The

guidance specified that there would be two types of weapon system guarantees ,

both contained within a single contract . The first of these written

guarantees is for conformance to specified performance requirements . Failure

to meet the guarantee evident through either test or demonstration or

in operational use over some specified period of time , would require the

contractor to design and manufacture the system to satisfy performance

shortfalls or repair or replace parts at no increase in price to the

Government . The second written guarantee covers freedom from all defects

as
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may be a

in material and workmanship applicable to all end items for a specified

period of time . Failure to meet guarantee would require repair or

replacement of components at cost to the Government . The duration of

each guarantee different within given contract . There is a

requirement for guarantee costs to be evaluated considering both the potential

benefits and total cost to the Government . Contracting officers may include

clauses to limit the contractor's total liability for guarantees and require

guarantees at the component level where it is neither cost effective or

feasible at the weapon system level .

III .

а

are

CURRENT ACCEPTANCE PROCEDURES . In order to understand the

potential impact of this requirement it is necessary to briefly review how

the Government determines acceptability of weapon system performance

requirements currently . In most cases the Government establishes performance

requirements through incorporation into a system- level specification . Upon

award of a development contract , the system design evolves to achieve the

performance requirements stated by the Government . The systems engineering

process is the overall mechanism that translates Government specified

requirements into delivered product useable by the Armed Forces of the

United States . During the development program there a series of

configuration audits in which the contractor's design approach is reviewed

by the Government . The Government implicitly accepts the contractor's design

approach through an evolution on ongoing efforts during development such

as conduct of paper studies , prototype evaluations , and developmental test

results provided at scheduled design reviews . At the functional configuration

audit , the contractor provides "design -to " documentation including allocated

specifications , drawings , test results , and proposed acceptance test

procedures for approval by the Government . Government approval of the results

of the functional configuratio
n audit is an indication that the contractor's

design approach will meet the requirements of the contract including the

performance specificatio
ns . It should be noted that there is an implicit

acceptance of the technical risk associated with meeting the performance

requirements at this point in the development process .. In similar manner

the Government determines that the contractor is ready for production through

what is termed the physical configuratio
n audit . Information supporting

manufacturin
g

readiness includes manufacturin
g

plans , product assurance

plans , initial operational test results and product readiness reviews . Upon

acceptance of the product baseline , again documentatio
n consisting of

specificatio
ns , test results , and acceptance test procedures , the Government

determines that system or component will meetwill meet the requirements of the

contract for production . As items are produced , the Government determines

compliance with the approved " design - to " and product baseline through

acceptance testing and inspection .inspection . In summary , except for latent defects ,

fraud misrepresentation , well as short - term liability for defects

in materials and workmanship covered under correction of deficiencies

the Government becomes the self - insurer with respect to the use of the product

in the operational environment . That is , the Government accepts the risk

of the adequacy of design to meet specified performance requirements .

а

or as

а

aIV . WHAT'S DIFFERENT ? A written guarantee or warranty survives

acceptance of the product by thethe Government . That is , the acceptability

of the product to meet specified performance requirements and be free from
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some

may be

defects in material and workmanship may extend for a period of time during

the operational use of the delivered system . Instead of determining the

acceptability of the product based developmental test results in a

relatively well controlled environment , the full acceptance that performance

as evident through design and manufacture is now delayed for verification

in the operational environment . The basic design and manufacturing process

is the same but there could be
fundamental changes that may affect

the development effort including ( 1 )effort including ( 1 ) Government performance goals

lower to recognize increased risk in determining compliance in the operational

environment ; ( 2 ) the contractor's design approach may be conservative

using proven technologies to reduce the contingent liability ; ( 3 ) additional

development and operational testing may be proposed during the full - scale

development effort to reduce the technical risk of failed products that

do not meet the performance requirements ; and ( 4 ) development contract costs

may increase because of the increased testing efforts noted and increased

emphasis on product assurance activities ( minimizing the
consequence of

significant performance shortfalls of delivered systems in the operational

environment ) .

more

An end result , however , the contractor's post acceptance liability

increases because the technical risk that a product meets the performance

requirements of the contract has been shifted to some extent from the

development phase into the post delivery period for both specified performance

requirements and defects in material and workmanship . A comparison of key

characteristics that drive this technical risk include ( 1 ) an evaluation

in the operational vs controlled environment ; ( 2 ) operation by " green suiter"

and maintainers compared to highly skilled engineers and technicians ; ( 3 )

extended commitments of up to five years vs as low as 90 days ; ( 4 ) the need

to use operational weapon system related diagnostic equipment test

instrumentation ;
and

( 5 ) dependence standard service data reporting

information to determine compliance in comparison with special data collection

procedures used in a controlled test environment .

VS

on

CLINICAL CHALLENGE . As described above , procedures used to determine

the acceptability of products in the development process using the results

of relatively controlled testing and inspection is well defined . The

requirements generated by Section 794 of the 1984 Defense Appropriations

Act shift the determination of compliance from the development process into

the operational environment . The problem is to determine experimental design

guidelines for evaluation of products in the operational environment . Some

issues relative to the development of large - scale experimental designs and

anticipated results should consider : ( 1 ) using the total delivered population

to collect results or a selected sample of items that could be more closely

controlled ; ( 2 )( 2 ) the desirability . of sequential testing for risk reduction

throughout the extended production delivery period of a program ; ( 3 ) methods

used to relate the reported performance of " pseudo " products to the warranted

population . This occurs mainly in areas where training devices used

during peacetime operations and reserve material may reside in deep

storage ; and , ( 5 ) experimental designs considering the economy in determining

compliance with full consideration of the risk of accepting poor performance

and rejecting poor quality products .

are

war
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SUMMARY . On 3 January 1985 , the Department of Defense issued Defense

Acquisition Circular 84-9 temporary regulation on the requirements

for warranties on equipment systems in compliance with the 1985 DOD

Authorization Act . Extensive warranties are now mandatory requirement

for DOD programs . This continuing requirement creates a challenge and

opportunity for mathematicians , statisticians and operations researchers

in support of the material acquisition process to provide experimental designs

using data from the operational environment determine compliance with

weapon system performance requirements .
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Abstract

The United States Army Training and Doctrine Command ( TRADOC ) performs

combat developments activities for the Army . The basis for establishing

future Army requirements is the Mission Area Analysis (MAA ) process . MAA

evaluate the capabilities of the programmed force against a threat projected

about five years beyond the end of the current program . The deficiencies

uncovered are integrated and prioritized in the Battlefield Development Plan

( BDP ) to put them in the perspective of the total battlefield . HQ TRADOC has

now developed a methodology to link materiel programs in the Army's Long Range

RDA Plan ( LRRDAP ) to BDP deficiencies and prioritize these programs based on

their contribution to resolving BDP deficiencies . The methodology employs set

theory to estimate the total relative worth of each program and establish its

relative priority . The methodology contributes to year-to -year consistency in

priorities that should yield greater efficiency in the Army's allocation of

resources to materiel projects .
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1. Introduction ,

The Army's Training and Doctrine Command ( TRADOC ) in partnership with the

Army's Materiel Command (AMC ) and HQDA are forging a coordinated effort to

improve the Army's materiel development and acquisition cycle . TRADOC'S

Mission Area Analysis (MAA ) , Battlefield Development Plan ( BDP ) and the Army's

Long Range Research Development and Acquisition Plan ( LRRDAP ) provides the

roadmap for structuring and equipping the Army of the future . These processes

provide the means by which the Army can consider future requirements into the

Planning , Programming , Budgeting and Execution System for resource allocation.

In response to OMB Circular A - 109, AR 1000-1 tasks TRADOC with conducting

Mission Area Analysis to analytically support requirements for future Army

doctrine , training , organizational structure , and materiel . As part of the

Concept Based Requirements System (CBRS ) , TRADOC has divided the wartime

Battlefield mission into 13 mission areas . These mission areas serve as

building blocks for measuring the capabilities of the programed force in the

current Program Objectives Memorandum ( POM) to fight a successful battle

against a threat projected about 10 years into the future . These MAA and

their resulting deficiencies establish the battlefield needs / requirements . EQ

TRADOC in conjunction with its schools and centers and other major Army

commands integrates and prioritizes these deficiencies across all mission

areas into a single ordered list representing the broader perspective of the

total battlefield . In prior years , the BDP vas an end product . While

indirectly influencing the priorities of doctrinal literature , training

programs, force structure modifications , or materiel developments there was no

direct linkage which would provide an analytically based rationale for the

relative priorities of any of the Army's future developmental activities . In

1984 , TRADOC set out to correct this anomaly by developing a methodology to

establish the materiel priorities for battlefield systems in the Army's Long

Range Research , Development , and Acquisition Plan ( LRRDAP ) based on their

contribution toward resolving one or more of the deficiencies in the BDP . The

establishment of such a methodology will lend stability and crediability to

the priorities of the associated materiel programs while , at the same time

provide the audit trail back to the supporting analysis against the projected

threat . This methodology will therefore extend the total concept based

requirement system into the PPBES system ( see figure 1 ) . The quest for an

appropriate linkage methodology vas triggered by TRADOC Regulation 11-9 which

requires that the Studies and Analysis Directorate ( S &AD ) , Deputy Chief of

Staff for Combat Developments (DCSCD ) develop such a methodology for

prioritizing the LRRDAP based on BDP deficiencies . This paper highlights the

theoritical underpinnings and general procedures which resulted from this

methodology development ,
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figure 1

II. Methodology.

The priority of materiel programs should be directly related to the

priority of the BDP deficiencies they correct . Materiel programs that correct

an important battlefield deficiency should be higher on the materiel priority

list . This methodology attempts to directly establish this link . Because of

the broad and general nature of existing BDP deficiencies it is likely that

multiple materiel programs are associated with each deficiency . On the other

hand , the same materiel program could contribute to the solution of more than

one deficiency . This complication is considered and this methodology will

make the necessary adjustments for those cases . An example is show in

figure 2 .

BDP Def +

1 2 3 4 5 6

... 76 227.

A

B X XMateriel

Programs

C X X X X

D X

E

figure 2
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In this case , program A contributes to the resolution of BDP deficiencies

Dumber 3 and 76 while program C contributes to four deficiencies and program B

to only one . As ve will establish later in the paper this does not in itself

justify that program C has more benefit to the Army . In the example , program

E is the only program which contributes to the resolution of deficiency

while each of the deficiencies affected by program C also has other programs

which make a contribution . As an additional factor in understanding the

mathematical foundation of the methodology , one must also consider the nature

of the BDP deficiencies which drive the prioritization effort .

BDP deficiencies are aggregations of specific MA deficiencies and as such

are sets of commonly related battlefield problems . While there are

approximately 1400 specific MA deficiencies in the MAA process , these are

aggregated into 227 BDP deficiencies which are them prioritized by a large

group of general officers . This group is representative of all combat

missions of the Army . Figure 3 shows the relationship of the 1400 specific MA

deficiencies which are aggregated into the 227 BDP deficiencies for

prioritization by the general officers .

MISSION AREA DEFICIENCIES 1400

bab
a

1901

BATTLEFIELD
DEFICIENCIES

X
X
X

figure 3
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Because BDP deficiencies are aggregations of specific mission area

deficiencies and each deficiency could require multiple programs for its

resolution , the mathematical concept of sets is appropriate . Having

established a set of materiel programs for the resolution of each BDP

deficiency (which itself is a set of the more specific MAA deficiencies ) the

methodology uses an underlying a 8 sumption that to the extent a materiel

program contributes to multiple BDP deficiencies , these deficiencies have

overlapping characteristics and there is some degree of commonality among

them .

The example ( figure 4 ) illustrates this idea . That is , if a materiel

program contributes to the solution of three BDP deficiencies ( BDP + 1 , BDP # 3

and BDP # 11) , then by fielding this program we are simultaneously solving a

fraction of all three deficiencies . The methodology must not over credit

a program's battlefield contribution by assuming that the set is disjoint .

PROGRAM CONTRIBUTION

BDP # 1

PROBLEM :

WHAT IS THE VALUE OF A MATERIEL PROGRAM

THAT CONTRIBUTES DIFFERENT AMOUNTS TO

DIFFERENT DEFICIENCIES?

BDP # 3

PROGRAM X

E.G. PROGRAM X CONTRIBUTES:

0.6 TO BDP # 1

0.4 TO BDP # 3

0.1 TO BDP #11

BDP # 11

figure 4

The question then arises about the degree of overlap . Since there is no

feasible method of quantitatively measuring this overlap , existing procedures

a 8 sume that it is propotional to the degree of contribution of the program to

each deficiency . This 8 8 8 umption appears to be not only reasonable but may be

also quite accurate , If a program makes a very large contribution to two

different deficiencies , they should show a significant degree of overlap in

the deficient battlefield functions addressed . On the other hand , a program

with a very minor contribution to two (or many ) deficiencies would establish

only a small degree of overlap among the deficiencies in question. The

mathematics to handle these phenomena utilize the vell know unior operations

applied to sets . In the example of figure 4 program X contributes 0.6 , 0.4 ,

and 0.1 to the three deficiencies . Therefore , the combined solution

(correction) to the three deficiencies is 0.78 not 1.10 ( .6 +64 +.1.1.1 ) .
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combined contribution = ( .6 ) +( .4 ) +( . 1 ) -( . 6 ) ( .4)-( .6 ) ( .1 )-( .4 ) ( . 1 )

+1.6 ) ( .4 ) ( . 1 )

0.784•

Another desired feature of the methodology vould account for the fact that

some materiel programs contribute to higher priority deficiencies (or groups

of deficiencies ) than others . For example , if two materiel programs

contribute an equal amount to different sets of deficiencies , the one

contributing to the higher priority set of deficiencies should have more

battlefield worth . This is illustrated for programs X and Y in figure 5 .

Both programs have the same amount of contribution ( .6 and .1 ) but the set of

deficiencies affected by program X is prioritized higher than the set affected

by program Y. In this case program X would be prioritized higher .

Program X

Contribution

Program Y

ContributionBDP I BDP !

16

36

.6

.1

62

84

.6

.1

figure 5

In order to resolve this complication a deficiency weight must be assigned to

the BDP deficiency that reflects its relative priority position . For the BDP

84 prioritization a uniform distribution of weights was used ranging from 0 to

1 .
This mathematical assignment was made according to the following formula .

li 1- i - 0.5 ( 1 )

D

In the case where 0 - 227 and where i = 1 , 2 , 3 , ... , 227. Q1 , Q3 , and Q11

take on weighted values of 0.997 , 0.988 , and 0.953 . These deficiency weights

when applied to the contribution estimate results in a priority-adjusted

contribution value of 0.780 ( figure 6 ) for program X. Therefore , materiel

programs that effect BDP deficiencies of high priority will be perferred over

materiel programs that effect lower priority deficiencies .

Assigning a numerical value to the degree of contribution of a program for

a deficiency is another subjective area open to debate and future research .

After some preliminary research and trial applications into different scales ,

1 he authors arrived at a five point scale using the narrative descriptors

shown in table 1 and values of 0.8 , 0.6 , 0.4 , 0.2 , and 0.1 for categories A

through B respectively .

These five categories vill discriminate enough to ensure that materiel

programs making a significant contribution to bigh priority deficiencies vill

receive favorable treatment in the competition for funding .
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SET THEORY

BDP#1

BOP

#3

1XA

XA UX UXc= X + X + Xc- ( An XL)

(XA1 Xe) - Xa Xe)

+ (XaXa Xe)

BDP # 11
E.G. V(P)X = (.9977.6) + (.988/.4) + (.953).1)

- (.9977.67.988X.4) – (.997X.67.953X.1)

- (.9987.47.953).1 )

+ (.9977.67.9887.4%.953).1)

2.780

figure 6

Table I

CONTRIBUTION CATEGORIES

A. ABSOLUTELY ESSENTIAL TO SOLUTION OF DEFICIENCY

B. MAJOR CONTRIBUTOR TO SOLUTION OF DEFICIENCY

C. SUBSTANTIAL CONTRIBUTION TO SOLUTION OF DEFICIENCY

D. SMALL, YET STILL DIRECT CONTRIBUTION TO SOLUTION OF

DEFICIENCY

E. LIMITED OR INDIRECT CONTRIBUTION TO SOLUTION OF

DEFICIENCY
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The mathematics of set theory described above, the BDP priority weight and

the contribution scale , establish the materiel program relative vorth. This

formulation can be generalized in the following form :

GENERALIZED FORMULA

VP1= -30(-1)-9 ή Αr

WHERE:

V(Pji TOTAL RELATIVE WORTH OF PROGRAM i

na NUMBER OF PROGRAMS CONTRIBUTING TO

DEFICIENCY ;

Aji = PRODUCT OF THE POSITION VALUE FOR

DEFICIENCY ; TIMES THE CONTRIBUTION

OF PROGRAM I TO DEFICIENCY j

The following example is an application of the methodology applied to three

notional materiel programs .

EXAMPLES

PROGRAM X

BDP CONT

PSN VALUE VALUE

.1 .998 .8

PROGRAM Y.

BDP CONT

PSN VALUE VALUE

6 .977 .8

14 .943 .4

37 .845 .1

PROGRAM Z

BDP CONT

PSN VALUE VALUE

66 .721 1

142 .389

202 .8143

Vp = A + B + C – (AB) – (AC) — (BC) + (ABC)

Vp = .798 Vp = .875 Vp = .306

figure 7
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This example demonstrates that program Y is prefered over program X and

program 2 because program Y contributes to three deficiencies in the top 20

percent of the overall list . It should be pointed out at this point that the

numbers generated by this methodology to prioritize programs represent ordinal

rather than cardinal rankings . Because the deficiency values are scaled

uniformly from 0 to 1 and the contribution weights are subjectively

determined , the resulting calculations produce numbers without scalar

magnitude . That is a program with a value of 0.8 is more important than one

vith a value of 0.4 one cannot conclude that it is twice as important . In the

prioritization of materiel programs it is sufficient to determine only the

relative order of the candidates ; it is not necessary to measure the interval

between them . Research is currently underway to investigate any benefits that

may accrue by trying to produce a list with more scalar properities . The

steps in the prioritization methodology used in 1984 to prioritize the LRRDAP

are summarized in Table II . While the first three steps have been described

in some detail above , the last three need a few notes of clarification ,

Having established an initial prioritization of programs using the stated

approach , the methodology attempts to account for the differences in time

(near term , mid term , far term ) , R & D and procurement costs ( high , medium , low )

and developmental risk ( high , medium , low ) . While mathematics have been

developed in the program to consider these factors , time and the availability

of input data did not permit their use in last years implementation of the

priorities program . Further research is underway to evaluate different

methods of considering these factors and also the manpower impacts and the

amount of investment already sunk into each program .

Procurement program prioritization had to also consider what is referred

to as "base case " programs because the mission area analysis studies took as a

given or base case all those programs currently contained in the Program

Objectives Memorandum ( the Army's 5 year planning and programming document ) ,

new deficiencies for the BDP vere not generated to support continued

TABLE II

1 . DISTRIBUTE DEFICIENCIES UNIFORMLY BETWEEN 0 and 1

2. DETERMINE CONSTRIBUTION OF PROGRAMS TO EACH DEFICIENCY

3 . DETERMINE CUMULATIVE CONTRIBUTION FOR EACH PROGRAM

(CONSIDER INTERACTIVE EFFECTS )

4 . ADJUST CONTRIBUTION BY TIME , COST, RISK , MANPOWER , AND

SUNK INVESTMENT

5. PRIORITIZE PROGRAMS

6. PIN TO " BASE CASE " LIST ( PROCUREMENT PROGRAMS ONLY )
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procurement of these programs . Since they would have no calculated program

value , they maintained their original LRRDAP priority and the prioritized list

of newer programs was integrated or " pinned " into this list . Non - battlefield

programs outside of TRADOC responsibility were also handled like base case

programs

III. RESULTS ,

Although developed in only a short period of time to be used in last

year's LRRDAP prioritization proce88 , this methodology demonstrated the

feasibility of linking materiel program priorities to the deficiencies

contained in the battlefield development plan . Manual or " common sense"

adjustments had to be made for example to align the 6.3B and 6.4 components of

the same program to place them in the same funding band ( funded , at risk ,

unfunded ) . In the end , of course , the list was subjected to expert review at

the 0-6 , 0-8 , 0-9 . and 0-10 levels . of the over 300 RDTE programs prioritized

with this hasty methodology , more than 65% retained their relative position

and rank in the final approved DA Long Range Plan ( figure 8 ) .

OVER 300 RDT& E PROGRAMS WHERE PRIORITIZED

THIS YEAR....

DALRRDAP

FY 86
65 %DUCIC

CO REVIEW

PANEL

3

FINAL
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250

200

150

100

50

1 50 100 150 200

TPP METHODOLOGY

2

250 300

Inpt

PRIORITIES

PROGRAM (TPP)

METHODOLOGY
1

figure 8

Research continues in the areas described throughout this paper and on

various neans to naintain a relative consistency of program priorities from

year to year . ContributorsContributors desiring additional information or wishing to

comment on proposed improvements to this process are encouraged to contract

the authors by phoning (804) 727-3004 or by writing HQ TRADOC , ATTN : ATCD - AM ,

Pt Monroe , VA 23651-5000 .
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PROPOSED ADDITIONAL INFERENTIAL INFORMATION

DURING AND AFTER HYPOTHESIS TESTING

Paul H. Thrasher

Plans and Quality Assurance Directorate

White Sands Missile Range , New Mexico

ABSTRACT

Two statistics , denoted by By and a q-value , are proposed to provide

flexibility and inferential information during and after hypothesis testing.

