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FOREWORD

The Thirty - Third Conference on the Design of Experiments in Army

Research , Development , and Testing was held 21-23 October 1987 on the

campus of the University of Delaware . This university served as one of

its hosts , the other host being the Ballistic Research Laboratory

( BRL ) . Professor Henry B. Tingey was the Chairperson on Local

Arrangements for the University and Dr. Malcolm Taylor served in this

capacity of BRL . The members of the Army Mathematics Steering

Committee (AMSC ) , sponsors of these conferences , would like to take

this opportunity to thank these gentlemen for their excellent handling

of the many problems associated with a meeting of this size .

Members of the Program Committee for the conference were pleased to

obtain the services of the following invited speakers to talk on topics

of interest to Army personnel :

Speaker and Affiliation Title of Address

Dr. J. Stuart Hunter

Private Consultant

Statistics and the Learning

Process

Professor Albert Paulson

Rensselaer Polytechnic Institute

A Generalized Likelihood

Approach to Experimental

Design , Data Analysis and

Modeling

Dr. William A. Gale

Bell Communications Research

Structural Statistical

Knowledge for Expert Systems

Professor Howard M. Taylor

University of Delaware

The Effect of Size on

Material Strength

On 19-20 October 1987 , two days before the start of the Design

Conference , a tutorial entitled " Regression Diagnostics " was held . Its

speaker was Professor Roy Welsch of the Massachusetts Institute of

Technology , Cambridge, MA . The main purpose of these seminars was to

develop , in Army scientists , an interest in and and appreciation for

the statistical methods that are needed to analyze experimental data .

Dr. J. Stuart Hunter , Professor Emeritus of Princeton University , was

the recipient of the seventh Wilks Award for contributions to

Statistical Methodologies in Army Research , Development , and Testing .

This honor was bestowed on Dr. Hunter for his many significant

contributions to various fields of statistics , in particular to the

areas of fractional factorial and response surface experimental design .

He has assisted many Army scientists with their statistical problems ,

and has been an invited speaker at four of these Design conferences .
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The AMSC has requested that these transactions be published and

distributed Army -wide so that the information in them might assist Army

scientists with some of their statistical problems. Committee members

would like to thank all the speakers for their interesting

presentations and also the members of the Program Committee for their

many contributions to this scientific meeting.

PROGRAM COMMITTEE

Carl Bates

Robert Launer

Malcolm Taylor

David Cruess

Carl Russell

Jerry Thomas

Eugene Dutoit

Douglas Tang

Henry Tingey
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AGENDA

THIRTY - THIRD CONFERENCE ON THE DESIGN OF EXPERIMENTS

IN ARMY RESEARCH , DEVELOPMENT AND TESTING

21-23 October 1987

Hosts : The Army Ballistic Research Laboratory

Aberdeen Proving Ground , Maryland

and

The Department of Mathematical Sciences

The University of Delaware

Newark , Delaware

Location : Pencader Hall , Room 106

The University of Delaware

* * * * * Wednesday, 21 October * * * * *

0815-0915 REGISTRATION Clayton Hall Lobby

0915-0930 CALL TO ORDER Pencader Hall , Room 106

Dr. Malcolm Taylor , Ballistic Research Laboratory

OPENING REMARKS

Dr John T Frasier

Director , Ballistic Research Laboratory

WELCOMING REMARKS

Dr Ivar Stakgold

Chairman , Department of Mathematical Sciences

The University of Delaware

0930-1200 GENERAL SESSION I

Chairman : Prof Henry B Tingey , University of Delaware

0930-1030 KEYNOTE ADDRESS

J Stuart Hunter , Princeton , NJ

1030-1100 BREAK

1100-1200 A BAYESIAN APPROACH TO THE DESIGN AND ANALYSIS OF

COMPUTATIONAL EXPERIMENTS

Toby J Mitchell * and Max Morris, Oak Ridge National Labs

1200-1330 LUNCH
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1330-1700 CLINICAL SESSION A

Chairman : Barry Bodt , Ballistic Research Laboratory

Panelists : Prof John Green

Prof Vincent LaRiccia

Prof John Schuenemeyer

Prof Robert Stark

Prof Howard Taylor

The Department of Mathematical Sciences

The University of Delaware

ANALYSIS OF A REPEATED DESIGN WITH MISSING CELLS

Michelle R Sams and Joel H Fernandez , White Sands Missile Range

ALTERNATIVE METHODS FOR RELIABILITY ESTIMATION

Raymond v Spring, US Army Natick R & D Directorate

Thomas A Mazzuchi, The George Washington University

ALLOCATION AND DISTRIBUTION OF 155 MM HOWITZER FIRE

Ann E M Brodeen and Wendy A Winner ,

The Ballistic Research Laboratory

1500-1530 Break ( as needed )

A SIMPLE MATHEMATICAL MODEL FOR THE SIMULATION OF IR BACKGROUNDS

Denis F Strenzwilk , Ballistic Research Laboratory

Walter T Federer and Michael T Meredith , Cornell University

1530-1700 CLINICAL SESSION A, CONTINUED ( as needed )

1830-1930 CASH BAR
-

THE SHERATON INN , NEWARK

1930-2130 BANQUET AND PRESENTATION OF WILKS AWARD THE SHERATON INN

* * * * * Thursday , 22 October * * * * *

0830-1000 TECHNICAL SESSION 1 STATISTICAL APPLICATIONS

Chairman : Dr Francis Dressel , US Army Research Office

EVALUATION OF CAMOUFLAGE PAINT GLOSS VERSUS DETECTION RANGE

George Anitole and Ronald L Johnson , US Army Belvoir Research ,

Development and Engineering Center

Christopher J Neubert , US Army Materiel Conmand

A 2 - STAGE EXPERIMENTAL DESIGN FOR TESTING LARGE SCALE SIMULATIONS

Aqeel A Kahn , US Army Concepts Analysis Agency
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BLACK BRANT HAZARD ANALYSIS

Weston C Wolff , White Sands Missile Range

USING A PERSONAL COMPUTER IN STATISTICAL PLANNING AND ANALYSIS

Carl Russell, Army Operational Test and Evaluation Agency

1000-1030 BREAK

1030-1200 TECHNICAL SESSION 2 , EXPERIMENT DESIGN AND LINEAR MODELS

Chairman : William Baker , Ballistic Research Laboratory

ONE SIDED TOLERANCE LIMITS FOR RANDOM EFFECTS MODELS

Mark Vangel, US Army Material Testing Laboratory

ESTIMATION OF VARIANCE COMPONENTS AND MODEL -BASED DLACNOSTICS IN

A REPEATED MEASURES DESIGN

Jock O Grynovicki, US Army Human Engineering Laboratory , APG

JW Green , The University of Delaware

MODEL BASED DIAGNOSTICS FOR VARIANCE COMPONENTS IN A GENERAL

MIXED LINEAR MODEL

John W Green , The University of Delaware

RR Hocking, The Texas A & M University

CHANGE - POINT REGRESSION WITH UNKNOWN CHANGE POINTS

Robert L. Launer , US Army Research Office

1200-1330 Lunch

1330-1500 TECHNICAL SESSION 3 STOCHASTIC PROCESSES

Chairman : Dr Eugene Dutoit , US Army Infantry School

SEMIREGENERATIVE PHENOMENA

NU Prabhu , Cornell University

k - LAPLACE PROCESSES

Lee S Dewals , The US Military Academy

Peter A W Lewis, Naval Postgraduate School

Ed McKenzie , University of Strathclyde , Glascow , Scotland

THEORY OF RANDOM MAPPINGS

Bernard Harris , University of Wisconsin Madison

1500-1530 BREAK

ix



1530-1730 GENERAL SESSION II

Chairman : Dr Malcolm S Taylor , Ballistic Research Laboratory

A GENERALIZED LIKELIHOOD APPROACH TO EXPERIMENTAL DESIGN ,

DATA ANALYSIS AND MODELING

Albert Paulson , Rensselaer Polytechnic Institute

STRUCTURING STATISTICAL KNOWLEDGE FOR EXPERT SYSTEMS

William A Gale , Bell Communications Research

* * * Friday , 23 October * *

0830-1000 TECHNICAL SESSION 4 STATISTICAL INFERENCE

Chairman : Linda Moss , Ballistic Research Laboratory

ON THE USE OF FACTOR ANALYSIS AS A PREDICTION TOOL

Oskar M Essenwanger , US Army Missile Command

CONSISTENCY OF THE P - VALUE AND A SET OF Q - VALUES IN A SCORING

ACCURACY ANALYSIS

Paul Thrasher , White Sands Missile Range

A BAYESIAN METHOD FOR PROJECTING A TOLERANCE LIMIT

Donald Neal and John Reardon , US Army Material Testing Laboratory
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METHODS FOR THE RISK RATIO

Craig Morrissette * and Douglas B Tang , Walter Reed Army Institute
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ANALYSIS OF A REPEATED MEASURES DESIGN WITH MISSING DATA

Michelle R. Sams and Joel H. Fernandez

U.S. Army Materiel Test and Evaluation /

Engineering and Analysis RAM Division

U.S. Army White Sands Missile Range , NM 88002-5175

ABSTRACT

a

( RS ,

Electronic Maintenance Publication System ( EMPS ) is a U.S.

Army Materiel Command ( USAMC ) initiative to determine the

feasibility of using current technology to electronically display

and deliver the contents of Department of the Army Technical

Manuals ( DATMs ) to the maintenance site . The Army Materiel Test

and Evaluation Directorate ( ARMTE ) was tasked to conduct a " side

by - side " comparison of EMPS VS. DATMs and to conduct human

factors evaluation of the EMPS hardware and software . ARMTE

conducted the comparison study on the Patriot System at Ft . Bliss ,

TX from 6 April to 15 May 1987 , Ten operator /maintainers ( MOS

24T ) were trained to use EMPS and then participated in the test

phase performing maintenance tasks on the Radar Set ( RS ) and on

the Engagement Control Station ( ECS ) . A 2 x 2 x 7 within - subjects

factorial design was planned , with 2 mediums ( EMPS , DATMs )

performed on 2 major end items ECS ) for 7 types of

maintenance tasks . Due to software constraints and Patriot

peculiar problems , only 8 of the 28 possible treatment conditions

have observations from all the subjects and 2 of the treatment

conditions have no observations . Various data estimation

procedures were considered and then rejected on the basis of

excessive and systematic missing data . Two analyses of variance

were conducted on a subset of the original data , which contained

the least amount of missing data and were determined to be

representative of the maintenance actions . No significant

difference was found for the variables of interest ( those

involving EMPS and DATMs ) . Based on the results of this study , it

was concluded that there is no evidence to suggest that there is

any significant difference in time to perform a fault isolation or

remove
and install task on the PATRIOT system utilizing either

EMPS or DATMs . An electronic delivery of maintenance information

( as tested in EMPS ) appears to be as effective as the traditional

medium of paper technical manuals ( DATMs ) .

Comments and suggestions by the panelists and attendees at the

conference were greatly appreciated . We are especially indebted to
N. Scott Urquhart of New Mexico State University for his guidance

throughout the completion of the data analysis .

O
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INTRODUCTION

Maintainability is a major element of system
effectiveness .

As such , the delivery of maintenance information is a crucial

component in the man -machine system . The current delivery medium

is through paper technical manuals ( DATMs ) . Many problems have

been noted with the paper manuals ( e.g. , the large number of bulky

manuals needed to contain all the information and difficulties

encountered
keeping

the manuals updated and current , the

difficulty using
the manuals especially in inclement weather ,

etc. ) An alternative delivery medium was sought and tested in
the

form of Electronic Maintenance Publication System ( EMPS ) . As part

of a larger evaluation of EMPS , the Army Materiel Test and

Evaluation Directorate at White Sands Missile Range was tasked to

conduct а performance ( " side - by -side " ) comparison of
EMPS VS.

DATMs and to conduct a human factors evaluation . The performance

evaluation was based on the speed and accuracy of maintenance

actions for the two mediums and is presented in this paper .

METHOD

Subject and Team Selection

A total
of ten operator /maintainers ( all trained to the T5

PFAS level ) were allotted for the study on the basis of

availability . Maintenance tasks are normally performed in

maintenance teams consisting of a " reader " and a " doer " . For the

purposes
of this study , the ten subjects were divided into two

groups on the basis of their GT scores ( an index of general

intelligence and ability ) . Five teams were then formed out of each

subject participated in two teams ) .group ( each Each team from
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Group A was then matched with a team from Group B with

approximately the same GT level . This matching was done in order

to reduce some of the variance due to the subjects , especially

since there was such a small number of subjects in the experiment .

Experimental Design

A 2 x 2 x 7 within -subjects factorial design was planned ,

with 2 mediums ( EMPS , DATMs ) performed on 2 major end items ( RS ,

ECS ) for 7 types of maintenance tasks . The design was within

subjects in that all teams would participate under all treatment

combinations . However , due to the concern of possible

asymmetrical transfer effects , a particular team did not

participate in the same task twice . For example , when a team

performed a particular task utilizing EMPS ,
a different team

matched for general ability performed the same task utilizing

paper DATMs .

Task Selection

With the assistance of
subject matter experts ,

it was

determined that there
were seven types of

maintenance actions

performed on the RS and ECS . These task types consisted of fault

isolation ( FI ) , remove and install ( RI ) , repair and verify ( RV ) ,

combined tasks ( CO ) which included FI , RI , and RV times ,

preventive maintenance checks and services ( PMCS ) , operations

( OP ) , and
repair parts and special tools list ( RPSTL ) .

The

selection of the specific tasks to be performed was influenced by

several factors ; software capability , the tasks had to be

representative of normal maintenance actions , and the concern of

face validity .

3



Training Session

Ten operator / maintainers were familiarized with EMPS in
the

classroom and given support documentation . They then participated

in an on - site training session in their assigned teams . A total

of 63 maintenance tasks on the RS and ECS utilizing both EMPS and

DATMs were completed in this session .

Testing Session

The teams then participated in the test phase performing a

total of 302 separate maintenance actions consisting of the seven

types of maintenance actions on the RS and ECS utilizing both EMPS

and DATMs .

Data Collection

The errors committed and the total time to
complete а

maintenance action were recorded by a data collector for each

task . A particular data collector would record data for the same

task , performed once by a team utilizing EMPS and again by a

matched team utilizing DATMs . This was done to reduce variation in

the time and error measurements recorded among the data collectors .

Reduction of the Full Factorial Design

Each team was to participate in an equal number of tasks

utilizing the two mediums on both major end items for a 11 task

types . Halfway through the test phase , it became obvious that due

to equipment failure and frequent removal of
the

subjects for

field training exercises , that the full factorial would not be

completed as originally planned . Even though generalizability of

the results to all types of maintenance actions was a concern ,
it

was determined that those tasks which best utilized the DATMs and

EMPS would be an accurate indicator of the efficiency and

4



feasibility of the mediums .

Through discussions with subject matter experts and the

participating subjects , it was determined that two types of tasks

best utilized the two mediums . These were fault isolation ( FI )

and remove and install ( RI ) . These tasks were complex enough to

compel the maintainer to actually read and refer to the

maintenance material . The other tasks were simple and routine ,
so

that close attention to either medium was not necessary
( although

they were instructed to actually read and use both mediums in any

circumstance ) . Within
the remaining test phase time ,

the test

schedule was revised to include more of the FI and RI type tasks .

As a result , there was a large amount of missing data in the other

four types of tasks . The seventh task ( RPSTL ) was conducted only

on the ECS , due to software problems , and is not reported here .

RESULTS AND DATA ANALYSIS

A summary of the data collected for maintenance action times

is presented in Table 1 and a means bar chart is presented in

Figure 1. There are 81 missing observations out of a total of 240 .

Estimating the missing data would allow investigation of 3 - way

interactions ( type of task х item х medium ) and allow

generalization to all
types of tasks tested . Various data

estimation procedures were investigated , with employing stepwise

regression for each missing value on the available variables

appearing as the most appropriate method ( Frane , 1976 ) .

Frane ( 1976 ) cautions that the methods for estimating missing

data for multivariate analysis depend on several assumptions :

5
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data must be missing at random to get a good estimate of the

covariance matrix , each missing variable must be highly correlated

with one or more available variables , and the amount of missing

data should not be excessive . If any of the assumptions are

seriously violated , any procedure for handling missing
data is

likely to be unsatisfactory . The data collected in the study

violated two of these assumptions ; the missing data was excessive

and systematic .

It was determined not to make estimations of the missing

observations and to instead conduct separate analyses of variance

on the two types of tasks ( FI and RI ) which contained the least

amount of missing data , and which were previously determined to

best test the variables of interest . Since the data approximated a

lognormal distribution , the data was transformed ( ( log ( X + 1 ) ) to

normalize the distribution ( Winer , 1971 ) . The transformed

maintenance times were subjected to the analyses of variance

presented in Tables 2 and 3 .

A significant
difference for maintenance time for the

different tasks within each item was found , (P < .01 ) ,
for both

types of tasks . This was neither surprising , nor of interest .

The set of tasks performed on each item varied in difficulty . For

fault isolation tasks a significant difference was found for item ,

(P < .01 ) . It took longer to perform fault isolation tasks on the

ECS than on the RS . Again this was not a variable of interest ,

and most likely reflects the relative complexity of the the items .

The variables of interest , those involving the two
mediums

being compared ( EMPS and DATMs ) revealed no significant

differences in maintenance time ( P > .10 ) . Also there was no

9



Table 2

ANOVA Table for Fault Isolation Tasks using Log Transformed Time

Source df MS F

Between Subject 43

Group

Task ( Item )

1

21

.007

.497

0.21

14.62 **

Error ( Between ) 21 .034

Within Subject 46

Medium

Item

Medium X Item

1

1

1

.083

2.930

.003

0.82

29.01 **

0.03

Error ( Within )
43 0.101

TOTAL 89

**

p < .01

Table 3

ANOVA Table for Remove and Install Tasks using Log Transformed

Time

Source df MS F

I

- -

1

Between Subject 45

Group

Task ( Item )

1

22

.046

1.661

1.24

44.42 **

Error ( Between ) 22 .037

Within Subject 36

Medium

Item

Medium X Item

1

1

1

.044

.012

.025

0.73

0,20

0.42

Error ( Within ) 33 0.060

TOTAL 81

**

P < .01
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significant difference in group performance for either type of

task . Thus the various teams composed from each
group were

matched fairly well on ability to perform the tasks .

Errors committed while performing the maintenance tasks were

negligible and were notnot subjected to statistical analysis .

CONCLUSION

Based on the results of this study , there is no evidence to

suggest that there is any significant difference in time to

perform fault isolation and remove and install maintenance actions

on the PATRIOT system utilizing either EMPS or DATMs . Errors made

while using either medium were negligible
and are not a

significant factor either . An electronic delivery of maintenance

information ( as tested in EMPS ) appears to be as effective as the

traditional medium of paper technical manuals ( DATMs ) .

These are encouraging results considering that the test

subjects had a very " quick and dirty " training period with the

EMPS system .
It is conceivable that the speed with which a

maintenance action can be performed with an electronic delivery of

maintenance information will improve with a more comprehensive

training approach and with Human Engineering improvements to
the

system .
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Abstract

The U.S. Army Ballistic Research Laboratory (BRL), Aberdeen

Proving Ground , MD, has been investigating the problems associ

ated with allocating and distributing friendly fire based on the

importance of an enemy target and its function in a particular tac

tical situation . The available data contain nonstandard data struc

tures, numerous variables with various degrees of influence on the

predictive relationship , a mixture of data types, and nonhomogene

ous variable relationships . Various approaches including parametric

and nonparametric procedures have been applied to this problem.

As an alternative to standard parametric procedures, the BRL is

investigating recently published classification tree methodology

which extends previous developments in this area ( 1 ) . Similar to

other classification tree methodologies , this methodology provides

predictions by constructing binary trees . However , unlike other

analytical techniques, e.g. , cluster analysis, linear discriminant

analysis, andand earlier classification trees , Breiman et al.'s

classification tree structured methods concurrently handle these

problems, which are common to the data collected by the BRL on

Fire Direction Officers' decisions on 155mm howitzer targets.

The authors would like to solicit critiques of the proposed

approach to this problem and suggestions for alternatives.
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I. Introduction

The U.S. Army Ballistic Research Laboratory (BRL ) has been examining the prob

lems associated with selecting the type , volume, and the method of firing ammunition

on enemy targets by a specific 155mm howitzer firing configuration, i.e. , the allocation

and distribution of friendly fire. This research is concentrating on allocating and distri

buting the fire of 155mm howitzer firing units based on the importance of an enemy tar

get and its function in a particular tactical situation . Results from this research will be

incorporated into the BRL's prototype decision aid FireAdvisor. As a tool for developing

and implementing fire support plans , FireAdvisor is incorporating commander's criteria ,

munition effects, and the tactical situation ( including firing units , munitions , fuzes, and

targets ) to assist with determining the optimum allocation and distribution of fire

against independent targets over time.

To acquire data for this research, the BRL conducted a statistically designed exper

iment, the Firepower Control Experiment, in December 1985. In addition , the BRL has

recently extracted similar information from scenarios developed by LB&M Associates,

Inc. , Lawton , OK , under a BRL contract . Both of these data sets are characterized by a

mixture of data types, nonhomogeneous variable relationships, and different degrees of

influence of the variables . Various approaches such as multiple regression analysis, the

Mann-Whitney test, Kruskal-Wallis analysis of variance by ranks , and cluster analysis

have been applied to analyze the data from the Firepower Control Experiment . The

goals of these procedures were to uncover the relationships among the variables and pro

vide accurate predictions for allocating and distributing 155mm howitzer fire.

As an alternative to standard parametric procedures , the BRL is investigating

employing a recently published classification tree methodology to these data sets (1).

Similar to other published classification tree methodologies, Breiman et al.'s methodol

ogy provides predictions by constructing binary trees . However, unlike other analytical

techniques , Breiman et al.'s classification tree structured methods concurrently handle

nonstandard data structures, a mixture of data types, nonhomogeneous variable rela

tionships , and different degrees of influence of the variables.

An overview of Breiman et al.'s methodology will be given in the context of allocat

ing and distributing 155mm howitzer fire. Critiques of this proposed approach and

suggestions for alternative approaches are invited .
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Fire Direction Officer (FDO] (determines or approves the number of

rounds and the shell/fuze combination to fire on the target )

Type/Subtype (description of the type of target)

e.g. , artillery/medium.

Size ( in meters ) ,

Method of Engagement ( how to fire on the target )

e.g. , fire- for- effect when ready .

Degree of Protection ( position of the target)

e.g. , standing on first volley and laying down on subsequent volley's.

Strengtb ( number of units comprising tbe target )

Target Speed ( in kilometers per hour )

Sensor ( friendly unit sigbting the target )

e.g. , forward observer .

Sensor Speed ( in kilometers per hour)

Sensor to Target Range ( in meters)

155mm Howitzer to Target Range ( in meters )

Ammunition Available (both as number of rounds available by munition type and as the

initial ammunition load expressed as a percentage of a basic load )

e.g. , 100 rounds of high explosive rounds which is x% of a basic load .

Allocation Method ( method of firing the rounds on a target )

e.g , fire high explosive and smoke rounds simultaneously on the target

( as opposed to firing all high explosive rounds first followed

by the smoke rounds ) .

Total Number of Rounds Fired on the Target (number )

Number of First Munition Rounds Fired

e.g. , 6 rounds of high explosive .

Type of First Munition Fired

e.g .. high explosive .

Number of Second Munition Rounds Fired

e.g. , & rounds of smoke.

Type of Second Munition Fired

e.g. , smoke.

Figure 1. Information Available for Each Decision .
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11. Background

a. Data Sets

In December 1985, the BRL conducted a controlled laboratory experiment , the

Firepower Control Experiment (2 ) , at the joint U.S. Human Engineering Laboratory and

BRL Command Post Exercise Research Facility . As part of this statistically designed

experiment, information was collected on Fire Direction Officers' (FDOs ' ) decisions on a

variety of targets being forwarded to 155mm howitzer units . * This data set comprises

3,219 FDOs ' tactical fire control decisions collected for different FDOs , target

types/subtypes, target sizes , types of fire mission control ( i.e. , " method of engagement" )

and initial ammunition basic loads .

As part of the BRL's research in tactical computer science , several unclassified

scenarios between friendly and enemy forces in the Fulda Gap have been developed

under a BRL contract with LB&M Associates , Inc. , Lawton , OK . Embedded within

these scenarios are decisions on allocating and distributing 155mm howitzer fire on

independent targets observed in one hour periods . To date, information associated with

522 tactical fire control decisions has been extracted from a portion of these scenarios .

Figure 1 summarizes the type of information available for the decisions in these

data sets . A combination of categorical and numerical variables describes the principle

factors thought to influence the decision process (FDO through ammunition available ) as

well as the actual decision ( allocation method through type of second munition fired ).

Based on the results of previous data analyses, it is anticipated that these variables have

different degrees of influence and exhibit nonhomogeneity .

b . Parametric and Nonparametric Procedures Applied

1. Multiple Regression Analysis

Multiple regression analysis (3) is an analytical methodology that usually has one of

the following primary goals : 1 ) predict the value of the dependent variable for new

values of the independent variables, 2 ) screen variables to detect each variable's degree

of importance in explaining the variation in response , 3) specify the functional form of

the model, or 4 ) provide estimates of each coefficient's magnitude and sign . By applying

multiple regression analysis to the data from the Firepower Control Experiment , it was

hoped that a regression equation could be derived to suitably predict the allocation

method . Using a combination of indicator factors for the categorical variables (e.g., FDO

and target type/subtype) and untransformed values for the numerical variables ( 0.9 .,

ammunition load expressed as a percentage of a basic load , target size , and the method

of engagement ) , stepwise and " best subset” regressions were run to predict the resp:0 ;}se

factor ( e.g. , the allocation method ) .

Tactical Fire Direction and guddery instructor from tbe US Army Field Artillery School , Fort Sill , OK , participated as FDO :.
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Stepwise regression (4 ) was run to insert factors into the regression equation based

on their partial correlation coefficient with the response factor. At each step , the partial

F criterion of each regressor already in the equation was compared to the appropriate

tabled F value . The regressor was either retained in the equation or rejected based on

whether the test was significant or not . Stepping continued until none of the regressors

could be removed , and none of the other potential regressors could be inserted due to

the value of their partial correlation coefficient. ” Best subset" regression was then run

on the stepwise regressor variables to determine the best overall subset out of all pussi

ble regressions according to the maximum Rạ criterion .

As a consequence of performing a least squares fit of the data , fitted equations were

obtained for the allocation method . However, based on the proportion of variance

accounted for by the regressors in the regression equations , none of the factors clearly

influenced the allocation method . This suggests that other factors not taken into

account may influence FDOs' decisions on an allocation method .

2. Mann-Whitney test

One of the objectives of the experiment was to test whether the amount of avail

able ammunition affected the number of rounds the FDO elected to fire on a target .

Prior to comparing all FDOs within a given ammunition basic load or comparing an

individual FDO across the three ammunition basic loads , it was desirable to first exam

ine whether or not it would be necessary to distinguish between the adjust fire (AF ) and

fire- for-effect ( FFE) methods of engagement . Since the distribution of total rounds fired

against a target is not known for the two employed methods of engaging a target , the

nonparametric Mann -Whitney test (5 ) was used to test whether the two independent

random samples could have been drawn from two populations having similar distribu

tion functions . Based on the results of the Mann-Whitney test, the samples associated

with the two methods of engagement could not be grouped together for other statistical

tests .

3. Kruskal-Wallis Test

Similar to the Mann-Whitney test, the nonparametric Kruskal-Wallis one factor

analysis of variance by ranks procedure (5 ) was used to examine , first, the mean number

of rounds fired within each of the three different ammunition basic loads by each FDO ,

and , second, the mean number of rounds fired by each of the three FDOs within a given

ammunition basic load . It was concluded from the test that there were significant

differences within an ammunition basic load in the mean number of rounds fired by each

FDO against an individual target . In addition , test results showed that only one of the

FDOs tended to fire on average more rounds against a target under at least one of the

ammunition basic loads thap under at least one of the other basic loads . For the ran

dom samples resulting in rejection of the null bypotheses, i.e. , no difference in the mean

rounds fired against a single target , additional pairwise Kruskal-Wallis tests were per
formed.
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4. Cluster Analysis

Cluster analysis (6) was employed to categorize targets according to their impor

tance based on their contribution to an enemy force in a particular tactical situation,

i.e. , their target value (7) . There are several ways to measure the value of the target.

For example , one way could be to use several variables to measure the description , loca

tion , and activity of the target . A description of the target might include its

type/subtype, size, and degree of protection . The location of the target might consider

the actual grid location of the target , the altitude of the target , and the distance

between the target and specific friendly units . The activity of the target might take into

account its velocity and direction of movement .

( luster analysis provided a multivariate statistical method to examine the interrela

tionships between the target description , the FDOs , and the initial ammunition load

expressed as a percentage of a basic load . Target value was based on the mean nombor

of rounds expended against an individual target. Targets were categorized into three

target value clusters, i.e. , " low" , " fair" , or " high ” , based on the minimization of illo

Euclidean distance between each target and the mean of the targets in the cluster.

c . Deficiencies Among the Analyses

Despite the fact that each of these statistical procedures is well known and used ,

they have several shortcomings with regard to the problems inherent to the Firepower

Control Experiment data set . For instance , these methods do not concurrently handle

the nonstandard data structures, a mixture of data types , nonhomogeneous variable

relationships , and different degrees of influence of the variables . Subsequently , it is

expected some information has been lost.

Thus, the combined results of these procedures do not provide an effective means of

allocating and distributing 155mm howitzer fire for enemy targets . For instance , cluster

analysis provides a coarse evaluation of a target's value based on the initial ammunition

load , iis type/subtype, and FDO . The " best subset" multiple regression equations pro

vide only weak relationships between the FDO , allocation method , target type, target

size, method of engagement , and initial ammunition load . Thus , the question remains,

" Is this a result of variables measured in the experiment or a consequence that these

procedures could only be focused on limited subsets of the data collected?" Subse

quently , a search for a different means of analyzing this data has been undertaken .

I. Classification Tree Methodology

a. Background

Trees, whether known as decision trees , binary trees , or by some other name, have

been previously used by data analysts as an informative ponparametric tool for investi

gating various types of data sets. Tree classification methods use the data to form pred

iction rules for a response variable based on the values of independent variables.

Specifically, measurements are made on some object , and a prediction rule is then used
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to decide to what class the object belongs. This methodology is so simple that it is

often passed over in favor of other methods which are thought to be more accurate .

such as discriminant analysis .

Recent developments in the area of structured classification trees , which have been

published by Breiman et al . , are aimed at strengthening and extending the original tree

methodology. Their advancements have been incorporated into a statistical software

package known as CARTTM (Classification and Regression Trees) . Given complex data

sets with many independent variables, the developers of CART feel that the structured

trees produced by CART can have crror rates that may be significantly lower than those

produced by the usual parametric techniques . These procedures are robust , e.g. , they

minimize the effects that data outliers might produce.

We feel that the advancements made in the area of structured tree methodology

are significant enough to warrant investigation and application to the problems of allo

cating and distributing 155mm howitzer fire.

b. Overview of the CART Methodology

1. Definitions

Many of the statistical techniques presently available are designed for small data

sets having a standard data structure. By a standard data structure we mean that there

are no missing values among the measurements made on an object , or so few they may

be estimated prior to analyzing the data. In addition , the variables all have to be of the

same type , i.e. , all numerical or all categorical . The underlying assumption of the data

is that the driving phenomenon is homogeneous , i.e. , the same relationship holds over

the entire set of measurements made on the object in question .

The data which is available to study the problem of allocating and distributing

friendly fire on enemy targets does not meet the above criteria . In both data sets , values

for several of the measurements used to describe an enemy target may be missing or

must be assumed not available for any number of reasons . The variable list comprising

the make up of a target's description ( to include such items as its location , activity ,

description, etc. ) is a mixture of both numerical and categorical variable types. Finally ,

we cannot realistically expect the same relationships to hold amongst the wide range of

measurements made on a target .

2. Constructing a Classification Tree

To initially construct a structured tree, four elements are needed : 1 ) a set of binary

questions of the form : Is x E A?, A CX, where x is the measurement vector defining

the measurements ( 21 , 22, ... ) made on a case, and X is defined as the measurement

space containing all possible measurements, 2) a goodness of split criterion that can

numerically evaluate any split of any pode of the tree , 3 ) a rule which dictates when to

continue splitting the node or to declare it a terminal node, and 4 ) a rule for assigning
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every terminal node to a class. The set of binary questions generates a set of splits of

every node. Those cases answering ”yes” go to a left descendant node , while those

answering ” no” go to a right descendant node.

3. Features and Advantages

Breiman et al.'s methodology for classification trees appears to be a powerful and

flexible analytical tool . Some of its major features and advantages over other methods

will be very briefly outlined .

One of the more important aspects of the CART methodology is its ability to

automatically handle missing values while minimizing the loss of information. This is

acbieved via the concept of surrogate splitting .

To understand surrogate splitting, two splits are said to be associated at a node if

either of two conditions exists . If most of the cases are sent to the left or to the right by

one split , and the other split also sends most of the cases in the same direction , the two

splits are said to be strongly associated . On the contrary, the splits are also associated

when one split sends most of the cases to the left ( right ) while the other split sends most

of the cases to the right ( left ) . The missing value algorithm then proceeds as follows.

The CART methodology is designed to initially search through all possible splits on a

given node and select the best split . For example , suppose the best initial split is : Is 2 (5 )

> 34.1 ?. All other variables except (5 ) will then be searched until the split on each

variable which is most closely associated with the split on 25 ) is found. This series of

splits might result in a list such as the following

2 (2) > 26.2 is the most closely associated with 2 (5 ) > 34.1

2/11) > 50.6 is the second most closely associated with 2 (5) > 34.1

and so forth. These splits are the surrogate splits for the initial split : Is z( 5 ) > 31.1 ?.

If a case has a missing value of d5 ) so that the best split is not defined for that

case, CART then looks at all nonmissing variables in that case and finds the one having

the highest measure of predictive association with the best split . In this example , CART

would first look at the most closely associated surrogate split . For example, if the value

of 2 ( 2) is not missing, then the case would go left if ( 2 ) > 26.2 and right otherwise.

This procedure is analogous to the one used to estimate the missing values in a

linear model (viz . , regression on the ponmissing value most highly correlated with the

missing value ) . However , the CART missing value algorithm is more robust. The cases

with missing values in the selected splitting variable do not determine which direction

the other cases will take. Since further splitting continues , there is always the possibility

that cases which may have been sent in the wrong direction due to the missing value

algorithm will still be classified correctly .
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Since variables do not act alone when predicting a classification , it is natural to

question which variables played the role of predictors . In the construction of a tree there

may be instances in which some of the variables are never used to split any node; how'

ever, this does not necessarily mean these variables lack any predictive information.

Therefore , each variable is assigned a measure of importance which may be helpful to

the analyst in uncovering variables otherwise glossed over when looking at only the

splits from the final selected tree. One note should be made . Like many variable ranking

procedures, this one is a bit subjective and the exact numerical values should not be

interpreted precisely .

Other features which do not require such an in-depth discussion are the following:

1 ) ability to bandle both numerical and categorical variables in a natural and simple

fashion, 2 ) application to any type of data structure through the formulation of an

appropriate set of binary questions , 3 ) a variable selection process closely resembling a

stepwise procedure since a search is made at each intermediate node for the most

significant split , and 4 ) in the overall measurement space X, the trees exhibit a robust

ness property similar to medians , while within the learning set the method is not appre

ciably affected by several misclassified points .

c . Digit Recognition Example Using the CART Methodology

The following digit recognition example was constructed by the authors oi CART

and illustrates the various parts of the classification portion of the methodology . **

1 , 2 ,

Most of us are familiar with electronic calculators which ordinarily represent the

digits 1 , ... , 9 , and 0 using seven horizontal and vertical lights in specific on - off combina

tions. If the lights are numbered as shown in Figure 2 , then i denotes the ith digit , i =

9 , and 0, and the measurement vector ( Iil, 1,7 ) is a seven-dimensional vector

of zeros and ones . Let lim= 1 if the light in the mth position is "on" for the ith digit ,

otherwise Lim=0 . Table 1 presents the possible values of lim . Set the number of

classes C = { 1 , ... , 10 } and let the measurement space X contain all possible 7- tuples of

zeros and oncs .

Suppose the data for this problem are generated from a faulty calculator for which

it is known that each of the seven lights has the probability of 0.1 of not functioning

properly . The data consist of outcomes from the random vector (X1 , . X , Y ) where

Y is the class label and assumes the values 1 , ... , 10 with equal probability and , as noted

previously, the X1 , X , are zero -one variables . Given Y, the X1 , ... , X, are indepen

dently cqual to the value corresponding to Y in Table 1 with probability of 0.9 and are

in error with a probability of 0.1 .

** It should be pointed out bere tbat wbile tbis is tbe same example as outlined by tbe autbors in their textbook , the output they

produced for the purpose of illustration was not generated by tbe learning sample data presented in the text Padraic Neville, woo

bas beco 293isting the authors witb the software management , bas stated ibat the original data osed to no tbis example was

accidedially lost, bowever, tbe data in tbe text bearly depicts tbe original Jata Therefore, the boal structured tree presented in tbis

paper will difer from that presented in tbe text .
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Figure 2. Horizontal and Vertical Lights.

Table 1. Possible Values of tim:

Digit xi X2 хз X4 X5 X6 X7 у

1 0 1

1

0 1

1 12

3

2

31

1

0

1

1

1

4

1

01

0

1

1

1

1

1

0

0

1

0

0

0

1

0

4

5

0

1

1

O

1

1

1

1

1

1

5 0

0

0

1

1

1

0

1

1

1

6 0 1

1

6

77 1

1

1

0

1

1

1

8 1 1

9

0

1

1

1

0

1

0

1

1

1

1

8

9

10

The learning sample, L, is comprised of two bundred samples which are generated

using the above distribution . Recall that each sample in L is of the general form

( 11 , ... , 29, 3) where ; E C is the class label and the measurement vector 11 , ... , Ig con

sists of zeros and ones .

As previously mentioned in Section 11.b.2 . , to apply the CART structured

classification construction on L, four things must be specified : 1 ) the set of questions, 2)

a rule for selecting the best split, 3) a criterion for choosing the right-sized tree , 4 ) a

rule for assigning every terminal pode to a class. Here the question set consisted of the

seven questions: Is Im = 0? where m = 1 , ... , 7. The Gini index of diversity rule was

used to select the best split . The concept of this splitting criterion depends on a node

impurity measure. Given a pode n with estimated class probabilities oli | n) , j = 1 ,

J, and the probability that given a randomly selected case of unknown class falls into

node n that it is classified as class i, define a measure in) of the impurity of the given
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...

li

node n as a nonnegative function o of the pill n) , AJ n) . Subsequently , the Gini

index of diversity takes the form : itn ) = dil n) dil n) . This node impurity is

jai

largest when all classes are equally mixed together in the node and smallest when the

node contains only one class. A search is made for the split that most reduces the node ,

and consequently tree, impurity . The V -fold cross -validation method was used to

" prune” to the right-sized tree. Here the original learning sample I was divided by ran

dom selection into V subsets Lo, v = 1 , V , of nearly equal size . The utb learning

sample is : Z (0) = L - Lo, v = V , where Llo) contains the fraction ( V - 1) / V of the

total data cases ( the cases in L but not in L,) . For example , if V is taken as 10 , each

learning sample Zlo) contains 9/10 of the cases. Assume that a classifier can be con

structed using any learning sample. Then , for every v, apply the classification procedure

and let do) (x) be the resulting classifier. Since none of the cases in L, was used to con

struct do) (the classifier), a sample estimate of the overall tree rnisclassification rate may

be calculated , and a classifier is now constructed using the entire original learning sam

ple L. The assignment rule proposed was to classify a terminal pode n as that class for

which Ng(n) is largest, where N ,(n) is the number of class j observations in n.

The resulting classification tree is shown in Figure 3. The question leading to a

split is indicated directly underneath each intermediate node . If the question is answered

affirmatively, the split is to the left ; if it is answered negatively , the split is to the right .

Note that there are 11 terminal nodes , each corresponding to at least one class with

class 3 having a second terminal node. Generally speaking, such a one - to -one correspon

dence occurs by accident since any number of terminal nodes may correspond to a par

ticular class , or some classes may have no corresponding terminal podes .

The overall probability of misclassifying a new sample given the constructed

classifier ( and the above fixed learning sample) , R * (I), was estimated as 0.31 . Two other

estimates of R *(1) were also computed : 1 ) the cross- validation estimate , and 2) the

resubstitution estimate . Since the learning sample , L, must be used in actual problems

to construct both the classifier and to estimate R * (1), these estimates are referred to as

internal estimates. The cross-validation estimate was estimated as 0.32 - satisfactorily

close to R *(1). The resubstitution estimate was also calculated to be 0.32 . This particu

lar estimate identifies the proportion of cases from the learning sample, L, which is

misclassified once the set is run through the constructed classifier. Using the 1 - fold

cross- validation method explained earlier , such estimators come satisfactorily close to

R * (1).

1
Tbe Dotation used bere to describe the classifcation tree dilers from that of tbe text.

2
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A= terminal node

44, ..AA = terminal node classes

Figure 3. Digit Recognition Classification Tree.

IV . Summary

The classification tree structured methodology developed by Breiman et al .

currently seems to be a viable approach to analyzing the available data sets . Although

the regression tree portion of Breiman et al.'s methodology bas not been examined in
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detail, it also may be another means of analyzing this data. In the case of the data from

the Firepower Control Experiment , it should be interesting to compare the results of the

multiple regression analysis , Mann-Whitney test, Kruskal-Wallis tests , and cluster

analysis to the CART results.

A critique of this proposed approach and suggestions for alternative approaches are

invited .
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A SIMPLE MATHEMATICAL MODEL FOR THE SIMULATION

OF IR BACKGROUNDS

Denis F. Strenzwilk , US Army Ballistic Research Laboratory

Michael P. Meredith , Biometrics Unit , Cornell University

Walter T. Federer, Mathematical Sciences Institute, Cornell University

ABSTRACT

At the US Army Ballistic Research Laboratory (BRL ), Aberdeen Proving

Ground , Md . , weapon system analysts use background models in order to: 1)

establish " clutter” thresholds for firing algorithms: and , 2) to study thé

masking and false alarm effect of background in their effort to evaluate the

performance of various weapon systems. The BRL has received from US Army

Engineer Waterways Experimental Station (WES) several large data bases

comprised of black body temperatures derived from measurements obtained with

an IR sensor. The sensor was mounted on a helicopter and scanned in the

cross -track direction perpendicular to the direction of flight ( in-track) . The data

consists of temperatures of scene elements (pixels) for a plowed field, a forested

area , and a grassy field. The primary objective of this research is to provide a

simple mathematical model which provides simulated data that are consistent

with descriptive statistics from the original spatially correlated data base.

Such statistics include the mean and standard deviation of temperature, and its

'energy spectrum '. The Mathematical Sciences Institute (MSI) at Cornell

University have suggested time series models and a Spatial Moving Average

(SMA) model as two approaches to the problem . One long term objective of

this type of investigation is to construct a method for relating parameters in

the model to physical constants. If successful, the model may then be extended

over the diurnal cycle and seasons.

1. INTRODUCTION

BRL to date has modeled target signatures in a deterministic manner while

background signatures have been treated stochastically. The deterministic model for

target signatures is appropriate because under a particular set of conditions, the

signature is rather well defined and is amenable to a single characterization . The case

is not the same for backgrounds, which are many and varied. Thus, the general

approach in modeling backgrounds has been to select a data set of a homogeneous

scene, to extract pertinent statistics, such as, the mean temperature, the standard

deviation, the ' energy spectrum ', the correlation between pixels, etc. , and finally,

to develop a model, which can simulate a ' typical background segment with

these same statistics .

