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FOREWORD

The Army Mathematics Steering Committee ( AMSC ) sponsors annually the

conferences entitled the Design of Experiments in Army Research , Development

and Testing . The thirty- second one in this series had as its host the US

Army Combat Development Experiment Center ( USACDEC ) and was held 29-30

October 1986 at the Hilton Inn Resort , Monterey , California . Dr. Marion R.

Bryson , Director of USACDEC , served as the local host and conference

coordinator not only for this conference but also for the twenty - third and

twenty-eighth Design of Experiments meetings . The members of the AMSC

appreciates his efforts and the efforts of his staff in coordinating the many

details needed to conduct all three of these symposia .

The Special Session this year was entitled " Field Experimentation : The

Analysis of Messy Data . " There were three invited papers presented . The

papers of Professors Dallas E. Johnson and John Tukey discussed the analysis

of messy data , while the joint authored paper by Drs . Marion R. Bryson and

Carl T. Russell presented some of the problems of scoring casualties in field

trials . The titles of the technical and clinical sessions give some idea of

the many statistical areas treated in the contributed papers : ( 1 ) Parametric

Statistics , ( 2 ) Statistical Theory , ( 3 ) Design of Experiments , (4 ) Data

Analysis and Modeling, ( 5 ) Theory and probablistic Inference , ( 6 ) Fuzzy

Statistics , ( 7 ) Forecasting and Prediction , ( 8 ) Small Sample Analysis, and ( 9 )

Regression and Smoothing . The program Committee , for the invited speaker phase

of the conference , obtained the following nationally known scientists to talk

on topics of current interest to Army personnel as well as other attendees .

Speaker and Affiliation Titles of Address

Professor George E.P. Box

University of Wisconsin

Statistical Design , Analysis for

Quality Improvement

Professor Walter T. Federer

Cornell University

Statistical Analysis for

Intercropping Experiments

The Search for RandomnessProfessor Persi Diaconis

Stanford University

Professor Emanuel Parzen

Texas A & M University

Quantile Statistical Data

Analysis

Professor Stuart Geman

Brown University

Some Applications of Bayesian

Image Analysis
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The conference was preceded by a two-day tutorial on " Density Estimation ,

Modeling and Simulation " by Professor James Thompson of Rice University . The

dates for the tutorial were Monday and Tuesday 27-28 October 1986. Professor

Thompson has conducted extensive research in the areas covered in his

lectures . His approach to the presented material was excellent and he

generated many interesting discussions .

Dr. Francis G. Dressel was the recipient of the Sixth Wilks Award for

contributions to Statistical Methodologies in Army Research , Development and

Testing . Dr. Dressel was uniquely qualified by virtue of his service in the

Mathematical Sciences Division of the U.S. Army Research Office over three

decades . He was one of the principals at the inception of the Army Design of

Experiments Conference and along with Sam Wilks , planned and implemented the

then- fledgling conference . Dr. Dressel currently serves as editor of the

Conference Proceedings and continues to contribute to the advancement of

statistics in the U.S. Army .

The AMSC would like to thank the members of the conference committee for

guiding this excellent scientific conference , and to also thank the

Mathematical Sciences Division of the Army Research Office , for preparing the

proceedings of these meetings .

CONFERENCE COMMITTEE

Carl Bates

Robert Burge

David Cruess

Bernard Harris

Robert Launer

J. Richard Moore

Carl Russell

Douglas. Tang

Malcolm Taylor

Jerry Thomas
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AGENDA

THIRTY - SECOND CONFERENCE ON THE DESIGN OF EXPERIMENTS

IN ARMY RESEARCH , DEVELOPMENT AND TESTING

29-31 October 1986

Host : US Army Combat Developments Experimentation Center

Fort Ord , California 93941

Dr. Marion R. Bryson , Director

Location : Hilton Inn Resort

1000 Aguajito Road

Monterey , California 93940

* * * * * Wednesday , 29 October * * * * *

0815-0915 REGISTRATION Vista Del Mar Roon

0915-0930 CALLING OF THE CONFERENCE TO ORDER Presidio Room

Dr. Marion R. Bryson , Director

US Army Combat Developments Experimentation Center

WELCOMING REMARKS

0930-1200 GENERAL SESSION I Presidio Room

Chairman : Dr. Marion R. Bryson

0930-1030 KEYNOTE ADDRESS : STATISTICAL DESIGN , ANALYSIS FOR QUALITY

IMPROVEMENT Presidio Roon

Professor George E. P. Box , University of Wisconsin

1030-1100 BREAK Vista Del Mar Roon

1100-1200 STATISTICAL ANALYSIS FOR INTERCROPPING

EXPERIMENTS

Professor Walter T. Federer , Cornell University

Presidio Roon

1200-1330 LUNCH

1330-1530 SPECIAL SESSION FIELD EXPERIMENTATION :

MESSY DATA

THE ANALYSIS OF

Presidio Roon

Chairman : Mr. William D. West , Director , Science and Technology ,

US Army Combat Developments Experimentation Center
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TITLE : SCORING CASAULTIES IN FIELD TRIALS

Dr. Marion R. Bryson , Director , USACDEC and

Dr. Carl T. Russell , US Army Operational Test and

Evaluation Agency

SOME TOPICS IN MESSY DATA ANALYSIS

Professor Dallas E. Johnson , Kansas State University

TITLE : To be announced

Professor John Tukey , Princeton University

1530-1545 BREAK Vista Del Mar Roon

1545-1705 TECHNICAL SESSION ON PARAMETRIC STATISTICS Presidio Roon

Chairman : Dr. Oskar Essenwanger , US Army Missile Command

MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A

FOUR - PARAMETER CLASS OF PROBABILITY DISTRIBUTIONS

Dr. S. H. Lehnigk , US Army Missile Command

ON THE FITTING OF CLIMATOLOGICAL DATA SAMPLES BY A THREE

PARAMETER DISTRIBUTION FUNCTION

Mr. Helmet P. Dudel , US Army Missile Command

1830-1930 CASH BAR Big Sur Room

1930-2130 BANQUET AND PRESENTATION OF WILKS AWARD Big Sur Room

* * *
* Thursday , 30 October * * *

0815-1000 TECHNICAL SESSION 1 STATISTICAL THEORY Presidio Roon

Chairman : Dr. Francis Dressel , US Army Research Office

QUICK APPROXIMATIONS TO SYNTHESIS IN PATTERN THEORY

Professor Jayaram Sethuraman , Florida State University

ON ROTATION IN FACTOR ANALYSIS OF ATMOSPHERIC PARAMETERS

Dr. Oskar Essenwanger , Redstone Arsenal

AN EXACT METHOD FOR ONE-SIDED TOLERANCE LIMITS BASED ON A

BALANCED ONE -WAY ANOVA RANDOM EFFECTS MODEL

Mr. Mark Vangel , US Army Materials Technology Laboratory

LIMIT THEOREMS FOR GENERALIZED RANDOM ALLOCATION PROBLEMS

Dr. Bernard Harris , MRC , University of Wisconsin
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Chairman : Dr. Malcolm Taylor , US Army Ballistic Research
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Mr. Franklin E. Womack and Mr. Carl B. Bates

US Army Concepts Analysis Agency
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Ms. Wendy A. Winner and Ms. Jill H. Smith , US Army Ballistic
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1000-1030 BREAK

1030-1200 TECHNICAL SESSION 2 - DATA ANALYSIS AND MODELING Presidio Room

Chairman :
Dr. William Baker, US Army Ballistic Research
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A HEURISTIC APPROACH TO POST-HOC COMPARISONS FOR SIGNIFICANT
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Dr. Eugene Dutoit , US Army Infantry School

THE DESIGN OF EXPERIMENTS TO DETERMINE THE INCIDENCE OF SKIN
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Mr. Brian R. Shallhorn , Mr. Anthony J. Baba and

Mr. Stewart Share , Harry Diamond Laboratories
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Mr. George Anitole and Mr. Ronald L. Johnson , US Army Belvoir
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Mr. Christofer J. Neubert , US Army Engineer School
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Mr. Terry Cronin , US Army Signal Warfare Center
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Mr. Donald Neal and Mr. John Reardon , US Army Materials Technology

Laboratory ( Presented by Dr. Bernard Harris , MRC , University of

Wisconsin )
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1330-1515 TECHINICAL SESSION 3 FUZZY STATISTICS Presidio Roon

Chairman : Dr. Carl Russell , US Army Operational Test and
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INCORPORATING FUZZY SET THEORY INTO STATISTICAL HYPOTHESIS

TESTING

Mr. William E. Baker , US Army Ballistic Research
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Dr. Steven B. Boswell , Harvard University School of

Public Health

Dr. Malcolm Taylor , US Army Ballistic Research Laboratory
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MODELING

Dr. Steven B. Boswell , Harvard University School of

Public Health

Dr. Malcolm Taylor , US Army Ballistic Research Laboratory

1330-1515 CLINICAL SESSION III FORECASTING AND PREDICTION Vista Del Mar Roon

Chairman : Dr. Charles A. Correia , US Army Logistics Center

Panelists : Professor Persi Diaconis , Stanford University

Professor Emanuel Parzen , Texas A & M University
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Dr. Betsy Abbe and Mr. Frank Womack , US Army Concepts Analysis
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STUDY ON THE FEASIBILITY OF GENERATING "PREDICTIVE ANALYSIS
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Statistical Analyses for Intercropping Experiments

Walter T. Federer

Cornell University

Ithaca , N.Y. 14853

Abstract

Statistical methodology for analyzing intercropping experiments was

developed over the last 20 years and is being developed at present .
Con

siderably more research is required for the many and diverse types of ex

periments involving sole crops ( crops grown alone ) and mixtures of crops

( intercrops ) grown together or in sequence . The growing of two or more

crops together or in sequence is known as intercropping .
An outline of

twenty chapters of a book on the statistical design and analysis of inter

cropping experiments is presented . A number of the statistical analyses in

the book are briefly described . Sections 2 to 8 relate to analyses for two

crops in a mixture along with sole crops . Sections 9 to 15 discuss

analyses for three or more crops in a mixture in addition to sole crops and

mixtures of two crops . It is stressed that it is dangerous to extrapolate

from sole crop responses to mixtures of two crops and from mixtures of k

crops to mixtures of k + 1 crops . Many of the data sets examined produced

unexpected and sometimes surprising results . The last section discusses

other areas of application , e.g. , survey sampling , nutrition , education ,

medicine , and recreation , where these results can be utilized .
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Statistical Analyses for Intercropping Experiments

Walter T. Federer

Cornell University

Ithaca , N.Y. 14853

*

BU-880-M

1 . Introduction

Intercropping investigations involves the growing of two or more crops

on the same area of land either simultaneously , partially at the same time ,

or sequentially . It is a centuries old practice in tropical agriculture ,

and to some extent in temperate zone agriculture . Agricultural , biolog

ical , and statistical investigations have tended to ignore the problems of

research in this area . Statistical analysis ; of intercropping investiga

tions is considered to be the most important unsolved statistical question

related to research in tropical agriculture . It is an area neglected by

all except a handful of statisticians . A computer search of statistical

literature resulted in the single paper citation for Mead and Riley ( 1981 ) .

This is an excellent paper , though limited in outlook for the broad range

of statistical analyses useful in intercropping research .

In the Technical Report Series of the Biometrics Unit .
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To acquaint the statistical profession with relevant procedures and to

fill a need by intercropping researchers , a book is being published by this

author on the topic . The table of contents is :

Part I Two Crops

Chapter 1 . Introduction

Chapter
2 .

One main crop grown with a supplementary crop

Chapter 3 . Both crops main crops density constant - analyses for

each crop separately

Chapter 4 . Both crops main crops - density constant
combined crop

responses

Chapter
5 .

Both crops of major interest with varying densities

Chapter 6 . Monocultures and their pairwise combinations when re

sponses are available for each member of the combination

Chapter 7. Monocultures and their pairwise combinations when

separate crop responses are not available

Chapter 8 . Spatial and density arrangements

Chapter 9 . Some variations for intercropping

Part II Three or More Crops

Chapter 10 . Introduction

Chapter 11 . One main crop with more than one supplementary crop

Chapter 12 . Three or more main crops density constant

Chapter 13 . Three or more main crops density variable

Chapter 14 .
Monocultures and their combinations when responses are

available for each crop

Chapter 15 .
Monocultures and their combinations when separate crop

responses are not available

3



Chapter 16 Spatial and density arrangements for three or more crops

Chapter 17 Variations for intercropping of three or more crops

Part III - Additional Topics

Chapter 18 Experiment design for intercropping experiments

Chapter 19 Other areas of application

Chapter 20 Bibliography on intercropping investigations

It is necessary to fully comprehend the nature of two crop mixtures

before proceeding to anything more difficult . The interpretational

difficulty increases by an order in magnitude when going from sole crop

( crops grown alone ) experiments to experiments with sole crops and biblends

( mixture of two crops . ) It goes up another order in magnitude in going

from intercropping experiments with two crops to experiments involving

mixtures of three or more crops .
In addition to the interpretational

difficulty , it is dangerous to extrapolate from sole crops to biblends and

from biblends to mixtures involving three or more crops . It is dangerous

to extrapolate from lower densities to higher ones . Many , if not most ,

experiments contain an unexpected result .

A number of statistical analyses found useful for intercropping in

vestigations are discussed below . The topics follow the table of contents

of a forthcoming book that is outlined above .

2 . One MainCrop Plus one Supplementary Crop

The experiment designs found useful for sole crops will be the same

ones found useful for one main crop grown with a supplementary crop . The

treatment design consists of the varieties of a main crop grown as sole

crops and in combination with varieties of the supplementary crop . To

4



illustrate , suppose that five =
с varieties of maize are to be grown

alone and in combination with six =
Cb varieties of beans .

A single den

sity for maize and for beans is selected , i.e. plant population per hectare

is not a variable . The treatment design would be :

Cropping System

Maize

Variety

Bean Variety

3 4 5Sole

1

2

: 6
6 -
Co

1

2

3

4

5 = C

There would be v
+
cgcm

= 36 treatments composed of five sole crops

and 30 biblends . Experiment designs appropriate for 36 treatments would be

used ( see e.g. , Federer and Kirton , 1984. )

Statistical analyses for experiments in a given experiment design and

for the above treatment design would involve the same types of statistical

analyses as used for sole crop experiments ( see e.g. , Snedecor and Cochran ,

1967. )
Some common statistical procedures used would be

( i ) single ( or subsets of ) degree ( s ) of freedom contrasts ,

( ii ) multiple comparisons procedures ,

( iii ) subset selection procedures ,

( iv ) covariance analyses , and

( v ) multivariate analyses .

Some additional statistical analyses found useful for yields are :

( vi ) Tukey's one-degree -of- freedom analysis for the crop one by

crop two interaction ,

5



( vii ) Finlay-Wilkinson ( 1963 ) analysis for mixtures ,

( viii ) tests for interaction given that one
or more of the C maize

varieties are standards for comparison , and

( ix ) yields of main crop are not to be reduced by more than a fixed

percentage .

3 . Two Main Crops Density Constant

Experiment design considerations for biblends when both crops are main

crops , are the same as discussed in Section 2 . The treatment design would

have sole crops of both crops included ; otherwise , it is the same as dis

cussed in Section 2 . Statistical analyses on the yields of each crop

separately would follow that outlined in the previous section .

In order to evaluate cropping systems and to compare biblend produc

tion with sole crop production , it is necessary to combine the yields of

both crops in some meaningful manner . An economic point of view would

place value , on
the produce from crop i , say

Y

i

and use

Vir

V = v Y , + v2 Y2 . If vi
are prices , it might be more realistic to use

ratios of prices , which
are more stable , and use relative values

*

V

Y , + YZ ( vy / vi ) .
For sole crops , V ( or V could be obtained by putting

Y2
= 0 for crop one and Y.

Y ,
= 0 for crop two . A nutritional point of view

would convert the yield to calories and / or protein and use a measure of the

form : C =
C, Y + c2Y2 , where c is a calorie ( or protein ) conversion factor .

An agronomic or land use point of view would consider a linear combination

of yields of the form :

% b2b1

L =

Y

sl

Y

s2

6



where Y,
bi

is the yield of crop i in a biblend mixture and Y
si

is the yield

of crop i grown as
a sole crop . There are many forms of L

i

which is

called relative yield or land equivalent ratio . The component yields of

the mixture are put into proportions of yields obtained from sole crop

yields . Since yields may vary considerably , a ratio of sole crop yields

might be more stable . In this case a " relative land equivalent " ratio

would be computed as

1 * - Y1 + x2( 1./4.2)

A statistical point of view would use a discriminant function analysis and

construct a canonical variable of the form :

D = Y,

* bl

+ RYRyb2
9

where R is chosen to maximize the ratio , treatment sum of squares divided

treatment plus error sums of squares .

The first three linear combinations given above , i.e. , V , C , and L are

readily interpretable quantities by a researcher or a farmer .
The last one

Dis not and sole crop yields cannot be compared with D , but can be with V ,

C , and L. Although a statistician's first thoughts in combining yields

most likely would be to use multivariate analyses , this would not be the

correct thing to do as comparisons of sole crop yields and farming system

yields cannot be made and the canonical variable has no practical meaning

in the sense that C , V , and I do . Some aspects of multivariate analyses

have been found useful by Pearce and Gilliver ( 1978 , 1979 ) in studying the

nature of response from mixtures .

7



Statistical analyses for linear combinations C , V , and L , are straight

forward .
Those outlined in the previous section may be utilized . These

created functions of yield may be used in the
same manner as canonical

variables from a discriminant function analysis , i.e. , univariate analyses

are performed on the canonical variables .
It is possible to combine value

V
and land use by taking the ratio Y v , / Y

sl'1 822
= R and using the created

function of yields Y + RY It does not appear realistic to combine

1 RY 2:

variables other than yield variables as described above .

4 . Two Main Crops Density Variable

Plant populations per hectare in sole crops and in biblends need to be

considered seriously in conducting intercropping investigations . Crop

densities maximizing yields Yz ; or linear combinations of yield V , C , and

D , are desired . Using univariate analyses , a multiple comparisons or sub

set selection procedure may be used to pick the " optimal " densities for the

crops . A useful procedure would be to model yield as a function of plant

density . Within narrow ranges of densities , a linear approximation of the

form has been found to be useful :

+

Yiilk • Bot

Pk + B11014; * & 1122

where Yiilk is the yield of the ith crop as a sole crop , Bot is an inter

is a linear regression coefficient , is the density ly forcept , 811

crop i , ek is the effect of block k , and etilk is a random error term with

mean zero and variance o ?. Note that a variety of other functional rela

tions could be used to model yield as a function of density .
Using the

above form , the yields of crop i in the mixture ij of two crops may be

8



expressed as

Yıc338 04k • Boz * * * By die * Pau(diez' dges ) * 410594,22

where 11(1)(dix, dj xj

) is an additive effect on the yield of crop i due to

its being intercropped with crop j at the corresponding densities d
d
i
l
i

and

A large positive value of ' 1 ( j ) ' dixi dje;

) is desired ..

djxz

When there are many lines of a cultivar in an investigation , the above

analysis may be conducted for each line . Then , analyses over all lines can

be obtained .

5 .
Modeling Responses for Sole Crops and Biblends – Two Responses

In many situations , responses for both components of a mixture are

available . The crops may be intermingled but distinct in type so that

responses for each crop are obtained , or the crops may be spatially sepa

rated and again responses for each crop are available .
For treatment de

signs containing all sole crops and all possible combinations of lines of

crops in mixtures of two , response model equations can be constructed which

have measures of a general mixing ability ( gma ) effect and of a specific

mixing ability ( sma ) effect of a line or crop . To illustrate , suppose that

it was desired to compare yields of v = five bean cultivars as sole crops

and in mixtures of two . The v ( v + 1 ) / 2 = 15 combinations would be :

Cultivar
1 2 3 4 5

1 S B B B B

2 S B B B

3 S B B

4 S B

5 S

9



where s stands for sole crop and B denotes a biblend .
With such a treat

ment design in a randomized complete block design , one possible linear

model is :

Sole crop i :

Yhits = " + Ph

+ τ

i hiis'

havewhere H + PK
is a block mean effect , ' 18 cultivar effect , and Ehiis

zero mean and common variance 02 ..

E

Biblend ij :

ht ? i + 01 )01 ) + ' i( j) + Shi ( j ) bYhi(1) Ž ( v +

Yn(1) jb - Ž ( u +} ( u + ent
Pht Tg

+ 8

oj

) +

+ Y ( 1 ) ] + Eh ( i ) jb

and tiwhere Y
Yhi ( j ) b is the yield of cultivar i from the mixture ij , Ho Phi

are as defined for sole crop , & , is a general combining ability effect for

cultivar i when grown in biblends ,

Yuj

is an interaction effect for crop i

in the presence of crop j , and the Ehi ( j ) b are error components for cul

tivar i responses which have zero mean and common variance 02.12. The

coefficient 1/2 is included in order to have the H , Phi ?? '
and 8& from the

biblends on the same basis as the correspondin
g parameters for sole crops .

i

With two cultivars on the same area of land as the sole crops , each crop

and ta
response can only contribute 1/2 to My Phi 11. Response model equa

tions can easily be constructed for the case where one crop occupies a

proportion p of the area and the second crop occupies 1 - p of the area . In

this case ,
care must be taken in defining an interaction effect .

An

interaction is defined to relate to two items in equal proportions . To

interact , both must be present . When p < 1/2 , only 2p of the total

material in an experimental unit is available to interact on a 1 : 1 basis ;

10



1 2p of the material is not available . If some such definition as the

above is taken , interaction effects will be invariant with respect to

changing proportions p .

Note that when other treatment designs are used , other models can be

constructed . For example , suppose that only a subset of the v ( v - 1 ) / 2

biblends were included in a experiment along with sole crops .
The para

meters M , ehity , and 0712 + ' 1 ( 1 ) • Y1 ( j )
can be estimated . It is not

possible to obtain solutions for 8,12 and
i Yi ( j )

but only their sum . If the

experimenter were willing to assume that the ' i ( j ) not present were all

zero , then solutions are possible . This is considered to be an unrealistic

assumption .

6 .
Modeling Responses for Sole Crops and Biblends - One Response

For certain types of mixtures , such as , e.g. , a diallel crossing

experiment , it is impossible or difficult to obtain responses for both

components of a bíblend .
Experiments involving sole crops and mixtures of

two lines of a cultivar where the lines are not phenotypically distinct or

are not spatially separated would be found for wheat , beans , and many other

crops . In mixtures of grasses and legumes in hay it is difficult to obtain

the separate responses for each member in the mixture .
Several response

models are available .
For a randomized complete block design and the

treatment design involving sole crops and all possible biblends , the

following pair of equations for sole crop and biblend yields has been

proposed ( Federer et al . , 1982 ) :

Yhiis
H +

Pn T 덮i hiis

10

Yhijo +
+ ( ,h

&

i

+ 8 . )

og ) / 2 + ' ijj Ehijb

11



where the effects are as defined in the previous section except for y
Yij

which is an interaction component for specific mixing ability .
Note that

Yij

is equal to the sum y
" i ( j ) + y ( i ) j :

These last two components cannot be

estimated unless individual responses are available whereas y ,
can be

ij

estimated when only the combined response is available .

Another treatment design would be sole crops , all combinations , and

all reciprocals .
To illustrate , suppose that v = 5 wheat varieties are

available , and the experimenter wishes to have all varieties bordered by

every other variety and itself .
Responses from border rows are not ob

tained . The v? = 25 treatments would be :

Wheat Variety

1 2 3 4Border 5

1 S B B B B

2 B S B B B

3 B B S B B

4 B B B S B

5

в в в в s

where s denotes sole crop and B denotes the mixture . Note that variety 1

bordered by variety 2 is not the same as variety 2 bordered by variety 1 .

One set of response models for sole crop and biblends respectively is :

Y.

hii h 11 hiis

and

Yhijo
= H + Ph

+ τ

i

+

Ti o i + 'ij hijb , 16]

and are is a
where H , Phi ' ; : : Ehiis ' Ehijb

within variety interaction term with Yit

defined as above and Yij

0 ; 'ij

= is an interaction term

for crop i when bordered by crop j .

12



A second response model equation for the above treatment design would

be the one for a two-factor ( crops and borders ) factorial :

S

Yhij
V

+ Ph

++ a

1

+ B

j

+ αβ

' ij + hij

iswhere a is the effect of crop 1 , By is the effect of border j , and aß
i ij

an interaction term . Such a model would not be too realistic in a variety

of situations since sole crop responses may be quite different from biblend

responses .

A third model is adapted from Martin ( 1980 ) and is the previous model

with the following change :

ав

ij nij

w
i

ij

where ”ij
for is j and naj

-n / ( 0-1 ) for
ij, wij

(

aBij
+ AB

Bja ) / 2 + 1 / ( v- 1 ) for 1 * j , and k1j - ( «B13 - QB31 ) / 2 .

A fourth model is a mixture of the previous ones and is

Y. +

hijb = " + PD

τ

i

+ 8

i
B ; + wij **13wij + * 13 + hijb '

and W

where B ; and w

are similar to the above B

ij Bj

but are condi

Wij

tional on the fact that abii = 0 ; the remaining parameters are as defined

above .

Other situations will lead to the construction of other response model

equations . Appropriate models will need to be constructed for the

particular conditions encountered in an investigation .

13



7 .
Spatial and Density Arrangements

Spatial arrangements and density levels are very important items to

consider in intercropping investigations . By spatial arrangement , we mean

the pattern used for plants in a given area of land . The plants could be in

rows , in hills , or drilled . The number of plants per hectare could be

varied over a wide range . The following five items need to be studied for

any intercropping investigation :

( i ) spatial arrangement of crop one ,

( ii )
spatial arrangement of crop two ,

( iii ) density of crop one ,

( iv ) density of crop two , and

( v ) intimacy of the two crops .

By intimacy we mean the closeness of plants of the two crops . If plants of

the two crops are randomly mingled in the same row , we say that they are

100% intimate . Plants of the two crops in separate rows would be less

intimate . If the two crops were isolated far enough to eliminate any

interaction , they have zero intimacy . To illustrate , suppose that density

is not a variable but intimacy and spatial arrangement are . One plan could

be to have two crops , say maize and beans , in the same row with rows one

meter apart .
A second plan could be to double the density within rows and

double the distance between rows .
The density per hectare and intimacy

would be the same but spatial arrangement would be different . A third plan

would be to alternate rows of the two crops . The intimacy would be less

than in the first two plans .
Another plan commonly used for maize and

14



beans in Brazil is one row of maize and two rows of beans alternating as

below ( M E maize and B = beans ) :

MBBMBBMBBMBBM ... .

The maize rows are one meter apart and the bean rows are one-half meter

apart . A fifth plan would be :

MMBBBBMMBBBBMMBBBBMM • •

The pairs of maize rows are 1.75 meters apart and the rows of a pair are

0.25 meter apart . The bean rows are one-half meter apart .
The last plan

could be the best as more light would be available for maize and for bean

plants than in the previous plans . The rows should be oriented in a

north-south direction in order to benefit from the additional light .

Several plans are available to study wide variations in density with a

relatively small amount of material . They should be used to obtain

information on ranges of density for future study . The best known of these

is the fan design of Nelder ( 1962 ) . There are several versions of this

design . Another useful design has been suggested by B. N. Okigbo ( 1978 ) .

The design is a circle with orientation noted ( see below ) . A small circle

in the center is not used as some space is needed to start the rows . The

row spacing becomes increasingly distant as one moves away from the center

of the circle .
The density within a row could be kept constant or the

density per hectare could be kept constant by increasing the density within

a row as one
moves away from the center of a circle of the following

nature :

15



North

West East

South

The lines above could indicate the rows of plants . The above design could

be for a single crop or for mixtures of two crops using the previously

described plans for spatial arrangements and intimacy .
A Nelder fan design

would be one-quarter of the above and would be used if directional orienta

tion were unimportant . Both the Okigbo-circle and the Nelder-fan designs

are very parsimonious of space . One statistical analysis would be to

divide the circle into concentric circles of equal areas .
Yields would

then be obtained for the areas of individual rows . The results could be

plotted graphically to determine optimal yields or some regression function

could be fitted to the yields . Optimal row distances and optimal densities

for yield could then be obtained . These circles or fans could be con

structed for various cropping systems and replicated over a range of

16



conditions to be encountered in practice .
It may be possible to determine

optimal density , spatial arrangement , and intimacy well enough so that

future experimentation is not necessary . However , it is likely that future

experimentation will be needed to more precisely determine optimal values .

8 . Variations and Additional Analyses

Many and diverse situations exist in intercropping research .
One such

area is to study the effect of replacing one crop in a mixture with a

second crop with proportions ranging from zero to one . Given that Pa
is

the proportion for crop a and 1 - 2
Pa • Pb is the proportion of crop b in

the mixture and Y
si

= yield of sole crop i , the computed value for a

strictly replacement series would be p Y
Pa sa + PbYsb • If the yield of the

mixture at proportion ( Pg.Pb )
was greater than this value , this would be

termed cooperation . If less , then denote this as inhibition . If one crop

is inhibited and the other exhibits cooperation , this would be denoted as

compensation since the yield of one crop is increased and the other is

decreased .
For intercropping , proportions and crops showing a large amount

of cooperation are desired .

Several other statistics have been developed for competition studies .

A number of them are related to a land equivalent ratio .

LLet Y, / Y

bi si
which is the proportional yield of the crop in a

mixture relative to the crop grown alone . A land equivalent ratio is L =

L + L2
A statistic was developed to compute total effective area for the

case where A

1
area devoted to sole crop i and A

= area devoted to the

mixture of the two crops . Then , total effective area is computed as

+ LAR
.

A , A2 +
A relative crowding coefficient is computed as

1,22 / ( 1 , ) (1 - L2 ) . A coefficient of aggressivity to measure the

17



dominance of one crop over another is computed as Ly - L2 . A competitive

ratio index is given by 14/12
by 4/12: Each of these can be adjusted to the

relative proportions pa:Pb of crop a and crop b in the mixture .

coefficients have been suggested . A number relate to crop stability ( an

Other

ill -defined term ) and to " risk to farmers " . Survival farming must take

some form of these measures into account as a farmer needs to produce food

every year in order to survive .

Another type of analysis suggested by B. R. Trenbath in his discussion

of the Mead and Riley ( 1981 ) paper is linear programming . Here yields of

the crops as sole crops and in mixtures is required .
Then for a goal , say

S units of starch and P units of protein , an optimal allocation of area to

sole crops and to mixtures can be computed . A farmer can minimize land

area needed to reach his primary goal ( food production ) and can use the

remaining area of his farm for crops to achieve a secondary goal ( say

produce for sale ) . Economic studies make use of linear programming for

some of their investigations .

9 .
One Main Crop with Two or More Supplementary Crops

Consideration of mixtures for more than two crops in the mixture would

at first sight appear to be a straightforward extension of the procedures

for two crops . This is not the case . To illustrate this for one main crop

with supplementary crops , it would appear that one could simply follow the

procedures described in Section 2 , but consider the following treatment

design and example . Barley was the main crop and only one barley variety

was included in the experimental units along with barley in combinations of

one cultivar plus barley , all possible combinations of three of the six

cultivars with barley , and one combination of all six cultivars with

18



barley . Plant numbers per experimental unit were kept constant and the

same number of barley plants were harvested in every experimental unit .

Barley as a sole crop was one of the treatments . In all there were 1 + 6 +

20 + 1 = 28 treatments . For a randomized complete block design and barley

yields for variety g ( one variety ) , one set of response equations is :

Sole crop varietyg

Y

gho
μ + τ

g
Ph gh

Varietyg plus one crop i

+Y

ghil

μ + τ

8 Ph i

+ E

ghi

Variety & plus two crops i and i

+Y

ghij2

su + 1

8
Ph + ( 04 + 0 ; ) / 2

8 + 7

ij

+ E
Vij ghij

Variety_g plus three crops i , j , and k

ghijk3

* H + T
8

+ P
Ph + ( 01

+ 8

j + 2 )/ 3 + 2 ( 713 + 'ik + 'jk ) / 3

+
nijk

ghijk

:

·

Varietyg plus all cultivars

Y

ghi
j
... ,

μ + τ

8
+ 8. + 7. +

+ E

+
* 12 ... v ghij..

For the above example , ixtures of barley with two other crops were not

included in the experiment . μ + τ

g

is the mean for barley variety & grown

as a sole crop , Ph is the h'th block effect , & z is a general mixing effect

of crop i on barley yields Y ghil 'ij is a bi-specific mixing effect of the

combination of crops 1 and j on the yield of barley ,
of barley , 'ijk is

is a tri-specific

effect of the combination of crops i , j , and k on the yield of barley ,

12 ... v
is a v-specific mixing effect of the combination of all v crops on
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the yield of barley , and all the es are considered to have mean zero and

common variance 02
The assumption of common variance appears to be a

realistic one for this experiment involving only barley yields .

10 . Three or More Main Crops - Density Constant

A first step in analyzing data from an intercropping experiment

containing mixtures of three or more crops is to obtain statistical

analyses for each crop separately . The method of Section 9 may be used for

this when appropriate . Response model equations for such experiments

designed in a randomized complete blocks design , found useful are :

Sole crop g ( h 1,2 , .. , r ; i = 1,2 , ... , 0 ) :

g

Y

ghi

+ Pน

8
ogh

+ τ + E

gh gi ghi

Mixtures of three in proportions P, : P2 : P3 , P, Z P2 ? P3 ):

Crop 1 yield , i'th line

+ 8

Y1h1 ( jk ) • P7 ( 4 , + Pin li 011 ) + 2p2'1 ( j ) + 2P3'1 ( k )

+ 3P3" i ( jk) + @lhi ( jk) •

Crop 2 yield , j'th line

+ 8

Y2h ( 1 ) ] ( k ) * P2 ( H2 82 ; )

. ) +

283 " }( k )
+ P2h + 12j 202' ( 1 ) ]

+ 3p3" ( i ) } ( k) + € 2h ( i ) j ( k) ·

Crop 3 yield , k'th line

Y3h ( 13 ) k * Pz( H3

+ τ .

3k3h + 03k ) + 283 ( Y ( 1 ) k + Y ( j ) k ?*

+ 3p3" (ij)k + € 3h( ij ) k

where interaction effects ' 1 ( j ) : "1 ( jk) , etc. are defined for equal amounts

of material on an area basis , have zero mean and common variance
E

ghi

20



oger éghi ( jk ) have zero mean and common variance o?

02
р

ge ' 8

is

88
3

gh

a block effect for crop g ,

8

is a
mean effect for crop g , and the sub

scripts in parentheses denote the other two crops in a mixture . Crops 8 ,

g* , and g ' were taken to be 1 , 2 , and 3 , respectively .
The i'th line of

crop g , the j'th line of crop g* , and the k'th line of crop g ' is used .
In

experiments analyzed to date , only one line of each crop was included but

the above equations are written to allow for one to c
lines of each crop .

g

Also , note that each crop's contribution to an interaction term can be

estimated .

The construction of created variables as a linear combination of

yields is straightforward from the two crop situation . For crop value , one

uses
v2'2 :

8 8 8

EVY instead of v , Y Or , all values

1 “ 1
may be made

proportiona
l to a base crop value , say vị ; the created relative value will

be & Y. ( v / v ) .
For calorie ( or protein ) value , the created variable

lºg

c Y or ry (clc , ) would be used .

EireCC
For land use values , the linear

combination of yields fi %3b / Y&& ring

or [ , Y / Y ) = Y
Yleinegb 88

would be used for Y = yield of crop g in a mixture and Y = yield of

gb gs

crop g as a sole crop .

Multivariate discriminant function analyses are not usable ( see

Federer and Murty , 1984 ) for analyzing data from intercropping experiments .

Multivariate theory needs considerable extension before it can be used .

Problems of missing values , comparisons of sole crops with linear combina

tions of some of the crops , comparisons of different linear combinations ,

and the practical interpretation of the linear combination appear to make

present concepts of multivariate theory unusable for intercropping data .

Satisfying mathematical considerations and not practical interpretations is

a vacuous solution for an experimenter trying to interpret results from an

experiment .
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11 . Three or More Main Crops Density Variable

With only two crops in a mixture , the assumption that the sole crop

regression of yield on density holds for all densities of the second crop

may be tenable in a small region of densities . With more than two crops in

a mixture and with varying densities , this assumption may not be appropri

ate . To illustrate , consider mixtures of three crops gg*g ' for g , g* ,

g ' = 1 , ... , c crops at densities dig ' djg* , and dkg' for i = 1 ,

1 , ...

Cg

1 The regressions could be obtained for eachand k = 1

ºg* )
• ° g " :

of the C density combinations and not just the sole crop . These1
*g * c

g '

regressions could be compared for homogeneity to ascertain whether the sole

crop regression is appropriate for mixtures of three .
If the regressions

can be considered to be homogeneous or relatively so , the following

response model equation for the yield of density combination ( dig ' djg**

dkg ) may be expressed as :

B
O
B + P

ogh

+ B , d

Bigº 18Yghi ( jk ) (dig;djgt,dkg )

+ ' 1 ( 3k) ( 18.djgt kg ) + Eght(jk)( 418 438* 4kg

••••08

and k z are

g * ,
Bog ' 'gh and B

where i = 1 , ..

' g' j = 1 , ...,
0

1 , ... Ogos ' B1g

as defined in Section 4 , and @ghi ( jk ) (d 1gºdfg* »dkg ) have zero mean and

common variance 02
The 'i( jk) (dig.djgt.dkg ) may be partitioned into

an overall effect , an effect of crop g* at density j , an effect of crop g '

8 € .

at density k , and an interaction effect for the jk'th densities of crops g*

and g ' . These effects would relate to the yields of crop g .

22



12 . Modeling Responses for Mixtures of Three or More Crops Individual

Crop Responses Available

Various response models for mixtures of two crops were discussed in

Section 5 . For mixtures of three of c cultivars , say i , j , and k , the

following models are considered plausible for consideration using a RCBD :

Sole crop i

t
h
a
t

H + 1 + Ph + EhiEni .

Mixture ijk

Crop i yield =

Yhi (jk)

( u toPn + 1
+ 2 ) / 3 + 20y

2691 ( ) + Y1 ( k) ) / 3

* i ( jk) •
+ Ehi ( jk)

Crop j yield =

Yh( 1 ) j(k)
( u + en + aj

+ 8 . ) / 3 +

j 7/3 + 2 ( Y ( 1 ) j + 'j ( k) ) / 3

Eh ( i ) j ( k ) ." ( 1 ) j ( k )

Crop k yield

Yh( ij)k

( y + Ph
Ph + + 2 )/ 3 + 2 ( 7 ( 1 ) k + Y ( j ) k) / 3

* ( ij ) k + Eh ( ij ) k :
+

A simpler form for crop i yield from a mixture of three would be

B

Yhiljk )
( H to

h + 2 )/ 3 +
i ( jk ) Ehi ( jk)

where on : Yi ( j ) ' ' i ( k ) , and a" i ( jk )

are all combined into an effect **

The interpretation of the parameters is the same as described in previous

( jk) :

sections .
Solutions for

TH( .. ) , * (j.), H (-k ), and it" iljk ) '
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subject to usual restrictions may be obtained when all possible combina

tions of crops are present .
Otherwise , it is recommended that the above

simpler form be used .

13 . Modeling Responses forMixtures of three or More Crops Individual

Crop Responses Not Available

Suppose that sole crops and all possible combinations of three of the

crops represent the treatments in a RCBD . Possible response model

equations are :

Sole crop

Y.

'hi * H + Pn + 1 Ehi

Mixture ijk

Yhijk + Ph j

+ 8 , ) / 3

k /+ ( + di

21713 * ?

Tj덕 + tk

+ 'jk ) / 3 + 1ik
Ehijk

·

If all combinations were not present the model for mixtures may be simpli

fied to :

Yhijk - H + ( 11

+ I +

*; ) / 7
+ 1 , ) / 3 + 1 *

ijk
The Ajk Ehijk

where a

sum of general mixing ( 07 ) , bi - specific mixing ( Pig ) , and tri

specific ( "1jk ) effects would be represented in **ijk

Several other models described in Section 6 can be generalized to

consider three or more crops in a mixture . When v3 combinations of lines

of three crops or factors are present , a three-factor factorial model may

be used .
Another response model for sole crops and mixtures of three crops

i , j , and k would be :
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Sole crop

Y.

his H + en ' iit fhi •

Mixture ijk

Yhijkb H + Ph

+ T + 8

i Tijk
Ehijk

where y
Yijk

is an interaction effect within crop line i of component one of

the mixture for lines j and k of the second and third components .
Alterna

tively , y

ijk

could be an interaction effect within the combination ij . Το

illustrate , suppose that four lines of a crop , say A , B , C , D , are avail

able , that center row yields only will be obtained , and that the center

rows will be bordered on one or both sides by every line . For line A , the

center and outside " rows would be AAA , AAB , AAC , AAD , BAB , BAC , BAD , CAC ,

CAD , DAD .

The interaction effects 'Ajk would be the deviations of the

quantities y .. -ý.t..b ' and the interaction effects i

the difference + y

• ijkb

would be

АВk

-
V.ABDB• АВСЬ

Martin ( 1980 ) states that his model does not extend to a three-factor

factorial . A response model for a two-factor factorial in a RCBD would be :

Yhij

= H +
i

+ B

j

+ aB

ij Ehij

Martin's model deals with functions of the ab
aBaj

A corresponding three

factor factorial response model would be :

Phh + ai + BjThijk * H +

+

Yk

+ aß
k ij

t ar + By + aby

ik jk ijk Ehijk ·

ay

interaction
aby i jk

Construction of two- factor responses and using the previous model , aßij '

Yik '

and By can all be partitioned . Partitioning of the three-factor
jk

does not appear to be straightforward . One could
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collapse two of the factors into a single category and apply the previous

Martin model . The other models discussed in Section 6 can likewise be

extended .

14 .
Spatial, Density , and Intimacy Arrangements for Three or More Crops

For two crops , arrangements have been constructed to have one plant of

crop one bordered by zero , one , two , three , and four plants of the second

crop an equal number of times .
Comparable plans for three or more crops

have not been devised to date . As long as all plants of three or more

cultivars ( crops , lines of a crop , etc. ) are randomly intermingled in an

experimental unit , no difficulty arises . As soon as cultivars are placed

in rows or planted in patterns , spatial patterns must be thoughtfully

considered . The following items must be investigated for three crops :

( i ) density of crop one ,

( ii ) density of crop two ,

( iii ) density of crop three ,

( iv ) spatial arrangement of crop one ,

spatial arrangement of crop two ,

( vi ) spatial arrangement of crop three ,

( vii ) intimacy of crops one and two ,

( viii ) intimacy of crops one and three , and

( ix ) intimacy of crops two and three .

When using the Nelder fan or the Okigbo wheel , care must be taken in

investigating orientation , density , spatial , and intimacy relations . These

designs will be parsimonious of space and should be considered as obtaining

preliminary results . More extensive investigation will more than likely be
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required in order to determine optimal conditions . The above considera

tions hold for mixtures of k of v crops .

15 .
Additional Statistics for Mixtures of Three or More Crops

Many of the statistics described in Section 8 may be extended to

consider mixtures of three or more crops . The total effective area under

three crops as sole crops , in mixtures of two , and in a mixture of three

would be :

A, + A2 + Az + L12Am12 + 1134m13 + L234m23 + 111234m12
3 ·

where A.
A,

and j ,
Am123

area under sole crop i , A * area under mixture of two crops i

mij

area under the mixture of three crops , L.

L13

= land equivalent

ratio for mixtures of crops i and j , and L123 is a land equivalent ratio

for mixtures of the three crops .

A coefficient of agressivity for two crops in equal proportions of

land area is l_ - 12 :
- L2 : For three crops it would be Ly - ( L2 + L3 ) / 2 for

crop 1 , L2 - ( L , + L3 ) / 2 for crop 2 , and 13
2 , - ( 11 L2 ) / 2 for crop 3 .

Extension to k crops is straightforward . yield of crop i mixture

( 1 , +

L

i

divided by yield of crop i as a sole crop .

A competitive ratio index for two crops in equal proportions of land

area 18 17/12 : For three crops , it would be 24, / ( L2 + L3 ) , 2L2 / ( 1, + L3 ) ,

and 243 / ( 4, + L2 ) for crops 1 , 2 , and 3 , respectively .

A relative crowding coefficient for two crops 1s 1,L2/ (1 - ) ( 1 - L2 ) .

For k crops in a mixture , the coefficient would be n*Ly / ( 1 - 1 ).

Graphical representations for linear programming can be made for

mixtures of two and three crops , but not for mixtures of four or more

crops . However , linear programming techniques allow for k crops in a

mixture and as sole crops .
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16 .
Other Mixtures Where Statistical Techniques Are Useful

There are a large number of areas where the ideas and statistical

procedures developed for intercropping can be used . For example , consider

a survey sampling situation where answers are sought to sensitive , incrimi

nating , and / or embarrassing questions . Direct questioning will not allow

the surveyor to obtain this information . Anonymity of response is essen

tial in order to obtain the information . Raghavarao and Federer ( 1979 )

have shown how to use the block total response procedure using supplemented

and balanced incomplete block designs to obtain sensitive information .
The

respondent is required to give a total of answers to k of v questions .

From the various block totals , estimates for the sample can be obtained

without knowing individual responses . This is similar to knowing only the

total response for a mixture rather than having the individual mixture

component responses .

Other areas where these ideas can be utilized is in applications of

drugs , therapies , medicines , recreational programs , physical training

programs , educational programs , using sequences of courses and other

mixtures , nutritional studies , use of pesticide and herbicide mixtures , and

any other area where mixtures of components are involved . Studies in these

areas to date have centered on mean comparisons of single or similar

components , upon single responses for the mixture , and standard statistical

procedures . Modeling aspects and competitive aspects have been ignored .

Statistical theory has not provided adequate statistical methodology to do

more than what is being done . It is a fruitful area for future research

and application .
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SCORING CASUALTIES FROM FIELD TRIALS

Carl T. Russell

US Army Operational Test and Evaluation Agency

Falls Church , Virginia
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US Army Combat Developments Experimentation Center

Fort Ord , California

ABSTRACT . Real Time Casualty Assessment (RTCA ) is often used to

" shape the battle " in Army operational tests by simulating attrition in

near real time as a function of measured engagement conditions . Based on

engagement conditions measured by test instrumentation , a computer obtains

a Pk from a table of kill probabilities and draws a random number against

that Pk to determine whether the target player lives or dies . Both firing

and target players are given near real time feedback concerning the

result , and " dead " players are removed from the battle as quickly as

possible . As long as the attrition rates used real time are approximately

correct , RTCA encourages realistic engagement conditions by generally

rewarding smart player actions and penalizing dumb ones . That is ,

"approximately correct " attrition rates suffice to " shape the battle ."

However , if test measures of effectiveness involve force losses , attrition

rates which are only approximately correct are not good enough . Post - test

analysis of the battle typically identifies engagements which either were

improperly recorded by test instrumentation or were partially garbled

during real time computer processing . Alternatively , the analyst may be

asked to estimate what force losses would have been with smaller or larger

Pk's for some players . Once the actual engagement conditions are

determined post test , an actual or hypothetical Pk ( PKA ) can be determined

and compared to the Pk used real time ( PKU ) . Whenever PKA differs from

PKU , the attrition rate used real time was inappropriate and may have

started a cascade of misleading real time losses . The analytic goal is to

estimate what expected losses would have been if live ordnance (having

true Pk = PKA ) had been used . " Aliveness analysis" is a computational

technique which attempts to meet this goal by crediting kills adjusted for

cumulative differences between PKA and PKU . The technique originated at

CDEC and was modified for application to the SGT York Follow on Evaluation

conducted in April -May 1985. This paper discusses the aliveness analysis

technique and illustrates the technique using examples based on this

SGT York testing .

REAL TIME CASUALTY ASSESSMENT

RTCA Description . Army use of Real Time Casualty Assessment (RTCA )

originated at the Combat Development Experimentation Center (CDEC ) in the

1970's and is used extensively in tests conducted on CDEC test ranges at

Fort Hunter Liggett , California . RTCA is an instrumented testing

technique which shapes the battle by simulating kills in near real time .
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Field trials at CDEC are generally two - sided free - play trials up to

battalion versus company in size , and they may involve armor , infantry ,

aviation , air defense , field artillery , mines , or chemical equipment . The

trials are conducted under conditions as nearly realistic as possible , and

they are highly instrumented for trial control , safety , and data

collection . The computerized instrumentation consists of a number of

fixed stations (A stations ) which poll transponders mounted on players ( B

stations ) and transmit position location and other data back to a central

computer ( C station ) for processing ( see Figure 1 ) . Players are

instrumented , typically using coded lasers , so that when one player fires

at another , the target can be identified . During the play of a test

battle , RTCA encourages realistic engagement conditions by generally

rewarding smart player actions and penalizing dumb ones . It does this

through a three step process ( see Figure 2 ) :

When an engagement occurs ( i.e. , one player " fires" at another ) , a

coded laser is fired at the target . The B station on the firer

tells the computer " I fired " and the type of ammo used . If a target

player is paired with the firer , the B station on the target tells

the computer " I've been engaged , " the code of the laser , and the

sensors illuminated .

The computer receives the engagement information and analyzes it in

terms of variables which affect the probability of kill ( typically ,

the nature of the firer , the nature of the target , the range , the

ammunition used , firer and target movement , target exposure , and

target aspect ) . Tables of "kill probability " (Pk ) determined by

pretest modeling are then used to determine the Pk associated with

the crucial engagement parameters . This Pk is then used to simulate

a " kill " or a " survive " via Monte Carlo . That is , the computer

draws a random number against the looked -up Pk , killing the target

if the random number is smaller than the Pk .

This simulated engagement result is fed back to both firer and

target in the engagement , usually within a few seconds of the

original firing . Dead targets either stop ( ground players ) or leave

the battlefield as soon as possible (air players ) . Dead players are

typically marked by strobes or smoke and their ability to fire at

others is disabled .

RTCA Interpretation . Field trials as conducted at CDEC are

simulations of actual combat, not reality itself . Representative battle

initial conditions are determined prior to the start of testing , and RTCA

is used to shape the test battle so that post - test estimates of attrition

will provide reasonable predictive insight to actual battle outcomes ( see

Figure 3 ). The role of RTCA in this simulation is as a tool to encourage

sequences of individual engagement conditions representative of combat

under the specified initial conditions .
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MAKING ATTRITION ESTIMATES FROM RTCA DATA

Problem Statement . How should attrition be estimated in the context

of RTCA? The first inclination of an analyst accustomed to binomial

coin - tossing experiments is to count simulated kills . That approach is

wrong because it adds unnecessary variability to attrition estimates . The

right approach is to use sums of Pk's .

Simplified Example . Consider for example a simplified example in an

air defense context . Three Red aircraft (a rotor wing labelled R and

fixed wings labelled S and T ) attack a Blue armor force consisting of five

tanks ( labelled 1 through 5 ) and two air defense weapons ( labelled A and

B ) . Imagine that five engagements ensue ( see Table 1 ) :

At 1 minute into the battle , Red rotor wing R engages tank 1 under

engagement conditions which give a Pk of 0.6 . The computer draws

the random number 0.8635 ( or some such ) against 0.6 , so tank 1

survives .

- At 3 minutes into the battle , Red rotor wing Rengages tank 2 under

engagement conditions which give a Pk of 0.7 . A random number less

than 0.7 is drawn , so tank 2 is killed .

- At 4 minutes into the battle , Red fixed wing S engages tank 3 under

engagement conditions which give a Pk of 0.1 , but a random number

larger than 0.1 is drawn , so tank 3 survives .

- At 5 minutes into the battle , Blue air defense weapon B engages

fixed wing T with a Pk of 0.8 , but I survives .

Finally , at 7 minutes into the battle , Blue air defense weapon A

engages rotor wing R with a Pk of 0.3 , but R survives .

The RTCA body count gives one Blue and no Red killed , but a better

attrition estimate is clearly available . The expected kill on each

engagement is known once the Pk is known , so a partial kill equal to the

observed Pk should be credited at each engagement . Overall expected kills

should be calculated by summing these credited kills . That is , sums of

Pk's should be used .

Trick Question . Estimating attrition from RTCA data is like

estimating the expected number of " 3's " from an experiment where a fair

die is rolled twice with a " 5 " and a " 1 " observed . The expected number of

" 3's" could be estimated as zero , and that estimation procedure would be

unbiased because , in the long run , the average number of " 3's " obtained in

two rolls of a fair die would be one third . However , since it is given

that the die is fair , the probability of rolling a " 3 " on any one roll is

known to be one sixth so the expected number of " 3's " must be one third .

That " 5 " and " 1 " were rolled in one experiment is irrelevant . The

expected number of " 3's " should be estimated as one third because the

relevant probability is known in advance .
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Crucial Points . In summary , there are three crucial points to be

remembered when making attrition estimates from RTCA data .

The kill probability Pk for each engagement is obtained directly

from measured engagement conditions via a a Pk table , not estimated

from simulated kills .

- A simulated kill or survive is generated by a draw of a random

number against engagement Pk , not observed directly from the

engagement .

- RTCA encourages realistic engagements by providing quick feedback to

players in terms of simulated kills , but attrition should be

estimated using sums of Pk's , not sums of simulated kills .

OVERKILL INHERENT WITH SUMS OF Pk's

Inherent Overkill. There is an inherent difficulty with estimating

attrition using sums of Pk's : individual players or groups can be

" killed " more than once . This fact has been used as an argument against

the aliveness formulas which will be discussed shortly , but the difficulty

is actually inherent with simple sums of Pk's . The initial reaction of

most analysts to such overkill is to consider it intolerable and attempt.

to modify the way kills are credited in order to insure that no more than

one kill is ever credited against an individual player . There is at least

one case where such deflation of overkill is indeed desirable . In

general , however , overkill is desirable . The following discussion :

illustrates how overkill can occur by revisiting the simplified

example discussed in the preceding section ,

- shows how to deal with one case of undesirable overkill , and

gives a rather elaborate example , in terms of a hypothetical

experiment , which provides a test for any estimation method proposed

as an alternative to sums of Pk's .

Revisited Example . If in the simplified example of Table 1 , rotor

wing R had fired at surviving tank 1 a second time rather than firing at

tank 2 , the overall attrition estimates should not change. However , 1.3

kills must be credited against tank 1 . There is no way around this

problem if unbiased estimates of attrition are desired . Overkills are

necessary to compensate for only partial kills credited against totally

dead players , as originally happened against tank 2 in Table 1 : only 0.7

kill was credited but tank 2 was forever 100% dead .

Undesirable Overkill. One situation where overkill is clearly

undesirable occurs when one player fires several rounds at another player

over a relatively short period of time so that the rounds should be

considered only one engagement . Then the engagement Pk should be
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calculated using appropriate products of Pk's rather than swns of Pk's .

In particular , if n rounds are fired , each with Pk = p , then 1- ( 1 - p ) '

should be used rather than np as the engagement Pk . As long as np is

small , the difference between the two formulas is slight , since

np - 11- ( 1 - p ) n ) cannot exceed ( np ) 2 ( proof : use binomial expansion ) .

However , if np is relatively large ( in particular , if np is greater than

1 ) , then the difference is large . For example , if three antitank weapons

are fired by the same firer against the same tank during a very short

period of time and each firing has Pk = 0.7 , then np = 2.1 but

( 1- ( 1-2 )^ ) =0.973. The better answer is clearly 0.973 .

Desirable Overkill . If products of Pk's rather than sums of Pk's were

used to credit kills , no more than one credited kill could ever be

accumulated against a single player . Thus overkill could be avoided if

products of Pk's rather than sums of Pk's were always used to credit kills

for estimating attrition . The following example shows that crediting

kills using products is misleading because it generally underestimates

expected attrition . In addition , because it provides a situation with

real bullets and real deaths for which the true expected kills can be

calculated , the hypothetical experiment in this example provides a test

for any estimation method proposed as an alternative to sums of Pk's ( see

Figure 4 ) .

Hypothetical Example :

An urn contains 1,000,000 ( 1 - P ) harmless blanks ( painted green ) and

1,000,000p absolutely lethal rounds ( painted red ) .

Draw 100 rounds at random from this urn and load them into a gun

(which conveniently holds 100 rounds ) .

- Now select 100 volunteers and shoot the rounds at them from point

blank range .

-

As long as care is taken to shoot only at live volunteers , 100p volunteers

are expected to die . The number of expected kills is the same no matter

which of the following methods is used to distribute shots among

volunteers :

Shoot one round at volunteer #1 . Shoot one round at volunteer #2 .

Shoot one round at volunteer #100 .

Randomly select (with replacement ) a living volunteer . Shoot one

round . Repeat the random selection and shooting of one round until

all rounds are expended .

