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FOREWORD

The Thirty-First Conference on the Design of Experiments in Army Research and

Development and Testing was held 23-25 October 1985. The Army Mathematics

Steering Committee (AMSC) is the sponsor of this series of meetings, and its

subcommittee on Statistics and Probability organizes the scientific phase of

each of them. Members of this subcommittee would like to thank Professor

Bernard Harris for extending an invitation to hold this conference at the

Mathematics Research Center, The University of Wisconsin, Madison, Wisconsin.

His work, as chairperson for local arrangements, was a big factor in the

success of this meeting.

This year eighteen contributed papers were given in the clinical and technical

sessions. Most of these were presented by Army scientists. The titles of the

sessions give some indication of the statistical areas treated: (1) Final

Series and Multivariate Analysis, (2) Consistence Analysis, (3) Experimental

Design, (4) Statistical Modeling, (5) Data Analysis, (6) Reliability and

Quality Control. For the invited speaker phase of the conference, the Program

Commitee was pleased to obtain the services of the following nationally known

scientists to talk on topics of current interest to Army personnel:

Speaker and Affiliation Titles of Address

Professor Jerome Sacks Keynote Address

University of Illinois at

Urbana-Champaign

Professor Marion R. Reynolds, Jr. Approaches to Statistical S

Virginia Polytechnic Institute Validation of Simulation Models

and State University

Dr. Daryl Pregibon An Expert System for Data

Bell Laboratories Analysis

Dr. Howard Nainer How to Display Data Badly

Educational Testing Services

Professor Gouri K. Bhattackaryya Accelerated Life Tests

Since the Army analytic community is becoming ever more involved in the use of

expert opinion and the related approaches to the analysis of new systems

performance measures, it seemed an ideal time to have a special session to

provide the audience with new insight into this important area. The AMSC is

indebted to Professor Nazer D. Singpurwalla of George Washington University

for organizing and chairing this feature session entitled, "Using Expert

Opinions and Expert Systems in Reliabiliy and Maintainability". We note below

the titles of the addresses given by the four speakers in this informative

session.
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HUMAN FACTORS AFFECTING SUBJECTIVE JUDGMENTS

Mary A. Meyer, Energy Technology Group, Los Alamos National Laboratories

SOURCES AND EFFECTS OF CORRELATION OF EXPERT OPINIONS

Jane M. Booker, Statistics Group, Los Alamos National Laboratories

USE OF EXPERT OPINION IN RELIABILITY ASSESSMENT OF THE M-1 ABRAMS TANK

Bobby Bennett, U.S. Army Material Systems Analysis Agency

A MATHEMATICAL THEORY OF TESTABILITY

Alan Currit, Systems Product Division, IBM, Rochester

Professor Emanuel Parzen, Department of Statistics at Texas A&M University was

selected by the AMSC to receive the Fifth wilks Award for Contributions to

Statistical Methodologies in Army Research Development and Testing. He richly

deserves this honor for his many significant contributiosn to time series

modeling and analysis, stochastic processes, statistical theory (including his

seminal paper on density estimation), and his recent work on the foundations

and generalized meghodologies in data analysis. His latest work will

undoubtedly have a very pronounced effect on the theory and practice of

statistics in the years to come.

The AMSC has requested that the proceedings of the 1985 conference be

distributed Army-wide so that the information conained therein can assist

scientists with some of their statistical problems. Finally, committee

members would like to thank the Program Committee for all the work it did in

putting together this scientific meeting.

PROGRAM COMMITTEE

Carl Bates William McIntosh

Robert Burge J. Richard Moore

Bernard Harris Douglas Tang

Robert Launer Malcolm Taylor

Jerry Thomas
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APPROACHS TD STATISTICAL VALIDATION OF SIMULATION MODELS

Marion R. Reynolds, Jr.

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

ABSTRACT

The process of validating a stochastic simulation model usually involves

the comparison of data generated by the model with corresponding data from

the real system. One method of making this cmparison is to test the

hypothesis that the distribution of model output is the same as the

distribution of the corresponding variable in the real system. Since no

model is a perfect reflection of the real system, a more realistic

formulation is to test the hypothesis that the model is close enough for the

purposes of the model user. An alternate approach to validation considers

the error that results when the model is used to predict the behavior of the

real system. In order to help the model user evaluate the predictive ability

of the model, confidence intervals for expected error or prediction intervals

for actual error can be constructed.
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1. SIMULATION MODELS

Stochastic simulation models are now widely used in many fields to model

complex systems when other types of models can not be used. In many cases

the system being modeled will include many simpler processes interacting in a

dynamic setting so that it is not possible to carry through a direct

mathematical analysis. The nature of a simulation model usually means that

the basic assumptions and structure of the model are not readily apparent to

the model user so that model validation is particularly important for these

models.

Models can be constructed for several purposes, for example to gain basic

understanding of the system being modeled, to compare different management

strategies with the idea of selecting a good strategy, or to predict the

behavior of the system being modeled. In each of these cases some inference

obtained using the model will be applied to the real system. In most

situations the ability of the model to predict system behavior will be

critical to the effectives of the model. The main purpose of the model will

usually determine the predictive ability required of the model and this in

turn will influence the approach to validation that is required.

2. VALIDATION

Before a simulation model can be used with confidence, the model user

needs to know whether the model is a reasonable representation of the real

system so that inferences or predictions obtained from the model are useful

for the real system. It is the need for this type of information that leads

to issues of validation and assessment of the model.

In discussing model validation it is usually not helpfull to think in

absolute terms of a model being either valid or invalid, but rather in terms
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of degree of validity or, better yet, in terms of degree of usefulness. The

usefulness of a model will depend on the purpose of the model and on the

conditions under which it is used. For example, a model may be useful for

determining the relative performance of two management strategies but not

very useful for providing accurate and detailed predictions of future system

behavior. A model which is useful for providing predictions for 5 years in

the future may not provide useful predictions for 15 years in the future.

A useful way to think about the nature of validation has been given by

Van Horn (1911). Re defined validation as "the process of building an

acceptable level of confidence that an inference about a simulated process is

a correct or valid inference for the actual process". An important point

here is that validation is a process and not a one time exercise.

Ideally,the validation process should be carried out during the model

building process (Sargent (1979)) as well as after the model is essentially

complete. Another important point in Van Horn's definition is that

validation is a process of building confidence in the model and not

ecessarily the process of "proving" that the model is valid.

It may be helpful to make a distinction between validation and what

Fishnan and Kiviat (1968) have called verification. verification is the

process of determining whether the simulation model behaves as the model

builders intended. For example, "debugging" the computer program is an

important part of the verification process. The validation process extends

beyond the verification process since a model which behaves exactly as the

model builders intended still may not be useful for drawing inferences about

the real system.
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3. APP@ACHES 'I'O VALIDATIW

some of the discussion of validation in the simulation literature has

focused on philosophical issues. Discussion of some of the issues involved

are given in llcflenney (1967), Naylor and Finger (1967), Schrank and Bolt

(1967), and Shannon (1975). Balci and Sargent (1984) give an up-to-date

bibliography of papers dealing with various aspects of model validation.

One direct approach to validation involves examining the model for "face

validity", that is, determining whether the assumptions and structure of the

model seem reasonable to people who are knowledgeable about the real system

(see, for example, Law (1982)). This examination of assumptions should, of

course, be carried out during the modeling process as the modeler develops a

conceptual model in collaboration with people who are familiar with the

system. After the model has been constructed other "independent" experts can

be used to evaluate the model.

In addition to examining assumptions for conformance to existing

knowledge and theory, empirical testing of these assumption can be carried

out (Naylor and Finger (1967)). In this context the use of sensitivity

analysis may help to identify which assumptions are most critical so that

attention can be focused on these critical assumptions (Van Horn (1972)). In

addition to a sensitivity analysis conducted in the likely range of model

parameters, an evaluation of model performance can be done at the extremes of

the parameter values (Sargent (1983)).

One of the most important tests to which a model can be subjected in the

validation process is the comparison of data obtained from the real system

with corresonding data generated from the model. If there is close

agreement, in some sense, between these two data sets then this will increase

confidence in the model. some authors argue that the ability of the model to
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predict the behavior of the real system is the most important test of a

model.

Confidence in the model will be higher when the data used in the

validation of the model is independent of the data used in constructing the

model. If it is not possible to obtain separate data for validation then one

approach is to split the existing data into two sets. One set can be used

for constructing the model and the other set can be used for validating the

model. In many cases the data used in constructing and validating a model

will be historical‘ data that has been collected on the existing system or a

similar system. Ideally the model should be tested by its ability to predict

the behavior of the system in the future. This may not be immediately

possible either because the real system may not yet exist or because there is

not enough time to wait for future observations on the real system. This

paper will concentrate on the case where validation data is available since

this is the case where statistical approaches can be used in comparing the

model and the real system.

1». EXAMPLE

When discussing various statistical techniques that are useful in

validation it may be helpful to think in terms of a specific type of

simulation model as an example. Consider the model PTAEDA developed by

Daniels and Burkhart (1975) for simulating the growth of trees in forest

stands. This type of model is designed to model stand growth over time so

that various strategies or the effects of various natural

phenomena can be evaluated. The volume of wood in a stand at some future

time is one of the main system variables of interest, but other variables

such as the number of trees in various diameter classes may also be of
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interest. In this model individual trees within the stand are assigned

initial coordinate locations and sizes at an age corresponding to the onset

of competition. Then annual diameter and height growth of each tree is

simulated as a function of tree size, site quality, age, and an index

reflecting competition from neighboring trees. Tree growth is adjusted by a

random component representing genetic and/or microsite variability. Each

year each tree survives with a certain probability and this survival

probability is a function of tree size and competition. The wood volumes

for individual trees at the end of the simulation period are obtained by

substituting diameter and height values into tree volue equations.

Estimates of wood yield per unit area are obtained by suming the individual

tree volumes and multiplying by an appropriate expansion factor.

5. NOTATION

Suppose that the simulation model is constructed in such a way that p

input variables represented by g = (X1,X2,...,Xp) are used to generate an

output variable represented by Z. The input variables are usually selected

to correspond to the most important observable input variables in the real

system. The output variable Z in the model corresponds to some variable Y

that is of interest in the real system. For example, For a forest stand

simulator designed to predict stand volume at a future time, g might

represent input variables such as site quality, stand age at the future time,

and some measure of current density. Z would correspond to simulated stand

volue from the model and Y would correspond to the actual stand volume at

the future time. In most applications it will be reasonable to treat both Y

and Z as random variables whose distributions depend on the levels of §. Y

is a random variable because the value of Y can not be determined by

determining the values of a finite number of input variables and Z is of

6



course a random variable because the model contains stochastic elements.

Since the distributions of Y and Z depend on § it will be convenient to work

with P(yl§) and G(zl§), the conditional distribution functions of Y and Z,

respectively.

Model users will usually be interested in using a model to make two

general types of inferences about the real system being modeled. The first

type of inference is concerend with a parameter or characteristic associated

with the distribution of the variable Y from the real system. The parameter

that is usually of most interest is the conditional mean E(Y|x); other

parameters that might be of interest are P(Y < ylg), the probability that the

system output is below a specified value y, and the variance Var(Yl§). All

of these parameters are functions of the input variables g. For example a

model user might be interested in estimating the average volume for stands of

a particular type where the type of stand is determined by specifying the

input variables age, site quality, and density. Alternately, the user might

want to estimate the probability that a stand of a particular type has a

volume below an economically determined lower threshold.

The second type of inference is concerned with predicting an actual

value of Y that is to be observed when 5 is at some specified value. For

example the model user might be interested in a particular stand and want to

predict the volume on this stand (as opposed to the average volume on all

stands of this type). The usefulness of the model for making either type of

inference depends on how close the conditional distribution of Z, given 5 =

5, is to the conditional distribution of Y, given g = The best that couldIr

be hoped for is that these two conditional distributions are equal. Even

then, in any trial of the model, the simulated value of Z will not

necessarily be close to the corresponding observed value of Y since both Z
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and Y are random variables.

Suppose that observations from the real system are available for n

different sets of conditions, and for the ith set of conditions mi

observations from the real system are available. let

Y1) = jth observation from the real system under the igh

set of conditions

and

Z1 = (Y11-Y12-----Yuri) -

For example, data on total wood volume may be available for n different

types of plots. In this example each plot may be distinct so that mi = 1 for

all i. Also let

$1 = (xilgo 0 I

= input variables for the ith set of conditions.

Corresponding to the ith set of conditions represented by §1 = xi, the

simulation model can be run mi times to generate m§ independent simulated

values which can be represented by

§j_ = (Zj_]_,Zi2,...,Zi_|n£) .

In some cases it may be useful to use the components of 11 and gi indivi

dually, but it other cases the averages may be used. Then

- "1
Y1 = II Y1"/mi

J=l J

is an estimator of E(Yl§1), the mean of the system at the ith set of
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conditions, and

_ "1 ,

Z1 = J21 Z11/I1

is an estimator of B(Z|§1), the mean of the model at the ith set of condi

tions. The bias or expected error in the model at §1 = 51 is B(Y-Z151)

and an unbiased estimator of this bias is

°1=P<1_=1)=71'51

It may also be useful to think of E1 as a predictor of T1 before Ti is

observed and in this case D1 is the prediction error.

6. HYPOTHESIS TESTING

In developing a model based on a finite number of input variables g, the

best model that could be achieved would have the conditional distribution of

Z given § = 5 equal to the conditional distribution of Y given § = 5. Thus

a natural way to formulate the validation problem is as the problem of

testing the null hypothesis that Z and Y have the same conditional distribu

tions. Let A be a set representing the range of input variables for which

it is desirable to validate the model. Then the problem can be stated

formally as one of testing

H0, P('|§) = G('l§) for all 5 e A .

The alternative is that P and G are not equal for at least one 3 e A.

Ideally the set of validation data should be representative of A in some way,

for example, a random sample from A. In practice it may not be feasible to
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take a random sample and thus whatever data is available may have to be used

For purposes of building confidence in the model, data that represents the

extremes of A might actually be better than a random sample. If the valida

tion data does not adequately cover A then of course the conclusions about

model validity that can be drawn from the data would be restricted to the

subset of A represented by the data.

A reasonable interpretation of the hypothesis testing formulation of

the validation problem is that the test is being carried out to determine

whether there is any indication that the model does not represent the real

system. If the null hypothesis is not rejected then this is interpreted to

mean that there is no strong evidence of model inadequacy. It does not

of course mean that the model is a perfect reflection of the real system

of that the model can not be improved upon since the power of the test used

may not be high. On the other hand a decision to reject the null hypothesis

does not necessarily mean that the model is not useful. Rejection in this

case would be taken as an indication that there is room for improvement and

that the data should be examined for indications of areas for model improve

ment. I

In some cases the requirement that P and G be equal may be too strict

and a test for equal conditional means may be sufficient. In this case

I

the null hypothesis would be

:15: z(v|:_<) = z(z|:_<) for all 5 e A.

If m and m’ are small there may not be enough information at the set of

conditions represented by ¥ = 51 to provide a test of either Ho or H6 with

reasonable power. In this case it would be reasonable to apply a test at

each set of conditions and then use some method for combining independent

TO



tests. ’One well known method of combining independent test was developed

by Fisher (1938). Let T1 be the test that is applied at the ith set of condi

tions and let oi represent the observed significance level of the test,

i.e. a1 is the probability of a value of T1 that is as extreme or more extreme

than the observed value of T1. If the distribution of T1 is continuous then

the distribution of oi is uniform on (0,1) when the null hypothesis is true.

From this it can be shown that -Zigllogai has a chi-square distribution with

2n degrees of freedom when the null hypothesis is true. When the a1 are small,

-Zigllogai will be large and Fisher's test rejects the null hypothesis when

n .

-Zigllogai exceeds an appropriate critical value from the chi—square table.

For other methods of combining independent tests see, for example, Osterhoff

(1969). Alternately, a procedure such as the analysis of variance could

be used to combine information if the usual assumptions such as equality

of variances at the different conditions are reasonable.

7. CHOICE OP A TEST

For testing Ho a test such as the two-sample Kolmogorov-Smirnov test

for the equality of two distribution functions could be used. This test

could be applied to 11 and gi at each set of conditions and then informa

tion from all tests could be combined together. This type of test has

the disadvantage that it is designed for the very general alternative

P(-Ix) # G(~|§) for some 5 e A and thus may not have high power for specific

alternatives that may be of primary interest.

For testing H6 various parametric and nonparametric tests could be used.

If normality and constant variance can be assumed then the analysis of

variance is a reasonable choice where there are two treatments (real and

simulation) and n blocks corresponding to the n sets of conditions. If con
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stant variance can not be assued then individual two-sample t-statistics can

be computed at each point and then combined into an overall test. If H6 is

rejected then the individual t-statistics would be useful in indicating

places where the model does not work well.

If normality can not be assumed then two-sample nonparametric tests

such as the Wilcoxon rank sum test can be used at each point and combined

into an overall test. In many applications data on the real system may be

scarce and there may be only one real observation Y11 at each 51. In this

special case let R, be the rank of vi; among the set Yn,zi1,z12,...,z,-,,,i_

Then, under the null hypothesis, the distribution of R1 is uniform on

l,2,...,mi+1. It is then possible to develop simple nonparametric tests using

R1,R2,...,Rn (see Reynolds, Burkhart and Daniels (1981)).

8. OTHR HYPOTHSIS TESTING APPROACHES

There is a potential problem with testing H0 and H6 as previously formu

lated. It may be known a priori that the model and the real system can not be

identical and thus testing that the two are identical may not be very helpful.

A more realistic philosophy is to realize that an imperfect model can still be

useful and then try to determine how "close" the model needs to be to the real

system in order for the model to be useful for its intended purpose. Once

this is determined the validation data can be used to test the null hypothesis

that the model and system are close enough for the intended application of

the model (see, for example, Balci and Sargent (1981)). This approach

requires that a measure,say A(§), of the closeness of F and G be developed.

For example, this measure could be A(§) = E(Y — Zlx), the expected difference

between the real system output and the model output. The null hypothesis

could then be

l2



:18‘: >.(:_:) < 2.0 for all 5 e A

or, if the required agreement between the real system and model depends

on )_(, the null hypothesis could be

us". >.(_:5) < >.°(3_<) for all 5 e A

where A°(:_:) is the required agreement at )_g = 5

In order to test Hg or Hg. . an appropriate test statistic must be

chosen. Balci and Sargent (1981) discuss the use of Hotelling's two-sample

T2 test for this problem when several system response variables are observed

and the inferences are not conditional on _)_(.

The hypothesis testing approaches discussed so far have all tested the

null hypothesis that the model is "valid" in some sense. with this formula

tion the null hypothesis that the model is valid will be accepted unless

there is strong evidence to the contrary. This may lead to the acceptance

of a model that is not adequate if the power of the test being used is low.

This problem can be overcome somewhat if the power of the test at alter

natives of interest can be explicitly controlled.

Another approach that might be more reasonable from the model users

point of view is to take the null hypothesis as the hypothesis that the

mdel is not valid. This null hypothesis would then be rejected and the

mdel accepted only if there is strong evidence that the model is valid.

In this way the burden of proof is on the model to prove itself before

being accepted for use. This approach may be difficult to implement in some

cases since the null hypothesis of an invalid model may be difficult to

explicitly formulate and test. Reynolds (1984) discusses this approach to

formulating the null hypothesis in one particular context.
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9. ESTIMATING ERER

The logical inconsistency in testing the null hypothesis that the model

output has the same distribution as the system output when this is known to be

impossible has already been pointed out. Testing the hypothesis that the

model is close enough for the intended purpose of the model may be more

realistic, but there may be problems in implementing this approach. In many

cases there will be many potential users of the model. Even if these users

can be identified it may be difficult to get these users to accurately

specify the required degree of agreement between the model and the real

system. In addition, the results of a test may not give the model user much

feel for the error that can be expected when the model is used to draw

inferences about the real system.

One way around the problems of the hypothesis testing approach is

through the approach of what could be called statistical estimation. This

approach is concerned with estimating the error that is likely to result when

the model is used to estimate a parameter or to predict the actual output of

the real system. when the objective is to estimate a parameter then a

confidence interval could be given for the difference (expected error)

between the mean of the estimator from the model and the actual value of the

parameter. when the objective is to predict actual system output in a given

situation then a prediction interval for the difference (prediction error)

between the prediction and the observed output could be calculated. In this

way estimates of error can be used by the model user or users to determine

whether the performance of the model is acceptable for various purposes.

The expected output of the system at _)g = :_:1 is E(Y|3_ci), the expected

model output is n(zu_<1), and the expected difference or bias in the model

is an - z|g_:1). An unbiased estimator of this bias is oi = T, - E1. A
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confidence interval for this model bias can be constructed to give the model

user some indication of the average error that will result when the model is

used to estimate the mean response of the system. If mi and mi are not too

small then confidence intervals for bias at each point 51 can be constructed.

In some cases the objective may be to predict actual system output at

aonc point. If '2', is considered as a predictor of ii then the prediction

error is oi = E1 - 21. A prediction interval for this error can be con

structed to give the model user some indication of the size of the error

that may result when the model is used for predicting the response of the

system.

If the n sets of conditions can be considered as a random sample

from some population then the n values D1,D2,...,Dn can be used to construct

a confidence interval for the average bias (averaged over the distribution

of §) or to construct a prediction interval for the prediction error at a

randomly selected value of 5. Reynolds (1984) discusses the use of confi

dence interval and prediction intervals in validating models.

10. REGRESSION

In most cases the difference between the model and the real system will

not be constant but instead will vary depending on the values of the input

variables. This means that the bias in the model and the distribution of the

prediction error will depend on §. In addition the accuracy required of the

model may also depend on x. For exaple, for certain values of g the value of

Y may be large and the acceptable error may also be relatively large. But for

other values of g the value of Y may be small and the acceptable error may

also be relatively small. Thus it would be useful to be able to directly

relate the error or bias in the model to the levels of the input variables
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_l§. One reasonable approach to this problem is to use regression methodology

to relate the error D to the input variables l_(. If this can be done then

model users can obtain information about model accuracy for different condi

tions. In this case estimates of bias or prediction error would not be

restricted to the n validation data points although the regression model for

error as a function of 5 would presumably only be valid within the region of

the validation data. Reynolds and Chung (1985) discuss the use of regression

methodology in validating models and give an example of this methodology

applied to the stand simulator PTAEDA.
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DISTRIBUTION UNDER DEPENDENCE OF NONPARAMETRIC TWO—SAMPLE TESTS

Emanuel Parzen

Department of Statistics

Texas A&M University

AESIBAQI. This paper aims to show how to develop the theory of

two-sample statistical procedures in a way that enables

statisticians to determine (in a practical and effective way)

how tests can be adjusted for dependence in the case that

dependence is modelled by a stationary time series. The

importance of the problem of adjusting two-sample tests for

dependence is illustrated by an example from Box, Hunter, and

Hunter (1978). The paper concludes with a formula for

dependence factors of linear rank statistics which are expressed

in terms of spectral densities at zero frequency of suitable

rank transformed time series. To derive dependence factors, we

use the asymptotic distribution theory of sample distribution

functions and sample quantile functions of stationary time

series. Proofs of these results and examples of their

applications are given by A. Harpaz (1985) in his Ph.D. thesis.

~Qu

Serial dependence (autocorrelation) in data can seriously

affect the performance of standard statistical procedures (such

as the t—test or Wilcoxon rank sum test for the equality of

location parameters of two samples). The qualitative truth of

this statement is well known to statisticians. But general

techniques for evaluating quantitatively the properties of

standard statistical procedures under dependence are not being

used by statisticians. This paper aims to show how to develop

the theory of two-sample statistical procedures in a way that

enables statisticians to determine (in a practical and effective

way) dependence factors which adjust tests in the case that

dependence is modelled by a stationary time series.

To illustrate and motivate the importance of the problem of

adjusting two-sample tests for dependence we quote an example

presented by Box, Hunter, and Hunter (1978, pp. 81-82). An

experiment is performed which takes two samples of 10

observations each from identical populations and tests for a

change in location by a t test and a Wilcoxon test using a 5%

level of significance. This experiment was repeated 1000 times

and one observed the percentage P of the number of experiments

in which the null hypothesis of equality of distributions is

rejected. When the samples of size 10 consist of independent

observations one expects that, and observes that, approximately

Research supported by the U. S. Army Research Office Grant

DAAG29—83-K—00S1.
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P=5%. The experiment also simulated observations with errors

e(t) generated from white noise u(t) by a first order moving

average model e(t)=u(t)+bu(t—1), with b chosen so that the lag

one autocorrelation rho equaled —.4 (negative autocorrelation)

or .4 (positive autocorrelation). Under these conditions the

values observed for P were very approximately P=11% for rho=.4

and P=0.2% for rho=—.4. One would like to be able to compute

theoretical values of P which can be compared with, and help us

understand and predict, the observed values of P. The formulas

given in this paper show that the theoretical values of P depend

in large samples on the value, denoted f(O), at zero frequency

of the spectral density function of the time series model

describing the dependence of the observations.

For a first order moving average f(O) = 1+2*rho, so that

f(O)=1.8 for rho=.4 and f(O)=.2 for rho=-.4; note that f(0)=1.

for white noise (rho=0.). These values of f(O) can be used to

compute theoretical values of P (based on sampling theory for

dependent data) which are in rough accord with the values of P

observed by Box, Hunter, and Hunter in their experiment. The

conclusion drawn by Box, Hunter, and Hunter from their

experiment is that the significance levels of the t and Wilcoxon

tests are affected remarkably little by dramatic changes in the

probability distribution (normal, uniform, skewed) but are

seriously impaired by serial dependence. To resolve the problem

of dependent errors one approach is to avoid dependence through

randomization. But when serial dependence cannot be avoided its

effect must be assessed quantitatively. This paper describes

methods for adjusting (for time series dependence) two—sample

linear rank tests to have known sampling distribution under the

null hypothesis.

As an example, let us note that the z—statistics in eq.

(3.29) or the t-statistic in eq (3.33) of Box, Hunter, and

Hunter (1978) could be approximately adjusted for serial

dependence by dividing by (f(O)}1/2. This formula generalizes

the discussion on p. 588 of Box, Hunter, and Hunter (1978).

[When f(O) = .2, its square root is .45. The adjusted

t-statistic 1.01/.45 = 2.26 or adjusted t-statistic .88/.45 =

1.96 yield P—levels comparable to that of the t—value 2.17

obtained in eq. (2.16)].

21___LlNEAR BANK STATISTICS DEBENDENCE EACTOBS

Let X(1),...,X(m) be a sample from a strictly stationary

time series with distribution function F(x) = PROB[X$x], —~<x<~,

and quantile function

om) = F_1(u) = inf (x: F(x)_Zu}, o<u;1.

The population mean and variance of X are denoted MX and VARX.

The sample mean and variance of X(1),...,X(m) are denoted MX{m)

nnd VARX{m).
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' Let Y(1),...,Y(n) be a sample from a strictly stationary

time series with distribution function G(x) = PROB[ Ygx ],

-~<x<~ and quantile function G'1(u). Assume that X values are

independently distributed from Y values.

Let T denote a linear rank statistic to test the null

hypothesis Ho of equality of the distributions F(x) and G(x).

To compute and represent T one introduces the rank, denoted

Rj, of the j-th largest X value within the pooled sample of X

and Y values. A typical definition of T is

m

(1) T= (1/m) E J(Rj/(N+1))

i=1

where N=m+n is the pooled sample size and J(u), O$u$1, is a

suitable score function. The Wilcoxon rank-sum test corresponds

to J(u)=u or J(u)=u-0.5.

The asymptotic distribution of T under the null hypothesis

Ho can be described in terms of A=m/N, MJ(U) = I; J(u) du, and

VARJ(U) = I; {J(u) - MJ(U)}2 du.

The role of U will become clear in the sequel (section 4); it

represents a random variable with a uniform distribution on the

interval O to 1. This paper shows how to express the asymptotic

distribution of T, as N tends to ~, in the form

/N(T - MJ(U)} is NORMAL(0, ((1-A)/A)*VARJ(U)*DEPFAC[T])

The notation * denotes multiplication

We use DEPFAC[T] to denote denendenee fieeegr of T; it

equals 1 if the X's are independent random variables and Y's are

independent random variables. The mein aim of tnis paper is to

nresent a formnla for the dependence factor DEPFAC[T] Qf 5

linen; ;enk_§tetis;ie T. To adjust T for dependence we could

use (T—MJ(U))/{DEPFAC[T])1/2 as our test statistic.

To help interpret and understand the formula we present at

the end of the paper for DEPFAC[T] the next section introduces

dependence factors for sample means.

§i___D£EEHDENCE EACTOBS AND SPECTRAL DENEIIIES AT ZEBO EBEQUENCX

Our notation for the theoretical mean and variance of a

random variable X is MX=E[X] and VARX = E[(X-MX}Z]. When X(t),

t=O,i1,i2,..., is a stationary time series its covariance

function is denoted R(v;X) = COV[X(t),X(t+v)] and its

correlation function is denoted
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RHO(v;X) = R(v;X)/R(O;X) = CORR[X(t),X(t+v)],

v=0,i1,¢2,...

The sample mean of X(1),...,X(n) is denoted

n

MX(n) = (1/n) E X(t)

t=1

The variance of a sample mean can be expressed

n VAR[MX(n}] = VARX*DEPFAC[MX{n}]

where

- n

DEPFAC[MX{n}] = E (1—|v/n|) RHO(v;X)

v=-n

In words, the variance of the sample mean of a stationary time

series can be represented as the product of its variance for an

independent sample and a dependence factor.

For large samples (as n tends to ~) one can relate the

dependence factor to the §pggt;a1_dgn§i;y Qf the time series,

denoted

SPECDEN(w;X) = 1 + 2 E RHO(V:X) cos Znwv, O$w$1.

v=1

For n large, the dependence factor of a sample mean is given by

DEPFAC[MX{n}] = SPECDEN(O;X)

The advantage of expressing the dependence factor in terms of

the spectral density at zero frequency is that it can be

estimated using methods of spectral density estimation.

Let us now consider the two-sample problem of testing the

equality of distributions of two independent time series X(t)

and Y(t) using as a test statistic the difference of the sample

means

m n

MX(m} = (1/m) E X(t), MY(n) = (1/n) E Y(t).

t=1 t=1

The test statistic MX(m)—MY(n} has variance equal to the sum of

the variances of the two sample means. Therefore approximately

VAR[MX(m}—MY(n}] = (1/m)VARX*SPECDEN(O;X)+(1/n)VARY*SPECDEN(O;Y)
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Assume that under Hg both MX=MY and VARX=VARY (in practice, one

might replace VARX and VARY by the variance of the pooled

sample). Then under Hg MX(m}-MY(n) has mean O and variance

(1) VAR[MX{m}—MY(n)] = (NA(1—A))_1*VARX*DEPFAC[HX(m)—MY{n))

where N=m+n, A=m/N, and the dependence factor can be expressed

approximately (for large values of m and n) in terms of spectral

densities:

(2) DEPFAC[MX{m}—MY{n)] = (1-A) SPECDEN(O;X) + A SPECDEN(O;Y)

It should be noted that we are not assuming that the spectral

densities of X and Y are equal.

This formula for the dependence factor of the difference of

two means is important for several reasons:

(1) It can be used to determine the affect of dependence

on the two sample t—test; it shows that the affect for large

samples depends only on the value of the spectral densities of

X(t) and Y(t) at zero frquency.

(2) It motivates the form of answer which we seek for

linear rank statistics T, since we shall show that T — MJ(U) has

the same distribution as a difference—of-means statistic

(1—A) (MJ(UX~)(m} — MJ(UY~) inl)

in terms of time series J(UX"(t)) and J(UY"(t)) defined below.

The asymptotic variance of T therefore can be expressed, using

(1) and (2),

§l—(’1%; *VARJ(UX)*{(1—)\) SPECDI-IN(O;J(UX"))+ >. SPECDEN(O;J(UY"))}

The remarkable conclusion which one is able to draw from

this formula is that for large samples the dependence factor of

linear rank statistics can be evaluated by estimating the

spectral density at zero frequency of the derived time series

J(UX"(t)) and J(UY"(t)). Experience indicates that a quick and

dirty estimate of these spectral densities is provided by the

spectral densities of X(t) and Y(t) respectively. In practice

one will not know the dependence structure of the errors. The

dependence factor of T will be estimated by estimating the

spectral density at zero frequency of the time series whose

means are being compared.

$i___BEEBEfiEHIAIIQN5 OF LINEAR BANK STBIIEIIQE

To study linear rank statistics we use representations for

them in terms of sample distribution functions which are valid

for both independent and dependent observations.

23



‘ A sample X(1),...,X(m) has: order statistics

X(1;m)5...$X(m;m); sample distribution function F”(x) = fraction

of sample 3 x; and sample quantile function Q"(u) = F"_1(u)

given by

Q~(u) = X(j;m) for (j-1)/m<U$j/m

One also uses continuous versions of the discrete sample

quantile function. A sample Y(1),...,Y(n) has: order statistics

Y(1;n)$...$Y(n;n) and sample distribution function G"(x).

One pools the two samples to form a pooled sample

X(1),...,X(m), Y(1),...,Y(n) of size N=m+n which has sample

distribution function H“(x) satisfying H"(x)=AF"(x) +

(1—A)G“(x). The limit of H“(x) is H(x) = AF(x) + (1—A)G(x).

In the one-sample problem we call U(t) = F(X(t)),

t=1,...,m, the rank transformed variables; their marginal

distribution is uniform on O to 1. Sample rank transformed

variables U"(t) are defined by a formula such as U"(t) =

(m/(m+1))F”(X(t)) which assigns ranks 1/(m+1),...,m/(m+1) to the

order statistics X(1;m),...,X(m;m).

In the two—sample problem the rank transformed variables

are defined to be H(X(t)) and H(Y(t)). The sample rank

transformed variables are

UX'(t) = (N/(N+1))H~(X(t))| UY”(t) = (N/(N+1))H~(Y(t)).

A linear rank statistic T as traditionally defined by

eq (1) of section 2 can be represented

T = (1/m) Z J(i§T H"X(j;m)) = MJ(UX")(m} .

i=1

An alternative statistic, which our analysis shows provides more

insight into the asymptotic distribution, is the difference—of—

means statistic; one can show that asymptotically [and exactly

for J(u)=u]

T — MJ(U) = (1-A)(MJ(UX")(m} — MJ(UY"){n})

To relate T to sample distribution functions we represent it

T = ;f_ J(§§T H"(x)) dF"(x)

Our approach is to write approximately

T = I; J(u) dF"(H”_1(u)) .
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This formula is not used. But it suggests one should try to

represent T exactly as

T = 1; J(u) dD"(u)

where D“(u) is a suitable estimator of D(u) = FH'1(u), O$u$1.

We call D(u) a snmeariaan Quanfile function

We would like to define D"(u) in terms of sample

distribution functions so that it is a step function with jumps

equal to 1/m at u=(N/(N+1)) Rj. Parzen (1983) shows that this

can be accomplished if D"(u) is defined as the inverse

D1"’1(t) of D1”(t) = H"F"'1(t), o;¢;1.

Our motivations for introducing D(u) and n"(u) are diverse.

(1) They implement our philosophy that §1g11_g1§ph_§hgu1fl

be a picture of a function. Various techniques for graphical

analysis of samples, such as P—P plots and Q-Q plots, can be

regarded as sample versions of theoretical functions of the form

of D(u).

(2) The conclusions that one obtains arithmetically from

the value of a linear rank statistic can often be discovered

graphically (at a glance) from a graph of D‘(u).

(3) In cases where the value of T indicates no significant

difference between the two samples, the graph of D”(u) may*

indicate important ways in which the samples differ.

(4) The empirical process D”(u) is important as a

practical basis for data analysis (as outlined in reasons (2)

and (3)) and as a theoretical basis for deriving the properties

of linear rank statistics. The asymptotic distribution of

D"(u), O$u$1, is derived by expressing it in terms of the

asymptotic distributions of the sample distribution functions of

the independent stationary time series X(t) and Y(t). The

rigorous theory of the latter has recently been completed by

Pham and Tran (1985) as the culmination of a long line of

research papers starting with the pioneering work of Gastwirth

and Rubin (1975).

§i___EMRlBl£AL_2BQ£E§fiE5 QF STAIIQNABX TIME SERIES

Let F”(x) and Q'(u) denote the sample distribution and

sample quantile function of X(1),...,X(n), a sample from a

stationary time series X(t). Let CFX(x), -~<x<~, and

CF'1X(u), O$u$1, denote stochastic processes representing the

limiting distributions of /H(F"(x)—F(x)), -~<x<~, and

fH(F'1(u)-F'1(u)},0$u$1, respectively. One can show that

there is a zero mean Gaussian stochstic process denoted BX(u),

0$u$1, such that
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crx<x> = ax<r<x>>. ¢F"(u) = {-1/fF"1(u)) BX(u).

Thus the asymptotic distribution of the sample distribution and

sample quantile functions can be expressed in terms of the

process BX(u), O$u$1.

For independent random variables (white noise) X(t), the

limit process BX(u) is a Brownian Bridge, which is a zero mean

Gaussian process with covariance kernel

E[BX(u1) BX(u2)] = u1 (1-u2) for u1 5 u2 .

An indication of the formulas required to describe BX(u)

when X(t) is a time series is provided by the limit

distributions of independent samples of bivariate dependent

random variables (X(t), Y(t)). Then the limit processes BX(u)

and BY(u) are each Brownian Bridges but they are not independent

of each other. They have joint covariance kernel

E[Bx(u1) BY(U2)] = F(Qx(u1)|QY(u2)) ’ u1u2| O$u1|u2$ 1!

where F(x,y)=PROB[X$x,Y$y] is the joint distribution function of

X and Y. We call F(QX(u1), QY(u2)) the hiy§;ig;g_§gpgg§gngg

junction of X and Y; an alternative name (used by some authors)

is menia

To express the covariance kernel of BX(u), O$u$1, in the

case that X(t) is a stationary time series, it is more

convenient (for insight and computation and to avoid a

complicated infinite summation of bivariate dependence

functions) to represent the covariance structure as a formula

for the variance of a general linear functional jg g(u) dBX(u)

for suitable functions g(u). Let U(t)=F(X(t)) be the rank

transform, and form the time series g(U) whose value at t is

g(U(t)). Equivalently we write g(U)=g(F(X)).

BA5IE_IHEQBEM_QN_EMRIBIQAL_2BQ£Efifi_QE_EIAIlQNABX_IlME

fifiglfifl: The distribution of BX(u), O5u$1, can be described in

terms of the spectral density at zero frequency of the time

series gU(t), U(t)=F(X(t)), which are estimated by gU"(t), U“(t)

= F'(X(t))=

VAR[Ig g(u) dBX(u)] = VARg(U) SPECDEN(0;9(U))

where

vARq(u> = IQ q2<u) du — II; q(u>du|2

The asymptotic distribution of linear rank statistics are

obtained from formulas for the asymptotic distribution of linear
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functionals in the sample comparison quantile function D"(u),

O<u<1, defined in section 4. One can show that (in the sense of

convergence of stochastic processes)

/N {D"(u)—D(u)) + CD(u)

where the limit process CD(u,0<u<1, can be expressed in terms of

independent limit processes BX(u), O<u<1, and BY(u),0<u<1, by

CD(u) = -(1—A)(A_1/2BX(u) — (1—A)_1/2BY(u)}

The processes BX(u) and BY(u) are related to the processes

defined in the Basic Theorem on Empirical processes. Their

covariance kernels are expressed in terms of the spectral

densities at zero frequency of the time series J(UX”(t)) and

J(UY'(t)):

VAR[Ig J(u) dBX(U)] VARJ(U) SPECDEN(O:J(UX~))¢

vAR[J; J(u) dBY(u)] VARJ(U) SPECDEN(O;J(UY")).

By combining all these results one can obtain the formula

given in section 2 for the asymptotic distribution of a linear

rank statistic for two samples from stationary time series with

dependence factor DEPFAC[T] estimated by

DEPFAC[T] = (1—A) SPECDEN(O;J(UX~)) + A SPECDEN(O;J(UY"))

A more complete proof of this result, and examples of its

applications, are given by Harpaz (1985) in his Ph.D. thesis.
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Statistical Models and Methods for

CLUSTER ANALYSIS AND SEGMENTATION

Stanley L. Sclove

Department of Information and Decision Sciences

College of Business Administration

University of Illinois at Chicago

ABSTRACT

Clustering of individuals, segmentation of time series and

segmentation of numerical images can all be considered as labeling

problems, for each can be described in terms of pairs (xt,gt), t =

l,2,...,n, where xt is the observation at instance t and gt is

the unobservable "label" of instance t. The labels are to be

estimated, along with any unspecified distributional parameters. In

cluster analysis the values of t are the individuals (cases) observed

and the x's are independent. In time series the values of t are time

instants and there is temporal correlation. In numerical image

segmentation the values of t denote picture elements (pixels) and

spatial correlation between neighboring pixels can be utilized. The

idea in segmentation is that signals and time series often are not

homogeneous but rather are generated by mechanisms or processes with

various phases. Similarly, images are not homogeneous but contain

various objects. "Segmentation" is a process of attempting to recover

automatically the phases or objects. A labeling model for representing

such signals, time series, and images was discussed in a paper by the

present author in the Proceedings of the 30th Conference; some

approaches to estimation and segmentation in this model were presented.

The present paper summarizes the work on all these types of labeling

problems, clustering as well as time series- and image-segmentation.

Key words and phrases: statistical pattern recognition,

classification; temporal correlation, spatial correlation: optimization

by relaxation method.
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l. Introduction

The research reported here relates to cluster analysis and

numerical processing of time series and images. It is in part a

discussion of work performed under ARO Contract DAAG29-82-K-Ol55

(6/l5/82 - 6/I5/85): Statistical Models and Methods for Cluster

Analysis and Image Segmentation. The type of datasets to which the

techniques developed are applicable include: signals such as radar and

sonar; economic and bio-medical time series; time series arising from

quality assurance acceptance sampling by attributes or variables; and

digital images which can result from various sources, including

bio-medical imagery, infrared imagery obtained by smart munitions,

and multispectral data obtained by satellite. The problems addressed

are those of clustering, and segmentation of time series and images.

The work involves the further development of algorithms for

clustering large, multidimensional datasets and for segmentation of

time series and digital images. The algorithms are based on maximum

likelihood estimation in distribution-mixture models. In the context

of these mixture models clustering is construed as estimation of

unobserved labels. An observation's label, were it observable, would

tell from which mixture component the observation arose. Image

segmentation is also considered as a labeling problem. Throughout the

work there is an attempt to apply model-selection criteria to the

decision as to an appropriate number of clusters or classes of segment.

Software development is an important aspect of such a project.

The algorithms developed are programmed in FORTRAN.

Some of the ideas discussed in the present paper have been
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segmentation the values of t denote picture elements (pixels) and

spatial correlation between neighboring pixels can be utilized. The

idea in segmentation is that signals and time series often are not

homogeneous but rather are generated by mechanisms or processes with

various phases. Similarly, images are not homogeneous but contain

various objects. "Segmentation" is a process of attempting to recover

automatically the phases or objects. A labeling model for representing

such signals, time series, and images was discussed in a paper by the

present author in the Proceedings of the 30th Conference; some

approaches to estimation and segmentation in this model were presented.

The present paper summarizes the work on all these types of labeling

problems, clustering as well as time series- and image-segmentation.
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l. Introduction

The research reported here relates to cluster analysis and

numerical processing of time series and images. It is in part a

discussion of work performed under ARO Contract OAAG29-82-K—0l55

(6/l5/32 - 6/I5/85): Statistical Models and Methods for Cluster

Analysis and Image Segmentation. The type of datasets to which the

techniques developed are applicable include: signals such as radar and

sonar; economic and bio-medical time series; time series arising from

quality assurance acceptance sampling by attributes or variables; and

digital images which can result from various sources, including

bio-medical imagery, infrared imagery obtained by smart munitions,

and multispectral data obtained by satellite. The problems addressed

are those of clustering, and segmentation of time series and images.

The work involves the further development of algorithms for

clustering large, multidimensional datasets and for segmentation of

time series and digital images. The algorithms are based on maximum

likelihood estimation in distribution-mixture models. In the context

of these mixture models clustering is construed as estimation of

unobserved labels. An observation's label, were it observable, would

tell from which mixture component the observation arose. Image

segmentation is also considered as a labeling problem. Throughout the

work there is an attempt to apply model-selection criteria to the

decision as to an appropriate number of clusters or classes of segment.

Software development is an important aspect of such a project.

The algorithms developed are programmed in FORTRAN.

Some of the ideas discussed in the present paper have been
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developed and published in journals; see Sclove (I977; l983a,b,c:

l98ha) and Bozdogan and Sclove (IQBH).

The organization of the present paper is as follows: Section 2

concerns cluster analysis; in this section there is some general

discussion of model-selection criteria and a digression to mention some

ideas concerning clustering of variables. Section 3 summarizes some of

the results on time-series segmentation, and results on image

segmentation are discussed in Section b.

2. Cluster analysis

Background. The mixture model for the clustering problem

postulates a mixture of k distributions. This is the approach put

forth in (Sclove l9)7). The research problem set there was, at least

in part, to see whether the ISODATA (Ball and Hall, I961) and K—HEANS

(flacqueen, I967) algorithms could be interpreted as

mathematical-statistical estimation schemes in some model for the

clustering problem. That is, did there exist a model for the

clustering problem, and an estimation method in that model, such that

ISODATA and K-MEANS corresponded to that method applied to that model?

The answer, provided in (Sclove I977), was affirmative; this will be

explained below, but first let us briefly define ISODATA and K-MEANS.

The "isodata" scheme proceeds as follows. One starts with

tentative estimates of cluster means as seed points for the clusters

and assigns each observation to the mean to which it is closest. The

cluster means are then re-estimated, and one loops through the data

again, reassigning the observations. Etc. In the K—HEANS algorithm,

the seed points are updated immediately after each observation is
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tentatively classified. In (Sclove i977) it was shown that these

algorithms correspond to iterative maximum likelihood estimation in a

type of mixture model for the clustering problem, where the component

distributions are multivariate normal.

This clustering can be done for various values of k, the number of

clusters. Figures of merit can be used to choose the best k.

Hodel—selection criteria can be used as figures of merit.

2.l. Model-selection criteria

ln the context of a mixture model, choice of the number of

clusters k can be viewed as a model-selection problem. However,

at least in the case of clustering individuals, existing

model-selection criteria have to be modified, as they depend upon

(regularity) assumptions that are not always met in mixture models

for clustering individuals.