The se two
statistics supplement the well -established statistics normally

denoted by beta and the p-value . The purpose of By is to emphasize the true

value of beta after the design of the hypothesis test but before or during the

obtaining of data . A q-value , in conjuction with the p-value and associated

power curves , has potential uses in ( 1 ) overruling the decision of the

hypothesis test , ( 2 ) ordering additional testing , and ( 3 ) procurement cost

analysis .

INTRODUCTION

During the development of statistical inference , there were two distinct

needs and resulting philosophies . A statistical technique was needed to

estimate the bounds of capabilities of existing equipment or processess .

A different statistical technique was needed to test the conformity of newly

procured equipment and/ or new processes to required specifications . The first

of these needs led naturally to flexible ideas such as confidence intervals .

The second was met by the rigid procedure of hypothesis testing.
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STANDARD HYPOTHESIS TESTING

The standard philosophy used in hypothesis testing is to ( 1 ) assume that

some parameter of a proposed piece of equipment or process conforms to some

standard and ( 2 ) abandon that assumption only if there is sufficient evidence

that the assumption is highly unlikely . The initial assumption , which is

called the null hypothesis and denoted by Hon is expressed in an equation

relating the physical parameter being tested and the specification value of

that parameter . The significance level , denoted by alpha , is the minimum

acceptable probability that the actual test da tatest data could have come from a

population for which the null hypothesis is true . Physical measurements give

a standard for evaluating the reasonableness of Ho as a description of the

equipment or process under test.

Alpha is one of two risks in hypothesis testing. It is the risk of

rejecting the null hypothesis in favor the alternate hypothesis , denoted by

H
a
l when the null hypothesis is true . The companion risk to alpha , which is

denoted by beta , is the probability of not rejecting the null hypothesis when

the null hypothesis is not true . Beta depends on four parameters which must

be established jointly by the statistician and the manager of the equipment or

process being tested :

( 1 ) Alpha .

( 2 )
The specification value of the parameter being tested as stated in

the null hypothesis .

( 3 ) A specific value of the parameter satisfying the alternate

hypothesis .

( 4 ) The number of proposed physical measurements of the parameter being

te sted .
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Beta is found from the statistics function which describes the

distribution of the test statistic under various alternatives . Since there

are many values of the
parameter being tested that do not meet the

specification , there are many betas . The power curve is defined as the graph

of one minus beta versus values of the parameter being tested .
Since one

minus beta is the probability of rejecting the null hypothesis when the null

hypothesis is not true , the power curve is defined more generally as the graph

of the probability of rejecting versus values of the tested parameter . Alpha

and be ta have several commonly used names including type I and type II risks ,

the producer's and consumer's risks , and the government's and contractor's

risks .
The second and third sets of names are obviously interpretative and

explanatory when hypothesis testing is applied in procurement actions . Alpha

and beta are competing risks ; as either of them increases , the other

decreases .

In the operating procedure traditionally used in hypothesis testing , there

are three rigidly ordered steps :

( 1 ) Formula te a statistical test .

( 2 ) Obtain data from a physical test .

( 3 ) Use the data and the statistical test to either reject or not reject

the null hypothesis .

The first step is called the design of the experiment ; this statistical

design procedure consists of six sub - steps which are performed by the

statistician in consultation with the manager :

( 1 ) State the null hypothesis .

( 2 ) Sta te the alternate hypothesis .

( 3 ) Select a value for alpha .
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( 4 ) De termine a rejection
rule form the appropriate

statistical

distribution function which describes the parameter being tested .

( 5 ) Select a value for beta from some particular non- specification value

of the parameter being tested .

( 6 ) Determine the number of measurements that must be made on the

parameter being tested .

In actual practice ,practice , there are two common modifications during the

formulation of the statistical test , A range of non- specification values of

the parameter being tested is normally considered in the determination of the

number of measurements necessary to achieve the selected beta . This procedure

requires the use of engineering judgment to determine the range of values on

the power curve .
A modification of both alpha and beta is often necessary to

formulate the statistical test with a reasonable and achievable number of

measurements in the physical test.

In classical hypothesis testing , the physical test is performed inde

pendently of the formulated statistical test; no analysis of physical test

da ta is made until all measurementsmeasurements are made . As hypothesis testing is

actually practiced , the data is often modified before the final analysis ; that

is , outliers in the data areare often discarded by a process which may be

systematic or logical .

In traditional hypothesis testing, the decision to reject or not reject

the null hypothesis is based on the retained data and the decision rule from

the statistical test . Once the decision is made to reject or not reject , the

process is complete . No consideration is given to the margin of passing or

failing and no questions are considered concerning possible modifications of

the statistical test .
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MOD IF ICATION OF ALPHA

The application of hypothesis testing using the traditional and rigid

method outlined in the previous section has a major practical obstacle .
It

provides managers with no guidance other than to reject or fail to reject the

null hypothesis . While this might seem sufficient to a statistician who is

lead to believe that the statistical test properly considers all aspects of

the proposed equipment or process , the manager may well find this " go - no go "

guidance sorely lacking . The manager may have to consider the effects of more

than
one parameter , the political influence of pressure groups , and the

economic impact of implementing the new equipment or process . A manager

facing these problems needs all the help that the statistician can provide .

While the statistician cannot solve the manager's problems , he / she can at

least provide more information about one parameter than a bare " go no go "

recommendation . This is done by a modification of alpha based on the data

from the physical test .

The p-value of a hypothesis test is defined as the value that alpha would

have been necessary , in the original statistical test, to make the result of

the decision rule indecisive .
It is the value of alpha which would act as a

pivot between rejecting and not rejecting the null hypothesis ;
it is

calculated using the data from the physical test. It provides the manager ,

who must consider all factors and make the final decision , with a measure of

the degree of certainty of the bare " go no go " recommendation from the

hypothesis test. If a manager wishes to make a final decision which is the

opposite of the result of using data from the physical test in the decision

rule of the statistical test , the p-value provides him/ her with a measure of

the risk
that must be taken to overrule the judgment of the hypothesis test .
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The existence of the p-value is certainly not new ; however , its usage has

increased in recent years because managers have needed more flexibility .

Reporting the p-value to managers , who make final decisions , has the effect of

loosening the rigor of the formal hypothesis testing . The p-value provides

the final decision maker with more flexibility ; it also tells him/ her how

flexible the result of the hypothesis test is . Very low values of the p-value

imply that the null hypothesis can be rejected only if the producer is allowed

a very low risk .
Very high values of the p-value imply that the null

hypothesis cannot be rejected unless the producer is forced to take a very

high risk . Values of the p-value that are near the alpha of the original

statistical test imply that the null hypothesis can be rejected if the

producer takes a risk near the original alpha .

PROPOSED MODIFICATION OF BETA

The modification of alpha as outlined in the previous section is well

established . In this section , modifications to beta and the power curve are

proposed to further increase the flexibility and reported information of

hypothesis testing . These proposals are motivated by the desire to aid

decision makers as much as possible .

are aThere two critical parameters which may logically initiate

modification of beta after the standard hypothesis test is completed . One is

the p-value ; it will differ greatly from the alpha of the original statistical

test if the data from the physical test leads to an extermly strong recom

mendation to either reject or not reject the null hypothesis .
The other

critical parameter is the number of measurements actually made on the physical

parameter being tested . It may
be larger than the number proposed by the
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statistical test , but the more common change is for it to be smaller .
In

actual practice , the number of measurements in the physical test is often

lowered by constraints of cost , time , and/ or limitations ofof personnel ,

facilities , and/or equipment .

The two critical parameters result in two logical modifications of beta .

These modifications are denoted by By and a q-value in this section . They are

obtained from the same basic mathematical algorithm that yielded the original

beta of the statistical test, but different inputs are used in the algorithm .

The statistic denoted by BTdenoted by BT is defined as
the result of the beta

calculation in
the design of the statistical test when the number of

measurements actually made is used instead of the number that was planned .

The same alpha , specification value of the parameter being tested , and actual

value of the parameter being tested are used in the By calculation as were

used in the original beta calculation ; only the number of measurements is

changed . The numerical value of Bt will be higher than the value of the

original beta if the number of actual measurements is lower than planned by

the statistical test .

The statistic denoted by Bt is the consumer's true risk when the data

actually available from the physical test is analyzed .
The " sub T " notation

is used to emphasize that By is based on the true number of measurements in

the actual physical test . A manager can use By as a measure of how badly a

rypothesis test would be damaged if he / she is pressured into changing the

number of measurements in the planned physical test .
Pressure for such a

change can occur between planning and testing or during testing . Naturally

the manager is concerned about more than one possible true value of the tested

parameter . This means that he/ she needs the entire power curve based on BT .
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Of course , this might have been one curve in a family of curves that was used

to design the statistical test. Unfortuna tely , the manager might not have

access to or knowledge of this previously calculated curve . The statistic BT

is proposed to rectify the managers ' lack of information .
The decision maker

needs a power curve based on By at the time that pressure exists to change the

number of measurements . Statistical advice may be needed after the

statistical test is formulated but before the data from the completed physical

test is analyzed . The statistician should provide the decision maker with

relevant values of By between the formulation of the statistical test and the

analysis of data from the physical test .

A q-value is defined as the result of the beta calculation in the design

of the statistical test when two changes are made . A q-value is calculated

from the p-value instead of the original alpha and from the number of measure

ments actually made whether or not this is the number that was planned in the

original statistical test . The same specification value and actual value of

the parameter being te sted are used in a q-value calculation as in the

original beta calculation .
Since there are many possible values of the

parameter being tested, there are many 9- values . Use of the same possible

parameter value that was used in the beta calculation allows direct comparison

between a q-value and beta . A q-value tends to be higher than the original

be ta if the number of actual measurements is lower that planned or if the

p- value is lower than the original alpha . Similarily , more measurements than

planned or data making the p-value higher than the original alpha tends to

make a q-value lower than the original beta .

A q-value integrates information about both the number of measurements

actually made
in

the physical test and the results of these measurements .
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A q-value has three potential uses :

( 1 )
Provide information about beta if alpha is changed to the p-value

after the hypothesis test in order to make the test indecisive .

( 2 ) Indicate the need for additional testing to makemake the test more

decisive .

( 3 ) Consider as a rating factor for the paymentthe payment in procurement cost

analysis if the consumer accepts equipment or services that fail the

hypothesis test .

If a decision maker has influences which contradict the result of a

completed hypothesis test, there are two contrasting situations which are most

intelligently considered by using both the p-value and a q-value .
If the

decision rule results in a recommendation to reject the null hypothesis , alpha

must be lowered to thethe p-value if the hypothesis test is to be viewed as

indecisive and the other influences are to have no opposition .
In this

situation , beta for a particular non-specification value of the parameter

being tested must be raised to a q-value . In the opposite situation , the

decision rule results in a recommendation to not reject the null hypothesis.

In this case , alpha must be raised to the p-value and beta , for a given value

of the tested parameter , must be lowered to the q-value in order to make the

hypothesis test indecisive so the other influences have no opposition to

rejecting the null hypothesis . In both of these situations , the decision

raker should be aware of the changes in both alpha and beta . Thus the statis

tician should report both the p-value and a q-value . Of course , the decision

maker is often interested in more than one possible given value of the tested

parameter ; thus the statistician should report the entire power curve based on

q -values.
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Increasing the amount of physical testing always reduces the risks in

hypothesis testing; the amount of additional testing after a hypothesis test

is completed may be determined from the power curve based on q-values and

other power curves based on the p-value and proposed increases in the number

of measurements of the parameter being tested . If a decision maker is willing

to accept the lowering of alpha to the p-value but is hesitant about raising

beta
to a q-value , more testing is necessary .

The amount of additional

testing is determined by the consumer's risk that the manager is willing to

take .
Once that consumer's risk is determined for relevant non-specification

values of the parameter being tested , power curves may be used to determine

the amount of additional testing. The additional number of measurements which

the manager is ordering is the difference between the total number de termined

by the power curves and the number of measurements in the initial hypothesis

test .
The statistician should report power curves based on q-values cal

culated from the p- value and both ( 1 ) the number of measurements actually made

and ( 2 ) proposed increases in the number of measurements . This information

allows the manager to evaluate the return from additional testing.

When a piece of equipment or a service is procured , the procuring agency

may accept delivery of a product which produces an unexpected result in a

hypothesis test; the p-value and a q-value might be used to adjust the payment

to the supplier . One standard procedure in procurement actions is based on a

rigid hypothesis test . The product is rejected if the decision rule yields a

recommendation to reject the null hypothesis that the specification is met.

There are two
two problems with this standard approach . The supplier has no

reward if the product is good enough to pass the hypothesis test with a

p- value higher than alpha . Also , the procurer must use additional
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justifications to accept a product that can be made to satisfy an urgent need

even though it is bad enough to fail the hypothesis test with a q-value lower

than beta .
A proposed solution to these two problems is for the procuring

agency to execute the following cost analysis procedure :

( 1 )
Set a specification , for the null hypothesis , which is a value of the

tested parameter that allows acceptable but not exceptional operation

with the equiment or service .

( 2 )
Set an alternate hypothesis value of the tested parameter , as close

to the specification as feasible , which is not acceptable .

( 3 ) Set alpha , beta , and thethe number of measurements of theof the tested

parameter after balancing the risks and the cost of testing.

( 4 )
Call for bids to set the payment if the hypothesis test yields a

p-value equal to alpha and a q-value equal to be ta .

( 5 ) Establish a continuous scale of price increases for each p-value that

is higher than alpha .

( 6 )
Establish a continuous scale of price decreases for each q-value that

is higher than beta .

( 7 )
Obtain a random sample of the equipment or service , perform the

hypothesis test , and implement the result of the procedure .

An optional step might be exercised if the supplier or the procuring agency

doesn't accept the result :

( 8 )
Do more testing if either the supplier or procuring agency is willing

to pay for it in an attempt to raise the p-value or lower a q-value .

Naturally , these steps must be described at the time of the invitation for

bids so potential bidders can decide how to respond . Steps 5 , 6 , and 8

might be topics for negotiation between the procuring agency and potential
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suppliers . This proposed procedure is only one possible solution to

procurement confrontations . Another procedure might be desired if sufficient

testing can establish that the tested parameter is within a narrow interval

with a high degree of confidence . This 7 or 8 step procedure should be

considered for procurements in which limitation of testing is expected to make

clear-cut procurements decisions impractical or impossible .

EXAMPLE

The
example presented in

Figures One through
Eleven illustrates

modification of alpha and beta in a classical hypothesis test on the variance

of a normally distributed random variable . The null hypothesis H for

this test is the assumption that the variance is less than or equal to a

standard .
The chi -square distribution is appropriate for the random variable

( n- 1 ) s2 /02 when n is the number of measurementsthe number of measurements used to find the sample

variance s2 which estimates the variance o2 . The number of degrees of freedom

v is given by n- 1 for this x2 statistic . The numbers in this example have

been chosen to depict a hypothetical process-improvement development in the

manufacture of glass with a low variance in its index of refraction . Existing

manufacturing processes are assumed capable of yielding où ( 10 ) -8 ; but this

variance is considered unacceptable for the prototype process-improvement

which is intended to reach a standard of o2 = 4 ( 10 ) -10 .

Figures One through Four show information that is useful before and during

da ta taking. Figures . One and Two contain the information that a statistician

should present to enable a manager to complete the design of the hypothesis

test . Figure Three shows the designed hypothesis test after the manager has

selected a planned sample size . Figure Four reports the
information that the
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statistician should present to the manager if pressures exist to change the

planned sample size .

Figures Five through Eleven show possible results for different sets of

measurements . In Figures Five through Eight , four different values of s? are

used to find the p - value and a q-value for oz . For any measurement, the

p-value is obtained by setting the calculated value of the distributed

statistic equalequal to
the statistic that yields a percentile given by the

D-value ;
that

is , alpha is replaced numerically by
the p-value . The

calculation of a q-value is similar to the calculation of be ta in that a non

specification value of the tested parameter must be used ; the difference is

that beta is a function of alpha while each q-value is a function of the

p-value . Individual addition showsshows thatthat the four sets of p-values and

q-values in Figures Five through Eight have sums less than one . Figure Nine ,

which is not drawn to scale , illustrates graphically that the sum of these

paired statistics is always less than one . This occurs , for alpha and beta as

well as for the p-value and each associated q-value , because the area under

the probability density function f ( x? : v ) is equal to one . Figure Nine also

shows that an increase in one of these statistics is always accompanied by a

decrease in the other .
Measurements leading to a strong recommendation to

reject Ho will yield a low p-value and high q-values ; opposite extremes in the

p-value and q-values result when measurements strongly imply that Ho should

not be rejected .

Use of the p-value and associated q- values after the hypothesis test , for

purposes other than gaging the intensity of the decision to reject or not

es

reject Hos requires analysis curves . Some of these curves are presented and

interpreted in Figures Five , Six , Ten , and Eleven . In Figures Five and Six

333



where s2 is close

to the critical sample variance se which separates

rejection and non -rejection of null hypothesis , powerthe curves are

presented for the manager to use in considering additional testing .
Also in

Figures Five and Six , hypothetical algorithms are presented for adjusting the

cost and the results of these algorithms , the p-value , and a q-value for o?
u

are given . It must be emphasized that the manager , in consulta tion with the

statistician , should establish these cost adjustment algorithms . The manager

may design an algorithm other than a straight line ; he / she may also use a

maximum p-value Pm and a maximum q-value 9m other than the simple ones used

in Figures Five and six to limit the change in cost caused by results of the

hypothesis
test .

Figure Ten summarizes the numbers of Figures Five

through Eight which are all based on a sample size equal to that planned in

Figure Three . Figure Eleven presents a similar summary for slightly different

actual samples sizes .