Randomly select (without replacement ) a living volunteer . Shoot

rounds at this volunteer until all rounds are expended or the

volunteer dies . Repeat until all rounds are expended .
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100 Volunteers

1,000,000( 1 -P)

harmless blanks

(painted green)

1,000,000p

absolutely lethal rounds

(painted red )

Random

Sélection

Random

Selection

100 ROUNDS

Expected

Kills

D
A

Methods for Distributing

Shots Among Volunteers

• Shoot one round at volunteer #1 . Shoot one round at

volunteer *2 . ... Shoot one round at volunteer #100 .

• Randomly select (with replacement) a living volunteer .

Shoot one round . Repeat the random selection and

shooting of one round until all rounds are expended .

• Randomly select (without replacement) a living

volunteer . Shoot rounds at this volunteer until all

rounds are expended or the volunteer dies. Repeat

until all rounds are expended .

Figure 4

Hypothetical Experiment:

Any Acceptable Method for Estimating Attrition

Should Give 100p Expected Kills
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To be convinced that all three methods give the same expected kills ,

simply consider the number of lethal rounds loaded . If Rred rounds (and

100-R green rounds ) are loaded into the gun , then exactly R volunteers

will die . Thus all three methods give the same number of kills , hence the

same expected kills . Moreover , all 100 rounds will be fired with each

method . The random variable R has essentially binomial distribution with

success probability p and N= 100 (actually the distribution is

hypergeometric ) , and the expected value is 100p . Any acceptable method of

estimating attrition using Pk's should estimate the true expected kills ,

and sums of Pk's does . Since p is known , the expected value can be

correctly estimated by crediting a partial kill equal to D on each shot

and adding credited kills ( sums of Pk's ) to give 100p . If p is of

moderate size , then crediting more than one kill against some volunteers

is virtually certain using either the second or third methods : in

particular , if p =0.6 , overkill would occur against any player shot at more

than once , and both the second and third methods virtually guarantee

multiple shots against some players . Applying the product formula would

avoid such overkill , but would give the wrong estimate for expected

kills . In fact , the product formula would generally give different

answers for each of the shot distribution methods if 0 < p < 1 and 0 < R < 100 ,

and except for the first method , the answers themselves would be random :

- For the first method , the product formula would credit a partial

kill equal to p against each player , giving the same answer as sum

of Pk's , namely , 100p .

For the second method , the product formula would credit p kill on

the first shot against a particular player , credit p ( 1 - p ) kill on

the second shot , and in general credit p ( 1 - p ) ( k - 1 ) kill on the kth

shot against a particular player . Since p ( 1 - p ) ( 6-1 ) « p , credited

kills would be less than 100p unless all players were shot at

exactly once (an extremely unlikely occurence unless p is very near

1 ) . Since at least R different players must be fired at a first

time , credited kills must be at least Rp . The remaining ( 100 -R )

rounds must also be shot and the smallest number of kills would be

credited if all those rounds were shot against a single player .

Thus the smallest number of kills credited by the second method

would be (R - 1 ) p+ ( 1- ( 1 - p ) 100 -R+ 1 ) , and the actual number of

credited kills would vary randomly from this number to 100p .

For the third method , the smallest number of credited kills would be

the same as the second method , but the largest number of credited

kills would be strictly less than 100p unless R =99 and the last

round left is green . In general the third method would give

substantially less credited kills than either other method since at

most R+1 players would be shot at .
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Overkill Wrap -un . The preceding discussion shows that some overkill

must be allowed when estimating attrition in an RTCA experiment . As long

as expected kills are to be estimated by crediting partial kills , some

players will be removed from play with less than a whole credited kill , so

other players must be allowed to accumulate more than a whole credited

kill to make up for the shortfall .

WHY ALIVENESS ANALYSIS IS NEEDED AND WHAT IT IS

Why Needed . Until now , this paper has argued that sums of Pk's should

be used to estimate attrition from RTCA data . However , this argument was

based on the tacit assumption that RTCA works as advertised , assessing all

or almost all engagements correctly . Unfortunately , many engagements

which should go to real time assessment do not , typically because of

instrumentation failure , faulty real - time position - location data or buffer

syncronization problems in real - time computer processing . In addition ,

the Pk's used real time may prove to be incorrect due to software errors ,

errors in Pk tables , faulty real - time position - location data or simply

inability of instrumentation to capture crucial engagement conditions in

real time . Moreover , Pk's may change post test either because new data

indicates the Pk tables should be modified or because "what - if" analyses

of Pk's are desired . In fact , there are effectively two Pk's associated

with each RTCA engagement , the Pk used real time ( PKU ) and the actual Pk

( PKA ) determined through post - test analysis. Whenever the PKA's are not

equal to the PKU's, the attrition rate applied real time was wrong , and

too many or too few players were left on the test battlefield . Simply

summing the Pk's ( that is , the PKA's ) could give misleading estimates of

attrition if PKA's were frequently unequal to PKU's. Aliveness analysis

is an arithmetic adjustment for cumulative differences between PKA's and

PKU's which is applied prior to summing Pk's . It is essentially a back of

the envelope calculation too big to do on the back of an envelope .

Adjustment Approach . Aliveness analysis makes sensible adjustments to

attrition estimates by reducing or increasing credited kills to compensate

for cumulative errors in attrition .

If PKU is less than PKA then too little real time attrition was

applied and the subsequent attrition capability of the target should

be reduced .

- If PKU is greater than PKA then too little real time attrition was

applied and subsequent attrition capability of the target should be

increased .

- On the other hand if PKU is equal to PKA then real time attrition

was just right and no adjustment should be applied .

Adjustment Formulas . The concept of aliveness analysis was originated

at CDEC by M. Bryson . The largest application of aliveness analysis to

date was in the analysis of the force -on- force portion of SGT York Follow
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on Evaluation I ( FOE I ) , which will be described below . Prior to the

start of FOE I the authors of this paper worked together to refine the

aliveness methodology and produce specific formulas for performing

aliveness analysis . Aliveness analysis adjusts for differences between

real time and post test attrition rates by crediting partial kills via

" potency " or " aliveness " weightings on live players as follows .

Define a " potency " or " aliveness " factor A for each player , where

Ainitial = 1 for all players . Track cumulative credited kills by

player I versus player J as K ( I , J ) with Kinitial ( I , J ) =0 for all

player pairs . Then when player I ( potency Aold ( 1 ) ) engages player J

( potency Aold ( J ) ] with kill probabilities PKA (actual , from

post - test analysis or revised table ) and PKU ( used in RTCA ) , adjust

potency factors and cumulative credited kills as follows :

Knew( I , J ) Kold ( I , J ) + Aold ( J ) x ( 1- ( 1 - PKA )Aold ( I ) )

Anew ( I ) = Aold ( 1 )

Anew ( J ) = Aold ( 1 )x1 ( 1 -PKA )Aold (1 ) 1 / ( 1 - PKU ) .

Potency of the target , Anew ( J ) , is reduced to zero for any engagement

which goes to real time assessment and results in a dead target .

Formula Motivation . The underlying motivation for these formulas is

straightforward . First , the calculation adjusts potency of surviving

players as a ratio of survival probabilities ( provided the firer has A= 1 ) :

- If a player survives with twice the probability he should have ( for

example , if PKA=0.6 and PKU=0.2 ) , his potency is halved .

- If a player survives with half the probability he should have ( for

example , if PKA =0.6 and PKU =0.8 ) , his potency is doubled .

Second , the odd - looking exponential adjustment for the potency of the

firer is actually based on a standard statistical formula :

-n firings with Pk - p give total Pk- 1- ( 1 - pin

a potency n player firing with Pk =p gives total Pk- 1- ( 1 -pin .

In addition , the calculation

reduces to sums of Pk's when PKA's always equal PKU's

· adjusts in the right direction when firer potency is 1 , and

performs well in practice , as the rest of this paper shows .

-

APPLICATION OF THE ALIVENESS CALCULATION

Examining Aliveness . The most straightforward way to examine the

aliveness calculation is to observe how it performs on actual sequences of
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engagements . The remainder of this paper describes the application of

aliveness methodology to score casualties in the field trials of SGT York

FOE I.

Test Description . The force -on- force portion of FOE I was conducted

at the US Army Combat Developments Experimentation Center (CDEC ) , Fort

Hunter Liggett , California , from 2 April to 22 May , 1985. It was a

platoon level test conducted to compare capabilities of three different

air defense families to provide protection to an armor battalion task

force in similar types of missions . The three air defense families were

nominally called " SGT York , " " Baseline , " and " Alternate . " All three

families had five Stinger missile systems forward and two Chaparral / FLIR

missile systems with the battalion trains . What distinguished the

families was the large air defense systems deployed forward :

The SGT York family had four SGT York air defense gun systems

forward .

The Baseline family had four Vulcan air defense gun systems forward .

- The Alternate family had two Vulcan air defense gun systems and

two Chaparral/ FLIR missile systems forward .

Test Players. Overall , there were typically more than 60 Blue players

and more than 30 Red players in each trial . In addition to Blue air

defense , the Blue armor task force consisted of roughly 26 Abrams tanks ,

13 Bradley fighting vehicles , and 20 other Blue ground forces ( M113's ,

trucks , etc. ) . The Red air attack force consisted of four fixed wing ( two

Fitters surrogated by A - 7's and two Frogfoots surrogated by A - 10's ) and

four rotor wing ( four Hinds or four Havocs , each surrogated by AH -64's ) .

Three surrogate Red ECM aircraft ( one fixed wing and two rotor wing

stand-off jammers ) were present on some trials , and three Blue aircraft

( one AH - 1S rotor wing and two F - 4 fixed wing ) were used to investigate

possible fratricide . Finally , a small Red armor force ( 20 T - 80 tanks

surrogated by M-60's and 8 BMP's surrogated by M113's ) permitted a limited

armor battle .

Test Criteria . The main mission performance criteria for FOE I

addressed the relative proportion of Blue Force losses to Red Air during

trials when the three different families of air defense systems were

present . That is , for " similar" trials involving each family , it was

necessary to estimate Blue Force losses to Red Air , divide by Blue Force

size to estimate the proportion lost , and then form appropriate ratios of

the proportions . With

Y = Proportion lost in SGT York trials ,

B = Proportion lost in Baseline trials , and

A Proportion lost in Alternate trials ,
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the required ratio for comparing SGT York versus Baseline was

( B - Y ) /B = 1 - Y/ B

while the required ratio for comparing Alternate versus Baseline was

( B -A ) / B = 1 - A/B .

Over 70 trials were attempted during FOE I , and 52 trials ( 29 York ,

12 Baseline , and 11 Alternate ) were validated for analysis . Proportion

lost was estimated in each trial , and the appropriate ratios were

estimated in an analysis of variance framework in order to adjust for

differences in trial conditions between families . The criteria values and

detailed results are classified , so they will not be discussed fully in

this paper .

FOE Problems. In FOE I , there were frequent differences between PKA

and PKU . The most common case of inequality between PKA and PKU was when

PKA > PKU = 0 , which typically occured when engagements did not go to real

time assessment ( that is , no firer - target pairing could be made in real

time ) but engagement conditions (hence PKA's ) were reconstructed through

post - test analysis . In fact , in SGT York FOE I , across various

firer - target categories , 40 to 50 percent of engagements did not go to

real time assessment ( see Figure 5 ) , but PKA's were frequently recovered

through post - test analysis ( indicated by the dotted areas in Figure 5 ) .

However , the percent recovered was substantially different for different

firer categories because availability of post - test data sources such as

video and audio tapes was different for different firer categories . In

addition to the cases PKAPKU = 0), there were many cases of 0 < PKA < PKU , which

occurred because the pre - test tabulations of Pk's for Blue air defense

versus Red air were generally too high . Figure 6 shows as an example the

extent to which PKA's differed from PKU's for firings by selected Blue air

defense firers against selected Red air targets . For these cases , PKA's

equalled PKU's less than a third of the time . Almost the only time when

PKA's equalled PKU's was when both were zero ( dotted portion of PKA - PKU

bars in Figure 6 ) .

FOE I Examples . The following three examples are based on engagements

in FOE I. Ficticious Pk values and firer - target pairs have been used in

order to keep this paper unclassified . However , the actual engagement

sequences led to essentially the same aliveness calculations given here .

These examples provide convincing evidence that the aliveness calculation

performs well in practice .

Example 1. The first example consists of two engagements against a

surrogate Frogfoot close air support aircraft . In the first engagement ,

the actual survival probability ( 1 - PKA =0.62 ) was 2.14 times what was

applied in real time ( 1 -PKU = 0.29 ) . That is , in a large number of such

engagements , there would be 2.14 times as many survivors as were observed

real time . The aliveness calculation increases the potency of Frogfoot - 1

to 2.14 and credits 0.38 kill against Frogfoot - 1 . The second engagement

did not go to real time assessment so the real time survival probability
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was 1.00 . Since the actual survival probability was only () .66 , the

aliveness calculation decreased the potency to 1.41 =0.66x2.14 and credited

0.73 =2.14x0.34 kills against Frogfoot - 1 . In this example , 1.11 kills were

credited by aliveness while the sum of Pk's was only 0.72 and no simulated

kills were observed . The aliveness result makes the most sense .

FIRER

ID

OLD

FIR

PTCY

TARGET

ID

OLD

TGT

PTCY

NEW

TGT CRTD SIM

PTCY KILL KILLPKA PKUPKU 1 - PKA 1 - PKU

STINGER - 4 1.00 FROGF00T - 1

STINGER - 1 1.00 FR GF00T - 1

1.00 0.38 0.71

2.14 0.34 0.00

0.62

0.66

0.29 2.14

1.00 1.41

0.38 SURV

0.73 N/A

Summary of Attrition Estimates :

Simulated Kills

Against Red 0.00

Against Blue 0.00

Sum of Pk's

0.72

0.00

Credited Kills

1.11

0.00

Example 2 . The second example consists of a series of engagements by

SGT York- 1 . The first engagement against Fitter - 1 is similar to those

already considered , except that the target was killed real time so that

instead of increasing to 1.61 , its potency was reduced to zero . In the

second engagement , however , SGT York - 1 was the target of Hind - 3 .

SGT York - 1 should have survived with probability 0.28 , but survival

probability 1.00 was in effect applied real time because the engagement

did not go to assessment . The aliveness calculation decreased the potency

to 0.28 and credited 0.72 kill against SGT York - 1 . Then in the third

engagement , SGT York - 1 with potency 0.28 fired at Fitter - 3 with potency

1.94 . The effective actual survival probability should be greater than

1 - PKA =0.69 because the firer was only " partially alive " ; that is , if this

trial were repeated many times with perfect RTCA, SGT York - 1 would only be

around to fire a small fraction of the time . The aliveness formula says

that the effective survival probability should be 0.90 = 1) .690.28 , and

intuition suggests no better number . Thus the new potency of the target

increased by 1.77 =0.90/0.51 times to 3.42 , and 0.19 = ( 1-0.90 ) x1.94 kill was

credited . Once a firer has potency less than 1.00 , not only are credited

kills reduced but also potency of targets tends to be increased . This is

illustrated by the last engagement of this example , where even though PKA

and PKU were the same , potency of the target increased by 23% to 1.23 .

Overall in this example , 0.53 kills were credited by aliveness against Red

while the sum of Pk's was 0.82 , and there was one simulated kill . This is

exactly the reverse relationship from the previous example where credited

kills were largest , followed by sum of Pk's and then by simulated kills .

Again , the aliveness result makes the most sense .
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FIRER

ID

OLD

FIR

PTCY

TARGET

ID

OLD

TGT

PTCY

NEW

TGT CRTD

1 -PKA 1 - PKU PTCY KILL

SIM

KILLPKA PKU

SGT YORK- 1 1.00 FITTER - 1 1.00 0.26 0.54

HIND - 3 1.00 SGT YORK- 1 1.00 0.720.72 0.00

SGT YORK - 1 0.28 FITTER - 3 1.94 0.31 0.49

SGT YORK- 1 0.28 HIND - 3 1.00 0.25 0.25

0.74

0.28

0.69

0.75

0.46 0.000.00 0.370.37 KILL

1.00 0.28 0.890.89 N/A

0.51 3.42 0.06 SURV

0.75 1.23 0.05 SURV

Summary of Attrition Estimates:

Simulated Kills

Against Red 1.00

Against Blue 0.00

Sum of Pk's

0.82

0.72

Credited Kills

0.82

0.72

Example 3 . The final example is much more routine , involving a firer

with aliveness one , where PKU’s were either correct or were zero because

the engagement did not go to real time assessment . In all but one

instance , the credited kill was equal to PKA, and all three measures of

attrition nearly agree .

FIRER

ID

OLD

FIR

PTCY

TARGET

ID

OLD

TGT

PTCY

NEW

TGT CRTD SIM

PKU 1 - PKA 1 - PKU PTCY KILL KILLРКА

HIND - 2

HIND - 2

HIND - 2

HIND - 2

HIND - 2

HIND - 2

HIND - 2

HIND - 2

HIND - 2

HIND - 2

HIND - 2

HIND - 2

HIND - 2

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

ABRAMS - 10 1.001.00 0.57 0.57

ABRAMS - 5 1.00 0.38 0.38

ABRAMS - 13 1.00 0.45 0.45

ABRAMS - 13 1.00 0.00 0.00

ABRAMS - 7 1.00 0.46 0.00

ABRAMS - 5 0.00 0.00 0.00

UNKNOWN 1.00 0.00 0.00

ABRAMS - 14 1.00 0.51 0.51

SGT YORK - 4 1.001.00 0.95 0.00

ABRAMS - 16 1.00 0.39 0.00

ABRAMS - 16 0.61 0.48 0.48

BRADLEY - 10 1.00 0.721.00 0.72 0.72

ABRAMS - 16 0.00 0.000.00 0.00 0.00

0.43

0.62

0.55

1.00

0.54

1.00

1.00

0.49

0.00

0.61

0.52

0.28

1.00

0.43 0.00 0.57 KILL

0.62 1.00 0.38 SURV

0.55 0.00 0.45 KILL

1.00 0.00 0.00 D/T *

1.00 0.54 0.46 N/A

1.00 0.00 0.00 D/T*

1.00 1.00 0.00 N / A

0.49 1.00 0.51 SURV

1.00 0.05 0.95 N/A

1.00 0.61 0.39 N/A

0.52 0.00 0.29 KILL

0.28 0.00 0.72 KILL

1.00 0.00 0.00 D/T *

* D / T = DEAD TARGET

Summary of Attrition Estimates :

Simulated Kills

Against Red 0.00

Against Blue 4.00

Sum of Pk's

0.00

4.91

Credited Kills

0.00

4.72

OVERALL IMPACT OF ALIVENESS ANALYSIS IN FOEI

Trial-by - trial Summary . Figure 7 displays trial -by- trial estimates

for the proportion of blue ground lost to red air by each of the three

methods . It shows that results of the aliveness calculation tended to

fall between simulated kills and results obtained by sums of Pk's . This

occurs because the most common RTCA error was failing to go to real time
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assessment when a Pk > 0 should have been used , which produces no simulated

kills and gives potency less than one to survivors . Differences between

the attrition estimates were substantial in some trials . ( The apparent

smoothness of the aliveness curve in Figure 7 compared to the other two

curves is due primarily to the order in which trials were sorted for

plotting . )

Analysis of Variance Results and Overall Conclusions . For engagements

by Red air against Blue ground during FOE I , the tendency for suns of Pk's

to be larger than credited kills from aliveness - which in turn tend to be

larger than simulated kills - carried over to the attrition estimates

obtained from analysis of variance in a general linear models framework .

Sums of Pk's were used instead of aliveness analysis to present attrition

estimates to decision makers because sums of Pk's are simpler and they

gave the same result as aliveness for the crucial SGT York family - the

criteria were met . In retrospect , this agreement appears to have been

luck . Even though the direction of comparisions between attrition

estimates based on sums of Pk's , aliveness , and simulated kills was

consistent across air defense families , the relative size of the

differences between estimates was not consistent across families . In one

case involving
Alternate

and Vulcan families , a crucial estimate based on

aliveness
was less than half that obtained from sums of Pk's and made a

difference
whether or not an important

criterion
was met . Results from

aliveness
analysis can be substantially

different
from analyses based

either on simulated
kills from RTCA or on unmodified

sums of Pk's . Since

there can be a real difference
between results of the techniques

unless

RTCA works extremely
well , a preferred

technique
should be chosen . Both

simulated
kills from RTCA and unmodified

sums of Pk's give wrong attrition

estimates
when PKA's differ from PKU's . Thus aliveness

analysis should be

the method of choice .
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Maximum -Likelihood Estimation of the Parameters

of a Four -Parameter Class of Probability Distributions

Siegfried H. Lehnigk

U.S. Army Missile Command

AMSMI-RD -RE - OP

Redstone Arsenal, AL 35898-5248

1. Introduction

We shall be concerned with the problem of parameter estimation by

means of the likelihood function for a class of four -parameter

distributions (hyper-Gamma class) character ized by the probability

density function (pdf) class

B

br ((1-P)B-')

exp - B. $ = (x-5) -' x > s ,

r(x.P) =
( 1.1 )

0 , X < .

The parameter vector P = (s, b,p.B ) has the components s = shift

( location ), b = scale, p = initial shape, B = terminal shape, with b > 0,8

< 1 , ß > 0. In practice we are given a set of absolute frequency data

(Xy, fap) (v = 1 , ... ,m) , fai > 0 , fav 2 0 (0 = 2 , ... , m- 1 ) , ſam > 0 ,

m

E lav = N = total number of observations . The shift parameters

v= 1
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therefore, is restricted to s < x7 .

The distribution class defined by ( 1.1 ) is of wide applicability. As

special cases it contains a number of distributions well - known in

statistics and statistical physics: Gauss (p=0 , B =2 ), Weibull (p= 1 -B < 1 ) ,

exponential (p= 1 -B =0 ), Rayleigh (p= 1-8=-1 ), Gamma (p< 1 , B = 1 ) ,

chi- square ( p=(2-0 )/2, B = 1), Maxwell (p= -2 , B =2 ), Wien (p= -3 , B = 1).

Relative to the most essential parameters p and ß , the class

( 1.1 ) covers the open quadrant p < 1 , B > 0 of the (p.B )-plane. The

locations of the special cases just mentioned are shown in the

accompanying figure.

It is our objective to show that the class ( 1.1 ) is easy to apply in

practice. In other words, we shall show that, for a given set of

frequency data (Xyi lay) (v = 1 , ... ,m), the four parameters s. b. p. and B

can easily be estimated. The likelihood function approach will be used.

2. The Likelihood Function

m

Let (Xyıfay) (v= 1 , ... ,m), E fav = N, be a set of given frequency data.

v= 1

We set log (Xy-5) = Dy. Then the likelihood function L(P) for the pdf

class ( 1.1 ) takes the form
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L(P) = BN N ((1-P)8-16-(1-P)

Introducing relative frequencies 1,5 Nilap , we obtain for R(P) = log

L(P) the function

R(P) = log B - log r ((1-P)8-') - ( 1 - P) log - PC - 6-BB (2.1 )

in which

m

B = B(s.B ) = Ĉ Pv eBay
Bpx > 0 , C = C(s) = { Po Po ·

C

v= 1 = 1

The objective is to maximize the function R(P) given in (2.1 ) under

the constraints s < x7.0 > 0.0 < 1 , B > 0 .

The partial derivatives of R with respect to s , b, p, and B ( in this

order ) lead to the equations

(2.2 )PE + B6-BF = 0 ,

-(1-2) -1.B0 -B- 18 = 0 , (2.3)

8-14 ((1-P)B - 1) + log D - C = 0 , (2.4)

8-1 . (1-P)B-2 yl(1-P)B - 1) -BB logo - b-BD = 0 , (2.5)
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3. The Likelihood Equations

The equations (2.2), ... , (2.5) are the four likelihood equations in the

four unknowns S , D , P, and B , relative to the logarithmic likelihood

function (2.1 ) .

We make the following essential observations.

First , since E > 0. ß > 0,0 > 0 , F > 0. equation (2.2) shows that , if

the shift parameters is considered as unknown, the initial shape

parameter P must be less than zero .

Secondly, equation (2.3 ) shows that the scale parameter D can be

expressed in terms of the parameters s , b , and B ,

DB = (1-P)-1BB
. (3.1 )

Thirdly , using this expression for bB in (2.4) and (2.5), we see that

the initial shape parameter p can be eliminated since it can be

expressed in terms of S and B.

(1 -P)-B = AB -1
AB ' , D = 1 - BA -18

(3.2)

where

A = A ( s,B ) = B(D-BC) .

Consequently, out of the set of the four equations (2.2 , ... , (2.5) , we

need retain only two, namely (2.2) and (2.4). Eliminating from these D

and p by means of (3.1 ) and (3.2) we arrive at the two equations
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g(s,B) = Y A -' B) + log A - BC = 0 , (3.3)

h(s.B ) = (B- ' A-B)E + F = 0 . (3.4)

The solution (S,B ) of these equations and the corresponding numbers

Ø = 1 - 8 A '( ,$) B(5,8) ,

= exp {8-1 109 (ßB (SB) ( 1 -P) -1}

obtained from the auxiliary formulas (3.2) and (3.1 ) give us the desired

estimates for the four parameters relative to a given set of frequency

data (Xy , fv) .

For the numerical solution of the system of equations (3.3 ) and (3.4),

it is convenient to introduce the functions Ã, B, and F, defined by

BPm 6 , F = e
BPM Ã , B = e

BP
m
e

A = B e

Examples for the solution of equations (3.3) and (3.4) will be given in

the paper by Mr. H. P. Dudel .
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ON ROTATION IN FACTOA ANALY919 OF ATMOSPHERIC

PARAMETERS

Oskar M. Essenwanger

Aerophysics Branch

Research Directorate

Research, Development , and Engineering Center

U.S. Army Missile Command

Redstone Arsenal , Alabama 35898-5248

ABSTRACI. Many authors of texts and articles on factor analysis

recommend rotation of factors after original solutions of unrotated

factors. This goal is readily achieved today with the aid of 'conned

programs' on most of the bigger computer systems . It was noticed,

however, that for a system of factor analysis of atmospheric parameters

orthogonal rotation was significantly different for only some methods of

estimating communalities . Furthermore, oblique rotation differed little

from orthogonal rotation.

It will be shown that in cases where the alignment of data in a

(rectangular) system are close to the abscissa and ordinate of the system

rotation does not contribute much to further alignment. Whenever the

original factors display scatter in the diagrams the dispersion is already

reduced by an orthogonal rotation. Thus oblique rotation would not bring

much improvement .

It will be discussed that the " simplification of foctors by rotation

will aid in the diagnosis of the system but does not improve the task of

prediction from the system.

1. INTAODUCTION . With the availability of "conned programs" for

factor analysis the mathematical difficulties have largely been resolved

although one should carefully consider the mathematical background on

which these 'conned programs are based. After calculation of the

unrotated factors many suthors ( e.g. , Cattel 1952, 1965) recommend

simplification by rotation of the systems. The concept of rotation is not

supported by some authors dealing with meteorological dota. In fact , Buell

( 1971 ) finds it completely unnecessory.

In a previous study this author ( 19860) deduced that rotation resulted

in on alignment of factors although the factors were obtained by different

methods of estimating the communalities ". Thus rotation in factor

analysis of climatological data seems to serve a useful purpose, reducing

the individuality and subjectivity in the decision of estimating the

communalities. It was discovered, however, that little difference
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between orthogonal and oblique rototion of climatologicol factor doto

showed up. Thus the author decided to study rotation in factor analysis of

climatological data in more detail .

The analysis disclosed that whenever the original factor analysis

displayed little scatter of the factor components plotted into o

rectangulor coordinate system the rotation did not render significantly

different results. Factor components with lorger dispersion , however,

provide better alignment of doto along the axes and provide less scattering

ofter rotation. In the given examples from climatologicol dato of

Stuttgart, Germany orthogonal rotation diminished the scatter already to o

point where oblique rotation could not contribute to a further reduction.

It can be shown that rotation may simplify the factors and decrease

the scatter but does not contribute to improve the ability of prediction

utilizing the factor analysis. The prediction error remains the same,

whether rotated or unrototed.

2. FACTOA MODEL AND ESTIMATION. The factor model is based on:

My = MAME + ME
( 1 )

where My is a data matrix (symmetric ) , Ma a coefficient matrix and Me

a factor matrix . In the principal components analysis with the number

of factors corresponding to the dimension of the data matrix Me is an

error matrix . Ma is also called the factor loading matrix or factor

pattern. For diagnostic purposes Me is not calculated in most cases .

The mathematical solution of egn. ( 1 ) can be formulated:

My = MAMA+ (y )
(2 )

which is an eigenvector problem . is a factor covariance matrix . $ =

EMF . Y is a diagonal matrix if the errors and the factors are

uncorrelated. This is generally assumed . In its standard form My is a

correlation matrix with unity in the diagonal (communalities). In this

form the factors are called principal components. In the true factor

analysis the assumption is made that not all factors are known. Thus

the diagonal element is < 1.0 . Several substitutions have been suggested
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for the communalities ( e.g. Guttman , 1956 , or see Esserwanger, 1976 , P.

281 ) . In recent times several estimation methods for the communalities

as described by Joreskog ( 1967) have been developed based on statistical

principles.

The unweighted least squares (ULSQ) method requires that U is a

minimum for :

U = ( 1/2 ) tr ( - 1,2
(3)

where Ms is the correlation matrix with estimates in the diagonal and tr

means the trace .

The generalized least squares (GLSQ) method minimizes G for :

G = ( 1/2 ) tr ( h -M5-1Mx)?
(4)

and the maximum likelihood (MXLI ) method M for :

M = tr [(My-IMs)]- in|(My-'Mg)/ - n
(5)

In addition to the three methods described above a truncation in the

number of factors obtained from the principal components analysis could

aiso be used (see Essenwanger , 1986a , b) . Since this method maximizes

the representation of the variance, the same number of factors as in the

other three methods will have a higher percentage of representation of

the variance.

Rotation serves to simplify the factors (see Essenwanger , 1975 D.

285 , or 1986a) . Rotation can be accomplished by a transformation

matrix T such as :

ME = MATI

(6 )

0

where MF. is the rotated matrix by orthogonal rotation. In various cases

simplification is not sufficiently achieved by an orthogonal rotation and

an oblique rotation is appropriate . In this case two matrices must be

obtained :

M
E
S=

MAT2
(7a )
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ME = MAT2-1
(76)

P

where M

S

MES is named factor structure and MF factor pattern matrix . The

structure matrix Me represents the covariances (correlations ) between

factors and variables and MF, can be interpreted as regression

coefficients . In the orthogonal rotation the factors remain uncorrelated

while in the oblique case the factors are correlated .

3. EXAMPLE OF ORTHOGONAL ROTATION . A simple example is

illustrated for an orthogonal rotation of factors . A principal components

analysis was performed for the observed data of Frankfurt during

January 1946-1956 . The correlation matrix between four elements

(visibility , i.e. logarithm of visibility , temperature , and windspeed) is

given in Table 1. Table 2 exhibits the four factors from this principal

components analysis . The (orthogonally) rotated factors are shown in

Table 3 , Figure 1 depicts one particular phase of this rotation between

(modified) factor 1 and 4. In this case the rotation angle calculated by

the VARIMAX method (see Kaiser , 1958 , or Cattell and Khanna , 1977)

was -39º. The figure illustrates that the four points are much closer to

the axes aiter rotation of the coordinate system . Since the rotation is

orthogonal the other factors are not affected .

4. EXAMPLES OF ROTATION AND COMPARISON OF ESTIMATION METHODS .

while comparing estimation methods for communalities in factor

analysis (Essenwanger , 1986 a , b , ) it was noticed that oblique rotation

and orthogonal rotation did not differ much for the Stuttgart , Germany

climatological data samples . A typical example is exhibited here in

Tables 4 and 5. For better readability values < 0.4 were omitted. For

the orthogonal rotation the factor loads and for the oblique rotation the

structure matrix is shown. It is apparent that orthogonal and oblique

rotation differ very little . The rotation procedure, demonstrated in

section three , is depicted in Figures 2 and 3. They provide an example

from a truncated principal components analysis for the January

1946-1953 data at Stuttgart, Germany . Nine climatological elements

(ceiling , cloud amount , visibility , i.e , its logarithm , wind direction and

Speed , temperature , dewpoint , relative humidity , and pressure ) were

chosen for the factor analysis . Four factors were retained .
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Figure 3 illustrates the reduction of the scatter by orthogonal

rotation. In the graph the components of one factor were used as the

abscissa and the components of the second as the ordinate. We may

assume that further rotation for simplifications is unnecessary if the

components pair for the two factors fall within a distance of +0.2 from

the axes . For the four factors (54 points for 9 elements) 20 points

remain outside this band in the unrotated factors case (Figure 2 ) . After

orthogonal rotation only four data points remain outside the band

(Figure 3 ) . This leaves little room for improvement by an oblique

rotation.

The problem of rotation was further analysed for 12 factor analysis

results although only for one station: Stuttgart , Germany . Table 6

discloses the count of data points outside the postulated acceptance

band + 0.2 around the axes . The left hand part shows the counts for the

unrotated and the right hand part the counts after an orthogonal

transformation of axes was performed .

Although this count should not be used as the only source for

evaluation and interpretation of the merits of an oblique rotation it

discloses some interesting facts , however. Apparently the principal

components analysis and the unweighted least squares estimations show

the greatest dispersion of the 54 component points for the unrotated

factors. After rotation only a few points remain outside the "desirable "

bounds. A closer scrutiny reveals that oblique rotation may provide an

improvement through the alteration of axes only in a few cases (e.g.

winter, 12") where the orthogonal rotation left between 10 to 14 points

outside the - 0.2 band . Thus the improvement in simplification may be

judged by a count of the number of points falling outside the + 0.2

tolerance band . In addition, the distance from the origin (magnitude of

vectors ) can be included into the judgement criteria .
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The closeness between orthogonal and oblique rotation can also be judged

by a comparison of the transition matrices T , and T2 . For the data of

Table 4 and the principal components analysis those two matrices are

given in Table 7. A close inspection reveals that the corresponding

numerical values differ very little between T , and T2 . In addition to the

transition matrices the correlation between factors can be examined. In

the orthogonal case the factors are uncorrelated and the numerical value

is zero. The factor correlation matrix in Table 7 displays that the

correlation coefficient, although not precisely zero, is extremely low . In

fact, the deviation from zero do not hold up under the scrutiny of a

statistical significance test at the 95% level of significance. In this

case oblique rotation would not be necessary.

5. PREDICTION FROM FACTOR ANALYSIS:_It was illustrated in the

previous sections that for climatological data oblique rotation would not

add to simplification and diagnosis in factor analysis beyond the

achievements by orthogonal rotation. One question remained: Would

oblique rotation improve the prediction based on factor analysis ? From

a theoretical point of view rotation would neither improve nor diminish

the results for prediction. This expectation is confirmed by the data

presented in Table 8 as follows.

A factor analysis was performed as a pilot for a sample of 15

observation data sets randomly chosen from the winter months December

1946 - February 1948 at Stuttgart. Although the sample is small it

reveals the essential facts . The nine elements were chosen as

previously used . For every element the prediction was based on four

factors whose components were calculated for the 15 observations.

Then the differences e2 = { (x-Xp) /N were calculated for every

element (x = observed,xp = predicted) . The result for the unrotated case

and the oblique rotation is found in Table 8. As expected the two error

columns 2 are identical except for one difference by rounding. This

result implies that the goodness of fit for prediction depends only on the

number of factors and is independent of rotation. In a previous article

(Essenwanger, 1986b) it was pointed out,however, that the ( truncated)

principal components analysis provided the highest percentage

approximation of the total variance. Thus the quality of prediction

would depend on the estimation method for the communalities. In this

article it was also demonstrated that the dissimilarity of the factors

obtained by differences in estimating the communalities virtually

vanishes for climatological data after othogonal ( and oblique) rotation.
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Thus the simplification achieved by rotation leads to the same

" Climatological factors ."

6. CONCLUSION AND SUMMARY: Rotation in factor analysis was studied

in detail for climatological data samples . Although the study was

limited to one station (Stuttgart , Germany) the result may indicate that

orthogonal rotation of factors for climatological data may be sufficient

to achieve simplification. Unless simplification is desirable in cases

where the factor analysis is utilized as a prediction tool the percentage

approximation of the total variance is not improved by rotation.

However , rotation serves in aligning the original dissimilar factors to a

uniform system of factors in terms of climatology although the

individual estimators for the communalities differ .
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Table 1. Correlation Matrix for Four Meteorological Elements, Frankfurt,

Germany. 1946-1956 (Matrix My)

In ( V )
Р T w

In ( V ) 1.0 0.08 0.08 0.42

Р 0.08 1.0 0.05 -0.16

T 0.08 0.05 1.0 0.20

W

10.42 -0.16 0.20 1.0

V = Visibility , P = pressure , T = temperature, W = Windspeed

Table 2. Factor Matrix MA for Correlation Matrix of Table 1 .

( Principal Components Factors)

0.76 0.18 -0.45 -0.42

-0.10 0.95 -0.19 0.24

0.44 0.31 0.83 -0.15

0.85 -0.21 -0.04 0.49

a 1.50 1.07 0.93
0.50 (Eigenvalue)

Table 3. Rotated Factor Matrix (Orthogonal Rotation)

.96 .22 -.07 .17

-.12 .98 .06 -.05

.14 .02 .99 .08

.36 -.07 .08 .95

1.04 1.03 .99 .94

ܝ

ܠ

ܝ
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Table 4 .
ORTHOGONAL ( ORT ) AND OBLIQUE ( OB ) ROTATION ( STUTTGART ,

JANUARY 1947-1953 ) UNIT 0.01

PRINCIPAL COMPONENTS

ORT OB ORT OB ORT OB ORT OB

1 CEIL 91 83

2 CL.AMT 94 95

3 Ln VIS 79 81

4 WD 62 66 41 44

5 WS 73 76

6 TEMP 89 91

7 DEWP 97 99

8 REHU 73 69

9 PRES 97 98

VAR 218 223 191 190 217 214 100 100

Σ
726 727

UNWEIGHTED LEAST SQUARES

OB ORT OB ORT OBORT ORT OB

1 CEIL 85 87

2 CL.AMT 91 92

3 Ln VIS 76 78

4 WD 52 55

5 WS 62 64

6 TEMP 86 88

7 DEWP 100 100

8 REHU 58 56

9 PRES 99 98

PROD . VAR 171 173 172 171 204 202 99 100

Σ
645 647
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Table 5 .
ORTHOGONAL AND OBLIQUE ROTATION ( STUTTGART,

JULY 1947-1953 ) UNIT 0.01

PRINCIPAL COMPONENTS

ORT OB ORT OB ORT OB ORT OB

1 CEIL 80 82

2 CL.AMT 77 80

3 Ln VIS 69 69

4 WD 63 61

5 WS

4
1

68 64

6 TEMP 69 68 68 75

7 DEWP 93 92

8 REHU 87 86

9 PRES

9
7

97

VAR 208 202 213 215 143 147 101 102

Σ 665 666

UNWEIGHTED LEAST SQUARES

ORT OB ORT OB ORT OB ORT OB

1 CEIL 74 77

2 CL.AMT 91 94

3 Ln VIS 40 41

4 WD 70 71

5 WS 67 69

6 TEMP 80 83 57 63

7 DEWP 99 99

8 REHU 98 98

9 PRES 11 11

187 185 145 147 136 137 107 105PROD . VAR

Σ 575 574
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Table 6 . Number of Data Points Outside Tolerance Band ( Stuttgart , 1946-1953 )

UNROTATED ORTH . ROTATION

SAMPLE DATA PC JULSQ | GLSQ ML GLSO MLPC ULSO

7JANUARY 20 25 27 12 4 6 8

APRIL 27 34 14 2 8 5 5 1

JULY 21 25 6 7 5 2 . 3 3

21 21 6 9 2 1 6 2

h

13 26 4 8 9 3 3 2

21 20 5 6 7 3 3 2

13 17 5 12 3 8 4 10

OCTOBER

SUMMER 001

SUMMER 06h

SUMMER och

SUMMER 18h

WINTER ooh

WINTER 06h

WINTER 12h

WINTER 18h

16 23 13 6 5 6 13 6

23 24 24 14 9 6 3 6

22 17 22 13 8 9 6 8

24 22 28 10 13 11 14 10

22 25 14 10 11 5 5 6

Σ

243 279 168 109 84 66 71 64

Mean 20.2 23.2

3.2

16.01 9.1
9.1 17.0.019 17.01

5.5 5.9 15.3

PC
Principal Components Analysis , ULSQ =Unweighted Least Squares Estimators ,

= Generalized Least Squares Estimators , ML = Maximum Likelihood Estimators
GLSQ
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Table 7 . STUTTGART , JULY ( 1946-1953 )

TRANSFORMATION MATRICES

( PRINC . COMP . METHOD )

ORTHOGONAL OBLIQUE

T1 Ta

0.67 -0.68 -0.29 0.05 0.65 -0.74 -0.34 0.08

0.66 0.71 -0.17 -0.18 0.68 0.65 -0.19 -0.21

0.34 -0.06 0.94 0.10 0.34 -0.10 0.89 0.11

0.05 0.17 -0.11 0.98 0.04 0.15 -0.10 0.97

FACTOR CORRELATION

1.00 -0.07 -.09 -.01

-0.07 1.00 .06 -.06

-0.09 0.06 1.00 .01

-0.01 -0.06 .01 1.0
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Table 8. FACTORS AS PREDICTORS

UNROTATED OBLIQUE

ROT .

2 .

Mean

2

ε Ve? E

CEILING 9.20103 ft
8.2.103 5.38 2.31 5.38

CLOUD AMT 0.625 .44 0.009 0.10 .009

Ln VISIBIL . 0.8 0.95 .085 0.29 .086

WIND DIR 2760 900 24.33 4.93 24.33

WIND SP 4.0 kt 3.1 kt 2.22 1.50 2.22

TEMP 24.0°F 6.29 2.51 6.290.6°F

9.5°FDEWP 21.0°F 2.01 1.41 2.01

REL . HUM . 89.0% 10.3% 30.48 5.52 30.48

PRESSURE 1021.0 mb 6.1 mb 1.15 1.07 1.15

50.64 50.64

2

2 =

E

2 ( x - x> ) </N

UNITS IN LAST TWO COLUMNS ARE THE SAME AS IN THE FIRST COLUMN .
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FIG 1 . EXAMPLE OF ROTATION ( ANGLE 399

( FRANKFU
RT , GERMANY , 1946-19

56 )
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FIG ? .
STUTTGART , JANJARY ( 1946-1953 )

PRINCIPAL COMP METHOD

UNROTATED FACTOR LOADS
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FIG 3. STUTTGART , JANUARY ( 1946-1953 )

PRINCIPAL COMP METHOD

ORTHOGONAL ROTATION
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An Exact Method for One - Sided Tolerance Limits

in the Presence of Batch - to - Batch Variation

Mark Vangel

U. S. Army Materials Technology Laboratory

Watertown , Massachusetts 02172-0001

Abstract

Mee and Owen ( 1983 ) proposed an improvement on a method of Lemon ( 1977 )

for estimating tolerance limits from a balanced one-way ANOVA random effects

model . This method uses an approximation of Satterthwaite ( 1946 ) to replace a

linear combination of two chi -square random variables with a random variable

having a chi - square distribution . The tolerance factor is then estimated as a

quantile of a noncentral t -distribution . The Mee - Owen procedure is conserva

tive for all values of the population variance ratio .

An alternative approach is to view the tolerance limit problem as a

variant of the Behrens-Fisher problem . The work of Welch ( 1947 ) and Trickett

and Welch ( 1954 ) may then be applied to derive an integral equation the

solution of which , a function of the ratio of the between batch to the within

batch mean squares , provides an exact solution to the problem .

An algorithm is presented for iteratively approximating this function .

Neither the existence of a solution nor the convergence of this algorithm are

discussed ; but numerical evidence is presented which suggests that the pro

posed solution is , for the purposes of applied statistics , exact for all

values of the ratio of between batch to within batch population variances .

Two other topics considered in this paper are an approximation to the

tolerance limit based on the Welch-Aspin series solution to the Behrens -Fisher

problem and a discussion of the effect pooling and using a single sample

procedure has on the coverage probability of the tolerance limit .

An application to determining ( .90 , 95 ) lower tolerance limits for

composite material strength data in the presence of batch- to-batch variation

is discussed . This tolerance limit is referred to as the ' B-basis material

property ' by aircraft designers and is used to determine the acceptability of

a composite material for aircraft applications .
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1. Introduction

If a material is manufactured in many large batches and the population of

interest consists of all batches , the random effects model may be an appropri

ate model for measurements made on characteristics of the material .

X. denote the jth of J observations from the ith of I batches . If

ij

Xij

follows a one-way balanced random - effects model , then

( 1.1 )

Xij = " + bi
e
j

where y denotes the population mean , u + bi denotes the mean of the ith batch ,

and e

@ij

is the error term . The bi's and the enj's are assumed to be indepen

and o respectively .dently distributed normal with mean zero and variance of

An observation X from this population is thus normally distributed with mean u

е

and variance

( 1.2 )
ož = o; +os oe

This paper presents techniques for determining one-sided

tolerance limits for X based on a random sample of J items from each of I

batches . A ( B , Y ) lower tolerance limit is a random variable T such that a

proportion B of the population is covered by the interval ( -0 , T ) with proba

bility Y. The methods developed here for lower tolerance limits may be

adapted in an obvious way to upper limits .

An important industrial application of tolerance limits is to the charac

terization and certification of structural materials for aircraft . In order

to determine the acceptability of material for aircraft applications , design

ers use 'material basis properties ' which are tolerance limits on the strength

of a material as determined from experimental failure data . A ( .90 , .95 )

lower tolerance limit is called a ' B- basis ' value or ' B -alowable ' . The more

stringent ( .99 , .95 ) limit is referred to as an ' A-basis ' value or

' A - allowable ' .

There is increasing interest in the use of composite materials as light

weight alternatives to metals for aircraft applications . Composite material

properties typically exhibit far more batch-to-batch variability than do
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metals ; consequently there is a growing need for methods for determining one

sided tolerance limits in the presence of batch-to - batch variation .

A modification of a procedure of Lemon ( 1977 ) and Mee and Owen ( 1983 ) has

therefore been adopted for this application by Neal et . al . ( 1987 ) and will be

included in Mil-handbook- 17 ( 1987 ) , a handbook for the use of composites in

aerospace applications . It is hoped that the virtually exact method to be

discussed in Section 6 will eventually supersede the Mee - Owen procedure for

this application .

2. The Mee -Owen Procedure

let n = IJ denote the sample size . The parameters Hooa and o of the

random effects model may be estimated by the pooled mean y , the within batch

mean square MS and a linear combination of MS with the between batch mean

square MSy where :

e

I>

J

{ X.( 2.1 )

M

Xign ,
i= 1 j= 1

( 2.2 )

M
S

MS

b

I

J ( μ

i= 1
22

* . ,

J

£ X.AJ ,

j= 1

( 2.3 ) MS

I J

Σ { ( x

i= l j= 1

=

رد.

ij

An unbiased estimator of the population variance ož is

( 2.4 )
o

= MS .
MSG/ J + ( 1 - 1 / J ) MS

.

For 0 < B < 1 , let Ko be the ß quantile of the standard normal distribu
1 k

tion , i.e

( 2.5 ) -+
212 at .B = 1/2

Se0

A ( B , Y ) lower tolerance limit is a 100 % lower confidence bound on

79



( 2.6 )
H - Xbºx

By analogy with the single sample case ( see , for example , Owen ( 1968 ) ) ,

one seeks an estimator of the form

( 2.7 ) kox

where k is chosen to satisfy

( 2.8 ) P ( μ

kox S H - K8°x ) = v

Since u is distributed normal with mean u and variance

( 2.9 ) 02

( Joz + 2 )/ n

one may rewrite ( 2.8 ) as

( 2.10 ) P ( ( Z + VnK B

VnK_B )/( 0y /ox)

$ VnkB ) * Y

where

( 2.11 )
Z

- lu - wionup

( 2.12 )
B = ( ( JR + 1)/(R + 1)) ,

and

( 2.13 )
R = 0 /0

The random variable qu ’ is approximately distributed as the ratio

of a chi - square to its degrees of freedom , where the degrees of

freedom are given by ( Satterthwaite 1946 ) :

( R + 1)

f =

( 2.14 ) ( R + 1 /J ) + ( 1 - 1/3 )

2

I - 1 n
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If T ( Y , 8 ) denotes the inverse of the noncentral

f

t -distribution with f degrees of freedom and noncentrality parameter 8 ,
then

( 2.15 ) k - T

T; ' ( y , VnBkx ) / ( nB )

Unfortunately , the tolerance limit factor k depends on the nuisance parameter

R. Mee and Owen suggest replacing R with

( 2.16 ) R = ((MS /MS )) F - 1 ) / J

n

n

R

where Fn is the 100 percentile of an F random variable with degrees of

freedom I ( J - 1 ) and I - 1 . is a 100n% upper confidence bound estimate on R

n

( Searle , 1971 , p.414 ) and the confidence coefficient may be determined by

numerical integration so that

( 2.17 ) PCN - k(R )Og SH - KOX) 2 Y

for all I , J and R. These values are reproduced from Mee and Owen ( 1983 ) for

various combinations of B and y in Table 1 .

For the case of B = .90 and y = .95 some of the conservatism inherent in

the above values has been removed by allowing n to vary with I and J. The

result of this numerical work is presented in Table 2 .

3. An Exact Solution for known R

If R is known , the tolerance limit factor k is the appropriate quantile of

the distribution of

Z + 6

( 3.1 ) A =

( CZY, + c2Y, ) ?

where Z has a standard normal distribution ; Y. is distributed as a chi -square

with

ni
degrees of freedom for i=1 , 2 ; and Ci , C2 and ó are constants with Ci

and C positive . Once this distribution has been determined the
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tolerance limit may be obtained exactly .

The density of the linear combination Y = C , Y +C2Y2 is

show in Fleiss ( 1971 ) to be

r ( ( n + n2 ) / 2 )

fy (y )

ran , / 2 ) r ( n2 / 2 )

( 3.3 )

1 n / 2-1 n2 / 2-1

X ( 1 - x )
xã,+ny/(C x + C ) ( 1 - x ) ) )dx

where xf ( • ) is the chi - square density with f degrees of freedom .

By conditioning on the denominator of ( 3.1 ) one sees that

F ( k ) = P ( A Sk )

1

r ( ( n + n2 ) / 2 ) n ; / 2-1 n2 / 2-1

( 1 - x )х

1 ( n2 / 2 ) ( n2 / 2 )

( 3.4 ) 0

Se

( kt 8 )fy ( t ? / (C1x +C2 (1 - x ) ) ) 21 / ( C ) x +C2( 1 - x ) ) + dxdt

I ( ( n + n2 ) / 2 )

r ( n2 / 2 ) ( n2 / 2 )

ni / 2-1

x ( 1 - x )

ng /2-1

T

nitn 2

(* ( ( n ,+ nz ) ( C1x + C2 ( 1 - x ))) ,x ))) , s ) dx

0

where ( • ) is the standard normal distribution and t ( t , o ) denotes the

noncentral t cumulative with f degrees of freedom and noncentrality parameter

8 , i.e.

✓211

( 3.5 ) Te ( t , :)

S

uf - lo ( u ) $ ( tu/Vf -8 ) du

[ ( f/2 ) £ / 2-1 0
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where ( • ) and ( . ) are the standard normal density and cumulative respective

ly .

For the tolerance limit problem , let

( 3.6 )

Ci 1 / ( 1 - 1 ) , C2 = 1 / ( JR + 1 ) ,

8 +

= K (n (R + 1 ) / ( JR + 1 ))

and

( 3.7 ) n . = I - 1 , n2
= I ( J - 1 )

where I , J , K , and R are as in Sections 1 and 2 . The value k ( R ) such that

F ( k ) = y then provides an exact solution to the problem .

Although the above derivation is simple, it is apparently not well known .

A much more complicated representation of the distribution of the random

variable ( 3.1 ) is developed in Ray and Pitman ( 1961 ) .

4. The Effect of Pooling on the Coverage Probability

The tolerance limit procedure discussed in Section 2 is conservative ( i.e.

provides a coverage probability greater then the nominal value ) when the

population variance ratio , R , is small. Mee and Owen therefor suggest that

data be pooled and a single sample method be applied when the mean square

ratio is less than 1 . They then proceed to investigate the conditional

behavior of their proposed estimator .

Using the distribution developed in Section 3 , one may determine the

coverage probability for a single sample procedure applied to pooled data as a

function of the variance ratio . This result will be used to determine the

unconditional coverage probability of the Mee - Owen method in Section 7 .

Let Y , and Y , be as in ( 3.2 ) and let ni and nz denote the between and

within batch degrees of freedom respectively ( see 3.7 ) . The pooled variance

estimate is

( 4.1 ) s2

I J

1 / (n - 1 ) E
( x

i= 1 j= 1

) 2

'ij



where n denotes the pooled sample size , I the number of batches , J the batch

size and u the grand mean . Partitioning the total mean square and substitut

ing ( 2.9 ) for the variance of u one obtains

( 4.2 ) n

(s 10.) ?

02 Y2 + ( Jo} + 02 )Y ,

of + one

n - 1

where R is the variance ration ( 2.13 ) .

If ko denotes the single sample tolerance limit factor ( e.g. Owen , 1968 ,

pp . 446-448 ) , then the coverage probability as a function of R is

( 4.3 ) Y ( R ) = P( μPrů - koss V - K

Kfºx )

KpOx/ N) 7 (510) 5 ko )

= P ( ( Z + KO

with notation as in Section 2 . Substituting ( 4.2 ) into ( 4.3 ) and employing

the distribution ( 3.4 ) , one may readily examine v (R ) numerically . From the

typical plot in Figure 1 it is apparent that the coverage probability obtained

may be substantially less than the nominal value even for small values of R.

Clearly , criteria which result in the decision to pool must be considered

carefully if one is to be assured of a reasonable tolerance limit estimate in

the presence of batch- to -batch variation . Alternatively , one might seek an

estimator which performs well for all R , eliminating the need to pool alto

gether . This approach will be taken in Section 6 .

5. The Solution for Unknown R : Welch -Aspin series

For unknown variance ratio , the tolerance limit problem is very closely

related to the Behrens-Fisher problem . Following the work of Welch ( 1947 ) and

Trickett and Welch ( 1954 ) , two forms for a solution are obtained .

A series solution is developed first . While computationally simple , the

first order approximation presented here is anticonservative and may only be

suitable for many batches.

Alternatively , the tolerance limit factor as a function of the mean square

ratio may be obtained approximately as the solution to an integral equation .

Although this requires the use of a computer , the method which results appears

to give the desired coverage probability - even for small sample sizes .
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To simplify the notation in what follows , let s?

be the mean squares and o ; their expected values for i= 1 , 2 , i.e. :

si
= MS

MSь
o ]

Još + 03열

( 5.1 )

s2

N
N

= MS
ož

N
N

Given the two mean squares , the tolerance limit factor may be expressed in

terms of the standard normal distribution :

y = P ( u
H - K8°x )?

( 5.2 ) E

- kok
oys

s } , sz(0 (koy/ lo.lvn ) - 0 ) )

sį , sz ( o( h ( s } , sz) / ( 02 // n ) - 6 ) ) .
: E

The problem is to determine a function h( sí , sz ) = ko
kox so that ( 5.2 ) is

approximately satisfied for all oị and oz . If tolerance limits on the median

are desired , then 8 = 0 and the results of Welch ( 1947 ) and Aspin ( 1948 ) may

be used directly . If 8 is not zero , the idea behind the Welch -Aspin deriva

tion may still be applied , though the algebra is considerably messier .

Following Welch ( 1947 ) , one begins by expanding the normal cumulative

about ( oi , oz ) and recognizing that the expectation is the moment generating

function of the product of two independent chi- squares with differential

operators as the independent variables in the generating functions . If one

defines

a

( 5.3 ) a

i as ?

i 0;

S ? =

i i

then

( 5.4 ) O ( h ( s } , sz ) /(0./vn ) - 8 )

2

( s } - 07) 4h ( s }, sz ) lo /vn ) - 0 ) .пе

i= 1

Substituting ( 5.4 ) into ( 5.2 ) gives
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2

пе

i= 1
00

1/2 (14/0,1":/2-1 -- (207

( 5.5 ) y = ] )

? ??

$ ( h ( Sž , sz ) Iloiln ) 8 ) ds ; ds

( 5.6 )

** ( s ) ds

,s / ( )

dan , s /01)

-

where

1

r( n , / 2 )2

are the densities of the mean squares S and the ni are their respective

degrees of freedom .

In terms of the operator

2

( 5.7 )

-

I, ( 1 - 2010 ; /ng ) ^ ; / 2 eCodi

i = 1

2

1 + E 021 Ini

i= 1

the tolerance limit problem can be stated as

( 5.8 ) 90 ( h ( s } , sz ) / (oil/ n ) - 8 ) = y

( see ( 2.5 ) ) in
The next step is to expand the normal cumulative about K

Y

a second Taylor series , giving

( 5.9 ) $ ( h ( si , s ) Iloilyn ) -8 )

= e
( h (s } , sį) / ( 0 n )sz ) / ( OilVn ) - 8 - K ) D

KX )D (v )

where

86



d?