In most smart weapon simulations, the sensor scans across many square meters

of background before any target is encountered . During this time, the sensor's signals

are processed by a target discrimination circuit that usually includes some sort of

adaptive threshold logic. Usually for this type of discrimination, the signal's Root

Mean-Square (RMS) average is developed as a measure of background ' clutter'. Target
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detections occur when the instantaneous sensor output exceeds a threshold value that

is proportional to the average of the output signal. The sensor's output signals

produced by scanning the modeled background are thus used to provide a basis for

setting the detection threshold; this is perhaps the most important function of the
background. The stochastic background modeling approach currently being used at the

BRLis based on a normal temperature assumption. It is quite well suited to provide a

reasonable estimate of average clutter in many situations, even though the temperature

distribution of the pixels is not normal. However, a background model also ought to
include some provision for sources of false detection . The simple stochastic

background model described here is clearly not capable of fulfilling this objective, for

there is only a very remote possibility of apossibility of a false alarm when the detection

threshold is set to some multiple of the RMS signal. What is lacking is a means

for incorporating some realistic scene features that would constitute possible sources
for false alarms.

Given that a target signature model with a reasonable degree of fidelity is mated

with a valid stochastic background signature model , it is possible to predict when and

where a target detection is likely to occur. Probabilities of target detection can be

inferred and the sensor /processor may be analyzed in terms of performance given a

target encounter. This has been the BRL approach for many smart weapon

simulations. A different approach must be taken if one wants to make some

assessment of the smart weapon's capability for rejecting false targets. Ideally , the

background infrared signature model used for this type of performance analysis ought to

include a realistic characterization of individual scene elements that might confuse the

target discrimination logic. Might it be possible to develop a background signature

model that is predictive in nature and includes specific features that are potential false

targets ? BRL would like such a model if the development effort does not cost us too

much, and more importantly if the proposed model does not require so many computer

resources as to interfere with those needed for the performance simulation.

An alternative to " modeling ” the background signatures either deterministically

or stochastically would be to use actual scene measurements as inputs to the smart

weapon sensor model. This would require that the measured background signatures

be compatible with the sensor model in terms of viewing direction, detector

wavelength band, and scene pixel size. Although the existing infrared background

signature data base is rather extensive , very few of these sources have the requisite

characteristics for smart weapons system evaluations that are currently being

conducted . One source of data found to be generally compatible with the type of smart

weapons that are being investigated at the BRL is the set of infrared scanner

measurements of a rural area near Hunfeld , Germany made by the US Army Engineer

Waterways Experiment Station (WES). For these measurements WES employed a

helicopter-mounted Daedalus infrared scanner operating in the wavelength band of

8.5 to 12.5 micrometers. The scanner was flown over the test terrain at altitudes of 200

and 600 feet . The sizes of the corresponding ground resolution elements were roughly

compatible with the 0.1 meter resolution that is optimum for the BRL's smart

munition evaluation efforts, and the site of the measurements and the scene content is

quite appropriate. The advantage of modeling this data set is that the model can

be checked against the actual data in the simulation of a smart weapons concept.

Up to this point the discussion has been confined to simple scenes , e.g. , a grassy

field, a plowed field, a forested area, etc. Once a suitable model for a simple scene has
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been developed , BRL wants to construct arbitrary scenes from these simple scenes.

Thus a forested area of any desired size may be placed next to a plowed field . A road

may be added to the scene. This compound scene with these three different kinds of

textures could then be used in computer simulations of smart weapon concepts. All

kinds of different compound scenes of arbitrary geometry and composition could be

constructed from the models of the simple scenes. Thus the ability to construct

compound scenes from simple scenes is a desideratum of the modeling effort.

II . DATA BASE

In this paper the time series models were applied to the data of the forested area.

The data of the plowed field and grassy area have a similar format. The data base for

the forested area is composed of 250 rows of temperatures . Each row contains 500

temperature pixels . Thus, for this data set there are 250 rows times 500 columns or

125,000 pixels of temperature. A row of data (500 pixels) represents one 'cross- track '

scan of the sensor, which was mounted on a helicopter that flew in a direction

perpendicular to the rows ('in-track ” ) . After processing the data with ground truth

information, it was concluded that at the 600 ft altitude the in-track ( ilight direction )

dimension of the pixels was 0.3050m whereas the cross- track dimension was 0.1525m.

The data are highly correlated both in-track and cross-track.

III. TIME SERIES MODEL

For each row of 500 observations a (p= 1 , q= 1 ) autoregressive moving average

model , ARMA(1,1) was fitted to the data . If the actual temperature observation was

used to forecast the next pixel value for a complete row of simulated data, the

forecasted data had the same spatial pattern and statistical characteristics as the actual

data. If, however, the forecasted value was used to forecast the next pixel value in the

row, the resulting set of forecasted values did not have the same pattern but did have

the same characteristics. Thus , to preserve the spatial pattern in the time series

approach, the actual data base would have to be used to make the forecasts. It was

decided that for most applications it would suffice to have a model with the same

statistical characteristics. Therefore, the actual observation of the temperature of the
first pixel in each row was used to forecast the 2nd value and thereafter the forecasted

value was used to forecast the next pixel value in the row . The ARMA used was

ži= 0 ;22_1-0,27-1 + ax(49,0a),
III.1

where

t equals 1,2,3,... ,500

2t temperature of t th pixel in row

Z temperature of t th pixel in row minus the mean , ( 24- u )

# mean temperature of row

$ 1 autoregressive parameter of order one

0, moving average parameter of order one

at random number for t th pixel from NM2,0%) , called residual or 'shock '

H mean temperature of residuals
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standard deviation of residuals

IV . ENERGY SPECTRUM

Let us represent the the two dimensional array of temperatures as a matrix, whose

elements Tyl, m ) are

T \l,m ) = 2. IV.1

where

is the value of zy in the lth row

m equals 0,1,2 ,... , N , - 1

is the number of pixels in a row ( = 500 )NNa

1 equals 0,1,2,...,N.- 1

is the number of pixels in a column (=250) .N.

t equals m+ 1

The discrete Fourier transform (DFT) for a row of temperatures is

N- 1

z '(k ) = Tll,m )expl-1(2* / N )mk], IV.2

m=0

where

k equals 0,1,2 , ..., N ,-1,

and for a column of temperatures is

N-1

Zmlk ) = T\l,m ) expl-i(21 / N .)lk],
IV.3

where

k
equals 0,1,2 ,...,N.- 1.

The frequency of a row ſ, is

Si= m /NA ,
IV.4

where

A, is .1525m ,

and the frequency of a column . is

f = 1/NA . IV.5

where

Δ. is .3050m .

The energy of the kth frequency in the Ith row $ (k) is
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is

s (k ) = 2 (k) Z'"(k), IV.6

and the energy of the kth frequency in the mth row Sm

Sm (k) = 2mlk) Zmlk ),
IV.7

where the symbol * denotes the complex conjugate. The cross- track energy spectrum
and the in-track energy spectrum are a statistical measure of the correlation ofthe data,

and result when s (k) or Sm (k) are plotted against frequency, respectively. ( Zero

frequency is excluded as the interest is in the the variation from the mean .)

The energy spectrum is symmetrical about the Nyquist frequency, which occurs at

= .5 / 4 , = 3.279 cycles per metre and at f=.5/4=1.639 cycles per metre. Thus, it is

common practice to multiply the energy of the kth frequency by a factor of two, and to

plot the energy spectrum up to the Nyquist frequency. This convention was used in this

paper.

In order to approximate an ensemble average by a spatial average, it is customaryl

to average st(k) over the250rowsand to average Sm (k)over the 500 columns. Thus,

the average energy of the kth frequency of the 250 rows S "(k) is

S ' = (1/250 )25(k),
IV.8

249

I=0

and the average energy of the kth frequency of the 500 columns Sc(k ) is

499

IV.9S=( 1/500) Smlk ).

V. TWO DIMENSIONAL ARMA MODEL

m = 0

The criterion for selecting a model was that its mean temperature, its standard

deviation , and its energy spectrum , which measures the correlation in the temperature ,

be in good agreement with the data. The mean temperature and the standard deviation

of the data were evaluated. The energy spectrum of the data was evaluated and plotted

versus the frequency for the cross- track and in- track directions .

The first two dimensional( 2D ) model tried was to simulate the 250 rows of

temperature by using Equation ( DII.1) and the appropriate parameter estimates for each

row . The mean temperature and its standard deviation were in good agreement. The

cross- track energy spectrum for the rows S"(k) was also in good agreement with the data

since the ARMA model was fitted to the rows. However, the in- track energy spectrum

for the columns Sc( k) was not in agreement with the data. This was expected because

nothing had been done to introduce correlation between adjacent rows . Several

approaches based on using the temperatures in the row above to forecast the next

forecast in the row below were suggested as a way of introducing correlation . None of

these approaches was successful.

After inspection of the spatial temperature variation of several sets of adjacent

rows, some trends were noticed. The first was that 11, m ) and 1 (1 + 1, m) had similar

values and the second was that if 71, m+1 ) increased or decreased from T1,m) , then

1

La Rocca, Anthony J. and Witte, David J.,"Handbook of the Statistics of Various

Terrain and Water (Ice) Backgrounds from Selected U.S. Locations(U ),” DTIC Technical

Report Number 139900-1- x, January 1980, pages 2-11 to 2-12.
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+1 1 + 1

1

یلیل -6 )
exp -2P

+

T{2+ 1,m + 1) would show a similar increase or decrease from T \I + 1, m ). Perhaps, the

shock'd that produced T 1,m + 1) was correlated withtheshock 2 + 1' that produced

1\2+ 1,m + 1): Based on this physical evidence, the assumption was made that di was

related to a +1 through a bivariate normal distribution glat, 24+ 1 ) given by

at att

a 1) 며 V.1

200'0'+1V1-p? 2( 1-p%) olo olt ! o +1

where the means of the residuals m'a do not appear since they are approximatel
y equal to

zero , and the correlation coefficient p has the range

-1 <p<+1 .
V.2

The marginal probability density function (pdf) for a is

91 ( )=N ( 0,10%)) ,
V.3

and the marginal pdf for a +1 is

91(a!+1) = N ( 0 , (01)9 . V.4

The conditional distribution for +1 given as is

de , (0 + 1)?(1- p?) V.5

Now, the following procedure was used to find that value of p which minimized in

the least squares sensethe difference between the in-track energy spectrum of the data

Sc(k) and the in-track energy spectrum of the simulated data S.lk ;P). For a given value

of p the first row of simulated temperatures was generated from the ARMA model given

in Equation ( III.1) with the appropriate parameter estimates by using the values of a

drawn from the marginal distribution given in Equation (V.3). The second row of

simulated temperatures was generated from the ARMA model given in Equation ( III.1)

with the appropriate parameter estimates by using the values of a drawn from the

conditional distribution given in Equation (V.5 ). The set of ai's for the second row were

then used to generate the a's for the third row through the conditional distribution

given in Equation (V.5 ), etc. , until 250 rows of simulated temperatures were generated .

Then , the in-track energyspectrum Sc( k ;p) was evaluated. The process was repeated for

several values of p and the sum of squares of differences between the in -track energy

spectrum for the data and the simulated data was evaluated for each value of p. The

value of p which minimized this sum was chosen as the p to be used in this model.

VI. CONCLUSIONS FOR 2D ARMA MODEL

The value of p which minimized the difference in the actual and simulated energy

spectrum was 0.89 . The mean temperature T of the data base was 13.1 °C and its

standard deviation o was 1.2 ° C, whereas the simulated data base had a mean

temperature of 13.1 °C and a standard deviation of 1.1° C. The comparison of the cross

track energy spectrum for the data and for the simulated data can be seen in Figure 1 .

Similarly, the comparison of the in - track energy spectrum for the data and for the

simulated data canbeseen in Figure 2. The agreement in both cases is good. Thus, this

two dimensional ARMA model can simulate the statistical characteristics of the data,

but not the spatial variations. Furthermore, to obtain more than 250 rows use Row 249

parameter estimates for Row 251 , Row 248 parameter estimates for Row 252 , etc., and
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essentially form a mirror image of the original 250 rows. To make rows longer, just draw

more than 500 shocks for each row. An alternative to this procedure would be to use the

250 x 500 array of temperatures as the basic unit and extend it in any direction by

mirror reflection .

One untried approach to improve this 2D ARMA model would be to take the

average value of the ARMA parameter estimates for the 250 rows or at least several

consecutive rows to obtain " representative parameter estimates”. Then , randomly

perturb these representative parameter estimates within their observed bounds for each

row to be simulated, and proceed as before to determine a suitable value of p for the
simulated temperatures.

Another untried approach to improve this 2D ARMA model might be to fit an

ARMA model to every kth row of data. Use the appropriate parameter estimates for

Rows 1 , k + 1,2k + 1, etc.. For the rows in between 1 and k , use a weighted average for the

parameter estimates, e.g. , Row 2 values are l(k - 1 )/ k](value of Row1) + ( 1 / k)(value of

Row k ) , Row 3 values are lik - 2 )/ A](value of Row 1) + (2 / k)(value of Row k) , etc. (Note

that a small amount of noise could be added to each value. ) Proceed as before to

determine a suitable value of p for the simulated temperatures .

VII . SPATIAL MOVING AVERAGE MODEL

The model described in this section differs from the ARMA models discussed above

in that it is a two - dimensional model from the start whereas the others are one

dimensional models adjusted to give a two - dimensional array of spatially correlated

observations . It also offers more promise of reproducing the spatial variation of the data,

but at present it has not been applied to our problem . The steps for the SMA model are:

1. Generate an array of Zij, which are independent, identically

distributed normal random variables, NIID (0,0 %).

2. Use Zi; in a spatial moving average (SMA) to construct

the temperature datum Tr,m as

Tum = 1 + $ AjZatimti VII.1
2

i=-p-4

where E[ Tn,m] = T,

and

Coul Tmm,Inte,m +d) = 0 , if 181>p, 111 > 9; VII.2.a

CoolTa,m,Tato,mto) = o2 § § , if o=0, t= 0; VII.2.b

is -pj= -4

and

Coul Tom, m, Inte,mte) = o?) Ź Ś Aj Aitoje , otherwise.
VII.2.c

i = -pt : j - q + t
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3. Aj; are chosen by the experimenter such that

ΣΣΑ, = 1 .
VII.3

;=1

Table 1 illustrates the needed coefficients Aj; for p = 1,q = 1 that multiply the random

variable Znm in order to obtain a value for Ta'm in Equation (VII.1).

TABLE 1. Coefficients of the Spatial Moving Average for Constructing

the Datum Tmm Using the NIID Random Variables Zij.

m-1 m m + 1

n- 1
A -1,-1A-1,0 A -1,1

n A0,-1 A0,0 A0,1

n+1 A1 ,-1 A1,0 A1,1

Some A ;; may be chosen to be zero or some other value.

PROBLEM : Optimal determination of Aj; in SMA to match marginal

spectra from observed process.

VIII. SOME COMMENTS

Our primary objective in this research was to provide a simple mathematical

model which provides simulated data that are consistent with descriptive statistics from

the original spatially correlated data base. Our 2D ARMA model met our criterion that

its mean temperature, its standard deviation, and its energy spectrum , which measures

the correlation in the temperature, be in good agreement with the data, even though it

did not reproduce the spatial variation in the data. Our assumption that the shocks in

adjacent rows be drawn from a bivariate normal distribution was the ingredient that

introduced the necessary two dimensional spatial correlation in the simulated data.

Some additional approaches for simplifying our 2D ARMA model, which were centered

around reducing the number of ARMAparameter estimates needed for simulation, have

been suggested in the text. In addition a spatial moving average model has been

outlined as an alternative method for this problem .

Our 2D ARMA model is an improvement over the normal models that are currently

being used at the BRL, especially since the time series approach naturally forecasts

outlier temperatures ( false alarms ) that are found in the data. In time , after more data

are analyzed by ARMA models, methods for relating the parameter estimates to

physical constants will be found. If successful, the model may then be extended over the

diurnal cycle and seasons. Also, for the theorists, an n-dimensional spatially correlated

model is easily constructed .
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Christopher J. Neubert
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ABSTRACT

To increase durability, the military has considered using a higher gloss camouflage paint .

The field test and statistical analyses required to determine paint gloss effects upon range of

detection are described. Five, 5/4-ton CUCV trucks were painted in the woodland U.S./Ger

man pattern with 1 , 5 , 10, 15, and 20 percent paint gloss . At least 30 observers per gloss level

were individually driven towards two sites . The distance of correct detections were recorded .

An analysis of variance with individual comparisons determined that detection range was sig.

nificantly (a < 0.05) greater, when higher gloss levels were compared with the standard one

percent .

1.0 SECTION I - INTRODUCTION

The current camouflage paint specifications used by the U.S. Army call for a lusterless

finish . This particular finish was originally selected for camouflage purposes because of its low

visual reflectance characteristic . The lusterless finish is the result of a high pigment to binder

ratio , and tends to mark and scuff easier than paint with a lower ratio and higher gloss finish .

In addition, colors in a glossier finish appear more vivid than lusterless finishes which acquire

a washed out appearance much sooner . These phenomena have been the object of concern from

a camouflage standpoint, since the use of glossier paints would result in a longer lasting camouflage

effect. " However, the problem in using glossier paints is the potential of increased reflectance,

hence detection . It was the purpose of this field test to determine statistically the effect in

creased paint gloss would have on the range of target detection in a woodland background .

2.0 SECTION II - EXPERIMENTAL DESIGN

2.1 Test Paint

Camouflage paints were purchased in five different degrees of specular gloss from the

Enterprise Chemical Coatings Co. Wheeling, Illinois . The paints were produced in colors Green
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383, Brown 383, and Black using paint specification MIL-E-52798A, in 1 , 5 , 10, 15 , and 20%

reflectance measured at 60 ° ( 1% is the current gloss of military paint) . The gloss percentage

spread was selected to provide a noticeable difference in reflection considering normal manufac

turing tolerances. The 20 % reflectance level was selected as the upper limit , since any greater

reflectance was considered too shiny for military purposes. One gallon of each color, in each

reflectance, was purchased for test and shipped to Ft . Devens, MA where the field evaluation

took place .

2.2 Test Targets

Five, 5/4-ton, commercial utility combat vehicles (CUCVs) on loan from the Massachusetts

National Guard were painted by Belvoir personnel at the Ft . Devens Maintenance Facility in

the standard United States/German three color woodland pattern .

2.3 Test Sites

The study was conducted at the Turner Drop Zone, Ft . Devens, MA, a large cleared tract

of land surrounded by a mix of coniferous and deciduous forest resembling a central European

background. Two test vehicle location sites were selected . Site # 1 was located on the western

end of the drop zone, so that the morning sun shown directly upon the test vehicle . Site # 2

was located on the eastern edge of the drop zone, so that the afternoon sun shown directly upon

the test vehicle . An observation path, starting at the opposite end of the drop zone from the

test vehicle location, was laid out for each site . These layouts followed zig-zag, random length

directions toward the test sites, and afforded a continuous line-of-sight to their respective test

vehicle locations. The paths were within a 30° to 40° cone from the targets , and were surveyed

and marked at 50 meter intervals using random letter markers. The markers and distances from

the test vehicle location sites are shown in Table 1 .
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Distances of Markers to Test Vehicles on Sites #1 and #2

Site #1 Site # 2
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Table 1

DISTANCE IN

METERS ALONG

PATH FROM

STARTING POINT

TO TARGET

DISTANCE IN

METERS ALONG

PATH FROM

STARTING POINT

TO TARGET

1,261.50

1,230.74

1,192.40

1,153.65

1,116.90

1,076.05

1,033.50

987.16

942.80

902.04

853.57

811.07

770.70

731.23

693.06

648.52

602.61

1,173.70

1,132.02

1,088.51

1,044.10

1,015.03

989.27

947.17

901.17

854.06

808.71

762.36

723.52

706.95

693.23

653.54

608.16

569.96

536.46

497.44

457.13

416.47

376.99

342.99

296.01

260.15

219.07

172.15

126.89

79.71

561.59

517.36

473.04

426.61

392.77

354.92

320.74

297.81

277.02

239.95

202.56

162.82

125.71

92.19

51.84

27.65

3
30
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2.4 Test Subjects

A total of 153 enlisted soldiers from Ft . Devens served as ground observers. All person

nel had at least 20/30 corrected vision and normal color vision . A minimum of 30 observers

were used for each test vehicle, about evenly split per test site . Each observer was used only

one time.

2.5 Data Generation

The test procedure for determining the detection distances of the five vehicles involved

searching for the vehicles while traveling along the predetermined measured paths. Each ground

observer started at the beginning of the observation path, i.e. , marker C for site # 1 and marker

L for site #2. The observer rode in the back of an open 5/4- ton truck accompanied by a data

collector . The truck traveled down the observation path at a very slow speed, about 3-5 mph .

The observer was instructed to look for military targets in all directions except directly to his

rear . When a possible target was detected, the observer informed the data collector and pointed

to the target . The truck was immediately stopped, and the data collector sighted the pointed

target . If the sighting was correct i.e. , the painted CUCV, the data collector recorded the al

phabetical marker nearest the truck . If the detection was not correct, the data collector in

formed the observer to continue looking, and the truck proceeded down the observation path .

This search process was repeated until the correct target was located .

The target CUCVs were rotated between the two test sites on a daily basis, until all vehicles

had been observed by at least 15 observers at each site . Their orientations with respect to the

sun were kept constant at both test sites . The vehicle side windows were left open to eliminate

shine, and a tarpaulin was used to cover the windshield and rear window. The vehicles were

positioned so that the left side was facing the direction of observer approach .

3.0 SECTION III -RESULTS

Tables 2, 3, and 4 show the detection data for the 5/4-ton CUCVs painted in 1 , 5 , 10, 15 ,

and 20% gloss . Table 2 gives the mean detection range in meters for each gloss level , and its

associated 95% confidence interval . Table 3 shows the analysis of variance performed upon

the data of Table 2 to determine if there were significant differences in the detection ranges

i.e. , gloss has an effect upon detection range . Table 4 indicates which gloss levels differed sig.

nificantly from each other. Figure 1 is a graphic display of the detection ranges of Table 2.
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Table 2

Mean Gloss Detection Ranges (Meters) and 95 Percent Confidence

Intervals.

% GLOSS STANDARD

95 PERCENT CONFIDENCE

INTERVAL

LOWER LIMIT UPPER LIMITLEVEL N MEAN ERROR

1 31 138.3944 529.2433

5 216.308330

31

580.0000

790.1333

971.0000

1078.3333

1153.9677

709.3715

927.042910

630.7567

870.8951

1014.9571

1120.9415

1188.1480

15

117.7326

114.1195

93.1967

30

31

1035.7252

1119.787520

Table 3

Analysis of Variance for Vehicle Detection Across

Five Levels of Paint Gloss

DEGREES

OF

FREEDOMSOURCE SUM OF SQUARES MEAN SQUARE F - TEST SIG LEVEL

81.7597 0.00000 *GLOSS

ERROR

TOTAL

4

148

152

6,611,277.3660

2,971,691.1011

9,582,968.4671

1652819.3415

20215.5857

BARTLETT'S TEST FOR HOMOGENEOUS VARIANCES

NUMBER DEGREES OF FREEDOM 4,

F = 6.49661911766 SIGNIFICANCE LEVEL Q = 0.0003

* Significant at a less than 0.001 level.

Table 3 indicates that there are significant differences in the ability of the ground observers

to detect 5 / 4 - ton CUCVs of different degrees of paint gloss . The Bartlett's Test indicates that

the variances for each level of paint gloss are not homogeneous, i.e. , significantly different, so

they are not necessarily from the same population .
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Table 4

Individual Comparisons Identifying Which Levels

of Paint Gloss Differed Significantly from Each Other

S

ttt

S

F =

F =

1 % Gloss and 5% Gloss

COMPARISON -210.13333 SUM OF SQUARES = 673198.30383

F = 33.301 SIGNIFICANCE LEVEL = 0.00000

1 % Gloss and 10% Gloss

COMPARISON = -391.00000 SUM OF SQUARES = 2330808.68852

F 115.298 SIGNIFICANCE LEVEL 0.00000 ***

1 % Gloss and 15% Gloss

COMPARISON -498.33333 SUM OF SQUARES = 3786107.92350

187.287 SIGNIFICANCE LEVEL = 0.00000 ***

1 % Gloss and 20% Gloss

COMPARISON = -573.96774 SUM OF SQUARES = 5106304.01613

252.592 SIGNIFICANCE LEVEL = 0.00000 ***

5% Gloss and 10% Gloss

COMPARISON = -180.86667 SUM OF SQUARES = 490691.26667

F = 24.273 SIGNIFICANCE LEVEL 0.00000 ***

5% Gloss and 15% Gloss

COMPARISON -288.20000 SUM OF SQUARES = 1245888.60000

F 61.630 SIGNIFICANCE LEVEL = 0.00000 ***

5% Gloss and 20% Gloss

COMPARISON = -363.83441 SUM OF SQUARES = 2018183.50002

F 99.833 SIGNIFICANCE LEVEL 0.00000 ***

10% Gloss and 15% Gloss

COMPARISON -107.33333 SUM OF SQUARES = 172806.66667

F 8.548 SIGNIFICANCE LEVEL = 0.00346

10% Gloss and 20% Gloss

COMPARISON = -182.96774 SUM OF SQUARES = 510390.01586

F 25.247 SIGNIFICANCE LEVEL = 0.00000 ***

15% Gloss and 20% Gloss

COMPARISON -75.63441 SUM OF SQUARES 87215.15248

F = 4.314 SIGNIFICANCE LEVEL = 0.03779 *

S

S

tt

The following levels of paint gloss differed significantly from each other: 1% vs. 5%, 1%

vs. 10%, 1% vs. 15%, 1% vs. 20%, 5% vs. 10%, 5% vs. 15%, 5% vs. 20%, 10% vs. 15%, 10%

vs. 20% and 15% vs. 20 % .

Significant at a less than 0.05 level

** Significant at a less than 0.01 level

*** Significant at a less than 0.001 level
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= 0.001 .The Bartlett's Test for homogeneity of variance was significant at less than a

Thus, it can not be assumed that all the sample variances are from the same population . This

assumption is required to perform the parametric test of analysis of variance and associated in

dividual comparisons. When the Bartlett's Test is significant, non- parametric tests should be

used to determine the relative positioning of the sample statistics . Two such non-parametric

tests were performed, the Krushkal-Wallis One-Way Analysis of Variance and the Mann-Whit

ney U Test3). The Krushkal-Wallis Test determined that there were significant differences be

tween the levels of paint gloss . The Mann-Whitney U Test , based upon the Chi- Square

distribution, determined the probability of individual gloss percentages differing from each other .

These tests, while not as powerful as the parametric test , yielded the same general results , and

are available upon request from the U.S. Army Belvoir Research, Development and Engineer

ing Center, ATTN : STRBE-JDS, Fort Belvoir, VA 22060. It is not unexpected that the varian

ces for each gloss level were not homogeneous. Each level of gloss was different from the

preceding by 5%. These equal differences in shine are not perceived as such by the human

eye. The 1% gloss was seen as dull, however the 5 through 20% paint gloss was perceived as

being reflective . This is verified by viewing the differences in mean detection for the gloss per

centages of 1 vs. 5, 5 vs. 10 , 10 vs. 15 , and 15 vs. 20 (see Table 5) . If the variances were nor

mally distributed, the mean differences between percentages of gloss would be about the same .
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Table 5

Mean Differences In Detection Range (Meters) Between Gloss Levels

% GLOSS MEAN DETECTION RANGE DIFFERENCE

1 vs. 5

5 vs. 10

10 vs. 15

15 vs. 20

580 790

790 971

971 1078

210

181

107

751078 1153

4.0 SECTION IV . DISCUSSION

Figure 1 and Tables 2 through 4 clearly show that the higher the percentages of paint gloss,

the longer the mean range of target detection . The differences between the 1% gloss detection

range, and the 5, 10, 15 , and 20% gloss detection ranges are significant well beyond the a = 0.05

level . This a value is the probability that one will make a decision that the levels of paint gloss

are significantly different in the resulting detection ranges when they are not. For this study,

the decision is that the higher gloss paint levels of 5, 10, 15 , and 20% will have a longer range

of target detection than the 1% paint gloss level . In the world of statistics, if a decision has a

probability of being wrong 5 or less times out of 100 ( a 0.05) then this is an acceptable

risk . If this probability of being wrong is greater than 5 times out of 100, the risk is not accept

able, and the decision is rejected. In the present study, these levels of differences in mean

detection ranges tend to get smaller as the percentage of paint gloss increases (Figure 1 and

Tables 2 and 4) , but they never exceed the a = 0.05 level . With the exception of the paint gloss

comparisons 10 vs. 15% and 15 vs. 20%, which are significant at a = 0.003 and 0.037 respec

tively, the other comparisons are significant at an a level less than 0.001 . The differences be

tween the detection means asymptotes as the percentage of the gloss gets higher (see Figure 1 ) .

This is due to the fact that targets with a higher gloss are easier to see than targets with a lower

gloss . For example, increasing the paint gloss from 1 to 5% would increase the mean detection

range by 210 meters (Table 5) .

It was also observed that as the level of paint gloss increased, the visual perception of a

pattern decreased. The camouflage pattern was difficult to discern at paint gloss levels of 10%

and above.
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5.0 SECTION V- SUMMARYAND CONCLUSIONS

Five 5/4-ton CUCVs were painted in the standard woodland United States/German three

color pattern with the following paint glosses:

1% ( standard )

5%

10%

• 15 %

• 20 %

A minimum of 30 ground observers per paint gloss level were driven toward each of two sites

on marked observation trails in the back of an open 5 / 4 -ton truck . The subjects were looking

for military targets, and they informed the data collector when they thought they saw one . If

the detection was correct, the closest alphabetic ground marker to the truck was recorded . From

this letter , the exact distance to the target from the truck was determined. If the detection was

not correct, the search continued with the truck traveling down the observation path until the

test target was seen. An analysis of the resulting data provided the following conclusions:

A. The targets with the higher paint gloss of 5, 10, 15 , and 20% were significantly easier

to detect than the target with the 1% paint gloss . *

B. The higher gloss paint levels of 5, 10, 15, and 20% will have a significantly longer range

of target detection than will the 1% paint gloss level, which will increase their vulnerability to

enemy fire.

C. In that the 5% paint gloss vehicle was detected, on the average, 210 meters farther

away than the 1% paint gloss vehicle , one can not recommend any increase in the paint gloss

over the 1% currently being employed by the U.S. military.

* Low visual reflectance is particularly important in woodland backgrounds where reflection and

brightness are relatively low. Its effect in bright backgrounds such as desert or arctic environments,

re reflections from glossier paints may be lost in the noise , remains to be evaluated .
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SENSITIVITY ANALYSIS

OF A NONSTOCHASTIC MODEL

A.A. Khan

US Army Concepts Analysis Agency

Bethesda , MD 20814-2797

ABSTRACT. Simulation models are now widely used as analytical tools . New

models are usually subjected to quality assurance criteria before they can be

employed in studies. This practice is prudent as well as useful in learning the

characteristics of a newly developed simulation model . Also , it is necessary to find

those parameters which have a significant impact on the response variable ( 1 ) .

Mobilization Based Requirements Model (MOBREM) , the model examined in

this article will be used for policy studies and budget planning . Before it can be so

employed , we subjected it to sensitivity analysis . Since the model is deterministic,

there are no random errors in the response variable ; therefore , the usual statistical

methods are not applicable . In their place , the 'summary statistics' R2 has been used

judgmentally.
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a .

1-0 INTRODUCTION . The results in this report deal with the sensitivity analysis of

the simulation model , Mobilization Based Requirements Model (MOBREM) . This

model has been designed to provide the U.S. Army with 'a responsive , consistent,

and auditable system for determining the Continental United States (CONUS)

resources required to support mobilization ' [ 2 ] . This model was developed over a

five year, five-phased period , from 1979 to 1984. It was delivered to Concepts

Analysis Agency (CAA) in August 1984. Since then , the model has been used for the

training of operators and for performing policy studies in connection with

mobilization .

1-1 Sensitivity Analysis. A new model , before it can be used for any study, must

be tested for its sensitivity to input parameters . In this report, we address the

following issues :

From a selected list of input parameters (or factors), find those

parameters which have a significant impact on the response variable ..

b . Rank order the significant input parameters.

The response variable in this study is the manpower requirements by the major

Army Commands (MACOMS) Installations, by Army Functional Dictionary (AFD)

code , and by time periods from Mobilization day (M -day) to day of hostilities (D

day) .

1-2 Background. MOBREM is a very large and complex simulation model . For

our purpose it is essential to keep in mind that it is a deterministic model . There are

no random number generators in the subroutines or modules. Repeated

observations do not provide estimate of'variance ' . If we repeat an experiment with

fixed input values, we do not get a new value for a response variable . For this

reason the classical statistical procedures have to be modified to meet the specific

situation of MOBREM . In particular, F-test and t-test are not valid . We use R2 , the

coefficient of determination , as the index of goodness of procedures used in our

analysis..

2-0 OVERVIEW OF MOBREM . It willhelp in understanding the objectives of this

study to have some perspective in mobilizing large numbers of people . To provide

the reader with the magnitude of the numbers involved , we present in Table 1 the

initial and final stages of mobilization in MOBREM . We will skip the details of

organizational complexities and the organizations which are required to manage

this operation .

2-1 CONUSBase. The major functions of CONUS Base organizations are to

provide the support that enable units to be deployed , trainees to be be trained , and
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equipment and supplies to be shipped to the theater or within CONUS . They also

provide medical support for theater medical evacuees as well as those patient loads

generated in CONUS installations (2 ) .

2-2 Projections. A profile of organizations in CONUS in peace and war is given

below . It illustrates the staggering magnitude of manpower involved from the

initial to the final phase of mobilization . The organizational complexities to

synchronize various phases of this process quantitatively is the most important

function of MOBREM , but will not be discussed here .

Table 1

CONUS Base Organizations

Units

Peacetime Strengths

(000)

Wartime

Strengths

(000)

TDA

OSA and OCSA 3.7 6.8

Joint and DEF ACTV 6.7 7.1

OSA and ARSTAF FOA 46.7 46.0

Commands in CONUS 347.6 658.7

Army Reserves 25.8 0

National Guard 20.4

O

32.0 52.9

TOE

Training division

Training spt units

GSF units

4.1 4.5

29.8 37.1

Sep inf bde 19.0 20.1

Other 3.9 4.1

Totals 539.7 837.3
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Table(s) of allowances (TDA) is the number of slots allocated to different

organizations, it includes both civilian and military , and table (s) of organization and

equipment (TOE) , i.e. , the number of personnel authorized to keep a unit of army

functional.

3-0 DESIGN OF EXPERIMENT. The initial list of 30 parameters was pared down to

9 for this study to economize on computer time ; since each run of MOBREM takes

about 12 hours to complete . The selection of the final list of input parameters and

their levels was carried out with the help of both civilian and military analysts .

3-1 . Choice ofDesign : A two-level fractional factorial design was planned for

sensitivity analysis. The full design was completed in two stages. In the first stage ,

the 9 factors included both scalar and matrix inputs . The non -scalar inputs were

treated as scalars by the following convention :

High value + C.V

Low value -C.V

where C is a constant, V is a non -scalar . In this way the design is the usual fractional

factorial design . At the initial stage of the study , we are interested only in

' sensitive' parameters, their interactions are of less importance. By 'sensitive , ' we

mean those inputs which produce a large impact on the response variable . A

Plackett -Burman (P-B ) design was deemed most suitable in this phase (4) . The 9

parameters are listed below :
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FACTOR DESCRIPTION

M-Day to D-Day

Work week

Training load

Show rates

-I0m000D
F

Hospital rates

Deploying MTOE levels

Non-deploying MTOE levels

TDA levels

Other levels

Only Factors A and D are scalars

The smallest P-B design to accommodate 9 parameters is a 12 run design given

below . A P-B design allows us to assess the impact of the main effects, which in this

layout are not confounded with higher order interactions ( 5) .

51



Table 2

PLACKETT -BURMAN DESIGN

I STAGE

PACKAGES

RUN A B C D E F G H I

1

+ +

+

+

2 +

+ +

+

3

+

- .

+

4 +

5 +

+

+

+

6
+ +

- .

+

7 + +

8 + +

+

9

+ +

10

+

+

+

11

+

+

+1
2

+ HIGH LEVEL

- LOW LEVEL

' PACKAGE ' stands for a policy, i.e. , a particular combination of input values.

3-2 . Second Stage Design . At the first stage , results showed that only 5 factors

were important enough for further investigation. These are :

Table 3

FACTOR DESCRIPTION

А

C1

D-Day to D-Day

Training load

Training equipment

TDA fill

C2

H1

H2 TDA equipment
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H2 is the corresponding level of equipment allowed to the unit. In this scheme, all

parameters are scalars and the second stage P-B design is shown in Table 4.

Table 4

P-B DESIGN

II STAGE

Run A C1 C2 H1 H2

13

-

14

+

+

+

15 +

+

+

16 +

17

+ +

+

18 +

+

"
.
.

19

+

+

-

2
0

+

+

21 +

-

+

22

+
+

23 +

+

24 +

+

25

26 +

+

27 +

28

+ HIGH LEVEL

- LOW LEVEL
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4-0 LINEAR MODEL. The collection and analysis of data depends on the

mathematical model which we postulate to explain the relationship between the

response and the input factors. The selection of a fractional factorial design at two

levels, a resolution Ill design (P-B Design ) , was made with the object of estimating

the main effects; higher order interactions can be sacrificed at this stage. The

reasons can be summarized as follows [6] :

• Not much is known about the model on how different inputs impact on

the output.

• In this situation it is best to assume a linear model .

• All experiments under uncertain conditions are conducted with some risk .

If later, it is found that interactions are more important, one can re -run

the simulation model to obtain additional observations. Simulation

models can be run anytime one chooses to do so , provided time and

resources are not prohibitive .

• Simpler mathematical models help in clearer exposition of the conclusions .

4-1 Analysis. At this stage the assumptions of linearity and additivity are

convenient to model our results . If the experimental region is not large , higher

order interactions need not be included in the expression connecting the response

to the input (7 ) . We approximate the functional relationship between the response

y and the input factors x1 , x2 , ... , x9 by Taylor's expansion .

y = A0 + A1X1 + A2 x2 + .. + Ag x9 + R ( 1 )

where A; (i= 0 , 1 , 2 , ... , 9) are unknown constants and R is the remainder term in the

Taylor's series expansion .. Observe that this model does not have stochastic

components and therefore statistical techniques cannot be applied . We use the

least square ( I.s.) methods in the estimation of A; and use R2 to measure the

adequacy of the model ( 1 ) . For a clear discussion of two-level fractional design and

the techniques of estimation of main effects, we refer to (8) . The least square

technique is used in ( 1 ) to evaluate and partition the total sum of squares into the

component sum of squares . Each component is attributable to a specific factor, plus

the sum of square due to the remainder term . This analysis is carried out for the

data in the first stage . A typical run with the response variable at each time period

is shown in Table 5 .
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Table 5

Time from

M-Day

Total

Manpower

Requirements

M + 10 318671

M + 20 314747

M + 30 354932

M +40 367936

M + 50 403887

M + 60 442291

M +90 479470

M + 120 498009

M + 150 504354

M + 180 501839

M + 210 497962

M + 240 497845

M + 270 497494

MOB-AV 532915

Since there is an ANOVA at each time period and for each run , there are

13 x 12 = 156 ANOVAs. These are not listed here , but the result of the analysis is

shown in Table 6, showing the ranks of the factors in descending order.
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Table 6

Ranking ofPackagesin Descending Order

Factor Package

B Workweek

Training

TDA

T
I
ODI
n

M-Day to D-Day

Non -deploying MTOE levels

Deploying MTOE levels

D Show rate

E Hospital

Other Personnel1

Visual analysis at this stage is most effective, Figure 1 shows the response variable

against time, when grouped according to the levels of Factor B (workweek) . Factor

B is the driver of the manpower requirements, a result confirmed by the usual

ANOVA techniques . Figure 2 clearly indicates the main effects which have clear

impact on the response variable . Apart from B , A and C produce measurable impact

on manpower requirements up to time M + 100 , after that the effects of these

factors is dampened out . Other factors have negligible effects as can be seen by

inspecting Figure 3. This combination of ANOVA, graphs of main effects and

aggregating results by each level of Factor B is carried out for a selected group of

AFD's . The results confirm the hypothesis that the ranking in Table 6 is valid for the

sampled AFD aggregations . This simple computer intensive graphical technique has

been extensively used in this study.

4-2 Il Stage Analysis. Since the workweek parameter is so decisive, no further

investigation is required to measure the sensitivity of the response variable to this

parameter at this stage. In the Il stage of design , a 60-hour workweek was fixed .

The number of input factors was narrowed to 5 factors. Again , a resolution III

design was used to generate simulation data . The factors in the Il stage design are

given in Table 7 .
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Table 7

Packages in the Il Stage Design

Factors Description

A

C1

M-Day to D-Day

Training load

Training equipment

TDA fill

C2

H1

H2 TDA equipment

C1 and C2 are the elements of thevector input Cof the I stage design . Likewise, H1

and H2 are the components of the vector H of the I stage . At the second stage, all

paramenters are scalars . The two values of the parameters at this stage are chosen

within the range of their values at the first stage .

The same method of ANOVA is used as in the first stage. A sample ANOVA (for run

13) is shown in Table 8. The response variable is the manpower requirements on

M + 270 day, i.e. , 270 days after mobilization day . Sensitivity of a factor is measured

by its contributions to the total sum of squares . The overall'fit' is measured by ' R2'

as given below.
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Table 8

ANOVA For Run 13

Source of

variation
Sum of squares

A 4.000

H1 495952900.000

H2 0.250

C1 6272402402.250

C2 0.250

6768355306.750Explained

Residual 119041.000

Total 6768474347.750

R2 = 93%

The explanation of response by the input factors are quite satisfactory with H1 and

C1 being most important factors. The impact of A, H2 and C2 are negligible . Now

we have 13 x 16 = 208 ANOVAs. Figure 4 shows the time seriesdue to each of the 5

factors. Effect due to C1 is dominant, followed by H1 . Effect dueto A is significant

up to M + 120 days, after that its impact on the response diminishes. Factors C2 and

H2 are negligible .

4-3 Summary. We have summarized the data from the first stage design using

regression equations. Only half the runs (B = + ) from Table 2 have been utilized in

deriving these equations in order to compare these results with those of the second

stage design (Table 4) . The regression equations and their R2 values are given

below . The dependent variable y is the manpower requirements, the independent

variables are A, C1 and H1 . Only the data for time phases from the mobilization day

(M-Day) to 90 days after it (M +90) are shown .

For M + 10 y = 315567-3.4A + 52198C1-5756 H1

R2 = 99%

For M + 20 y = 249976 + 77.1A + 66016C1 + 56508 H1

R2 = 97%
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For M + 30 y = 248656.7 + 479.1A + 86945C1 + 73635 H1

R2 = 96%

For M +40 y = 255859-216.7A + 104387.5C1 + 85470 H1

R2 = 98%

For M + 50 y = 265077-644.9A + 121675.5C1 +92054 H1

R2 = 99%

For M + 60 y = 261767.3-882.6A + 142257C1 +96510 H1

R2 = 99%

For M +90 y = 278884.7 + 135.6A + 173240.5C1 +96904 H1

R2 = 99%

We plan to use these results along with the second stage data to apply response

surface methodology for more refined predictive equations.
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ABSTRACT

The traditional univariate analysis of the repeated measures design is

obtained by treating subjects and their associated interactions as random

effects . This analysis requires that certain variances and covariances of the

dependent variable at various combinations of within - subject factors be equal .