In any case, let us review some of the existing model-selection

criteria. Consider, then, a problem of choosing from among several

models, indexed by k (k I l,2,...,K). Let L(k) be the likelihood,

given the k-th model. Various model-selection criteria taking the form

-2 log(max L(k)) + a(n)m(k) + b(k), (I)

have been developed in relatively recent years. Here n is the sample

size, log denotes the natural logarithm, max L(k) denotes the maximum

of the likelihood over the parameters, and m(k) is the number of

independent parameters in the k-th model. For a given criterion, a(n)

is the cost of fitting an additional parameter and b(k) is an

additional term depending upon the criterion and the model k.

Akaike (see, e.g., Akaike 1973- I975, l98l) developed such a
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criterion as an (heuristic) estimate of the expected entropy

(Kullback—Leibler information). Akaike's information criterion (AIC)

is of the form (l) with

a(n) = 2 for all n, b(k) = 0 (AIC). (2)

Schwarz (I978), working from a Bayesian viewpoint, obtained a criterion

of the form (l) with

a(n) = log n, b(k) I 0 (Schwarz' criterion). (3)

Since, for n greater than 8, log n exceeds 2, it follows that

Schwarz‘ criterion favors models with fewer parameters than does

Akaike's.

Noting that AIC has a(n) a constant function of n, namely 2,

various researchers, including Kashyap (I982) and Schwarz (I978) have

mentioned that AIC is not consistent; a(n) needs to depend upon n.

Kashyap (l982), also working from a Bayesian approach, took the

asymptotic expansion of the logarithm of the posterior probabilities a

term further than did Schwarz and obtained the criterion of the form

(l) given by

a(n) I log n, b(k) I Iog(det B(k)) (Kashyap's criterion), (M)

where det denotes the determinant and B(k) is the negative of the

matrix of second partials of log L(k), evaluated at the maximum

likelihood estimates. In Gaussian linear models this is the covariance

matrix of the maximum likelihood estimates of the regression

coefficients: in general, the expectation of B(k), evaluated at the

true parameter values, is Fisher's information matrix. Since Kashyap's

criterion is based on reasoning similar to Schwarz‘, but contains an

extra term, it may perform better. [Further comments on

model-selection criteria are made in Sclove (l983d).]
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.2.2. Hulti-sample clustering

The problem of multi-sample clustering, the grouping of samples,

is treated in Bozdogan and Sclove (l98h). The situation is the

K-sample problem (one-way analysis of variance), with an emphasis on

grouping the samples into fewer than K clusters. The use of

model—selection criteria in this context can provide an alternative to

multiple—comparison procedures. Use of model-selection criteria avoids

the difficult choice of levels of significance in such problems.

Model-selection ‘criteria can also be used in this context to decide

whether or not to assume a common covariance matrix. Kashyap's

criterion could be evaluated and used for these problems.

2.3. Clustering of individuals

Schwarz' and Kashyap's criteria could be calculated for the

problem of clustering individuals according to Wolfe's (I970)

mixture-model clustering approach and incorporated into computer

programs for clustering. The values of the criteria can be used

heuristically as figures of merit for alternative models, but in order

to be rigorously applied the model-selection criteria need to be

modified since their derivation involves an assumption of

nonsingularity of the information matrix. However, note in

this regard a potential advantage of model-selection criteria

over a hypothesis—testing approach in this and similar

situations. Model-selection criteria require nonsingularity of

the information matrix only for each fixed model k. The testing

approach runs into difficulties because of nonsingularity of the

matrix at the boundary between the null and alternative hypotheses

(i.e., at the boundary between models).
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- 2.b. Clustering of variables

The clustering of variables can also be viewed as a

model-selection problem. For example, whether and how to cluster

multinormal variables depends upon which covariances may be assumed to

be zero; the possible patterns of zeros among the covariances are

separate models, a figure of merit for which is provided by a suitable

model-selection criterion. This idea is to be further developed.

3. Time-series segmentation

As mentioned above, a model for clustering or segmentation is

given by assuming that each instance of observation, t, gives rise not

only to an observation xt but also to a label, gt, equal to I, 2,

..., or k, where k is the number of classes of segment.

Model-selection criteria are used to estimate k. In the context of

this model, segmentation is merely estimation of the labels. Sclove

(l983b,c: l98ka) treats the problem by modeling the label process as

a Markov chain. An algorithm and computer programs are discussed;

numerical examples are given.

The model involves three sets of parameters: the distributional

parameters (e.g., means and covariance matrices), the labels, and the

transition probabilities between labels.

The algorithm is a relaxation method, similar to the EM algorithm.

The estimation step consists of maximum-likelihood estimation of the

distributional parameters, for tentatively fixed values of the labels

and transition probabilities. The maximization step consists of

maximizing the likelihood over the labels and transition probabilities,

for tentatively fixed values of the distributional parameters.

I
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, As developed so far, the algorithm is a forward algorithm,

classifying x2 after x], x3 after x2 and x1, etc. It is

suitable for sequential operation in real time, but it is non-optimal

in other modes of operation. Its performance could possibly be

improved by a backcasting technique analogous to that in Box and

Jenkins (I976) and by application of the Viterbi algorithm (Forney

l973), which is a recursive optimal solution to the problem of

estimating the state sequence of a discrete—time finite state

Markov process; it is applicable here because this is what we have

at each stage when the distributional parameters and transition

probabilities are tentatively fixed and the labels are to be estimated.

Further, the parameter-estimation step of the algorithm can be

improved. The estimation implemented in the existing algorithm leads

to estimates that are biased (even asymptotically). (See, e.g., Bryant

and Williamson I978.) This bias may be viewed as due to the

truncation resulting from the algorithm. The estimation could be

modified by doing it in a Bayesian manner, e.g., estimate the mean of

Class A as

.2 _fl

Z_ x(t) Pr(a|x(t))/3_ Pr(a|x(t))

t-I til

(In this expression, Pr(a|x) can be replaced by Pr(x|a) since

Pr(a)/f(x) will cancel out.) This modification in the

parameter-estimation step~ can be important. For, in this estimate,

all the observations play a role, whether labeled as "Class A“ or

otherwise, so that at least some of the bias incurred by using only

the "a" observations will be removed by allowing all of the

observations to enter.
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. The work done to date is explicit only for the case in which the

class-conditional processes consist of independent, identically

distributed random variables. The work is to be extended to other,

often more realistic cases, such as that of autoregression within

segments.

h. Image segmentation

Similar ideas are applied to digital images in Sclove

(l983a;l98ha). -Here the label process is modeled as a Markov random

field.‘ The same improvements made in the time-series context will be

carried over to the two-dimensional, image-processing context. For

example, computer experiments (Sclove l98hb) with the existing

algorithm have shown it to be successful, even in finding small

targets. However, at the same time, these experiments have shown the

importance of some such modification as backcasting, as mentioned in

connection with time series, to eliminate anomalous border effects.

Extension of the existing work to two-dimensional autoregressions

within segments will yield algorithms that may detect textures.
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ABSTRACT: \/isibilitg is produced bg a varietg of meteorological factors

related to micro—, meso-, and macro-scale processes. In addition the

frequencg distribution of visibilitg is non-Gaussian. Thus a factor

analgsis is not trivial.

Todag factor analgsis is aided bg "canned" programs on most larger

computer sgstems. However, most of the time it is not readilg

understood what these programs produce. Thus an investigation was

performed to compare four different approaches of a factor analgsis. A

principal’ components analgsis, an unweighted least squares, a general

least squares approach and a maximum likelihood method were examined

for a basic correlation matrix of eight atmospheric parameters and for a

7-gear record of Stuttgart, Germang. Furthermore, unrotated factors,

and orthogonal and oblique rotation of factors were included. As

expected the results of the factor analgsis differ in details. However,

the four methods show some common principles.

I. INTRODUCTION: Factor analgsis was used in behavioral science when

Spearman (I904, I927). Eattell (I952 and I965), and others established

the basic statistical—mathematical background. The phgsical sciences

followed hesitantlg. Factor analgsis in the atmospheric sciences can onlg

be found in the last two decades, e.g. Christensen and Brgson (I966),

Kutzbach (I967), Buell (I971) etc.

In part this was due to the elaborate mathematical procedure which

is required in the mathematical solution. Todag, factor analgsis is aided

bg electronic data processing. In recent times even "canned programs" are

available. Thus the mathematical difficulties have been resolved. The

phgsicist will find several methods of estimation, however, and mag be

confused about the answer to the question which method mag be most

suitable and mag provide the best estimators. Furthermore, in order to
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draw the correct conclusions from the solutions by those "canned

programs," it is necessary to separate the "mathematics" from the

"physics."

This study serves to elucidate some of the mathematical background

and reveal some physical characteristics by comparing the results for

several methods of factor analysis applied to data of a seven—year record

of atmospheric parameters for Stuttgart, Germany.

We learn that the estimators for the "communalities" differ for the

individual methods. This is expected. The physical characteristics of the

factors, however, display great similarity after rotation of the coordinate

system although the sequence is not always the same for the individual

methods.

2. PRINCIPAL COMPONENTS ANALYSIS. The basic model for factor

analysis can be formulated as follows:

'”‘><='“‘A'"‘F*"e (1)

where PIX is a data matrix (the only known matrix in Eqn I), MA a

coefficient matrix of factors, NF the factor matrix, and Me an error

matrix. MA is also called the factor loading matrix or factor pattern. In

the basic factor analysis neither the factors are correlated, nor are the

factors and the errrors. -

The mathematical solution for Eqn (I) can be formulated as:

Mx = lg, 4» MAT + (W) (2)

where ¢l> = MFTMF is a factor covariance matrix and W a diagonal matrix

‘I’ = I"IDl‘1€, with MD a diagonal errormatrix.

As stated above, MX is a data matrix. In its standardized form PIX

is a correlation matrix MR with unity in its diagonal. This is called a

"closed" system or principal components analysis. Then the errror

matrix *~I/ has zero elements outside the diagonal.

The true factor analysis is based on the postulation that not all

factors are l<nown. In order to account for this fact the diagonal in the

correlation matrix MR must be reduced i.e. the diagonal elements are
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less than 1.0. These diagonal elements are also called "communalities".

Determining <11 and MA requires a solution for

which is a known problem in mathematics. The model can be

reformulated:

with MAT = HA") and D7‘ a diagonal matrix. D1 is called the matrix of

eigenvalues and HA contains the eigenvectors. in the principal

components analysis MATMA = I. For more details see Essenwanger

'II9?6).

3. THE COi'IrlUIiALlTlES. Four different methods have been studied in

this investigation._ In the first method a principal components analysis

(P.lI.) is performed and a specific number of factors is accepted. E.g. for

a correlation matrix with 8><6 dimension El principal component factors

are obtained from the mathematical model. We may decide to select the

largest 4 factors. This is equivalent to a truncation. The communalities

are then recalculated from these 4 accepted factors. This procedure may

apppear to be somewhat arbitrary and subjective. It must be pointed

out, however, that the number of physical factors is unknown. Although

the total number of factors in the principal components analysis is

determined by the dimension of the matrix MR the uncertainty of factors

with significance in physics is contained in the chosen number of

elements in the MR matrix. A formalistic mathematical solution can be

achieved for any dimension of the correlation matrix MR. However,

whether all possible factors in the principal components analysishave

significant meaning in physics is not determined by the mathematical

solution. -

The number of factors is also a subjective choice in the other three

methods. Thus the truncation of factors in the principal components

analysis is not worse than the assumption of the number of factors in

the other three methods.

The other three methods differ how estimators are calculated for

the communalities. We as--ume the number of factors which are
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accepted and obtain estimators as follows.

The unweighted least squaresmethod (ULSQ) requires that Ll is a

minimum for

u = (1/2) tr (M5 - nxiz (5)

where I13 is the correlation matrix with estimators in the diagonal and

tr means the trace.

In the generalized least squares method (GLSQ) G is a minimum for

0 = (I/2) tr (In - n5"r1X)2 (6)

where In denotes a diagonal matrix of unitg and H5 and MX are the same

as under Eqn (5).

Finallg, the maximum likelihood principle (MXLI) is applied to

minimize:

PI = tr i(l“lX'1l'l3) - unin><“i~15)] - n (7)

(See Joreskog, I96?) where n is the number of variables.

Other methods to substitute estimators for the diagonal in MR exist

(see Essenwanger, I976) but were not included in the present studg; see

also Guttman (I956).

4. ROTATIONS. Although the solution of MA provides characteristic

factors which mag have meaningful interpretation in phgsics, it is

customarg to enhance certain features. This is accomplished bg rotation

of the coordinate sgstern. This is called attaining simple structure. The

ultimate goal is the following:

(a) At least one zero in each row

(I1) I< zeros in each column (k-1 for principal components)

(c) For ang pair of factors:

l. High loading in one element ~ l.0
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2. Zero in other variables

3. Small loading on both factors for the variable

4. Onlg a few non-vanishing loading on both.

In order to explain the rotation procedure let us recall that:

HA = "elk, (a)

where ME is an eigenvector matrix and Dk is a diagonal matrix of

eigenvalues 7., with 7., =./X. Two methods of rotationsere customarg:

orthogonal and oblique rotation. In termsof mathematics the orthogonal

rotation is achieved bg

where T1 is a transformation matrix. Oblique rotation requires two

transformation procedures because factor pattern and factor structure

matrix are not identical as in the orthogonal transformation.

Thus:

MFP = r1AT2'1 (factor pattern matrix) (l0a)

MF5 = MAT2 (factor structure matrix) (I0b)

while the factors are uncorrelated in the solution of Eqn’s 4-? and the

orthogonal rotation, the oblique rotation introduces factors which are

correlated. Thus MFP represents the regression coefficients in the

structure pattern, and NF5 the covariances between variables and

factors. The factor pattern is:

Xi=3HT1*3i2I2*...*(€i)

where Mi,-P determines the an and MF5 the I] terms; ei is the error.

5. EIGENVALUES, FACTOR LOADS AND COMMUNALITIES. The introduced

four methods of estimating the cgnmunalities have been applied to



atmospheric: data of Stuttgart (Fed. Rep. Germany). The data cover the

period * Sept I946-August I953. Eight meteorological elements have

been selected: ceiling (CEIL), visibility (VIS), wind direction (WD),

windspeed (W5), temperature (TEMP), dewpoint (DEWP), relative

humidity (REHU) and pressure (PRES). Visibility was utilized in linear

scale and as transformed variate in logarithmic scale. The wind velocity

was also converted to zonal (U) and meridional (V) components. These

differences in the element selections will be discussed later.

Data as exhibited in Tables I and 2 were chosen as a typical

example for disclosing the diversity caused by different methods of

estimating the communalitles. Table I displays the eigenvalues for data

from Stuttgart (linear visibility, zonal and meridional wind components).

We learn from perusal of Table I that the individual eigenvalues

fluctuate and depend on the chosen method. The dissimilarity is even

found in the sums of these eigenvalues. However, rotation of the

coordinate systems (orthogonal and oblique) has no effect on the sum, as

expected. The numerical values differ only by rounding.

The differencesibetween the individual methods for the sum of

eigenvalues can be traced to the sum of commonalities (Table 2). As

confirmed by the observed data the sum of eigenvalues must be identical

with the sum of the cornmunalities save rounding. In the principal

components analysis this sum is identical with the number of elements

if the number of factors is not truncated.

We also notice in Table I that the truncated principal components

analysis shows the highest approximation (82%) of the total variance for

the chosen number of factors, in our case four.

*Footnote: we experienced difficulty with the magnetic tape record

after 7 years of data. The difficulty could not be resolved for inclusion

into this manuscript. Only Table 3 was available for I0 years.
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while Table I exhibits fluctuations of the sum of eigenvalues from

6.56? to 5.040 these variations are not necessarily repeated for other

data sets. E.g. Table 3 has been compiled for I0 years of data for

Stuttgart in January, substituting visibility in its transformed

logarithmic scale, and zonal and meridional components of wind have

been replaced by speed and direction (see Essenvvanger, I964). we learn

that the sum of the eigenvalues for the three methods ULSQ, GLSQ, and

MXLI differ very little, although the individual eigenvectois show

dispersion. Again, the truncated principal components analysis renders

the highest approximation of the variance (about 81%).

6. FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN. Tables

4A-D provide detailed information about the factors. Four sections are

shown in each Table 4A-D. The first section provides the unrotated

factor loads for the solution with communalities. E.g. in the case of the

principal components method (Table 4A) these are the first 4

eigenvectors of a correlation matrix with unity in the diagonal matrix.

The numerical values in these four columns represent the affinity with

the elements and can be interpreted as a (linear) correlation coefficient.

The first factor (Table 4A) which represents 39% of the variance

(i.e. 3.14/8.00) discloses high association with temperature, dewpoint,

zonal (U) and meridional (V) wind component and visibility, in that order

of magnitude. The second factor with about 21% of the variance is again

a mixture, relative humidity, visi'oility, dewpoint and ceiling. in the

third factor the pressure stands out while the fourth factor ls again a

mixture whereby all elements are contributing except the relative

humidity (-.0? means almost zero).

The unrotated factor load is a valid solution. It was pointed out

previously that a rotation of the coordinates will enhance the

association between individual factor and element. This simplification

process was described in section four. The sum of the eigenvalues

remains constant in this transformation.

Inspection of the section for orthogonal rotation in Table 4A reveals

that now the first factor principally is related with the temperature

elements, i.e. temperature and dewpoint. The second factor comprises

the moisture elements (relative humidity, visibility and ceiling). The

third factor contains the pressure, and the fourth factor the wind. This

may be expected by some readers and may be a trivial answer. It should

be stressed, however, that the mathematical formalism could have led to
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a different answer and combination of elements. The separation into

these four factors is logical on account of the phgsics background.

This mag give the impression that the grouping into these 4 factors is

trivial. In turn, the mathematical formalism has led in this case to an

answer which has an interpretation in terms of phgsics. However,

begond the expected factors we gain information about the weights of

the factors. This weight is not readilg available bg expectation alone.

The lower part of Table 4A lists the result for an oblique rotation.

While the structure matrix contains the covariances (which are

equivalent to the correlation coefficient); the factor pattern expresses

the regression coefficients. In the oblique rotation the factors are

intercorrelated (see Table 5). Theg are not correlated with each other

for the unrotated or the orthogonal solution. We learn from the

structure matrix of Table 4A that the factors have not essentiallg

changed from the orthogonal rotation case. Therefore, the

intercorrelatiori (between factors) is verg low (Table 5).

The results for the other methods (ULSQ, GLSQ, l1><LI) are similiar

with minor changes except that the weights are different for the

individual factors. In Table 4B we notice that the ceiling shows onlg

verg low influence in ang of the factors. This result is repeated in

Table 4C. while in the previous methods the pressure is one factor, it

shows virtuallg no contribution in the GLSQ method. It reappears as a

factor in Table 4D, M><LI method. Another difference between Tables 4A,

B and Tables 4C, D is the influence of the windspeed. In Table 4A the

factor with the two wind components indicates equal correlation of the

wind components. In Table 4B a small preference of the meridional

component is alreadg visible. In Tables 4C, D, however, the meridional

wind component appears to be more dominant than the zonal influence in

the wind factor.

One further peculiaritg must be mentioned. In the unrotated and

orthogonallg rotated case the sum of the eigenvalues sol AND SO»

respectivelg, is equal to the sum of the squares of the factor

components.

so =%r2 (l2a)
7. ‘u

r so =nr2 (120)

U It o

where fu2 and f02 denote the numerical value in the respective
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factor column and n designates the number of elements. In the oblique

case we find

ll

w_'\

soak rF (13)

where is is the column value in the structure matrix and fF the

corresponding column value in the factor pattern. Although the sum of

SOB)‘ for the 4 factors renders the same numerical value as the

unrotated or orthogonally rotated case the individual items SOB} can be

positive or negative in the maximum likelihood method (Table 6). The

exhibited case in Table 6 is not an isolated case or error as the first

impression may be. As can be seen from Table 7A a negative term

appears also in a combination of elements Ln \/IS, WD, W5. In July

(Table 7B) this peculiarity did not show, and it almost rules out that it

is an error in the computer program. Thus the maximum likelihood

method, at least in our "canned computer program", appears to be very

sensitive to changes of the correlations in the input matrix.

7. FACTOR ANALYSIS. The detailed information on unrotated and

rotated factors is listed in Tables 4A—D for one version of a set of

elements. These detailed tabulations are somewhat difficult to read. In

order to enhance the significant features of the factors, two changes

were introduced for Tables ?A and B. First, all correlations r § -0.4

were omitted except the maximum correlation in one line which could be

smaller than 0.4. Secondly the sign was omitted because the sign plays

only a role in formulating eqn (l l) and performing calculatiohswith it.

The magnitude is sufficient for evaluation of the factors.

In Table ‘PA, B eight atmospheric elements are shown. For these

eight elements visibility was used in its linear scale and with a

transformed (logarithmic) scale. In the top part of Tables ?A, B the

wind appears as speed and direction while in the center and lower

section the zonal and meridional components have been utilized. These

modifications lead to three different versions of factor analysis for the

same elements. Only the solutions with orthogonal and oblique rotation

are included in Tables 7A, El.

Table 7A exhibits the condition for January. The significant

features do not vary essentially between the three versions. The only

exception is the contribution by ceiling of clouds which renders a

significant factor for the ULSQ method (top and center) but is not a

special factor at the bottom section where it is replaced by the

pressure. The differences between ll;l‘(]7lVlUUfil methods (PC, ULSQ, GLSQ,



and l'llf.Ll) were mostly described in the previous section 6 and will not be

repeated here.

Table ?El provides the factor analysis for July at Stuttgart for the

same seven—year period of record at Stuttgart. Again, it can be noticed

that the oblique rotation is not significantly different from the factors

provided by orthogonal rotation. Other data, not included here, follow the

same trend that orthogonal and oblique rotation do not differ significantly.

This fact may imply that orthogonal rotation may be sufficient for factor

analysis of atmospheric elements. Although the characteristic of factors

shows a similar pattern in July as given for January, some difference

exist. Besides the mentioned difference in the contribution by the ceiling

a major change has occurred in the association of elements. Flelative

humidity and visibility are now associated with temperature in three of

the four methods for all three versions. This first factor proves to be the

dominant influence but not by much.

The primary purpose of this study was not the illustration of the

changes throughout the year but the exhibition of the differences in the

utilization of the individual methods. Although variations exist, a close

perusal reveals that physical characteristics of the system do not differ

too much in the individual methods.

8. CCINCLUSIUN AND SUMMAFIV. The present study illustrates that the

estimation approach for the cornmunalities by different methods (eqn 5-?)

leads to different factors. They are more uniform, however, after rotation

of the factors. This confirms that the basic problem in factor analysis has

not been resolved as of today, namely the derivation of suitable

estimators for the commonalities (see Cattell, I965 or Guttman, I956).

As the study proves, however, the physical features after rotation of the

factors show major agreement, although differences in details and in the

sequence of importance of factors can be found.

This study revealed that for atmospheric elements the factors

derived by oblique rotation do not differ significantly from factors

procured by orthogonal rotation. This may imply that the elaborate

mathematical procedure for oblique rotation could be saved in favor of the

simpler and less costly orthogonal rotation.

The factors appearing in the January data are related to four simple

combinations, temperature, wind, moisture and pressure. This simple

division is not repeated in the July data. However, the resulting factors

from the analysis procedure do not give unreasonable combinations in

terms of physics. E.g. the combination of temperature with visibility and

relative humidity may have some explanation in terms of relationship

between reduced radiation during high relative humidity and low visibility

and vice verso. Also the combination of o wind component with
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temperature terms may indicate a reflection of the circulation of air

either in the macro— or meso—scale. Other detailed features in the

patterns of factors may be reserved for a further study.

Finally, no specific recommendation as to the "best suitable method"

for estimating the communalities can be made at the present time.
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TABLE 1. COMPARISON OF EIGENVALUES, FACTOR LOADS

@—\—¥(»)

6

-\_}_I[\)

6

_\_»..»|\>

6

(STUTTGART, JANUARY)

(1) Unrotated Factor Loads

PC

136

.695

.016

720

567

ULSQ

2.929

1.385

0.924

0.432

5.670

GLSQ

2.811

1.590

0.636

0.003

5.040

(2) Orthogonal Factor

150

611

200

.601

562

2.157

1.152

1.080

1.273

5.662

©—\-\f\)

5

(3) Oblique Structure

128

613

203

622

566

2.102

1.170

1.081

1.311

5.664

@—\—\l\)

5

Load

252

257

528

003

040

Matrix

192

262

576

011

041

MXLI

—\I\)

1

5

__\_\_\y\)

5

..\r\)_>

5

303

.462

328

789

882

196

076

272

337

881

189

238

460

994

881
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PC ULSQ GLSQ MXLI

CEIL 697 .234 .159 .200

VISIB 758 .504 .399 .428

u 729 .507 .424 .477

v 811 .714 1.000 .781

TEMP 947 1.002 1 000 .996

DEHP 988 1.007 1.000 1.000

REHU 749 .693 1 000 .999

PRES 887 1.002 .058 1.000

2x2 . 6.566 5.663 5.040 5.881

TABLE 3. EIGENVALUES AND COMMUNALITIES

STUTTGART, JANUARY, 1946-1956, Ln Vis, woo, HSP

(A) EIGENVALUES (ORTHO. FACT. LOAD)

. PC ULSQ GLSQ MXLI

A, 2.207 1.863 2.042 1.868

A2 2.053 1.532 1.310 1.525

A3 1 254 1.185 1.230 1.188

A. 1 004 1.062 1.018 1.063

xx 6 518 5.642 5.600 5.642

(B) COMMUNALITIES

PC ULSQ GLSQ MXLI

802 1 000 .145 1.000

740 .532 .441 .531

.530 .498 1 000 .501

712 .592 1.000 .591

941 .990 1.000 .990

996 1 000 .995 1.000

705 1.000 1 000 1 000

991 .031 .018 .031

3x2 6.517 5.643 5.600 5.644

TABLE 2. COMMUNALITIES

(STUTTGART, JANUARY)
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TABLE 4A. FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN

(STUTTGART, JANUARY)

PRINCIPAL COMPONENTS

CEIL

VIS

U

V

TEMP

DEHP

REHU

PRES

ZX2

CEIL

VIS

U

V

TEMP

DEHP

REHU

PRES

3

.44

.59

.76

.67

.87

.80

.10

.39

.14

.28

.37

.49

.22

.95

.98

.21

.13

UNROTATED PC ORTHOG

STRUCTURE MATRIX

js

Isa

09

.44

75

11

36

14

16

.83

19

If
48

05

10

03

27

26

00

80

02

PC ULSQ GLSQ MXLI

- 45

- 5s

- 04

as

is

47

1.70

24

26 -

38 -

47

28

23 -

O7 -

30

72 . 2

OBLIQUE ROTATION

i
58

21

13

17

18

17

.01

92

Structure Matrix

Factor Pattern =

39

38

81

87

42

34

19

11

= Covariance

. ROT.

ULSQ GLSQ

-.49 .54

- 73 -.18

- 05 -.05

29 .10

- 12 -.11

18 -.09

s2 .02

16 .92

i 61 1.20

FACTOR

- 50 .52

- 73 -.13

- 00 .01

23 .05

- 14 -.04

- 16 -.04

.s1 .01

19 .93

Regression Coefficients

PATTERN

MXLI

37

26

75

.84

26

20

16

O3

1.60

.36

-.16

-.73

.83

-.14

-.09

.13

O6
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TABLE 4B.

CEIL

VIS

U

V

TEMP

DEHP

REHU

PRES

2

Zx

CEIL

VIS

U

V

TEMP

DENP

REHU

PRES

FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN

2.

PC

35

51

66

61

92

85

07

.40

93

32

29

46

24

97

98

15

12

STUTTGART, JANUARY

Z

..-g
-'\>28”

~»<2. 21>

-.23

-.47

73

.40

.19

.51

.76

.26

1.38

-.58

-.11

.33

-.16

.22

.82

0.

87

92

18

16

16

15

14

STRUCTURE MATRIX

26 -.23

.02

11 2199

MXLI

-.12

-.11

.26

-.42

-.28

-.11

.25

.11

0.43

.46

.66

-.83

.46

.40

-.16

UNNEIGHTED LEAST SQUARE

TED

GLSQ

21

12

07

09

19

09

21

2

PC

29

25

39

15

95

95

15

07

16

23

22

28

01

94

92

12

01

Structure Matrix = Covariance

Factor Pattern = Regression Coefficients

ORTHOG.

ULSQ

-.25

-.54

-.05

.23

17

21

I81

01

1.15

-.27

-.53

.00

-.18

.20

.81

.06

.16.‘

ROT.

GLSQ MXLI

23 —.19

- 14 36

- 10 .58

10 - 79

-.07 .25

-.07 .22

.00 - 12

99 - 11

1 08

22

10

04

04

03

03

FACTOR PATTERN

00

99

1 27

18

26

56

79

11

14

03

04
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TABLE 4C. FACTOR LOADS, STRUCTURE MATRIX AND FACTOR PATTERN

STUTTGART, JANUARY

GENERAL LEAST SQUARES

UNROTATED ORTHO. R0T
PC ULSQ GLSQ MXLI PC ULSQ GLSQ MXLI

CEIL - 35 .14 1 10 03 -.33 15 .15 .02

v1s 39 .49 05 01 .24 .44 -.30 .01

u 50 .19 - 17 - 003 .42 05 -.49 -.003

v - 54 -.51 57 000 -.11 - 15 .90 .01

TEMP 95 .03 25 - 03 .94 21 -.25 -.02

DEHP 95 -.29 10 03 .97 - 14 ~.19 .04

REHU 09 -.90 - 42 - 01 .21 - 97 .15 .005

PRES - 20 -.12 05 - 01 -.13 - 05 .20 - 004

2

xx 2 01 . 1.59 0.54 0 003 2.25 1 25 1.53 .003

STRUCTURE MATRIX FACTOR PATTERN

CEIL - 34 .17 15 - 03 -.30 15 .14 .03

v1s 25 .45 -.44 - 19 .22 43 -.33 .007

u 45 -.08 - 55 - 10 .35 03 -.47 -.005

v - 15 -.22 99 31 .02 - 07 .90 .01

TEMP 95 .15 - 39 - 02 .94 20 -.17 -.03

DEHP 90 -.10 - 31 15 .94 - 13 -.15 .04

REHU 21 -.99 19 35 .15 - 95 .05 .004

PRES - 14 -.07 22 05 -.10 - 05 .19 -.003

Structure Matrix = Covariances

Factor Pattern = Regression Coefficient
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CEIL

VIS

U

V

TEMP

DEWP

REHU

PRES

2

Xx

CEIL

VIS

U

V

TEMP

DEWP

REHU

PRES

TABLE 4D. FACTOR LOADS, STRUCTURE MATRIX, FACTOR PATTERN

2

1

PC

42

31

46

32

73

76

16

76

30

25

24

18

21

15

11

08

0

UNROTATED ORTHO. ROT

ULSQ GLSQ MXLI PC ULSQ GLSQ MXLI

-.09 11 -.08 31 23 17 -

-.00 52 .24 - 24 - 43

.23 20 .42 - 41 - 04

-.05 - 35 -.74 14 - 17 -

.58 35 -.00 - 95 - 17

.65 00 .00 - 96 - - 18

.29 - 94 .00 - 16 - - 98 -

, .65 00 .00 08 - 07 -

1.33 1 46 .79 2 20 1 1 27 1

STRUCTURE MATRIX FACTOR PATTERN

-.36 -.11 -.10 22 -. 16 -

.23 56 .39 - 22 - 55

.49 43 .53 - 14 11

-.27 - 43 -.33 19 - - 20 -

.93 s1 .23 - os 42

1.00 56 .16 - 04 00

.31 - 61 -.18 10 - 01 -

-.11 - 06 -.02 99 - - 00

STUTTGART, JANUARY

MAXIMUM LIKELIHOOD

Structure Matrix = Covariances

Factor Pattern = Regression Coefficients
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TABLE 6. VARIANCE COMPONENTS FOR THE MAXIMUM LIKELIHOOD

l"1><><><><

><-bu.H\J—\

TABLE 5. INTERCORRELATION BETWEEN FACTORS

(OBLIQUE ROTATION)

A) Principal Components Analysis

1.0 -.02 .13 .28

-.02 1.0 .02 .15

.13 .02 1.0 . .15

.28 .15 .15 1.0.

1.0 -.05 .10 -.33

-.05 1.0 .04 -.21

.10 .04 1.0 -.15

..33 -.21 -.15 1.0

C) General Least Squares

1.0 -.07 -.20 .12
-.07 1.0 -.15 2 ‘ -.32

-.20 -.15 1.0 .27

.12 -.32 .27 1.0

o) Maximum Likelihood '

i.0 -.os -.04’ -.oi

-.os 1.0 .55 .16

-.04 .56 1.0 .2s

-.01 .15 .2s 1.0

B) Unweighted Least Squares

METHOD (JANUARY, STUTTGART, LN VIS, U, V)

UNROT

2.116

1.374

1.448

0.830

5.768

ORTH.

1.102

1.255

2.003

1.407

5.767

ROT OBLIQUE ROT.

1.469

3.934

12.392

-12.028

5.767
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Smoll Composite Designs

Norman R. Draper

Statistics Department

University of Wisconsin

Madison, WI 53706

Small second-order composite designs were suggested by Hartley (I959). Westlake (I965)

provided even smaller designs for k = 5, 7, and 9 factors. for which intricate construction

methods were needed. Here. simple designs formed using Plackett and Burman (1946) designs

are ofl'ered for k = 5, 7, and 9. Designs with one run fewer than Westlake‘s for k = S and 7 and

three fewer for k = 9 are feasible by deleting repeat points that occur in some of the designs.

KEY WORDS: Center points; Composite designs; Factorial designs; Plackett and Burman

designs; Response surfaces.

1. INTRODUCTION

Suppose we are going to examine k predictor vari

ables. coded to x,, xz, x,,, to determine their

effects on a response variable y subject to random

error. We might first wish to perform a first-order

design to fit the model y = [30 + fi,x, + + [3,,x,,

+ e. If no progress appeared possible (for example,

via steepest ascent), we might then wish to add a few

runs to enable the more comprehensive second-order

model,

.V=Bo+Zflixi+¥£:fli1xiX;+5» (1)

to be examined, where all summations are taken over

i.j = 1, 2, ..., k. Many possible second-order sequen

tial designs may be used to obtain the data for such a

fitting. The specific choice of design would depend on

the relative importance to the experimenter of various

design features (for example, see Box and Draper

I975, p. 347). One extremely useful type of sequential

second-order design is the composite design. As initial

ly suggested by Box and Wilson (1951) and followed

up by Box and Hunter (1957), it consists of a 2"

factorial or a 2"" fractional factorial portion, with

runs selected from the 2" runs (x,, xz , .. . , x,) = (1 1,

i f, ..., 1 l), of resolution V or higher (for example,

see Box and Hunter I961 or Box. Hunter, and Hunter

I978), plus a set of 2k axial points at distances oi from

the origin, plus no center points. ln general, the 2""

portion or cube may be repeated c times, and the axial

points or star may be repeated s times. The values of a,

no , c, and s are to be selected.

Suppose, of the various design criteria. we decide to

emphasize having only a small number of runs. Such a

course of action might be appropriate if runs were

expensive, difficult, or time-consuming, or if a compli

cated computer model were to be approximated lo

cally by a second-order surface. Of course there must

be at least §(k + l)(k + 2) points in the design. this

being the number of coefficients to estimate in ill.

Hartley (I959) pointed out that the cube portion of

the composite design need not be of resolution V. It

could, in fact, be of resolution as low as III, provided

that two-factor interactions were not aliased with

two-factor interactions. (Two-factor interactions

could be aliased with main effects, because the star

portion provides additional information on the main

effects.) This idea permitted much smaller cubes to be

used. Westlake (I965) took this idea further by finding

even smaller cubes for the k = 5, 7. and 9 cases. Table

I shows the numbers of points in the various designs

suggested, for 2 5 k 5 9.

Westlake (I965) provided (in an appendix) lIlI't‘L‘

examples of 22-run designs for k = 5, one example (lf :1

40-run design for k = 7, and one cxamplc of a (>2-run

design for k = 9. He noted that for k = 7 or 9, “sys

tematic generation of all possible designs appears

to be almost out of the question" (p. 332).

Table 1. Points Needed by Some Small

Composite Designs

Factors. k 2 3 4 5 6 7 8 9

Coefficients

§(k +1)(k +2) 6 10 15 21 28 36 45 55

Points in Box—Hunter

(1957) designs 8 14 24 26 44 78 80 146

Hartley's number

of points 6 10 16 26 28 46 48 82

Westlake's number

of points — — — 22 — 40 —— 62
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2. CONSTRUCTING SMALL

_ COMPOSITE DESIGNS

Can Westlake’s small numbers of runs for the k = 5,

7, and 9 cases be beaten? The surprising answer is yes.

Moreover, for k = 5 and 9 it is possible to equal the

number of runs in a simple manner, and for k = 7,

simple designs are available with only 42 runs, two

more than Westlake‘s 40. The overall advantage of

these suggested designs is that none of the ingenuity

shown by Westlake (I965) is needed, thanks to

Plackett and Burman (I946), and yet an apparently

large selection of possibilities is immediately available.

(As we shall see later, the selection is not as large as

first appears!)

The basic method can be simply stated: (a) Use, for

the cube portion of the design, k columns ofa Plackett

and Burman (I946) design. (b) Where repeat runs

exist, remove one of each duplicate pair to reduce the

number of runs. A V

Let (I) be written in the matrix form y = XII + s. If

(X'X) 7' exists, we have a valid second-order response

surface design that will estimate all of the parameters

in (I). To avoid the possibility of actual or near singu

larity merely due to choice of at, l initially followed

Westlake (I965) by selecting the star with unit axial

distance, namely with points (1 I, 0, . . . , 0), (0, i I, . . . ,

0), . . . , (0, 0, . . . , 1 I). In practice, this value ofa may be

varied, since its value does not affect the singularity or

nonsingularity of the design, apart from the following

feature: When oi afi km, the design has two spheres of

points with radiuses km and a, so center points are

not needed (see Box and Hunter I957, p. 217). If the

choice or = k‘/2 were made, however, center points

would be essential to avoid design singularity. In later
_ IHIL‘

computationskreported here, l used the values at = 2

(for k ='5), or = 8'” = 2.828427 (k = 7), and oi =

27" = 3.363586 (k = 9). These were suggested by a

referee, because they are the values that provide rotat

able designs ifa 2"" design is used with a star of axial

distance t1 for k = 5 and 7, and if a 2*’ 2 design is used

similarly for k = 9.

3. CASE k =5

There are 2| coefficients to estimate, and there are

I0 axial points. The difference of II is thus the mini

mum possible number of cube points required. An

obvious choice is to use five (of the ll) columns of a

I2-run Plackett and Burman (I946) design. There are

(',') that is, 462 possible choices, all of which produce

nonsingular designs. These require 22 runs, the same

number as Westlake‘s. A detailed examination of the

cube portions for the designs shows that there are two

basic types; standardized versions ofthese appear in

Table 2.

Table 2. Two Essentially Different Choices of

Five Columns From a 12- Run Plackett and

Burman Design: (a) With a Pair of Repeat

Runs; (b) With a Mirror- Image Pair of Runs

U
U’

++++++llllll +++|ll+++|ll

+||++|++|+||

l+l+l++l++ll ll+l++l+++ll lll+++++Il+l |++ll++l+|+l +lll++ll+++l

+l+lll++l++

+l+ll+-A

NOTE: All other choices ere equivalent to one of these subject to

¢h3"O0$ "1 $l9fls_throughout one orlmore columns, renaming of vari

ables, and reordering of runs.

4. CASE k =7

There are 36 coefficients to estimate, and there are

I4 axial points. Thus a minimum of 22 cube points is

needed. First an attempt was made to form designs

using seven (of the 23) columns of the 24-run Plackett

and Burman design. Tries with columns ( I-7), (I, 2, 4,

5, 8, 9, I0), (3-5, 7—I0), and (I, 3, 4, 7—l0) all produced

singular X'X matrices. There are, in all, 245,I57 possi

ble column choices, and it is conjectured that all will

fail.

A second attempt used seven (of the 27) columns of

the 28-run Plackett and Burman design. More than 20

tries all produced nonsingular designs with no fail

ures, and it is conjectured that all of the 888.030

choices of seven columns from 27 will do the same.

These designs have 42 runs, a modest two more than

Westlake's 40, but reduced designs with fewer runs are

also possible.

Features we have already noted in the k = 5 case

also arise here. Many of the possible column choices

provide identical or essentially identical sets of points;

some choices provide repeat runs and some provide

mirror-image runs. A new feature for k = 7 is that

some sets of columns provide both repeats and mirror

images, and some neither!

How many distinct designs are there? Based on the

number of different |X'X| matrices found in a trial

and-error selection of designs. there are at least I5.

TECHNOMETRICS, MAY 1985, VOL. 27, NO. 2
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5. CASE k =9

There are 55 coeflicients to estimate, and there are

I8 axial points. Thus a minimum of 37 cube points is

needed. One possibility is to use nine (of the 39) col

umns of the 40-run Plackett and Burman design. Tries

with columns (I-9) and (2-9, 39) failed, producing a

singular X'X matrix. It is conjectured that all

2| l,9l5,3I2 possible choices will lail similarly. Parallel

to this, I note Westlake's (I965) remark that, for a 3/I6

fraction of a 2", “while one apparently valid defining

relation exists, it is impossible to pick three I / I6 repli

cates so as to give a non-singular X'X matrix" (p. 329).

A second attempt used nine (of the 43) columns of

the 44-run Plackett and Burman design. More than 20

tries all produced nonsingular 62-run designs, the

same number of runs -as Westlake's. There were no

failures, and it is conjectured that all 563,921,995

column choices will produce nonsingular designs.

Features similar to the k = 7 case again arise. De

signs certainly exist with up to three pairs of repeats

and up to two pairs of mirror-image runs.
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ABSTRACT

In the army sensitivity testing environment it is often desired to estimate V 0, the

velocity at which 1/2 of a given projectile population would penetrate a given piste of

armor. Excessive cost of experimental units usually necessitates the use of very small

samples - often less than 15. Several studies have been done to examine the performance

of some of the available design and estimation techniques under restrictive sample sizes.

Discussed will be some extensions of those studies with emphasis on additional practical

environment considerations such as nonnormal response functions, stimulus noise, esti

mate existence, and initial design point selection.
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INTRODUCTION

In the army quantal response testing environment, excessive cost of experimental

units usually necessitates the use of small samples. Several small sample studies have

been done to examine the performance of some of the available design and estimation

techniques. This paper discusses extensions of those studies including additional practi

cal environment considerations such as estimate existence, nonnormal response func
tions, and stimulus noise. I

The quantal response testing environment is one in which there are only two possi

ble outcomes for each experimental unit. For example, if a projectile were fired against

a plate of armor one could observe a penetration (response) or a nonpenetration. Con

tinuing with this example, suppose an experimenter wishes to assess the performance of

a particular projectile. One way to characterize performance is to consider the probabil

ity of a projectile perforating the armor at various velocities. Thus, assessing the perfor

mance of a projectile in this manner amounts to establishing some appropriate probabil

ity distribution.

Assume that associated with every projectile is a critical velocity above which the

projectile would penetrate the armor and below which it would fail to penetrate. Then

critical velocity is a continuous random variable. What is left for the experimenter is to

characterize the probability measure associated with the random variable, critical velo

city. Note that critical velocity is not directly observable since in no way can the experi

menter sample directly from a population of critical velocities. Rather, the experimenter

can only collect (response, nonresponse) data. If a response is observed at a particular

velocity then all that can be said is that that velocity was in excess of the critical velo

city for that particular projectile. In this manner data can be collected pertinent to the

response function, or the probability distribution of critical velocity. Historically in test

ing these projectiles, the median of this distribution, V50, is of particular interest pri

marily because it takes fewer rounds to estimate than other quantiles. We will continue

with that convention here.

Our purpose in examining this problem was twofold. The first was to examine the

effect of day to day problems in sensitivity testing under a representative ‘in practice’

scenario. The second was to compare several design and estimation procedures in this ’in

practice’ setting. Our attention here will be focused on our first purpose.

DESIGN CONSIDERATIONS

A detailed Monte-Carlo study was performed which incorporated some problems

encountered in practice. Under each set of test conditions 700 iterations were run giving

rise to estimates of V59. The response for this study was taken to be the sample popula

tion of the estimate, V50, expressed in terms of the empirical density, its mean, and in

particular the \/MSE.
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The test design appears in Figure 1. Five designs, each in conjunction with three

estimation procedures, were used in this study. The Delayed Robbins-Monro (DRM) and

the Adaptive Robbins-Monro (ARM) are variations of the well known Stochastic

Approximation Method of Robbins and Monro. The Estimated Quantal Response Curve

(EQRC), used in conjunction with DRM and ARM in this study, is a recent technique

introduced by Wu (1985). The Langlie procedure is one currently used in much of the

army’s quantal response testing. These five constitute some reasonable designs for use in

our testing environment. References are sited at the conclusion of this paper for those

interested in the details of these procedures.

The first estimation procedure is a maximum likelihood estimation method with an

assumed normal response function and is denoted NMLE. The second (AVR) is an arith

metic average of the velocities giving rise to the k lowest responses and the k highest

nonresponses where k is usually taken to be 2 or 3. This second estimate is frequently

used by Aberdeen Proving Ground, particularly in the absence of a unique maximum

likelihood estimate. The last, Next Stress, is simply the next design point of the sequen

tial design. For DRM, ARM, and EQRC, Next Stress is the intended estimate.

The above designs and estimation techniques were compared under the following

test conditions. For some more expensive rounds, experimenters fire 15 rounds in hopes

of getting 12 or more. Some are disqualified due to erratic flight of the round. Recently

the encouraged policy has been to use as few as 9. Thus, representative sample sizes of

9, 12, and 15 were considered.

Another factor to be accounted for is noise associated with the firing velocity of

each round. It is not possible for experimenters to control precisely the velocity at

which a round is fired. In fact, for some extensively studied data sets the ratio of the

estimated noise standard deviation to the estimated population standard deviation

(assuming normal response function) was .150 or more. It was thought that this amount

of variation would limit the ability of a sequential design to converge on V50. Three lev

els of noise were considered: the absence of noise, normal (0, [.150]2), and exponential

with median, 0. and standard deviation, .150. In each of the above and in the following,

cr is the standard deviation of the response function.

Input from the experlmenter is used for establishing the initial design point, (start

ing value) and the range, (gate width) over which the median V50 can be found. The

latter is used in establishing the magnitude of step sizes in the sequential designs and

actually bounds acceptable design points in the case of Langlie’s design. Unavoidably,

there is often a great disparity between initial estimates and actual values. Conse

quently, it is reasonable to investigate how well designs and associated estimates

rebound from poor initial information. Four starting values were combined with three

gate widths in this study.

Finally, it was desired to examine the design and estimator performance under

different response functions. Of the five, listed only the first four will be considered here.