( 5.10 ) D**(v ) =
ocw) I

voxydur

Express h ( s } , sz ) as a series in increasing inverse powers of the degrees

of freedom

( 5.11 )
h ( s } , sz ) = ho ( sí , sz ) + hi (sí , sz ) +

One can
where h; ( s } , sz ) consists of terms of order j in 1 /n, for i= 1 , 2 .

j

now , in principle , solve successively for the hi's . If terms of order greater

than zero are considered negligible , then

( 5.12 ) h. ( sí , sz ) loilVn ) - 8 = K.

Y

which leads to a zeroth order approximation to k :

( 5.13 )
ko = ho ( sí , s })/ ox

: K

- Kg K J+ _ / ( I ( 1 + ( J - 1 )s { /s } 14.

The next term , hi ( s } , s } ) , can be shown to be the solution to

Y

( 5.14 )

K (S1/01 - 1 )D

Y = ( 1 + 0791/n ) e

Koloya Oy) /(01 // n))D

• е

hi ( sí , sz ) / (oln ) D

( v ) .

After some algebra , the first correction to ko is seen to be

!

( 5.15 )
k , = 4VI ;

0 / (471) ( K ( K ? + 1 ) Ini

+ 2K,K? VI /n 0 + K ? K I /n202 + KVI /n , 03
+ , n

n os

+ Kx K, I ( J - 1 ) 2 / (n2MSR ? ) + Kg ( J - 1 ) 2/1 / ( n MSR ? ) 8 ' )
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where

( 5.16 ) 0 = ( 1 / ( 1 + ( J - 1 )/MSR) )

and

( 5.17 ) MSR = Sĩ / s2 .

The coverage probability for the above approximation as a function of the

population variance ratio is plotted in Figure 2 for a ( .90 , .95 ) tolerance

limit and J = 5 . Note that for many batches the series solution performs

well , though for few batches it is anticonservative .

6. An Alternative Solution for Unknown R

For small samples , the first order approximation developed above may not

be adequate . An alternative approach is to view the problem as an integral

equation , following Trickett and Welch ( 1954 ) . If one defines

( 6.1 ) τ = 1 / ( JR + 1 )

then ( 3.4 ) may be written as

el

r ( ( n + n2 ) / 2 ) n ; / 2-1 n2 / 2-1

( 1 - x )( 6.2 ) Y =
х

r ( nı / 2 ) / ( n2 / 2 )

0

Ing +f *(7) ((n2+ nx ) ( 1 / ( 1 - 1 ) x +1 ( 1 - x ) ) ) } , 8 ) dx

where

( 6.3 ) S = VnK B = K.
Vnk B = kg( ( I + ( J

1 )) ,

and B is as defined in ( 2.12 ) . The parameter t may be estimated by the

reciprocal of the mean square ratio ( 4.17 ) :

( 6.4 ) u 1 /MSR = IF

nz , ni
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where Fną , ni denotes a random variable with an F distribution with n2 and ni

degrees of freedom . The tolerance limit problem reduces to determining a

function k ( u ) such that

( 6.5 ) y = P ( ( 2 + 8 ( 1 ) ) / ( 1 / ( I 1 )Y , + qY ) sk(u) )

P ( Z < k ( ( n /n2) (Y2/ Y , )) ( 1 / ( I 1 )Y , + 19 , ) 4- 8 ( 0 ) )

where Z , Y. and Y2 are as in Section 3. This is equivalent to the integral

equation

r ( ( n + n2 ) / 2 ) n ; / 2-1 n2 / 2-1

( 1 - x )=;/2( 6.6 ) Y = X

r ( n ; / 2 ) (n2 / 2 )

0

To , tn,(k(c)((n + n2 ) ( 1 / ( 1 - 1 ) x + 2 ( 1 - x ) } } } ,
) 6 ( 1) )dx

where

( 6.7 ) c = n1 ( 1 - x ) / ( n2x ) t .

Using the results of Section 5 , one may define

( 6.8 ) kle ) = ko ( c ) + Eka ( c )

where ko ( c ) is the first order approximation from the Welch - Aspin procedure

and ki ( c ) is an unknown function . If an approximation to kı ( c ) can be ob

tained this approximation may lead to an improved ko ( c ) .

Letting v ( . ) represent the functional ( 6.6 ) , if one expands V( • ) in a

Taylor series about E = 0 one obtains the first order approximation

( 6.9 ) y = V ( ko ( c ) ) + ekz ( c ) ) • v ( ko ( c ) ) + €

dV

de -1 E=0

Since e is arbitrary , it may be taken to equal one . The approximation may

then be written as
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r ( (n + n2 ) / 2 )

( 6.10 )
yovka) +

r ( n , / 2 ) / ( n2 / 2 )

In , /2-1 n2/ 2-1

( 1 - x )х
ky(c)(( na + nx ) ( 1/ ( 1 - 1 )x + ( 1 - x)))*.

0

tn ,n, k (c)(( n + n ) ( I / ( I
1 ) x + 1 (1 - x )) ) , o )dx

where tfl . , ) denotes the noncentral t density . The noncentral t density

with f degrees of freedom and noncentrality parameter 8 may be calculated by

means of the following formula ( Odeh and Owen , 1980 , p . 272 ) :

tf (x , 0 )

( 6.11 )

= ( f/ x ) ( Tf + ( (f + 2 ) / f ) *x , o )

- Tf( x, 6 ) ) .

The first term on the right hand side of ( 6.10 ) , viko ) , may be evaluated

numerically for givent since ko ( c ) is a known function . The second integral

is concentrated about nil ( n + n2 ) . If kı ( c ) is evaluated at this value , the

remainder of this integral may also be evaluated numerically .
Note that

( 6.12 ) Ki ( o ) [ x - ny/(m tha) - (1)

so that , with obvious notation for the two integrals to be evaluated numeri

cally ,

( 6.13 ) Y - V. + $ 7 ( ) va

i.e. ,

(6.14 ) ke ( o ) ( y - V. ) /v2 .

Since k( c ) is the same function of c that k( 1 ) is of i one may use a first

approximation ko ( c ) to get a new approximation kı ( c ) by evaluating (6.11 ) for
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a mesh oft values . This k becomes the k , for the next iteration . Al

though it is certainly not obvious that such a procedure will converge , or

even that a solution exists , it will be shown below that this algorithm

appears to provide a solution to the tolerance limit problem that is ( for

practical purposes ) exact .

7. Discussion

The situation of primary interest to the aircraft industry , ( .90 , .95 )

lower tolerance limits , is the only case yet examined in detail . Four methods

have been presented in this paper : the Mee - Owen method (Section 2 ) , a modified

Mee -Owen method ( Section 2 ) , a method based on the Welch-Aspin series ( Section

5 ) and a method based on the solution of an integral equation ( Section 6 ) .

The coverage probability functions corresponding to these methods are numbered

1-4 in Figure 3 for five batches each of size five .

The integral equation solution is for most practical purposes an exact

solution to the problem . The Mee - Owen method has the disadvantage of being

substantially conservative when the variance ratio is small .

Only a modest reduction in this conservative has resulted from the modifi

cation of the confidence level of the variance ratio estimate ( Section 2 ,

Table 2 ) .

The Welch-Aspin series solution is clearly not suitable for as few as five

batches , as discussed in Section 5 . However , it is easy to compute and

provides an adequate starting function for the iterative solution of the

integral equation ( 6.11 ) .

From the rescaled plot of the coverage probability function for the

integral equation solution ( Figure 4 ) it can be seen that for R > 1 the actual

coverage probability differs from .95 by no more than .00005 . This small

difference can be attributed to roundoff error . For R < 1. however , the

difference in the actual and nominal coverage probability indicates that the

convergence is not uniform . The convergence of the successive approximations

to the tolerance limit factor needs to be more thoroughly examined , though the

practical gain from such an investigation may be slight .

8. Example

The data in Table 3 are a pseudo -random sample of 25 from a normal distri

bution with mean 50 and standard deviation 10 . These data have been arbitrar
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ily grouped into five batches of five . By fitting a one-way random effects

model to these data one obtains ( 2.1 - 2.4 ) :

u = 48.30

( 8.1 ) MS, = 89.88

bMS ܘܽܨ

144.9

MS = 158.6 .

A ( .90 , .95 ) lower tolerance limit is of the form

( 8.2 )
T = Kox ."

For the method of Mee and Owen ( 1983 ) K = 1.90 . If the Mee - Owen method is

modified as suggested in in Section 2 , then Konly decreases to 1.89 . The

series solution of Section 5 gives K = 1.78 and the integral equation of

Section 6 results in K = 1.83 . The tolerance limit estimates are , respective

ly , 25.42 , 25.54 , 26.82 and 26.29 . These values may be compared with the

tolerance limit estimate for the pooled data , which is 26.00 .

9. Conclusion

One - sided tolerance limits for random effects models is a topic of consid

erable importance in engineering statistics . The purpose of this paper has

been to consider this tolerance limit problem from the point of view of the

Welch-Aspin interpretation of the Behrens -Fisher problem . This approach leads

to what will very likely prove to be a solution which , for the purposes of

applied statistics , is exact . Some numerical work remains to be done , leading

to the preparation of tables to be presented in a subsequent publication .
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Table 1

n Values for (B , Y ) Tolerance

Limits (Mee and Owen , 1983 , p . 90 )

Y

.90 .95 .99

.90 .78 .85 .94

B.95 .79 .86 .95

.99 .81 .875 .96
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Table 2

n Values for ( .90 , .95) Tolerance

Limits for the Mee -Owen Method .

ROWS : Mumber of batches

COLUMNS : Batch size

3
4 5 6

7

8 9

10

.693

4

5

6

7.

8

9

10

.63

.75

.80

.82

.82

.82

.82

.82

.73

.78 .80

.82.83

.83 .83

.83

.83 .83

.83 .83

.83 .83

.75

.81

.83

.84

.84

.76

.82

.83

.84

.84

.84

.84

.84

.77

.82

.84

.84

.84

.84

.78

.83

.84

.84

.84

.84

.84

.84

.79

.83

.84

.84

.84

.84

.84

.84

.83.

.84

.84 .84

.84.83
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Table 3

Example Data

Batch

31 ע
ח

59.45

40.70

24.67

30.60

52.51

38.46

43.24

66.82

51.95

38.50

30.58

29.15

46.29

63.85

51.71

55.65

50.68

67.62

42.02

41.09

60.41

64.45

36.57

59.76

40.84
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THE DISTRIBUTION OF THE NUMBER OF EMPTY

CELLS IN A GENERALIZED RANDOM ALLOCATION SCHEME

Bernard Harris ( 1)

Morris Marden ( 2 )

C.J. Park ( 3 )

ABSTRACT

n balls are randomly distributed in N cells , so that no cell may contain

more than one ball . This process is repeated m times . In addition , balls

may disappear ; such disappearances are independent and identically

Bernoulli distributed . Conditions are given under which the number of

empty cells has an asymptotically (N700) standard normal distribution .

(1) University of Wisconsin , Madison

(2) University of Wisconsin , Milwaukee

( 3)San Diego State University
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1. INTRODUCTION

The distribution of the number of empty cells in the following

random allocation process is considered . Let n , i be positive inte

gers with n sN ,ns N. Assume that
balls are randomly distributed into

Ncells , so that no cell may contain more than one ball . Then , the

probability that each of
n specified cells will be occupied is M -Y.

( ^ ," random

This process is repeated m times , so that there are

allocations of nm balls among the Ncells . In addition , for each

ball , let P , Ososi , be the probability that the ball will not

" disappear " from the cell . The " disappearances " are assumed to be

stochastically independent for each ball ; thus the disappearances con

stitute a sequence of nm Bernoulli trials .

Several special cases of this problem have previously been con

sidered . In particular , p = 1 , n = 1
is the classical occupancy

problem , see [2 ] , [ 3] , [10] . The case p : 1 , n arbitrary has been

discussed in [4] and [ 7] . The case
0 < p < 1 , n = 1

is treated in .

C. J. Park [ 5 ] .

In this paper , we obtain the probability distribution and moments

of the number of empty cells . In section 3 , we show that the number of

empty cells may be represented as a
sum of independent Bernoulli ran

dom variables . This representation permits us to determine conditions

on m , n , p , N such that the number of empty cells is a symptotically

normally distributed .

This random allocation process may be viewed as a filing or

storage process . Objects are randomly assigned to files or storage bins .

From time to time , objects may be missing or have disappeared .
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2 . THE PROBABILITY DISTRIBUTION AND THE MOMENTS OF THE NUMBER

OF EMPTY CELLS

Let min ,N
be positive integers with ns N. m sets , each con

sisting of balls , are distributed into N cells at random so that

no cell can contain more than one ball from the same set . As each set

is distributed , the balls that have been placed during the preceding

distributions are left in the cells . Thus , at the end of the process ,

cells may contain as many as balls . In addition , each ball may

" disappear " with common probability 1 - P , Ospsl . These disappear

ances are stochastically independent and thus constitute a sequence of

mn Bernoulli trials .

Let Pm , non , p ( j ) be the probability that exactly j of the
N

cells are empty .

We now establish the following theorem .

Theorem 1 .

Pn.n.mop( )= (̂ 3* CAS Y C-1) Masse

II ( 1 -P ) (Nord ,cute , j" ,

jte

1 =0

OsjSN . ( 1 )

Proof. Let A be the event that thebe the event that the vth cell is empty ,

v = 1,2 , ... , N . Then ,
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P(A,)= f(" " >(1-2)* ".

( 2 )

For 11 svi < V2 s N ,

PIA , 14,) = ( ) MICE $)(1-0) " " .
. *

(3 )

Thus , for I sve < V2 < ...
k났
SN ,

PIA, MA, nonA )- Cancun (**» (1-P)"y".

(4)

Thus , using the inclusion-exclusion method , the probability that exactly

j cells are empty is

-M N

Pmonon , p/ 3 ) = ( ) (-1)7-4331,{ $ 734 (1-P)" ".(5)

We can write ( 5 ) in the form ( 1 ) by letting r = j + l .

We now detemine the factorial moments of S , the number of

empty cells .

Theorem 2 . The wth factorial moment of S ,

Ecs (u , (̂ *" (v) [ ] (1-7

(1-2)*(majagot".

( 6 )
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Proof .
From J. Riordan ( 9 ) , p . 53 , from ( 4 ) , it follows immediately

that

Erslu ) , = ( Nov ! (ME. CM YO )(1-P)*}" . ( 7 )

j = 0

We thus obtain the following.

Corollary .

E ( S ) = N(1 - Porn ( 8 )

oś = N (N- 1 ) [(N=n)(N=n-1)

N ( N - 1 )
201 P) (N=1} + ( 1 - P ) *m(n=172

+ N ( 1 - P 3 (1- N(1- pen) .

(9)

Proof . From ( 7 )

E (S ) = N(X)*"(My!)+ (*-})(1-P)" - N(1- 0)" .

Since

oś = E( (z)) + E(S) - ( E ( s ) ) ,

the conclusion follows readily from ( 6 ), after some elementary calcula

tions .
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For some purposes , the following equivalent forms of ( 9 ) will

prove useful .

og - N ( N- 1 ) [ 1 - np(2(N=1_,;p(n-1)," + N61 - PR,3"(1-N(1-3") ( 10 )

and

2m

o š = N2 ( 1 - pohy { [1 - (n=7)(N-pnſ?

npº(Nân)

2 ] -1 }

+ N ( 1 - po y se (1- 0)" 1

ng?(0-0).

( N- 1 ) ( N- pn ) ?
z ]")

. ( 11 )

From Theorem 2 , we readily obtain the following .

Theorem 3 .
The factorial moment generating function of S is given by

a(t)= E ( 1 +z28 . sering mm. (1-2)* $ 33)".

( 12 )

Note that 0. ( t ) is a polynomial in t of degree N. This fact is
m )

exploited in the next section , where the asymptotic distribution of

S is obtained . In particular ,

Polt ) = ( 1 + t ) N ( 13 )

and
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Ø , ( t ) = (1+t)N-N (1 + ( 1 - p ) t ) ” . ( 14 )

We now investigate the asymptotic distribution properties of the

number of empty cells .
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3 . THE ASYMPTOTIC DISTRIBUTION OF THE NUMBER OF EMPTY CELLS

In this section , we determine conditions under which the nur :ber of

empty cells (when suitably normalized) has an asymptotically normal distri

bution .
In order to establish this , a number of preliminary results are

required .

Lerma 1 . Let Noner

be non- negative integers , rsnsN. Then

{ BOND) = )(NG) .
( 15 )

VEO

Proof.
Since 1 ) = 0 whenever v < a , we can write

{ B ( NED ) - { BORD

vsa v = 0

To obtain the conclusion , note that

Ŝ

n-X

- Erxla ) ; /a !,

x =0

where X has the hypergeometric distribution . From B. Harris [1 ] ,

p . 105 ,

) N-
p (a),(a )

х n- X

(&)q1x=0 a !
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The conclusion follows immediately .

Lemma 2 .

n

F (1-P)UM=DEO

{

j =0

(-1)0(4) )por

CM

( 16 )

2
v=0

2

Proof . The right- hand side of ( 16 ) may be written

{ (-1)dpj,į (NEDCO

Š ( )C-130per

( j=0

v=0 = j = 0

Z
a

Thus , the coefficient of put is

(-1 )3 {, m400/ ^).
v=j

From Lemma 1 ,

(-1) { :00)6 ")= (-1)* 3* 31- CM ).

from which the conclusion follows immediately . Employing the above

1 emmas , we can now establish the following theorem .
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Theorem 3 . The factorial moment generating function of the number

of empty cells ( t) ( 12 ) satisfies the following differential

difference equation ,

Po ( t ) , m = 0,1 , ... , ( 17 )

( 0 )

di

where DuᎠ .
dtj

Proof . For m = 0 ,m = 0 , n (t ) = ( 1 +t ) " ; hence

( 26-10 } pt)* Du ) ( 14 )" - E -vec !(pt)"269 )

of]

[ 1+t)"-" (1+t)"-

N

T

)

(1+t)N-n (-10%(%)(pt)*(1+t)n-
j = 0

. (1+ t)N-N (1 +t-pt)" .

in agreement with ( 14 ) .

Assume that ( 17 ) holds for m = 1,2 , ... , k . Then , from ( 12 ) ,
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1.2 crpin: 1 ) ( *35)

sur(3) nilaiphoto

{

(-1)0(%)(pt) Cup(3)

N ( j )

rao

j = 0

N

[

( -1)017)(5)
į (1-2)̂ (N=r=0

j = 0
a = 0

The conclusion now follows from Lemma 2 ,

Let

11ece) -(53.c-vecpipes ou)oct), osper.

( 18 )

N (D )

Then , from Theorem 3 , we have that .

@ m + 1 (t) - 110( t ) ) , ( t) = ( 1+ t )" .
( 19 )

Lemma 3 . Extend the domain of T to the complex plane , letting

z = x + 1y3x , y real . Let

W ( z ) =
1 )

( 2-2 )qal
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and

47 ( z ) = T ( 4 ( z ) ) = C ,) ( 2-z " ) .

N

a= 1

( 20 )

If the zeros of ( z ) are real and satisfy

-b s x S - a ,
sxa

a , b 20 ,

then the zeros of
47 ( z ) are real and satisfy

11. DJ sx ) s -a .
( 21 )

Proof . Let

Cy * {z:/z+(6-18)| 5 [[c-a)2+ y2y!/?,cz(a+b)).

( 22 )

Clearly -a and -b are on the boundary of the circular region Cy •

Consequently all zeros of ( z ) are in Gr . Let z* be a zero of

( z ) . Let

wicz ?"),2 ...... ) -C , ( z* -z { " ) ) (z-z! " , ... (z*-2 ')).
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That is , wi(z?"),2 ....,2,1)) = f ( u6z" ) ) is a linear symmetric

z .... z )). Thus , the conditions of Walsh's
functi

on
of 2 "),21)

theorem ( M. Marden ( 5 ) , p . 62 ) are satisfied . Thus , if

( 0 )

ZN are points in Gy , then there is at least one

point 5 in G such that

270),2 0),

T[(z* - 5 ) N ] = 0 ,

that is , one can set

2{ " ) . t . 2

( 1 )

5 ...... , ZN

= 5 and preserve the

value 0 . From ( 18 ) ,

T[lz* - 5 ) N ) = (z* - 5)N-n (z* - 5 - p2* ) " = 0 .

Thus either z* = 5 and therefore
Z

is in Gç oror z* = 5(1-0)

and 2* is in

Bpor . (z:/z+(c+Y)(1-p)" s [(c-a)? + Y?} /2/1-p)-?
( 23 )

However , Y is real and arbitrary . Hence it is clear that

C :

n

Gay
= { 2 : 2 real , -b sxs-a ) ( 24 )

- Cox y < co

and
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n

B

рB

B

-Oxy < co

py

{z:z real, -6 (1-p ) ' sx s - a ( 1-1 ) - ' ) . ( 25 )

(21) , proving

Consequently , CUBp is contained in the interval

the lemma .

We now establish the following theorem .

Theorem 4 .
Let

Sale) To move 3* {(1-2)*( 33)".

be .the zeros ( not necessarily distinct ) ofLet t{m ) , t,<m)

( t). Then
(m )
t

j

j = 1,2 , ... , N are all real and

- ( 1 - p ) " sty's -1 ,
j = 1,2 , ... , N ;m = 0,1 ,....

Proof . From ( 19 ) ,

Ⓡm+7 ( t ) = 110m ( t ) ) , m = 0,1 , ... ,

and from ( 13 ) ,

s (t) = ( 1 +t ) " .
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t
r
o The zeros

of

t ") , ... , Non

( 0 )

The zeros of Holt ) are tfo ) = t40 )

1 ) ( 1 )

4 , ( t ) are
.1 :

-1 / ( 1-0 ) , ... ,

1. / 1 v-1 / 11 - p ) . Now apply Lemma 3 with w ( z ) = ¢ , ( z ) obtaining

a : 1 , b = ( 1-0 ) " . Then , the zeros of oz ( t ) are real and satisfy

.1 , tij- n+1

- ( 1-2 )- ? s tf ? ) s -1 ,

j : 1,2 , ... , N .

It then follows readily by induction that the zeros of Of ( t ) are

real and satisfy

-(1-p) * s teft)s
sol , j = 1,2 , ... , N , k = 2,3 , ....

For has aTheorem 5 . Isns N , Opsl, m 21 , S

representation as the sum of N mutually independent Bernoulli random

variables . That is , there exist mutually independent Bernoulli random

variables , Y ; = Y ; ( Nom , pon ) , j = 1,2 , ... , N , such that

N

S : Į Y

ļ, lj

( 26 )

i = 1

and

PIY; - 1 ) = Y; -1.PIY ; = 0 ) .

( 27 )
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Proof .
Let y be a Bernoulli random variable with P { Y

P { Y = 1 ) = T.

Then the factorial moment generating function of Y is

Ey ? ( 1 +t ) " } = ( 1 +7t ) .

If

N

W = { Yj

i = 1

with

where Y7oY2 .... YN are mutually independent Bernoulli random variables

PIY

1 }

Tj !

then the factorial moment generating function of

W is

N

E ( t ) = {(1+0)"} .

N

JI

j=1 ' j

Ey , { ( 1 +t ) '; }

8

1. (1+tyt),

( 28 )

j = 1

where Os

Osijsl , j = 1,2 , ... , N . From Theorem 4 , the factorial

moment generating fraction of Smay be written

N

Pom (t) = ( 1-P )" m п

j = 1

m = 0,1 , ... , ( 29 )

where are real and - ( 1- p ) - sttmss - l , j = 1,2 , ... , N .

Since every polynomial of degree N with real roots has a unique

to

representation of the form
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f ( x )
c ( x- x7 ) ( x-x2 ) ... ( x-Xgde X s XZ S ...

SAN '

-(tm);

: 0

the representation follows by setting tj

and noting

that E ( 0 ) 0 (0 ) - 1 .

Let K

ke
= k In ,N ,m , p ) be the cumulants of S and let k [v]

be the factorial cumulants of S. That is ,

Pm

10g Sy(t) • [ cujeľu! .

Then

lQ

11

{, Bj,2" [j ]'

l 22 ,

j = 1

where
Bjel

are the Stirling numbers of the second kind .

Then , as N +0 ,

V = ( s - E (S)) /ºs

is asymptotically distributed by the standard normal distribution

(mean 0 , variance unity ) , whenever

Kedve !2.0,

l > 2 .
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From ( 29 ) ,

1080 (t) = m log(1-p)+ L 109 ( e-efm - 1090140)

N

Σ Σ

j =1 k =1

( Tit ) k

( -13k .

k

Thus ,

2
7

=

N

(-1

i =1

and

Ikruglov!st, KY S NOV .

Then

e

1 E, Bj,e kugl sce

N , ( 30 )
&

j = 1

since the
Bjel

do not depend on Non ,m , or p .

lle now establish the following theorem .
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Theor em 6 . V = ( S-E (S ) )/05 has an asymptotically standard normal

distribution as N + , whenever any of the following conditions are

satisfied .

mnp

1. mon - 0 , D + p** 1 and
→

8

N273

2. min - 0 , ( 1 - P ) +0 so that for some c > 0 ,

( 1 - P ) - compp, +olimp, , OxPx1, and

mnp

w(
11-360+ 17)

3 .
map +0 , ( 1 - P ) - compp,0 + 01(mmp, ) 1 , and

mnp

N576

4 . map - r > 0 ;

5 .

mnp

N

→

8 and
3mpn . 10g N +

8
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Proof . From ( 11 ) , we can write , for a +0 ,

ка
Ne-a) (1- e « . ape" ) + O (npa ) + ( p ? a ? )

where
mnp

a

m
m
p

.

Then , as a +0 ,

kę = N(1-a+a?/2)(a - ap + a ? p ) + 0(Nex")+0(mna ) .

Then , if p + p * # 1 ,

к2
= Nal1 - p ) + O ( Na ? )

.

and

3/2

2

N

whenever
mnp

,273

Similarly , if ( 1 - P ) - comp + cramp) , Ocpcl , C > 0 ,
= .,° º),

then

K2 = Nall - p ) + o ( Na ( 1 - 0 ))
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and

K3/ 2

2.

N 뽑

mnp

whenever

o+T3)
N

The conclusion is obvious whenever

mnp

+ r > 0 .

N 0 .

If a + oo as N + , then

K2
- Ne-a + O ( Ne- 20 ,

and

K3/2

2

N

whenever
3a - log N + -“.
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APPLICATION OF EXPERIMENTAL DESIGN TO THE EVALUATION OF EXPERT OPINION

Franklin E. Womack and Carl B. Bates

US Army Concepts Analysis Agency

Bethesda , Maryland 20814-2797

ABSTRACT . Expert opinior: can be a valuable source of information to

tap in the building of a systems model . At the US Army Concepts Analysis

Agency (CAA ), the computer model FORCEM ( Force Evaluation Model ) is used to

evaluate the theater - level combat system .
FORCEM is built and maintained

by a group of CAA analysts . The command and control part of FORCEM is a

logical surrogate for the field comiander at various levels of combat

( i.e. , theater , army , corps , or division ) . A simulated war is conducted by

exercising FORCEM . The command and control part of FORCEM is allowed to

perceive information about the state of the war through a perception data

base . Using the information from the data base , it applies decision rules

for the further conduct of the war .
In order to validate these decision

rules and make enhancements to the present model , 81 students at the Army

War College , Carlisle , Pennsylvania , participated in an information

gathering experiment . Several decisions from the command and control part

of FORCEM were presented to these experts in the form of a structured

experimental design . Information from the perception data base served as

factors for the experimental design , and responses were solicited from

these experts . This paper discusses the experimental design employed and

the statistical analysis performed .

Comments by panelists Drs . Kaye Basford and W. T. Federer are at the

end of this artical .
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1 . INTRODUCTION . The US Army Concepts Analysis Agency developed the

Force Evaluation Model ( FORCEM ) during the period 1982-1985 . FORCEM is a

fully automated computer simulation of a conventional theater campaign

treating combat , combat support , and combat service support in a theater of

operations . The model is used in studies of the capabilities of current

combat forces ; requirements for support forces ; and requirements for

personnel , supplies , and major items of equipment .

FORCEM is a time-sequenced model ; each cycle represents 12 hours of

simulated time .
At the beginning of each cycle , intelligence and

communications determine a set of perceived data for each headquarters

unit . Based on these data , command and control ( C2 ) decisions are made .

Then the activities of the cycle are represented : combat movement and

combat service support .

Command and control representation depends on a perception data base

and decision algorithms . The decision algorithms are built into the model

and involve a set of input threshold parameters . This paper addresses a

study of the C2 decision algorithms .

2 . PROBLEM DESCRIPTION . The purpose of the study was to verify or

enhance the c2 decision algorithms of FORCEM . The decision algorithms

considered are identified in Table 1 .
Each decision algorithm was examined

and the factors within the algorithm were identified . Naturally , some

factors are contained in more than one algorithm . The 12 unique factors

involved in the 8 decision algorithms are listed in Table 2 .
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Table 1. FORCEM Decisions Considered

Number Decision

1
Assignment of New Corps

2 Assignment of New Division

3 Assignment of New Field Artillery Battalion

4
Designation of Posture of Online Corps

5
Specification of Priority to Corps for CAS

6 Specification of Priority to Corps for CSS

7
Specification of Priority to Division for CAS

8
Specification of Priority to Division for CSS

Table 2. Decision Factors

Symbol
Factor

A Has Reserve Corps

B
Corps Engagement Status

С Corps Force Ratio

D
Location of Objective of Corps/Posture of Corps

E
Echelon to which Corps Assigned/Has Reserve Corps

F Echelon to which Corps Assigned

G
Ratio of Corps Artillery Battalions to Divisions

H Location of Objective of Corps

I Posture of Parent Army

J
Division Equipment Status

к Division Force Ratio

L Echelon to Which Division Assigned
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The levels of each of the factors are given in Table 3 . Factor Dis

actually a combination of two factors ( Objective Location and Posture ) ;

however , all factor- level combinations of the two factors did not exist .

Only the six combinations shown in Table 4 existed .

Table 3 . Levels of Decision Factors

Level

Factor

1 2 3 4

5

6

А No res Has res

B No res
Engaged

C 1 : 3 1 : 1 3 : 1

D Rear/

Withdr

Reached/

Delay

Reached/

Defend

Fwd/

Delay

Fwd/

Defend

Fwd/

Attack

E Reserv Onln/Yes On In /No

F Reserv Online

G 1.00 0.25

H Rear Reached Forward

I Delay Defend Attack

J No Yes

K 1 : 3 1 : 1 3 : 1

L First Second Third
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Table 4 . Possible Location/Posture Combinations

Posture

Objective

location Withdraw Delay
Defend Attack

Rear
1

Reached 2 3

Forward 4 5 6

All the factors within each experiment were completely crossed within

all other factors of the experiment . Consequently , all designs were

factorial designs . The factors and the number of cells are shown in Table

5 .
The sizes of the experiments range from 12 to 108 cells .

Table 5. The Eight Experiments

Decision

number

Number of

levels

Number of

cellsFactors

1 AxBxCxD 2x2x3x6 72

2 BxCxDxE 2x3x6x3 108

3 BxDxFxG 2x6x2x2 48

4 CxHxI 3x3x3 27

5 BxCxF 2x3x2 12

6 BxCxF 2x3x2 12

7 JxKxL 2x3x3 18

8 JxKxL 2x3x3 18
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For each experiment , a questionnaire was developed that described the

scenarios defined by the factor- level combinations ( cells ) . Subjects

(military officers ) were asked to assign a criticality index (from 0 to

100 ) except for decision number 4 . For decision 4 , subject's response was

one of the four postures--Withdraw , Delay , Defend , or Attack .

3 . TEST METHOD .
The approach was to use students at the US Army War

College as subjects , use computerized questionnaires for each of the eight

decisions , and collect data from the Army " experts" concerning the

criticality of each of the scenarios of each of the eight decisions .

To test the feasibility of the planned approach , a pilot test was

conducted inhouse . Decision number 1 , which involves factors A , B , C , and

D , was selected for the pilot test . Nine senior officers of the US Army

Concepts Analysis Agency were selected as subjects . In the pilot test ,

only the high and low levels ( 1 : 3 and 3 : 1 ) were used for factor C ( corps

force ratio ) . Five to ten practice questions ( Figure 1 ) were given before

the 48 questions of the 2x2x2x6 design were given to allow for any learning

effect . To assess the subject effect , Subjects ( S ) were treated as a

random factor ( factors A , B , C , and D were fixed ) . Five of the cells were

replicated to provide an estimate of within error variance .
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YOU WILL BE ASKED TO RESPOND BY ENTERING A NUMBER BETWEEN O and 100

based on the following scale of how critical

you think it is for the newly arrived CORPS

to be assigned to reserve status behind the

ONLINE CORPS . After entering a number hit ' XMIT ' .

0 20 40 60 80 100

NOT

CRITICAL

SLIGHTLY

CRITICAL

MODERATELY

CRITICAL

VERY

CRITICAL

EXTREMELY

CRITICAL

PLEASE HIT ' XMIT ' NOW TO PROCEED

PAUSE 00000

WARMUP NUMBER # 1

1 . There is currently at least one CORPS assigned in reserve behind the

ONLINE CORPS .

2 . The ONLINE CORPS is currently engaged .

3 .
The location of the parent Army's Objective Phase Line is now located

at the present position of the ONLINE CORPS ' current forward phase line .

4 . Assuming all divisions currently assigned to the ONLINE CORPS are in

place , the current posture of the ONLINE CORPS is defend .

5. Assuming all divisions currently assigned to ONLINE CORPS are in place ,

the friendly -to - enemy combat worth force ratio is currently perceived to be

FRIEND : ENEMY ( 1 : 3 )

PLEASE RESPOND BY ENTERING A NUMBER BETWEEN O AND 100

based on the aforementioned scale of how critical

you think it is for the newly arrived CORPS

to be assigned to reserve status behind the

ONLINE CORPS . After entering a number hit ' XMIT ' .

PLEASE ENTER THE NUMBER NOW .

Figure 1. Sample Question
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An analysis of variance ( ANOVA ) was performed on the data .
The ANOVA

model was

y = + A + B + C + D + S

+ AB + AC + + DS

+ ABCDS + R ,

where y represents criticality index ; u is a true but unknown constant ; A ,

B , C , D , and S are as defined above ; and Ris residual . All effects

involving S were tested over MS ( R ) , and all fixed effects were tested over

their corresponding interaction with S. That is , the F-ratio for testing

the factorial effect of factor A is MS ( A ) /MS ( AS ) , and the F -ratio for

testing the AB interaction effect is MS ( AB ) /MS ( ABS ) . Some of the Subject

variance components were statistically significant ; however , the four fixed

effects factors accounted for over 60 percent of the total variability .

The ANOVA results were used to give a hypothesized " significant " model

for fitting . Dummy variables were used for the qualitative factors and

regression analysis was used to develop a prediction equation . This

prediction equation provided the model to be compared with the current

FORCEM algorithm for the particular decision . The comparison is shown in

Table 6 , which contains the regression model predicted values , the 48 cell

means , and the current algorithm priority . The first and the forty-eighth

priorities of all three priorities agree . Also , the first six to seven and

the last five of the regression model and cell mean priorities agree .
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Table 6. Comparison
Comparison of Models

Regression model

predicted value

and priority

Cell mean

critical index

and priority

Present

FORCEM

priority

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

99.4

92.6

79.8

72.9

64.6

57.8

54.4

53.8

53.6

47.5

47.0

46.8

45.4

45.0

41.8

38.6

38.1

37.5

35.0

34.8

34.2

33.8

31.1

30.7

27.9

27.3

26.9

26.1

25.8

25.4

24.3

22.0

21.3

19.2

19.3

18.9

18.5

17.9

15.1

14.5

14.3

13.5

12.5

11.0

9.5

7.5

6.7

2.7

1

2

3

4

5

6

9

7

8

12

14

10

11

13

15

17

21

18

22

16

25

19

20

24

27

30

28

26

23

31

29

37

33

40

36

32

38

34

35

44

41

42

39

43

45

47

46

48

96.2

91.4

79.3

77.8

67.1

65.0

54.5

62.1

58.4

43.4

43.3

47.8

44.5

43.4

40.0

35.8

32.4

35.6

31.1

37.7

30.0

34.4

32.5

30.5

26.7

24.7

25.3

28.4

30.6

22.3

25.1

17.7

19.0

14.7

18.0

20.1

17.7

18.1

18.1

12.8

14.6

13.0

17.2

13.0

10.7

8.5

8.8

5.5

1

13

25

37

3

15

5

7

2

17

19

14

9

27

26

21

39

11

38

29

31

4

8

23

41

43

16

6

33

10

20

28

12

32

18

45

22

35

40

24

30

34

44

47

36

42

46

48
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The regression model equation was considered to be an adequate fit of

the data for the intended purpose . Consequently , the pilot test was

considered successful , despite the fact that the results of the developed

models were inconsistent with the algorithm priorities . The decision was

made to proceed with the project as planned .

A.
DATA COLLECTION . A questionnaire was computerized for each of the

eight decisions in Table 1 and administered to a group of students

( Subjects ) from the US Army War College . The experiments were administered

on four afternoons during December 1985 and January 1986. Each afternoon

consisted of two 2-hour sessions with approximately 10 subjects . The

allocation of subjects to experiments is shown in Table 7. Experiments 1 ,

2 , 3 , 7 , and 8 were administered to 20 subjects , experiments 5 and 6 were

administered to 21 subjects , and experiment 4 was administered to all 81

subjects .
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Table 7. Allocation of Subjects to Experiments

Decision

Group

( session )

Number

of

subjects1
2

3 4 5 6 7 8

1 х х х 10

2 . х Х х 10

3 Х х х 10

4 Х х 10

5 х X X 10

6 х х 10

7 Х
x x

10

8 X
x x 11

5 ANALYSIS .
In addition it was recognized that the present FORCEM

decision could be written as a linear equation . In decision #1 , one online

corps among several candidates must be chosen by the theater headquarters

to receive a newly arrived corps in reserve . The factors used to make this

decision are A , B , C and D discussed in Table 2 above . Each candidate has

a specific set of four values associated with it .
Each such value corre

sponds to a particular level of one of the factors as discussed in Table 3

above . For each candidate , the equation Y = 55 36.A + 18.B - C + 3.D

is evaluated using the four values associated with it .
The y value so

calculated is the priority for the candidate . The candidate corps whose

priority is larger than all of the other candidates is chosen to receive
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the newly arrived corps in reserve .
If two or more candidates tie with the

largest priority , no decision can be made based on these factors . In this

case , each of the four values for these candidates would be equal . This

would imply their equivalence in relation to the four factors considered .

A more fruitful analysis could be obtained if the subjects ' responses

could be transformed to a response similar to the priority value assigned

to each online corps by the present FORCEM algorithm . One transformation

that showed definite promise was the rank transformation .
The rank

transformation used consisted of ranking each subject's response from 1 to

N , where N is the number of cells in the particular design ( N = 72 for

Decision #1 ) . The smallest criticality index , usually a zero , was assigned

the value 1 and the largest criticality index , say 100 , was assigned a 72 .

Where several responses of the subject had the same value ( i.e. , ties ) , the

average rank was used . The rank transformation did not seem to affect the

overall results obtained in the original cell means model , and had the

added advantage of being directly testable against the present linear model

of the FORCEM algorithm . Using the ranked responses of the military

experts and estimating coefficients of the same linear model of the FORCEM

algorithm , the equation
Y = 62.4 - 15.A + 3.94.B - 12.1.C + 4.27.D

obtained . However this model lacked fit and a better model was obtained by

adding terms related to the significant cross products of the cell mean

model , y = 50.0 - 9.57.A + 10.4.B - 14.2.C + 17.1.0 - 6.17.02 + 0.698.13 -

4.28.A.B + 0.588.C.D. Testing the null hypothesis of no difference be

tween this model and the model of the FORCEM algorithm , one obtains a
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calculated F ratio of 215.3 . This is much larger than F ( 9,1368 , .95 )

1.92 . This implies that the hypothesis of no difference between the models

must be rejected .

Decision 4 , Designation of Posture of Online Corps , was treated

differently from the other decisions because it involves an ordered

categorical response variable .
The response variable is posture .

The

subject was required to choose the most appropriate posture for a given set

of input factors . The choice was attack , defend , delay , or withdraw .
The

factors gave a structure on which to base the experiment ; however , each

cell was analyzed independently of the other cells . The factors C , H , and

I are described in Table 2 , and the levels are shown in Table 3 .
In

FORCEM , a definite posture must be assigned to a corps given a set of

factor levels . A posture assignment is unique for a given set of factor

levels and is given to each corps possessing a particular factor- level

combination during a run of FORCEM . In the real world posture assignment

would probably be stochastic rather than deterministic . An approach to

dealing with this statistically is to test each cell with a simple

statistical hypothesis test . For each of the 27 cells , the null hypothesis

for the cell is that less than half of the expert population chooses any

one of the postures . The alternate hypothesis , the statement desired for

the cell , is that more than half of the expert population chooses one

common posture ; i.e. , a "majority " posture .
The test takes the form of

Ho : P < 0.5 and HA : p > 0.5 . The random variable Xi ( i = 1 to 81 , for

sample of 81 expert subjects ) takes on the value 1 when a subject picks the

posture with largest number of responses ( i.e. , the " favored" posture ) in
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the cell under consideration ; the probability that X ; 1 is p . The random

variable Xi takes on the value 0 if the subject picks any other posture ;

the probability that Xi = 0 is ( 1 - p ) .
If there is a tie for the favored

posture , the test cannot logically result in a rejection of the null

hypothesis . Assuming there is a favored posture , a test must be

constructed to decide whether ( 1 ) to reject the null hypothesis or ( 2 ) not

to reject the null hypothesis because of insufficient evidence to the

contrary . The appropriate distribution is the distribution of the sum of

the random variables Xi . This is the binomial distribution with parameters

N = 81 and p = 0.5 . A critical region must then be determined for which

the null hypothesis is rejected when in fact true with no more than a

stated probability . This probability is referred to as alpha , the

significance level of the test . For the case under consideration ,

( N = 81 ) , alpha = 0.05 , the critical region corresponds to a count of

responses of K = 48 . For alpha 0.01 , K = 52. On this basis , the count

for each of the 27 cells is tested in the hope of rejecting the null

hypothesis . Table 8 displays the results of the test .
The favored posture

is designated in the cell for the given levels of the factors C , H , and I.

The number of subjects of the total of 81 choosing the posture is indicated

in parentheses . Double asterisks ( ** ) indicate that the null hypothesis

can be rejected at the alpha 0.01 - level of significance , and a single

asterisk ( * ) indicates that the null hypothesis can be rejected at the

alpha 0.05 level .
For the remaining cells ( those without asterisks ) ,

there is insufficient evidence to reject the null hypothesis ; indeed , as

noted in the table , for some cells there is no favored posture .
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Table 8 . Decision 4 "Favored" Postures

Location of objectivePosture

of parent

army

Force

ratio Rear Reached Forward

Delay 1 : 3 Delay ( 51 ) * Defend ( 42 ) Defend ( 56 ) **

1 : 1
Delay ( 47 ) Defend ( 46 ) Defend ( 51 ) *

3 : 1 Delay ( 31 ) # Defend ( 39 ) # Attack ( 58 ) **

Defend 1 : 3 Defend ( 37 ) # Defend (72 )** Defend ( 68 ) **

1 : 1 Defend ( 47 ) Defend (70 ) ** Defend (52 )**

3 : 1 Defend ( 38 ) # Defend ( 53 ) ** Attack ( 70 ) **

Attack 1 : 3
Defend (59 )** Defend (61) ** Defend ( 51 ) *

1 : 1 Defend (53) ** Defend ( 49 ) * Attack ( 43 )

3 : 1
Attack ( 52 ) ** Attack (67)** Attack ( 81 ) **

Key :

** :
significant at alpha

= 0.01

* : significant at alpha = 0.05

no majority posture
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6 . SUMMARY .
Concerning the seven experiments having criticality as

the response variable , the smaller experiments appeared more successful

than the larger experiments . Subjects ' responses suggest that the scale o

to 100 is too large a scale . Most subjects assigned values by 105--10 , 20 ,

30 , ... ; some assigned values by 55--5 , 10 , 15 , ... ; and very few assigned

by unity such as 17 , 43 , or 83. Large experiments may exceed the

differentiality of subjects . There was also evidence that all subjects

were not on the same scale . Some tended to use the lower portion , some the

center , and some the upper portion of the scale . Hetrogeneity was also a

problem . This also seemed more severe with the larger experiments .

Concerning the experiment with the discrete response , it was not felt

that the analysis employed was the most appropriate . Time did not permit

further study and research of the problem .

Finally , if subjects employed are indeed experts , the statistical

methods of experimental design , analysis of variance , and regression

analysis have potential for verification of algorithms of simulation

models .
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COMENTS BY PANELISTS DR . KAYE BASFORD AND PROFESSOR W. 1. FEDERER

ON THE FOLLOWING ARTICAL

Application of experimental design to the paluation of expert

opinion by

Franklin E. Womack

and Carl B. Bates

U.S. Army Concepts Analysis Agency

Baye Basford : The authors attempting to validate decision

rules and make enhancements to the present mode !

based on responses from Bi students at the Army War

college . This appears to be a different population

from the one used to or iginally specify the model .

Thus different ansvers could be a result of the

differing populationspopulations rather than just a larger

sample from the same population .

The U.S. Army Concepts Analysis Agency ( CAR ) has a

computer model FORCE Werein the command and

W.T. Federer :

control part
can be used

by a field commander at

various levels of combat . Expert opinion is a val

uable component of such a systems
model . Using

FORCE a field commander car, make decisions about

the future conduct of a nor . In order to futher

improve FORCE , 81 students from Army War

college participate
d in an informetion gathering

system. To this witer , it would oppe at that the

FORCEM would be costwise efficient if comuse of

randers simulated a wais rather than actually field

testing everything . It is realized that final

decisions from any simulation should be field

tested but considerable insight can be gained from

simulations and at a relatively low cost .
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A number of experiments were conducted using a

factorial treatment design and groups of 20 ( 21 in

one case ) students in an experiment .
The

response

variable a criticality ( zero to 100 )

except for one response variable . The writers used

an effect by subjects interaction as an error mean

square for each effect . Why væren't some inter

VAS Score

actions with subjects pooled to increase degrees of

freedom in an error term ? Why wasn't an analysis

performed on the eight decisions and eight group

sessions in Table ?? Also , the regression model

used needs more explanation . Presumably , this is a

main effects
effects regression model with the eight

decisions as the eight independent variables in the

regression equation . If the interactions are small

compared to main effects , it would be expected that

the agreement between predicted values from

regression and cell means would be good (see Table

6 ) .
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ANALYSIS OF AN INCOMPLETE BLOCK DESIGN WITH MOSSING CELLS

Wendy A Winner

Jill H. Smitb

Director,

U. S. Army Ballistic Research Laboratory

ATTN : SLCBR - SE-D

Aberdeen Proving Ground, MD 21005-5066

Abstract

The Ballistic Research Laboratory ( BRL ) conducted an interac

tive Firepower Control Experiment from 2 tbru 20 December 1985

to acquire knowledge on how military personnel make tactical fire

control decisions for field artillery, and , for the first time, automati

cally collected data on the digital communications between the field

artillery battery Fire Direction Center (FA btry FDC ) and simu

lated 155mm howitzer firing units . This later portion of the experi

ment , the Battery Fire Direction Center ( Btry FDC) portion , was

designed to test 3 levels of the number of bowitzers per battery, 3

levels of simultaneous missions, and 2 levels of fire mission control

ratios with each other . The intended design was three replications

of a 3 x 3 x 2 factorial with the linear Howitzer x Mission interac

tion blocked by day . Unforeseen software problems precluded the

completion of the design for this controlled laboratory experiment .

As a result , informative data was only collected for twelve of the

eighteen treatment combinations of a single replication . At the

conference , expert advice was solicited on the appropriate method

of analysis and the appropriate conclusions to draw from the

analysis on data collected from this experiment.

Comments by panelists Drs . Kaye Basford and W. T. Federer are at the

end of this artical .
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I. Introduction

The Ballistic Research Laboratory (BRL) conducted an interactive Firepower Con

trol Experiment from 2 thru 20 December 1985 to acquire knowledge on Fire Direction

Officers ' (FDOs ' ) tactical fire control decisions , and , for the first time, automatically col

lected data on the digital communications between the field artillery battery Fire Direc

tion Center (FA btry FDC) and simulated 155mm howitzer firing units. The objectives

of this experiment were ( 1 ) to collect data on the FDOs' decisions on the type and

volume of howitzer fire for selected targets , and (2 ) to characterize the net utilization

between the Battery Computer System (BCS ) at the btry FDC and the Gun Display

Units (GDUs ) at each howitzer of the firing btry. These two objectives were achieved

by conducting a controlled laboratory experiment that simultaneously focused on these

two independent objectives , i.e. , portions , of the Firepower Control Experiment .

II . Test Configuration and Design

To run the portions together, the BRL integrated a commonly shared database,

uniquely developed BRL simulators , and a combination of tactical and commercial com

puter equipment interfaced by a BRL ”Bit Box” , i.e. , a modem between GDU protocol

and standard , commercial computer RS232 protocol . Officers from the U.S. Army Field

Artillery School , Fort Sill , OK, participated as FDOs and BCS operators while BRL's

interactive simulators emulated forward observers ( i.e. , the Multiple Forward Observer

SCEnario simulator , MFOSCE ), the Tactical Fire Direction System ( TACFIRE) bat

talion FDC ( i.e. , the Fire Direction Simulator , FDS) , and the firing btry ( i.e. , the Gun

Display Unit Simulator , GUNSIM ). Figure 1 outlines these major components of the

laboratory setup , and Figure 2 depicts their field counterparts .

Six different test cells containing sixty targets each were developed from a Scenario

Oriented Recurring Evaluation System Europe I, Sequence 2A (SCORES 2A) division

slice . Each test cell was developed to contain an identical mixture of twenty different

target types . The sixty targets in each test cell were randomized, and the six test cells

were used to produce a total of eighteen scenario test cells . All targets in each test cell

were forwarded to the FDO for selection of a type and volume of fire. Twelve pre

identified targets of the sixty targets were sent to the BCS operator as fire missions, i.e. ,

targets to be fired on with the specified type and volume of fire. It was hypothesized

that the BCS would require an hour of testing to fire all twelve fire missions and that an

additional forty - eight targets would be needed to " load " the FDO for an hour of testing.

In designing the experiment, it was implicitly assumed that the FDOs' decisions on tar

gets being forwarded to the BCS for simulated firing would not affect the btry FDC

portion's measures of performance.

The factors for the FDO portion of the experiment were ( 1 ) FDO, ( 2) target type

and subtype, ( 3) target size , ( 4 ) type of fire mission control, and ( 5) the initial ammuni

tion load (Figure 3 ) . The factors for the btry FDC portion of the experiment were ( 1 )

the number of simultaneous fire missions at the BCS , ( 2 ) the number of howitzers in the

btry , and (3) the fire mission control ratios (Figure 4 ) . The levels of each of these
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• FDO

3 levels , i.e. , 3 FDOS

• TARGET TYPE AND SUBTYPE

10 levels , i.e. , 10 different target descriptions

• TARGET SIZE

2 levels , i.e. , 2 sizes per target type and subtype

• TYPE OF FIRE MISSION CONTROL

2 levels , i.e. , adjust fire and fire -for -effect

• INITIAL AMMUNITION LOAD

3 levels , i.e. , 100% , 80% , or 60% of a basic load

Figure 3. Factors and Levels for the Fire Direction

Officer Portion of the Firepower Control Experiment
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• NUMBER OF HOWITZERS IN A BATTERY

4 HOWITZERS

6 HOWITZERS

8 HOWITZERS

• NUMBER OF SIMULTANEOUS MISSIONS

1 MISSION

2 SIMULTANEOUS MISSIONS

3 SIMULTANEOUS MISSIONS

• CONTROL RATIO OF THE FIRE MISSIONS

2 ADJUST FIRE : 1 FIRE -FOR -EFFECT

1 ADJUST FIRE : 2 FIRE -FOR -EFFECT

Figure 4. Factors and Levels for the Battery Fire Direction

Center Portion of the Firepower Control Experiment
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factors were selected as factors the BRL was interested in testing. First, for example,

the BCS is only designed to handle up to 3 fire missions at time. Second, each BCS

currently handles 6 howitzers in the field and future alternative considerations may have

the BCS handle 4 or 8 howitzers. Third, fire mission control refers to how fire is

directed on the target . For all Adjust Fire (AF ) missions being sent to the BCS opera

tor, a default of two " adjustments” ( consisting of a total of two High Explosive rounds)

were fired to better locate the target's position before the expenditure of the btry vol

leys , i.e. , the Fire - for -Effect (FFE ) portion of the fire mission . In the case of FFE mis

sions , the observer has accurately located the target, and it is unnecessary to " adjust”

before firing the btry volleys.

During the first week of testing, the BCS operator noticed anomalous behavior of

the firing btry simulator, GUNSIM , in comparison to the actual tactical equipment.

While GUNSIM was modified, the FDO portion of the experiment was run . As a result,

these unexpected software problems precluded the completion of the design for the btry

FDC portion of the Firepower Control Experiment. The remainder of this paper will

focus on the appropriate method of analysis for the data collected and computed from

this portion of the experiment .

III. Battery FDC Portion of the Experiment

1. Design Matrix and Measures of Performance

The intended design was three replications of a 3 x 3 x 2 factorial with the linear

Howitzer x Mission interaction blocked by day ( Figure 5) . The purpose was to measure

the effect of these factors and their interactions on the btry fire direction (FD) net's

message traffic . Two different responses were computed to measure message traffic.

The first, net utilization, is computed by dividing the total transmission time by the

total time required to complete the simulated firing of the twelve fire missions associated

with a treatment combination . The significance of the btry FD net's usage in the

battlefield is that higher net usage increases the enemy's opportunity to detect the loca

tions of the btry FDC and the 155mm howitzers. Presumably , detection would lead to

enemy destruction of these important assets. The second , the average number of mes

sages per minute, is computed by dividing the total number of messages for a particular

treatment by the total time required . This indicates the number of times the tactical

equipment must be turned on and off to transmit and receive messages. Both of these

measures are important indicators of btry FD net usage when radios ( rather than wire )

will link the FA btry FDC and future semi-autonomous howitzer systems .

As previously mentioned , mid - experiment software problems did not permit the

completion of this design . Subsequently, data collected under experimentally controlled

conditions was only available for twelve of the eighteen treatment combinations of a sin

gle replication of this design , specifically, days 2 and 3 of the design matrix in Figure 5 .

This paper will focus on the analysis of the average number of messages per minute for

these twelve treatment combinations .
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Day
Hour Number of Missions AF :FFE RatioNumber of Howitzers

Per Battery

1 4 21

2
1

2: 1

1 : 24 2

3

4

6

6

1

1

1 : 2

2 : 1

5 8 3 1 : 2

2: 16 8 3

2 1 8

1

1

1

1 : 2

2 : 12 8

3 4 3 1 : 2

2 : 14 4 3

5 6 2

6

2: 1

1 : 26 6 2

3 1

2

6

6

3

3

2 : 1

1 : 2

83

4

2

22

1 : 2

2 : 18

45

6

1

1

2 : 1

1 : 24

Figure 5. Design Matrix for Each Replication of the Battery

FDC Portion of the Firepower Control Experiment
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2. Average Number of Messages Per Minute

Six different fixed format messages can be transmitted on the btry FD net, and

each of these messages has a different purpose and fixed message format. Message types

A, B , C and D correspond to messages associated with instructions from the BCS opera

tor to the btry personnel via the GDU located at every howitzer, and message types E

and F are the messages associated with polling between the BCS and GDUs (Table 1 ) ,

i.e. , requests and responses for the firing status of each howitzer . Before the body of

each of these messages , a preamble ( i.e. , a continuous 1200 hertz sine wave ) is transmit

ted for a specific time to allow the transmitting and receiving equipment to reach

operating conditions . The minimum specification preamble for BCS and GDU messages,

i.e. , 250 milliseconds, was used for all message preambles on the btry FD net. During

the experiment, all message preambles on the btry FD net were fixed at 250 mil

liseconds.

Table 2 presents the average number of messages per minute for the twelve treat

ment combinations from the experiment . From scanning this table, the average number

of messages for the treatment combination 6 howitzers , 3 simultaneous missions , and a

2 : 1 AF:FFE control ratio is low compared to the surrounding treatment combinations .