CONCLUSION

Modification of alpha and beta makes hypothesis testing less rigorous and

allows managers more flexibility . Modification of beta in the interim between

the design of the statistical test and the completion of physical measurements

allows managers to make informed decisions concerning changes to the proposed

number of physical measurements . Modification of alpha and beta after the

Hypothesis test is completed allows managers
to make informed decisions

about ( 1 ) consolidating the result of the decision rule with factors not

considered by the hypothesis test , ( 2 ) the value of additional testing, and

( 3 ) compensation when specifications can be considered as met with risks

different from the original alpha and be ta .
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Figure One
Partially Designed Hypothesis Test :

Part 1
- :Ho : 02 502 = 4 ( 10 ) -10 a = p [Reject Ho 1 02] = .01

Ha : > 0% Test is One Tailed

Part 2 Rejection Region :
3

x2 – xã , v Xa , n-1

where x2 = ( n- 1 ) s2 /0%

with n = number of measurements

f ( x? ; v )

n

a and s2 = sample variance

0
,2

xã , v

Rejection Measurement : xã ,v = (n- 1) s?/ 0% ===> s% = ơ% xã , n-17 ( n - 1 )

Figure TWO Power Curves for Test Design :

T = Power = p [ Reject Ho | 02 ] = p [ s2 > 52 ]

P ( n - 1 ) sºlaº > { ( n- 1 ) 7 cº } { % xã , n-17 ( n- 1 ) } ]

P [x2 > { % / cº } xã , n - 13

1

TT Curve

13

9

5

Top

Middle

Bottom

0

o * Z( 10 )8
0.5 1.0

02 ( 10 ) 8
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Figure Threa Hypothesis Designed with n= 7 :

Part 1

Ho : ol 30% = 4 ( 10 ) -10
a = p [Reject H. ]| =

= .01

Ha : 0² > 0 }

Test is One Tailed

Part 2 Rejection Region :
x2.01,6

= 16.8
x2 – xã , 9 = xºa ,n- 1

where x2 = ( n- 1 ) s2 / 0% = 652/03

with n = number of measurements

f ( x2 ; v )

and s2 sample variance

0
xãou

x2

Rejection Measurement : x2 = xã ,v
s2 = 0% x?01,6/ 6 = 11.2 ( 10 ) -10

B Part

If 0 ,=( 10) -8 ; B = P [ s2 <s ?] = P [ ( n- 1 ) s2 /04< { ( n - 1 ) } /o4 } są ] =P [ x? < . 672 ] = .005

Figure Four By and Power = "T = 1 - By Curves if n is changed to 3 :

By Part
If 04= ( 10 ) -8 ; BT = P [ s2 <s ? ] = P[x2<{ozloubxã,n-1) = P[ x? < . 368 ] = .168

1 .4

TT

&
т -пт

Power Curve

тт

TT 7

3

Top

Bottom

пт

0 0

0 02 (10 )8
0.5 1.0

o " O2 (10 )8
0.5 1.0

02 ( 10 ) 8 02 ( 10 ) 8
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Figure Five
Inferential Information from Design and Hypothesis Test if s2 >0%

and s2 Implies Rejection of Ho : OP < 0% = 4 ( 10 ) –10 with a= .01 :

Part 3 If s2
= 12.3 ( 10 ) -10 from n=7 measurements; x = (n -1 )s2 /0% = 18.45

Part 4 Since x2 = 18.45 > 16.81 =

xx01,6 = xã , n-1 xã , vs Reject Ho

P Part

To Barely Not Reject Hoi xe,v = xp , 6 = 18.45

===> p-valuep-value = .005

9 Part

If oq = ( 10 ) -8 ; q - value

11

1-1 q = P [ x < { 07/04 \ xp , v .] = P [ x? < , 74 ] = .006

Power Curves :

1r .07

n
o

Tai - ( " -" q

&

TT

9 + 4

9 + 2

11 | Top

9 Upper Middle

7 Lower Middle

7 | Bottom

"q , + s 9

TT

0 0

o *o? ( 10 ) 8
0.5 1.0

0 02 (10)8
0.5 1.0

02 ( 10 ) 8 02 ( 10 ) 8

Cost Analysis :

10

Price Decrease

in percentage

of Target Cost

Use of the q-value of .006 and

the graph to the left yields a

price reduction equal to .017%

of the target cost

0

B
am

9-value

B = .005 from design

9m = P [ x? <[02/04!xp.v 1 x , v= ( n- 1 ) s2107 and 52=o ) = P [ x2 < ( n- 1 ) ]P [ x2 < ( n- 1 ) ] = P [x2<6 ]P [ x2 <6 ] = .58
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Figure Six
Inferential Information from Designed Hypothesis Test if s2 >% and

s2 Does Not Imply Rejection of Ho : 0 < =
< % = 4 ( 10 ) -10 with a=.01 :

Part 3 If s2

8.4 ( 10 ) -10 from n=7 measurements ; x = ( n- 1 ) s2 / 0% = 12.6

Part 4
Since x2 = 12.6 < 16.81 =

x^01,6 • xã,n-1 xã, Do Not Reject H.

p Part
To Barely Reject Hoi xß,v = xß , 6 12.6 ===> p-valuep-value = .05

If oä = ( 10 ) -8 ; q-value = 1-1 q = P[x?<{o}/o4}x@,v] = P [ x2 <.50 ] = .002
a part

Power Curves :

1 .2

TT ,

qi - ( Taq

&

q+4

9 + 2

11 | Top

9 Upper Middle

7 Lower Middle

7 Bottom

"9 ,+ s
19

02(10)8

0 0

0.5 1.0
082 ( 10 ) 8

0.5 1.0

02 (10 ) 8 02 ( 10 ) 8

Cost Analysis :

10

Price Increase

in Percentage

of Target Cost

Use of the p-value of .05 and

the graph to the left yields

a price enhancement equal to

.17% of the target cost

0

PM

p-value

a = .01 from design

Pm P [ xº > x= . = P( x > (n-1)s? Isºl = P( x > ( n- 1 ) ] = P ( x^ > 6 ] = .42
no
u
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Figure Seven
Inferential Information from Designed Hypothesis Test if s2 > o

So s2 Forces Management to Use a Quite Low p-value to view the

Test of Ho : O2 < % = 4 ( 10 ) -10 with a =.01 as indecisive :

Part 3 If s2 22 ( 10 ) -10 from n= 7 measurements ; x2
x2 = ( n- 1 ) s2 / 0% = 33

Part 4 Since x2 33 > 16.81 - xo1,6 = xã , n- 1 = x3, Reject Ho

To Barely Not Reject Hoi xp ,v = x ,6 = 33 ===> p-value = .00001
p Part

9 Part
If oz = ( 10 ) -8 ; q-value 1-1 , PCX?<{02/04}x},v ] = P[ x? <1.32 ] = .03

Figure Eight Inferential Information from Designed Hypothesis Test if s2 <

So s2 Forces Management to Use a Quite High p-value to view the

Test of Ho : 02 < = 4 ( 10 ) -10 with a = .01 as Indecisive :

Part 3
If s2 = 2.55 ( 10 ) -10 from n=7 measurements ; x2 = ( n - 1 ) s2 /02

= 3,825

Part 4
Since x2

3.825 < 16.81 = x201,6
xã , n -1 = xã ,0 ; Do Not Reject H.

p Part

6 = 3.8253.825 ===> p-value = .700
To Barely Reject Ho ; xp ,v = x ,6

If oź = ( 10 ) -8 ; q-value = P [ x2 < { 02/04}x ,v ]
9 Part

P [ x2 < .153 ] .00007

Figure Nine a & B and p & q on Graphs of s2 vs flx ; v ) with v =n - 1 & x2 =vs2 /02 :

Pre-Test : Post-Test with sa s
s?: Post-Test with s2 > są :

02-02

02 =0? o2 =0?

B

o2 = o?
02 =ox

o2 =o?

р

0 s2 0 0
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Figure Ten Summary of Results for Representative Values of s2 from

7 Measurements to Test H.:

62

so?

4 ( 10 ) -10 with

a = .01 , xẻ ,n-1
= 16.81 , and B = .005 for o2 = ( 10 )-8 :

s2 : 22 ( 10 ) -10 12.3 ( 10 ) -10 8.4 ( 10 ) -10 2.55 ( 10 ) -10

x2 = ( n- 1 ) s2 /0% :
33 > 16.81 18.45 > 16.81 12.6 > 16.81 3.825 > 16.81

Decision on Ho: Reject Reject Do Not Reject Do Not Reject

p-value : .00001 <.01-a .005 < .01 -a .05 > .01-a .7 > .01=a

q-value for on
.03> .005=B .006 > .005=B .002< .005= B .00007< .005=B

Minus .4 % Minus .017% Plus 1% Plus 10% = MaxOne Resultant

Change in Cost :

Figure Eleven

5

Summary of Results for Representative Values of s2 from

Measurements to Test Ho : of < o? = 4 ( 10 ) -10 with

( 13.28 5.03

a = .01 , xã ,n- 1
and B :

for oz -
( 10 ) -8 :

20.09 .0008
{

s2 : 22 ( 10 ) -10 12.3 ( 10 ) -10 8.4 ( 10 ) -10 2.55 ( 10 ) -10

x2 = ( n- 1 ) s2 /0% :
22 > 13.28

44 > 20.09

12.3 < 13.28

24.6 > 20.09

8.4 < 13.28

16.8 < 20.09

2.55 < 13.28

5.1 < 20.09

Decision on Ho :
Reject

Reject

Do Not Reject

Reject

Do Not Reject

Do Not Reject

Do Not Reject

Do Not Reject

p-value : .0002 < .01

.000001 < .01

.02 > .01

.002< .01

.08> .01

.03> .01

.6 > .01

.8 > .01

q-value for o
.07 > .03

.01 > .0008

.026.03

.002 > .0008

.01 < .03

.0004< .0008

.001 <.03

.00001 <.0008

One Resultant

Change in Cost :

Minus .7 %

Minus .2%

Plus .02%

Minus .02%

Plus 2%

Plus .5%

Plus 10% = Max

Plus 10% = Max
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ABSTRACT In April and May , 1984, The Field Artillery Board, Ft . Sill , OK conducted

a Force Development Test and Experimentation (FDT&E) of the Fire Support Team

(FIST) concept at Ft. Riley , KS. The purpose of the FDT&E was to test and evaluate

the effectiveness of the FIST HQ equipped with FIST vehicles and digital communica

tions equipment under various tactical configurations, selected modes of operation and

personnel shortages . Although traditional manual data collection methods employing

human observers was used to record test data, a new automatic data recording tech

nique based on the Artillery Control Environment (ACE) technology was used for the

first time in the field. Personnel from the Ballistic Research Laboratory (BRL ) assisted

in the experimental design, and were responsible for the designing, coding and testing

the computer software for the data collection and reduction system.

The discussions will focus on the experimental design, data reduction methodology ,

the methods of analysis employed and a brief reporting of the results.

INTRODUCTION

A. Background

During April and May 1984, The Field Artillery Board, Ft. Sill , OK conducted a

Force Development Testing and Experimentation (FDT&E) of the Fire Support Team

Headquarters (FIST HQ) concept at Ft . Riley , KS. The test consisted of three iterations

of a 120- hour Scenario Oriented Recurring Evaluation System (SCORES ) field exercise

that was based upon and included the mechanized infantry and armor defensive

maneuvers. The task force was confronted by an opposing force ( OPFOR) of various

strengths and a jamming team. All elements were strictly controlled by the test

directorate during the first two exercises . The third exercise was a freeplay,

uncontrolled force on force exercise.

Personnel from the Ballistic Research Laboratory (BRL ) designed the experiment

and assisted in the implementation of experimental design methodology in the controlled

segment of the test to address a subset of the overall objectives. In addition , personnel

from the BRL were responsible for designing, coding and testing a new automatic data
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recording and reduction system based on the Artillery Control Environment (ACE )

technology. This report will focus on the experimental design , data reduction and

recording methodology , the methods of analysis employed and a brief discussion of the

results. The analysis for this report is based upon data obtained from the Field

Artillery Board , Ft. Sill , OK.

B. Purpose

The overall purpose of the FDT&E was to evaluate the operational effectiveness of

the FIST HQ equipped with a Fire Support Team vehicle (FIST V) and digital

communications. Test results will be used by the United States Army Field Artillery

School (USAFAS) to further develop FIST operational and organizational concepts.

To demonstrate this effectiveness, a study of the FIST HQ ability to perform fire

support coordination under two modes of Forward Observer (FO) message control and

four types of FIST HQ configuration , while under various workloads , was conducted .

II. TEST CONCEPT

A. Objectives

1 ) To determine whether or not FIST DMD message control of the FO's , in the

review and automatic communication modes of operation , has an effect on the

FIST HQ ability to perform fire support coordination.

2) To determine if the FIST HQ can perform fire support coordination : a) with

the Ground /Vehicle Laser Location Designator ( G /VLLD ) mounted on the FIST

V with all FIST personnel present, b ) with the G /VLLD mounted without the

FIST Chief, c) inside the FIST V in a Buttoned-up environment and d ) with the

G /VLLD dismounted from the FIST V. To dismount the G /VLLD from the FIST

V, two FIST HQ personnel must dismount both the GÄVLLD and its associated

equipment.

3) To determine if mission workload affects the FIST HQ performance of fire

support coordination . Mission workload was defined as the number and types of

missions the FIST HQ was required to process simultaneously. There were four

fire mission types: missions initiated from the mechanized infantry FO, missions

initiated from the armor platoon leader ( Armor) by voice, FIST HQ shooting

COPPERHEAD munitions,munitions, and missions from the FIST HQ shooting

conventional munitions .

B. Measure of Performance

A measure of performance (MOP) is a response that is used to quantify the effects

of the factors to be evaluated . For FIST initiated missions , it was defined as the elapsed

time from target acquisition until the ( fire request) message is transmitted from the

FIST Digital Message Device (DMD). Service time for armor missions was the time
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from receipt of a fire request message by the FIST HQ until transmission . The time to

service FO missions was the elapsed time from when the acknowledgment (ACK) is sent

from the FIST DMD indicating receipt of a fire request message until the message is

transmitted . This measure indicates the combined time a message spends in the FIST

DMD message queue , and the processing and decision time of the FIST HQ .

C. Scope

The first two field exercises ( FEX 1 , FEX 2 ), which were a combination of Live Fire

and Force on Force , utilized three FIST HQ and one combat observation lasing team

(COLT) attached to a mechanized infantry task force that consisted of two mechanized

infantry companies and one armor company . ( See Figure 1 ) .

The FIST HQ consisted of:

1. The Fire Support Team Chief

2. The Fire Support Team Sergeant

3. Two radio telephone operators

All members of the FIST HQ were trained in the operation of the FIST DMD. Nine

weeks of individual training was conducted and validated by the USAFAS. This

individual training was followed by two weeks of collective training.

D. Limitations

After receiving the initial fire request message from a FO and deciding how the

fire request should be handled , the FIST HQ routed all subsequent messages for

that fire mission through the FIST DMD in the automatic ” mission mode. ” That

is, all subsequent messages for that fire mission were automatically routed

through the FIST DMD . Operator intervention was needed only if a message did

not get acknowledged in four transmissions.

2 ) Electronic Warfare was prohibited during the controlled portion of the

FDT&E.

3) Range regulations at Fort Riley prevented the G /VLLD from being employed

in a totally realistic environment. Laser designation and range finding were

allowed in only two locations and even then had to be restricted .

4 ) The control cells that contained the Buttoned-up configuration were run at

night .
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E. Data Collection

In addition to manual data collection methods employing human observers to

record test data, a new automatic data recording technique based on the ACE

technology was used for the first time in a field exercise. The procedure consisted of

recording digital radio traffic time coded on analog magnetic tape . Every 24 hours the

tapes were shipped to Aberdeen Proving Ground (APG ), MD where HEL personnel

received the tapes and played them back into the computer controlled message

collection and reduction system . The resulting sorted list of messages was then written

to digital magnetic tapes and shipped to Ft. Sill for analysis.

III. MESSAGE COLLECTION AND REDUCTION SYSTEM The major components of

the message collection and reduction system were

1 ) Bit Boxes (Tactical Communication Modems, TCM)

2 ) VAX 11/750 Computer

3) BRL VAX Unix Operating System

4 ) Message collection and reduction software

A. Hardware

Bit Boxes are microprocessor based modems which enable Tactical Fire Direction

System ( TACFIRE) hardware to communicate with commercial computers. The Bit

Boxes convert Frequency Shift Keyed (FSK) variable format and fixed format TACFIRE

messages ( from wire line or radio) to RS232 ASCII character format which commercial

computers can accept , and visa versa.

A DEC VAX 11/750 computer was available for use as the main computer to

support the message collection and reduction software . The computer operating system

was a BRL enhanced version of 4.2 BSD (Berkley System Distribution ) Unix .

B. Software

The application software , which was written in the C programming language , had

two primary tasks: 1 ) message collection , and 2 ) message reduction .

The message collection program receives streams of characters from the Bit Boxes,

separates the streams into complete messages , records the start and end time of each

message , and stores this information in a computer file.

The data reduction program reads the data files created by the message collection

program . The purpose of this program is to sort the messages into fire missions. The

result is 3 other files that contain ( 1 ) a list of messages categorized by fire mission target

number, ( 2 ) a list of messages believed to be associated with a fire mission but for some
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reason that mission could not be identified , ( 3 ) and a list of messages that are known

but not part of a fire mission. These lists of messages were shipped to Ft. Sill and

combined with manual data to create a comprehensive data base for analysis. For an

indepth description of the message collection and reduction system see " Field Artillery

Digital Message Collection and Reduction Software,” BRL - IMR -822, June 1984.

IV . EXPERIMENTAL DESIGN

A. Factors

The three factors that were tested during the controlled portion of the FDT&E

were FIST Configuration , Mode of FIST DMD Control and Mission Workload .

1 ) FIST Employment Configuration alternatives were:

a) G /VLLD mounted - all hatches on the FIST V were open and the

G /VLLD was mounted with the entire FIST HQ present.

b ) G /VLLD mounted without FIST Chief- all hatches on the FIST V were

open and the G /VLLD was mounted with the FIST Chief not available.

c ) G /VLLD dismounted - the GÄVLLD was placed away from the vehicle

along with two of the four FIST HQ members.

d ) Buttoned-Up - all hatches on the FIST V were closed and the GÄVLLD

was mounted with the entire FIST HQ present.

2 ) Mode of FIST DMD Control

a) Review - FIST DMD stops all initial fire request messages from platoon

FO's for the FIST HQ to review.

b ) Automatic FIST DMD immediately forwards all initial fire request

messages with out action by the FIST HQ.

3) Mission Workload

Mission workload was defined as the number and types of fire missions the

FIST HQ were required to process simultaneously . The four types of fire

missions were:

1 ) CONV - FIST HQ shooting a conventional munition

2 ) CPH - FIST HQ shooting a COPPERHEAD munition

3 ) ARMOR - Missions initiated by the armor platoon leader and
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received by voice at the FIST HQ .

4 ) FO · Missions initiated by the mechanized infantry FO and

transmitted digitally to the FIST HQ.

Based on seven combinations of mission types , thirteen categories of

mission workloads were defined . They are :

TABLE 1. MISSION WORKLOAD

CATEGORY

b

с

d

e

f

FIRE MISSIONS

PROCESSED SIMULTANEOUSLY

1 CPH

1 FO +1 CONV

1 FO +1 CONV

1 ARMOR +1 CONV

1 ARMOR + 1 CONV

1 FO +1 CPH

1 FO +1 CPH

1 FO +1 ARMOR + 1 CPH

1 FO +1 ARMOR + 1 CPH

1 F0 + 1 ARMOR + 1 CPH

2 FOs

1 ARMOR + 2 FOs

1 ARMOR + 2 FOs

MISSION

TYPE

СРІНІ

CONV

FO

CONV

ARMOR

CPH

FO

CPH

ARMOR

FO

FO

FO

ARMOR

8

h

j

k

1

m

B. Design Matrix

It was decided that the smallest period of time reasonable to test any one of the

treatment combinations was two hours. A factorial design was constructed with each

experimental combination being tested in a random order. This scheme assured that the

effect of each of the experimental combinations on the FIST HQ ability to perform fire

support coordination could be measured . The FIST HQ were tested under all of the

experimental combinations and the design was repeated for each of the two controlled

iterations of the FDT&E. The design matrix is presented in Table 2 .

V. STATISTICAL ANALYSIS The analysis for this section is based on data reduced by

the Field Artillery Board, Ft. Sill , OK , which was a combination of manual data

collected by human observers and digital data that was sorted by the message collection

and reduction system . This section is intended to be a supplement to the data analysis

conducted by the Field Artillery Board and only focuses on several key factors and their

associated levels . Unfortunately, the Buttoned-up level of the FIST Employment

Configuration factor was not available in this subset of the FDT&E data base, but will

be analyzed in a future BRL report .
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A. Transformation

As the data was being checked for completeness , it was noted that the distribution

of service time was skewed and that the variances of the observations under various

experimental conditions were different. Further investigation of the data revealed a

positive correlation between the cell standard deviations and the cell means .

Correlation between the standard deviations and cell means is often accompanied by

marked non-normality and non-homogeneity of variance , and indicates that the

particular form of the original observations is unsuitable for Analysis of Variance

(ANOVA ) procedures .

However, a transformation can be determined which makes the standard deviation

independent of the mean , corrects non-homogeneity and also results in the observations

being distributed more normally . In general , if a significant functional relationship

between the standard deviations and the group means can be determined, then the

transformation is the integral of the reciprocal of this functional relationship. Using this

procedure , the following transformation was developed :

1.7 In ( 18.9 + .56 (service time) )

The transformed data became more normal and the homogeneity of variance

among the experimental conditions was improved.

B. Analysis Of Variance

An analysis of variance procedure was performed on the transformed data with one

slight modification to this procedure due to unequal experimental group sizes . The sum

of squares for all terms in the model, except the error term , was weighted by the

harmonic mean . The ANOVA is presented in Table 3. A star next to the F- ratio

indicates the factor is significant at the alpha level of .05 . Since this analysis assumes a

fixed effects model, the denominator for all F - ratios is the pooled error term .

Since the ANOVA was performed on the transformed data, it was decided that

comparisons of medians , calculated on observed service times, would be more

meaningful than coinparing transformed means.

C. Results

The most significant term in the analysis was mission workload . One reason for

this significance is that it took substantially less tim , to service fire request messages

from mechanized infantry FO missions than either the FIST HQ missions

(COPPERIEAD or Conventional ) or Armor missions . In both FIST DMD control

modes, the FIST HQ initiated fire request messages require data input, review , and

transmittal. Armor messages, which are received by voice , must be reviewed and input

as digital messages by the FIST HQ ; whereas the digital Fo fire requests require only

review and transmittal in the review mode of FO control and no processing at all in the

automatic mode.
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TABLE 3. ANALYSIS OF VARIANCE

(SERVICE TIME)

DEGREES OF

FREEDOM

SUM OF

SQUARES

MEAN

SQUARE

F

RATIOSOURCE

Mission Workload 12 101.00 8.42 10.60 *

Mode 1 5.65 5.65 7.14 *

Configuration
2 0.025 0.01 < 1

12 9.21 0.77 < 1
Mission Workload x

Mode

24 13.43 0.56 < 1Mission Workload x

Configuration

2 0.08 0.04
Configuration x

Mode

< 1

24 12.33 0.51 < 1Mission Workload x

Mode x Configuration

Pooled Error 461 365.90 0.79

Another interesting result observed was that in mission combinations in which

Armor missions were processed , Armor missions had a longer service time than any

other mission type. This trend seems to indicate that it takes the FIST HQ longer to

process voice initiated fire request messages than to initiate his own or service FO

missions . This result is not surprising since it takes longer to input a message manually

than to receive one digitally . These trends were consistent in both the Automatic and

Review modes as shown in Table 4.