Each have median, 0, and standard deviation, 1, with the obvious exception being the

Cauchy whose quartiles were made equivalent to those of the normal.
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ANALYSIS

One observation we made was that as the sample size increased, the precision of

the estimate improved regardless of the design and estimator used. An example of this

is given in Figure 2. We note here that \/MSE is the root mean square error. In addi

tion, a case set is a pairing of a starting value and a gate width. The reader need only

know that cases 1-9 are the same in each situation and represent a good mixture of pos

sibilities.

With regard to noise, our study showed AVR and NMLE estimations to be insensi

tive to normal noise and only mildly sensitive to asymmetric noise. In Figure 3 we see a

comparison of V5o"s , the average of 700 simulated V5o’s for each case set. In the case

of asymmetric noise, the average is biased upward slightly toward the longer tail of the

response function. However, in Figure 4 we see little difference among the three levels

of noise for those same test conditions. We found Next Stress to be sensitive to noise

and particularly to asymmetric noise. In Figure 5 the effect of noise on the precision of

the Next Stress estimator is evident. In Figure 6 with the actual median indicated by

the arrow, note the apparent shift of the estimate population toward higher velocities,

the long tail of the asymmetric noise density.

The designs and estimators considered here are influenced by the shape of the

underlying response density. In Figure 7 V5o' comparisons are made with some zero and

normal noise cases. Note that the average of the estimator is approximately the true

value of the parameter except in the case of an exponential density and for two cases of

the Cauchy density. In Figure 8 these same case sets are compared by \/MSE. We see

that the uniform density results are somewhat higher than the normal and that the

Cauchy and exponential densities each have some extremely low values. This is particu

larly interesting in the case of the exponential since its estimate population mean was

biased upwards. The reason for such behavior rests in the shape of the densities.

Consider for a moment a density with point mass unity representing the critical

velocity probability mass. Then if a sequential design were used, the step for the next

design point would always be taken in the direction of the point of jump. Thus the

design would never make a wrong decision, the decision moving the data collection away

from the median. Hence, it would converge in an ideal sense to the median. Of course"

in order to make a good estimate of the median, it is desirable to sample close to it.

Thus, a wrong decision is extremely detrimental over the first few rounds of small sam

ple experimentation as it may prematurely cause sequential designs to decrease step

sizes, thus making it more difficult to climb back to the region about the median. For

the densities considered here there is a non-zero probability associated with making a

wrong decision. '

Examine Figure 9. Here all four densities are considered. Suppose for a normal

density the sequential design is currently at -2, then we have only a probability of .0228

of making a wrong decision. That is, there is only probability .0228 associated with

critical velocities below -2 which would cause a response to be recorded and, conse

quently, a step down on the stress axis to the next design point. With this in mind, one

69



\/MSE

O

O

<§>

Sample Size (SS)

_ $$(9) SS(12) ss(1s)

_ E norrnolresponse

0.6- . : E zero noise

_ ° S was

. . °§ DRM

“Sr ' - - - E

- : ~ E

E ' ' . =,
: °

:
0-4’-" E . I .5 . . I . . .

0 I

- E 5 ‘

0.3

I ' meon—.53 me0n=.43 meon==.39

0.2 ‘ ‘ -— e i

1lillééiléliiiééiééléilééiéé'

Equivalent Case Sets

Figure 2. Effect of sample size on precision.

Noise

T zero § normal asymmetric

0.2

E E ~

0.1 f
I i. Q O

__ O E a . I I .

. 2 _ : .

0.0- . . -§ ° _ . -§
, ' ' ' : ° Q t normal response

' ' E‘ ° scrnple size I5

-01- 5 E A‘/R

' i 5 EORC—DRM

- meon = —.O2 meon = —.O2 meon = .06

-02“ léllléiééliiléliéélillééiél‘

Equivalent. Case Sets

Figure 3. Effect of noise on sample median.

70



\/MSE

VMSE

0.8 -

-0

0.5

0.4» -

Q»

0.3 -r

1

(L2-|

Noise

zero 5 normal 5 asymmetric

E E normol response

Zgévple size l5

g 5 EQRC—DRM

. O . i ‘ 5 . i. ‘ ' I

2 ' s -

rneon = .42 meon = .42 mem = .42

Fi

iliiétiélH$téé$ttl£$ltéi%i$$'

Equivalent Case Sets

gure 4. Effect of noise on precision of AVR estimator.

Noise

- zero 3 normal E asymmetric

- § 2 ~
oe- i 5 '

. “ E. ' ‘E . . I

‘ 5 . I '!"°"

0.5- ' i . . . I~ - ‘ '2O. ' normolresponse

0.4- 5 § scrnpIes:zei2

o 5 5 NextStress

* 5 § ARM

0-3-I E' _meon=.45 meon=.53 mecn=.57

0-2“lI£tllitlI'ltillt'lll‘IIiIlItl.tl'
I s4ss1as12s4ss1as12s4ss1as

Equivalent Case Sets '

Figure 5. Effect of noise on Next Stress estimator.

71



n
.
e
n
~

e
.
e
e
~

n
.
0
Q
¢

0
.
0
0
~

0
0
0
0
a

O
Q
O
O
Q

O
o
d
é
n

»
.
s

p
.
0
0

>
0
0
0

h
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

»
.
~
O

¢
.
¢
O

>
.
~
¢

0
.
4
0

0
.
~
c

p
.
0
0

J
.
~
Q

0
.
0
»

~
.
~
¢

»
.
.
¢

0
.
0
a

_
.
~
¢

Q
a
n
n

.
.
a
~

.
.
-
.

»
.
0
@

>
.

4
.
0

0
.
“

O
.
~

A
.
“

~
.

‘
Q

Q
.

n
.

n
o

n
.

a
.

°
.

°
.

Q
0

‘
Q

Q
0

.

°
.
o

o
‘

‘
Q

.
.

.
.

.
2
3
0

u
u
a
e
z
a
u
-
H
.

>
u
=
~
:
¢
.
¢
e

.
0

°
0

,
0

°
.

°
0

‘
O

"
0

Q
0

°
I

Q
0

X
0

Q
0

.
0

.
.
.

O
o

_
.
~

0
.
~

0
.
»

O
.
~

.
.
.

~
.
a

0
.
»

0
.
0

~
.
¢

¢
.
0

“
.
0

0
.
0

0
.
0

_
.
x

a
.
.

Q
.
»

_
.
_

Q
.
»

.
.
¢

.
0

n
.

X
0

#
0

°
0

Q
0

.
0

n
.

‘
O

'
0

.
0

.
0

.
0

°
I

°
0

‘
O

'
0

°
0

o
n
e

e
a
~

e
a
»

e
a
»

e
a
»

c
a
n

0
0
»

0
0
0

-
.
3

-
s
o

-
.
a

p
o
o

A
v
a

m
o
o

s
e
a

.
~
a

.
x
.

A
n
a

“
.
0

A
s
“

_
~
»

.
~
n

_
~
.

»
.
.

v
a
n

n
.
~

_
»
~

A
-
_

~
n
_

-
~

.A
s

A
.

o
nQGIOIOIO|BGIfl.u¢nn.nnonI\0

O-rQ.nr\O1DnoO<bOc$¢IQ

-0a
~

¢
~

e
~

-~
¢

a
n

a
n

-
u

o
n

.
~

5
.

-a
.

.
~

-.
~

.
~

_
_QGIOGIOIOlDCl§alDGDQ"#"*

.
m
8
.
:
m
3
8
2

s
o

a
m
m
o
:
£
.
s
a
E
E
.
»
w
e

.
_
o
3
2
5

6
3
=
w
E

¢
»
-

n
o

s
o

n
d

a
s

a
n

o
~

n
o

a
s

A
.

s
.

.
q
.

a
s

A
.

o
n

»
~

e
~

A
.

Q
“

a
.

.
8
‘
-
-
.
‘
-
6
-
0
8
6
:
0
8
-
-
-

0
-
'
-
-
.
-
"
‘
.
6
"
-

O
'
8
‘
-

O
|
-
"

O
'
:
-
.
-
i
.
‘
-
5
0

l
l
l
I
|
l
.
'
.
'
l
I
'
O
a
l
l
l
l
u
l
u
0
'
.
|
l
§
|
-
"
O
-
-
'
.
|
.
l
|
'
I
I
.
'
.
|
‘
l
I
l
u
.

\

0

o...

.
..

u
s
.

O.0

x
.0

.
n
a
v
e
.

x
u
u
u
u
w
u
x
x
.

u
u
u
x
x
u
u
u
u
u
u
.

.
u
x
u
v
x
v
x
x
u
x
x
n
v
w
x
x
.

.
w
u
u
u
v
v
u
x
x
x
x
u
w
x
u
x
u
x
x
m
.

n
x
x
x
u
u
m
u
x
w
u
x
v
w
w
u
x
x
v
u
x
q
x
u
.

w
e
a
n
»
-
w
v
u
x
a
w
e
w
n
w
s
e
n
x
.

n
x
w
x
u
n
v
w
v
n
v
u
x
x
v
x
n
n
n
w
u
x
.

x
x
u
u
x
u
x
x
x
n
x
x
u
x
x
w
u
x
x
x
x
w
x
w
u
n
x
u
w
x
w
u
u
u
x
x
x
x
u
u
m
x
x
x
x
x
u
.

x
x
u
x
x
x
x
x
u
u
n
x
a
x
u
w
x
x
x
x
x
u
x
x
x
x
u
n
x
v
u
n
v
v
x
x
u
n
v
x
v
x
x
u
x
w
u
x
x
x
x
x
x
.

n
a
x
u
x
v
u
u
x
x
v
u
x
x
u
x
x
u
x
u
x
x
x
n
x
v
x
n
n
u
n
x
x
u
"
n
w
x
w
x
x
u
x
n
u
u
x
u
n
u
u
u
v
x
v
x
o

x
x
x
u
v
v
u
n
e
w
x
x
x
u
x
v
v
u
n
u
x
x
v
a
u
x
x
x
x
u
x
x
x
x
n
x
x
x
x
x
u
w
x
v
x
n
u
x
n
w
x
x
x
x
x
u
x
x
x
x
u
o

x
u
n
x
u
x
x
n
n
n
u
x
x
x
u
n
x
u
x
x
w
n
u
u
n
x
u
n
x
x
w
x
x
x
x
x
n
v
v
x
x
n
x
w
x
w
x
x
u
u
n
u
x
u
x
x
x
x
x
.

n
u
u
x
x
u
u
u
u
n
x
x
n
x
x
u
x
x
x
n
u
x
u
x
x
u
x
n
x
u
x
u
x
u
u
x
n
x
m
x
x
x
u
w
u
u
u
x
x
n
x
x
x
x
x
x
x
x
v
x
x
n
x
x
.

x
x
x
x
x
x
x
x
n
x
x
n
x
u
x
x
x
x
x
x
x
x
x
x
v
u
v
x
x
x
u
n
n
x
u
x
x
x
u
x
n
x
x
n
x
a
.

x
v
x
x
x
.
x
a
v
u
x
x
v
x
u
v
x
x
x
x
x
w
x
x
x
x
x
x
.

M
u
x
u
x
n
x
x
x
w
x
n
u
u
x
u
x
w
u
u
v
u
x
x
u
u
u
u
x
x
x
u
u
x
u
x
x
n
u
x
.

u
u
x
x
n
n
w
n
n
u
u
x
u
u
x
x
n
x
x
x
u
x
x
u
u
x
u
x
.

x
x
n
x
x
x
x
u
w
v
m
x
u
x
x
x
x
x
x
x
n
x
.

x
x
x
x
u
x
u
x
x
x
x
u
x
v
x
x
x
u
u
x
u
n
x
x
x
x
.

.
~
»
x
~
»
-
»
»
»
»
-
-
~
x
»
-
~
.

n
u
u
u
x
n
x
x
u
u
u
.

w
e
e
»
.

w
e
.

n
.

M
.

.
00.

n
o

.
0o

0000.00.

U
"
.
-
'
.
-
Q
8
‘
:

O
'
:
-
Q

I
l
'
-
'
O
‘
l
l
I
.
‘

'
i
’
i
i
i
i
.
'
H
i
i
d
‘
l
\
1
n

i
.
1
1
O

.
~
=
_

.
=
=
u

.
_
=
_

e
a
.

n
o

s
o

a
n

o
n

.
.
_

a
s

n
o

.
0
4

a
n

o
n

a
s

a
s

a
n

o
n

n
u

o
~

“
A

e
.

n

.

a
=
e
_
»
<
>
¢
~
“
a
e

n
“
_
=
»
“
»
¢
~
u
¢

S
e
-
=
>
"

=
o
~
u

0
0
¢
.

~
e
_
.

o
e
~

x

.
>
m
a
.
»
_

.
.
=
<
m
=

»
=
s
e
u

a
o
.
=
>
»

h
n
4
J
o

s
m
:
s
a
.
~
.

a
e
=
e
.
.
~
.

2
8
2

.
~

.

=
e
s
e
~
.
~
.

>
.
=
e
_
.
~
.

.
.
.
.
.
.
_
.
s
.
.
.
.
~
.

0
5
?
w
¢
.
¢
o

5
2
3
»
.

Q
0

0
.
1
1
»

.
~
.

s
e
e
s
‘
.
.
.

.
9
~
.
s
e
.
.
.

e
a
s
e
d
.
.
.

a
e
=
e
A
.
.
.

Y
.
c
-
.
_
.

e
a
s
e
"
.
.
.

3
=
a
+
o
.
.
.

.
.
:
.
.
.
.
.
.

a
>
e
a
a
~
.
.

.
.
.
.
.
:
.
+
.
.
.
_
.
.
.

e
.
.
.
.
.
.
.
.
.
.
3

.

e
a
e
e
e
a
.

s
e
n
s
e
s
.

e
a
v
e
s
»

a
¢
s
s
a
~
.
.

a
s
s
e
s
.
.
.

“
a
l
u
m
n
i
.

a
D
:
a
n
.
J
e

.
.
.
.
:
.
.
.
.
~
.
1
.

0
0
0
6
0
.
0
0

o
a
s
e
s
.
-
.

s
a
s
s
“
.
-
.

o
e
s
;
a
.
1
.

0
9
.
2
.

.
|
.
.

a
s
s
e
s
.
-
.

s
e
e
s
»
.
-
.

a
e
e
a
.
_
i
.

a
e
s
_
.
_
-
.

e
e
a
~
.
_
1
.

0
2
3
J
0
8

a
e
a
.
.
_
i
.

8
.
3
J
l
o

a
a
a
a
.
_
i
.

a
5
a
~
.
~
1
.

a
=
n
»
.
_
i
.

a
e
n
.
.
~
-
.

a
s
e
a
.
~
1
.

a
a
e
_
.
~
i
.

a
a
e
~
.
~
-
.

o
o
o
n
.
~
1
.

a
a
¢
.
.
~
1
.

a
e
a
“
.
~
1
.

m
:
<
z

a
<
>
¢
o
»
=
.

72



Response Curve

s

1
....a

w
k

0
.
N

e

..

H
0

W
E

1

E
n

m
..:.--

--
.aW..---.

D
.

Q

0

7
-

I
.

O

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

V
.
n

.
.

O

a
O

.

fl
.
C

.
.

Q

O

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

n

O

m
..

r
m

.
“
\
U
\
l
|
|
l
\
\
\
l
\
1
|
\
l
l
l
'

.
.
.
t
.
.
.
.
l
.
?
.
u
.
.

-
-
1
.
.

1
.
.
.

t
m

u
=

.

.

I
I

I
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..

n
._

H

r

I

O
0

n
2

QO

_
a

.

_
¢

1
.
.

0
1

m
o.

a.
a_..

S1
.
,

l234l2J411341234I2J41134l1J4l234

Equivalent Case Sets

median estimateResponse curve influence ongure 7

-azi

Fl

Response Curve

..|._.
a

H
»
.

%
e

Q

D
P
E

.
m
.

Q

6
m

m
Q

m
a

L.
.

-
-

D
.

.
:
I

.
.
.
.
1

Q

0

Q

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
¢
.
.
:
.

.
.
:
.
.
.
.
.
.
.
:
.

I

Y
n

.

.

a
.1..-..--.-.-..-.--..-........r.-.»..

U
0

m
1

.

I

I

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
:
~
:
.
:
.
:
.
:
.
:
.
:
.
:
.
:
.
:

m
n

.
.

M
.

.

n
u

”
»
+
l
§
1
.
u
t
|
t
-
w
l
l
i
»
»
t
»
»
.

l
l
“
.
!

n
.

.

u
..

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
»
~
.
.
.
.
.
.
.
.
.
.
.
.
-
.

.
.
.
.
.
.
.
.
-
.
.

O

O

1

a
I

m
.
.
.
.
.
i
|
i
.
.
L
.
i
¥
.
l
l
.
l

r
O

O
0

n
a

O

.
.

_
.

.
_

.
.
.
_

.
.

5
A

3
2

0
0

0
D

15

m
m
z
v

I254I134I2-1423412341234123412341

Equivalent (‘ase Sets

estimator
Effect of response curve on NMLEFigure 8.

73



0

m
_

.

1
m

I
2

a
n

m
fi
n

-

V
e
n
m
l
.

m
.

5

..ma......m
1

K
o
m
m
_
¢
.
.
u

.
..“..

n
&
.
u
n
_

m
x
u

_
a

0
S

e
"
n
.
C

I
L

an»

M
_

d
.

n

m
5

i
t

l
O
.
1
L

C

e
m

.
v

M
.

o
l
m

m

.
.
.
.
-
.

i
o

Q

o

.....
..

w
.
.
.
.
.
\

.
e

......
..

r
a

.
5

I
0

.
.
.
.
:
-
.
.
.
.
.
:
.
r

....
.I

..
..

.
.
.
......

i
_
M

9
.

.
_

c
m

l
l

%
.

_
H

5

I
L

_

-
0
.2

_
.

.
_

_
_

_
1
.

s
5
.

A

.
s

2
.

4
o.

0
O

0
O

O
0

O

.
s
:
B
e
%
.
£



can explain the behavior of the designs for each response function.

For the Cauchy density, once the design was sampling close to the median, the con

centration of robability in that area was holding the design there. This gave rise to

the low \/MSE in Figure 8. On the other hand, for case 2 in Figure 7 where sampling

began in the tail, the heavy tail of the Cauchy gave a relatively high probability of

going further out in the tail. When the design moved back toward the median, estima

tion was weighted by the low probability response, resulting in V50' values well below

those of the other densities.

In the case of the exponential, most of the probability mass is contained in the

interval (-.69, .69) - relatively close to the median. Again, once the design reached this

area, the concentration of probability was likely to hold it there, giving rise to Figure 8

results. However,_ when the design did wander, it could only wander in one direction,

thus causing the V5o"s to be higher than for the symmetric distributions. The uniform

and normal explanations follow along these same lines.

In support of this explanation we offer as examples Figures 10-13. In each figure

the 700 V_=,0’s are given in histogram form. Note that -1.1 and 1.3 bound the normal

I/5o’s where as -2.5 and 1.8 bound the Cauchy V5o’s. In addition, the sample estimate

population appears slightly more peaked for the Cauchy density than for the normal.

Note also the shape of the sample estimate population corresponding to the exponential.

It is skewed to the right but at the same time very peaked about the median.

One important idea resulting from these observations rests with the heavy tails of

the Cauchy. It is doubtful that with historical small sample data that a normal density

could be discerned from a Cauchy with matching quartiles. Yet these simulation results

show that problems in estimation can result when heavy tails are present. Therefore,

the experimenter needs to be aware of this problem when picking starting values and

step sizes.

Thus far only moderate attention has been given to the estimation procedures. In

general, we found the NMLE and AVR methods to track very closely over a wide range

of starting values and gate widths. Figure 14 shows an example of this in terms of

\/MSE. However, Next Stress, with its sensitivity to noise environments, does not track

well with the other two for normal and asymmetric noise; an example is given in Figure

15. It should be noted that Next Stress is the intended estimator for all designs except

the Langlie which uses NMLE. Over the wide range of cases NMLE seems to be the

best performer.

The comparison of designs was too involved to address in the time allotted for this

talk. We will say only that under NMLE all the designs performed similarly. This is not

to say that some are not better than others, but only that in this small sample environ

ment not enough rounds are available to show superiority where it is present.
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SUMMARY

In summary, several important observations follow. First, the starting value and

gate width have a significant effect on \/MSE. Second, the response function does

influence the design point selection and estimation. In particular, heavy tails could

adversely affect the estimate of V50. Third, sample size changes from 9 to 15 result in

an increase in precision of about 25%. Fourth, in noise environments, NMLE is the pre

ferred method of estimation regardless of design. In the absence of noise, there is no

clear difference among the three ‘estimators. Last, there is no clear advantage in using

one design over another in terms of the quality of the estimate. However, certain imple

mentation considerations will help the experimenter choose one to suit his needs.
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HUMAN FACTORS AFFECTING SUBJECTIVE JUDGHENTS

Mary A. Meyer

Los Alamos National Laboratory

ABSTRACT

Human factors include the ways in which people acquire,

process, and convey information. They affect. the quality of

people's judgements and thus become a concern when these

judgments are being elicited for use as data. This paper

focuses on five human factors: question phrasing, conser

vatism, inconsistency, overoptimism, and social pressures.

Techniques for detecting and reducing the occurrence of

these human factors are given for two methods of eliciting

subjective data, the mail survey and the interactive group

method. Techniques for structuring the elicitation methods

are proposed as the main means for countering the occurrence

of human factors.

THE HUMAN FACTORS

Human factors can affect the quality of the subjective data in many ways.

Human factors include the ways in which people acquire, remember, process, and

present information that inhibit their reaching mathematically optimal

decisions. The human acquisition of data is biased because humans selectively

learn that which supports, rather than opposes, their views (Mahoney 1976,

Hogarth 1980). For example, people are unconsciously drawn to acquire informa

tion which supports, rather than refutes, their preconceptions (Mahoney 1976).

Then too, people can acquire faulty information because of the role that feed

back plays in the learning process. when people receive no feedback, delayed,

or only partial feedback, as often occurs, they may draw incorrect conclusions

(Hogarth 1980). For example, scientists who often receive only partial confir

mation of their hypotheses are likely to consider this sufficient validation or

to believe those data points which support their theory and mentally dismiss the

others (Mahoney 1976). The information acquired is stored and may be later ac

cessed by the person during an elicitation session.

How easily such information can be accessed from memory also affects

peoples‘ judgments during an elicitation session. Concrete, catastropic. or

widely publicized information is more easily accessible and thus more greatly

influences a person's judgment than less memorable information (Soetzler and

Stael von Holstein 1975, Hogarth 1980). For example, it is thought that the

League of women Voters ranked the nuclear industry as posing the greatest oc

cupational hazards to its employees of any industry because of the

disproportionate amount of media coverage this industry had received.
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The processing of data in the human mind, such as during an elicitation

session, is also subject to hunmn factors. Generally, people have difficulty

processing more than seven pieces of information at a time (Miller 1955).

Typically, they will select a heuristic for solving a problem hia decision

situation which then influences the decision they reach. For example, managers

may focus on the major aspects of the problem and ignore the uncertainties and

complex interactions of factors to reach a decision (Bender et al., 1981). This

simplifying heuristic may point to a different decision than one which had in

cluded all the complexities of the problem. In applying these heuristics,

people are likely to be inconsistent, thus further complicating the gathering of

quality subjective data. For example, the manager may have been forecasting the

completion date of a large project by adding together the blocks of time that

each major phase was likely to require. He may have forgotten to add in a phase

being done by a subcontractor, thus failing to consistently followlms own

heuristic.

Additional complications may enter as a result of the mode in whid1par

ticipants are requested to give the judgments. For example, respondents may

give different judgments on a survey than they would in an interview situation

(Payne 1951). They might give varying judgments to different phrasings of the

same question (Payne 1951, Sudman and Bradburn 1982, Gorden 1980). lhen too,

they might give different judgments if they are giving it in "willingness to

gamble" or "probability" schemes (Ninkler 1967, Hogarth 1980).

Due to the constraints of time, five human factors were selected for dis

cussion. These five factors are widely prevalent and often interrelated as will

be described below. The five human factors include the effects of:

1) Presentation of the decision task and phrasing of the questions or response

options; _

2) Conservatism;

3) Inconsistency;

4) Overoptimism and;

5) Social pressure.

Evidence of the effect of the presentation of the decision task on the in

dividual's response has been documented by Tversky and Kahnemen (1981). They

asked students whicflt alternatives they preferred in gain and loss situations.

For example, students chose between: 1) a sure gain of S250; and 2) a 25% chance

of gaining S1000 or a 75% chance of gaining nothing. In the set of loss altar

natives, they chose between; 1) a sure loss of S750; and 2) a 75% chance to lose

S1000 or a 25% chance to lose nothing. The majority preferred the sure gain in

the first pair of options and the risky loss in the second pair. Thus, the

relative attractiveness of options varies when the same decision is framedin

different ways. Furthermore, individuals are generally unaware of the effect of

qgsstion framing and, if informed of it, uncertain of how to compensate for its

E IBCEQ

In addition, there is evidence that the response mode, such as probabil

ities or equivalent gambles, influence peoples‘ judgment (winkler 1967, Hogarth

1980). For example, winkler (1967) recommended that a "willingness tormy“

response mode be used because people gave more conservative, hence more realis

tic, estimates usirig ttris response mode than using probabilities. Similarly,

the scales used for the responses, such as 1 to 10 or -5 to +5, can influence

peoples‘ judgments. 87



The effect of question phrasing has been shown most dramatically by Payne

(1951) through his use of the split ballot technique in survey questions. The

split ballot technique entails giving half of a survey sample one wording of a

question or response option and the other, another. For example, one wording of

a question might be. “Do you believe that X event will occur by Y time?" The

other wording might be, “Do you believe that X event will occur by Y time, or

not?" This second option is more balanced because it mentions both

possibilities. For this reason it would be likely to receive a higher percent

age of "no" responses. Often the difference measured by the split ballot

technique is 4-15% even when the rewarding has been very slight. ‘

Conservatism, or anchoring bias, involves the individual's tendency to

cling to their first judgment instead of adjusting it to reflect nmv

information. Sometimes this tendency is explained in terms of Bayes’ Theorum as

the failure to adjust a judgment in light of new information as much as it would

be according to Bayes‘ mathematical formula. Spetzler and Stael von Holstein

(1972) and Armstrong (1981) describe how people tend to anchon to their initial

response, using it as the basis for later responses. For example, the subject

may use the last year's sales as a starting point in predicting this year's

sales and fail to consider other points on this distribution independently from

this starting point. In addition, Ascher (1978) finds this problem to exist in

forecasting where panel members tend to anchor to past or present trends in

their projection of future trends. Ascher determined that one of the major

sources of inaccuracy in forcasting future possibilities, such as markets for

utilities, was the extrapolation from old patterns that no longer represented

the emerging or future patterns.

Inconsistency occurs when individuals give contradictory judgments. For

example, they might give item A a higher rating than B with respect to goal X, B

a higher rating than C, and C a higher rating than A. Inconsistency is a common

problem because, as mentioned earlier, individuals are generally unable to apply

a consistent strategy, or heuristic, to a series of cases (Hogarth 1980).

Inconsistency in an individual's judgment can also stem from his remembering or

forgetting information during the process of the elicitation session. For ex

ample, the individual may remember some of the less spectacular pieces of

information and consider these in making judgments later in the session. Or,

the individual may forget that particular ratings are only to be given in ex

treme cases and begin to give them more freely towards the end of a session than

at the beginning.

Overoptimism is sometimes referred to as the overestimation of probabil

ities, overconfidence bias, or the underestimation of uncertainty. Overoptimism

is the giving of more optimistic judgments, such as in the form of probabil

ities, than the person's data warrants. People tend to be overly optimistic of

the probability of some event occuring and often underestimate the uncertainty,

or the time and resources needed to make this event a reality. Thus, they give

too narrow of error bars on these judgments (Capen 1975). Overoptimism can

stem from a variety of causes: 1) thinking at too general a level; 2) wishful

thinking; and 3) illusion of control. Armstrong (1975) and Hayes-Roth (1980)

have shown that people give higher, less realistic, probabilities when they con

sider decision tasks in general than when they disaggregate them into their

component parts. For example, Armstrong (I975) asked straight Almanac questions

of one half of his sample. Of the other half, he asked the same Almanac ques

tions but broken into logical parts. For instance, the question "How many
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families were living in the U.S. in 1970?“ was asked as "what was the population

of the U.S. in 1970?“ and ‘How many people were there in the average family

then?“. The persons answering the disaggregated questionssivesignificantly

more accurate judgments.

Hishful thinking occurs when an estimator's hopes influence his judgment

(Hogarth 1980). For example, a project manager in charge of a project may give

optimistic probabilities about completing it on schedule because he hopes this

will be the case.‘ In general, people exhibit wishful thinking about what they

can exhibit in a given amount of time--They overestimate their productivity

(Hayes-Roth 1980).

Illusion of control is the tendency to feel greater optimism or greater

confidence in some outcome, if one has been involved in its process (Hogarth

1980). People can acquire the impression of having more control over outcomes

simply by spending time analyzing a situation as in a elicitation session

(Langer 1975). Similarly, people perceive risks as being lower when they feel

that they are in control of a process. For example, people perceive less risk

when they are driving a car than when they are riding, as a passenger,in a

plane (Rowe 1982). ~

Social pressure.induces individuals to slant their responses or to silently

acquiese to what they believe will be acceptable to their group, superordinates,

institution, or society in general. Zimbardo, a psychologist, explains that it

is due to the basic needs of people to be loved, respected, and recognized that

they can be induced or choose to behave in a manner which will bring them affir

mation (1983). There is abundant sociological evidence of conformity within

groups (Weissenberg 1971). Generally, individuals id groups conform to a

greater degree if they have a strong desire to remain a member, if they are

satisfied with the group, if the group is cohesive, and if they are not a

natural leader in the group. Furthermore, the individuals are generally unaware

that they have modified their judgment to be in agreement with the group. One

mechanism for this unconscious modification of opinion is explained by the

theory of cognitive dissonance. Cognitive dissonance occurs when an individual

finds a discrepancy between thoughts he holds or between his beliefs and his ac

tions (Festinger 1957). For example, if an individual holds an opinion which is

conflict with that of the other group members and he has a high opinion of the

other's intelligence, cognitive dissonance will result. Often, the individual's

means of resolving the discrepancy is by unconsciously changing his judgment to

be in agreement with that of the group (Baron and Byrne 1981).

Irving Janis's study of fiascos in American foreign policy (1972) il

lustrates how presidential advisors often silently acquiese rather than

critically examine what they believe to be the group's opinion. This tendencey

has been called "group think", the "bandwagon tendency", or the "follow-the

leader effect.“ _

The effect of social pressure can also be seen in situations where the in

dividual is not in direct contact with others. Payne (1951) has provided

evidence that people give socially acceptable answers to survey questions. On

surveys, people claim that their educations, salaries, and job titles are better

than they are. More people claim subscriptions to socially acceptable magazines

and deny it to the lurid ones than subscription records support. Often there is
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a 10% difference between what is claimed for "prestige" reasons and what objec

tively is.

' THE METHODS

Methods for eliciting expert opinion vary along several continuums: l) the

number of participants; 2) the degree of interaction among participants and be

tween them and the session leader; 3) the degree of structure imposed on the

elicitation process; 4) the degree of participants‘ expertise; and 5) the degree

of "fuzziness" of the data being elicited. '

For example, one method, the mail survey, involves many respondents but

little interaction among respondents or between them and an interviewer.

Interaction is defined as any two-way communication after which the respondent

is allowed to change his judgment. when the respondent fills out a survey,

there is generally no interaction between him and his peers or between him and

an interviewer.

Another possibility, the Delphi method, can include any number of respon

dents and allow for more interaction between respondents than the traditional

mail survey. The respondents‘ interactions are controlled by the Delphi monitor

who sends each respondent the judgments of the others. The respondents are al

lowed to adjust their judgments in light of this information. The process of

allowing respondents to change their judgments can go through any number of

iterations even until consensus is reached. RAND corporation developed the

Delphi method to overcome some of the problems inherent in an interactive group

method, such as social pressures to conformity. For this reason, in the Delphi

technique, the respondents do not interact in a face-to-face situation.

Instead, the only contact they are supposed to have with one another is via the

mail. And then, the names and other identifying features are removed from the

judgments before they are circulated so that the origins of these judgments will

not unduly affect the recipients.

Another method, the face-to-face interview, usually involves a fewer number

of respondents than the mail survey. The respondents are interactive, singly,

with the inteviewer during the course of the interview.

Fourthly, there is a interactive group method. In this method, a group of

three or more may be convened to give their judgments in the presence of one

another. The group sessions are generally monitored and structured by a session

leader. For example, the leader may encourage group members to write down their

judgments and their reasoning. The leader may require that this information be

presented to the group and that a discussion follow. The interactive group

method can go through any number of iterations, as in the Delphi method, until

consensus, if it is desired, is reached.

For the sake of brevity, this paper will confine its discussion of the

detection and reduction of the human factors to two methods, the traditional

mail survey and the interactive group method.. These two methods were selected

because they lie on opposite ends of the continuum with respect to the number of

participants and the degree of interaction involved.

The five human factors are manifested in different ways in the various

methods so the means by which they can be detected or reduced also vary. For
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example, the effect of social pressure is manifested more strongly in the inter

active methods such as the face-to-face interview and the interactive group

method. Yet, because these methods are interactive, much of the detection of

social pressure can be done by a trained observer. This paper's approach to the

detection and reduction of human factors in elicitation methods is likely to

reflect the orientation of a cognitive or social scientist. The approach is to

perform a real time detection or counteraction of the human factors as they oc

cur during a session rather than a later mathematical adjustment of the data.

This paper advocates a structuring of the elicitation methods as a means

for reducing the occurrence of human factors. Structuring an elicitation method

involves controlling interactions, identifying the parts of the phenomenon on

which the respondents are being questioned, defining them and the response op

tions, such as the scale. For example, an unstructured interactive group method

would resemble the usual meeting which occurs in the business world. A struc

tured version of the same method would have a program for when each member would

present his judgment and rationale to the group, when the flqor was open for

discussion, and when the next round could begin. In general, the greater the

degree of structure imposed on the decision process, the simpler it is to con

trol for the occurence of human factors. Often a method cannot be maximumly

structured because each degree of structure imposed slows the process and re

quires more patience or cooperation on the part of the participants. The client

may have deadlines and a fixed budget which limit the amount of structuring

which can be done. Thus, the amount of structuring which can be done often in

volves tradeoffs between the quality of the data and its cost in time and

manpower.

The Mail Survey

Detection of Human Factors

In a survey, the occurrence of human factors is not generally detected

while the individual is making his judgment but earlier during pilot tests or

later when the survey is analysed. Three factors, the effects of question

phrasing, social pressure, and inconsistency, can be detected by the use of the

split ballot, the sleeper option, and pilot test.

The effects of question wording and sequencing of options can be detected

by measuring the differences between the split ballot questions. The split bal

lot technique is most commonly used for "yes-no“ and other multiple choice

questions. Use of split ballot techniques in the past (Payne 1951) have shown

that people favor generally worded options over those which are highly specific.

In addition, they favor options which refer to the status quo over those propos

ing new alternatives. Split ballot results have also shown that people favor

selecting numerical options which are located in the middle of a series whereas

they favor nonnumeric options which are located on either end of the series.

Social pressures to give the most acceptable response can also be detected

by use of the split ballot technique. One wording on half the surveys can state

the options bluntly, the other can contain face saving phrases to encourage

people to check the response which is most descriptive of their thoughts or

actions. A face-saving option often encourages the respondent to admitt that he

does not have X knowledge or Y socially-desirable possession at this time by al

lowing him to state that he plans to acquire them in the future.
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Another common area for the effects of social pressures to emerge is in

peoples‘ unwillingness to admitt ignorance, to check the "I don't know" option.

If identification.of knowledgable respondents is important, a different tech

nique can be used to get a better indication of people's knowledge than simply

totalling those who selected the "Don't know“ response. A “sleeper” option that

sounds plausible but which does not exist in reality can be inserted into the

series of bonafide options. For example, on a survey of public opinion of

nuclear reactors a “fast water reactor" might be inserted between a "light

water", and a "breeder." The number of people who select the sleeper option can

be added to those who marked the "Don't know” option and excluded from the pool

of supposedly knowledgable respondents.

Inconsistency in people's responses to surveys is more difficult to detect

than the two above mentioned effects. Inconsistency could conceivably be

detected by the use of redundant questions but this approach poses problems. If

the redundant question is an exact repitition, it can annoy people because they

wonder why they are being asked the same question, again. Yet,-if the question

is asked with a new wording, respondents may give different ahswers simply be

cause of the difference in phrasing. Inconsistency can occur because the

individual has not applied his heuristic consistently, has forgotten instruc

tions or definitions, or has remembered different incidents as he progressed

through the survey., An intensive interview type of pilot test can be used to

check the survey instrument for these problems. For example, one set of these

pilot tests revealed that individuals had forgotten the instructions about half

way through the selection of many options. The respondents were supposed to

mark their areas of knowledge on a list spanning two pages. Instead by the

second page, one fifth of the pilot sample had checked areas in which they would

have liked to have had knowledge.

This type of pilot test is the only one, to my knowledge, that can be used

to tack peoples‘ thinking, their consistency, through a survey. I adapted

several ethnographic interviewing techniques to create this pilot test method.

These techniques gather two types of information: 1) how the respondent

progresses through the survey, that is which sections he looks at, in what or

der, and for how long, his general impressions, and when or why he decides to

fill out the survey and to turn it in; and 2) how the respondent specifically

interprets each direction, question, and response option.

To obtain the first type of information, the interviewee is asked to handle

the survey as he would naturally, if no observer were present. The interviewee

is asked to "think outloud" and to mention his impressions. Generally, in

dividuals will skim the cover letter and flip through the rest of the survey.

As the individual flips through the survey he might state, “I have problems with

this page and I would probably let the survey sit on my desk for several days to

decide whether to fill it out. while the interviewee pages through the survey,

his pauses and gestures, particularly those indicating confusion or anxiety are

noted by the monitor. If the respondent has paused or shown some emotion during

his review of a particular section, specific questions will be asked such as,

"what was your feeling when you read this?”.

To obtain the second type of information, the respondent is asked to

paraphrase, in his own words, the meaning of each direction, question, and

response option. This information allows the monitor to track the respondent's

interpretation of each part of the survey.
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i Structurino the Method to Reduce the Occurrence of Human Factors

As mentioned earlier, structuring any elicitation method can facilitate the

counteraction of many human factors. The following section contains some recom

mendations on how to set up a mail survey to obtain better quality subjective

data by controlling for the intrudence of some human factors.

The first stage in developing the mail survey can have an effect on the

amount of inconsistency which shows up later in the respopdents'judgments.

Often seeming inconsistencies in the respondents’ answers arise from their view

ing the phenomena in a different manner than the way in which it has been

presented on the survey. Because the survey does not generally encourage them

to explain the view or assumption which allowed them to make the puzzling

responses, their responses are dismissed as inconsistent and unreliable. For

this reason, it is recommended that the creator of the survey first talk exten

sively to a sample of those who will be surveyed to learn what relationships,

causes and effects, they believe enter into the problem. For example, respon

dents from a utility might believe that the future of their utilities market is

tied to the nation's gross national product (GNP). If the task is to elicit

their projections for a utilities market in year 2000, then the questions should

define different levels of GNP. For instance, "Assuming that the GNP is X in

the year ZOOO, what would you predict the market for Y to be?" ‘

Careful composition of the questions can reduce the occurrence of three

effects: 1) inconsistencies which arise from the respondents‘ confusion, 2)

phrasing, and 3) social pressure. The use of Basic English is recommended if

the survey is targeted for the general public as one means for minimizing

misunderstandings. Basic English is a vocabulary of approximately 1000 words

that are understood by most people who Possess a high school education. Payne

(1951) provides a list of these words. He also provides a list of words which

have been found to possess different meanings for different people. For ex

ample, "this year" means the present fiscal year to some, the present calendar

year to others, and this coming year to still others. It is recommended that

the use of these problem words or phrases be avoided in the interests of

clarity. In addition, it is recommended that question lengths not exceed ZS

words because respondents‘ comprehension has been found to fall off around that

point (Payne 1951).

As mentioned earlier, the split ballot techniques can be used to detect or

counteract the effect of phrasing and ordinality. For example, response options

can be placed first or last in half the surveys and in the middle in the other

half to counter the effect of ordinality.

If the pilot test of the survey indicated that prestige was on issue on

some questions, then face-saving wordings can be used to obtain a better repre

sentation of peoples‘ opinions. Generally, admission of ignorance involves the

loss of prestige, so the "Don't know" option should be carefully worded. "No

set opinion at this time" is an example of a face-saving wording.

The presence and placement of definitions is another technique which can be

employed to reduce the occurrence of human factors, in this case, inconsistency.

Definitions include descriptions of the phenomena, the time frame in which the

respondent is to consider these, and the scale in which he is to respond. As an

individual progresses through a survey, the definitions becomes blurred in his
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mind. He relies on his memory of these definitions and often arrives at a work

ing definition which deviates from the original written one. For this reason,

definitions should be incorporated into the question or they should immediately

proceed it. For example, "What is the probability that the motor generator will

reach a maximum power of X for Y amount of time by calendar year September 1,

1984?‘ The definition of the phenomena has been mentioned as part of the

question. The same treatment can be extended to the response scale.

For example, the Sherman Kent scale gives these descriptors, "nearly certain",

“highly probably“, and "Ne are convinced", to describe a percent ranging from 90

to 99. Both numbers and verbal descriptors, or definitions, are used in attempt

to make people mean approximately the same thing when they give the same rating.

Another structuring technique, hierarchically organizing the survey, is

helpful in countering the respondents‘ tendencies to conservatism and overop

timism (Meyer 1982a). Organizing the survey in a hierarchical:manner generally

entails beginning with specific questions and progressing.to more inclusive

questions. The respondent is not asked major questions until his memory has

been prodded to remember more than just the easily accessible information.

Thus, his judgment is not as likely to be anchored to just the-first remembered

bits of data. Using the hierarchical'structure also involves disaggregating

questions, as shbwn in the Almanac example, to counter peoples‘_ tendency

toward overoptimism. '

The Interactive Group Method

Detection of Human Factors

The effects of phrasing, conservatism, inconsistency, and social pressure

can be detected during elicitation sessions by the trained observer who is

monitoring this process (Meyer 1982b). Generally, only the presence of these

effects, not their magnitude, can be detected by this means. This mode of

detection assumes that the group members have been instructed to "think outloud"

in interpreting the questions and giving their judgments. (More details on the

group members‘ verbalization of their thoughts will be given in the next

section.) '_

The respondent's verbal feedback on their interpretations of questions al

lows misunderstandings to be caught during the sessions. Conservatism can also

be detected during the session. If an individual continuously holds to his

initial judgment, even though there has been a discussion and an opportunity to

revise his judgment, he is a likely candidate for conservatism. Inconsistency

can be detected when members rate an element differently than they did a com

parable one earlier or when their interpretation of a definition appears to

c ange.

The problem of inconsistency arises from more sources in the interactive

group method than in the face-to-face interview or the mail survey. This is be

cause the group meetings are held many times whereas the others tend to be one

time deals. Thus, with the usual group method, there is the chance of the

members forgetting information, instruction, and definitions over the course of

time. One inconsistency which can emerge is the ease with which a response op

tion is applied. For example, the respondents may select the extremrs of the

scale with varying frequency through time. In general, fatigue during a session

seems to contribute to the occurrence of inconsistencies, perhaps because people
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are not thinking as carefully. (Fatigue is indicated by briefer responses and

by the degree of the participants‘ horizontal inclination.)

The degree of inconsistency can be detected by use of Bayesian-based scor

ing and ranking techniques. The group members‘ judgments can be entered into a

scoring and ranking program, such as that of Saaty's Analytical Hierarchical

Process, to obtain a rating of their consistency (Saaty 1980).

Social pressures can also be detected by real-time observations.

Generally, if consensus is easily obtained, no difference of opinion is voiced,

and the group members appear to defer to another member of the group, group

think is a strong possibility. Social pressures can come from the members of

the group or from the institution sponsoring the decision session. The institu

tion may favor a particular decision outcome and apply pressure on the group

members to this end.

Structuring the Method to Reduce the Occurrence of Human Factors

The first stage of the interactive group method, a free_association exer

cise, can be used to counteract the members‘ tendency toward conservatism. The

free association exercise involves having group members mention any and all ele

ments which might have bearing on the phenomena in question. For example, in

considering a problem on which technologies should be exported from the United

States, some of the major elements a free association might have produced would

be the military, economic, political, and technological significance of the ex

port items. The elements mentioned during a free association are usually

recorded for the group members to see. Later, the group members will work from

these in developing a model of the decision situation. The purpose of the free

association exercise is to start with a wide set of possibilities and to narrow

these to the pertinent ones. The free association exercise is to counter the

human tendency to anchor narrowly on past or present cases which may not hold in

the future. -

The next stage, the organization of these elements into a model, has bear

ing on how much inconsistency will be observed when the members are giving their

judgments. Highly inconsistent judgments (as determined by ear and by Bayesian

techniques) often indicate a need to restructure the model to better represent

the members‘ view. This stage of the method is the most time consuming because

the particpants are not always conscious of how they mentally model the

phenomena. Then too, sometimes they are so conscious of some information that

they fail to convey it for incorporation into the model.

The elicitation phase can be structured to include various techniques for

countering the effects of social pressure, conservatism, and overoptimism.

Perhaps, the most critical of all of the structures placed on the elicitation

process is the requirement that participants verbalized their judgments and

their reasons for giving such judgments. As mentioned earlier, this verbal

feedback allows the method to be monitored for the intrusion of many human

factors. For example, if group members appeared to exhibit group think, the

method can be structured to promote the opposite bias, conservatism. Groups

where conformity is likely to be a problem are cohesive groups, groups where the

people have worked togeather before, or groups where there is a dominating

leader (Janis 1972). By requiring group members to write down and then report

on their judgments and rationale, they are more likely to get attached to their
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judgments and defend them when the discussion begins. I would recommend having

each person record and read his judgments before opening the floor to dis

cusssion and allowing people to modify their judgements. If there is a strong

official or even a natural exoffio leader in the group, that individual should

be asked to give his judgments last so as not to influence the other group

members. In addition, if there is an official leader of the group, he or she

should be encouraged to be nondirective during the meetings. An explanation of

the group think phenomena usually suffices to convince them that better dis

cussions and data will result from their refraining from “leading.”

If on the other hand, group members appear to be too narrow. or anchoring,

in their thinking, a series of extreme scenarios can be introduced for their

consideration.

If overoptimism has been detected, the group members can be lead to think

in greater detail about the elements of the phenomena. This is done in much the

way that the Almanac questions were disaggregated for the survey population.

