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FOREWORD

The Thirty-Third_Conference on the Design of Experiments in Army
Research, Development,-and Testing was held 21-23 October 1987 on the
campus of the University of Delaware. This university served as one of
its hosts, the other host being the Ballistic Research Laboratory
(BRL). Professor Henry B. Tingey was the Chairperson on Local
Arrangements for the University and Dr. Malcolm Taylor served in this
capacity of BRL. The members of the Army Mathematics Steering
Committee (AMSC), sponsors of these conferences, would like to take
this opportunity to thank these gentlemen for their excellent handling
of the many problems associated with a meeting of this size.

Members of the Program Committee for the conference were pleased to
obtain the services of the following invited speakers to talk on topics
of interest to Army personnel:

Speaker and Affiliation Title of Address

Dr. J. Stuart Hunter Statistics and the Learning

Private Consultant Process

Professor Albert Paulson A Generalized Likelihood

Rensselaer Polytechnic Institute Approach to Experimental
Design, Data Analysis and
Modeling

Dr. William A. Gale Structural Statistical

Bell Communications Research Knowledge for Expert Systems

Professor Howard M. Taylor The Effect of Size on

University of Delaware Material Strength

On 19-20 October 1987, two days before the start of the Design
Conference, a tutorial entitled "Regression Diagnostics" was held. Its
speaker was Professor Roy Welsch of the Massachusetts Institute of
Technology, Cambridge, MA., The main purpose of these seminars was to
develop, in Army scientists, an interest in and and appreciation for
the statistical methods that are needed to analyze experimental data.

Dr. J. Stuart Hunter, Professor Emeritus of Princeton University, was
the recipient of the seventh Wilks Award for contributions to
Statistical Methodologies in Army Research, Development, and Testing.
This honor was bestowed on Dr. Hunter for his many significant
contributions to various fields of statistics, in particular to the
areas of fractional factorial and response surface experimental design.
He has assisted many Army scientists with their statistical problems,
and has been an invited speaker at four of these Design conferences.
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The AMSC has requested that these transactions be published and
distributed Army-wide so that the information in them might assist Army
scientists with some of their statistical problems. Committee members
would like to thank all the speakers for their interesting
presentations and also the members of the Program Committee for their
many contributions to this scientific meeting.

PROGRAM COMMITTEE

Carl Bates David Cruess Eugene Dutoit
Robert Launer Carl Russell Douglas Tang
Malcolm Taylor Jerry Thomas Henry Tingey
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AGENDA
THIRTY-THIRD CONFERENCE ON THE DESIGN OF EXPERIMENTS
IN ARMY RESEARCH, DEVELOPMENT AND TESTING
21-23 October 1987

Hosts: The Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland

and

The Department of Mathematical Sciences
The University of Delaware

Newark, Delaware

Location: Pencader Hall, Room 106
The University of Delaware

* * % % % Wednesday, 21 October * * * * *
0815-0915 REGISTRATION - Clayton Hall Lobby
0915-0930 CALL TO ORDER - Pencader Hall, Room 106
Dr. Malcolm Taylor, Ballistic Research Laboratory
OPENING REMARKS

Dr John T Frasier
Director, Ballistic Research Laboratory

WELCOMING REMARKS

Dr Ivar Stakgold

Chairman, Department of Mathematical Sciences

The University of Delaware
0930-1200 GENERAL SESSION I

Chairman: Prof Henry B Tingey, University of Delaware
0930-1030 KEYNOTE ADDRESS

J Stuart Hunter, Princeton, NJ
1030-1100 BREAK

1100-1200 A BAYESIAN APPROACH TO THE DESIGN AND ANALYSIS OF
COMPUTATIONAL EXPERIMENTS

Toby J Mitchell* and Max Morris, Oak Ridge National Labs
1200-1330 LUNCH

vii



1330-1700

1500-1530

1530-1700
1830-1930
1930-2130

0830-1000

CLINICAL SESSION A
Chairman: Barry Bodt, Ballistic Research Laboratory
Panelists: Prof John Green
Prof Vincent LaRiccia
Prof John Schuenemeyer
Prof Robert Stark
Prof Howard Taylor
The Department of Mathematical Sciences
The University of Delaware
ANALYSIS OF A REPEATED DESIGN WITH MISSING CELLS
Michelle R Sams and Joel H Fernandez, White Sands Missile Range
ALTERNATIVE METHODS FOR RELIABILITY ESTIMATION

Raymond V Spring, US Army Natick R&D Directorate
Thomas A Mazzuchi, The George Washington University

ALLOCATION AND DISTRIBUTION OF 155 MM HOWITZER FIRE

Ann E M Brodeen and Wendy A Winner,
The Ballistic Research Laboratory

Break (as needed)
A SIMPLE MATHEMATICAL MODEL FOR THE SIMULATION OF IR BACKGROUNDS

Denis F Strenzwilk, Ballistic Research Laboratory
Walter T Federer and Michael T Meredith, Cornell University

CLINICAL SESSION A, CONTINUED (as needed)
CASH BAR - THE SHERATON INN, NEWARK
BANQUET AND PRESENTATION OF WILKS AWARD - THE SHERATON INN
* # * * * Thursday, 22 October * * * % *

TECHNICAL SESSION 1 - STATISTICAL APPLICATIONS
Chairman: Dr Francis Dressel, US Army Research Office
EVALUATION OF CAMOUFLAGE PAINT GLOSS VERSUS DETECTION RANGE
George Anitole and Ronald L Johnson, US Army Belvoir Research,

Development and Engineering Center
Christopher J Neubert, US Army Materiel Command
A 2-STAGE EXPERIMENTAL DESIGN FOR TESTING LARGE SCALE SIMULATIONS

Ageel A Kahn, US Army Concepts Analysis Agency
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BLACK BRANT HAZARD ANALYSIS
Weston C Wolff, White Sands Missile Range
USING A PERSONAL COMPUTER IN STATISTICAL PLANNING AND ANALYSIS
Carl Russell, Army Operationai Test and Evaluation Agency
1000-1030 BREAK
1030-1200 TECHNICAL SESSION 2, EXPERIMENT DESIGN AND LINEAR MODELS
Chairman: William Baker, Ballistic Research Laboratory
ONE SIDED TOLERANCE LIMITS FOR RANDOM EFFECTS MODELS
Mark Vangel, US Army Material Testing Laboratory

ESTIMATION OF VARIANCE COMPONENTS AND MODEL-BASED DIAGNOSTICS IN
A REPEATED MEASURES DESIGN

Jock O Grynovicki, US Army Human Engineering Laboratory, APG
J W Green, The University of Delaware

MODEL BASED DIAGNOSTICS FOR VARIANCE COMPONENTS IN A GENERAL
MIXED LINEAR MODEL

John W Green, The University of Delaware
R R Hocking, The Texas A&M University

CHANGE-POINT REGRESSION WITH UNKNOWN CHANGE POINTS
Robert L. Launer, US Army Research Office
1200-1330 Lunch
1330-1500 TECHNICAL SESSION 3 - STOCHASTIC PROCESSES
Chairman: Dr Eugene Dutoit, US Army Infantry School
SEMIREGENERATIVE PHENOMENA
N U Prabhu, Cornell University
k-LAPLACE PROCESSES
Lee S Dewals, The US Military Academy
Peter A W Lewis, Naval Postgraduate School
Ed McKenzie, University of Strathclyde, Glascow, Scotland
THEORY OF RANDOM MAPPINGS
Bernard Harris, University of Wisconsin - Madison

1500-1530 BREAK
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1530-1730

0830-1000

1030-1045
1045-1200

1045-1100

1100-1200

GENERAL SESSION II
Chairman: Dr Malcolm S Taylor, Ballistic Research Laboratory

A GENERALIZED LIKELIHOOD APPROACH TO EXPERIMENTAL DESIGN,
DATA ANALYSIS AND MODELING

Albert Paulson, Rensselaer Polytechnic Institute
STRUCTURING STATISIICAL KNOWLEDGE FOR EXPERT SYSTEMS
William A Gale, Bell Communications Research

* x x * * Priday, 23 October * * * * *
TECHNICAL SESSION 4 - STATISTICAL INFERENCE
Chaimman: Linda Moss, Ballistic Research Laboratory
ON THE USE OF FACTOR ANALYSIS AS A PREDICTION TOOL
Oskar M Essenwanger, US Army Missile Command