Instability of the variance and covariance components may mask significant

effects and compel the researcher to utilize a less powerful multivariate

technique .

This paper illustrates the use of a recently developed class of unbiased

variance component estimators and their associated diagnostics for examining

the data and the model assumptions. A comprehensive example is given for the

case of a three -way design with two factors repeated .

1 . INTRODUCTION

Repeated measures designs are one of the most frequently utilized classes

of designs in Army Research and Development. These designs offer a reduction

in the error variance due to the removal of an individual's variability , are

efficient , and require fewer subjects to achieve the same power of the F test

as completely random or block designs .

This class of designs , sometimes referred to as within - subject designs ,

obtain their name from the fact that one or more factors of the design are

manipulated in such a way that each subject receives all levels of the within

subject factor . The advantage of this approach is that subjects act as their

own control in their responsiveness to the various experimental treatments .

On the other hand , this type of design introduces intercorrelations among the

means on which the test of within subject main effects and interactions are

based ,

Due to this intercorrelation , three separate approaches have been

proposed in the literature . The first , the univariate analysis of the

repeated measures design is obtained by treating subjects as a random effect .

The linear model employed is called a mixed effects model , and the resulting
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analysis is a mixed model analysis of the repeated measures design . The

standard mixed model assumes certain variances and covariances of responses

are invariant across the experiment . For example , in a three - factor factorial

model with Factors 1 and 3 fixed and subjects ( or Factor 2 ) random , a standard

assumption is that the covariance , 212 , of responses at the same level of

Factor 1 and on the same subject ( i.e. , level of Factor 2 ) but at different

levels of Factor 3 , is invariant across all subjects, all levels of Factor 1

and all combinations of distinct levels of Factor 3 . More generally , if or is

the covariance between observations at the same levels of Factors indexed by t

and at different levels of the other factors , then standard mixed models

assume is invariant across all levels of the factors indexed by t and

across all combinations of distinct levels of the other factors . This

assumption is referred to in the literature as compound symmetry . Huynh and

Feldt ( 1970 ) have shown this assumption to be a sufficient condition .

In the second approach , the multivariate method , the responses of a

subject are treated as a k- dimensional response vector . It is worth noting

that this approach is not as powerful as the univariate approach if the

assumption of compound symmetry is accepted .

Thirdly , a degree of freedom adjustment initially proposed for use by

Greenhouse and Geisser ( 1959 ) is used to adjust the numerator and denominator

degrees of freedom of the ratio . Huynh and Feldt ( 1970 ) have shown this

adjustment to be too conservative .

Difficulty in interpretation can occur when several dependent measures

are made for each experimental treatment and the assumption of compound

symmetry is rejected . This situation can result in a lack of degrees of

freedom and power since the response matrix , which is a multiple of dependent

variables and the number of unique within subject factor treatment

combinations , can equal or exceed the total number of subjects . In the

multivariate context , this can result in the degrees of freedom parameter

being very small .

Since it is common and necessary to record , evaluate and analyze numerous

measurements during developmental testing and human factors evaluation of

weapon systems and equipment, alternative approaches to assessing the effect

of treatment conditions on the response measurements need to be explored .

This paper introduces and demonstrates the use of unbiased , efficient

variance component estimators and their associated diagnostics in analyzing

the repeated measures design .

II. GENERAL VARIANCE COMPONENT ESTIMATES AND DIAGNOSTICS METHODOLOGY

The problem of estimating variance components in random and mixed models

has been of interest to researchers for years as pointed out by Green and

Hocking ( 1988 ) . However , over the last few years , new closed form expressions

for the estimators of variance components have been developed , based on the

equivalence shown in Green ( 1985 , 1987 ) ; Hocking , Bremer and Green ( 1987 ) ; and
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Hocking ( 1985 ) of the variance component estimation problem to the problem of

Inestimating the covariances , Ot between appropriately related observations.

addition , these estimators have been shown to provide information which will

be useful in diagnosing problems and suggest simple graphical procedures for

examining the influence of the treatment levels .

To introduce this general methodology , this paper will only consider

three factor repeated measures design with factors one and three repeated as

shown in Table 1. The number of levels of factor ( i ) is designated by ai .

Subjects are designated factor two . Factors one and three are the within

subject fixed factors . The traditional univariate repeated measures model

with subject and subject interactions considered random is

Y ( ijkm ) - M + A ( i ) + s (j ) + AS ( ij ) + B ( k ) + AB ( ik ) +

SB (jk ) + ABS ( ijk) + E ( ijkm )

where M is the overall mean , A ( i ) is the effect of level i of treatment or

factor A , S ( j ) is the effect of subject j , AS ( ij ) , is the effect of level ij

of treatment combination AS , B (k ) is the effect of level k of factor B ,

AB ( ik ) is the effect of the AB treatment combination at level ik , SB (jk ) is

the effect of treatment combination SB at level (jk) , ABS ( ijk) is the effect

of level ijk of treatment combination ABS , and E ( ijkm ) is the random error .

For the traditional univariate approach , it is assumed that A ( i ) , B (k ) ,

AB ( ik ) , and M are fixed and s ( j ) , AS ( ij ) , SB (jk ) , ABS ( ijk ) , E ( ijkm ) are zero

mean , independent normal random variables with variances 02, 012 023 , 0123 ,

and l. respectively . While the variables are independent , the responses are

correlated with the covariance structure found in Figure 1 .

This covariance structure in Figure 1 suggests an alternative approach to

the linear model first proposed in Hocking ( 1983 ) and extended and developed

in Green ( 1985 ) to several classes of linear models . This approach relaxes

the requirement that the variance components be positive . Thus, the classical

model is replaced by specifying the response vector as normal with covariance

matrix as given in Figure 1 and mean vector determined from the expectation of

The only restriction on the covariance matrix is that it be positive

definite . This requirement is weaker than the classical requirement that the

02 be positive . An in - depth development of this alternative model can be

found in Hocking ( 1985 ) .

The covariance , ot , is between observations at the same level of factors

indexed by t and different levels of all other factors in the model . This

suggests examining the corresponding sample covariances . These sample

covariances, or averages thereof , yield the estimators of the Ot : Sample

covariances yielding estimators of O2 and 012 are given in Figure 2 .

Similarly , 023 is analogous to the e12 estimator with subscript three

replacing one . For example, from Figure 2 one recognizes the 02 estimator as

the average of 213f13. equalexpectation sample covariances corresponding to

all combinations of iti* , k + k * . Here ri is the level of Factor i minus one .

Similarly , 012 is the average of 21373 ēqual expectation sample covariances

corresponding to all combinations of i and ktk * .
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COVARIANCE STRUCTURE

2 WITHIN SUBJECT FACTORS

COV (Y (i,j, k , m ) , Y (i* ,j*, k * ,m *)

02

012

= 02 if i * i * , j = j * k * k*

02 + 0 12 if i = i * , j = j *i * , j = j * k k*

023 = 02 + 0 23 if i # i * , j = j * k = k*

0123 = 02 + 0 12+ 0 23 + 0 123 if i = * ij = j * k = k* m* # m

0. + 0123 ijkm = i *j *k *m*

Figure 1 : Covariance structure of three repeated measures design (Subjects random )

VARIANCE COMPONENT ESTIMATES

Ô 2

N

Σ Σ ((yijk - yi.k.) ( yi*jk * - yi*.j*.)1

r2 a13 113 ik+ i * k*

Ô 12 1 Σ 1 Σ (yijk.1 2 (yijk. - yi.k.)(yijk *. - yi.k *.)

a13 13 k r2 ij

Figure 2 : Variance component estimates for O2 and 012
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These covariances are unbiased and contain the diagnostic power . Ву

plotting these covariances (diagnostics ) in table form , one obtains an

indication of the stability of the estimate and of suspect estimates .

In general , one looks for various characteristics and trends . For

example , ( 1 ) unusually large or small diagonal entries indicate abnormal

variability in the cell means for this level of the factor under

investigation , ( 2 ) special patterns in the off - diagonal elements such as a

particular column or row having the majority of its entries higher or lower

than associative rows or columns, indicate one or more cell means may contain

extreme outliers , and ( 3 ) large fluctuations in the off - diagonal entries

reflect high variability is the data .

Following the examination of the diagnostics , plots of treatment i vs.

treatment it cell-means , where abnormal diagnostics have been identified , are

recommended . This will help the researcher identify the treatment cells

responsible for extra large or small variance component estimates . Finally ,

the diagnostic procedure should conclude with an examination of the data in

the identified cells .

III . REPEATED MEASURE DESIGN

To illustrate these diagnostic procedures , data from a repeated measures

design carried out by Malkin and Christ ( 1987 ) will be used .

A. Objective

The objective of the experiment was to conduct a laboratory flight

simulation to compare a cockpit keyboard , a thumb - controlled switch , and a

connected -word voice recognizer for data entry of navigation map coordinate

sets when ( 1 ) the entry of Universal Transverse Mercator (UTM ) coordinate sets

is the sole task performed (No Flight ) and ( 2 ) the entry of UTM coordinate

sets is performed concurrently with controlling a helicopter simulator while

flying a computer -generated external scene (Flight ) . For this paper , the

difference among the three methods of data entry for response and input time

will be evaluated for both the Flight and No Flight conditions . The original

paper also investigated error . However , no practical or statistical

difference was found for subject error in regard to any of the experimental

factors .

B. Methodology

Data were collected using 12 Army aviators assigned to Aberdeen Proving

Ground , Maryland as the experimental units .

The Aviation and Air Defense Division , Human Engineering Laboratory's

( HEL's ) flight simulator was utilized for this study . The Crew Simulator
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consists of a cockpit cab with advanced controls and displays and an " out - the

window " scene produced by Computer -Generated Imaging ( CGI) . The CGI , cockpit

controls , flight simulation , displays and results were driven or recorded

using two Vax computers. Training was administered to all subjects in the

operation of the voice recognition system and flight simulator . For an in

depth accounting of the Apparatus and Training , the reader is referred to

Malkin and Christ ( 1987 ) .

G. Procedure

Each subject entered eight UTM coordinate sets for each test condition .

The coordinate sets , which were selected from a scenario based on the Fulda

Gap area of Germany, were located on a kneeboard attached to the subject's

leg . A standardized , but different set of coordinates was used in each

condition . The subject was tested in both conditions using one data entry

method before proceeding to the next data entry method . The order of the test

conditions were counterbalanced to control for learning.

D.
Experimental Design

A 2x3x12 factorial design with repeated measures on the twelve subjects

was implemented . The within subject factors were data entry methods ( voice ,

keyboard and thumb - controlled switch) and task conditions ( flight , no flight ) .

The dependent variables were input time and response time . For illustration ,

the 2x3x12 repeated measures design along with input time can be found in

Table 2 .

E. Results

Since the response measures were highly correlated , and only 12 subjects

were used , a multivariate analysis of variance was performed using the

univariate repeated measures model with subjects considered a random factor .

The approximate F ratios were then checked against the Greenhouse Geisser

adjustment and they agreed .

The results are shown in Figure 3 . For response time , subjects were able

to respond significantly faster during the no - flight condition than during the

flight condition . There also was a significant interaction between data entry

method and task conditions . During the no - flight task condition , subjects

responded significantly faster when the keyboard was used to enter data .

However , during the flight task condition , subjects responded significantly

faster using either voice or the thumb -controlled switch ( see Figure 4 ) .

There were significant differences among the three mean impact times for

the data entry method . Subjects were also able to input data faster during

the no - flight task conditions than during the flight conditions . However ,

there was no significant interaction between Task and Entry method ( see Figure

5 ) .
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TABLE 2 . METHOD BY TASK BY SUBJECT

( INPUT TIME )

Method

Voice

1

Task

No

Flight Flight

1 2

Keyboard

2

Task

No

Flight Flight

1 2

Thumb

3

Task

No

Flight Flight

1 2Subject

1 15.8 17.8 16.9 16.8 28.5 34. 3
.

2 23.9 49.3 9.1 13.2

3 33.0 55.9

4 15.2 27.8

5 35,9 45,0

6 49.8 36.4

7 27.2 34.9

8 20.6 20.6

9 28.92 38.7

10 27.7 23.5

11 17.9 11.7

12

25.0 35.5

13.6 31.6 29.7 48.8

11.3 16.1 24.1 43.1

11.9 20,7 39.2 65.2

11.8 23.7 36.3 49.1

13,9 20.6 31.7 44.7

10.9 24.1 35.4 37.4

10.5 19.9 34.7 34,6

10.7 15.9 34.0 43.6

15.4 24.1 32.6 39.0

23.0 16.3 13.5 33.8 38.9 70.9
2
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DATA ENTRY METHOD BY TASK

8

7

K

(6.7 soc )

T

(5.5 soc)

5

M
E
A
N

R
E
S
P
O
N
S
E

T
I
M
E

(S
E
C

)

V

(3.5 soc)
3

2

(2.3 soc)

V

T

(2.0 soc)

K

( 1.2 soc)

NO FLIGHT FLIGHT

LEGEND

V - VOICE

K-KEYBOARD

T - THUMB SWITCH

Figure 4 : Data entry methods by task for response time
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DATA ENTRY METHOD BY TASK

50

T

(48.5 soc)

40

V

(35.2 soc )

30

T

(32.5 soc)

M
E
A
N

I
N
P
U
T

T
I
M
E

(S
E
C

)

V

(26.6 soc)

20

K

(21.7 soc)

10

K

( 12.4 soc)

NO FLIGHT FLIGHT

LEGEND

V - VOICE

K - KEYBOARD

T - THUMB SWITCH

Figure 5 : Data entry method by task for input time
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As a final note , the input time covariances for the within - subject

factors deviated extremely from the compound symmetry assumption whereas the

compound symmetry assumption for response time was acceptable . Therefore , the

variance component diagnostic procedure will be demonstrated for input times

only .

IV . ILLUSTRATED EXAMPLE OF VARIANCE COMPONENT ESTIMATES AND DIAGNOSTICS

As previously pointed out , it is natural to estimate the covariances Ot
by corresponding sample covariances . In the balanced case , and for the

Malkin , Christ data , the estimates can be obtained from the ANOVA table ( see

Figure 6 ) .

3 , 82
-

12 and a3For this example , ai 2 .
The estimate of 02 is the

average of six distinct sample covariances . They can be displayed in a table

such as Table 3 -A . The off - diagonal elements are the sample covariances . To

avoid confusion , it is worth noting that the diagonal elements are not true

variances since iti* . An alternative and simpler display of these sample

covariances can be found in Table 3 - B . Again , the diagonal elements are not

true variances since k + k * .

Under the compound symmetry assumption , all elements of Table 3 -A or

Table 3 - B should be approximately equal . Therefore , the diagnostics provide a

illustrative procedure to check the compound symmetry assumption and identify

unique treatments combinations that contribute to this assumption being

violated .

In examining the 22 off - diagonal diagnostics of Table 3-A, the

covariances Keyboard No Flight vs. Voice Flight ( -13.81 ) and Thumb No Flight

vs. Voice Flight ( -12.47 ) are small when compared to the other off - diagonal

entries in the Table . In addition , Thumb Flight vs. Voice No Flight ( 40.78 )

seems large in comparison . This large fluctuation indicates high variability

in the data .

The diagonal entries of Table 3 -A indicates the covariances at the same

Task level but different Input levels . The large diagonal entry (43.26 ) ,

representing the covariance of Thumb Flight vs. Keyboard Flight, indicates

instability and variability in the cell means making up this covariance .

Referring to Table 1 , the reader can see that the cell means for Keyboard ,

Flight and Thumb Flight are larger and more unstable than the other Method

Task treatment conditions .

This suggests further examination of the specified treatment

combinations . Follow -up plots of subject mean input times by treatment

combinations reflecting the large or small covariances are shown in Figures 7

through 9 .

Examinatin of these plots revealed that subjects ( 3 , 5 , 6 and 12 ) input

time contributed to the extremely high or low covariances .
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TABLE II - A

DIAGNOSTIC

INPUT TIME

O2

VOICE

NO FLIGHT FLIGHT

KEYBOARD
NO FLIGHT -5.90 -13.81

FLIGHT 13.68 -5.07

VOICE

NO FLIGHT FLIGHT

NO FLIGHT 23.15

THUMB
-12.47

FLIGHT 40.78 10.52

KEYBOARD

NO FLIGHT FLIGHT

THUMB
NO FLIGHT 0.19 16.01

FLIGHT 1.88 43.26
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The diagnostic plots for 012 and 23 are shown in Table 4 . For 012 the

plot consists of covariances based on the same level of Subject and Method ,

but different levels of Task . The diagnostic plot revealed a spurious

covariance component of 76.2 for Voice No Flight vs. Voice Flight . A follow

up plot ( Figure 10 ) indicated that subjects ( 3 , 5 and 6 ) input times

contributed to this large covariance .

Similarly , the diagnostic plot for ©23 , revealed large spurious

covariances at treatment combinations Voice No Flight vs. Thumb No Flight

( 23.1 ) and Keyboard Flight vs. Thumb Flight (43.2 ) .

It is worth noting that this diagnostic plot contains covariances based

on the same subject and Task levels but different Methods .

Follow -up plots ( Figures 11 , 12 ) for both covariances revealed that

subjects ( 3 , 5 , 6 and 12 ) input time were contributing to one or both large

covariance components .

Identifying what seemed to be a dichotomous population of subjects , a

review of subject records were undertaken to attempt to explain the reason

subjects 3 , 5 , 6 and 12 seemed to respond differently from the rest of the

subjects . A review of the records indicated that , in general , these pilots

were older ( over 42 as compared to under 38 ) , had a higher military rank , and

had spent as much time or more flying fixed wing or rotary wing aircraft , with

recent flying experience concentrated on fixed wing . Based on subjective

input from experienced pilots , differences between the aircraft in regard to

instrumentation and flying procedures could certainly account for the

difference in input times between fixed wing and rotary wing pilots .

A recalculation of the diagnostics with subjects 3 , 5 , 6 and 12 removed

revealed covariances that were more stable . In addition , in grouping the

subjects into Fixed Wing and Rotary Wing categories and reanalyzing the data ,

the assumption of compound symmetry was accepted . Mauchly's criteria , which

is used to check this assumption , was found not to be significant at the .01

level .

This information was made available to the Aviation and Air Defense

Division of the HEL so that this additional source of variability could be

controlled for future experiments .

V. CONCLUSIONS

The variance component estimates and associated diagnostic procedures

have been shown to be computationally and intuitively simple. All

calculations can be obtained using standard statistical packages such as

SPSSX , SAS , or BMDP .

The diagnostic procedures have been demonstrated to be effective in

checking underlying assumption ( compound symmetry ) of the repeated measures

model , and useful in identifying probable causes for the violation of these
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assumptions . This provides the researcher the option of removing spurious

observations, performing transformations , or controlling additional sources of

variability so that the data can conform to the standard assumptions such as

compound symmetry or to modifying the model . By circumventing the problems

associated with the traditional univariate repeated measures analysis , these

diagnostic procedures provide easier interpretation of the results and

increased validity of the conclusions derived from the data . The result is a

valuable statistical approach that can be applied in many areas including

developmental testing and human factors evaluation of weapon systems and

equipment .
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ABSTRACT

A new class of unbiased estimators is given for unbalanced mixed

models which have simple , closed- form expressions . These estimators

allow easy computation of variances which , when compared to minimum var

iance bounds , show the estimators to be highly efficient .

Based on the estimator , a diagnostic methodology is developed for

assessing the effect of the data on the estimates . The source of nega

tive estimates of variance components is often revealed , as well as

other sorts of instability and problems with the model or data .

An overview of the methodology and its growing literature is given ,

illustrated by applications to several industrial problems . The method

ology applies to all random and mixed models , regardless of the degree

of imbalance or pattern of crossed and nested factors . The diagnostics

flag only those features of the data which affect parameter estimates .

1. INTRODUCTION

The problem of estimating variance components in random and mixed

models has become a classical research area in statistics . Review

papers , such as those by Searle ( 1971 ) , Harville ( 1977 ) , Sahai ( 1979 ) ,

91



Sahai and Khuri ( 1984 ) and Khuri and Sahai ( 1984 ) , attest to the

importance of the problem and emphasize the fact that there are many

aspects of the problem which remain unsolved .

It is well known that in the case of balanced data , The ANOVA

estimators , or , equivalently , the restricted maximum likelihood estima

tors ( REML ) , have certain optimality properties . Graybill and Hultquist

( 1961 ) showed that these estimators are uniformly best quadratic estima

tors . Under the added assumption of normality , Graybill and Wortham

( 1956 ) showed these estimators are UMVU . A discussion of these results

is given by Hocking ( 1985 ) . Even in this ideal situation , the esti

mates are often unacceptable in the sense of violating the implicit

assumption of nonnegativity . Several authors have proposed alternatives

which guarantee nonnegative estimates , including Thompson and Moore

( 1963 ) , Hartly and Rao ( 1967 ) , Rao and Chaubey ( 1978 ) and Hartung

( 1981 ) . Searle ( 1971ab ) discusses various alternatives in some detail .

Examples show spurious data can lead to negative estimates and Leone , et

al ( 1968 ) have shown that negative estimates have non- trivial probabil

ity of occuring . The fact that spurious data can lead to negative

estimates suggests that even positive estimates should be questioned

and stresses the need for good diagnostic methods .

In the case of unbalanced data , there is a sharp discontinuity in

theory . Except for special cases , minimal sets of sufficient statistics

are not known , and , even in those special cases , they are not complete .

Many estimators have been proposed and they fall generally into two

categories . In one category are estimators based on quadratic forms ,

usually obtained from the mean squares of an AOV table . MINQUE and
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related methods are included in this category . There is no basis to

support the superiority of any of these approaches . Iterative methods

fall into a second category and include maximum likelihood and REML .

Other than large sample properties , little is known of the properties

of these estimators . In addition , the iterative computations often

encounter convergence difficulties .

The situation regarding the estimation of fixed effects parameters

( means ) is similar . With balanced data , the estimates are not affected

by the presense of a non-scalar covariance matrix and they are UMVU

estimators . With unbalanced data , maximum likelihood leads to weighted

least squares estimators which depend on the unknown variance compo

nents .
The properties of fixed effects estimators computed using

estimated variance components are unknown .

The present paper discusses two contributions to the study of mixed

models . First is the development of a new class of unbiased estimators

for the case of unbalanced data which have simple , closed - form expres

sions . These expressions allow easy computation of variances which ,

when compared to minimum variance bounds , show the estimators to be

highly efficient .

The second contribution discussed is the development of diagnostic

methodology , based on the estimator , for assessing the effect of the

data on the estimates . The source of negative estimates of variance

components is often revealed by this methodology , as well as other

sorts of instability and problems with the model or the design .

93



An overview of the methodology and its growing literature will be

given . Applications of the ideas developed will be discussed in the

context of several industrial problems for illustrative purposes .

It is to be stressed that the methodology applies to random and mixed

models , whether factorial or partially nested and whether balanced or

unbalanced . Indeed , completely nested designs have been succesfully

analyzed by this methodology by Hocking and M. S. Von Tress , but will

not be discussed here . Also not discussed here is the distribution

theory developed by Green and J. Grynovicki .

The problem of estimating variance components is shown to be equi

valent to the problem of estimating the covariances between appropriate

related observations . A covariance is naturally estimated by the cor

responding sample covariance . In fact , almost every covarariance , o

of the relevant sort can be estimated in an unbiased and efficient

manner by a simple average of sample covariances , all having the same

expectation and all simply related to o , or else , by simple linear
t

functions of such averages . In balanced cases , these sample covariances

have the same distribution . In any case , they provide diagnostic

power for examining the quality of the estimate of 0 . The diagnostics

t

are directly in terms of the effect influential factors have on

parameter estimates of interest . Thus , only features of the data

impacting on variance component estimates are highlighted . For small

problems , these diagnostics are conveniently displayed in tables , as

shown below . For larger problems , the diagnostics can be displayed

in simple plots , as indicated below and described by Green ( 1987 ) .

For very large problems , reduction formulae , given by Green ( 1988 )

are available to reduce the demands of these displays to managable
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levels . These are also discussed below . Since there are , in fact , many

ways to generate meaningful diagnostics , these same formulae allow one

to change from one representation to another , and even to increase the

number of diagnostic elements .

2. THREE- AND FOUR-FACTOR MODELS

To motivate the procedure and introduce some general notation , con

sider a model with Factors 1 , 2 and 3 ( or 1 , 2 , 3 and 4 ) with Factor i

- l , .having a levels . Let r a a = a a t F r etc. Let

i i i 12 1 2 12 1 2

r a 1 . Suppose there are n * O ( or in the four - factor case ,

0 0
ijk

# 0 ) observations in the indicated cell . The empty cell problem

ijkt

will be reported on at a later date , although a brief discussion is

n

given by Hocking ( 1987 ) . Five model will be described to introduce the

AVE - estimator and the diagnostic procedure . Two parameterizations are

given . One is standard . The other is equivalent , but suggests both the

diagnostic philosophy and the AVE-estimator , as well as an alternative

statistical model which is more general than the usual model and has

intuitive appeal .

2.1 Five Designs

To introduce the two parameterizations , consider the following three

and four - factor designs .

Design 1 . Factors 1 , 2 and 3 are crossed , 2 and 3 are fixed and

l is random .

Design 2 . Factors 1 and 3 are fixed and crossed , Factor 2 is random and

nested in l .

Design 3 is the same as Design 2 , except Factor 1 is random .
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Design 4 is the same as Design : 2 , except all factors are random .

Design 5 . Factors l , 3 and 4 are crossed , 2 is nested in l , 1 and 2 are

random and 3 and 4 are fixed .

2.2 Statistical Models for the Five Designs

In the case of design l , a standard model is

( 2.1 ) ylijks ) = M ( jk ) + Ali ) + AB ( ij ) + AC ( ik ) + ABC ( ijk ) + Elijks ) ,

where Majk ) is the population mean of responses at levels jk of factors

23 and the others are independent 0 -mean normal random variables with

variances 0 , 0 Ф 0 and 0 i respectively , and ylijks ) is the

1 12 13 123 0

s - th response at levels i , j , k of factors 1 , 2 , 3 , respectively . It is

useful to compute e the covariance of distinct observations at the

t

same level of factors indexed in t and at different levels of all other

factors . Also , o will denote the total variance in the response . Thus ,

The covariance structure in0 = 0 te in the three -factor case .

0 123

design 1 is given by :

( 2.2 ) Covl ylijks ) , yli * j * k * s * ) ) =

0 if iti *

if i =i * , j £ j * , k ***

if ij = i * j * , k # k *

if ik= i * k * , jtj *

ө 0

1 1

ө = 0 ++

12 1 12

e = 0 +

13 1 13

Ө = 0 + +0 +

123 1 12 13

e 0 +0

0 123

if ijk = i * j * k * , s * s *

123

S

if ijks= i * j * k * s * .

It should be observed that the parameterization given , in partic

ular , the independence assumed of theassumed of the " random effects " , does not re

strict the model . Rather , it indicates which of several equivalent
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parameterizations is used . The covariance structures for the other

designs follow .

Design 2 .

( 2.3 ) ylijks ) = M ( ik ) + AB ( ij ) + ABC ( ijk ) + ABC ( ijk ) ,

where Mlik ) is the population mean of levels ik of Factors 1 and 3 , re

spectively , and the other terms are 0 -mean normals with variances Ø

12

0 and 0 respectively . The covariance structure is given in ( 2.4 ) .

123 0

( 2.4 ) e

12

ө

123

o

0

12

0 +0

12 123

0 to

0 123

=

Design 3 .

( 2.5 ) ylijks ) A ( i ) + AB ( ij ) + M ( k ) + AC ( ik ) + ABC ( ijk ) + Elijks ) ,

where M ( k ) is the population mean of Factor 3 , level k and the other

I reterms are 0 -mean normals with variances 0 0 0

1 12 13 123

spectively . The covariance structure is given in ( 2.6 ) .

and 0

0

12.6 )
=

e 0

1 1

e = 0 +0

12 2 12

e = 0 +

13 1 13

e = 0 + + +

123 1 12 13 123

e = 0 +

0 123

Design 4 .

( 2.7 ) ylijks ) = M + A ( i ) + AB ( ij ) + C ( k ) +AC ( ik ) + ABC ( ijk ) + Elijks ) ,

where M is the mean and the other terms are 0 -mean normals with vari

ances Ø

1

.0

12

0

3

0

13

0

123

0

0

The covariance structure is in ( 2.8 ) .

( 2.8 ) 0

11
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Ꮎ . 0. + Ø

=

12

ө

3

ө

13

ө

123

e

1 12

0

3

0 + 0 + 0

1 3 13

0 +0 +0 + 0 + 0

1 12 3 13 123

0 +o

0 123

Design 5 .

( 2.9 ) ylijkts ) M ( kt ) + Ali ) + AB ( ij ) + AC ( ik ) + ABC ( ijk ) +

AD ( it ) + ABD ( ijt ) + ACD ( ikt ) + ABCD ( ijkt ) + Elijkts ) ,

where Makt ) is the population mean of responses at levels k and t of

factors 3 and 4 , respectively , and the other terms are independent , 0

. . I
mean normals with variances 0 Ø Ø 0 0 0 0

1 12 13 123 14 124 134 1234

and 0 i respectively . The covariances are given by ( 2.6 ) , excluding 0 ,

0

and by

12.10 )
e = 0 +0 +0 +

134 1 13 14 134

ө 0 + 0 + 0 + Ø + 0 + 0 + 0 + 0

1234 1 12 13 123 14 124 134 1234

Ө = 0 +

0 1234

with e and o analogous to Ꮎ and o It is evident that esti

14 124 13 123

mation of the e is equivalent to estimation of the o There are two

t t

advantages to the e parameterization . First , these covariances are

t

rather naturally estimated by corresponding sample covariances . This

estimation idea is the basis of AVE-estimator introduced ( for unbalanced

designs ) in Hocking , Bremer and Green ( 1987 ) , hereafter called ( HBG ) . It

is equivalent , in the balanced case , to the usual ANOVA estimator ( HBG ) ,

Green ( 1985 , 1988 ) and offers an efficient Hocking ( 1987 ) , ( HBG )

alternative in the unbalanced case . A second advantage is the pos

sibility of a more general formulation of the model in terms of the

mean and covariance structure of the response vector , y . For example ,

in design l , the model can be specified by writing
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El ylijks ) ] Mljk ) and CoV ( y ) , as given by 12.2 ) .

The only restriction on the covariance structure is that the covariance

matrix be positive definite . This is true if all the are positive ,

t

but also under more general conditions which permit individual

" variance " components to be negative . Explicit requirements for pos

itive definitness are given in Hocking ( 1985 ) . Since physically , a

negative covariance is possible ( See Green ( 1988 ) , for an industrial

setting in which a negative covariance is quite sensible ) , this more

general formulation has some appeal . It also provides an explanation

for the negative variance component estimates which frequently occur .

The validity of the AVE-estimator or the diagnostic procedure does

hinge on acceptance of this alternative model .

2.3 Estimation of Variance Components Arising from the Five Designs

It is natural to estimate the covariances e by corresponding

t

sample covariances . This is the basis of the diagnostic procedure . In

the balanced case , the estimates found are the usual estimates obtained

from an AOV table ( Henderson's type H3 or SAS type 2 ) .

Some simple notation is introduced to facilitate the procedure .

The general form is given in Green ( 1987 , 1988 ) , ( HBG ) appropriate for

any design . For the present , forms needed for three or four factors are

Theygiven . These contain all the basic forms required in general .

are not tied to any particular design .

To estimate the covariance , o , between observations at the same
1

level of Factor 1 but different levels of Factors 2 and 3 , one of the
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following three forms is used .

,-? ( 11/ jkj*k *).( 2.11 ) C ( 1/23 ) ( a r

23 23

-1

( 2.12 ) C ( 1/2 : 3 ) = ( a r a )

23 2 3

-1

( 2.13 ) C ( 1/3 ) = ( a r ) Σc ( 1/kk * ) .
3 3

In ( 2.11 ) , the sum is over all ar pairs of distinct levels jij * of

2 2

Factor 2 and all ar pairs of distinct levels ktk of Factor 3 . In

3 3

( 2.12 ) , the sum is over the ar pairs of distinct levels of Factor 2

2 2

and all a X a pairs of levels of Factor 3 , whether or not distinct .

3 3

In ( 2.13 ) the sum is over the ar pairs of distinct levels of Factor 3 .

3 3

In ( 2.11 ) and ( 2.12 ) ,

-1

( 2.14 ) C ( 1 / jkj * k * ) r

1
2.17lijk . ) -y1.jk . ) ) ( Ylij*k * .) -ý (.j*k * .) ) ,

i

where ylijk . ) is a cell mean and Yl.jk. ) is an ( unweighted ) mean of cell

means . ( 2.14 ) is a sample covariance of cell means at the same level of

Factor 1 and at indicated levels of Factors 2 and 3. ( 2.13 ) is the aver

age of forms of the sort ( 2.15 ) , which is a sample covariance of the

average responses of Factor l at indicated levels of Factor 3 .

-2

( 2.15 ) C ( 1/kk * ) = a £ ...C ( 1/ jkj * k * )

2 jj *
-1

= r Σ ( y . )( yli.k. ) - ylook . ) ) ( yliok * . ) - Ýl.okt . ) )
1

Justification for using unweighted means of the cell means in the un

i

balanced case is discussed in ( HBG ) and is as follows . Begin with the

balanced case , where the forms are clearly reasonable . ( HBG ) shows

that in the unbalanced case , if one uses these forms for all possible

balanced submodels of minimum cell frequency and averages these

estimators over all such submodels , the resulting average is the AVE

estimator as described here . Which of the forms to use in a problem
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is determined by the nesting and fixed factors in the design and

is explored below .

To estimate the covariance , o between observations at the same

12

level of Factors 1 and 2 but different levels of Factor 3 , ( 2.14 ) or one

of the following two forms is used ( in a three- factor model ) .

( 2.16 ) C ( 12/3 ) Σ c(12 /kk * ),.

-1

= ( ar )

3 3

-1

( a r )

13 3

12.17 ) C ( 1,2/ 3 ) I cli , 2 /kk * ) ,

where the first sum is over all a r pairs of distinct levels k # k * of

3 3

Factor 3 and the second sum is also over these and over all a distinct

1

levels of Factor 1 . Here ,

-1

( 2.18 ) C ( 12/kk * ) r Σ ( Ylijk . ) -ýl..k . ) ) ( Ýlijk * . ) -ýl.okt . ) ) ) ,

12 ij

-1

( 2.19 ) Cli , 2 /kk * ) - r

Σ
( Ylijk . ) -ýli.k . ) ) ( Ylijk * . ) -ýli.k * . ) ) ) .

2
j

In all forms , by permutation of the indicies , one obtains analogous

forms appropriate for estimating the other covariances . Now consider

the five designs stated above .

Design 1 .

e -AVE

1

C ( 1/23 )

-AVE =( 2.20 ) 0

12

C ( 2,1/ 3 )

-AVE = C ( 3,1 / 2 )

13

Design 2 .

( 2.21 ) e^ -AVE = C ( 1,2/3 )

12

Design 3 .
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-1

= C ( 1/3 ) C ( 1,2/ 3 )e " -AVE

1

( 2.22 )

e“ -AVE

12

Design 4 .

a

2

-1

+ r a

2 2

= C ( 1/3 ) C ( 1,2/ 3 ) .

e ^ -AVE and on

1 12

-AVE are as in Design 3 .

( 2.23 ) e ^ - AVE = C ( 3/1 : 2 )

3

e -AVE = C ( 1,3 /2 ) + " -AVE .

13 1

Design 5 .

( 2.24 ) O -AVE

1

= C ( 1/34 )

-1

a * C ( 1,2/34 )

2

-1

= C ( 1/34 ) + r a

2 2

-AVE

12

* C ( 1,2 / 34 )

-1

-AVE = C ( 3,1 / 4 ) a * C ( 13,2/ 4 )

13 2

-1

-AVE = C ( 3,1/4 ) + r a * C ( 13,2/4 )

123 2 2

0

The estimators for the 14 -and 124 -interactions are obtained from those

for 13 and 123 by interchange of indicies .

In all cases , the highest order term ( O or o ) suggests no

123 1234

sample covariance estimator , since , if the model is correct , the order of

observations within a cell is arbitrary . Also , some terms of highest

order in the non-nested factors are not well - represented by sample co

variances of the obvious type . However , an AVE- type estimator can be

be based on deletion methods . Such are discussed in ( HBG ) .

2.4 Estimation of Fixed Effects

Similar unweighted means are used to estimate the fixed effects .
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It will be noted that the estimators of the fixed effects in a balanced

design are linear combinations of the cell means . The idea of averaging

over all possible designs of minimum cell size ( provided that size is

not zero ) leads to the same linear combination , except that with

unbalanced data , the cell means are based on different numbers of ob

servations . The result is to replace an expression such as

-1

( 2.25 ) M ( ij) ” . Σ ( an ) ylijks )

ks 3

in the balanced case by

-1

( 2.26 ) M ( ij ) ” -AVE = a

3

Σ

-1

( n )

ijk

ylijks ) .
k S

( HBG ) contains a discussion of fixed effects estimation in unbalanced

factorial models . Hocking ( 1987 ) continues this discussion , with

reference to partially nested models . Further joint work on this

latter topic is expected to appear soon .

2.5 Display and Use of Diagnostics

Now that the basic forms are evident , attention can turn to their

Each term C ( p , v/d ) is an average of sample covariances , all of which

have the same expectation . In design i , the general representation

theorem Green ( 1988 ) gives the forms ( 2.20 ) . The AVE-estimator of om
1

is C ( 1/23 ) , which is the average of the a / 2 distinct sample covar

23 23

iances C ( 1 / jkj * k * ) , for j * j * , kť k * . Each of these covarianaces is

r

an unbiased estimate of 0 . They can be displayed in a table , such as

1

Table 1 , which shows a = 2 and a = 4. In this illustration , one 4 -by

2 3

4 table gives all the diagnostics . The off -diagonal elements are the

sample covariances . Since this table is not symmetric , all off -diagonal
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elements are printed . The diagonal elements are not true variances ,

since j = 1 and j * = 2 there , while k = k * . If two tables were given ,

one could compute and report the following variances .

-1 2

( 2.27 ) C ( 1 / jkjk ) £ ( Ylijk . ) - Yl.jk.) ) .

2 j

Under the usual assumptions for this design , all diagonal elements have

r

the same expectation , as do all off -diagonal elements . The table is

examined for outliers and patterns . Green ( 1988 ) gives moments of

these diagnostic elements . In this example , the elements C ( 1 / jkj * k * )

for jk , j * k * = 12 , 13 and 13 , 22 stand out as much larger than the

other entries . Also , the diagonal entries for k = 2 and k = 3 are much

larger than the other diagonal entries . This suggests further exami

nation of the two combinations indicated . In a paper presented at the

Gordon Research Conference , August , 1987 , and being prepared by the

present authors for publication , this table was part of an analysis

which detected a process shift in data from an actual chemical produc

tion process . This point will be elaborated on below . One use of such

tables is the detection of problems in the underlying assumptions made

about the model . One conclusion drawn for the chemical data is that a

violation of this sort occurs . A physical consequence is the need to

redesign the production line to make a uniform product .

A second application of these diagnostic tables is the detection of

spurious data . The second point is illustrated in the context of a

wool fiber example discussed in Green ( 1987 ) . The design is Design 2 ,

= 2 ,
- 5 .with a a a = 23 . The estimate , C ( 1,2/ 3 ) , of ea is the

1 2 3 12

average of the sample covariances Cli , 2 /kk * ) , i = 1 , 2 and k * k * = 1 , .. ,

A tabular display of these diagnostics would require two 23 -by - 23
23 .

tables , an unpleasant prospect . In the above cited article , these

104



diagnostics are displayed in simple plots .
For each value of k , the

value Cli, 2 /kk * ) is plotted against k * , using as plotting symbol the

value of i . Figure 1 is the result for k = 5 and k = 6. Two features

stand out in this plot . First , the i = 2 values are almost all higher

than the corresponding i = l values . Second , the value for i = 2 and

k *
= ll are dramatically higher than than all other points , for both

k

=

5 and k 6 . A logical followup step is to plot ylijk . ) vs Ylijkt . )

for i = 2 , k = 6 , k * = 11 and all j . This is done in Figure 2. The

plotting symbol is A for j = 1 , B for j = 2 , etc when i = 2 , and l for

j = 1 , 2 for j = 2 , etc when i = l . If a sample covariance appearing

one would expect a clear.in the table is a stable estimate of e

12

linear trend in the plot of cell means . At i = 2 , there is evident a

serious problem due to the effect of j = 1 ( the point A ) . Serious reser

vations about the sampling methodology are raised in the article by this

( and similar ) points .

To return to the chemical data , a followup plot of cell means at

jk 13 vs jk = 22 is shown in Figure 3 . Here there is a strong linear

trend to the points , unlike the wool example . A possibly spurious point

is seen , but deletion of this point has little effect on the e

1

estimate . The plotting symbol used indicates in which level of factor 1

the data point falls . The symbol 0 is for i = 1-10 , 1 is for i = 11-20 ,

etc. The plot suggests the higher levels of i give higher points . A

subsequent plot ( Figure 4 ) of cell means ylijk . ) vs i , for jk = 12 ( and

jk = 13 , 22 , 23 are similar ) shows a pronounced shift at around i = 30 .

( a = 60 in this problem . ) Process engineers verified a change in raw

1

material at this point .
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2.6 Reductions in Size of Displays

If neither tabular nor graphical display seems feasible , Green

( 1988 ) offers algebraic reduction formulae and partial summing methods ,

which , together with the general moment formulae developed there , allow

smaller tables to be constructed which retain most of the diagnostic

power suggested by these examples . He describes a six factor design

which would require the display of 15,680 sample covariances . This

seems an unreasonable demand . The reduction formulae cut the required

display to 840 sample covariances , a reduction of 94 % . Further reduc

tions are possible through partial summing of the diagnostic forms ,

as described in the context of a glass manufacturing example .

Consider now design 5 , with diagnostic forms given by ( 2.24 ) .

a = 5 ,Green ( 1988 ) considers a glass manufacturing example with a

1 3

= 3. These forms require displaying 630 diagnostic elements .
4

After applying the reduction formulae , a display of C ( 13,2/ 4 ) is still

= 2 ,a

2

a

required . Conceptually , the terms Clik , 2 / tt * ) are displayed in table

form . Perhaps , for each value of i and k , an a -by-a table is con

4 4

structed , the off-diagonal terms of which are the sample covariances .

The below-diagonal terms need not be displayed , since the table is

symmetric . Diagonal entries are sample variances , which also carry

diagnostic information . In the example , this requires 25 3 -by- 3 tables ,

a rather onerous requirement . The graphical displays discussed above

can be used if the number of terms is moderate . Even these displays

may be problematic for larger values of a ,
and a A simple remedy

1

is to work with " partial sums" described below . In the glass example ,

a

3 4

the forms ( 2.24 ) can be replaced by :
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( 2.28 )

C ( 1,2/ 4 ) , with 15 elements

C ( 1/4 ) , with 3 elements

C ( 13,2/ 4 ) , with 30 elements through

-1 -1

a E clik , 2 /tt * ) and a

1 i 3

( 2.28a )

C ( 14,2/ 3 ) , with 80 elements through

,2/ )
{ clik , 2/ tt * )

k

( 2.28b )

-1-1

a

1

E clit , 2 /kk * )
i

and a

4

I clit , 2 /kk * )
Σ t

C ( 3,1/4 ) , with 15 elements

C ( 4,1/ 3 ) , with 9 elements .