Another technique, the reviewing of definitions, can help reduce respon

dents‘ tendency to be inconsistent because of faulty memory. If at the

beginning of every session, definitions are verbally reviewed, members will be

more consistent in their definitions through time and between themselves. In

addition, each time that their judgment is requested, a statement of the ques

tion inclusive of definitions, can be given. For example, "what rating would

you give to the importance of element X over Y to reaching goal Z?“ Their copy

of the scale, in this case a Saaty Pairwise Comparison, should include descrip

tors or definitions of the ratings.

Another technique for reducing inconsistency is to have the group members

monitor their own consistency. For this task, they should have copies in front

of them of their judgments, and response scale. A matrix structure of the

critieria on which the elements are being judged, the elements, and the judg

ments work well for this task (Meyer 1982b). Often the group members will view

an element in a different light than they did earlier and wish to change the

earlier judgment to be in line with their current thinking. If their reasoning

does not violate the logic of the model or of the definitions, they should be

allowed to make the change. Sometimes, consideration of a new element makes

them aware that the model and accompanying definitions did not realistically

protray this part of the phenomena. Parts of the original model will need to be

changed and some of the process of giving judgments will need to be repeated.
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Ml ABRAMS TANK
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l. INTRODUCTION

Modern Army weapon systems tend to be sophisticated, complex, and

expensive. The complexity and sophistication are necessary to meet the

projected threat and lead to the high cost of both development and procure

ment. There is also typically an urgency to field the new, more capable

equipment as soon as possible. Because of this urgency, the Army has adopted

the Single Integrated Development Test Policy wherein government, as well as

contractor, testing is utilized to find problems and determine the effective

ness of corrective actions.

The Army acquisition process recognizes that most weapon systems are

not mature when subjected to government tests by allowing for reliability

growth throughout the development phase. Before proceeding into the production

phase, however, there is a requirement to demonstrate that the materiel has

achieved the reliability threshold established. Ideally, this demonstration

is accomplished by sufficient testing of the final configuration to provide

statistically valid estimates. Experience has shown that programs which

rely on this technique generally do not achieve the reliability objectives

within the allocated resources and time. The second best alternative is to

design the tests in a test-fix-test fashion that allows for tracking of

reliability by using accepted and proven self-purging reliability growth

methodology, such as the AMSAA model. This technique has the advantage of

using all test data, thus increasing the applicable sample size over the first

alternative, and is successfully used by AMSAA in the reliability evaluation

of many Army weapon systems. This technique, in fact, is the preferred

technique for assessing reliability at any point in the development cycle.

The ability to use this technique, however, is contingent upon several

factors, one of which is a requirement to implement the corrective action in

a timely manner on the test samples. Unfortunately, it is not always possible

to meet the conditions necessary to use the AMSAA Reliability Growth Model, or

a similar model, due to the time and money constraints previously discussed;

such was the case for the Ml Abrams tank during its Full Scale Engineering

Development Phase. In such cases, alternate methods must be used to provide

credible estimates of the reliability of the final design at the end of

development.

This paper descsribes the process used to assess the reliability of the

Ml Abrams tank, and provides comparisons of these estimates to estimates

obtained from later tests of the same configuration. Further, lessons learned

during this evaluation are presented along with a brief description of improved

and formalized procedures developed by AMSAA in response to these lessons

learned.
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2. Ml RELIABILITY ASSESSMENT

The Ml Abrams tank had a combat mission reliability requirement of 320

Mean Miles Between Failure (MMBF), to be demonstrated during the Initial

Production phase of the acquisition cycle. Recognizing that corrective actions

for many of the design faults detected during development test would not be

implemented until after test was complete, a threshold of 272 MMBF was imposed

on the system to be demonstrated at the completion of the Full Scale Engineering

Development (FSED). Early in the FSED testing, it became apparent that the

initial design possessed a reliability much less than that necessary to progress

into production. with approximately forty percent of the FSED testing complete,

the tank was demonstrating an “as-tested" MMBF of l20. ‘"As-tested" MMBF was

computed, assuming an exponential distribution, by dividing the total test

miles by the total number of failures. At that point in time, although failure

analyses had been conducted, very few proposed design changes had resulted in

hardware changes on the test samples. In fact, due to the desire to implement

corrective action on the test samples as soon as possible, some of the changes

to the tank hardware had actually resulted in an increase in total system

failure rate and had to be removed. All attempts to fit reliability growth

tracking curves were unsuccessful. Since an Army decision review was scheduled

shortly, an alternate method had to be considered to assess any growth in

design reliability, and to further assess the potential reliability considering

proposed, as well as implemented, design changes.

To provide a continuing assessment of the Ml Abrams tank reliability, it was

decided to conduct periodic Reliability Assessment Conferences as authorized by

AR 702-3. This conference, composed of representatives of the materiel developer,

combat developer, development test independent evaluator and operational evalu

ator, was charged with the responsibility of estimating the reliability of the

current configuration and to project the reliability when all identified, but not

implemented. corrective actions were taken. In order to accomplish this mission,

procedures were developed and agreed to by the conference principals.

2.l Procedures for Estimating "Demonstrated" Reliability

The term "demonstrated" reliability as used in current Army Regulations has

been shortened from what the Ml Assessment Conference termed "reliability adjusted

for demonstrated corrective action." Failure rate adjustment for this estimate

is made only if there is clear evidence, from representative testing, that a

reduction in failure rate has in fact taken place. The following procedure

was used by the assessment conference to estimate "demonstrated" reliability:

° Establish that design change has been subjected to representative test.

° Determine that design change had positive effect on reliability.

° Estimate effectiveness of corrective action.

° Adjust failure rates and compute adjusted reliability.
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2.2 Procedures for Estimating Projected Reliability

The.projected reliability estimate allows for adjustment of failure rates

for proposed as well as demonstrated design changes. As allowed for in

AR 702-3, the combat developer and operational evaluator chose not to parti

cipate in this projection, other than offer opinions during discussion. Thus,

for the Ml program, projections were made by AMSAA and the Ml Program Manager's

Office using the following procedures:

° Adjust failure rates for demonstrated corrective actions in accordance

with procedures outlined in paragraph 2.l.

° Using engineering judgement and experience with similar systems,

estimate whether or not proposed change will decrease failure rate.

° Using engineering judgement and experiences with similar systems,

estimate effectiveness of proposed modifications.

° Adjust failure rate and compute projected reliability.

It is evident from the agreed to procedures that significant judgement was

inherent in estimation of both the demonstrated and projected reliability.

In order to maximize the information available to make this judgement, a

requirement was placed on the prime contractor to prepare and provide a

document to the assessment conference principals at least two weeks prior

to the conference detailing:

° Results of failure analyses

° Results of all testing (before and after corrective action). If testing

was other than on test samples, the contractor was required to detail con

ditions of test.

° Proposed effectiveness factor and rationale.

Upon receipt of the contractor documentation, the AMSAA RAM analyst would

provide the information, without the contractor's effectiveness estimates,

to engineers with experience in the area of interest and ask the following

questions:

° Based on the contractor presentation, is there evidence that design

change will result in lower failure rate?

° what is your estimate of the effectiveness of the corrective action,

expressed in terms of reduction in failure rate? Provide rationale.

° Could correction of this failure mode result in other failure modes?

what, in your opinion, is the most likely failure mode and frequency?

This package would normally be reviewed by three engineers independently.

The RAM analyst would assimilate the responses; if in close agreement, the

responses would be accepted as appropriate; if not in close agreement, the

analyst would discuss the differences with each engineer until the differences
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were completely understood or a consensus was reached. The analysts would

then discuss the results with his supervisor and they would jointly agree to

a position for the conference. This modified delphi approach resulted in a

range of effectiveness factors and rationale for discussion at the assessment

conference.

The assessment conference was conducted in a democratic process, with

open discussion by all principals. A majority vote (3 of 4) was required to

consider corrective action demonstrated. If considered demonstrated, the

effectiveness factor was then agreed to by voting. Because of the work done

at home station, the AMSAA position was normally accepted, particularly if

the estimate was close to the estimate provided by the contractor through

the Program Manager's Office representative.

2.3 Results of Ml Assessment

The above procedures were used prior to the Army review mid-way through

the development test program. At that time, results of the assessment were

as follows:

MMBF

As Tested T20

Demonstrated T45

Projected 256

The demonstrated estimate was not vastly different from the "as-tested"

estimate for two reasons; (T) The as-tested estimate included some experience

with corrective actions implemented on the test samples and (2) very few of the

proposed corrective actions had been tested. Although the tank was demonstra

ting reliability well below the requirement, a go-ahead decision was granted

based on a thorough discussion of the corrective actions identified and the

estimates provided by the assessment conference as to the effectiveness of

these corrective actions.

These procedures were used during the remainder of the FSED and Low Rate

Initial Production test with the following results:

Mean Miles Between Failure

As-tested Demonstrated

Extended FSED (Phase l 234 299

Extended FSED Phase 2 308 326

Initial Production l 278 351

initial Production 2 324 351

(l) Includes Early Production Process Problems '

(2) Excludes Early Production Process Problems

The configuration of the tank at the beginning of the Extended FSED (Phase l)

was essentially the same as that for which a projected estimate of 256 MMBF

was made for the Army review. For all other phases of the test program, the

configuration at the beginning of the phase is essentially the same as that
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for which "demonstrated" estimates were made duing the preceding phase. For

example, the estimated value for extended FSED (Phase 2) was 299 MMBF based

on Phase l testing; the actual as-tested value for Phase 2 was 308 MMBF.

It is of interest to note that the estimated value, in most cases,

overestimated the "as-tested" estimate. It was observed that the greatest

reason for this was the occurrance of new failure modes, in most part not

related to any corrective action. It was also apparent that there had been

no provisions in the estimates to account for quality assurance and produc

tion process problems inherent in the start-up of a new production process.

Historically, this start-up process has resulted in approximately a IO per

cent reduction in MMBF.

Overall, the process worked well. Even with the recognized problems,

the estimates obtained using expert opinion were within the "statistical

noise" of the estimates obtained from further testing of the same configuration.

3. LESSONS LEARNED

Although the estimates obtained by using the procedures discussed were

very close to values actually demonstrated later, several problems were noted

with the procedures.

° There is typically a wide variation in the estimates provided by experts

on the effectiveness of proposed corrective action. This paper will not

attempt to discuss reasons for this variation, but simply note that it did

exist.

° Intuitively, it was felt that giving credit for corrective action taken

for low failure rate modes resulted in an optimistic estimate of reliability.

° The assessment conference procedure allows for control of the conference

by the "strong" individual (most persuasive), not necessarily the one with the

most knowledge. Estimates arrived at by the conference may thus not have the

benefit of the representative input of all experts.

On the positive side, the Ml experience demonstrated that credible

estimates can be made using expert opinion, and that low risk decisions can

be made in a timely manner without the requirement to test the final configu

ration for prolonged periods.

° The contractors (prime and subs) possess the greatest expertise for

the particular design. Contracts must be written to take advantage of this

expertise, and in such a manner to allow for significant government inter

action, to include the independent evaluators. A conscientious effort is

required by the government community, to include use of Government laboratories

and independent consultants, to properly assess corrective actions.

4. IMPROVEMENT IN PROCEDURES

The two areas of greatest concern that evolved from the Ml assessment was

the uncertainty of the fix effectiveness estimates, particularly for the

projected reliability estimates, and the realization that projections were

probably optimistic because of giving credit for corrective actions for low
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failure rate failure modes without considering the effect of other unseen

failure modes. Discussions of these perceptions with personnel from the

AMSAA-RAM Methodology Office resulted in further investigatin of the perceived

problems and publishing of several reports to document improved methodolgy and

procedures. Following is a brief synopsis of the published reports with

comments on how they may be used to improve future assessments.

4.l AMSAA Technical Report No. 357, “An Improved Methodology for

Reliability Growth Projection", Larry H. Crow, June 82.

In this report, Dr. Crow showed that even when the effectiveness factors

are known exactly, the adjusted procedures used in the Ml assessment would

still overestimate the system reliability. He further was able to mathe

matically determine the bias term:

B(T) = K h(T),

Where K average effectiveness factor

h(T) average rate of occurrance at time t

of new failure modes for which corrective

action will be taken

Maximum likelihood methods are used to estimate h(T).

Use of the procedures outlined in this report make it possible to provide an

unbiased estimate of system failure rate. The uncertainty in the estimate of

the effectiveness factors, however, remained a concern. In order to alleviate

this concern, research was conducted on historical fix effectiveness factors

and documented in the following report.

4.2 AMSAA Technical Report No. 388, "Reliability Fix Effectiveness for

Army Systems", Bruce S. Trapnell, May 1983.

The purpose of this report was to provide a historical data base on fix

effectiveness factors for various systems. The advantage to this data base

is that it provides a guide to what might be reasonably expected on similar

systems, serving as a useful tool to the engineer in assignment of effective

ness factors for projection purposes.

The report details historical effectiveness factors for eleven systems,

to include helicopters, tanks, wheeled vehicles and missiles. The average

demonstated effectiveness factor for all systems was approximately 0.70, with

relatively small variation.

work is continuing in this area to determine fix effectiveness by major

subsystems, such as engine, electrical system, etc. These data, broke down to

subsystem level, will be even more useful for projection for future, more

complex systems. l

It is recognized that fix effectiveness depends on many factors, and that

the past does not necessarily predict the future. The available estimates,

however, will provide a starting point and will force the expert to defend

large deviations from past experience.
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4.3 AMSAA Technical Report No. 399, "Corrective Action Review Team,

(CART's)," Bruce Trapnell and Clarke Fox, July l983.

The purpose of this report is to standardize the procedures for determining

effectiveness factors and making projections. It recommends a procedure which

uses historical fix effectiveness factor to modify judgmental estimates. It

further specifies additional data that must be collected to use the projection

model.

5. CONCLUSIONS

Estimates of reliability provided for the Ml Abrams tank using procedures

outlined in this paper proved to be quite good, as demonstrated in later testing.

To a large degree, the author feels that this is attributed to the expertise

of the engineers and analysts involved - and a lot of luck. The procedures

could be greatly enhanced by use of available historical fix effectiveness

factors and the projection methodology developed by AMSAA. There will con

tinue, however, to be situations where expert opinion will be the prime imput

to analyses and decisions. It is thus of paramount importance to continue to

develop experts and methodology to best use expert opinion.
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ABSTRACT

The Civil Service Reform Act of 1978 mandates performance-based appraisal

systems in federal agencies and performance measurements which are accurate

and objective to “the maximum extent feasible." In this paper we study two

examples in which objectivity can be defined as the establishment of processes

which test hypotheses against actual data and the evaluation of attendant a

and b risks. In the first example, we use the Poisson distribution to

evaluate performance against a standard for courtesy. This model requires

that behavior be directly observed 90 percent of the time for acceptably low

"rudeness levels" and is thus impractical. In the second example, we propose

using the binomial distribution to evaluate the performance of message center

clerks who have the task of assigning "Action/Info" and distributing

correspondence to elements of a large organization. In this case the amount

of inspection required is affordable.
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INTRODUCTION

The Civil Service Reform Act of 1978 (CSRA) requires government agencies

to establish performance—based appraisal systems under the general supervision

of the Office of Personnel Management. In pertinent words of the statute:

Under regulations which the Office of Personnel

Management shall prescribe, each performance appraisal

system shall provide for establishing performance

standards which will, to the maximum extent feasible,

permit the accurate evaluation of job performance on

the basis of objective criteria (which may include the

extent of courtesy demonstrated to the public) related

to the job in question for each employee or position

under the system.

In compliance with the CSRA, the Department of the Army (DA) established

performance-based appraisal systems for Senior Executives (SE), General Merit

(GM) employees, and General Schedule (GS) and wage Grade (HG) employees.

Although the three appraisal systems are covered by different regulations and

utilize different forms, they share similar structure, vocabulary, and

management philosophy to the extent that one may speak of the "Army Appraisal

System" (AAS). Under the AAS, supervisors are to provide each employee with a

written Individual Performance Plan (IPP) at the beginning of a rating period.
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In an IPP, related Tasks/Activities are grouped into Job Elements

described by short titles' such as Personnel Management, Preparation of

Correspondence, Safety, etc. Some Job Elements are mandatory for supervisors;

otherwise, a great deal of discretion is allowed in grouping tasks and naming

Job Elements. Each Task/Activity is accompanied by a standard which expresses

an acceptable level of performance. Additional standards not keyed to

specific tasks may be written for the Job Element as a whole. IPPs for

supervisors usually involve six to eight Job Elements with several standards

per Job Element. Less structure is required to cover a nonsupervisory

position.

System doctrine requires that standards be quantified whenever possible,

express a range of“ acceptable performance, and provide the employee an

opportunity to excel by surpassing the standards. This doctrine may be

breached by the establishment of absolute standards provided such standards

are not an abuse of discretion. Absolute standards may be used in situations

where a single failure could cause death, injury, breach of security, or great

monetary loss. Thus, a standard may require a pilot to make preflight checks

100 percent of the time, but a standard allowing no typing errors would be an

abuse of discretion.

At the end of the performance period covered by the IPP, the rating

supervisor is required to make an estimate of actual performance (P1) against

each standard (Si) and make a judgment of Exceeded (E), Met (M). or Not Met

(N) for each Job Element. It is common, but sloppy, practice to use the words

"exceeded," "met," and "not met“ in comparing each P1 to its associated Si.
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These words have been mentioned (selected as names of ratings for entire Job

Elements which usually contain more than one standard) and are not logically

available for use in any other context.‘ In order to avoid confusion, we use

the separate and distinct designators Above Tolerance (A), Within Tolerance

(H), and Below Tolerance (B) for this comparison. No algorithm for mapping a

(A,w,B) set for a Job Element into E, M, or N is provided in the system

design. It is indeed within the purview of a rating supervisor to rate an

employee E or M on a Job Element even though a specific Pi to Si comparison

within the element leads to a conclusion of Below Tolerance. (A reviewing

official might require that such a supervisor explain his/her decision!)

Following determination of the (E,M,N) set of ratings of Job Elements, an 0PM

approved algorithm “is used to arrive at a final adjectival rating of

Exceptional (EX). Highly Successful (HS), Fully Successful (FS), Minimally

Satisfactory (MS), or Unsatisfactory (U).

So far we have merely provided a brief description of the structure and

vocabulary of the AAS. The appraisal systems of other agencies are quite

similar. In the remainder of the paper we examine the implications of

attempting to be objective within such a system, objectivity being a statutory

requirement.

In order to have specific examples, we introduce two mathematical

models. In the first we propose to measure courtesy by direct observations.

In the second we propose to measure by actual sampling the accuracy of an

Action/Info Clerk in an administrative office who is supposed to route

incoming mail to the appropriate subdivisions of a large organization. Before

continuing, we note that many supervisors write standards in the form "No more
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than N substantiated complaints of during the performance

period." (The reader may fill in the blank.) For the purposes of this paper

we eschew shortcuts which allow conclusions in the absence of data. Instead,

we require that actual observations be used to test hypotheses and assess the

attendant risks of drawing wrong conclusions. Since one purpose of

performance-based appraisal systems is to provide a basis for rewarding

employees whose performance is above acceptable standards, the difference

between ordinary good performance and exemplary performance should be

detectable by the measurement paradigm. Antithetically, less than acceptable

performance should also be detectable in order to validate corrective action

for nonacceptable performance.
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STANDARDS FOR COURTEOUS BEHAVIOR

It is noted in the Introduction that the CSRA specifically mentions

"courtesy demonstrated to the public" as an evaluation factor in job

performance. In the same legislation, Congress has provided for a suspension

of only 14 days or less for four instances of discourtesy within a one year

period.‘ Considerable discussion of courtesy standards has been provided by

the U.S. Merit Systems Protection Board (MSPB).' It is clear from these

references that courtesy should not be the subject of an absolute standard.

It may seem paradoxical, but a level of rudeness must be allowed if courtesy

is to be measured and rewarded. In our own review of IPPs, we note that

courtesy standards are commonly imposed on employees in Secretary/Receptionist

type positions and rarely on others. As a side comment, this would appear to

be unintentional discrimination against incumbents in a particular job

category.

we find that courtesy standards are usually written in the "No more than

N_i 6 complaints received" form. We propose a standard written in terms of

"No more than N :_6 incidents of discourtesy allowed." This would seem to be

appropriate since most employees are under direct observation by a supervisor

for some fraction of time. (As a thought experiment, we could imagine

employing an inspector to observe the employee through a one-way window for

whatever fraction of time is needed to ensure objectivity in the sense

intended here.) It is assumed that incidents of discourtesy are random,

isolated in time, uncorrelated and that the probability of an incident during

a time interval is proportional to the duration of the interval. Provided the

number of incidents is small, these assumptions are reasonable and permit the

use of the well-known Poisson distribution.
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Given a "rudeness allowance" of N :_6 incidents per year, we can only

estimate the actual performance level, P by hypothesis testing Ne seek
a’

mathematically consistent sets of the following parameters:

F

Ra

“E

“S

BE

as

Fraction of time observed.

Acceptance range. If the number of observed

discourteous acts is within this range, the

sample supports the conclusion that the

performance is within tolerance with a given

risk of being wrong.

Employee's risk that a within tolerance or

better performance will be rated as below

tolerance.

Supervisor's risk that a within tolerance or

worse performance will be rated as above

tolerance.

Employee's risk that above tolerance perfor

mance will not be detected.

Supervisor's risk that below tolerance perfor

mance will not be detected.
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Mathematical details are presented in appendix I-B. A short table of

results follows:

Standard F Ra “E = us BE|Pa a$|Pa

2 1.5 .90 0-3 .25 1.oo|1 .71|3

2 1 .5 1.00 1-3 .25 .s3|1 .ss|s

20 :_ 5 .25 1-10 .10 .92|10 .86|30

200 :_S0 .25 30-73 .10 .18|100 .44|300

In the first line of the table, we set the rudeness level at 2 j;.5

incidents per year. (The artificiality of setting 6 as half of an incident

merely facilitates computation in the small N regime.) The proposed fraction

of time observed in this line is rather high, 90 percent. Then if the number

of observed incidents of discourtesy is in the range O-3, inclusive, the rater

may conclude that performance is within tolerance with a probability greater

than 0E + as = .5 of having drawn the wrong conclusion. It might seem that

if the actual number of incidents of discourtesy is 3 against a standard of

l\>

|+
N = .5 the performance was surely out of tolerance. Not necessarily.

when N :_6 is used to parameterize the Poisson distribution, it applies either

to an ensemble of employees, or individual behavior over many performance

periods. Then Pa, the actual performance for a given period, becomes a

stochastic variable and an observation of three incidents does not show that

N f 2. (Subtleties of interpretation in the small N regime disappear for

larger values of N.) The next entry 6E|Pa = 1.00|1 is the probability (1.00)

that a better performance (N = 1) would not be detected, and BS|Pa = .71|3 is

the probability (.71) that a worse performance (N = 3) would not be detected.

The second line merely exhibits a decrease in risks if inspection is increased

to 100 percent. In the final line, we decrease inspection time and lower
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risks by degrading the standard to the point of allowing almost four incidents

of discourtesy per week. The dilemma is apparent. Objective validation of

performance against a high standard requires a lot of inspection time.

Maintenance of the objective process with reduced inspection time requires

that the standard be degraded to an unacceptable level.

In the case of Callaway versus DAL the MSPB reversed a removal action

against the appellant which was based partially on failure to perform in

accordance with an absolute (N = O) courtesy standard. Absolute standards are

likely to be judged by the MSPB as an abuse of agency discretion except in

"situations where death, injury, breach of security, or great monetary loss

could result from a single failure to meet the performance standard measuring

performance of a critical element." That issue is quite different from the

one addressed here, namely, the objective measurability of performance against

a nonabsolute standard.

_ A standard written in the form "No more than N :_6 substantiated

complaints of discourtesy during the performance year" has the advantage of

being easy to administer. Such a standard places the inspection and reporting

responsibility on the public and coworkers rather than the supervisor.

However, the measurement is now a joint property of employee behavior and

tolerance thresholds of potential complainants. In practice, few or no

reports will actually be received. Trivialized and easy to administer

standards lead to "Above Tolerance" decisions in the absence of data and

contribute significantly to rating inflation. were it not for the statutory

status of courtesy standards, we would recommend that they be used only on a

management by exception basis and“ not ordinarily included in IPPs. The

question of whether or not the adoption of this policy would violate the

intent of Congress is debatable.
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STANDARDS FDR A MESSAGE FDRHARDING CLERICAL FUNCTION

The task in this example is that of sorting a large volume of incoming

messages, assigning "Action/Info" to each, and distributing the messages to

appropriate elements of a large organization. while many actions are purely

routine, others require an appreciation of message content and knowledge of

the mission and functions of organizational elements. We assume that the

workload is sufficiently large to allow use of the binomial distribution to

describe sampling without replacement. (The Message Center at white Sands

Missile Range processes about 50,000 such actions per year. The function is

performed by three to four employees who also have other duties.) We further

neglect the fact that "Action" errors are usually more serious than "Info"

errors. Performance standards for the employees are assumed to be in the form

"p :_6 percent of Action/Info determinations are correct." A sample of size n

is to be drawn at random for inspection during the performance year. It is

assumed that the inspecting supervisor's determination of "correct" or

"incorrect" on each sample element is error free. Pa, the actual performance

to be estimated, is expressed as a percentage. Ra is the observed range of

correct actions within a given sample of size n that allows acceptance of the

hypothesis that performance is within tolerance with risks as defined

previously. Mathematical details are presented in appendix I-C. As with the

previous example, we exhibit a short table of results.

Standard n Ra 0E = as BE Pa as Pa

85 1 5% 100 76-93 .16 .23 95 .46 75

94 1 2% 100 89-98 .16 .60 98 .70 90

94 i 22 600 460-487 .06 .21 98 .54 90

94 1 2% 1000 906-970 .05 .02 98 .28 90

94 1 2% 1500 1362-1452 .06 .001 98 .16 90

94 + 22 2000 1820-1934 .06 .0001 98 .07 90
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In the data selected for presentation, we begin with a pedestrian level of

performance, 85_:_5 percent, a small sample size, n = 100, and exhibit rather

high risks. As would be expected, the second line shows that escalating the

standard and keeping n = 100 increases the risks. In the remainder of the

table we maintain a high standard and keep increasing n in order to decrease

BE|Pa and BS|Pa.

we searched for a sample size and risks of about 10 percent or less as

exhibited in the last line of the table. An interesting feature of the

results is that for fixed p_i_6 and 0E = cs, BE|Pa decreases much faster than

BS|Pa as n increases. Balanced risks of about 10 percent across the board are

not inherent in the model. At the sampling level of n = 2,000 the risk of

being unfair to the employee is negligible. We speculate that competent,

self-confident employees would resent increased inspection, although analysis

shows that it would be in their best interest. It should also be noted that

Ra is wider in every case than the nominal range of p_:_ 5 (expressed as

decimal fractions) times n. This is to be expected in a stochastic model;

observations outside the nominal range do not necessarily indicate an out of

tolerance condition. This is not generally understood by supervisors.

Should it turn out that the number of correct Action/Info determinations

in the sample of n = 2,000 is more than the top of the range, namely 1,934,

that fact along with performance against other standards in the employee's IPP

should be an evaluation factor in considering the employee for a performance

award. Similarly, an observed number of correct determinations below the

bottom of the range, 1,820, indicates a need for corrective action. If the

scheme is applied to each of three employees, the total sample is n = 6,000,

about 12 percent of workload. The standard of 94_i_2 percent is high enough

to represent a good operation,' yet low enough to allow employees an

opportunity to excel. The amount of inspection is affordable and the paradigm

is objective.
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There is a more sophisticated procedure for making A, H, or B decisions

than that given above. Depending on the data, these decisions may be

classified as strong or weak. The supervisor may wish to give the employee

the benefit of any doubt and escalate a decision from B to H or from W to A,

or gain further confidence that a B decision justifies corrective action. The

basic theory can be found in the literature of statistics~'5 and an example is

provided in appendix II.

A standard relating to filing errors was a second issue in the case of

3

Callaway versus DA. No more than two filing errors were allowed during an

"annual files inspection." Errors were found during an inspection in

preparation for the "1982 Annual General Inspection"; and the agency claimed

that the performance standard applied to any_inspection. The MSPB thought

otherwise and found in favor of plaintiff on this count. One lesson from this

case is that inspection related to performance-based appraisal systems should

be defined in terms of on-going processes for monitoring performance rather

than scheduled general inspections. Moreover, if we may speculate that the

filing workload in this case was high enough to allow an analytical model such

as the one used in this example, then the standard itself was faulty. It

should have been expressed as a percentage of allowed incorrect actions with a

range, set high enough to allow a good operation yet low enough to provide the

employee an opportunity to excel, and monitored by an objective process. As

did the MSPB, we would find in favor of plaintiff, but with different

reasoning.

There is another case, that of Walker versus Treasury: in which the

techniques of this paper can be applied in a critique. Walker's task was

specifically that considered here, namely distribution of correspondence.
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The agency had been operating with an 86 percent accuracy standard. It

changed from this rate—type standard to a number of errors-type standard which

translates back to a rate standard of 99.5 1; .2 percent. Appellant was

allowed 0 - 3 errors per month on a workload of about 500 pieces of

correspondence. She in fact averaged about 9 errors per month, committed

10 errors during a 1-month probationary period, and was removed from her

position. Among other things, she claimed that the new standard was

unreasonably high. _ The agency claimed that other employees were able to

achieve the standard, but did not present convincing evidence of this claim to

the MSPB. In critiquing this case, we have two findings: (1) The new

standard provided no opportunity for any employee to excel. As shown in

appendix I, validation of an above tolerance performance would require

observation of a negative number of errors, an impossibility.) (2) Had the

agency wished to document achievability, the table in appendix I shows that

the sample size would have had to be larger than the workload, another

impossibility. Our analysis is supportive of the MSPB decision to order the

reinstatement of Walker to her position.
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COMMENTS AND CONCLUSIONS

The Civil Service Reform Act of 1978 mandates performance-based appraisal

systems and performance measurement which is objective and accurate to the

"maximum extent feasible." It is appropriate, therefore, to systematically

investigate the extent to which performance measurement can be made objective

and accurate.

In our exploration of this issue, we have chosen examples in which

objectivity can be defined in terms of processes which use actual data to test

hypotheses and evaluate related a and B risks. This definition of objectivity

is a standard tool in all of measurement science. However, in establishing

objective processes one also must consider the cost of inspection in time or

money. On this basis, the model for validating performance against courtesy

standards must be judged impractical, whereas the model for evaluating the

work of "Action/Info" clerks in a nwssage center appears to be worthy of

adoption.

The analytical approach used in this paper is not applicable in many

cases. Some standards are inherently easy to administer. For example, a

"Timeliness" standard requires very little inspection time, it being easy to

determine whether or not a piece of work is rendered on time. Most per

formance standards of managers and executives are stated in terms of

organizational objectives, do not involve repetitive tasks, and are not

amenable to statistical treatment. However, the basic tension between

objectivity and inspection time can never be avoided. In this regard, one

must also consider the total number of standards to be monitored by a single

supervisor. For example, consider a GM-14 who rates three GM-13s and two
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nonsupervisory personnel. Job analysis and the structuring of IPPs in

accordance with the "school solution" will, in this case, generate about

150 performance standards. Some of these will be easy to administer, some

will not. Some will be amenable to hypothesis testing, many will not. In any

case, it is clear that effective use of performance—based appraisal systems

requires orderly planning of inspection time.

Hypothesis testing should be used in those cases where analysis shows it

to be feasible. Any lesser definition of "objectivity" in such cases would be

indefensible.
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Appendix I: APPLICABLE HYPOTHESIS TESTING

A. Background.

Hypothesis testing is a widely used, well documented’ method for comparing

a parameter, 0, with a standard, 60. The basic procedure is to assume a null

hypothesis, H0, and reject H0 only if there is sufficient experimental

evidence that the assumption is unlikely. The significance level, called the

Type I risk and denoted by a, is the minimum acceptable likelihood that the

exprimental data could be obtained if H0 is true. An alternate hypothesis,

Ha, is for use if H0 is rejected.

The straight-forward hypotheses for performance appraisal would be

H0: BL __<_ 0 i eu <===> Nithin Tolerance (N) and

Ha: 0 < 6L <===> Above Tolerance (A) or

e > eu <===> Below Tolerance (B)

where 00 is replaced by a tolerance range 0L to bu. The Type I risk would be

a = P [ Rating e < 9L or e > BU | 0L_§ e;§ qj ] = P I Rating A or B I N 1.

An opposing risk, called the Type II risk and denoted by B, would be

B = P [ Rating oL_§_e_§ qjl e < eL or e > eu ] = P [ Rating N | A or B ].

I-1
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The straight-forward way to design the hypothesis test would be to

(1) Select an o.

(2) Select a size for the planned data set.

(3) Use u to determine a range of data, Ra which is defined by

xA + 1 to xB - 1, within which a measurement does not indicate a rating of

either A or B.

(4) Use (xA + 1) < (xB - 1) and the planned data set size to

determine B for values of 0 such that 0 < 0L or 0 > BU.

(5) Repeat steps (1) through (4) until the supervisor and employee

agree on a triplet of a, planned data set size, and B's.

Unfortunately, the well-known mathematical relations between a, xA, xB,

and Bis are based on a standard that is an equality, or at least a semi

infinite range, instead of a finite range. This problem may be handled by

performing two hypotheses tests simultaneously. These are:

I I

H0: 0 = BL <===> H or B H0 : 0 = BU <===> W or A

I I

Ha: 6 < BL <===> A Ha : 0 > qj <===> B

The = signs in the null hypotheses may be replaced with 1 in H8 and 3 in Hg.

This change to semi-infinite standards does not change the application of the

tests but it does make the interpretation of the tests clearer.
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This set of tests will yield a unique member of the A, H, B set for any

measurement. The associated Type I and Type II risks are:

as = o' = P [ Rating 0 < 0L | e = 0L ] = P ( Rating A | H or B ]

0E = cl = P [ Rating 0 > 0U | 6 = eu ] = P [ Rating B | H or A ]

BE = Bl = P ( Rating 0 = BL | 0 < 6L ] = P [ Rating H or B | A ] and

as = a’ = P [ Rating a = au | e > eu 1 = P [ Rating w or A | B ]

where the E and S subscripts designate the employee's and supervisor's risks.

The various Type I and Type II risks in the single test and the two

simultaneous tests are not as simply interpreted as those for a hypothesis

test which has only two possible outcomes. Insight to these relations may be

obtained by examining figures 1 through 5. One interesting result, which

relates the three Type I risks defined above, is shown by figure 5 to be

(GS + GE) < G.

This inequality can be made to approach an equality only if the actual

w domain is made much larger than the domains of B and A.

The two simultaneous hypotheses ~tests are performed by comparing the

measurement, x, with test parameters, xA and xB. For a discrete distribution

I-3
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in which the probability of measuring x events is given by f(x;0), the maximum

x which implies 6 < BL is denoted by xA and is the largest x making

IIMX

f(i;9 ) < u
i X. L S

where x, is the lowest value of i making f(i;6) > 0 . Similarly, xB is the

minimum x which implies 6 > 0U and is the smallest x making g

x

2 f(i; e ) < or
M u “E

x-1

Z f(l; 9U) > (1 - 0E)

i=x,

where x_ is the highest value of i making f(i;0) > 0 . If data yields an x

such that xA < x < xB or (xA + 1) §_x §_(xB — 1), the null hypotheses are

both accepted and the assumed rating is H. On the other hand, x > xA implies

A and x < xB implies B.

It should be noted that the calculations of xA and xB yield worst case

values if the null hypotheses are inequalities. Each equation is the well

known result when the null hypothesis is an equality. The use of BL and BU as

ends of semi-infinite intervales correspond to the worst cases in those

intervals.

I-4
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The Type II risks for the two simultaneous hypotheses tests are calculated

from xA and xB by

aE= 2 f(i;v) = 1- 2 f(i;6)

i=xA+1 i=x,

xB-I

B = 2 f(i;0).
S i=x,

For sufficiently low values of a and large values of x, — x,, BE and as will

differ only slightly from the traditional B risk given by

xB-1 xB-1 xA

a= z f(i;0)= 2: f(i;e) - z f(i;0)

k i=xA+1 i=x, i=x,

because

xB-1

2 f(i;6) = 1 and

i=x,

‘A

z f(i;e) = 0

i=x,

for the values of 6 that are of interest in the calculation of BE and BS.

I-5
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The Type I risk, Type II risks, and number of measurements taken are

inter-related and competing factors. The balancing of these factors must

result from consideration of (1) proposed values of uE, us, and the number of

measurements and (2) the mathematically resulting values of BE and BS. The

employee and supervisor can be aided in their balancing consideration by

operating characteristic (OC) curves. The OC-curve is a graph of the Type II

risk versus 0 with the number of neasurements as a parameter. The employee

naturally wants an 0C—curve with uE and BE small while the supervisor wants

both as and BS small.

B. Poisson.

The Poisson distribution function,

xx ex _

p(x;A) X, for x - O, 1, 2,...,

describes the distribution of the random variable x in time t provided that t

can be divided into intervals At such that:

i) P [ x > 1 in At ] O,

i) P [ x = 1 in At ] (k) ( At ) where A = kt, and

iii) xi is independent of xj-where i and j refer to any two different

intervals.

I-6
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The use of f(x;0) = p(x;A), e = A, x_ = 0, and x, = ~ in the equations of

Section I-A yields formulas for the design of simultaneous, Poisson hypotheses

tests to select an A, H, or B performance rating.

The parameter A is a meaningful property to test. It is the mean value of

x in time t. (Interestingly but usually less directly applicable, A is also

the variance of x in time t.) The additive property of A,

xt1+ta = kt: + At:

for any nonoverlapping times ti and ta, makes the actual substitution for the

parameter 0 equal to the product of F and A instead of A. Here F is the

fraction of the time t, for which A is the mean, that observations are made in

the measurement of x.

C. Binomial.

The binomial distribution function,

b(x;n,q) qx (1' q)"' - X) f0?‘ X = 0, 1, ..., ll,

describes the distribution of the random variable x provided the following

conditions are met:

i) x is the number of "bad" events in a random sample of size n

selected from an infinite, dichotomous population.

ii) P [ x = 1 ] = q when n = 1.

1
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The use of f(x;0) = f(x;0) = b(x;n,q), 0 = q, x = 0, and x, = n in the

equations of section I-A yields formulas for simultaneous, binomial hypotheses

tests to select an A, H, or B performance rating.

Either the parameter q or its mirror image parameter p = 1-q is a meaning

ful parameter to test. They are respectively the fraction defective and

fraction correct of the population. To use the language of "goodness" instead

of "badness", simply substitute 1-p for 6 and y = n-x for x and use yA = n-xA

and yB = n-xB in the acceptance range of yA > y > yB. When either the p or q

description is desired, it may be advantageous to do the calculations in the

opposite interpretation because of available tables and/or computer programs.

The design of a binomial hypotheses tests involves the balancing of a, BE,

BS, and n for a justifiable tolerance interval. Figures 6 and 7 present

OC-curves for a reasonably high tolerance interval and low Type I risks.

These may be used to balance the risk and the amount of data taken.

Another example, with an inordinately high tolerance interval, is

summarized in the table below. The standard used is 99.5 1; .2 percent

"goodness" or qu = .003 and qu = .007. The Type I errors used are

Q5 = as = .05. The last two columns present two points of the OC-curves.

" ‘A ‘B YA YB Ra 'E|Pa 'S|Pa

500 -1 8 501 492 493-500 1.00|.9985 .93|.9915

2000 1 21 1999 1979 1980-1998 .80|.9985 .81|.9915

6000 10 54 5990 5946 5947-5989 .29|.9985 64|.9915

18000 41 146 17959 17854 17855-17958 .004|.9985 27|.9915

36000 90 279 35910 35721 35722-35909 .000003|.9985 .06|.99l5
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Decision

Figure 1: Transitions from actual conditions to rating decisions when one

hypothesis test is used. Horizontal transitions would have no

risks. Risks of changing B, N, or A are labeled with the

appropriate Type I or Type II risks.
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Actual Decision

Es “E

B .

H

A

BE °s

Figure 2: Transitions from actual conditions to rating decisions for two

hypothesis tests. Horizontal transitions would have no risks.

Risks of changing B, N, or A are labeled with the appropriate

Type I or Type II risks.
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SO-“VI-"605 4
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Figure 3: The nine possible combinations of actual conditions and rating

decisions as viewed with one hypothesis test. The three blocks

with downward to the right shading represent correct decisions and

have no associated risks. The four blocks labeled with o and B

represent risks that are covered by the indicated Type I or Type II

risks. The two blocks that are unshaded and unlabeled have risks

that are not addressed by the test.
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The nine possible combinations of actual conditions and rating

decisions as viewed with two hypothesis tests. The three unshaded

blocks represent correct decisions and have no associated risks.

The three blocks toward the upper-right have associated employee

risks because the decision is lower than actual conditions.

Conversely, the lower-left blocks have supervisor risks. Shading

that is upward to the right indicates that the block is covered by

a Type I risk. Conversely, downward to the left shading indicates

a Type II risk. Note that two blocks are double covered.
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Figure 5: Venn diagram showing relation between Type I risks
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H0: p 3 .96 or q 3 .04 a = .05

l

Ha: p > .96 or q < .04
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04 __

n=500

02 *"

n=1000

n=2000

0 1 1 1 1 1 1 .1.
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_1> = 1- q

Figure 6: 0C-Curve for Upper Test

I-14

136



LLJ

G1

1.0 ' L

= .05

.8

.6

.4

.2

0

.88 .89 .90

P=1'

Figure 7: DC-Curve for Lower Test
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Appendix II. P-VALUE AND Q-VALUE INTERPRETATION

A hypothesis test may be viewed in two distinct ways after the data has

been collected. The more traditional view for performance appraisal is to

merely designate above, within, or below tolerance as the evaluation for an

action/task. A more informative view uses p-values‘ and q-values‘ to indicate

the degree to which the performance is above, within, or below tolerance on

one or more actions/tasks. If a job element has more than one action/task and

at least one action/task is appraised using a hypothesis test, the supervisor

may use p-values and q—values in the subjective mapping of action/task ratings

into the job element rating. This appendix presents examples of the p-value

and q-value interpretation.

If a supervisor uses a seemingly rigid hypothesis test with pL = .92,

pu = .96, GE = as = .05, n 2000, yA = 1935, yB = 1819, BE = .0001 for

p .98, and BS = .07 for p .90, the actual appraisal for this action/task

can be quite flexible. Of course, the supervisor can insist that a

measurement of y such that y Z_yA is needed to result in an above tolerance

rating. However, a more flexible and informative interpretation might be made

as follows.

Suppose that y = 1930 is the measurement from the sample of n = 2000.

Since 1930 f 1935 = yA, the narrow interpretation is that the employee is not

appraised as above tolerance even though 1930/2000 = .965 > .96 = pu.
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Since the point estimate of p is greater than pu, the employee may well be

interested in how the test would have to be changed to just barely yield an

above tolerance appraisal. Assuming that pu and pL are unchanged, both o and

B risks need to be changed to make yA = 1930.

The discrete nature of the binomial distribution makes it impossible to

state an exact replacement for at .05. Actually, the "setting" of 4!

"at" .05 really designates a range of .046 < “E < .059 when n = 2000 and

pu = .96. For yA to be set at 1930, uE must be in the range of

.138 < aE < .166. Thus, the change needed to improve the rating requires an

increase in aE by roughly a factor of three. The formal way to make this

statement is to say that (1) the p-value, as calculated from the data, is in

the range of .138 < p-value < .166 and (2) the p-value is roughly three times

the designed Type I risk.

The p-value presents one view of the data; the other view is presented by

q-values. Since there are many initially designed BE risks with each BE

corresponding to a value of p, there are many modified Type II risks when data

modifies the Type I risk to a p-value. Each modified BE risk is a q-value.

All of these q-values are needed for a complete description; they may be

displayed as the modified 0C-curve shown in figure 1. The particular q—value

of interest corresponds to p = .965 or q = 1-p = .035 because that is the

point estimate provided by the measurement y = 1930 or x = n—y = 70. This

q—value is .47 and corresponds to a designed BE of .70. Thus, this q—value is

roughly two-thirds of the designed Type II risk.

This particular example, and a couple of other examples which have within

or above tolerance test results, are summarized in the following table:

—'|-1
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_x_ r;'91_"e _pu1|e<;_7_T>1
n as q-va ue y n

y OI‘

Test q:value I (1/n) q-value ( (1/n) , 1

Rating BE y n p-va ue

.965 _0.4.6__o.59_-138' -166 z 2.3 - 3.6= 3
I Z I

1930 .

11 _i5L_ =1 .67 e-. 2/3 .468 N _ N.103 , 6, '" 2'8 3" "'3

.970 z .19 - .33 z 1/4

1940

'466z20~2 -466 ~31-42-37A T232 - ~ ~

.950 e. 11 - 22 z 20 z 2.09 - 2.10-.9 2.1

.046 - .059

1900

w i7_3_e.47e1/2,

In the above table, the greater than unity entries for the ratio of q-value

to p-value supports a final decison that the performance is above tolerance.

Conversely, the greater that unity ‘entry of p-value to q-value supports a

decision of within tolerance. The magnitude of these ratios indicates the

strength of this support.

_n-4
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The following table shows examples which have within or below tolerance ratings

from the strict interpretation of hypotheses tests. A final rating of within

tolerance is supported by a p—value/q—value ratio greater than unity. Conversely,

q-value/p-value ratios greater than unity support a final rating of below tolerance:

...v_ Eflis. _(=:a)2:,=7_’.>1

n 05 q-va ue y n

y or

Test gzvalue l (1/n) gzvalue | (1/n) , 1

Rating _ B5 y n p—va ue

.040 - .047 ~ _ ~
.909 _ 4 _ _056 .. .11 1.0 ~6/7

1818 _

0 = 1.1 z 10/9 T4__m0-489 = 10.4 - 12.2=11
I I 1 I

.915 _%-15‘ -24° = 3.8 - 5.1 =1 9/2

I 1 I

1830

w z .61 z 3/s .488 ~2.3 - 2.4 =.2.3
O —

.9999999s - .99999997 _ z .9999999s - .99999997 z
.950 .0.” _ J56 r=:(18 21) 19 A86 2.1

1900

-486 ~ 49 ~ 1 2
N .1_..O.o.0. ,_, . ~ /
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The interpretation of the last column in both of the above tables is that

the within tolerance rating is supported by a ratio of p-value/q-value that is

greater than unity. This results from taking the within tolerance state as

the null hypothesis. To support rejecting the null hypothesis and rate the

performance as either above or below tolerance, the q-value to p-value must be

greater than unity.