CONSISTENCY OF THE P-VALUE AND A SET OF Q-VALUES IN A SCORING
ACCURACY ANALYSIS

Paul Thrasher, wWhite Sands Missile Range
A BAYESIAN METHOD FOR PROJECTING A TOLERANCE LIMIT
Donald Neal and John Reardon, US Army Material Testing Laboratory

COVERING PROBABILITY PROPERTIES OF COMPETING CONFIDENCE INTERVAL
METHODS FOR THE RISK RATIO

Craig Morrissette* and Douglas B Tang, Walter Reed Army Institute
of Research

BREAK
GENERAL SESSION III

Chairman: Dr Douglas B Tang, Walter Reed Army Institute of Research
Chairman of the AMSC Subcommittee on Probability and Statistics

OPEN MEETING OF THE STATISTICS AND PROBABILITY SUBCOMMITTEE
OF THE ARMY MATHEMATICS STEERING COMMITTEE

THE EFFECT OF SIZE ON MATERIAL STRENGTH
Howard M Taylor, University of Delaware

ADJOURN



ANALYSIS OF A REPEATED MEASURES DESIGN WITH MISSING DATA

Michelle R. Sams and Joel H. Fernandez
U.S. Army Materiel Test and Evaluation/
Engineering and Analysis RAM Division

U.S. Army White Sands Missile Range, NM 88002-5175

ABSTRACT

Electronic Maintenance Publication System (EMPS) is a U.S.
Army Materiel Command (USAMC) initiative to determine the
feasibility of using current technology to electronically display
and deliver the contents of Department of the Army Technical
Manuals (DATMs) to the maintenance site. The Army Materiel Test
and Evaluation Directorate (ARMTE) was tasked to conduct a "side-
by-side" comparison of EMPS vs. DATMs and to conduct a human
factors evaluation of the EMPS hardware and software. ARMTE
conducted the comparison study on the Patriot System at Ft. Bliss,
TX from 6 April to 15 May 1987. Ten operator/maintainers (MOS
24T) were trained to use EMPS and then participated in the test
phase performing maintenance tasks on the Radar Set (RS) and on
the Engagement Control Station (ECS). A 2 x 2 x 7 within-subjects
factorial design was planned, with 2 mediums (EMPS, DATMs)
performed on 2 major end items (RS, ECS) for 7 types of
maintenance tasks. Due to software constraints and Patriot
peculiar problems, only 8 of the 28 possible treatment conditions
have observations from all the subjects and 2 of the treatment

conditions have no observations. Various data estimation
procedures were considered and then rejected on the basis of
excessive and systematic missing data. Two analyses of variance

were conducted on a subset of the original data, which contained
the least amount of missing data and were determined to be
representative of the maintenance actions,. No significant
difference was found for the variables of interest (those
involving EMPS and DATMs). Based on the results of this study, it
was concluded that there is no evidence to suggest that there is
any significant difference in time to perform a fault isolation or
remove and install task on the PATRIOT system wutilizing either
EMPS or DATMs. An electronic delivery of maintenance information
(as tested in EMPS) appears to be as effective as the traditional
medium of paper technical manuals (DATMs).

- - - —————

Comments and suggestions by the panelists and attendees at the
conference were greatly appreciated. We are especially indebted to
N. Scott Urquhart of New Mexico State University for his guidance
throughout the completion of the data analysis.



INTRODUCTION

Maintainability is a major element of system effectiveness.
As such, the delivery of maintenance information is a crucial
component in the man-machine system. The current delivery medium
is through paper technical manuals (DATMs). Many problems have
been noted with the paper manuals (e.g., the large number of bulky
manuals needed to contain all the information and difficulties
encountered keeping the manuals wupdated and current, the
difficulty wusing the manuals especially in inclement weather,
etc.) An alternative delivery medium was sought and tested in the
form of Electronic Maintenance Publication System (EMPS). As part
of a larger evaluation of EMPS, the Army Materiel Test and
Evaluation Directorate at White Sands Missile Range was tasked to
conduct a performance ("side-by-side") comparison of EMPS vs;
DATMs and to conduct a human factors evaluation. The performance
evaluation was based on the speed and accuracy of maintenance

actions for the two mediums and is presented in this paper.
METHOD

Subject and Team Selection

A total of ten operator/maintainers (all trained to the TS5
PFAS 1level) were allotted for the study on the basis of
availability. Maintenance tasks are normally performed in
maintenance teams consisting of a "reader" and a "doer". For the
purposes of this study, the ten subjects were divided into two
groups on the ©basis of their GT scores (an index of general
intelligence and ability). Five teams were then formed out of each

group (each subject participated in two teams). Each team from



Group A was then matched with a team from Group B with
approximately the same GT level. This matching was done in order
to reduce some of the variance due to the subjects, especially
since there was such a small number of subjects in the experiment.

Experimental Design

A 2 x 2 x 7 within-subjects factorial design was planned,
with 2 mediums (EMPS, DATMs) performed on 2 major end items (RS,
ECS) for 7 types of maintenance tasks. The design was within-

subjects in that all teams would participate under all treatment

combinations. However, due to the concern of possible
asymmetrical transfer effects, a particular team did not
participate in the same task twice. For example, when a team

performed a particular task utilizing EMPS, a different team
matched for general ability performed the same task utilizing
paper DATMs.

Task Selection

With the assistance of subject matter experts, it was
determined that there were seven types of maintenance actions
performed on the RS and ECS. These task types consisted of fault
isolation (FI), remove and install (RI), repair and verify (RV),
combined tasks (CO) which included FI, RI, and RV times,
preventive maintenance checks and services (PMCS), operations
(OP), and repair parts and special tools 1list (RPSTL). The
selection of the specific tasks to be performed was influenced by
several factors; software capability, the tasks had to be
representative of normal maintenance actions, and the concern of

face validity.



Training Session

Ten operator/maintainers were familiarized with EMPS in the
classroom and given support documentation. They then participated
in an on-site training session in their assigned teams. A total
of 63 maintenance tasks on the RS and ECS utilizing both EMPS and
DATMs were completed in this session.

Testing Session

The teams then participated in the test phase performing a
total of 302 separate maintenance actions consisting of the seven
types of maintenance actions on the RS and ECS utilizing both EMPS
and DATMs.

Data Collection

The errors committed and the total time to complete a
maintenance action were recorded by a data collector for each
task. A particular data collector would record data for the same
task, performed once by a team utilizing EMPS and again by a
matched team utilizing DATMs. This was done to reduce variation in
the time and error measurements recorded among the data collectors

Reduction of the Full Factorial Design

Each team was to participate in an equal number of tasks
utilizing the two mediums on both major end items for all task
types. Halfway through the test phase, it became obvious that due
to equipment failure and frequent removal of the subjects for
field training exercises, that the full factorial would not be
completed as originally planned. Even though generalizability of
the results to all types of maintenance actions was a concern, it
was determined that those tasks which best utilized the DATMs and

EMPS would be an accurate indicator of the efficiency and

4



feasibility of the mediums.

Through discussions with subject matter experts and the
participating subjects, it was determined that two types of tasks
best wutilized the two mediums. These were fault isolation (FI)
and remove and install (RI). These tasks were complex enough to
compel the maintainer to actually read and refer to the
maintenance material. The other tasks were simple and routine, so
that close attention to either medium was not necessary (although
they were instructed to actually read and use both mediums in any
circumstance). Within the remaining test phase time, the test
schedule was revised to include more of the FI and RI type tasks.
As a result, there was a large amount of missing data in the other
four types of tasks. The seventh task (RPSTL) was conducted only

on the ECS, due to software problems, and is not reported here.

RESULTS AND DATA ANALYSIS

A summary of the data collected for maintenance action times
is presented in Table 1 and a means bar chart 1is presented in
Figure 1. There are 81 missing observations out of a total of 240.
Estimating the missing data would allow investigation of 3-way
interactions (type of task x item x medium) and allow
generalization to all types of tasks tested. Various data
estimation procedures were investigated, with employing stepwise
regression for each missing value on the available variables
appearing as the most appropriate method (Frane, 1976).