A detailed investigation revealed that the busy BCS operator failed to act on the first

several transmissions of a critical mission message, and for another mission , the operator

sent an erroneous message creating approximately 4 minutes of net silence . The net

result of these actions that the BCS operator was essentially only actively working with

2 of the 3 mission buffers. From this data, the BRL wanted to determine if the number

of howitzers, simultaneous missions, control ratios or their interactions had a significant

effect on this measure of performance, and solicited expert advice on the following pro

posed method of analysis and on suggestions for alternative methods of analysis .

IV . Analysis of Battery FDC Portion of the Experiment

1. Proposed : Cell Mean Estimation Procedure

The cell means model equation for the btry FDC experiment is

Yijkn = " + a ; + B; + (ap) ij + k + ( aylik + (BY)jk + ( aßrlijk + eijkn

where

Yijkn
observation for control ratio level i ,

simultaneous mission level j , howitzer

1

*ExternalInterface Specification for Computer, Gun Direction CP- 1317( )/GYK-29 Part of the Computer System , Gun Direction

AN/GYK- 20( ) (V) , " United Technologies Corporation -- Norden Division , Specification No. EL -CP -2678B -TF, 31 October 1981 ,

3.14.3.16 , p . 55 .
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Table 1. Message Formats and Message Lengths

Message
Transmitted TransmittedMessage

Code

Length

( in characters)by to

A Common Data BCS GDUS 43

B Common Special BCS GDUS 25

с
lodividual Guo Order

BCS GDU 277

D Control BCS GDU'S 13

E
Request BCS GDU 11

F Response GDU BCS 11

Table 2. Average Number of Messages Per Minute

Transmitted on the Battery Fire Direction Vet

SIMULTANEOUS

MISSION(S )

CONTROL

RATIO

NUMBER OF HOWITZERS

PER BATTERY

( AF : FFE ) 8

2 : 1 34.51 26.80

1

1 :2 25.06 25.89

2 : 1 31.99 36.10

2

1 : 2 40.96 +0.93

2 : 1 41.19 29.71

3

1 : 2 42.73 42.88

Based on 10 targets, not 12 .

**FDO missed SHOT message and incorrectly send an MTO message.
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level k , and observation n

overall mean

effect of control ratio level i , i= 1,2

B; effect of simultaneous mission level j ,

j=1,2,3

Vk effect of howitzer level k , k= 1,2,3

(BY)jk
effect of blocking

(ap );j, ( ayliky

(a31) ijk two- and three -way interactions

Cijkn error for observation Yijkn which is distri

buted independently and normally with

mean 0 and variance o ,̒ i.e. , N( 0 , 0 )

This model is overparameterized for the btry FDC experiment since observations are

missing for six cells . It was recommended that a cell mean estimation procedure using

the basic linear model could be employed to estimate the six missing cells . ?

Using this procedure , estimates for the missing cell means can only be made if the

model is constrained by assuming one or more interactions are zero. The application of

constraints, however, may not relate all missing cell means to the other observed cell

means , and will yield one of two types of models : ( 1 ) connected models where all means

of the missing cells are linearly estimable and any linear hypothesis on the cell means

can be tested ; and ( 2 ) unconnected models where not all missing cell means are estim

able and the hypotheses of interest may still be tested . If one can justify the constraints

necessary to produce a connected design and the constraints are valid , then stronger

conclusions can be drawn ; however, constraints should not be applied to just produce a

connected design . Hocking also notes that there are varying degrees of connectedness,

and the application of additional constraints increases the precision of missing cell mean

estimates .

For the btry FDC experiment, the first reasonable constraint would be to assume

that there is no three-way interaction Howitzer x Mission x Control Ratio, i.e. ,

( a Brlijk 0. Based on this assumption, the missing cell means , Mijks , can be estimated

by the following equation :

1

Jock O. Grydovicki, U.S. Army Ballistic Research Laboratory , Aberdeen Proving Ground, MD.

2

Hocking, Ronald R. , The Analysis of Linear Models, Monterey, CA: Brooks/Cole Publishing Company, 1985 .
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Mijk - Mi jk – Mij ' k + Mio i ' k = Mijk
Mijk – Hiljk - Mij' k' + Milj' K

where

i , i' = 1,2 ; * i'
for the control ratio levels

j , j ' = 1,2,3 ; j + j ' for the simultaneous mission levels

k , k ' = 1,2,3 ; k + k'
for the howitzer levels

However, this constraint yields an unconnected model with none of the six missing cells

being linearly estimable. Based on the design assumptions, another reasonable assump

tion would be that there is no Howitzer x Mission interaction , i.e. , (By);k = 0, in addi

tion to no Howitzer x Mission X Control Ratio interaction . Based on these two assump

tions, the missing cell means can be estimated by the following formula :

Mijk Mij' k Mijk' Hij' k '

These constraints provide estimates for the 6 missing cell means, and the associated sin

gle effective constraint is

M111 - M113 - M122 + H 123 – M131 + H 132 = 0 .

Using these constraints , the missing cell means can be related to the observed cell means

as follows:

M112 = M113 - 1123 + H122 = 26.80 – 36.10 + 34.99 =
25.69 ,

H212 = 4213 - H223 + H222
= 25.89 – 40.93 + 40.96 = 25.92 ,

H 121 = " 123 - H113 + Hu1 == 36.10 – 26.80 + 24.51
= 33.81

M 221 = M223 - H213 + H211 = 40.93 – 25.89 + 25.06- = 40.10 ,

H 133 = M131 - M111 + M113 = 41.19 – 24.51 + 26.80 = 43.48 ,

H233 = H231 - H21 + H213 = 42.73 - 25.06 + 25.89 = 43.56 .

Table 3 provides the estimates for the 6 inissing treatment combinations along

with the 12 treatment combinations from the experiment. By using the values in this

table, an analysis of variance (ANOVA) was performed and is provided in Table 4 .
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Table 3. Observed and Estimated Average Number of

Messages Per Minute on the Battery Fire Direction Net

SIMULTANEOUS

MISSION ( S )

CONTROL

RATIO

NUMBER OF HOWITZERS

PER BATTERY

(AF :FFE
4 8

2 : 1 24.51 25.697 26.80

1

1 :2 25.06
25.927

25.89

2 : 1 33.817 34.99 36.10

2

1 :2
40.10+ 40.96 40.93

2 : 1 41.19 29.71
43.487

3

1 :2 42.73 42.88 43.567

tEstimated .

* Based on 10 targets.

**FDO missed SHOT message and incorrectly sent an MTO message .
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Table 4. ANOVA on the Effect of the Factors

on the Average Number of Messages Per Minute

SOURCE DEGREES OF

FREEDOM

SUM OF MEAN

SQUARES SQUARE

F

RATIO

Howitzers 2 22.8559 11.4280 0.32

Missions 2 760.0711 380.0356 10.63

Control Ratio 1 55.6864 55.6864 1.56

Howitzers X Control Ratio 2 21.0985 10.5493 0.30

Missions X Control Ratio 2 29.4570 14.7285 0.41

Pooled Error 2 71.4755 35.7378

Total 11 960.6444

-

F2,2,0=0.05

a

19.00

= 200
1,2 , a = 0.05
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One should note that the Howitzer x Mission x Control Ratio and the Howitzer x Mis

sion interactions were pooled for error since it was assumed that these interactions were

not significant in the cell mean estimation procedure. From Table 4, one concludes

that none of the main effects or two-way interactions are significant at a = 0.05 based

on the assumptions of no Howitzer x Mission x Control Ratio and Howitzer x Mission

interactions . If either of these assumptions are incorrect then the pooled error is biased ;

using a biased error value lowers the F ratios and can result in factors or their interac

tions being statistically insignificant.

A consequence of using this cell mean estimation procedure is that one- third of an

unreplicated design was estimated based on two assumptions. The resulting ANOVA

failed to detect any significant main effects or interactions despite seemingly differences

between certain levels of the factors. Additional experimentation would be required to

test if the assumptions associated with the cell mean estimation procedure were justified

and more confidently determine the conclusions of no significant main effects or interac

tions . In lieu of additional testing and this cell mean estimation procedure, the panel

recommended paired t tests .

2. Suggested: Paired t Tests

Based on the panel's suggestions , paired t tests were performed on the data to test

for a significant difference between the means , i.e. , the average number of messages, of

the levels of each factor assuming no interactions . The null hypothesis , Ho, for each test

was that there was no difference between the means of two levels of a factor versus the

alternative hypothesis , H,, that the mean for å given level exceeded another . This one

sided alternative hypothesis was not rejected only if the difference between the means

was significantly greater than zero.

An overall paired t test was computed for the difference between the 1 : 2 and 2 : 1

AF :FFE control ratio levels under the same howitzer and mission levels , i.e. , 6 paired

differences . He was not rejected since the computed t statistic at a significance level of

a = 0.05 was close to but did not exceed the tabled t value ts = 2.015 . This was a

bit surprising since only " one GDU's worth” of messages are requested and transmitted

for each " adjustment” , and each " adjustment” requires "one round's worth” of time .

Thus , one would expect the average number of messages per minute for a 2 : 1 AF :FFE

control ratio to be lower than a 1 : 2 AF :FFE control ratio .

In addition to this paired test , two other paired t tests were computed ; one with

the pairs by howitzer level and the other with the pairs by mission level. In computing

these tests , two difference pairs were obtained for each howitzer and mission level by

computing the difference across a specific control ratio level . Ho was rejected if the com

puted t statistic exceeded the tabled t value at a significance level of a = 0.05 , i.e. ,

tha= 6.314 . Only two of the six null hypotheses could not be accepted at a

significance level of a = 0.05. First, Ho was not accepted between 1 and 3 simultaneous

missions for 4 howitzers. This supports the expectation that as the number of simultane

ous missions increases more missions are handled in a shorter time , i.e. , the average

number of messages per minute increases. However, no significant difference was
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detected at a = 0.05 between 2 and 3 simultaneous missions for 6 howitzers, or between

1 and 2 simultaneous missions for 8 howitzers. Second, Ho was not accepted between 6

and 8 howitzers handling 2 simultaneous missions. This also supports the expectation

that as the number of howitzers increases more howitzers are sending and receiving mes

sages in essentially the same amount of time, i.e. , increasing the average number of mes

sages per minute. Similarly , no significant difference was detected at a = 0.05 between

4 and 8 howitzers handling 1 mission , or between 4 and 6 howitzers handling 3 simul

taneous missions .

V. Conclusions

The data collected from the btry FDC portion of the Firepower Control Experi

ment suggests that different procedures should be considered to reduce btry FD net

usage when radios will link the FA btry FDC and future semi-autonomous howitzer sys

tems . The paired t tests on the average number of messages per minute detected a

significant difference at a = 0.05 between 1 and 3 simultaneous missions for 4

howitzers, and 6 and 8 howitzers handling 2 simultaneous missions . Although this sup

ports our initial design assumptions that the number of howitzers and simultaneous mis

sions significantly affect the usage of the btry FD net, it also clearly points out that

completing the intended design could have produced more confident conclusions.
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COMMENTS BY PANELISTS DR . KAYE BASFORD AND PROFESSOR W. T. FEDERER

Jeth ON THE FOLLOWING ARTICAL

ng De

of

Analysis of an Incomplete block design of experiments by

Wendy A. Winner

Dette.
and Jill H. Smith

simak
U.S. Army Ballistic Research Laboratory

Baye Basford :

Expa

FDY

Because full data were not collected on the original

designed experiment, I suggest that it be analysed in

a mch simpler way . For instance , simple t tests or

non parametric tests could be used to compare fire

mission control ratios over all howitzer and mission

levels . Although not giving the detail of the planned

analysis , it should allow Some information to be

zero

ected

obtained from the data collected .

ut it's

W.T. Federer : The resulting design is a two - thirds fraction of a

2 x 32 factorial of the following nature :

0

1 : 2

a ,

2 : 1

b

i

2

b

ii

21 3 1

3

Cj

3

4 X x X X

6 X X X X

8 X X X X

where x denotes combination present and blank denotes

combination absent . In the above fraction min

effects will be estimable as well as 12- ( 1 + 1 +2 + 2 ) = 6

degrees of freedom for interactions . These 6 degrees

of freedom are A XB ( 2 d.f. ) , AxC ( 2 d.f. )

B ( linear ) xC ( linear ) ( 1 d.f. ) , and A XB ( linear )
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xC ( linear ) ( 1 d.f. ) . Unless it were known that one

or more of the degrees of freedom for interaction

represented experimental error , no error mean square

would be available for testing the significance of

the effects . For no available error mean square , it

is suggested that use be made of Cuthbert Daniel's

half normal plot procedure to ascertain which of the

eleven treatment simple degrees of freedom Sloms of

squares were alike and which were different . If the

smaller contrasts respondin
g

similarly could be

considere
d

as possible candidate
s for no treatment

effects ; then an error term can be obtained using

Cuthbert Daniel's procedure ( see e.g. S.A. Krane

( 1963 ) "Half normal plots for multi - level factorial

experiments " , Proc . Eighth Conf . Design Expt . Army

Res . Dev . Testing , pp 261-285 ) .
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A HEURISTIC APPROACH TO POST HOC COMPARISONS FOR SIGNIFICANT

INTERACTIONS - A SIMPLIFIED NOTATION

Eugene Dutoit

U.S. Army Infantry School

Fort Benning , Georgia

ABSTRACT :

The omnibus F ratio test used in analysis of variance is used to

determine if any of the main or interaction effects are statistically

significant . Customarily , various techniques are used for performing

post- hoc comparisons on the statistically significant main effects . The

purpose of this paper will be to present a heuristic approach for post - hoc

procedures on the significant interaction effects . These procedures will

use the conventional graphical methods to show the overall interaction

effect and then apply conservative methods to detect the significant

components of the overall interaction . The paper will develop graphical

and notational method for decomposing a complex interaction into its

significant components for further analysis . Examples will be given for a

two -way design with variables at two and more levels .

ACKNOWLEDGEMENT : The author wishes to thank Dr. John Tukey for his

suggestion to use a Bonferroni contrast in addition to the Scheffe

method . The Bonferroni method will be calculated for each of the examples

in this paper and the results compared with those obtained by using

Scheffe contrasts .
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SECTION 1 ( A TWO -WAY ANOVA PROBLEM )

Consider the following two way ANOVA problem obtained from Ostle . The

dependent variable is the yield in soy beans ( bushels /acre ) . The raw data

and the resulting ANOVA are presented in the table below .

TABLE I

TWO WAY ANOVA

EARLY LATE
Date of Planting

Fertilizer CI Aero Na к C1 Aero Na к

29 29 28 29 30 33 30 33

37 29 27 28 32 31 33 32

33 31 26 28 32 31 33 32

33 29 29 32 31 34 34 29

X = 33 29.5 27.5 29.25 31.25 32.25 32.5 31.5

Source DF SS MS F

1 34.031 34.031
Day of Planting

Fertilizer 3 20.594 6.865

10.44 * ( Sig )

2.11 ( Not Sig )

4.84 ** ( Sig )Interaction 3 47.344 15.781

Error 24 78.250 3.260

*

**

Fl , 24 1.05 ) = 4.26

F3 , 24 1.05 ) = 3.01

The usual Scheffe contrast ( Û J is formed :

ů = [ Aixi , where £ Ai = 0 .

The critical difference ( CD ) is calculated as

C D = ( S )(SĘ ), where

S = [ (number of treatment levels -1 ) F ( critical , a

(1)

3)

( 2 )

a 1 ] 1/2
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For a simple pairwise contrast between two means :

1/2

SEA :

W
( 2 ) (MSerror)

( 4 )

N group

The contrast is statistically significant if

161 > CD ( 5 )

The above procedure is applied to the data in this 2 way ANOVA against the

main effects of day of planting and fertilizer type .

Day of Planting Effect :

Average yield for early planting ( Early )

Average yield for late planting ( Late )

29.81 bushels / acre

31.88 bushels / acre

The contrast ! ) is :

Xiate - Yearly
31.88 - 29.81

[ ( #treat levels 1 ) F ( critical ) jk .

2.07 bushels/ acre

[ ( 1 ) (4.26 ) ] .
2.06S

1/2 1/2

SED

11 T12 ) (3.26)
( 2 ) (Merror

191"

.64

N group
16

CD (S ) (SE ) 1.32

Since = 2.07 } > ( CD 1.32 } ; the contrast is significant at

the 5 level of significance . Of course , the ANOVA table results already indicated

this effect . The Scheffe calculation was presented to illustrate / review the

procedure .
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Fertilizer Effect

Average yield for chlorine ( ci )

Average yield for aero ( Aero )

Average yield for sodium ( Na )

Average yield for potassium ( K )

32.125 bushels / acre

30.875 bushels/ acre

30.000 bushels /acre

30.375 bushels /acre

There are ( 462 ) = 6

table below :

possible pairwise contrasts . These are given in the

Table 2

Pairwise differences 101 for four Fertilizers

( bushels / acres )

Aero Na к

o
l
ic
i

1.25 2.125 1.75

Aero .875 .50

Na .375

K

[13 )(3.01) ] 3.005S = [ ( #treat levels - 1 ) F critical , a ]

1/2

SE0= ( 2 ) ( MS error) (2 )(3.26 ) 71/2

.90

109

N group 8

CD Is ) (SED) 2.705

Note that no value of Ill in table 2 above is greater than the CD . The ANOVA

table furnished the same information as the above calculation . Now let us examine

the significant interaction effect as shown in table 1 .
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Interaction Effect

This section will develop a way to examine the interaction effects . Consider

the diagram below ( Figure 1 ) . In this example , there are two factors A and B ,

each

factor at two levels . The parallel lines indicate there is no interacti
on

. The

total interacti
on

can be decompose
d

into two seperate graphs for each level of

factor B. The decomposi
tion

just makes it visually easier to calculate the slopes

for each of the two lines .

Figure 1

Interaction Decompositio
n

6 .

12,6 )
D

6 6

(25 ) A

1

1

1

Ea

Response 5 5

4
( decomposition)

4 Bi

3 3 16
li :)

2

( 13)

2 ( 12)

с ( 2.2 )

1 1

2

for

Level

Leye ?

1 2 1 1

A А

Variable ( A)

At 2 levels

( No Interaction )

paying attention to theright side of the arrow in the above figure , the slopes

1 and B2 respectively are :

ΔΥ 5-2 6-3

Slope
3

2-1 2-1

or alterna
tively

Slope = A - C D - B

This expression can be written as

( A + B ) ( C + D ) - 0

165



This identity forms the basis for writing the contrast ( û ) . If no interaction

exists , then the contrast can be written as :

û = ( A +( A + B ) ( C + D ) - 0 ( 6 )

This contrast will be used to examine the significant interaction term in Table 1 .

The arithmetic means for the day of planting and fertilizer interactions are given below

in Table 2 .

Table 2

Interaction Data

(Arithmetic Means )

(Yield ; Avg Bushels per Acre )

Early Ci 33 Late Ci 31.25

Early Aero 29.5 Late Aero 32.25

Early Na
27.5 Late Na 32.50

Early K
29.25 Latek = 31.50

The above interaction effect can be plotted in the usual way . This is shown

below in Figure 2 .

Figure 2

The Total Interaction

34

CI

33
Na

Aero

Yield 32
K

ci31

30
Аеро

29 k

28

Na

27

26

Late
Early

Day of Planting
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Examination of figure 2 suggests that the significant interaction shown in Table

1 is driven by the effect of the chlorine fertilizer as it interacts with the other

three fertilizers . Figure 3 below gives the interaction decomposition ( using the

notation of Figure 1 ) of the Na , Cl component of the total interaction .

Figure 3

The Na , Cl Component

C : 33

1CI

33
Na 33

0 : 33 : 5

32 32 CI

C!

Yield 31 31

A :

31.25
30 30

Na

29 29

28 28

Na

27 27

27.5

26 26

25 25

+

Early Late Early Late Early Late

Using equation ( 6 ) , the interaction
component contrast can be calculated :

☺ (( XA+ XB ) - ( 7c+ to)

( 31.25 + 27.5 ) - 133 + 32.5 )

101 = 6.75

In order to determine if this component of the total interaction is

statistically significant ( is lợl significantly greater than zero? ) , the Scheffe

critical difference ( CD ) will be calculated using the methods reflected in equations

( 2 ) through ( 5 ) .
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SE? MSębaş/n; .

; MSE11/12 + 1 /ng + 1 /nc + 1/no ?

In this case all ns are equal .

se?; - MSE14 /n]

Therefore

SE² ( 3.26 ) ( 4/4 )

SEW

1.81 .

The Other Component:

52 = ldfe,I loftet Flot ) ldfe

)
, (ofemoral ,

df for interaction critical value

s?
3

( df interaction!

F

(critical, a )

In this case

S2 = 13 ) F 3 , 24 1.05 ) -
( 3 ) ( 3.01 ) = 9.03

S : 3.00

The Critical Difference

CD =

( SEO ) ( S ) = 11.81 ) ( 3 )
= 5.43

Since ilül = 6.75 ) > { CD = 5.43 ) the day of planting , Na /Cl interaction

component of the total interaction is significant .

Figure 4 shows the interaction decomposition of the Na , Aero component of the

total interaction .
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Figure 4

The Na , Aero Component

1

33 33

Ais
a

.
D : 32 :25

32 32

31 31
Aero

30

NaAcao

30

29 29 8: 29.5

28 28
Na

27 27 ( :27.5

26 26

Early
Late

Early
Late

Early
Late

The lines are not exactly parallel but are the differences in slopes

statistically significant?

The contrast is :

Û = (XA + B)XB ) - ( X + Xp ) = ( 32.5 + 29.5 ) - ( 27.5 + 32.25 )

= 2.25

The value for the critical difference ( CD ) is still 5.43 .

Since { ♡ = 2.25 } < { CD = 5.43} ; the day of planting , Na /Aero component of the

total interaction is not significant .

In this example problem there are 14C2 ) or 6 pairwise components that make

up the total interaction . The results of these six components are summarized in

Table 3 .
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Table 3

Component Summary

a = .05

CD = 5.43

1º 1
ResultsComponent

Na /C1 6.75 Sig

Na/Aero 2.25 NS

Na/K 2.75 NS

4.50 NSCl /Aero

C1 /K 4.00 NS

Aero/K .5 NS

It should be noted that although only one of the components of the total

interaction was found to be statistically significant la = .05 ) , the chlorine

fertilizer effect was involved with the largest values of û

The results of the Bonferroni method will now be compared to the results

obtained from the Scheffe method used so far in this paper . The values for the

contrast ( ) and the SE are calculated the same way as for the Scheffe methods .

TheIÙ is significant if :

IÚL > It
al2P

v ) ( SEG )

( 7 )

where : p is the number of components or contrasts examined in the total

interaction .
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v is the degrees of freedom for the error term .

talap

is then obtained from tables of the critical values for the

Bonferroni t ( Milliken and Johnson ) .

The Bonferroni critical difference ( BCD ) is calculated as :

BCD

( ta/2p ; v )(SEO ) ( 7A )

In this example :

.05

p = 6 possible contrasts

v = 24

therefore ( t.05 / 2p
V = 24 )

11 2.88

and SE
SEO

= 1.81 .

therefore the BCD = 5.21 .

Referring to Table 3 , it is apparent that this 4% decrease in critical

difference ( 5.43 versus 5.21 ) does not change the decision regarding the significant

component of the total interaction for this particular example.

Section 2 ( A Three-way ANOVA Problem ) .

The following example will expand the discussion of section 1 to a three way

ANOVA . The dependent variable is the time ( seconds ) required by a blind rat to run

a maze . The independent variables are :

171



1 ) When the rat was blinded ( early or late in life ) .

2 ) Intelligence ( bright , mixed , dull ) .

3 ) Movement ( free ( F ) or restrained ( R ) )

The data and the resulting ANOVA tables are shown below :

Table 4

Three Way ANOVA

Early Blinded Late Blinded

Mixed Dull Mixed DullBright

F R

Bright

F RF R F R F R F R

27 55 130 140 55 132 90 105 61 65 140 142

45 81 120 150 76 96 120 110 82 80 99 96

X = 36 68 125 145 65.5 114 105 107.5 71.5 72.5 119.5 119

df MS F

1 287.04 .83 NS

Source

Time of Blindness ( B )

Intelligence ( 1 )

Environment ( E )

2 1652.05

1 1785.38

4.76 ( Sig 5% )

5.15 ( Sig 5% )

22.02 ( Sig 5% ) *

4.57 NS

B x I 2 7638.79

B x E 1 1584.37

I XE 2 91.12 .26 NS

B x L x E 2 115.88 .33 NS

Error 12 346.88

23

F2 , 230.05 )

= 3.89
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At this point only the significant interaction ( time of blindness , intelligence )

will be examined in detail . The data for this particular interaction are given in Table

5 .

Table 5

Interaction Data

( Arithmetic Means )

( Dependent variable ; time in seconds )

106.25 secEarly Blind ; Bright
52 sec

Early Blind ; Mixed
135 sec

Early Blind ; Dull = 89.75 sec

The plot of the interaction is given as figure 5 .

Late Blind ; Bright

Late Blind ; Mixed

Late Blind ; Dull

72 sec

= 119.25 sec

Figure 5.

The Total Interaction

150

125 LATE BLIN
D

Aug

Response

Time

( sec ) !100

EARLY

BLIND75

50

Mixed
Bright

( B )

Dull

( D )( M ) Intelligence
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The total interaction will be decomposed in the same manner as shown in section 1 .

Therearel362 ) or 3 components to examine . The components of {Bright to Mixed

Intelligence ) and of { Mixed to Dull Intelligence} appear to be significant . The third

component { Bright to Dull } is probably not significant .

Figure 6 shows the bright to mixed intelligence component .

Intelligence ; Bright to Mixed

150150

Time 125 125 A

Label points

according to

previous

conventior

( sec ) 125
EARLY

BLINS

125

106.25

100 100LATE

EHIND

1
IDE 25

1

75

T
ä

75

72

52 Tä

52
с

50 50

B M B M B M

( Intelligence )

+
)

2

By labeling the points according to the previous convention and using equation

( 6 ) , the interaction component contrast can be calculated :

( A + Xp ) - ( c ( 135 + 106.25 ) - ( 52 + 72 )

4 : 117.25

In this case

SE ? - Medan

SE? MSc ( 4 / n )MSE ) which is the same as in section 1. The number of

observations for each cell ( n ) is 4 therefore :

or
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SE25 346.88(44)
= 346.88

SE . = 18.62

The other component ( s ? ) is :

s2 = ( dfinteraction ) Fa
= ( 2 ) ( 3.89 ) = 7.78

)

S = 2.79

The ( CD ) is :

( ) = 51.95

U

since {1Ⓡ 1= 117.25 } > { cD = 5 .
CD = 5.95} , this component of the interaction

[ Intelligence ; bright to mixed ) is statistically significant .

Figure 7 gives the mixed to dull intelligence component .

Figure 7

Intelligence ; mixed to dull

150 150

135
с

Time
135

( sec ) 125

EARLY

BLIND

119.25 D

125

119.25

100 100

89.75

A

89.75as I

75 75
B

ןג

LAT
E

BLIN
D

1
ןג

5
0

50

M D M D M D

( Intelligence )
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The contrast for this component is :

фң (ХА
+

Kg) - (Xc + Xp ) = ( 89.75 + 72 ) - ( 135 + 119.25 )

== -92.5

The CD is still equal to 51.95

CD = 51

CD

statistically
significant

. This was expected .

Finally , Figure 8 shows the bright to dull component .

Figure 8

Intelligence ; Bright to Dull

1

150 150

Time

119.85 D

( sec )
125

LATE

BLIND
125

B

100
106.25

100

A

89.75

75 75

EARLY

BLIND C

50 52 50

B D B D B D

û = (a + p ) - (āc + XD) = ( 89.75 + 106.25 )
( 52 + 119.25 )

W == 24.75
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Note that { = 24.75 } < {CO = 51.95} , therefore this component of the interaction

is not statistically significant .

In this problem , 2 out of 3 total pairwise interaction components were

significant at a 5% level of significance .

The Bonferroni method will be applied to this problem . SE is the same value

( 18.62 ) , P is equal to 3 and n is 12 . Therefore the Bonferroni t ( a = .05 ) is equal

to 2.78 . The Bonferroni critical difference ( BCD ) is ( 18.62 ) ( 2.78 ) or 51.76 .

This is only slightly less than the Scheffe CD of 51.95 . There are no differences

in the decision regarding significant components between the two methods for this

particular example .

Section 3 ( Interaction where Both Factors ( F , G ) Have More Than Two Levels )

Consider the case where factor F has three equally spaced levels { fi , f2 ,

f3 } and factor G has levels { 91 , 92 , 93 }. Consider Figure 9 below which

shows the decomposition of the total interaction in the interval for factor Fin

{fi : f2

Figure 9

Two Factors at Three Levels

Ang.
୧

• 83

{ fi.fVALUE 93

9
3 ga

ga

ga

3.

9 .
gi

fi fz f3 fi f2 fi f1f2 'fاf2 f2
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Given that no interaction exists ; is the " chaining notation " discussed in

sections 1 and 2 of this paper true in this situation? Following the

notation/convention discussed earlier :

û = ( b + ac ) - ( žotta) + ( ão + žel- lāp + īc) = 0 ( 8 )

The demonstration is simple . Given that no interaction exists , then (Ăp - ła) =

( Xa - x ) = (x - xe).

Equation ( 8 ) can be written without brackets :

Û = 7o + o -• Xc - Xd - ła + Xd + te - Xp - Xc

+

Re- arranging terms:

û = ło - ta - Xo + tc + Xo - Tc - tp + te

Inserting brackets

û = (xp - Ža) - Cão - c ) +

+

ão - āc) - (Ăp - Te)

Since all terms in brackets are equal to each other , it follows that :

o if no interaction is present .

Note that the & a ; = 0 for the contrast .
.

In this case :

SE? MSęża? /n ;

If n ; are equal to n , then
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SE2
MSE ( 8 )

In the case of the Scheffe methodology :

52 - (
dfinteraction ) Fa ( 2 x 2 ) F

: 4F

a

or ,

S =

= 2V FC

These values for ( SE S ) could be the same for examining interaction components

in the interval { f2 , f3 } and { f1 , f3 } .

Summary

This notation ( chaining ) can be applied for two factor interactions where the

factors are at any number of levels . Each linear component of the total interaction

can be examined to determine which component ( s ) contributed to the overall

significant interaction . As the examples presented in this paper show , a

statistically significant interaction ( per the omnibus F test ) does not imply that

all components of the total interaction are statistically significant . The post - hoc

analysis of the interaction should lead to improved insights about the data just as

these methods aid in the analysis of the main effects . Both Scheffe and Bonferroni

methods were applied to the example data . No differences were made in the decision

concerning which components of the interaction were significant and the differences

between the " critical differences" were small . It should be noted that these

comparisons are based on just two examples using a two-way ANOVA . The differences

may become more apparent for more complex designs .
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ABSTRACT

The ICC is a personal camouflage net for soldiers which will be useful

for patrols , snipers , and ambush situations . This study determined whether

the ICC should have large or small Hogan incisions , and what color ( s ) best

blended with the desert backgrounds . Ten U.S. Marines and two civilians ,

subjectively evaluated seventy-four ICCs ( thirty-seven different colors half

large and half small Hogan incisions ) at five desert sites . The ICCs were

ranked in groups of six , selecting four at a time , to reduce the number to the

final six colors with associated incisions . The final six were subjected to

paired comparison rankings which overcomes the problem of inconsistency of

judgements given by the same observer . The data was analyzed statistically to

determine preferred color with associated incision , establish confidence

limits , and color grouping for each site and across all sites .

1.0 SECTION 1 INTRODUCTION

The Countersurveillance and Deception Division was tasked by FORSCOM in

early 1986 to develop the individual camouflage cover ( ICC ) for desert ,

woodland , and snow environments . The ICC is a small cloth cover , 5 ' x 7 ' ,

which will weigh about 10-14 ounces , and be able to fit into a battle dress

uniform pocket when not being used . It will deny the detection of a prone

soldier in an ambush situation , or when on a surveillance , long- range patrol

situation . The purpose of this study was twofold . The task first was to

determine if a small or large Hogan garnish incision was best . The second

task was to determine the best desert color to accompany the incision . Five

sites were selected in the desert southwest , and the ICCs were evaluated by

ground observers as to how well they blended with the desert backgrounds .

2.0 SECTION 2 PROCEDURE

2.1 Test ICCS .

There were a total of thirty-seven variations of desert colors for this

study . The nucleus of these colors was taken from the Saudi Arabian net

palette study. These original colors were tested in the deserts of Saudi

Arabia21 and the u.s. desert southwest . Additional colors were obtained

through modification . Each of thirty-seven colors were painted on seventy

four vinyl - coated sheets , 5 ' x 7 ' , which were then incised with either the

small or large Hogan incision . Thus , there was a total of seventy- four

vinyl-coated ICCs - thirty-seven small Hogans and thirty-seven large Hogans .
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2.2 Test Sites .

Five sites were used to evaluate the ICCs . Two of the sites were in the

Yuma , Arizona area , two at Anza Borrego State Park , California , and one at Jean

Lake , near Las Vegas , Nevada . Both sites at Anza Borrego State Park were sandy

with small stones . Vegetation was very sparce . Yuma site # 1 was very sandy with

some vegetation , while Yuma site #2 was on Ogilby Road and was rocky with very

sparce vegetation . The Jean Lake site contained moderate vegetation with rocks ,

and was located on a hillside .

2.3 Test Subjects .

The test subjects consisted of ten enlisted U.S. Marine Corps personnel from

Camp Pendleton , California , and two civilians from the Belvoir Research , Develop

ment , and Engineering Center , Fort Belvoir , Virginia . All personnel had

corrected 20/20 vision and normal color vision . No observations were made with

sunglasses .

2.4 Data Generation .

The seventy-four Hogan incised ICCs were randomly assigned to groups of six

each . The four that best blended with the desert environment , in terms of color

and texture , were selected and put aside for additional evaluations .

process continued until the original seventy- four ICCs were reduced to the six

best . The best six ICCs were then shown in all possible pairs - fifteen , with

the best ICC for each pair chosen for ability to blend with the desert . The

number of times the individual ICC was judged to be the best was tabulated and

subjected to data analysis .

3.0 SECTION 3 RESULTS

The ICCs were evaluated at each of the five sites to determine which colors

best blended with the desert environment . Section 2.4 describes how the best six

ICCs were selected for each site . Table 1 shows the top six colors for each of

the five sites .

TABLE 1

Summary of the Best Six Desert ICCs for Each Site

Site

Yuma

Site 1

Yuma

Site 2

Anza Borrego

Site 1

Anza Borrego

Site 2Jean Lake

X

Xх

X

х

X

X

X

х

х

х

Colors

P6-S

W-S

XI -S

XI-L

12- S

21 -s

21 - L

26 - S

26-L

33-S

33 -L

37-S

X

хx

х

X

X

хх

X

X

х

х

X

X

х X

х

х

NOTE : The L is large Hogan incision , while s is small Hogan incision . Net

33-S is the only color to make the best six colors for all five sites .
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The results of each site for the above six best nets will not be

included , because they would be too voluminous to present in these pro

ceedings . This data is available upon request from the U.S. Army Belvoir

Research , Development and Engineering Center , ATTN : STRBE - JDS , Fort Belvoir ,

VA 22060 . When averaging the final best six ICCs across all five sites , a

total of twelve ICCs made the best list . Some nets such as 37 -S made the

final six ICCS for only one site . A value of zero was added for each cell

block when the ICC did not make the final six for that particular site .

Tables 2-4 contain the statistics for the twelve ICCS . Figure 1 is the

graphic display of Table 2 . Table 5 describes the final twelve ICC nets as to

color and incision .

TABLE 2

Descriptive Data for Final ICCs ( Color Blend )

with Desert Background , Across All Sites

STANDARD

ERROR

95% CONFIDENCE INTERVAL

LOWER LIM UPPER LIMCOLOR N MEAN

P6-S

W-S

XI -S

XI -L

12- S

21 - S

21 -L

26-5

26 -L

33-S

33 -L

37 - S

59

59

59

59

59

59

59

59

59

59

59

59

0.1864

1.4237

1.5932

1.6780

0.1017

0.9153

0.9831

2.8983

1.2712

2.7119

0.6610

0.5763

0.6010

1.6422

1.5550

1.8795

0.6616

1.3808

1.2931

1.8541

1.7304

1.4026

1.1539

1.2206

0.0298

0.9957

1.1879

1.1881

0.0000

0.5554

0.6460

2.4151

0.8202

2.3463

0.3603

0.2581

0.3431

1.8517

1.9985

2.1678

0.2741

1.2751

1.3201

3.3816

1.7222

3.0774

0.9618

0.8944

Note that the higher the mean value , the better the ICC blended with the

desert environments .

TABLE 3

Analysis of Variance for Final ICCs ( Color Blend )

with Desert Background , Across All Sites

SOURCE DF SUM OF SQUARES MEAN SQUARE F - TEST SIG LEVEL

22.88 23 0.0000*Color

Error

Total

11

696

707

508.5466

1406. 2034

1914.7500

46.2315

2.0204

* Significant at a less than .001 level .

This table indicates that there are significant differences in the

ability of the final ICCs to blend with the desert backgrounds . Table 4

identifies which ICCs are significantly different from each other .
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High

+3.50

+3.00

+2.50Abil

ity

to +2.00

Blend

+1.50

*

+1.00

+0.50.

0.007Low 0.00 *

P6- S W- S XI -S XI -L 12-5 21 -S 21 -L 26-5 26-L 33-S 33-L 37-S

COLORS

Figure 1 . Ability of the Final ICCs to Blend with

Desert Background , Averaged Across All Sites .

TABLE 4

Individual Comparisons , Identifying Which of the Final

ICC Colors Differed Significantly from Each Other ,

Averaged Across Sites

COLOR P6-S

COMPARISON =

22.352

AND COLOR W- S

-1.23729 SUM OF SQUARES =

SIGNIFICANCE LEVEL 3 0.00000

45.16102

***

COLOR P6 -S

COMPARISON =

28.896

AND COLOR XI -S

-1.40678 SUM OF SQUARES

SIGNIFICANCE LEVEL =

58.38136

***0.00000

COLOR P6-S

COMPARISON =

F 32.482

AND COLOR XI -L

-1.49153 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.00000

65.62712

***

COLOR P6 -S

COMPARISON -

F = 0.105

AND COLOR 12-S

0.084 75 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 1.00000

0.21186
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TABLE 4 ( Cont )

COLOR P6 -S

COMPARISON =

F = 7.756

AND COLOR 21 -S

-0.72881 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.00543

15.66949

**

COLOR P6 -S

COMPARISON =

F = 9.266

AND COLOR 21 -L

-0.79661 SUM OF SQUARES

SIGNIFICANCE LEVEL :

18.72034

**0.00238

COLOR P6-S

COMPARISON =

F = 107.379

AND COLOR 26 -S

-2.71186 SUM OF SQUARES = 216.94915

SIGNIFICANCE LEVEL 3 0.00000 ***

COLOR P6-S

COMPARISON =

F = 17.181

AND COLOR 26 -L

-1.084 75 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.00004

34.71186

***

COLOR P6- S

COMPARISON :

93.122

AND COLOR 33 -S

-2.52542 SUM OF SQUARES = 188,14407

SIGNIFICANCE LEVEL 3 0.00000 ***

COLOR P6-S

COMPARISON =

3. 288

AND COLOR 33 -L

-0.47458 SUM OF SQUARES

SIGNIFICANCE LEVEL =

6.64407

0.06998

COLOR P6-S

COMPARISON -

F = 2.219

AND COLOR 37 - S

-0.38983 SUM OF SQUARES

SIGNIFICANCE LEVEL =

4.48305

0.13656

COLOR W-S

COMPARISON =

F : 0.419

AND COLOR XI - S

-0.16949 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.51732

0.84 746

COLOR W-S

COMPARISON =

F = 0.944

AND COLOR XI -L

-0.254 24 SUM OF SQUARES

SIGNIFICANCE LEVEL 3

1.90678

0.33148

COLOR W-S

COMPARISON :

25.519

AND COLOR 12-S

1.32203 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.00000

51.55932

***

COLOR W-S

COMPARISON =

F : 3.775

AND COLOR 21 - S

0.50847 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.05222

7.62712

COLOR W-S

COMPARISON :

2.835

AND COLOR 21 -L

0.44068 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.09243

5.72881

COLOR W-S

COMPARISON :

31.748

AND COLOR 26-S

-1.47458 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.00000

64.14407

***
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TABLE 4 ( Cont )

COLOR W-S

COMPARISON :

F = 0.340

AND COLOR 26-L

0.15254 SUM OF SQUARES -

SIGNIFICANCE LEVEL 3 0.56006

0.68644

COLOR W-S

COMPARISON =

F = 24.227

AND COLOR 33-S

-1.28814 SUM OF SQUARES - 48.94915

SIGNIFICANCE LEVEL = 0.00000 ***

COLOR W-S

COMPARISON =

F = 8.494

AND COLOR 33 -L

0.76271 SUM OF SQUARES =

SIGNIFICANCE LEVEL 3 0.00362

17.16102

tik

COLOR W- S

COMPARISON =

10.486

AND COLOR 37 -S

0.84 746 SUM OF SQUARES -

SIGNIFICANCE LEVEL 3 0.00123

21.18644

**

COLOR XI -S

COMPARISON =

F = 0.105

AND COLOR XI -L

-0.084 75 SUM OF SQUARES =

SIGNIFICANCE LEVEL 3 1.00000

0.21186

COLOR XI - S

COMPARISON 3

32.482

AND COLOR 12-S

1.49153 SUM OF SQUARES

SIGNIFICANCE LEVEL = 0.00000

3
65.62712

***

COLOR XI -S

COMPARISON :

F = 6.711

AND COLOR 21 -S

0.67797 SUM OF SQUARES :

SIGNIFICANCE LEVEL = 0.00968

13.55932

**

COLOR XI -S

COMPARISON =

F = 5.436

AND COLOR 21 -L

0.61017 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.01987

10.98305

*

COLOR XI -S

COMPARISON :

F : 24.869

AND COLOR 26 -S

-1.30508 SUM OF SQUARES -

SIGNIFICANCE LEVEL 3 0.00000

50.24576

ttt

COLOR XI-S

COMPARISON =

F = 1.514

AND COLOR 26-L

0.32203 SUM OF SQUARES

SIGNIFICANCE LEVEL 3

3.05932

0.21870

COLOR XI-S

COMPARISON =

F = 18.271

AND COLOR 33-S

-1.11864 SUM OF SQUARES =

SIGNIFICANCE LEVEL 3 0.00002

36.91525

***

COLOR XI -S

COMPARISON =

F = 12.688

AND COLOR 33 -L

0.93220 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.00038

25.63559

***

COLOR XI-S

COMPARISON 3

F = 15.100

AND COLOR 37 -S

1.01695 SUM OF SQUARES =

SIGNIFICANCE LEVEL 3 0.00011

30.50847

***
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TABLE 4 ( Cont )

COLOR XI -L

COMPARISON =

F = 36.278

AND COLOR 12- S

1.57627 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.00000

73.29661

***

COLOR XI -L

COMPARISON =

F = 8.494

AND COLOR 21 - S

0.76271 SUM OF SQUARES

SIGNIFICANCE LEVEL :

17.16102

**0.00362

COLOR XI -L

COMPARISON =

F = 7.051

AND COLOR 21 -L

0.69492 SUM OF SQUARES

SIGNIFICANCE LEVEL :

14.24576

**0.00801

COLOR XI -L

COMPARISON :

F = 21.744

AND COLOR 26 - S

-1.22034 SUM OF SQUARES

SIGNIFICANCE LEVEL =

43.93220

***
0.00000

COLOR XI -L

COMPARISON =

F = 2.416

AND COLOR 26 -L

0.40678 SUM OF SQUARES

SIGNIFICANCE LEVEL 3

4.88136

0.12032

COLOR XI -L

COMPARISON =

F = 15.608

AND COLOR 33 -S

-1.03390 SUM OF SQUARES

SIGNIFICANCE LEVEL =

31.53390

***0.00008

COLOR XI -L

COMPARISON =

F = 15.100

AND COLOR 33 -L

1.01695 SUM OF SQUARES

SIGNIFICANCE LEVEL =

30.50847

***0.00011

COLOR XI -L

COMPARISON =

17.722

AND COLOR 37 -S

1.10169 SUM OF SQUARES

SIGNIFICANCE LEVEL =

35.80508

***0.00003

COLOR 12-S

COMPARISON =

F = 9.664

AND COLOR 21 -S

-0.81356 SUM OF SQUARES

SIGNIFICANCE LEVEL =

19.52542

**0.00192

COLOR 12 - S

COMPARISON =

F = 11.342

AND COLOR 21 -L

-0.88136 SUM OF SQUARES

SIGNIFICANCE LEVEL =

22.91525

***0.00078

COLOR 12-S

COMPARISON =

114.195

AND COLOR 26 -S

-2.79661 SUM OF SQUARES

SIGNIFICANCE LEVEL =

230.72034

0.00000 ***

COLOR 12- S

COMPARISON =

19.970

AND COLOR 26 -L

-1.16949 SUM OF SQUARES

SIGNIFICANCE LEVEL =

40.34 746

***
0.00001

COLOR 12-S

COMPARISON =

F = 99.477

AND COLOR 33 -S

-2.61017 SUM OF SQUARES

SIGNIFICANCE LEVEL =

3
200.98305

0.00000 ***
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TABLE 4 ( Cont )

COLOR 12-S

COMPARISON =

4.568

AND COLOR 33 -L

-0.55932 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.03275

9.22881

*

COLOR 12-S

COMPARISON =

F = 3. 288

AND COLOR 37 -S

-0.47458 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.06998

6.64407

COLOR 21 -S

COMPARISON =

F = 0.067

AND COLOR 21 -L

-0.06780 SUM OF SQUARES

SIGNIFICANCE LEVEL =

0.13559

1.00000

COLOR 21 -S

COMPARISON :

F = 57.418

AND COLOR 26 -S

-1.98305 SUM OF SQUARES = 116.00847

SIGNIFICANCE LEVEL = 0.00000 ***

COLOR 21 -S

COMPARISON =

F = 1.850

AND COLOR 26 -L

-0.35593 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.17403

3.73729

COLOR 21-5

COMPARISON =

F = 47.129

AND COLOR 33 -S

-1.79661 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.00000

95.22034

***

COLOR 21 -S

COMPARISON =

F = 0.944

AND COLOR 33 -L

0.254 24 SUM OF SQUARES

SIGNIFICANCE LEVEL =

1.90678

0.33148

COLOR 21 -S

COMPARISON =

F : 1.678

AND COLOR 37 -S

0.33898 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.19543

3.38983

COLOR 21 -L

COMPARISON =

53.559

AND COLOR 26 -S

-1.91525 SUM OF SQUARES

SIGNIFICANCE LEVEL =

108.21186

0.00000 ***

COLOR 21 -L

COMPARISON =

F : 1.212

AND COLOR 26 -L

-0.28814 SUM OF SQUARES

SIGNIFICANCE LEVEL =

2.44915

0.27108

COLOR 21 -L

COMPARISON =

F = 43.639

AND COLOR 33 -S

-1.72881 SUM OF SQUARES

SIGNIFICANCE LEVEL =

88.16949

***
0.00000

COLOR 21 -L

COMPARISON =

F = 1.514

AND COLOR 33 -L

0.32203 SUM OF SQUARES

SIGNIFICANCE LEVEL =

3.05932

0.21870

COLOR 21 -L

COMPARISON =

F = 2.416

AND COLOR 37 -S

0.40678 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.12032

4.88136
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TABLE 4 ( Cont )

COLOR 26-S

COMPARISON =

F = 38.656

AND COLOR 26-L

1.62712 SUM OF SQUARES =

SIGNIFICANCE LEVEL : 0.00000

78.10169

***

COLOR 26-S

COMPARISON =

F = 0.508

AND COLOR 33 -S

0.18644 SUM OF SQUARES

SIGNIFICANCE LEVEL =

1.02542

0.47633

COLOR 26 -S

COMPARISON =

F = 73.085

AND COLOR 33-L

2.23729 SUM OF SQUARES

SIGNIFICANCE LEVEL =

147.66102

0.00000 ***

COLOR 26 -S

COMPARISON =

78.726

AND COLOR 37-S

2.32203 SUM OF SQUARES = 159.05932

SIGNIFICANCE LEVEL = 0.00000 ***

COLOR 26-1

COMPARISON :

F : 30.305

AND COLOR 33 -S

-1.44068 SUM OF SQUARES =

SIGNIFICANCE LEVEL = 0.00000

61.22881

***

COLOR 26 -L

COMPARISON =

F = 5.436

AND COLOR 33 -L

0.61017 SUM OF SQUARES

SIGNIFICANCE LEVEL 3

10.98305

*0.01987

COLOR 26 -L

COMPARISON :

F = 7.051

AND COLOR 37 -S

0.69492 SUM OF SQUARES

SIGNIFICANCE LEVEL =

14.24576

**0.00801

COLOR 33-5

COMPARISON =

F = 61.412

AND COLOR 33 -L

2.05085 SUM OF SQUARES

SIGNIFICANCE LEVEL =

124.07627

0.00000 ***

COLOR 33-S

COMPARISON =

F = 66.592

AND COLOR 37 -S

2.13559 SUM OF SQUARES

SIGNIFICANCE LEVEL =

134.54 237

0.00000 ***

COLOR 33-L

COMPARISON =

F = 0.105

AND COLOR 37 -S

0.08475 SUM OF SQUARES =

SIGNIFICANCE LEVEL 1.00000

0.21186

The following ICCs differed significantly from each other : P6 -S vs. W-S ,

P6-S vs. XI -S , P6 -S vs. XI-L , P6- S vs. 21 -S , P6- S vs. 21 -L , P6-S vs. 26-S ,

P6-S vs. 26 -L , P6-S vs. 33 -S , W-S vs. 12- S , W- S vs. 26-S , W- S vs. 33 -S , W- S

vs. 33 -L , W- S vs. 37 -S , XI -S vs. 12- S , XI - S vs. 21 - S , XI - S vs. 21 -L , XI -S vs.

26 - S , XI -S vs. 33 -S , XI- S vs. 33 -L , XI - S vs. 37 -S , XI-L vs. 12- S , XI -L vs.

21 -S , XI -L vs. 21 -L , XI -L vs. 26 -S , XI -L vs. 33- S , XI-L vs. 33 -L , XI -L vs.

37 -S , 12- S vs. 21-5 , 12- S vs. 21 -L , 12- S vs. 26-5 , 12-S vs. 26 -L , 12-S vs.

33 - S , 12 - S vs. 33 -L , 21 -S vs. 26-s , 21 - S vs. 33-5 , 21 -L vs. 26 -s , 21 -L vs.

33-5 , 26 -S vs. 26-L , 26 -S vs. 33 -L , 26- S vs. 37-5 , 26-L vs. 33-S , 26 -L vs.

33 -L , 26-L vs. 37-5 , 33 - S vs. 33 -L , and 33 -S vs. 37 -S .

*
Significant at a less than .05 level .

** Significant at a less than .01 level .

*** Significant at a less than .001 level .
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TABLE 5

Physical Description of the Final Twelve ICCS

COLOR/ INCISION DESCRIPTION

P6-S
Black spots on tan color 26 , color XI

on reverse side .

W- S
A fifty-fifty mixture of Saudi Arabian

color 8 and 7 in both sides of the net .

XI - S Standard tan color on both sides of the

net .

XI -L
Same color as XI -S , only this ICC has

large incisions .

12 - S New color on both sides of net .

21 - S Color XI on one side of the net , new

color 33 on the other side .

21 -L Same color as 21 , only this ICC has

large incisions .

26 - New color on both sides of net .

26 -L Same color as 26 , only this ICC has

large incisions .

33 - S New color on both sides of net .

33 -L Same color as 33 , only this ICC has

large incisions .

37 -S Color XI on one side of the net , with

color W on the other side .

Note that s is small Hogan incisions , while L is large Hogan incisions .

4.0 SECTION 4 DISCUSSION

All the colors were on the gray or tan scale , with the tan colors rated

as having the most ability to blend with the desert background . Table 1 shows

that the pattern ICC net P6 -S was the only multi -color to make the final

twelve ICCS , and it along with net 12- S was judged by the ground observers as

having the least ability to blend with the desert background when averaged

across all five sites . Net 33 -S was the only net to make the final six for

all sites ICC 26-S was a final net for all sites , except for Yuma site #2 .

These nets did not significantly differ from each other ( a = 0.476 ) , with net

33-5 having a preference rating of 3.07 to 3.38 for net 26-S . The Yuma site

# 2 area was very rocky , while the other sites were very sandy . The test team

has seen deserts in Egypt and Saudi Arabia , and these deserts were very sandy .

Therefore , net 26-S appears to be the best ICC for general desert use . This

color was among the best six at Yuma site #2 , only it had large Hogan inci
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sions ( 26 -L ) . The texture of the rocks is larger and more rough in appearance

than that of sand . It appears that the texture of the rocks was the driving

force in the selection of 26 -L rather than 26-S . Four of the top five ICCS ,

26-5 , 33-5 , XI - S and W-s , were small incisions . The only exception is ICC

XI -L . Except for very rocky deserts , the small incision blends best with the

texture of the desert floor . Desert color paint studies2,3,4 / have shown that

the desert southwest is a darker more gray desert than those seen in Saudi

Arabia and Egypt . Additional deserts of interest in the Middle East should be

photographed and soil samples studied before a final decision is made for the

colors 26 and 33 .

5.0 SECTION 5 SUMMARY AND CONCLUSIONS

A total of thirty-seven colors were painted on seventy- four vinyl -coated

sheets 5 ' x 7 ' . Each color was given either the small or large Hogan

incision . These ICCS were then taken to five sites in the desert southwest

and evaluated as to their ability to blend with the desert background in terms

of color and texture . Ten enlisted U.S. Marine Corps personnel from Camp

Pendleton , California , and two civilians from the Belvoir Research ,

Development and Engineering Center , Fort Belvoir , Virginia , served as ground

observers . The seventy- four ICCS were randomly assigned to groups of six

each . The four ICCs that best blended with the desert environment were

selected and put aside for additional evaluation which continued until the

best six for each site remained . These best six ICCs were then viewed on all

possible pairs ( 15 ) , with the best selected for each pair in their ability to

match the desert floor . The number of times the individual ICC was judged to

be best was tabulated and subjected to data analysis . The following

conclusions were drawn :

a . Colors 26 and 36 were the most effective in blending with the desert .

b . Color 26 was selected for initial ICC production .

C. The small Hogan incision ( S ) is more effective than the large Hogan

incision ( L ) except for very rocky terrain .

d . The U.S. desert southwest is darker and more gray than the sites seen

in the Middle East , making additional work on the two colors necessary before

final color selection .
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The Combinatorics of Message Filtering

Terence M. Cronin

US Army Signals Warfare Center , Warrenton , Virginia

Topic: Computational Aspects of Event Recognition Under Conditions of Sparse

Reporting, Uncertainty, and Information Decay

(Background : The general problem of filtering a stack of documents is arguably

context-sensitive ; i.e. , an individual document cannot be prioritized independently of

semantic knowledge about the current environment . In pursuing this line of thought,

an attempt is being made to recognize background events which change dynamically

in time , with the ultimate motivation being to assess the import of any given message

with respect to the time-criticality of the most recent set of events .

(Abstract : Given a set of message traffic and an exhaustive menu of possible events,

select the event which is best explained by the message data . This problem involves a

reasoning process known as abduction , as differentiated from the processes of

deduction and induction . An argument is made that the recognition of events from

message data is a diagnosis problem . In the medical world , disorders are diagnosed

from observation of symptoms . In the case of electronic troubleshooting , failure of a

whole circuit may be explained by failure of single components or sets of components.

In the general sense , an event may be diagnosed by careful observation of the

constituent phenomena which comprise the event. With respect to battlefield

situation assessment, both the manifestations for events and the events themselves

change dynamically as more message traffic enters the system , since the decay of one

event is accompanied by the emergence of another over time . This paper develops a

formal theory of machine -assisted event recognition , but also casts an eye on the

feasibility of implementation . Treated with some rigor are the combinatorics

associated with such new formalisms as suspecting an event; confirming an event;

computing the threat of an event ; revoking a stale event ; introducing two levels of

relaxation into statistical testing ; recovering from fundamental forms of string error ;

and the number of feasible ways to filter a stream of n messages.
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Fundamentals : Definitions and Concepts.

A message m is a feature vector together with a string of text : m = {x1 ,

X2 , ... , Xn , Xstring} . The feature vector is a set of sensor-measurable observable

attributes of a manmade object. The string represents natural language which may

have been generated by one of two communicators : either an individual who in some

way controls the manmade object, or an outside observer describing the interaction of

the object with the world .

The timeliness of a message mi is the time t ; at which its feature vector

was created (time at sensor detection ). A message mi is said to be more timely than

message mjiff t; > tj .