The number of missions processed simultaneously also affected FIST HQ service

time. In plotting the median service time for the mechanized infantry FO fire missions

in review mode ( See Figure 2 ) , one can see that it takes the FIST HQ longer to service

FO missions when the FIST HQ are also initiating COPPERHEAD missions and

receiving a armor message than when the FIST HQ anu just servicing FO missions and

shooting COPPERHEAD . In addition , the FIST IQ service time for FO fire request

messages is shorter when they are also initiating a conventional mission as opposed to

also shooting COPPERHEAD. This result is not surprising. When the FIST HQ is

initiating a COPPERHEAD mission while in the review mode , the FIST DMD operator

functions are disabled after sending a FO Command (Fire) or a Fire Request Quick

Message and no action can be taken by the FIST DMD operator until the X button is
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FO MISSIONS BY MISSION WORKLOAD ( REVIEW MODE )
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Figure 2 .
Mechanized Infantry FO Initiated Messages By Workload .
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TABLE 4. MISSION WORKLOAD BY MODE

(MEDIAN SERVICE TIME)

(SECONDS)

Mode

Review AutoMISSION WORKLOADFIRE MISSION

TYPE

CPH CPH 55 35

СРН FO + CPH 11 44

CPH FO + ARMOR + CPH
6 31

CONV FO + CONV 58 76

CONV ARMOR + CONV 77

7
4

FO FO + CONV 10 2

FO FO + CPH 15 2

FO FO + ARMOR + CPH 20 2

FO 2 FOs 22 2

FO 2 FO3 + ARMOR 5 2 .

ARMOR ARMOR + CONV 79 98

ARMOR FO + ARMOR + CPH 81 69

ARMOR ARMOR + 2 FOs 58 37

pressed to end the COPPERHEAD mission . Surprisingly, the FIST HQ spent the

longest time servicing mechanized infantry FO missions in review mode , when they were

not initiating or reviewing any other mission types. In this mission workload ( 2-FOs) ,

the FIST HQ only responsibility was to review the two messages received from his

mechanized infantry FOs . FIST personnel spent a lot of time reviewing, changing, and

deciding iſ the initial fire request message should be sent to TACFIRE or to one of their

local resources , such as the battalion mortar platoon.
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From Figure 3 , one can see that it took more time for the FIST HQ to service

armor messages when they were also shooting a COPPERHEAD or conventional mission

than when they were only reviewing a mechanized infantry FO messages and serving

armor missions. This trend is consistent with both the automatic and review FIST

DMD control mode.

In the automatic control mode , all initial fire request messages received by the FIST

HQ are automatically forwarded to their destination . Initiating messages in the review

mode must be passed by the FIST DMD operator before they can be transmitted .

Therefore , one could expect the FIST DMD mode of control to significantly affect the

time it takes to service digital fire request messages. The ANOVA table revealed that

the Mode of FIST DMD Control was significant.

The percent of all messages processed by service time in the automatic and review

modes are shown in Figures 4 and 5 , respectively . The median service time for the

automatic mode was small , 7.0 seconds , when compared to the median service time of

29.0 seconds to service messages in the review mode. For mechanized infantry FO

missions, the median service time in the review mode ranged between 5.0 and 22.0

seconds over all workloads. However, in the automatic mode, the median service time

for all workloads was 2.0 seconds. This trend was not as prevalent for messages

initiated by the FIST HQ or messages received by voice from the armor as depicted in

Table 4 .

It is worth noting that FIST Employment Configuration was not statistically

significant. The FIST's ability to service FO and ARMOR missions as well as initiate

his own missions was not affected by the various configurations. This implies that the

FIST can perform elicient fire support coordination when the FIST Chief is not present

or when two members of the FIST are not available (due to the G /VLLD being

dismounted ). However, this infers nothing about the quality of the decision being made.

One puzzling result was that the median service time for a FIST HQ to service

COPPERHEAD missions while in review mode and for mission workload (FO +

ARMOR + CPH) was only 6.0 seconds and only 11.0 seconds for workload (FIST FO +

CPH) . Looking at the service time distribution for these two categories, one notes a

bimodal distribution which may indicate the presence of a lurking variable.

Cluster analysis was used to try to categorize the COPPERHEAD missions into

two groups : This is a multivariate statistical technique in which COPPERHEAD

missions were separated into groups based on the minimization of variance within

groups and the minimization of the distance between groups . A difference in values

among groups from different COPPERHEAD missions w said to exist if the hypothesis

of equality of means among groups is rejected by an F- test with a significance level of

.05 . The number of groups in which to categorize the COPPERHEAD missions was not

specified.

Using cluster analysis on the COPPERHEAD mission service time, two populations

were identified . One group had a median service time of 8.0 seconds and a range

between 1.0 and 32.0 seconds . The other group centered at 56.0 seconds and ranged

353



ARMOR MISSIONS BY MISSION WORKLOAD

MEDIAN SERVICE TIME

1100

REVIEW AUTO

1000

Х

gao

800 Х
Х

700

х

No

Х

M
E
D
I
A
N

S
E
R
V
I
C
E

T
I
M
E

(S
E
C

)

4
0
1
1
5
M
I
N
.
o
.
0
1
M
0
0
0
w
w
.
1
-
1
.
1
1
1
1
1
1
1
1
1

san

40.0
Х

1

300

1

200

100

20

CONHARMOR CHD +FO+ARMOR FO + ARMORCHD + FO + ARMOR FO+ARMOR CON + ARMOR

MISSION WORKLOAD

Figure 3 . Armor Initiated Messages by Workload .

354



60
SERVICE TIME

AUTO MODE

55

50

MEDIAN - 7.0
45

40

35

P
E
R
C
E
N
T

M
S
C

C
O
U
N
T

30

25

20

15

10 -

5

0

-30 0 30

Aqa

60 90 120 150 180 210 240 270 300

SERVICE TIME ( SEC )

Figure 4 . Percent of Messages Processed By Service Time in Automatic Mode .

355



60

SERVICE TIME

REVIEW MODE

55

50

-

MEDIAN - 29.0

45

40

35

P
E
R
C
E
N
T

M
S
C

C
O
U
N
T

30

25

20

15

10

5

lapangan0

-300
30 60 90 120 150 180 210 240 270 300 330 360 390

SERVICE TIME ( SEC )

Figure 5 .
Percent of Messages Processed By Service Time in Review Mode .

356



between 34.0 and 190.0 seconds. The groups were statistically different at a significance

level of .05 . Based on the above categorization scheme, the analysis was redone with the

two types of COPPERHEAD missions. This resulted in workload having sixteen

categories . The conclusions remained unchanged from the original analysis. Mission

Workload and Mode of FIST DMD Control were the only factors determined to

significantly affect FIST service time especially in regard to FO missions . The median

service time for the two groups of COPPERHEAD missions by Mode of FIST DMD

Control and Mission Workload are given in Table 5. The median service time for the

group with the smaller median service time ranged between 6.0 and 9.0 seconds while

the second group ranged between 45.0 and 92.0 seconds. No statistical differences were

found between the review and automatic modes of FIST DMD Control for either group .

Similarly , Mission Workload had no effect on either category of COPPERHEAD

missions.

There are several possible reasons as to why there are two categories of

COPPERHEAD mission service time . One reason is that terrain conditions will strongly

influence COPPERHEAD service time . Another reason is that there are two types of

COPPERHEAD missions ( priority and target of opportunity ) and the data from Ft . Sill

did not categorize these two types . Priority COPPERHEAD missions are preplanned

missions with preassigned targets . The mission data is stored until the target appears;

the mission is then reactivated and carried to its conclusion . A target of opportunity

mission is not a planned mission but occurs when a target appears at an opportune time

and place . Target of opportunity missions require a longer processing time by the FIST

than priority COPPERHEAD missions once the target is acquired.

TABLE 5. COPPERHEAD MISSIONS

(REVIEW & AUTOMATIC )

(MEDIAN SERVICE TIME)

MODE MISSION WORKLOAD GROUP 1 GROUP 2

CPH 7.0 73.0

REVIEW FO + CPH 7.0 92.0

FO + ARMOR + CPH 6.0 45.0

CPH 7.0 68.5

AUTOMATIC FO + CPH 8.0 70.0

FO + ARMOR + CPH 9.0 66.0
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VI. CONCLUSIONS Based on the results of the analysis of the limited database

obtained from the Field Artillery Board , the FIST HQ demonstrated its ability to

perform fire support coordination. The FIST HQ ability to service fire missions was not

affected by different FIST HQ configurations. The FIST did perform efficient fire

support coordinations when the FIST Chief was not present and when two members of

the FIST were not available because the GÄVLLD was dismounted. Although Mission

Workload and Mode of FO Control were significant, the largest median service time

observed was only 98.0 seconds. This occurred when the FIST HQ had to input the

voice messages from the Armor.

The number and types of missions processed simultaneously influenced the FIST

HQ ability to service FO and Armor missions. However, Mission Workload did not

affect the two types of COPPERHEAD missions that were categorized using cluster

analysis. Based on this statistical technique , COPPERHEAD missions were shown to

not be affected by the FIST DMD mode of control. In fact , FIST DMD mode of control

only aſſected the mechanized infantry FO missions.

Finally , the automatic reduction system proved to be a useful tool for data

collection and reduction of lield data and the ability to perform a controlled experiment

during a field test was demonstrated with overwhelming success. However, it

demonstrates the need for more sophisticated MOP's than simply speed of service.
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INTRODUCTION

1 . The purpose of this study was to explore methods for predicting and

reducing the error in measured explosion wave data due to the presence of a

wind generated random sea suface . In this analysis , the model to be used for

representing the mixture of random and deterministic waves is the linear

superposition , or adding together , of explosion wave and random wave amplitude

functions . An analysis method based on the linear superposition model

requires the assumption that frequency components of interest in the explosion

generated waves are contained in a certain frequency band . Errors resulting

from the random wave frequencies outside the specified band of interest are

then eliminated by means of band pass filters . Resulting estimates for the

explosion wave - form will be biased by smoothing inherent in the filtering

process . This bias effect is reduced by observing the affect that the

filtering process has on theoretical models for explosion waves . Theoretical

models have been shown to correspond well with measured data ( Le Mehaute 1971 )

making them useful as a means of estimating bias due to the filtering process .

Correction factors for a specific filter and set of explosion wave parameters

are computed and used to remove filter bias from estimates of maximum

explosion wave amplitude .

2 . Expected error due to random background noise can be predicted

prior to a test using the energy spectrum of the sea surface . This makes it

possible to make GO or NO GO decisions prior to testing based on the roughness

of the sea surface . The GO/ NO GO model developed here is based on the

parameterized sea surface spectrum developed by Ochi and Hubble ( 1976 ) . An

interactive computer program for predicting expected background error is

developed and examples of its usage are presented in a later section .

Wave mixture model

3 . Let the discrete time series associated with the random sea surface

be denoted by xn and the discrete version of the explosion wave time series

by n = 0 , 1 , . , N - 1 with a time increment of At between

successive numbers of the two time series . Linear superposition of the two

time series produces

Pn for

Pon .. , N - 1
Pn + xn , n = 0 , 1 ,

1.1
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xnIt is assumed that each variable in the time series is distributed as a

2

Gaussian random variable with mean zero and variance The time series

Pon represents the observed mixture of noise and explosion waves . This

variable is also distributed Gaussian with mean and variance o ?.

The discrete fourier transform ( DFT) for Pon is

Pon Pn

P - At

om

N - 1

{

n 0

- 12 mn / N

on

1.2

or

Pom
P
m

1.3

Where

N - 1

P

om

: At

- 12 mn / N

Pone
on

1.4

n = 0

N - 1

- 12 mn / N

X = At Σ хе

m

n = 0

1.5

and xn Subscript m refers to frequencyare the DFTs for
Pn Xn respectively .

values f - maf for Af = 1 / (Nat ) .

4 .

Define the estimate of the DFT for Pm to be

m

Р

m

= P D

om
0 , 1 , N - 1 1.6

for

D. - 1.0 , M, 3 m 3 M2

1.0 , N

My SmS N - M ,

0.0 , all other values of 1.7

M2 AfValues f1 = M , of and f2
define the frequency interval of interest

for the data to be analyzed . Then , the estimate for the time series Pn
is

the inverse DFT of P given by

m

= Af

n

N 1

[ P D

Om

m = 0

12 mn / N

e 1.8
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Note that since P is a linear combination of linear combinations of

Gaussian random variables
Pon , n = 0 , 1 ,

N 1 then Po is also

distributed Gaussian . Substituting equation 1.3 into 1.8 , the estimated time

series can be rewritten as :

Pr - Pip Bone

+ E

n

1.9

where

Bm

3 Af

N - 1

{

m

P ( D
(DM

12mn / N

1.0 ) e 1.10 .
m m

N 1

E = Af

12 mn / N

X D e

m

1.11

M = 0

is referred to as the estima te bias term and isE

n
5. . The term B

n

called the random term .
Statistical expectation of Pn

is

Elfm ? - Pn + B

1.12

since Elen?

3
0.0 and since the other terms are deterministic . Variability

A

of the estimate
Pn

is given by its variance , which is

2

- Var (Pind

N = 1

= Af

m = 0

{ SD

1.13

n m

where som is the discrete version of the power spectral density of the random

sea surface . Standard deviation of Po is

2

1.14

'n

6 . ( 1- a/ 2 ) * 100
Assuming that

'n

and
Bn are known , then the

percent confidence interval for
Pn

is

Pn - B - 021 Pn - B + on 21 - a / 2 )

1.15

a/2 ,
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where 2 , -a/2 is the 1 - a/ 2 percentage point for a standard normal

distribution .

7 .

In an applied setting , 'n is not a known quantity ; however , it

can be estimated by replacing S with S the estimated energy spectral

density in equation 1.13 .

8 .

The bias term Bn will be estimated by observing the affect that

filtering has on functions that are used to model explosion wave time series

for given explosive yields , water depths , and measurement location .

9 . To simplify the discussion of the random error in later parts of

this report , the bias term Bm will be included in estimates of the explosion

wave time series and the unbiased estimate of Pn will then be

p
u
n

-;-
Po - Bin

1.16

un

with confidence interval

* O

un on 21

1.17

?1 - a/ 2

Explosion wave model

10 . There are several functions that are used to model explosion wave

amplitude . The function used here for testing and bias estimation is the most

suitable of the available models (Le Mehaute 1971 ) . Explosion wave amplitude

as a function of time and distance from the explosion is written (dimension

less form )

n( r , t ) = A cos (Kr t ( tanh K ) 1/2
1.18

where

A

PR 19 ( KR) V (R[

11/2

KV ( KV )

-V ' ( K )
3 ] " ?

1.19

and

R = radius of initial cavitation

n = amplitude of initial cavitation

K = wave number

r - distance at which amplitude is derived

t = time
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V (K)
wave group velocity

J3 ( KR) = Bessel function of the first kind of order 3

11 . The parameters listed above are dimensionless resulting in a

dimensionless value for equation 1.18 . In order to obtain the dimensional

version , equation 1.18 is multiplied by the water depth at which the explosion

occurs . Equation 1.18 is evaluated numerically for given values of the

parameeters to provide test data for the analysis techniques of this study .

Random noise simulation

12 . Frequency domain simulation of Gaussian random time series makes

use of the statistical identities between linear combinations of Gaussian

variables . That is , any linear combination of independent Gaussian random

variables is also Gaussian with mean and variance that are linear combinations

of the means and variances of the original random variables . Discrete Fourier

Transform ( DFT) pairs are linear combinations and , therefore , have identities

described above . A Gaussian time series with a given theoretical power

spectrum can be shown to have a DFT that is Gaussian with a variance that is

related to the power spectrum of the time series . That is , if Yn

2

N 1 is Gaussian with mean zero and variance and results

from a random process with power spectral density s( f ) , then the DFT of in

given by Um - 1 Vm has real and imaginary parts Um , Vm that are also mean

zero Gaussian , with variances

0 , 1 ,

NA E S m = 0 , N/ 2

Var ( um) 2.1

NA E S 0 < m < N/ 2

2

0 m = 0 , N/ 2

Var (um) 2.2

NA E S 0 < m < N/ 2
m

2

.for sm the discrete version of the power spectrumu s ( f ) It is also known

U Vm ) and (um
'

Vm ) are statistically
independent

for mém ' 0) <

The values for

m , m ' < N/ 2 , and Um is independent of Vm for all

m > N/ 2 can be found by the identity UM = UN - m and Ym VN - m

m , m ' .
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13 . The steps for simulating a Gaussian random time series with power

spectral density S( f ) are :

( 1 ) Generate two statistically independent sequences of

independent mean zero Gaussian random numbers , say , XRm and XI . for

osm < 1/2

1/2

S

( 2 ) Let U = XR
(NA )m m

0 < m < N/ 2

1/2
S

V

= XI ( NA )m

U = XR ( NAE S )( Nat s ) ?
1/2

m

m = 0 , N / 2

0

( 3 ) Apply DFT to

X = U

m m
- i v

m

0 , 1 ,to obtain the resulting times series Xn , n = N - l of equation

1.5 . Finally , add the time series from equation 1.18 to X to obtain the

desired mixture of a Gaussian random sea surface with explosion generated

water waves .

GO/ NO GO analysis

14 . Equation 1.13 gives the expected error due to the presence of

random background noise in the measured explosion wave time history . The

associated confidence interval of equation 1.15 represents the interval that

will capture the true explosion wave time history , Po ( 1 - a/ 2 ) x 100

percent of the time . If the power spectral density of the random sea surface

is known or specified by one of the commonly used parametric forms , then

equations 1.13 through 1.17 can be computed to provide an estimate of the

statistical error to be expected in filtered explosion wave .

15 . A parameterized spectrum known as the Ochi Hubble ( 1976 ) six

parameter spectrum was chosen for use in this analysis . This six parameter

spectrum includes a spectral peakedness parameter that determines the narrow
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waves

bandedness of the spectrum . A peakedness parameter of 1.0 is used here

resulting in a spectrum that is equivalent to Bretschnieder and Pierson

Moskowitz type spectral densities . Parameters needed for input to the

parameterized spectrum are the mean period for long period waves generated by

distant storms ( swell) given by Ts mean period for locally generated

Two significant wave height for swell Hs , and significant wave height

for sea H. Figure 1 is a plot of the quantity ºn 21 - a/ 2
from equation

1.17 for varying values of spectral parameters . Examples and instructions for

the GO / NO GO device program are listed in Appendix A.

Synthetic data analysis

16 . Simulations were computed for varying measurement distances from

the explosion source . Distance values were 500 , 800 , 1,000 , and 2,000 ft .

There were five simulations for each location , each representing a different

random background wave sequence . Random background waves were generated

according to the method of section 4 using an Ochi Hubble type bimodal

spectrum with significant height for swell equal to 1.0 ft , significant height

for local seas equal to .75 ft , mean period for swell at 12.5 sec , and mean

period for seas at 5 sec .

17 . Two methods were used for estimating explosion wave time

histories . The first being the boxcar type filter described in section 2 ; the

second method was an 8 pole Butterworth digital filter with maximum flatness

in the passband and stop band .

18. Plots of theoretical , observed , and estimated time series along

with random noi se
Xn from equation 1.1 , random error En

from equation

1.11 , and bias Bm from equation 1.10 are presented in Appendix B.

of

particular interest is the maximum wave amplitude for each simulation . Values

for theoretical , observed and estimated maximum wave amplitudes are given in

Table 1 and Table II . The tables are also include the associated values for

62

2

sea surface variance or mean square error , and error variance or

mean square of the random error term
En

from equation 1.11 . The theoretical

2

value for of of equation 1.13 from the GO/NO GO example of Appendix A is

o?

2 2

= 0.039 . Since is the sample variance and o? is the theoretical

variance of the explosion wave estimate time series , their values should be

2

close . Note that values for
Average

values for 62 and

2

o? over each set of twenty simulation demonstrate that

ε

n n

E
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TABLE I

Boxcar Filter

2

R

P

max

Р

max

P

obsmax o2 E

500 9.07 8.87 8.74 .096 .040

500 9.07 9.06 8.85 .100 .042

500 9.07 9.60 9.72 .103 .044

500 9.07 8.99 8.96 .102 .053

500 9.07 8.74 8.43 .092 .042

800 5.59 5.37 5.58* .095 .039

800 5.59 5.55 5.74 .102 .043

800 5.59 5.50 5.36 .084 .043

800 5.59 5.66 5.32 .097 .040

.800 5.59 5.29 5 : 55* : .088 .040

1000 4.15 4.25 4.27 .094 .039

1000 4.15 4.55 4.67 . 103 ..031

1000 4.15 3.96 4.12* .103 .044

1000 4.15 3.87 3.88* .095 .044

1000 4.15 3.85 4.25* .096 .040

2000 2.25 2.33 2.18* .102 ..046

2000 2.25 2.07 1.68 .106 .048

2000 2.25 2.47 1.96 .091 .039

2000 2.25 2.26 2.38 .103 .038

2000 2.25 2.29 2.37 .109 .050

P • Theoretical maximum explosion wave amplitude .

max

P • Estimated maximum explosion wave amplitude .

max

P • Observed maximum explosion wave amplitude.
obsmax

* Estimated wave amplitude is worse than observed .
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TABLE II

Butterworth Filter

2

R

Р

max

P

max

P

obsmax

2

o

500 9.07 8.97 8.63 .100 .027

500 9.07 9.04 8.74 .099 .028

500 9.07 9.07 8.93 .096 .029

500 9.07 9.00 8.76 .092 .030

500 9.07 9.00 8.58 .090 .030

800 5.59 5.55 5.71 . .091 .030

800 5.59 5.35 5.16 .102 .030

800 5.59 5.66 5.70 .105 .029

800 5.59 5.78 6.10 .090 .028

800 5.59 5.62 5.67 .094 .030

1000 4.15 4.55 4.66 .103 .031

1000 4.15 4.39 4.45 .087 .027

1000 4.15 3.76 3.76* .106 .033

1000 4.15 3.94 3.81 .100 .032

1000 4.15 4.39 4.44 .090 .025

2000 2.25 2.16 2.06 .092 .028

2000 2.25 2.42 2.10* .095 .028

2000 2.25 1.96 1.89 .100 .031

2000 2.25 2.06 1.61 .095 .025

2000 2.25 2.30 2.11 .095 .028

A

P • Theoretical maximum explosion wave amplitude .

max

Р = Estimated maximum explosion wave amplitude .

max

Р Observed maximum explosion wave amplitude.
obsmax

Estimated wave amplitude is worse than observed .