Frane (1976) cautions that the methods for estimating missing

data for multivariate analysis depend on several assumptions:
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data must be missing at random to get a good estimate of the
covariance matrix, each missing variable must be highly correlated
with one or more availéble variables, and the amount of missing
data should not ©be excessive. If any of the assumptions are
seriously violated, any procedure for handling missing data is
likely to be unsatisfactory. The data collected in the study
violated two of these assumptions; the missing data was excessive
and systematic.

It was determined not to make estimations of the missing
observations and to instead conduct separate analyses of variance
on the two types of tasks ( FI and RI) which contained the 1least
amount of missing data, and which were previously determined to
best test the variables of interest. Since the data approximated a
lognormal distribution, the data was transformed ((log (X + 1)) to
normalize the distribution (Winer, 1971). The transformed
maintenance times were subjected to the analyses of variance
presented in Tables 2 and 3.

A significant difference for maintenance time for the
different tasks within each item was found, (p < .01), for both
types of tasks. This was neither surprising, nor of interest.
The set of tasks performed on each item varied in difficulty. For
fault isolation tasks a significant difference was found for itenm,
(p < .01). It took longer to perform fault isolation tasks on the
ECS than on the RS. Again this was not a variable of interest,
and most likely reflects the relative complexity of the the items.

The variables of interest, those involving the two mediums
being compared (EMPS and DATMs) revealed no significant

differences in maintenance time (p > .10). Also there was no

9



Table 2

ANOVA Table for Fault Isolation Tasks using Log Transformed Time

-—————————————————————————— —— ———————— —————— ——— ———————————————————

Source df MS F

Between Subject s
Group 1 .007 0.21
Task(Item) 21 .497 14 .62 **
Error (Between) 21 .034

Within Subject 46
Medium 1 .083 0.82
Item 1 2.930 29.01 *x*
Medium X Item 1 .003 0.03
Error (Within) 43 0.101

TOTAL 89

** p < .01

Table 3

ANOVA Table for Remove and Install Tasks using Log Transformed
Time

Source df MS F

Between Subject 45
Group 1 .046 1.24
Task(Item) 22 1.661 44 .42 **
Error (Between) 22 .037

Within Subject 36
Medium 1 .044 0.73
Item 1 .012 0.20
Medium X Item 1 .025 0.42
Error (Within) 33 0.060

TOTAL 81

** p < .01

10



significant difference in group performance for either type of
task. Thus the various teams composed from each group were
matched fairly well on ability to perform the tasks.

Errors committed while performing the maintenance tasks were

negligible and were not subjected to statistical analysis.

CONCLUSION

Based on the results of this study, there is no evidence to
suggest that there 1is any significant difference in time to
perform fault isolation and remove and install maintenance actions
on the PATRIOT system utilizing either EMPS or DATMs. Errors made
while using either medium were negligible and are not a
significant factor either. An electronic delivery of maintenance
information (as tested in EMPS) appears to be as effective as the
traditional medium of paper technical manuals (DATMs).

These are encouraging results considering that the test
subjects had a very "quick and dirty" training period with the
EMPS systen. It 1is conceivable that the speed with which a
maintenance action can be performed with an electronic delivery of
maintenance information will improve with a more comprehensive
training approach and with Human Engineering improvements to the

system.
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Abstract

The U.S. Army Ballistic Research Laboratory (BRL), Aberdeen
Proving Ground, MD, has been investigating the problems associ-
ated with allocating and distributing friendly fire based on the
importance of an enemy target and its function in a particular tac-
tical situation. The available data contain nonstandard data struc-
tures, numerous variables with various degrees of influence on the
predictive relationship, a mixture of data types, and nonhomogene-
ous variable relationships. Various approaches including parametric
and nonparametric procedures have been applied to this problem.
As an alternative to standard parametric procedures, the BRL is
investigating recently published classification tree methodology
which extends previous developments in this area [1]. Similar to
other classification tree methodologies, this methodology provides
predictions by constructing binary trees. However, unlike other
analytical techniques, e.g., cluster analysis, linear discriminant
analysis, and earlier classification trees, Breiman et al’s
classification tree structured methods concurrently handle these
problems, which are common to the data collected by the BRL on
Fire Direction Officers’ decisions on 155mm howitzer targets.

The authors would like to solicit critiques of the proposed
approach to this problem and suggestions for alternatives.
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1. Introduction

The U.S. Army Ballistic Research Laboratory (BRL) has been examining the prob-
lems associated with selecting the type, volume, and the method of firing ammunition
on enemy targets by a specific 155mm howitzer firing configuration, i.e., the allocation
and distribution of friendly fire. This research is concentrating on allocating and distri-
buting the fire of 155mm howitzer firing units based on the importance of an enemy tar-
get and its function in a particular tactical situation. Results from this research will be
incorporated into the BRL’s prototype decision aid FireAdvisor. As a tool for developing
and implementing fire support plans, FireAdvisor is incorporating commander’s criteria,
munition effects, and the tactical situation (including firing units, munitions, fuzes, and
targets) to assist with determining the optimum allocation and distribution of fire
against independent targets over time.

To acquire data for this research, the BRL conducted a statistically designed exper-
iment, the Firepower Control Experiment, in December 1985. In addition, the BRL has
recently extracted similar information from scenarios developed by LB&M Associates,
Inc., Lawton, OK, under a BRL contract. Both of these data sets are characterized by a
mixture of data types, nonhomogeneous variable relationships, and different degrees of
influence of the variables. Various approaches such as multiple regression analysis, the
Mann-Whitney test, Kruskal-Wallis analysis of variance by ranks, and cluster analysis
have been applied to analyze the data from the Firepower Control Experiment. The
goals of these procedures were to uncover the relationships among the variables and pro-
vide accurate predictions for allocating and distributing 155mm howitzer fire.

As an alternative to standard parametric procedures, the BRL is investigating
employing a recently published classification tree methodology to these data sets [1].
Similar to other published classification tree methodologies, Breiman et al.’s methodol-
ogy provides predictions by constructing binary trees. However, unlike other analytical
techniques, Breiman et al.’s classification tree structured methods concurrently handle
nonstandard data structures, a mixture of data types, nonhomogeneous variable rela-
tionships, and different degrees of influence of the variables.

An overview of Breiman et al.’s methodology will be given in the context of allocat-

ing and distributing 155mm howitzer fire. Critiques of this proposed approach and
suggestions for alternative approaches are invited.
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Fire Direction Officer [FDO) (determines or approves the number of
rounds and the shell/fuze combination to fire on the target)

Type/Subtype (description of the type of target)
e.g., artillery /medium.

Size (in meters),

Mecthod of Engagement (how to fire on the target)
e.g., fire-for-effect when ready.

Degree of Protection (position of the target)
e.g., standing on first volley and laying down on subsequent volleys.

Strength (number of units comprising the target)
Target Speed (in kilometers per hour)

Senscr (friendly unit sighting the target)
e.g.. forward observer.

Sensor Speed (in kilometers per hour)
Sensor to Target Range (in meters)
155mm Howitzer to Target Range (in meters)

Ammunition Available (both as number of rounds available by munition tyvpe and as the
initial ammunition load expressed as a percentage of a basic load)
e.g., 100 rounds of high explosive rounds which is x% of a basic load.

Allocation Method (method of firing the rounds on a target)

e.g. fire high explosive and smoke rounds simultaneously on the target
|as opposed to firing all high explosive rounds first followed

by the smoke rounds].

Total Number of Rounds Fired on the Target (number)

Number of First Munition Rounds Fired
e.g., 6 rounds of high explosive.

Type of First Munition Fired
e.g.. high explosive.

Number of Second Munition Rounds Fired
c.g., & rounds of smoke.

Type of Second Munition Fired
e.g., smoke.

Figure 1. Information Available for Each Decision.

14



I1. Background

a. Data Sets

In December 1985, the BRL conducted a controlled laboratory experiment, the
Firepower Control Experiment [2], at the joint U.S. Human Engineering Laboratory and
BRL Command Post Exercise Research Facility. As part of this statistically designed
experiment, information was collected on Fire Direction Officers’ (FDOs’) decisions on a
variety of targets being forwarded to 155mm howitzer units.* This data set comprises
3,219 FDOs’ tactical fire control decisions collected for different FDOs, target
types/subtypes, target sizes, types of fire mission control (i.e., “method of engagement”)
and initial ammunition basic loads.