A map y is a spatially organized representation of a section of the world

upon which the manmade objects referenced in messages move about.

A constituent phenomenon g is a logical function of message data

conjoined with map data . If the expression g(xi ,y) evaluates to true , then g(xi.y) 1 ;

otherwise g(xi.y) = 0 .

An evente is a set of constituentphenomena : e = {91.92 , ... , gk }

The message set M is the set of all messages : M = {mili = 1 ,n} .

The event space E is the set of all events : E = {eili = 1.m}.
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Becoming Suspicious, Amassing Support, and Confirming Event Hypotheses.

The problem of recognizing an event by aggregating the truth or falsity

of its message-derived constituent phenomena is being treated as a diagnosis problem .

Message -driven event recognition must avail itself of a reasoning process known as

abduction (as contrasted with induction and deduction ), in which the event which best

explains the message data is selected as the most likely hypothesis, even when the

message data is incomplete , subject to some error , and describe temporally transient

phenomena . This form of automated reasoning is still very much a research issue , with

several disjoint efforts seemingly offering potential leverage . An abductive

inferencing mechanism is being explored for a medical domain , by assembling those

hypotheses which are best explained by a set of data (J1 ) . There has been promising

work recently in the areas of justification -based and assumption -based truth

maintenance systems ( D1 , D2 , M1 ) . These techniques achieve truth maintenance by

detecting inconsistency, followed respectively by dependency-directed backtracking ,

or by gathering the most general context which preserves consistency. Yet another

interesting line of research is a minimal covering set theory approach (N1 , P1 ), which

attempts to diagnose medical disorders by constructing the least set of symptoms

which point to each disorder. However, the computational feasibility of this technique

is questionable , since derivation of the minimal covering set belongs to the class of

NP -complete problems ( G1 ) .

The foundation of a new theory of event recognition emerges if one

unifies the disciplines of truth maintenance systems with minimal covering sets . If a

dimension is added to accomodate other than temporally static situations, then the

theory permits recognizing events from their manifestations, when both the events

and their manifestations may be changing dynamically in time . A crucial underpinning

of the theory is that the emergence of a new event is inversely proportional to the

decay of an older event, since the same observable primitive resources are involved .

Also assumed as axiomatic is the concept that full credence in an event is well nigh

impossible, due to the non -systematic way in which evidence accrues, together with

the difficulty in retracting an assertion once it is assigned a probability of one [ K3 ) .

Therefore, the theory must be capable of confirming events when only partial support

is manifested . It will be seen that this becomes feasible if one is permitted to revoke

support for phenomena which have already emerged and sustained under both spatial

and temporal constraints .
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A message m is said to support an event e if and only if there exists some

feature xi of m , some constituent phenomenon gk of e, such that gk(xi ) evaluates to

true . If such is the case , we also say that phenomenon gk is supported by m . Any

unsupported phenomenon of e is called a virtual phenomenon .

Entropy is a measure of information not available to make a decision

about an event's feasibility . In this context, entropy is synonymous with uncertainty .

A phenomenon entropy function fp assigns to each constituent

phenomenon gk of an event e; some integer value nk based on the relative utility of

gk : fplgk) = nk. Phenomenon gk is said to have entropy value nk . Small values are

assigned to constituent phenomena which are of minimal use in the decidibility of

event ei .

There exists some object X which

is located near some river Y and

X is constructing a bridge .

9

Although no such object has

been reported upon , if x is

assumed , then some of the other

constituent phenomena are true .

5

Object X has historically been

shown capable of conducting

an operation of this semantic

type
8

All other objects { Z } which

are organizationally associated

with X are within a reasonable

spatial radius of X.

There exist same objects of { Z }

spatially and temporally

configured to support X.

The coordinates of object X seem

to represent a reasonable part

of river Y for conducting a

cros ng operation .6

River Crossing Constituent Phenomena

Figure 1. Illustration of Constituent Phenomena and Respective Entropy Values for a Hypothetical

Event. Note the Subjunctive Voice of the Upper Right Phenomenon .

The total entropy Te of an event ei is the sum of its phenomenon entropy

values : Te = Efp(gk) , k = 1 ,n .
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The instantiated entropy le of an event e ; is the sum of the entropy values

associated with the currently supported phenomena of ej .

The suspicion -ratio for an event ei is the quotient of the instantiated

entropy of e ; with the total entropy of ej .

Natural

x1,x2 , 3,.... , xm

Language

베
e
t

22 5 35 12 10

Total Entropy 84

Instantiated Entropy 37

Suspicion ratio .44

Figure 2. A single message supporting some constituent phenomena of a single event, with total and

instantiated entropy values illustrated , together with the instantaneous suspicion -ratio .

The suspicion accumulator snlei) for an event ei is a temporal sequence of

suspicion - ratios, updated whenever a new message is processed .

The volume- ratio for an event ei is the quotient of the number of

messages which support e ; with the total number of messages contained within a time

frame of interest.

The volume accumulator vn ( ei) for an event ei is a temporal sequence of

volume-ratios, updated whenever a new message is processed .

The suspicion -volume accumulator svnlek) for an event ek is the

sequence defined by the point-by -point multiply of the suspicion accumulator with the
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volume accumulator : sun (ek ) = { si(ek ) * vilek) i = 1, n }, where n is the number of

messages processed during the time frame of interest .

An event ei warrants suspicion -arousal if its suspicion - ratio exceeds a

specified necessity condition , or if its suspicion accumulator sequence becomes

monotonically increasing .

Example. The figure below depicts an event template which contains a

total entropy of 27 information units, within a framework of 10 constituent

phenomena . Suppose the criterion for suspicion - arousal is that the instantiated

entropy be greater than 6 information units . There are 210 = 1024 ways of logically

conjuncting the 10 constituent phenomena . An Interlisp search routine was

implemented to identify those which fail to trigger suspicion -arousal . Result : 78 cases

fail to satisfy the criterion .

5 1 2 1 1

3 2

Figure 3. One of 78 Event Template Configurations (out of 1024) which Fails to Trigger

Suspicion-arousal Under the Specified Constraint.

A temporal cusp is defined to be a point in time when the

suspicion -volume accumulator sequence for one event becomes monotonically

increasing (decreasing) , while concurrently the suspicion -volume accumulator for

another event becomes monotonically decreasing (increasing ) .
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An event ei warrants suspicion -confirmation if its suspicion - ratio exceeds

a specified sufficiency condition , or a temporal cusp favorable to ei is detected and all

other events have less instantiated entropy than ej .

Exercise . Consider the message stream below together with support arcs

pointing to events (the dashed lines represent phenomenon revocation , which is

defined in the next section , but for the purpose of this example causes cancellation of

a support arc) . Compute the suspicion -accumulator, volume-accumulator, and

suspicion -volume accumulator sequences for events El and E3 . Also identify any

messages which cause a temporal cusp .

Messages

M1 M2 M3 M4 M5

E1 E2 E3 E4

Events

Solution.

time
Sn(E1 ) VnE1) Sn(E3) Vn(E3)

M1

M2

M3

{.33} { 1.0}

{.33 ,.33} (1.0,1.0}

( .33 ,.33,.50 ) ( 1.0,1.0,1.0}

{.33.33,50 ,.33 } ( 1.0,1.0,1.0,.75}

1.33,33,50 ,.33 ,.17 ) (1.0,1.0,1.0,.75, .60}

E1 : {.33,.33,.50 ,.25,.10}

{0.0} {0.0)

{0.0.0.0} {0.0.0.0}

{0.0.0.0,.25) (0.0.0.0,.33}

{ 0.0.0.0 ,.25 ,.50 } { 0.0.0.0 ,.33 ,.50 )

(0.0,0.0,.25,50,.50} {0.0.0.0 ,.33.50..60 }

E3 : {0.0.0.0, .08, .25,.30}

M4

M5

SVn
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Figure 4. An illustration of the suspicion accumulator and volume accumulator sequences for two

events. Also shown are the suspicion-volume accumulators for each . The dashed lines indicate

strong-sense constituent phenomenon revocation (defined below) . Message M4 causes a temporal

cusp, together with suspicion-confirmation of E3 (assuming that the instantiated entropy for E1 is

diminutive when compared to that of E3) .

an

Note that this theory of event recognition relies upon monotonic

conditions induced by the conservation of resources shared by events evolving in time ,

and by so doing abstains from decision based on numerical thresholds. In the example

above, suspicion about the existence of E3 was confirmed with only half its constituent

phenomena instantiated by message evidence, and with instantaneous

suspicion -volume accumulator value of only .25 !

A potentially powerful technique to abduce an event from message data

is the occasional use of the subjunctive voice when attempting to logically instantiate

the constituent phenomena of an event. It may be the case that several constituent

phenomena become true if the truth of just one primitive clause is (for the time being)

assumed , even though the message data has not yet corroborated the primitive clause .

Refer back to Figure 1 for an instance of the explicit use of the subjunctive voice .
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Discounting Events which have already Emerged, Sustained, and Decayed in Time .

Much attention has been paid in the literature to deciding when an event

is supported by evidence . Equally important is determining when an event no longer

warrants having its constituent phenomena maintained because of the decay of

information over time . Currently automated systems are frequently incompetent when

event probabilities reach a plateau . When such is the case, a computer process should

be capable of deciding whether the event is continuing to progress, or has already

sustained and decayed . When an event becomes obsolete, automated techniques are

required to revoke its constituent phenomena so that the computer's belief in the

event is retracted , or at least discounted . The following section describes a set of

computational techniques designed to solve problems in this area .

A message mj is said to be revocation -provocative in the weak sense with

respect to event ek iff 3 some message mi less timely than mj ; xs e mi , mji 9t e eki

gt(xsmi) = 1 , and gt( xs | mj ) = 0. See Figure 5 .

MOG :

Figure 5. Weak-sense Phenomenon Revocation .

one

Discussion . Weak-sense phenomenon revocation may provide the rudiments for

automated non-monotonic reasoning. Before may accomodate the

unanticipated , one must be capable of suspending belief in a previous state of the

world by reasoning in the following way :

a) Some object has obtained new spatial and temporal coordinates which negate

belief in an earlier set of coordinates which were accountable by some event ;
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b) No other explicitly modeled event contains constituent phenomena capable of

explaining the new coordinates.

Once an automaton demonstrates a weak-sense phenomenon revocation capability,

its next logical step would be to generate a new event to explain the coordinates of

the errant object. There is currently no technology available to perform this process,

and it is not likely that there will be for some time , since a leap of this magnitude is

intrinsically linked to data -driven templating , and learning by discovery .

A message mj is said to be revocation-provocative in the strong sense

with respect to event ek iff 3 some event el different from event ek, 3 some messsage

mi less timely than mj ; xs mi , mj ; gt € eki gu fel ; with gt(xslmi ) = 1 , gt(xslmj ) = 0 ,

and gu (xslmj ) = 1 .

MSG 1

is 1 1. vil

MSG 3

Z ! < 2 , 12 )

Figure 6. Strong-sense Phenomenon Revocation .

An event ej becomes stale if both its suspicion and volume accumulator

sequences become strictly monotonically decreasing .

An event ei warrants having its attributes revoked (i.e. , its constituent

attributes gi set to 0) under two conditions :

i . A temporal cusp unfavorable to e ; is detected.

ii . e ; is determined to be stale .
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Event Stasis Induced by External Phenomena.

Under certain conditions the constituent phenomena of an event may

become inert for protracted periods of time . In such a situation , the event is said to be

undergoing stasis. Stasis is caused by the existence of external phenomena (not

associated with the event) which tend to force spatial immobility upon the objects

which (logically conjoined with a map) define the constituent phenomena of the

event.

The stasis factor of an event is defined to be the tendency for the

constituent phenomena of an event to remain inert. The stasis factor is computed by a

two -step process:

1 . Construct the stasis matrix as follows : for each constituent

phenomenon (whether instantiated or virtual) belonging to the event, assign a

probabilistic estimate representing the certainty that there exist external phenomena

committed to any of the following :

a . Prolonging the constituent state .

b . Transitioning the constituent object(s) from the current state to

one recently visited .

2. Average across all probabilities derived at step 1 .

Stasis as used here is a state of the world induced by countermeasures,

and is functionally akin to the result obtained by applying a minimax criterion utilized

by game theorists.
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Threat Computation is a Nonsimplistic, Data -driven Process.

The threat of an event cannot be derived by isolating the event from its

environment. An event which unto itself seems threatening may in fact be quite

innoculous given that sufficient countermeasures are brought into play . Other factors

which must be utilized in the derivation of threat include both the nature of preceding

events and the potential impact of follow-on events . This section describes a

computationaltechnique to derive the threat of an event based on both the support

for an event and the countermeasures at hand to thwart the event.

Support

Event 1
Event 2

time

Figure 7. An Event Emerging During the Decay of its predecessor (dashed area

indicates the region of constituent phenomena revocation for the first event).

Assume that an event E1 has already transpired , and that another event

E2 may be emerging . Since the same primitive resources will be utilized in event E2 as

were used in event E1 , we expect to see the computed subjective probability of event

E2 rise at the same time that the computed probability of event E1 starts to fall (see

Figure 7) . Symbolically, we represent this as P(E21E1 ) , read " the probability that E2 is

emerging given that E1 is decaying". Earlier research focused on developing a

data -driven technique which lends itself to modeling the unsystematic skewness of

events for which message data is providing asynchronous clues, and against which

countermeasures may be progressing (C2 ) . The distribution of choice is the Weibull

distribution , which has density function :
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f(t ) = aßebate at fort > 0. 15.1 )

= 0 elsewhere ,

for a, ß > 0 .

If this function is differentiated with respect to time and set to zero , the

critical value of t is :

t B - 1 | 1 /B1

15.2 )

aß

This expression is significant because it predicts at what value of time ( in

terms of a and B) the distribution will peak . Allthat remains is to couch the probability

of an emerging event together with the countermeasures available to thwart the

event in terms of a and ß .

Computation of the Probability of Emerging Events .

Let P ( E21E1 ) be the probability that event E2 is emerging given that event

E1 is decaying . This probability is equal to the quantity obtained by normalizing the

suspicion -volume accumulator for E2 with respect to those for all other events in the

event set . This quantity is also known as the evidence for event E2 with respect to the

reference class E1 , or simply as the evidence for event E2.

Computation of the Probability of Countermeasures to an Emerging Event.

Let P (CIE2) be the probability that countermeasures are available to thwart E2, given

that E2 is emerging . This probability is computed by noting the real and virtual

constituent phenomena of E2 , setting up the stasis matrix for E2, and computing the

stasis factor across all phenomena for E2 .

Make the following substitutions for a and B in equation 5.2 :
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( 5.3 ]a = 1 / ( 1 - P (CIE2))

B = 1 / P( E21E1 ) ( 5.4)

The resultant critical value is :

[( 1 - P( E21E 1 ))( 1 - P(CIE2))]P( E21E1 )
( 5.5)

Define the threat Te of an event to be equal to this critical value . Note that threat is a

function of probability-valued functions, and is mapped to the interval (0,1).

Discussion of the computational implications of the threat expression : A close look at

equation ( 5.5) reveals that the derived threat is polynomially related to both the

support for other events (called the plausibility of the event under the

Dempster -Shafer formalism ) , and to the lack of countermeasures at hand to thwart the

event. However, threat is exponentially related to the direct support for the event.

The threat of a message is defined to be precisely equivalent to the maximal threat of

the list of events whose constituent phenomena are supported by the message . Let E ;

be the event in the event set with the maximum instantaneous suspicion ratio . The

message threat is directly proportional to both the evidence for Ej and the stasis factor

of Ej .
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Filtering Operations on Message Streams , and the Equivalence of Priority with Threat.

As messages enter a processing center for analysis, the sheer volume of

traffic can rapidly generate a backlog which begs attention . It is reasonable to seek

automated assistance in ordering the queue based on the priority of the messages, so

that the most time -critical items are presented first . Queuing based solely on either

message time of arrival or message timeliness is inappropriate because the threat of

events for which the messages provide evidence must be brought into play .

Regrettably, threat is a context-sensitive process, and must be painfully derived by

abduction of events from the message data . The following section develops two

theorems which show respectively: a) the number of ways to order a stream of n

messages ; b) the number of feasible filtering solutions on a stream of n messages .

A message stream is a queue of messages ordered chronologically by time

of arrival in the queue .

A time-ordered queue is a message queue sorted by timeliness of the

individual messages .

A filtering of a message stream m is a permutation based on ordering m

as a monotonically decreasing function of threat .

A coarse threat quantization scheme on a message stream m of n

messages is a partition of m into k threat classes such that every message contained in

m is assigned to exactly one of the k classes .

Theorem 1. Number of Possible Ways to Order a Stream of n Messages.

There are n ! ways to order a message stream of length n .

Proof. Since a filtering is a permutation on n objects, there are n ! ways to

order a message stream .

Definition . A feasible filtering solution is a filtering in which every message is

correctly assigned to a threat class by a coarse threat quantization scheme .
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Theorem 2. Number of Feasible Filtering Solutions on a Stream of n Messages.

Let P be a coarse threat quantization scheme on a message stream of

length n into threat classes {C1 , C2 , ... , Ck} . Let ICjl denote the order of class Ci . Then

the number of feasible filtering solutions is equal to 1 Cil !, i = 1 ,k ; with ICjl = n .

Proof. Let C; be an arbitrary threat class . Then the number of ways to

order ICil messages within the class is IC l !. Over all k threat classes, the number of

possible orderings is IC 11! * IC21 ! * ... ICKI ! = IC ; l !, i = 1 , k .

Example. Below is a diagram showing 9 messages coarsely quantized into

5 levels of threat . Theorem 1 asserts 9 ! = 362,880 possible orderings on this message

stream . Theorem 2 says that this number can be reduced to 1 ! * 1 ! * 3 ! * 3 ! * 1 ! = 36

feasible filterings.

High
Low

Ambiguous Redundant Irrelevant

Threat Threat

Figure 8. A Coarse Threat Quantization Scheme on 9 Messages. Application of

Theorem 2 Yields 36 Feasible Filtering Solutions on this Message Stream .
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Message Processing Sources of Error and the potential for Recovery.

Messages may contain two distinct data structures: a statistical feature

vector, and an excerpt of language uttered by a human being who in some way

interacts with the object characterized by the feature vector. Machine processing of

messages therefore involves comparing and contrasting feature vector data , together

with natural language processing . These two types of reasoning processes are

sufficiently diverse that mainstream technology thrusts in each area have been

pursued in parallel for several decades, with one thrust being in the statistical pattern

recognition arena, and the other in computational linguistics . Both technologies

continue to produce new research , and each suffers from its own peculiar form of

error . It is instructive to play the devil's advocate and construct a taxonomic error tree ,

which graphically portrays the ways in which an automated message processing system

may be fooled , either by errors in the message data, or by faulty reasoning about the

data :

Boolean Error
Statistical Error Message

Natural
Feature

Language
Vector

Non -membership

in Lexicons
Wrong

Distribution

Inappropriate

Level of

Significance

vary

Distribution

Vary

alpha

String

Error

Recovery

Multiple

Activities

Figure 9. Message Processing Error Forms and Recovery Techniques .

Feature vector error is generally attributable to measurement error of the

sensor which gave rise to the feature values, but can also occur during statistical

testing because of faulty modeling . Due to the limited sensitivity of the sensor

working within the constraints of terrain and other sources of interference, any

particular attribute value must be characterized by an error ellipse probable (EEP),
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with the semi -major axis along the perceived line -of-bearing , and the semi -minor axis

sweeping across the arc described by the angular resolution of the direction -finding

capability of the sensor .

However, there is also an error associated with modeling the statistical

distributions of the geodynamic objects which the sensors are attempting to measure .

It may be that an object's location is inappropriately characterized by a normal

distribution , whereas if the probable direction of movement is known a priori, it may

behoove the system modeler to utilize some distribution which is conveniently skewed

in the direction of the motion . Conversely, if it is known that an object is currently

stationary, it is advisable to ensure that the distribution used for modeling possesses a

bell shape .

Yet another source of error when performing statistical tests with feature

vector data is the problem associated with hardwiring a statistical level of significance

to a particular test . A Boolean decision is made about the null hypothesis based on the

outcome of this test . For example, it may be the case that a test of means fails at the

.95 confidence level , and therefore the null hypothesis is rejected out of hand . A less

biased approach would be not to make a deterministic decision about the truth of the

null hypothesis, but rather post an indication of how well the test was passed , or what

level of significance would guarantee that the test is passed .

The worst -case branching factor of introducing two levels of relaxation

into statistical testing is m X n , where m is the number of distributions used to model

phenomena , and n is the number of levels of significance over which the tests are

conducted . Knowledge -based statistical testing permits an intelligent ordering of the

tests, so that the most likely distribution (based on data -driven knowledge about the

phenomenon) is selected to be checked first . For example , a check for a moving

object's location may pass a chi -square test of means at the .95 confidence level , yet

not pass a Gaussian test until the level of significance is dropped to a .50 level . The

more powerful the search knowledge, the less costly the relaxation process. When the

data is well - modeled and sensor measurement error is at a minimum , a cost of 1 is

enjoyed , since the appropriate distribution is selected immediately, and the highest

confidence level test of means (for the given distribution ) is passed .

Because any statistical test of a null hypothesis will be passed (no matter

what the distribution ) if the confidence level is sufficiently low, it is not prudent from a

decision -theoretic standpoint to use a depth - first search during the two levels of

relaxation . Instead , it makes sense to start with a high confidence level , breadth -wise

test across an intelligently ordered menu of distributions for acceptance of the null

hypothesis, and then decrement to a lower confidence level if all tests are failed .
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Model Relaxation

Sitters
Hovers

Oirection of Hoverent

Ã

AL

Confidence - level Relaxation

5

35

Figure 10. Relaxing Both Distribution Constraints Together With Levels of Significance to Enhance

Statistical Testing.

Natural language processing , independent of the particular grammar

used , also is subject to different forms of error . The problems of ambiguous words,

anaphora , ellipsis , and prepositional phrase attachment are four areas which continue

to produce thesis -quality research . Parsers work with sets, whether they be sets of

parts of speech , sets of case frames for verbs, or sets of semantic primitives . In some

form or another, whether syntactic or semantic, all possible words and actions are

partitioned into cells ( lexicons) , each of which represents some generalized concept

about a grammar, or more generally about the world . Error in the most fundamental

sense can occur in two ways, just as in statistical testing : a string may fail to be inserted

into its proper cell ; or it may be inserted into an improper cell .

If a string of natural language fails the set membership test for any

lexicon during processing , and the string is in fact appropriate to the target domain ,

then one of two alternative hypotheses may be true : either the system designer failed

to install the string into the appropriate lexicon during the knowledge engineering

phase , or the string may be mispelled . In the former case, an intelligent natural

language parser may be able to use context to deduce the grammatical class of the

string (e.g., it is frequently possible to guess that a test string is a location ) . If on the

other hand the string is misspelled , it may be computationally feasible to recover if the
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error is not too serious. The following table enumerates the number of ways that

generic types of string error may occur during transmission , followed by the number

of strings which a machine must brute-force generate to guarantee recovery .

Some Preliminary Results Regarding n-character1 String Error Recovery

Type Error
Possibilities 2 Recovery Combinatorics3

transposition
n.1 n.1

K-extra-letters In + k)CK * 26k (n + k)CK

k -dropped -letters nCk nck * 26k

k-wrong-letters
25k

nCk * 25%

k1 -drops-and-k2 -adds4 nCk1 * (n - 61 +62)CK2 * 26k2 (n - k1 + k2)CK2 * (n + k2 )CK 1 * 26k 1

k2-adds-and -k1 -drops4 (n + k2)CK2 * 26k2 * (n + k2)Ck1 (n + k2)Ck1 * 26k 1In + k2)CK1 * 26k1 * (n + k2)CK2

1
Assuming for didactic reasons that a character is a member of the English alphabet

2 The number of ways that the error can happen in the world .

3 The number of strings which a machine must generate to guarantee recovery .

4 The processes of dropping and adding are obviously not commutative .

Implications of the String Error Combinatorial Expressions.

All string error can be explained in terms of linear combinations of added

or dropped characters. From the above table , it can be seen that guaranteed recovery

from errors of the type indicated in the last four rows requires an algorithm of

exponential complexity, since an exponent appears in the recovery combinatorics

column . It has been shown elsewhere (G1 ) that for fixed source and destination strings

and a finite number of operations, that the destination string can be derived from the

source string in polynomial time , given that characters are corrected one at a time

rather than in groups of k .
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Conclusions.

Due to context-sensitivity, the topic of message filtering cannot be

broached without addressing the more fundamental problem of recognizing events

pointed to by message evidence . To this end , a formal theory of event recognition is

being developed , complete with a treatment of the computational aspects of

implementation . Formal definitions have been developed for such concepts as

constituent phenomena, suspicion - arousal, suspicion -confirmation, weak and

strong -sense event revocation , event stasis, and the threat of an event. Combinatorial

expressions have been derived for the number of feasible ways to filter a stream of n

messages ; the branching factor introduced by permitting both distribution -level and

confidence- level relaxation during statistical tests of means ; and the number of

machine-generated strings necessary to guarantee recovery from generic forms of

string error encountered during natural language processing .

Future Directions of the Research .

Work shall continue on developing a coherent theory to explain

message-driven event recognition , with the ultimate goal being to filter a stream of

messages which are providing clues to the events . Although the work thus far has

striven to explain how a human decision maker suspects and confirms hypotheses

while handicapped with sparse data , the theory remains flawed because it is

incomplete . New work shall focus on an epistemology of reasoning with the

constituent phenomena which comprise an event. Currently driving the research is the

realization that a human problem solver frequently tests the truth of an unsupported

clause belonging to a constituent phenomenon by posing it in the subjunctive voice,

because by so doing the truth of a significant portion of the other constituent

phenomena may be induced , especially when they were for all intents and purposes

already true but for the lone dissension .

Implementation Issues.

The objects characterized by feature vector data in many applications

may be represented by a taxonomic hierarchy of semantic activities. To limit search , a

message router has been developed in Interlisp to extract the list of possible activities

alluded to by a message . The generic Conceptual Structures Representation Language
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(CSRL) developed by Ohio State University ( B1 ) is being utilized as a rapid prototyping

tool to further process the message by invoking the set of specific functional parsers

pointed to by the router list. The natural language system must of necessity be Type C,

which means that the beliefs and intentions of the communicators are taken into

account (H2 ) . As such , recent research on planning (G3, K1 , L1 ) is being investigated to

bolster the Type C NLP knowledge base, and to enhance the control of the parsers .

Since an event is defined in terms of constituent phenomena, which are themselves

defined in terms of a map, spatial representation of the objects is crucial . There has

been some commendable work undertaken to represent the relative positions of

objects described with natural language ( H1 ), but much remains to be done, especially

in bringing such a spatial configuration together with the absolute description

conveyed by a map . A companion document is in preparation to describe the

implementation which is currently underway.
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Use of the P - value and a Q - value

in

Rejection Criteria

Paul H. Thrasher

Plans and Quality Assurance Directorate

White Sands Missile Range , New Mexico 88002

ABSTRACT

The p - value in a hypothesis test , which is a well established and useful

although not universally used statistic , may be supplemented with q-values .

Each q-value , just like each possibly designed value of the Type- Il risk

universally denoted by B , corresponds to a possible value of the tested

parameter .. The algorithm for calculating q-values is
is the same as for

calculating B's ; the inputs that yield B's include the Type- I risk , which is

universally denoted by a, and a planned number of measurements ( i.e. , planned

sample size ) .
The corresponding inputs that yield 4-values are the p- value

Thus ,
and the actual number of measurements ( i.e. , available sample size ) .

the q-values contain post- test Type -Il risk information in the same
same manner

that the p- value contains post- test information about the Type- I risk .

By using a 9- value which corresponds to a particular unacceptable value

of the tested parameter , different criteria
can be established for the

rejection of the null hypothesis. Three alternate criteria imply rejection if

( 1 ) ( q -value / B ) , ( 2 ) ( q - value / B ) / ( p-value / a ) , or ( 3 ) ( q-value/ p-value ) is

greater thanthan unity . The use of any of these three would bethree would be a radical

departure from the traditional rejection when 1 / ( p-value/ a ) is greater than

unity . The
19 - value / p- value ) criterion is independent of a , B , and the

planned sample size because both the p- value and q-value depend only on the

results of experimental measurements .
All three of these alternate criteria

Comments by panelists Drs . Kaye Basford and W. T. Federer are at the

end of this artical .
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lead to trends in critical region size which differ from the trend resulting

from the traditional criteria . Replacement of the traditional rejection

criterion , with one of the proposed alternate criteria or a decision procedure

incorporating rational
from

the alternate criteria , could significantly

influence government and contractor relations and the products or services

involved .

1. Introduction . Hypothesis testing is a widely used procedure for designing

and conducting experiments to evaluate a parameter against a standard . In

government-contractor relations ,
- , the government sets the standard . The

acceptability of the contractor's product or service is often determined by a

hypothesis test .

a .
The basic procedure is to :

( 1 )
Formulate a null hypothesis , Ho , relating a parameter , , to a

standard , % , and

( 2 ) Reject Ho only if there is sufficient experimental evidence

that the assumption is unlikely .

The null hypothesis in government-contractor relations is usually the

assumption that the product or service meets the specification . The

traditional basis for rejection of Ho , stated in terms of a statistic which

is increasingly being reported and interpreted , is that the p-value is too

small .

b . The
The p-value is defined as the probability of an additional experi

mental result as unlikely as the data . It is a function of two properties of

the data :

( 1 ) The
used sample size , nuo

which is the actual number of

measurements and
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( 2 ) Either the measurements or their ranks .

It is also a function of a third factor :

( 3 ) The distribution of all
possible measurements

under the

assumption that Ho is true .

The traditional rejection criterion , written in a slightly obscure manner

which is in the same format as alternate rejection criteria proposed below , is

po

1

where p is the p- value and
a

is a predetermined probability of the Type- I

risk or the contractor's risk . This is the risk that the contractor's product

or service meets the standard but will be rejected by the hypothesis test .

Rejection when the p-value is too small is justified by an insistance that the

contractor will take a reasonable risk .

c .
The p- value provides one aspect of post- test information .

Statistics

called q-values described the other viewpoint . For the introduction of

q-values , see " Proposed Additional Inferential Information During and After

Hypothesis Testing ", Procedings of the Thirtieth Conference on the Design of

Experiments in Army Research , Development , and testing, Paul H. Thrasher ,

1984 ,

d .
Before data is taken , the Type - I risk is supplemented by the Type - II

or government's risk . This risk , denoted by B , is the probability of

incorrectly failing to reject Ho . It is the companion risk to
a , since a

of

is the probability of incorrectly rejecting Ho . Since there are many values

o for which Ho is false and the alternate hypothesis denoted by Ha is

true , there are many B's . Each a function of :B

( 1 ) and
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( 2 ) The planned sample size , np . which is the planned number of

measurements .

The B's differ from one another because each is also a function of

( 3 ) A specific value of which is not equal to or better than ºo

If one of these unacceptable parameters , denoted by our is of particular

interest , then it is meaningful to concentrate on one
B.

e .
After the data is taken , the p-value is supplemented by q-values . The

same algorithm used to calculate B from
a, np . Our Ho , and Ha may be used

to find a q-value . A q-value calculation differs from a B calculation in

that

( 1 ) The p-value , instead of the original value of a , and

( 2 ) nuo whether or not this is equal to nps

are used in the algorithm . Use of

The same value of the parameter ou and the same hypotheses , that

were used in the calculation of B , permits direct comparison between B and a

9-value . A q-value tends to be greater than a planned value of
B if

< a.
"p or

either
nu np or the p-value Similarly , making nu >

obtaining data who se p- value > a tends to yield a q-value smaller than the

original value of B.

2 . Alternate Rejection Criteria . The traditional rejection criterion is well

established .
It is not however the only rational decision technique.

a . Instead of requiring
requiring the contractor's risk not be too low , one

alternate is to require that the government's risk not be too high . This

argument replaces the traditional rejection criterion ,

pta

ܕ
ܐ
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with the first alternate rejection criterion :

a

B

> 1 .

The use of this alternate rejection criteria naturally requires that an

unacceptable paramenter , Owo must be set along with the standard , ºo . This

first alternate criteria shifts the emphasis completely away from the Type - I

risk to the Type-Il risk .

b . A second alternate rejection criterion which considers both the Type - I

and Type- Il risks is to reject if

9 / B

ра
1

This result may be obtained by multiplying the traditional and the first

proposed alternate criteria .

c .
A third alternate rejection criterion which concentrates entirely on

the post-test information , by considering only the p-value and a q-value while

ignoring the specific values
a and B , is

9

р

R.

When the limiting ratio of the post- test Type - Il risk to the Type - I risk , R ,

is set equal to one , rejection occurs under this criterion if the government's

risk exceeds the contractor's risks . Other values of R may be used to design

a test with other relative emphasis on the government's and contractor's

risks .
This criterion considers the ratio , R = B/ a , instead of considering a

and B separately .

d .
The traditional rejection criterion and the three alternate rejection

criteria introduced above havehave contradictory and incomplete attributes .

221



No single criterion
will provide a panacea for all situations . For example ,

the third alternate criterion may be appropriate when large values of a and B

fortuitously cause no large financial or logistic difficulties ( e.g. , when the

contractor can easily rework rejected items and the government can feasibly

replace items not functioning properly ) .
If either a or B must be small

however , the third alternate may be inappropriate ( i.e. , setting R may not

provide the desired values of a or b ) . In this case , the second alternate may

be desired or perhaps a simultaneous application of the traditional and first

alternative criteria may be warranted . Satisfying the second alternate

criterion does not
gurarantee that the traditional and firstfirst alternate

criteria are simultaneously satisfied .
All of the criteria must be scrutin

ized individually . Each , or each combination , must be justified or discarded

on the basis of its own characteristics . Only one , or one combination , can be

used in any particular hypothesis test .

3 .
Critical Regions In One Example . The critical regions , defined

as

intervals in which data implies rejection of Hos may be found for any

situation in which traditional hypothesis testing is done . The specific

situation used in this section is one used in the previously referenced

at on

2

presentation
the Thirtieth Conference the Design of Experiments .

Basically , this situation has a standard , o and as unacceptable level , oj ,

for the variance , oʻ , of a random variable which is assumed normal . The

Chi - squared distribution then describes ( n- 1 ) s lo where s is the sample

2 2 2

variance .

a .
This example yields the critical regions plotted in figures 1

through 13 . For this example at least , the trends in the critical regions of

the proposed alternate criteria are significantly different than those of the
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traditional criterion .
Two very evident trends are seen by looking at the

lower ends of the critical regions which are called the critical points .
For

the traditional criterion with reasonably low values of
a , the critical

points ,

( 1 ) All correspond to measurements better than the standard and

( 2 ) Decrease as the sample size increases .

b .
For some situations involving the alternate criteria , the critical

points

( 1 ) Correspond to measurments worse than the standard and

( 2 )
Increase as the used sample size increases .

C.
Both of these properties are naturally disturbing to hypothesis

testers who are used to the normal criterion with low values of a . However ,

both actually occur in the traditional criterion when the value of
a is made

large enough .

d .
The figures describing / B > 1

and
( C / B ) / ( p / a ) >

1 are

much more complicated than those describing 1 / ( p / a ) >
1 . However , the

figure describing q/ p >
1 is as simple

as the
figures describing

1 / ( p/ a) > 1 . This occurs because both р and 9 are independent of a ,

B.
" p, and

4. Generalizations , Extensions , and Applications .

a .
In figures 1 through 13 , there is an inversion of trends between the

traditional criterion and any choice of alternate criterion . This appears to

be a general property for this particular hypothesis test . Much theoretical

and simulation work needs to be done , however , before extending this statement

to other hypothesis tests .
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b . If any of the alternate criteria are applied in government - contractor

relations , significant changes will occur in the way business is done .
It

S

would be entirely possible , for example , that contractors would be in the

governments's present position of wanting an increased sample size .
Using the

traditional criteria , the government is vulnerable when nu a
<

mp ; using an

alternate criteria , the contractor may feel vulnerable when this change in the

planned number of tested items occurs . This inversion is certainly signi

ficant .
It could lead to a significant decrease in cost and/or increase in

quality of products or services that the government procures from contractors .

C.
A secondary benefit from using any of the alternate criteria is that

the government would be forced to specify an unacceptable parameter as well as

a standard . This requirement would yield an improvement in management .

d . The choice of a criterion or perhaps a set of simultaneous criteria

for any situation must consider the costs of production , testing, and use of

the product or service . This consideration will undoubtable be complicated

and many faceted . The measurement of cost may not even be straightforward .

( e.g. , dollars , time, lives , and military success may be competing measures of

cost . ) Nevertheless , the total cost should be minimized by a selection from

the possible rejection criteria .
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SOLID LINES MARK REGIONS OF 1 / (P-V/ a ) > 1
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Figure 1 .

2

2

" Normal " relationship between number of measurements , n , and

minimum sample variance , Smin ' which implies rejection of

the null hypothesis that the variance is at least as small

as a standard , This " normal " decrease in

Smin
with

an increase in n results from using a rejection criterion

based on the ratio of attained to planned Type - I risks ,

p - value / a , for commonly used values of a.

o

225



SOLD LINES MARK REGIONS OF Q / B > 1 WHEN A= .1
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Figure 2 . Smin

2

" Inverted relationship between and used number of

measurements , nuo resulting from alternate criterion based

on ratio of attained to planned Type - II risks , q - value/ B .

This " inverted " increase in
with an increase in nu

occurs for Q = 0.01 and several combinations of planned

number of measurements , "ps and discrimination ratios of

unacceptable to standard variances, ou 1

Smin

2
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SOLD LINES MARK REGIONS OF Q / B > 1 WHEN a = .01
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This

split between " inverted " and " normal" relationships occurs

for a = 0.01 when the q - value / B criterion is used .
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SOLD LINES MARK REGIONS OF ( Q /B ) /(P / ) > 1 WHEND = .1
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SOLD LINES MARK REGIONS OF ( Q / B )/ (P / a ) > 1 WHENA = .01
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SOLID LINES MARK REGIONS OF Q/P > 1
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Figure 6 . " Independence of
Smin and n for low Ou ! and large n .

This " almost constancy occurs when the criterion is based on

the ratio of the attained Type - Il to attained Type - I risks ,

q - value / p - value , which is independent
of a, b , and

np .
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SOLID LINES MARK REGIONS OF Q / P > 1/2
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"Diminshed independence " of and for low

and large n . This " not quite constancy " occurs

when the q-value/p-value criterion uses 1/2 instead of 1 as

the standard . Rejection is possible from point estimates of

s less than when both

ou !

and n are low .

2

231



SOLID LINES MARK REGIONS OF Q/P > 2
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Figure 8 . " Enhanced independence " of
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and n for low

ou ºo

and large n. This " almost constancy " is closer to actual

independence when the q -value / p - value criterion uses 2

instead of 1 as the standard .
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SOLID LINES MARK REGIONS OF Q/P > 5
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inversion " results when the qvalue/ p- value criterion uses

5 instead of 2 as the standard .
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SOLID LINES MARK REGIONS OF 1 / (P / Q ) > 1

Q: .1 .25 .4 .55 .7 1

n : 19 +H

17 1

15
1

13

11 i

9 :

7 :

5 :

3 :

w

s % 3: 0 1 2 3 4 5

I
l

|
|
|
|
|
|
|

1
1
1
1
1
1
1
1
1
.

1
1
1
1
1
1
1
1

E
f
t
i
f
T
T

구

1

w هبیب
ببسب یبیب

2

Figure 10. " Inverted " S - n relationship for large a with the

min

p - value / a criterion . The " normalcy " is normal in this

traditional criterion only if a is a usually used small

number . Also , using large numbers for a results in the

possibility of rejection from point estimates of s less

than

2
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SOLD LINES MARK REGIONS OF QIB > 1 WHEN a= .4
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(or high npl allow a possibility of rejection if the point

estimate of S is less than
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SOLD LINES MARK REGIONS OF ( Q / )/ (P / a ) > 1 WHEN a = .4
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criterion , Again , high a and low B (or high np! allow a

possibility of rejection if the point estimate of s is less

than
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SOLD LINES MARK REGIONS OF Q / P > R
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Figure 13. Combined illustration of n relationships when

min

q - value / p -value alternate criterion is used with different

standards , R.
This complilation of figures 6 through 10

2

shows more " independence " between Smin and n (and also a ,

B , and np ) than the traditional p - value / a criterion or the

alternate q-value/ B orq-value/ B or ( g - value / B )/ p -value / a ) criteria .

Also , the possibility of rejection when s's

only when R , n , and oů I o are small .

occurs
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COMMENTS BY PANELISTS DR . KAYE BASFORD AND PROFESSOR W. T. FEDERER

ON THE FOLLOWING ARTICAL

Use of the P - value and a Q -value in rejection criteria by

Paul H. Thrasher

U.S. Army White Sands Missile Range .

received a copy of theThis paper was not presented but MSI

paper subsequently .

Kaye Basford : This is very interestinginteresting paper in which it is

suggested that the usual type I error (a ) used to

accept or reject the null hypothesis be supported by

some information on
the Type II error ( B ) .( B) . Hence

instead decision being made solely on the

p -value , the q -value would also be used .

of a

Dr. Thrasher suggested three alternative criteria for

rejection of the null hypothes and studied their

behavior for one particular test . The general

properties of these decision criteria need to be

investigated for hypothesis tests with different

underlying distributions . Only then could a

recomendation be mede on the desirability and

feasibility of introducing such a criterian . This is

which I hope will bea challenging research project

taken up in the near future .
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INCORPORATING FUZZY SET THEORY INTO

STATISTICAL HYPOTHESIS TESTING

William E. Baker

Probability and Statistics Branch

Ballistic Research Laboratory

Aberdeen Proving Ground , Maryland 21005

ABSTRACT

In many instances the data used in statistical hypothesis testing may be vague or

imprecise and , as such , may suggest results that are incorrect . Rank tests , in particular,

seem susceptible , since the original data, once ranked , has no further influence on the

testing procedure no matter how closely they are grouped . A possible solution is to

treat the ranks as fuzzy integers represented by membership functions that indicate the

degree to which each rank assumes each integer value. In this paper, a method is

suggested for obtaining these membership functions; and the concept is incorporated

into an existing rank test. An application of this fuzzy hypothesis - testing procedure is

provided .
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I. INTRODUCTION

Suppose we have the following set of data:

{ -0.888, 0.200, -1.000, -0.417 , -0.052, 0.186, 0.067, 0.467 , 0.623, 0.181} . ( 1 )

By considering their absolute values , we obtain a set S consisting of ordered pairs,

S = { ( 1 , -0.052), (2 , 0.067 ) , ( 3 ,-0.181), ( 4, 0.186) , (5, 0.200), (6, 0.417), ( 2)

( 7 , -0.467), (8 , -0.623), (9 , 0.888), ( 10 , -1.000 ) } ,

where the first member of each ordered pair is the ranking ( smallest to largest) of the

absolute value of the second member of the ordered pair. This type of data is often

used in rank tests, nonparametric hypothesis tests which generally examine the mean or

median of a distribution or the equality of means or medians of several distributions .

Rank tests are sometimes eschewed because once the ranking has been established , the

data are treated as though they were equally spaced ; and potentially-valuable

information concerning the proximity of the data points is discarded . In the preceding

example , note that some of the rankings may be tenuous ; for example, ranks 3 and 4

could easily have been permuted had the numbers to which they correspond been

inaccurate in the third decimal place . Therefore, the degree of accuracy in the ranks is

directly related to the degree of accuracy of the original data; and this can sometimes be

a problem .

In many applications , the available data may be vague or imprecise, due to a

variety of reasons which may include improper calibration of equipment and subjectivity

of the experimenter . This , of course , can lead to imprecise ranking of the data and

possibly an incorrect conclusion from the resulting hypothesis test . Such data, as well

as their ranks , can be represented by fuzzy numbers ' - a relatively new concept in

which a number is described by a central value along with a spread about that value.

When applied to ranks , this technique may overcome the previously-mentioned problem

inherent in rank tests; and in certain situations this representation will allow for a more

realistic approach to hypothesis testing .

II. FUZZY RANKS APPLIED TO THE WILCOXON SIGNED -RANKS TEST

A. Wilcoxon Signed -Ranks Test

The Wilcoxon signed-ranks test is a nonparametric hypothesis test which is

generally used to test for equal medians of two distributions. The data consist of paired

observations ( xi , y ; ) from the two distributions . The differences between the

observations, D; = x; – Yj , are then calculated ; and their absolute values are assigned a

rank R; from smallest to largest . Finally , R; is multiplied by -1 if D; is negative . The

sum of the ranks of the positive differences, T = Ri , R; > 0, is the test statistic . If

the two distributions have the same median , we would expect about one-half of the Di's

1

Zadeb , L.A. , " Fuzzy Sets , " Information and control. Vol . 8 , 1965 .

1
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to be positive. Very high or very low values of T indicate that numbers from the first

distribution are consistently higher or consistently lower than those from the second

distribution and , therefore, will cause rejection of the null hypothesis of equal medians .

The theory behind the test along with tables containing various quantiles of T are

provided by Conover?.

For each ordered pair of the set S, we can consider the second value to be D; and

the first value to be the R; associated with it . Taking the sum of the R; 's associated

with the positive Dj's , we find that T = 2+4+5 = 11. Probability levels for the

Wilcoxon signed-ranks test for a sample of size 10 are given in Table 1. Referring to

this table, we find that our value of T indicates that there is insufficient evidence for

rejecting the hypothesis of equal medians at a 10% level of significance. In this case the

probability of T being less than or equal to 11 is 0.0527 ; and since we are performing a

two -sided test ( examining T to see if its value is either too low or too high ) , we double

that figure to get the critical level of the test . Had the value of T been 10 or less ,

rejection of the null hypothesis would have been warranted .

TABLE 1. Probability Levels for the Wilcoxon Signed-Ranks Test Statistic

with a Sample Size of 10. *

T P T P T P

7

8

14

15

T P

0 .0010

1 .0020

2 .0029

3 .0049

4 .0068

5 .0098

6 .0137

9

10

11

12

13

.0186

.0244

.0322

.0420

.0527

.0654

.0801

16

17

18

19

20

.0967

.1162

.1377

.1611

.1875

.2158

.2461

21

22

23

24

25

26

27

.2783

.3125

.3477

.3848

.4229

.4609

.5000

T = sum of positive ranks

P = probability that the sum of positive ranks will be less than or equal to T

under the null hypothesis

Since the distribution of T is symmetrical , only one-half of the distribution is

tabulated .

B. Fuzzy Ranks

Let R = { 11 , 122
In } be a set of elements and Q be a subset of R. Then we can

define the characteristic function Mo : R^ {0 , 1 } such that

2

Conover, W.J. , Practical Nonparametric Statistics. Jobo Wiley and Sons , Inc. , 1971 .
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HQ (rs) = { o il tire

1 if r; EQ

(3)

If, however , R is the set of men and Q is taken to be the set of old men , there may

be some vagueness about the membership of certain r; in Q. Is a 50- year-old man a

member of Q? I used to think so; but now that I'm older , I'm not quite so sure.

Suppose we let me take on values other than 0 and 1 ; in particular, any value between 0

and 1 so that Me: R- (0 , 1 ) .

In this case Q is called a fuzzy subset of R and MQ is called the membership

function of Q. Each r ; has associated with it a value HQ ( r;) representing a degree of

membership in Q. The closer this value is to one , the more completely the associated ri

is a member of Q. Numerical data can be represented by equating R with the set of

real numbers, in which case Q is called a fuzzy number.

In this application we will examine fuzzy numbers and , in particular, fuzzy integers

since we are concerned with ranks . A fuzzy number will be represented by a

membership function quantifying the degree to which it takes on any specific value .

Figure 1 shows a membership function M for " fuzzy six ” . This function assumes its

maximum value at six, (6 ) = 1 ; the closer any number is to six , the higher its degree

of membership in " fuzzy six" . When we examine fuzzy ranks, the membership functions

will be discrete , since our interest will be only in the degree of membership for integer

values .

This membership function is not unique ; rather , it is subjective - determined by the

user and based on his perception of the vagueness of the data. In order to fully utilize

this methodology, the Extension Principle permits definition of a mathematical

operation f on two fuzzy numbers. It states that if X is a fuzzy number with

membership function Mx ( x) and Y is a fuzzy number with membership function Myly ),

then 2 = f (X,Y ) is a fuzzy number with membership function

Hz ( z ) =
max min (ux(x ), wy(y)]

x ,y

f (x ,y ) = 2

3

Zadeb , L.A. , ' The Concept of a Linguistic Variable and its Application to Approximate Reasoning I , II , III , "

Information Sciences. Vols . 8 , 9 , 1975 .
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Figure 1. Membership Function of Fuzzy Six .

Figure 2 shows some membership functions established for the absolute value of

three of the members of the original data set (-0.181 , 0.186, 0.200 ). Recall that the set S

contained ordered pairs of the form ( Ix-X) where X was a number from the original data

set and Ix was the rank associated with the absolute value of X. The shapes of these

membership functions are symmetric and triangular with a spread equal to ten percent

of the largest value in the data set ( remember that these are modeling decisions).

Hence, the membership value of " fuzzy 0.181 ” is non-zero from 0.081 to 0.281 and has

its zenith at 0.181 .

We can define a membership function for the first member of each ordered pair -

the rank denoted by Ix - as follows:

Mix (ly ) = ( 5 )max min (ux (z), My(z )) .

ZER
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Figure 2. Membership Functions of a Portion of the Original Data Set .

This equation provides the membership value for ly in " fuzzy rank Ix ". Thus, in

Figure 2 , the top horizontal line intersects the ordinate at a point equal to M3(4) , the

middle horizontal line intersects the ordinate at a point equal to 14(5 ) , and the bottom

horizontal line intersects the ordinate at a point equal to 43(5) . This definition of the

membership function for the fuzzy ranks produces the following properties:

Mix ( Ix ) = 1 , ( 6)

Mix ( ly) = 0 if Mx( x ) and My (y) do not intersect, and (7 )

Mix (ly) = Mly ( 1x) .
(8)

Figure 3 shows the membership functions for the entire set of original data. The

ordinate values of their points of intersection are listed in Table 2. These, of course, are

the values of Mix (ly) shown in Equation 4 and define the membership functions of the

fuzzy ranks of the data, such functions being discrete since the ranks can take on only

integer values. Note that the table is symmetric , a result of Equation 7.
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TABLE 2. Membership Functions Associated with the Fuzzy Ranks for the Original Data Set .

1 2 3 4 5 6 7 8 9 10

Ranked

Data

Points

1

2

3

4

5

6

7

8

9

10

1

1.00

0.93

0.36

0.33

0.26

0.00

0.00

0.00

0.00

0.00

0.93

1.00

0.43

0.41

0.34

0.00

0.00

0.00

0.00

0.00

0.36

0.43

1.00

0.98

0.91

0.00

0.00

0.00

0.00

0.00

0.33

0.41

0.98

1.00

0.93

0.00

0.00

0.00

0.00

0.00

0.26

0.34

0.91

0.93

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.75

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.75

1.00

0.22

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.22

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.44

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.44

1.00
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C. Incorporating Fuzzy Ranks into theWilcoxon Signed-Ranks Test

Once the membership functions of the ranks are established, it is necessary to

calculate the value of T, the sum of the positive ranks. T will be the sum of fuzzy

integers and , as such , will be a fuzzy integer itself . To determine its membership

function , we refer to the Extension Principle and determine that

Hr( t ) max
min (Milly,), wally,), ... , M10(lyd) ,

(9 )

(IY , Y, lyd

10

t = Čly,, Y;>0

i= 1

where (Iy,, lyg
lyd) denotes all permutations of the integers ly , ly , lyno

In this case of ten data points , T can take on all integer values between 0 and 55;

each of these possible sums will have a membership value associated with it . To obtain

Hi( t ) , we refer to Table 2 and perform the following steps:

1 .
Select a permutation of the ranks.

2 .
From Table 2 determine the minimum membership value of the ranks in

their respective positions for this particular permutation .

3 .
If that minimum membership value is greater than zero, determine the sum

of the positions of the positive ranks for this particular permutation .

4 .
If the membership value is greater than the membership value currently

associated with that sum, replace with the new membership value.

We continue with this sequence of operations until all the permutations have been

exhausted , at which time we have associated with every possible value of T a

membership value which is the maximum over all permutations of the minimums for

each individual permutation .

Using our set of ordered pairs, S , we can provide an example of the sequence above:

1 .
Suppose our selected permutation is 5 1 3 2 4 7 6 8 10 9.

2. Referring to Table 2 , we can see that the membership value of rank 5 in the

first position is 0.26 , the membership value of rank 1 in the second position

is 0.93, the membership value of rank 3 in the third position is 1.00 , and so

forth. If any one of these is equal to zero, then the minimum is equal to

zero, and we skip steps three and four. For this particular permutation , the

minimum membership value is 0.26 .
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3.

The sum of the positions of the positive ranks for this particular

permutation is equal to ten ( first plus fourth plus fifth ).

4 . If 0.26 is greater than the current membership value associated with a sum

of ten , then replace it .

When we have examined all possible permutations , the membership function

associated with the sum of positive ranks, T, is shown in Table 3. Membership values

associated with T< 5 and TX13 are all equal to zero.

TABLE 3. Membership Function Associated with the Sum of Positive Ranks for

the Original Data Set ( Non-zero Values) .

T

6

7

8

9

4T

0.330

0.355

0.905

0.925

0.975

1.000

0.430

10

11

12

Of course, examining all permutations can be very time consuming. This particular

case required 201 seconds of central processor unit (CPU) time on a CDC 7600

computer. However, because of the large number of membership values that were equal

to zero (see Table 2 ) , many of the permutations could be ignored , since resulting

minimums would be equal to zero and would not affect subsequent maximums. By

taking advantage of this information to modify the permutation subroutine , I was able

to reduce the CPU requirement to 43 seconds . Even with this kind of reduction , it is

difficult to exceed a sample size of twelve without incorporating other shortcuts . One

very effective method is to segment the data set , particularly if there is a datum point

which is crisp rather than fuzzy ; that is , its membership value at all but one position is

equal to zero. Using this characteristic , I was able to handle a sample size of 32 in a

later application of this work .

III. INTERPRETING RESULTS

When the data were considered non-fuzzy , we saw that there was insufficient

evidence for rejecting the hypothesis of equal medians . We could have provided a

critical level as defined by Conover; in doing so , we would have concluded that the null

hypothesis could have been rejected at a significance level of 10.54% (see Table 1 and

recall that we are performing a two-sided test ) .
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as

Treating the data as fuzzy numbers provides a fuzzy result for Twith a

membership function described in Table 3. This allows for several methods of

interpretation . Observing that r(T) = 1 (its maximum ) when T=11 , we might state

that there is insufficient evidence for rejecting the null hypothesis at the a = .10 level.

Thus , the classical (non-fuzzy ) signed -ranks test emerges & special case .

Alternatively, knowing that T=10 was the threshold for rejection, we might state that

the null hypothesis can be rejected at the a = .10 level with a membership value of

0.975. Since we recognize the data as imprecise, perhaps the best alternative is to accept

the imprecision inherent in the resulting test statistic and make the decision as to

whether or not to reject the null hypothesis based on the entire membersbip function .

In our example, the membership value exceeds 0.900 for T=8 through T=11 .

Therefore, none of these values should be disregarded when analyzing the data; they all

became viable candidates for T when the model took into account the proximity of the

data points . The nature of any particular application should assist in making the final

decision less subjective. Our example represents a situation in which the null hypothesis

of equal medians would not have been rejected based on the original data set but may

be rejected when the data, imprecise in nature , are treated as fuzzy numbers.

V. SUMMARY

Hypothesis testing is an important and useful tool for data analysis. When the data

are vague or imprecise , an additional source of error is introduced and may result in an

incorrect decision whether or not to reject the null hypothesis. Treating the data as

fuzzy numbers allows us to model the uncertainty ; and manipulating the data using

fuzzy arithmetic allows us to carry the uncertainty through to the final results, at which

point a more informed decision can be made.

Rank Tests are a class of hypothesis tests which are especially susceptible to the

problems of imprecise data since the data, once ranked , have no further influence

regardless of how closely they might be grouped . The Wilcoxon signed - ranks test is one

example; and it was this particular hypothesis test that was applied to some data

assumed to be vague in nature. The data were represented as fuzzy numbers, and the

test statistic was calculated using fuzzy arithmetic . This provided a final result which

was itself a fuzzy number, and several methods of interpreting this result were

discussed .

I found computer time to be a major problem with incorporating fuzzy data into

rank tests. In this case I needed to examine all possible permutations of rankings for all

the data. For 10 data points the problem is not too bad ; but if the data set is expanded

to 30 points , then even with newer, faster computers some special techniques must be

applied . In most cases one should be able to segment the data set , so that groups of ten

or less can be examined and the results combined . This should make fuzzy hypothesis

testing feasible as well as reasonable -- an even more important and more useful tool for

the statistician !