The bottom row in both tables is for the same measurement. This value of

y, 1900, is closely within the yA + 1 to yB - 1 range, 1936 to 1818, which

indicates neither above or below tolerance. Both p-value to q-value ratios

are greater than unity and support a final rating of within tolerance. The

fact that p-value/q-value ratios are essentially equal for the two tables

might be unexpected since 1900 is further from yB = 1819 than yA = 1935. This

is a consequence of having both pL and pu near unity; the binomial

distribution is not symmetrical.

Each row in the above tables may be used to appraise performance on an

individual task/action. Combinations of rows may be used in the subjective

appraisal of a job element which contains several tasks/actions. Naturally,

this subjective appraisal must include all tasks/actions in the job element

whether or not they are treated with a hypothesis test.

As elementary examples of appraising a job element as exceeded, met, or

not met, consider a job element which has only two tasks/actions. Assume that

both are treated with hypothesis tests. If the two p-value to q-value ratios

II-S
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are those in the y = 1940 and y = 1900 lines of the above tables, the

supervisor may well subjectively decide on an exceeded rating. 0n the other

hand, there would be less support of an exceeded rating if the ratio were from

the y = 1930 and y = 1900 lines or the y = 1940 and y = 1830 lines.

Clearly, the supervisor's subjective decision becomes more complicated as

the number of tasks/actions is increased. For example, a job element may have

(1) a couple of tasks/actions not treated with hypothesis tests but judged

within tolerance and (2) three tasks/actions with p-value to q—value ratios

corresponding to those in lines of y = 1930, y = 1900, and y = 1830. This

example has fairly strong justification for a met rating. 0n the other hand,

replacing the y = 1930 line with the y = 1818 line would make a met appraisal

more difficult to support.

In any nontrivial situation, the use of a hypothesis test on one or more

task/action will not provide the supervisor with an automatic decision. The

use of p-values and q-values will, however, guide the supervisor in the

necessary subjective decision. Ignoring the p—values and q-values would be

indefensible because that would deprive the manager of objective information.
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p value z .15

.88 .

q 3 .04 n = 2000

or q < .04

I I l I L

.90 .91 .92

P = 1 ' Q

Figure 1: Q-Values for y = 2000 - x = 1930
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MODELS FOR CONTINGENCY TABLE DATA

R.A. KOLB

DEPARTMENT OF MATHEMATICS

UNITED STATES MILITARY ACADEMY

WEST POINT, uv 10996-1786

ABSTRACT

A contingency table is a presentation of count data resulting from

cross-classifications. For this type of data there are many models

available to aid in the explanation of the relationships of the

corresponding variables. The choice of an appropriate or, perhaps, the

most appropriate model depends on a number of factors including both the

generating sampling model and the hypotheses to be considered. The purpose

of this paper is to describe some of these explanatory models and provide

some recommendations for their use.

INTRODUCTION

The cross—classifications of a contingency table are variables,

factors, or responses which have a number of levels or categories. Terms

used synonymously for this type of data are cross—classified,

cross—tabulated, categorical, qualitative, or frequency data. These data

are the result of cross—classifying a population, or sample from a

population, and accumulating totals for each "cell" of the contingency

table. A cell total, then, is the number of observations from the

population or sample that fall into the categorical combination represented

by that cell. The table summarizes information for the entire population

or sample, where every observation is categorized into one and only one

cell.
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A two—d1mens1onal (two—way), r X s contingency table has two variables:

one variable having r categories and one variable having s categories. The

"complete" cross—class1f1cat1on gives a total of r's cells. The following

notation for a two—way, r X s table will be used:

Ixij} E table of observed values;

{p13} E table of cell probabilities;

imijl E table of expected values;

s

Z xij = xi. E observed row marginals, i=l,2,...,r;

J=1

r

Z xij = x.j E observed column marginals, j-l,2,...,s;

i=1

r s

Z Z xii = x;_ = N E total sample size or population.

1-1 j=1

The marginal probabilities (pi_,p_J) and marginal expected values (m1_,m.J)

are similarly defined. This notation is easily extended to higher-way

tables (tables with more than two variables) simply by adding more

subscripts.

The primary purpose in developing models for contingency table data is

to help in the determination, interpretation, and explanation of the

relationships among the variables. Beginning with Pearson (1900),

statistical techniques have been developed and used to test for these

variable relationships, but only recently has the focus been on the use of

models. Statistical techniques in support of models have now been

wel1—deve1oped. Specialized statistical computer packages for contingency

table models (e.g. ECTA—Goodman and Fay 1973, CONTAB—Zahn 1976, and

GENCAT—Landis et. al. 1976) have been available for some time and the

currently popular general statistical packages (SPSS, BMDP, SAS) have

contingency table data models and associated statistical techniques.
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The use of these models and computer packages provides flexibility in

the analysis of various type problems including those with many variables

and complicated structures that a few years ago would have been impossible

to analyze. The models provide the same ease of interpretation that the

lineur models of ANOVA and regression provide. In fact, the interpretations

of the parameters of the contingency table models are often analogous to

corresponding parameters in ANOVA and regression models. Also, contingency

table models allow for classic model building in a manner similar to

stepwise regression.

MODELS

The models available for contingency table data are many and varied and

often have specialized use. The models having most universal appeal and to

be discussed in this paper are the log—linear and logit models. Other

models include an additive model (Bhapkar and Koch 1968), the Lancaster

(1949, 1950, 1969) partitioning model, and a general linear model (Nelder

and Wedderburn 1972 and Nelder 1974) with the log—linear model as a special

case. The additive model has been used for special problems such as sample

surveys, drug comparisons, and biological assays (e.g., see Johnson and

Koch 1970 and Koch and Reinfurt 1971). Johnson and Koch discuss the

advantages of the additive model for sample survey data. In general, the

1og—linear and logit models are the most extensively used, providing

convenient parameters for most hypothesis testing situations. An excellent

discussion and comparison of the corresponding additive and multiplicative

interaction terms for the additive and log—linear models, respectively, is

given by Darroch (1974).
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The 1og—linear model is most convenient for general independence—type

hypothesis testing situations under poisson or multinomial sampling. As a

motivating example, consider a 2 X 2 contingency table. The classic

concept of independence requires that

pij ' p1,P,j 9 1 -192 9 :1: 192 °

A single parameter measuring this interaction is Yule's (1900)

cross-product ratio

(1

pl1p22

p12P21

Independence exists when this ratio is equal to one. Taking the logarithm

of a under independence,

In a = 2n p11 — in p12 — Zn p21 + In p22 = O, (1)

we can see the motivation in using a log-linear model - a zero—valued

parameter would imply independence.

The general log—linear model most frequently used was presented by

Birch (I963). For an r X s table the model is

= Zn 3 LI + + 1=1,2,0o0,r; J=l,2,ooo,8 0

This model is over-parameterized in that there are r + s + (r's) + 1

parameters for r's cells. Analogous to ANOVA, the constraints

Z u = Z u

i 1(1) j 2(3)

1--1-1
ti

ll
1-1

G

12(1j) 12(ij)
= 0 (3)

Lb

are conveniently imposed. As an example, for the 2 X 2 table the

constraints allow a reparametrization of the model in equation (2) by

letting ul = u1(1), uz = u2(1), and ulz = u12(11), leading to the model

2'11

212 =

£21 =

222 T

ll

U

U

U

+

+

ul + uz

l 2

ul + uz

1 2

+

+

U

U

U

U

12

12 (4)

12

12 '

c
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Now the "u parameters can be determined uniquely in terms of the

logarithms of the probabilities. Specifically,

u E

U1 =

U2 =

“12 ‘

The "u" parameters of

1/4 (2.11 + 9,12

£12

1/4 (£11 £12

+1/4 (£11

1/4 (£11 ' 212

equations (2)

interpretations to the parameters of the

+ 2
21

£21 '

+ £22)

1 )
22 (5)

£22)
+ 121

— 2 +

21 £22) '

through (5) have analagous

linear model for ANOVA. In

particular, for the 2 X 2 model of equations (4) and (5), u is the average

of the logarithms of the probabilities, ul is the average differences

across the first variable levels and u is the average differences across
' 2

the second variable levels. As in ANOVA, ulz is an interaction term, which

for the 2 X 2 table measures the dependence between the variables in the

sense of Yu1es' cross—product ratio u and, specifically, from equation (1)

equals 1/4 in a. Most importantly, under independence or "no interaction",

ulz equals zero.

Another useful form of the log-linear model and one frequently ‘

overlooked in the literature was first presented by Ku, Varner, and

Kullback (1968) and has been used primarily by Kullback and his associates.

Instead of the constraints in (3), Kullback fixes one cell of the

contingency table and defines the parameters to measure for each variable

and interaction, a difference from this fixed cell. For the 2 X 2 table

with cell 22 fixed, the model is

£11

212

£21

Z22

= I0 + T1

= To + T2

Too

To + T1 + T2 + T12

(6)
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Solving for the new T parameters,

To ' 222

T = 2 - 2
1 12 22

(7)

T2 = 221 ' 222

T12 ’ £11 ' £12 ' 121 + 222'

In terms of the Birch model "u" parameters,

To = “ ' “1 ""2 + “12

T = 2(u — u )
1 1 12

(3)

T2 = 2(“2 ' “12)

T12 = 4“12 '

The important interaction parameter T12 is proportional to Birch's ulz and

both reflect independence for values of zero.

It is interesting to recognize the similarity between these models and

models for ANOVA. Similiar to Birch's log linear model, the usual linear

model for ANOVA defines an overall mean parameter, and measures factor

effects as differences from this mean. On the other hand, similar to

Kullbacks l0g—linear model, the regression model for ANOVA fixes one factor

level, and defines the regression coefficients as the differences of the

other factors from this fixed level.

In addition to log—linear models, logit models are also very popular

for certain applications of contingency tables. In particular, for

product—multinomial sampling with homogeneity—type hypotheses and one or

more response variables, logit models are very useful. For example,

consider the factor and response problem depicted in Figure 1.

\\
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All Ii
Figure 1, Factor A, Response B

 

Here, A is the factor at 2 levels and B is the binomial response. The

homogeneity hypothesis would be H0: p11 = p21 (or p12 = p22). Under H0,

the log—linear models would require that two parameters equal zero, namely

from (5) and (7),

Birch: ul = ulz = 0

V Kullback: T1 = T12 = 0.

Yet, the homogeneity hypothesis is a one degree-of—freedom test and a

convenient model should provide a single corresponding zero—valued

parameter. Defining the logit L1 = 2n(pi1/p12) for i = 1,2,

L1 7 'P(P11/P12) = '“ P11 ' '“ P12

= Zuz + 2u12

and

L2 7 '“(P21/P22) = '“ P21 ' P“ P22

2u2 - Zulz .

Letting w = 2u2 and wl = 2u12,

L1 = w + wl

(9)

and L2 = W _ w'

w = 1/2 (L1 + L2)

g W1 = 1/2 (1.1 - 1.2). (10)

Now, the single model parameter wl corresponds to the one degree—of-freedom

homogeneity hypothesis (i.e., H0: pll = p21 <=> W1 = 0).
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LARGER TABLES

Extending these models to larger tables is relatively straight forward;

although, some care is required to insure clear definitions of the

parameters so that they will purposely relate to the hypotheses of concern.

Appendix A provides the models and hypotheses for the 2 X 3 table and

Appendix B for the three-way 2 X 2 8 2 table.

Initially, considering the 2 X 3 table, the independence hypothesis is a

two degree of freedom test and each log-linear model provides two convenient

parameters, uiz and uiz for the Birch model and rt? and tfig for the

Kullback model. In comparing the models, the arbitrary fixing of a cell

in the Kullback model may not appeal to some analysts, but the relative

simplicity of the model would certainly appeal to all. The independence

parameters for the Kullback model are also easier to interpret. Letting

amn be the cross product ratio of column m and column n taken as a 2 X 2

table, independence occurs when the three cross product ratios alz, s13,

and s23 are equal to one (any two am“ equal to one will insure that the

third is equal to one). The log-linear parameters relate to these omn in

the following manner:

"12

I

"12

1.1
T11

1:1

The Kullback T parameters are

I/6 (in alz + in a13)

I 1/6 (Zn olz + in a23)

- in ala

Zn (123 0

simply the logarithms of Yules' original

cross—product ratios for the 2»X 2 subtables that include the fixed cell.
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The appropriate logit model is dependent on the scheme of sampling.

When the data is sampled across the rows, it is convenient to build a model

that calculates logits based on ratios of row probabilities for each column.

This is reflected in the III.a. model of Appendix A. Symmetrically, when

data is sampled across columns, it is convenient to build a model that

calculates logits based on ratios of column probabilities for each row.

This is reflected in the IlI.b. model of Appendix A. For the sampling

model in III.a., the corresponding homogeneity hypothesis is a two degree

of freedom test that compares the probabilities across a row. The logit

model provides the three parameters wl, wz, and w3 and the constraint that

their sum equals zero. For the model in III.b., the homogeneity hypothesis

is a two—degree of freedom test that compares the probabilities across any

two of the three columns. The logit model provides three parameters

(corresponding to the three columns); any two of which can be used to test

the hypothesis. It should be noted that other logit parameterizations are

possible.

Turning now to the three-way 2 X 2 X 2 table in Appendix B, the

comparative simplicity of the Kullback model is again apparent. In the

Kullback model the 222 cell has been fixed. The main effects (r11,rf,r:‘)

measure the difference between the second and first levels of each

variable as compared to the fixed cell. The two—way interaction terms

[Ti{,T%T,T{T) are the logarithms of the three possible cross-product

ratios with the 222 cell that measure interaction between two variables

with the third fixed. The three—way interaction term (T???) is the

difference of the logarithms of the cross-product ratios when variable one

is fixed at level one compared to level two.
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The Birch model uses a mean parameter (u) which is the average of the

logarithms of the cell probabilities. The main effects (u1,u2,u3) average

the difference in the logarithms of the probabilities at the two levels of

each variable, respectively. The interaction terms (u12,u13,u23) average

the logarithms of the cross-product ratios corresponding to the two

measured variables. The three—way interaction term (u123) measures the same

difference of logarithms of cross-product ratios as does Tf:?; although, it

averages this difference across the cells by taking 1/8 the value.

The presented logit model considers that variable one is a response

variable and that product—multinomial sampling is appropriate. The model

is analogous to the 2 X 2 Birch log—linear model; however, the parameters

(w2,w3,w23) measure the effect that the corresponding terms have on the

response variable.

Considering the hypotheses for the 2 X 2 X 2 table as listed in

paragraph IV of Appendix B, the no three—way interaction hypothesis is a one

degree-of—freedom test and each model provides one corresponding

parameter. The logit model W23 parameter (and corresponding hypothesis

test) is more properly interpreted as a measure of the interaction between

variables two and three as it affects variable one. The mutual independence

test under multinomial sampling is a four degree of freedom test and the

two log—linear models provide four parameters corresponding to each

possible interaction. Under product—multinomial sampling the test has

three degrees of freedom and the logit model provides three parameters.

The conditional independence test requires that one variable be considered

fixed and that independence between the other two-variables be tested.

In Appendix B, variable three has been fixed. This is a two—degree of

freedom test and each model provides two parameters. The homogeneity test
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has many forms. The one chosen in Appendix B corresponds to the selection

of variable one as the response variable in the logit model. Under

complete homogeneity, all these logits and logit parameters are equal to

zero. In effect the 2 X 2 X 2 table has collapsed to a 2 X 2 table with

variables two and three remaining. The terms of the log-linear models

relating to the first variable are also now zero.

CONCLUSION

It might be said that there is only a limited amount of information

available from any given data set. For contingency table data, the models

presented in this paper provide the means to fully explain the data with

respect to the measured variables, and often indicate relationships which

might not have been apparent with other techniques.
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APPENDIX A. Z X 3 TABLE MODELS

I I
I. Birch Log-linear Model

General:

zij

Define:

“1

“2

ué =

Model:

2'11

£12

213

£21

222

£23

Parameters:

U

“1

“2

~=2'

"12

I

"12

in pij = u + u1(1) + u2(j) + u12(1j); i 1 2, j 1 2 3.

“1(1) “12 “12(11)

“2(1) "12 = “12(12)

“2(2)

u + ul + +

u + ul + + uiz

“ + 1 + ' 2 ' "12 ' 12

U"U1+ -

u - ul + -

" ' 1 ' _ 2 + “12+ "12

= 1/6 (£11 + 212 + 213 + 221 + £22 + 223)

= 1/6 (£11 + £12 + £13 " £21 ' £22 ‘ 22 )

' 1/6 (2z11 ' 212 ' 213 + ' £22 ' £23)

' 1/6 ('2 + 12 ' £13 ' 21 + 2x22 ' 23

= 1/6 (21 ' 212 ' £13 ' 21 + 222 + £23)

= 1/6 (“£11 + 2212 ' £13 + £21 ' 2z22 + £23)

 

157



II. Knllhack Log-linear Model

Define: Cell 23 fixed

Model: 111

212

£13

221

£22

223

Parameters:

To

T1
1

T:

Nun

T

11
T11

1.1
T12

III. Logit Model

2

To

To

To

To

To

To

123

113

£21

122

9'11

212

1 3 11
+T1 +11 +111

1 j ij
+ 11 + 12 + 112

i
+11

.1
+11

N051

+1’

123

" 123

223

113 ‘ £21 *

213

a. 151 pij I 1 for j = 1,2,3

Define: L = Zn(p /p ), j = 1 2 3

J 11 2.‘!

Model: L1 = w + wl

L2 = w + wk

L3 = w + w3

Constraint:

1

w + wz + 3w = O

222 + £23
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Parameters:

b.

W

"1

"2

"3

3

2

3'1

Define: Lij - 2n p1J/ Z pij for i 1 2, j 1 2 3.

k¢j

= 1/3 (L1 + L2 + L3)

- 1/3 (2L1 - L — L )
2 3

- 1/3 (-Ll + 2L2 — L3)

- 1/3 (-L1 - 12 + 2L3)

pij = 1 for i I 1,2

General: Lij = w + wj(1)

Constraints: 1€1w3(i) = 0 for j = 1 2 3

Define: wl = w1(l), wk = wh(1), w 3(1)

Model: L11 = w + wl

L12 = w + wz

P13 ' " + "3

L21 ' " 7 "1

L22 = " 7 "2

L23 7 " ' "3

Parameters: w = 1/6 Z2 L11

W

"2

l

"5

11

1/2 (L11 ' L21)

1'/2 (L12 ' L22)

'/2 (L13 ' L23)
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IV. Hypotheses

1. Independence H : p = p p 1 = 1,2‘ j = 1,2,3
0 13 1- -3' '

Birch Ho: u = uiz = 0

12

11 iJ
Kullback H0: 111 = 112 - 0

2. Homogeneity

30

b.

Ho‘ P11

Birch an

Kullback

Logic H0

Ho: p11

P12

Birch H“

Kullback

Logit Ho

Ho

H

0

P12 ’ P13 ’> P21 ” P22 ” P23

S ' Z § Z“2 "2 "12 "12 P

. J_J_1J,1J,' T1 T2 T11 T12 0

wl = wz = w3 = 0

P21

=> P13 = P23

P22

"1 “ “12 = “12 = O

. 1_1J_1J_
' T1 ' T11 T12 ‘ O

W1 = wé = w3= 0
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APPENDIX B. 2 X 2 X 2 TABLE MODELS

I. Birch Log—linear Model

General:

2 = u + ujk 1(1) + "2(3) + "3(k) + "12(1j) + "13(1k) + u23(jk) + u123(ijk)’

1 - 1,2; 3 = 1,2; k = 1,2.

Define:

"1 = "1(1)

"2 ” "2(1)

Model: "

"111 ' " +

"112 ‘ " +

1121 = " I

"211 = " '

"212 ' " _

l = u —

221

"222 = " '

Parameters:

u = 1/8

ul = 1/8

uz = 1/8

ua = 1/8

ulz = 1/8

"13 = 1/"

u23 I 1/8

"123 ' 1/"

111+

U1 +

U1 -

U1 +

U1 +

"1

"1

(£111

(£111

(£111

(£111

(£111

(2111

(£111

(£111

"3

ll

"2

"2

"2

"2

"2

"2

"2

+

+

+

+

= u

+ U3

_ U3

._ us

+ U3

_. us

+ U3

_ us

"112

£112

£112

"112

2112

£112

2112

£112

3(1

+

+

+

+

+

+

+

+

)

12 "12(11)

"12

"12

"12

"12

"12

"12

"12»

£121

£121

2121

"121

£121

£121

2121

£121

+

+

+

+

+

+

+

+

"13

U

U

U

"13

"13

U

"12

"23

13

13

13 +

13 +

"122

"122

2122

£122

2122

2122

2122

2122

+ U

Ll

LI

U

U

ll

Ll

"12

"23

+

23

_

23

23

23

+

23

+

23

23

+

+

+

+

£211

£211

"211

£211

2211

2211

2211

1211

 

(11)

(11)

"123

"123

"123

"123

"123

"123

"123

+ £212

2212

+ "212

£212

£212

+ £212

"212

+ 2212

+

+

+

+

2221

"221

£221

£221

£221

£221

2221

"221

+

+

+

+

222

222

222

1 )
222

1 )
222

222

222

222
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II. Kullback log—linear Model

Define: Cell 222 fixed

Model:

T111 = To +

T112 = To T

T121 = To T

T122 = To T

T211 = Tb T

T212 = To T

T222 T To

Parameters:

To = T222

TT “ T122

TT = T212

TT T T221

TTT = T112

Ti? ’ T121

T3? = T211

TTTT “ T111

1 j 1<
T1+‘l'1+T1

1 3 13
T11‘ T1+ T11

1: 1*: 1:‘:

T:

Tf + Tf + 1}?

1:

T222

T222

- 2

111

T122 £212 + £222

T122 T221 + T222

_ 2 _212 T221 + T222

2112 T121 + T122 2 2 2 221 222

13 jk ijk
I T11 T T11 T T11 T T111
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III.

IV.

Logit Model:

General:

P

1 k _ _ _ _ =

Ljk = ln(—-1-—p2jk) - -.1 + w2(J) + w3(k) + w23(jk), 3 - 1,1, k 12

where

Define:

"2 = "2(1)' "

Model

L11 = " + "2

L12 7 " + "2

L21 = " ' "2

L22 = " ' "2

Parameters:

w = 1/4 (L1

w2 = 1/4 (L

w3 = 1/4 (L

v23 = 1/4 (L

Hypotheses

§ "2<1> ' E "300

3

+

+

1

1

1

1

"3

"3

"3

"3

+

+

1. No three—way

Kullback H0

Birch H0:

+

+

L12

L12

L12

L12

(-1-P1
fl

"23

"23

"23

"23

+

+

23(jk)

"3(1)’ "23 = "23(11)‘

L21 +

L21

L21

L21 +

Interaction

u = O

'1'

123

ijk

111

Logit H0: w23 =

=0

0

=0.ll wed ii

wok)

L22)

L22)

L22

L22)

(No second order Interaction)

163



Mutual (Complete) Interaction

Birch Ho: ulz = ula = "23 = "123 = 0

Kullback H0: tr? = Ti? 1%? = rig? = 0+

Logit HO: w2 = w3 = w23 = 0

Conditional Independence (1 to 2 with 3 fixed)

Birch H0: u12 = ulz

Kullback 110; TE = TH

Logic H0: w2 = w23

Homogeneity of Tables

Birch Ho: ul = u12

Kulloack H0: T: = rig

Logit H0: w = w2 =

3 = 0

k
1 = O

= 0

= "13 = “123 3 0

_ ik _ ijk =
" T11 ' T111 O

W3 = w23 = O
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On a Class of Probability Density Functions

H. P. Dudel and S. H. Lehnigk

U.S. Army Missile Command I

Research, Development, and Engineering Center

Research Directorate

Redstone Arsenal, Alabmna 35898-5248

SUMMARY

The application of a three parameter class of one-sided probability dlSLFibh~

tions is being discussed. For specific parameter values, this class C0ntainu

as special cases a number of well-known distributions of statistics and Sta

tistical physics, namely, Gauss, Neibull, exponential, Rayleigh, Gamma, chi~

square, Maxwell, and Nien (limiting case of Planck's distribution). One or

the three parameters represents scale; the other two represent initial and

terminal shape of the associated probability density function. A fourth’

parameter, shift, may be introduced. The distribution class discussed in Lhiu

paper was introduced by L. Amoroso [2] in 1924. It is closely connected with

a family of linear Fokker-Planck equations (generalized Feller equation).

In fact, the class of probability density functions associated with the din~

tributioh class considered here is a special case of the set of all delta

function initial condition solutions of the generalized Feller equation for

a fixed value of the time variable. It will be shown that, as a function of

the logarithm of the independent variable, the logarithm of the cumulative

distribution function is asymptotically linear as the independent variable

approaches zero from above. This fact leads to a general criterion for thu

applicability of the presented distribution family relative to given empirical

data. The applicability criterion can be used to determine approximate valnen

for the two shape parameters. They can subsequently be used as initial values

in any of the established parameter estimation techniques.
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l. A Class of Distributions

A number of basic continuous distributions of classical statistics

and statistical physics are special cases of a class of distributions which

is characterized by the cumulative distribution function

F( ) 9 T; = xb-To q = 9 X > 0 s

x =

° ' "-§ ° ' (1.1)

which depends on the three mutually independent parameters b >0, p< l, and

A <l. with these restrictions on the parameters p and A , the composite

quantity q = (X-p)(laA)'T will be greater than -l. In standard terminology,

b is the scale parameter, and there are two shape parameters, A and p ,

which are independent of each other. A fourth parameter, the shift parameter

xo, may be introduced by replacing x by x - xo. The functions F(y) and

Y(a,y) in (l.l) are the Gamma and the incomplete Gamma functions, respectively

By means of the integral definition of y(a,y) [l,8.350.l], (l.l) can

-be expressed in the form

£1-A

F(X) = ~J t(T-q)-T G-t dt , X > 0 .

0

Since Y(a,y) may also be defined by means of the degenerate hypergeometric

function ¢(= F ) [l,9.236.4, 9.2l0.l],

Y(a.y) = %1/a <1>(a.a+l;-y) . (I-3)
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we obtain a third expression for F(x))

F(x) r(2lq) 51-P o(1+q, 2+q; -51-1) , X > o , (1.2)

which will turn out to be quite useful later on. j

The probability density function f(x) associated with the cumulative dis

tribution function F(x) is given by

’~ b-"€_p exp '€]-A 9 E5: Xb-]s Q = X > 0 9

f(x) =

0 , x g 0 .

(1.3)

The distribution class defined by either the cumulative distribution fUH('

O

tion (l.l) or the probability density function (1.3) was introduced by L_Amoro$o

[2] in 1924 and reconsidered in later publications, [3], [4], [5],and [6].

Some other aspects of this density function class have been discussed in

17] from a theoretical point of view. That paper contains remarks about the

associated probability measure space and the associated characteristic function

class. A more thorough discussion of the characteristic functions from the

point of view of complex function theory wil be presented elsewhere [8].

The class of density functions (1.3) contains the following special cases:

Gauss (normal), Neibull, exponential, Rayleigh, Gamma, chi-square, Maxwell,

and Nien, as has been pointed out in [7]
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2. The Moments

All moments of the distribution class characterized either by the

cumulative distribution F(x) given in (l.l) or by the associated density

function f(x) given in (l.3) exist, provided the parameters b , A , and

p are kept within the ranges b > 0,A < l, and p < T.

The characteristic function associated with F(x) and f(x) is given by the

Laplace integral

\l'(s) /P f(x)e5x dx

0

@

: 1-A '1 ‘p _ ]"A

rum) b {E exp ( 5 + sx)dx

o

= "* I54’ exp (-EH‘ + sb€)d£ , 6 = xb" . (2-1)

Fil+ql O

where s is a complex variable. The last integral in (2.l) converges for

Re s g 0 if 0 < A < l, for Re s < b'] if A = 0, and for every s if A < 0.

Reference is made to [7fl and for a more detailed investigation, to [8]. It

follows that W(s) is holomorphic in the domain Re s < 0 if 0<: A < l, in

Re s < b'] if A = 0, and it is an entire function if A < 0. Therefore, for

A g 0 the moments of our distribution class are given by
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llln = \v(")(0) = 1~—(-—y1EE ft("'"‘")(1'*)-1'1 et dt

- o

11" _
- H176 1‘(l+ q +1'_‘X) (ii=o,1,2,...), (2.2)

In particular, mo = l, and the first moment, or mean p , is

Ill] = r('| '1' q +-1%)?) . (2.3)‘C
ll

If A is in the range 0 < A < l, W(s) is not holomorphic at s=0.

There is no power series expansion about s=0. The moments in this situation

may still be defined, however, by (2.2) as lim W(")(s0), Re so < 0, as so

0 two-dimensionally in the left-hand s-plane. Of course, one may alterna

tively use the definition of the moments in the form

@
mn ="m x" f(x)dx (n=0,l,2,...)

0

for O<A< 1.

3. An Associated Differential Equation

From an application point of view the usefulness of the distribution

function defined in Section l lies in the fact that it contains two indepen

dent shape parameters, p and A , which allows fitting initial and terminal

shapes (in the direction of increasing x) of given distribution data indepen

dently. However, there is another aspect which may very well be of fundament

al theoretical interest. -
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The class of density functions (1.3) is closely connected to a class of

Fokker-Planck equations. By fiat this connection then is typical for all

of the special cases listed in Section l. It makes it possible to investigate

the underlying probabilistic features of the function class (1.3) and its

special cases by employing the machinery of probability theory.

Disregarding statistical considerations completely at this point, one

may ask the question: what is the most general one-dimensional autonomous

parabolic (Fokker-Planck) equation

Q)

XQJ

N
QJQJ

FPN I

[A(x) g; + D(x)z] - = 0, z — z(x,t), x >0, t >0, (3.1)

which admits a similarity solution

lam) = b"<uf*<:) . c ><b"(t> . (3.2)

which is conservative, i.e., for which

ow

zo(x,t)dx 5 1

This question is an important one in the attempt to model diffusion pro

cesses in the applied sciences and to define initial and boundary condition

solutions of an equation of the form (3.1). In practical terms, the coeffi

cients A(x) and D(x) in (3.l) are the diffusion and drift coefficients, re

spectively. D(x) is being called the drift coefficient because, if x has

the unit length and t the unit time, then D(x) acquires the unit length/time
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To obtain conditions for the coefficients A(x) and D(x) and for the func

tions f*(£) and b(t) appearing in (3.2), we substitute zo(x,t) into the equa

tion (3.1) and obtain a first order ordinary equation involving A(x) and D(x),

a second order ordinary equation for f*(5), and a first order ordinary equa

tion for b(t). In the absence of any further conditions on zO(x,t), the

differential relationship between A(x) and D(x) cannot be uniquely solved.

Practical considerations in a number of specific situations required the

diffusion coefficient to obey a power law of the form

A(x) = axh)‘ , <1 > 0. (3.3)

The drift coefficient then becomes

D(x) =apx>‘ + Bx, ).<l, p <l, B£R. (3.4)

The resulting equation for f*(§) has the particular solution

f*((£) = 1.—(]]'T(;;; 5'” exp - 51*. q = (A-p)(l->.)'1 .3 (3-5)

and the function b(t) becomes

_ -1[@(1-x)2r1(1 X) . e = 0 .

b(t) = (3.6)

-1

[a(l-A)B'] <1 - exp - (1-i)Bt)]("*) ,e ¢ 0.

Mathematical aspects of the differential equation (3.1) with its coeffic

ients specified by (3.3) and (3.4), which has been designated generalized
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Feller equation have been investigated in a sequence of papers[9], [10], [11],

[12]. The special types of the equation (3.1), (3.3), (3.4) for the cases of

interest in statistics in connection with the special distributions listed

in Section l have been given in [7].

Within the framework of this paper it is of interest to note that

(1) The function z0(x,t) in (3.2) with f*(£) and b(t) specified in (3.5)

and (3.6), respectively, i.e.,

zo(x,t) =' TT%§§7 b']£'p exp -£]—P , (3.7)

is the delta function initial condition solution of (3.1), (3.3), (3.4), with

the delta function applied at x=0, t=O [Q]. In other words, the similarity

solution (3.7) describes the distribution process governed by (3.1), (3.3),

(3.4) from a completely concentrated initial state at x=0, t=O.

(2) If we "stop" this process at any time to>'0, we see that, setting

b(t0) = b and comparing (3.7) and (1.3), the function zo(x,t°) becomes the

probability density function f(x) of the process at t = to. This fact opens

up the intriguing opportunity of studying the statistical or probabilistic

behavior of the underlying process in time if the scale parameter b is

allowed to vary according to (3.6).

(3) It is easily seen from (3.6) that b(t)+ + w as t + + w if the drift

parameteri3§ 0. This means the process will "spread out“ over the entire

-l
_ (1—A)

positive x-axis. However, if B > 0, b(t) + [u(l—A)B 1] , a finite con

stant, as t + +-w. In other words, the process approaches a steady state 33‘

t +-rem with a finite mean value.
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(4) The function zo(x,t) given in (3.7) is a particular delta function

initial condition solution of the generalized Feller equation (3.1), (3.3),

(3.4). The delta function initial condition solution of this equation with

the delta function applied at x =_y> 0 and t = 0 is given by

(
- _v*(X.t;y)-‘-' (l-A)b']€'(p+")/2 (eatnl p U/2 Iq (2€(]'")/2(e'Btn)(] A)/2)

1-A
X exp <-a"*- (e'"tn) (3.9)

5 =xb'], n= yb'], b = b(t) given by (3.6), x > 0, t > 0, q = (A-p)(1-A)'],

Iq = modified Bessel function of the first kind (Bessel function of imaginary

argument). This fact has been established in [9]. (It is useful in this con

text to also consult [ll]and [l2]for slight notational differences between

this paper and [9].

The function v*(x,t;y) has the following properties [9]:

Y Y
‘k

tel v (><.l:;y) > 0. X > 0. t >0. y > 0.

(b) v*(x,t;y) l 0 as t 1 0 for x > 0, y > 0, x f y,

(c) v*(x,t;x)-l+ w as t + 0, x > 0,

(d) v*(x,t;y) + zo(x,t) as y + 0 for x > 0, t > 0,

O'~,8

<

1'

(e) (x,t;y)dx 5 1

Clearly, these properties make the function v*(x,t0;y) a one-sided probabiliiv

density function for t=to>0 and y > 0 fixed. In particular, property (d)

substantiates the claim make in the summary that the family of distribution
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characterized by (1.3) is a special case of the much more general family

specified by v*(x;to;y).

In statistical distribution fitting attempts, in particular in cases

where the density data have a maximum, one reason for the frequent occurrence

of unsatisfactory fits results from the fact that the location of the maximum

of a distribution candidate cannot be chosen arbitrarily. It is normally

automatically determined by the basic parameters. For the density functions

given by (l.3), for example, the maximum is located at

xm = 1-p/<1-111"“‘*)b . p < 0

It is fixed once the parameters b, p, and A have been determined. The class

of functions v*(x,t0;y) contains the additional independent "delta function

application parameter“ y . The presence of this additional parameter changes

the situation drastically and favorably. A thorough discussion of the class

v*(x,to;y), however, will not be attempted here. We return to the discussion

of our main subject.
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4. An Applicability Criterion

Inherent in any attempt to fit given empirical distribution data by

means of an analytically defined probability density function are three

crucial problems, namely (i) candidate function selection from a group of

available functions, (ii) determination (estimation) of the parameters of the

selected function, and (iii) evaluation of the achieved quality of fit. Since

an adequate treatment of the last two problems requires a thorough discussion

of the details of the numerical techniques involved they shall be left

untouched here. This subject - relative to the class of distributions which

represent the topic of the present paper - will be picked up in a separate

publication. we shall concentrate, therefore, on the first problem and pre

sent a general applicability criterion for the distribution class defined by

the cumulative distribution functions (l.l) or by the associated density

functions (l.3). This criterion covers all special cases mentioned in Section

l.

Let us consider the distribution function F(x) given in the form (1.2),

1.e.,

F(x) = fl2+q)- 51") ¢‘(l+q, 2+q; -EH‘). €= ><b"]

Taking logarithms, we obtain

1109 F(x) =,-109 1‘(2+q) + (1—p) 102-1§+l<>9 <I>(l+q. 2+q; - ( ) A) (4-1)

u'|><
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At this point it will be advantageous to perform the independent variable

transformation x = py where u = m] is the mean (first moment) which can

easily be determined from given empirical data. This transformation ensures

that all x data in the interval 0 < x < p will be mapped into y data in

the interval O < y < l. This is important as will become apparent momen

tarily. Setting then log F(x) = log F(py) v and log y = u so that

0']><

ll

cr
\1:

ulog log u - log u'1b ,

we obtain from (4.1) the functional relation

U l—A

(nib) (4.2)

The degenerate hypergeometric function ¢ is defined as a power

v(u) = -10s1‘(2+q) - (1-r>)l<>9 u'1b + (l-p)u + l09<1><l+q.2+q; -

series in its last argument with constant term equal to unity. Therefore,

as x + 0, i.e., as y + 0 which means as u + - w ,

~ l-A

109 ¢<l+q. 2+q; — (e“/u']b) )+ 0

Consequently, the function v(u) given in (4.2) is asymptotically linear inf

u a§_ u + - w. In other words,

v(u) ~ v1(u) = (l-p)u -109 1‘(2+q)—(l-P) 109 u']b. u + -~=>

This asymptotic linearity property may also be expressed by saying that, as

u + - w, the graph of the function v(u) defined in (4.2) approaches the

(straight line) asymptote defined by the linear equation

v](u) = (l-p)u - log F(2+q)e(l-p) log u'1b . (4.3)

176



Based on this fact we can formulate the following Applicability Criterion.

A distribution function F(x) of the class (1.1) may be considered as a

candidate for a data fit if the logarithmic plot of a given set of empirical

cumulative distribution data indicates the existence of an asymptote.

Remarks. (1) An applicability criterion similar to the one

expressed above for the logarithm of the cumulative distribution data can,

of course, be formulated for the corresponding density data according to

(1.3). which of these two equivalent criteria is actually being used is

immaterial. The one given in terms of the cumulative data is generally pre

ferred simply because the cumulative data are normally "smoother" than the

corresponding density data.

(2) An asymptotic linearity criterion similar to the one expressed

above for the distribution class (l.l) holds for the class of distributions

defined by the density function v*(x,to;y) given in (3.8). This is easily

seen. If we denote the cumulative distribution function associated with

v*(x,to;y) by V(x), then

1-A
V(x) ~ F(x) exp - (e'"tn) as x + 0

where F(x) is given by (1.1). He shall not go into any details here.

There is important practical utility associated with the applicabil

ity criterion. This becomes evident when we realize that it can be used to

determine approximate values pl and A] for the two shape parameters p

and A . An approximate value b] for the scale parameter b can then be

determined bylneans of the first moment,

_ r(b- *1 ' “W
-I

+

>.4\/
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if we substitute in q = (A-p)(l-A)'] the values p] and A1 for p and A ,

respectively.

If a set of empirical distribution data indicates the existence of

an asymptote for the logarithmic cdf graph, the location of the asymptote can

be estimated either by visual inspection or by analytic methods. Numerical

techniques for the asymptote determination and for the subsequent estimation

of parameters will be discussed elsewhere. The location of the asymptote can

be specified by its directional angle S and its intersection with the v-axis.

Since the asymptote is determined by the linear equation (4.3), we immediately

see that

tan 3 = 1 - p. (4.5)

This relation makes it possible to quickly find an approximate value pl for

the initial shape parameter p once 8 or tans- have been estimated,

p1 = l - tan 8 .

It is of interest to note that, according to (4.5), the principal value of 8

is uniquely determined by the initial shape parameter p and vice versa.

Since p < 1, we have 0 < 9 < n/2. Some of the distributions listed as

special cases in Section 1 have very specific tan 8 values. For the Gauss

and exponential distributions we have p = 0 so that tan 3 = l. For the

Rayleigh distribution p = - l which means that tan 8 = 2. For the Maxwell

case p = - 2, tan 8 = 3, and in the case of the wien distribution p = - 3 so

that tan 8 = 4.

Next, once the v-axis intercept v](o) of the asymptote has approxi

mately been determined, we obtain from (4.3) the equation

-log F(2+q)-(l-p)log u']b - v](o) = 0
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We eliminate the unknown scale parameter b by means of (4.4) which leads

to the equality

-109 1'(2+q)-(l-pllos 1"'(l+ii)+(l-pl 109 r<i+<i+<i-ii") - nun = 0. (4.6)

The left-hand side becomes a function of the unknown terminal shape parameter A

if we replace p by the previously determined approximate value p1. In other

words, we obtain from (4.6) an equation of the form ¢(l-A) = 0. It can be

shown that it has exactly one solution 1-A] > 0 (provided v](o) has been

properly determined) which can easily be obtained by means of Newton's method.

The opportunity to determine "good" approximate values pl and A]

for the shape parameters p and A is extremely important for the practical

application of the distribution class (1.1). The approximate values pl and

A] can be used as initial values in any of the established parameter estima

tion techniques such as, for example, the method of moments or the maximum

likelihood method. Each of these methods leads to three equations for the

unknown parameters b, p, and A . Actually, only two equations are needed

since the scale parameter b can be eliminated. The use of the initial

values p1 and A] results in rapid convergence of the iteration process

which will lead to the desired final parameter values.

Although the class of probability distributions discussed in this paper

has been known for more than sixty years, its application has been limited,

most likely as a consequence of computational intensity and possible conver

gence problems. In general, however, it is not really the complexity of the

system of transcendental equations which makes the numerical problem compu

tationally intensive but rather a poor choice initial iteration values. It

is hoped that the approach presented-here will lead to more widespread use

of the distribution class (1.1).
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5. Empirical Examples

' In the talk presented at the Madison conference two examples based

on empirical data have been discussed. As indicated at the beginning of

Sec. 4 a thorough treatment of practical examples will not be attempted in

this paper. Suffice it, therefore, to simply present the illustrative docu

mentation for the two parameter estimates.

The empirical data were available in histogram (pdf) form as shown

in the first figure of each of the two sets of illustrations. The cdf data

were obtained by numerical integration. Their logarithmic plots are shown

in the second figures, xM = u being the mean. The asymptote data tan $

and v](o) were determined by visual inspection to obtain approximate values

p, and B] = l - A1 for the two shape parameters. To improve the numerical

values of these parameters the method of moments was used which led to the

final values given in the table. The scale parameter b is determined by

b = u6,11 = mean. The last pair of figures show the histograms overlaid

with the fitted probability density functions.

180



oar‘!-warn;sos'z-1198res0--a

(113»l1"9l°H)

'Q$11lT0991113

(OIL6°I)SOL'I€I"l°H‘P18

(996Z°I)Z6€'9"l90°P938

(I).9€L'II'"‘9H

.6666"lQO1°°°N

."°F3"QT31lTG173131513

°IIl13IGUBJNIM

—11

'L1I8fl31IIGQVQNIVU‘TY311IA8JNflH‘llSSVO

S61‘!-vavumvas'c-9198v¢s't--a

(113'l3"'l°H)

‘($11930991111

(€6S€'I)Z9S'9I*'l°H‘PIC

(Z6II'I)IO€'L'°B3G°PP38

(I)OL€'IZ'"'3H

I996='Iqo:0'0n

ivvtanqtlzltotvailtdla

QCCQQQCQQQQCQCQQBQQQQQQQQQQQQSODQQDQQQQQQQQDQQQQQQQQQQQQ&B—QQQ3IOIIGIIIISIGTVDIV‘3DflVI°dME&l1I€O'1YITUIABIIOH'16SSVD

'’’"T'"3"'”'""""'"""“-~II

181



.
1
.
‘

'

.
a

o
w
n
.

m
m
n
h
m
m
m
a
z
m
e

a
a

.
m
H
¢
h
m
H
O

J
E
J
Z
Z
E

m
u
z
m
m
.
m
z
m
»

>
J
H
t
O

>
m
:

H
e
.

m
m
m
u

138AJNHHUQHA(136)

182



.
z
x
\
x
.
u
u
4\
\

\
H

\

7
~
.

‘
-
4
.

Z
D
H
h
3
m
H
m
h
m
H
D

J
I
D
Z
Z
I

.
m
u
z
m
m
.
¢
z
m
»

>
J
H
I
D

.
>
m
z

“
d
o

m
m
m
u

F
.

I
n

Q
:

‘
.

(1flHfl3)flDW

183



A
L

m
u
n
.

m
m
n
s
m
m
m
a
z
m
s

a

~
n

.
fl
H
m
h
m
H
O

J
I
J
Z
Z
E

m
a
z
m
¢
.
a
z
m
»

>
J
H
I
D

>
m
:

"
d
o

m
m
m
u

(L36) AJNBHUBHA '13H

184



.
.

m
m
m
o
u
.

>
h
H
m
Z
m
h
Z
H

o
o
m
e
z
w
m
m

m
H
m
»
m
H
a

m
m
h
z
u
z

>
h
H
m
Z
m
h
Z
H

J
o
m
a
z
u
m
w

,
>
m
I

"
N
0

m
m
m
u

'13H(136) AJN3flfl38d

185



.
z
x
\
x
.
u
u
4
.

Q
.

I
0

N
u

n
.

-_
\

.
L
_
|
|
1
|
|
|
1

m
u
m
p
m
u
n

M
M
F
Z
H
3

>
h
H
m
Z
m
h
Z
H

u
d
m
a
z
w
m
m

>
m
z

"
N
o

m
m
m
u

(7flHfl])flU1

186



.
.

m
m
m
4
u
.

>
h
H
m
Z
w
h
Z
H

J
4
m
m
z
H
m
m

a
S

m
w
m
»
m
H
n

¢
m
h
Z
H
3

>
h
H
m
2
m
P
Z
H

4
4
m
m
z
H
m
m

>
m
z

“
N
0

w
m
m
u

'13H(lfld) AJNBHUBHA

187



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[ll]

[12]

References

I. S. Gradshteyn, and I. M. Ryzhik, Tables of Integrals, Series, and

Products, 4th ed., Academic Press, New York, 1965.

L. Amoroso, Ricerche intorno alla curva dei redditi, Ann. Mat. Pura

Appl., Ser. 4, 2_(l924) l23-l57.

E. N. Stacy, A generalization of the Gamma distribution, Ann. Math. Stat

33 (1962) ll87-ll92.

Van B. Parr, and J. T. Webster, A method for discriminating between

failure density functions used in reliability predictions, Technometrics

Z_(l965) l-l0.

H. L. Harter, Maximum-likelihood estimation of the parameters of a four

parameter generalized Gamma population from complete and censored data,

Technometrics §_(l967) l59-165.

0. M. Essenwanger, Applied Statistics in Atmospheric Science, Elsevier,

Amsterdam, l976.

S. H. Lehnigk, A class of probability density functions, submitted, Math

Meth. in the Appl. Sci.

S. H. Lehnigk, Characteristic function of a class of probability

distribution, in preparation.