This gives a total of 152 diagnostic elements , a reduction of 75 % . As

shown by Green ( 1988 ) , the remaining elements have essentially the

same diagnostic power as a full analysis . Further reduction is possible

in the last two terms . In this example , there are so few diagnostics in

in these two that further reduction makes little sense .

The analysis now is in four parts . ( 1 ) Outlier analysis associated

with each table finds those estimates more than 20 away from the mean

for that table . ( 2 ) In the case of tables for the partial sums , if ,

say , for some i , one of the off -diagonal terms in ( 2.28a ) stands out ,

then a table of clik , 2/tt * ) for just that i is constructed , or else a

univariate analysis of the estimates Clik , 2 /tt * ) is done ( either

using stem-and-leaf plots or a printout of values outside a 2- or 3-0

confidence band ) . ( 3 ) Next , a " pattern analysis " of the tables may

bring out special patterns . There should be no pattern to the tables

if the statistical model assumptions are correct . ( 4 ) Next , the

the data set is examined to seek statistical cause for what was seen
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( 1 ) - ( 3 ) .

Each table shows appropriate , equal -expectation , sample covariances

off the diagonal . Since these tables are symmetric , below diagonal

terms are omitted . The diagonal terms in these tables are variances , and

always have equal expectations under standard assumptions .

To continue with the illustration , Table 2 gives the diagnostics

( 2.28a ) . The entry for i = 5 , tt * = 12 stands out as large .
This can be

judged by inspecting either the table or a stem-and- leaf plot , or with

the aid of a 20 confidence band centered at the average value of

( 2.28a ) . In this last regard , the following variance formula is helpful .

( 2.29 )

-1 2 2 2

VAR ( Form 2.28a ) la r ) ( a ( -e ) + r ( e -Ꮎ ) + ( 0-0 ) 1 .

3 2 3 124 14 3 12 1 134

From this , the standard deviation is 311.0 and the average value is seen

to be 329.5 Similar computations apply to the diagonals . A printout

of the forms Clik , 2 /tt * ) for i = 5 , tt * = 12 outside a 30 confidence

band shows k = 3 and k = 4 account for the initial large estimate .

This in turn leads to an examination of the relevant data , where a large

difference between the values for j = 1 and j = 2 is found at these

locations . A complete discussion of this data is given in the cited

article , but this should indicate how the " reduction " techniques work .

In connection with the above analysis , the first two momemts of the

diagnostic forms involved in ( 2.28 ) are needed .
General closed- form

expressions for moments of the required type are given .
These are

functions of the 9 and apply to balanced and unbalanced cases .
t
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2.7
Repeated Measures Experiments

Grynovicki and Green ( 1988 ) contains a discussion of this method

ology to repeated measures experiments . In the example described there ,

the diagnostics lead to the discovery of two populations of subjects

not properly taken into account in the study and which raise serious

questions about the validity of conclusions to be drawn . The existence

of these two populations had not been previously suspected . Applications

to other repeated measures experiments , such as medical experiments , are

readily apparent .

2.8 Computations

The computations involved in constructing the tables or plots pre

sented above are minimal . Standard statistical computer packages will do

all calculations required , though some manipulation may be required to

print the diagnostic tables in a useful format . For example , SAS PROC

CORR , with the COV option will compute sample covariances and even

display them , often in appropriate form . The plots require additional

data manipulation , but again standard packages have the requisite

capability . All computations discussed here were done using SAS .

The reduction and partial summing ideas discussed make this method

ology applicable to designs of all sizes . Since the methodology also

applies regardless of the degree of imbalance and to a large class

of mixed models , it can be seen to be useful in a wide variety of

problems .
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2.9 Efficiency of the AVE-Estimator

( HBG ) and , more definitively , Hocking ( 1987 ) contain discussions

the efficiency of the AVE-estimator . This is done by comparing the

small sample variances of these estimators with lower bounds for this

variance , as given by Bhattacharya ( 1946 ) in an improvement of the

usual Cramer -Rao lower bounds .
Closed-form expressions for these bounds

are not known , but they can be computed numerically for specific

designs . Such computation is reported in the cited articles for a

Among thevariety of cell frequency patterns and parameter values .

conclusions reported there are the following .

1. The AVE-estimators of both variance components and fixed effects

are very efficient .

2. The efficiencies are monotonically increasing in all parameters .

3. The efficiencies depend on all parameters but the variances do not .

4. When compared to Yates ' method ( or the method of weighted square of

means or SAS type 3 ) or Henderson's method ( or the method of fitting

constants or SAS type 2 ) , there is little reason to distinguish

among these estimators on the grounds of efficiency , although

the AVE-estimator is generally superior except for small parameter

values .

3. OTHER LITERATURE

The first article on the general diagnostic philosophy described

was Hocking ( 1983 ) which applied these ideas to balanced randomized

block designs . Alternative models , such as discussed above , which

allow for negative estimates of variance components , were discussed by
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Smith and Murray ( 1984 ) for certain two-factor models , but no diagnos

tics were described there . The first major development of diagnostics

was given by Green ( 1985 ) , a dissertation written under the direction of

Hocking . Results based in part on this were reported by Hocking ( 1985 )

and Hocking and Pendelton ( 1985 ) . It deals with balanced , random models

only , but , with minor changes , applies to mixed models . Matrix expres

sions for various diagnostic forms and moments are given which simplify

computations by hand or computer for balanced designs . Since most

diagnostic forms in the unbalanced case are unweighted linear functions

of the cell means , many results from the balanced case apply with

little or no change to the unbalanced case . Hocking and Bremer were the

first to notice the unbalanced extension . Some results from this

source will appear in a more available format in the near future .

Results from (HBG ) are discussed in ( HBGb ) , although in the conference

proceedings , an administrative error omitted one author's name .

4. CONCLUSIONS

A diagnostic procedure has been shown to be both intuitively simple

and effective in judging the quality of variance component estimates .

It applies to both small and large problems . All calculations , displays

and plots can be ( and were ) done by standard statistical computing

packages . The diagnostics are themselves estimates of the components

in question , and , as such , indicate in a straight forward manner , what

impact various features of the data have on the overall estimates . Only

features of the data affecting the parameter estimates are flagged . The

methodology applies to both balanced and unbalanced designs with no

missing cells . A sound theoretical basis exists for the procedure . In
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the balanced case , the overall. estimator based on the diagnostics is a :

standard one obtained from equating mean squares to expected mean

squares , whereas in the unbalanced case , the estimator is new and com

pares favorably with standard estimators in terms of efficiency . In

addition , in the unbalanced case , the estimator is in closed form ,

which simplifies both computation and theoretical inquiry . Also of

importance is the fact the method applies in any random or mixed model

to all components of variance other than the highest order in the non

nested factors , and even to some of these , without modification , as well

to fixed factors . With some modification , these . estimates apply to these

highest order terms as well .

The diagnostic methodology brings out many noteworthy features of

the data directly in terms of their effect on parameters of interest .

Even for large data sets , the tabular and computational requirements are

modest . The reduction formulae and univariate confidence interval

approach reduce the need for tabular displays to a reasonable level .

Unbalanced models are handled in the same way as balanced models , and

with little added trouble . The methodology is sufficiently flexable to

allow the user to tailor some computations to suit the needs of a

particular problem , yet sufficiently standardized to be easily learned

or programmed .
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TABLE 1 . Diagnostics Cli/ jkj * k * ) for e
1

Chemistry Data

j = 1 STEM & LEAF

k

1

N

3 4

1 6.8 16.7 14.6 9.7

2 11.7 31.5 33.2 12.2

30 | 23

20h )

2013

10h5777

10 10122

08

j * = 2 k *

3 10.5 31.1 27.1 17.3

4 8.1 16.9 22.6 11.3
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TABLE 2 . Diagnostics . Clik , 2 / tt * )

k

Glass Data

t *

21 3

1 131.2 -43.5 -28.9

t 2 156.0 1.2

ا
ل
م
ا

44.5

t *

1 2 . 3

1 1582.2 821.6 546.8

t 2 517.7 304.9

3 392.5

t *

1 2 3

1 89.2 242.2 170.7.

t 2 761.4 599.0 1

3 593.3

tt

1 2 3

1 241.5 133.6 -82.0

t 2 586.6 396.4

3 1 594.0

t *

21 3

1

t 2 1

3 |

а

3

STEM & LEAF

i = 1

10 1 0

9

8 | 2

71

6 1 0

5 55

4 | 0

3 1 01

2 1 4

1 37

0 1

-0 1 0348

i = 2

i = 3

i = 4

1631.8 1023.0 554.0

893.2 306.4 i = 5

392.1
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THEORY OF SEMIREGENERATIVE PHENOMENA

N.U. Prabhu

School of Operations Research and Industrial Engineering
and Mathematical Sciences Institute
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Abstract: We develop a theory of semiregenerative phenomena. These may be viewed as a

family of linked regenerative phenomena, for which Kingman ( [6] , [7] ) developed a theory

within the framework of quasi -Markov chains. We usea different approach and explore

the correspondence between semiregenerative sets andthe range of aMarkov subordinator

with a unit drift (or a Markov renewal process in the discrete time case ). We use

techniques based on results from Markov renewal theory.

Keywords: Semiregenerative phenomena and sets, linked regenerative phenomena,

quasi -Markov chains, standard phenomena, stable states , lifetime, Markov renewal

processes, Markov additive processes.

Introduction and Summary . Let the set T be either (0,00) or ( 0,1,2, ... } , E a countable

set and (N , F , P ) a probability space .

P {2+ z =2tglz
= Z

= II

Definition 1. A semiregenerative phenomenon Z = { Ztl» (t , l ) € TxE} on a probability

space (1 , F, P ) is a stochastic process taking values 0 or 1 and such that for (tk) € TxE

(r > 1 ) , with 0 = tosty S ... St , je E we have

24,4 = 1120; = 1 }

( 1 )

6. P{ 24, * + :4 = 1120,647 = 1 } (b = j ) .

For each le E, denote Ze = { zt,et E T} . Since

P {241= Zrze 24_2 =
( 2 )

= P{2t,e= 1120; = 1 } I P {Zt; -
1120e = 1 } ,

= Z

1120;= 1 }

r

1 P {2+ + 1li=2

2, is a (possibly delayed) regenerative phenomenon in the sense of Kingman [7] in the

continuoustime case T=[ 0,00), and a recurrent event ( phenomenon)inthesenseof Feller

[5] in the discrete time case T = {0,1,2, ... } . The family Z ' = { Zę, le E} is a family of

linked regenerative phenomena, for which a theory was developed by Kingman (6 ) in the

case of finite E ; later he reformulated the results in terms of quasi -Markov chains

(Kingman (7] ) . We explain this concept below .
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Example 1. Let J = {Jt , t € T} be a time - homogeneous Markov chain on the state space

E and denote

Zte = 1 {J&= 1}
for ( t , l) e TxE. ( 3)

The random variables Zte satisfy the relationship ( 1 ) , which is merely the Markov

property. More generally, let C be a fixed subset of E and

2e = {1,=c} for (t, 0) e T«C.

(4)

These random variables also satisfy ( 1 ) and thus Z = {Zte ( t ,l) e TxC} is a

semiregenerative phenomenon. In particular, suppose that C is a finite subset of E and

define

Ką = Jų if Jt e C , and = 0 if Jt & C. (5)

Then {Kq , t e T} is a quasi –Markov chain on the state space Cu {0 } . o

While the quasi-Markov chain does provide a good example of a semiregenerative

phenomenon (especially in the case of finite E) , it does not reveal the full features of these

phenomena; in particular, it does not establishtheir connection with Markov additive

processes. Thus , let

$ = { (t , l) e TxE: Zte = 1 } . (6)

We shall calls the semiregenerative set associated with Z. The main theme of this paper

is the correspondence between the set $ and the range of a Markov renewal process (in the

discrete time case) and of a Markov subordinator with a unit drift (in the continuous time

case). Kingman ([7], p . 123) has remarked that associated with a quasi -Markov chain

there is a process of type F studied by Neveu (9) . The Markov subordinator we construct

for our purpose is indeed a process of type F, but we concentrate on properties of the

range of this process. For a detailed description of Markov additive processes see Cinlar

([2],13]).

To complete Definition 1 we specify the initial distribution { aj, j € E} , where

P {Zo; = 1 } = a; ( 7)

with a; - 0, Ea; = 1. As in the case of regenerative phenomena, it can be proved that the

relation ( 1 ) determines all finite dimensional distributions of Z and that ? is strongly

regenerative (that is , ( 1 ) holds for stopping times ). We shall write P ; and E. for the
j E;

probability and the expectation conditionalon the event { 20j = 1}.
In the discrete time case we call Z a semirecurrent phenomenon and denote

ujk(n) = P { Znk = 1120; = 1 }
(8)

where ujk (0) = Ojk In the continuous time case let
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(9)

Pik (t) = P { Ztk = 11Z0; = 1 }

where Pjk(0) = @jk. The phenomenon is standard if

Pik(t) – 8
as t +0+ . ( 10 )

jk

In this case it is known that the limit

-

1

lim

t+ 0 +

P ;;(t)
j )

(je E) ( 11 )

is known to exist ( possibly infinite ); if this limit is finite, then j is said to be stable.

We consider semirecurrent phenomena and provide some examples. The main result

is that the semirecurrent set $ corresponds to the rangeof a Markov renewal process

(MRP) and conversely, a semirecurrent set can only arise in this manner. For details of

the results from Markov renewal theory used in thispaper see Cinlar ( [4] , Chapter 10) . We

construct a Markov subordinator with a unit drift whose range turns out to bea

semiregenerative set . In the case where E is finite we provethat every semiregenerative

set corresponds to the range of a Markov subordinator. Our approach yields results

analogous to Kingman's (17 ], Chapter5) for quasi-Markov chains.Whileour approach

(based on Definition 1 ) is thus morerewarding in these respects, our techniques are

simpler, being based on properties of Markov renewal processes. Bondesson (1 ) has

investigated the distribution of occupation times of quasi -Markov processes. We shall not

investigate this problem for semiregenerative phenomena.

In the literature there are extensive investigationsof semiregenerative processes.

These are processes imbedded in which there is an MRP (or equivalently, a semirecurrent
phenomenon ). We take the view that semiregenerative phenomena are important by

themselves and therefore worthy of study. Inparticular, the theory developed in this paper

provides a proper perspective to the work of Kulkarni and Prabhu (8) and Prabhu (10)
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1. Introduction

Knowledge -based consultation systems (often called expert systems) have become common in the last

decade. Outside the field of statistics, several commercial systems have been built. Within statistics

progress has been limited to methodological feasibility studies, beginning with REX (Gale and Pregibon,

1982; Pregibon and Gale, 1984; Gale, 1986b ). Since then Muse (Dambroise and Massotte , 1986 ),

Express (Carlsen and Heuch, 1986 ), and unnamed systems by Berzuini and others ( 1986 ) and Darius

( 1986 ) have been described .

I mention these first level consultation systems to distinguish Student from them . Student is more than a

consultation system , since it is primarily a tool to help a statistician build such consultation systems.

But since Student also serves as the vehicle for the constructed knowledge-based consultation systems, it

includes the capabilities of the first level consultation systems.

Student is designed to allow a professional statistician to build a knowledge -based consultation system

in a data analysis technique by selecting and working examples and by answering questions. The

statistician does not need to know the internal representation of the strategy demonstrated , and does not

need to know how to write a knowledge based program . He does need to be fluent in the underlying

statistical system , a more natural expectation of a statistician .

REX is a working demonstration of the type of consultation that Student will provide. It allows a

novice to use advanced regression techniques safely by systematically checking the assumptions of the

techniques. It provides guidance to what tests need to be done and when , interpretation of the results of

tests and plots, and instruction in statistical concepts. It has appeared that REX, while designed for use

by novices, is interesting to expert statisticians, because it makes explicit much knowledge that has not

been formalized . Most experts have also expressed interest in using such a consultation system because

it automates many tasks that they know they want to do , but don't always do .

Like REX , Student is based on an underlying statistical analysis system , and constitutes an interface to

that system . Student uses Quantitative Programming Environment, QPE , ( Charnbers 1986 ) as the

underlying system . Briefly, QPE has been designed as a successor to S (Becker and Chambers, 1984 ).

The external syntax and appearance have been largely maintained. But QPE was designed to be an

environment, that is, to contain programming, browsing, debugging, and editing capabilities. The design

of Student assumes that the statistician using Student to create a consultation system knows how to use

QPE .

A methodological prototype study of Student ( ale 1986c) was built using Lisp and a Symbolics

machine. The current version of Student is intended as a product definition study . It is programmed in

the language provided by QPE , since this would be the most likely delivery language for a product. The

goals of the QPE version are to study issues such as speed, usefulness to statisticians, and generality of

the conceptual framework used by Student. This version is currently a partially developed system that

has only begun to be used by statisticians. It has not yet begun to answer the product issues posed, but

shows the knowledge acquisition methods more clearly than the prototype, and has begun to be used to

acquire a few different data analysis strategies.

By using QPE , hardware and software requirements are minimized . QPE will run in most Unix "

environments. Wherever QPE runs, Student will run . Student is not a product, but if it were, it would

require a machine with Unix , and QPE software.

TM

This articale appeared in the Bulletin of the International

Statistical Institute , Vol . 52 , pp 1-18 . Permission of the

author and the editor of that journal to reproduce it here

is appreciated .
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What Student adds to the capabilities of REX is the capability to acquire its knowledge base by

interview and demonstration . The demonstration approach was proposed by Gale and Pregibon ( 1984 ),

and tested in the Lisp prototype (Gale 1986c ).

The knowledge base used to conduct a particular method of data analysis has been called a strategy,

and the term will be used here. Section 4 defines strategy. Briefly , a data analysis strategy includes

knowledge about the kinds of problems that can occur in using the method , how to test for them , what

to do if they occur, and how to communicate the problems and solutions to a novice user.

The importance of acquiring a strategy by interview and demonstration is considerable. In the current

state of building knowledge-based consultation systems, two distinct roles, usually played by two

different people, are standard . One is the role of subject matter expert, and the other is the expert in the

inference engine used , or knowledge engineer. In building REX, I played the knowledge engineer,

while Daryl Pregibon played the statistical expert. This procedure requires the knowledge engineer to

learn a lot about the subject matter, or the subject matter expert to learn a lot about the inference engine

and programming, or both.

Student's primary goal is to allow a statistician , who does not know how the inference engine is built, to

build a knowledge based consultation system without the involvement of a knowledge engineer. This

should support greater efficiency in building consultation systems in data analysis.

There is a substantial secondary benefit as well. A statistical consultation system will be used in many

other ground domains, such as physics, psychology, or business analysis. Current Al techniques are not

adequate to handle knowledge in multiple domains, so we built REX with the explicit assumption that

the user was willing to learn statistics concepts and vocabulary. This assumption will be reasonable for

many analysts, but it will be unreasonable for many managers or low frequency users of statistics .

Sudent provides the means to specialize the knowledge and vocabulary used to guide a consultation in

data analysis. Because it can learn by interviewing a statistician using locally relevant examples, it can

be provided with strategies shaped to local environments. This will increase the market size for a

Student-like product as compared to a REX - like product.

Another significant benefit of removing dependence on a knowledge engineer is the capability to

specialize a system to a local environment. When Student is first acquired by a group such as a quality

engineering group , a specialist statistician can select examples from the group's files and work them in

the Student environment After this specialization training, the engineering experts would use Student

for consultation, returning to the statistician with problems beyond its training. When such a problem

seemed frequent, the statistician would work it as an addition to the strategy . If it seemed infrequent,

then it would be worked by hand.

There have been three main challenges in building Student First, the system had to support the

acquisition of the first example. In a rule based system , the first rules to be acquired are typically

different from later rules, because a rule based system uses a core of rules to encode control information.

subject matter expert would not be able to provide control information .

Second, Student had to acquire knowledge from a new example that was consistent with its previous

examples. Consistency means that all the examples that the statistician considered as properly worked ,

remain so when the additions to the strategy are made.

Third , the system had to support deliberately inconsistent changes to strategies over a long period of

time. Current technology, such as used for REX, results in a " compiled " strategy, which is difficult to

change.

The current version of Student has made clear that the first two of these challenges have been met, and

it suggests that the third can be met. These challenges have been met by the development of an

artificial intelligence technique called knowledge -based knowledge acquisition (Gale, 1986 ).

Knowledge-based knowledge acquisition means restricting the domain of knowledge that can be
acquired, and developing a conceptual model of the restricted domain .

Student is restricted to acquiring data analysis strategies. It is not a general purpose knowledge

acquisition program for a general purpose inference engine. With this restriction, I have been able to

provide a conceptual model for strategies of data analysis. For instance, we know we have to deal with

data sets, and we have provided representations to deal with them . The conceptual model specifies that
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the analysis consists of looking for violated assumptions, and if found, of finding a cure . It specifics

that we look for violated assumptions by making tests and by showing the user plots. I derived this

conceptual model by inference from REX , and by considering extension of the methods to other data

analysis techniques. Having this conceptual model provides enough structure to guide the user through

the first analysis of a given kind , and to acquire additional consistent examples. It is still a research

question how far this view based on work with REX will generalize, and how well inconsistent changes

can be treated .

Student is written in modules that fall into three groups: control, data structure management, and

learning. The data structure management modules can be distinguished as managing primitive or

composite structures. Student then acquires knowledge by filling in data structures , which become a

significant part of the system . The control and data structure management modules are nearly

independent of statistics knowledge. The learning modules are specific to data analysis. This paper will

focus on the learning modules .

The ideas for Student were proposed by Gale and Pregibon (1984 ), and tested in a Lisp prototype by

Gale (1986 ). The current QPE version is a partially developed system intended to explore issues

relevant to making a product. It is on the leading edge of the line of research applying artificial

intelligence techniques in statistics for the benefit of statistically naive users (Gale , 1986a; Haux , 1987).

Our statistics department has begun to use this version of Student to better define the requirements for a

useful product.

2. The Appearance of Student to the Statistician

The appearance of Student to the statistician is partially conveyed by the following transcriptions of

sessions with Student. The sessions show how a statistician begins w instruct Student. This phase

demonstrates most clearly the knowledge built into Student, as opposed to the knowledge that it

acquires.

2.1 Introducing a New Data Analysis Method

In the first session , work is begun on a strategy for a data analysis technique new to Student. This is

the first stage of building a new consultation system . The example supposes that spectrum analysis

(Bloomfield 1976 ) is to be defined for the system . The statistician's entries are shown by a ">" and

boldface text. The computer's screen output appears in italics.

> student( )

Do you want 10

1. get a consultation from me

2. instruct me in a strategy

>2

There is no currently selected analysis. Do you want

1. univariate description

2. simple regression

3. New Analysis

> 3

analysis) ?Please type a wordfor the name of the new type of analysis (

> spectrum

At least one variable is mandatory for spectrum analysis.

What is the name of the first required variable ?

> time.series

Each inpul variable will be copied to a standard QPE variable.

What standard name would you like to use for the time series variable ?

> X
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time series is now the required variable for spectrum analysis.

Please enter another name for another required variable,

or ' : ' (dor) if there are no more .

> .

There are no optional variables now . Please

enter a namefor a variable, or ' : ' (dot) if there are none .

> .

Notes on the session to this point:

The session begins from within QPE by calling student just as any other QPE function is called . Since

Sudent is built within QPE , it is easy to use Student for routine analyses, switching to the full power of

QPE if the analysis becomes non - routine.

The first point that Student must establish is whether the user is a statistician who wants to instruct

Student, or a consultation client. This is essentially a branch to two entirely different programs which

share the same data structures . The data structures are acquired from statisticians and used for

consulting.

Student then asks which analysis will be worked on . Any existing analysis may be modified by a

statistician . Notice that the list of options provided is a dynamic one that depends on what kinds of

analyses Student knows about. Also , the option to add a new kind of analysis is only shown if the

mode asked for was student

The reason we know that we must have at least one mandatory variable is that we are doing data

analysis. There may be other mandatory variables, and there may be optional variables. This is a clear

and simple example of how the restriction to data analysis provides information which enables

knowledge acquisition. By organizing the information about data analysis as much as possible, we try

to build a formal cognitive model of data analysis.

The session continued :

Analysis Revision Menu

1. select or define analysis ( spectrum now )

2. create a new strategy ( copy or construct)

3. define a new example

>2

There is no existing strategy to copy.

Please type you last name.

> gale

Please type a word to use for the strategy name

(or just a ' : ' (dot) to accepe " gale" as a default).

Analysis Revision Menu

1. select or define analysis (spectrum now )

2. create a new strategy (copy or construci)

3. define a new example

4. select a strategy

5. delete a strategy

6. stabilize a strategy

7. refine the gale strategy

>7

130



IP - 15.1

Strategy Refinement Menu

1. show strategy & statuses

2. select or define an example

>1

NA.in.inputs OK

final.calculation OK

Notes on the continuation.

Once an analysis is selected, the top level menu becomes the analysis revision menu . An analysis is

needed to select the dynamic entries to the menu . The menu shows that with a minimally defined

analysis, we can define a new strategy or a new example.

The session continued by defining a new strategy. The system records the name of the author of the

strategy , and gets the date it is begun from the operating system .

Communication requires many names , and they have to be convenient for the people using Student

Thus, Student needs to ask a lot of names . Wherever possible, the system suggests a default, but the

final choice is up to the statistician .

After creating an empty strategy, the analysis menu has expanded. Before there was a strategy, there

were none to select or delete, so there was no sense offering these options. A strategy is " stabilized " to

make it available for consultation . So long as a strategy is considered stable, it can be used for

consultation , and it cannot be modified . This is just a reminder to the statistician , since it is simple to

stabilize and destabilize, or to copy a stable strategy and modify the copy. But it is important that the

statistician carefully consider which strategies Student will be allowed to use for consultation .

This session is ended as Saudent shows the two minimal features automatically created for any new

strategy . QPE provides "NA" as the result when asked to take the logarithm of a negative number, or to

divide by zero . Student infers from NA's in transformed variables that inappropriate mathematical

manipulations have been made. The knowledge about the limits of the functions is thus distributed

among the functions themselves. If it were not there, it could be provided as background knowledge,

but there is no reason to duplicate the knowledge. This does mean that strategies need to specify what

should happen if an original input contain NA's. The feature initially provided will detect NA in any

input, but awaits learning what to do until some example triggers it. The other feature initially provided

is an empty shell to place a final calculation and report into .

Before the strategy extension cycle can be begun, an example must be provided.

2.2 Introducing an Example

In this session, Student is shown the existence of a new example. No demonstrations can be made

without examples, so this step is necessary to continue constructing a consultation system . The user has

selected simple regression analysis (Mosteller and Tukey 1977 ) for this session , at a point just after

defining simple regression and one minimal strategy named " basicsr. "

Analysis Revision Menu

1. select or define analysis (simple regression now )

2. create a new strategy ( copy or construci)

3. define a new example

4. select a strategy

5. delete a strategy

6. stabilize a strategy

7. refine the basicsr strategy

> 3

Please type a word to use for a short namefor this example.

> brain.body

Please type a word to use for the response variable data set.
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> brain.y

Please type a word to use for the explanatory variable data set.

> brains

Do you have a weight variable for this example ?

> DO

Please type a brief description of the brain.body example.

> The response variable is the average brain weight in grams,

the explanatory variable is the av body weight in kilograms,

for 62 terrestrial mammalian species. Data from Weisberg, p128 .

Notes on this session :

The simple regression data analysis method was defined to have two required inputs and one optional

input. The required inputs are called " response " and " explanatory", and the internal QPE names are "y"

and "x" . The optional input is called "weight" and its internal name is "w." This session shows how

the information acquired by. Student is put to use and becomes difficult to distinguish from the

knowledge it starts with.

If the short name had been chosen as " brain ," the system would have located " brain.y " as a data set

named by concatenating the short name and the internal name of the response variable. It would have

assumed that the data set was so named precisely to be used as the initial input for the response

variable . It would likewise have found "brain.x " as a data set for the explanatory variable. As it is, the

system has checked that the data sets of the given names exist. It then constructs code to assign these

initial values to the data sets "y" and " x . " It does not execute this code now , but stores it as part of the

definition of the example.

The system did not find a data set named " brain.body.w ", so it asks if there is a weight variable for this

specific example. When it leams that there is no weight variable, it uses stored code describing how to

generate default values for the weight variable. The code used was acquired by demonstration during

the initial definition of the simple.regression analysis frame.

The description of the example is treated as unprocessed text It is available to those modifying a

strategy to see what examples the strategy was developed with. Asking for it is a reminder to the

statistician that the information will be needed by others later . It is probably easier to give this

information now than in the future . The reply given here shows that there is information that could be

broken down and some of it made available to the machine. The meaning of each variable, their units,

the sampling units, and the source of the data might each need to be asked individually.

23 Strategy Extension

This session shows the usual cycle for strategy extension. It begins with a minimal strategy for simple

regression . I have shown this session without the full menus, only the menu line selected by the user as

the user's input.

Analysis Revision Menu

> 7. refine the basicsr strategy

Strategy Refinement Menu

> 2. show examples and evaluations

brain - unanalyzed

Strategy Refinement Menu

> 3. select an example
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The only example available is the brain example.

> 4. analyze the example

beginning to consider NA.in.inputs feature with no argument

beginning to considerfinal.reportfeature with no argument

Strategy Refinement Menu

> S. REVISE strategy by inserting a new feature

Which feature is the last one correctly analyzed ?

1. none of the below are correct

2. NA.in.inputs ( none)

3. final.report(none)

> 2

Please type a word to use for a name for the new feature.

> skewness

Please tell me why skewness is important for simple regression .

> The skew points are unduly influential.

Please type a word to use for a name for this test ( the ... test),

or just a ' : ' (dot) to accept skewness as a default.

> .

Please type a word to use for a QPE name for the test statistic,

or just a ' : ' ( dot) to accept skewness as a default.

>

Type ' return ()' to make your last expression define skewness.

Student: qtis < -qu (y) #quartiles of y

Student: qtis

(4., 17.25, 169.)

Student: (qtis(3 )-qtis[2 ])/( qtis [ 2 ]-qtis ( 11)

11.4528

Student: return

The value of skewness on this example is 11.4528.

What preliminary LOWER limit do you suggest ?

> 1.5

What preliminary UPPER limit do you suggest?

> 3

The interpretation of the first test result is severe.

Is this your intention ?

> yes

This rest has just one input variable. This can be treated

as an argument ifyou want, but doing so will make the result

unavailable to further computation.

Do you want this to be a feature with an argument ?

> yes

Please type a word to use for a short namefor this transform (the ... transform ).

> log
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I am setting up a temporary environment. Please show me how to make a log

transform by providing code to redefine ALL NECESSARY input variables,

ENDING with a redefinition of y.

Type 'return( )' to make your last expression define y.

Studeni: logby )

( 3.79549, 2.74084, ...

Student: return ()

You have shown me : expression ( y <- log ( y ) )

is this a satisfactory definition of the log transform ?

> yes

The log transform will reduce the problem severityfrom severe to mild .

Is the log transform acceptable to you ?

> yes

Committing to the log transform .

Strategy Refinement Menu

> 4. analyze the example

beginning to consider NA.in.inpuis feature with no argument

beginning to consider skewnessfeature with argument y

making log transform

beginning to consider final.report feature with no argument

Notes on the session :

All strategies for a given analysis method share the same set of examples, each defined by specifying the

input variables. Each strategy has its own records about how well the strategy has analyzed the

example. Each example has status unanalyzed, acceptable, or unacceptable. To start with , an example

is unanalyzed . After a strategy revision , all examples are marked unanalyzed.

After selecting and analyzing the brain example, it is found to be unacceptable, because there is no basis

for declaring it acceptable. One action possible for an unacceptable example is to declare it is

acceptable. Then it is so marked, and the pattern of transformations and their reasons ( features of

arguments) is stored. Any other analysis that makes the same sequence of transforms for the same

reasons will be automatically marked acceptable. An acceptable example can be declared unacceptable,

which causes the patter to be stored as a known bad pattem .

The other options for an unacceptable example all revise the strategy . The session shows one way to

revise the strategy, by inserting a new feature . Other ways include deleting a feature , and revising a

feature. To insert a feature, we must know how far the analysis is considered correct. Then the new

feature will be inserted so that it will be tested following the last correct feature .

The acquisition of a test shows the system collecting code to define the test. The statistician is in a

slighuy modified QPE environment, free to examine data known to Student, call on any predefined QPE

functions, and to plot as may be useful. The modifications are that the user may not refer to data not

known to Student, and may not make an assignment to a global variable known to Student. When the

user types 'returno ', a legal QPE expression with a special interpretation here , control returns to

Student. The program then cleans up the series of expressions into a minimal set required to define the

desired variable. In the example, the line on which the statistician examined the values of the quantiles

will be deleted .

Student will infer lower and upper limits from the statistician's actions over many examples. But when

there is only one example, the induction method fails. Therefore a set of preliminary limits is requested.

Their importance declines as more examples become available. The preliminary limits can also be set

by an automated Monte Carlo method, but it is too slow for interactive use .
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The system examines the code produced, and finds that only one variable was used to define skewness.

In such a case, generalization is frequently useful. It simplifies the process of reconstructing any given

value to have such generalized functions not be used in further calculations. This appears to be

acceptable in common cases where generalization is useful. If it is unduly restrictive , a more complex

internal method can be programmed.

The system then asks for a demonstration of what to do if skewness is found to be a problem . A

transform specifies each input's new value. The previous values of the inputs and intermediate results

based on them are available for the new specification .

Student always creates a temporary environment when it considers a transform . The transform is made

in the temporary environment, and the test for the feature is applied. If the result is still unacceptable,

the transform is not committed, but the original environment is restored . This procedure is followed

even on the time that Student is shown how to make the transform .

This completes the demonstration of the skewness feature. Student now works the example by making

the log transform of the response variable. The next step will be to show it that the skewness of the

explanatory variable needs to be examined. This will be much shorter to show , since the same feature

can be reused with a different parameter.

3. The Knowledge Acquisition Method

3.1 A Critique of Knowledge Acquisition in REX

Developing a strategy for use in REX was a labor- intensive process. Two phases can be distinguished.

In the first phase the statistician responsible for the strategy, Daryl Pregibon , chose a half dozen

regression examples that clearly showed some frequent problems. He then analyzed them using

interactive statistical software with an automatic trace . After analyzing the group of examples, he

studied the traces and abstracted a description of what he was doing. We coded this as a strategy for

REX and tried it on a few more examples. He revised the strategy completely at this point, and the

second phase began.

In the second and longer phase, one of us would select one additional regression example and run REX

interactively on the chosen example. Since we selected the example knowing what would stretch REX,

REX usually reported a severe problem that it didn't know how to fix . Then we would modify the

strategy so that the example would be handled . This process was iterated through about three dozen

more examples.

Based on this experience , and on a feeling that it was typical of other techniques, we do not believe it is

possible to build a data analysis strategy without working through many examples. One must make

many decisions to build a strategy, and there is no literature simplifying the task . Therefore the only

available defense of a strategy is to demonstrate performance, which requires working many examples

more than those used to build the system . On the other hand, our experience also leads us to believe

that it is easy to generalize from data analysis examples. The basis for generalization is usually a

statistical test that statisticians can provide. Generalization then consists of determining the range of

values of the test for which the demonstrated technique holds.

However, the way in which we worked examples for REX was far from ideal. The first difficulty with

our method was assuring ourselves that a strategy modified to work one additional example still worked

all previous examples. We could by brute force run REX in batch mode on all previous examples and

see if the performance was the same. Usually we reasoned that most of the previous examples could not

be affected , and checked the few that might be affected by hand. Naturally , the more examples worked ,

the more severe this problem became. The need to check consistency in batch mode for a system

designed to be interactive reduced the flexibility of the strategy developed .

Second, the method used was the epitome of the currently standard two -person development of expert

systems. I built the inference engine used while Daryl was responsible for the strategy developed.

Whenever Daryl wanted to do something he hadn't done before, we had to huddle, as Daryl was

learning a language he would only use to build one program . In a department with twenty professional

statisticians and one person intimately familiar with the inference engine, it was not clear how many

additional data analysis techniques could be handled by this two person approach.
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Third, it would be difficult to modify the strategy in REX . Modifiability is important because a growing

literature on strategy (Gale, 1986a; Haux , 1986 ) can be expected to suggest desirable changes. It is also

important because users will probably want to modify strategies to their particular needs. However, the

first two problems would make this difficult: to specialize the program a local statistician would have to

learn a language used by no other program in the world , and the modifications made might inadvertendy

destroy some capabilities of the strategy.

However, the development of REX contributed greatly to following work . It provided us with the

beginnings of a conceptual model for data analysis: a data analysis consists of a desired calculation,

assumptions required for the calculation to be meaningful, tests for the violation of the assumptions, and

transformations to ameliorate the violations. The classes of frames used in REX provided us with an

initial list of classes of primitives that has remained useful and has been expanded into a fuller

conceptual model of data analysis.

3.2 Knowledge Acquisition lo Student

The necessity of working examples to build a data analysis strategy suggested the possibility of

acquiring strategies directy through that process. A system should assist the teacher in establishing

consistency across all examples worked, and should not force a statistician to learn an obscure language.

It appeared that examples might provide a language suitable for communication between statisticians and

computers.

The first issue encountered in designing Student was how to learn from the first example. In a system

without knowledge, there is simply no basis for use of information provided in working an example. By

providing Student with the conceptual framework induced from REX , we have built a system that can

deal meaningfully with an example even when it has seen no previous examples. The rather limited use

of code collection in Student shows how much of the knowledge it is acquiring is not knowledge that

could be inferred from just watching the analysis of an example. Even for the parts heavily dependent

on code, if the system did not have some notion corresponding to " plot ", " test", and " transform ", it

would not be able to deal with code having these different functions. In short, understanding the first

information provided is possible because the system is limited to data analysis, and because it has been

possible to build a conceptual framework for data analysis.

The conceptual framework used in the current version of Student has the fifteen classes of primitives

shown in the following table . Each instance of a primitive is represented by a frame. In the table,

indentation shows that names of instances of the primitive indented occur as values in some slot of the

superordinate primitive. That is, the relation shown by indentation is " uses information from . "

analysis

input variable

example

feature

test

plot

transform

report

strategy

linear

conditional

repeated

concept

class

consultation

Each primitive has a set of slots, which are also chosen to reflect the structure of data analysis. As an

example, a simple primitive is the input variable frame, which has only a few slots:

input variable

external name of input

required or optional
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default ifoptional

data type

internal variable name

The content of the instances of these primitives is the information that a consultation system must have .

For instance, when asking a consulting client for a specific input, it is necessary to know the common

name of the input. Likewise, the system must know whether to insist upon having a given input

variable before beginning the analysis ( required or optional), and what default to use if the user does not

have an optional input. The system must also know what data type the input requires to determine if

submitted data is possible. Since we do not want to overwrite input data with later calculations, we

need a standard variable name to copy the input to .

Knowledge -based knowledge acquisition in this context means specifying how the contents of each slot

will be acquired. For the input variable primitive, each slot could be acquired by asking the teaching

statistician. Most of them could also be acquired more actively. The intemal name could be created

from the external name and perhaps a unique number. Acceptable data types could be inferred from the

data types of the inputs to the set of examples provided. Optional variables and their defaults could be

inferred as those with repeated inputs. It seemed better in each of these cases to ask the teaching

statistician and then use the information to check inputs to teaching examples.

Thus, specific techniques designed for the specific knowledge in each slot were chosen. Student uses

four specific techniques: interviewing, limits induction , Monte Carlo learning, and background

knowledge.

Most cases are handled by interviewing. Knowing what is needed , and having a statistician at hand, it is

easy to just ask . Even so, exactly how to ask for the information varies between menus , fill in the

blank , multiple simultaneous choice, and free response . And of course the prompts vary with the item .

Monte Carlo learning can establish initial notions of the distributions for test results. The distributions

in turn can be used to set initial cut points, or limits for distinguishing severe , mild and insignificant

cases of assumption violations.

Limits induction is inference of limits on test ranges from test results and action ( transform ) or non

action by the statistician. Let vi be the value of a test on the ith data set, and a ; be T or F as the

statistician acted or didn't act. Set the lower cut point as max(vila;= F ) and the upper cut point as

min (vila ; = T ). Then for test values above the upper cut point, the statistician has always acted, and for

values below the lower cut point, the statistician has never acted . This simple scheme is slightly

modified to include the Monte Carlo results.

Knowledge-based knowledge acquisition has several advantages. First, the information in each slot is

necessary for a consultation program . Systematizing the knowledge to acquire from a statistician speeds

construction because the system won't forget what is needed .

Another advantage of knowledge-based knowledge acquisition can be shown in the acquisition of an

input variable. It is almost always appropriate to run a number of tests on each input variable by itself.

Without knowledge- based knowledge acquisition each time a new variable is given, a battery of tests

must be specified by the teaching statistician. However, it is easy to keep track of what tests have been

used for all input variables by data type, and to suggest these to the statistician . Since the tests are

based only on knowing the data type of the input, they will often be appropriate in many different data

analysis procedures. The domain knowledge we are using here is that the tests are similar in many

different analysis types, and that they are reasonably organized by data type .

As another example, a statistician may notice after some time of programming that an optional input

variable is possible. One would then back up and increase the generality of numerical procedures to

accommodate the extra variable. With knowledge -based knowledge acquisition, the statistician is

encouraged to think of optional inputs at the beginning of the construction process, thus avoiding the

costs of reprogramming. This encouragement may not always be effective, but it can only work in the

direction of reducing the problem . In short, by providing a framework for data analysis, the statistician is

encouraged to think in previously successful terms.

Acquiring first examples does not address all the problems in building a knowledge acquisition system .

However, the domain restriction has been useful for extending a given body of knowledge as well as
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beginning it. Extension of knowledge for a given data analytic technique involves demonstrating more

assumptions, how to detect their violation , and how to fix them . The same techniques used for initial

acquisition suffice here. However, it is also necessary to check consistency for previously worked

examples.

Knowledge-based knowledge acquisition has also been useful for dealing with consistency as the number

of examples and the strategy have grown. Consistency means that after incorporating information on a

new assumption , the recommended analyses of all previously worked examples are not changed. This is

a requirement analogous to logical monotonicity. Some changes can be proved consistent by using

domain knowledge. The domain knowledge consists of a theorem , and the proof consists of verifying

the hypotheses of the theorem , so this is not automatic theorem proving. The proof may use data that

could be specified and collected when the previous examples were demonstrated . This will be more

efficient than rerunning examples. Other cases, such as showing that a new test is not passed for an old

example, require new calculations. Domain knowledge is able to specify data to save that will make

such checking faster than completely reworking an example.

Of course , the check may find that a change is inconsistent. That is, that the recommended analysis for

at least one previous example has changed . Then the statistician will need to revise the existing body of

knowledge. This might just consist of blessing the revised analysis for the inconsistent examples. Or it

may require revising the strategy, perhaps revising the assumption just added . This can be assisted by

domain knowledge encoded as editing procedures.

3.3 A Critique of Knowledge Acquisition in Student

Interviewing is useful. A knowledge-based interview is easy to write, since one knows exactly what to

acquire. Interview procedures attached to slots are easy to keep track of, so that it is easy to see if all

slots can be acquired .