369



the Butterworth filter does better than the Boxcar in reducing the overall

estima te error .

( 1 )
Boxcar

Avera
ge ( o?) 0.098

Average ?
. 0.042

( 2 ) Butterworth

Averag
e ( 62 )

3 0.096

2

Average = 0.029
E

19 . Boxcar filter estimates are closer to the theoretical value of the

maximum wave amplitude than the observed maximum about 70 percent of the

time . The Butterworth does better than no filter 90 percent of the time .

Results and conclusions

20 . Random background noise effects on measured explosion wave time

series can be reduced by means of band pass filter techniques. The

Butterworth type filter tends to do a better job at reducing error than it

Boxcar filter in frequency space .

21 . The estima te error for the filtered explosion wave estimates can be

predicted using the power spectral density of the background sea surface . 111

this way , Go or NO/GO decisions can be made during testing based on sea

sur face conditions at the time .

22. A GO or NO/GO computer program is given along with self explanatory

documentation in Appendix A. The program is designed to provide quick easy

error predictions using any computer that uses FOR TRAN .
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1976. " Six - Parameter Wave Spectri " , CoastuOchi , M. K. , and Hubble , N. E.

Engineering , pp 301 .
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APP ENDIX A

Appendix A consists of the listings for the GO/ NO GO computer program and an

example of its usage .

A - 1
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GO NO GO COMPUTER PROGRAM

The GO NO GO program was developed on the Honeywell DPS- 1 system at the

Waterways Experiment Station. The program is written in standard FORTRAN

that is easily adapted to any system that supports standard FORTRAN IV.

There may be some minor changes in the input and output conventions and line

numbering . For DEC VAX systems the PRINT commands should be replaced by

PRINT * commands and the line numbers removed .

A2
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10C

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

PROGRAM GO NO GO

Fl = .08

F2 = .4

PRINT , " THIS PROGRAM COMPUTES THE EXPECTED ERROR FOR AT

PRINT , " DETERMINISTIC WAVEFORM THAT IS CONTAMINATED WITH "

PRINT , " GAUSSIAN RANDOM NOISE "

PRINT , " THE INPUT PARAMETERS ARE THE FOUR PARAMETERS "

PRINT , " ASSOCIATED WITH THE WAVE SPECTRUM FOR A MIXTURE "

PRINT , " OF LONG PERIOD SWELL AND LOCALLY GENERATED SEAS "

PRINT , " THE INPUT UNITS DETERMINE THE UNITS OF THE OUTPUT "

PRINT , " THE PARAMETERS ARE : "

PRINT , " TS = MEAN PERIOD FOR SWELL "

PRINT , " TW = MEAN PERIOD FOR SEAS"

PRINT , " HS = SIGNIFICANT WAVE HEIGHT FOR SWELL "

PRINT , " HW = SIGNIFICANT WAVE HEIGHT FOR SEA "

PRINT , " IF YOU WISH TO RUN THIS PROGRAM TYPE 1

PRINT , " AT THE PROMPT FOLLOWED BY A CARRIAGE RETURN "

PRINT , " OTHERWISE TYPE O FOLLOWED BY A CARRIAGE RETURN "

READ , IRUN

IF ( IRUN.NE.1 ) STOP

5 PRINT , " TYPE THE WAVE SPECTRUM PARAMETERS ONE TO A LINE "

PRINT , " ACCORDING TO THE PROMPT MESSAGES "

6 PRINT , " TYPE THE MEAN PERIOD FOR SWELL "

READ , TS

IF ( TS.GE.5.0 )GO TO 7

PRINT , " ILLEGAL VALUE FOR TS , RETYPE "

GO TO 6

7 PRINT , " TYPE THE MEAN PERIOD FOR SEAS "

READ , TW

IF ( TW.GT.0.0.AND.TW.LT.10.0 ) GO TO 8

PRINT , " ILLEGAL VALUE FOR TW , RETYPE "

GO TO 7

8 PRINT , " TYPE THE SIGNIFICANT HEIGHT FOR SWELL "

READ , HS

IF ( HS.GT.0.0 ) GO TO 9

PRINT , " ILLEGAL VALUE FOR HS , RETYPE "

GO TO 8

9 PRINT , " TYPE THE SIGNIFICANT HEIGHT FOR SEA "

READ , HW

IF ( HW.GT.0.0 )GO TO 10

PRINT , " ILLEGAL VALUE FOR HW , RETYPE "

GO TO 9

10 PRINT , " THE DEFAULT VALUES FOR THE FREQUENCY BAND OF "

АЗ
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15

440

450

460

470

480

490

500

510

520

530

540

550

560

570

5710

5720

5730

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

PRINT , " THE DETERMINISTIC WAVEFORM ARE : "

PRINT , " Fl = " , F1 , " F2 " , F2

PRINT , IF YOU WISH TO RESET THE VALUES FOR FI AND F2 "

PRINT , " TYPE 1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE "

PRINT , " TYPE 0 FOLLOWED BY A CARRIAGE RETURN "

READ , ICHNG

IF ( ICHNG.NE.1 ) GO TO 15

PRINT , " TYPE THE NEW VALUE FOR F1 "

READ , F1

PRINT , " TYPE THE NEW VALUE FOR F2 "

READ , F2

CONTINUE

PRINT , " PROGRAM IS RUNNING PLEASE WAIT "

PRINT ,

COMPUTE THE ERROR THEN ADJUST BY THE STANDARD

NORMAL PERCENTAGE POINT TO OBTAIN A 90 PERCENT

CONFIDENCE LIMIT .

CALL ERRP ( F1 ,F2 , TS , TW ,HS, HW , E )

ERROR=SORT ( E )

CON = 1.645 * ERROR

PRINT, " THE EXPECTED STANDARD DEVIATION FOR THE "

PRINT , " ESTIMATE OF THE DETERMINISTIC WAVEFORM IS

PRINT , " APPROXIMATELY S = " , ERROR

PRINT ,
* ***** * * 11

PRINT , " THE 90 PERCENT CONFIDENCE INTERVAL FOR THE ESTIMATE "

PRINT , " IS PLUS OR MINUS THE VALUE C = " , CON

PRINT ,
n *** ***** ********* **

PRINT , " IF YOU WISH TO OBTAIN ANOTHER SET OF VALUES TYPE "

PRINT , " 1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE TYPE O "

PRINT , " THEN A CARRIAGE RETURN "

READ , IRUN

IF ( IRUN.NE.1 ) STOP

GO TO 5

END

00

***

A4
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SUBROUTINE ERRP (F1 , F2 , TS , TW ,HS ,HW , E )

*****

THIS SUBROUTINE COMPUTES THE AREA UNDER AN OCHI

HUBBLE TYPE SPECTRUM BETWEEN THE FREQUENCY VALUES

FI AND F2 FOR INPUT PARAMETERS ,

TS MEAN PERIOD FOR SWELL

TW = MEAN PERIOD FOR LOCAL SEAS

HS = SIGNIFICANT WAVE HEIGHT FOR SWELL

HW = SIGNIFICANT WAVE HEIGHT FOR LOCAL SEAS

k *

750

7510+

7510

7520

7530

754C

7550

755C

7550

7550

755C

7550

7550

755C****

760

770

780

790

800

810 10

820

830

840

850

851C*

860C

8610

8620

862C

862c

8620

862C *

860

870

880

890

900

910

920 5

930

940

DELF = (F2- F1 ) / 100 .

SUM=0.0

DO 10 I = 1,100

F= F1 + ( 1-1 ) * DELF

SUM=SUM+SPEC ( TS ,HS , F ) + SPEC ( TW , HW , F )

CONTINUE

E=SUM* DELF

RETURN

END

FUNCTION SPEC ( T , H , F )

COMPUTES THE OCHI- HUBBLE TYPE SPECTRUM FOR

PARAMETERS ,

T = MEAN PERIOD

H = SIGNIFICANT WAVE HEIGHT

A = (5./14.*T**4 ) )

B = A * ( ( H / 4 . ) ** 2 ) / ( F **5 . )

ARG = -A / ( F ** 4 . )

IF ( ARG.GE.- 50.0 ) GO TO 5

SPEC= 0.0

RETURN

SPEC=4.0 * B * EXP ( ARG )

RETURN

END

AS
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GO/ NO GO EXAMPLE

The GO / NO GO example begins with an FRN command . This command is specific to

the Honeywell DPS - 1 system and means get the program GO NO , compile it , and

run it . The rest of the example is typical interactive session with the GO /NO

GO package .

46
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-FRN GONO

THIS PROGRAM COMPUTES THE EXPECTED ERROR FOR A

DETERMINISTIC WAVEFORM THAT IS CONTAMINATED WITH

GAUSSIAN RANDOM NOISE

THE INPUT PARAMETERS ARE THE FOUR PARAMETERS

ASSOCIATED WITH THE WAVE SPECTRUM FOR A MIXTURE

OF LONG PERIOD SWELL AND LOCALLY GENERATED SEAS

THE INPUT UNITS DETERMINE THE UNITS OF THE OUTPUT

THE PARAMETERS ARE :

TS = MEAN PERIOD FOR SWELL

TW = MEAN PERIOD FOR SEAS

HS = SIGNIFICANT WAVE HEIGHT FOR SWELL

SIGNIFICANT WAVE HEIGHT FOR SEA

IF YOU WISH TO RUN THIS PROGRAM TYPE 1

AT THE PROMPT FOLLOWED BY A CARRIAGE RETURN

OTHERWISE TYPE 0 FOLLOWED BY A CARRIAGE RETURN

= 1 .

TYPE THE WAVE SPECTRUM PARAMETERS ONE TO A LINE

ACCORDING TO THE PROMPT MESSAGES

TYPE THE MEAN PERIOD FOR SWELL

= 12.5

TYPE THE MEAN PERIOD FOR SEAS

= 5.0

TYPE THE SIGNIFICANT HEIGHT FOR SWELL

= 1.0

TYPE THE SIGNIFICANT HEIGHT FOR SEA

= .75

THE DEFAULT VALUES FOR THE FREQUENCY BAND OF

THE DETERMINISTIC WAVEFORM ARE :

Fl = 0.80000000E-01 F2 = 0.40000000E 00

IF YOU WISH TO RESET THE VALUES FOR FI AND F2

TYPE 1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE

TYPE O FOLLOWED BY A CARRIAGE RETURN

= 1

TYPE THE NEW VALUE FOR F1

= .11

TYPE THE NEW VALUE FOR F2

= .25

AZ

377



PROGRAM IS RUNNING PLEASE WAIT

THE EXPECTED STANDARD DEVIATION FOR THE

ESTIMATE OF THE DETERMINISTIC WAVEFORM IS

APPROXIMATELY S = 0.19739283E 00

*** ******* ********

THE 90 PERCENT CONFIDENCE INTERVAL FOR THE ESTIMATE

IS PLUS OR MINUS THE VALUE C = 0.32471121E 00

** * ***** * * * *********

IF YOU WISH TO OBTAIN ANOTHER SET OF VALUES TYPE

1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE TYPE O

THEN A CARRIAGE RETURN

= 1

TYPE THE WAVE SPECTRUM PARAMETERS ONE TO A LINE

ACCORDING TO THE PROMPT MESSAGES

TYPE THE MEAN PERIOD FOR SWELL

= 10.0

TYPE THE MEAN PERIOD FOR SEAS

=6.0

TYPE THE SIGNIFICANT HEIGHT FOR SWELL

= 1 .

TYPE THE SIGNIFICANT HEIGHT FOR SEA

= .5

THE DEFAULT VALUES FOR THE FREQUENCY BAND OF

THE DETERMINISTIC WAVEFORM ARE :

Fl = 0.11000000E 00 F2 = 0.25000000E 00

IF YOU WISH TO RESET THE VALUES FOR FI AND F2

TYPE 1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE

TYPE O FOLLOWED BY A CARRIAGE RETURN

= 0

PROGRAM IS RUNNING PLEASE WAIT

THE EXPECTED STANDARD DEVIATION FOR THE

ESTIMATE OF THE DETERMINISTIC WAVEFORM IS

APPROXIMATELY S = 0.215943515 00

*********** ********

THE 90 PERCENT CONFIDENCE INTERVAL FOR THE ESTIMATE

IS PLUS OR MINUS THE VALUE C = 0.35522708E 00

**** ********

IF YOU WISH TO OBTAIN ANOTHER SET OF VALUES TYPE

1 FOLLOWED BY A CARRIAGE RETURN OTHERWISE TYPE 0

THEN A CARRIAGE RETURN

= 0

A8
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APP ENDIX B

Time Series Plots for Synthetic Wave Data Analysis

Mme series plots include examples of the theoretical explosion waveform

versus the explosion waveform mixed with random noise , random noise , filtered

estima te versus theoretical waveform , random error or random noise after

filtering , and bias due to filtering . The plots represent a time series that

would result if a device began measuring the background noise exactly 50 sec

before the first explosion wave reaches the measurement location .

B - 1
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A VARIABLE SELECTION MODEL BUILDING

TECHNIQUE FOR RADAR MEASUREMENT BIAS ESTIMATION

WILLIAM S. AGEE

ANDREW C. ELLINGSON , JR .

ROBERT H. TURNER

National Range Operations Directorate

White Sands Missile Range , New Mexico

ABSTRACT. Measurements of range , azimuth , and elevation from several

different radars are combined to estimate the cartesian coordinates of a

vehicle trajectory . Since the sequence of times t ;, i = 1 , 2 , --- , N which

cover the entire trajectory . Since the measurements are subject to

systematic errors as well as random measurement errors , the systematic

error parameters ( biases ) are also estimated . The resulting estimation

problem is a combined linear and nonlinear problem in which the trajectory

coordinates appear nonlinearly in the measurements and the biases appear as

linear parameters in the nieasurements. Applications of the above estimation

very often result in ill -conditioned linear equations for estimating the

radar biases , producing erroneous bias estimates. The problem of ill

conditioning caused by multicollinearity along the terms included in the

bias model , is treated by using a backward elimination method for the

selection of independent variables to be included in the radar measurement

bias model . The method is illustrated with examples from WSMR radar tracking

missions .

KEY WORDS. Multicollinearity , trajectory , estimation , regression ,

variable selection , stepwise regression
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A VARIABLE SELECTION MODEL BUILDING TECHNIQUE FOR RADAR MEASUREMENT BIAS ESTIMATION

INTRODUCTION .

The WSMR radar Best Estimate of Trajectory ( BET ) program combines

the range , azimuth , and elevation measurements from all radars tracking

an object to optimally estimate a set of smoothed cartesian positions ,

velocities , and accelerations of the object at each measurement time t ;:

The radar measurements are subject to systematic error as well as a

random error component . The radar systematic errors are usually

referred to as measurement biases . When an object is being tracked by

.

multiple radars and the relative geometry between the object trajectory

and the radars is sufficiently good , a measurement bias for each range ,

azimuth , and elevation measurement can be estimated . It is important ,

sometimes absolutely necessary , for the success of the multiple radar

BET reduction that estimates of the radar measurement bias be obtained .

When these measurement biases are estimated by least squares , the

resulting bias estimates are often erroneous due to numerical ill

conditioning of the least squares estimation problem and

multicollinearity between the terms included in the bias model caused

by overfitting .

We have attempted to treat this problem of erroneous bias

estimates by application of ridge regression techniques [ 1 ] and by

application of the method of principal components [ 2 ] . We have had

partial success with each of these methods but neither has proved

satisfactory for automatic trajectory data reduction . Techniques are
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developed in this report which successfully treat the problems of

ill -conditioning and overfitting in the radar measurement bias

estimation problem . These methods are being incorporated into the

WSMR radar BET . These techniques are based on the use of modern ,

reliable numerical linear algebra algorithms and software and on the

development of a statistical model building technique which estimates

only the radar bias terms which make a significant reduction in the

error sum of squares .

The difficulties with the radar bias estimates are illustrated

with some actual WSMR radar data sets . These data sets are treated

by conventional least squares estimation methods and by the model

building technique developed herein .

RADAR MEASUREMENT EQUATIONS

Let x , y , z be the coordinates of an object in a local cartesian

coordinate system at the radar site . The ideal mathematical model of

the radar measurements in terms of these cartesian coordinates is :

r ( a ) = ( x2 + y2 + z2j + range

ală ) ta
n
- 1 K

l
x

azimuth

2

e ( x ) = tan - 1 - elevation

( x2 + y2 ) ?

where x is the position vector with components x , y , z . The radar does not

measure these ideal values of range , azimuth , and elevation , but is subject
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to a measurement error which we assume to be additive and is composed

of a systematic component and a random component . Let bra bas bɛ be the

systematic or bias components of error for range , azimuth , and elevation ,

measurement error .

respectively . Also , let eru ea ee be the random components of the

eru ea ; eg are assumed to be independent , zero

mean , and variance oko ok, oế, respectively . Then the measured

values of range , azimuth , and elevation are modelled as :

R rå) + DR
+

eR

A = a ( x ) + bБА
+ A

E = e ( x ) + Be + ee

LEAST SQUARE ESTIMATION OF OBJECT POSITION AND RADAR BIASES

If measurements are available from only one radar there is no

potential for estimating the radar measurement biases , bri ba : be

from

radar measurements alone . Thus , estimates of the object cartesian

position obtained from the single radars measurements will be biased if

bri Ba: bę are not zero .

Suppose , however , that we have measurements from several radars ,

say M.
Let the radars be indexed by a , a=1 , M . The radar measurement

model is now written as

R = r

a
= r . )

+
Dr.

e
r ( 1 )a

A

a a
= a ( x ) + BA

+ e

e

f

a a = 1 , M . ( 2 )

a

Ea = e . ( * )

+ b +

E

a

b
e
a ( 3 )

e
w
o
o
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where x is no longer the position vector of the object in a local radar

cartesian system but has cartesian components in a common reference

coordinate system . The functions rală ) , a alx ) , eali ) now involve the

position of the radar site with respect to the origin of the reference

coordinate system ,

✓xtlara( x )
+ 2

yta
Ziflo

(4)
(5)

aa( x ) ta
n
- 2

XTla

Ута

-1
ZTla

( 6 )

X_2

'Tla

ea ( X ) tan

+ yfla

where [XT /a Ytla 21 /a)= [ (x -Xa) ( y -ya ) ( z- za) ] Mwa

Mw /a

Wla

is a rotation matrix from the local radar cartesian system to the

common reference system .

Let hală ) denote the vector with components ra (ă ) , ac ( ă ) , ed ( ),

ba the vector with components BR. be , e , the vector withА

ala

components

' R
the vector with components ,

А
@E.

and m

a

α
ca

Ras Ace Ed Then the radar measurement model is :

ma = h. (* ) + b

+ e

a
a=1 , M ( 7 )

a

Suppose we have radar measurements at a sequence of times t;, i = 1 , N .

We index the position vectors and measurements with t ; so that the

radar measurement model is inalt ;) = hali ( t ; ) ) + ba + ealt ; ) , i = 1 , N .

i
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For processing the radar measurements at time t ; further package the

measurements by introducing the vectors

m "( ty) = (m / ( ti ) mylt;) mult ; ) ) ,

n (ä(t;)) = (h,( (t;)) heliſt ; ) ) --- hylält ; ) ) ) ,

bt

( by bz bm ) , and elt ; ) = ( ez ( t ; ) e (t ;) em (t )).

Then the model of the m radar measurements at time t , is

m ( t ; ) = hli ( t ; ) ) + b + elt ; )

(8)

Using the measurements from M radars over a sequence of N times

t ; the potential exists , provided the relative geometry between the

object trajectory and radar sites is sufficiently good , to estimate both

the position vectors i ( t ; ) , i = 1 , N and the measurement bias vector b .