S. H. Lehnigk, Initial condition solutions of the generalized Feller

l'\)
KOequation, J. Appl. Math. Phys. (ZAMP) (l978) 273-294.

S. H. Lehnigk, Boundary condition solutions of the generalized Feller

_|
\.Oequation, J. Math. Phys. (l978) 1267-1275.

S. H. Lehnigk, Biorthogonal sequences of solutions of the generalized

Feller equation, Math. Meth. in the Appl. Sci. 4_(l982) 317-353.

S. H. Lehnigk, A generalized Jacobi Theta function, Math. Meth. in the

Appl. Sci._§ (1984) 327-344.

l88



PLDTTINB MATHEMQTICAL FUNCTIONS

Ohl A STWRNIJAFQD l_IlflE PFQIBFTEFQ

DONALD H. RANKIN

Liautanant Colonal

US Air Forca Ratirad

INTRODUCTION. Oftan tha analylt will ba graatly

aidad if ha can viaw a graph of tha function or

data undar invaltigation. Tha wida availability

of computar—drivan printarl luggaltl that thay ba

adaptad to thil ulaga. Howavar, linca that il

not thair primary purpola, lama programming il

raquirad to exact an accaptabla parformanca from

tham. Thil papar, than, dilcullal lama of tha

principles which must ba adharad to and offarl

lama axampla programl.

No attampt can ba mada to cavar all pallibla

printar-computar combinations, linca thair numbar

appraachal tha altronomical. (A racant illua of

a periodical liltl 145 low— and madium-pricad

printarl from 36 diffarant manufacturarl which

ara compatible with tha author's computar!)

Inltaad, a typical combination*, il put forward

al an axampla.

Programming languaga will ba confinad to tha

molt alamantary BASIC, lo that avan tha calual

pragrammar will fael comfortabla. Tha commandl

CALL, PEEK, and POKE will not ba ulad. Thara ll

littla naad for ltraamlining, linca avan a clumly

program will run faltar than tha printar.

TYPES OF PRINTERS. Tha principlal harain can ba

appliad to virtually all printarl, whathar dot

matrix, daily whaal, ink Jat or tharmal ribbon.

Anothar critarion will ha ulad to roughly divida

printarl into thraa catagorial.

Tha firlt typa pollallal a ralidant plotting

function. For tham, thil papar il not nacallary,

although it may cantributa lama inlight.

*An Eplon nodal FX-B0 prlntlr driven by a Radio Shack nodal 100

portable coaputar.
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The second type is capable of a variable

reverse line feed. The principal example pro

gram is written for this type.

The third type has neither of the above

attributes. As will be seen, plotting still

may be possible.

SENDING INFORMATION TO THE LINE PRINTER. Host

computers send intelligence to the printer as

a stream of 8-bit binary numbers (OOOOOOOO to

11111111). This corresponds to 0-255 (decimal)

or OO—FF (hexadecimal). Some computers send

only 7 bits of data, reserving the eighth bit

for a parity check or other special use. They

cannot distinguish Oxxxxxxx from lxxxxxxx. This

amounts to subtracting 128 wherever possible.

THE CHARACTER-STRING FUNCTION. One means by

which BASIC converts information into suitable

form is the character—string function, which is

implemented by CHR$(n), where n can vary from

0 to 255. Values of n from 32 to 127 are used

to send various symbols, including punctuation,

numbers, and all the letters of the alphabet.

For example, CHR$(b5) sends a capital A. Values

from 0 to 31 are used to send instructions to

the various peripherals, and are called control

codes. CHR$(27) is called the ESCAPE code. It

alerts the peripheral that one or more binary

numbers are to follow, and that the sequence is

to be treated as an entity. By using ESCAPE

sequences, the number of possible control codes

becomes almost unlimited.

Another method of converting to binary is

to enclose the actual symbols within quotation

marks. Thus LPRINT "A" and LPRINT CHR$(b5) are

equivalent. This latter method depends upon

the existence of the appropriate symbol, and

hence cannot be used to transmit control codes.

Also it cannot be used to send actual quotation

marks, since BASIC only recognizes them as a

sort of switch which turns a binary converter

on and off. CHR$(34) must be used.

Many software designers "borrow" one or

more little—used control codes, diverting them
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PLDTTINB MATHEMATICAL FUNCTIONS

Ohl A STWANI)AFiD l_I|QE PFQIPITEER

DONALD N. RANKIN

Lieutenant Colonel

U8 Air Force Retired

INTRODUCTION. Often the analyst will be greatly

aided if he can view a graph of the function or

data under investigation. The wide availability

of computer—driven printers suggests that they be

adapted to this usage. However, since that is

not their primary purpose, some programming is

required to exact an acceptable performance from

them. This paper, than, discusses some of the

principles which must be adhered to and offers

some example programs.

No attempt can be made to cover all possible

printer—computer combinations, since their number

approaches the astronomical. (A recent issue of

a periodical lists 145 low- and medium—priced

printers from 36 different manufacturers which

are compatible with the author's computer!)

Instead, a typical combination*, is put forward

as an example.

Programming language will be confined to the

most elementary BASIC, so that even the casual

programmer will feel comfortable. The commands

CALL, PEEK, and POKE will not be used. There is

little need for streamlining, since even a clumsy

program will run faster than the printer.

TYPES OF PRINTERS. The principles herein can be

applied to virtually all printers, whether dot

matrix, daisy wheel, ink Jet or thermal ribbon.

Another criterion will be used to roughly divide

printers into three categories.

The first type possesses a resident plotting

function. For them, this paper is not necessary,

although it may contribute some insight.

*An Epeon eodel FX-60 printer driven by e Radio Shack eodel 100

portable computer.
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The second type is capable of a variable

reverse line feed. The principal example pro

gram is written for this type.

The third type has neither of the above

attributes. As will be seen, plotting still

may be possible.

SENDING INFORMATION TO THE LINE PRINTER. Host

computers send intelligence to the printer as

a stream of 8-bit binary numbers (OOOOOOOO to

11111111). This corresponds to 0-255 (decimal)

or O0—FF (hexadecimal). Some computers send

only 7 bits of data, reserving the eighth bit

for a parity check or other special use. They

cannot distinguish Oxxxxxxx from lxxxxxxx. This

amounts to subtracting 128 wherever possible.

THE CHARACTER—STRINB FUNCTION. One means by

which BASIC converts information into suitable

form is the character—string function, which is

implemented by CHR$(n), where n can vary from

0 to 255. Values of n from 32 to 127 are used

to send various symbols, including punctuation,

numbers, and all the letters of the alphabet.

For example, CHR$(65) sends a capital A. Values

from 0 to 31 are used to send instructions to

the various peripherals, and are called control

codes. CHR$(27) is called the ESCAPE code. It

alerts the peripheral that one or more binary

numbers are to follow, and that the sequence is

to be treated as an entity. By using ESCAPE

sequences, the number of possible control codes

becomes almost unlimited.

Another method of converting to binary is

to enclose the actual symbols within quotation

marks. Thus LPRINT "A" and LPRINT CHR$(b5) are

equivalent. This latter method depends upon

the existence of the appropriate symbol, and

hence cannot be used to transmit control codes.

Also it cannot be used to send actual quotation

marks, since BASIC only recognizes them as a

sort of switch which turns a binary converter

on and off. CHR$(34) must be used.

Many software designers "borrow" one or

more little-used control codes, diverting them

190



to special uses. When, in running a program,

one of them occurs by chance, the result can

be most unexpected (and quite unwanted). It

is necessary to identify these anomalies, so

that the program can avoid them.

THE HEX DUMP. The easiest way to examine the

information which the computer is transmitting

to the printer is

printer is placed

following program

10 FUR N = O TD 255

to perform a HEX dump. The

in hexadecimal mode and the

executed:

20 LPRINT CHR$(N);

30 NEXT N

40 END

The resulting printout will identify the codes

in question. Note the semicolon at the end of

line 20. It inhibits the carriage return.

Figure 1 gives an example of a HEX dump.

Figure 1

Radio Shack Model 100 HEX Dump

O0 O1 O2 O3 O4 O5 O6 O7 20

20 20 20 20 20 OA OB OC 10

11 12 13 14 15 16 17 18 1D

1E IF 20 21 22 23 24 25 29

2A 2B 2C 2D 2E 2F 30 31 35

36 37 38 39 3A 3B 3C 3D 41

42 43 44 45 46 47 4B 49 4D

4E 4F 50 51 52 53 54 55 59

5A 5B 5C 5D 5E 5F 60 61 65

66 67 68 69 6A 6B 6C 6D 71

72 73 74 75 76 77 78 79 7D

7E 7F BO B1 82 83 84 B5 B9

BA BB BC BD BE BF 90 91 95

96 97 9B 99 9A 9B 9C 9D A1

A2 A3 A4 A5 A6 A7 A8 A9 AD

AE AF BO Bl B2 B3 B4 B5 B9

BA BB BC BD BE BF CO Cl C5

C6 C7 CB C9 CA CB CC CD Dl

D2 D3 D4 D5 D6 D7 DB D9 DD

DE DF E0 E1 E2 E3 E4 E5 E9

EA EB EC ED EE EF F0 Fl F5

F6 F7 F8 F9 FA FB FC FD
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Referring to Figure 1, it can be seen that

CHR$(9) sends a series of spaces, while CHR$(26)

transmits nothing at all. It will be necessary

to program around these two values.

SCALING THE PLOT. Some daisy wheel printers

have adjustable horizontal spacing. Dot matrix

printers achieve somewhat the same effect by

offering a selection of type faces. The ability

to adjust vertical spacing varies widely. As a

rule of thumb, assign the coarser scale factor

to the independent variable.

Figure 2

Dot Matrix Type Faces

Type Characters per

Face 6-inch line

Pica 60

Elite 72

Compressed 103

If a printer is capable of reverse line

feeds, it is possible to scale and label the

plotting area, then return the carriage and

platen to a known position before beginning

the actual plot. Without this capability, it

is necessary to mark the paper in some way so

that the platen can be correctly repositioned

manually.

PLANNING A PLOTTING PROGRAM. As an exercise,

let us write a program which plots two functions

simultaneously, using different plotting symbols

for each, so that they may be distinguished.

Let us assume a dot matrix printer capable of

compressed type face and variable reverse line

feed. Further let us assume a computer which

diverts 09 and 1A (hex) to special uses. (We

recall that these codes are generated by CHR$(9)

and CHR$(2b), respectively.) Available plotting

area is 6 by 6 inches.
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To generate variable line feeds, the ESCAPE

sequences 1B;4A;nn (forward) and 1B;bA;nn (re

verse) are used, where nn can vary from 00 to

FF (except 09 and 1A, of course). BASIC uses

CHR$(27)CHR$(74)CHR$(N) and CHR$(27)CHR$(10b)

CHR$(N) to send these sequences (N = 0 to 255).

Since symbols exist for CHR$(74) and CHR$(10b),

the shorter forms CHR$(27)"J"CHR$(N) and CHR$

(27)"j"CHR$(N) can be used. Some computers may

require semicolons between the parts. For the

printer which was employed, a value of N = 255

moves the platen exactly 3 cm. Thus there are

85 machine counts per cm., or 216 per inch.

By using the compressed type face for plot—

ting, we find 27 machine counts per 4 cm., or

103 per 6 inches. It is apparent at once that

the independent variable should vary in the

horizontal direction.

For an example plot, choose the tangent

and cosine functions through the range from 0

to 240 degrees, inclusive. Assigning a scale

factor of 2.5 degrees per character, the plot

will be 97 characters wide (compressed), which

leaves a few for labelling. The computer re

quires that the argument be expressed in rad

ians, so that one character is equivalent to

0.043b332313 radians. Successive values of the

functions are computed by a routine similar to:

10 FOR X = 0 TD 96

20 C = COS(0.043b332313 * X)

30 IF ABS(C) < 0.3 THEN 50

40 T = TAN(0.043b332313 * X)

50 NEXT X

Line 30 is not essential. It merely avoids

computing large values of the tangent which

would not be plotted anyway.

For the vertical scale, let us choose

unity to be 1.25 inches. Now the ordinates

can be easily read with a common foot ruler,

since 0.1 = 1/B". Multiplying 216 by 1.25,

it is found that there are 270 machine counts

per unit on the vertical axis. Values to about

12.15 can be displayed within the allotted area.
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The number to be converted to binary by the

character—string function must be an integer.

This can be accomplished by:

Y = INT(.5 + 270 * C)

Computed in this way, there is no need to worry

about sign.

There is one more point to consider. The

program must be given a memory. It is vital

that it be able to "remember" the position of

the platen. For this express purpose, the

variable LY (last Y) is established.

Below is an example program, followed by

explanatory notes.

A SAMPLE PLDTTINB PROGRAM.

2990 END"

3000 LPRINT CHR$(27)"l"CHR$(10):LPRINT CHR$(27)

CHR$(B)

3010 J$ = "I 1

3020 FDR NZ = 1 TD 22

3030 LPRINT "i";TAB(36);"I

3040 NEXT NZ

3050 LPRINT J$

3060 FOR NZ = 1 TD 22

3070 LPRINT "€";TfiB(3b);"i

3080 NEXT NZ

3090 LPRINT J$:LPRINT J$

3100

"All

LPRINT CHR$(15);J$:LPRINT J$

";TAB(72);"l"

";TAs(72>;":"

LPRINT CHR$(18);"0";TfiB(7);"30";TfiB(14);"b0";

TfiB(21);"90";TAB(2B);"120";TAB(35);"150";TAB(42);

“1B0";TAB(49);"210";TAB(5b);"240":LPRINT

3110 LPRINT TAB(26);"Degrees";CHR$(15);CHR$(27)"A"

CHR$(0)

3120 KS

3130 LPRINT CHR$(27)"j"CHR$(10B);K$;CHR$(1B);"—2“;

CHR$(15)

3140 LPRINT CHR$(27)"j“CHR$(135);CHR$(27)"j"CHR$(

135);K$;CHR$(1B);"—l";CHR$(15)

3150 LPRINT CHR$(27)"j"CHR$(135);CHR$(27)"j“CHR$(

l35);K$;CHR$(l8);" O";CHR$(15)
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To generate variable line feeds, the ESCAPE

sequences 1B;4A;nn (forward) and 1B;6A;nn (re

verse) are used, where nn can vary from 00 to

FF (except 09 and 1A, of course). BASIC uses

CHR$(27)CHR$(74)CHR$(N) and CHR$(27)CHR$(106)

CHR$(N) to send these sequences (N = 0 to 255).

Since symbols exist for CHR$(74) and CHR$(106),

the shorter forms CHR$(27)"J"CHR$(N) and CHR$

(27)“j"CHR$(N) can be used. Some computers may

require semicolons between the parts. For the

printer which was employed, a value of N = 255

moves the platen exactly 3 cm. Thus there are

85 machine counts per cm., or 216 per inch.

l By using the compressed type face for plot

ting, we find 27 machine counts per 4 cm., or

103 per 6 inches. It is apparent at once that

the independent variable should vary in the

horizontal direction.

For an example plot, choose the tangent

and cosine functions through the range from 0

to 240 degrees, inclusive. Assigning a scale

factor of 2.5 degrees per character, the plot

will be 97 characters wide (compressed), which

leaves a few for labelling. The computer re

quires that the argument be expressed in rad

ians, so that one character is equivalent to

0.0436332313 radians. Successive values of the

functions are computed by a routine similar to:

10 FDR X = O TD 96

20 C = CDS(0.0436332313 * X)

30 IF ABS(C) 4 0.3 THEN 50

40 T = TAN(0.04363323l3 * X)

50 NEXT X

Line 30 is not essential. It merely avoids

computing large values of the tangent which

would not be plotted anyway.

For the vertical scale, let us choose

unity to be 1.25 inches. Now the ordinates

can be easily read with a common foot ruler,

since 0.1 = 1/B". Multiplying 216 by 1.25,

it is found that there are 270 machine counts

per unit on the vertical axis. Values to about

12.15 can be displayed within the allotted area.
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The number to be converted to binary by the

character—string function must be an integer.

This can be accomplished by:

Y = INT(.5 + 270 * C)

Computed in this way, there is no need to worry

about sign.

There is one more point to consider. The

program must be given a memory. It is vital

that it be able to "remember" the position of

the platen. For this express purpose, the

variable LY (last Y) is established.

Below is an example program, followed by

explanatory notes.

A SAMPLE PLOTTING PROGRAM.

2990 END"

3000 LPRINT CHR$(27)“l"CHR$(10):LPRINT CHR$(27)"A"

CHR$(B)

3010 as = ": : : :

l":LPRINT CHR$(15);J$:LPRINT as

3020 FOR NZ = 1 TO 22

3030 LPRINT "I";TAB(3b);"l“;TAB(72);"l"

3040 NEXT uz

3050 LPRINT as

3060 FOR NZ = 1 TO 22

3070 LPRINT "l";TAB(3b);"1";TAB(72);"'“

soao NEXT NZ

3090 LPRINT J$:LPRINT as

3100 LPRINT CHR$(18)

TAB(2l);"90";TAB(28)

"lBO";TAB(49);"2lO“;

3110 LPRINT TAB(2b);

CHR$(0)

3120 Ks = " --------

3130 LPRINT CHR$(27)

CHR$(15)

3140 LPRINT CHR$(27)

;"O";TAB(7);"30";TAB(14);"bO";

;"120";TAB(35);"150";TAB(42);

TAB(5b);"240":LPRINT

"Degrees";CHR$(15);CHR$(27)"A"

"J"CHR$(1OB);K$;CHR$(1B);"-2";

"j"CHR$(135);CHR$(27)"j“CHR$(

l35);K$;CHR$(1B);"—l";CHR$(15)

3150 LPRINT CHR$(27) "j"CHR$(l35);CHR$(27)"j"CHR$(

l35);K$;CHR$(18);" O";CHR$(15)
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3160 LPRINT CHR$(27)"j"CHR$(l35);CHR$(27)"j"CHR$(

135);K$;CHR$(18);" 1";CHR$(15)

3170 LPRINT CHR$(27)"j"CHR$(135);CHR$(27)"j"CHR$(

135);K$;CHR$(1B);" 2"

3150 LPRINT CHR$(27)"J"CHR$(72);TAB(3l) "Figure 3"

3190 LPRINT CHR$(27)"J"CHR$(72);TAB(30) "+y = CD5 X"

3200 LPRINT CHR$(27)"J“CHR$(54);TAB(30) "iy = tan X"

;CHR$(l5)

3210 LPRINT CHR$(27)"J"CHR$(l71);CHR$(27)"J"CHR$(171)

3220 Y = 0

3230 FOR x = 0 TO 96

3240 c = 270 1 COS(0.043b3323l3 4 x) = T = 999

3250 IF ABS(C) < 99 THEN 3270

3260 T = 270 * TAN(0.0436332313 * x)

3270 IF ABS(T) > 550 THEN 3460

3250 LY = Y = Y = INT(.5 + T)

3290 IF Y > LY THEN 3390

3300 IF Y < LY THEN 3320

3310 LPRINT “*";CHR$(8);: SOTO 3460

3320 IF (LY — Y) < 256 THEN 3340

3330 LY = LY — 255 = LPRINT CHR$(27)"J"CHR$(255);:

SOTO 3320

3340 IF (LY - Y) 26 THEN 3370

3350 IF (LY — Y) = 9 THEN 3330

3360 LPRINT CHR$(27)"J"CHR$(LY—Y);"*";CHR$(8);: so

TO 3460

3370 LPRINT CHR$(27)“J"CHR$(l3);CHR$(27)"J"CHR$(l3)

;"*";CHR$(8);: SOTO 3460

3350 LPRINT CHR$(27)"J"CHR$(4);CHR$(27)“J"CHR$(5);

"*"CHR$(8);: SOTO 3460

3390 IF (Y—LY) < 256 THEN 3410

3400 LY = LY + 255 = LPRINT CHR$(27)"j"CHR$(255);:

SOTO 3390

3410 IF (Y—LY) 26 THEN 3440

3420 IF (Y—LY) = 9 THEN 3450

3430 LPRINT CHR$(27)"j"CHR$(Y—LY);"*";CHR$(8);: so

TD 3460

3440 LPRINT CHR$(27)"j"CHR$(l3);CHR$(27)“j"CHR$(13)

;"*";CHR$(B);: SOTO 3460

3450 LPRINT CHR$(27)"j"CHR$(4);CHR$(27)"j"CHR$(5);

"*";CHR$(8);

3460 LY = Y = Y = INT(.5 + c1

3470 IF LY > Y THEN 3500

3450 IF LY < Y THEN 3570

3490 LPRINT "+";= SOTO 3640

3500 IF (LY—Y) < 256 THEN 3520

3510 LPRINT CHR$(27)"J"CHR$(255);: LY = LY - 255

SOTO 3500
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3520 IF (LY—Y) 25 THEN 3550

3530 IF (LY—Y) = 9 THEN 3550

3540 LPRINT CHR$(27)"J"CHR$(LY—Y);"+";: 5010 3540

3550 LPRINT CHR$(27)"J"CHR$(13);CHR$(27)"J"CHR$(13)

;"+";= SOTO 3540

3550 LPRINT CHR$(27)"J"CHR$(4);CHR$(27)"J"CHR$(5)

"+";= SOTO 3540

3570 IF (Y—LY) < 255 THEN 3590

3550 LPRINT CHR$(27)"j"CHR$(255);: LY = LY + 255 =

5010 3570

3590 IF (Y—LY) 25 THEN 3520

3500 IF (Y—LY) = 9 THEN 3530

3510 LPRINT CHR$(27)"j"CHR$(Y—LY);"+";: GDTO 3540

3520 LPRINT CHR$(27)"j“CHR$(13);CHR$(27)"j"CHR$(13)

;"+";= BDTD 3540

3530 LPRINT CHR$(27)"j"CHR$(4);CHR$(27)"j”CHR$(5)

II+ll;

3640 NEXT X

3650 LY = Y : Y = -720

3660 IF (LY—Y) < 256 THEN 3680

3670 LY = LY — 255 : LPRINT CHR$(27)”J"CHR$(255)

GDTD 3660

3680 IF (LY4Y) 26 THEN 3710

3690 IF (LY—Y) = 9 THEN 3720

3700 LPRINT CHR$(27)"J"CHR$(LY—Y) : GDTD 3730

3710 LPRINT CHR$(27)"J"CHR$(13);CHR$(27)"J"CHR$(13)

: GDTD 3730

3720 LPRINT CHR$(27)"J"CHR$(4);CHR$(27)"J“CHR$(5)

3730 LPRINT CHR$(27)"2";CHR$(18)

3740 RETURN

NOTES DN THE PROGRAM.

Line 3000. Sets left margin to 1.25 in. Sets

line feed to 1/9 in. for cosmetic purposes.

The colon is used to separate statements on

the same numbered line. Some computers may

require a different symbol.

Lines 3010-3090. Plots the vertical grid.

CHR$(15) calls up the compressed type face.

The string variable J$ must contain a count

of 11 spaces between each symbol "i".

The symbol is generated by CHR$(124), or it

can be reached from the keyboard with the

keystrokes <SHIFT><GRPH><—>.
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Lines 3100-3200. Plots the horizontal grid,

labelling as it goes. Note that the plot is

in Compressed type face, but the labelling

is done in Pica. The width ratio is 7:12.

CHR$(l8) restores Pica.

Line 3110. CHR$(15) calls for the Compressed

type face. CHR$(27)"A"CHR$(0) kills the

line feed associated with a carriage return.

Lines 3210-3220. The platen, carriage, and

dependent variable are zeroed.

Lines 3230-3640. Computation and plotting are

accomplished by means of a FOR-NEXT loop.

Line 3270. This places a limit on the values

which will be plotted. Without this limit,

the program might attempt to plot a point off

the paper, thereby jamming the paper under

the platen.

Line 3310. CHR$(S) generates a backspace. The

trailing semicolon inhibits the carriage

return.

Lines 3320-3330. Moves platen in steps of 3

cm. when required.

Lines 3340-3380. Moves the platen and plots the

point, avoiding the problem codes 9 and 26.

This pattern is repeated three times (two

functions, two signs).

Lines 3650-3720. The platen is moved to the

bottom of the plot, in position for following

text.

Line 3730. Restores normal line feed and Pica

type face.

Line 3740. If the program is not used as a

sub-routine, substitute "END" or "GOTO nnn".

Figure 3 illustrates the program exercised.
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5 END

10 LPRINT " ___________________________________

I5'L'F§i|T|¥'TEFEIi~?'T'EF§Ii¥'T'CF§Ii¥'T'EF§Iii¥

20 END

100

105

110

115

120

125

130

135

140

145

150

155

160

200

210

220

230

240

J; - "-----3 -----------------------------

;____|
__________________________________-

__-.—— ll '

KS I " I

I

LPRINT CHR$(15)|CHR8(27)"1"CHR$(17)

LPRINT J8|CHR$(18)|"O"|CHR$(15)

FDR N I 1 TO 19

LPRINT K8 I NEXT N

LPRINT J$|CHR$(18)|"90"|CHR$(15)

FOR N I 1 TO 19

LPRINT KS I NEXT N

LPRINT J$]CHR$(18)|"180"|CHR$(15)

LPRINT K$|CHR$(18)

LPRINT ". -1"§TAB(26)|"O"|TAB(49)|"+1"

END

LPRINT CHR$(15)|CHR8(27)"l"CHR$(17)

FDR N I O TO 41

8 I INT(.5 + 40

LPRINT TAB(45 +

END

e 8IN(0.07853981634 G N))

B)|“+“ I NEXT N

I LPRINT I LPRINT I LPRINT

LPRINT

4" I LPRINT

"x I sin y

300 LPRINT I LPRINT

I LPRINT I LPRINT I

310 TAB(2l)|”Figure

320 LPRINT TAB(2O)I

330 END

To draw the reference line, execute <RUN 10>.

Then turn the printer off and manually position

the platen, using the reference line.

Turn the printer on and execute <RUN iOO>.

Turn the printer off and reposition as before.

Repeat the procedure executing (RUN 200).

Repeat again using <RUN 300>. The resulting

plot will be similar to Figure 4.
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STATISTICAL COMPARISON OF THE ABILITY OF

CAMOUFLAGE COLORS TO BLEND WITH TERRAIN BACKGROUND

UNDER HIGH AND LOW SUN ANGLES

George Anitole and Ronald I. Johnson

U.S. Army Belvoir Research and Development Center

Fort Belvoir, Virginia 22060

Christopher J. Neubert

U.S. Army Engineer School

Fort Belvoir, Virginia 22060

ABSTRACT

This study determined the effect of sunlight angle upon the

effectiveness of camouflage colors to blend with desert backgrounds.

Eleven U.S. Marine personnel and two civilians subjectively evaluated ten

colors at nine desert sites, under high and low sunlight angles. The best

six colors were rated on a six point scale, with the value number one most

effective, and number six not effective. An analysis of variance was

performed for each site and all nine sites combined to determine signifi

cant ( o = 0.05) differences between the best four colors. Tukey's

Studentized Range Test for Variable Ratings identified which of the four

colors differed significantly (u = 0.05) from each other. Slight

differences were found in the ranking of the colors. This eliminates the

requirements for low angle sunlight data.

1.0 SECTION 1 - Introduction V

This Center started its current desert color evaluations in April

1980, when the Project Manager, Saudi Arabian National Guard (SANG)

Modernization requested camouflage for SANG. Field color evaluations have

been conducted in Saudi Arabia and the United States desert southwest.

During these studies it was noted that the camouflage colors became

brighter in hue when subjected to low sunlight angles in the early morning

or late afternoon. This observation led to the question - what effects do

high and low sunlight angles have upon the judgment of how well camouflage

colors blend with the desert background? This paper presents the results

of a study conducted in the United States deserts designed to answer the

above question. It should be noted that if testing is required under both

high and low sunlight angles, the costs and time to run the study were

about doubled. If evaluations can be completed using one sunlight angle,

the high sunlight angle would be tested rather than the low sunlight angle,

because of its much longer time duration in the course of a day.

2.0 SECTION 2 - Experimental Design

2.1 Camouflage Colors

With the exception of the paint colors Gun Metal Gray and Egyptian,

all the colors studied were taken from the SANG color test palette. These
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colors were developed over a two-year period, and they represent the most

sophisticated available to determine camouflage effectiveness for a series

of selected different desert sites. The Gun Metal Gray color was selected

to provide high color contrast (in patterns). The Egyptian color is the

paint currently being used to camouflage Egyptian equipment. Two new paints

derived from the Saudi Arabian desert color palette were colors W and X.

Color W is a fifty-fifty mix of colors 7 and 8*, while X is color ll with

the addition of black paint. All paints were lusterless with a reflectance

of 12 at a 60° angle.

2.2 Test Targets

The test targets used for this study had to be highly mobile and large

enough to permit a study of the target with various desert backgrounds.

The U.S. Marine Corps made available ten Commercial Utility Cargo Vehicle

(CUCV) trucks which were painted and coded according to Table 1. Each

truck was painted on the basis of a three color pattern and are identified

as colors 1, 2, and 3. For monotones and two color patterns, one or more

color is repeated.

2.3 Test Sites

A total of nine sites were selected for this study. All the desert

sites contained sparse vegetation similar to that found in Saudi Arabia.

The soil ranged in color from a light buff/tan to gray and dark brown, and

TABLE 1

CUCV Truck Colors

Color

Vehicle Number 1 _2_ 3

A 3 3 3

B 5 3 l '

C 7 E* 8

D 7 8 8

F ll ll ll

G Gun Metal Gray 3 5

H 8 8 8

I 10 10 10

W 7/8 7/8 7/8

X ACll ACll AC1l

* Egyptian Color

represented a good cross-sectional spectrum of different colored desert

backgrounds. For example, one site on Midland Road, Blythe, California,

had a reddish color, while the site at the Baker, California, dry lake was

dark brown. The site at Jean Dry Lake bed off Route 15 in Nevada was

somewhat yellow in appearance. The order of the nine sites as they will

appear throughout this study is seen in Table 2.

*numerical designations were assigned to colors during prior field tests
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_m ?_ TABLE 2 _

Site Order Identificatidfi

1-A

Site # Color Location

1 Buff _ Yuma Sand Dunes, AZ

2 Light Gray 051159 Road, CA

3 Gray—Tan baker Sand Dunes, CA

4 Light Buff/Tan 29 Palms, Range 111, CA

5 Light Tan 29 Pails, Tank Trail, CA

6 Reddish.Tan flidland Road, Blythe, CA

7 Ye11ow—Tan Jean Dry Lake Bed,

.__.-. has vegan, Nv

8 .B;Qyn.r Dry take Bed, Baker, CA

9 Dark Tan seitoa %e"a, QIA

.- 1- ~ _

2.4 Test Subiects

» .

v The test =ub3e¢£§f§abq1§£ék?3rf§Ieveh'uJs.*usrqae*oaps'¢n1ieeeu men

and two civilian employees from thejCoun{€r§fi¥#eH1Tance and Deception

Division, Fort Be1voir,QVirginia. rne‘Bhi£§rea personnel belonged to the

Lst Marine Amphibious FORCE service Suppdrt'Grodp,'Casp?Pendleton,

California. Thus, eachfground,ob§erVati6n“E6nsibteH of a=smeple-size of

thirteen. Each subject had at“least?a*c6rrec€iH‘Vfsua1'%ouiuy'of 20/30 and

normal color vision. '

0 0"

2.5 Data Generation

The object of this study~§as?€ofdeEérmifie'what*effects high and low

sunlight angles have on the abilityiof camouflage paint colors to blend

with desert backgrounds. The fe1ative‘rating oftthese colors under the two

sunlight conditions was compared t0'determine'significant differences.

The ten trucks were paihted as shown in Table l. ’The¢trucks were divided

into the following two groups:

A B c F'*w

ii 3-. \'

G H "I D X

|'
,

By using this division,@two of the patterned trucks appeared in each of the

two groups along with three‘monotones.‘;The?grdund'observers (13) were

asked to select.three color_comb1natidns:frbmfeach of the two groups, based

upon their subjective judgment in the color€'ability to blend the CUCV

trucks with the desert background.

The next task was to rank the remaining dii'co1ors on their ability to

blend with the desert background“using the following ranking system:

<7\u\J-u~v
llllll

Most effective

Very effective

Effective

Somewhat effective

Less effective

Not effective
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No ties were allowed. Each of the six colored trucks was assigned a

number. A value of 7 was assigned for all colors not selected for final

ranking by the ground observers.

3.0 SECTION 3 — Results

The results of each site for both the high and low sunlight angles

will not be included because it would be too voluminous to present in these

proceedings. A summary of the four best colors for each site under high

and low sunlight angels is included in the discussion section. This data

is available upon request from the U.S. Army Belvoir Research and

Development Center, ATTN: STRBE-JDS, Fort Belvoir, VA 22060. Tables 3-5

and Figure l show the data and data analysis averaged across all nine

sites for the high sunlight angle. Tables 6-8 and Figure 2 show the data

and data analysis averaged across all nine sites for the low sunlight

angle. Table 9-11 and Figure 3 show the data and data analysis for the

combined high and low sunlight angles to determine what effects high and

low sunlight angles had upon the camouflage colors in their ability to

blend with the desert background.

TABLE 3

Descriptive Data for CUCV Truck Color Blend with Desert

Background, Averaged Across All Sites, High Sunlight Angle

STD ERROR 952 CONFIDENCE INTERVAL

COLOR N_ MEAN OF COL MEAN LOWER LIMIT UPPER LIMIT

A ll7 5.76923 0.218300 5.34136 6.19710

B 117 6.27350 0.150461 5.97860 6.56841

C 117 4.76923 0.158920 4.45775 5.08071

D 117 3.83761 0.124956 3.59269 4.08252

F 117 4.28205 0.146099 3.99570 4.56840

G 117 7.00000 0.000000 7.00000 7.00000

H 117 3.82051 0.142922 3.54039 4.10064

g I ll7 6.70940 0.088425 6.53609 6.88272

W 117 3.60684 0.217140 3.18124 4.03243

X 117 2.92308 0.190843 2.54902 3.29713

TABLE 4

Analysis of Variance for the Best Four Color Blends,

Averaged Across All Sites, High Sunlight Angle

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR>F

COLOR 3 64.5982906O 2l.53276353 6.15 0.0005

ERROR 464 l623.36752l37 3.49863690

TOTAL 467 l687.9658ll97

Table 4 indicates that there are significant differences in the ability of

the top four colors to blend with the desert background. These differences

are shwn in Table 5.
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TABLE 5

' Significant Differences Between the Top Four Camouflage Colors

(Blend), Averaged Across All Sites, High Sunlight Angle

TUKEY GROUPING MEAN . , N_ COLORS

A 3.8376 117 D

A 3.8205 117 H

A 3.6068 117 W

B 2.9231 117 X

0 I 0.05, Degrees of Freedom = 464

Critical Value of Studentized Range = 3.646

Minimum Significant Difference - 0.630546

Color means with the same letter in the grouping column are not

significantly different.

TABLE 6

Descriptive Data for CUCV Truck Color Blend with Desert

Background, Averaged Across All Sites, Low Sunlight Angle

COLOR pg, MEAN

A 117 5.75923

B 117 7.00000

c 117 5.31624

0 117 3.81197

F 117 4.21368

0 117 7.00000

H 117 4.18803

1 117 7.00000

w 117 2.19658

x 117 2.50427

OF

OQQOOOOQOQ

STD ERROR 95% CONFIDENCE INTERVAL

COL MEAN LOWER LIMIT UPPER LIMIT

.191703 5.39349 6.14497

.O0O000 7.00000 7.00000

.l4138S 5.03913 5.59335

.l07850 3.60058 4.02335

.152988 3.91382 4.51353

.000000 7.00000 7.00000

.139961 3.91371 4.46236

.000000 7.00000 7.00000

.144268 1.91382 2.47935

.137675 2.23443 2.77412

TABLE 7

Analysis of Variance for the Best Four Color Blends,

Averaged Across All Sites, Low Sunlight Angle

SOURCE DF SUM OF SQUARES. MEAN SQUARE F VALUE PR>F

COLOR 3 332.179487l8 110.72649S73 53.33 0.0001

ERROR 464 963.45299145 2.0764073l

TOTAL 467 1295.63247863

Table 7 indicates that there are significant differences in the ability of

the top four colors to blend with the desert background. These differences

are shown in Table 8.
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Significant Differences Between the Top Four Camouflage Colors

(Blend), Averaged Across All Sites, Low Sunlight Angle

TABLE 8

a I 0.05, Degrees of Freedom = 464

Critical Value of Studentized Range = 3.646

Minimum Significant Difference = 0.485762

Color means with the same letter in the grouping column are not

significantly different.

Descriptive Data for CUCV Truck Color Blend with Desert Background

TABLE 9

TUKEY GROUPING MEAN _§ COLORS

A 4.1880 117 H

A 3.8120 117 D

B 2.5043 117 X

B 2.1966 117 W

Averaged Across All Sites, High and low Sunlight Angles

STD ERROR 95% CONFIDENCE INTERVAL

COLOR N_ MEAN OF COL MEAN LOWER LIMIT UPPER LIMIT

A 234 5.76923 0.14495 5.48513 6.05333

B 234 6.63675 0.07875 6.48240 6.79110

C 234 5.04701 0.10719 4 82691 5 25711

D 234 3.82479 0.08236 3.66336 3.98621

F 234 4.24786 0.10557 4.04091 4.45474

G 234 7.00000 0.00000 7 00000 7 00000

H 234 4.00427 0.10053 3.80724 4.20131

I 234 6.85470 0.04513 6.76624 6.94316

W 234 2.90171 0.13803 2.63117 3.17224

X 234 2 71368 0.11821 2.48199 2 83188

TABLE 10

Analysis of Variance for the Best Four Color Blends,

Averaged Across All Sites, High and low Sunlight Angles

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR>F

COLOR 3 294.58 98.19 33.63 0 0001

ERROR 932 2721.37 2.92

TOTAL 935 3015.95

Table 10 indicates that there are significant differences in the ability of

the top four colors to blend with the desert background. These differences

are shown in Table ll.
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TABLE 11

Significant Differences Between the Top Four Camouflage Colors (Blend),

Averaged Across All Sites, High and Low Sunlight Angles

TUKEY GROUPING MEAN §_ COLORS

A 4.00427 234 H

A 3.82479 234 D

B 2.90171 234 W

B 2.71368 234 X

u = 0.05, Degrees of Freedom = 932

Critical Value of Studentized Range = 3.764

Minimum Significant Difference = 0.226501

Color means with the same letter in the grouping column are not

significantly different.

4.0 SECTION 4 — Discussion

The purpose of this study was to determine if high and low sunlight

angles had a significant effect on the ability of the top four camouflage

colors to blend with the desert background. Tables 3-5 and Figure 1

indicate the ability of each of the ten colors evaluated to blend with the

desert terrain when averaged areas all nine sites for a high sunlight

angle. Tables 6-8 and Figure 2 is a repeat of the ability of the ten

camouflage paint colors to blend with the terrain, only this time the data

was taken under low sunlight conditions. A look at these figures and

tables indicates that the conditions of high and low sunlight angles do

affect the utility of some of the camouflage colors to blend with the

desert terrain. Table 12 shows the best four camouflage colors for each

site and when averaged across all nine sites for high and low sunlight

angles. For each of the two sunlight angles, the least to most effective

colors for blend are read left to right. Thus, there are differences in

the best four colors when comparing separately each of the nine sites.

' TABLE 12

Summary of the Best Four Color Blends for Each Site and

Across All Sites, High and Low Sunlight Angles

Site High Sunlight Angle Low Sunlight Angle

1 B H F A A H W F

2 C D W X C D X W

3 C H W X C D X W

4 C D W X D A X W

5 H D W X C D X W

6 H F B A D H A F

7 X D F H H F W X

8 C D W X C D X W

9 D H W X C D W X

All D H W X H D X W

Note that Table 1 shows the colors for each of the alphabetical letters.
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For a camouflage color to be effective, it must have camouflage

effectiveness across a wide range of sites. It is too costly and time

consuming to paint equipment for specific areas unless the resources are to

remain in that geographic location for a considerable period of time.

Likewise, only the best four camouflage colors should be of interest for

this study.

Table 12 shows that the best four camouflage colors to blend with the

desert terrain when averaged across all nine sites for high sunlight angle

were DHWX, with X the best color and D the worst. The same four colors

were also the most effective for the low sunlight angle reading worst to

best HDXW. The only difference between the two groups is that the order of

X and W and H and D are reversed. For both sunlight angles, colors W and X

were better than colors D and H. Therefore, the remaining task is to

determine if H and D and W and X differ significantly ( d=0.05) from each

after. Tables 9—l1 and Figure 3 indicate the ability of each of the ten

colors evaluated to blend with the desert terrain averaged across all nine

sites and both high and low sunlight angles. Table ll indicates that

although the colors in color grouping A and B are significantly different

( a= 0.05), there were no significant differences within the groups. Thus,

it can be concluded that the reversals of colors H and D and W and X for

the high and low sunlight angles are of minor consequence. From a

practical field evaluation standpoint, future studies can be conducted

using only the high sunlight angle because it represents the longest period

of the day. ’

5.0 SECTION 5 - Summary and Conclusions

A total of ten CUCV vehicles were painted in camouflage colors and

viewed by thirteen ground observers at nine desert sites in the United

States desert southwest. The colors were divided into two groups of five.

The best three colors from each of the two groups were selected on their

ability to blend with the desert terrain. The resulting six colors were

then ranked on their ability to blend using a six point scale with one

being the best and six being the worst. No tie values were allowed and a

value of seven was assigned to the colors that did not make the final six.

This data was collected for both high and low sunlight angles to determine

what effects the lighting conditions had in the rating of the different

camouflage colors to blend with the terrain.

Analysis of the data indicated that desert colors W and X were better

than H and D for both high and low sunlight angles. The order of W and X

and H and D were reversed for the two lighting conditions. Additional

statistical analysis revealed that within each color grouping A and B,

there were no significant differences (0 = 0.05). The order reversal of H

and D and W and X for the two sunlight angle conditions is therefore not

important. It is concluded that future field evaluations should involve

only one sunlight angle. This will be the high sun angle as it represents

a longer period of time for each day.
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Weibull Tail Modeling for Estimating Confidence on Quantiles from

Censored Samples

Mark Vangel

U.S. Army Materials Technology Laboratory

Watertown, Massachusetts 02172-0001.

This paper describes a simple method for estimating lower

confidence bounds on quantiles from a Weibull tail model.

A two step procedure is proposed for estimating the 100q% lower

confidence bound for the pth quantile of a Weibull sample of size n.

Parameter estimates are first obtained for a Weibull model fit to

the lower tail values. The inverse of the estimated CDF is then

evaluated at the (1-q)th quantile of the beta distribution with

parameters n(l-p) and np+l.

This method is proposed as a simple alternative to Lawless’

elaborate conditional procedure specifically for determining

‘B-Basis‘ values. The B—Basis value is defined to be the quantile

corresponding to the lower 95% confidence bound on 90% reliability.

This value is used by the aircraft industry to determine the

acceptablity of composite materials. Composite material failure

data is often multimodal, and lower tail modeling is expected to

circumvent this difficulty.

A preliminary Monte Carlo study indicates that the proposed

method compares favorably with the Lawless procedure for obtaining

B-Basis values. d ' '
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l. vlntroductionz

when assessing the strength of composite materials for aircraft

applications, an important criterion is the material basis property,

defined as the 95% lower confidence bound on the stress at which the

material fails with 10% probability.

To be useful for this application, a lower confidence bound

(LCB) estimator must be able to contend with the primary problems of

composite failure data analysis; that is, small samples (530) and

multiple failure modes. Because of this multimodality, a parametric

model often cannot be fit to an entire sample, and the standard

nonparametric approach (e.g. Conover, 1980), based on the sample

order statistics, usually yields very conservative results. In

order to get a useful estimate of the basis property in this case,

recent work suggests modeling as much of the tail as possible, and

considering the rest of the sample as Type II censored (Breiman,

Stone, and Gins, 1981). This paper develops a simple approximate

method based on such a tail model for estimating confidence bounds

on weibull quantiles, which is particularly useful for estimating

material basis properties from small samples.

2. Review of Exact Methods

Exact methods for inference on the parameters of the (two

parameter) weibull distribution

PM _ 1 _ e-(X/e>°‘

are ultimately based on the pivotal random variables for the maximum

likelihood estimators (MLE's). These pivotals are (Thoman, Bain,

and Antle, 1969):

A

Z1 I u/0.

for the shape parameter ( c ) and

Z2 - 11.6/e>
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for the scale parameter ( B ). That is, Z1 and Z2 have

distributions which depend only on the sample size and on the

censoring configuration, not on the population parameters. The

distributions of these pivotals cannot be written down in closed

form, but may be easily estimated by Monte Carlo. Once the

quantiles of the pivotals have been tabulated for various sample

sizes, exact confidence intervals for the Weibull MLE's may be

obtained.

Confidence on quantiles of the Weibull cumulative distribution

function can be calculated from the pivotal for the pth quantile

Xp, 0<p<1, which is (Thoman, Bain, and Antle, 1971)

Zp=Z2-ln(-ln(1'P))Z1

Of course, the quantiles of this pivotal must once again be

determined by Monte Carlo. The tables published in the original

paper are not always accurate. Corrected tables are available

(e.g. Neal and Spiridigliozzi, 1983).

For censored data, it is necessary to tabulate Zp for censoring

situation as well as sample size. Partial tables are available

(Billman, Antle, and Bain, 1972), but any reasonably complete

tabulation would be unweildly.

Lawless (1979) demonstrated that although the distribution of

Zp is intractable, the pivotal of the quantile conditioned on the

ancillary statistics (statistics whose distribution does not depend

on the population parameters) may be found in closed form. With the

aid of a computer, a conditional confidence interval for the

quantile can then be obtained without resort to Monte Carlo. This

conditional interval probably does not differ very much from the

unconditional interval (Lawless, 1973).

The Lawless method provides exact conditional intervals for

confidence on the parameters and quantiles of any continuous

location—scale family, as long as the parameter estimators are

equivariant. Equivariant estimators of a location parameter u and a

scale parameter b are functions of the sample x=(x1<,,,,,xn) such

that for any cl and any c2>9
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u(c1§+c2)=c1u(5)+c2

b(c1§+c2)=c1b(§)

In particular, MLE's are equivariant estimators. A detailed

development of the conditional procedure may be found in Lawless

(1982).

Since the logarithmn of a random variable having the extreme

value distribution with location u and scale b,

G(x) _ e—((x-u)/b),

is Weibull with shape ( a ) and scale ( 8 ) given by

0 = 1/b 3 - e"

the Lawless procedure applied to the extreme value distribution will

yield the desired confidence on the Weibull quantile. This

procedure is sketched below for Type II censoring. This outline

follows the exposition in Lawless’ book (1982).