A research issue is how much can and should be acquired by interviewing, and how much must or

should be provided as initial knowledge. The Lisp prototype tested this by attempting to acquire

everything by interviewing. It appeared that everything could be acquired this way . However,

experience with this extreme approach led to deciding to provide some items as initial knowledge . The

collected reasons used to justify initial provision of an item were

(1) distractingly frequent requests for information,

( 2 ) richly structured information ,

(3) stable and non -controversial information .

For example, data types (vectors, matrices, time series, ...) are being built in for reasons 2 and 3. An

initial core of technical definitions will be provided for reasons 1 and 3.

The original idea of programming through demonstration of techniques on examples needs further

development. In the Lisp version of Student, demonstration of examples seemed slow and clumsy. As

Student has developed, the settings in which demonstrations occur have been restricted to key points

about a particular example, so that the demonstrations become short sequences in a well understood

setting. This has helped, and it is useful when describing a plot or test to have an example to do the

operations on immediately . However, the process is still not flexible enough to allow exploration and

final selection of one of several approaches tried . The statistician needs to approach the system with a

clear idea of what will be demonstrated. There is, however, key information in the examples and I

believe the current system is a useful start towards a more flexible system .

We found in building REX that the most powerful explanations in statistics were not verbal, but

graphical. Thus we programmed before and after plots for each transformation. Student is able to make

these automatically from plots acquired while being shown how to detect an assumption violation . This

is a convenience .

Monte Carlo learning seems like a technique with much wider applicability for statistical systems to

learn about statistical tests . Its use will be limited to overnight applications.

Limits induction is apparently a useful idea. It can describe what a statistician has actually done,

possibly pointing out a poorly worked example, or a poor test. It can be used to alert statisticians to

taking an action that is not consistent with previous actions, but can be changed easily if they insist
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4. Statistical Strategy Representation in Student

4.1 Goals for Representation of Statistical Strategy

This section discusses what is meant by statistical strategy, how strategy is being used , and why it is

being studied. The purpose is to derive the goals that must be met by representations of statistical

strategy .

The term statistical strategy has been used to denote integrating previously known tests and

transformations into coherent total approaches to data analysis. Although the term was suggested by in

1981 by Chambers, there is as yet no generally accepted definition of this term . Daryl Pregibon and I

( 1982) suggested that strategy would answer questions such as

" What do I look for ? "

“ When do I look for it? "

" How do I look for it ? "

“ Why do I look for it? "

“ What do I have to do to look for it?"

Wayne Oldford and Steve Peters (1986 ) wrote “ The term ' statistical strategy' will be used here to label

the reasoning used by the experienced statistician in the course of the analysis of some aspect of a

substantive statistical problem .” David Hand (1986) stated " statistical strategy has been defined as a

formal description of the choices, actions, and decisions to be made while using statistical methods in

the course of a study." These definitions give the general flavor of the subject matter beginning to be

addressed and for which representations must be sought.

A more informative view of what strategy must mean can be derived by examining the situations in

which we want to use it. To this end , I would like to review two views of the data analysis process that

have been proposed by Hand (1986 ) and Oldford and Peters (1986). Hand discussed four stages of

analysis, while Oldford and Peters distinguished four levels of strategy. That is, Hand was concerned

with entities which take place at different times, while Oldford and Peters ' description is a classification.

Hand's four stages are (1) formulate aims, ( 2 ) translate into formal terms, ( 3 ) numerical processing, ( 4 )

interpretation . These stages were given specifically as stages in a multiple analysis of variance

(MANOVA), but they appear to me to be general. The first stage is concemed with what dependent and

independent variables are involved, how they are related , and what questions the researcher wants to

explore. It is largely phrased in the language of the ground discipline. The second stage results in the

translation from a problem statement in the ground discipline to a problem statement in statistics terms.

The third stage consists of estimation , testing, data cleaning, and transformation . This stage functions

within the statistician's language. The fourth stage consists of translating back to the ground domain .

As Hand points out, there will be various loops in an analysis, retuming to earlier stages to alter

decisions.

Oldford and Peters suggest 'operational level' as a scale for thinking about procedures. At the lowest

level are standard numerical procedures of statistics, such as least squares fitting or robust fitting.

Selections from this level constitute the minimal components of a statistical package. Just above this

level are such sub -procedures as collinearity analysis and influential data diagnosis. Each of these

presupposes the existence of procedures in the layer below it. Above this layer lies a layer of

techniques, such as regression analysis, spectrum analysis, or analysis of variance . The top-most

identifiable level has strategies for analysis and for design.

The levels idea rests on a notion of a procedure using other procedures as building blocks to carry out

its goals. The notion of stages is that of what is done first. The relationship between them is that the

high level strategies are used first and more frequently. The low level strategies are used later if at all.

Thus the higher levels of a hierarchy of techniques will correspond to the preliminary stages of a study.

4.2 Intentions in Studying Statistical Strategy

One intention in studying statistical strategy is clearly to respond to the programming opportunities

available. All the programs discussed in the introduction can be said to have as their goal to help

people choose statistical methods. This will require research by statisticians about how one should

choose statistical methods. The strategy representation then should be usable by statisticians in

communicating among themselves.
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Since the current uses of strategy are for programs, the representation must be interpretable by machine.

The assumed users of all the programs cited appear to be untutored in statistics. Therefore, it will be

important to interpret the numerical statistics in English . The strategy representation needs to ease

preparation of reports on what has been done.

Implicit in the choice of technique and application of technique uses is the opportunity to assist users in

many different techniques. The representation must then be capable of expressing how to make the

required choices in many different data analytic techniques.

Another possible use of strategy is for statistical education . By clarifying what features the various tests

and plots are designed to detech, when various features should be sought, and how to respond if they are

found, it should be possible to educate students more effectively . A representation suitable for education

may be considerably different from one for consultation , based on Clancey's experience with Guidon

( Clancey 1984 ). Without a setting in which to test this use , the requirements are unclear.

The goals that emerge for a representation for statistical strategy are that it should serve as a

communication medium between expert statisticians, students, and machines. It should be sufficiently

expressive for strategies in the range of data analytic techniques. The machine uses include both

deciding what to do and reporting why.

43 The Feature /Imperative Representation of Strategy in Student

This section describes the strategy representation evolved through REX and Student. Another

representation is described by Gale and Lubinsky (1986 ), which compares the two representations.

The statistical knowledge in Student is represented by a symbolic network. The lowest level of this

network consists of such things as strings representing commands to the statistical language, strings of

English text to show the user , numbers representing limits for interpreting tests , and lists of past results .

These lowest level entities are ped into entities that represent such things tests, plots, report

fragments, and transformations. These are in turn grouped to represent what we call features, and the

features are combined into strategies. This representation can be readily seen to correspond closely to

Oldford and Peters' description of strategy by levels, although the contents of the lower levels are

different

Features represent statistical concepts such as outliers, mean , granularity, heteroscedasticity, and

symmetry. When a statistician examines a strategy used by Student, features are the lowest level

exhibited in the graphical presentation. When the Student program examines a strategy , it interprets the

same structure as a set of commands, or imperatively. Thus I have called this representation scheme

" feature/imperative ." When interpreted imperatively, the strategy directs the program through a series

of stages, analogous to Hand's description , but much more restricted in scope .

The feature/ imperative representation has evolved through development of REX , and the prototype study

for Student (Gale 1986c ) to the current design . REX made two major contributions to following work .

The first was a viewpoint for thinking about data analysis as a diagnostic problem . Briefly, one should

list model assumptions ( analogous to possible diseases ), test the data set at hand for violations of the

assumptions (analogous to symptoms), and if found select a transform of the data (analogous to

treatment). The success of this approach depends on the representation of statistical knowledge. This

was the second major contribution of REX . REX had a set of statistical primitives including tests, plots,

assumptions, and transforms, which could be built with artificial intelligence techniques such as frames

with slots, or objects with attached methods.

Features, plots, tests , and strategies are entities with enough usefulness as concepts that it is also useful

to establish analogous entities in writing a program . The programing device used to represent these

entities is called aframe. A frame is in the first place a place to store information. Named slots specify

which information can be stored in the frame. Different types of frames are distinguished by what

information will be stored in them . The bare bones of the strategy representation can then be stated by

describing the types of frames, or primitives, used and what information is kept for each of them .

The Student prototype built on the insight gained from REX , and increased the number of primitives to

ten . The current design for Student uses most of the primitives from the prototype plus a few more , as

listed in the section 3. Descriptions of the primitives follow .

6
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The concept primitive keeps information about technical statistical words. The purpose is simply to be

prepared to define them for users. The more this definition can be tutorial, the better. This is the only

primitive not used directly in the strategy .

The data type primitive keeps information about vectors, matrices, upper right triangular matrices, etc.

There is a small collection of data types with a hierarchical structure . It provides information such as

how to verify that a data set is of the required type, and how to generate a random example for a Monte

Carlo study (Gale and Lubinsky, 1986 ).

The analysis primitive reflects that Student will handle several analysis techniques, such as regression

analysis, description of univariate data , spectrum analysis, and analysis of variance . The analysis frame

will show how many input variables are required , and how many are optional. It will also show what

strategies are available. The input variable primitives specify such things as name, data type, and

default value .

A strategy is validated by the examples that it works, and it is partially derived automatically from

examples. Therefore each strategy will deal with a group of examples, each represented by an example

primitive. The remainder of the primitives are used to express the strategy as a structure built of

features.

The feature, test, plot, and transform primitives originated in REX and have been used in each system

since. They describe how to test for a feature, hoe to show it to a user , and if its presence violates an

assumption, what transforms can be considered to alleviate the problem . The report fragment primitive

has been added to help generate a report. It seems likely to be elaborated.

The preceding discussion described how strategy in a broad sense is represented in Student. A strategy

in the narrower sense of the strategy primitive is described formally as a combination of features. The

combination used in Student is a programming language restricted by requiring a simple graphical

display of an expression in the language. This is based on a decision to encourage statisticians to think

about strategy by providing a vivid representation of a strategy. The restriction does not limit the

strategies that can be described, but it may make a description clumsy . In interactive use only the

graphical language is seen by the statistician . However, the formal language underlying the graphical

expression gives it a clear definition of its meaning. It may also be useful as an off line recording and

communication medium .

The language used is formally described as follows:

strategy = item ( strategy / empty)

item feature

/ 'ifl' feature ') ' ( strategy ( ' else ' strategy / empty )

l'else' strategy )

l ' for(' feature ')' strategy

:

feature = test- feature

| strategy - feature

Informally , this is read that a strategy consists of a list of items. Each item is either a feature, a

conditional strategy , or an iterated strategy. A feature is either a test feature or a strategy feature . A

conditional strategy is a test on a feature, with one or two alternative strategies to consider depending on

the test. A conditional strategy is a repeatedly tested feature with a strategy to consider whenever the

test is passed .

The symbols of this language are given meaning by considering each feature, item , and strategy to be a

predicate having value present or absent. A test -feature ( a feature primitive) contains a test that can be

applied to any example and a means of interpreting the test result to state that the feature is present or

absent. This is the “ ground truth " on which the language builds. A strategy is present if and only if at

least one item is present. A strategy -feature has a strategy, and is present if and only if the strategy is

present. A feature is tested according to its type, test -feature or strategy-feature. A conditional strategy

is present if and only if the selected strategy is present. An iterated strategy is present if and only if the

feature is present at least once and the strategy is present at least once . The feature of an iterated

strategy must have exactly one argument that takes integer values starting with one . The iteration is
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performed over successive values of the argument and terminates when the feature is not present.

This language can be diagramed using a node for each item . The details are given by Gale and

Lubinsky (1986). Examples of the use of this notation for a strategy for unordered univariate

description and the strategy used by REX are given there.

My belief is that this forms an easily learned language for statisticians, that it forms a sufficiently

expressive language for data analysis strategies, and that it can be easily used by a machine to analyze

data and report on the findings. All these points require further experience before the language is

suitable for a product.

3. Prospective

Key questions still need to be answered before a reliable and easy to use program for building

consultation systems will be available as a product. It is still not clear how far the conceptual model

provided in Student will generalize, or how far it can be made to generalize. It is not clear how easy

Student will be to work with , or how suitable the interface for statisticians is. The most fruitful avenue

of continued research would appear to be to focus on statistical strategies, using Student to develop and

compare strategies in commonly used data analysis techniques. We need experience with statisticians

building strategies using Student and with consultations done using those strategies. This experience

will show us what the opportunities are for further artificial intelligence applications.
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ABSTRACT

Student is an expert statistician's tool for building consultation systems in data analysis. To

use Student, the statistician selects a technique of data analysis and choses examples for

which the technique is appropriate. The statistician then demonstrates to Student how the

chosen data sets should be analyzed. Various learning techniques are used by the Student

program to build a strategy for the data analysis technique. These include asking questions,

inference, Monte Carlo learning, and background knowledge. Student tests consistency

between demonstrated examples and the evolving strategy. The statistician can change

either the acceptable method for working an example or the strategy if the two are

inconsistent

Student is built within the Quantitative Programming Environment, a new generation

statistical system . Use of Student only requires that the statistician know how to use QPE;

no other language is needed . Student is being used to build strategies for univariate

description , simple linear regression, and spectrum analysis.

The key artificial intelligence technique used to build Student has been called knowledge

based knowledge acquisition . This means restricting the domain for which knowledge can

be acquired (to data analysis ), and providing a conceptual framework for the domain. The

conceptual framework for data analysis is expressed as a set of primitives representing such

statistical concepts as strategies, features, plots, and examples. A strategy is represented as

a network of frames each of which is an instance of one primitive.

RESUME

Student est un outil expert utilisé par les statisticiens pour construire des systèmes de

consultation pour l'anayse de données. Pour utiliser Student, le statisticien choisit une

technique d'analyse des données et des exemples pour lesquels cette technique est

apppropriée. Le statisticien démontre ensuite au Student comment les bases de données

choisis devraient être analysées. Des technique d'apprentissage diverses sont utilisées par le

programme Student pour construire une stategie pour la technique d'analyse des données.

Ces méthodes comprennent poser des question , la déduction, l'apprentissage Monte -Carlo et

les connaissances de base . Le Student teste le cohérence entre les exemples démontrés et la

statégie en cours . Le statisticien peut changer soit la méthode appropriée pour résoudre un

exemple, soit la stratégie si les deux sont en contradiction.

Le Student fait partie de l'Environnement de Programmation Quantitative (Quantitative

Programming Environment), un système statistique de nouvelle génération. Pour utiliser

Student, le statisticien n'a besoin que de savoir utiliser le QPE; aucun autre langage n'est

nécessaire . Student est utilisé pour développer des stratégies de description univariée , de

régression linéaire simple et d'analyse de spectre.

La technique -clé d'intelligence artificielle utilisée pour réaliser Student a été nommée

acqisition de connnaissances baseé sur les connaissances. Ceci veut dire limiter le domaine

sur lequel des connaissaince peuvent être acquises (pour l'analyse de donnée ), et fournir un

cadre conceptuel pour ce domaine. Le cadre conceptuel pour l'analyse de données

s'exprime sous la forme d'une base d'opérations des concepts statistiques tels que des

stratégies, des fonctions, des tableaux, et des exemples. Une stratégie est représenté par un

réseau de cadres dont chacun est un exemple d'une opération.
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ABSTRACT : Factor analysis is generally considered as being a diagnostic tool in

statistical analysis. Since the mathematical background for factor analysis and the computation

of empirical polynomials is the same, factor analysis can be useful as a prediction tool.

Factor analysis is compared with ordinary regression analysis as a prediction tool and

some advantages utilizing factor analysis are discussed . In regression systems the individual

terms are not necessarily independent while the factors are orthogogne. Predictors which have

a time occurence later than the time of prediction cannot be included into regression systems but

can be utilized in factor schemes. Furthermore, extreme values are usually underestimated in

regression systems. Thus factor analysis may fare better especially for predictands whose

frequency distributions are U - shaped rather than bell - shaped.

It will be demonstrated that prediction of ceiling height and cloud amount are two

atmospheric parameters which may be predicted better with factor analysis than with a

regression system .

1. INTRODUCTION . Many statisticians consider factor analysis as a diagnostic tool and

prefer ordinary regression analysis techniques for predictions. One of the reasons may be the

simplicity of the regression scheme. In addition, the availability of " canned programs“ found

today even for the small microcomputers (P.C.) contributes to this easy handling. However ,

regression analysis has some deficiencies which apply to foctor analysis to a lesser degree. E.g.

a new set of coefficients must be calculated for every added or omitted predictor. It is also

known that predictors are not always independent from each other but the factors in factor

analysis are othogonal. Thus a smaller number of factors ( predictors) can achieve the same

amount of residual ( error ) variance as in regression analysis .

Factor analysis is related to empirical polynomials whilch have been used in predictions.

Consequently factor analysis is a prediction tool. In addition, two other facts are presented here

which may favor the use of factor analysis as a prediction tool. Is is well known that regression

analysis is based largely on persistence. If values of a parameter within the prediction interval

are switching from a large positive deviation from the mean to an extreme negative departure

or vice versa the regression model will fail to account for this variation. Furthermore, only

those predictors known at the time of prediction can be included into regression analysis. In

turn , factors can be derived from any set of predictors including elements whose value will not

be known at the prediction time.

It will be illustrated in the subsequent sections that for prediction of ceiling height, cloud

cover, or visibility, the factor analysis as a prediction tool may be better suited than

regression techniques.

2. MATHEMATICAL BACKGROUND. The regression model is based on :

(Y - Y)/S=Aq(Xy - g) + Az (X2 - 72) + ... + An (x, - ) ( 1 )
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In the factor analysis we can write:

(Y - Y) /S = B F + B2F2 + ... + Bmfm ( 2)

where man. In the notations above Y is the predictand , X ; are the predictors, F; the factors, Aj,

B; are coefficients , and s or S denotes the standard deviation .

Examples for ean ( 1 ) are given below for a prediction model ofceiling height:

Yo = Y -Y = 1927+ 0.422-0.423-1.724 + 2.625 + 0.126 -7927 ( 3 )

The predictors (Z; = x; -X ;) in this model are 2y = visibility, 22 = zonalwindspeed, 23 =

temperature, 24 = relative humidity, Z5 = surface pressure , 26 = ceiling height, and Z7 = sky

cover with clouds. Three forecasts for particular days follow where the subscript of the Y

indicates the hour of the day. In the first case Y11 = 999 ( synoptic code) at 11 h on a particular

day at Stuttgart ( Germany ), and Yg = 999 at 08h on this day. The predicted value from enn ( 1 )

Was 984 which is very close. On the second day Y11 Was again 999 but Y8 = 20. The predicted

value for Y11 in this case was 125 which reflects the trend correctly but misses the magnitude

of the change. Another example of a missed prediction is a case where the ceiling height dropped

rapidly within 3 hours. Yg = 999 , Y11 = 100 , predicted 736. Again, the trend is consist but

the magnitude of the change is missed . It will be illustrated later that the factor model in these

cases of rapid change would have rendered a better prediction .

3. CLIMATOLOGICAL BACKGROUND OF PREDICTANDS. Before the factor model is

presented ve may inspect the frequency distributions of ceiling height, cloud amount and

visibility ( Fig 1-3) . It is obvious that all three predictands do not conform with a bell - shaped

distribution where extremes have a low probability of occurrence (e.g. + 3 sigma = 0.27%) .

The other important fact is found in a survey of changes of the value of the element within a

short time interval, here 08 AM to 11 AM (Table 1 ) . In the last column of Tables 1A , B, C the

change from one side of the mean value indicated by the double bar) to the other side is

summarized. We notice a change in 14,9 or 18% for ceiling height, cloud amount, and

visibility, respectively. In these cases incorrect predictions by the regression technique

comprise a considerable amount of the total data. In addition, these cases of rapid changes may be

of particular interest to the forecaster.

4. FACTOR MODEL. In this pilot study the first step of the factor model is a factor

analysis whose structure matrix is displayed in Table 2. (For technical details see

Essenwanger , 1986 , 1987a, b, c ) We deduce from Table 2 that factor one is highly related to

ceiling height and cloud amount at 08 AM (GMT) but also to ceiling height and cloud amount 3

hours later . Unrotated factors and rotated factors differ very little for the first two factors

which are the most important ones ( see Essenwanger , 1987a ).

The next step is the study of the factors. Table 3 exhibits the mean factors by ceiling

height groups as an example . While factor one has a numerical value of - 8.22 when the ceiling

height remains at 999 for the 3 hour time interval the value changes to - 2.40 when the ceiling

rises from <50 to 999 ( code in 100 ft ). The following predictions cover the two cases where

prediction by the regression model failed. In the first case a lifting of the ceiling height from 20

to 522 is calculated while the actual value is 999. This is a significant improvement over the

number ofonly 125 from the regression model. In the second case where the ceiling drops from

999 to 100 the factor model render : 490 versus 736 from the regression model. Again, a

significant improvement is obtained .
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The predictions from the factor model, although considerably better than from the

regression model, may not satisfy some skeptics. It must be stressed that these forecasts are

based on mean factors, and better models may be developed given time and effort. This is only a

pilot study. The real factors on these individual days would have resulted in the prediction of the

precise observed value but even the utilization of mean factors was better than the forecast from

the regression model.

5. MODEL COMPARISON . While these individual cases prove that a better prediction with

the factor than the regression model could have been made in those particular cases it is

necessary to study a larger data sample. Table 4 provides a decision tree from observations of

ceiling height and cloud amount at 08 AM to derive the predicted value of ceiling height and cloud

amount at 11 AM. The numbers of Y , and Y4 were based on the mean factors such as in Table 3

leading to prediction as shown in Table 4. These factors had been derived from a data sample of N

= 200 for Stuttgart ( 1946-1952) in Januarywith a structure matrix as displayed in Table 2.

The squared deviation between predicted values from Table 4 and actual values were summed up

and divided by N and the variance . The results are disclosed in Tables SA , B , C , converted to

percentage.

The first column provides the results for the assumption that the value of the element is

the same at 11 AM as at 08 AM ( persistence ). The second and third column lists the residual

variance for one and four factors, respectively. Finally, the percentages in column 4 are given

for the regression model, utiliziing the observed value of the 7 elements at 08 AM without

inclusion of the ceiling height, cloud amount or visibility at 11 AM. The latter 3 values would

not be available at prediction time 08 AM but can be included into the derivation for the factor

model.

Inspection of Table 5 reveals that the residual variance for the factor model is

significantly lower than for the model based on persistence or the regression model. In fact, the

application of the F - test proves a statistical significance above the 97.5 level ( for N = 50 the

threshold is 1.72 , while for N = 200 the 99% value is 1.39 for the variances ratio, e.g. Hald ,

1952) . Table 5A displays the residual variances (in %) for the three predictands from models

derived for this data set N = 200. Since we learn from Figure 1 that a data gap between 300 and

999 exists. One may suspect an excessive influence of missed extreme values. Therefore,

consideration was given to convert all 999 values to 400 in order to reduce the magnitude of the

variance and deviation from the mean for extreme values. As can be seen from the row " CEIL 2"

in Table 58 the percentage figures have changed very little . Thus the data gap has little to do

with the demonstrated improvement over the regression model by the use of a factor model.

It may be argued that the results should be favorable because the coefficients and factors

have been derived for this data sample of N = 200. Thus an independent sample of N = 50 has

been studied. The results are depicted in Tables 5B and C. Two versions were investigated.

First (Table 5B) the coefficients for the models from the data set of N = 50 were derived and the

same calculations as exhibited in Table 5A were performed. This computation reflects the " ideal

case ". It permits us to evaluate the degradation which is introduced by utilizing coefficients and

factors derived from a different data sample such as the data of N = 200. Table 5C shows that the

regression model experienced a larger increase of the residual variance than the factor model

evidenced by the increase of the ratio REGR/F7 from Tables 58 to 5C .

The critical observer may notice that the percentage for the residual variances are also

changed for the persistance model from Table 5B to Table 5C. It may appear as a discrepancy at

first but it can be explained. The variances in the 200 data sample are not identical with the

variances in the 50 data sample . Consequently the percentage values change for Table 5C in

accordance with the differences of the variances. It may be assummed that given a large enough
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sample for Tables 5A and 5B this effect would disappear. This effect does not alter the basic

conclusion that the factor model has provided better predictions than persistence or the

regression model.

It may be of interest that the factor model based on 4 factors ( Table 5C ) did not render

much improvement over a single factor model although for ceiling height and cloud amount the

usage of 4 ( mean ) factors indicates a decrease of the residual variance ( Tables 5A and B ) .

Whether this is a sign of a general trend or a peculiarity of this special data set remains to be

seen . Nevertheless, the one factor model in this pilot study led to a smaller residual variance

than the 7 parameter regression model.

6. CONCLUSIONS. In predictions of atmospheric parameters such as ceiling height, cloud

amount, and visibility, a model based on factor analysis may be better suited than a regression

model. This may be due largely to the possibility to include predictands into the derivation of

the factor model. A factor model has also an advantage that only one set of coefficients must be

derived for the task of developing models for several simultaneous predictands. The results of

this pilot study indicate a real potential of factor models in certain atmospheric predictions.
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TABLE 1 : CONTINGENCY TABLE OF CHANGES OF ELEMENT IN

PREDICTION INTERVAL

(STUTTGART (F.R.G.), JANUARY 1946-1953 , N = 250)

A) CEILING HEIGHT ( IN FEET )

11 AM

8 AM GMT < 5000 5-10000 10-30000 NO CEIL EΣ CHANGE

24

4

1

4

1

<5000 ft 54%

5-10000 ft 5

10-30000 ft 2

NO CEIL 2

1

64%

11

6

19

6%

2

3

3

12

11 15

Σ 63 10 6 21 100% 14 %

8) CLOUD AMOUNT (TENTH OF SKY COVER)

11 AM

8 AM GMT 0-5 / 10 6-9 / 10 10/10 Σ CHANGE

0-5/ 10

6-9/ 10

10/10

15%

3

4

11

10

7

48

19

21

60

4%

3

22

M

2
0

25 55 100% 9%

C) VISIBILITY (Km)

11 AM

8 AM GMT < 3.2 3.2-8 3-20 > 20 Σ CHANGE

1 30% 10

61

<3.2 km

3.2-8 km

8-20 km

>20 km

20%

6

1

1

8

12

7

1

1

4

14

3

3

23

25

22

1

17 I

Σ 28 28 22 22 100% 18%
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TABLE 2. STRUCTURE MATRIX

STUTTGART , JANUARY 1946-1953, 08 GMT

UNROTATED ROTATED (ORTHOGONAL)

U .44 53 -.48 .49|| .13 .18 -.93.16

T .63 .49 -.42 -.12.36 .52 -.62 -.20

RH .04 -.66 -.57 -.44.07 -.32 08 -.92

CEIL -.89 21 -.09 - 011- .90 .04 .15 .06

CL AMT .91 -.24 .04 .01 .92 -.07 -.18 -.10

LA VIS .10 .90 .18 - 23 - .06 .88 -.13 .32

CEIL 3 -.87 .19 -20 .06 -.92 -.03 .04 .01

CL AMT 3 .91 -.17 20 -.03 .94 .02 -.08.01

LO VIS .14 88 .02 -.34 -.06 .92 -.19.14

VAR 3.81 2.70 .86 .61 3.54 2.04 1.36 1.04
•

VAR % 42 30 10 7 39 23 15 13

U = ZONAL WINDSPEED , T = TEMPERATURE,

RH = REL . HUMIDITY, CEIL = CEILING HEIGHT ,

CL AMT = TOTAL SKY COVER,

Ln VIS - LOGARITH OF VISIBILITY

THE NUMBER 3 INDICATES THE ELEMENT 3 HOURS LATER.
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TABLE 3. MEAN FACTORS BY GROUPS

CEILING HEIGHT

CEIL 8h | CEIL 1 F1 F2 F3 FA N

999

100-300 .57

999

999

999

999

-8.22 .79 -.13 -.16

-4.28 -1.34 -1.44

-2.17 .53 -.50 -.48

-2.40 .31 -.42 -.44

30

1

10

9

$ 100

$ 50

999 100-300 -3.34

100-300 100-300 .39

< 100 100-300 95

50 100-300 1.42

.80

.65

-.17

.51

.25 -.54

.21 .81

-.34 .35

-.74 .40

4

6

7

6

999 < 100

100-300 < 100

< 100 < 100

< 100

-3.36

1.24

2.10

2.10

.50

.71

-.31

-.55

.24

.61

.06

-.05

-.33 5

.30 12

.06 125

.02 115< 50

(CEILING IN 100 ft.)
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TABLE 4. GROUP SELECTION USING MEAN FACTORS

A) CEILING HEIGHT (IN 100 FT .)

CEIL CL. AMT CHARACT CEIL PREDICTED

g
h

g
h

OBS 11hY1 Y4

999

999

100-300

100-300

< 100

< 100

0

1-5

$8

7

10

<9

REMAIN

CHANGE

REMAIN

CHANGE

REMAIN

CHANGE

999

<300

<300

999

< 100

999

949.6

525.8

202.2

607.8

53.1

424.2

987.9

575.7

155.4

609.6

37.0

506.1

B) CLOUD AMOUNT ( IN TENTH SKY COVER)

CL. AMT CEIL CHARACTI CL. AMT PREDICTED

g
h

sh OBS 11h 91 44

10

10

10

6-9

6-9

4-5

0-3

<30

30-100

> 100

$50

>50

999

999

REMAIN

CHANGE

CHANGE

REMAIN

CHANGE

CHANGE

REMAIN

10

6-9

0-5

6-10

0-5

6-10

0-5

9.6

9.2

5.7

8.6

6.4

4.6

1.9

9.8

9.2

5.5

8.7

6.0

6.0

1.7

Y = ONE FACTORY4 = FOUR FACTORS
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TABLE 5. RESIDUAL VARIANCE (INS) FOR THREE PREDICTION

MODELS

A) 200 DATA SAMPLE

PERS FI F4 REGR RATIO(REGR/F1 )

CEIL

CEIL 2

VIS

CL AMT

55.6

54.7

50.4

38.9

22.6

23.3

23.8

16.3

16.5 43.0 %

16.2 41.5

20.5 69.0

11.4 37.9

1.90

1.78

2.90

2.32

B) 50 DATA SAMPLE ( IDEAL)

CEIL

VIS

CL AMTI

120.9

56.6

89.2

36.1

16.9

34.0

3.2 | 62.7%

13.4 31.4

8.1 67.3

1.74

1.86

1.98

C ) 50 DATA SAMPLE (200 DATA COEFF.)

CEIL 128.0 39.6

42.6 15.7

78.5 | 33.5

35.0 86.78

16.1 66.0

29.01 69.9

2.19

4.20

2.09CLAM
A

PERS = PERSISTENCE , F1 = USING ONE, F4 = USING FOUR

FACTORS , REGR = REGRESSION MODEL.
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CONS ISTENCY OF THE P - VALUE AND A SET OF Q - VALUES

IN A SCORING ACCURACY ANALYSIS

Paul H. Thrasher

U.S. Army Materiel Test and Evaluation/Engineering and Analysis RAM Division

U.S. Army White Sands Missile Range

White Sands Missile Range , New Mexico 88002-5175

ABSTRACT

One particular application , an investigation of bias in a scoring device ,

illustrates the use of p-value and q-value analyses . The q-values , the post

test estimates of Type II risks , are used to estimate a bias . This estimation

is shown to be meaningful by the consistency of different analyses .

INTRODUCTION

Hypothesis testing is a well established analysis technique . This fairly

1

rigid procedure can be outlined in distinct steps :

( 1 )
State a null hypothesis H. and an appropriate alternate hypothe

sis H , regarding a parameter o .1

( 2 ) Specify the acceptable Type I risk a of falsely rejecting H
the

acceptable Type II risk B of falsely failing to reject H when 0 has an
0

unacceptable parameter us and
and the

the planned sample size np by using the

sampling distribution of an appropriate test statistic .
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( 3 ) Obtain sample data .

( 4 ) Decide and report whether or not to reject HH.

In the traditional hypothesis testing technique , the report of this reject

or not-reject decision conveys no information concerning the strength of the

evidence for the decision . There are , however , two methods that can be used

simultaneously to describe the evidence for rejection or non -rejection of H

One method of indicating the strength of the decision is to calculate and

report the p -value . The p -value is the smallest value of a that would have

allowed the sample data to cause H. to be rejected . A very low p-value

strongly implies rejection of H ..

A second method of indicating the strength of the decision is to calculate

and report a q-value for our The q-value is the output of the algorithm that

was used to find B when the algorithm inputs a and np are replaced by the po

value and the data sample size . A very highhigh q -value strongly implies

rejection of H. in favor of H , characterized by @u :

It is possible to combine the p -value and a q-value in a single measure of

A

evidence for rejection of Ho . One combined measure is the ratio of a q-value

to the p -value . " more informative combined measure is the ratio

( q -value/ B )/ (p -value/ a ) or ( q -value / p - value ) / ( B / a ). S

For analyses in which a , b, and especially Ou are not firmly established ,

the most flexible and meaningful approach is to consider the post-test Type I

and Type II risks separately . Since there is a q -value for every Quy the

analyst should report the p-value and a set of q-values corresponding to a set

of Ou's of possible interest . When these two methods are used simultaneously ,

a decision can be based on a comprehensive view of the evidence .
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APPLICATION

The data for the application discussed in this paper is presented in

Table 1 . These data are estimates of Cartesian coordinates for points in a

vertical plane . The abscissa is horizontal and the ordinate is vertical . Esti

mates are reported from both a scoring device and a standard . The scoring

device is expected to have different horizontal and vertical characteristics

because of physical effects . The standard is more than an order of magnitude

more accurate than that which is expected of the scoring device . The two

partial scores of the scoring device are not independent . Each is obtained

from two intermediate results and one intermediate result is shared by the two

partial scores . The final result of the scoring device is normally obtained

by averaging the two partial scores . This is not done here because

( 1 ) the drop-outs of the 25 points do not coincide so averaging would

further decrease the sample size , and

( 2 ) comparison of the results from the two partial scores can tenta

tively provide a check for consistency .

The primary approach used in this application is to do a p-value and go

value analysis on the parameters describing scaling and fixed biases . Linear

regression is used to find least- squares estimates of A and B in y = AX + B

where y is the scoring device data and x is the standard data . Separate

calculations are done on both

( 1 ) horizontal and vertical data and

( 2 ) partial scores .

The parameter A should be unity if there is no scaling bias , and B should be

zero if there is no fixed bias .
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Table 2 contains results of a least-squares fit of a straight line to the

data . The coefficients of correlation are sufficiently low to suggest that

the fit is inadequate to specify A and B without reservations . Further indi

cations of reservations are obtained by considering the ranges that are over

lapped by the estimates of A and B plus and minus the corresponding standard

deviations . A11 four slopes are close to one , but the slopes for vertical

data have high standard deviations which overlap not only one but values quite

different from one . The intercepts for horizontal data are close to zero , and

the standard deviations overlap zero . The intercepts for vertical data are

above zero and their standard deviations , even though they are large , do not

overlap zero . The standard deviations of the means , obtained by dividing the

square roots of the sample sizes into the standard deviations of data from the

line , are all near or less than 0.4 meter . This implies that the random error

of the scoring device is near or less than 0.4 meter .

Table 3 contains the results of one- sided , Student's -t hypothesis tests on

B. All null hypotheses assume no fixed bias . The direction of each alternate

hypothesis was obtained from the sign of the data average . For horizontal

data from both partial scores , the p-values are sufficiently high and the q

values , for possible biases further from zero than 0.2 meter , are sufficiently

low to suggest that there is no fixed bias . For vertical data , rejection for

p-values less than 0.10 and q-values greater than 0.30 suggests that there may

be a fixed bias of 0.6 meter to 1.2 meter .
This agrees with the point esti

mates tentatively suggested in Table 2 .

Table 4 contains the results of one- sided , Student's - t hypothesis tests on

A. All null hypotheses assume no scaling bias . For both horizontal and
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vertical data , the p-values are sufficiently high and q-values , corresponding

to possible biases in the range of 0.8 1/m to 1.2 1 /m , are sufficiently low to

suggest that there is no scaling bias .

An alternate approach used in this application is to investigate the bias

by doing a p -value and q-value analysis on A where A is the difference between

the scoring device and standard estimates of point location . These differ

ences are obtained by subtraction of data from Table 1 .

Table 5 contains the result of one- sided , Student's-t hypothesis tests on

A. A meanA mean of zero would indicate no bias . For horizontal data from both

partial scores , the p-values are sufficiently high and the q-values , corre

sponding to possible biases further from zero than 0.2 meter , are sufficiently

low to suggest that there is no bias . For vertical data , rejection for p

values less than 0.10 and 9-values greater than 0.30 suggests that there may

be a bias of 0.6 meter to 1.2 meter . This is in agreement with the point

estimates tentatively suggested in Table 2 and with the p -value and q-value

analysis of Table 3 .

CONSISTENCY

This example illustrates the consistency of p -value and q -value analy

ses . There certainly are issues that need investigation before the general

technique is judged to be universally applicable and reliable . One issue is

the effect of using critical levels of significance other than 0.10 and 0.30

for the post-test Type I and Type II errors . A more serious issue is the need

for a comprehensive study on the properties of the q-value . This study should
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include both theoretical and simulation investigations . It should consider

such factors as different underlying distributions and sensitivity to extra

neous data . In the absence of such a study , however , this paper provides an

example of consistency in the p -value and q -value analysis technique .

Table 6 repeats information from Tables 3 and 5 in a format to allow easy

comparison between the two hypothesis tests on fixed bias B and total bias

Δ .
Based on the retention of the null hypothesis that there is no scaling

bias , these two tests should give the same results .

When a decision needs to be made , the q-values are in close agreement for

the two hypothesis tests . For vertical data , the p -values and q-values differ

only slightly for the two tests for bias .

For horizontal data , the agreement is not as good . In this case , however ,

rejection is not warranted . This is indicated by sufficiently high p-values

and the sufficiently low q -values for biases bigger than
the estimated

0.4 meter random error of the scoring device . Thus , for horizontal measure

ments , 4 -values are not needed to estimate the size of the bias .

The results of the two p-value and q-value analyses are consistant where

consistancy is needed . Thus , this example supports the hypothesis that the

p-value and q-value analysis is meaningful .

CONCLUSION

This application illustrates the value of the p -value and q-value analy

sis .
This type of analysis should be done to consider and report the best

post -test estimates of both Type I and Type II risks . Analysts should provide

managers with this information so managers can make informed decisions .
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TABLE 1 .--Data for scoring device calibration

Point

Identification

Data from Standard

(meters )

Data from Scoring Device

( meters )

Partial Score One Partial Score Two

Group Point Horizontal Vertical Horizontal Vertical Horizontal Vertical

1 1 1.0 1.0 1.0 1.2 1.8 1.8

2 1 0.8 0.0 1.8 -2.8 1.5 0.7

2 1.1 -1.8 1.4 -0.4 0.7 -1.4

3 0.0 -1.2

-

-0.1 -0.9

-1.44 1.6 -0.4 1.3 -0.7 1.1

5 0.3 1.0 -0.2 2.3 -0.3 0.9

6 1.5 0.6 1.4 1.2

7 1.0 0.4 2.3 5.0 1.0 0.5

8 0.7 0.4 0.6 0.9 0.7 0.3

3 1 1.0 2.1 1.2 2.6 1.1 4.3

2 0.5 -0.3 -0.5 4.2 0.1 1.2

3 -0.5 0.4 -0.8 1.6 -0.4 0.5

4 -0.2 0.5 0.0 0.6 -0.2 0.9

5 -0.3 0.7 -0.2 1.4

.

6 0.2 0.7 0.1 1.0

-
-

-

7 -0.3 0.7 0.2 1.9 -0.1 0.7

8 0.2 -0.5 0.1 0.5 0.0 0.7

4 1 1.0 0.9 0.0 2.8 0.8 1.1

2 0.7 -0.4 0.3 2.2

3 -0.4 -0.3 -0.3 -1.6 -0.3 0.7

4 0.0 -0.6 0.1 -0.3 -0.3 -1.7

5 -0.2 -0.1 -1.4 5.6 -0.2 0.1

6 0.7 -0.5 0.4 -0.5 0.1 4.0

7 0.6 0.6 -2.0 2.6 0.6 2.7

8 1.4 -0.2 1.3 -2.3 1.1 -0.8
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TABLE 2. --Summary of linear regression

( Least squares fit of y = AX + B for y = scoring device & x = standard data )

Measurement :

Partial Score :

Horizontal

One

Horizontal

TWO

Vertical

One

Vertical

TWO

23 22 23 22Sample Size :

Correlation : 0.63

1.039A ( 1/m ) :

B (m ) : -0.201

0.279SA ( 1/m ) :

SB (m ) : 0.212

0.795Sy - line (m) :

Smean y-line ( m ) :

0.86 0.37 0.63

0.927 0.996 1.149

-0.038 1.022 0.591

0.123 0.552 0.320

0.101 0.437 0.265

0.360 2.036 1.231

0.166 0.077 0.425 0.263
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TABLE 3. --Summary of Student's-t hypothesis tests on B

( B - Intercept from y = AX + B = fixed bias )

Measurement :

Partial Score :

Horizontal

One

Horizontal

TWO

Vertical

One

Vertical

TWO

Null : H .: Mean = 0: Ho : Mean = 0 H .: Mean = 0Ho : Mean = 0

H ,: Mean < 0
Alternate : H : Mean < 0

H :
H .: Mean > 0 H .: Mean > 0

:

23 22 23 22

-0.201 -0.038 1.022 0.591

Sample Size :

Average (m ) :

Std Deviation

of Mean (m ) : 0.212 0.101 0.437 0.265

P-value : 0.177 0.355 0.015 0.019

Q-Value for

Bias - 0.2 m : 0.036 0.015 0.96 0.92

Bias = 0.4 m : 0.005 0.0002 0.92 0.76

Bias = 0.8 m : 0.0001 Close to O 0.69 0.22

Bias = 1.2 m : Close to o Close to o 0.34 0.016

Bias = 1.6 m : Close to o Close to O 0.10 0.0006

Bias = 2.0 m : Close to 0 Close to O 0.02 < 0.00001

Bias signs :

166



TABLE 4 .-- Summary of Student's-t hypothesis tests on A

( A slope from y = AX + B = scaled bias )

Measurement :

Partial Score :

Horizontal

One

Horizontal

Two

Vertical

One

Vertical

Two

Null : Ho : Mean = 1

H .: Mean > 1

Ho : Mean = 1

H .: Mean < 1

Ho : Mean = 1

H .: Mean < 11

Ho : Mean = 1

H ,: Mean > 1Alternate :

23 22 23 22

1.039 0.927 0.996 1.149

Sample size :

Average ( 1/m ) :

Std Deviation

of Mean ( 1/m ) : 0.279 0.123 0.552 0.320

P-value : 0.445 0.107 0.497 0.324

0.48 0.57 0.47 0.62

0.42 0.41 0.43 0.56

Q-Value for

Slope Ri 1/m :

Slope

Slope

slope

Slope

Slope

0.23 0.16 0.36 0.38

S ; 1/m :

Ti 1/m :

Vi 1/m :

Vi 1/m :

W; 1/m :

0.057 0.04 0.30 0.14

=

0.0094 0.008 0.24 0.038

0.0012 0.001 0.19 0.0076

Slope subscript :
1 2 2 1

T :

Considered biases for subscript 1 :

Considered biases for subscript 2 :

R :

1.05

0.95

S :

1.10

0.90

1.25

0.80

U :

1.50

0.70

V :

1.75

0.60

W :

2.00

0.50
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TABLE 5 .--Summary of Student's -t hypothesis tests on A

( 9 = scoring device data - standard datastandard data = total bias )

Measurement :

Partial Score :

Horizontal

One

Horizontal

TWO

Vertical

One

Vertical

Two

H .: Mean = 0 H : Mean = 0Null :

Alternate :

Ho : Mean = 0Ho : Mean = 0

H ,: Mean < 0 H ,: Mean < 0 H ,: Mean > 0 H .: Mean > 0

23 22 23 22

-0.183 -0.077 1.022 0.609

Sample Size :

Average (m ) :

Std Deviation

of Mean (m ) : 0.777 0.354 1.989 1.208

P -Value : 0.136 0.159 0.011 0.014

Q-Value for

Bias - 0.2 m : 0.46 0.06 0.97 0.94

Bias = 0.4 m : 0.097 0.93 0.79<0.00001

Close to oBias - 0.8 m : 0.0048 0.70 0.23

Bias = 1.2 m : <0.00001 Close to O 0.34 0.016

Bias = 1.6 m : Close to O Close to O 0.089 0.0005

Bias - 2.0 m : Close to o Close to O 0.014 <0.00001

Bias signs : + +
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TABLE 6 .--Consistency of p-values and Q-values

(Comparison of results from hypothesis tests on B and A)

Measurement :

Partial Score :

Horizontal

One

Horizontal

TWO

Vertical

One

Vertical

Two

P-value for B : 0.177 0.015 0.0190.355

0.159

.