Suppose we have a trial or guess position x.lt ; ) , i = 1 , N . Such a trial

solution is easily computed . For example , let žalt ; ) = ( xalt ; )

Yalt ; / za / t ; ) ) be the cartesian components of the object position which

can be computed from the a Then a good guess solution is

x. ( t ; )

x.lt ; ) = median

yalt ;)

a= 1 ,M

z (t. )

th

radar .

obtained from

Now linearize the measurement equation ( 8 ) about xolt ; ) ,

m (t ) = h (t ) + H(X (t )6x(t ) + b + e ( t )

+

( 9 )
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where Hx. (t;)) is the 3Mx3 matrix of partial derivatives

Hi(t )) -

ah (t ))

ax (t )

( 10 )

~ 2 ^ 2 ^ 2

Suppose we have estimates o , of the measurement error

' R А E

a

variances for each of the radars . Let Ê be a diagonal matrix of

these variance estimates . Then a weighted least squares estimate of

the di ( t ; ) and the bias vector b minimizes ,

r ( t ; ) - HX (t;))s (t;)
( 11 )

j = 1 ^ -1

where r ( t ; ) is the residual vector , m ( t ; ) - hã (t; )) .

Rather than forming the least squares normal equations by differentiating

( 11 ) , it is more accurate and convenient to solve the weighted least

squares problem using the QR algorithm .
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APPLICATION OF THE QR ALGORITHM TO THE WEIGHTED LEAST SQUARES PROBLEM

In order to cast the weighted least squares problem into an

ordinary least squares problem to which the QR algorithm can be applied ,

the following replacements are made

r ( ty ) + Ê fc(t;)
( 12 )

H(X (t;)) = BACão(t;))
( 13 )

elt ;) = Ê -te ( t ; )

(1
4
)

Then the weighted least squares problem posed by ( 11 ) becomes the

ordinary least squares problem to minimize

N

Σ

i =1 || rey) - H65,16,1 ) 686 € ) - -4o ||

( 15 )

Thus , at each time t ; we have the modified measurement equation

r ( t ; ) - H ( X ( t ; )) && (ty) - Î -45+ elt,
( 16 )

Suppose that at each time t ;, an orthogonal matrix Qi is constructed

such that

07H(X.(t;)) -
( 17 )
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where R ; is 3x3 upper triangular . Let

qr(ty) = y(t;) and QIÊMQ ?
P ( t ; ) . Then

ylex)-[ ]ox(t;) + P ( t ; ) b + ale ( tz )
( 18 )

If y t ) and P ( t ; ) are partitioned as ,

Vx ( tt )

3x1

ylt ; ) = ( 19 )yo (t )

(3M - 3 ) x1

Py (t )х

3x3M

Plt :) - Po (t )
( 20 )

3M- 3 ) x3M

then

Yxlt;

R.

i Per
t
:) e (t;)]

HO

silt ; )

+

D

b +

Copy

(21 )

Lyolt;) Folt ; ) elt;)
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If the bias vector b is known , then the first of equations ( 21 )

provides the least squares solution for the incremental position

vector , să ( t ; ) . Thus , så ( t ; ) is obtained by solving the upper

triangular set of equations

R; 57 ( ty ) = yy (t ;) - Pu ( t; ) b , 1-1 , N
( 22 )

The second of equations ( 21 ) ,

Po (t )b = y (t )
i = 1 , N

provides an overdetermined set of equations to be solved for the

bias vector b . Let Pf=[Pb(ty) Po ( t2 ) --- Po ( tn ) ] , x= Cyp ( ty ) xp(ty ---yy (ty)].

and e - le ( t ,) (t )--- ep(t )). Then

Pb -Yte
(23 )

Suppose that an orthogonal matrix Qp is constructed such that

оқP,
( 24 )

Then the least squares

where Rp is a 3Mx3M upper triangular matrix .

solution for the bias vector is the solution to ,
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03 . *..[0]

(25 )

where the dimension of the vector U , is 3M and the dimension of Uz

is N ( 38:1-3)-3M . Thus , the bias estimate is given by the solution to the

upper triangular system of equations ,

b = U

1
( 26 )

Having computed the linearized least squares estimate of the bias

vector from ( 26 ) , the incremental position solution să (t ;) is computed

from ( 22 ) for each t ;. In order to conserve on core storage

requirements , the QR decomposition in ( 24 ) is not done directly ,

since Po is often a very large matrix .
Instead of a direct QR

decomposition on Po , the QR decomposition is done sequentially in time

as each Polt ; ) arrives .

Since the original observation equations and thus the original

least squares estimation problem is nonlinear , the above QR

decomposition process for the least squares problem must be iterated

with the replacement ,

žolt ; ) = x /t;) + ox ( t ; )
( 27 )
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After the iteration process has converged , new estimates of the

measurement variances , o, are computed for each radar

R. A ' E

2 2 2
o 0

a a

from the measurement residuals ,

r ( t ; ) = m ( t ; ) - hlüplt ; ) ) - bp
( 28 )

where #f ( t ; ) is the estimate of the position vector at convergence ,

and be is the estimate of the bias vector at convergence .

These new

estimates of measurement error variance are inserted into the diagonal

variance matrix , { and the QR iteration process again is iterated untilĜ

convergence . This outer iteration loop which reestimates the measurement

error variance is repeated for a fixed number of iterations .

Since the use of the full set of measurement times for the

estimation of the measurement biases would consume considerable computer

time , a highly thinned set of measurement times is selected for use in

bias estimation . This thinned set of measurement times is selected

to cover the entire object trajectory . This allows a reliable

estimate of the measurement biases while not requiring a great amount

of extra computer time .
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SOME EXAMPLES

Although there have not been any convergence problems in iteratively

solving the nonlinear least squares problem for the object position and

the radar measurement biases , another problem which sometimes arises

in linear least squares estimation problems occurs frequently in the

radar bias estimation problem . Very often , the estimate of the bias

vector , b , converges to a value for which several of the components are

too large and may have the wrong sign . Sometimes the bias estimate is

obviously erroneous . One obviously erroneous case which arises

frequently is that the elevation bias components will be large and

of the same sign . In linear least squares estimation the problem

of the vector of regression coefficients being too long is often

attributed to multicollinearity among the predictor variables . This

problem in the linear estimation case is often successfully treated by

some method of biased estimation such as ridge regression or principal

components . The problem has not been properly recognized or successfully

treated when it arises in trajectory estimation . Although the existence

of these erroneous bias estimates has been recognized in trajectory

estimation , the source of the difficulty was not properly recognized .

Some workers in trajectory estimation have stated that the existence

of this problem demonstrates the need to specify a prior distribution

for the biases in order to " tie down " or statistically constrain the

bias estimates . It does not take much experience in using these priors

for trajectory estimation to realize that the problem of inflated bias

estimates is as much present with the prior as without the prior .
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We have attempted to treat the problem of inflated measurement bias

estimates with both ridge regression [ 1 ] and with the method of

principal components [ 2 ] . We have had partial success with each of

these methods but neither method is satisfactory for an automatic data

reduction program .

EXAMPLE 1 :

Consider the following example from WSMR tracking data .
This

example has three radars , R122 , R123 , R395 tracking a level flying drone ,

flying at an altitude of about 30,000 ft . The graph of Figure 1 shows

the relative geometry between the target trajectory and radars .
The.

least squares estimates of the radar measurement biases for this

example are ,

R122 R123 R395

Range bias ( ft )
118.0 115.1 72.4

Azimuth bias (miliradians ) .186 .143 .179

Elevation bias (miliradians ) -.705 -.911 -.526

The values of the elevation bias estimates , which are all large and

negative , illustrate a common type of erroneous solution occurring

in radar trajectory estimation . In this example we are able to confirm

that the radar bias estimates given above are greatly in error .

Using measurements from tracking cameras we are able to obtain position

estimates of the target trajectory which are considerably more accurate

than the position estimates obtained from radar measurements . By using

the optically derived positions to compute what the radar measurements
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should have been , we can compute the actual values of the radar

measurement biases . The following biases were computed using the

optically derived positions .

R122 R123 R395

Range bias ( ft ) 157.3 152.9 80.3

.05 .02 .09
Azimuth bias (miliradians )

Elevation bias ( miliradians ) .11 -.08 -.09

The large errors in the radar bias estimates are readily apparent .

EXAMPLE 2 :

This example has three radars , R124 , R125 , R442 beacon tracking a

high performance missile . The graph of Figure 2 shows the relative

geometry between the radars and object trajectory. The least squares

estimates of the radar biases for this example are

R124 R125 R442

Range bias ( ft ) 257.8 304.8 166.9

Azimuth bias (miliradians ) .056 .049 -.373

Elevation bias (miliradians )
-.170 -.368 -.479

Radar bias estimates derived from optical measurements are

R124 R125 R442

Range bias ( ft ) 254 297 189

0 -.04 -.16Azimuth bias (miliradians )

Elevation bias (miliradians ) 0 -.05 -.09
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Again the measurement biases estimated from least squares are

seriously in error .

VARIABLE SELECTION PROCEDURE

The stepwise regression procedure in the BMDP software package was

tried as a method of variable selection for the radar measurement bias

estimation problem . Several examples were tried using the BMDP

stepwise regression . Although the BMDP procedure proved to be unsatisfactory

for many of the examples , the results suggested changes necessary to develop

a satisfactory variable selection procedure for the bias estimation problem .

The computer output from the BMDP stepwise regression routine applied to

the first of the previous two examples is presented on pages 433-436 .

Variables x ( 1 ) , x ( 2 ) , and x ( 3 ) correspond to the range biases for R122 ,

R123 , R395 respectively . Variables labeled x ( 4 ) , x ( 5 ) , and x ( 6 )

correspond to the azimuth biases for R122 , R123 , and R395 . Variables

labeled x ( 7 ) , x ( 8 ) , and x ( 9 ) correspond to the elevation biases for R122 ,

R123 , and R395 .
The stepwise regression for this example uses an F

F
I
N
= 6 .

Thus , at each step the variable with the largest F-to -Enter ( provided it is

greater than Fin ) is entered into the radar bias model . Thus , in step #1

the range bias for R395 is entered into the model . In step #2 the azimuth

bias for R395 is entered . In step # 3 R122 elevation bias is entered into

the bias model and in step #4 R122 range bias is entered . In step #5

a difficulty occurs in the BMDP program . At this point variable x ( 2 )

( R122 range bias ) with an F- to-Enter of 2102 should have been entered into

the bias model . The BMDP output indicates on page 435 that it was unable

to enter x ( 2 ) into the model because to do so would lower the tolerance
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of variable x ( 1 ) below its limit of .01 . This is equivalent to saying

that this bias estimation problem is so ill -conditioned that , for the

numerical method being used by BMDP , the minimum conditions for

satisfactory operation cannot be met . Finally , the variables x ( 9 )

corresponding to R395 elevation bias and x ( 4 ) corresponding to R122

azimuth bias are entered into the radar bias model . The final radar

bias estimates in the model are given on page 436. Comparing these bias

estimates with the radar biases derived from optical measurements

indicates that the bias model obtained from BMDP stepwise regression is

erroneous . The reason for this is the failure of BMDP to enter the

variable x ( 2 ) corresponding to R123 range bias . The value of the R123

range bias obtained from the optical measurements is 152.9 ft which

indicates that it must be a significant influence in the radar bias

model . Thus , this example suggests that a better numerical method

needs to be used for the current application .

The computer output from the BMDP stepwise regression routine applied

to the second of the previous two examples is presented on pages 437–441 .

As in the previous examples variables x ( 1) , 4 ( 2 ) , x ( 3 ) correspond to

radar range biases for R124 , R125 , and R442 . Variables x ( 4 ) , 4 ( 5 ) ,

x ( 6 ) correspond to azimuth measurement biases for R124 , R125 , and R442 .

Variables x ( 7 ) , * ( 8 ) , * ( 9 ) correspond to elevation measurement biases for

R124 , R125 , and R442 . In this example of stepwise example an FFint
= 1 is

being used . This is done so that all variables may eventually be entered

into the model . It is informative in this example to observe the

sequence of multiple R2 values as variables are entered into the

measurement bias model . After having entered the three range bias
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variables , x ( 1 ) , x ( 2 ) , x ( 3 ) into the model the multiple RP value is

.9944 indicating that 99.44 % of the sum of squares has been explained by

these three variables . In step #4 x ( 6 ) corresponding to R442 azimuth

bias is entered and results in a multiple R² of .9959 , an increase of

only .0015 over the previous value . As additional variables are entered

into the model the sequence of increases of multiple R2 is .0003 ,

.0004 , .0007 , .0001 , .0000 . Also , as these additional variables are

entered into the model , the magnitudes of these additional biases are

large and erroneous , and the magnitude of x ( 6 ) which was entered in a

previous step also becomes inflated and erroneous . Thus , variables

x ( 4 ) , 4 ( 5 ) , * ( 7 ) , * ( 8 ) , and x ( 9 ) are erroneous and are ineffective in

explaining the sum of squares . This example suggests that , in order to

combat the problem of erroneous bias estimates , an effective model building

procedure might be constructed by placing a lower limit on the amount of

change in the multiple R that is acceptable as a variable is entered

into the model .
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RADAR MEASUREMENT BIAS MODEL BUILDER

Both a forward selection procedure and a backward elimination procedure

were developed and tested as radar measurement bias model builders . At

each step of the model building process the forward selection procedure

enters the variable into the model which produces the largest increase

in the multiple R2 . The selection process is stopped when the largest

increase in the multiple R2 falls below a specified threshold , 8 .

Starting from the model which includes all of the radar bias parameters ,

at each step of the model building process the backward elimination

procedure deletes the variable from the model which produces the

smallest decrease in the multiple R2 . The elimination process is

stopped when the smallest decrease in the multiple R2 is greater than a

specified threshold , 8 or when the error sum of squares has increased

by more than ( 1+f ) the error sum of squares of the full model . The

two model building procedures have been tested on numerous data sets .

Sometimes the two selection methods result in the same model , but more

often they result in two slightly different but reasonable measurement

bias models . The backward elimination model builder was selected for

implementation in the WSMR radar reduction program because it allows

one to obtain some idea of the effects of the parameters which are not

in the final model .

Starting with the full bias model given in equation ( 23 ) ,

Ръ = уу ?
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we construct the orthogonal Qo such that po i.e. , equation

( 24 ) . Then the measurement bias estimate for the full model is given

52
-
[8]

by the solution to equation ( 25 ) ,

[% ] Com

Tuz

U2

The sum of squares due to regression for the full model is

2

( 29 )

SSR ( B ) = ||42|

{ bj , j = 1 , 3M } denotes the full model

where B =

and the sum of squares due to error is

2

SSE(B) = 110211

( 30 )

thus , the multiple R ? for the full model is

R ? ( B ) =

SSR ( B )

SSR ( B ) + SSE (B )

|| U, 113

ellu,l12+ 1102 IP )

( 31 )

Let B. denote the

Now suppose variable bj is deleted from the full model . B;

model with b; deleted , B; = { bko kť j } .{ bkok j } . Then the regression sum of

squares with b; deleted is ,

SSR ( B; ) = SSR ( B ) - SSR ( b; 1B ; )

( 32 )
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We

)

ji

where SSR ( D; 18; ) is the extra sum of squares due to entering bj into

the model given that all other variables are already in the model.

want to delete from the full model the variable , bj,, such that SSR ( bj ,

is a minimum provided SSR ( Bj ; 'B; //(SSR(B)+SSE(B) 0. Thus , we choose

Bj; such that SSR(bj, Bj, SSR(b 1B;), j =1,3M and

SSR (D;18;}/SSR(B)+SSE (B )<8. Choosing the minimum of SSR ( b; 1B; ) is

equivalent to selecting the variable b; for which the partial

F-coefficient ,

SSR ( 6; 18; )

Fj - SSETB )

( 33 )

is a minimum , since SSE ( B ) is independent of bj . The partial F is

easily computed as ,

^ 2

b

j

C.

'jj

( 34 )

j

from

= min { F

{Fj '

where is the estimated value of b; in the full model and VC;j

is the standard error of bj . Thus we delete the variable b.
baine

the full model , where F

ja

j = 1 , 3M } . The jiThe j,st column of the

matrix is then deleted from Po and columns j, + 1 thru 3M are moved down

one column , i.e. , we do the replacements P; * Pj + 1 • j =jų , 3M- 1 where

Pj
is the jth column of Pp . The backward elimination is then repeated

using the new matrix Po which has only 3M- 1 columns . The algorithm for

the backward elimination model building process is summarized :
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= 3M - STEP
NS

1. Construct an orthogonal qp such that apo

where Ro is

06. -[83].

2. Solve R46 =Solve Rob 'yo = U,dimension { b }
95 %

= N

S

3. Compute SSR = 114,11² , SST = || 01 |2 ; R² =

SSR

SST

STEP=0 ,

3M- 14 . Compute C =

( RTR ) -1

^ 2

b

5. Compute partial F's , Fj

ت

ت

م

ة

j = 1 ,N
NS

6 . F.

fj
= min { Fj , j = 1 , Ns }

If F ; /SST >8 , stop and use b as the final model ,

ji

else make the column replacements , Pb (i)=pp (i+1),i=j,',N5-1.

An alternative for stopping the elimination process is to stop at step

jk- 1 when SSE (Bja )>(1+f)SSE(B) where B,

{ b ;, i tją , 3,...., jk } and f is a small fractio
n , say f = .1 .

jjjz " ejk

:
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The deleted variables , b . --- b are considered as dependent
j

K - 1

variables and the set of estimated variables B. are

Dje Dje

Bj,ja ** jk -1

considered as independent variables . Having identified and estimated

the independent variables , values for the dependent variables are

computed as averages of residuals . Let bi , iti ,, j,,--- jk-1' be the

estimated values of the independent variables . Let by be the vector with

components by for ,i j ;, j , ; ---jk and 0 for the components

corresponding to the dependent variables . Let m ' ( t ; ) be the observation

vector at time t , with the vector by removed ,

m ' ( t ; )
một ) - 6 = 5( 8( t )) + ( b - 6

+ elt ; )
- ( 35 )

Linearization and the QR algorithm are again applied to computing the

position vectors x ;, i = 1 , N which minimize

Has(es) - hclt,»)

( 36 )

1

f

where Er is the final estimated covariance matrix computed from the

measurement residuals , ( 28 ) . The values of the dependent variables

b , isi =j ,, ) ,, ---jk - 1 are now computed as

6 ( "( )- ncâleg)) , 1-3,, J------

( 37 )

where Â ( t ; ) is the estimated position vector at time t; obtained by

minimizing ( 36 ) .
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EXAMPLES REVISITED

EXAMPLE 1 :

When the backward elimination variable selection technique described

in the last section is applied to the first of the two examples previously

described , the following results are obtained .

Full Model

Estimated biases

122 - R 122 -A 122 - E 123 - R 123 -A 123-E 395 -R 395-A 395 - E

118.0 .196 -.705 115.1 .143 -.911 72.4 .179 -.526

SSR = 18972 , SSE = 547 R ? = .9810

Partial F's

161.8 3.0 3.98 154.4 1.60 6.67 39.0 13.0 7.27

123 -A deleted

Step 1 bias estimates

122- R 122-A 122 - E 123- R 123- E 395-R 395-A 395-E

118.0 .053 -.779 115.1 -.985 . 59.1 .118 .559

SSR = 18971 , SSE = 549 R2 = .9810

Partial F's

162.0 57.3 5.0 154.5 8.0 149.5 91.0 8.9

122 - E deleted

447



Step 2 bias estimates

122 -R 122-A 123- R 123 - E 395-R 395-A 395- E

137.9 .053 135.0 -.207 69.0 .134 -.140

SSR = 18966 , SSE = 554 R ? = .9807

Partial F's

2756.1 57.1 2632.5 1291.2 1278.4 173.3 204.9

122-A deleted

Step 3 bias estimates

122-R 123- R 123- E 395- R 395-A * 395 - E

137.9 134.9 -.207 68.8 .134 -.140

SSR = 18908 , SSE = 610 R2 = .9777

Partial F's

2753.5 2629.9 1291.2 1271.2 172.1 204.8

395-A deleted

Step 4 bias estimates

122 -R 123-R 123 - E 395-R 395- E

159.0 156.1 -.207 84.2 -.129

SSR = 18736 , SSE = 782 R2 = .9688

Partial F's

5869.0 5628.5 1291.8 2998.7 175.21

395 - E deleted
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122 -R 123 - R 123 - E 395 - R
O

independent bias variables

162.1 159.1 -.205 86.4

SSR = 18561 , SSE = 958 R ? .9509

Partial F's

6176.1 5927.1 1264.3 3197.9

Further deletion of variables would cause more significant decreases

in R ?. The dependent variables are the 122 -A , 122- E , 123 -A , 395-A ,

and 395- E biases .
These biases are computed from the corresponding

residuals . The results are

122 -A 122- E 123 -A 395-A 395- E

.057 .001 -.002 .075 -.127 - dependent bias variables

These values of the radar bias estimates compare favorably with the

values computed from optics ,

122- R 122 -A 122 - E 123 - R 123 -A 123 - E 395 -R 395-A 395- E

157.3 .05 .11 152.9 .02 -.08 80.3 .09 -.09
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EXAMPLE 2 :

The following results are obtained when the backward elimination

variable selection technique is applied to the second of the two

examples previously described .