248



A Central Limit Theorem for Fuzzy Random Variables
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Abstract

Fuzzy random variables have been proposed to treat situations in which both ran

dom behavior and fuzzy perception must be considered . A definition of independence is

given for fuzzy random variables , as well as a notion of fuzzy Gaussian random vari

ables . It is shown that a sum or mean of independent fuzzy random variables converges

in the limit to a fuzzy Gaussian random variable, thus providing a fuzzy analogue of the

central limit theorem of classical probability theory.

This paper will appear in the journal Fuzzy Sets and Systems.

249





An Application of a Fuzzy Random Variable to Vulnerability Modeling

Steven B. BOSWELL
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Malcolm S. TAYLOR
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Abstract

Fuzzy sets are useful as a modeling tool in situations which have an ingredient of

uncertainty or vagueness , as distinct from randomness. One class of problems fitting

this description arises in vulnerability analysis . An application of a fuzzy random vari

able to enhance a vulnerability model currently in use is discussed .
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1. Introduction

Kwakernaak , in a seminal paper (6) introduced the notion of a fuzzy random vari

able as a random variable whose values are not real but fuzzy numbers. Expectation

and probabilities relating to a fuzzy random variable are developed as images of a fuzzy

set , representing the fuzzy random variable, under appropriate mappings. A natural

development of the theory is to examine fuzzy analogues of classical probability laws.

Toward this end , Kruse (5) and Miyakoshi and Shimbo (8) report on a strong law of

large numbers. Stein and Talati (13) , following Nahmias (9) , develop a theory

specifically for convex fuzzy random variables. Boswell and Taylor (2) provide a fuzzy

analogue of the central limit theorem for fuzzy random variables admitting a moment

generating function extension . Puri and Ralescu ( 11 ) outline a theory similar to

Kwakernaak's and derive a dominated convergence theorem .

Application of these potentially powerful concepts has yet to evolve. Schlegel,

Shear and Taylor ( 12) cite areas of vagueness in vulnerability modeling and suggest

fuzzy sets as a potential modeling tool. The implementation of one such suggestion

using a fuzzy random variable is the topic of this paper.

2. Fuzzy Random Variables

Kwakernaak (6) defines a fuzzy set f as a triple 1 = (A, t , p) consisting of a basic

set A, a logical proposition p which can be applied to every member of the basic set,

and a function t which assigns to every member xe A a truth value t(p( x) ) indicating

the appropriateness of the proposition p as applied to x . Most authors suppress the pro

position p notation , since it is implicit in the organizing principle of the fuzzy set , and

compose the proposition and truth value into a membership function w :A (0, 1 ) which

acts on the basic set, u (x) = t(p( x )) . Thus f would be written f =x = ( A , x ); we shall

adopt this convention .

An a-level set corresponding to a given fuzzy set f = (A, ) is an ordinary non

fuzzy set , denoted

L. (f) = {x € Alu(x ) > a } . ( 2.1 )

A fuzzy number is a fuzzy set having the real line R as its basic set. The fuzzy number

1, or its membership function H , is said to be unimodal if for every a € (0, 1 ) , L. ( f) is

convex . We shall be concerned with a collection C of fuzzy numbers defined as follows:

a fuzzy number ( = (R, 4 ) belongs to C if its membership function f satisfies

( i ) H is upper semicontinuous ,

( ii ) for some x e R, 4 ( x ) = 1 ,

and

( iii ) for all a > 0, L. ( I) is bounded .

The set of membership functions satisfying (i) - ( iii ) will be called S.
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Fuzzy random variables are constructed as a means of modeling phenomena which

could properly be described by ordinary real random variables defined on a probability

space (N, F , P ), but which are partially obscured by fuzzy perception of the real line. In

particular, if U, is the underlying random variable and w is the outcome of a random

experiment, the exact value Volw) is unobservable; instead, it is assumed that a fuzzy

number f = (R, Xw) is known which characterizes the result Volw) . The mapping

X:N - S given by X(w) = Xw supplies a membership function for each random out

come, and is called a fuzzy perception function. To the observer who must perceive

random outcomes via X, the identity of U , is lost , and in fact there may be many recon

structions of U, which are amenable to fuzzy perception . By the standard operations of

fuzzy logic (4) , X generates a valuation function which applies to random variables as

entities. Namely , if U is an F -measurable random variable, then

( 2.2)Hx (U) = inf Xw (U (w))

ωε Ω.

is the valuation of its suitability as a reconstruc
tion

of U ..

Kwakernaak's development of the basic set of random variables to serve as candi

dates for reconstruction is rather involved . In (2 ) we make some simplifying assump

tions which are sufficient for our application. Briefly, we admit as a basic set Uf , the

set of all F -measurable random variables on N , and enforce partial retention of the

structure of (N , F , P ) through the requirement that for all a € (0 , 1 ) the functions

U. (w) = int {x + R | x (x ) > a }

and
( 2.3)

U." (W) = sup {x € R | Xw (x ) > a}

are measurable with respect to ( N , F ). The sigma algebra generated by the random vari

ables V. , a € (0, 1 ) and V. " , a e ( 0 , 1 ) is denoted by o(X) , and x denotes the set of all

o (X )-measurable random variables on n.

Letting Up be the collection of all F -measurable random variables on n , the fuzzy

random variable induced by X is defined as

X = (UF, Hx) .

Some properties of a fuzzy random variable may be obtained directly by the exten

sion principle ( 14) . For example , the expectation of a fuzzy random variable X is a

fuzzy number

EX = (R, MEX )

with membership
function
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Hex ( x)
sup inf Xw (U ( w ))

U e UF: EU = X wen

(2.4)
sup Hx (U), XeR .

U € UF: EU = X

In (2.4) , E denotes the usual mathematical expectation .

A fuzzy random variable X is called unimodal if for each wen, the membership

function Xw is unimodal. Kwakernaak shows that if X is unimodal the basic set Up

may be restricted to x , the set of all o ( X ) -measurable random variables on n.

Theorem ( 2.1 ) . If X is unimodal , then

Mex(x ) = sup int X ( U ( )), X + R.

Ue X : EU = xwen

(2.5)

3. Vulnerability Modeling

This is an account of an application of a fuzzy random variable to an important

problem in vulnerability modeling. Succinctly, vulnerability modeling is an attempt to

characterize the interaction between a target (armored vehicle, aircraft, bunker, ... ) and

a munition ( kinetic energy penetrator , shaped charge, explosive device, ... ) and to assess

quantitatively the resulting damage sustained ( inflicted ) within the target-munition com

bination.

Experimental testing required to provide data pertinent to vulnerability modeling is

destructive, and the data base upon which these models are built may be modest, or in

the case of conceptual systems, nonexistent . Furthermore, while certain damage-related

measurements (velocity of impact, depth of penetration , component function ) may be

determined in an unambiguous manner, many others ( structural deformation , fracturing,

component degradation -of-function) may not. The composition of quantitative measure

ments and qualitative information into a cohesive assessment of damage remains at the

core of difficulty in vulnerability modeling. We will consider a particular vulnerability

model (10) currently in use and demonstrate the applicability of fuzzy sets to its

enhancement.

Figure 1 represents a data summary of an encounter between an armored vehicle

and a kinetic energy penetrator. A rectangular grid of 10x10 cm cells has been superim

posed on the profile of the armored vehicle, and within each cell of the grid, the proba

bility that the vehicle will be rendered inoperable ( killed ) should it sustain an impact

within that cell , is listed . Within the bold rectangle, for example, the probability -of-kill,

given a hit in cell i , Pkel ; is estimated to be .19 .
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Fig . 1. Dala summary of an encounter between an armored vehicle and

o kinetic energy penetralor .

Consider the conditional probability -of-kill, Pkthi for an arbitrary cell i . This

number is produced by a computer simulation ( 10) involving a blend of geometry, proba

bility , heuristics, and archival information about similar systems. The cell probabilities

are combined by an averaging over all cells to produce a single value, Pk, representing

probability -of-kill for this particular configuration of vehicle vs. kinetic energy penetra

tor. If an aim-point on the vehicle is designated, then a weighted average of the cell

is calculated , the weights provided by a bivariate probability density located at

the aim -point.

Pidhis

The overall probability -of-kill estimate Pk is subject to criticism as a value which

conveys little useful information, and none about the variability inherent in the esti

mate. The magnitude of the computer simulation prohibits repeated runs to provide an

empirical or bootstrap estimate of the distribution of overall probability -of-kill.

While randomness is clearly present in the experimental data collected , an even

greater source of uncertainty lies in the procedure producing the cell Pilns, and suggests

the incorporation of fuzziness as a modeling artifice. We consider the data in Figure 1 as

representing the sample space n of an experiment wbich has been discretized by the

overlaid grid. The experiment consists of firing at the tank , and a random variable U

provides for each impact location a corresponding probability -of-kill Pkth; · We replace

the cell Pidh, value with a fuzzy number whose membership function is illustrated in Fig .

ure 2. The width of the interval on which x(x ) takes the value one is chosen to be

Pidhi ( 1 - Pilny), the variance of the Bernoulli distribution modeling the individual cell

probabilities. We have thus defined a fuzzy random variable X, whose expectation we

seek .
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Puh.-8. Paь, Punto

Fig . 2. Membership function for fuzzy I'NI, where d = Pam , ( 1 - Pam ).

Since the membership functions are unimodal, the expectation of X is a fuzzy

number EX with membership function

Mex(x )
sup inf X. ( UK ), X + R. (3.1 )

Ue X : EU = x wen

This expression can be evaluated using the a-level sets (2.1 ) . Given the family of level

sets La ( ) , the membership function Mex may be recovered with the aid of the formula

(x) sup (a + [0, 1 ] | x + L , ( ) } , x 4 R. (3.2)

For the simple membership function of Figure 2, this computation can be simplified

using procedures detailed by Dubois and Prade (3) or Bonnisone ( 1 ) . Applying these pro

cedures to the data in Figure 1 we obtain for EX the membership function shown in

Figure 3 .

EX

.15 .18 .23 .26

Fig . 3. Membership function for expeclation CX of fuzzy random variable X.
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4. Conclusion

The form chosen for the cell Podh; membership functions (symmetric, normal, con

vex ) leads to a membership function for EX that is similar to the constituent u( x ) in

Figure 2. The interpretation of the resultant Mex is that estimates of overall Pk in the

interval (.18, 23] are, within our framework of uncertainty , wholly plausible. The

impulse to take the level set L.90 ( ' ) , say , and consider it a 90% confidence interval for

Pk must be resisted ; there are no probability statements carried by the a - level sets . We

have, however, modeled the uncertainty of the cell P kl : estimates in the overall

probability -of-kill estimate Pk in a direct way, and distinguished between randomness

and uncertainty in the vulnerability model . We also have the framework in place to con

sider Pk!h; meinbership functions far more intricate than the one shown in Figure 2 .

This is a significant methodological improvement.
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Sys:
ABSTRACT . The US Army Concepts Analysis Agency has become increasingly

involved in various forecasting projects . Most of the projects have

some common characteristics . Typically each series has less than 100

observations and often less than 50 observations. Box - Jenkins(2 ) suggests

that more than 100 observati
ons are preferabl

e and that one uses experienc
e

and past informati
on to yield prelimina

ry models where fewer than 50

observati
ons are available . Usually the Agency analysts are not

extremely familiar with the systems and processes which generates these

series . Each project commonly has a set of series which consists of

many elements . The number of elements in a set can range from 600 to

1,000 individua
l time series . The identifie

d model form of each

individua
l time series in the set varies greatly . Often only white

noise is present . On the other hand some of the series will exhibit

seasonal behavior . Many of the series are nonstatio
nary and have

potential intervent
ions. Many of the series take on only a discrete set

of values such as the set of positive integers from zero to ten .

the

211

00

1 . INTRODUCTION . One project requires a forecast of the quantities of

various commodities shipped over various routes . The forecast of

potential loads would be helpful in scheduling limited transportation

facilities . This project involved about 400 individual series each one

describing the history of a particular commodity ; for example, coal over

a particular route , say port of New York to Europe . Another project

involved forecasting the number of separations from the US Army of

enlisted grades E - 5 and E - 6 for about 300 different military

occupational skills . These series are often influenced by policy

changes . Table 1 illustrates the types of forecasting projects and

their requirements for two recent projects .

08

FAS

Table 2 compares the results of several different forecasting techniques

giving a " best " forecast , as described further in this paper , for a

selected sampling of time series from these two projects .

6

te
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Table 1. Series Characteristics

Project

Characteristic

1 2

84 38
Length of series

Length of fit 72 34,35 ,

36,37

Forecast horizon 12 1

Total number of series to evaluate 400 579

Table 2. Comparison of Forecasts

Project

Forecast

1 2

Box-Jenkins 34 14

Winter/Gardner 27 39

Ties 0 10

Unknown 5 0

Total 66 63

2. PROBLEMS. Many problems arise in the analysis of time series .

However , the literature is limited on methods to handle short series .

The Agency is often confronted with both a methodological and a

procedural problem . The methodological problem is largely a result of

the inherent instability of model form and values of estimated

parameters for short time series . The procedural problem is usually

imposed by study sponsors who require a process which will act in a

production mode by incorporating new observations into the forecast as

they become available .
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Since no particular methodologies are suggested as superior for

short series we have adopted an all inclusive policy . The foremost

technique for evaluating long time series is the Box- Jenkins process

( Table 3 ) .

Table 3. Box-Jenkins Process

POSTULATE IDENTIFY MODEL ESTIMATE DIAGNOSTIC

GENERAL CLASS TO BE TENTATIVELY FORECAST

PARAMETERS CHECKING
OF MODELS ENTERTAINED

IDENTIFICATION ESTIMATION & TESTING FORECASTING

The Box- Jenkins process is a three state process consisting of two

iterative stages ; ( 1 ) identification , followed by ( 2 ) estimation and

testing , and finally ( 3 ) a forecasting stage . The task of identifying

400 individual series by evaluating the sample autocorrelation and

sample partial autocorrelation functions can be monumental . This is

especially true when typically not only the original series must be

examined , but several other series due to nonstationarity and the

consideration simultaneously of seasonal as well as non seasonal model

forms . Automated identification is an essential consideration in these

Agency projects . Therefore we have employed two pieces of software

which render automatic identification These software and their

attributes are described in Table 4. ( i)( 5 )
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Table 4. Automatic Identification Routines for Box - Jenkins

Methods Employed

( 1 ) AUTOBOX

AUTOMATIC IDENTIFICATION

INTERVENTION DETECTION ( UP TO 5 )

BOX -COX TRANSFORMATIONS ( SQUARE ROOT , NATURAL LOG ,

RECIPROCAL SQUARE ROOT , AND RECIPROCAL )

( 2 ) ARIMAID

AUTOMATIC IDENTIFICATION

USES AKAIKE'S INFORMATION CRITERION

MANUAL TRANSFORMATIONS POSSIBLE

In addition to the Box - Jenkins technique several techniques of modeling

an exponentially weighted moving average have been employed . Two , zuch

techniques are the Holt/Winters?6 )Model and the Gardner -Mckenziel 3

Model . The update forms of these models are shown in Table 5 .

$ 492)

Table 5. Multiplicative Seasonal Models Update Sequences

WINTERS HOLT
GARDNER NONLINEAR

ey = xy - Åt - 1 ( 1 )

St = St - 1+Tt- 1+aeg/ 1t - p

Tt = Tt-1tayeg/ 1t- p

It = It -p+0 ( 1-0 ) @ /St

â ( 1 ) = ( Sy+Tp ) It- p+1

ez = Xx- Xt -1 ( 1 )

St - St -17-1*a(2 - a )et /ltp

Tt - Tt-1+a (0-6+ 1 ) / 17 -p

11 = 1t-p +6f1- (2 -a)]e [/St

X ( 1) - (54**** t- +1

Âç(1)

WHERE

Xe : OBSERVED VALUE TIME t

et
: FORECAST ERROR AT TIME t

st • LEVEL ( MEAN ) AT TIME t

It • SEASONAL INDEX AT TIME t

Y = TREND SMOOTHING PARAMETER

: TREND MODIFICATION PARAMETER

P • NUMBER OF PERIODS IN A CYCLE

= ONE- STEP AHEAD FORECAST

AT TIME t

• TREND AT TIME t

: LEVEL SMOOTHING PARAMETER

: SEASONAL INDEX SMOOTHING

PARAMETER

T
O
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The local implementation of the Gardner Mckenzie technique is described

in Table 6 .

Table 6. Gardner Model Procedure

1. FIT LINEAR REGRESSION TO RAW OR TRANSFORMED DATA TO ESTABLISH BEGINNING

SLOPE AND INTERCEPT , SO AND TO .

2. FOR NONSEASONAL MODEL , ESTIMATE a , Y , AND BY A GRID - SEARCH METHOD TO

MINIMIZE MEAN SQUARE ERROR .

3. FOR SEASONAL MODEL , ESTIMATE 6 BY HOLDING a , Y , AND FIXED AND DOING

A GRID SEARCH FOR Ó TO MINIMIZE MEAN SQUARE ERROR . CHOOSE INITIAL

SEASONAL INDICES

11 -p70 1 , SUCH THAT 13-0+P 8.,/...,

WHERE X1J = OBSERVATION I IN PERIOD

= NUMBER OF OBSERVATIONS IN PERIOD )
ng

D = NUMBER OF PERIODS

The estimation process for the exponentially weighted techniques

requires the development of parameter values which are traditionally

chosen in an arbitrary ad hoc fashion .

In order to develop a reiterative process and also to some extent to

ameliorate the stability probleins of short series , a sequential

technique was employed . This process is described in Table 7 .

Table 7. Algorithm Followed in Project #2

( 1 ) RESERVE SOME N° OF THE LAST OBSERVATIONS

( 2 ) ITERATE N* TIMES CALCULATION OF PARAMETERS FOR THE SEVERAL MODEL TYPES

( 3 ) USE N- N* OBSERVATIONS ON FIRST ITERATION

( 4 ) CALCULATE ONE -STEP AHEAD FORECAST AT FIRST ITERATION

( 5 ) ON SECOND AND SUCCESSIVE ITERATIONS ADD AN ADDITIONAL OBSERVATION UNTIL

N-1 OBSERVATIONS ARE INCLUDED , CALCULATE PARAMETERS FOR THE SEVERAL

MODEL TYPES

( 6 ) CALCULATE ONE -STEP AHEAD FORECAST AT EACH ITERATION

( 7 ) CALCULATE ROOT MEAN SQUARE ERROR OVER ITERATED ONE-STEP AHEAD FORECASTS

FOR EACH MODEL TYPE

( 8 ) FIT ALL N OBSERVATIONS BY METHOD YIELDING MINIMUM ROOT MEAN SQUARE ERROR

ON THE N* RESERVED OBSERVATIONS
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At each new time point all techniques are simultaneously applied to the

time series . For a certain period of the recent past , in our case the

last four points are evaluated to determine a " best " technique . In one

project which involved 38 quarterly observations , the last 4

observations formed this recent past and are referred to as the reserve

set . Four successive steps involving 34 , 35 , 36 , and 37 observations in

each series were modeled by each of the several techniques . At each

step , for each of the techniques , the one- step ahead forecast error was

calculated by subtracting the technique's forecast from the true

observation . A very rough measure of selecting the best technique to

forecast the 39th point in this case could be made by selecting that

technique which yielded the minimum mean square error on the reserve set

( i.e. , times 35 , 36 , 37 , and 38 ) .

3. Examples . Table 8 gives a frequency chart for 63 typical series

selected from the project ; each series in the project involved 38

quarterly observations described above . Each row specifies the model

form type identified by the automatic identification software for the

Box - Jenkins technique described above . Each column identifies one of

the techniques employed in the local process described above . Each

element of the table gives the number of series among the 63 which were

identified as a particular ARIMA form and were " best " modeled by a

particular technique . Figure 1 illustrates a model which was identified

as autoregressive nonseasonal, and this form was selected as " best " on

the reserve set ( i.e. , minimum mean square error over time points 35 ,

36 , 37 , and 38 ) . Figure 2 illustrates a series identified as a

nonstationary seasonal moving average , and this form was selected as

" best " on the reserve set . Figure 3 illustrates a series identified as

nonseasonal autoregressive , but a Winters /Holt Model was selected as the

" best " on the reserve set . Figure 4 illustrates a series identified as

white noise , but a model of the Gardner Multiplicative Nonseasonal

Nonlinear Trend type was selected as the " best " on the reserve set .

Figure 5 illustrates a series identified as white noise , but a model of

the Winters / Holt Multiplicative Seasonal was selected as the " best " on

the reserve set . From this sampling of typical time series it is

evident that the all inclusive process picked model forins from a variety

of techniques . It is amazing that even series identified as white noise

by examination of their sample autocorrelation and partial

autocorrelation can sometimes be better approximated over the reserve

set by an exponentially weighted moving average model .

Figure 6 illustrates the preponderance of these 63 series which have

only a small set of values . In this sampling 26 out of 63 ( about 41

percent ) of the series take on values from zero to ten .
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Table 8. Model Frequency

MINIMUM MSE OVER RESERVE SET

B
O
X

-J
E
N
K
I
N
S

M
O
D
E
L
S

G
A
R
D
N
E
R

M
O
D
E
L

T
R
A
N
S
F
O
R
M
E
D

G
A
R
D
N
E
R

H
O
L
T

M
O
D
E
L

W
I
N
T
E
R
S

A
V
E
R
A
G
E

O
F

L
A
S
T

4 Q
U
A
R
T
E
R
S

T
I
E
S

I
D
E
N
T
I
F
I
C
A
T
I
O
N

T
O
T
A
L
S

IDENTIFIED AS :

WHITE NOISE 4 3 8 8 25

AR 4 1 7 2 3 17

MA 1 2

SEASONAL MA 2 3

8

MIXED NONSEASONALAR AND

SEASONAL MA PARAMETERS 3 1 1

4

2 . 11

MINIMUM MSE OVER RESERVE

SET TOTALS
14 5 3 20 5 16 63

4 . SUMMARY . It is difficult to obtain guidance from the literature on

how to evaluate short time series . Even though the sample statistics

froin which time series forms are identified becoine very unstable for

short series , there is an operational need for forecasting the short

series . This paper has described attempts to cope with a real problem

in the face of little guidance . The purpose of this paper is to solicit

further guidance on the subject . Specifically we would like to ask

several questions ;

a . What forecasting method ( s ) are recommended for situations

involving hundreds of " short " series with little time to accomplish?

b . Why does not Box- Jenkins make a better showing with respect to

the exponentially weighted moving average models ?

C. How do you recomend comparing forecasts from several

techniques?

d . Are there any special techniques for treating series which take

on only a small set of values such as the integers zero to ten?.
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STUDY ON THE FEASIBILITY OF GENERATING

" PREDICTIVE ANALYSIS MODEL"

by

UTILIZING THE ARMY'S EXISTING DATA SOURCE

Li Pi Su

Logistics Engineers/Readiness Division

Materiel Readiness Support Activity (MRSA )

U.S. ARMY

ABSTRACT :
This is a preliminary report on the feasibility of a

predictive model for an Army data source .

The following seven tasks will be taken to determine the

feasibility of a predictive model for a certain Army data source :

1 . clarification of the description of the data .

2 . classification .

3 . Determination of the effects that influence the data .

4 .

etc.

Stratification of the data by location , mission usage ,

5 .
Examination of the quality of the data .

6 .
Adjustment of data . Effects , time period , outliers , etc.

7 .
Selection of a predicting model .

I. INTRODUCTION :

a .
An adequate data source is important for obtaining

reliable results from statistical analysis . However , if the data

source is inadequate , the choice of analytical techniques

selected to perform an analysis can improve the validity of the

results and thus increase the accuracy of the prediction . The

existing Army data collection methodology is not fully compatible

with known predictive techniques . It is difficult to analyze the

existing data statistically and to obtain useful and valid

information such as : safety , reliability , readiness , cost , mean

time between failures , mean time between replacement , or

maintenance cost of certain systems . It is even more difficult

to use the presently collected data for predicting any of the

above information with a high confidence level .

b . This is a preliminary report . The report addresses some

of the ways in which current Army data sources may be used in the

application of a predictive technique and of some of the
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techniques that could be utilized for conducting predictive

analysis , given adequate data .

C. In section II , some of the applicable prediction

techniques are presented . The basic requirements for a data

source to be compatible with predicting techniques are discussed

in section III . Then the problematic areas for both Army data

sources and predicting techniques are stated in Section IV . In

Section V , the approaches to be taken to determine the

feasibility of generating a "Predictive Analysis Model " for an

Army data source are discussed . Some of the possible

applications for a predictive analysis technique are provided in

Section VI .

II .
Predicting Techniques and Fitting criteria . The

predicting (or forecasting) techniques discussed here are the

known scientific ones . The structures of these scientific

predictions can be determined by statistical and mathematical

methods . Although each technique is somewhat unique in its

predicting capability , in practice , it has been found that a very

large group of data can be fitted with a " reasonable

confidence - level " by one of the following basic models or one of

their combinations : constant mean , linear trend , linear

regression , autoregression , moving average , seasonal and periodic

models , and exponential and non-linear models . A brief

description of each of these techniques is given below . ( See

Gilchrist )

A. The constant mean model .
This technique is of the form

t = 1,2,3 , ...H + Et
>

where u is the constant mean of all xx's and E. is one of a

sequence of independent random variables with zero expectation ,

i.e. E (€.c ) = 0 , and constant variance o ?. Fitting criteria : zero

mean error , reasonable small confidence interval . This method

deals with a set of data fitted approximating to the giobal

constant mean .

B. Linear trend model .
This technique is of the form

х

t

a + Bt +
Et , t = 1,2,3 , ...

1 E

t

where a has the expectation of x . B is a constant slope and

is a sequence of independent random variables with zero

expectation , i.e. El 67 ) = 0 , and variance of eq · Var (Et.) = 02 .

Use the least square method for the fitting criteria .

The method deals with the data structure showing a linear trend

with a random variation added .

NOTE : Both techniques A& B use only the past values of the

variable being forecasted , the future values , and thus these

approaches are limited to obtain the best forecasts because it
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fails to use the influence information contained in other

variables .

C.
Regression model. The general form of this technique is

k

if. Betti
t = 1,2,3 ,y

t

x til

Et

where Bi's , i = 0,1 , ... , k are constants , and X ' s are variables

related to y t , and
is a random variation . When the data

structure shows a seasonal trend, some of xri's , may be replaced

by harmonic terms . The criteria for fitting is the mean square

forecasting error .

NOTE : Random variables in techniques A , B and c , discussed above

are simply added " errors" which were added to a strictly

deterministic function . Technique C will also male use of other

information that is related to the one being forecasted so that a

better forecasting product could be obtained .

D.
Autoregressive model . This technique is of the form

P

t = 1,2,3 ,
Et

>
iš 1 Pitt- i

Where øj's , i= 1 , ... p are constants estimated from given data , and

E's are identically distributed with zero mean and constant

variance , i.e. H ( € ) = 0 , and Var ( Ep = 02 . It is usually denoted

by AR ( p ) , where p is the order of this autoregressive model and

is a positive integer . For fitting criteria see page 81 of

Pankratz .

E.

+

Moving average model . This technique is on the form

a

Σ

xt Et
t = 1,2,3 ,

.=

Where Dj's , j = 1 , ..., 9 are constants estimated from given data ,

and ' s are identically distributed with zero mean and constant

variance , i.e. H (E ) = 0 , and var ( EN = 0 ? It is usually denoted

by Ma ( Q ) , where g is the order of this moving average model and

usually is a finite positive integer . For fitting criteria see

page 81 of Pankratz .

E
€

NOTE : Techniques D & E are stochastic models arò have the random

variables play the acrinate part in determining the structure oi

the models . Box and Jenkins ( 1970 ) mixed autoregression and

moving average models into one model that will improve the

forecasting . This integrated model , usually called Box -Jenkins

model , is denoted by IPMA (Pig ) . Moreover , SOT.E non-stationary

models may become stationary by replacing the xt's by differences

of Xo's . The d - th difference is obtained by taking differences

for the d-th time from Xt's . The integrated autoregressive -

moving average model , denoted by ARIMA ( p , d , g ) is a result of

combining d-th differencing process and ARMA (P , 9 ) . ( See Box and

Jenkins for mathematical forms . )
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F. Seasonal and periodic models . These techniques do not

have a unique form . They deal with the data to display a

repeating pattern at a certain period . Some methods often used

to deal with seasonal data are : Seasonal index methods , Fourier

methods ( see Gilchrist) , and stochastic ( or integrated

autoregression
- moving average ) methods ( see Box-Jenkins ,

Gilchrist , Jenkins and Pankratz . )

G. Exponential and non - linear models . In many situations ,

e.g. growth or decay , the data can only be fitted to provide a

reliable forecast by exponential , logarithmic parabola , or their

modified curves .

Remarks :

1 . In the situation where the data structure is highly

stable and the chosen model is the truth about the underlying

structures of the data , the model is called a " global model " . In

other situations where the data structure is not stable overall

but it is stable in the short run , and this instability may not

affect the techniques ability for forecasting over a short

period , the model for forecasting over a short period is called

" local model " . There are no differences in the mathematical or

statistical formulation of these two types of models . The only

difference is in the way in which the models are used .

2 . Most predictions involve forecasting more than one

variable . If the variables are independent then each variable is

predicting as a univariate forecasting . If the variables have

some correlation , then multivariate forecasting should be used .

The techniques for multivariate forecasting are studied by

various Time Series Analysts . ( See Hannan , Jones and Robinson . )

III . Basic Requirements for a data source to be compatible

with predictive tecniques .

It is easy to see that the quality of forecasting can not be

any better than the quality of data available for analysis . But

it is nearly impossible to define the quality of data .

Generally , the data should provide the information to meet the

following requirements ( see Gilchrist ) :

A.
The data should provide directly relevant information .

B.
The data should provide reliable information .

C. The data should continually and promptly provide new

information .

The directly relevant and reliable information will help

obtain forecasting results with higher accuracy , and the new

information is essential for validation of the model . In

practical forecasting , there are many occasions in which the data

sets do not satisfy these three conditions . In this event , the

following processes may help to improve the forecast .
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A. The data should be obtained by the forecasters

themselves .

a . The data should be examined to see how well the three

requirements are met .

b . The data should also include information about the

external environment .

B. Where the data were not obtained by the forecasters , the

forecasters must use the robust and exploratory methods to cope

with the sets of data in an informal way that will provide the

forecasters with data structure , and an extensive reportoire of

methods for the detailed study of the data .

IV . Problematic areas of existing Army data collections and

statistical Predictive Techniques .

A. Data Sources .

In general , Army data collected are affected by the

following conditions that are outside the controls of the data

collector or analysts :

i .
Fleet changes in aircraft configurations .

ii . Periods when the fleet was grounded .

iii . Changes in usage rates which provide for more or less

exposure to replacement .

iv . The data are not fully compatible with classical

statistical analysis or predictive analysis techniques .

V. There are multiple National Stock Numbers ( NSN ) and

part numbers ( NP) , manufacture lots , etc. for an individual

generic piece on some systems . ( e.g. parts in aircraft )

vi . The location changes in fleet employment have been

shown to influence part replacement rates .

vii . There are dynamic changes in maintenance procedures :

inspection intervals , inspection activity , repair levels , part

rework procedures , etc.

viii . Some data collections programs do not contain the

relevant information about the external environment .

ix . In most cases the forecasters are not involved in

data collecting plan nor process .

B. Statistical Predictive Techniques .

a .
Risk/Confidence Levels : The statistical predictions
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always involve some uncertainty and the desired confidence level

is not always attainable .

b . Compatibility with data : Only data with a stable

structure can be forecasted with low risk and high confidence

levels .

C. Predictive Capabilities : The confidence level

decreases as the number of lead predictions increase .

d . Data requirements : In order to obtain the validity

of statistical analysis the three minimum requirements mentioned

in Section III should be met .

V. Approaches . Since the basic requirements for a data set

to be compatible with the predictive methodologies and

problematic areas are identified , the forecaster must select an

approach to filter out the unwanted information and to obtain a

forecast model with high reliability . The following tasks must

be accomplished to obtain a more valid analytical output of a

predictive model with an acceptable confidence level .

Task 1 . clarification of the description of the data .

The purpose of this task is to select from a given data set the

most relevant information needed for prediction . If the

forecaster was not directly involved in collecting the data , then

intensive interviews with data collectors and / or field visits

should be done to understand how the data were initially obtained

and the standard method used . This will assist the forecaster in

the selection of the forecasting model and in the interpretation

of the forecasting results .

Task 2 . classification . There are many kinds of weapon and

equipment systems . The scenario and environment in which each of

these systems may be used could have significant impact on the

collection and structuring of the data , the selection of the

forecasting techniques, and in the interpretation of the forecast

results . Therefore it is essential for the forecaster to

classify the commodity , i.e. , aircraft , missiles , etc.,of the

systems for which forecasting efforts are to be applied and to

identify the prediction rationale prior to the initiation of a

forecasting exercise .

Task 3 . Determine the effects that influence the raw data .

There are certain effects that are known to influence the raw

data . Some of these have already been mentioned in Section IV .

A suitable adjustment should be made for the effects to improve

the forecasting accuracy .

Task 4 . Stratification . Many data collections contain vast

amounts of information obtained from different locations ,

missions , usages , climates , etc. Each group contains relevant

information for its particular predicting purpose .
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Task 5 . Examine the quality of the data . Use the three

minimum requirements in Section III to determine the quality of

the stratified data and whether any adjustments need to be made .

Task 6 . The adjustment of data . Most Army data are not

collected for the purpose of forecasting . The raw data may need

to be modified to allow or disallow for some features before the

date can be used in the prediction process .

The ways

a . Adjusting for known influencing causes . Some of the

known causes have already been mentioned in Section IV .

of dealing with these vary greatly .

b . Adjusting for time period . Almost all forecasting

methods assume that data are input at fixed intervals . If this

is not so , then some adjustment has to be made to produce a new

data set of the required intervals . For example , adjust monthly

data set into quarterly or yearly data set , or adjust yearly data

set into monthly , bi-monthly , quarterly , etc. data set.

C. Adjusting data by transformations . Some data sets

with nonstationary variance may be transformed into a stationary

one by natural logarithms . Some data sets with a nonstationary

mean may be transformed into a data set with a stationary mean by

applying a differencing procedure .

d . Adjustment for outliers . Most practical forecasting

systems contain quality control procedures that will pick out

values which are in some sense extreme (by engineering judgement ,

or out of some standard deviations from the mean error , etc. ) ,

and are called outliers .
In an operational forecasting system ,

it is advisable to replace the outliers with some other suitable ,

but less extreme , values so that the leading forecasts will not

be influenced by outliers .

Task 7 . Selection of a predicting model . Having completed

the above six tasks for a data set , there remains to examine the

three minimum requirements of Section III again before

constructing a model for its forecasting . In general , the

forecaster begins to fit the simplist model with the reduced

data . If the model does not fit well , according to its criteria ,

then the next model should then be tried . It is often that a

forecaster can not obtain a model with the confidence level

desired . Some experienced judgement must be made before the

final model selection , or sometimes a forecaster may use a model

and then modify it as new data come in .

VI . Applications : The ability to predict ( forecast ) a given

operational parameter of a system is one of the most important

elements of logistic support and managerial decision . The

predicting analysis techniques can help project operational

readiness , dependability , safety and hence , the probability of

mission success of a system . These techniques also can assist in

the development of a mathematical model for provision planning of

a system , manpower maintenance planning , logistic support
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planning , etc. Moreover , the result of the predicting analysis

can be used to assess the engineering design specification and

influence engineering designs or changes .

Summary :

There are numerous sources of data collection in the Army

community . It is worthwhile to investigate which of these data

collections may be used to predict safety , reliability , cost ,

etc. There are also several known forecasting techniques that

are available , and the forecaster must use discretion in the

preparation of the data to be used with each technique , as well

as the selection of the technique.
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Abstract.

This paper presents some reasons why theoretical and sample quantile functions should be routinely used

by contemporary statistical data analysts. Quantile methods are introduced in the context of the exponential

distribution as a fit to the historically important life table data of Graunt ( 1661). Section titles are: history

of statistics and contemporary textbooks; quantile concepts; identification quantile function ; identification

quantile box plot ; tail classification of probability laws; goodness of fit plots ; IQQ plot; cumulative weighted

spacings function D(u) ; quantile simulation and distribution of extreme values; comparison quantile function;

nonparametric estimation of probability density ; conclusion .

1. History of Statistics and Contemporary Textbooks.

A central problem of statistical data analysis (that was formulated by 19th century pioneers such as

Quetelet (1796-1874) and Galton ( 1822-1911) ] is identifying distributions that fit the data. In The History

of Statistics, Stigler ( 1986) writes (p . 268) that these pioneers emphasized the use of normal curves to fit

data; they 'proposed that the conformity of the data to this characteristic (normal) curve was to be a sort

of test of the appropriateness of classifying the data together in one group; or rather the nonappearance of

this curve was indicative that the data should not be treated together .'

By 1875 Galton 'had devised a different way of displaying the data. He ordered the data in increasing

order and, effectively, graphed the data values versus the ranks.' Galton used the name 'ogive' for the

theoretical form of this curve for a normal distribution ; Stigler writes ' we now call it the inverse normal

cumulative distribution function '. I call this ideal graph a quantile function of the normal distribution; the

graph of ordered data values , denoted X(j ; n) , versus ( j –.5) /n or j/ (n + 1) , is called the sample quantile

function, denoted Q ° (u ), 0 < u < 1.

This paper presents some reasons why theoretical and sample quantile functions should be routinely

used by contemporary statistical data analysts. They can be used to not only test the fit ( or lack of fit) of a

normal distribution to data, but also to describe other general families of distributions and to identify which

distributions fit the data.

Textbooks with titles such as Introduction to Contemporary Statistical Methods omit many important

topics that are actually useful in the theory and practice of statistical data analysis. On my list of important

topics (for which I always look in the index and usually fail to find ) are : uniform distribution, exponential

distribution , order statistics, extreme values, quantile function . Traditional introductory textbooks describe

methods based on mean and variance. To qualify as 'contemporary' a textbook adds the following topics :

box plot , fences, stem and leaf plot , trimmed and Winsorized sample. In my opinion quantile function

interpretations are needed for these topics to acquire beauty and utility that will excite students ; however

how to do this is not explicitly discussed in this paper.

We introduce the ideas of quantile-based statistical data modeling in the context of the exponential

distribution . Let X be a continuous random variable with distribution function F(b) = Pr[X s ) and

probability density function f (3) = f' (2) .

Research Sponsored by the U. S. Army Research Office Project DAALO3-87- K - 0003.
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We call F(z) an exponential distribution with parameter 1 if

1 – F(z) = exp( -12), I > 0, $ (2) = lexp (-43 ), 2 > 0

Its mean y equals 1/1, since (for a non -negative random variable)

w = 1"6° =f (2] dx = 8 °(1 – F ( z)da = 4* expl– 1z )da.

The standard exponential distribution is the exponential distribution with mean 1.

2. Quantile Concepts.

The QUANTILE FUNCTION Q (u) , 0 < u < 1, is the inverse I = F- ' (u) of the distribution function

u = F(x) . To find I = Q (u) one solves u = F(x) .

For an exponential distribution, one obtains I = Q(u) by solving 1 - 4 = exp ( -10 ); therefore

Q(u) = (1/1 ) log( 1 – u) -- = (-log( 1 – u) )

The mean y of a distribution F or random variable X can be computed from the quantile function Q:

= [ 'audu.

The MEDIAN and QUARTILES of a distribution F or random variable X are defined to be

Q(.5) , Q (.25) , Q (.75) ,

the values of Qlu) at u = .5 , .25 , .75 . We define QUARTILE DEVIATION DQ by DQ = 2(Q1.75) – 21.25) ) .

For an exponential distribution, Q (.5) = ulog 2 = .69M; Q(.25 ) = w log(4/3) = .294 ; 26.75) = wlog 4 =

1.397 . The interquartile range Q1.75) - 01.25) = 1.14; quartile deviation DQ = 2(04.75) - 01.25)) = 2.24 .

Two important quantile concepts are glu) Q' (u) , QUANTILE DENSITY FUNCTION , and fQ(u)

f (Q (u) ) , DENSITY QUANTILE FUNCTION . For F continuous, F(Q(u) ) = u and fQ(u) g(u) 1. For a

standard exponential distribution, fQ(u) = 1- u.

Two important universal measures of scale of a distribution are DQ and 1 / f (median) = 1/1Q(.5 )

9( .5 ) . They approximately equal each other because DQ is a numerical derivative of Qlu ) at u = .5 .

How do we apply these concepts to determine distributions that fit data? Given data (sample) compute

a sample quantile function denoted Q*(u) . The sample distribution function is defined by F (1 ) = fraction

of samples I; the sample quantile function Q (u ) is the inverse of F " (u ). In terms of the order statistics

X (1 ; n ) S ...SX(n ; n ) of a sample

Q " ( u ) = X (j;n )for(j – 1)/n < usj/n.

One usually adopts a continuous version of the sample quantile function defined by linear interpolation

between its values

Q ° ( ( - .5) /n) = X (j;n), j = 1,...,n .

.
When true mean x = 18 , and the distribution is exponential, Q(.5) = 12.4 , Q(.25) = 5.2 , Q (.75 ) = 25 .

If similar values hold for the sample analogues of population parameters (denoted by adding a tilde ( 0) to

the population notation) one suspects, and conjectures, that an exponential distribution fits.
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Table 1. GRAUNT'S LIFE TABLE ( 1661 ) . OBSERVED PROPORTION AND CUMULATIVE PRO

PORTION IN VARIOUS INTERVALS OF OBSERVED VALUES OF AGE AT TIME OF DEATH ( IN LONDON

1534 ) .

Index

i

Age Interval

Qº(ulj – 1 ) ) - Q°(u (j ) )

Proportion

p(5)

Cumulative proportion

u(j)

.36

.24

.15

.09

1

2

3

4

5

6

7

8

9

0 - 6

6 - 16

16 - 26

26 – 36

36 - 46

46 - 56

56 - 66

66 - 76

76 – 86

.06

.36 = F " (6)

.60 = F " (16)

.75 = F( 26)

.84 = F(36)

.90 = F(46)

.94 = F (56 )

.97 F(66)

.99 = F(76)

1.00 = F (86 )

.04

.03

.02

.01

Table 2. GRAUNT'S LIFE TABLE SAMPLE QUANTILE FUNCTION .

ງ

u(3 )

Q +(u (j'))

0

0 .

0

1

.36

6

2

.60

16

3

.75

26

4

.84

36

5

.90

46

6

.94

56

7

.97

66

8

.99

76

9=k

1.00

86

For an illustrative example we consider Graunt's Life Table data (that should be familiar to all students

of statistics ) . It was published in 1661 by John Graunt, in an attempt to analyze data dealing with age

at time of death in London. The original data was collected by Thomas Cromwell in 1534 from Church of

England records of births and deaths. Graunt is credited with starting modern statistics by creating Table 1 .

Brilliant lectures by James R. Thompson of Rice University brought this important data set to my attention .

From Graunt's life table (Table 1) one computes sample mean jaone computes sample mean ủi” = 18.22 (in words, the average age at

death was approximately 18 years), Q*1.25 ) = 4.2 , Q* ( . 5 ) = 11.8 (median age at death was approximately 12

years), Q+4.75 ) = 26, DQ = 43.6. These are found by interpolating the values of the sample quantile function

in Table 2 .

To compute sample mean ( from grouped data) we use formulas

x = 2.510*(ulj – 1 ) ) + Q+(u (j) ) ) ( u (j ) – ulj – 1) )

j= 1

= (Q*(u(j) – Q*( 46) – 1)(1– .5 ( u () – 1 ) + ( 5 )

j= 1

The second formula can be interpreted using the fact that 1 - u is the standard exponential density quantile.

It does not seem to be customary in the literature to discuss which distributions fit the data that one is

analyzing (here Graunt's life table) . Techniques are discussed in this paper which can guide the statistical

data analyst to identify and test standard parametric distributions (such as the exponential distribution) as

a smooth distribution that fits the sample . We discuss the respective roles : ( i ) F*( ) , sample distribution

function , ( ii) Qº (u) , sample quantile function , ( iii ) F" ( x ) , smooth distribution estimated from data (for

Graunt life table , an exponential distribution with mean 18.22 ) , ( iv) Q^ (u ) , smooth quantile function, (v )

Dº( u) = FlQ * ( )), comparison quantile function , (vi ) Dº ( u) , cumulative weighted spacings , tests constancy

of ratio of derivatives Qº (u) /Q^ (u) , (vii ) QI (u) , identification quantile function. The statistician's problem
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is to develop a framework which explains how and why to use these functions to develop graphical and

numerical diagnostics which guide us to identify distributions (such as the normal or exponential) that fit

the data.

3. Identification Quantile Funct n .

The median, which we henceforth denote MQ = Q(.5) , is a universal measure of location . It is superior

to the mean by the criterion of being more robust (resistant to outliers in the data whose presence will in

fact be detected by the identification quantile function ). But we recommend the median not because of its

robustness but because it forms one of the tools of quantile based methods of statistical data analysis.

Statisticians who favor (or at least teach) mean and standard deviation as measures of location and

scale use them to standardize the data by subtracting the mean and dividing by the standard deviation .

The quantile based analogy to standardization is to transform the random variable X to

XI = (x – MQ)/DQ

whose quantile function is

QI(u) = (Q (u) – MQ)/DQ

We call QI(u) the Identification Quantile Function. Our motivation for introducing this function is that

it is approximately equal to the unitized quantile function

Q1 (u) = (Q (u) – MQ)/Q' ( .5) = fQ (.5) (Q (u) – MQ) .

which has value 0 and slope 1 at u = .5 . The probability density f(x) corresponding to the unitized

quantile function has been normalized so that f (median ) = 1. The unitized normal probability density is

f (3) = exp (-122).

Universal measures of location and scale are MQ and DQ. Diagnostic measures of skewness are

Q10.25) , Q10.75) , QIM = .5(Q10.25) + Q10.75) ) , - 25/QI0.25),.25 /Q10.75);

note that always Q10.75) -Q10.25) = .5 . Diagnostic measures of ( left and right) tail behavior are Q10.01) and

QI(.99) . A combined measure of tail behavior ( useful for probability density estimation) is QI(.99) - Q10.01),

called the identification quantile range.

4. Identification Quantile Box Plot.

An identification quantile box plot is a plot consisting of a box from Q10.25) to Q10.75) with a midline

at QI( .5 ) = 0 and a cross at QIM. Fences are defined to be max (-1, QI(0) ) and min( 1 , QI( 1) ) . Lines

are drawn from identification quartiles to fences. Data values outside the fences are considered outliers or

out- and- outliers, depending on whether they are interpreted as representing long tails or blunders . One

also indicates the location of ( sample mean -MQ ) /DQ. The values of identification quartiles and fences are

recorded on the plot .

5. Tail Classification of Probability Laws.

Representations of the density quantile function behavior as u tends to 0 or 1 is used to provide a

quantitative index of tail behavior which we call the tail exponent. It is used to qualitatively classify tail

behavior in three types , called short , medium , and long . Medium tails are further classified in three groups :

medium-short , medium-medium, medium-long ; a good summary of these concepts introduced by Parzen

( 1979) is given by Schuster ( 1984) .

These five groups reduce to three groups (short , medium, long) when expressed in terms of hazard rate

functions (decreasing, constant , increasing). The right and left hazard functions are respectively defined by

hi ( ) = f(x) /( 1 - F(x)) , ho (z) = f (x ) /F(z) .
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The right and left hazard quantile functions are defined

Q( 4) = fo ( w) / ( 1 - x) , hoQ(u) = fQ (4) /u.

Our classifications of tail behavior can be empirically related to the behavior of the identification quantile

function as u tends to 0 or 1. The left tail is classified: 0 > Q11.01) > -.5 , short tail ; -.5 > QI(4) > -1 ,

medium-short ; -1 > QI(u) , medium - long and long tail . The right tail is classified short, medium short , or

long according as QI0.99) < .5 , .5 < QI(.99) < 1,1 < QI(.99) .

For Graunt's Life Table, Q10.25) = –.17, Q11.75) = .33 , QIM = .5Q10.75) + Q1.25) = .08 , Q10.01)

-.27 , Q10.99) = 1.47 . Experience with typical values of these diagnostic measures for various standard

frequently encountered distributions leads one to conjecture that the sample distribution function F(2) of

the data in Table 1 is fit by an exponential distribution F^( ) with a suitable estimated mean .

6. Goodness of Fit Plots.

To evaluate the fit of a model described by F ^(2 ) or Q^ (u ) to data described by Fº(s ) or Q (u) one

has a bewildering number of options. The theory of goodness of fit tests is concerned with the theoretical

study of the many test statistics available, and offers little practical guidance on which methods to use in

practice. This extensive literature can only be briefly illustrated in this paper, with emphasis on graphical

comparisons.

One can compare plots : ( 1 ) F*( ) and F *(z) vs. I , on the same graph; (2) Qº (u) vs. Q^(u) , called Q-Q

plot ; (3 ) Dº(u) = F*(Q*(u) ) vs. u , called D - uniform plot ( it is equivalent to a plot of F ^ (2 ) vs. F" (2 ) called a

P-P plot ) . We recommend variants of the last method. One can interpret Dº(u) as sample quantile function

of the transformed random variable U* = F(X) . The goodness of fit problem is transformed to tests of fit

of U^ by a uniform (0,1)distribution and by estimation of the true quantile function , denoted D(u) , of U“ .

We call Dº (u ), 0 < u < 1 , a sample comparison quantile function .

When FM is exponential , Dº (u) = 1 - exp (-Q*(u ) /« ) . Its values for Graunt's life data is given in Table

3. Figure 2 presents a IQQ plot as a test of fit of Graunt's life table by an exponential distribution . Figures

3-6 present plots on same graph of sample and smooth distributions. The combinations are F *(a ) and F ^ (2)

vs. I ( Figure 3) , Q (u) and Q^ (u) vs. u (Figure 4) , Q*(u) vs. Q^(u) , a Q-Q plot (Figure 5) , and F^( ) vs

F "( ),a P-P plot ( Figure 6) which also plots Dº(u) = F "( Q + (u )). Figures 6 and 7 present D( u) plots as tests

of fit of Gaunt's life table by an exponential distribution ; Dº(u) = cumulative weighted spacings in Figure 7 .

7. IQQ ( Identification quantile - quantile) Plot .

To test whether a sample is normal or exponential, one tests the hypothesis Q (u) = x + Qolu) by a

scatter plot of (Qo(u (j)), Q * ( (j))) at suitable values u (j), j = 1, ... ,k , in the interval 0 < u < 1. This plot ,

called a Q-Q plot , is judged visually for linearity.

We prefer to use what we call a IQQ plot ; it is a scatter diagram of (Qol(u (j) ) , Q * I( u (j)) )) with a grid

of lines which may make it easier to judge visually for linearity. A IQQ plot for Graunt's life table is given

in Figure 2 .

8. Cumulative Weighted Spacings Function D(u) .

Users of QQ and IQQ plots report that they are difficult to interpret . I propose that one should prefer

plots that are graphs of functions such as various functions D (u ), 0 < u < 1 , which can be defined to measure

the 'distance between two distributions .

To compare Q ( u) with 4 + oQo (u) we recommend comparing their derivatives (equal to g ( u ) and o go(u )

respectively ) . Since o is unknown we test for constancy the ratio glu) / 90 ( u ) = 9 (u ) fo Qolu) ; equivalently

test the deviation from 1 of

d(u) = 9(u) fo Qo( u ) /00,
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• = " (e )600( e)dé.

We call d(u) a weighted spacings function, since spacings X(k; n) – X(k – 1; n) are the building blocks of

estimators of g(u) .

One approach to testing d(u) is to estimate and test the deviation (from the uniform function Dolu) = u)

of the cumulative weighted spacings function

D(u) = $*ace)de

The sample analogue of d(u) and D(u) to test exponentiality is : for ulj - 1) < u < u (j), (u ) = ( ),

( ) = ( Q * ( u ( j )) - Q (ulj – 1) ) ) ( 1 – 5 (ulj – 1) + + ( j) )} / ;

D'(u) linearly interpolates its values Dº(u (j))) = (1) + ... + ( ).Note that coʻ = .

Table 3. GRAUNT'S LIFE TABLE Qʻ, Qº , F , F* (QⓇ ) = D FOR FITTED EXPONENTIAL F^ ( ) -

1 - exp(-2/4 ) , u = 18.2 , Dº(u ) CUMULATIVE EXPONENTIAL WEIGHT SPACINGS (CUMWTSPAC ) .

j Q* (u(j) ) Q ° (u (j )) F " Qº( u (j)) F * Q * ( u (j )) Dº (u (j))CUMWTSPAC

0

1

2

3

4

5

6

7

8

9

.09

8.13

16.69

25.26

33.39

41.95

51.26

63.89

83.91

96.54

0

6

16

26

36

46

56

66

76

86

.00

.36

.60

.75

.84

.90

.94

.97

.99

1.00

.00

.28

.58

.76

.86

.91

.95

.97

.98

.99

.00

.27

.56

.73

.85

.92

.96

.986

.997

1.00

Figures 6 and 7 show how we plot Dº( u) for comparison with D. (u) = u. In addition to the graphical

diagnostic of the plot , there are many numerical diagnostics that can be performed .

9. Quantile Simulation and Distribution of Extreme Values.

A general distribution function F (a ),-0 < I < oo , is a non- decreasing function continuous from the

right . Its quantile function ( or inverse distribution function ), defined by

Q (u) = inf{1 : F (2) > u} ,

is a non -decreasing function continuous from the left. It is an inverse under inequality; for any I and u

F(2) > u if and only if I > Q1u) .

An important property of quantile functions is a formula for functions of random variables. THEOREM .

Assume g is non -decreasing and continuous from the left. Then Y = g(x) has quantile function

QY (u) = g(Qx (u) ) .

286



One can represent X in terms of a uniform (0,1 ) random variable U by X = Q(U) since Q(U) has

quantile function Q (Qu ( u) ) = Q ( u) .

When F is continuous , one can transform X to U , a uniform (0,1 ) random variable, by U = F(X) since

F(X) has quantile function F (Q (u ) ) = u .

A random sample X ( 1 ) , ... , X ( n ) of X can be simulated by generating a random sample U (1),...,U (n)

of U , and forming X(j ) = Q (U (; ) ) . This process , illustrated in Figure 8 for the normal and Cauchy distribu

tions, demonstrates that the quantile function provides a powerful graphical representation of a distribution

because of the following equivalence : ( 1 ) a random sample of X, (2 ) observing Q (u) , quantile function of

X, at a random sample of points on the unit interval. To compare two distributions, such as the normal or

Cauchy, one way is to plot (as in Figure 8) graphs of their identification quantile functions plotted on the

same scale (the longer tailed one will have to be truncated at a suitable value) .

The representation of X in terms of U by X = Q (U) provides a quantile approach to the distribution

theory of order statistics and extreme values. Let X ( 1 ; n) < ... < X (n; n) be the order statistics of a

random sample X ( 1) , ... , X(n) . The kth order statistic X(k; n) has the same distribution as Q(U(k; n) )

where U (k ;n) is the kth order statistic of a random sample from uniform (0,1 ) .

10. Comparison Quantile Function .

A quantile based concept that unifies parameter estimation and goodness of fit hypothesis testing

procedures is the comparison quantile function D (u) = F(G- ' (u) ) which compares two distribution functions

F(x) and G(2) . The comparison quantile density is

d (u ) = D '( u) = f (G - '(u ))/ g (G- (u ))

The Kullback information divergence can be evaluated by

o

I(G; F) =

* (log ( + (2 ) /30 = ) ) ( 2 ] dza = "[
-105

– log d(u)du

- 00

The graph of d( u) provides insight into the rejection method of simulation . One seeks to generate a

sample X (1), ... , X (m ) from F as an acceptable subset of a sample Y (1), ..., Y (n ) from G(2) . THEOREM .

Assume that D(0) = 0 and there is a constant c such that d (u) = c for all u . Generate two independent

uniform (0,1)random variables U ( 1 ) and U (2). Acceptance and rejection rule: If

U (2) < d (U (1 ))/ C ,

then accept Y = G- ' ( U ( 1 ) ) as an observed value of X. Otherwise reject Y. ( Continue by generating two

more uniform (0,1 ) random variables). The probability of acceptance is 1/c .

The relation between two distributions F and G is best understood by a plot of us = d(ui) .

This plot can be used to graphically describe the rejection rule of simulation and to prove it . Verify that

the area under the curve from u = 0 to un G (1) equals D (G(x) ) = F (x) ; the event that U(1 ) < G(2)

and U(2) < d( U ( 1 ) ) /c has probability F ( ) /c ; the event that X < I can be shown to have probability F(1) .