As part of the BRL's research in tactical computer science, several unclassified
scenarios between friendly and enemy forces in the Fulda Gap have been developed
under a BRL contract with LB&M Associates, Inc., Lawton, OK. Embedded within
these scenarios are decisions on allocating and distributing 155mm howitzer fire on
independent targets observed in one-hour periods. To date, information associated with
522 tactical fire control decisions has been extracted from a portion of these scenarios.

Figure 1 summarizes the type of information available for the decisions in these
data sets. A combination of categorical and numerical variables describes the principle
factors thought to influence the decision process (FDO through ammunition available) as
well as the actual decision (allocation method through type of second munition fired).
Based on the results of previous data analyses, it is anticipated that these variables have
different degrees of influence and exhibit nonhomogeneity.

b. Parametric and Nonparametric Procedures Applied

1. Multiple Regression Analysis

Multiple regression analysis [3] is an analytical methodology that usually has one of
the following primary goals: 1) predict the value of the dependent variable for new
values of the independent variables, 2) screen variables to detect each variable's degree
of importance in explaining the variation in response, 3) specify the functional form of
the model, or 4) provide estimates of each coefficient’s magnitude and sign. By applying
multiple regression analysis to the data from the Firepower Control Experiment, it was
hoped that a regression equation could be derived to suitably predict the allocation
method. Using a combination of indicator factors for the categorical variables (c.g., FDO
and target type/subtype) and untransformed values for the numerical variables (c.g..
ammunition load expressed as a percentage of a basic load, target size, and the method
of engagement), stepwise and "best subset™ regressions were run to predict the resjonse
factor (e.g., the allocation method).

*Tactical Fire Direction and guanery iastructor from the US Army Field Artillery School, Fort Sill, OK, participated as FDOs.
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Stepwise regression [4] was run to insert factors into the regression equation based
on their partial correlation coefficient with the response factor. At each step, the partial
F criterion of each regressor already in the equation was compared to the appropriate
tabled F value. The regressor was either retained in the equation or rejected based on
whether the test was significant or not. Stepping continued until none of the regressors
could be removed, and none of the other potential regressors could be inserted due to
the value of their partial correlation coefficient. "Best subset” regression was then run
on the stepwise regressor variables to determine the best overall subset out of all pussi-
ble regressions according to the maximum R2 criterion.

As a consequence of performing a least squares fit of the data, fitted equations were
obtained for the allocation method. However, based on the proportion of variance
accounted for by the regressors in the regression equations, none of the factors clearly
influenced the allocation method. This suggests that other factors not taken into
account may influence FDOs’ decisions on an allocation method.

2. Mann-Whitney test

One of the objectives of the experiment was to test whether the amount of avail-
able ammunition affected the number of rounds the FDO elected to fire on a target.
Prior to comparing all FDOs within a given ammunition basic load or comparing an
individual FDO across the three ammunition basic loads, it was desirable to first exam-
ine whether or not it would be necessary to distinguish between the adjust fire (AF) and
fire-for-effect (FFE) methods of engagement. Since the distribution of total rounds fired
against a target is not known for the two employed methods of engaging a target, the
nonparametric Mann-Whitney test [5] was used to test whether the two independent
random samples could have been drawn from two populations having similar distribu-
tion functions. Based on thc results of the Mann-Whitney test, the samples associated
with the two methods of engagement could not be grouped together for other statistical
tests.

3. Kruskal-Wallis Test

Similar to the Mann-Whitney test, the nonparametric Kruskal-Wallis one-factor
analysis of variance by ranks procedure [5] was used to examine, first, the mean number
of rounds fired within each of the three different ammunition basic loads by each FDO,
and, second, the mean number of rounds fired by each of the three FDOs within a given
ammunition basic load. It was concluded from the test that there were significant
differences within an ammunition basic load in the mean number of rounds fired by each
FDO against an individual target. In addition, test results showed that only one of the
FDOs tended to fire on average more rounds against a target under at least one of the
ammunition basic loads than under at least one of the other basic loads. For the ran-
dom samples resulting in rejection of the null hypotheses, i.e., no difference in the mean
rounds fired against a single target, additional pairwise Kruskal-Wallis tests were per-
formed.
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4. Cluster Analysis

Cluster analysis [6] was employed to categorize targets according to their impor-
tance based on their contribution to an enemy force in a particular tactical situation,
i.e., their target value [7). There are several ways to measure the value of the target.
For example, one way could be to use several variables to measure the description, loca-
tion, and activity of the target. A description of the target might include its
type/subtype, size, and degree of protection. The location of the target might consider
the actual grid location of the target, the altitude of the target, and the distance
between the target and specific friendly units. The activity of the target might take into
account its velocity and direction of movement.

Cluster analysis provided a multivariate statistical method to examine the interrela-
tionships between the target description, the FDOs, and the initial ammunition load
expressed as a percentage of a basic load. Target value was based on the mean number
of rounds expended against an individual target. Targets were categorized into three
target value clusters, i.e., "low”, "fair”, or -"high”, based on the minimization of the
Euclidean distance between each target and the mean of the targets in the cluster.

¢. Deficiencies Among the Analyses

Despite the fact that each of these statistical procedures is well known and used,
they have several shortcomings with regard to the problems inherent to the Firepower
Control Experiment data set. For instance, these methods do not concurrently handle
the nonstandard data structures, a mixture of data types, nonhomogeneous variable
relationships, and different degrees of influence of the variables. Subsequently, it is
expected some information has been lost.

Thus, the combined results of these procedures do not provide an effective means of
allocating and distributing 155mm howitzer fire for enemy targets. For instance, cluster
analysis provides a coarse evaluation of a target's value based on the initial ammunition
load, iis type/subtype, and FDO. The "best subset” multiple regression equations pro-
vide only weak relationships between the FDO, allocation method, target type, target
size, method of engagement, and initial ammunition load. Thus, the question remains,
”Is this a result of variables measured in the experiment or a consequence that these
procedures could only be focused on limited subsets of the data collected?” Subse-
quently, a search for a different means of analyzing this data has been undertaken.

III. Classification Tree Methodology
a. Background

Trees, whether known as decision trees, binary trees, or by some other name, have
been previously used by data analysts as an informative nonparametric tool for investi-
gating various types of data sets. Tree classification methods use the data to form pred-
iction rules for a response variable based on the values of independent variables.
Specifically, measurements are made on some object, and a prediction rule is then used
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to decide to what class the object belongs. This methodology is so simple that it is
often passed over in favor of other methods which are thought to be more accurate.
such as discriminant analysis. '

Recent developments in the area of structured classification trees, which have been
published by Breiman et al., are aimed at strengthening and extending the original tree
methodology. Their advancements have been incorporated into a statistical software
package known as CARTTM (Classification and Regression Trees). Given complex data
sets with many independent variables, the developers of CART feel that the structured
trees produced by CART can have crror rates that may be significantly lower than those
produced by the usual parametric techniques. These procedures are robust, e.g., they
minimize the effects that data outliers might produce.

We feel that the advancements made in the area of structured tree methodology
are significant enough to warrant investigation and application to the problems of allo-
cating and distributing 155mm howitzer fire.

b. Overview of the CART Methodology

1. Definitions

Many of the statistical techniques presently available are designed for small data
sets having a standard data structure. By a standard data structure we mean that there
are no missing values among the measurements made on an object, or so few they may
be estimated pricr to analyzing the data. In addition, the variables all have to be of the
same type, i.e., all numerical or all categorical. The underlying assumption of the data
is that the driving phenomenon is homogeneous, i.e., the same relationship holds over
the entire set of measurements made on the object in question.

The data which is available to study the problem of allocating and distributing
friendly fire on enemy targets does not meet the above criteria. In both data sets, values
for several of the measurements used to describe an enemy target may be missing or
must be assumed not available for any number of reasons. The variable list comprising
the make-up of a target’s description (to include such items as its location, activity,
description, etc.) is a mixture of both numerical and categorical variable types. Finally,
we cannot realistically expect the same relationships to hold amongst the wide range of
measurements made on a target.

2. Constructing a Classification Tree

To initially construct a structured tree, four elements are needed: 1) a set of binary
questions of the form: Is x € A?, A C X, where x is the measurement vector defining
the measurements (z;, z;, ...) made on a case, and X is defined as the measurement
space containing all possible measurements, 2) a goodness of split criterion that can
numerically evaluate any split of any node of the tree, 3) a rule which dictates when to
continue splitting the node or to declare it a terminal node, and 4) a rule for assigning
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every terminal node to a class. The sct of binary questions generates a set of splits of
every node. Those cases answering “yes” go to a left descendant node, while those
answering "no” go to a right descendant node.