Full Model

Estimated Biases

124- R 124 -A 124- E 125 - R 125- A 125- E 442-R 442 -A 442- E

257.7 .056 -.170 304.8 .049 -.368 166.9 -.373 -.479

SSR = 17867 , SSE = 339 R2 = .9813

Partial F's

5537.0 2.0 28.1 4579.0 0.6 32.3 661.9 25.0 53.4

125 -A deleted

Step 1 bias estimates

124 -R 124 -A 124- E 125 - R 125 - E 442 -R 442 -A 442- E

258.6 .046 -.167 304.2 -.360 167.6 -.344 -.472

SSR = 17866 , SSE = 339 R? = .9813

Partial F's

6159.0 1.5 27.5 4672.1 31.7 679.9 28.2 52.8

124 -A deleted

Step 2 bias estimates

124- R 124 - E 125 -R 125 - E 442 - R 442 -A 442- E

257.5 -.158 301.5 -.337 170.4 -.321 -.461

SSR = 17865 , SSE = 341 R2 = .9813

Partial F's

6602 26.0 6084.2 30.4 804.2 26.8 51.4

124- E deleted
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Step 3 bias estimates

124 - R 125- R 125 - E 442- R 442-A 442 - E

256.1 300.2 -.141 178.9 -.296 -.212

SSR = 17839 , SSE = 367 R2 = .9798

Partial F's

6580.2 6058.3 8.8 961.0 22.9 25.7

125- E deleted

Step 4 bias estimates

124-R 125- R 442 - R 442-A 442 - E

255.1 298.8 181.7 -.289 -.154

SSR = 17830 , SSE = 376 R2 = .9793

Partial F's

6604.3 6090.2 1018.2 21.8 17.3

442- E deleted

Step 5 bias estimates

124- R 125- R 442 - R 442-A

260.4 305.0 178.8 -.263

SSR = 17813 , SSE = 393 R ? = .9784

Partial F's

8230.9 7456.9 1001.0 18.3

442-A deleted
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Step 6 bias estimates

124 - R 125 - R 442-R

independent variables

265.5 305.5 177.3

SSR = 17794 , SSE = 411 R ? =
= .9773

Partial F's

10411.9 7496.6 988.0

Additional deletion of variables would produce large decreases in Ra .

The dependent variables are identified as the 124 -A , 124 - E , 125-A , 125- E ,

442-A , 442- E bias .
The values of these biases computed from the

residuals are ,

124 -A 124 - E 125 -A 125 - E 442-A 442- E

.020 .002 -.105 -.048 -.180 -.016

These values of the radar bias estimates again compare favorably with the

values computed from optics ,

124 - R 124 -A 124 - E 125 -R 125-A 125 - E 442-R 442-A 442-E

254 0 0 297 -.04 -.05 189 -.16 -.09
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The backward elimination variable selection technique described

above has been successfully applied to numerous other examples of

radar bias estimation . A question in the application of this method

which has not been totally answered is when to stop the elimination

process . From all applications tried , it appears that it is best

to stop the elimination when the fractional change in the SSE

exceeds a given threshold . For these applications a plot of the

SSE versus the elimination step number yields a curve whose general

characteristics are shown in the following graph ,

S
S
E

+

0 1 2 3 4 5 6 7

STEP NUMBER

One would expect that a good stopping point is close to the knee of

this curve , probably just past the knee . In some applications it has

been advantageous to go two points past the knee . A good answer

about when to stop will probably come with additional application

experience .
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This paper appeard in the Proceedings of the 29th Conference on the Design of

Experiments. I is reprinted here to correct several errors that occurred in

typesetting the authors formulas .

ON THE LEHMANN POWER ANALYSIS FOR THE WILCOXON RANK SUM TEST

James R. Knaub , Jr.

US Army Logistics Center

ABSTRACT

The Wilcoxon Rank Sum ( or Mann -Whitney ) Test is among the most useful

and powerful of the non- parametric hypothesis tests . However , as with many

hypothesis tests , when a clear alternative hypothesis and corresponding

power analysis is not present , the practical interpretation of results

using this test suffers greatly . This paper presents and clarifies an

alternative suggestd by E. L. Lehmann in 1953 and provides tables of

practical use which have not prviously been calculated due to computational

difficulties .
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On the Lehmann Power Analysis for the

Wilcoxon Rank Sum Test

The Wilcoxon Rank Sum ( or Mann-Whitney ) Test is among the most useful and

powerful of the non - parametric hypothesis tests . However , as with many hypo

thesis tests , when a clear alternative hypothesis and corresponding power

analysis is not present , the practical interpretation of results using this

test suffers greatly . This paper presents and clarifies an alternative sug

gested by E. L. Lehmann in 1953 ( Annals of Mathematical Statistics [ 7 ] ) and

provides tables of practical use which have not previously been calculated due

to computational difficulties. This work has recently been applied to survey

data gathered for the US Army Logistics Center , ( See reference [ 5 ] . )

1

When sample sizes are small , and a power analysis is not available , one may

fail to reject the null hypothesis when the true state of nature is very

different from what is stated in the null hypothesis . With a small sample size

and smalld , it may be impossible to reject Ho Further , when sample sizes are

very large , the null hypothesis may be rejected at a very small significance

level when actually the null hypothesis is so nearly true , that it is close

enough for all practical purposes . Taken to the extreme , with infinite sample

sizes , the attained significance level will be zero , even when there is only a

very small , but finite difference between H. and the true state of nature .

Thus significance level can be very misleading if used alone .

0

When a null and a definitive alternative hypothesis can both be stated , and

probability distributions found under each , the results of an hypothesis test

can be stated similarly to a confidence interval if the " point estimate " from

the observed values falls between the two hypotheses . In the case of the

Wilcoxon Rank Sum Test , only one alternative hypothesis has been well developed

and will be presented here . Due to the nature of this test , however , even if

the evidence may strongly indicate that the true state of nature is not bounded

between this alternative and the null hypothesis , this power analysis can still

be used to obtain a reasonable estimate of what the actual state of nature

happens to be . ( In the case of the Multiple- sample Westenberg - type tests of

reference [ 4 ] , an alternative must be picked such that the true state of nature

is indicated to be bounded by the null and alternative hypotheses . . Fortun

ately , that is not the case here , nor was it the case in reference [6 ] , which

is a multi - sample test . )

1

1

Consider that the null hypothesis , H. , of the Wilcoxon Rank Sum Test

indicates that P ( X<Y ) 1/2 . That is , under H. , any value picked at random

from the Y population , is larger than any value picked at random from the X

population , with probability of 1/2 . Here an alternative hypothesis , Hz , is

used such that P ( X<Y ) = 2/3 . ( The exact form of H1.1s discussed in [ 7 ] . )

Graph i illustrates a possible configuration for this alternative hypothesis .

For this example , consider that under Ho , all observations are taken from a

N ( r , s ) distribution such as the N ( 5,1 ) shown on the left in graph 1 , but under

Hy , the Y sample comes from the N ( r+0.61s , s ) distribution , while the X sample

comes from the N ( r , s ) distribution .
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Another example of a possible situation satisfying the alternative hypo

thesis , Hz , given approximately by comparing a gamma ( 4,1 ) with a gamma ( 3,1 ) ,

is illustrated by graph 2 .

Note that the Wilcoxon Rank Sum Test is most sensitive to location , a

little sensitive to shape , but not to dispersion ( except as it relates propor

tionate.y to differences in location ) . Therefore , it is the differences in

location that are of primary importance in graphs 1 and 2 .

In order to determine the probability of drawing a value from distribution

A which is larger than a simultaneously drawn value from distribution B , the

following may be used :

P =

sfprx) [ faſt)dtdx

X = -00 tex

where FA and fo represent density functions .

For the case where A and B are both gamma distributions ,

-dB
-OA

B
BP = ' iI -

BA

. ]

Tag -135

r + 1

Big ( QA + ap - ? - r ) !

rko Tap - 1 - r )?

( [ BA + Rp] / BABR )

CA
R

- 1-1

For gamma ( 4,1 ) and gamma ( 3,1 ) , P 21/32 0.656 .

For normal distributions , usé [ (HA - uplivom + op ] as in the Church -Harris

Downton ( C-H -D ) method of missile motor satéty testing [ 2 ] . ( Note : This

reference to the C-H-D method should not be construed as the author's endorse

ment of this method for the purpose of missile motor safety testing . )

The calculation of power under this alternative involves a summation over a

typically large number of products . Calculation of this value can become

extremely time consuming , even for a high speed computer . A program was

written for the author at White Sands Missile Range which will calculate these

exact values , however , in general , the sample sizes must be very small.

Recently , however , the author constructed a simulation which provides estimates

of the power for much larger sample sizes . A number of the " products" men

tioned earlier are calculated and the mean is computed . The number of products

involved in the exact calculation can be determined , and it is multiplied by

this mean . Comparison to values calculated exactly (when practical ), and a

study of the sensitivity of the results to increased replications , as well as

comparison to other simulated values bounding the results in the tables , led to

the use of from 1 to 20 million replications to simulate values for the tables

found in this paper . ( Work has been done , reference [ 3 ] , to determine the

number of simulation replications needed under less radical circunstances.

Here , however , a larger number of replications appears necessary . ) ( For n = in
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50 , up to 35 million replications were used . It appeared ,It appeared , however , that

fewer replications using a number of different seeds yielded mean answers which

more quickly converged to reasonable results , especially when using antithetic

seeds . )

o

In the tables , n is the sample size of the X sample, mis the sample size

of the Y sample , RS is the rank sum for which type 1 and type II error proba

bilities are calculated , PA is the former of those probabilities , and PB is the

later . Specifically , PÅ is the attained probability of making an error if H

is rejected , and PB 1s the attained probability of error 1f Hy is rejected ,

both corresponding to the same RS value . RS is always calculated by adding the

ranks of the Y elements in the comb in ed sample .. Note that for smaller sample

sizes , power +PB is noticeably larger than unity due to the discrete nature of

this test . That is , the probability of obtaining exactly the event observed

( and no other ) is non -zero .

Three significant digits are given for PA and only two for power and PB

simply because it takes fewer replications of the simulation to satisfactorily

obtain a value for PA than for the others .

From the annex to table 1 , it is found empirically that if x is the size of

each of the two samples , and f (x) is the probability of a type II error

under the alternative used here, adjusted to correspond to a specific signif

icance level , then , as a continuous representation of actually a discrete process ,

fo.10 (x) exp ( -x/ 16 )

for at least 3 < x < 40 , and perhaps this approximation could

be trusted for x = 45 or larger . However , extrapolations are always more

dangerous than interpolations , so caution is advised for further extensions .

For
0.05,

fr.05 ( x ) • exp ( -x/ [26exp ' *])

for at least 4 < x < 40 , and perhaps for x substantially larger . Using this

approximation , it is conjectured that for n = m = 66, when PN is approximately

0.05 ( RS = 4751 ) , then PB for this alternative is also approximately 0.05 and

the true state of nature would then quite safely be said to ( probably) lie

between the null and alternative hypotheses . ( At the 0.1 probability level for

PA and PB , this could be said when n = m = 37 , and RS = 1507. ) An extrapola

tion to n = m = 66 is questionable , however , and further extrapolation is not

advised . Computer simulation for n = m = 50 indicates that for the top curve

( PA = 0.05 ) in Annex I to table 1 , true values in this area for PB may be

somewhat smaller than this curve predicts . For PA = 0.10 , PB values for large

n and m may be somewhat larger than predicted .
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In Conover's book (11. an approximation is given to find RS for a given PA

value . ( RS ? m ( m + n + 1 ) / 2 + x2 -avmn (n + m + 19/12 , where is from

the table of the cumulative normal distribution .) The two functions given

earlier can be used to estimate PB values when PA : 0.10 or 0.05 .

X1-0

The final graphs , 3-7 , are taken from work the author directed at White

Sands Missile Range in order to study this alternative for the Wilcoxon Rank

Sum Test with emphasis on simulation validation for missile flight simulations .

When comparing a very few live firings to a substantially larger number of

simulations for each scenario , it can be seen from these graphs that once one

sample is substantially larger than the other , increasing the larger sample

size further does very little to improve the power . These graphs are contin

uous representations of what are actually discrete points . The values for

those points were calculated analytically as noted in the acknowledgements .

くく

Finally , when nxm , PB can be bounded using the exponential formulations

found earlier in this paper . If , for example , RS is such that PA = 0.1 , and

xy , is the smaller of n and m , and xz is the larger , then one has that approx

imately exp ( -x2 / 16 ) < PB < exp ( -x ; ) , with PB somewhat closer to

exp ( -x7 / 16 ) , especially when xX , х2

For larger sample sizes than are handled here , parametric methods may be

used . However , in addition to the probability of error associated with any

conclusion drawn from a parametric test , there is the additional risk involved

in assuming the distributional forms used in such a test . Hypothesis tests

should also be used to study these distributional assumptions to provide a more

complete risk analysis .

EXAMPLE :

Consider two sources of data , X and Y , where it is suspected that Y may

represent a population of larger location than X , but this is not clear . If 11

observations are taken from the X population , and 19 observations taken from Y ,

then the critical value of the rank sum ( RS ) of the Y sample observations

within the combined sample which represents the point at which rejection of the

null hypothesis would occur using a = 0.10 , is approximately

RS ? m ( m + n + 1 ) / 2 + 1.2816Vmn (m + n + 15/12

( 19 ) ( 31 ) / 2 + 1.28167 (19)711 ) ( 31)712

324.3

Therefore , if RS = 325 , He would be rejected at the ea = 0.10 level . However ,

should RS = 325 , and H. not be rejected , then the probability of making a type

Il error with respect to the alternative hypothesis illustrated in graphs 1 and
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2 is approximately bounded by exp ( -19/16 ) and exp ( -11/16 ) , so 0.30< PB<0.50 .

Note that , from table 2 , when PA = 0.099 , PB ( 10,20 ) : 0.43 . Using 4,000,000

replications in the program given in Appendix A , for m - 19 , n = 11, and RS =

325 , resulted in PA = 0.100 and PB = 0.42 .
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Table 1

n = m RS PA
power PB

3

3

3

5

5

5

5

5

10

10

10

10

10

15

15

15

15

20

20

20

20

20

25

25

25

25

30

30

30

30

12

14

15

32

34

35

36

39

122

123

127

128

136

264

265

273

289

458

459

471

472

496

704

705

723

758

1002

1003

1027

1073

0.350

0.100

0.050

0.210

0.111

0.075

0.048

0.008

0.108

0.095

0.052

0.045

0.009

0.101

0.094

0.049

0.009

0.101

0.096

0.051

0.048

0.010

0.101

0.098

0.050

0.009

0.101

0.099

0.050

0.010

0.62

0.27

0.15

0.54

0.37

0.29

0.21

0.05

0.52

0.49

0.36

0.34

0.13

0.63

0.61

0.47

0.21

0.71

0.70

0.58

0.57

0.30

0.79

0.78

0.66

0.38

0.85

0.84

0.74

0.47

0.56

0.85

1.00

0.55

0.71

0.79

0.86

0.97

0.51

0.54

0.67

0.69

0.89

0.39

0.41

0.55

0.80

0.30

0.30

0.43

0.44

0.71

0.22

0.23

0.35

0.63

0.16

0.16

0.27

0.54

35 1383 0.050 0.79 0.21

38 1587 0.100 0.91 0.09
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Table 2

nim RS PA
power PB

5,10

5,10

5,10

5,10

5,10

10,5

10,5

10,5

10,5

10,5

5,25

5,25

5,25

5,25

25,5

25,5

25,5

25,5

10,20

10,20

10,20

20,10

20,10

20,10

5,50

5,50

5,50

50,5

50,5

50,5

10,50

10,50

10,50

50,10

50,10

50,10

85

91

92

94

99

45

51

52

54

59

412

418

429

430

102

108

119

120

340

348

363

185

193

208

1444

1457

1480

184

197

220

1590

1608

1643

370

388

423

0.297

0.103

0.082

0.050

0.010

0.297

0.103

0.082

0.050

0.010

0.094

0.048

0.009

0.008

0.094

0.048

0.009

0.008

0.099

0.050

0.009

0.099

0.050

0.010

0.105

0.050

0.008

0.105

0.050

0.008

0.101

0.051

0.009

0.102

0.051

0.009

0.70

0.42

0.37

0.27

0.10

0.71

0.41

0.35

0.26

.0.08

0.45

0.33

0.13

0.12

0.44

0.29

0.09

0.08

0.58

0.44

0.20

0.59

0.44

0.18

0.50

0.36

0.14

0.50

0.32

0.09

0.65

0.52

0.26

0.68

0.52

0.22

0.35

0.63

0.68

0.77

0.93

0.34

0.65

0.70

0.79

0.95

0.57

0.69

0.88

0.89

0.59

0.73

0.92

0.93

0.43

0.58

0.81

0.43

0.58

0.84

0.51

0.65

0.87

0.52

0.69

0.92

0.36

0.49

0.75

0.33

0.49

0.79
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APPENDIX A

FORTRAN CODE FOR

SIMULATION :

" LEHMANN POWER ANALYSIS

FOR THE

WILCOXON RANK SUM TEST "

( LPAWRST)

:
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" 111
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Ć
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101
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* 105
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ADDENDUM

Multiple applications of this test can be used to compare two levels of a

factor under a nuinber of conditions . If , for example , manufacturer A produces

a machine which is suspected to have higher reliability under lost scenarios

than a similar machine made by manufacturer B , then under each of the y

scenarios , me is the sample size of A's machines and ng 1s the sample size

of B's machines, for 1 = 1 to go Pay and PBy can be calculated for each of the

scenarios . ConsiderConsider 0 < a Y and 05b3Y.

PA is the probability of a or. more PA , ' s being less than PA

( 1t = 1 ; 7 ) , when He is true .

PB is the probability of b or more PB.'s being less than Po

( 1 = 1 , y ) , when Hy is true .

Therefore ,

PA

11

and

xia ( pX(1 - PAJYE*

} (x ) pg(1 - PB )***

PB

Y

x= b

are chosen to be reasonable considering sample sizes for each of the y
PA an

d

Ease.PB

РА

If

PB
- 1 then the evidence shows that , in general, the true state of nature

is just as likely to be equivalent to Hi o

as H
Hoi

If Pea

PA

PB = 2 then the evidence indicates that , in general, the true state of

nature is twice as 11kely to be equivalent to Ho as Hy. If pA and

PB are small, then the indication is only that the true state of

nature is closer to H. than Hz , although possibly not very close

to either .

( Note that another paper in this conference , " Numerical Validation of

Tukey's Criteria for clinical Trials and Sequential Testing, " by C. R. Leake ,

also deals with this type of problem , and was of interest to this author .)
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At this time, this methodology is being used to determine whether survey data

from a presuinably less reliable source is compatible with a presumably superior

data source . Difficult to obtain data on U.S. Armiiy warehousing activities have ,

as one obvious characteristic , a very flat " peak . " Therefore , a sample median

value can be changed drastically by the addition or deletion of one data point .

If the secondary data source proves to provide values distributed closely

enough to that of the primary source , the advantage of including this source

may outweigh the disadvantage . The current situation is more complex

than this . However , some results employing the methodology of this addend uin .

have been realized .

ADDENDUM 2

.

Two approximations for the power of this test which apparently are good

for a wide range of normal alternative hypotheses are to be found in

E. L. Lehmann , Nonparametrics: Statistical Methods Based on Ranks, Holden -Day ,

1975. Although restricted to normal alternatives in the format in which they

are written , these approximations can be used to extend the tables given here

to larger n and m . The easier of the two approximations to apply , in its

simplest form , is found on page 73 of the above reference and is essentially as

follows :

" A - MB

power o [

3mn

( m + n + 1)
Xi-a ?

where in our case we have (HA - MB) / ă 0.610 .

Note that in the example in the main body of this paper (m = 19, n = 11 ) ,

that this approximation gives power * 0,60 , which is consistent withi what

was shown earlier .
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Limited randomization with detailed reassignmer as the key to

taking advantage of modern summaries

John W. Tukey

Princeton University * and AT&T Bell Laboratories

Princeton , New Jersey 08544 and Murray Hill, New Jersey 07974

1. Uncertainty, Validity , and Stringency.

Some experimentation needs to be done with the least uncertainty possible . Some of

this is devoted toward direction of change, and can thus be analyzed in terms of a simple

significance test or a simple confidence interval -- perhaps obtained by trial and error bisec

tion among displaced significance tests .

In such cases we need to reduce all kinds of uncertainty, including uncertainty about

any statistical hypotheses that matter for our analysis.

For a simple significance test to be valid, we must control the chance of significance in

the null situation - allowing it to be at most inappreciably greater than che announced P

value .

We would like the null situation to be as broad as possible, since the broader it is, the

more usefully valid is our analysis. The broadest null situation that we know how to handle

well , when we have treatment and control in blocks of two, is :

Any set of observed results is as likely to occur for any interchanges, each within a

block, of treatment with control -- "all reassignments are equally null-probable” .

Notice that no assumption is made about relative likelihoods of " different" sets of

observed results. There is no " statistical model" in the ordinary sense, and there is thus no

need to worry how well - or how poorly such a model approximates the real world .