P -value for A : 0.136 0.011 0.014

Q-Value for

Bias = 0.2 m

for B : 0.036 0.015 0.96 0.92

for A: 0.46 0.06 0.97 0.94

Bias = 0.4 m

for B : 0.005 0.0002 0.92 0.76

for A: 0.097 <0.00001 0.93 0.79

Bias = 0.8 m

for B : 0.0001 Close to 0 0.69 0.22

for A: 0.0048 Close to o 0.70 0.23

Bias = 1.2 m

for B : Close to 0 Close to O 0.34 0.016

for A: <0.00001 Close to 0 0.34 0.016

Bias = 1.6 m

for B : Close to o Close to o 0.10 0.0006

for A: Close to o Close to O 0.089 0.0005

Bias = 2.0 m

for B : Close to O Close to o 0.02 <0.00001

for A: Close to O Close to O 0.014 <0.00001
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James R. Tbompeon PrefaceEmpirical Model Building

PREFACE

The study of mathematical models is closely connected to notions of

scientific creativity. As of the present, there is no axiomatic or even well defined

discipline which is directly concerned with creativity. Even though we cannot

display a progression of exercises which have as their direct objective the building

of creativity , we can attempt to accomplish this goal indirectly. A mastery of a

portion of Euclid's treatises on geometry does not directly appear to build up a

potential statesman's ability to practise statecraft. Yet many effective statesmen

have claimed that their studies of Euclid's geometry had achieved this effect.

More directly , it is clear that the study of physics would be likely to be helpful in

developing the ability to design good automobiles. It is this carryover effect from

one well defined discipline to another less defined one which has traditionally

been the background of science and engineering education .

Valuable though an indirect approach to the gaining of creativity in a par

ticular area may be , it carries with it certain dangers. We are rather in the

same situation as the little boy who searched for his quarter, lost in a dark alley,

under a bright streetlight on a main street . There is no doubt that the main

street searching could be of great utility in the ultimate quest of finding the quar

ter. Many of the relevant techniques in quarter finding are similar, whether one

is looking in the light or in the dark . Hopefully , the study of technique, albeit

undertaken in a setting substantially different from that of the real problem , will

be at least marginally useful in solving the real problem.
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However, there is a natural temptation never to leave the comfort of ideal

ized technique under the bright lights, never to venture into the murky depths of

the alley where the real problem lies. How much easier to stay on mainstreet, to

write a treatise on the topology of street lamps, gradually to forget about the lost

quarter altogether.

In its most applied aspect, technique becomes problem solving. For example,

if the little boy really develops a procedure for finding his particular quarter in

the particular dark alley where he lost it , he will have been engaged in problem

solving. Although it is difficult to say where problem posing ends and problem

solving begins, since in the ideal state there is continuous interaction between the

two, model building is more concerned with the former than with the latter .

Whereas problem solving can generally be approached by more or less well

defined techniques, there is seldom such order in the problem posing mode. In

the quarter finding example, problem posing would involve determining that it

was important that the quarter be found and a description of the relevant factors

concerning this task . Here, the problem posing is heuristic, difficult to put into

symbols and trivial . In the real world of science , problem posing is seldom

trivial , but remains generally heuristic and difficult to put into symbols. For

example, Newton's Second Principle states that force is equal to the rate of

change of momentum or

Pa (mo). (0.1 )
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The solving of (0.1 ) for a variety of scenarios is something well defined and easily

taught to a high school student. But the thought process by which Newton con

jectured (0.1 ) is far more complex.

We have no philosopher's stone to unlock for us the thought processes of the

creative giants of science . And we shall not use the device of scientific biography

much in this treatise . However, the case study approach appears to be useful in

the development of creativity . By processes which we do not understand, the

mind is able to synthesize the ability to deal with situations apparently unrelated

to any of the case studies considered . It is the case study approach, historically

motivated on occasion, which we shall emphasize.

At this point , it is appropriate that some attempt be made to indicate what

the author means by the term Empirical Model Building . To do so , it is neces

sary that we give some thought to some of the ways various scientists approach

the concept of models . We shall list here only those three schools which appear

to have the greatest numbers of adherents. The first group we shall term the

Idealists. The Idealists are not really data oriented . They are rather concerned

with theory as a mental process which takes a cavalier attitude toward the " real

world." Their attitude can be summed up by, " If facts do not conform to theory,

then so much the worse for facts." For them , the "model" is all . An example of a

pure Idealist is given by the character of Marat in Weiss' play MaratSade. Marat

says " Against Nature's silence I use action. In the vast indifference I invent a

meaning.” Although Idealists do crop up from time to time in the physical and

biological sciences, they have a hard time there . Sooner or later , the theories of a

-
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Lysenko, say , are brought up against the discipline imposed by the real world

and must surrender in the face of conflicting evidencs. But even in the hard sci

ences, there is the possibility that " sooner or later" may mean decades.
Once a

theory has developed a constituency of individuals who have a vested interest in

its perpetuation, particularly if the theory has no immediate practical implica

tion, there will be a tendency of other scientists, who have no interest in the

theory either way , to let well enough alone.

The second group , that of the Radical Pragmatists (Occamites, nominalists)

would appear to be at the opposite end of the spectrum from that of the Ideal

ists. The Radical Pragmatists hold that data is all. Every situation is to be

treated more or less sui generis. There is no " truth ." All models are false .

Instead of model building , the Radical Pragmatist curve fits. He does not look on

his fitted curve as something of general applicability, rather as an empirical dev

ice for coping with a particular situation . The maxim of William of Occam was

" Essentia DON
sunt multiplicanta praeter necessitatem ,” roughly , “ The

hypotheses ought not to be more than is necessary.” The question here is what

9

we mean by “necessary . ” All too frequently , it can happen than " necessary"

means what we need to muddle through rather than what we need to understand .

But few Radical Pragmatists would take the pure position of Weiss's Sade who

says “ No sooner have I discovered something than I begin to doubt it and I have

to destroy it again ...the only truths we can point to are the ever-changing truths

of our own experience .”
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The Realists (Aristoteleans, Thomists) might appear to some to occupy a

ground intermediate to that of the Idealists and that of the Radical Pragmatists.

They hold that the universe is governed by rational and consistent laws. Models,

for the Realist, are approximations to bits and pieces of these laws. To the Real

ist, "We see through a glass darkly ," but there is reality on the other side of the

glass. The Realist knows his model is not quite right, but he hopes it is incom

plete rather than false. The collection of data is useful in testing his model and

enabling him to modify it in appropriate fashion . It is this truthseeking, interac

tive procedure between mind and data which we term Empirical Model Building .

To return again to Newton's Second Principle, the position of the Idealist

might be simply that the old Newtonian formula

(0.2)
F=ma

is true because of logical argument . But then we have the empirically demonstr

able discovery of Einstein that mass is not constant but depends on velocity via

mo

m V.

0
2 (0.3)

(1

The Idealist would have a problem . He might simply stick with (0.2) or

experience an intellectual conversion , saying, “ Right, Einstein is correct ; Newton

is wrong. I am no longer a Newtonian but an Einsteinian " (or some less self

effacing dialectical version of the above conversion.)

The reaction of the Radical Pragmatist might be, “You see , even an

apparently well established model like Newton's is false. No doubt we will soon

{
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learn that Einstein's is false also . Both these 'models' are useful in many applica

tions, but their utility lies solely in their applicability in each situation. "

The Realist is also unsurprised that Newton's model falls short of the mark .

He notes that the discovery of Einstein will require a modification of (0.2) . He

readily accomplishes this by combining (0.1 ) and (0.3) to give

mod

F=

dt

ع2 (0.4)

(1

He views (0.4 ) as a better approximation to truth than (0.2) and expects to hear

of still better approximations in the future.

The preceeding should give the reader some feel as to what the author

means by empirical model building (and also as to his prejudices in favor of the

Realist position ). It is the process which is sometimes loosely referred to as the

" scientific method ." As such , it has been around for millenia -- though only for

the last five hundred years or so has quantitative data collecting enabled its

ready use on nontrivial scientific problems. Realists might argue (as I do ) that

empirical model building is a natural activity of the human mind. It is the

interactive procedure by which human beings proceed to understand portions of

the real world by proposing theoretical mechanisms , testing these against obser

vation and revising theory when it does not conform to data. In any given situa

tion, a scientist's empirical model is simply his current best guess as to the under

lying mechanism at hand .
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The Radical Pragmatist position has great appeal for many , particularly in

the United States . There would appear to be many advantages to an orientation

which allowed one to change his ground any time it was convenient to do so .

But the ultimately nihilistic position of Radical Pragmatism has many practical

difficulties. For example, data is generally collected in the light of some model .

Moreover, from the standpoint of compression of information, a point of view

which rejects truth also rejects uniqueness, causing no little chaos in representa

tion. Finally, the old adage that " He who believes in nothing will believe any

thing " appears to hold. The Radical Pragmatist seems to join hands with the

Idealist more often than either cares to admit. There are certain groups who

seem to wear the colours of both the Idealist and Radical Pragmatist schools .

The above taxonomy of contemporary scientists into three fairly well defined

schools of thought is, obviously , an oversimplification. Most scientists will tend

to embody elements of all of the three schools in their makeup . For example , I

might be ( and have been) accosted in my office by someone who wishes me to

examine his plans for a perpetual motion machine or his discovery of a conspiracy

of Freemasons to take over the world . As a purely practical matter, because my

time is limited , I will be likely to dismiss their theories as patently absurd . In so

doing, I am apparently taking an Idealist position , for, indeed I know little about

Freemasonry or about perpetual motion machines. But without such practical

use of prejudice, nothing could ever be accomplished. We would spend our lives

" starting from zero " and continually reinventing the wheel . There is a vast body

of information which I have not investigated and yet take to be true, without
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ever carefully checking it out . This is not really " Idealism " ; this is coping. But

if I read in the paper that Professor Strepticollicus had indeed demonstrated a

working model of a perpetual motion machine , or if I heard that a secret meeting

room , covered with Masonic symbols, were discovered in the Capitol, then I

should be willing to reopen this portion of my “ information bank " for possible

modification .

For similar practical reasons, I must act like a Radical Pragmatist more

often than I might wish . If I see a ten ton truck bearing down on me, I will

instinctively try to get away without carefully investigating considerations of

momentum and the likely destruction to human tissue as a result of the dissipa

tion thereof. But I have the hope that the manufacturer of the truck has logically

and with the best Newtonian theory in tandem with empirical evidence designed

the vehicle and not simply thrown components together, hoping to muddle

through .

In sum , most of us, while accepting the practical necessity of frequently

assuming theories which we have not analyzed and using a great deal of instinc

tive rather than logical tools in our work , would claim to believe in objective

reality and a system of natural laws which we are in a continuing process of per

ceiving. Thus, most of us would consider ourselves to be Rationalists though we

might , from time to time , act otherwise . Perhaps the minimal Rationalist maxim

is that of Orwell's Winston Smith " Freedom is the freedom to say that two plus

two make four. If that is granted , all else follows."
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Section 3. Modular Wargaming

Checkerboard based games are of ancient origin , being claimed

by a number of ancient cultures . One characteristic of these

games is the restricted motion of the pieces, due to the shape of

the playing field. This is overcome , in measure , in chess, by

giving pieces varying capabilities for motion both in direction

and distance. Another characteristic of these games is their

essential equality of firepower. A pawn has the same power to

capture a queen as the queen to capture a pawn. Effectiveness of

the various pieces is completely a function of their mobility.

Figure 1

The directional restrictions of square tiles are a serious

detriment to checkboard games if they are to be reasonable

simulations of warfare. The most satisfactory solution, at first

glance, would appear to be to use building blocks based on

circles, since such tiles would appear to allow full 360 degree

mobility. Unfortunately, as we observe below , circles cannot be

satisfactory tiles, since they leave empty spaces between the

tiles.
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Figure 2

A natural first attempt to overcome the difficulty of circles

as tiles would be to use equilateral octagons, since these allow

motion to the eight points of the compass, N ,NE ,E , SE , S ,SW , W ,NW .

Unfortunately , as we see below , this still leaves us with the

empty space phenomenon .
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Figure 3

None of the ancient games is particularly apt as an analogue of

combat after the development of the longbow , let alone after the

invention of gunpowder. Accordingly , the Prussian von Reiswitz

began to make suitable modifications leading in 1820

to Kriegspiel . The variants of the Prussian game took to

superimposing an hexagonal grid over a map of actual terrain .
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Motion of various units was regulated by their capabilities in

their particular terrain situation . The old notion of ' turns ' was

retained, but at each turn , a player could move a number of units

subject to a restriction on total move credits. Combat could be

instituted by rules based on adjacency of opposing forces. The

result of the combat was regulated by the total firepower of the

units involved on both sides in the particular terrain situation

A roll of the dice, followed by lookup in a combat table gave the

casualty figures together with advance and retreat information .
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2

Figure 4

The Prussian game, together with later American variants,

such as Strategos, were validated against actual historical

combat situations. In general, these games were excellent in
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their ability to simulate the real world situation . Their major

difficulty was one of bookkeeping Frequently , a simulated

combat could take longer to play than the actual historical

battle . If the masking of movements and questions of

intelligence gathering were included in the game, a large number

of referees was required.

In attempting to take advantage of the computer , the creators

of many modern military wargames have attempted to go far

beyond resolution of the bookkeeping problems associated with

Kriegspiel. Very frequently, these games do not allow for any

interaction of human participants at all .

Initial conditions are loaded into a powerful mainframe

computer, and the machine plays out the game to conclusion

based upon a complex program which may actually look at the

pooled result of simulations of individual soldiers firing at each

other , even though the combat is for very large units. Any real

time corrections for imperfections in the game are , accordingly ,

impossible. Any training potential of such games is , obviously ,

slight.

Furthermore, the creators of many of these games may disdain

to engage in any validation based on historical combat results.

Such validation as exists may be limited to checking with

previous generations of the same game to see whether both gave

the same answer.

If we know anything about artificial intelligence ( and

admittedly , we know very little ) , it would appear to be that

those simulations work best which appear to mimic the

noncomputerized human system.

Attempts to make great leaps forward without evolution from

noncomputerized system are almost always unsuccessful. And it
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is another characteristic of such a nonevolutionary approach that

it becomes quickly difficult to check the results against

realistic benchmarks .benchmarks. Before anyone realizes it, a new ,

expensive, and , very likely, sterile science will have been

created soaking up time and treasure and diverting us from the

real world situation .

My own view is that it is better to use the computer as a

means of alleviating the bookkeeping difficulties associated

with Kriegspierlike board games. In the late 1970's and early

1980's , 1 assigned this task to various groups of students at

Rice. Experience showed that two hundred person hours of work

generally led to games which could emulate historical results

very well.

is

At least another five hundred person hours would have been

required to make these games user - friendly, but the rough

versions of the games were instructive enough . One criticism

made against historical validation is that technology

advancing so rapidly that any such validations are meaningless.lt

is claimed that the principal function of wargaming ought to be

predictions of what will happen given the new technologies.

While not agreeing that parallels between historical situations

and future conflicts are irrelevant ( and I note here that the

Strategy and Tactics hobbyists generally make games ranging

from Bronze Age warfare to Starship Troopers , I agree that the

predictive aspect, in the form of scenario analyses, is very

important.

Accordingly, one student created a game for conflict between

an American carrier task force and a Soviet missle cruiser task

force . Given the close-in combat which would be likely, it

appeared that if the Soviet commander is willing to sacrifice his
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force for the much more costly American force, he cm effect an

exchange of units by a massive launch of missles at the outset of

the conflict. Clearly , such a playout could have serious

technological implications, e.g., the desirability of constructing

a system of jamming and antimissle defenses which is highly

resistant to being overwhelmed by a massive strike. Or , if it is

deemed that such a system could always be penetrated by futher

technological advances the Soviet side, it might be

appropriate to reconsider task forces based around the aircraft

carrier. In any event, I personally would much prefer an

interactive game in which I could see the step by step results of

on

the simulation .

Also , a validation using, say , data from the Falkland conflict

could be used to check modular portions of the game. World War

Il data could be used to check other parts. The validation would

not be as thorough as one might wish, but it would be a goodly

improvement on no validation at all . Some 'supersophisticated

unvalidated computer simulation in which the computer simply

played with itself and, at the end of the day, told me that

existing antimissle defenses were sufficient would leave me

neither comforted nor confident.

An integral part of any Kriegspielcomputerization should deal

with the resolution of the likely results of a conflict. A ready

means of carrying this out was made available via the famous

World War I opus of Lanchester ( 1916). Let us suppose that there

are two forces , the Blue and the Red, each homogeneous, and with

Sizes u and v rcspcclivcly.

Then , if the fire of the Red force is directed, the probability a

particular Red combatant will eliminate some Blue combatant in

time interval (t.toal is given simply by:

189



82

LT

( 2.3.1) P (Blue combatant eliminated in It,t At Coa,

where cy is the Red coefficient of indirected fire. If we wish ,

then , to obtain the total number of Blue combatants eliminated

by the entire Red side in It ,t A), we will simply multiply by the

number of Red combatants to obtain :

( 2.3.2 ) E (Change in Blue in it,t+All = -V CqA .

Replacing u by its expectation ( as we have the right to do

many cases where the coefficient is truly a constant and v and u

are large ), we have:

(2.3.3) AU / A = ---CoV.

This gives us immediately the differential equation

( 2.3.4 ) du / dt = - COV.

Similarly, we have for the Red side

( 2.3.5 ) dv / dt = - Czu.

This system has the time solution

(2.3.6) u (t)-u, cosh / (Cycz/t-Vo Nic / cy) sinh ( C , C2 )

vit - v.cosh (C , C2 )t -u , cz /cy) sinh ( c ,czyt

A more common representation of the solution is obtained by

dividing (2.3.4) by (2.3.5) to obtain

(2.3.7) du du = Gyul Czu ,

with the solution

(2.3.8) v2-402 = c /cgl v2 - vo? ).

Now u and v are at 'combat parityº with each other when

( 2.3.9 ) v2 = c /c ( v2 )

(A special point needs to be made here. Such parity models

assume that both sides are willing to bear the same proportion

of losses. of such is not the case , then an otherwise less
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numerous and less effective force can still emerge victorious.

For example , suppose that the Blue force versus Red force

coefficient is .5 and the Blue force has only .9 the numerosity of

the Red force. Then if Blue is willing to fight until reduced to .5

of his original strength , but Red will fight only to .8 of his

original strength, then using ( 2.38 ) that by the time Red has

reached maximal acceptable losses, Blue still has 618 of his

forces, and thus wins the conflict. This advantage to one force

to accept higher attrition than his opponent is frequently

overlooked in wargame analysis. The empirical realization of

this fact has not escaped the attention of guerilla leaders from

the Maccabees to the Mujaheddin .)

Accordingly , it is interesting to note that if there is a

doubling of numbers on the Red side, Blue can only maintain

parity by seeing to it that ca / c, is quadrupled, a seemingly

impossible task.

Lanchester's formula for undirected fire follows from similar

Poissonian arguments. The probability that a Red combatant will

eliminate some Blue combatant in (t.t. Al is given by

( 2.3.10 ) P[a Blue eliminated by a Red in (t.t+A]] =

P [ shot fired in it ,t+A]] P [ shot hits a Blue) A.

Now , the probability a shot aimed at an area rather than an

individual hits someone is proportional to the density of Blue

combatants in the area , hence proportional to u. Thus, we have:

(2.3.11 ) P [Blue eliminated in It,t-A]] = dyu A.

The expected number of Blues eliminated in the interval is

given by multiplying the above by the size of the Red force,
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namely, v.

So the differential equations are :

( 2.3.12 ) du dt = --d , un

dv / dt = --dzw .

This system has the time solution :

( 2.3.13 ) u ( t ) = (dyld , MO-Volldald ,-Volupexpl-(d2 40 - d , voltri

v(t ) = (d./d2V0-vollid/d2 - Up!Voexpl-(d , vo- dzud)tn .

Here, when dividing the equations in (2.3.12) and solving, we

obtain the parity equations:

(2.3.14) V- 40 - 07 /02/ v- vo ).

In such a case , a doubling of Red's parity force can be matched

by Blue's doubling of d2 / d ,.

In attempting to match either law ( or some other ) against

historical data , one needs to be a bit careful. In 1954, Engel

claimed to have validated the applicability of Lanchester's

directed rire law for the Battle of Iwo Jima. He used no records

for Japanese casualties and simply juggled the two parameters

to fit the record of American casualty data.

In a STA6 report written in 1972 (later published in the

open literature in 1979), Thompson , using the partial Japanese

casualty records , showed that the directed fire model gave

answers much at variance with the data ( sometimes off the

Japanese total effectives by a factor of four ) and that the

undirected fire model appeared to work much more

satisfactorily. However , the bottom line in the Thompson paper

was that a homogeneous force model was probably not very
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satisfactory in an engagement in which naval gunfire together

with Marine assault both played important roles. We shall

address the hetereogeneous force model problem directly .

In this , the one hundred and fiftieth anniversary of the Battle

of the Alamo, it is perhaps Instructive to consider a situation in

which a mixture of the two models is appropriate. Since the

Texians were aiming at a multiplicity of Mexican targets and

using rifles capable of accuracy at long range ( 300m ), it might

be ppropriate to use the directed fire model for Mexican

casualties . Since the Mexicans were using less accurate

muskets ( 100m ) and firing against a fortified enemy, it might be

appropriate to use the indirected fire model for Texian

casulaties. This would give

( 2.3.15 ) du / dt = -d , un

dv / dt = -Czu.

The parity equations are given by

(2.3.16 ) v2-v.2 - 2c / d ,( u- up )

The Texians fought 188 men, all of whom perished in the

defense . The Mexicans fought 3,000 men of whom 1,500 perished

in the attack. By plugging in initial and final strength

conditions, it is an easy matter to compute Cald, = 17,952.

However , such an index is essentially meaningless, since the

equations of combat are dramatically different for the two

sides. A fair measure of man for man Texian versus Mexican

effectiveness is given by

(2.3.17) | (dv / dt } / u ] / 1 ( du / dt ) / V ] = c2/(d , u) .

This index computes the rate of destruction of Mexicans per

Texian divided by the rate of destruction of Texian per Mexican.
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We note that the mixed law model gives a varying rate of

effectiveness, depending on the number of Mexicans present. At

the beginning of the conflict, the effectiveness ratio is a

possible 96 ; at the end , a romantic but unrealistic 17,952.

The examination of this model in the light of historical data

should cause us to question it. What is wrong ? Most of the

Mexican casualties occurred before the walls were breached .

Most of the Texian casualties occurred after the walls were

breached But after the walls were breached, the Mexicans

wouldbe using directed fire against the Texians.

We have no precise data to verify such an assumption , but for

the sake of argument, let us assume that the Texians had 100

men when the walls were breached, the Mexicans 1800. Then

(2.3.16) gives Cyld , 32,727. The combat effectiveness ratio

cz!(d , u) goes then from 174 at the beginning of the siege to 327

at the time the walls were breached. For the balance of the

conflict we must use equations (2.3.4) and (2.3.5) with the

combat effectiveness ratio calci = 99 ( computed from (2.3.8).

Personally, I am not uncomfortable with these figures. The

defenses seem to have given the Texians a marginal advantage of

around 3. Those who consider the figures too ' John Wayneishº

should remember that the Mexicans had great difficulty in

focusing their forces against the Alamo, whereas the Texians

were essentially all gainfully employed in the business of

fighting. This advantage to a group of determined Palikari to

defend a fortified position against overwhelming numbers of a

besieging enemy is something we shall return to shortly.

Having, hopefully, transmitted some feeling asas to the

advantages of commonof common sense utilization of the method of
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Lanchester ( borrowed in spirit from Poisson ), we shall now take

the next step in its explication: namely the utilization of

heterogeneous force equations.

Let us suppose that the Blue side has subforces

(u's- 1,2 ,..., These might represent, artillery , infantry.

armour, etc. Also, let us suppose that the Red side has n

subforces (uj'j= 1,2,..., . Then the directed fire equations ( 2.3.4)

and (2.3.5) become:

( 2.3.18 ) du / dt -- 21-1 to nkijujt

(2.3.19) dv/dt -- 2j- 1 to m'j1C2j1ºj.

Here, kij represents the allocation (a number between 0 and 1

such that Ij= 1 to mkij s 1 ) of the i'th Red subforce's firepower

against the j'th Blue subforce. Cij represents the Lanchester

attrition coefficient of the i'th Red subforce against the j'th

Blue subforce. Similar obvious definitions hold for ljud and

Ic2ji ).

(2.3.18) furnishes us a useful alternative to the old table

lookup in Kriegspiel Numerical integration enables us to deal

handily and easily with any difficulties associated with turn to

turn changes in allocation and effectiveness, reinforcements,

etc. Experience has shown that computerized utilization of

mobility rules based on hexagonal tiling superimposed on actual

terrain , together with the use of Lanchester hetereogeneous

force combat equations, makes possible the construction of

realistic war games at modest cost.

Beyond the very real utility of the Lanchester combat laws to

describe the combat mode for war games, they can be used as a
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model framework to gain insights as to the wisdom or lack

thereof of proposed changes in defense policy. In 1972 I wrote a

STAG report (published in the open literature in 1979 ) to

address the problems of disparity of NATO and Warsaw Pact

forces. As we have observed in ( 2.3.9 ), in the face of a twofold

manpower increase of Red beyond the parity level, Blue can ,

assuming Lanchester's directed fire model, maintain parity only

by quadrupling calci. This has usually been perceived to imply

that NATO must rely on its superior technology to match the

Soviet threat by keeping C2 always much bigger than cq

Since there exists evidence to suggest that such technological

superiority does not exist at the conventional level , it appears

that the Soviets keep out of Western Europe because of a fear

that a conventional juggernaut across Western Europe would be

met by a tactical nuclear response. Thus , the big push by the

Soviets and their surrogates for 'non first use of nuclear

weapons ' treaties. It is not at all unlikely that the Soviets

could take Western Europe in a conventional war.

in my paper ' An Argument for Fortified Defense in Western

Europe,' I attempted to show how the calc , ratio could be

increased by using fortifications to decrease Cg . Whether or not

the reader judges such a strategy to be patently absurd, it is

instructive to go through the argument as a means of explicating

the power of Lanchester's laws in scenario analysis

My investigation was motivated by the defense of the

Westerplatte peninsula in Dantzig by 188 Polish soldiers from

September | through September 7 in 1939, and some interesting

parallels with the much lower tech sige of the Alamo a hundred

years earlier. (Coincidentally, the number of Polish defenders
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was the same as the number of Texians at the Alamo .) The

attacking German forces included a batallion of ss, a batallion

of engineers, a company of marines, a construction batallion , a

company of coastal troops, assorted police units, 25 Stukas, the

artillery of the Battleship Schleswig -Holstein , eight 150 mm

howitzers , four 210 mm heavy mortars , a hundred machine guns,

and two trainloads of gasoline ( the Germans tried to flood the

bunkers with burning gasoline ).

The total number of German troops engaged in combat during

the seven day seige was well over 3,000. Anyone who has visited

Westerplatte (as I have ) is amazed with the lack of natural

defenses. It looks like a nice place for a walkover . It was not.

The garrison was defended on the first day by a steel fence

(which the Germans and the League of Nations had allowed,

accepting the excuse of the Polish commander, Major Sucharski,

that the fence was necessary to keep the livestock of the

garrison from wandering into Dantzig ), which was quickly

obliterated Mainly, however, the structural defences consisted

in concrete fortifications constructed at the ground level and

below . Theoretically, the structural fortifications did not exist,

since they were prohibited by the League of Nations and the

peninsula was regularly inspected by the Germans to insure

compliance. However, extensive 'coal and storage cellars ' were

permitted , and it was such which comprised the fortifications.

The most essential part of the defenses was the contingent of

men there. Unlike the Texians at the Alamo who realized they

were going to die only after reinforcements from Goliad failed

to arrive and the decision was made not to break through Santa

Anna's encirclement, the Polish defenders of Westerplatte

realized that when the German invasion began , they were
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doomed It is interesting to note the kern competition which

existed to gain the supreme honour of a posting to Westerplatte.

Perhaps 'no bastard ever won a wr by dying for his country but

the defenders of the Alamo and those of Westerplatte

consciously chose their deaths as an xceptable price for

wreaking a bloody vengence on the enemies of their people.

Ever since the abysmal failure of the Maginot Line in 1940 , it

has been taken for granted that any strategy based on even the

partial use of fixed defenses is absurd. I question this view .

Historically fixed defenses have proved more effective as

islands rather than as flankable dikes. The Maginot Line was

clearly designed as a dike, as was the Great Wall of China, and

both proved failures. It is unfortunate that the dike-like tactics

of trench warfare had proved so effective in World War I.

Otherwise , the French would undoubtedly have noted that they

were basing their 1940 defense on an historically fragile

strategy . Dikes generally can withstand force only from the

front, as the Persians (finally ) discovered at Thermopolae. If

the dikes are sufficiently narrow and thick, however , they many

be effective islands and very difficult to outflank .
It was

conceded by the panzer innovator , von Manstein , that Germany

absolutely could not have taken the Sudentenland defenses in

1938 had they been used This brings up another interesting

point. An effective system of fixed defenses is very much

dependent on the will of the people using them .

Historical examples, modern as well as ancient, of successful

use of constructed defensive positions can bebe given ad

infinitum . Among the crusading orders, the Templars and

Hospitalers early discovered that they could maintain an

effective Christian presence in thethe Holy Land only by
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concentrating a large percentage of their forces in a number of

strongly fortified castles. This gave them sufficient nuisance

value to cause concessions by the Muslim leaders . Most of the

military disasters to the orders were the result of their

frequent willingness to strip their castle defenses and join the

crusader barons in massive land battles against numerically

overwhelming odds--as at Hattin . For over a thousand years,

some of the Christian peoples in the Near East, e.g., the

Armenians and the Maronites maintained their very identity by

mountain fortifications.

It is interesting to note that of the crusader

fortresses --Malta--never fell to the Muslims and was only taken

( by treachery ) by Napoleon in 1798. In the Second World War,

one

the connection between the resistance of Malta and the ultimate

destruction of the Afrika Korps is well remembered. Even light,

hastily constructed defenses, manned by people who do not know

they are supposed to surrender when surrounded, can be

extremely effective in slowing down the enemy advance , as

proved by the 101'st Airborne during the Battle of the Bulge.

In the examples above , there seem to be some common points.

First of all , fortified defense gives a ready means of increasing

the ratio of the Lanchester coefficients in favour of the Blue

side. One natural advantage to this type of defense is the fact

that the defender can increase his Lanchester attrition ratio by

a policy of construction over a period of time. This may be a

more fruitful policy than placing all one's hopes on increasing

ones Lanchester ratio by the design of new weapons systems.

Secondly , fortified defense should rely on adequate stores of

supplies located within the "fortress perimeter. It should be

assumed by the defenders that they will be completely
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surrounded by the enemy for long periods of time. (In their

fortress at Magdeburg, the Teutonic Knights always kept ten

yer's provisions for men and horses .)

Thirdly , fortified defense is a test best undertaken by well

trained professionals with strong goup loyalty.

Fourthly, fortified defense is most effective when there are

allied mies poised to strike the GIGTAY at some future time

and place. The fortress and the mobile striking force

complement each other in their functions. The function of the

fortress is to punish, harass and divide the enemy and to

maintain a presence in a particular area In general, however,

offcnsive activities must be left to the mobile forces . The

deployment of enemy forces to take fortified positions will

weaken their ability to withstand mobile offensive operations.

Let us now examine modified versions of (2.3.4) and (2.3.5)

(2.3.20 ) du /dt = -cºv

and

(2.3.21 ) dv / dt = - cz* u.

Here the attrition to Blue coefficient is taken to be variable

c; * = c,*(u,v)and is demonstrated graphically in Figure 5.

- -
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Figure 5
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in the above, we assume that c never exceeds cp the

attrition constant corresponding to nonfortified combat..

Clearly, the functions ci and ca are functions of the manner

in which the fortress has been constructed . It may be desirable

to design the fortifications so that is small , even at the

expense of decreasing cz* . Generally , one might assume that

cz* is close to the nonfortified attrition rate of u against v,

since the defenders will have removed potential cover for the

Red side. In fortress defense, the solution in time is likely to

be important, since a primary objective is to maintain a Blue

presence for as long as possible. Weas long as possible. We consider a linear

approximation to the v-level curves of c , *(u,v) in Figure 6.
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Figure 6
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Then we would have

--

u(2.3.22) du/dt = - g(v)uv - 1

where Cc ; '(u,v) = g(v)u and Co is the Blue coefficient of

internal attrition . (We notice that this analysis has moved us,

quite naturally to an undirected fire model for the defender's

losses. The model thus derived is essentially that used earlier

for the Alomo.) We might reasonably expect that the besieging

forces would maintain more or less a constant number of troops

in the vicinity of the redoubt. Hence we would expect

(2.3.23) dv/dt = - cz* u - cą +P(u,v) = 0,

--

where P(u,v) is the rate of replacement necessary to maintain
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constant v strangth and ca is the Red coefficient of internal

attrition . We might expect that y » cy since inadvertent

self - inflicted casualties are a well known problem for the

besieging force. Then

(2.3.24) u ( t ) = upexpl- (g( u ) v + 0 ,** ) ).

The enemy attrition by time t is given by

(2.3.25) so'Plu,v)dt=

cq ***v*cz-W11-expl-(g(v)v+c ,** ]}/{g(v)v*c, **) .

If the Blue defense can hold out until y =« Mo ( where 0<x< 1 ) ,

then the time till the end of resistance is given by

(2.3.26) t * - - In(x)/{g(v)v+ C , **) .

We have, then that the total losses to the Red side by the time

the defense falls is given by

(2.3.27) 1 cze wol1 -x) - c2** vin(a )}/ {g(v )v + C , **) .

tt

It is interesting to note that if cq = 0, then the minimization

of Red casualties appears to be consistent with the

minimization of t*. This might indicate that an optimum

strategy for Red is to overwhelm the Blue fortifications by

shear weight of numbers. This would not be true if beyond some

value of V, dig(v)v}/dyso, implying that beyond o certain

strength, additional Red forces would actually impair Red's

ability to inflict casualties on the Blue side. As a matter of

fact , the history of fortified defense seems to indicate that

such a 'beginning of negative returns' point in the v space does

exist. It is generally the case for the besieging force that

--

C2 » 0 and that it is increasing in V. This is particularly true

if the besieged forces are able from time to time to conduct
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carefully planned 'surprises in order to encourage Increased

confusion and trigger happiness on the part of the besiegers.

In the heterogeneous force model for fortified defense , we

have

(2.3.28) duz/dt = - 31= 1 to nk1913(vy)vyuy- Cojus

(2.3.29) dv/dt = - Sj = 1 to m'yic2j1*uj -621*04

The size of the j'th Blue subforce at time t is given by

( 2.3.30 ) y (t) = w ; (O expl -t{? i=1 to nkijij(v ) *Cij
}]

The total attrition to the ith enemy subforce at time t is given

by

(2.3.31 ) set P; (0 ,v)dt = {j = 1 to m'jiczji*v;( )x

To expl-ti I1= 1 to nkijij (vy ) vy * Cuj " } dt+C21

= {j = 1 to m'jiC2j1*u;(0){1-expl -tIknj9iz( y) Vy !!!

{ Ekijgij(vj) v; * Cij" )* czi " tv; -

Suppose that the effectiveness (at time t) of the Blue

defender is measured by

(2.3.32) T (U) = j = 1 to mºjºj(t) ,

aj predetermined relative effectivenesswhere the are

constants . If we assume that the fortress is lost when the

effectiveness is reduced to some fraction « of its initial value,

i.e., when

(2.3.33) T(t) < « T (0 ),

then we can use (2.3.31 ), in straightforward fashion, to solve

for the time of capture.

The above model gives some indication of the power of the

simple Lanchester 'lows' in analyzing a 'what if?" scenario. It
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is, in large measure , the lack of 'gee -whizziness of

Lonchester's models which renders them such a useful device to

the applied worker . Generally speaking, after a few hours of

self - instruction , a potential user can bring himself to the level

of sophistication where he can flowchart his own wargame or

other form of scenario analysis.
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Section 4. Predation and Immune Response Systems

Let us consider Volterra's predator -prey model and some

consequences for modeling the human body's anti -cancer immune

response system . For the classical shark - fish model , we follow

essentially Haberman ( 1977). Suppose we have predators, say

sharks , whose numbers are indicated by S, who prey on, say fish,

whose numbers are indicated by F. In the 1920's, it was brought

to the attention of Volterra that there appeared to be a periodic

pattern in the abundance of certain food fish in the Adriatic, and

that this pattern did not appear to be simply seasonal . Volterra

attempted to come up with the simplest logical explanation of

this periodicity.

We might suppose that the probability a typical shark gives

birth to another shark ( for reasons of simplicity we treat the

sharks as though they were single cell creatures ) is given by

(2.4.1 ) Pr(birth in It , t +at) ) = (af ) At.

Here the assumption is that the probability of reproduction is

proportional to the food supply , i.e. , to the size of the fish

population.

The probability a shark dies in the time interval is considered

to be a constant kat . Thus, the expected change in the predator

population during It , t +at] is given by

(2.4.2 ) ELAS) = S(af -klat.

As we have in the past, we shall assume that for a sufficiently

large predator population, we may treat the expectation as

essentially deterministic . This gives us the differential

equation:

(2.4.3 ) ds/dt = S(XF-k).

Similarly the probability that a given fish will reproduce in
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(t,t.at) minus the probability it will die from natural causes

may be treated like

( 2.4.4 ) Pre birth in It ,t At]) = aat

We have assumed that the fish have , essentially , an unlimited

food supply. The death by predation , on a per fish basis, is

obviously the number of sharks multiplied by their fish eating

rate, c , giving the differential equation:

( 2.4.5 ) dF / dt = Fla-cs).

Now the system of equations given by ( 2.4.3 ) and ( 2.4.5 ) has no

known simple time domain solution , although numerical solution

is, obviously, trivial . However, let us examine the F versus S

situation by dividing (2.4.5) by ( 2.4.3). This gives us

(2.4.6) dF / DS ={F/(XF -k)) (la-cs)/S) .

The solution to (6) is easily seen to be

(2.4.7) F-ke AF = Ee-cSga, with E a constant.

Now , let us use (2.4.3 ) and (2.4.5 ) to trace the path of F versus

S. We note, first of all , that F=k/n, gives an unchanging s

population; S = alc gives an unchanging F population.

dF / dt> dF /dt«

F

dsut>
ds /dt>0

kia

df /atzo

dS/dtco

dF /dt < 0

ds /dto

a/c

S

Figure 1 208
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The consequences of Figure 1 are that the F versus S plot must

either be a closed repeating curve or a spiral. We can use

( 2.4.7 ) to eliminate the possibility of a spiral. Let us examine

the level curves of F and S corresponding to the common Z values

in

(2.4.8 ) F-ke AF - Ee- cSga= Z .

In Figure 2, we sketch the shapes of Z versus F and S,

respectively, and use these values to trace the F versus 5 curve .

Z Z

f , F f2
S

,
52

S

2

F

7 S

s ,
o
rน

Figure 2

We note that since each value of Z corresponds to at most four
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points on the F versus S curve, a spiral structure is out of the

question , so we obtain the kind of closed curve which was

consistent with the rough data presented to Volterra. Using

Figure 1 in conjunction with Figure 2, we can sketch the time

behaviour of the two populations

F

kin

S

a/c

Figure 3

Here we note periodic behaviour with the fish curve leading the

shark curve by 'ninety degrees.'

Let us now turn to an apparently quite different problem ,

that of modeling the body's immune response to cancer . Calling

the number of cancer cells, x, let us postulate the existence of

'antibodies in the human organism which identify and attempt

to destroy cancer cells. Let us call the number of these immuno

entities, y , and suppose that they are given in x units, i.e. , one

unit of y annihilates and is annihilated by one cancer cell . Then,

we can model the two populations via

(2.4.9) dx/dt = 4 +ax -bxy

( 2.4.10 ) dy / dt = cx -bxy .
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The justification for such a model is as follows. Cancer cells

are produced at a constant rate a which is a function of

environmental factors, inability of the body to make accurate

copies of some of the cells when they divide, etc. a is the

growth rate of the cancer cells. b is the rate at which

antibodies attack and destroy the cancer cells. c is the rate of

response of the antibody population to the presence of cancer

cells.

Although we cannot obtain closed form solutions for the

system given by (2.4.9) and ( 2.4.10 ) , we can sketch a system of

curves which will give us some feel as to which individuals will

have immune systems which can cope with the oncogenesis

process. From (2.4.10), we notice that y decreases if dy /dt = cx

-bxy < 0 ; i.e. , if y>c/b. If the inequality is reversed, then y will

increase . Similarly, from (2.4.9) , we note that x decreases if

dx/dt = ^ * ax -bxy < 0 ; i.e. , if y>(^+ ax)/b. Let us examine the

consequences of these facts by looking at Figure 4.

y= ( a+ ax ) / ( bx ) Death

Y

Denti y = a / b

Death

c/b

Death

Х

Figure 4
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The prognosis here would appear to be very bad . The body is not

able to fight back the cancer cells and must be overwhelmed .

On the other hand, let us examine the more hopeful scenario

in Figure 5

y= ( x+ ax )/ ( bx )
у

Life

LIS

ab

ulho
Le

AnilaUTTU :

alb y - alb

Amtoquoi

X

Figure 5

We note the change if c increases dramatically relative to a. We

now have regions where the body will arrive at a stable

equilibrium of cancer cells and antibodies. We should also note

that in both Figure 4 and Figure 5, the situation of an individual

who starts out with no antibodies backup at the beginning of the

process is bad.

We can glean other insights from the model . For example, a

large enough value of a can overwhelm any value of c. Thus no

organism can reasonably expect to have the immune response

power to overcome an oncogénicº snbcks , no matter now ' oig.

Next, even if x is very large, provided only that we can change

the biological situation to increase dramatically C, while
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suppressing ~, the tumor can be defeated.

The model considered here is obviously not only hugely

simplified, but purely speculative. We have, at present, no good

means of measuring x and y . But it should be remembered that

the model generally precedes the collection of data: generally,

data is collected in the light of a model. In the case of

Volterra's fish model, partial data was available because the

selling of fish was measured for economic reasons . Volterra

was , in short, fortunate that he could proceed from a well

developed data set to an explanatory model . This was

serendipitous, and unusual.