11. Nonparametric Estimation of Probability Density.

To identify distributions that fit data , one can use parametric models such as the location -scale parame

ter model Q ( u) = x + oQo ( u ) , or one can nonparametrically form estimators f " ( ) of the probability density

function (see Silverman ( 1986) ) . We consider only the kernel estimator

f* ( + ) = ( 1 / n ) Ż (1/6)K ((2 – x(j ) ) /h )

) X 5
j= 1
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where K(5) is a probability density function and h is a bandwidth to be selected .

For K we recommend ( Parzen (1962) ) the ‘ Parzen window ' which is the probability density of the sum

of four uniforms

(4/3) – 82% + 80%, 0 < I < .5

(8/3) ( 1 – 2) , .5 < I < 1

K(2)

0, 1 < I

K(-2) ,
I < 0

As a first choice to consider for h, by adapting Silverman ( 1986) , p. 47, we recommend

=

hopt = K(0)DQn--2

To accept or reject the goodness of the value of h chosen we judge the deviation from uniformity of the

comparison quantile function Dº(u) = F " ( Q * ( u )). We evaluate this function at u = (; -.5 )/ n by F "( x ( j; n )).

Other choices of hopt are multiples of hopt based on diagnostics of the tail behavior of the distribution, given

by Q11.99) - Q10.01) . The deviation of D^(u) from uniformity is used to guide the search for the best value

of h for the data being analyzed .

The details of this procedure for choosing a kernel probability density estimator cannot be given in this

paper . It is best explained by examples of the quality of nonparametric probability density estimators to

which it leads for famous data sets ( Buffalo snowfall, Yellowstone geyser eruption times) which are used as

test cases for density estimation methods (compare Silverman ( 1986) ) .

12. Conclusion .

The process of analyzing a univariate sample can be viewed as fitting a smooth distribution F *(1) to

a sample distribution F (2 ). The process of comparing F^ and f requires a knowledge of the theory and

practice of quantile functions. ' In order to get to the fruit of the tree you have to go out on a limb ' is a

proverb that statisticians may take as an omen that they should explore the quantile limb which is always

lurking
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A COMPARISION OF TWO SENSITIVITY TESTING PROCEDURES WITH

IMPLICATIONS FOR SAMPLE SIZE DETERMINATION

Barry A. Bolt

US Army Ballistic Research Laboratory

Henry B. Tingey

University of Delaware

ABSTRACT

w ( 1985) proposed an efficient class of sequential designs for estimating

response distribution quantiles in a sensitivity test enviroment . Here , a

good performer within that class of designs, logit -MLE , is compared to a

Delayed Robbins -Monro procedure in which the final quantile estimate is

obtained via maximum likelihood . Their similar Monte - Carlo perfomance

under many test conditions is discussed . Implications for sample size

determination when estimating the median and 3rd quartile are briefly con

sidered .
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1. INTRODUCTION

A sensitivity test is a destructive test in which a level of stimulus is applied to an

experimental unit and a binary response is observed . The binary response is commonly

referred to as a success or failure under the level of stimulus chosen .

Each member of the population from which experimental units are sampled is

assumed to have a critical stimulus. For a given experimental unit , a stimulus applied

at or above the critical stimulus level would necessarily result in a success . A stimulus

below this critical level would result in a failure. Critical stimulus is a continuous ran

dom variable which is not directly observable, but rather only through success or failure

is it observed . A success or failure constitutes only partial or indirect information , as it

indicates only whether the stimulus level chosen was at or above, or below the critical

stimulus for that unit .

In a sensitivity test , an adequate characterization is desired of some region or quan

tile of the response distribution - the distribution function of the random variable, criti

cal stimulus . Such a characterization lends insight, in a probabilistic sense , to the sensi

tivity of the population to various levels of stimulus . To this end extensive literature

exists , some of which is contained in our list of references .

Much of the work contained in these references pertains to sequential design and

estimation . In many applications , data are expensive to collect and are gathered most

cost effectively in a sequential manner . This is the case in large-caliber-munition testing

for the Army . In this sequential setting our dual objective is first, to choose a good

design and estimation procedure among those available ; second , to briefly consider sam

ple size determination for estimating distribution quantiles at specified levels of precision

and under a variety of test conditions.

II . DESIGN AND ESTIMATION

The proposal of a new class of sequential designs and a detailed comparison of the

new class to existing procedures is given by Wu ( 1985) . Under varied test conditions a

comparison of these procedures, some of which are modified , is given by Bodt and

Tingey ( 1987 ) . Drawing from these two studies , only the Delayed Robbins-Monro with

maximum likelihood estimation and the logit -MLE will be considered as candidate pro

cedures.

The Delayed Robbins-Monro (DRM ) is a modification of the Stochastic Approxima

tion Method of Robbins and Monro ( 1951 ) . Denote the nth level of stimulus as Xn, the

nth response as y, and the quantile of interest as Lp. Let y, = 1 signify a success and

У. O signify a failure . Then referencing the work of Kesten ( 1958) , Cochran and

Davis ( 1964) , Davis ( 1969) the next design points for a DRM - c design are given by ,

Xn+ 1 = xn - c (yn - p) ( 1 )

where c is an appropriately chosen constant according to the variance of the population.
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Data is collected in this manner until a reversal occurs . Reversal is the occurrence of a

(success, failure) or ( failure , success) in succession . Subsequent design points are chosen

according to the usual Stochastic Approximation Method by,

с

Xn + 1 = X (yn - p ) ( 2 )

n -k+ 1

where k is the first sample number corresponding to the first reversal.

The primary advantage to delaying the reduction in step size until the first reversal

is evident in the common situation where a reasonable guess for the quantile location is

not available . The design refrains from attempted convergence until some indication

(reversal) of being in the desired region is present . This convention makes the most

sense if the quantile of interest is the median but will be used here for the .75 quantile

as well . Davis ( 1969 ) shows the DRM to be a good performer.

The logit -MLE is one application of Wu's general technique found by him to be

effective in estimating the quantiles of the distribution . The next design point is taken

to be the desired quantile's maximum likelihood estimate based on all of the data gath

ered up until that point. The maximum likelihood procedure assumes a logistic model,

hence the name logit-MLE . Silvapulle ( 1981 ) shows that the unique existence of this

maximum likelihood estimate is guaranteed by a zone of " mixed ” results ; the necessary

and sufficient condition for which can be expressed,

( x-min, x'max) n ( xºmin , x ° max) + ¢ (3)

where x ' is the minimum level of stimulus at which a success was observed . In the

first few tests there is reasonable likelihood that this condition will not be satisfied .

Furthermore, use of maximum likelihood estimation on only a few sensitivity data

points often results in poor estimates. What is needed is another data collection pro

cedure to be used until the logit -MLE can be applied . In this study , the Delayed

Robbins-Monro was used until condition ( 3) was satisfied and more stable maximum

likelihood estimates were likely .

min

An algorithm for this procedure is to collect data as per DRM-c until condition (3)

is satisfied or sample point six has been reached , which ever comes later . After which

time the next design point , Xn+ 1 , is taken to be the logit-MLE with restrictions imposed

by the following equations.

În = xn (4)

If d, is the solution of

d.

(yn-P )

n-k+ 1

where Î, is the logit-MLE for the pth quantile based on n observations, then

d*

Xn+ 1 = X (yn - p )

n-k+ 1

( 5 )

where

di = max (8 , min ( d,,d ) ] d > 8 > 0. (6)
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Here & is fixed at .01 .

This restriction prohibits the procedure from varying wildly in its choice of the next

design point . Henceforth, the above procedure will be denoted MLE(c ,d ) . For a more

detailed discussion see Wu ( 1985 ) .

Preparing to compare the two procedures , DRM - c and MLE(c , d ) , we note that

when no prior knowledge of the distribution is available Wu ( 1985) finds MLE(c , d ) to be

better than the RM type designs he examined. In addition , Bodt and Tingey ( 1987 )

show in a Monte- Carlo study that MLE(c ,d ) specifically out performs DRM - c under a

variety of practical test conditions such as restricted sample sizes ( < 15 ) , stimulus noise,

varied response distributions , and varied combinations in the selection of the initial

design point and the constant c . Based on this work we will make one final modification

of the estimation technique when using DRM-c . To motivate that change we will first

take a brief digression .

One goal of this experimentation is to precisely estimate a quantile of the critical

stimulus distribution . Since the advent of sequential procedures in this setting, much of

the attention has been placed on asymptotic convergence properties. It is true that

many of these procedures for collecting data also serve to consistently estimate. In

addition , designs such as DRM-c are nonparametric so no restrictive model assumptions

need be made regarding the shape of the response distribution. For these reasons some

experimenters have ceased to separate design and estimation when considering this

problem. Consistent with the experiment goal mentioned , the performance of various

combinations of design and estimation procedures are examined , Bodt and Tingey

( 1987 ). In the restricted sample size environment we found that if data were collected

using DRM-c and estimation was carried out via maximum likelihood, the results were

as good or better than for any other design and estimation scheme studied . This result

was true under the variety of practical test conditions mentioned previously .

Thus the promised modification is that when using DRM-c , data is collected as that

procedure dictates; but final estimation is accomplished using the same logit-MLE tech

nique as per Wu's procedure . We will continue to refer to this combined design and esti

mation scheme as DRM-c .

III. A SIMULATION STUDY

Before making sample size determinations , we wished to first compare DRM - c and

MLE (c,d ) under practical test conditions and sample sizes which are not unduly res

tricted . This comparison was performed in a Monte- Carlo study under the crossed con

ditions listed in Figure 1. For this part of the study the .5 quantile was estimated. The

measure of precision was (MSE) 1/2 The number of iterations performed was 500 per

treatment combination .
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FACTORS LEVELS

Response Distribution normal , Cauchy ,

exponential, uniform

Initial design point median ,median - 3

Design & Estimation MLE ( 10,30 ) , MLE ( 20,30 )

DRM- 10 , DRM -20

Sample size 10 to 50 by 5

Figure 1. Factors Included in the Design.

Four response distributions representing a variety of shapes were chosen . Each had

median equal to zero . Three were given a standard deviation of unity . The quartiles of

the Cauchy were made to match those of the normal distribution . The purpose in con

sidering c = 10, 20 for DRM-c is that we wished to compare DRM-c to MLE(c , d ) under

suboptimal conditions for the data collection aspect of DRM - c while maintaining good

conditions for MLE(c , d ) . Based on Wu's findings, d = 30 should yield good results for

MLE(c ,d ). Through results of Chung ( 1954) and Hodges and Lehmann ( 1955) the

optimum choice of c for the usual Stochastic Approximation Method is (F' ( .5 ))-- where

F is the response distribution . For the response distributions chosen, these values of

(F' ( .5 ) )- ° range between 2 and 2.5 . Thus the chosen values 10, 20 are much removed

from the optimum and will act to slow convergence relative to the optimum . It is in

such an environment , suboptimal values of c or limited prior knowledge of the response

distribution , where MLE(c , d ) was shown to be superior to RM type designs.

The results of the simulation comparison are efficiently represented in graphical

form . In Figure 2 we are examining the relative magnitude of (MSE) 1/2 for nine sample

sizes . The true response distribution was normal , and the initial design point was zero

as indicated by the arrow . To obtain the DRM - 10 and MLE( 10,30) points for each sam

ple size, the same random number sequence was used for both in each iteration so that

any difference in the quality of the design points chosen was a function of the design

under these particular conditions. Unless otherwise noted , the procedures yield esti

mates which are, for practical purposes , unbiased .

Given that the response distribution standard deviation is unity , the mild fluctua

tions between procedures illustrated here are considered negligible. Similar results hold

true for the uniform and Cauchy distributions . See Figures 3-4.

The disparity in precision among the three distributions for small sample sizes is

believed to be caused by the different response distribution shapes. The reasons for this

belief are given in the following discussion . Since the disparity is most noticeable

between the Cauchy and the other two, the discussion will focus on the effect of the

heavy tails of the Cauchy distribution .
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First , consider the estimation of the median of the response distribution . Define a

wrong decision as moving away from the median to collect the next design point.

Wrong decisions inflate the variance of the maximum likelihood estimate. This follows

because when the design steps away from the median it causes the collection of data

holding less information regarding its location . Banerjee ( 1980) shows this rigorously for

a normal response distribution . Additionally , when a wrong decision occurs a larger

value of
( consistent with small samples) will result in data collection farther

n-k+ 1

from the median than for a small value of that quantity . In an extreme case the design

may begin errantly sampling in the tail of the response distribution and take several

steps to return to levels of stimulus more likely to yield useful information . Second , if

presently sampling in the tail of the response distribution , the Cauchy distribution is

more likely to cause a wrong decision than the other two. If xn is currently below the

true median a wrong decision occurs with probability F(xn ) . Thus, for a fixed xn in the

tail area of the Cauchy distribution F (x ) is large relative to correspondin
g probabilities

as evaluated for the normal and uniform distributions . Third, if few samples are used

the importance of the informational content of those samples is accentuated thus lead

ing to the disparity mentioned .

In Figures 5-8 all 500 iterations are represented in histogram form . The observa

tions are estimates of the median by DRM- 10 or MLE (10,30 ) under the Cauchy response

distribution for a sample size of 15 or 35. The arrow indicates the true median . As

expected after viewing Figure 4 , no substantive difference exists among the empirical

densities .

In Figures 9-10 the exponential response distribution is considered , with results

similar to the previous three, in terms of relative precision. However, as Figure 10 illus

trates, the estimates produced by either method are biased with DRM - 10 arguably more

biased than MLE( 10,30) . V50, zero in this case, denotes the median of the response dis

tribution associated with critical velocity . Velocity is a common stimulus in Army test

ing. Each point on Figure 10 represents the average of 500 estimates of V50. The rea

sons for the bias are similar to the reasons for precision disparity mentioned earlier .

Although not displayed, similar results hold true for comparison of DRM-20 to

MLE(20,30 ) and under the condition of the initial design point equaling the median - 3 .

In estimating the median , the results are clear . There is virtually no difference in

precision between the two procedures for a variety of response distribution forms. In

general the designs must be judged equivalent in their ability to gather pertinent data

for the estimation of the median , since the estimation is accomplished using maximum

likelihood with a logistic model for each and the random number sequences were identi

cal for each . The only studied exception was that MLE (c,d) produced slightly less

biased estimates than did DRM-c for the exponential response distribution . In this case

it appears that MLE(c ,d ) gathered data in a slightly more efficient manner.

Their general equivalence is important to consider when choosing a design. Extend

ing the comparison to computational ease, DRM - c is easier to employ than is MLE (c,d )

in many practical settings. Prior to each test DRM - c requires of the field experimenter
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Figure 6. Empirical Density of the Estimator MLE( 10,30) .
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Figure 8. Empirical Density of the Estimator MLE ( 10,30 ).
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only the solution of a single equation with one unknown . This is a computation that cer

tainly could be performed by hand . Not until the data are collected is it necessary to

iteratively solve for the maximum likelihood estimates in a more time consuming effort.

Assuming that the conditions for maximum likelihood estimation have been met , use of

MLE(c , d ) would require that prior to each sample taken , an iterative solution for the

estimates be performed. The potential difficulties in a field test are obvious.

At this point we mention two additional facts regarding MLE ( c,d ). First, there is a

suggested provision for delaying implementation of maximum likelihood estimation , Wu

( 1985 ). We denote this MLE(c , d , ) , where I is a lag delay after the unique existence cri

terion is satisfied; after which maximum likelihood estimation is to be employed . The

intent of this provision is to delay use of maximum likelihood estimation until it is likely

that the estimates will be more stable . This is why we used maximum likelihood no

sooner than in the selection of the 7th design point . We mention this for completeness

because I could be chosen to be variable so that maximum likelihood estimation was

delayed until the last data point was gathered ; in which case MLE(c ,d ,7) reduces to

DRM-c as defined in this study .

Second, although an iterative solution is necessary to solve for the maximum likeli

hood estimates, Wu ( 1985 ) does suggest an approximation which would eliminate the

need for an iterative solution . The approximation is valid if design points are close to

the quantile being estimated. Caution is warranted when using this approximation in a

small sample test environment with no prior knowledge of the response distribution .

There, closeness of the design points to the quantile of interest cannot be assured .

Thus far only the median has been considered . It is certainly possible, and in many

situations more desirable, to estimate quantiles other than the median . The median is

the quantile commonly used for inference primarily because it is the easiest to estimate.

We also compared the two procedures for estimating the 3rd quartile. In practice, for

estimating quantiles beyond the first or third quartile, specific extreme value designs

may be more practical .

Figure 11 shows the precision of the two procedures when estimating the 3rd quar

tile of the normal distribution . Once again , any differences between the two methods

appears negligible. The procedures appear to be biased in estimating the 3rd quartile

for small sample sizes . In Figure 12 the ordinate is now averaged estimates of the 3rd

quartile. The arrow represents the true quantile value, .675 .

Figures 13-14 concern estimation of the 3rd quartile of the Cauchy response distri

bution . Remember that the normal and Cauchy response distributions were chosen to

have the same quartiles. Thus by comparison we see that the precision of the methods

is much worse for the heavier tailed distribution . It does appear that MLE ( 10,30 ) tends

to be more precise and less biased than DRM - 10 for larger sample sizes.

Figures 15-16 constitute our cursory look at sample size determination . Our

approach was to indicate the best and worst precision for each method for the different

sample sizes. The extreme precisions were extracted from the performance of the pro

cedures under the four response distributions . Initial design point selection and
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magnitude of the constant c were not considered, since we are primarily interested in

larger samples where they have no noticeable effect. Another common problem ,

stimulus noise, was not considered . Bodt and Tingey ( 1987) show maximum likelihood

estimation under a similar normal response to be insensitive to stimulus noise.

Figure 15 clearly indicates the range of precision gained from additional samples.

Figure 16 compares sample sizes necessary for estimating the median and third quartile

of the response distributions with approximately the same precision. Note the cost

effectiveness of using the median if it can serve as a reasonable point for inference in the

application at hand .

Normal Response Cauchy Response

V
5
0 V75 V50 V75

10

15

45

> 50

10 20 to 25

15 25

20 35

25 35 to 40

30 45 to 50

35 45 to 50

40 > 50

Figure 16. Sample Sizes Required for Estimating the Median and Third

Quartile with Approximately the Same Precision .

IV . SUMMARY

Under suboptimal conditions for the stochastic approximation method , DRM - c's

ability to collect data pertinent to the estimation of the median of the response distribu

tion, was comparable to that of MLE(c,d ) . This was true over a variety of response dis

tribution shapes and sample sizes. For the estimation of the 3rd quartile they were

again comparable when the response distribution was normal. If the response followed a

Cauchy distribution, MLE(c , d ) was slightly superior to DRM-c. The experimenter is

encouraged to take into account these findings when planning a sensitivity test .
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TESTS FOR CONSISTENCY OF VULNERABILITY MODELS

P
a
s
t

O
r

TI

predefi

factio

This paper studies the problem of confirming a set of estimated probabilities of kill

for a small number of independent , but not identically distributed, Bernoulli outcomes.

The problem originates from vulnerability studies on tanks in which kill probabilities of

individual components are desired . The cost of resources makes it unfeasible to obtain

these probability estimates by repeated field testing. Therefore, computer simulation is

used to get the desired estimates. Researchers then want to test the accuracy of these

computer generated values. Again , the economics of live firing sometimes allows for the

firing of only one round at the tank . The question becomes ” Can the kill probabilities

obtained through simulation be confirmed by the results of a single round field test?”

Choos

Denote the simulation estimates by the vector (p ;° P2 ... , Pkº) where p;º is the pro

bability of kill for the ith tank component of interest. If we assume that the com

ponents are independent , we may rewrite the above question in the form of a hypothesis

then

test.

VS.>

repre

a 10
H.: P1 = piº P2 = P2°

Hz: Pi + Piº, for some i .

Pk = Pkº,
>

HARR

=

the

Note that when Piº = P2° - Pkº = p', this is the k-trial binomial case ,

B( k , pº) , and the null hypothesis is simply Ho: p = pº . We seek a test for the more gen

eralized case of unequal p ; 's . As may be expected , the small size of k will present prob

lems with power. Also, it should be pointed out that the alternative hypotheses only

says that at least one inequality exists . In practice though , it will usually take several

gross differences between the hypothesized and actual vectors for any test to reject H..

Therefore the tests to be explored will not be able to validate the hypothesized probabil

ities; they will be able to check for consistency between the simulation estimates and

field test results as a whole.

OV

ob

Suppose we observe a set of k independent 0 or 1 outcomes (representing survive or

kill ) , denoted by the row vector A = ( 21 , 22, ..., akl . For example, if k = 5 , we may

have A == (0, 1 , 0 , 0 , 1 ) . There are 2k possible outcome vectors. The probability
of

observing outcome vector A under the null hypothesis is given by the density function

P(A) = P10* . ( 1 - P19 ( -a . p2°* (1 - P29(1-2) .
Pk Pk

= Il p:08 . ( 1 - p:º)( 1-2) .

be

k
T

A test of the null hypothesis needs some way of ordering the 2k possible outcome vec

tors . We will examine three test procedures characterized by their ordering schemes.

1

318



Test One

B; = ( Bi-1 + P(A;)
i = 2 , 3 , ... ,

This test rejects the null hypothesis if the observed vector is among some

predefined critical set of " rarest ” outcomes. The outcome set is ordered by the density

function in increasing magnitude, and each outcome is numbered so that A , is the least

likely to occur and Azt is the most likely . Define a " cumulative function” B, whereby

P (A ) i = 1

2k .

Choosing a " c" such that

c = max { j | B; < a and P (Aj) + P (Aj+ 1)},

then the set

ARR {A1 , A2, Ac}

represents the c rarest outcomes and defines the rejection region for test of H. with a

(a ) 100% level of significance. The " test statistic” is the observed vector A; if it is in

ARR, then H. is rejected .

Test Two

This test is based upon the number of kills observed . The underlying notion is that

under the hypothesized model , a certain number of kills is expected . Letting K(A) be

the number of observed kills , then the expected value of K(A) under the null hypothesis

is

E [K(A ) ] = pi° + P2° + ... + Pkº

Piº

i= 1

If the observed K(A) is much smaller than this value, then perhaps the simulation

overestimated the kill probabilities and H, should be rejected. On the other hand , if the

observed K(A) is much larger , then H. should be rejected since the kill probabilities may

be underestimated .

To perform this test , we begin by calculating P(A) and K(A) for all 2k outcomes.

The outcomes are then ordered by increasing magnitude by the number of kills and

numbered so that

K (A ) < K(A2) < ... < K (Azx).

(The order among outcomes with the same K(A) is irrelevant.) Similarly to Test One,

the " cumulative function” is calculated . Since rejecting H. may be the result of too

large or too small a value of K(A) , a two-tailed test is used. Critical values C , and ca

are selected so that the actual alpha level
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( * )P [K(A) < cu ] + P [K ( A ) > cz]

is maximized but still less than or equal to a . The rejection region for Test Two is

K (ARR ) = {0 , 1 , ... , Ci } U { C2 , C2 + 1 , .. k } .

The simulation generated estimates will be rejected as inconsistent with the field

test if K(A) E K (ARR ).

Test Three

This test examines the number of " correct responses ”, where a correct response is

defined as :

1 , if a; = 0 when p ;º < .5 , or a ; = 1 when p;' > .5

.5 , if p ;° = .5

0, otherwise.

7 =

Therefore , a correct response of 1 is given if the more likely outcome (kill or survive) is

observed . On the other hand a correct response of O means that the less likely event

occurred . As somewhat of a tiebreaking policy , if the hypothesized probability is .5 ,

then the correct response value is .5 , no matter which outcome is actually observed.

The test statistic is C(A) = 71 +92 + +7

7;

The expected value of the test statistic is

E (C (A ) = Cl + k * /2 + Cu ,

where

Cu = E( 1 - P; º ) for all p; º < .5

j

Cu = { Piº
for all p ;' > .5

j

k* = " number of Pjº equal to .5” .

The test procedure begins by calculating P(A) and C(A) for all possible outcomes .

The outcomes are arranged by increasing magnitude by the number of correct responses

without regard for ties so that

P [K(A) < cul = Big for i = max {j | K ( A ;) < K (Aj+ 1) and K (Aj) = cı }

P[K(A) > ca] = 1 - B ;, for i = min {j | K (A ;) > K (Aj-1) and K (Aj) = cz }
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C ( A ) < C (A2) < ... < C ( Az«).

The cumulative density is computed as usual . Observing a value of C(A) much smaller

or larger than the expected value leads us to believe that H, is false. Therefore, a two

tailed test is desired , and the critical values c , and c, are chosen to maximize

P(C(A) < cul + P (C ( A ) > cal < a,

the actual alpha level , where

P (C(A) < ci] = B ;; for i = max {j | C (A ;) < C (Aj+ 1) and C(Aj ) = c }

P (C(A) > ca] = 1 - B;, for i = min {j | C (A ;) > C (Aj-1) and C ( Aj) = cz } .

Since the rejection region is CRR {0, 1 , ci } U { C2 , C2 + 1 , ... , k } , we will reject H.

at the a level of significance if C(A) E CRR:

Properties of the Tests.

To study the three test procedures , 2000 pairs of k-dimensional probability vectors

were randomly generated for k=6, ... , 10 . The first vector of a pair (P., P ) was con

sidered the hypothesized probability vector, and the second was the alternative proba

bility vector . The level of significance was set at a = .05 . The power of the three tests

was computed for each pair (P. , P.) .

Figures 1 through 3 show a graphical way of comparing power between any two

tests, A and B. Each point represents a pair (P. , P.). Its coordinates (x ,y ) are the

power of Tests A and B, respectively . If Test A is more powerful than Test B, then we

expect to see a graph similar to Figure 1. If the opposite is true, the graph will be simi

lar to Figure 2. But if both have approximately the same power then Figure 3 is the

proper scatterplot .

Comparison of the three tests based upon the 2000 randomly generated vectors is

shown in Figures 4-8 . Several observations can be made from these graphs.

1 .
For most pairs of vectors , and for k=6,7,8,9,10, Test 1 has greater power than

either of the other two tests .

2 .
Median power increases with k for Tests 1 and 3 (see Figure 9 ) .

3 .
Median power remains fairly constant for all k with Test 2. The median power

of Test 2 is not much greater than the alpha level . This indicates how poor a

procedure the test is.

When comparing the power of all three tests for each point , it was occasionally

found that the superior test was either Test 2 or Test 3. For example,
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H. == 1.71.23.10.09.15.67.50 .93]

H , = 1.80.36.47.34.36.27.94.95 )

TEST

Rej. region

1

187 least likely

2

{0,1,7,8}

3

{ .5,1.5,2.5,3.5 }

Exact alpha .0499 .0495 .0495

Power .3631 .7728 .7728

This leads us to ask what can be determined from (P., P2) about the power of the

tests, if anything? One possible relationship studied was the power versus the distance

between P. and P, in k-space , i.e. A (P., P2) where

A (P. , P.) =

VI

(P;° - P;9)2

(Pº- P29 2 + ... + (Pº- P 9)2

Figures 10-14 show scatterplots of this relationship for each test and sample size .

The correlations between power and A (P., P2) are shown in Figure 15.

The problem with looking at the relationship between P. and Pg, however, is that

in practice we do not know what P, is . It will not be very helpful to know that the

choice of best test for a given P. , is dependent upon the choice of Pg. We should look

for a best test given P. only . This is the topic of ongoing research .

SUMMARY

The problem is most complicated by the fact that we must judge the entire set of

computer generated estimates on a single fired shot . While we admit that Test 1 was

not able to detect some greatly differing alternative set of probabilities, it was in general

the best of the three test procedures. The reasons become obvious when we closely

examine the other two.

Test 2 does not take into consideration the order in which the a ;'s appear. For

example, let our hypothesized set of probabilities be P. = 1.01 , .02 , .03 , .97 , .98, .99) .

For the observed outcome vectors A , = (0, 0 , 0, 1 , 1 , 1 ) and Az = (1 , 1 , 1 , 0 , 0, 0) , we

compute P (A ) .8857 and P (A2) .000000000036 . However for both outcomes we

compute K (A ) = K (A2) = 3, the expected value of the test statistic under H .. There

fore we would not reject H. in either case . Not only does Test 2 not reject H. given A2

(when it obviously should ) , but it has managed to equate the most likely and least likely

outcomes.
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Test 3 does consider the order of the observed outcomes, however it does not incor

porate the magnitude of the p ;º's . To see how this is dangerous, let Pol 1.53 , .52 , .51 ,

.49, .48, .47 ], Poz = 1.47, .48, .49 , .51 , .52 , .53) , and A = (1 , 1 , 1 , 0 , 0, 0) . Under Hov ,

P(A)=.019756 and C(A)=6, while under H.2, P ( A ) = .012220 and C(A)=0. The test has

exaggerated the difference between the two probability vectors , despite their being

nearly equal.

Test 1 is the best of the three candidate procedures because it simply tries to create

the largest possible rejection region . Imagine trying to fill a fishbowl with as many mar

bles as possible when the marbles are different sizes . Since we do not want to take up

space with larger marbles, we fill the fishbowl one marble at a time starting with the

smallest, then the second smallest, and so on until the bowl is full . In a similar fashion ,

this is how the rejection region for Test 1 is formed, thus resulting in a most powerful

test.

Further research into this problem will look at other possible tests and easier imple

mentation of Test 1 .
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NONPARAMETRIC SMALL SAMPLE TOLERANCE LIMITS

Donald M. Neal , Mark G. Vangel , and John Reardon

Materials Technology Laboratory

Watertown , MA 02172-0001

ABSTRACT

Results from this clinical study have identified the Hansone

Koopmans ? method as the most desirable nonparametric small sample lower

tolerance limit estimator in the range where conventional nonparametric

procedures are not defined . The MonteMonte Carlo studies indicated that

this method worked well for sample sizes from 2 to 28 . The authors '

initial effort
effort using a linear function of the first four order

statistics was reasonably effective for sample sizes greater than 15 .

Other efforts to obtain solution to the problem include

extension of the quantile sign test , a scheme involving a reduction

factor for the first order value , and a smooth nonparametric quantile

estimator . These methods were not satisfactory due to either

instability of first ordered value when sample sizes are small , or the

inability to provide proper coverage rate for N < 28 .

a

INTRODUCTION

The inability to obtain
obtain exactly the same structural properties

from all specimens obtained from a manufactured material results in a

relatively large variability in
in strength measurements when a large

number of specimens are considered . In the case of designing an

aircraft structure , it is required to design such that a maximum stress

value exists in critical locations , and these values do not exceed the

minimum guaranteed material properties ( strength ) . Obtaining minimum

strength values will reduce the possibility of some production

components containing weaker material than that from the laboratory
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an B

a

test element . This guaranteed minimum strength value is defined as the

design allowable ( basis value ) by aircraft design engineers .

Usually , the measured value is considered acceptable in estimating

the population parameters for predicting population percentiles . In

the case of the design engineer , it is advisable to have a prediction

which will determine the accuracy of the percentile estimate at a high

degree of statistical confidence . This is the correct interpretation

of a basis value . For example , certain military standards , e.g MIL

HDBK - 52
require material property data to be presented on

A or

allowable
basis . The allowables

represent
a value determined

from

specified
probability

of survival with a 95 percent confidence
in the

assertion
. The survival probabilities

are.99 for the A allowable
, and

.90 for the B allowable
.

MTL is involved in the development of the statistics chapter for

the MIL - 17 Handbook 3 on composite material in aircraft structural

design . The chapter will include methods for determining the design

allowable values . The inability to identify the statistical model from

limited or multi - modal data motivated the authors to find a

parametric model which will provide a correct tolerance bound ( P = .95 )

on the quantile values ( P = .10 ) . The conventional nonparametric method

using the quantile sign testa provides a solution if there are at least

28 values in the sample . Unfortunately , the model needed is one for

sample sizes less than 28 .

This paper presents the results of a clinical paper presented at

the ARO sponsored Thirty - sixth Annual Design of Experiments Conference

on methods for obtaining an accurate measure of the above mentioned

design allowables involving small sample nonparametric modeling . It

should be noted that there are difficulties in extreme quantile

modeling techniques involving determination of tolerance bounds for the

quantile values in the allowable computation . Brieman , Stone and Gins

have discussed the difficulties existing in model identification when

very small tail probabilities are required . This is the result of

parameter estimates that usually are obtained from data in the central

portion of the distribution , where most failures occur , leaving the

non -

5 .
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tail region limited in representation . This is unfortunate , since the

relatively small amount of data in the tail region is of prime

importance to the allowable computation . The nonparametric scheme can

model the lower ordered values of the distribution . The Hanson -

Koopmans ? model is recommended as a solution to the nonparametric small

sample tolerance limit when considering the

various

alternative

solutions , the application of the method does not result in overly

conservative estimates of the allowable values . Other methods

attempted , including extension of the quantilethe quantile sign test , linear

function of first four order statistic ( authors ' proposed method ) ,

smooth nonparametric quantile estimator6 , and adaptive scheme

involving simulation procedures for obtaining ratio of the first order

value to the allowable value . None of the above methods

acceptable for the sample size requirements of2n 28 , due to

either computational problems or inability to provide minimum coverage

of 95 % .

an

Ĉ

an

were

QUANTILE ESTIMATE SAMPLE SIZE

The importance of determining a tolerance limit on the quantile

values is graphically displayed in Figures la and 10 . The standard

normal distribution function is plotted for sample sizes of 50 and 10 ,

using 25 sets of data . In figure la , N = 50 the amount of spread in

quantile for the 10 percentile values in .80 . Figure 1b shows a spread

of 2.4 for the same percentile . This example shows the importance of

having large sample sizes , or otherwise providing a tolerance limit on

the quantile estimate .

Often in structural design , a criteria requires material property

values to be larger than the design stress in order to define the

margin of safety . Determining a property value from 10 material

strength tests in order to obtain 90 % reliability estimates could

result in nonconservative values and possible structural failure .

Obtaining a lower 95 % confidence bound on the reliability estimate can

provide the necessary assurance .
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DEFINITION OF THE B - BASIS VALUE

anThe B - basis value is a random variable where observed basis

value ( design allowable )
from a sample will be less than the 10

percentile of the population with a probability of .95 . In figures 2 a

and 2b , a graphical display is shown for the basis value probability

density function ( N ( 0,1 ) ) for sample sizes of n = 10 and 50 . The

dotted vertical lines represent the location for the 10
percentile

( X.107 of the population and the probability ( basis value < xX.10 ) : 95

for the basis value probability density function . The graphical

display of the basis value density functions show much less dispersion

for n : 50 than for n = 10 . Small sample sizes will result in more

conservative estimates of the basis values .

QUANTILE SIGN TEST (Conventional Nonparametric Analysis )

The quantile sign testº is introduced in the text as a procedure

that provides an accurate B - basis value for n > 28 . The authors

initially attempted to extend this method for n < 28 using various

procedures related to the first ordered value without success .

The analysis involves considering , for example , 4.10 as a quantile

of a distribution , then the values < are binomial random variables

with n trials and probability of .10 . If X

X (r )

is the rth ordered value

in the sample , the B - basis value is equal to Xir )

where
1 is the

largest integer solution to

9.10

(3)(10)*(90

2.95

( 1 )Σ ***

(0 ) w (n

W = r

= n ! / w ! (n - w ) !
where

and n == sample size

See Table I for computing values for r given n .
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NORMAL CUMULATIVE DISTRIBUTION FUNCTION
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NORMAL PROBABILITY DENSITY FUNCTION

MEAN = 0.0

STANDARD DEVIATION = 1.0

0.8
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Figure 2 a
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TABLE 1

Ranks ( r ) of Observations ( n ) for determining

B - Basis Values for an unknown Distribution

< 29

29 1

46 2 .

61 3

76 4

89 5

103 6

116 7

129

142

154

167

179

191

203

215

8

9

10

11

12

13

14

15

227

239

251

263

275

298

321

345

16

17

18

19

20

22

24

26

EXTENDED QUANTILE SIGN TEST

The extended quantile sign testquantile sign test was developed in order to obtain

the B - basis values for n < 29 using nonparametric procedures .

Let n be a fixed value less than 29 . calculate the probability

,

Р as follows : 1 E j < k , and p

P ;

is the solution

of

.05 = ( 1

n - 2

P ;) "

1 ( 1 - P

2

( 2 )

values P1 , P2 "
k

Ps)no pz + (2) ( 1

j

( )(1 - P3)n- 3p,

where k << n .

11Example : If on = 15 , let k = 3 ,3 , then p = .181 , P2 .280 and

P3 = .364 , with corresponding order statistics X

X ( 1 ) : X ( 2 ) , and X13 ) :

( see Figure 3 ) .
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FIGURE 3

The following interpolation models were applied in order to obtain X.
B

for P = .10 :

X = A Log ( BP + 1 ) , ( 3 )

X = A Log ( PB + C ) given P = .0001 and Xo

= 0.0 , ( 4 )

and X = AP ? + BP + C given P = .0001 , Xo = 0.0 . ( 5 )

The model in equation
( 3 ) failed

to
provide acceptable

interpolation results because of its inability to represent ( Pos Xo ) ,

( P2 , X ; ) , ( P2 , Xal , and ( P2 , X3 ) effectively .

The models from equations ( 4 ) and ( 5 ) provided adequate

interpolation results for p .10 . The computation procedures for

obtaining each B - basis value from sample requires either linear

(Equation 5 ) or nonlinear ( Equation 4 ) regression models . These are

not simple computational methods when compared to conventional quantile

sign test application . The authors applied a simulation process with a

given in value and N ( 0,0 ) models toto approximate probability density

function for

F B - basis
( 6 )

* ( 1 )
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The purpose was to obtain a reduction factor F for the first ordered

value in order to obtain the basis value for given sample size n . This

is a similar computational procedure ,
in the conventional

nonparametric method .

A schematic of the results are shown below :

as

N ( 0,1

(0,5)

F

F

FIGURE 4

The substantial spread in the N ( 0,5 ) case for F was primarily the

result of unstable first ordered values for the simulation . The

authors have alsoalso rejected thethe above approach since it requires

individual regression modeling for each sample if accurate basis

number is to be obtained .

an

B - BASIS VALUES FROM FIRST FOUR ORDERED STATISTICS

S a

This method involves determining a linear relationship between the

weighted gaps of the first four ordered values ( X ( 1 ) : X ( 2 ) : * 13 ) , and

X141 ) and the Standard deviation of normal population Nl2n , 5 ) .

Random selection of R = 5000 Samples of size n were obtained for

selected integer values 1 < s < 5 . A 95 % tolerance limit is obtained

for the 10 percentile of the N ; ( 20,5 ) distributions . This value

X

10
.95 represents the value where 95 % of all values

X ( in

.10

percentile of distribution ) from thefrom the random sample of size
This

10.95
value approximates the B - basis value for Ni (20,5 ) .

-

are <

х

X.10]
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The following linear relationships are applied in the analysis :

3
X
1xats) х4 + x2х3 + x2

from weighted gaps X2 - X2 , X3 • X1 , X4

of the order statistics

· X1

(

( 7 )

and [x.101.95X4 +x3 + x2 + x

الح(5)
2

4

( 8 )

where xi's are expected values from the order

statistics .

The linear relationships in equations 7 and 8 are represented

graphically in Figure 5

Yi = 6,5

Y

Y2 =6₂5

S

FIGURE 5

The B - basis value can now be defined as ,

B value =
( s * .

.25 ) ( X4

+

( 35* + .25 ) X1

balby

X₂
( 9 )

3 Xq ) ,

where S .

The above method was very effective for n > 15 . and provided

reasonable coverage rates , as indicated in the Monte Carlo study using

Weibull and normal distribution .
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HANSON-KOOPMANS TOLERANCE LIMITS

The Hanson - Koopmans ' method provided the most satisfactory results

for obtaining small sample nonparametric B - basis values .

involves applying the following equation :

The method

Evalue . (k +j +1) CM!! * •jol ) * ( x + )!

Cia !

where X ( 1 112 ) : * 13 ) Xin ) are the ordered statistic values ,

and C , is obtained from solution of

pi/ C ( C - 1 )/ C

)

in.j.v. 11!15 - DJ!K!

1

.95 €

s
i
!
!

8

0

..برد-ار
lll.vn

j . lowdy

where j ? 1 and k = 0 . The region of integration by the lines ws0 for

Oval, v : l for Owl, the line wsv for OSVED and by the

curve

vep /C VIC, -1)/C

for Devel .

in the

The Co values for equation 10 are tabulated in Table 11 where

js 3 and a : 0 to obtain basis values for 3 < n 30 , as

following manner :

B value = X • ch( * • * )

using the first and fourth ordered values provided acceptable results ,

although another combination could have provided a better approximation

to the desired coverage rate of 95 % . In the case where 3 ? n > l , the

following equations were obtained :

B value

Xa • colXa • Xy ) .

where ca • 35.2 and C3 • 28.8 ,

for n = 2 and 3 respectively .
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Hanson -Koopmans (HK ) vs. Linear Order Statistic ModelA comparison :

( LOSM ) .

TABLE II

Ch
n

ch ch ch

4

5

6

7

8

9

10

4.505

4.101

3.765

3.478

3.229

3.009

2.812

11 2.635

12 2.474

13 2.327

14 2.192

15 2.068

16 1.952

17 1.845

18

19

20

21

22

23

24

1.745

1.651

1.564

1.482

1.404

1.331

1.263

25 1.198

26 1.136

27 1.078

28 1.027

29 .971

30 .811

A Monte Carlo study was completed involving a comparison of

coverage rates obtained from HK and LOSM , where the Weibull wla , B ) and

Normal N ( M , o ) were the selected probability density functions . In the

simulation , the confidence
confidence coefficient ( coverage rate ) was obtained

from determining the percentage of replications for which the B value

was less than the actual 10th percentile of the distributions . 5,000

replications were used in the experiment . A minimum percent of 95 is

required . Percentage slightly greater than 95 is also desirable .

In Tables III and IV , the coverage rate's percent is tabulated for

both the Linear Order Statistic Method and the Hanson - Koopmans Method

where the normal and Weibull models are used in the simulation process .

In Table III , a range of standard deviations are considered in order to

examine for the effects of dispersion in the data . LOSM results show

poor coverage rates when n = 10 , and acceptable coverage rates for n = 15

and 10 > 0 The Hanson - Koopmans results show universal acceptance

except for marginal acceptability for n = 15 . The authors also

obtained results for n = 14 , 15 , 16 , 17 , 18 , and 25 for the HK method .

In all cases , coverage rates of at least .95 were obtained , indicating

that the lowest values arevalues are for n 15 . A different set of ordered

values could possibly increase coverage values for n = 15 . Results

from the table indicate optimization process could be developed

where a set of ordered values would be determined to provide the

an
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n .
minimum acceptable coverage ( 695 ) depending on sample size

This

would prevent the over conservativism
shown in the tables ( e.g. .99 ,

.98 , 97 coverage rate ) .

In Table IV , a range of a values ( shape parameter ) for Weibull

functions , are used for examining effects of dispersion . Again , the

LOSM results show poor coverage rates when n
10. The case when

N = 15 shows reason values since .93 is the lowest value .

The Hanson - Koopmans results are similarsimilar to those shown in Table

III . The minimum values are at n = 15 , which also occurred when the

normal model was used in the simulation process .

It can be inferred from the above results that the HK method is a

desirable nonparametric procedure for obtaining B - basis values when

n < 28 . It is not clear why the reduction in coverage to .94 exists

for n 15 , while n = 2 andand n 30 have a coverage rate of .99 .

Ideally , coverages of .95 for all n and dispersion parameters would be

desirable to prevent overly conservative estimates of basis values .

TABLE III

confidence Coefficient ( % ) , NOM , O ) , H = 50 ,

LINEAR ORDER

STATISTIC METHOD HANSON - KOOPMANS METHOD

n = 10 n = 15 n = 5 n = 10 n = 15 n = 30

2

6

10

14

30

.60

.76

.78

78

.80

.99

.98

.94

.99

.99

.99

99

.99

.97

.97

.98

.98

.97

.95

.94

.94

.94

94

.99

.99

.99

.99

.99

.92

.90
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TABLE IV

Confidence Coefficient ( % ) , w (a , ) , B =50

LINEAR ORDER

STATISTIC METHOD HANSON - KOOPMANS METHOD

a
n = 10 n = 15 n = 5 n = 10 n = 15 n = 30

2

6

10

14

30

.82

.78

.77

.77

.74

.93

.93

.96

.98

.99

.99

.99

.98

.98

.98

.98

.97

.97

.97

.97

.96

.95

.94

.94

94

.99

.99

.99

.99

.99

CONCLUSIONS

The Hanson - Koopmans nonparametric small sample tolerance limit

model provided the most desirable solution to obtaining B - basis values .

The authors method , LOSM , provided an acceptable method if n > 15 . For

small sample sizes , results were excessively non - conservative .

Methods involving factors of the first order statistic resulted in

overly conservative or non - conservative B - value estimates , depending on

the dispersion of data and the sample size . The extended quantile sign

test failed to provide either a computationally simple solution to

obtaining basis values , or a factor associated with first ordered value

in calculated B - basis value . The need for repeated application of

non - linear regression to each sample , when factors were not available ,

reduces its value engineer's statistica
l method . The

convention
al quantile sign test was not applicable for n < 29 , although

it is an acceptable procedure otherwise .

as an
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A SECOND LOOK AT THE

PERVERSITY OF MISSING POINTS IN THE 24 DESIGN

Carl T. Russell

US Army Operational Test and Evaluation Agency

Falls Church , Virginia

ABSTRACT . At the 1982 Design of Experiments Conference, the

author presented a Clinical Paper entitled The Perversity of Missing

Points in the 21 Design. That paper tried to characterize what

points could be deleted from the 24 design without losing the

resolution V property (that is, main effects and 2 -factor interactions

are estimable). That paper used brute force ( computer plus sweat)

methods to investigate numerous special cases and formulate some

promising conjectures, but no general conclusions were reached .

G.E.P. Box was the primary discussantdiscussant on the paper , and
and he

suggested using a matrix trick to reduce the dimensionality of the

problem from eleven to five . The current paper shows how notation

from group theory and graph theory can be used to exploit Box's

suggestion to prove the conjectures of the original paper . in

particular, even if five of the sixteen points are deleted at random

from a 24 design , the probability is almost 0.7 that the resulting

design is still resolution V-that is, all eleven parameters are

estimable from the remaining eleven data points. Unfortunately , the

method used does not appear to generalize to larger designs of

greater interest.

1. INTRODUCTION . Execution of a military field test seldom

proceeds exactly as planned , and rather large amounts of missing

data are common . In fact , two other papers given at this Design of

Experiments Conference dealt with aspects of the problem . Winner

and Smith described a situation where a large portion of the planne:

experiment captured no data ; Bryson and Russell presented a

method for adjusting attrition estimates from “Real Time Casualty

Assessment” based on changed estimates of kill probabilities which

were 'missing " when the real time casualty assessments were

made . In 1982 , I approached the problem from a different angle by

studying what happens when points are arbitrarily deleted from a

factorial design (Russell, 1983a) . This study was motivated by the

observation that most field tests of military materiel are designed in

a factorial framework and conducted in blocks of time and/or space .

The blocks could in theory be constructed from appropriately chosen

fractional factorials to reduce the potential bias due to confounding
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which Is common in much traditional field test
test design ( see

Russell — 1981, 1982, 1983b, and Section V of this paper ). Before such

a design approach can be prudently implemented in expensive field

tests, however, an understanding of its robustness to substantial

data loss is needed .

In the summer of 1982, I began this study by looking at the

simplest interesting factorial design , the 24 design . The study asked

two questions:

(1 ) Characterization problem - what points can be deleted

from the 24 design without losing estimability of the

mean, main effects and 2-factor interactions ( resolution V

property ) ?

(2) Structural problem - when the remaining design is

resolution V, what is the structure of the least squares

estimates obtained?

The problem turned out to be much harder than I anticipated, and

it grew into a Clinical Paper presented at the 1982 Design of

Experiments Conference (Russell, 1983a) . That paper used brute force

methods to beat a portion of the structural problem to death using a

computer and to make some promising conjectures for the

characterization problem . G.E.P. Box was the primary discussant,

and he made a suggestion for the characterization problem which

enabled me to prove the original conjectures and quantify the

likelihood that random deletions of points from the 24 design would

destroy the resolution V property . This paper presents the results

growing out of Professor Box's suggestion . Unfortunately , the

methods used do not appear to generalize to larger designs of greater

interest.

Why write this paper if the results essentially represent a dead

end? First , it closes the loop from a Clinical Session where as an

Army statistician , I received useful assistance on an important

problem which enabled me to proceed further than I otherwise could

have . Second, even though the methods of this paper do not appear

to generalize , they are mathematically appealing, they took me a

good part of the 1982-83 winter to derive, and they enable

quantitative results which make me more optimistic that some

fractional factorial blocking approaches may be quite robust against

random data loss. Third, this paper re -emphasizes an important

problem which needs and deserves further work by statisticians .
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II . PRELIMINARICS . A standard notation for the four factors

and sixteen points in the 24 design is the following.

LO D

Lo C WC

( 0 ) C

HID

LoC MIC

LOB LO d cd

HI A a ac ad acd ( 1 )

b bc bd bcdHI B LOA

HI A ab abc abd abcd

The full model can be written (in slightly unusual order ) as

Yijke = y + x1 + $ j + 8x + 6
( 2)

(«Blij * adik (a) ie (B8)jk (B8)je (88 )ke

(888)jke + (608) ike ( )ije + (QB8lijk

(AB88)ijke * Eijke ,

+

where the subscripts can be removed by the usual side conditions:

* + , -0, that is wi- ta ( 3)

80 + 8 , =0 , that is 8,38

(oß)oo+(« B)01-( B) 10 *( B ) ,1-0 , that is (oB), F2(« B)

(88 )00+ (86)01= (88)10+ (88),1-0, that is ( 88) 2= +(88)

(aß88)0000 + ( xß88 )0001 = ... = 0 , ie,(B88) ; jkg=+(ab86).

In matrix form , these normal equations are

Y = X$ + E , (4)
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where the design matrix , X, has rows corresponding to design points

and columns corresponding to parameters. The reduced main effects

and 2 -factor interactions model is :

Yijke = l + « j + Bj + XK + 8
(5)

( ab) ijt ( 2 )ik * (08 ) je * (B8)jk * (B8)je * ( 88 )xe * Eijke,

which reduces the number of columns of X from 16 to 11. Figure 1

shows the design matrix for the full model, (2), partitioned to

accentuate the missing parameters in model (5), and assuming the

unsubscripted parameters from (3) are used . Deleting points from

the design corresponds to deleting rows from X.X. The normal

equations, (4) , have a least squares solution iff X'.X is nonsingular ,

in which case the solution is

$ = (X'X )-1.x'.Y. ( 6 )

Since there are 11 parameters in the reduced model, (5) , solving the

characterization problem via (6) for 5 or less missing points requires

checking a matrix of dimensions at least 11x11 for singularity .

To reduce the dimensionality of the characterization problem ,

Box suggested partitioning the design matrix , X , by making the m

missing points correspond to the last m rows and the p parameters

of interest correspond to the first p columns:

P. -р

X , X3
nem

X =

(7)

Xq Xa
m

By assuming orthogonality of X and expanding the orthorgonality

relationships X'X = nl =X-X ' in matrix form , Box proved the

following lemma via an eigenvalue argument.

Loung. X , X , is nonsingular iffXX is nonsingular .
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Rows Correspond to Design Points

Columns Correspond to Parameters

( « ß ) ( ) 8 (B8) (888 ) (aß8) (aB78)

B 1 8 1 (B7) 1 (08) 1 (38) 1 (288) 1 (« B7 )Hd

-1 1-1 1 1-1 1 1 1

1 1 -1 -1 -1 -1 1-1-1 1 1

1 1 - 1 1 - 1 -1 1 - 1 1

1 1 1 1 -1 -1 - 1 -1 1

1-1-1 1 1 -1 -1 -1 1 1 1

1 1 - 1 -1 1 1 -1 -1 -1 1 - 1

1 - 1 1 - 1 1 -1 1 - 1 1 -1 -1

1 1 1 1 1 1 1 - 1 -1 -1 -1

1 1 - 1 1 - 1 1 1 1 -1 1-1

1 1 --1 1 -1 -1 1 1 1

1 - 1 1 1 - 1 1 1 - 1 1 1

1 1 1 -1 -1 -1 1 1 1 1

1-1 - 1 1 1-1-1 1 -1 -1 1

1 1 -1 -1 1 1 - 1 1 1-1 1

1 1 - 1 1 - 1 1 1 - 1 1 1

1 1 1 1 1 1 1 1 1 1

-1 -1 -1 -1 41 )

-1 1 1 1

1 - 1 +

1 1 1 1 tab

1 1 - 1 1 1 C

1 - 1 1 - 1 1 tac

1 1 - 1 1 + 6C

-1 -1 -1 1 1 tabc

1 1 1 - 1 +0

1 - 1 1 ad

-1 1 - 1 1 1 od

-1 - 1 - 1 - 1 tabd

-1 -1 1 1 cd

-1 1-1-1 1 + acd

1-1-1-1 - 1 bcd

1 1 1 1 1 -abcd

Submatrix

Corresponding to

Mean , Main Effects,

and 2 -Factor Interactions

(Present Parameters)

Submatrix

Corresponding to

Higher Order

Interactions

(Missing Parameters)

Figure 1. The Design Matrix, X, for the 24 Design,

Partitioned to Show Present and Missing Parameters in the

Main Effects and 2 -Factor Interactions Model.
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In the case of the 24 design , the lemma reduces the dimensionality

of the characterization problem from eleven or more to five or less .

For example, with five missing points (m=5) and p = 11 (the number

of parameters in (5)) , the 5 -dimensional square matrix X4X4 could

be examined for singularity instead of the 11- dimensional square

matrix X , X1, and the problem gets easier with less than five

missing points.

The rows of the full 24 design corresponding to 3- and 4 -factor

interactions ( that is, the rows of the missing parameter submatrix

in Figure 1) represent the vertices of the 5 -dimensional hypercube

which have an even number of minus signs. By Lemma 1, the

characterization problem is reduced to characterizing the subsets of

these even vertices which are linearly dependent. All the vertices of

the 5 - dimensional hypercube form a group G5 under coordinatewise

multiplication , and the even vertices form a subgroup Eg. The

subgroup Es is isomorphic to the quotient group obtained by

identifying opposite vertices ( ie, those with all signs switched ) in Gg .

By mnemonically relabeling the columns of missing parameters in

Figure 1 ,

(888) - A, since « is missing from (878).

(208) - B, since B is missing from (as),

(aß8) + C, since 8 is missing from (ABS),

(aby ) - D, since 8 is missing from (B8),

( « B88) - E , since ε is missing from ( « B88 ),

and letting a letter A, B, C. D or E appear in a vertex label iff the

sign of the respective coordinate is positive, the quotient group

becomes EgãG5/ {I, ABCDE ). Figure 2 gives the new labeling of the

missing parameter submatrix from Figure 1 in terms of A, B , C , D ,

and E together with the respective cosets. The f1's of Figure 1 have

been replaced by simply +'s and -'s in Figure 2, and one or

two- letter design point labels are underlined to indicate that they

will be used as standard coset labels. (Group theory is used here only

for limited notational convenience : not much algebra is exploited .

Likewise, the graph theory introduced in the next section is used

simply
bookkeeping tool. Better exploitation of these

mathematical objects might lead to more general results .)

as a
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OLD

POINT

LABELS ( 1)

(888)

A

PARAMETER LABELS (2).

(608) (aß8) («B8) (aß88)

8 C D E

NEW POINT

LABELS( 3)

(COSETS(43 )

( 1 )

1a

b 1

ab

с

ac

bc

-

abc

E 2 ABCD

BCD ñ AE

ACD BE

ABE N D

ABD ŽCE

ACE *

BCE AD

* ABCE

ABC 2Ź DE

ADE 2 BC

BDE Ž AC

5 2 ABDE

CDE 2 AR

B z ACDE

2 BCDE

ABCDE 1

d

ad

+

1

bd 1

-

abd

cd

acd

bcd

abcd

Tabulated Symbols Are the signs of Entries in the

Missing Parameters Submatrix of Figure 1 .

( 1 ) The usual way of labeling design points , or treatments , in

2n experimental designs - see ( 1 ) in text .

( 2) Greek letters in parentheses are the old parameter labels,

outlined capital letters are the new parameter labels .

( 3 ) An outlined letter appears in the new treatment label (first

column) iff " + " appears in the respective column.

(4) Cosets obtained by identifying opposite vertices of the five

dimensional hypercube. Underlined labels ( one- or two

letter combinations) are used as standard coset labels .

Figure 2. The Matrix of Missing Parameters,

Showing New Labels.
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III . MAIN RESULT. The geometric underpinnings of the

reformulated problem suggest a geometric approach to its solution .