3. Features and Advantages

Breiman et al.’s methodology for classification trees appears to be a powerful and
flexible analytical tool. Some of its major features and advantages over other methods
will be very briefly outlined.

One of the more important aspects of the CART methodology is its ability to
automatically handle missing values while minimizing the loss of information. This is
achieved via the concept of surrogate splitting.

To understand surrogate splitting, two splits are said to be associated at a node if
either of two conditions exists. If most of the cases are sent to the left or to the right by
one split, and the other split also sends most of the cases in the same direction, the two
splits are said to be strongly associated. On the contrary, the splits are also associated
when one split sends most of the cases to the left (right) while the other split sends most
of the cases to the right (left). The missing value algorithm then proceeds as follows.
The CART methodology is designed to initially search through all possible splits on a
given node and select the best split. For example, suppose the best initial split is: Is #(5)
> 34.17. All other variables except z(5) will then be searched until the split on each
variable which is most closely associated with the split on #(5) is found. This series of
splits might result in a list such as the following

z(2) > 26.2 is the most closely associated with z(5) > 34.1
z(11) > 50.6 is the second most closely associated with z(5) > 34.1

and so forth. These splits are the surrogate splits for the initial split: Is 7{5) > 34.17.

If a case has a missing value of Z5) so that the best split is not defined for that
case, CART then looks at all nonmissing variables in that case and finds the one having
the highest measure of predictive association with the best split. In this example, CART
would first look at the most closely associated surrogate split. For example, if the value
of z(2) is not missing, then the case would go left if 2{2) > 26.2 and right otherwise.

This procedure is analogous to the one used to estimate the missing values in a
linear model (viz., regression on the nonmissing value most highly correlated with the
missing value). However, the CART missing value algorithm is more robust. The cascs
with missing values in the selected splitting variable do not determine which direction
the other cases will take. Since further splitting continues, there is always the possibility
that cases which may have been sent in the wrong direction due to the missing value
algorithm will still be classified correctly.
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Since variables do not act alone when predicting a classification, it is natural to
question which variables played the role of predictors. In the construction of a tree there
may be instances in which some of the variables are never used to split any node; how-
ever, this does not necessarily mean these variables lack any predictive information.
Therefore, each variable is assigned a measure of importance which may be helpful to
the analyst in uncovering variables otherwise glossed over when looking at only the
splits from the final selected tree. One note should be made. Like many variable ranking
procedures, this one is a bit subjective and the exact numerical values should not be
interpreted precisely.

Other features which do not require such an in-depth discussion are the following:
1) ability to bandle both numerical and categorical variables in a natural and simple
fashion, 2) application to any type of data structure through the formulation of an
appropriate set of binary questions, 3) a variable selection process closely resembling a
stepwise procedure since a search is made at each intermediate node for the most
significant split, and 4) in the overall measurement space X, the trees exhibit a robust-
ness property similar to medians, while within the learning set the method is not appre-
ciably affected by several misclassified points.

c. Digit Recognition Example Using the CART Methodology

The following digit recognition example was constructed by the authors o CART
and illustrates the various parts of the classification portion of the methodology.**

Most of us are familiar with electronic calculators which ordinarily represent the
digits 1, ..., 9, and 0 using seven horizontal and vertical lights in specific on-off combina-
tions. If the lights are numbered as shown in Figure 2, then i denotes the sth digit, i =
1,2, ...,9, and 0, and the measurement vector (z;, ..., z3) is a seven-dimensional vector
of zcros and ones. Let z;,=1 if the light in the mth position is "on” for the sth digit,
otherwise z;,,=0. Table 1 presents the possible values of z;,. Set the number of
classes C = {1, ..., 10} and let the measurement space X contain all possible 7-tuples of
zeros and oncs.

Suppose the data for this problem are generated from a faulty calculator for which
it is known that each of the seven lights has the probability of 0.1 of not functioning
properly. The data consist of outcomes from the random vector (X, . . ., X7, Y) where
Y is the class label and assumes the values 1, ..., 10 with equal probability and, as noted
previously, the X,, ..., X; are zero-one variables. Given Y, the X, ..., X; are indepen-
dently cqual to the value corresponding to Y in Table 1 with probability of 0.0 and are
in error with a probability of 0.1.

*% It should be pointed out bere that while this is the same example as outlined by the authors in their textbook, the output they
produced for the purpose of illustration was not generated by the learning sample data presented in the text Padraic Neville, who
has been assisting the autbors with the software management, bas stat.d that the original data wsed to runp this example was
accidentally lost, however, the data in the text nearly depicts the original data Therefore, the final structured tree presented iu this
paper will differ from that presented in the text.
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Figure 2. Horizontal and Vertical Lights.

Table 1. Possible Values of z,,.

Digit x;, X X3 X4 X5 Xg X9 | ¥
1 o o 1 o0 0 1 O 1
2 1 0 1 1 1 0 1 2
3 1 0 1 1 o0 1 1 3
4 o 1 1 1 o 1 0 4
5 1 1 0 1 o0 1 1 5
6 1 1 0 1 1 1 1 6
7 1 0 1 0 o0 1 O 7
8 1 1 1 1 1 1 1 8
9 1 1 1 1 0 1 1 9
0 1 1 1 o0 1 1 1]10

The learning sample, L, is comprised of two hundred samples which are generated
using the above distribution. Recall that each sample in L is of the general form
(2, ..., 77, ) where j € C is the class label and the measurement vector z,, ..., #; con-
sists of zeros and ones.

As previously mentioned in Section III.b.2., to apply the CART structured
classification construction on L, four things must be specified: 1) the set of questions, 2)
a rule for selecting the best split, 3) a criterion for choosing the right-sized tree, 4) a
rule for assigning every terminal node to a class. Here the question set consisted of the
seven questions: Is z,, = 0? where m = 1, ..., 7. The Gini index of diversity rule was
used to select the best split. The concept of this splitting criterion depends on a node
impurity measure. Given a node n with estimated class probabilities p(y | n), s =1, ...,
J, and the probability that given a randomly selected case of unknown class falls into
node n that it is classified as class ¢, define a measure fn) of the impurity of the given

21



node n as a nonnegative function ¢ of the p(1 | n), ..., p(J | n). Subsequently, the Gini
index of diversity takes the form: fn) =Y p(j | n) p(s | n). This node impurity is

s

largest when all classes are equally mixed i:gether in the node and smallest when the
node contains only one class. A search is made for the split that most reduces the node,
and consequently tree, impurity. The V-fold cross-validation method was used to
»prune” to the right-sized tree. Here the original learning sample L was divided by ran-
dom selection into V subsets L,, v = 1, ..., V, of nearly equal size. The vth learning
sample is: L9 =]L- L,v=1,.., V, where L' contains the fraction (V-1)/ Vof the
total data cases (the cases in L but not in L,). For example, if V is taken as 10, each
learning sample L(®) contains 9/10 of the cases. Assume that a classifier can be con-
structed using any learning sample. Then, for every v, apply the classification procedure
and let d*) (x) be the resulting classifier. Since none of the cases in L, was used to con-
struct d¥ (the classifier), a sample estimate of the overall tree misclassification rate may
be calculated, and a classifier is now constructed using the entire original learning sam-
ple L. The assignment rule proposed was to classify a terminal node n as that class for
which N{n) is largest, where N{n) is the number of class j observations in n.

The resulting classification tree is shown in Figure 8.! The question leading to a
split is indicated directly underneath each intermediate node. If the question is answered
affirmatively, the split is to the left; if it is answered negatively, the split is to the right.
Note that there are 11 terminal nodes, each corresponding to at least one class with
class 3 having a second terminal node. Generally speaking, such a one-to-one correspon-
dence occurs by accident since any number of terminal nodes may correspond to a par-
ticular class, or some classes may have no corresponding terminal nodes.