Generally speaking, we waste much if we insist on dealing

only with existing data sets and refuse to conjecture on the

basis of what may be only anecdotal information. If we are being

sufficiently bold, then for every conjecture that subsequently

becomes substantiated we should expect to be wrong a dozen

times. Model building is not so much the safe and cozy

codification of what we are confident about as it is a means of

orderly speculation .
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Section 5. Pyramid Clubs for Fun and Profit

There are those who hold that the very formalism of the

' free market will produce good -- irrespective of the production

of any product or service other than the right to participate in

the 'enterprise itself. One example of such an enterprise is

gambling. Here, the player may understand that he is engaging in

an activity in which his long run expectations for success are

dim---the odds are against him. Nevertheless , he will enter the

enterprise for fun , excitement and the chance that, if he only

plays the game a small number of times, he will get lucky and

beat the odds.

Another example ofof an enterprise which apparently

produces no good or service is that of the pyramid club. Unlike

gambling, the pyramid club gives the participant the notion that

they almost certainly will 'win,' i.e. , their gain will exceed, by

a very significant margin , the cost of their participation . Let

us consider a typical club structure. For the cost of $ 2,000 , the

member is allowed to recruit up to six new members. For each

member he recruits, he receives a commission of $ 1,000 .

Furthermore, each of the new members is inducted with the

same conditions as those of the member who inducted them . Now

for each recruit made by second level members, the first level

member receives a commission of $ 100. This member is allowed

to share in these $ 100 commissions down through the sixth

level . Generally, there is some time limit as to how long the

member has to recruit his second level members--typically a

year. Thus, his anticipated return is
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(2.5.1 ) Anticipated Return = 1,000X 6

• 162063764765x100 - 938,400

It is this apparent certainty of gain which attracts many

to pyramid enterprises. Many state governments claim that this

hope of gain is hugely unrealistic, and thus that pyramid

enterprises constitute fraud. We wish to examine this claim.

Let us suppose we consider only those members of society

who would become members if asked. Let us say that at any

given time those who are already members will be included in

the pool 'yº and those who have not yet joined but would if asked

are included in the pool 'x' . If we examine the probability that

a member will effect a recruitment in time interval A, this

appears to be given by

(2.5.2) P(recruitment in It ,t+A] = k */(x+y)A

where k = yearly rate of recruitment if all persons in

the pool were nonmembers (e.g. , k= 6).

Then we have that the expected numbers of recruits by all

members in (t ,t+A) is given by:

(2.5.3 ) E [number of recruits in (t.t+ Al] = ky x/(x+y)a.

Now there will be an exodus from the pool given by the rate /

which is the reciprocal of the average time a member is a

member (say 1 year). (You should check by an infinitessimal

argument that this statement is true. )

Thus , if we replace the expectation of y by y itself, and

divide by A, and let A go to 0, we have

( 2.5.4 ) dy / dt = kyx / ( x + y ) - dy .

Let us make the optimistic ( from the standpoint of the

participants) assumption that x * y is constant. And, further , let
215
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Us consider that x and y are proportions so that y - 1 -x. Then we

have the easily solvable (using partial fractions) equation

(2.5.5) dy / lyck - -ky )] = dt.

So we have

(2.5.6) t= 1 /(k-yyinly/(k-8-ky)]- 1 / (k -volinlyo/ ( k -8 -kyo )).

Now, when dy / dt = 0 , there is no further increase of y. Thus, the

equilibrium ( and maximum ) value of y is given by

(2.5.7) Ye =(k- )/K.

For the present example, where k is 6 and 8= 1 , the maximum

value of y is .83 . Ye will only be reached at t= ». But it is

relevant to ask how long it will take before y equals, say .82. 11

we assume that yo equals .001, a little computation shows that

tly1.82) ) = 1.87 years.

Now , the rate of recruitment per member per year at any

given time is given by

(2.5.8) ( dy / at ]/ y = [k - 8- ky ).

At time t= 1.87 , and thereafter,

(2.5.9) (dy / dt )ly -.08.

Unfortunately, a member who joins at t- 1.87 or thereafter must

replace the '6' in ( 1 ) by a number no greater than .08 . Thus , the

anticipated return to a member entering at this time is rather

less than 938,400 :

(2.5.10) Anticipated Return $ 1,000X.08 +

1.082.083..0844.085X100- $80.70.

The difference between a pyramid structure and a bona fide

franchising enterprise is clear. in franchising enterprises in
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which a reasonable good or service is being distributed, there is

a rational expectation of gain to members even if they sell no

franchises. Potential members may buy into the enterprise

purely on the basis of this expectation. Still , it is clear that a

different kind of saturation effect is important . The owner of a

fast food restaurant may find that he has opened in an area

which already has more such establishments than the pool of

potential customers. But a careful marketing analysis will be

enormously helpful in avoiding this kind of snafu. The primary

saturation effect is not caused by a lack of potential purchasers

of fast food restaurants but by an absence of customers. On the

other hand, there is little doubt that many franchising

operations infuse in potential members the idea that their main

profit will be realized by selling distributorships. Indeed, many

such operations are de facto pyramid operations. Thus, it would

appear to be impossible for the government to come up with a

nonstiffling definition of pyramid clubs which could not be

circumvented by simply providing, in addition to the recruiting

license, some modest good or service ( numbered 'collectors

itemº bronze paper weights should work nicely ) . The old maxim

of caveat emptorwould appear to be the best protection for the

public .

The model of a pyramid club is an example of epidemic

structure , although no transmission of germs is involved. Nor

should the term 'epidemic' be considered always to have

negative connotations. It simply has to do with the ability of

one population to recruit , willfully or otherwise, members of

another population into its ranks.
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Section 6. A Model Based Examination of AIDS: Its Causes and

Likely Progression

A customary approach to the control of contagious diseases

in contemporary America is via medical intervention , either by

preventive vaccination or by the use of antibiotics. Historically,

sociological control of epidemics has been the more customary

method. This has been due , in part , to the fact that vaccines

were unknown before the Nineteenth Century and antibiotics

before the Twentieth Century.

In the case of some ancient peoples , a large portion of the

system of laws dealt with the means of sociological control of

epidemics. For example, it should be noted that the 13th, 14th

and half of the 15th chapter of Leviticus ( 131 verses) are

dedicated for the sociological control of leprosy. We might

contrast this with the fact that the often mentioned dietary

( kosher) laws receive only one chapter, the 11th, with a total of

47 verses.

The notion that epidemics can always be controlled by a shot

or a pill rather than by the generally more painful sociological

methods caused much human suffering even before AIDS. For

example, First World medicine has largely displaced isolation as

a control for leprosy in the Third World. Because the methods

have been less effective in practice than hoped, we have the

spectacle in some countries of three generations of a family

sharing the same roof and the disease of leprosy. Only in the

1980's have we (apparently) reached the level of medical control

necessary to protect individuals against the effects of leprosy .

But , in some sense, we have acted for half a century as though

we were in possession of an anti- leprosy technology which we
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did not, in actuality, have.

In the case of AIDS, we see an even more difficult (of

medical control) disease than leprosy . At present, the amount

of federal funds expended on AIDS is over 15% of the total

federal funding for research on all oncological diseases (of

which AIDS is considered to be one). My own discussion with

colleagues involved in the investigation indicates that a vaccine

or a cure is extremely unlikely in the near future. Accordingly ,

we are confronted with a disease with a 100% fatality record

and a per patient medical cost (using the present heroic

intervention ) in the $ 100,000/case range. We must ask the

question of whether the present main thrust of attack can be

deemed optimal or even intelligent.

Below, I will give some of the arguments used in a paper

written in 1983, when the extent of the disease was much less

than is the case presently . First of all , we can determine the

probability that a random infective will transmit the disease to

a susceptible during a time interval (t,t +at).

Prob (transmission in ( t , t + at ) ) =

X

kat a
X + Y

where

k = # contacts /time

a = prob of contact causing AIDS

X = # susceptibles

Y = # infectives
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To get the expected total increase in the infective population

during it,t+at), we multiply the above by Y, the number of

infectives.

(2.6.1 ) AE(Y) = YPr ( transmission in it ,t.at)).

For large populations, we can assume, under fairly general

conditions, that the expected total change in Y is a very nearly

equal to a deterministic Y, i.e. ,

(2.6.2) AE(Y) * AY.

Letting At go to zero, this yields, immediately

(2.6.3)

dy

dt

XY

= ka

X+Y

dx

dX
=

XY

-ka

X+Ydt

Now, we must allow for immigration into the susceptible

population (a), and emigration (u) from both the susceptible and

infective populations and for marginal increase in the

emigration from the infective population due to AIDS (8), from

sickness and death. Thus we have the improved differential

equation model
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(2.6.4)

dY

dt

XY

= ka - ( 8+u )

X+Y

a
X dX XY

= -ka + -ux

dt X + Y

where ^ = immigration

U = emigration

r = aids death rate

For early stages of the disease, X / ( X + Y ) * 1. Accordingly , we may

write the approximation:

(2.6.5) dy / dt =[k«-4-8]Y .

This gives us the solution:

(2.6.6) Y= Y(0)expl[ke -4-8]t ) .

Now, we shall use some rough guesses for some of the

parameters in the equations above.

We shall assume that, absent AIDS, the total target population

is 3,000,000. We shall assume that an individual stays in this

population average
of 15 years (yielding

= 1 / ( 15X12) = .00556 ). We will use as the average time an

infective remains sexually active 10 months (yielding 8=.1 ). To

maintain the population of 3,000,000 (absent AIDS), then, we

require

an

(2.6.7) dx / dt- X -MX - 0

or 1= 16,666. Now, if we combine these figures with early death

data from AIDS, we can use the approximation for Y to obtain an

estimate for kæm.263. Below, we show a table of predicted and
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observed AIDS figures using the estimates above.

Table 1 AIDS Cases

Date Actual Predicted

255 189May 82

Aug 82
475 339

Nov 82 750 580

Feb. 83 1,150 967

May 83 1,675 1,587

Now , using the somewhat smaller kæ value of .25 and an initial

infective population of 2,000, we come up with the following

projections making the assumption that things continue with the

parameter values above.

Table 2. Projections of AIDS with ka = .25

YEAR CUM . DEATHS FRACTION INFECTIVE

1 6,434 .004

2 42,210 .021

3 .107

4 .395

8ūŌn
o
w
n

5 .738

226,261

903,429

2,003,633

3,741,841

4,650,124

5,562,438

10 .578

15 .578

20 .578

The fraction infective column has been given, since , in the
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absence of state intervention or medical breakthrough, it is this

variable which provides the (sociological ) feedback for the

control of the disease . Any visibility of a loathsome and fatal

disease in the proportion range of one percent of the target

population will almost certainly cause members of that

population to consider modifying their membership in it. In the

days of plague in Western Europe , one could attempt to leave

centers of congested population. It would appear likely that

AIDS will cause a diminution of , and k and an increase of u. ( it

is very possible that the present government health service

intervention actually decreases 8 and so increases the spread of

the disease, but this effect is probably minor. )

Let us consider, for example, the effect of diminishing k. We

note that in the early stages of the disease , an equilibrium

value of kær. 1056 is obtained. At this value, with all other

parameters held constant , the total body count after 20 years is

47,848 with a fraction of infectives quickly reaching .000668 .

Now, let us suppose that fear reduces k to 20% of its present

value, by the use of condoms and some restraint in activity.

Then, the table below shows that the disease quickly retreats

into epidemiological insignificance.

Table 3. Projections of AIDS with kx • .05

YEAR CUM . DEATHS FRACTION INFECTIVE

1
1,751 .00034

2 2,650 .00018

3 3,112 .00009
. ܝ ܚ ܬ ܗ

4 3,349 .00005

5 3,471 .00002

10 3,594 .000001
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But, let us suppose that a promiscuous fraction, p, retains a

kæ value L times that of the less promiscuous population .

Our model becomes:

org/ dte kæ X7( LY2)/( X7oY7 * L [Y2* X2])- (8+ 4 ) Y ,

( 2.6.8) dv / dt- ka LX2(Y , *LY2)/ ( Xy+Y ,*L [Y2* X2 ])-(D*u ) Y2

ox , /dt= -k« X,(Y ,+LY21/( Xy+Y7* LIY2 +X2])+(1-2)^ -ux ,

dXyldt= -ka LX21Yq + LY2 )/( X , * Yq +L (Y2 +x2])+på - uX2

Below , we consider the case where ka =.05 ,

L = 5, and p = .1 .

Table 4. Projection of AIDS with p = .10

YEAR CUM . DEATHS FRACTION INFECTIVE

1 2,100 .0005

2 4,102 .0006

3 6,367 .0007

4 9,054 .0008

12,274 .0010

ō ū Ō n
a

w

10 .002040,669

105,076 .0059

20 228,065 .0091

We notice how the presence of even a small promiscuOUS

population can stop the demise of the epidemic. But , if this

proportion becomes sufficiently small, then the disease is

removed from an epidemic to an endemic situation, as we see

below with p=.05 and all other parameters the same as above.

-
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Table 5. Projections of AIDS with p = .05

YEAR CUM . DEATHS FRACTION INFECTIVE

1 .000431,917

3,272

4,344

.00033

N

3 .00027

4 5,228 .00022

5 .00019

8̄ܘ̄ܘܩܬܚ

5,971

8,26310 .00008

15 .000039,247

9,67220 .00002

The dramatic effect of a small promiscuous population may be

considered in the case where 90% of the population has a kæ of

.02 and 10% has a kæ of .32. This gives a population with an

overall kæ of .05. If this low value is maintained across the

population , then we have seen that the disease quickly dies out.

But consider the situation when the mix is given as above.

Table 6. Projections of AIDS with p - .1 , k@=.02, L- 16

YEAR CUM . DEATHS FRACTION INFECTIVE

1
2,184 .0007

6,536 .0020

20,583 .0067

ܩܬܚܝ

4
64,157 .0197

170,030 .0421

10
855,839 .0229

15 1,056,571 .0122

20 1,269,362 .0182
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One prediction about AIDS is that there is a ' Typhoid Maryº

phenomenon . That means that the actual transmission rate is

much higher than had been supposed , but only a fraction of the

infected develop the disease quickly . Another fraction become

carriers of the disease without themselves actually developing

the physical manifestations of the disease, except possibly

after a long interval of time. To see the effects of such a

phenomenon , let us suppose ka = .05 , but 50% of those who

contract the disease have a life expectancy of 100 months

instead of only 10.

Table 7. Projections of AIDS with kæ = .05 and Half of the

Infectives with 8-.01

YEAR CUM . DEATHS FRACTION INFECTIVE

1 1,064 .00066

1,419 .00075

AWN

2,801 .00089

3,815 .00110

5 5,023 .00130

10 16,032 .00330

15 44,340 .00860

20 115,979 .02210

Such a disastrous scenario is, naturally, made much worse as

we increase the fraction of those with the long sexually active

life expectancy. For example , if this proportion is 90 % , we have
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Table 8. Projections of AIDS with 90 % Having Life Expectancy

of 100 Months

YEAR CUM . DEATHS FRACTION INFECTIVE

1 457 .0094

2 .0013

3

1,020

1,808

2,943

.0020

4 .0028

5 4,587 .0041

10 32,911 .0260

15 194,154 .1441

20 776,146 .4754

If the Typhoid Mary phenomenon is an actuality, then the

effect of AIDS is likely to be catastrophic indeed. (Note that no

presence of a promiscuous subpopulation is necessary to cause

this catastrophic scenario. ) However, this would imply that

AIDS was a new disease, contrary to the historical evidence. It

seems most likely that AIDS has always been endemic in a

species of Central African monkey and that its presence in the

human population is of long standing. Indeed, the present entry

into the United States appears to be via Haiti , which has not had

significant African immigration for centuries. Since the

disease has been noted in the United States, studies show the

disease present in Tanzania, Uganda, Zaire, etc. These studies

contain even more noise than those in the United States, which

are very noisy indeed. (Also , it is interesting to note that

claims have been made that the disease is frequently now of

epidemic proportions in the heterosexual population. How much

of this latter phenomenon is real , and how much of the real
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heterosexual cases are due not to sexual contact, but other

factors, e.g., zealous local medicos dispensing shots with

unsterilized needles , is a matter of conjecture. If vectoring

sexual vectoring into the heterosexual population is truly such

an enormous problem in Africa, we need quickly to understand

what the reasons are .) How likely, we must ask , is it that

genetic drift in the AIDS virus would have proceeded in such

widely separated populations to produce epidemics in both the

United States and Central Africa at the same time? Anecdotally ,

a pathologist at the Texas Medical Center has informed me that

some of his colleagues, nearing retirement, now recall young

male patients with AIDS symptoms as long as 30 years ago , but

in such occasional numbers that there was no attempt to

characterize such rare occurrences in any systematic fashion .

If AIDS is not a new disease ( and evidence that it is might

well be investigated as an act of war by a hostile power with

genetic engineering capabilities ), then we ought to ask what has

changed in order that an endemic disease has now reached

epidemic proportions. It seems most likely that the reason is

that the large contact rates (k), which characterize the

frenetically homosexual communities which exist in some

American cities, have never occurred before in the history of

the world.

Some Suggestions From The Model

1. The most important elements in AIDS which will cause its

essential elimination are :

low value of «

awfulness of the disease
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2. As the diseased fraction of the target population increases,

k will decrease

a will decrease

u will increase

3. Intervention by the state in the form of a publicity campaign

giving a graphically realistic assessment of the prognosis of an

AIDS victim would be useful . Because of the very significant

effect by a small subgroup having large numbers of potentially

contagious contacts , the closing of meeting places (bath houses,

etc. ) where high contact rate activity takes place would be

useful. If such places were closed, then the homosexual

communities in a number of American cities could possibly last

indefinitely. However, the resistance to such steps on the basis

of civil libertarian considerations , will insure the destruction

of these communities .

4 . Vectoring into the heterosexual population will not be a

serious problem because of the much lower level of promiscuity

among straights.

5. AIDS will eliminate the target subculture, not through

fatality but through fear of fatality. The ultimate 'cure' of the

disease will be sociological , rather than medical .
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CHAPTER 4. SOME TECHNIQUES OF NONSTANDARD DATA ANALYSIS

Section 1. A Glimpse at Exploratory Data Analysis

Books hove been written on John W. Tukey's revolutionary

technique of exploratory data analysis (which is generally

referred to simply as EDA), and we can only hope in a brief

discussion to shed some light on the fundamentals of that

subject . Moreover , the point of view that I take in this section

represents my own perceptions, which may be very different

from those of others. Some of the enthusiasts of EDA frequently

toke o philosophical position which I would characterize as

being very strongly toward that of the Radical Pragmatist

position in the Introduction. A common phrase that one hears is

that 'EDA allows the data to speak to us in unfettered fashion. '

The 'fetters' here refer to preconceived models which can get

between us and the usefull information in the data. The position

might be characterized by Will Rodger's famous dictum, ' It isn't

so much ignorance which harms us . It's the things we know that

aren't so.“

Whereas I believe that perceptions are always in the light of

preconceived models, which we hope to modify and see evolve,

there is much more to EDA than the anti -model position of some

of its adherents. It is this 'much more about which I wish to

speak . The digital computer is o mighty device in most

quantitative work these days. Yet it has serious limitations

which did not so much apply to the now discarded analog devices

of the 1950's. Analog devices were very much oriented toward

holistic display of the output of a model .. They were not

oriented toward dealing with mountains of data, nor were they

particularly accurate . Digital devices, on the other hand, can be

-
-
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made as accurate as we wish and handle the storage and

manipulation of digitized information extremely well .

At this point in time, we have hardware which is very much

more ' trees ' oriented than 'forest' oriented. We can easily ask

that this or that set of operations be performed on this or that

megabyte of encoded data . But we are increasingly aware of the

cognitive unfriendliness of coping with digitally processed

information. Analog devices were much closer to the way the

human brain reasons than are digital devices.

Perhaps what is needed is ais a hybridized device which

combines the strong points of both the analog and digital

computers . But such a hardware device will be years in bringing

to a successful construction . In the mean time, what do we do?

One approach might be simply to try to beat problems to death

on the number cruncher . But such an approach quickly stalls. We

have the computer power to obtain pointwise estimates of ten

dimensional density functions using data sets of sizes in the

tens of thousands. But where shall we evaluate such a density

function? How shall the computer be trained to distill vast

bodies of information into summaries which are useful to us?

These are difficult problems and the answers will be coming in

piecemeal for some time .

in the meantime, we need to cope . It is this necessity

somehow to address the fact that the digital computer has

outstripped our abilities to use the information it gives us that

EDA addresses. Needing a good analog processor to handle the

digital information and having none, a human observer is used

to fulfill the analog function.

One recurring theme in science fiction has been the human

who is plugged into a computer system . But the observer in EDA,
231
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unlike the sci - fi cyborg is not hardwired into the system, is not

deprived of his freewill, is in fact in control of the digital

system. One present limitation of exploratory data analysis is

the slow input-output performance of freewilled human

observers. Thus, man-in-the-loop EDA could not be used, for

example, to differentiate between incoming missles and decoys

in the event of a large scale attack . EDA is exploratory not only

in the sense that we can use it for analyzing data sets with

which we have little experience. We should also view EDA as an

alpha step toward the construction of the analog-digital hybrid

computer, which will not have the slow input-output speeds of

the human-digital prototype.

In the discussion below, we shall address some of the

important human perception bases of EDA. Let us give a short

list of some of these:

( 1 ) The only function which can be identified by the human

eye is the straight line.

(2) The eye expects adjacent pixels to be likely parts of a

common whole.

(3) As points move far apart, the human processor needs

training to decide when points are no longer to be considered

part of the common whole. Because of the ubiquity of situations

where the Central Limit Theorem , in one form or another,

applies , a natural benchmark is the normal distribution .

(4) A point remains a point in any dimension .

(5 ) Symmetry reduces the complexity of data .

(6) Symmetry essentially demands unimodality .

Let us address the EDA means of utilizing the ability of the

human eye to recognize a straight line. We might suppose that

since linear relationships are not all that ubiquitous, the fact

- -
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that we can recognize straight lines is not particularly useful .

Happily, one can frequently reduce monotone relationships to

straight lines through transformations. Suppose, for example,

that the relationship between the dependent variable y and the

independent variable x is given by

(4.1.1 ) y = 3e-2x

We show a graph of this relationship in Figure 1 .

UNTRANSFORMD DATA

35

TO

25

20

Y

15

10

5

0

0 1 2 3 4 7 8 9 10 11 125 6

X

Figure 1

We can easily see that the relationship between x and y is

not linear. Further, we see that y is increasing in y at a faster

than linear rate . Further than this, our visual perceptions are

not of great use in identifying the functional relationship.

But suppose that we decided to plot the logarithm of y

against x os shown in Figure 2 .
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TRANSFORMED DATA

100

ULTE
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1

+

2 3 1 5 7 11 12

X

Figure 2

Now we have transformed the relationship between x and y to a

linear one . By recalling how we transformed the data, we can

complete our task of identifying the functional relationship

between x and y. So, then, we recoll that we started with an

unknown functional relationship

( 4.1.2 ) y = f (x).

But then we saw that In(y) was of the form

(4.1.3) In(y) = 0 + bx.

Exponentiating both sides of (4.1.3), we see that we must have a

relationship of the form :

(4.1.4) y -e ebx

Once we know the functional form of the curve , we can estimate

the unknown parameters by putting in two data pairs (X7.47 ) and

(x2.42) and using (4.1.3) to solve:

(4.1.5) In ( y ) = 0+ bx1

In (72) = 0+ bx2
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This immediately gives the true relationship in (4.1.1 ) .

Clearly, we will not always be so fortunate to get our

transformation to lineority ofter trying simply a semilog plot .

We might, for example, have the relationship

(4.1.6) y = 3x-4

in such a case, simply taking the logarithm of y will not give a

linear plot, for

(4.1.7) In(y) = In(3) + .41n(x )

is not linear in x . But , as we see immediately from (4.1.7), we

would get a straight line if we plotted In(y), not versus x, but

versus In(x). And, again, as soon as the transformation to

linearity has been achieved , we can immediately infer the

functional relationship between x and y and compute the

parameters from the linear relationship between In(y ) and In (x).

Now it is clear from the above that simply using semilog and

log-log plots will enable us to infer functional relationships of

the forms

(4.1.8 ) g= ae
bx

and

(4.1.9) y = ax , repectively.

This technique of transforming to essential linearity has

been used in chemical engineering for a century in the empirical

modeling of complex systems in mechanics and thermodynamics.

Indeed , the very existence of log-log and semilog graph paper is

motivated by applications in these fields . In the classical

applications, and
y would typically be complicated

dimensionless factors ,' i.e. , products and quotients of

parameters and variables (the products and quotients having

been empirically arrived at by dimensional analysis”) which one

would plot from experimental data using various kinds of graph

X
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paper until linear or nearly linear relationships had been

observed . But the transformational lodder of Tukey goes for

beyond this early methodology by ordering the transformations

one might be expected to use and approaching the problem of

transformation to linearity in methodolical fashion. For

example, let us consider the shapes of curves in Figure 3 :

A

у B

X

Figure 3

Now it is clear that curve A is growing faster than linearly.

Accordingly, if we wish to investigate transformations which

will bring its rate of growth to that of a straight line, we need
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to use transformations which will reduce its rate of growth.

Some likely candidates in increasing order of severity of

reduction are :

y1 /2

(4.1.10) y1 /4

In(y)

In(In(y)) .

Similarly , if curve B is to be transformed to linearity, we might

try , in decreasing order of

severity:

expley)

(4.1.11 ) exp(y)

y4

y ?

Putting the two groups of transformations together, we can

build a transformational ladder:

expley)

( 4.1.12 ) exp(y)

y4

y?

y

y1/ 2

y1 /4

In(y)

In(in(y) ) .

The shape of the original y curve points us up or down the

transformational ladder.

Using the transformational lodder to find more complicated

functionol relationships between y and x becomes much more

difficult . For example, it would require a fair amount of trial



216

a

Jana R. Thompoon Exploratory Data Analysis

and error to infer a relationship such as

( 4.1.13 ) y = 4 + 2x2 + x3.

Furthermore , we must face the fact that in practice our data

will be contaminated by noise . Thus, uniqueness of a solution

will likely evade us.

For great many situations, the use of Tukey's

transformational ladder will bring us quickly to an quick

understanding of what is going on. The technique avoids the use

of a criterion function and uses the visual perceptions of an

observer to decide the driving mechanism.

For more complicated problems, we can still be guided by the

philosophy of the technique to use the computer to handle

situations like that in (4.1.13) even when there is a good degree

of noise contamination . We might decide, for example to use

least squares to go through a complex hierarchy of possible

models, fitting the parameters as we went. So , then, we might

employ

(4.1.14) S(Model (in x)) = {ly - Model) .

If we have an appropriately chosen hierarchy of models, we

might have the computer output those which seemed most

promising for further investigation. The problem of choosing

the hierarchy is a nontrivial problem in artificial intelligence .

We must remember, for example, that if models in the hierarchy

are overparameterized, we may come up with rather bizarre and

artificial suggestions. For example, if we have 20 data points,

a 19th degree polynomial will give us a zero value for the sum

in ( 4.1.14 ).

Let us now turn to the second of the perception based notions

of EDA: namely the fact that the eye expects continuity, that

adjacent points should be similar. This notion has been used

-238
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with good effect, for example, in 'cleaning up NASA

photographs. For example, let us suppose we have a noisy

monochromatic two dimensional photograph with light

intensities measured on a Cartesian grid as shown in Figure 4.

( x ,y+h )

(x -h ,y ) • (x+h ,y )

(x ,y )

( x ,y-h )

Figure 4

We might decide to smooth the intensities , via the honning

formula

( 4.1.15 ) ( x , y) 144x,y )+ (x - ,y )+ ( x + h,y)+ (x,y-h )+ x,y + h)] 18

where 1 (x,y) is the light intensity at grid point (x,y).

Valuable though such a smoothing device has proven itself to

be (note that this kind of device was used by Tukey and his

associates 40 years ago in time series applications) , there is

the problem that outliers (wild points) can contaminate large

portions of a data set if the digital filter is applied repeatedly.

For example, suppose we consider a one dimensional data set ,

which we will smooth using the hanning rule

( 4.1.15 )( x ) [ 2 \ x )+ ((x -1 ) + ((x + h )] 4
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At the ends of the data set, we will simply use the average of

the endpoint with that of the second point. We show below the

data set followed by succesive honning smooths:

Table 1. Repeated Honning Smooths.

Data H HH

1 1

1 1 1

1 1 63.44

1 250.75 250.75

1,000 500.50 375.62

1 250.75 250.75

1 1 63.44

1 1 1

1 1

HHH

1

16.61

94.66

235.14

313.18

235.14

94.66

16.61

1

We note that the wild value of 1,000 has effectively

contaminated the entire data set. To resolve this anomaly,

Tukey uses a smooth based on medians of groups of three down

the data set , i.e. , we use the rule

(4.1.16 ) (x) Med (kx -h ),( x ),( x + h )]

The endpoints will simply be left unsmoothed in our discussion,

although better rules are readily devised. In the data set above,

the smoothing by threes approach gives us what one would

presumably wish, namely a column of ones .

As a practical matter, Tukey's median filter is readily used

by the computer. It is a very localized filter, so that typically

if we apply it until no further changes occur (this is called the

3R smoother) , we will not spread values of points throughout

the data set . Note that this is not the case with the hanning

filter. Repeated applications of the honning filter will continue

to change the values throughout the set until a straight line

- -240
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results. Consequently, it is frequently appropriate to use the 3R

filter followed by one application of the hanning filter (H). The

combined use of the 3RH filter generally gets rid of the wild

points (3R), and the unnatural plateaus of the 3R are smoothed

by the H. For more elaborate schemes are, of course , possible.

We could , if we believed that two wild points could occur in the

some block of three points, simply use a 5R filter.

Below we perform o 3RH smooth on a data set of daily unit

productions on an assembly line .

3 3R

Table 2. Various Smooths.

Day Production

1 150

2 165

3 212

4 193

5 201

6 220

7 195

8 170

9 161

10 182

11 149

12 110

13 95

14 101

15 60

16 42

17 15

18 110

19 60

20 80

21 50

22 40

150

165

193

201

201

201

195

170

170

161

149

110

101

95

60

42

42

60

80

60

50

40

3RH

157.5

168.25

188

199

201

199.5

190.25

176.25

167.75

160.25

142.25

117.5

101.75

87.75

64.25

46.5

46.5

55.5

60

57.5

50

45

60

A graph quickly shows how the 3RH smooth approximates

closely what we would do if we smoothed the raw data by eye.
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Ray w Smoot
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200

.
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• Row Data

Daily Production
OTR Smooth.
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0
0 I TRH Smooth

5
0

0

1 3 5 7 9 1

1

1 1 1 1 2

3 5 7 9 1

Day

Figure 5

At this point , we should mention that all the smooths of EDA

are curve fits , not derived models. We clearly find the 3RH

smooth o more visually appealing graph than the raw data . But

the data was measured precisely; the fluctuations really were

there. So, in a sense, we have distorted reality by applying the

3RH smooth . Why have we applied it nevertheless ? The human

visual system tends to view and store in memory such a record

holistically . Whether we smoothed the data or not, our eye

would attempt to carry out more or less equivalent operations

to those of 3RH. The human eye expects continuity and we do not

readily perceive data digitally. The smooth gives us

benchmark (the forest ) around which we can attempt to place

the trees . For example, we might ask what was causing the

unexpectedly low production on day 17. As we mentioned earlier,
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EDA tries to assist humans to carry out the analog part of the

analysis process . The 3RH smooth done on the computer very

nearly reproduces the processing carried out by the human eye.

in a very real sense, Tukey's deceptively simple 3RH smooth is

a powerful result in artificial intelligence.

Let us now address the third point, the making of the

decision that a point has removed itself from a class by extreme

behaviour. We note that we have already addressed this point

somewhat , since we have discussed the use of the median and

hanning filters.

If we seek a benchmark by which 'togetherness of a group of

points can be measured, we might decide to use the ubiquitous

normal distribution . We note that for this distribution ,

( 4.1.17) P[X<x) = 1/ (21 )3* expl-t2 /2100
-00

Where z = (x - ul/ o , with X having mean and standard

deviation o , respectively. For the normal distribution, the value

25.675 in (4.1.17) gives probability .75. By symmetry, the value

2 = -.675 gives probability .25. Tukey calls the corresponding *

values "hinges.' The difference between these standardized

values is 1.35. Let us call 1.5 times this H spread ( interquartile

range) a step. Adding a step to the standardized hinge gives a z

value of 2.7 . This value of 2.7 represents the standardized

"upper inner fence . " The probability o normal variate will be

greater than the upper inner fence or less than the lower inner

fence is .007: one percent . Adding another step to the upper

inner fence gives the 'upper outer fence (in the standardized

case with mean 0 and standard deviation I , this will give

243



2222

Jonas R. Thompson Exploratory Data Analysis

2=4.725) . The probability of a normal variate not falling

between the outer fences is .0000023, roughly two chances in a

million. It could be argued that a value which falls outside the

inner fences bears investigation to see whether it is really a

member of the group. A value outside the outer fences is most

likely not a member of the group. (Note that both these

statements assume the data set is of modest size. If there are

a million dato points, all from the same normal distribution, we

would expect 700 to fall outside the inner fences and 2 to fall

outside the outer fences. )

Let us examine o data set of annual incomes of a set of

thirty tax returns supposedly chosen at random from those filed

in 1938. Suppose the reported incomes are 700, 800, 1500 ,

2500, 3700, 3900, 5300, 5400 , 5900, 6100, 6700, 6900, 7100,

7200,7400, 7600, 7900, 8100, 8100, 8900, 9000, 9200, 9300,

9900, 10400, 11200, 13000, 14700, 15100,16900 .

We first construct a 'stem-and-leaf' plot with units in

hundreds of dollars. We notice that the 'plot appears to be a

hybrid between a table and a graph. In recording the actual

values of the data, instead of only counts, Tukey's

stem-and-leaf plot gives usus the visual information of

histogram , while enabling full recovery of each dato point . Here

is an example where we can see both the forest and the trees.
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Table 3. Stem-and-Lesf---unit 100 dollars

0+

Depth

2

3

4

6

1

78

5

5

79

W
N

4

59

12

17

13

10

6

5

349

179

12469

119

0239

4

6

7

8

9

10

11

12

13

14

15

16

N

N
W
A

0

7

1

91

From the above stem-and-leaf plot , it is clear that certain tacit

assumptions have been made. For example, we compute the

'depths' from both ends of the set . Thus, a kind of symmetrical

benchmark has been assumed. Let us further point to symmetry

by computing the median ( the average of the two incomes of

depth 15 from the top and that of depth 15 from the bottom),

namely 7500 dollars . The two hinges can be obtained by going up

to the two averages of incomes of depth 7 and 8. Thus the lower

hinge is 5350 and the upper hinge is 9600. A step is given by

(9600-5350) 1.5 = 6375. Thus, the two inner fences are given by

-1025 and 15975. The two outer fences are given by -7400 and

22350. We note immediately one income ( 16900) falls outside

the inner fences, but none outside the outer fences.

улс
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Let us now consider the various popular summary plots used

for the income information . We have already seen one, the

stem-and-leaf . Although this plot looks very much like a

historgram turned on its side, we note that it shows not only

the forest , but also the trees , since we could completely

recover our table from the plot . In the present situation , the

stem-and-leaf might be sufficient data compression.
Let us

consider, however, some other plots.

The five figure summary plot below shows the mean,

hinges and extreme upper and lower incomes .

Five Figure Summary

M15h 7500

H7h 5350 9600

1
700 16900

Figure 6

Clearly , the five figure summary is much more compressed

than the stem-and-leaf . But , it draws emphasis to the supposed

center of symmetry and looks at the hinges and extremal values.

Naturally, os the somple becomes larger, we would expect that

the median and the hinges do not change much. But the extremal

values certainly will . A grophical enhancement of the five figure

summary is the "box-and-whiskers' plot shown in Figure 7.
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Figure 7

Box-and-whiskers Plot
17500

15000

12500

Income (dollars)

10000

7500

5000

2500

0

A generally moremore usefuluseful plot thanplot than the box-and-whiskers

representation is the 'schematic plot." Essentially, in this plot ,

the ends of the "whiskers' are the values inside the inner fences

but closest to them. Such values are termed 'adjacent.

Essentially, then, the schematic plot replaces the extremal

values with the .0035 'percentiles."
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Figure 8

Schematic Plot

17500

15100 15000

12500
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10000

7500
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2500

700

0

In the above, we seem to have a data set which is not at all

inconsistent with the assumption of being all 'of a piece . We

might have felt very differently if, say, we had been presented

with the above income data which someone had mistakenly

raised to the fourth power. Going through our standard analysis ,

we would find values outside the upper outer fence. Yet , the

run Our

data has essentially not been changed, only transformed. Before

declaring points to be untypical of the group . if we believe in

symmetry and unimodality , we should through

transformational ladder until we have brought the data to a

state of near symmetry. If we did this , for the example

mentioned, we would arrive at something very near the original

data given in Table 3, and that data set , as we have seen, does

-
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seem to be part of the same whole.

Now it is clear that the representations of data sets

discussed above are built upon the assumption of

If wetransformability to symmetry about an internal mode.

accept this proposition , then the further use of the normal

distribution as a benchmark is nontraumatic .

In the next section , we shall briefly discuss an approach ,

nonparametric density estimation, which does not build upon the

assumption of unimodality . Obviously , such an approach must

struggle with representational difficulties about which EDA

need not concern itself . There is a crucial issue here. How

reasonable is it to assume unimodality and symmetry, and does

this assumption get better or worse as the dimensionality of the

data set increases? My own view is that the problem of dealing

with the pathology of outliers (extremal points which are to be

discarded from membership in the data set) is not as serious as

that of multimodality, and that the even more serious problem

of data lying in bizarre and twisted manifolds in higher

dimensional space ought to begin receiving more of our

attention.

One further issue that nonparametric density estimation

investigators must face is that of representation of the density

function suggested by the data. For higher dimensional

problems, EDA neatly sidesteps the representational issue by

looking always at the original data points, rather than density

contours. Let us consider two dimensional projections of a three

dimensional data set generated by the routine RANDU. In Figure

9, we notice what appears to be more or less what we would

expect a random set to look like. But using the interactive
249
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routine MocSpin (D2 Software ), we can spin ' the data around the

axes, to arrive at the nonrandom looking lattice structure in

Figure 10.

.
.

Figure 9
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screen .

Figure 10

The human-machine interactions possible with MacSpin

personal computer version of Tukey's PRIM-9 'cloud analysis ,

are truly impressive, certainly the most impressive graphics

package I have yet seen for a personal computer.

Several problems of dealing always with a scattergram

bosed analysis are obvious . For example, as the size of the data

set approaches infinity , the data points will simply blacken the

It would appear that there are advantages to dealing

with dato processors that converge to some fixed, informative

entity--e.g. , the density function . Furthermore, whereas the

automitization of such EDA concepts as the 3RH smooth are

straightforward, the taking of mon out of the loop with MacSpin

is a very complicated problem in artificial intelligence . By

opting not to use such easily automated concepts as contouring,

EDA relies very much on the human eye to incorporate continuity

in data analysis. 251
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Section 2. Nonparametric Density Estimation

Density Estination

Perhaps the oldest procedure for looking at continuous data

is that of the histogram and its precurrsor, the sample cdf . We

have earlier discussed the life table of John Graunt , which gave

the world its first glimpse at a cumulative distribution

function. It is interesting to consider that this first approach

to continuous data analysis started with an actual data set ,

was heuristic and preceded parametric data analysis. We see

here a rather common trend in statistics , and in science more

generally , namely that the search for a solution to a real

problem is generally the way that important technique is

developed. Although many of us spend a great deal of time

trying to find applications for 'useful ' theory , historically the

' theory in search of an application approach is less fruitful

than attempts to develop the methodology appropriate for

dealing with particular kinds of real world problems.

if know virtually nothing about the probability

distribution which generated a data set , there are a number of

ways we can proceed . For example, we might decide (as most

do ) that we will demand that the data conform to our

predetermined notions of what a ' typical ' probability density

function looks like . This frequently means that we will pull out

one of a rather small number of density functions in our memory

banks and the data to estimate the parameters

characterizing that density . This is an approach which has been

employed with varying degrees of success for a hundred years or

we

use

so .

There is a strong bias in the minds of many toward the

normal ( also named Gaussian or Laplacian) distribution. Thus ,

252



231

James R. Thompson
Density Estination

we could simply estimate the mean y and variance o2 in the

expression

( 4.2.1 ) f(xly ,02)-117121102)expl-(x -4 ) 2 /( 202 )).

Such a belief in a distribution as being 'universal' goes back to

the nineteenth century. Francis Galton coined the name 'normal

to indicate this universality . He stated ( 1879), ' I know of

scarcely nothing so apt to impress the imagination as the

wonderful form of cosmic order expressed by the 'Law of

Frequency of Error. ' The law would have been personified by the

Greeks and deified , if they had know of it . It reigns with

serenity and in complete self-effacement amidst the wildest

confusion. The huger the mob and the greater the apparent

anarchy, the more perfect is its sway. It is the supreme law of

Unreason."

Galton is here discussing the practical manifestations of

the Central Limit Theorem, i.e. , the fact that if we sum random

variables from most practical distributions, then the sum tends

to a normal variate . So strong was Galton's belief in normality

that in cases where the data was manifestly non-normal , he

assumed that somehow it had been run through a filter before it

was observed. Thus, Galton proposed such related distributions

as the log-normal . Clearly the transformation to symmetry

which is so important in EDA is very much in the spirit of

Galton.

In most applications , it is very hard to see how the

resulting data points are each , in actuality , the result of a

summing process which would produce normality. Nevertheless ,

it is a practical fact that very many data sets either are nearly

normal be transformed to near normality by a

transformation to symmetry. Galton was not naive , even less so

or can
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was Fisher. Both used the assumption of normality very

extensively. Although we can get in serious trouble by assuming

that a data set is normal , it seems to be a fact that we get

effective normality more often than we have a right to expect.

When data is not normal , what shall we do? One approach

might be to seek some sort of transformation to normality, or

( in practice , almost equivalently ) to symmetry. This is very

much in the spirit of EDA. If the data can be readily transformed

to symmetry , there is still the possibility of contamination by

'outliers . " These may be introduced by the blending in of

observations from a second distribution , one which does not

relate to the problem at hand , but which can cause serious

difficulties if them in the estimation of the

characterizing parameters of the primary distribution.

'outliers may be actual observations from the primary

distribution , but that distribution may have extremely long

tails, e.g. , the Cauchy distribution . From one point of view, EDA

can be viewed as a perturbation approach of normal theory. The

data is 'massaged until it makes sense to talk , for example,

about a location parameter.

Nonparametric density estimation has its primary worth in

dealing with situations where the data is not readily

transformed to symmetry about a central mode. As such, it is

much farther from normal theory than EDA. Although some (e.g. ,

Devroye and Gyorfi ) have developed techniques which are

designed to handle outlier problems , the main application of

nonparametric density estimation is in dealing with regions of

relatively high density . Unlike both classical parametric

estimation and EDA, the methodology of nonparametric density

estimation is more local and less global .

-
-
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For example, let us suppose that the data comes from a

50-50 mixture of two univariate normal distributions with unit

variances and means at -2 and +2, respectively . The classical

approach for estimating the location parameter would give us a

value of roughly 0. The blind use of a trimmed mean approach

would also put the location close to 0. But , in fact , it makes no

particular sense to record o as a measure of ' location. " We

really need to use a procedure which tells us that there is not

one mode, but two. Then, using the two modal values of -2 and

+2 , as base camps, one can gingerly look around these local

centers of high activity to get a better glimpse at the structure

which generated the data .