When we are being careful, we should know why our analysis is valid ! We should not

depend on unverifiable assumptions for validity.

Validity is of course not enough . We surely do not want to be wasteful. So we must

also seek stringency as expressed in such technical terms as

minimized variance

efficiency

actual variance

o
r

minimized typical length of confidence interval

actual typical length of confidence interval

Here " variance " or "typical length" , while hopefully imitating what goes on in the real

*Prepared in part in connection with research at Princeton , supported by the Army Research Office (Durham ).

Presented as Keynote Address, first annual Frontiers of Industrial Experimentation Conference, Mohonk, New York,

April 23, 1984; at the Northern New Jersey Chapter of the American Statistical Association, October 9, 1984; and as

Keynote address, 30th Conference on Design of Experiments, Army Resarch , Development and Testing, Las Cruces,

New Mexico, October 17, 1984
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world , can only be assessed in terms of (i ) a statistical model or (ü) sampling from a larger

body (probably bodies, since one body is unlikely to suffice) of real daia. Assessmentin

terms of a statistical model can be either by formula -manipulation or by numerical calcula

tion , which will usually require some form of experimental sampling (direct, Monte-Carlo,

configural, etc. ) .

If we could gain stringency without fixing a statistical model - or class of statistical

models -- our desire for certainty would drive us to do so . But we do know that pairs of sta

tistical models can be invented to be so antithetic to one another that stringency for either

rules out stringency for the other. The best certainty we can reach, therefore, comes by

using a fairly flexible class of statistical models -- one which we hope parallels the real world

in whatever ways are most important.

This OFTEN means that we must seek robustness of stringency.

During the last decade or so much progress has been made in identifying summaries of

small and moderate- sized samples that do provide robustness of stringency, but little atten

tion has been paid to how such summaries should be built into experimentation .

We can have both high validity and high robustness of stringency. When we are being

careful we SHOULD arrange for BOTH .

And if, in special circumstances, some other attainable property is more important than

robustness, we can usually combine it with guaranteed validity by selection of a different

kind of summary . When we wish to be careful, we should arrange for both validity and pre

ferred specially -useful-property.

2. The Fisher-Babbage "legacy of a legacy " .

Sir Ronald Fisher and Charles Babbage left us two things, which together were not

then a legacy, but could - and have grown up to become one. Namely randomized exper

iments and computers.

3. The economics of computation has changed; explicit reassignment is feasible and

needed!

It was almost 50 years ago that we heard – with respect and perhaps a touch of awe --

that L.J. Comrie had half a million multiplications to do, and had rented a set of punched

cards machines (what are now dignified as "unit record equipment ') for six months to do

just this.

This year, one can buy - for no more than a statistician's annual salary a workstation

with a few megaflops of capacity. One which , since it can do millions of multiplications in a

second, could (10 aside) do Comrie's 6 -month chore in a fraction of a second.

The important conclusions are these:

If a million arithmetic operations can save a second's time for a statistician and the

opportunity recurs often encough we cannot afford NOT to do the arithmetic.

If reanalyzing the observed data according to a few thousand alternative assignments

(of treatment and control) let us increase the certainty of our analysis enough to save

either the statistician or his client one second of worry , we cannot afford not to do the

few thousand reanalyses .

If reanalyzing the observed data according to a few thousand alternative assignments let

us provide more robustness of stringency for our analysis, we cannot afford not to do

the few thousand analyses .

Randomization analysis, as urged by R. A. Fisher, and founded by E. J. G. Pitman (and

B. L. Welch) grew up in an era of expensive computing. As a result even Pitman's combina

torially obtained higher moments were forgotten in practice. (No one wanted to sum the

cubes and 4th powers of the observed differences; summing squares was hard enough. )

Moreover, our attention was focused on means, as the summary to be used, in large part
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because it was only for them that the necessary formula manipulation seemed feasible.

In the interim , while computing has become so many powers of ten cheaper, we have

learned a lot about when using means will give high stringency - and when it will not. The

way to provide both the validity that randomization has always provided, and the robust

stringency that it can provide is to plan to actually do many alternative analyses, using what

ever summary - often one providing robust stringency - seemed most desirable when the

experiment was planned! By doing MANY reassignments explicitly, we can be quite sure of

what we are doing.

For experiments of certain sizes, we can use complete randomization , which means

making calculations for all possible assignments (within the general framework of the experi

ment), but we cannot do this for all sizes of experiments! 2' possible assignments means 2

reanalyses, and we can only afford this for modest t (The bound will go up year after year) .

So we will have to consider combine explicit reassignment with limited randomizations

something we can approach in different ways.

4. The details of explicit reassignment with complete randomization (2 case)

If we have t blocks, each composed of 2 units, and if treatment and control are each to

appear once in each block, there will be 2' possible assignments.

If we have chosen a summary, for simplicity based on the t within -block treatment

MINUS -control differences (more general summaries cause no difficulties), it is straight

forward to introduce all possible sequences of t = signs, and thus, for each such sequence, t

values, one per block, of

possible difference = I actual difference

whose 2 summaries correspond to all possible 2 reanalyses. For each such " randomiza

tion " there is a value of the corresponding summary - which might be a mean, a midmean,

some other trimmed mean, or a biweight of the n possible differences.

We can take these 2 summary values, rank them, and then take, as our P-value :

rank of actual assignment

P -value =

2*

If we want a one-tailed P-value, we will rank from one end -- the top or the bottom , as

appropriate - starting with the relevant extreme.

If we have a two -tailed P -value, we will rank from both ends and combine the results

into a single ranking. Here

Combined

rank

N
N

Rank

above

1

2"

2

2" -1

3

2" -2

4

2"-3

Rank

below

2

1

2 " -1

2

2 " -2

3

2 " -3

4

4

4

6

6

8

8

(and so on)

is conventional. If, however, we want to give the rank from above a shade of preference, it

is both legitimate and proper to use (instead ):
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Rank

above

1

2*

2°-1

3

2 " -2

4

21-3

Rank

below

2 *

1

2

2 " -2

3

2-3

4

Combined

rank

1

2

4

5

6

7

8

(and so on )

Both of these rerankings satisfy the essential inequality:

# of assignments with combined rank s k IS ITSELF sk

The first of these rerankings alternates < and s, while the second always has s . The first is

symmetrical, the second is not wasteful.

If we proceed in this way, choosing our summary (and our combined ranking pro

cedure, if we are to use one) in advance of our data gathering, and doing a trustworthy job

of selecting one assignment out of 2 sufficiently nearly at random , the validity of our P

value is guaranteed (by the quality of our randomization , which we know all about, and

which others can inspect, if we keep good records).

It may be worthwhile to explain how to guarantee that 1 out of 2 - say 1 out of 1024 -

will be chosen very , very nearly at random . A simple approach calls for 3 people who

can be trusted to work independently of one another, AND

of whom at least one is both honest and skilled in randomization .

We then proceed as follows:

number all possible 1024 assignments from 0 to 1023,

request each of the three persons to produce a random integer between 0 and 1023,

AND

add up the three integers, reduce the result modulo 1024, and adopt the corresponding

assignment.

No two people could combine to keep the third from making the overall choice ran

dom.

How well we do about stringency (or other desideratum ) depends on how wel we

choose our summary. We do know which summary we chose. We may know how this

summary performs for a more or less flexible statistical model -- today almost certain to

involve an infinite population . The n absolute differences we actually have may collectively

throw some light on how the summary performed in our specific case .

We are just about as well off about stringency - about robustness of stringency

ever are , and we are as well off about validity as we can be - since we depend only on a

process that can be monitored, recorded and inspected.

A picture may help us to get a feel:

-- as we
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10

blocks

1024 possible assignments

128 of the 1024

he one

actually weed

I
+

+

+

+

+ +

+

+ -

+++ +

+1+1+1+1+

i+

+
+
+
+

1+1+
+

|

1+1|+
+

!
!
!

+

16 of the 128 of the 1024

We have a stock of 1024 assignments and chose one at random . We summarize sets of 10

values of the form {+ an observed difference } 1024 times , to get 1024 values of a given sum

mary .

5. Some kinds of limited randomization .

The complete-randomization design and analysis of experiment just described is prob

ably most reasonable for t blocks, where 9 st s 12. At 2 = 512, we still have enough

assignments so that comparison with both 5% and 1 % points is not seriously plagued by

granularity. At 212 = 4096, we can still face doing one analysis for each of four-thousand

odd assignments. But what of more than 12 blocks of 2 .

We shall discuss three approaches, briefly.

stacking up

We can stack our n blocks into k stacks, locking together the assignment of treatment

and control for blocks in the same stack . We then need one random + sign per stack .

If, for example, we have 24 blocks, we may stack them in 12 stacks, say # 24 with # 1,

#23 with #2, # 13 with #12, and in each stack we may choose a locking together,

perhaps like this

# 1 · y Z #2 y
z #12

у 2

#24 Z у #23 y Z #13 Z у

where we plan to randomly assign treatment and control to y, and z or to z, and y in each
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stack separately.

All our techniques, discussed today or not, WORK just as WELL for stacks – locked

together groupings of one or more blocks – as for single blocks. So, as we go on , we will

usually talk about stacks since this covers all cases.

With k stacks stacked and locked, there are 24 possible assignments, and we have the

full validity that we had before, and the same preference for 9 sk (s 12) . We may have to

be careful to use a summary that is appropriate for blocks in stacks. If we do this carefully,

there is no reason why the stacks should all contain the same number of blocks!

Used alone, this is already a very flexible form of limited randomization -- one that

seems particularly appropriate for treatment-control differences whose distribution seems

vaguely Gaussian in shape (because we are likely to add up the differences within each

stack ).

Used together with those to be described next, " stacking up ' contributes to an even

greater degree of flexibility.

orthogonal arrays

There are a wide variety of ways to use orthogonal arrays - I am about to tell you of a

rather new one. (A convenient reference is Raktoe, Hedayat, and Federer 1981, Factorial

Designs, specifically pages 168-189 and certain of the references at pages 188-193.)

A simple example is

1 0 0 0 0 1 1 1

1 0 0 1 0 1 1

1 0 1 1 0 1

0 1 1 1 1 0

OOO
M

OO
M
O

whose main virtue is that, if we pick out any three rows, say the first, third, and fourth

1 0 0 0 0 1 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

each of the 23 possible columns appears an equal number of times - namely, here, one.

Officially, this is an orthogonal array of size, n = 8; t=4 constraints; s=2 levels (or alpha

bet size 2); and strength d= 3 (meaning that any three rows are completely balanced .

In conventional notation it is an

OA (8, 4 , 2 , 3)

More generally, an orthogonal array is an

OA(n, t, s , d)

or an

OA(n, t, s, d, A )

where 1 is the common number of appearances of all subcolumns for any chosen set of d

rows. Our example is thus also an OA(8, 4, 2, 3; 1 ) .

Lest you think that every OA is a fractional factorial, let us look at an OA (18, 7 , 3, 2) ,

namely:

* But do not have to !
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000111 2 2 2 0 00111 2 2 2

0 12 0 12 0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 1 2 0 2 0 1 2 0 1 0 1 2 1 2 0

0 2 1 1 0 2 2 1 0 1 0 2 2 1 0 0 2 1

0 1 2 1 2 0 1 2 0 0 1 2 2 0 1 2 0 1

0 1 2 2 0 1 0 1 2 1 2 0 2 0 1 1 2 00

0 1 2 0 1 2 2 0 1 1 2 0 1 2 0 2 0 1

For each of the © = 21 choices of two rows from this array , we will find

0

0

0

1

0

2

1 1

0 1

1

2

2 2

0 1

2

2

each occurring twice. Hence the orthogonality of strength two.

The " classical " employment of orthogonal arrays is as follows:

m plots or runs

usually

n s 50

factors usually

ts 10

one observation for each column

We are going to use them quite differently, namely:

one observed

difference

in each row
assignments

randomizations

* potential

st

stacks

usually

n 2 500

usually

It >> 10

the actual assignment

the actual summary +

n potential summaries

A rather extreme example - one that will probably prove useful now and then - is

shown below :
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4096 potential assignments

64

stacks

512 assignments

64 assignments

:

8 assignments

64

stacks

the actual experiment

(Also bear in mind that taking all 2 assignments as potential assignments -- complete

randomization for t stacks - is also using an OA!) Each of our assignments, then specifies,

for each of k stacks (each stack having one or more blocks, how the treatment and control

are to be assigned to the halves of that stack -- and hence to the units of each of its blocks .

The design of the experiment can usefully be thought of as including the orthogonal

array from which the actual assignment is to be drawn at random .

But where do we get such medium -sized orthogonal arrays ?

When this question first arose, I was fortunate enough to ask Neil Sloane, who reached

in his supply kit and produced a small array of such OA's, each one corresponding to a

fairly well -known code (in the sense of signal-coding theory) These included ( the

parentheses give their labels as fractional factorial designs):

OA( 512, 23 , 2, 4 ) (223–14)

OA (2048, 23, 2, 6 ) (223–12,

OA ( 1024, 24 , 2, 5) (224-14)

OA ( 1024, 32, 2 , 4) (232-22

OA (2048, 33, 2 , 5) (233-22

OA (2048, 63, 2, 4 ) (263–52,

OA (4096 , 64 , 2,5) (264-52;

where we recall that, for our uses, the notations mean OA(# of assignments, up to this

many blocks, 2, strength ). Clearly we do quite well up to 60 blocks (or even 60 stacks of

blocks).

A matter of convenience and ease of use arises because

a) these arrays are cosets of certain codes,
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b ) if one coset is an OA, so is any other coset of the same code, with the same parame

ters,

no two cosets overlap, while taken together they include all 24 assignments.

As a result, we can proceed as follows:

1) choose a code, and thus a family of cosets,

2) choose, randomly, any assignment as the actual assignment - and choose the coset that

includes this assignment as the set of possible assignments.

This convenient, one-step process is logically and philosophically equivalent to the

more obviously sound two -step process:

(i) choose a coset at random ,

( ü ) choose an assignment in the coset at random

Besides convenience, and making all assignments candidates for possible assignments,

this use of OA's has a particular advantage in what we might describe as ANTI-ROBUST

situations, where there are likely to be a few very large differences -- for a few stacks, or for

a few blocks -- whose effects we want to study and focus upon , rather than to set aside - as

the use of a robust summary would do. Most weather-modification experiments, for

instance, whether concerned with rainfall increase or hail-damage reduction , require antiro

bust analysis, since the occasional large storms yield most of the water and the occasional

violent storms cause most of the damage.

• Gaussian combination of subexperiments

The third approach to many blocks need not take us long. Ifwe are willing to

divide the experiment into subexperiments

summarize these subexperiments separately, and then

combine these summaries

we have only to convert the summary of each subexperiment into a reasonable (discrete) fac

simile of a unit Gaussian deviate , add up the facsimiles, and divide by (# of facsimiles)"?,

referring the result to the unit Gaussian distribution.

So how are we to get our nearly unit Gaussians from our subexperiment summaries ?

We
may as well plan to begin by ranking our 21 possible summaries for each subexperiment.

A little calculation of cumulants then leads us to suggest taking

3i -2

unit Gaussian score = Gau- 1

3m - 1
wa
l

where

i = given rank, m = 21

and

Gau ( ) is the unit Gaussian cumulative.

This seems fairly certain to work well for 3 or more subexperiments with 21 z 256. (The

case of 2 subexperiments can be bypassed treated directly, without Gaussianizing, by a dif

ferent calculation .)

combination •

We can clearly use these devices of combination in sequence as well as alone.

protective limitations
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There have been recurrent suggestions for limiting randomization to avoid unusual

assignments principally very unbalanced assignments , occasionally too regular ones.

While this is clearly more important for unblocked experiments than for blocked ones , there

is no reason for not superposing such deletions on any of the randomization -reassignment

patterns, complete or limited , we have considered so long as: so long as, before choosing the

actual assignment:

we decide on which deletions are to be made, AND

we implement these deletions UNIFORMLY, to potential and actual assignments alike.

6. Compromising by rank combination.

All procedures that are robust of stringency are compromises, at least implicitly! When

we want the greatest care, we are likely to want an especially thorough compromise as our

chosen summary. If we can find a sufficiently broadly oriented compromise summary, so

much the better. If not, then we may need to start with two or more (compromise) sum

maries, and, further, compromise them with one another explicitly.

How should we do this ? To make separate significance tests with each, and then dou

ble the smaller of the two P -values is the counsel of the Bonferroni inequality. This would

almost surely be wasteful - probably substantially so. So what is surely better ?

To rank the 24 assignments according to each summary separately - and then to com

bine the two sets of ranks in some appropriate way.

A simple and natural way is to put the two ranks for each assignment in lexicographi

cal order within each pair, and then sort the ordered pairs in lexicographical order of pairs,

and use this latter order to define a combined rank. The resulting correspondence

observed numbers

combined rank

possible assignment

does not at all depend on which of the possible assignments was the actual assignment. So

we know that

combined rank

24

is a legitimate P -value, so that we are making a proper significance test. If the two sum

maries were secretly the same, so too would be the individual ranks -- and the combined

ranks -- so that the compromise P -value would reduce to the common P -value for the indivi

dual summaries . If the two summaries are very , very different, the result of this sort of rank

combination would be very close to the Bonferroni result.

A hypothetical example may help to fix the ideas.
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insignment combined

rank

1

2

3

351

679

224

534

976

214

723

431

92

127

923

23

Ranks according to

1st summary 2nd summary

5 1

1 29

2 42

97 2

3 4

14 3

4 53

8 5

6 6

7 8

7

9 11

ordered

pair

(1,5)

(1,29)

(2,42)

(2,97 )

(3,4)

( 3,14 )

(4,53)

(5,8)

(6,6)

(7,8 )

(7,11)

( 9,11)

5

6

7

8

9

10

11

12

Notice that, except for tie -breaking, the first 7 lines follow the Bonferroni bound to

within a unit, but, that beyond 7 , the similarities in the two separate -summary rankings are

so great as to produce deviations from the bound. Indeed, for ( 5, x ), (6,y), ( 7.2) and ( 8 ,w )

together we use up only 4 ranks instead of 8.

This sort of indirect explicit compromise is certainly interesting, and probably promis

ing.

7. Introduction to 3 or more treatments .

What if we do 3 treatments in n blocks of 3? How do we proceed ?

Unless the treatments are associated with the ' levels” of a quantitative x , our most

likely purpose is to assess the significance of (to say how sure we seem to be of the direction

of) the pair -wise comparisons. So how should we compare any two treatments ?

Again there is more than one approach .

Let the three treatments be F, G, H. There are 6=3! ways of assigning one each to the

3 units of any block . With n blocks; and all assignments possible, there are 61 possible

assignments.

If we want to compare F with G, and do this without interference from treatment H,

which may produce very different values, a very simple thing is to only consider those 2 "

assignments as " possible" in which the UNordered pair F, G are assigned to the same two

units in each block .

This means that we look at one family of 2 " assignments to compare F with G and

another family of 2 to compare F with H. These two families will, in fact, have only one

assignment in common namely the actual one. (This means that we do not have alterna

tive rankings for different pair-wise comparisons, so that we seem to be driven back on a

Bonferroni-combined P -value.)

Like the cosets in our code -derived OA's, the families of 2" -- out of 6" - assignments

are non -overlapping. The selection of any one of the 2 " members of such a family as the

actual assignment forces that family on us as the basis for a particular paired comparison .

Although there is not, in this case, a clear two-step equivalence, the one-step procedure is

just as valid as the one-step procedure in the earlier instance .

i)

• second approach

To avoid both

the potential effects of the other treatment(s) -- regarded as well -behaved though possi

bly large, and

the full Bonferroni penalty, in those circumstances where it is not all justified,
ii)
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we have to be somewhat trickier - though the resulting procedure is almost surely nearly

enough legitimate and valid . (Any doubts that we may have of practical performance must

then be devoted to its stringency .)

What appears to be the simplest such approach is the following:

use only a cyclic three of the six assignments to the units of any block - e.g. use FGH ,

HFG or GHF but not HGF, FGH, or GFH (or vice versa )

bend the rules by analyzing the actual two -way table

1 2 3

F -actual

G -actual

H -actual

additively -- perhaps by lomedian polish, and

adjust every H -actual value by subtracting

( F - fit) + (G - fit )

H -fit MINUS

2

from it

summarize the comparisons of F -possible and G -possible for all 3 " possible assign

ments, using whichever two of F -actual, G -actual, and H- adjusted (notice that only one

of the three is adjusted ) correspond to the possible assignment at each of the blocks in

question.

repeat the last two steps with first F, and then G, replacing H.

The result of all this is a ranking for each combination of one of the 3 = ) paired

comparisons with each of the possible assignments. We can go on to combine the 3 ranks

for a given possible assignments in each of a number of ways, leading to P -values for a

number of kinds of multiple comparisons - ranging from multiple comparisons focusing on

finding at least one difference significant to multiple comparisons focusing on finding as

many differences as possible significant.

8. Closing comment.

Not only does limited randomization with explicit reassignment provide us with

guaranteed validity , but, as the previous sentence about multiple comparisons suggest, it

provides us with a basis for better understanding of a variety of statistical devices .
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