If the Type II censored sample

xl,x2,...,xr rin

is independently identically distributed G(x). and if u and b are

any equivariant estimators of the extreme value parameters, then:

2, - (3-0)/1; 22 - 1;/1. 23 - (11-U)/b

Zp = Z1 — ln(—ln(l-p))/Z2

are all pivotal statistics; with Zp pivotal for the pth quantile of

G(x). Also, the statistics:

5 ' {(xi—8 )/B; i-l,...,r} '

form a complete set of ancillary statistics of which any r-2 are
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functionally independent.

Let the corresponding ordered extreme value sample be

y1_<_y25...§yr

The conditional pdf of 22 given 3 is of the form

k(§ Ir nn)€ (2.-1)¥a1'

"2" ‘Q’ ' '"=';-;'"';""
((2 e i )/r)

where K is a constant given 3, r, and n. The constant is determined

by numerically integrating the density h2(z |a). Finally, the

conditional distribution of Zp given 5 is

' wp+tz * 8 Z

K1,, :=|g> - h2(=|§> 1<r,<-. 2 . 1) dz

0

where

1* E .wi lwi (n-r)wr ,

wp I 1n(-1n(1-p))

and I(r,s) is the incomplete gamma function

1 S r—l -u

I(l‘.',B) ' .4‘ U 8 dtl .

The Lawless method may be used to calculate exact conditional

confidence intervals or bounds for Weibull quantiles without the

need for tables. The primary disadvantage of this procedure is its

complexity. The numerical integration is not trivial, particularly

when r is large. It is the aim of this paper to present a very

simple approximate method for obtaining intervals which are often

close to the Lawless results.
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3. aAn Approximate Method for Estimating the LCB of a Quantile

Let y1§,...,§yr be the r smallest order statistics from a

continuous distribution F(n ). Let

xp=r'1<p>

be the pth quantile of F(x), and let Lp be an estimated 1007 8 LCB

for Xp. Assume initially that p = j/n for some integer j so that yj

estimates Xp.

Using yj as an estimator for Xp, one obtains the following

approximation

Q A

Y = P(Lp_5 xp) - P(F(Lg 5 F(xp)) = 1 - P(F(yj) 3 1-116,3).

But F(yj) has the beta distribution

F(j)F(n—j+l) u _

1-‘Y ' B€t3(UY|j,n-_1+1) I ---Tqalis-—— fly tj 1(1-t)n-J dt .

The approximate LCB is then

)

U!"

I F_1(uY) .

If j/n = p for integer j, let uw be the 100(l- 7 ) percentile from

the Beta (u;pn,(l-p)n+l) distribution.

For the Weibull case

I '5? - ?'1(uY) - § ln(1/(l-uY))1/3

where ‘E and 3 are the MLE's. This estimator is identical to
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Thoman, Bain, and Antle's estimator, except the quantile of Zp for

appropriate n and r is replaced with a quantile from a beta

distribution.

4. Interpretation of the LCB Estimator an as approximation to the

quantile pivotal

Following Thoman, Bain, and Antle (1971), let the distribution

of Zp be G(Z) and

P(Zp _<_ zY) - G(=Y) - 'Y_

This implies that

<*> 1=<§e"v’°‘ 5 s(-1n(1-p>>1/°‘) - ‘Y

it is because of (*) that Zp is pivotal for Xp. The new estimator

yields an approximate relation of the same form as (*).

1><§<-1=»<1-uY>>”"‘ 5 e<-1:-<1-1>>>1/°‘> = Y

For this to be an approximation, of course, the left hand sides of

the inequalities should be nearly equal

nu

B('1!l (1-DY) 2 8e‘:-Ylfi

or, equivalently,

=Y = 5Y - '1l1(-1Il(1—uY)) .

For the approximation to be useful, the random variable

should have a distribution close to that of the pivotal Zp in the

vicinity of the quantiles of interest. Since Y is a simple

transformation of a beta random variable, if

%

—z

u(Z) - 1-e'°
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than the density of z is

r<u<Z>> - ""1<1-0"" .

To graphically illustrate the agreement between the pivotal density

and the density of E, several simulations were performed, (Figure 1,

a—d). The values of p and 1 were set at .1 and .95 respectively,

since the 95% lower confidence bound on 10% probability of failure

is the case of primary interest in aircraft design. The sample

sizes were kept small - reflecting the expected range of sample

sizes of composite failure data, n = 10, 20, 30, 40, and 50. For

each sample size, the upper two thirds of the data was Type II

censored: r = 6, 9, l2, and 15. For 2, the exact density is

plotted. For the pivotal, the density is estimated using a four

parameter generalization of Tukey's lambda distribution (Ramberg,

et.al., 1979) applied to 2,500 Monte Carlo replicates for each case.

The agreement between the densities appears to be quite good, as

long as one bears in mind that for intervals with reasonable

confidence, one need only be concerned with the validity of the

approximation in the tails.

5. Comparison with the Lawless Method

A simulation was performed to directly compare the Lawless

procedure with the approximation presented in this paper. Because

of the computational effort required for the Lawless integration,

the scope of this study was necessarily modest. However, useful

results were obtained despite the restriction to 10 replicates per

case. It was decided to fix p = .1 and 7 = .95 as in the previous

section. Also, the sample size was fixed at 30, since this is

typical for composite material failure data in aircraft industry

testing. Lower confidence bound estimates were obtained for

pseudo—random weibull samples with shape parameters in the range

2 to 100 and Type II censoring of 90% to 0% (r = 3, 6, 9,...,30)..

The average percent differences in the results are presented in

Figure 2a. Note that for r = 9, there is amazing agreement between
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the two methods. This could have been anticipated from the close

agreement at the 95th percentiles of 2 and Z for this case (Figure

ld).

For the approximate estimator, the dependence of the simulation

results on the Weibull shape parameter may be completely removed by

transforming the estimator LP to its pivotal:

aln(f; /B)

This transformation was applied to both the Lawless results and the

approximation results. The percent difference between the methods

for the transformed data showed no dependence on , so these were

averaged over all the data providing a measure of percent difference

vs. r based on 150 replicates per r value. (Figure 2b). Positive

percent difference is defined here to mean that the Lawless bound

was greater than the approximate bound. For 9£r£30, the

approximation yields a conservative result. It is reassuring that

potentially dangerous nonconservative estimates only occur for very

small values of r.

6. Examples

As examples, the approximate method was applied to three

extreme value data sets from the literature (Figure 3 and 4). In

all of these cases, either the approximation gives a result very

close to that obtained via the conditional procedure, or the

approximation provides a result which is more conservative.

These examples, of course, cannot by themselves validate the

proposed method. They are intended rather to highlight the ease

with which one may arrive at reasonable results, making use of a

computer only to obtain MLB‘s of the parameters and, possibly, the

quantiles of the relevant beta distribution.
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7. Conclusion

The proposed method is attractive as an alternative to the

Lawless procedure. The Lawless method is computationally complex,

whereas the new method is very easy to apply. Unfortunately, while

the Lawless method may be justified theoretically, the proposed

method as yet has no firm theoretical basis. The interpretation of

the new method as an approximation to the pivotal is interesting,

but by itself it cannot provide this foundation. The natural

question of how good this approximation is in general cannot be

answered because the pivotal distibution can only be obtained by

simulation. For the cases considered, namely 95% LCB on 10% point

from samples of 10 through 50, however, the approximation is good.

Also, the method has been demonstrated to give results for a sample

size of 30, which are generally either close to or more conservative

than the Lawless results. To validate the procedure, either an

extensive Monte Carlo study or a deeper theoretical investigation

must be performed. Both of these approaches will be considered in

the near future.
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FIGURE 3

EXAMPLE: LAWLESS (1982), p.156
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ABSTRACT

The Lindstrom-Madden method of computing lower confidence

limits for series systems with unlike components is extended to

series systems with repeated components utilizing the results of

Harris and Soms (1983). An exact solution is given for no

failures and key test results, together with an approximation for

the general case. Numerical examples are also provided.

1 yrumnooucnzon Ann sunmayi

A problem of substantial importance to practitioners in

reliability is the statistical estimation of the reliability of a

series system of stochastically independent components when some

components are repeated, using experimental data collected on the

individual components. In the situations discussed in this paper,

the component data consist of a sequence of Bernoulli trials.

Thus, for component i, i = 1,2,...,k, the data is the pair

(ni,Yi), where ni is the number of trials and Yi is the
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number of observations for which the component functions.

Y1,Y2,...,Yk are assumed to be mutually independent random

variables. We assume that there are Yi components of type i,

1 < i < k. Then the parameter of interest is

h(p1,p2,...,pk) = h(p), the reliability of the system, where

h(p) = I I pi .

i=1

More specifically, it is desired to obtain a Buehler (1957)

optimal lower 1 — G confidence limit on n(S>.

The case of Y1 = Y2 = ... = Yk = 1 has been treated in

Sudakov (1974), Winterbottom (1974), and Harris and Soms (1983).

In Section 2 we summarize the general theory of Harris and

Soms (1983) applicable here. In Section 3 the exact solutions to

no failures and key test results are given. Lindstrom-Madden type

approximations are given in Section 4. Section 5 contains

numerical examples.

2;._susnL§:,R's r4r_:'_1'§~1,op__1:-'01,: OPTIMAL conripsncs l'..I’MI'l‘S

We now specialize the general results of Harris and Soms

(1983) on optimal confidence limits for system reliability to a

series system with independent and repeated components. As in

Section 1, let

i=1

O<pi<1,Xi=ni-Yi,xi=ni-yi,1<i<k,

s = {:c|xi = 0,1,...,ni, 1< 1 < k} and let g(§'<) = (x1,x2,...,xk)

be an ordering function, i.e., for real xi, 0 < xi < ni, g(x) is

non-decreasing in each component. It is often convenient to

normalize g(;) by letting q(0) = 1 and q(3> = 0. With such a

normalization, q(;) is often selected to be a point estimator of

h(p). Also let R = {r1,r2,...,rs, s > 2} be the range set of

q(;). With no loss of generality we order R so that
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r1 > r2 > ... > rs and let A1 = {x|q(;) = ri, ; e S,

i = 1,2,...,s}. The sets A1 constitute a partition of S

induced by 91;). we assume throughout that the data is

distributed by

k ni ni-xi xi

f(x:p) = P;(X = x) = III (xi]pi qi

k n y n -y

_ i i i i (2.1)

_ U qi I

where qi = 1 - pi, i = 1,2,...,k. With no loss of generality, we

assume n1 < n2 < ... < nk.

From these definitions, it follows that

j X

P;{x c ii‘ A1} = P;{g(X) > rj} . (2.2)

From (2.1) and (2.2), we have

' U

P;{q(§) > rj} = X H113) , (2.2)

H
-J

||~4—

Q

RF‘Q

||(\/IR,

O

xr's
uW

Q

I

where 1 = (11,12,...,1k> and U2 = u2(i1),...,uk =

uk(i1,i2,...,ik_1) are integers determined by rj. Equivalently,

t [t1] [t2] [ck]

1>5{q<§> > rj} = I Z X £615) . (2.4)

i1=O i2=0 ik=0

where t2 = t2(i1),...,tk = tk(i1,i2,...,ik_1), with

t1 = sup{t|0 < t < n1 and g(t,0,0,...,0) > rj} and

tl(i1,i2,...,i£_1) = sup{t|0 < t < nl and

Q(i1y12|~-~:i£_1:t:ol"'lo) > Ij}! 1 = 2l3l‘°'lk'

We now introduce the notion of Buehler optimal confidence

limits. Let q(x) = rj. Then define

ag(;) = inf{h(p)|P;{i|g(I) > g(;)} > 0} - (2-5)

Equivalently, by (2.2), we can also write
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,_, 3

ag(;) = inf{h(p)|P;{X c ;i1 A1] > 0} . (2.6)

Then we have, from Harris and Soms (1983),

Theorem 2.1. ag(;) is a 1 - o lower confidence limit for

h(p). If bg(§) is any other 1 - a lower confidence limit for

~ 1 2 3 q K 9 X

x 5 s.

Two possible choices of g(;) are

q<x> = T"T (<6, - xi)/61> , (2.7)

i=1

OI

k vi-‘ n — x - j

q<§> = T_T 'T‘T (-5--s5--) . (2.8)

j=0 "1 ' 3P‘
ll -I

Both reduce to the generally used q(;) for series systems with

independent components when Y1 = Y2 = ... = Yk = 1, i.e.,

u

v

||:1x

QQ

% T11 " xi)/ni I

Since (2.7) is the maximum likelihood estimator of h(;) we will

use it here and from now on it will be understood that 9(2) is

given by (2.7). With this choice of q(;), we assume from now on

that 0 < xi < ni, i = 1,2,...,k, since ag(;) = 0 if some

xi = ni. with this assumption, the ti in (2.4) are given by

k Y1 k vi 1/Y1

t, = n1 - (ni - xi) E "1 ) (2.9)

and

 



tn = “1'(TT(“i “ *1)

k

“/i=1

(2.10)
L-1 Y k Y 1/Y

1 2
||(n-1)°||n)
s=1 S S 1=z+1 1 '

k vi

2 = 2,...,k, with | | ni = 1.

i=k+1

For the purpose of simplifying the calculation of ag(;) in

special cases it is necessary to state additional results from

Harris and Soms (1983).

Theorem 2.2. Let g(;) = rj and let

f*(x1a) = gap p~{g(§) > rj}, o < a < 1 . (2.11)
h(p)=a P

Then

*~ *~

inf f (x;a) = 0, sup f (x;a) = 1

0(a<1 0<a<1

'I~

and f (x:a) is strictly increasing in a.

flan

Theorem 2.3. f (X78) = Q has exactly one solution ac in a

and an = ag(;).

3. EXACT SOLUTIONS FOR ZERO FAILURES AND KEY TEST RESULTS

We first assume that ; = (0,0,...,0) = B and use Theorem

2.3 to obtain ag(6).

Theorem 3.1. If ; =

fa:

f (O78)

Q2 , then

sup

k n n /Y

T_|'pi‘=aj 1. (3.1)

k p:i=a i=1

i=1

where, nj/Yj= min ni/Yi and

1<i<k

’q("o')

Y /n.

= u 3 3 . (3.2)
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Proof.

k ,, k Yin/Y. k (nY.-HY.)/Y
1-1-p1i==(1_IPi)j J1-Tpiij jlj

i=1 i=1 i=1

ifj

n./Y.

$31 J‘

since niYj - njyi > O is equivalent to ni/Y1 > nj/Yj, which is

R (niY njY )/Yj

true, and therefore | | pi j i < 1. (3.1) follows by

i=1

ifj

1/Y.

noting that the choice pj = a J, pi = 1, i f j, gives

k ni n_/Y,

I | pi = a 3 J. Then, using Theorem 2.3, we obtain (3.2),

i=1

which reduces to the known series result if

Y1=Y2=0o0=Yk=1o

We now turn to analogues of key test results (see, e.g.,

winterbottom (1974) and Harris and Soms (1983)). We define a key

test result if Y1 = max Y1 (recall that n1 = min ni) and

~ 1<i<k 1<i<k

x = (x1,0,...,O).

Theorem 3.2. If 2 is a key test result and

N k Y1 k vi N k

{=IT"T mi - =,> > TI (=1, - »<,> 1- {zl Z <1»,-=,>

i=1 i=1 i=1

> (n -x ) (3.3)T 1
is‘ i i '

then

‘RI

f (Xfa) = I " X11261 + Ia

where Ix(a,b) is the incomplete beta function. Let bu denote

the solution in b of

G = " X1,X1 + u
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Y
1

Then a ~ = b . Note that b is the usual 1 - a lower

q(x) u a

confidence limit on p, given x1 failures in n1 trials.

Proof. Without loss of generality we can assume that

n1 = n2 = ... = nk, for otherwise we can write (2.4) as

*1 n n -1 1 *1 11 n n -1 1
P"{s(§> > rj} = I (i1)P11 1q11 Z (i2)P22 zqzz --

P i =0 1 1 =0 2

1 1

X -i -1 _ooo'i

' ' 5 <I“"‘>P,?::"“"‘q.’3i;‘I <1».
i =0 k-1 Pk

k-1 _

(X1-11-12-...-ik_1),X1-11-12-...—ik_1+1)

X “i -i goo_i

' ' 5 ”<l""‘>P,Ti:“*"qi‘i:‘I <11.
ik_1=0 k-1 Pk

x

1 n n -i i

<2 (‘>.‘e‘.‘...
11:0 i1 1 1

(x1-i1-i2-...-ik_1),x1—i1-i2...-ik_1+1) 1 (3.5)

where g(;) = rj, by the monotone likelihood ratio property of

the beta distribution (Ix(a,b) has a monotone likelihood ratio

in -a for fixed b, which implies that Ix(a,b) is a

decreasing function of a). A similar argument applies to the

other indexes. Thus, if (3.4) is true for n1 = n2 = ... = nk,

by (3.5) it follows for n1 < n2 < ... < nk.

Z

So, assuming n = (n1,n1,...,n1), we seek to maximize

k “1 k k

P~{ 2 2 Yij > E (R1 _ Xi) = Z Yi} 1 (306)

P i=1 j=1 i=1 i=1

where Yij are independent Bernoulli random variables with

k Y1 k Y1 k

parameter pi and I I pi = a. If I I pi = a, then I I pi

i=1 i=1 i=1

235



1/Y. 1/Y1
ranqes from 8 J t0 B I Yj = min Y1. This is seen as

1<i<k

follows:

k k Y, 1/Y1 k 1—Yi/Y1

I:1r.,=(1i'_I.,) 11.,

1/Y k (Y -Y )/Y 1/Y
1 1 i 1 1

= a I I pi < a

i=2

and

R K Y 1/Y k 1-Y /Y

i 3 i 3

I I pi = (I I P1 ) I I pi

i=1 i=1 i=1 '

1#j

1/Y k (Y -Y )/Y. 1/Y.
= a 3 T-T Pi 1 i J > a J

i=1

1%:

' 1/Y, 1/Yj

and the choices p1 = a , p2 = ... = pk = 1, and pj = a ,

pi = 1, i # j, attain these values. From the results of Pledger

k 1/Y. 1/Y,

and Proschan (1971), for each b = I I pi, a J < b < a ,

i=1

(3.6) is maximized by p1 = b, pi = 1, 2 < i < k. Further, the

1/Y. 1/Y,

maximum over b, a J < b < a , of the maxima for each b is

1/Y

given by p1 = a 1, pi = 1, 2 < i < k, by the monotone

likelihood ratio property of the binomial distribution, and

1/Y1 k Y1

p1 = 8 7 pi = 1, 2 < 1 < k, satisfies I I pi = a. This

completes the proof. £31

If Y1 = Y2 = ... = Yk = 1, some guidelines for the

verification of (3.3) are given in Harris and Soms (1983). In the

present case (3.3) must be verified by trial and error by showing
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K Yi Y1 K Y1

that min I l (ni - xi) = (n1 - x1) | | ni and that

g i=1 i=2

x =x

181 i 1

K Y Y k Y

i 1 i

max ‘ I (ni - xi) < (n1 - x1) | | ni .

k i=1 i=2

2 x =x +1
1:1 i 1

Example 3.1. Let k = 3, 5 = (s,s,s), Y = (3,3,2), a = .10 and

3 Y

x = (1,0,0). Then min | | (ni - xi) 1 = 200000 and

? i=1

, x =1

1=1 1

3 ~ Yi ~

max | | (ni — xi) = 140625 and X is a key test result

3 i=1

2 x =2

i=1 1

and (3.3) is satisfied and hence

- ~ = 3 = 7

ag(x) .4161 -U 2D ,

where .10 = I 4161(4,2). Further, it can also be verified that

1 = (2,0,0) is a key test result for which (3.3) is satisfied,

but that for ; = (3,0,0), (3.3) is violated.

Y
1

Note that Theorem 3.2 asserts that ag(;) = bu for

0 < a < 1. It is thus possible that (3.3) is not true but the

conclusion still holds for a of practical importance. This is

taken up in Section 4.

4. THE LINDSTROM-MADDEN METHOD FOR SERIES SYSTEMS WITH

REPEATED COMPONENTS

When Y1 = Y2 = ... = Yr = 1, the Lindstrom—Madden method

(henceforth abbreviated L—M) is an approximation bg(;) to

a ~ _of the form

g(X)

b ~ = min b (n ) , (4.1)

g(x) 1<1<x ° 1
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where

a i

with

k

= - I I (Hi " ;i=1

i.e., to, is the maximum of the recursive indexes ti .defined

by (2.4). For the usual levels of a, bg(;) = ba(n1). Further,

numerical evidence indicates (Harris and Soms (1983)) that for u

levels of practical significance

bq(§) < aq(§) ' (4'4)

(4.4) was incorrectly claimed to be true for 0 < a < 1 in

Sudakov (1974) and this is discussed at length in Harris and Soms

(1983). However, (4.4) is known to hold for special cases

(Winterbottm (1974) and Harris and Soms (1983)).

Motivated by the above, we now give an L—M approximation

b ~ to a ~ for arbitrary Y by

q(x) q(x) 1

Y1

bg(;) = 1mI:k ba(ni) 1 (4.5)

where

. a i

with

k Y k Y. 1/Y1

toi = ni - (I_T (nj - x ) j —I_I n J) , (4.7)

j=1 j J'=1 j

Hi

i.e., toi is the maximum of the recursive indexes ti defined

by (2.4). However, in this case it is not clear which index i

gives the minimum, except that the likely candidate is the one for
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which Yj, 1 < j < k, is a maximum. We might expect, by analogy,

that for G levels of practical interest

For k = 2 and selected K, Y, ;, a = .05 and .10, Table

I gives bg(;), ag(;) and the best upper bound, ug(;),

bq(;) < ag(;) . (4 B)

5. NUMERICAL EXAMPLES

Y1

ug(';) = 122k uG(ni) , (5 1)

where

G = I“ (n )(ni - [toi],[toi] + 1) (5 2)

u i

and tot are defined as in (4.6).

TABLE I.

L—M Approximations and ag(;)

(B11712) (Y1lY2) (X1132) G bg(;) aq(;) \Jg(‘;)

(10,10) (1,2) (0,1) .05 .3670 .3670 .3670

(10 10) (1 2) (0,1) .10 .4398 .4398 .4398

(10 10) (1 2) (1,1) .05 .3045 .3514 .3670

(10,10) (1 2) (1,1) .10 .3715 .4227 .4398

(10,10) (1 2) (2,1) .05 .2484 .3151 .3670

(10,10) (1 2) (2,1) .10 .3088 .3825 .4398

(10,15) (2 3) (0,1) .05 .3695 .3719 .3742

(10,15) (2 3) (0,1) .10 .4425 .4446 .4467

(10,15) (2 3) (1,1) .05 .2554 .3042 .3670

(10,15) (2 3) (1,1) .10 .3167 .3705 .4398

(10,15) (2 3) (2,1) .05 .1712 .1981 .2431

(10 15) (2 3) (2,0) .10 .2203 .2513 .3029
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Note that For all the cases in Table I, bq(;) is a lower

bound for aq(;). The computations were done by a short FORTRAN

program, a listinq of which can be obtained from the author.

§.* QONCEQQING Rfiflbfig

Tn this paper we have extended the L-M method to series

systems with repeated components. More work is needed to

ascertain the region of validity of (4.8).
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HOWARD W/\lNER*

Methods for displaying data badly have been devel

oping for many years, and a wide variety of interesting

and inventive schemes have emerged. Presented here is

a synthesis yielding the l2 most powerful techniques

that seem to underlie many of the realizations found in

practice. These l2 (the dirty dozen) are identified and

illustrated.

KF.Y WORDS: (lraphics; Data display; Data density;

l)ata-ink ratio.

l. lNTllOl)UC'l'lUN

The display of data is a lopiC of substantial contem

porary interest and one that has occupied the thoughts

of many scholars for almost 200 years. During this time

there have been a number of attempts to codify stan

dards of good ptactice (e.g., ASME Standards 1915;

(‘ox I978; Elnenherg I977) as well as a number of

books that have illustrated them (i.e., Bertin

ll)7.l,l‘l7',’,l98l; Schmid I954; Schmid and Schmid

l9‘/9: Tufte 1983). The last decade or so has seen a

tremendous increase in the development of new display

techniques and tools that have been reviewed recently

(Macdonald-Ross 1977; Fienberg I979; Cox 1978;

Waincr and Thissen I981). We wish to concentrate on

methods of data display that leave the viewers as unin

formed as they were before seeing the display or, worse,

those that induce confusion. Although such techniques

are broadly practiced, to my knowledge they have not

as yet been gathered into a single source or carefully

‘Howard Wainer is Scnior Research Scientist, Educational Testing

Service. l'rinceton, NJ ttti54l. This is the text of an invited address to

the American Statistimrl Association. It was supported in part by the

Program Statistics Research Project of the Educational Testing Scr

vice. The author would like to express his gratitude to the numerous

friends and colleagues who read or heard this article and offered

~\'alo:1bIe sup;-cstions for its improvement. Especially helpful were

|):|'\'itl Andrews, Paul llollrmtl, Bruce Kaplan, Jatncs (). Ramsay,

l’-Tdwartl Tuftc. the participants in the Stanford Worltshop on Ad

vanced Graplncal l’r(‘sentation. two anonymous referees. the long

snffering associate editor. and Gary Koch.

~ How to Display Data Badly

categorized. This article is the beginning of such a

compendium.

The aim of good data graphics is to display data accu

rately and clearly. Let us use this definition as a starting

point for categorizing methods of bad data display. The

definition has three parts. These are (a) showing data,

(b) showing data accurately, and (c) showing data

clearly. Thus, if we wish to display data badly, we have

three avenues to follow. Let us examine them in se

quence, parse them into some of their component parts,

and see if we can identify means for measuring the

success of each strategy.

2. SHOWING DATA

Obviously, if the aim of a good display is to convey

information, the less information carried in the display,
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Figure 2. A low density graph (from Fnedmen and Rafsky 1981

[ddi = .5/).

the worse it is. Tufte (1983) has devised a scheme for

measuring the amount of information in displays, called

the data density index (ddn), which is “the number of

numbers plotted per square inch." This easily calcu

lated index is often surprisingly informative. In popular

and technical media we have found a range from .1 to

362. This provides us with the first rule of bad data

display.

Rule I-—SImw as Few Data as Possible (Minimize the

Data Density)

What does a data graphic with a ddi of .3 look like?

Shown in Figure 1 is a graphic from the book Social

Indicators Ill (S13), originally done in four colors (orig

inal size 7" by 9") that contains 18 numbers (18/63 = .3).

The median data graph in S13 has a data density of .6

numbers/in’; this one is not an unusual choice. Shown in

Figure 2 is a plot from the article by Friedman and

Rafsky (1981) with a ddi of .5 (it shows 4 numbers in 8
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Figure 4. Hiding the data in the scale (from S13).

in’). This is unusual for JASA, where the median data

graph has a ddi of 27. In defense of the producers of this

plot. the point of the graph is to show that a method of

analysis suggested by a critic of their paper was not

fruitful. 1 suspect that prose would have worked pretty

well also.

Although arguments can be made that high data den

sity does not imply that a graphic will be good, nor one

with low density bad, it does reflect on the efficiency of

the transmission of information. Obviously, if we hold

clarity and accuracy constant, more information is bet
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chart-junk to fill in the space (ddi = .2). (from S13).
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ter than less. One of the great assets of graphical tech

niques is that they can convey large amounts of informa

tion in a small space.

We note that when a graph contains little or no infor

mation the plot can look quite empty (Figure 2) and

thus raise suspicions in the viewer that there is nothing

to be communicated. A way to avoid these suspicions is

to fill up the plot with nondata figurations--what Tufte

has termed “chartjunk." Figure 3 shows a plot of the

labor productivity of Japan relative to that of the

United States. lt contains one number for each of three

years. Obviously. a graph of such sparse information

would have a lot of blank space. so filling the space

hides the paucity of information from the reader.

A convenient measure of the extent to which this

practice is in use is Tufte's "data-ink ratio." This mea

sure is the ratio of the amount of ink used ln graphing

the data to the total amount of ink in the graph. The

closer to zero this ratio gets. the worse the graph. The

notion of the data-ink ratio brings us to the second

principle of bad data display.

Rule 2—Hide What Data You D0 Show

(Minimize tlte Data-Ink Ratio)

One can hide data in a variety of ways. One method

that occurs with some regularity is hiding the data in the

grid. The grid is useful for plotting the points, but only

rarely afterwards. Thus to display data badly, use a fine

grid and plot the points dimly (see Tufte 1983,

pp. 94-95 for one repeated version of this).

A second way to hide the data is in the scale. This

corresponds to blowing up the scale (i.e.. looking at the

data from far away) so that any variation in the data is

obscured bv the magnitude of the scale. One can justify

this practice by appealing to “honesty requires that we

start the scale at zero." or other sorts of sophistry.

In Figure 4 is a plot that (from SI3) effectively hides

the growth of private schools in the scale. A redrawing

of the number of private schools on a different scale

conveys the growth that took place during the mid

l°50‘s (Figure 5). The relationship between this rise and

Brown vs. Topeka School Board becomes an immediate

question. ‘

To conclude this section, we have seen that we can

display data badly either by not including them (Rule 1)

 U.S.trade iiillll Chlii'a”3ii_il 'l”a'lWa'ii’ ‘ ‘ ‘ ‘" " "

(I\mIonl0lU$.¢oIll'I) (tn II\|"lOflS0'U S dollars)

/.

 

1% _ __ 62% / I

U.S. exports U.S. imports / i

to China from Taiwan

1-°°° ___g ,_ _ _ L°_°‘L_.

U_$. imports U.S. exports

from China to Taiwan

1.000 _~_____ _//

1 2 _

"13 1914 1'75 Ii?! mac i970 I972 1074 197 1976 l9BO6

sure, nu,“--v-1 olfii-mmovnl

Figure 7. Reversing the metaphor in mid-graph while changing

scales on both axes (<0 June 14, 1981, The New York Times).

or by hiding them (Rule 2). We can measure the extent

to which we are successful in excluding the data through

the data density; we can sometimes convince viewers

that we have included the data through the incorpo

ration of chartjunk. Hiding the data can be done either

by using an overabundance of chartjunk or by cleverly

choosing the scale so that the data disappear. A mea

sure of the success we have achieved in hiding the data

is through the data-ink ratio.

3. SHOWING DATA ACCUR/\'l'EI,Y

The essence of a graphic display is that a set of num

bers having both magnitudes and an order are repre

sented by an appropriate visual metaphor—thc mag

nitude and order of the metaphorical representation

match the numbers. We can display data badly by ignor

ing or distorting this concept.

Rule 3—lgnore the Visual Metaphor Altogether

lf the data are ordered and if the visual metaphor has

a natural order. a bad display will surely emerge if you

shuffle the relationship. ln Figure 6 note that the bar

labeled 14.1 is longer than the bar labeled I8. Another

method is to change the meaning of the metaphor in the

middle of the plot. ln Figure 7 the dark shading repre

sents imports on one side and exports on the other. This

is but one of the problems of this graph; more serious

still is the change of scale. There is also a difference in

the time scale, but that is minor. A common theme in

Playfair‘s (1786) work was the difference between im

ports and exports. ln Figure 8, a 200-year-old graph

tells the story clearly. Two such plots would have illus

trated the story surrounding this graph quite clearly.

_ Rule 4—Only Order Matters

One frequent trick is to use length as the visual meta

phor when area is what is perceived. This was uscd quite

effectively by The Washington Post in Figure 9. Note

that this graph also has a low data density (.1). and its

data-ink ratio is close to zero. We can also calculate

'Ihfte‘s (1983) measure of perceptual distortion (PD)

for this graph. The PD in this instance is the perceived
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Figure 8. A plot on the same topic done well two centuries earlier (lrom Pleylair 1786).

T change in the value of the dollar from Eisenhower to

Carter divided by the actual change. I read and measure

E 11430136] B ' h _

...“ .. 5 I US.

Actual Measured

u-.~~ <1: J 1.00— .44_ 22.00—2.06_
|, 5-,. -. +4 1.27 i—-F - 9.68

PD = 9.68/1.27 = 7.62

This distortion of over 700% is substantial but by nu

means a record.

A less distorted view of these data is provided in

Figure 10. In addition, the spacing suggested by the
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Figure 9. An example of how to goose up the effect by squaring Flgure 10. The data in Figure 9 as an unadomed line chart (lrom

the eyeball (<9 1978, The Washington Post). Wainer. 1980).
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presidential laces is made explicit on the time scale.

Rule 5—Graph Data Our of Context

Often we can modify the perception of the graph

(particularly for time series data) by choosing carefully

the interval displayed. A precipitous drop can disappear

if we choose a starting date just after the drop. Simi

larly. we can turn slight meanders into sharp changes by

focusing on a single meander and expanding the scale.

Often the choice of scale is arbitrary but can have pro

found effects on the pei ception of the display. Figure ll

shows a famous example in which President Reagan

gives an out-of-context view of the effects of his tax cut.

The Times‘ alternative provides the context for a deeper

understanding. Simultaneously omitting the context as

well as any quantitative scale is the key to the practice

of Ordiual Graphics (see also Rule 4). Automatic rules

do not always work, and wisdom is always required.

In Section 3 we discussed three rules for the accurate

display of data. One can compromise accuracy by ignor

ing visual metaphors (Rule 3). by only paying attention

to the order of the numbers and not their magnitude

(Rule 4), or by showing data out of context (Rule 5).

We advocated the use of Tufte's measure of perceptual

distortion as a way of measuring the extent to which the

accuracy of the data has been compromised by the dis

play. One can think of modifications that would allow it

to be applied in other situations. but we leave such

expansion to other accounts.

4. SIIOWING DATA (.‘LF.AR|.Y

ln this section we discuss methods for badly dis

playing data that do not seem as serious as those de

THF NEW YORK TIMFS, SUNDAY AUGUST z mu

The Neutral Vlew. . .
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scribed previously; that is, the data are displayed. and

they might even be accurate in their portrayal. Yet sub

tle (and not so subtle) techniques can be used to effec

tively obscure the most meaningful or interesting as

pects of the data. lt is more difficult to provide objective

measures of presentational clarity, but we rely on the

reader to judge from the examples presented.

Rule 6—Change Scales in Mid-Axis

This is a powerful technique that can make |ill'_1_'t‘ dif

ferences look small and make exponential Chll|1_lll‘\ l- ‘Uh

linear.

ln Figure 12 is a graph that supports the associated

story about the skyrocketing circulation of The New

York Post compared to the plummeting Daily News

circulation. The reason given is that New Yorkers

“trust" the Post. lt takes a careful look to note the

700,000 jump that the scale makes between the two

lines.

ln Figure 13 is a plot of physicians’ incomes over

time. lt appears to be linear, with a slight tapering off

in recent years. A careful look at the scale shows that it

starts out plotting every eight years and ends up plotting

yearly. A more regular scale (in Figure l4) tells quite a

different story.

The souraway Post

— the daily paper

New Yorkers trust
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Figure 11. The White House showing neither scale nor context Figure 12. Changing scale in mid-axis to make large differences

(© 1981, The New York times, reprinted with permission). small (© 1981, New York Post).
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Figure 13. Changing scale in mid-axis to make exponential growth

linear ('i-"~ The Washington Post).

Rule 7—-Fr-i;-liii.ri:c the Trivial (Ignore the Important)

Sometimes the data that are to be displayed have one

lll'||"(\flll|If aspect its -.l others that are trivial. The graph

can he made worse by emphasizing the trivial part. ln

Figure l5 we have a page from SH that compares the

income levels of men and women by educational levels.

lt reveals the not surprising result that better educated

individuals are paid better than more poorly educated

ones and that changes across time expressed in constant

dollars are reasonably constant. The comparison of

greatest interest and current concern, comparing sal

aries between sexes within education level. must be

made clumsily by vertically transposing from one graph

to another. lt seems clear that Rule 7 must have been

operating here. for it would have been easy to place the

graphs side by side and allow the comparison of interest

to be made more directly. Looking at the problem from

a strictly data-analytic point of view, we note that there

are two large main effects (education and sex) and a

small time effect. This would have implied a plot that

 

MIMI: Income of VOI~lIound, Ful-Tlmo

Worlun§\oMVonn0l¢bySn|rI\d

Elhcutbnnl Alhhrnont: Ifllllfl

 

ca-mun I971 dallgq “AL;

$7011!) [

< \

nu ooo ->70‘ ‘Y3-+-9. , I

\\nu 000 —' " nu". mm,‘ _]t\\\\_ I5 yvli 0- tn»-_.

‘ nqlll ‘

in-"‘ 4 "Q" "'---i 1: lo I5 van

sucoo ii 'U‘lu..i..=-1»<t=m.i

- -1"--~8110!!)|--‘<|—iinI—n_l!"'_.P'_l_.* I

'_"'—' 9|» ll ,, n

tmnoo - — ~_ I

"— __‘__%‘_— Bynru>i\¢u

Slffl -

umo —-—

KW

$2,000

N

remit:

sumo

$12,000 ¢““r“".‘T““\\ L
‘ “‘\“‘\\ql is v-so I'M IVIIVII9‘

I

siopuo ‘"_____ _,_,, .... |||:Iltl.l:I§|||_,'- '_“_ W W, ‘"1; I5 v.....L_i

ifll \'\C9'"P

a mo3: :- "Y- -Ea-$15-Ii 1: "--:1

T an —n n-. I—r.f~| -an-1%-" 9‘°""“"

, .

"-°°° FI-" ' " " ":4-— -~ ......l..

$4,000 ' I t t

$2,000 ‘ --——

so -
T”. I970 AFT: TDYI INT‘ TWYU |'|l‘n

Figure 15. Emphasizing the trivial: Hiding the main effect of sex

differences in income through the vertical placement of plots (from

Sl3).

showed the large effects clearly and placed the smallish

time trend into the background (Figure 16).

NIEDIAN INCOME OF YEAN-ROUND FULL TIME WORKERS

Z5-34 YEARS OLD BY SEX AND EDUCATIONAL ATTAINMENT:

I958-i977 [IN CONSTANT I977 DOLLARS]

 

 

20

% IG _ L Ill“

Z I

7*

Ifi

5'.’

‘B

§ I2

ig flnulu

_, I
l _

Llqund

4 " rnulmum

mldllnlwnrtlirnl

mlnlmiun

9 "_ I l_l L_L I

D-l D-ll I2 I345 l6' mm“ gm

van iii Ellllflllfltlll Attainment “""'“" ““'

Figure 16. Figure 15 redone with the large main effects empha

TNCOHFS OF DOCTORS V5. OTHER PHUFESSTONRLS

UQIIIDSI
.nI 00

—————

I!HID

a
cl

__,7 LTVTFIDFST M

,,_ DH!!!

PIOYISSIUNQLS

MED

sl cl

Q

.1
I71‘

: l nlnlunl nmnlu

Zia l _ -__.,~v"""""_
in i __, 7

. _ ___.___ _.

0 F“"" " _i I I l . ...

I!-I nu in! 19“ llsl ll" ll" lI1\

VFAI

fiqiirn 14 Dntn from Fiqure 13 redone with linear scale (from
waiiie, 1gg0)_ L sized and the small one (time trends) suppressed.

T‘ Tlir Anirricnn Sralixiirinn. Mar I084, Vol. 38. N0. 2 246



U.S. IMPORTS OF RED MEATS‘
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Figure 17. Jiqgling the baseline makes comparisons more difficult

(from Handbook of Agricultural Charts).

Rule 8—Jiggle the Baseline

Making comparisons is always aided when the quan

tities being compared start from a common base. Thus

we can always make the graph worse by starting from

different bases. Such schemes as the hanging or sus

pended rootogram and the residual plot are meant to

facilitate comparisons. In Figure 17 is a plot of U.S.

imports of red meat taken from the Handbook 0fAgri

cultural (‘Imrts published by the U.S. Department of

Agriculture. Shading beneath each line is a convention

that indicates summation, telling us that the amount of

each kind of meat is added to the amounts below it.

Because of the dominance of and the fluctuations in

importation of beef and veal, it is hard to see what the

changes are in the other kinds of meat——-ls the importa

tion of pork increasing‘? Decreasing? Staying constant?

The only purpose for stacking is to indicate graphically

the total summation. This is easily done through the

addition of another line for TOTAL. Note that a

TOTAI. will always be clear and will never intersect the

other lines on the plot. A version of these data is shown
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Figure 18. An alternative version of Figure 17 with a straight line

used as the basis 0! comparison.
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Figure 19. Austria First! Obscuring the data structure by alpha

betizlng the plot (from Sl3).

in Figure 18 with the separate amounts of each meat. as

well as a summation line, shown clearly. Note how

easily one can see the structure of import of each kind

of meat now that the standard of comparison is a

straight line (the time axis) and no longer the import

amount of those meats with greater volume.

Rule 9—Austria First!

Ordering graphs and tables alphabetically can ob

scure structure in the data that would have been obvious

had the display been ordered by some aspect of the

data. One can defend oneself against criticisms by

pointing out that alphabetizing “aids in finding entries

of interest." Of course, with lists of modest length such

aids are unnecessary; with longer lists the indexing

schemes common in 19th century statistical atlases pro

vide easy lookup capability.

Figure 19 is another graph from S13 showing life ex

pectancies, divided by sex, in 10 industrialized nations.

The order of presentation is alphabetical (with the

USSR positioned as Russia). The message we get is that

there is little variation and that women live longer than

men. Redone as a stem-and-leaf diagram (Figure 20 is

simply a reordering of the data with spacing propor

tional to the numerical differences), the magnitude of

the sex difference leaps out at us. We also note that the

USSR is an outlier for men.

Rule I0—Label (ri) Illegibly, (b) lncompletely.

(c) Incorrectly, and (d) Ambiguously

There are many instances of labels that either do not

i 247 © The American Statistician. May 1984, Vol. 38, No. 2
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Figure 20. O'dCfIf‘lg and spacing rim data from Figure 19 as a

stem-and-leaf diagram provides insights previously difficult to

extract (lrom SI3).

tcll the wltolc story, tcll the wrong story. tell two or

more .storic!~‘. or are so small that one cannot figure out

what story they arc telling. Onc of my favorite examples

of small labcls is from The New York Times (August
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(ample: web ol discount Ines and airlines‘ telephone delays are raising
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Figuic P1 Mixing .1 (‘hanged metaphor with a tiny label reverses

the meaning of the data ( .8) 1978, The New York Times).
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Figure 22. Figure 21 redrawn with 1978 data placed on a

comparable basis (from Warner 1980).

1978), in which the article complains that lure cuts lower

commission payments to travel agents. The graph (Fig

ure 21) supports this view until one notices the tiny luhcl

indicating that the small bar showing the dcclinc is lor

just the first half of 1978. This omits such heavy travel

pcriods as Labor Day, Thanksgiving. Christmas. and so

on, so that merely doubling the first-hall data is prohu~

bly not enough. Nevertheless. when this bar is doubled

(Figure 22). we see that the agents are doing very well

indeed compared to earlier years.

Rule 11—M0re Is Murkier: (a) More Dcciimil

Places and (b) More Dimensions

We often see tables in which the number of tlL‘Cllll;ll

places presented is far beyond the number that can be

pcrceiv.-d by a reader. They arc also commonly

presented to show more accuracy than is justified. A

display can be made clearer by presenting less. In Table

l is a section of a table from Dhuriyul and Dudcwicz's

(1981) JASA paper. The table entries are presented to

five decimal places! In Table 2 is a heavily rounded

version that shows what the authors intended L‘lClll'l\'. lt

also shows that the various columns might ham: il uh

stantial redundancy in them (thc maximum L‘\PI‘l_'ll'i|

gain with b/c = 10 is about l/l0th that of h/c = lllll .-ind

l/100th that ofblc = 1.000). ll they do, the cntirc uihlc

could have been reduced substantially.

Just as increasing the number of decimal places can

make a table harder to understand. so can increasing

the number of dimensions make a graph more con
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Table 1. Optimal Selection From a Finite

Sequence With Sampling Cost

b’C_= 10.0 100.0 1,000.0

N r‘ (G~(r') — e)/c r’ (G~(r') ~ B)/c r (G,,(r') - a)/c

3 2 .20000 2 2.22500 2 22.47499

4 2 26333 2 2.88833 2 29.13832

5 2 32333 3 3.54167 3 35.79166

6 3 38267 3 4.23767 3 42.78764

7 3 .4-1600 3 4.90100 3 49.45097

8 3 50743 4 5.57650 4 56.33005

9 3 .56743 4 6.26025 4 63.20129

10 4 .62948 4 6.92358 4 69.86462

N01!-' all! " H bF1(Xs'r~t)vl.|1$ S.lf\dQ(X3lI l)=O,othgrw|3g_

Source. Dhariyul and Dudemcz (1981).

fusing. We have already seen how extra dimensions can

cause ambiguity (ls it length or area or volume?). ln

addition, human perception of areas is inconsistent.

Just what is confusing and what is not is sometimes only

a conjecture. yet a hint that a particular configuration

will be confusing is obtained if the display confused the

grapher. Shown in Figure 23 is a plot of per share earn

ings and dividends over a six-year period. We note (with

some amusement) that I975 is the side of a bar—the

third dimension of this bar (rectangular parallelo

piped?) chart has confused the artist! l suspect that 1975

is really what is labeled 1976. and the unlabeled bar at

the end is probably I977. A simple line chart with this

interpretation is shown in Figure 2-1.

In Section 4 we illustrate six more rules for displaying

data badly. These rules fall broadly under the heading

of how to obscure the data. The techniques mentioned

were to change the scale in mid-axis. emphasize the

trivial. jiggle the baseline. order the chart by a charac

teristic unrelated to the data. label poorly, and include

more dimensions or decimal places than are justified or

needed. These methods will work separately or in com

bination with others to produce graphs and tables of

little use. their common effect will usually be to leave

the reader uninformed about the points of interest in

the data. although sometimes they will misinform us;

the physicians‘ income plot in Figure 13 is a prime ex

ample of misinformation.

Finally. the availability of color usually means that

there are additional parameters that can be misused.

The U.S. Census‘ two-variable color map is a wonderful

example of how using color in a graph can seduce us

Table 2. Optimal Selection From a Finite Sequence

With Sampling Cost (revised)

l

b-‘c = 10 b/c = 100 b/c = 1,000

N r‘ — G I‘ G !' G

3 2 .2 2 2.2 2 22

4 2 .3 2 2.9 2 29

5 2 .3 3 3 5 3 36

6 3 .4 3 4 2 3 43

7 3 .4 3 4 9 3 49

8 3 .5 4 5.6 4 56

9 3 .6 4 6.3 4 63

10 4 .6 4 6.9 4 70

Mule gtxs ll I) ufltxsw ~Ii»|.ilS s.anug|Xs »r~l|=0.olhorvmo.

into thinking that we are eottununicaling more than we

are (see Fienberg 1979; Wainer and Francolini Wtttl;

Wainer 1981). This leads us to the last rule.