Naturally , for low dimensional data , simply looking at

scattergrams would give the user a warning that normal theory

( or perturbations thereof ) was not appropriate . In such cases ,

such EDA approaches as MacSpin are particularly useful in

recognizing what the underlying structure is .

As has been noted in the section on EDA, there are problems

in getting the human observer out of the loop for such

procedures as MacSpin. Another problem is that in cases where

there are a great number of data points, a scattergram does not

converge to anything ; it simply blackens the page . The

scattergram does not exploit continuity in the way that

nonparametric density estimation does . It makes sense to talk

about consistency with a density estimator. As the data gets

more and more extensive , the nonparametric density estimator

converges to the underlying probability density which

characterizes the mechanism which generated the data.

To get to the ' nuts and bolts of nonparametric density

estimation , we recall the construction of the histogram . Let us
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take the range of n univariate data points and partition it into m

bins of width h. Then the histogram estimate for the density in

a bin is given by

( 4.2.2 ) fH( x ) = ( * data points in bin containing x )/(nh).

Figure 1

The graph in Figure 1 shows the kind of shape of the histogram

estimator. Clearly there are disadvantages.The histogram

estimator has discontinuities at the bin boundaries, and any

naive attempts to use the estimator to obtain derivative

information of the underlying density are inappropriate. The

mean square error rate of convergence of the estimator is

A recent paper of Scott ( 1985) shows how by simply

computing 16 histograms, the origin of each shifted from the

preceeding h/ 16 to the right , and averaging point by point over

each of the histograms, many of the undersirable properties of

histograms are overcome , while still retaining the rapid

computational speed of the histogram estimator. ( For an

interesting use of the histogram in bivariate systems, see

n - 2 / 3n

Husemann ( 1986 ) . )

Next to the histogram (and, significantly, the histogram is

still the most used nonparametric density estimator) the most

popular nonparametric density estimator is the kernel

estimator , proposed first by Rosenblatt ( 1956 ) and extended and

explicated by Parzen ( 1962 ) . Here , the estimator at a point x is

- - -256
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given by

( 4.2.3 ) ff(x ) = {iK( 1x- x ; } / h )/nh

where K is a probability density function and the summation is

over the data points (x ; l . A popular kernel here is Tukey's

biweight

( 4.2.4) K(y ) = ( 15/16 ) ( 1 -y232 por lylsi.

The order of convergence of the mean square error for most

kernels is n-4/5 . Moreover, the procedure gives a smooth

estimate as shown in Figure 2. A practical impelementation of

the kernel estimation procedure ( NDKER ) is included in the

popular IMSL library .

Figure 2

It is possible to use estimators of this sort to obtain

derivative estimates of the underlying density. The

determination of the bandwidth h can, in theory , be determined

from the formula

( 4.2.5 ) n - n- 1751K2(y )dy /(Jy2k(y )dy) 2,175xis(f"(y) dy1-175

The problem here is that we do not know f , much less f " . An

approach suggested by Scott , Tapia and Thompson ( 1977 ) is to

make a preliminary guess for h , use (4.2.3 ) to obtain an estimate

for f , differentiate it , and plug into ( 4.2.5 ) . The process is

continued until no further change in the estimate for his
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observed. A more sophisticated approach for the selection of n

has recently been given by Scott and Terrell ( 1986).

A more local procedure than the kernel estimator is the kth

nearest neighbour kernel estimate

( 4.2.6 ) f ( x ) = { iK( 1x - x ; ) / dy( x ) )/ (ndk(x ) ) ,

where dx( x ) is the distance from x to the kth data point nearest

to it . The bandwidth parameter here is , of course , k.

Another estimation procedure is the maximum penalized

likelihood approach suggested by Good and Gaskins ( 1971 ) and

generalized by deMontricher , Tapia and Thompson ( 1975 ) Scott ,

Tapia and Thompson ( 1980 ) , and Silverman ( 1982 ). In one of the

simple formulations , the procedure finds the f which maximizes

( 4.2.7 ) J( 1 ) = Elog f ( x ; ) - « J(f" (y ) <dy.

An implementation (NDMPLE) is given in the IMSL library . The

maximum penalized likelihood approach is particularly useful in

problems associated with time dependent processes ( see, e.g. ,

Bartoszyński,Brown, McBride and Thompson, 1981 ) .

It is unfortunate that well over 95% of the papers written

in the area of nonparametric density estimation deal with the

univariate data case, for we now have many procedures to deal

with the one dimensional situation. The problem in the higher

dimensional case is very different from that with one

dimensional data , as we argue below .

Suppose we are given the choice between two packets of

information:

A: a random sample of size 100 from an unknown denisty

B: exact knowledge of the density on an equispaced mesh of

size 100 between the 1 % and 99% percentiles.

For one dimensional data , most of us, most of the time will opt

-

-
-
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for option B. However, for four dimensional data, the mesh in

option B would give us only slightly more than three mesh points

per dimension. We might find that we had our 100 precise

values of the density function evaluated at 100 points where the

density was effectively zero. Here we see the high price we pay

for an equispaced Cartesian mesh in higher dimensions. If we

insist on using it , we will be spend most of our time flailing

about in empty space.

On the other hand, information of packet A remains useful in

four dimensional space , for it gives 100 points which will tend

to come from regions where the density is relatively high. Thus

they provide anchor points from which we can examine, in

spherical search fashion, the fine structure of the density.

Now , we must observe that the criteria of those who dea ,

almost exclusively with one dimensional data is to transform.

information of type A into information of type B. Thus , it is

very wrong in nonparametric density estimation to believe that

we can get from the one dimensional problem to those of higher

dimensionality by a simple wave of the hand. The fact is that

' even a rusty nail ' works with one dimensional data. We still

know very little about what works for the higher dimensional

problems. Representational problems dominant. The

difficulty is not so much being able to estimate a density

function at a particular point , but knowing where to look . We

can , if we are not careful , spend an inordinate amount of time

coming up with excellent estimates of zero. We shall discuss

two of the more promising avenues of dealing with the higher

dimensional problem below . The first is an attempt to extend

what we have learned in density estimation in lower dimensions

to higher dimensions, emphasizing graphical display. For

are
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example we see in Figure 3 (Scott and Thompson, 1983 ) a display

of estimated density contours using four dimensional remote

sensing crop data. We note that it is quite possible to

demonstrate three dimensional densities, by the of

equidensity contours . Clearly, as the value of the density

function increases , we should expect to see a smaller region

use

which satisfies the condition

( 4.2.8) f(x1 , x2 , X3 ) 2 C.

The handling of the fourth dimension , unfortunately, must be

handled in a fashion asymmetrically from the other three

dimensions . In Figure 3 , we have employed a bar cursor at the

bottom of the figure for the magnitude of the fourth variable .

We note the presence of two well separated regions

corresponding to a magnitude of 24 for the fourth variable. To

give an idea of the scattergram alternative , we show in Figure

4, a display of the data from which Figure 3 was generated.
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Figure 3. 1 per cent , 15 per cent ,

50 per cent and 80 per cent contours

at time points 9 , 14 , 19 , 24 and 29

Floure 4

261



240

Jomo R. Thompson Density Estination

In Figure 5, we note a natural extension of the density

estimation procedure above using six variables.

Z

f = 1 Plot of f contours in 8,7,2

with mouse set in control

box at (u*,7 * ,2 * )

= 2

:

у

CONTOUR REPRESENTATION

CONTROL BOX

W

U *

V

u

Figure 5

The contours are given in terms of three of the variables , and

the magnitudes of the other three are varied using a control box.
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These procedures , on the SUN 3-160 system are under

investigation at Rice.

The similarities between such a density estimation

approach and EDA scattergrams are clear . The problem of

' fading to black with large data sets has been eliminated .

Moreover , the presence of a 'man in the loop' would seem to be

less than with the scattergram . The notion of a region having

points of density greater than a specified amount can be

automated.

A second approach (Boswell , 1983 , 1985 ) is automated from

the outset . The objective of the Boswell algorithms is the

discovery of foci of high density , which we can use as 'base

camps' for further investigation. In many situations , the

determination of modal points may give us most of the

information we seek . For example , if we wish to discriminate

between incoming warheads and incoming decoys , it may be

possible to establish ' signatures of the two genera on the basis

of the centers of the high density regions.

We shall below give a brief glimpse at the simplest of the

Boswell algorithms. We are seeking a point of high density, a

local maximum of the density function .

( 4.2.8) Algorithm 1

хс* xo

do until stopping criteria are satisfied

Xc--- mean of k nearest neighbours of Xc

in Figure 6 , we sketch the result of ( 4.2.8 ) when applied to the

estimation of a normal variate centered at zero with identity

covariance matrix based sample of size 100 for

dimensionality (p ) through 100. If we look at the standardized

on a
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( divided by the number of dimensions) mean squared error of the

estimate, we note that it diminishes dramatically as P

increases to 5 and does not appear to rise thereafter.

Estimation of u from Multivariate Normals
MSEIP

.6

.5

2
k=10

k=20

- k=100

5 10 20 30 40 50

pe Dimension

Figure 6

Naturally , we need the algorithm to deal with the more complex

situation where the number of modes is large and unknown. This

has been done with the Boswell approach by making multiple

starts of the algorithm ( 4.2.8 ) , saving the various xc values in a

file, and coalescing the estimated modes into aa smaller

collection .

( 4.2.9 ) Algorithm 2

For each data point Xi set xc= Xi

Perform Algorithm I to produce mode estimate m

Save mi in a workfile

end

Analyze the set (m ; ) by cluster analytic techniques or by

repeating Algorithm 2 with the (m ; ) treated as the input data

set .

- - -
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Algorithm 2 appears to perform reasonably well as a

technique for finding the modes of mixtures of distributions

( e.g. , Fisher's Iris data ).

In summary , the primary energies of density estimation

investigators ought to be directed to the multivariate case.

Nonparametric density estimation, together with EDA

scattergram analysis appear to be the major contenders for

handling higher dimensional data whose generating density is

unknown. Many of the reasonable 'nonparametric techniques,

such as rank tests , are only usable on one dimensional data. We

now have the computing power available to answer some really

important questions of multivariate data. For example, what

price do we pay for following the usual technique of looking at

low dimensional projections? Ought we to make a serious

attempt to deemphasize the Cartesian coordinate system and go

to spherical representations for multivariate data? When the

data is not unimodal , ought we to move to multiple origin

representations rather than single origin representations? How

soon can we develop completely automated nonparametric

density estimation algorithms for detection purposes? Can we

use. nonparametric density estimation as an exploratory device

to get us back to algorithms based on modified normal theory ?
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Section 3. Stein's Paradox

Suppose we wish to estimate the mean of a normal

distribution with covariance matrix 02 , on the basis of an

observation X = (x1,x2,...,Xp). Then, if we use the loss function

LL63 *, ) = {(W;*-* ;)21p, the usual estimator X has uniformly

larger risk than some estimators of the form

where g is an appropriately chosen function nondecreasing

between 0 and 1 ; 1.e. ,

**

u g(x +x) x ,

( 4.3.1) αίμ EILCH **, )]s o2

RISK VERSUS Σμ

j

2

0

N

Σ ΚΑΙ

M

j

Figure 1
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Lindley in commenting on a paper by Efron and Morris ( 1973)

accordingly informs us:

....Now comes the crunch -- notice it applies to the general linear

model . The usual theory says Xi (maximum likelihood ) is the

best estimate of Hj , but Stein showed that there is another

estimate which is , for every set of u's, better than it , when

judged by the squared-error criterion except when only one or

two parameters are involved. In other words, using standard

criteria, the usual estimate is unsound. Further calculation

(described in the paper) shows that it can be seriously unsound:

with 10 parameters, quite a small number by the standard of

present -day applications , the usual estimate can have five

times the squared error of Stein's estimate . And remember-- it

can never have smaller squared error.... the result of Stein

undermines the most important practical technique in

statistics....

The next time you do an analysis of variance or fit a

regression surface ( a line is all right ! ) remember you are for

sure , using an unsound procedure....

Worse is to follow , for much of multivariate work is based

on the assumption of a normal distribution . With known

dispersion matrix this can again be transformed to the standard

situation and consequently , in all cases except the bivariate

one , the usual estimates of the means of a multivariate normal

distribution are suspect...

To get a better feel for what is happening , let us consider the

one dimensional case .

Suppose we wish to estimate the mean of a random variable X

on the basis of one observation of that random variable using

estimators of the form

( 4.3.2 ) Mo - ax .

We will pick a in such a way as to minimize

( 4.3.3 ) Q( ax ) = El( ax - u )]2 = 22o2. 42(1 -a )2.

Taking the derivative with respect to a and

setting it equal to 0 , we find the optimal a to be given simply by
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(4.3.4) a = 4= 421642.02 .

Using this a, we find that

( 4.3.5 ) Q (aX) = 42/442-02) 02 ( 02 .

This is an old result and can be found in Kendall & Stuart .

Of course, in practice , we will not have u or o ? available for our

finagle factor a. Still , we should ask why it is that such a

factor, were it realistically available, helps us. Perhaps we get

some feel if we rewrite ax as (X/4)/ ( 1 +02142] H. This gives us

the truth---u---degraded by a multiplier which , if u be small

(relative to o ? ), would discount , automatically , large values of

X as outliers. If u is large, ( relative to 02 ), then we are left

essentially with the usual estimator X. Thus, there is no paradox

in the improvement of ax over x as an estimator for the one

dimensional case, if we know u and o?. Note, moreover , that the

argument to find a did not depend on any assumption of

normality , only on the existence of a finite variance.

Again, in the one dimensional case , we should address

ourselves to dealing with the situation where we do not have u

or o ? available for our finagle factor. ( 1 shall assume we do

have o2 for reasons of convenience, but the argument holds if we

do not have 02. ) in such a case , we will have available the

estimator x216x2.02 ) X.

But here, we generally lose our ' free lunch . if the data is

normally distributed , then our risk curve looks like:
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Risk of x216x2.02 x

02

Q

u

Figure 2

Let us suppose that we were allowed to use the following

strategy : we will have one observation X , to use for the

estimation of H. But , in addition , we will have p- 1 additional

observations of X :X2, X3 , ... Xp to be used in an a of the form :

( 4.3.6 ) 1 = ( xx; 2 ) /( EX, 2. po2).

NOW ,

( 4.3.7 ) EX; 21p ---> 42
42.02 ,almost surely in p.

Thus, our finagle factor a approaches

( 4.3.8 ) ( 4202 )/ 42 +202) for p 'large."

This would give, for large p ,

( 4.3.9) Q( ax ) = (u4.302 42_041/ 144 +40242 +4 04102 < 02 .

We might suspect that something in the Stein formulation may

allow such a phenomenon to occur . Indeed, this is the case.
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For the loss function considered

( 4.3.10) L( *, M) = E(M )*-4 )210,

and estimators of the form :

(4.3.11) u * - XTX / XTX +002 ) ,

the risk is not dependent on the allocation of the ( vj ) for any

fixed {M }? (Alam and Thompson proved ( 1968) that , in the

normal case , this estimator beats X for D>2 if O«c <2(0-2). )

Accordingly , we need only consider the case where !

( 4.4 , ... , ) . But this reduces immediately to the kind of one

dimensional estimator we showed had asymptotically ( in p )

smaller risk than X , . ( Apparently , for the normal case, the

asymptotic result starts impacting for p=3 . ) Thus , it is the

assumption of a loss function of a particular form , which gives

the apparent Stein improvement.

Note that for unequal weights and unknown variance, the Stein

result holds , if we know the weights in the loss function

(4.3.12 ) L « * , ) = {w} ( 4 ;*- ; )2/p.

But is it not reasonable to assume that we will frequently

know the weights precisely? After all , cost functions are

frequently common. So , for example, we might need to estimate

Ewj4j , where the weights are known. Note that this is the one

dimensional estimation problem where we know, in the normal

case , we cannot uniformly beat Ew ;X
£wjXj

The cases where we know the weights in the Loss function

( 4.3.13 ) Lu * , j ) * £w ; ( ;* - * ; )21P,
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are rare. Any strategy which assumes we do have precise

knowledge of the weights is likely to be dangerous. Let us look

at the more realistic situation where we do not have precise

knowledge of the weights..
Thus, let us consider the loss

function

( 4.3.14) Lvw*, 4, t ) = { wit (W * -Mj)21p.

where, for all tet , I w; ' = 1 ,

Let the risk Qru*; ^ ,t ) El Llu*, ,t )). Let the class of

1 , W
wyt 20.

estimators A to be considered be those of the form

*

( 4.3.15 ) u * = X f(X *X ) , where f is positive , real valued and st .

Def_An estimator je is said to be w -admissible if there does

{X

**

not exist in A an estimator u such that Qu**)s Qwu*) for all

( uit ) and for at least one (u, t ), QCu **) is strictly less than

Q( u*).

Def An estimator is w -minimax if it minimizes

sup(u.t )Qu * ;x ,t) for all members of A.

Note that the usual estimator ( X7 , X2 , ... Xp) is w -admissible

( consider the special case where wit = 1 ) . Moreover, ( X1, X2,

Xp) minimizes Maxy,t Q, i.e. , is w -minimax. The Stein

estimators cannot be w-minimax for squared loss function,

since for w , t = 1 , they are randomized estimates of My.

In conclusion , there is no 'paradox' about Stein estimation.

The free lunch is due to an apparent but artificial transferral of

information between the dimensions as a result of an

unrealistic assumption about the loss function. Shrinkage

toward an arbitrary point (without prior information), on the

basis of a factor which is built up using information from
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as

variables which are totally unrelated, which strikes most

people , at first glance, inappropriate , is indeed

inappropriate.

When estimating, simultaneously , the density of mosquitoes

in Houston, the average equatorial temperature of Mars, and the

gross national product of ancient Persia, we ought not believe

that some mathematical quirk demands that we multiply our

usual (separable ) estimates byestimates by a finagle factor which

artificially combines all three estimates .

The above study has been given as an example of the

difficulties which attend us when we attempt to make the world

conform to an idealized mathematical construction, instead of

the other way round. When the use of a particular criterion

function yields results which are completely contrary to our

intuitions, we should question the criterion function before

disregarding our intuitions. At the end of the day , we may find

that our intuitions were, indeed , wrong. The world is not flat ,

naive perceptions notwithstanding . However, the flatness of the

earth was not disproved by construction of an artificial

mathematical model , but rather by the construction of a model

which explained real things with which the assumption of a flat

earth could not cope .
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Using Personal Computer Spreadsheets in

Statistical Planning and Analysis
Carl T. Russell

US Army Operational Test and Evaluation Agency

Falls Church , Virginia

ABSTRACT. Personal computer spreadsheets provide an easy - to -use tool for performing many

statistical computations. This paper describes examples of such computations. The first shows

how the standard approximations for binomial sample sizing from Natrella can be implemented

in a spreadsheet toproduce flexible automatic tables. A second series of examples examines a

variety of exact calculations involving binomial coefficients. Other spreadsheet applications are

briefly discussed. These examples show that spreadsheets serve as alternatives orsupplements

to published tables or traditional programming languages for many statistical problems.

1. INTRODUCTION . This is a simple paper . Its thesis is that commercial microcom

puter spreadsheet software is the first place one should look for assistance with many routine

statistical computations. It was motivated by personal experience developing tabular displays,

especially specialized tabular displays of discrete probability distributions. This experience

showed that commercial microcomputer spreadsheet software (hereafter referred to as " spread

sheets”) could be used quickly to implement versions of such probability tables. Little effort

produces spreadsheet templates which can duplicate voluminous standard tables. More impor

tant, spreadsheets can produce custom interactive tables which provide quicker, more flexible

and more accurate answers than standard tables. Most of the paper is devoted to examples of

such probability tabulations, starting with an automated version of some standard binomial

approximations and meandering through several exact calculations involving binomial coeffi

cients. Other actual and potential applications are discussed briefly.

Some familiarity with spreadsheet software is required to appreciate this paper. Most

important is realizing how easily formulas can be promulgated throughout an automated

spreadsheet. Once appropriate combinations of absolute and relative references are devised ,

only a few formulas need be entered to generate a large, flexible table from a few input

parameters. Moreover, only the relevant portion of the table needs to be examined, fine tuned,

and printed.

2. ROUTINE BINOMIAL SAMPLE SIZING Á LA NATRELLA . Natrella's

Experimental Statisticst is usedwidely in the Army for binomial sample sizing. The approach

involves look -up from several tables based on an arcsine transformation . The theoretical basis

for the approximations used by Natrella is that ifX successes are observed in N Bernoulli trials

with success probability p and f: x - f (x) is an appropriate arcsine transformation , then Y = f (x )

has approximately normal distribution with u = arcsin (vo) and 02 = 1/(4N ); that is, the variance of

Y does not depend on p. Natrella discusses four possibilities depending on whether there are

one or two populations, and on whether one- or two -sided hypotheses are appropriate. That is,

there are one- and two - sided hypotheses in each of two cases : one population compared against

a standard (success probability po) and two populations compared against each other (success

probabilities P and pz). In the one-population case,

2VN (Y-Do) is approximately normalwith u = 2VN[arcsinvo - arcsintool and 0- = 1,
and in the two-population case,

2VN (Y,-Y2) is approximately normal with u = 2VN [arcsinvo, - arcsinVoz) and 02 = 2 .

Writing down expressions for type I error (a) and type II error (l) and solving for N in

terms of the percentiles of the standard normal distribution , Zr = 0 -'(K ), gives the formulas used

t National Bureau of Standards Handbook 91 , 1963, US Government Printing Office , sections 8-1.4 , 8-1.5 , 8-2.4 . This handbook was orig

inally developed for limited distribution as US Army Ordnance Pamphlets ORDP 20-110through 20-114. It is now supplemented and to

a large extent replaced by DARCOM PAMPHLET No. 706-103, December 1983, which discusses binomial sample sizing in section 8-3.

277



TWO -Sided

One

Population

One -Sided

H11 : pspo vs K11: p > po

( 21-0721-8)
NE

4 (arcsin vp-arcsinvpo) ?

Hiz : p=po vs K12 : D#po

( 21-012+ Z 1-B) ?

4 (arcsin vo-arcsinvpo) ?

N =

Two

Populations

H21 : pisp2 vs K21: P1> P2 H22 : D1 =P2 Vs K22 : P1 #P2

(21-4721-8) 2 (21.02 + Z 1-2) ?
N = N =

2 (arcsinvpr-arcsin VP2)? 2 (arcsin vpi-arcsin Vpz) ?

Figure 1. Binomial Sample Sizing Formulas Used by Natrella .

in Natrella's tables (see Figure 1). Implementing these formulas in a spreadsheet is easy . Each

numerator in the sample size formula, 82= (21-g + 21-8 )2 or 82 = (21-01/2+ 21-p) , depends only on a and B ,

and each denominator, da= 4 (arcsinvp-arcsinvpo)? or d2= 4 (arcsinvpn-arcsinVpz)?, depends only on

the parameters specified by simple null and alternative hypotheses. Interactive spreadsheet

tables for binomial sample sizing can be built by providing a data entry area for choosing a ,

entering the difference in parameters to be detected ( 4 = p -Do or A =P1-P ), and specifying the

range of parameters to be examined. Figure 2 assumes that such a data entry area has speci

fied - in addition to A and a - an initial probability value Doo and a value a to be used to incre

ment Doo for a fixed number of lines. Both a and B require •' , which is not available as a stan

dard spreadsheet function . A macro could probably be written to compute 0-1, but a simpler

approach is to limit choices for a to a few values and let " confidence levels ” 1 -B vary across

fixed standard values. That was done in the example of Figure 2 and the actual spreadsheet

implementation in Figure 3. The original motivation for the spreadsheet in Figure 3 was to

help an evaluator assess a resource requirement for an operational test. An analyst was

arguing on the basis of Natrella's formu

las that in order to have 80 % confidence
6, 85

of detecting a 10 probability point differ
1 - B 1- B5

P2 P1 d

ence in kill probabilities between two
Required Sample Size

missile systems, about 115 missiles of poo P2+ d (p1.pz) 28,2 /d2 2832 /d2

each type would be required - versus the
Poota Pz + A (P1.pz ) 28,2/d2 2832/d2

100 missiles of each type which were
(poo + 2 )+ a Pz + A (p1.P2) 28,2/d2 2832 /d2

available. This claim was based on two

"assumptions": an assumption that the

difference to be detected was between
Figure 2. Example of Spreadsheet Template for

P2 = 0.85 and p1 = 0.95 and an assumption
Natrella's Sample Size Formula - Two -Sided Test

Between Two Observed Proportions.

that 10 % to 15% of any firings would be

" no tested. ” The sensitivity ofbinomial sample sizes to assumptions about the underlying prob

abilities was not clear to the evaluator. Once the table in Figure 3 was produced, the evaluator

could see that since the underlying probabilities could just as well be pz = 0.75 and p=0.85 or

even Pz = 0.65 and pr= 0.75, obtaining a few more expensive missiles was not something to fall on

his sword over . The simple capability to produce a full table instead of a few numbers provided

a convincing test planning tool.

3. IMPLEMENTING EXACT BINOMIAL TABLES. At one time or another, nearly

every applied statistician has attempted to program exact calculations for probabilities based

on binomial coefficients. Using FORTRAN or BASIC , potential underflow and overflow must be

carefully considered to avoid silly answers. Using a spreadsheet, calculations more accurate

than standard tables can be obtained with very little care . Figure 4 shows the key binomial

...

...
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TWO - SIDED HYPOTHESIS TEST FOR IFFERENCE BETWEEN TI OBSERVED PROPORTIONS

SAMPLE SIZE REQUIREMENTS FROM NATRELLA 8-2.4.1 . PAGES 8-18 & 8-19

Sample Size = 2 * ( delta ) ** 270 ** 2

where delta - zll - alpha / 2 ) +2 | l - beta ) .

d = 2 * larcsinisqrt ( P ' ) ) - arcsin ( sqrt ( P ' ' ) ) ) .

and z ( k ) = kth percentile of the standard normal .

Enter : 0.100Starting Pris 0.450 Diff for P''EP'Diff is

Increment for P ' is 0.010

Significance Level alpha ( use : .01 , .05 . ) is

alpha used is 0.10 zll - alpha / 21 is

(2.rܐܘ.. 0.10

1.65

Delta :

( 1 - beta ) :

3.97

0.99

3.29

0.95

2.93

0.90

2.49

0.80

2.17

0.70

1.90

0.60Conf

1.65

0.50

P ' P ' d

Sample Size Required to obtain Prescribed confidence

That P ' Differs from P ' ' at Significance Level alpha

135

135

135

135

135

134

133

133

132

131

13C

129

127

126

125

123

12 :

120

ܐܐ8

116

113

ܐܐܙ

0.450 0.550

0.460 0.560

0.470 0.570

0.480 0.580

0.490 0.590

0.500 0.600

0.510 0.610

0.520 0.620

0.530 0.630

0.540 0.640

0.550 0.650

0.560 0.660

0.570 0.670

0.580 0.680

0.590 0.690

0.600 0.700

0.610 0.710

0.620 0.720

0.630 0.730

0.640 0.740

0.650 0.750

0.660 0.760

0.670 0.770

0.680 0.780

0.690 0.790

0.700 0.800

0.710 0.810

0.720 0.820

0.730 0.830

0.740 0.840

0.750 0.850

0.760 0.860

0.770 0.870

0.780 0.880

0.790 0.890

0.800 0.900

0.810 0.910

0.820 0.920

0.830 0.930

0.840 0.940

0.850 0.950

0.860 0.960

0.870 0.970

0.880 0.980

C.890 0.990

0.200 786 540 427 309 235

0.200 786 540 427 309 235

0.200 785 539 427 308 235

0.2011 783 538 426 308 234

0.201 781 536 425 307 233

0.201 778 534 423 306 233

0.202 775 532 421 304 232

0.202 771 529 419 303 230

0.203 766 526 416 301 229

0.204 760 522 413 299 227

0.205 754 518 410 296 225

0.205 748 513 406 294 223

0.206 740 508 402 291 221

0.208 732 503 398 288 219

0.209 724 497 393 284 216

0.210 715 491 388 281 214

0.212 705 484 383 277 211

0.213 694 477 377 273 207

0.215 683 469 371 268 204

0.217 671 461 365 264 201

0.219 659 452 358 259 197

0.221 646 443 351 253 193

0.224 632 434 343 248 189

0.226 617 424 336 242 185

0.229 602 414 327 237 180

0.232 587 403 319 230 175

0.235 570 392 310 224 170

0.239 553 380 301 217 165

0.243 535 368 291 210 160

0.247 517 355 281 203 155

0.252 498 342 271 196 149

0.257 478 328 260 188 143

0.263 458 314 249 180 137

0.269 437 300 237 172 131

0.276 415 285 226 163 124

0.284 392 269 213 154 117

0.293 369 253 201 145 110

0.303 345 237 187 135 103

0.314 319 219 174 126 96

0.328 293 202 160 115 88

0.344 266 183 145 105 80

0.364 238 164 130 94 71

0.390 208 143 113 82 63

0.424 176 121 96 69 53

0.476 140 06 76 55 42

Figure 8. Example Based on the Natrella Formulas.

(Printout ofan Enable Spreadsheet on a Zenith 248.)
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Key Relationship : N - K
=

k + 1

D E J KА

a

B

Initial p

с

Deltap

E2

( 分
$ B $ 1

1 -D2

D2 + $ C $ 1

1 -E2

D2

D3k N-K

1

1

2

3

4

5

6

7

A5 + 1

A6 + 1

$ A $ 1 - A5 1 $ C5 * D $ 2 ** $ A5 * D $ 3 ** B5

$ A $ 1 -A6 C5 * B5 /A6 $ C6 * D $ 2**SA6*D $ 3**B6

$ A $ 1 -A7 C8 *86/A7 $C7* D $ 2 ** $ A7 * D $ 3 ** 87

D5

J5 +D6 K5EB

J6+D7 | K64E ?

Figure 4. Spreadsheet Template for Exact Binomial Tables.

relationship and formulas which generate tables of both individual and cumulative binomial

probabilities. Script type in Figure 4 indicates a data entry area while gray type indicates

formulas obtained by “ copying ," which can be extended at will. The notation in Figure 4 is the

standard from Lotus 1-2-3 with columns labeled by letters and rows by numerals and with "$"

indicating an absolute rather than the default relative reference. In Figure 4, columns D-H

contain individual probabilities while columns J-M contain the cumulative probabilities.

Column C — which contains the binomial coefficients needs to be calculated but is not of direct

interest; its display would normally be suppressed. Likewise, formatting or logic tricks can be

used to suppress printing many values very close to zero or one, as in Figure 5 .

Figure 5 shows a portion of a large table ofbinomial probabilities generated via a template

similar to that of Figure 4. The only substantial difference is that Figure 5 displays nine values

for p vice five in Figure 4, and the p -values in Figure 5 are controlled by a center value and a

delta in both directions vice a starting value and a delta in Figure 4. The fact that all cumula

tive columns end in 1.0000000 confirms substantial numerical accuracy. Underlying spread

sheet calculations are typically performed to 14 significant figure accuracy , so multiplication of

the very large binomial coefficients with the very small products of success and failure proba

bilities is accurate to nearly 14 significant figures, and only very tiny probabilities are lost to

underflow when cumulated. Since standard tables typically display only 7 -place accuracy

already more than needed for practical purposes - accuracy of spreadsheet calculations

presents no problem . Memory and computing time is a greater concern . On the standard Apple

Macintosh SE where Figure 5 was calculated and printed (using Microsoft Excel), loading or

recalculating the spreadsheet takes several minutes, the spreadsheet loaded into Excel takes

approximately 760 kilobytes of memory , and storage of the spreadsheet takes more than 500

kilobytes on disk. (A similar spreadsheet implemented in Enable on a Zenith 248 with 640 kilo

bytes of RAM runs out ofmemory when N is slightly larger than 100. )

4. RETHINKING TABULATION OF DISCRETE PROBABILITIES. For practical

purposes, the spreadsheet template in Figure 4 (implemented in Figure 5) , replaces all stan

dard binomial tables. Templates for other discrete distributions requiring binomial coefficients

are also easy to implement, both for standard distributions such as the hypergeometric distri

bution and for more unusual distributions such as that tabulated in Figure 6. Unlike previous

tables in this paper, Figure 6 represents a rethinking of probability tabulation rather than a

straightforward translation of traditional tables into an automated spreadsheet. It shows the

screen image of an Excel spreadsheet on a Macintosh , formatted for ease of interactive sample
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( Printout of an Excel Spreadsheet on a Macintosh SE .)

Figure 5. Example ofan Exact Binomial Table.
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sizing or inference. Only two val
BernoulllFirings - 100

ues for p are shown since only two 22 22 200 0.110 0.08150 0.00212 0.3815947 0.0045179 0.6184053 0.0023989 3875
23 232000.115 0.08601 0.00360 0.4676089 0.00811780.323911 0.0045179 | 46 %

are typically needed for sample 241 24200 0.1201 0.08650 0.00583 |0.5541118 0.0139456 |0.4458882|0.0081178 558

251 25200 0.125 0.08304 0.00901 0.6371545 0.02295180.3628455|0.0139456 625

sizing or determining confidence 26 26 2000.13010.07622 0.01531 0.7133739 0.0362583 |0.2866261 0.0229518 6955

intervals. Standard tabulated val- 271 27 |2000.135 0.06698 0.01882|0.7803545 0.0550821 0.21 % 455 0.0362583 745
20 20 2000.140 0.05643 0.025530.8367878 0.08061230.1632122 0.0550821 785

ues are supplemented by several 29 29 /2000.148 0.04564 0.033240.8824298 0.1138509 0.1175702 0.0806123 8055
30130 / 2000.150 0.00532 0.00624 |0.8877513 0.1200892 0.1122487 0.1138509 775

useful arithmetic results, and the 31 ] 30199 0.151 0.00517 0.00650 0.8929171 0.1265883 |0.1070829 0.1200892 77 %

321 30 198 0.152 0.00501 0.00676 0.8979276 0.1333531 0.1020724 |0.1265883 775

data entry area is arranged so 33 30197|0.152 0.00486 0.007040.9027832 0.1403885|0.0972168 |0.1333531 775

34 30196 0.153 0.00470 0.00731 0.9074845 0.1476987 0.0925155 0.1403885 7755

that it always remains on screen . 33 30 195 0.154 0.00455 0.00759 0.9120324 0.1552879 0.0879676 |0.1476987 7653

36 30 194 0.155 0.00440 0.00787 0.9164279 0.1631594 0.0835721 0.1552879 765

The underlying distribution comes tr PIM -ml PIMem ) PM > m IPIMem Conf. for

from a series of Bernoulli trials KM Prob Pk 0.120 0.180 0.1200000 0.1800000 0.1200000 10.1800000 (0.12000 ,

(1 -Pk (0.880 ) (0.820 ) 10.88000 ) (0.82000 ] (0.88000 ] (0.82000 ) 0.18000 )

where R rounds are fired at T tar ++++ +++ DATA ENTRYZAREA ++

Enter Data ata> T = >30 R 23200 Probs - >0.12 -70.18

gets (TSR ) until either all rounds

are expended or all targets are Figure 6. Example ofa Rethought Spreadsheet.

killed . When TER the distribution

is binomial, and when T<<R it approximates the negative binomial distribution . The R+ 1

possible outcomes (indexed by M) are as follows:

R

M=0:

)0

M= 1 :
R

D
e

M = t:
)A

M - T :

Prob { T -t targets killed with R-R rounds) = ( ) p «1-p}

M -T-1:Prob { T - T -1 targets killed with R-R rounds ) - ( , ) p7-11-pja-Tan

Prob ( T - T targets killed with R=R rounds)-( ) p1 ( 1 - P )A7 - ( :1) pľ( 1 p )AT

M - T + 1: Prob{T-Ttargets killed with R-R- 1 rounds ) = ( 7:2 ) p1(1-P)A.T-1

M - T+k: Prob{ T - T targets killed with R - R - k rounds )= ( R *:1)p**(1-P)AT*

rounds;= (T:1)

M

...

M=R: Prob { T - T targets killed with R - T rounds)- pT

19

Since the data entry area and column labels at the bottom of the screen do not scroll with the

body of the table, parameters can be changed easily and the results observed immediately.
From a sample sizing viewpoint,

Bernoulll Firings - 100
9

19200 0.098 0.08689 0.00257 0.3851 448 0.0053062 0.61 48502 0.0027401 3855 the screen in Figure 6 shows that
20 20 200 0.100 0.09168 0.00443 0.4766228 0.0097411 0.5231772 0.0053062 475

21 ] 21 200 0.105 0.09162 0.00726 0.5694422 0.01 70007|0.4315578 0.0097411 565 with T = 30 targets and R=200
22 22 2000.110 0.08691 0.01 128 |0.6553556 0.0282807 |0.3446444 0.01 70007 645

23 23 2000.115 0.07842 0.01667 0.7877794 0.0449520 0.2662206 0.0282807 rounds, observed kill proportions71 %

24 24 200 0.120 ) 0.06743 0.02348 0.8012134 0.0684321 0.1987866 |0.0449520 765

near 0.15 will produce 80% confi25 25/200 0.125 0.05535 0.03157 0.8565638 0.0999997|0.1434362 0.0684321 795

26 262000.130 0.04344 0.040580.9000003 0.1405763 |0.0999997 0.0999997 BOSS
dence intervals somewhat less

27 27 200 0.185 0.03264 0.04994 0.9826572 0.1905141 0.06736280.1405768 795

28 28 / 2000.140 0.02351 0.05892 0.9561479 0.24948740.04385210.1905141
775

than 0.1 in length. Once data are
291 29 / 2000.1451 0.01626 0.06674 0.9724059 0.3161773 |0.0275941 |0.2494574 72

301 30 /2000.150 0.00162 0.01090 0.9740266 0.32707460.0259734 |0.3161773 665 collected, the same spreadsheet
31 30 199 0.151 0.00155 0.01 109 0.9755725 0.3381617 0.0244275 |0.3270746 655

32 30 198 0.152 0.00147 0.01127 |0.9770459 0.3494321 0.0229541|0.3381617| 645 can be used to determine confi

33 30 19710.152 0.00140 0.01145 0.9784488 0.3608790 0.0215512 0.3494321 635

dence intervals. Figure 7 shows
PIMem PIM ) PM >ml PIM <m Conf. for

Km Prob Pk 0.104 0.160 0.1044178 0.1603494 0.1044178 0.1603494 | 0.10442 , that observing 26 kills when T = 30

(1-Pk 10.896 ) (0.840 ) (0.89558 ) (0.83965 ] (0.89558 )| (0.83965 ) 0.16035 )
++++++ DATA ENTRY AREA **********

and R=200 yields (0.1044,0.1603)
Enter Data at 2270 -20.1603

羽
as an 80% confidence interval.

Figure 7. 80 % Confidence Interval for T = 26 . Alternatively, the same spread

sheet could be used to investigate

R >200 Probs >0.1044

-

- -
-. -
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K
E

לו

74 0.05 0.07210 0.00030 0.1261510 0.0003839 0.8730490 0.0000810 135

5 740.068 0.11215 0.00105 0.2383000 0.0014442 0.7617000 0.0003839 2455

6 6 74 0.081 0.14330 0.0030510.3816015 0.0044925 0.6183908 |0.0014442| 385

7 740.09 0.15467 0.00740 0.5362761 0.01 18955 0.4637239 0.0044925 333

8 8 740.108 0.14393 0.01550 0.6802094 0.0276956 0.3197906 0.0118955 67 %

97410.122 0.11728 0.02042 0.7974884 0.0558125 0.2025116 0.0273956 775

10 10 740.135 0.08470 0.04618 0.8821899 0.1019899 0.1178101 0.0558125 835

11 11 74 0.149 0.00814 0.009980.8903294 0.1119742 0.1096706|0.1019899 79 %

12] 11 799

131 11 785

14 11 71 0.158 0.0071% 0.01245 0.9127309 0.1467898|0.0872691 0.1345385 7855

151 11 77 %

161 11 69|0.159 0.00645 0.01426 0.9259707 0.1743878 0.0740293 |0.1601294 7793

171 11 68|0.162 0.00611 0.015200.9320839 0.1895899 0.0679161|0.1743878 765

755

PM m PIMml PMMPIM m Conf. for

Kol Prob Pk 0.100 0.200 0.1000000 0.2000000 0.1000000 0.2000000 0.10000 ,

m

Enter Data atas

DATA ESTRY AREA +++

Probs = >0.1T = > 1 - >02

other sample sizes. Figure 8 shows
Bernoulll Firings - 100

that T - 11 and R - 74 provide the

approximate sample size required

to detect a 0.1 difference in kill

probabilities with 80 % confidence.

Although less than 40 rows have
73 | 0.151 0.00780 0.010770.8981344 0.1227450 0.1018656 0.1119742

been displayed in Figures 6-8, the 72 0.158 0.00747 0.01159 0.9056021 0.134388510.0943979|0.1227450

spreadsheet was laid out with 100 70 0.157 0.00679 0.01334 |0.9195203 0.16012940.08047970.1467893

rows for flexibility (more could be
18 11 670.164 0.00578 0.01617 0.9378625 0.2057562 0.0621375 0.1895899

obtained by copying rows down

ward if necessary ). Since this
(1- Pk 10.900 ) (0.800 ] 10.90000 ) (0.80000 ] (0.90000 ] (0.80000] 0.20000 )

spreadsheet is much more

RE>71

compact and requires fewer

demanding calculations than a full
Figure 8. Sample Size Needed to Detect Ap=0.10.

table like that of Figure 5 , it

recalculates much faster ( less than 10 seconds). Thus the iterative fiddling required to obtain

results such as those in Figures 7 and 8 is quite feasible.

5. OTHER ACTUAL AND POTENTIAL APPLICATIONS. Use of spreadsheets for

statistical calculations is not limited to calculation of probability tables. In particular, spread

sheets are useful in conjunction with other programs which perform statistical analyses.

Arithmetic operations are frequently required to understand, interpret, and present the results

of analyses performed using standard statistical packages. Spreadsheets can reduce the

manual labor involved with such operations without requiring specialized programming. For

example, SAS Least Squares Means (LSM's) provide representations for various marginal

means as if the underlying experimental design had been balanced. SAS can calculate LSM's

for any effect in an underlying model, but cannot calculate LSM's for any effect not in a model.

Simple but tedious arithmetic can be used to calculate internal values from margins for

presentation . If more than one or two such calculations is to be done, writing a spreadsheet

template to do them pays off. Similarly, a spreadsheet can provide a convenient way of

translating back and forth between estimates obtained on a transformed variable and more

easily understood corresponding estimates on the untransformed variable — for instance,

translating results of an analysis of log ( Y + 0.02) back into statements about (p -pol/po, where

Expectation{log ( Y + 0.02 )]= log (p + 0.02 ). Still another related application was suggested following

presentation of this paper by a statistician who routinely uses spreadsheets in conjunction

with other procedures to perform jackknifing. Finally, since spreadsheets read and write files

consisting of tab delineated fields, automated exchange of data with other computer programs

can be easy. Spreadsheet capabilities for editing and rearranging data make them a good

preprocessor for specialized statistical packages like MacSpin, which have less flexible data

entry capabilities. Additional capabilities ofmost modern spreadsheets include macro language

capabilities, which make nonstandard formulas and calculations readily available, and

integrated graphics capabilities, some of which are quite good. Every statistician having access

to a microcomputer should understand the kinds of things spreadsheets can do to make life

easier, both as stand -alone tools and as supplements to other tools. The convenient power of

microcomputer spreadsheets provides computational tools which should be the first place one

looks for assistance with routine statistical calculations.
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