The overall probability of misclassifying a new sample given the constructed
classifier (and the above fixed learning sample), R #(I), was estimated as 0.31. Two other
estimates of R#(I) were also computed: 1) the cross-validation estimate, and 2) the
resubstitution estimate. Since the learning sample, L, must be used in actual problems
to construct both the classifier and to estimate R #(]), these estimates are referred to as
internal estimates. The cross-validation estimate was estimated as 0.32 - satisfactorily
close to R#(I). The resubstitution estimate was also calculated to be 0.32. This particu-
lar estimate identifies the proportion of cases from the learning sample, L, which is
misclassified once the set is run through the constructed classifier. Using the 1-fold
cross-validation method explained earlier, such estimators come satisfactorily close to

R+(I).

t The notation used here to describe the classification tree dill:rs from that of the text.
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Figure 3. Digit Recognition Classification Tree.

IV. Summary

The classification tree structured methodology developed by Breiman et al.
currently seems to be a viable approach to analyzing the available data sets. Although
the regression tree portion of Breiman et al.'s methodology has not been examined in



detail, it also may be another means of analyzing this data. In the case of the data from
the Firepower Control Experiment, it should be interesting to compare the results of the
multiple regression analysis, Mann-Whitney test, Kruskal-Wallis tests, and cluster
analysis to the CART results.

A critique of this proposed approach and suggestions for alternative approaches are
invited.
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A SIMPLE MATHEMATICAL MODEL FOR THE SIMULATION
OF IR BACKGROUNDS

Denis F. Strenzwilk, US Army Ballistic Research Laboratory
Michael P. Meredith, Biometrics Unit, Cornell University

Walter T. Federer, Mathematical Sciences Institute, Cornell University

ABSTRACT

At the US Army Ballistic Research Laboratory (BRL), Aberdeen Provin
Ground, Md., weapon system analysts use background models in order to: 1
establish ‘“clutter” thresholds for firing algorithms: and, 2) to study the
masking and false alarm effect of background in their effort to evaluate the
performance of various weapon systems. The BRL has received from US Army
Engineer Waterways Experimental Station (WES) several large data bases
comprised of blackbody temperatures derived from measurements obtained with
an IR sensor. The sensor was mounted on a helicopter and scanned in the
cross-track direction perpendicular to the direction of flight (in-track). The data
consists of temperatures of scene elements (pixels) for a plowed field, a forested
area, and a grassy field. The primary objective of this research is to provide a
simple mathematical model which provides simulated data that are consistent
with descriptive statistics from the original spatially correlated data base.
Such statistics include the mean and standard deviation of temperature, and its
‘energy spectrum’. The Mathematical Sciences Institute (MSI) at Cornell
University have suggested time series models and a Spatial Moving Average
(SMA) model as two approaches to the problem. One long term objective of
this type of investigation is to construct a method for relating parameters in
the model to physical constants. If successful, the model may then be extended
over the diurnal cycle and seasons.

I. INTRODUCTION

BRL to date has modeled target signatures in a deterministic manner while
background signatures have been treated stochastically. The deterministic model for
target signatures is appropriate because under a particular set of conditions, the
signature is rather well defined and is amenable to a single characterization. The case
is not the same for backgrounds, which are many and varied. Thus, the general
approach in modeling backgrounds has been to select a data set of a homogeneous
scene, to extract pertinent statistics, such as, the mean temperature, the standard
deviation, the ‘energy spectrum’, the correlation between pixels, etc., and finally,
to develop a model, which can simulate a ‘typical’ background segment with
these same statistics.

In most smart weapon simulations, the sensor scans across many square meters
of background before any target is encountered. During this time, the sensor’s signals
are processed by a target discrimination circuit that usually includes some sort of
adaptive threshold logic. Usually for this type of discrimination, the signal's Root-
Mean-Square (RMS) average is developed as a measure of background ‘clutter’. Target
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detections occur when the instantaneous sensor output exceeds a threshold value that
is proportional to the average of the output signal. The sensor’s output signals
produced by scanning the modeled background are thus used to provide a basis for
setting the detection threshold; this is perhaps the most important function of the
background. The stochastic background modeling approach currently being used at the
BRL is based on a normal temperature assumption. It is quite well suited to provide a
reasonable estimate of average clutter in many situations, even though the temperature
distribution of the pixels is not normal. However, a background model also ought to
include some provision for sources of false detection. The simple stochastic
background model described here is clearly not capable of fulfilling this objective, for
there is only a very remote possibility of a false alarm when the detection
threshold is set to some multiple of the RMS signal. What is lacking is a means
for incorporating some realistic scene features that would constitute possible sources
for false alarms.

Given that a target signature model with a reasonable degree of fidelity is mated
with a valid stochastic background signature model , it is possible to predict when and
where a target detection is likely to occur. Probabilities of target detection can be
inferred and the sensor/processor may be analyzed in terms of performance given a
target encounter. This has been the BRL approach for many smart weapon
simulations. A different approach must be taken if one wants to make some
assessment of the smart weapon’s capability for rejecting false targets. Ideally, the
background infrared signature model used for this type of performance analysis ought to
include a realistic characterization of individual scene elements that might confuse the
target discrimination logic. Might it be possible to develop a background signature
model that is predictive in nature and includes specific features that are potential false
targets? BRL would like such a model if the development effort does not cost us too
much, and more importantly if the proposed model does not require so many computer
resources as to interfere with those needed for the performance simulation.

An alternative to ‘““modeling” the background signatures either deterministically
or stochastically would be to use actual scene measurements as inputs to the smart
weapon sensor model. This would require that the measured background signatures
be compatible with the sensor model in terms of viewing direction, detector
wavelength band, and scene pixel size. Although the existing infrared background
signature data base is rather extensive , very few of these sources have the requisite
characteristics for smart weapons system evaluations that are currently being
conducted. One source of data found to be generally compatible with the type of smart
weapons that are being investigated at the BRL is the set of infrared scanner
measurements of a rural area near Hunfeld, Germany made by the US Army Engineer
Waterways Experiment Station (WES). For these measurements WES employed a
helicopter-mounted Daedalus infrared scanner operating in the wavelength band of
8.5 to 12.5 micrometers. The scanner was flown over the test terrain at altitudes of 200
and 600 feet. The sizes of the corresponding ground resolution elements were roughly
compatible with the 0.1 meter resolution that is optimum for the BRL's smart
munition evaluation efforts, and the site of the measurements and the scene content is
quite appropriate. The advantage of modeling this data set is that the model can
be checked against the actual data in the simulation of a smart weapons concept.

Up to this point the discussion has been confined to simple séenes, e.g., & grassy
field, a plowed field, a forested area, etc. Once a suitable model for a simple scene has
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been developed, BRL wants to construct arbitrary scenes from these simple scenes.
Thus a forested area of any desired size may be placed next to a plowed field. A road
may be added to the scene. This compound scene with these three different kinds of
textures could then be used in computer simulations of smart weapon concepts. All
kinds of different compound scenes of arbitrary geometry and composition could be
constructed from the models of the simple scenes. Thus the ability to construct
compound scenes from simple scenes is a desideratum of the modeling effort.

II. DATA BASE

In this paper the time series models were applied to the data of the forested area.
The data of the plowed field and grassy area have a similar format. The data base for
the forested area is composed of 250 rows of temperatures. Each row contains 500
temperature pixels. Thus, for this data set there are 250 rows times 500 columns or
125,000 pixels of temperature. A row of data (500 pixels) represents one ‘cross-track’
scan of the sensor, which was mounted on a helicopter that flew in a direction
perpendicular to the rows (‘in-track’) . After processing the data with ground truth
information, it was concluded that at the 600 ft altitude the in-track (flight direction)
dimension of the pixels was 0.3050m whereas the cross-track dimension was 0.1525m.
The data are highly correlated both in-track and cross-track.

ol. TIME SERIES MODEL

For each row of 500 observations a (p=1, q=1) autoregressive moving average
model, ARMA(1,1) was fitted to the data. If the actual temperature observation was
used to forecast the next pixel value for a complete row of simulated data, the
forecasted data had the same spatial pattern and statistical characteristics as the actual
data. If, however, the forecasted value was used to forecast the next pixel value in the
row, the resulting set of forecasted values did not have the same pattern but did have
the same characteristics. Thus, to preserve the spatial pattern in the time series
approach, the actual data base would have to be used to make the forecasts. It was
decided that for most applications it would suffice to have a model with the same
statistical characteristics. Therefore, the actual observation of the temperature of the
first pixel in each row was used to forecast the 2nd value and thereafter the forecasted
value was used to forecast the next pixel value in the row. The ARMA used was

Z=¢121-010,1+a(p,0,), .1
where

t equals 1,2,3,...,500

2z,  temperature of t th pixel in row

z,  temperature of t th pixel in row minus the mean, (z,—p)

#  mean temperature of row

¢, autoregressive parameter of order one

6, moving average parameter of order one

¢, random number for t th pixel from Mgy, 2), called residual or ‘shock’

#, mean temperature of residuals
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o, standard deviation of residuals

IV. ENERGY SPECTRUM

Let us represent the the two dimensional array of temperatures as a matrix, whose

elements T(/,m) are
'—'U,m)=2{»
where
7 is the value of z in the Ith row
m equals 0,1,2,...,N,- 1
N, is the number of pixels in a row (=500)
1 equals 0,1,2,...,N, - 1
N, is the number of pixels in a column (=250).

t equals m+1

The discrete Fourier transform (DFT) for a row of temperatures is .