The problem is to characterize linearly dependent subsets of the

vertices of a hypercube. Clearly , opposite vertices of a hypercube

are pairwise linearly dependent (hence interchangeable in linearly

dependent subsets), so the identification of opposite vertices in cosets

simply gets rid of a trivial nuisance . Once opposite vertices are

identified in the 5 - dimensional hypercube, defining an edge between

two new vertices if there was an edge between pairs of old vertices

is natural . In fact, it is useful to define a quotient graph on the new

vertices as follows.

Definition . The quotient graph, ag of Gg is the graph whose

vertices, v (as ), are the elements of the quotient group

Eg and whose edges, E (G5 ), connect any pair of vertices

in V (65) whose cosets were connected in G5.

In the notation of Figure 2, V (65) consists of the identity , single

letters, and double letters, and E (65 ) consists of edges connecting:

• I with each of the single letters A, B , C , D , and E.

10 C

• Each of A , B , C , D , and E with I and with each double

letter containing it .

Example: AB

AC

1

AD

€
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• Each double letter with all single letters contained in it

and with each other double letter disjoint from it .

Example:
CD

AB

CE

DE

The usual definition of a subgraph is :

Definition . A subgraph 8 of a graph G defined by the

vertices V(8) is the graph such that V(8) < V(a) and

E(S) consists of the edges of G connecting vertices of 8 .

With this definition, the following theorem will be proved .

Theorem (Main Result) . Let 8 be a subgraph of Gs defined by V(8)

where V(8) has 5 elements Then the elements of Es

corresponding to V(8) are linearly dependent ift & contains a

subgraph of one of the following three forms .

( 2e ) ( 3e ) ( 4e )

Proof of Sufficiency . It is easy to show that each of the three types of

subgraph give linear dependence. All are closely related to P.W.M.

John's three -quarter replicates (John 1971 , pages 161-163) , which

formed the basis for much of my earlier paper (see especially Table

1 , page 504, of Russell 1983a, denoted by "T1 " below ).

The 2 -edge type, (2e ) – with 4 vertices corresponds to deleting

the quarter replicates of cases 2 and 5 in Ti (defining contrasts

similar to 1 = D = BC = BCD and I = AB = CD = ABCD ).

Example

Case 2 . Case 5 .

I = D = BC = BCD I = AB = CD = ABCD

abcd = 1 A =bcd abcd = 1 One E =( 1 ))

ad = BC DE=0 CO = AB CD-ab
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The 4 -edge type, (4e ) with 4 vertices corresponds to deleting

the quarter replicates of cases 1 and 3 in Ti (defining contrasts

similar to l = C = D = CD and I = BC = BD = CD ).

Example

Case 1 . Case 3 .

I = C = D = CD I = BC = BD = CDCD

abcd = 1 A -bcd abcd = 1 A = bcd

0
acd = B AB -cd ( 1 )=E

AE=a

The 3 -edge type , (3e ) – with 5 vertices corresponds to deleting

an appropriate additional point from the quarter replicates of

cases 1 and 3 in Ti (defining contrasts similar to I = D = -ABC = -ABCD

and I = ABC =ABD = CD ).

Example
Case 4 . Case 6 .

I = D = -ABC = -ABCD I = ABC = ABD = CD

A=bcd I = abcd

abcd = 101 DE = 0 A : OAB

B - acd BE=D

C - abd AE = a.

These correspondences between the graphs and three - quarter

replicates show that the main result actually establishes the

conjecture on page 522 of Russell, 1983a .

Proof of Necessity . To prove necessity assume without loss of

generality that I is a vertex of the subgraph and that I has the

maximum number of incident vertices. The proof considers

cases based on the number of vertices at I , and as a byproduct

used in later extensions of the theorem , counts the number of

possible graphs of each type which result in linear dependence.

Case 0 - Edge. If there are no edges incident at I , then the only

subgraph has independent vertices.

AB

OAC

1 .

AD

OAE
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Case 1 - Edge. If there is one edge incident at I , then there are two

types of subgraph , one of which has type (2e ) dependent

vertices which can occur in 240 ways.

IO

OBC

A OBD

OBE

OCD
Type (2e)

(240 ways)

BC DE

Case 2 - Edge. If there are two edges incident at I , then there are

six conceptual types of subgraph , two of which are not

realizable , and one of which has type (2e) dependent vertices

which can occur in 480 ways.

CD

B CE

☆

NOT

POSSIBLE

AC

OCD

JAB

NOT

POSSIBLE

JAC

Type (2e)

(480 ways)

BC

B

AC

B
D
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Case 3 - Edge. If there are three edges incident at I , then there are

three conceptual types of subgraph . One has type ( 3e )

dependent vertices which can occur in 160 ways. The other

has type (4e) dependent vertices which can occur in 480 ways.

BODE

Type ( 3e)

(160 ways)

AB

A
D

Type (40)

(480 ways) 1

Case 4 - Edge. If there are four edges incident at I , then the only

subgraph has independent vertices.

C

IV . CONSEQUENCES OF MAIN RESULT. It follows

immediately form the main result that cases (2e) and ( 4e) represent

the only ways four points can be deleted from the 24 design and fail

to leave a design of resolution V and that if less than four points are

deleted then the remaining design is of resolution V.

Corollary . Let 8 be a subgraph of ls defined by V(8) where V(8)

has 4 elements. Then the elements of Eg corresponding to V(8)

are linearly dependent itt 8 contains a subgraph of one of the

following two forms .

(2e) ( 4e)

-D

Corollosy . If less than 4 points are deleted at random from the 24

design , then the remaining design is of resolution V.

362



Totalling numbers of linearly dependent subgraphs identified in the

proof of the main result (with a recount in the 4 - point case ) gives

the following rather surprising quantitative results. They establish

the conjecture that most designs obtained by deleting four or five

points at random from the 24 design are of resolution V (Russell,

1983a, page 522) .

Extension . If 5 points are deleted at random from the 24

design , then the probability that the resolution V property

is lost is

240 + 489 + 160 + 480

1360

16 = 0.31 .

4368

5( 15)

Extension . If 4 points are deleted at random from the 24

design , then the probability that the resolution V property

is lost is

160 + 40

200

16 = 0.11 .

1820

(16)

V. GENERALIZATION OF MAIN RESULT. The methods of this

paper do not appear to generalize in a useful manner to 2n designs

with n>4 . They might extend to the case where just n- and

( n - 1 )-factor interactions are ignored in the 2n design , but that

situation is of little interest. Reduction of dimensionality is already a

big problem in the resolution V case with the 25 design : there are as

many excluded parameters as present parameters ( 16 parameters),

and the 16 -dimensional hypercube looks very complicated . The

present methods would require looking at 32 of the 65,536 vertices of

the 16 -dimensional hypercube to study loss of the resolution V

property . The case which originally interested me in this problem

was even larger , namely , a resolution V quarter replicate of the 28

design . I felt and still feel that such a design should be relatively

insensitive to data loss, but the methods of this paper don't seem to

provide a good way to look at missing points in such designs. It is

possible that extending the geometric , graph theoretic approach

might be easier than it appears. Or a usable general characterization

of linearly dependent vertices in an n -dimensional hypercube may

be known . Alternatively , there might be a purely algebraic

approach to the problem which would yield general results.

In any case , the general problem still needs and deserves more

work . As an exercise to see how far one might push 2n-k fractional

factorial designs in a field test framework, I designed in 1983 a
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hypothetical operational test for a communications jammer using

formal experimental design methods (Russell, 1983b ) . The resulting

design examined 32 factors, each nominally at 2 levels , in such a

way that 62 effects (including carefully chosen interactions) would

be estimable . The design had 512= 29 points and in fact was a 2-23

1 /8,388,608 fraction of a 232 design ( 4,294,976,296 points) run in 64

blocks of size 8. The design would have required 8 days to run and

could have been easily extended in 8-day increments to a "full

factorial " test 219 = 254,288 times as long and lasting over 11,000

years. If one were really to try to run such a design , however, the

risk associated with missing points shouldn't be too serious because

there are many more points than parameters, and the results of

this paper concerning the 24 design suggest that the risk could be

quite small. But even at a cost of only $ 1,000 per data point,

actually running such a design would cost more than a half million

dollars. Large field tests cost many times more. The statistician's

risk in proposing even substantially more modest designs (such as

that in Russell, 1982) would be much less if there were better

theoretical understanding of robustness to data loss .
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A METHOD FOR THE STATISTICAL ANALYSIS OF THE

STRESS-STRAIN PROPERTIES OF EARTH MATERIALS

G. Y. Baladi and B. Rohani

Geomechanics Division , Structures Laboratory

U.S. Army Engineer Waterways Experiment Station

Vicksburg , Mississippi

ABSTRACT . Stress- strain properties of earth materials under various test

boundary conditions , such as uniaxial strain , hydrostatic compression , and

triaxial shear , are required for conducting a two- dimensional ( 2D ) analysis of

explosive- induced ground shock . Such properties are random and often contain

artificial instrumentation- induced noise . The randomness is primarily due to

spatial variation of the soil properties , biases associated with field samp

ling disturbance , and errors in laboratory testing equipment and procedures

and must be accounted for in ground shock analysis . This necessitates the use

of 2D probabilistic wave propagation computer codes as opposed to determinis

tic procedures . To use the stress-strain properties for such probabilistic

calculations , one must first eliminate ( or reduced the spurious instrumenta

tion- induced noise in the " raw " data and then statistically quantify the

" smoothed " data . The outcome of the statistical quantification is the repre

sentation of the stress-strain data in terms of the expected response , its

variance , and the associated correlation coefficients . The paper discusses a

methodology for smoothing the raw stress- strain data and the subsequent sta

tistical analysis . Application of the methodology is demonstrated for Nellis

Baseline sand .

I. INTRODUCTION : The ground shock calculation techniques currently used

to predict the states of stress and ground motions induced in earth masses by

explosive detonations are deterministic tools . That is , the input parameters

( media constitutive properties and surface airblast loadings ) are specified as

single- valued deterministic quantities or functions . In actuality , however ,

both the constitutive properties of earth materials and the characteristics of

the airblast pulses are dispersed random variables . The randomness of these

input variables indicates that resulting stresses and ground motions are also

random variables . Therefore , ground shock problems should be analyzed

probabilistically . The purpose of the probabilistic analysis is to obtain a

quantitative understanding of how the variabilities or uncertainties in the

input parameters for a particular problem affect the dispersion of the output

quantities or parameters . To use the stress- strain properties for such

probabilistic analysis , one must first eliminate ( or reduce ) the spurious

instrumentation - induced noise in the " raw " data and then statistically

quantify the " Smoothed " data . The outcome of the statistical quantification

is the representation of the stress- strain data in terms of the expected

response , its variance and the associated correlation coefficients .

The paper presents the development of a computerized methodology for

statistically analyzing a set of random stress- strain data . This includes

( 1 ) a procedure for eliminating the spurious noise in the raw data due to

instrumentation without affecting the actual physical response of the material

and ( 2 ) a procedure for statistically analyzing the random behavior of the

" smoothed" data . The outcome of these procedures is a representation of the

stress- strain data in terms of the expected response , its variance , and the

Comments by panelists Drs . Kaye Basford and W. T. Federer are at the

end of this artical . 365



Application of the methodology is demonstrated forcorrelation coefficients .

Nellis Baseline sand .

II . DATA SMOOTHING PROCEDURE . The laboratory stress - strain data often

contain artificial noise due to instrumentation which must be filtered out

before the data can be used . Therefore , a technique to smooth the measured

data without changing the actual physical response of the material is needed .

Such a procedure has been developed by Baladi and Barnes ( Reference 1 ) and is

based on the concept of a marching mean square . If the measured value of the

data point is expressed asym (X ; ) the corresponding smoothed

response yg (X1) can be expressed as

,

n

K= i +

1 2
2

y . ( X. )
S i Σ1 .

y . ( x )
m k ?

(1)

n

1

k= 1

n

2

where n - 1 is the window over which the marching mean square is taken

n 1

( i.e. , is the number of data points to the left and to the right of
2

the ith data ) . Note that has to be an odd number equal to or greater

than 3 .

na

n

n

Equation 1 was applied to smooth the raw data from uniaxial strain

(Figure 1 ) and triaxial compression ( Figure 2 ) tests for Nellis Baseline

sand . As shown in these figures , the results of these tests are quite noisy .

The value of used to smooth these data was 5 . Several passes had to be

made in order to obtain a satisfactory set of smoothed stress- strain rela

tions . The final set is shown in Figures 3 and 4 , and it is noted that the

overall character of the stress- strain relation is not altered as a result of

the smoothing process ( for example , compare Figures 1 and 3 ) .

III . STATISTICAL ANALYSIS OF SMOOTHED STRESS-STRAIN DATA . In this section , a

generic procedure is outlined for statistical analysis of nonlinear stress

strain data . Consider a set of curves relating the random variables y and

x (Figure 5 ) . The objective of the statistical analysis is to determine the

mean curve with its one- standard deviation bounds relating the random vari

ables х This can be accomplished by applying standard statistical

procedures to the slope of the random curves in Figure 5. The following steps

should be taken to conduct the statistical analysis :

y and

น number of( 1 ) For a given set of n curves , divide the x-axis into

equal increments Δx (Figure 5 ) .

curve( 2 ) For the ith increment , determine the slope of the jth

denoted by saj

soyj

Ду

j

AX

i

j = 1,2 , ... , n ( 2 )
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( 3 )

at the

sions :

Determine the expected value and the standard deviation of the slope

ith
increment for all the curves according to the following expres

j =n

1

hi - E ( )

0 )-

Elij

( 3 )

j = n
1

2

ola )
ç ( hij - >

4

( 4 )
n

j = 1

( 4 ) Next , compute the mean and the standard deviation of y .y . To accom

plish this , the covariance and the correlation coefficient matrices of the

slopes cov ( kosom ! and

Рkm
respectively , can be first calculated from the

following relations :

cov ( ako sm ) = E [ ( Ak - Ok ) (1 m

32 .. ) ( 52

k mj

cov ( 52

' к
=

Pkm

?

VE[COIK - Pard'] [(On - Rom) ]

( 6 )

in which

j = n2 2
1

E (Ake - őke
E ( Skj

2 ) ( 7 )

j = 1

where k = 1,2 , ... 1 ... 4 and = 1,2 , ... 1 ....

Finally , the mean value and standard deviation of

ment become

y at the
it
h

incre

bri

11

Elbe) sxe
( 8 )

b = 1

m = i kui

olyi
Σ Σ Ρκη oleks oxk Olsen ) ox

( 9 )

m= 1 K = 1
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Equations 8 and 9 were applied to the smoothed stress-strain data for

Nellis Baseline sand presented in Figures 3 and 4 . The resulting curves are

shown in Figures 6 and 7. Each figure contains the mean response with its

one-standard-deviation bounds .
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COMMENTS BY PANELISTS DR . KAYE BASFORD AND PROFESSOR W. T. FEDERER

ON THE FOLLOWING ARTICAL

Stress - Strain
A Method for the Statistical Analysis of the

Properties of Earth Materials by

G.Y. Baladi

and B. Rohani.

U.S. Army Engineer Waterveys Experiment Station

W.T. Federer : Before any comments in depth could possibly be made,

a copy of the paper and discussions with the

experimenter , would be required . From listening to

the lecture and pondering on the topic , it would

appear that an explosion creates a spherical shock

wave effect with only the radius of the sphere being

a random variable . The above would follow for one

medium such as air or water . However , when a second

medium is encountered the radius of
a sphere

is not thechanges. That is , the sphere for air

same as for water .

The real problem had to do with an air burst's effect

on underground structures . The heterogeneity of the

soil meant that several media were being encountered .

This adds considerably to the complexity of the

problem . It
would appear that concentrating on the

radii and confidence intervals for radii in various

media would simplify the problem . If the bursts were

directional, then other regular figures such as an

ellipsoid would need to be considered . The shape of

the burst would determine which measurement should be

used . Hence , more emphasis on the shape of bursts in

various media should be made . The statistical

problem is usually simplified when the model

structure is completely specified . Then , for a given

number of media (e.g. sand , clay , loom , rocks , etc. )

in a given proportion , confidence intervals could be

constructed .
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SOME APPLICATIONS OF BAYESLAN IMAGE ANALYSIS

Stuart Geman 1

Division of Applied Mathematics

Brown University

Providence, Rhode Island 02912 /USA

The various tasks of image processing , such as removing blur , finding boundaries , and

detecting objects, have traditionally been approached on a case-by-case basis. The result

is a spectrum of ad hoc techniques . The author and his colleagues are trying to develop a

coherent mathematical foundation that will support a variety of these tasks, ranging from

problems in " low level vision" , such as noise removal , to problems in "high level vision” , such

as scene segmentation and analysis . The framework is Bayesian : probabilistic image models

are constructed . These are probability distributions jointly on picture element grey -levels,

locations of edge elements , placements and types of textures , and other image attributes as

may
be

appropriate in a particular application . Markov random fields (equivalently, Gibbs

distributions) are especially apt and convenient for representing real-world prior knowledge

about these attributes . The end product of the formulation is a posterior distribution, on the

uncorrupted grey-levels , locations of edges , texture labels , and so -on , given an observed and

possibly degraded picture . Image restoration and analysis amount to the identification of

the mode (or sometimes the mean ) of this posterior distribution .

The approach is implemented in four steps . Each step will be discussed in detail ,

highlighting the important theoretical issues . These steps are :

1. Construction of a prior distribution . The result is a probability distribution ,

1 ( I ), where the components of ī represent picture element grey levels , locations and orien

tations of edges, types and locations of textures, labels and locations of objects, and other

image attributes relevant to the image processing task. The dimensionality is very high , in

the order of 10% or 106. This prior distribution is a Markov random field , and is constructed

to be consistent with prior information about such things as the spatial smoothness of the

image intensity levels , the tendency of textures to appear in homogeneous patches, and

so - on . This construction is greatly facilitated by the equivalence between Markov random

fields and Gibbs distributions ; the Gibbs representation is well- suited for accommodating

the various types of prior knowledge in a consistent manner .

2. Modelling of the Degradation Mechansim . The observation , y , is some degrada

tion of the ideal image , 7. The degradation may, for example , involve an attenuated Radon

transform , as in tomography, or a blur and noise process , as in satellite or infrared imaging.

Or , it may simply be a projection, as in the problem of boundary finding or object identifi

cation : we model the degradation as "hiding” the boundary locations or the object labels .

Modelling the degradation amounts to specifying the conditional distribution , a (TI), on

the observable process, ý , given the ideal (and unknown) image 7.

3. Identificaiton of the Posterior Distribution . This is simply a matter of applying

Bayes ' rule to r (I) and a (512) to derive (Ily) , the posterior distribtuion on the ideal image

given the observable process ý.

4. Identifcation of the Mode or Mean of the Posterior Distribution . This cor

1

Research partially supported by Army Research Office contract DAAG 29-83- K -0116 ,

National Science Foundation grand DMS-8352087 , and the General Motors Corporation .
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responds to image restoration and analysis. If, for example, i involves such "high-level"

attributes as texture and object labels, then identifying the mode of alily) corresponds to

choosing the most likely interpretation, in the sense of texture and objects identification ,

given the observed process ý. The posterior mean is computed by a bgihly parallel algo

rithm called stochastic relazation. This is a Monte Carlo technique that yields an ergodic

Markov process, ilt) , with equilibrium distribution a17ly ). The mode can be found by a

variation called simulated annealing, which can be shown to converge (weakly) to a global

maximum of alūly).

The utility of the approach has been demonstrated by the results of experiments with

real scenes. These illustrate: ( 1) boundary detection; (2) texture segmentation and labeling;

and (3 ) single photon emisiion tomography. Details of these experiments , together with

theoretical results on parameter estimation for the prior , and on convergence of stochastic

relaxation and simulating annealing , can be found in the following references. These contain ,

as well, discussions of the many contributions made by by other authors to the Markov

random field /Bayesian framework for image analysis.
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An Algorithm For Diagnosis of System Failure*

Robert L. Launer

U. S. Army Research Office .

1. Background .

In this note , the optimal diagnosis of system failure is considered .

Suppose that there is a system of n components C
CH C22

. Cho and that

this system becomes inopera
ble or fails when any one of the compone

nts fails .

In order that this problem be well posed , the term " compon
ent" may also

represe
nt a subsyst

em of units operati
ng in paralle

l so that subsyst
em

failure occurs when all of the compone
nts in that subsyst

em fail .

The problem considered here is that of finding the failed component or

components in the least possible time , or cost when a system failure occurs .

The testing will be conducted one component at a time , initially . The more

general case will be considered later . Since the testing sequence will be

based on probabilistic information , the component reliabilities ( or equiva

lently the failure rates ) and the average time ( or cost ) to test each of the

components are assumed to be known .

Wong [ 3 ] considered this problem of finding a ( single ) malfunctioning

component " such that the expected test time is optimal in the sence of

Bellman's principle of Optimality. " The main result of that paper is that

" the minimum number of test points required for conclusive detection of sys

tem failure is equal to the total number of terminal test points ; this set

of points constitutes the optimal choice . " No algorithm for sequencing the

components for achieving optimality is presented in this paper . It is

pointed out , however , that the "optimal strategy proceeds with the most

unreliable and the least test time component .. as the first component to

be tested ; next in the sequence is the next most unreliable and costly

component. ..between the last two components , an optimal strategy always

chooses the one having a smaller test time regardless of their reliability

data . "

In the present paper , a precise sequencing algorithm is developed and

presented . The problem is also generalized by considering multiple failures ,

subsystem testing , and the idea of allowing a time for testing a component

that has failed which differs from the time to test when it has not failed .

The overall goal is to develop sequences which minimize the expected value

of the testing tim or cost for the several testing situations considered .

*The author of this paper presented it at the 31st Conference on the Design

of Experiments .
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Pi ( 1- (1-R )

2. One Compo
nent

at a Time Testi
ng

.

Let R ; ( t ) be the reliability function of the i - th component at standard

use conditions .

Let Ti and T; represent the time to test the i - th component

when it is oper able or failed , respectively . It will be assumed that the

components fail independently of one another . If the reliability functions

are continuous , then the probability of more than one failure occuring at

time t is zero . This , of course , excludes catastrophic failures from

externally imposed destructive forces or other common - cause failures . Never

the less , multiple failures will also be discussed .

The probabilities of component failure given system failure are obtained

as follows .

The probability of component i surviving until time t is R ; ( t ) .

This may be computed explicitly from R ; ( t ) = exp ( -5 n ( u ) du ) . Lets repre

sent the event that the system does not survive beyond time t , and C , the
i

corresponding event for component C;. Then the following equa ty involving

conditional probabilities holds :

P [SIC ; ] P [ C ; ] - PIC ; Isı Pisi

From the previous assumption about component failures , the system fails when

any component fails so that P [ S \ Ci ] = 1 ,and

P [ c ; [ s ] PIC ; ] / P [S ]

This is the conditi
onal

probabi
lity

of the failure of compone
nt

i given system

failure ( at time t ) . Let this probabi
lity

be denoted by Pi .
Then from the

previous assumptions it follows that

= (1-R ; )
( 1 )

j

jfi k = 1 j#k

t

n

Suppose that the system has failed and that the components are tested

one at a time in the order 1 , 2 , 3 , ... until the defective component is found

at which time testing is terminated . The initial ordering of the components

is arbitrary . The expected test time , E , is then

K- 1 K - 1

E

+ [{{ { , T:+ Tk ).1 ( 1-p; )p ; } + \ . £ , T; ) ( ( 1 - P ; ) ) ( 2 )
k = 2 i = 1 j = 1 i = 1 j = 1

n n

P

Let E ' represent the expected test time when the order of the k-th and the

( k + 1 ) -th components are interchanged and all others remain the same . The

difference E ' E is easily seen to be ,
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K- 1

i = 1
E ' -E = PkPk + 2 1-2p/14Tk+]/Pk+2)-( Ty/pk)-(Tk+2+ Tk+2)+(Tx-TROI

'

( 3 )

The expected testing time is decreased by this permutation if E -E is negative .

Using a finite induction argument, then the optimal ordering is found by

computing the n quantities ,

TK /PK ) - ( TK - TK

(4)

for each component and order the Gk beginning with the smallest and ending

with the largest . Examination of the first and last terms in E indicate that

the ordering scheme ( 4 ) also applies to these terms .

The optimal expected test time is obtained from ( 2 ) with the terms

arranged in the optimal order , but without including the last term since it

would be unnecessary to test the " last" component if the other n - 1 were

tested and found to be operative .

Notice that if the terms Tk and T are equal , then the Gk are easily

seen to correspond to the intuitive feeling that the components with shorter

testing time and higher failure probabilities should be tested first generally .

3 Multiple Failures With One' At A Time Testing

The case of multiple failures is considerably more complicated than the

single failure case . There is first of all the problem of determining the

multivariate failure law , which would yield the conditional failure failure

probabilities corresponding to ( 1 ) in the simpler case . The derivation of

this set of probabilities should be based on the physics of the particular

situation . In the absence of specific information one might use compound

probabilities .

Another complicating factor is how testing and repair is to be conducted .

If all of the failed components are to identified before any repair begins ,

then exhaustive testing would be implemented in which case the testing

sequence is irrelevant . If , however , testing proceeds one component at a

time until a failed one is found , followed by immediate repair of that

component with further testing following the repair only if it is required ,

then the testing sequence is important. The following development treats

the latter case .

Assume for the moment that the system in question is known to contain

exactly m ' < n failed components . The expected repair time for this case can

be written explicitly . It can be analyzed similarly to ( 2 ) .. The result has
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been worked out for the cases m = 2 and m = 3 and may be described in the following

way . The testing order of the first m components does not effect the testing

time. The remaining n-m components should be tested in the order dictated by

( 4 ) . The general case was not worked out because of the inordinate amount of

algebra involved . The lower order cases indicate no surprises for the higher

order ones .

The point of this discussion is that if , unknown to the tester , the

system contains more than one failure , the procedure given by ( 4 ) will still

result in an optimal or near optimal sequence if continued testing is indi

cated by system malfunction after the first failed component has been found

and repaired . Naturally , system " turn - on " after repair could induce a failure

among the previously tested components . Without appropriate data or probab

ilistic information about this phenomenon , no definitive guidance can be given

about optimal or reasonable strategies to protect against it .

4. Subsystém Testing

It seems reasonable to ask what further saving in testing time can be

realized by simultaneously testing components in groups if that is possible .

For example , if half of the components in a system could be tested together

in a reasonable period of time , followed by testing smaller subgroups or

single components when appropriate , it would appear that the expected testing

time could be further reduced , especially if only one component has failed .

Assume that the system in question yields a natural decomposition into

M subsystems or modules My , Myy ...Mm Module k consists of n ( k ) components ,

and its reliability is given by Qk • The average time to test module k as a

single entity ( that is , exclusive of any component testing ) is Yk if it is

operational and Uk if not, while the corresponding average times for component
' K

j of the k - th module are
and T The probability that module k has failed

j jº

given system failure , Pko is

M

Pk = (1-Qk ), ; ! £, ( 1-Q ;)...Qj

( 5 )

jik j = 1 j#i

The probability that component j has caused module k to fail is given by ( 1 )

where the Por Ti and T are restricted to the components of module k .

Corresponding to the previous testing set -up , it will be assumed that

testing proceeds one module at a time until the failed module is discovered .
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-m

(11,7%...,

Note

Then the individual components are tested one at a time until the failed

component is found .

Let un represent the vector ( Uq ,Umo..su
( Uzy Uz o.o.,Un- Loviniunds Is represent the vector

T !

1''2 '
j-1,7 ) and lk the k - vector each component of which is a 1 .

that the transpose of a matrix or vector will be denoted by a superscript T.

Further , let Mon represent the event that , given system failure , modules 1

through m - 1 were found to be operational and module m was diagnosed as failed .

Let com represent the event that , given failure of module m , components 1,2 , .. j - 1

were found not to have failed and component j was diagnosed as failed .

Then for an arbitrary ordering of modules and components , the expected

testing time E is

n ( m )

E - EP . 414. + 15-1%) Plen?

( 6 )

j= 1

M

m = 1

If the m - th and ( m + 1 ) -th modules are interchanged , and the quantity

E - E ' is computed as was done in section 2 , the minimizing algorithm is

obtained . That is , the quantities Hj are obtained :

Hz = Ep + (03-03) + U; / P
( 7 )

where E , represents the average time to complete the one at a time testing

of the components in module j . The algorithm indicates that optimization

of modular testing depends on the optimization of the component -wise testing

within each module , but both optimizations are obtained independently of

the other .

The optimizing algorithm is therefore to order the components in each

module according to ( 1 ) within the module , and then to compute the H ; for

each module, j = 1,2 , ... , M . The testing proceeds by diagnosing the module

corresponding to the smallest value of the Hz , followed by the module

corresponding to the next smallest value of Hj . and so on to the module

corresponding to the largest value last .

It is useful to ask when component -wise testing within a given module

is more efficient than modular testing for that module . A good rule of thumb

is to use that method which requires the lesser over all average testing time .

This leads to the following algorithm . If the following inequality ( 8 ) holds
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then use modular testing .

n ( j )

Pj u; = ( 1- P ; ) ( ET -U;)
( 8 )

j = 1

It should be pointed out that there are several loose ends related to

this discussion which should be kept in mind . First , the given algorithms are

optimal in the sence of lowest expected testing time under certain restricted

conditions . The most general test situation would allow for an unrestricted

mix of any combination of single components and subsystems , whether these

are natural subsystems or not . There are 2"-1 such possible subsets to con

sider in various combinations. This would require a prohibitively large

amount of computer time for even a moderately small system.

Another possible area of further exploration involves the computation of

the component reliability functions at every new failure . Unless the failure

rates are un usually well behaved , such as all constant failure rates , the

quantities G ; and H ; must be recomputed at each failure . With constant fail

ure rates for example , the crossings of the reliability functions could be

computed once and for all yielding a set of ( n ( n+ 1 ) /2 ) time zones of consider

ation .

Finally , there is the question of data and prior or partial information .

The Ri , Ti and so forth , might not be known exactly . Moreover , if other prior

information is available , it certainly should be incorporated into the analysis .
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INDIVIDUAL VERSUS GROUP SAMPLING *

Paul A. Roediger

John G. Mardo

U.S. Army Armament , Munitions and Chemical Command

Dover , New Jersey 07801

ABSTRACT : Lot acceptance based on INDIVIDUAL sampling has

hern widely used during the past decade . Recently it was

recommended that this practice be discontinued and future

sampling be done onon a GROUP basis . The need for specific

conversion guidance and procedures was thereby created
A model

assuming the family of negative log gamma distributions on

incoming INDIVIDUAL quality rates has been developed for

purpose of selecting the GROUP plan most comparable to a given

INDIVIDUAL . plan . In addition to the model details , examples are

presented and
a previously published alternative is discussed .

1.0 INTRODUCTION

In lot - by - lot attributes sampling inspection , product is

divided into inspection lots and random samples are drawn
from

each . We assume therethere are m quality characteristics each having a

well - defined attribute requirement , i.e. , a requirement which is

either met or
is not . A unit not in conformance with the j - th

requirement is called a j - type defective . A non conforming unit

*The authors of this paper presented it at the 31st Conference on the Design

of Experiments .
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with respect to one or more requirements is called a defective .

Two sampling modes , one based on defectives , called GROUP

sampling , and the other based on the m defective types , called

INDIVIDUAL sampling , are described . Both are permitted iin ( 1 ) ,

MIL - STD - 105D .

Let d be the number of defectives obtained in a sample of N

units . We say that sampling is done in the GROUP mode when the

decision rule to accept or reject the lot is based only on d ,

without further regard to defective types therein . In practice

GROUP sampling is implemented by the following

RULE G : ACCEPT LOT IF d °C , OTHERWISE REJECT .

The numbers N and Care called the " sample size ” and

" acceptance number ” of the GROUP plan .the GROUP plan . Such plans are denoted by

( N , C ) . Note , the GROUP criterion ignores underlying defective

types entirely . For now , " reject ” stands for any course of action

taken on lots not accepted .

Let p be the true lot fraction defective and q = 1 - p . Then ,

the GROUP probability of acceptance ( PAG ) , in binomial
in binomial form , of

lots of quality q is

( 1.1 )
PAG ( q ) = OC ( q ; N , C )

o
w
i

( 1 - q ) ia

i =0
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OC , for convenience treated as
a function of q instead of p , is

called the Operating Characteristic ( OC ) curve
of ( NEC ) .

The second type of sampling , used in manyin many current U.S. Army

commodity specifications , is INDIVIDUAL sampling. Let d
d ;

be the

number of j - type defectives
j - type defectives found in a sample of n units . In this

mode , lot
Tot acceptance is based only on the d

j

S and is typically

invoked via the following

RULE 1 : ACCEPT LOT OF EACH disc ,

d ;

j = 1,2 , ... , m ,

OTHERWISE REJECT .

The numbers n and с are
called the " sample size ” and

" acceptance number ” of the INDIVIDUAL plan , whichINDIVIDUAL plan , which is denoted by

( n , c )" . Tet P
be

the true j-type defective rate and
The

= 1 - P ;9 ;j

INDIVIDUAL probability of acceptance (PA ) of
lots with quality

profile ( = (4,142
4 ) is

םג

תנ

( 1.2 )

PA , O) - TOC(q ;in,c ) .

j = 1

Note , PA, is not

a
function of the one parameter q ,

as is

PAG , but is instead
a product of GROUP.like OC curve terms .

For a given profile õ , the overall lot quality , assuming

independence among the m defective types , is given by
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m

( 1.3 ) 9 = II a

9 j

j = 1

This equation establishes the basic connection between the

two sampling approaches , relating q , the GROLP quality of ( 1.1 ) ,

with the 9 ; ' s , the INDIVIDUAL qualities

of ( 1.2) .

The following conversion problem is considered :

PROBLEM_ " P " : GIVEN THI ( n . ) " INDIVIDUAL PLAY ,

FIND THE " BEST " ( 5.C ) GROUP PLAY REPLACEMENT .

The
inverse problem is apparently more complicated , but , in

principle , can be back - solved hy iteratively solving a converging

sequence of problems of the type posed .

The
two approaches share à curious history . GROUP sampling .

Once
the authorized method , was eventually replaced by the

INDIVIDUAL method . This development was an outgrowth of a

computer revolution that helped promote a component oriented

approach to system reliability . Subsequent years have seen more

than just a balancing of this trend ; indeed , a steady return to a

more integrated " systems” approach has ensued . With it ,
interest

in GROUP sampling has grown , 10 the point that direction was

recently given in ( 4 ) 10 discontinue the use of INDIVIDUAL

sampling altogether . Unfortunately , a sound conversion rationale

does not exist . Several sets of tables prescribe GROUP acceptable

388



quality levels ( AQL's ) for various m . Most , however , are either

statistically unfounded , rely on untenable assumptions or
can not

be generalized ; as such , they havethey have no real bearing upon our

problem . The tables of ( 2 ) were more disappointing in that more

was promised . They are considered below in greater detail .

2.0 BOUNDARY CURVES

Consider the range of PA, ( O ) values obtained by varying 0 ,

keeping q , as defined indefined in ( 1.3 ) ,

constant . The bounds on PA ,(ola ),

calculated in Appendix 1 , are given by

( 2.1 ) OC ( q ; n , c ) s PA, (04) - {OC(q1/m< {OC ( q /m ;n , c )} m .

We call these bounds L ( q ) and U ( q ) respectively . The minimum

1 ( q ) is attained when

q , if j = k

for each k = 1,2 , ... , m

9 ;

9

if jik

representing , at
the

one extreme , profiles where all but one of

the incoming defective
rates are zero .

The maximum U ( q ) is attained when

1 /m

g

=

91- 9233

9 .
'm
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representing the other extreme where all incoming defective

are equal .

As q is allowed to vary on ( 0,1 ) ,to vary on ( 0,1 ) , the bounds of ( 2.1 ) produce

an envelope that contains all possible PA , ( [q ) values . A sample

envelope resulting from the ( 125,1 ) 14 INDIVIDUAL plan is depicted

in Figure 1. The importance of the envelope is stated in the

following :

CONCLUSION : A CANDIDATE GROUP OC CURVE

MUST BE CONTAINED WITHIN THE ENVELOPE .

THEREFORE , L ( q ) < OC ( q ; N , C ) < Ulq ) .

The envelope collapses if and only if m= 1 or c = 0 . In both

cases ,
INDIVIDUAL and GROUP sampling are identical , provided of

course that ( X , C ) = ( n , c ) .

3.0 MODEL REQUIREMENTS

Where exactly within the envelope should the " best ” GROUP OC

curve be located ? To help guide us , a model is proposed that

relies on probability distributions used as weighting functions .

The model has
two desirable properties : it is general , taking

into account important aspects of the problem , yet tractable ,

allowing computations to be carried out and simulated in terms of

known statistical quantities .

The following are utilized as part of the model :

the
Beta probability density function ( pdf ) ,
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( 3.1 ) bella ; 0.0 )
.

x 1 (1.3)6-1/B (...) .

and the Segative Log Gamma pdf .

( 3.2 ) Dlglai
8,6

) . bybodova)16. ) , ( ) ,

where r ( z ) :

5.2. tom.
B ( a , b ) = f ( a ) r ( 6 ) / 1 ( a - b ) .

and 7 > 0 , a ) , b > ( ) and (Icyl .

The cumulative disuibution functions ( cdr's ) obtained by

iniegrating beilo; a , b ) and niglt ; a , b ) with respect ini , 1 € 10. ^ ) .

are denoted by BET(X ; a .o ) and \ LG ( * ; a , b ) , respectivelo .

The negative log gamma density closely resenhles the more

familiar beta .bera . In fact , ( 3.2 ) is obtained room 13.1 ) by replacing

( 1 - x ) with ln ( 1 ' » ) , tuo nearly equal terms rosa close
o close to 1 , and

adjusting the constant terתו
10 normalize the inie & rol . Tos lined

" a " , this family of densities has the special feature of being

closed under multiplication , i.e. , if U
ir ; -o08 ( ; a , 6n1818 ; 2.6 . ) , i = 1,2 , theni

the produce 1 ,42-91812 ;2,6,+62 ). The family is also a

rich one ,

taking on a wide variety of shapes including the " C " " , " L " and

" J " shaped , uniform and uni - modal densities . Jis name is derived

from the fact that is negative 10g gamma distributed , is and

only if , - ]ny is gamma distributed . References ( 5 ) and 16 )

contain more details about this distribution .
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4.0 THE MODEL

The model specifies weighting pdf's on
the

ai's

( 4.1 )
fi ( q ; ) - 018( 9 ;;2 , 6 ; ) where a > 0 and 6 ; > 0 , i = 1,2 , ... ,m .

In order to randomly generate vectors ē given q , the

conditional cdf of an arbitrary qk given q and possibly some ,

o
r

all , of the other q ; ' s must be determined . The desired cdf's ,

developed in Appendix 2 , are , for k = 1 , 2 ,
for k = 1,2 , ... , m - 1 ,

( 4.2 )

Gk(
9x19,9,1921 , 9Kk - 1 ) =

BET( T, (94 ) ; Sk + 1 bk
b )

,

where T (9K ) = ln ( qk / PR ) / n ( 1 /PR) PRE9

1

k

E
W

S and

P , = 9 , Pj
= q / II 9 ;

i < j

16 jsm .

j

Equation ( 4.2 ) provides the basis for the following

procedure : for k = 1,2 , ... , m - 1 , take

( 4.3 )

PR

1 - BET -' (RK :Sk+ 1 : 6k ?

як

:
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where the Ri's are

k
random numbers generated from a uniform

distribution on ( 0,1 ) . Once the first ( m- 1 ) Yk's are generated ,

4m
is simply P.

m

Implementation of procedure ( 4.3 ) allows us
to study the

distribution of PA , ( ola )
q ) via Monte Carlo simulation methods .

5.0 PARAMETER SELECTION

The pdf on a resulting from ( 1.3 ) and ( 4.1 ) is

( 5.1 )
f ( q ) = n1g ( q ;a ,S , )

An interpretation of " a ” is found by taking the expected

value of ( 5.1 ) , giving E ( q ) = a / ( a + 1 ) , so that a = E ( q ) / ( 1 - E ( q ) ) , the

odds of randomly picking an effective unit when quality is
is at its

average . Consequently , in most practical applications , " a " will

be quite large . Note , however , ( 4.2 ) and ( 4.3 ) are independent of

this parameter .

Of particular interest to us
are

the " J ” shaped pdf's that

result when a > 1 and b = 1 . Then , ( 5.1 ) defines a one -parameter

family which is deemed sufficiently rich for the purpose of

assigning appropriate weights to q . Having no prior information ,

the b.'s

i

are assumed
to be equal . Since they sum to b = 1 , b . = 1 / m

i

for i = 1,2 , ... , m , yielding J - shaped weights on
the q ; s which are

a symptotic at 9. = 1 .

i
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6.0 CONVERSION STRATEGY

A three step approach to solving problem " P " , fully

computerized and documented in [ 8 ] , will now be described .

STEP 1 : Monte Carlo simulation -

( a ) Choose K , the number of distinctdistinct q's at which

to simulate PA, ( q ). We take K= 19 .

( b ) Select an appropriate q - interval [ u ,, uk ) . We utilize

the criteria Ulu , ) < . 10 and L ( uk )» . 95

ensuring

that Pa ,(0 |9=u , )<. 10 and PA ,(0 |q=ux )».95

) > . 95 .

( c ) Define the equi-spaced intermediate points

Wi + 1 = U ; + ( uk
1-4, ) / ( k - 1 ), for i = 1,2 , ... , K - 2 .

( d ) Generate I sum random vectors

q =u,
per ( 4.3 ) .9

Our simulations utilize I sum = 1000 repetitions .

( e ) Obtain the empirical density of PA , (7 |q=u , ).

( f ) Compute the sothpercentile,percentile , and callcall it

it y , ( y ; if q = uq = u ; ) .

Other percentiles , namely .0 , .1 , .2 , .3 , 4 , .6 , .7 , .8 , .9.

and 1.0) ,
are computed and processed as

are the medians .

However , we do not considerconsider the resulting GROUP plans

to be
useful simply because the risks to producer

and consumer are unbalanced .

( g ) Repeat ( d ) thru ( f ) using 42 ,43,
uq :

.

uk instead of u

( h ) Obtain { ( u ; , y ; ) ] , i = 1,2 , ... , K .
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( i ) If they

yi

S
are increasing , proceed directly to step 2 .

If not , and this case has never occurred , either

increase the the number of trials I sum , decrease the

number of points K , or open up the intervalinterval ( 47,4 ) .

STEP 2 : Interpolation -

( a ) Linearly connect the points ( u ; , y ; )the points ( u ; , y ; ) , i = 1,2 , ... , K .

Call this increasing piecewise linear function y = f ( q ) .

( b ) Use inverse interpolation to find six unique q values ,

ů
thru ūo , corresponding to ý , =f (ug ) thru yo = f ( ūg ) ,1

where , - . 11 , 92 = -3 ,

y9 3 =-5, 94 = .7 , Yg = .9 and yo = .95 .

STEP 3 : Find the " best " ( N , C ) approximation

( a ) Define a range ( Cmin , Cmax ) for C.

We take Cmi n =max ( 0,6-5 ) , Cmax =Cmin +10 and begin the

search with C = Cmin .

( b ) Permissible (NEC ) are required to satisfy

C( u : N, C) <y teite ,

and

OC ( ū7; N ,C )> yo.46 :

where e
ey'e 6

are two
small positive constants . The use

of perturbed values ( eq ; € 6 + 0 ) helps ensure that

the

" best" N , C combination is not eliminated at the start

of the search . In the terminology of Hald ( 13 ) , pp 25 ) ,

( N , C ) is said to be " stronger” thanthan a plan whose

OC curve passes thru the two
two points ( ū7,9 , + e , ) and
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( ūg.96-48 ) . We utilize eei = en = .

2 .

( c ) Find the largest interval I ( C ) such that the conditions

of ( b ) are met
for all NEI ( C ) . Approximate formula e

developed in ( 3 ) , pp 51 , are used to determine the exact

interval . If I ( C ) is empty , proceed directly to ( e ) .

5

( d ) Find the N that minimizes Del ( N , C ) =
Oc(ü,:N,C)-3;

i = 1

for NEI ( C ) . Call

it Nc Note , Del does not depend on ūo

( e ) Repeat ( b ) thru ( d ) for C = Cmin + 1 ,. .. , Cmax .

( f ) Obtain a finalfinal set of candidate plans

{ ( Nc , C ) | CE(Cmin; Cmax ). 1 ( C ) + $ }

( g ) Find the C that minimizes De1 (Nc; C ) ,

for CE(Cmin,Cmax ] , I (C )+ $ . Call it c * .

( h ) Obtain the " best " GROUP plan ( N , C ) , namely (Nc* .c* ).

7.0 EXAMPLES AND DISCUSSION

The above three step procedure will be designated method B

( for " best " ) . The " best " ( NEC ) will be called the B - plan .

Several examples provide a setting for our discussion of

method B.

First , consider P , : Given ( n , c )"
(125,1)14,

Find the " best " . ( N , C ) .

Obtain its B - plan
: ( N , C ) ( 94,1 ) .
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A partial summary of simulation data ( steps 1h and 2b ) along with

approximating B - plan OC curve values are presented in Table 1 .

Table 1. B - plan for P1

Median B - plan Median

q q

PA , (09) 1
OC ( 9 ; 94,1 )

PA, ( 4)

B - plan

OC ( q ; 94,1 )

.

.9525

.9550

.9575

.9600

* .9608

.9625

9650

.9675

. 9700

.9725

* .9747

.9750

.9775

.04728

.06110

.07410

.09319

. 10000

. 11415

. 14505

. 17526

. 20826

.25857

. 30000

. 30661

. 365 34

.058647

.071625

.087243

. 105966

. 112802

. 128 314

. 154860

. 186224

.223054

.265998

. 308413

. 315661

.372537

.9800

* .9822

.9825

.9850

.9875

* .9881

.9900

.9925

* .9942

.9950

* .9962

.9975

. 43265

50000

50934

.59520

.67824

70000

77007

.85072

.90000

.92500

.95000

.97897

. 436909

.499582

.508711

.587320

.671285

.691709

.757932

.842845

.894978

.919145

.948909

.976533

*

Interpolated values

Method B has been designed specifically to be a fair

conversion strategy , suitable to both producer and consumer . This

intention is particularly reflected in

Step 1 : Skewness in the simulated data convinced us that

the B - plan should approximate the set of median , not mean ,

P
A
I values . As such , the B - plan rejects more often than the

INDIVIDUAL plan , for half of the profiles ő considered in

the
simulation , and accepts more often for the other half .

In this sense the producers and consumers risks associated

with the conversion are equalized .

Steps la thru 1c : A fair GROUP plan should provide close

approximation throughout the low , middle and high range of
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median PA , values . Our choice of q - interval and fine

discretization of it into K= 19 equi - spaced points ensures

that the simulated median PA , ’ s will cover the entire

spectrum of interest .

Step 2 : A fair GROUP plan should also give equal

consideration
to the low , middle and high range of median

PA , values . Unfortunately ,
it is not possible to choose the

u.'s in advance SO as
to get a balanced set of median PA ,

,

values . For example , the
raw ( un - interpolated ) data of

Table 1 , with a lmost half ( 9/19 ) of its simulated medians

below 1.25 , is considerably biased toward low PA ,
values .

Were a GROUP plan fitted to the raw data , a ( 95,1 ) B - plan

would result , producing a fit that is slightly better than

( 94,1 ) in the low PA , range ,
but worse elsewhere . For this

reason , the B - plan has been based on u ' s corresponding to

the more balanced set { .1{ .1 , .3 , .5 , .7 , .9 } of interpolated

median PA , values . The insensitivity as

to which data base

is used ,
raw or interpolated , is typical and reassuring .

Step 3d : Del , the sum to be minimized , attaches equal

weight to the approximation's lack of fit at
each

interpolated data point .

The set of candidate plans , including the ( 94,1 ) B - plan ,

along with their scores Del ( step 3d ) , are presented in Table 2 .
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Table 2. Candidate B - plans for Pi

c | Nc
De 1

c | Nc
De 1

0

1

2

3

4

39

94

150

206

262

.35901

.03495

14799

.26565

34854

5

6

7

8

9

318

374

430

486

543

41117

46023

50000

. 53313

56060

.

The N

Nc and C of Table 2 are highly correlated , with r = .999996

and regression No
С

56C+ 38.2 . In general , candidate B - plan OC

curves

are naturally forced to pivot about ( ūz , .5 ) , the fixed

” indifference point” ( IP ) determined in step 2b . How closely the

OC curves approximate the IP depends on
the other u

u

S ,

especially when C is small , but their effect diminishes rapidly

as Cincreases . Based onon the IP only , Hald shows in ( 3 ) , pp 195 ,

that Nc
aC+ b , where a = 1 / ( 1 - ūz ) and b = ( 1 + ūz ) / ( 3 - 3ūz). By taking

uz=.9822 , a = 56.18 , b = 37.12 and rounding to the nearest integer,

the Nc's of Table 2 are duplicated , except when C = 0,1 and 2 ,

where you get 37 , 93 and 149 respectively . This correlation can

be exploited to economize the search foreconomize the search for candidate plans , but ,

depending only on uuz , does not constitute per se a reliable

shortcut approach .

Before other examples are presented , an alternative

conversion method forming the basis of ( 2 ) is described . It

consists of taking N = n and letting C be the smallest X satisfying
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OC (AQL" ; N , X ) ► OCCAQL ; n , c ) , where n , c and m are specified and AQL

is defined by OC (AQL ; n , c ) = .95 ( or .90 ) . The intent here is to

accept , with high probability , incoming product whose quality

characteristics are allall at AQL . From a consumer point of view ,

such an approach is intuitively unacceptable . The version

proposed in [ 2 ) , designated here as method A ( for " alternative ” ) ,

limits ( n , c ) and ( N , C ) to be MIL - STD - 105D plans , and utilizes

tabulated AQL values instead of exact ones . ( NEC ) determined in

accordance with method A will be called an A - plan .

Table 3 presents sample conversions obtained by the two

methods , for seven INDIVIDUAL plans having nominal AQL's of .996

( .4% AQL in [ 1 ] ) , at two values m= 3 and m = 14 .

Table 3. Comparison of A , B - plans

m= 3 m = 14

B - plan A - plan B - planA - plan

N - Cn -C N - C X - C V - C

32 - 5

* 125-14

200-21

32 - 0

125-1

200 - 2

315-3

500-5

800-7

1250-10

32-2

125-5

200-5

315-7

500 - 10

800 - 21

1250-21

32 - ( )

104-1

160 - 2

247 - 3

389-5

624-7

973-10

32-0

94 - 1

140) - 2

21 3 - 3

329-5

519-7

804-10
V

* A , B - plans for Py , also depicted in Figure i

Method B results imply that producer and consumer risks are

more naturally balanced by taking Cắc and N < n , than taking N = n

and C > c , as suggested in 12 ) . Also , method B conversions produce

average sample reductions ( c > 0 ) of 20% and 30% in the m= 3 and

m= 14 cases respectively , as compared to no anticipated method A

reductions , exceptexcept those incidental to the tabular limitations of
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( 1 ) , viz . , the repeating ( 200,21 ) A - plan . Note also that method A

misses the only sensible conversion when cro) , namely ( N , C ) = ( n , c ) .

Figure 1 comparescompares the A and B - plan OC curves of Table 3 ( * ) ,

showing them in relation to the envelope ( L ( q ) , U ( q ) ] defined by

( 2.1 ) .

foy 14

ini , c ) = ( 125,1 )

ALTIA ) : ( 125,14 )

EESTIB ) : ( 94 , 1 )1.00

.90

.80

.70

.60

P
r
o
b
a
b
i
l
i
t
y

o
f
A
c
c
e
p
t
a
n
c
e

.50

U

.40

B :

.30

.20

.10

.80

.80 .82 .84 .86 .88 .90 .92 .94 .96 .98 1.00

% Effective ( q )

Figure 1. A , B - plans for Py , with envelope (1,0 )

The A - plan for P , is highly inconsistent with the original
1

INDIVIDUAL plan : as such , method A is not a viable alternative .

Finally , Table 4 shows how B - plans change with m , for two

different ( n , c ) INDIVIDUAL plans .
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Table 4. B - plans , varying m

m= 2 m= 3 m= 5 m= 7 m= 10 m= 15 m=20

n N - C N - C N - N -C N -C N - C N -C

50-1

315 - 3

44-1

271 - 3

42-1

246-3

40-1

227 - 3

39-1

222 - 3

38 - 1

218 - 3

38-1

213-3

37-1

210-3

As m increases , INDIVIDUAL sampling loosens and becomes less

discriminating : with Cuc , GROUP sampi ing can mimic this behavior

by decreasing N from n to Cto cas m goes from 1 to infinity .

8.0 CONCLUDING REMARKS

A general model has been described that allows
one to

simulate important performance mea sures of INDIVIDUAL sampling

for a fixed q , e · 8 ·
PA ,. We have utilized simulated median PA, ' s

as

target values for PAG , thereby determining the B - plan

conversion .

Not to be overlooked are the important considerations of how

one responds to rejected lots and its impact on average outgoing

quality ( AOQ ) . The direct application of the B - plan without

regard to alternative screening rules may substantially effect

AOQ , and consequently average fraction inspected ( AFI ) ,
as

compared toto the INDIVIDUAL plan . Future work will include an

analysis of the conversion problem from the standpoint of AOQ ,

a imed at picking the "best ” GROUP screening rule , given ( n , c )

and its ( N , C ) B - plan .
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APPENDIX 1

2

- X

Proof of ( 2.1 ) : to handle the constraints 0 < 9 ; < l , set 9
9 ;

e

By taking logs of objective function ( 1.2 ) and constraint ( 1.3 ) ,

the problem takes the form

m

optimize L ( K )

2

- X

In { OC ( e in

ΣE

j = 1

m

2

subject to GOÑ

{ x

- 1n ( q ) .

j = 1

According to the Lagrange multiplier theory , extrema
occur when

all partials of Food) = L ( ) / iG ( ) +1n( q ) } are
zero .

The computations rely on

d / dq [ OC ( q ; n , c ) ] on - c - 1 ( 1-9 ) ° / B ( n - c , ( + 1 ) ,

which is just a restatement of OC ( q ; n , c )
BET ( q ; n - C , c + 1 ) , and

n

OC ( q ; n , c ) = q ” - “ ( 1-9 ) H ( q ) , where H ( q )
{q/(1-q)};

j =0

Therefore , for 1xism ,

d /dx;( F( , d)] = 2x; { d - 1/ [B (n -c ,c+ 1)H (q ;) ]} ,

implying that extrema Occur at vectors ē whose components either

( a ) equal 1 , or ( b ) satisfy , for a
)

9 ;j H ( q ; ) .

Since H ( q ) is monotone increasi
ng

, H ( q ; ) = H ( q ; ) implies q
9 ; = 9j '

and a not

1 , H ( q ;i
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1

so 10 satisfy the constraint d /allF(x.d.) - G ( X ) +1019 ) - 0 .

it rollows that optimal 7 have ( m - k ) components equal to 1 ,

and k components equal toq " , for k = 1,2 , ..for k = 1,2 , ... ,m . To determine

which values of k Correspond to the max and min , consider

8 ( 1 ) - { ocla 1/4 ; n.c ) } ' . For inveger inl , 811 ) is the objective

function ( 1.2 ) evaluated at optimal vectors . Since glu ) is

decidedly monotone increasing ( see ( 7 ) ) , the min and max occur at

k = 1 and k =m respectively , producing ( 2.1 ) . Q.E.D.

APPENDIX 2

Proof of ( 4.2 ) : make the change of variable

m- ]

ºm
= 4 !q ! II 4 ;

P .

j = 1

The joint density

m - 1

j ( 9,9,192 , ... , 9m - 1 )

)II sf . ( 9

i

i = 1

m- ]

- n1g(Pmia, 6m ) [ { n18 ( 9 ;; a ,1,6 ; ) / 9 ; } .

i = 1
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II
ilin ( 1 /? i+1

The conditional joint density is

h ( 9,192....9m- 119 )4-119) - j ( 9,9 , -42 . ...,90-1)/n18(9:2.5,

- F, F2/F3 .

m - 1

b -1

i
where

II Il10 ( 1/4 ; ) ] 19 ; }1

i = )

-1S - 1

m

lin ( 1 / P ) )

m - 1
1S

i +1

) )

S. - 1

)

i

1 / P )

}

i = 1

m - 1 m - 1

and

F3 { II r.( 6; )} /115, ) - II BIS( Si + 1 : 6 ; )

1 = 1 i = 1

m - 1

Therefore

h - T (II bet( T; (q ; ) ; Si+ 1: 6 ; ) at ; ( q ; ) / dq ;

iIntegration of h with respect to a over [ P ; -x ) if i = k , and

[ P , 1 ) aif itk , for i = 1,2 , ... ,m - 1 and a specified k , then setting

X back 10 9
9 ;. produces ( 4.2 ) .

Q.E.D.
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