Rule l2—lf It Has Been Done Well in the Past, Tltink oi

Another Way to Do It

The two-variable color map was done rather well by

Mayr (1874). 100 years before the U.S. Census version.

He used bars of varying width and frequency to accom

plish gracefully what the U.S. Census used varying

saturations to do clumsily.

A particularly enlightening experience is to look

carefully through the six books of graphs that William

Playfair published during the period l786—l822. One

discovers clear, accurate. and data-laden graphs con

taining many ideas that are useful and too rarely applied

today. ln the course of preparing this article. l spent

many hours looking at a variety of attempts to tlispltty

Eamu Os Per Share And

Dividends

(Dollars)

1972 73 74

U Earning:

Figure 23. An extra dimension confuses even the grapher

(© 1979, The Washington Post).
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data. Some of the horrors that I have presented were

the fruits of that search. ln addition. jewels sometimes

emerged. l saved the best for last. and will conclude

with one of those jewels--my nominee for the title of

“World‘s ('hatrtpion Graph." It was produced by

Minard in l8(il and portrays the devastating losses suf

feted by the French army during the course of Napo

leon's ill-fated Russian campaign of I812. This graph

(originally in color) appears in Figure 25 and is re

produced from Tufte’s book (1983, p. 40). His narrative

follows. -

llcgltrnirrg at the lclt on tlic l'iili-.h l(ir-.-.r;iit In-r-li I n- -ll th

Nicrnan River. the thick band shows tltc silc of the airnt ( l.?.!.lllll

men) as it invaded Russia in Juttc lltl2. The width ot the hiinil

indicates the size of the army at each place on the lIl;l|\. In Sep

tember. the zirmy reached Moscow. which was by then sat-kt-il and

deserted. with lll0.000 men. The path of Napoleon's rctrciit lrum

Moscow is depicted by the darker, lower band. which is linked to

a temperature scale and dates at the bottom of the chart. It was a

bitterly cold winter, and many froze on the march out ol R\l\\‘lil.

As the graphic shows. the crossing of the Berezina Rivet \\:|s ii

disaster. and the army finally struggled back to Poland with only

l0.U00 men remaining. Also shown are the movements ot ;lll'(l|l2ll_\'

troops. as they sought to protect the rear and flank ol thc ail

vancing army. Minard‘s graphic tells a rich. coherent story with its

multivariate data. far more enlightening than just a single iuitnlrcr

bouncing along over time. Six variables are plotted: the sirc of the

army. its location on a two-dimensional surface. direction of the

army's movement. and temperature on various dates during the

retreat from Moscow.

It may well be the best statistical graphic cvcr drawn.

S. SUMMING UP

Although the tone of this presentation tended to be

light and pointed in the wrong direction. the aim is

serious. There are many paths that one can follow that

will cause deteriorating quality of our data displays; the

12 rules that we described were only the beginning.

Nevertheless, they point clearly toward an outlook that

provides many hints for good display. The ntcasiircs of

display described are interlocking. The data density

cannot be high if the graph is cluttered with chartjunk:

the data-ink ratio grows with the amount of data dis

played; perceptual distortion manifests itself most fre

CARTE FICURATWE den pence successive: en hommez dc l'Armée Franeuise darts la timpagno de Russia l8lZ'l8l3.

Drcnée par‘ Iinu-id, lnspecteur General du Ponu ct Chnuasécs en retrarlt.

I

G

\.+\_ °, pursrmr
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. I V , -

TABLE RU C ‘ APO" i Itmpdrfilurc on degrc! dii Uwrmontetrg do Reaumur an denim; do ran
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X"" = |lii\'|ri|ut ‘I""' = Ni-\\tttl\\r 74"" = UIIHLHI

Figure 25. Minard‘; (I861) graph of the French Army's ill-fated foray into Russia—A candidate for the title of "World's Champion Gr. -/-'i

Tufte 1983 for a superb reproduction of this in its original color—p. 176).
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quently when additional dimensions or worthless inela

phors are included. Thus. the rules for good display are

quite simple. Fxamine the data carefully enough to

know what they have to say. and then let them say it

with a minimum of adornment. Do this while following

reasonable regularity practices in the depiction of scale,

and label clearly and fully. Last, and perhaps most im

pnrtant, spend some time looking at the work of the

masters of the craft. An hour spent with Playfair or

Minard will not only benefit your graphical expertise

but will also be enjoyable. Tukey (l977) offers 236

graphs and little chartjunk. The work of Francis Walker

( 1894) concerning statistical maps is clear and concise,

and it is truly a mystery that their current counterparts

do not make better use of the schema developed a cen

tury and more ago.

|Ri'r-eirrrl Sqitcrrrlier I982. Revisml Srpterrtber I98]. ]
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ACCELERATED LIFE TEST: AN OVERVIEW

AND SOME RECENT ADVANCES

Gouri K. Bhattacharyya

University of Wisconsin-—Madison

ABSTRACT. Statistical inferences on the durability of a product may often

have to Be Based on an analysis of failure data generated under an overstress or

accelerated life test (ALT). The effectiveness of such inferences rests heavily

on the validity of model assumptions concerning the life distribution and the

effect of stress acceleration. In this article, the principal methodological

approaches to ALT analysis are reviewed in light of plausibility of the model,

flexibility of empirical fit and usefulness in practical application. These

include parametric log—linear models, semi-parametric formulations based on

proportional hazards or time transformation, and a reciprocal-linear regression

model in the setting of a Brownian motion process for damage growth. Some

theoretical considerations and practical issues of designing an ALT experiment are

also discussed.

I. INTRODUCTION. A problem frequently encountered in engineering research

and development lS to ascertain the durability or service life of a new product or

to compare alternative designs of the same product. Usually, long life of the

product and relatively much shorter time available for testing purposes impair our

ability to collect failure data by conducting tests under its normal conditions of

use. with accelerated life test (ALT), prototypes of the product are subjected to

stress conditions that are more severe than encountered in normal use so that more

failures are apt to take place in a limited time. Data of failure times under

such over-stress conditions are then analyzed in the framework of a statistical

model,and inferences are drawn in regard to life length or reliability of the

product under its normal use condition.

Another means of reducing the test time, called censored sampling, consists

of testing a larger number of units in order to observe a fewer number of

failures--those that occur early. Censored life tests under normal use conditions

are useful as long as failures are likely to occur within the permitted test time.

when that is not the case, ALT is the only means of getting some failure data. In

practice, ALT and censoring are often coupled in the same experiment toward the

common goal of cost and time savings.

with technological advances leading to enhancement of product life, ALT is

assuming an ever increasing role in engineering experimentation. The last two

decades have seen a large growth of literature in statistical methodology for ALT

analysis. The diversity of practical application has increased at the same time.

A few examples are: self—lubricated bearings for high vacuum application (Meeks

1980) tested under high speed stresses, stress-rupture of Kevlar-epoxy composite

(Glaser 1984) under tensile and temperature stresses, twisted nematic

liquid—crystal display (Kitagawa et al 1984) under accelerated voltage stresses,

Research supported'by Uffice of Naval Research under

Grant N00014-78-C—O722.
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insulation resistance of high K multilayer ceramic capacitors (Minford 1982)

under voltage and temperature stresses, and failure of power cable insulation

(Lyle and Kirkland 1981) under temperature, moisture and voltage stresses. The

conduct and analysis of such experiments often draw a great deal from theoretical

models of chemical reaction, metal fatigue, creep rupture, wear, etc. as is

relevant to the particular physical process of failure, and are aided by empirical

evidence and statistical tools. The subject matter is heavily interdisciplinary,

and accordingly, the relevant literature is scattered in journals of several

disciplines. Our discussion will be limited to the major statistical models and

methodology of ALT analysis.

To introduce the basic statistical issue of ALT we let the random variable

y represent the life-length or time-to-failure of a material specimen, component

or a system. The probability distribution of y depends on some identifiable

environmental conditions or stresses x which are manipulated in the experiment.
~

Denote by xo the normal use-condition stress level. In an ALT experiment, a

number of larger than normal stress settings xi, i = 1,...,k are chosen. A

sample of ni units is subjected to the constant setting xi and either all

their failure times are observed (full sample) or only some early failures are

recorded (censored sample), i = 1,...,k. Thus, samples are generated from the

accelerated life distributions F(y|xi), i = 1,...,k where F(y|x) denotes the

cdf of y under the stress level x. Based on such data, one wishes to make

inferences on some relevant characteristics of F(y|§0) such as its mean,

selected percentiles, and the reliability Tltlxo) for a mission time t where

?'= 1—F. Another variant, called step-stress ALT, allows the stress setting for

each unit to be changed at specified intervals until failure occurs. For now we

confine our attention to constant stress ALT; step-stress ALT experiments will be

discussed in Section 5.

A related area of research is survival analysis in biostatistics which also

deals with time (survival time, time to cure or time to onset of a disease) as the

dependent variable and its dependence on such covariates as age, physiological and

environmental conditions of the patient. Therefore, between ALT and survival

analysis, the basic concepts, models and methods have much in common. However,

considerable differences exist in regard to the conduct of the experiment, type of

data, role of the covariates and the target of inference. For instance, survival

analysis typically deals with a much larger set of covariates than is involved in

an ALT, lesser control on the settings of the covariates, and lesser control on

the process data collection which leads to more complex patterns of censoring.

Also, its emphasis is toward studying the effects of some covariates after

adjusting for the effects of the others -— not so much to predict F(y|xo). In

fact, the concept of a normal setting for the covariates is not meaningful in

survival analysis. Both of these areas can be brought under the umbrella name of
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regression analysis. In essence, ALT calls for regression analysis under

non-standard statistical models as well as data types, and its major goal is to

make predictions beyond the range of the experimental setting. In light of the

last point, it is obvious that theoretical modeling or understanding of the

failure process plays a far more important role than empirical model fitting.

Inferences from ALT data require two basic ingredients of model

formulation: the underlying life distribution F(yIx) for a given stress x,

and the functional relationship among these distributions with varying x. The

latter is sometimes called the acceleration function. The object of this paper is

to give a brief survey of the various approaches to model formulation and the

associated methods of statistical inference. To organize the exposition, we set

out with a broad classification of the major areas of development in ALT analysis:

(a) Parametric life models with log-linear acceleration function, (b) Semi

parametric approaches based on hazard rate and time—acceleration models, (c)

Stochastic damage growth models, (d) Special constructs for step-stress ALT, and

(e) Issues of designing an ALT experiment.

Log-linear (LL) acceleration functions in the framework of important

parametric models for the underlying life distribution dominated the early

developments of ALT analysis. An extensive literature has developed both in

methodological advances and diverse applications. A good survey of the earlier

developments is available in Chapter 9 of Mann, Schafer and Singpurwalla (MSS)

(1974). The proportional hazards model, due to Cox (1972), is a semi-parametric

formulation that has been found instrumental to survival analysis in

biostatistics, and has led to major advances in handling arbitrarily censored

data. Application of these methods to ALT is somewhat limited because the model

is empirical and also the data type and object of inference are different. The

semi-parametric and nonparametric approaches stem from ideas of greater generality

but they typically require larger sample sizes for sensible inferences. Also, an

extrapolation is less dependable when it is based on a purely empirical

acceleration function. Areas of relatively recent developments include (c) and

(d). For brevity, our discussion in Sections 2-5 will focus on the motivation and

description of the various models and will include only an outline of the

principal analytical methods. Technical details as well as treatment of special

cases under each class of models will be omitted with references provided for the

interested reader. Section 6 deals with designing an ALT experiment and discusses

the usefulness of some optimality criteria.

2. PARAMETRIC LOG-LINEAR MODELS. A general formulation, called parametric

log-linear TIE) model, consists of the following assumptions: (a) the underlying

life distribution belongs to a specified parametric family involving a scale

parameter 6 and possibly also a shape parameter n, (b) the scale parameter

depends on the stress x according to an LL-relation log6 = B'x while n is

is a constant independent of x. Here x is a p-vector whose components need

not correspond to all distinct stress variables, some may be just different

functions of the same variable. For instance, with temperature as the sole stress
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variable x, the quadratic function BO+B1x+B2x2 satisfies this formulation with

x' = (1,x,x2) and 3' = (B0,B1,B2).

The choice of a life distribution is guided by such criteria as its

theoretical basis in reliability, simplicity of inference procedures and

flexibility of empirical fit. Distributions derived from Poisson shocks, extreme

value theory, failure rate behavior or those with good track record in fitting to

life data are the natural candidates. These include the exponential, weibull,

gamma and lognormal distributions. The assumption of an LL relation to stress is

not only simple and flexible but is also motivated in many practical contexts from

theoretical constructs based on chemical kinetics, activation energy, principles

of quantum mechanics, etc. The Arrhenius reaction rate model, Inverse gower law,

Eyring model, and Generalized Eyring model are some 0+ the widely used_£ngineering

models which fit into the LL formulation. These are respectively given by

9 exp(A—B/x), temperature stress

9 (A/x)P , voltage stress

(2.1)

6 x exp(A-B/x), temperature stress .

6 Ax1exp(-B/x1)exp(Cx2+Dx2/xl), temperature and voltage stresses.

Statistical inferences including estimation of the model parameters and

setting confidence bounds for the mean life or a specified percentile of the life

distribution at use condition stress as well as model checking and goodness-of

fit are extensively treated in the literature under various distributional

assumptions and specific engineering models. One general body of methodology is

based on the maximum likelihood (ML) estimation, the Fisher information matrix and

the associated asymptotic normal approximation. The technical details vary

according to the specific models and data types, and the plethora of results are

beyond the scope of this brief survey. The reader may refer to Chapter 9 of MSS

(1974) for some details and also the relevant references.

,In general, the maximum likelihood method in the ALT context and especially

with censored data involves considerable computational complexity, and lacks a

grip on the small sample properties of the estimators. Some interesting

alternative procedures have been developed for the case of location—scale

parameter families for the distribution of the log-life. In particular, the

logarithm of Weibull and lognormal random variables have the Gumbel extreme value

and normal distributions, respectively, each of which constitutes a location

scale family.

A simple estimation rocedure with type II censored data, proposed by

Nelson and Hahn (1972, 1973?, is based on an application of the least squares

method in two stages. To outline the idea we consider a p-vector x of stress

VaPlab1e$ With K $@tti"9$ X1.---.Xk. At xi, ni units are simultaneously

tested and observed till the rith failure occurs so for each i = 1,...,k we have

a type II right censored sample y,-1 < y,-2 < < y1,.i. With a minor misuse
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of notation, here we take y to be the log—life so the censored sample comes from

a pdf of the form a'1s[(y-Xi)/Q] where xi = B'X1. 9 is a completely specified

pdf (standard extreme-value, normal, etc.), and § and o are the unknown

parameters. For simplicity, we confine further discussion to equal sample

sizes and equal censoring, that is, ni = n and ri = r for all i.

In stage 1, we ignore the regression structure and estimate the parameters

(Ai,o)_ from the ith data set by the method of least squares applied to the linear

model

= + j =1,a0o,rwhere Vij, j = 1,...,r are the first r order statistics of a sample of size

n from the standardized pdf g. Their means cj = E(Vij) and Covariances

ojj, = cov(V1j,Vij.) are known constants, and their tables are available for

some distributions. We thus have the stage-1 best linear unbiased estimators

(BLUE) of the form

*- r , r

, ., .= Zb... 2,3j=1aJylJ 01 j=1 JylJ ( )
>4

-In
ll

M

as well as their exact covariance matrix

d d
@’< 1 3) (2.4)

d3 d2

where d1, dz and d3 are known constants.

-In stage 2, we denote §* = (X¥....,X:)', 0* = (0§,...,0E)', afld form

the linear model '

‘k

2 = )§§ T ‘E1

* _ 1 (2.5)

9' - -5 +where x‘ = (x1,...,xk), and the pair (e1,e2) has mean (Q,Q), its elements are

independent across rows and have the covariance structure (2.4) across columns.

Based on this linear model, the BLUE's are obtained as

I

Q!
ll

7€'|0-I

-lo

"PIX

|

Q31

? = (;£')£)'1>('x*, i (2.6)
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The mean log-life at the use condition stress xo as well as any

percentile is of the form + co which is a linear combination of B and o.
'"z

bx

Therefore, (2.6) leads to unbiased estimators of these quantities as well as their

exact variances as opposed to only asymptotic results obtainable for the MLE's.

However, to construct confidence bounds, one has to resort to large sample normal

approximation of these estimators except for some isolated simple models where an

exact pivotal method may be feasible, cf. McCool (1980).

Bhattacharyya and Soejoeti (1981) examine conditions on the design matrix

X and the underlying log-life distribution g for the asymptotic normality of the

ML and two-stage least squares estimators, and investigate the loss of asymptotic

(k + w) efficency incurred by the latter. In particular, for the Neibull life

distribution, it is found that a fairly high efficiency is retained unless either

n is too small or r is too small compared to n. Nelson (1970) discusses

another two-stage estimation method where MLE is used in the first stage followed

by least squares in the second but one loses the exact properties (unbiasedness,

variances and covariances) in this process.

For the lognormal life model and type II right censored ALT data, Mehrotra

and Bhattacharyya (1985) develop another simple and highly efficient estimation

procedure using a judicious modification of the likelihood equations. Denoting

k

Yi = (yil""'yiri) ' ! = (¥1*-'-'!k)- ' = i§1'i' zij = (YiJ'§ E1)/°'

they observe that the likelihood function is a product of the two components

L1 = o"‘exp[-(y-X8)'(y-X6)/(2o2)]

(2.7)

K "1"1

L = II[1—<i>(z. )]
2 i=1 iri

where _{ is now the r X p matrix whose rows are xi,...,xé repeated

r1,...,rk times, respectively, and ¢ denotes the standard normal cdf. The factor

L1 has the form of a full sample normal regression likelihood based on the sample

sizes r1,...,rk at the k design points. Complication in obtaining the MLE

arises because of L2. A method of modified MLE is proposed by replacing

alogL2/a§ and 3l0gL2/80 by their respective expectations in the likelihood

equations. It turns out that these modified likelihood equations lead to the

exact solutions

E = s'1x'y - Ss71a

* 1' (2.8)
a2 = ¢ 1y'(I-XS 1X')y
~ ~ ~~~ ~ ~
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where and the constants a and c can be calculated by using theIL/3

ll

*><. '.><

tables of means and variances of the standard normal order statistics. Closed

form expressions, easy computing algorithm, some exact small sample properties,

and little loss of asymptotic efficiency with light censoring are the principal

advantages with this method. A few other modifications of the likelihood

equations to obtain estimators in closed forms are discussed by Tiku (1978) and

Schneider (1984) for censored normal samples.

In most applications of the parametric LL analysis, the shape parameter n

is assumed to be independent of x. Glaser (1984) employes a more general

formulation with the Weibull distribution assuming that the reciprocal of the

shape parameter also has a linear model in terms of x. Iterative solution of the

ML equations are discussed in the settings of grouped and censored ALT data.

Shaked (1978) discusses ML estimation with the inverse power law and Arrhenius

acceleration functions applied to some linear hazard rate type distributions.

3. SEMI-PARAMETRIC MODELS—-PROPORTIONAL HAZARDS AND TIME ACCELERATION.

3.1 Proportional Hazards Model. The LL model discussed in the preceding

section envisons a muftiplicative effect of stress on the scale parameter and

hence on the mean as well as the percentiles of the life distribution. Another

approach to modeling the effect of stress focuses on the failure rate behavior.

The failure rate at age y of a unit undergoing a constant stress x is defined

as h(y|x) = f(y|x)/E(y|X) where f and ?' are respectively the pdf and

survival function of the life distribution. Let h0(y) = h(y|x°) denote the

failure rate function under the use condition stress xo. The proportional

hazards (PH) model assumes that stress acts multiplicatively on the failure rate,

that is h(y|x) = ho(y)g(x,B) where g is a positive function involving an

unknown parameter vector B_ but is free of y. Cox (1972) proposed this idea

and further assumed an exponential form of g,

h(y|{) = ho(y)exp(§'x) (3.1)

arguing that this choice is "convenient, flexible and yet entirely empirical".

The model is semi-parametric because one component, namely, the acceleration

function is parameterized while the form of the use condition hazard h0(y) is

left completely arbitrary.

The PH model has spurred extensive research in statistical methodology with

applications targeted mainly to survival analysis in biostatistics. Also,

handling arbitrary or randomly censored data has been a focal point of these

developments The parameter B is usually viewed as the primary target of

inference while h0(y) is considered a nuisance function. In the context of ALT,
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ho(y) or the corresponding life distribution F(yI§o) is of main interest while

an assessment of the significance of the stress effects is often redundant. More

importantly, the use of an empirical acceleration function with no physical

back-up is prone to criticism because this function plays a dominant role in

extrapolation and inferences on ho(y).

A comparison of the structures of the LL and PH models is in order here.

The well known relations between the failure rate, cumulative hazard and survival

functions (cf Kalbfleisch and Prentice 1980) lead to the following equivalent

forms of the PH model:

exp(§'x)

F(Y|{)

wet-1osF(y|>5)]

[F<y|>5°>1

_. (3.2)

log[-logF(y|§O)]+§'x.

The second equation shows a linear model in regard to the influence of the

stresses operates additively on the log (-log)-survival function. By contrast,

the LL model assumes a linear form for the logarithm of the scale parameter, and

is therefore physically more meaningful. It entails that ylx has the same

distribution as that of (Y|Xo)[exp(B'X)], and this relation leads to the failure

rate relation ' " '

n(y|x) = exp(§'x)h°[y exp(§'x)]. (3.3)

Obviously, the LL and PH models coincide if and only if ho(y) “ y6, that is, the

underlying life distribution is Heibull.

A more general class of models is formulated by Ciampi and Etezadi-Amoli

(1985) by embedding both LL and PH failure rate functions in a common frame:

h(y|x) = exp(g'x)h°[y exp(§'x)]. (3.4)

'9

I

'@

ll

@ 0This reduces to LL if = B and to PH if They study asymptotic

likelihood ratio tests for model discrimination under the further assumption that

ho is a polynomial. It is not clear if such an over-parameterization is

necessary or meaningful in ALT analysis. The model being purely empirical, its

use in ALT is questionable.

3.2 Time-Acceleration Model. The concept of a failure-time acceleration

or shortening of the life-time under increased stress has prevailed in much of the

historical developments of the ALT models. A simple formulation was advanced by

Allen (1959) and its ramijjcations treated later by several authors. To introduce

the basic idea, suppose Fo(y) and G(y) denote the survival functions under the

use condition stress and an accelerated stress condition, respectively. A

relation between them is modeled as Ely) = T5[v(y)] with a "time-acceleration"

function v(y). Allen (1959) calls it a strict acceleration if v(y) > y for
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all y (it is understood that v(y) is not identically equal to y), and a

restricted acceleration if v(y) < y holds on a finite interval and v(y) > y

on an infinite interval. Note that a strict acceleration is equivalent to the use

condition life being stochastically larger than that under the accelerated stress.

Barlow and Scheuer (1971) considered nonparametric estimation of F0 and G under

the assumptions that both are IFRA distributions, v(t) is arbitrary, and data are

available from both F0 and G.

Lacking data from F0, as is usually the case with ALT experiments, one

must specify a structure of v(t) to be able to estimate F0. A semi-parametric

formulation, proposed by Shaked, Zimmer and Ball (SZB) (1979), assumes that the

stress x acts on the survival by means of a change of the time scale,

v(y) = 9(>§.§)y

where g is a specified function of x involving an unknown parameter Q,

and the distribution Fo(y) is arbitrary. Note that the choice g(x,B) =

exp(§'x) leads to the structure of the LL model of Section 2, the sole difference

being that F0(y) is left nonparametric in the present formulation.

Consider the case of a single stress variable x and a scalar parameter

B. Suppose that k accelerated stress settings xi are used, ni units are

tested at xi and all failure times yij, j = 1,...,ni, i = 1,...,k are

observed. The model entails that ylxi has the same distribution as 9ii|(y|xi|)

where Biil = g(xi,B)/g(xi.,B). Based on this observation, SZB (1979) propose a

simple inference procedure along the following steps:

(i) Using the data from each pair of stress settings (x1,xi-),

obtain a consistent estimator Bii. of the ratio of scales

such as B = 7'/Y- where 7" = n'1 gi y

ii‘ i 1' i i j=1 ij‘

(ii) Obtain Bii. by solving the equation

A

eiil = 9(Xi,B)/9(X.i|,B).

Repeating this for all pairs get k(k-1)/2 estimators of B.

us) ll
(iii) Form the pooled estimator Z wi..B... using the

weights wii. inversely proportional to the asymptotic

variances of 811..
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(iv) Rescale the observed failure times to pseudo—values at the

use condition stress:

A

g(x .8)

y‘1?J. = _"___.A_ yij , 5 = 1,...,n_i, 1' = 1,...,|<.

9(X1.B)

(v) Act as if these pseudo—values constitute a random sample of

k

size N = 2 ni from the distribution Foiy) in order to

i=1

estimate the mean, percentiles or other features of F0 or

even the whole function Fo(y).

Shaked and Singpurwalla (1982) discuss goodness-of-fit tests along these lines.

The appealing features of the above procedure are its simplicity which is an

attraction to the practitioners, and avoidance of the assumption of a specific

parametric life distribution as is involved in the LL analysis. However, large

sample sizes are needed for its validity, and that is in essence a price to be paid

to forego a parametric assumption. Like the LL model it does have a parametric

assumption for the acceleration function and that plays a crucial role in extrapo

lation. In light of this, whether one chooses a flexible parametric family for

F°(y) or leaves it nonparametric is not of much practical import in model fitting

and inference. '

Proschan and Singpurwalla (1979, 1980) discuss a Bayesian approach which

circumvents the need for choosing a specific parametric acceleration function as

well as the form of the life distribution. However, they assume that prior

information in regard to the average failure rates over disjoint time intervals

under each accelerated condition is available, and that least squares fit of a

linear relation among the posterior average failure rates can be extended to the

use condition stress.

4. STOCHASTIC DAMAGE GRONTH -- AN INVERSE GAUSSIAN REGRESSION MODEL. In

this section, we discuss a parametric approach based on a life distribution which

derives from a stochastic model of fatigue or growth of damage in a material. In

contrast with direct modeling of the time—acceleration function or the failure rate

behavior discussed in the previous sections, here the rate parameter of the damage

growth process is modeled in relation to the stress.

Specifically, we assume that given a constant operating environment,

depletion of strength or growth of damage of a material specimen over time follows

a Brownian motion process with drift u > 0 and diffusion constant 62, and that

the material fails when the accumulated damage exceeds a critical level w > 0.

Let X(t) denote the accumulated damage during the time interval [0,t]. The

time-to-failure is then given by y = inf{t: X(t) > w} which is the first passage

time of the process across w. The above assumptions lead to the following pdf of

Y1

fm = (21wy3)'1/2eXp[-(% -1>’/<z<=y>1. o < y < ~ (4.1)
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where 9 = w/u, 0 = 62/wz, mean = 6, and variance = 630. This distribution is

known as a Gaussian first passage time distribution in the stochastic processes

literature, and is more commonly called the inverse Gaussian distribution,

IG(9,o), in the statistical literature. Its analogy with and advantages over the

Birnbaum-Saunders (1969) fatigue life distribution is discussed by Bhattacharyya

and Fries (BJ) (1982b).

In the context of ALT, the parameter u, which represents the mean damage

growth per unit of time, is the natural choice for constructing an acceleration

function in relation to the stress x. A simple and flexible formulation due to

BF (1982a, 1986) postulates a linear regression model for u and assumes w and

62 to be constants independent of x. The latter assumption is in the spirit of

the homoscedasticity assumption in the normal theory regression analysis. Thus,

the distribution of the failure time under stress x, ylx, is taken to be

IG(6(x),o) whose mean 9(x) depends on the stress x (a p-vector) according to

I

||

|@

IX
v

the reciprocal-linear model 6'1(x) and 0 is independent of x.
~

To discuss statistical inferences with the above model, we consider an ALT

experiment with k settings of x, and a random sample of ni failure times yij,

j = 1,...,ni observed at the setting xi, i = 1,...,k. Let N, QQ, 7" respectively

denote the total sample size, the ith sample mean and the grand mean,

R = N'1§§y;§, the grand mean of reciprocals of the observations, V = §§(y;§ 4Y'1),

the tota) reciprocal deviation, and define the matrices IJ

Q - diag(§i,...,§1) , C = diag(n1,...,nk)

>3‘ = (>21----»>:k> » S. = >.<'EE>£

Referring to (4.1) and the regression model 6;1 = x‘B, the likelihood function
Qili

L can be written in the form

_ 1L = O N/2exp[- -2- om] (4.2)

0

where _1

Q(§) = (Q{§-1)'CQ (Q58-1) + V . (4.3)

From (4.2) and (4.3), BF (1986) show that the unique roots of the likelihood

equations, .

§ = S'1Znix1. , Q = N'1Q(§) (4.4)
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provide efficient likelihood estimators, that is, they are consistent,

asymptotically normal and asymptotically equivalent to the MLE's. They further

exploit some convenient features of the likelihood function to arrive at an

analysis of reciprocals (ANOR) table along the ideas of the analysis of variance

table in the normal theory linear model analysis. The ANOR table rests on the

decomposition of the total corrected sum of reciprocals

V

where the components on the

regression, lack of fit,and

QReg =

QL =

QE =

Consideration of likelihood

QRGQ + QL + OE

righthand side measure the contributions due to

pure error, respectively, and are given by

§’1)z
i

z><|

am»
l

zni(7§1 - x;E)

1. -

my/1T1. - Y?) .
ij J

ratio tests along with a judicious intermix of exact

distribution theory of IG and asymptotic theory further lead to approximate F

tests for the relevant hypotheses.

Other developments in the area of IG reciprocal linear model include:

construction of standardized IG residuals and their plots for a graphical model

checking, construction of unbiased estimators via least squares applied to the

reciprocals (BF 1982b). determination of optimal designs by minimizing a finite

sample version of the asymptotic generalized variance (Fries and Bhattacharyya

(FB) 1986), and analysis of factorial life test experiments (FB 1983).

The method of ALT analysis discussed in this section rests on a parametric

formulation much in line with the model presented in Section 2. The IG

distribution as a life model has a sound theoretical basis, and the family is

flexible enough to fit most real life data just as the lognormal and Weibull

families. Moreover, the reciprocal linear model as an acceleration function

derives from a plausible assumption about the damage caused by stress. Taken

together, the methodology of this section has several desirable features: a

physical basis of the model, flexibility of empirical fit, tractability of

statistical inferences and availability of model checking procedures. However,

simple methods of statistical inferences with censored data are still not

available for this model and further work in this direction is needed.

5. STEP-STRESS ALT. The preceding sections were concerned with the ALT

studies where each unit is subjected to a constant level of stress until failure

occurs or the observation is censored. Another widely used method of conducting

an ALT experiment, called a step-stress ALT, allows the stress setting of a unit

to be changed at discrete points of time. Stress changes may be effected at

preset times or upon occurrence of a fixed number of failures along the ideas of

type I and type II censoring, respectively. Applications of step-stress ALT are

cited by Nelson (1980), Bora (1979) and Miller and Nelson (1983) in the contexts

of failure of cable insulation under voltage stress, life testing of diodes, and

dielectric breakdown of insulating fluid, respectively.
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where 6 = w/u, d = 62/wz, mean = 6, and variance = 630. This distribution is

known as a Gaussian first passage time distribution in the stochastic processes

literature, and is more commonly called the inverse Gaussian distribution,

IG(e,o), in the statistical literature. Its analogy with and advantages over the

Birnbaum-Saunders (1969) fatigue life distribution is discussed by Bhattacharyya

and Fries (BJ) (1982b).

In the context of ALT, the parameter u, which represents the mean damage

growth per unit of time, is the natural choice for constructing an acceleration

function in relation to the stress x. A simple and flexible formulation due to

BF (1982a, 1986) postulates a linear regression model for u and assumes m and

62 to be constants independent of x. The latter assumption is in the spirit of

the homoscedasticity assumption in the normal theory regression analysis. Thus,

the distribution of the failure time under stress x, ylx, is taken to be

IG(B(x),o) whose mean 6(x) depends on the stress x (a p-vector) according to

I

ll

l®

{X
U

the reciprocal—linear model 9'1(x) and o is independent of x.
an

To discuss statistical inferences with the above model, we consider an ALT

experiment with k settings of x, and a random sample of ni failure times yij,

j = 1,...,ni observed at the setting xi, i = 1,...,k. Let N, §;,'y respectively

denote the total sample size, the ith sample mean and the grand mean,

R = N'12Zy;§, the grand mean of reciprocals of the observations, V = 2£(y;§ 4§'1),

lj ij

the total reciprocal deviation, and define the matrices

D = diag(§i,...jYk) , G = diag(n1,...,nk)

5' = <61»---*’£(<) - 5. = ’."E9’$

Referring to (4.1) and the regression model Bgl = x'B, the likelihood function

-i

L can be written in the form

- 1L = 0 N/2exp[- — om] (4.2)

20

where _1

Q(§) = ((_>_>(§-1)'co (Q>_(§-1)+ v . (4.3)

From (4.2) and (4.3), BF (1986) show that the unique roots of the likelihood

equations, .

§ = §'11=n1>g,-. 3 = N'10(§) (4.4)
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provide efficient likelihood estimators, that is, they are consistent,

asymptotically normal and asymptotically equivalent to the MLE's. They further

exploit some convenient features of the likelihood function to arrive at an

analysis of reciprocals (ANOR) table along the ideas of the analysis of variance

table in the normal theory linear model analysis. The ANOR table rests on the

decomposition of the total corrected sum of reciprocals

V = QReg + QL + QE

where the components on the righthand side measure the contributions due to

regression, lack of fit,and pure error, respectively, and are given by

QReg =

QL =

oE=

71>
z

i

|><|

|tn> I

A

I

m1.<7;1 - fie)

1

-1_ -1
i>S§(yiJ. Y1. ) .

Consideration of likelihood ratio tests along with a judicious intermix of exact

distribution theory of IG and asymptotic theory further lead to approximate F

tests for the relevant hypotheses.

Other developments in the area of IG reciprocal linear model include:

construction of standardized IG residuals and their plots for a graphical model

checking, construction of unbiased estimators via least squares applied to the

reciprocals (BF 1982b), determination of optimal designs by minimizing a finite

sample version of the asymptotic generalized variance (Fries and Bhattacharyya

(FB) 1986), and analysis of factorial life test experiments (FB 1983).

The method of ALT analysis discussed in this section rests on a parametric

formulation much in line with the model presented in Section 2. The IG

distribution as a life model has a sound theoretical basis, and the family is

flexible enough to fit most real life data just as the lognormal and weibull

families. Moreover, the reciprocal linear model as an acceleration function

derives from a plausible assumption about the damage caused by stress. Taken

together, the methodology of this section has several desirable features: a

physical basis of the model, flexibility of empirical fit, tractability of

statistical inferences and availability of model checking procedures. However,

simple methods of statistical inferences with censored data are still not

available for this model and further work in this direction is needed.

5. STEP-STRESS ALT. The preceding sections were concerned with the ALT

studies wheFE'EEEfi'UfiTt_T§'subjected to a constant level of stress until failure

occurs or the observation is censored. Another widely used method of conducting

an ALT experiment, called a step-stress ALT, allows the stress setting of a unit

to be changed at discrete points of time. Stress changes may be effected at

preset times or upon occurrence of a fixed number of failures along the ideas of

type I and type II censoring, respectively. Applications of step-stress ALT are

cited by Nelson (1980), Bora (1979) and Miller and Nelson (1983) in the contexts

of failure of cable insulation under voltage stress, life testing of diodes, and

dielectric breakdown of insulating fluid, respectively.
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In an ordinary fixed-time step-stress experiment, a random sample of N

units are simultaneously exposed to a stress setting xl, observed over a fixed

time t1 and the failure times of those failing in this interval are recorded.

At time t1, the surviving units are subjected to a different stress setting x2

and observed till they all fail. Such an experiment is called a two-step or

simple step-stress ALT. The idea extends to more than two steps in an obvious

way. Moreover, the failure observations at the terminal step may be censored at a

fixed time. The intent of such an experiment is to collect more failure time data

in a limited time horizon without necessarily using high stresses to all the

units. with an initial low stress, a unit may tend to survive too long in which

case observation of its actual failure time would be lost due to censoring. That

can be prevented by increasing the stress at an intermediate point thus increasing

the chance of an early failure. In principle, an initial high stress can be

followed by a lower one in the second step but the motivation of using this

pattern is not transparent.

As with a constant stress experiment, the oal of statistical analysis of

step-stress ALT data is to draw inferences on F°(y) = F(yIxo), the life

distribution corresponding to the constant use condition stress xo. For this

to be possible, we must have a model that relates the step-stress life

distribution to the constant stress life distribution F°(y). A sensible

formulation, called a cumulative ex osure (CE) model, was proposed by Nelson

(1980). It assumes that "the remaining life of specimens depends only on the

current cumulative fraction failed and current stress -— regardless how the

fraction accumulated. Moreover, if held at the current stress, survivors will

fail according to the cdf for that stress but starting at the previously

accumulated fraction failed." To formalize this idea, we let Fi(y) stand for

F(y|{1), the life distribution under the constant stress xi, and let G(y)

denote the life distribution under a two-step (first x1 and then x2) stress.

The CE model entails that ' '

G(y) - F1(y) for y < t1 (5 1)

— F2(s1+y—t1) for t1 < y <

where s1 is the solution of F2(s1) = F1(t1). Initially» G I5 the Same 35

F1. At time t1, it switches to the function F2 but starting with the value

F1(t1). Thus G(y) is made up of segments of the constant stress life

distributions F1 and F2, pieced together at the change point of stress. Note

that this formulation is different from the mixture models as well as the change

point models that appear in some areas of the statistical literature.
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with the general formulation (5.1), a parametric model can be constructed

by taking F1 and F2 to be members of a common parametric family along with an

LL model of relation between them. For example, use of the Neibull model

?(y|x) = exp[-(y/6(x))B] in conjunction with the inverse power law 9(x) =

(A/x)P and equation (5.1) leads to the step-stress life distribution

_ -cm/A>’1“

G(y) e , 0 < y < t1

—[t1(x1/A)P+(y-£1)(X2/A)P]B

=e ,t1<y<@

(5.2)

where A, P and 8 are unknown parameters. Nelson (1980) and Miller and Nelson

(1983) discuss maximum likelihood estimation under this type of parametric models

where the underlying life distribution is taken to be exponential or Heibull, and

the acceleration function either Arrhenius or the inverse power law. They also

illustrate application to data of some step-stress ALT experiments.

A physical basis of the CE model in step-stress ALT is not as transparent

as its mathematical formulation. Earlier, in a similar context, DeGroot and Goel

(1979) advanced a time-acceleration model which is physically more meaningful.

They assume that the effect of switching the stress from x1 to x2 is to

multiply the remaining life of the unit by some unknown factor a, a function of

xl and x2 (a < 1 if x2 is more severe than x1). Letting yl denote the

life-length under the constant stress x1 and y* that under the step-stress

pattern (switching from x1 to x2 at time t1), they formulate the relation

y* = y if y < t

1 1 i (5.3)

and call y* a tam ered random variable. It can be seen that (5.3) becomes a

special case of (5.?) if F1 and F2 differ only by a scale parameter. In this

sense, (5.1) accommodates a more general formulation by allowing other parameters

of the life distribution to change with stress, although such a generalization

obscures the physical meaning of the model and in none of the applications it has

been used as yet. DeGroot and Goel (1979) only consider the setting of a

"partially accelerated life test" viewing x1 as the use ¢ondition Stress and

x2 the single accelerated stress so a specification of the acceleration function,

relating a to x, is not necessary. On the other hand, they allow tl to be

different for different units. Considering the underlying life distribution to be

exponential, they study the issue of optimal design in the framework of Bayesian

decision theory along with the specification of some cost function. Goel (1975)

discusses the asymptotic properties of MLE in the above setting.
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Curiously, with the assumption of an exponential distribution but without

any reference to ALT, the above model also appears in the literature under a

-- h ' t h d d l Th f ulation which is in termsdifferent name a c an e o1n azar mo e . e orm ,

of the failure rate function is

h(y) A if Y < T
1 1 (5.4)

= A2 if y > t1 ,

and it leads to the life distribution

-9(y) Ale if y < t1

(5.5)

-A t -A (y—t )

= Aze 1 1 2 1 if t1 < y < ~.

Except for a change of notation, it is identical with the model (5.3) of a

tampered exponential random variable. However, in the context of a change point

hazard, the time point of change t1 is regarded as an unknown parameter in

addition to the failure rates A1 and A . Here, the standard asymptotic theory

of MLE does not apply. In fact, one faceg the problem of non-existence of the MLE.

Nguyen et al (1984) and Matthews and Farewell (1982) discuss parameter estimation,

and testing the hypothesis of no change, and also provide references to earlier

works in this area.

6. DESIGNING AN ALT. A carefully planned life test experiment is at the

heart of success in gathering informative data, coping with the constraints of

cost and time, and arriving at effective inferences as well as identifying

directions of further investigation. Among many issues involved in planning an

ALT experiment, some are to be resolved from an understanding of the physics of

failure. These include choice of the stress variable(s), choice of the

acceleration function consistent with a physical model of the failure process, and

decision regarding the range of stress acceleration which would be feasible and

dependable for the purposes of extrapolation. Moreover, accepted engineering

practice in a given context should guide to the choice between a constant stress

ALT and a step—stress ALT experiment.

Consider the most common type of ALT where a single stress x is

accelerated, and denote by xL and xH the intended lowest and highest settings

of x. As before, we denote the use condition stress by xo so xo < xL < xH.

with a constant stress ALT, one needs to determine the number k of stress

settings to be used, their locations in the interval [xL,xH], the allocation of

a given total number N of units to the various stress settings, the period of

observation and the scheme of censoring. Unlike the situation of normal theory

regression analysis or least squares fitting of multiple regression with complete

data, a statistical treatment of optimal ALT plans is made complicated by the fact

that the important parametric life distribution models do not lead to exact

results for the sampling distribution of the relevant estimators or manageable

experssions for their variances especially in the case of type I censored data.

Faced with this pervasive difficulty, one reasonable approach to address the issue
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of optimal test plans is based on large sample theory of ML estimators. Nelson

and Kielpinski (1975, 1976) and Nelson and Meeker (1978) discuss several test

plans along this line. Their main developments are outlined below.

The specifications involved in their development of optimal test plans

include: a parametric life distribution such that the log-life conforms to a

location-scale family, an engineering acceleration function that conforms to the

log-linear model (such as the Arrhenius or inverse power law), a total sample size

N and a common censoring time T (determined from cost and schedule constraints),

and the highest stress setting xH (to be set as high as possible subject to validity

of the model). The object of inference is to estimate u[xo), the median log-life

or more generally, Cp(xo), the 100p percentile of the life distribution at the

use condition stress x . Two kinds of test plans, the best standard plans and

the optimal two—point plgns are discussed in this setting.

A standard plan, so called because of its popularity among practitioners,

is one that uses k' equispaced stresses in a suitable transformed scale,

and equal number of test units at each stress. Given k, the best standard

plan seeks to determine the xL that minimizes the asymptotic variance of

u(xo), the MLE of u(x°). An optimal two-point plan uses k = 2 and finds the

xL and the proportion of units wL tested at xL so as to minimize the

asymptotic variance of u(xo). To arrive at these plans for the lognormal life

model, Nelson and Kielpinski (1976) start with the asymptotic theory of MLE,

compute the Fisher information matrix, and use the delta method to deduce an

expression for the asymptotic variance of u(x0). Minimization of this function

is done numerically on a computer with various input values of the model

parameters and other quantities that are fixed in advance, and thereby charts are

prepared for guidance to the practitioner. Nelson and Meeker (1978) discuss such

plans for the case of Heibull distribution along with the inverse power law

acceleration. It is found that for the case of two-point designs, the optimal

plan typically allocates more units to the low stress and requires a slightly

lower x than the best standard plan. Similar issues are also discussed by

Meeker ahd Hahn (1977) in the context of success-failure data and a logistic

regression model.

It is to be noted that a determination of these optimal plans depends on

the unknown model parameters which appear in the expression for the asymptotic

variance of MLE. Therefore, one must have an informed guess of the parameter

values either from experience with similar experiments or by conducting a

preliminary ALT experiment. Also, a drawback of the two-point plans is that their

optimality rests on the correct choice of the model and, at the same time, they

provide little scope of checking lack-of—fit or violation of the model

assumptions. To remedy this drawback without departing too much from optimality,

best compromise plans are suggested.» A compromise plan uses a third design point
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XM intermediate between xL and xH, a small proportion of units tested at

XM, and retains the same relative allocation to xL and xH as with the optimal

plan.

Meeker (1984) reports an extensive simulation study for the purpose of

comparing the above plans along with a few others determined from such

requirements as equal expected number of failures rather than equal sample sizes

at the design points and minimization of the variance of some other parameter

estimates. The principal criteria used in this comparison include: quality of

estimation under the chosen model (precision), ability to detect a departure from

the assumed linear model (goodness-of-fit), sensitivity to misspecified parameter

values (robustness) and ability to generate adequate failure data at the design

points (feasibility). It is found that the ALT plans that are theoretically

optimal have serious drawbacks in regard to the other criteria. The compromise

plans are sub-optimal but are more robust and are also capable of detecting

departures from the assumed model.

The above discussion summarizes the recent developments on ALT designs for

the case of type I censoring scheme and parametric log linear analysis. Earlier

works were confined largely to uncensored data under the exponential model with

some specific acceleration function (Chernoff 1962) or the standard least squares

fitting of multiple regression (Herzberg and Cox 1972). For the Weibull

distribution with a polynomial function for the lo -scale parameter, Mann (1972)

discusses optimal test plans for estimating cp(xo) by meafls Of 6 linear fU"Ct10"

of order statistics rather than the MLE. Fries and Bhattacharyya (1985) study

optimal ALT designs under the inverse Gaussian distribution along with a

reciprocal-polynomial regression model.

Derringer (1982) points out that in order to observe failures with a single

accelerated stress, one often requires the settings so large that validity of the

assumed model becomes questionable. To remedy the danger of a long-range

extrapolation, he suggests the use of multiple stress acceleration so each stress

factor could be employed at relatively low levels and yet together they would

accomplish the purpose of a single large stress. This is also logical from a

practical viewpoint because most materials or systems are affected by several

stresses in their normal operation. However, with multiple stress acceleration

one needs to be concerned about possible interaction of the stresses. At the same

time, theoretical modeling of the acceleration function is typically more

difficult when several stresses are to be accelerated simultaneously. In

essence, the choice will really be between using a less reliable model for a

short-range extrapolation and a more reliable model for a long-range

extrapolation. For an effective resolution of such issues there ought to be

sufficient interaction of the statistician with materials scientists and engineers

who are knowledgeable about the mechanics of the failure process.
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