N-1
Z(K)= 3 TU,m)ezp|-d2x/N,)mh,

mm=0
where

k equals 0,1,2,...,N,-1,

and for a column of temperatures is
N-1

Zn(k)= Y T{,m)ezp|-i(2x/N_)IK,
(=0

where
k equals 0,1,2,...,N-1.

The frequency of a row f, is

J=m/NA,

where
A, is.1525m,

and the frequency of a column f, is
I=l/ NA,

where
A, is .3050m.
The energy of the kth frequency in the lth row S(k) is
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S(=2\(k)Z"(k), V.6
and the energy of the kth frequency in the mth row S, is
Sl KY=2.n(K) Zo( F), V.7

where the symbol # denotes the complex conjugate. The cross-track energy spectrum
and the in-track energy spectrum are a statistical measure of the correlation of the data,
and result when 5‘% or S,(k) are plotted against frequency, respectively. (Zero
frequency is excluded as the interest is in the the variation from the mean.)

The energy spectrum is symmetrical about the Nyquist frequency, which occurs at
[,=.5/A,=3.279 cycles per metre and at f,=.5/A,=1.639 cycles per metre. Thus, it is
common practice to multiply the energy of the kth frequency by a factor of two, and to
plot the energy spectrum up to the Nyquist frequency. This convention was used in this

paper.

In order to approximate an ensemble average by a spatial average, it is customary!
to average S{k) over the 250 rows and to average S,(k) over the 500 columns. Thus,
the average energy of the kth frequency of the 250 rows S (k) is

249
57=(1/250) Y (), Vs
I=0
and the average energy of the kth frequency of the 500 columns S,(k) is
499
S.=(1/500) Y S,.(k). IvV.9
m==0

V. TWO DIMENSIONAL ARMA MODEL

The criterion for selecting a model was that its mean temperature, its standard
deviation, and its energy spectrum, which measures the correlation in the temperature,
be in good agreement with the data. The mean temperature and the standard deviation
of the data were evaluated. The energy spectrum of the data was evaluated and plotted
versus the frequency for the cross-track and in-track directions.

The first two dimensional I{2D) model tried was to simulate the 250 rows of
temperature by using Equation (IlII.1) and the appropriate parameter estimates for each
row. The mean temperature and its standard deviation were in good agreement. The
cross-track energy spectrum for the rows S7(k) was also in good agreement with the data
since the ARMA model was fitted to the rows. However, the in-track energy spectrum
for the columns S (k) was not in agreement with the data. This was expected because
nothing had been done to introduce correlation between adjacent rows. Several
approaches based on using the temperatures in the row above to forecast the next
forecast in the row below were suggested as a way of introducing correlation. None of
these approaches was successful.

After inspection of the spatial temperature variation of several sets of adjacent
rows, some trends were noticed. The first was that T(/,m) and T{/+1,m) had similar
values and the second was that if T(/,m+1) increased or decreased from 7(/,m) , then

1 1a Rocca, Anthony J. and Witte, David J.,Handbook of the Statistics of Various
Terrain and Water (Ice) Backgrounds from Selected U.S. Locations(U),” DTIC Technical
Report Number 139900-1-x, January 1980, pages 2-11 to 2-12.
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T(I+1,m+1) would show a similar increase or decrease from 7Y+lfm). Perhaps, the
shock af that produced T(/,m+1) was correlated with the shock af*! that produced
ﬂl+l,m+l). Based on this physical evidence, the assumption was made that ¢} was
related to ai*! through a bivariate normal distribution ¢(d},a}*?) given by

2 2
1 1 a 4 ¢! [ a*
ah,alt! =[ Iexp ——l | —] 2p—— ]| — , V.1
S Py e il RETTRE) R B
where the means of the residuals u! do not appear since they are approximately equal to
zero, and the correlation coefficient p has the range

-1<p<+1. V.2
The marginal probability density function (pdf) for d} is
a(a)=N(0, (@)}, V3
and the marginal pdf for aj*! is .
a(at)=N(0, (¢ V4

The conditional distribution for ai*! given d} is
olt!
o
Now, the following procedure was used to find that value of p which minimized in
the least squares sense the difference between the in-track energy spectrum of the data
S.(k) and the in-track energy spectrum of the simulated data S (k ;p). For a given value
of p the first row of simulated temperatures was generated from the ARMA model given
in Equation (II.1) with the appropriate parameter estimates by using the values of a?
drawn from the marginal distribution given in Equation (V.3). The second row of
simulated temperatures was generated from the ARMA model given in Equation (III.1)
with the appropriate parameter estimates by using the values of a! drawn from the
conditional distribution given in Equation (V.5). The set of a}’s for the second row were
then used to generate the a?’s for the third row through tile conditional distribution
given in Equation (V.5), etc., until 250 rows of simulated temperatures were generated.
Then, the in-track energy spectrum S,(k ;p) was evaluated. The process was repeated for
several values of p and the sum of squares of differences between the in-track energy

spectrum for the data and the simulated data was evaluated for each value of p. The
value of p which minimized this sum was chosen as the p to be used in this model.

VI. CONCLUSIONS FOR 2D ARMA MODEL

go(aft!/a)=N L, ok ')2(l—p2)] V5

The value of p which minimized the difference in the actual and simulated energy
spectrum was 0.89. The mean temperature T of the data base was 13.1°C and its
standard deviation o was 1.2°C, whereas the simulated data base had a mean
temperature of 13.1°C and a standard deviation of 1.1°C. The comparison of the cross-
track energy spectrum for the data and for the simulated data can be seen in Figure 1.
Similarly, the comparison of the in-track energy spectrum for the data and for the
simulated data can be seen in Figure 2. The agreement in both cases is good. Thus, this
two dimensional ARMA model can simulate the statistical characteristics of the data,
but not the spatial variations. Furthermore, to obtain more than 250 rows use Row 249
parameter estimates for Row 251, Row 248 parameter estimates for Row 252, etc., and
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essentially form a rzirror image of the original 250 rows. To make rows longer, just draw
more than 500 shocks for each row. An alternative to this procedure would be to use the
250 x 500 array of temperatures as the basic unit and extend it in any direction by
mirror reflection.

One untried approach to improve this 2D ARMA model would be to take the
average value of the ARMA parameter estimates for the 250 rows or at least several
consecutive rows to obtain ‘‘representative parameter estimates”. Then, randomly
perturb these representative parameter estimates within their observed bounds for each
row to be simulated, and proceed as before to determine a suitable value of p for the
simulated temperatures. :

Another untried approach to improve this 2D ARMA model might be to fit an
ARMA model to every kth row of data. Use the appropriate parameter estimates for
Rows 1,k+1,2k+1,etc.. For the rows in between 1 and k, use a weighted average for the

arameter estimates, e.g., Row 2 values are (k—l){lc](value of Row 1) + (1/k) (value of

ow k), Row 3 values are [(k-2)/k|(value of Row 1) + (2/k)(value of Row k) , ete. (Note
that a small amount of noise could be added to each value.) Proceed as before to
determine a suitable value of p for the simulated temperatures.

VII. SPATIAL MOVING AVERAGE MODEL

The model described in this section differs from the ARMA models discussed above
in that it is a two-dimensional model from the start whereas the others are one-
dimensional models adjusted to give a two-dimensional array of spatially correlated
observations. It also offers more promise of reproducing the spatial variation of the data,
but at present it has not been applied to our problem. The steps for the SMA model are:

1. Generate an array of Z;; which are independent, identically
distributed normal random variables, NIID(0,0%).
2. Use Z;; in a spatial moving average (SMA) to construct

the temperature datum T, ,, as

T.,m'——T'l'.i g: An'qu+s',m+j ’ VIL1
f=—p jem-g
where E[T, ,|=T,
and
Cov( Tu,m’ Tu+c,m+t)=or if I 3|>P’ l t|>q; VII.2.a
CoA Ty Tarame)=0>3) 30 A%, if s=0, t=0; VIL2.b
t=—p ju=-g
and
CoUTym Toromsd=02 3 3 AyAs,i, , otherwise. VIL2.c
tm=—pte Jum—gtt
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3. A;; are chosen by the experimenter such that

EEAiJ'-:l . VIL.3
P

Table 1 illustrates the needed coefficients A;; for p=1,¢=1 that multiply the random
variable Z,,, in order to obtain a value for T, ,, in Equation (VIL1).

TABLE 1. Coefficients of the Spatial Moving Average for Constructing
the Datum T, ,, Using the NIID Random Variables Z;;.

m-1 m m+1
2 m

-1 | Ay | Ao | Aoy

n -1 | Aoo | Ao

o+l | A | A | A

Some A;; may be chosen to be zero or some other value.
PROBLEM: Optimal determination of A; in SMA to match marginal
spectra from observed process.

vil. SOME COMMENTS

Our primary objective in this research was to provide a simple mathematical
model which provides simulated data that are consistent with descriptive statistics from
the original spatially correlated data base. Our 2D ARMA model met our criterion that
its mean temperature, its standard deviation, and its energy spectrum, which measures
the correlation in the temperature, be in good agreement with the data, even though it
did not reproduce the spatial variation in the data. Our assumption that the shocks in
adjacent rows be drawn from a bivariate normal distribution was the ingredient that
introduced the necessary two dimensional spatial correlation in the simulated data.
Some additional approaches for simplifying our 2D ARMA model, which were centered
around reducing the number of ARMA parameter estimates needed for simulation, have
been suggested in the text. In addition a spatial moving average model has been
outlined as an alternative method for this problem.

Our 2D ARMA model is an improvement over the normal models that are currently
being used at the BRL, especially since the time series approach naturally forecasts
outlier temperatures ( false alarms ) that are found in the data. In time, after more data
are analyzed by ARMA models, methods for relating the parameter estimates to
physical constants will be found. If successful, the model may then be extended over the
diurnal cycle and seasons. Also, for the theorists, an n-dimensional spatially correlated
model is easily constructed.
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EVALUATION OF CAMOUFLAGE PAINT GLOSS
VERSUS DETECTION RANGE

George Anitole and Ronald L. Johnson
U. S. Army Belvoir Research, Development
And Engineering Center
Fort Belvoir, Virginia 22060-5606

Christopher J. Neubert
U. S. Army Materiel Command
Alexandria, Virginia 22333-0001

ABSTRACT

To increase durability, the military has considered using a higher gloss camouflage paint.
The field test and statistical analyses required to determine paint gloss effects upon range of
detection are described. Five, 5/4-ton CUCV trucks were painted in the woodland U.S./Ger-
man pattern with 1, 5, 10, 15, and 20 percent paint gloss. At least 30 observers per gloss level
were individually driven towards two sites. The distance of correct detections were recorded.
An analysis of variance with individual comparisons determined that detection range was sig-
nificantly (a < 0.05) greater, when higher gloss levels were compared with the standard one
percent.

1.0 SECTION I - INTRODUCTION

The current camouflage paint specifications used by the U.S. Army call for a lusterless
finish. This particular finish was originally selected for camouflage purposes because of its low
visual reflectance characteristic. The lusterless finish is the result of a high pigment to binder
ratio, and tends to mark and scuff easier than paint with a lower ratio and higher gloss finish.
In addition, colors in a glossier finish appear more vivid than lusterless finishes which acquire
a washed out appearance much sooner. These phenomena have been the object of concern from
a camouflage standpoint, since the use of glossier paints would result in a longer lasting camouflage
effect.’ However, the problem in using glossier paints is the potential of increased reflectance,
hence detection. It was the purpose of this field test to determine statistically the effect in-
creased paint gloss would have on the range of target detection in a woodland background.

2.0 SECTION II - EXPERIMENTAL DESIGN

2.1 Test Paint

Camouflage paints were purchased in five different degrees of specular gloss from the
Enterprise Chemical Coatings Co. Wheeling, Illinois. The paints were produced in colors Green
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383, Brown 383, and Black using paint specification MIL-E-52798A, in 1, 5, 10, 15, and 20%
reflectance measured at 60° (1% is the current gloss of military paint). The gloss percentage
spread was selected to provide a noticeable difference in reflection considering normal manufac-
turing tolerances. The 20% reflectance level was selected as the upper limit, since any greater
reflectance was considered too shiny for military purposes. One gallon of each color, in each
reflectance, was purchased for test and shipped to Ft. Devens, MA where the field evaluation
took place.

22 Test Targets

Five, 5/4-ton, commercial utility combat vehicles (CUCVs) on loan from the Massachusetts
National Guard were painted by Belvoir personnel at the Ft. Devens Maintenance Facility in
the standard United States/German three color woodland pattern.

2.3 Test Sites

The study was conducted at the Turner Drop Zone, Ft. Devens, MA, a large cleared tract
of land surrounded by a mix of coniferous and deciduous forest resembling a central European
background. Two test vehicle location sites were selected. Site #1 was located on the western
end of the drop zone, so that the morning sun shown directly upon the test vehicle. Site #2
was located on the castern edge of the drop zone, so that the afternoon sun shown directly upon
the test vehicle. An observation path, starting at the opposite end of the drop zone from the
test vehicle location, was laid out for each site. These layouts followed zig-zag, random length
directions toward the test sites, and afforded a continuous line-of-sight to their respective test
vehicle locations. The paths were within a 30° to 40° cone from the targets, and were surveyed
and marked at 50 meter intervals using random letter markers. The markers and distances from
the test vehicle location sites are shown in Table 1.
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Table 1
Distances of Markers to Test Vehicles on Sites #1 and #2

Site #1 Site #2
ALPHABET DISTANCE IN ALPHABET DISTANCE IN
MARKER METERS ALONG MARKER METERS ALONG

PATH FROM PATH FROM
STARTING POINT STARTING POINT
TO TARGET TO TARGET

Cc 1,173.70 L' 1,261.50
u 1,132.02 I 1,230.74
A 1,088.51 D' 1,192.40
R 1,044.10 B' 1,153.65
G 1,015.03 w' 1,116.90
(o) 989.27 T 1,076.05
F 947.17 U 1,033.50
X 901.17 H 987.16
K 854.06 L 942.80
P 808.71 T 902.04
H 762.36 J 853.57
Z 723.52 R 811.07
Q 706.95 K 770.70
J 693.23 | 731.23
v 653.54 v 693.06
D 608.16 F 648.52
S 569.96 Z 602.61
N 536.46 E 561.59
T 497.44 N 517.36
W 457.13 X 473.04
M 416.47 D 426.61
L 376.99 Y 392.77
E 342.99 S 354.92
| 296.01 P 320.74
Y 260.15 M 297.81
B 219.07 A 277.02
L' 172.15 Cc 239.95
B' 126.89 (o) 202.56
P 9.7 G 162.82
o’ 27.65 B 125.71

W 92.19

Q 51.84
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2.4 Test Subjects

A total of 153 enlisted soldiers from Ft. Devens served as ground observers. All person-
nel had at least 20/30 corrected vision and normal color vision. A minimum of 30 observers
were used for each test vehicle, about evenly split per test site. Each observer was used only
one time.

2.5 Data Generation

The test procedure for determining the detection distances of the five vehicles involved
searching for the vehicles while traveling along the predetermined measured paths. Each ground
observer started at the beginning of the observation path, i.e., marker C for site #1 and marker
L for site #2. The observer rode in the back of an open 5/4- ton truck accompanied by a data
collector. The truck traveled down the observation path at a very slow speed, about 3-5 mph.
The observer was instructed to look for military targets in all directions except directly to his
rear. When a possible target was detected, the observer informed the data collector and pointed
to the target. The truck was immediately stopped, and the data collector sighted the pointed
target. If the sighting was correct i.c., the painted CUCV, the data collector recorded the al-
phabetical marker nearest the truck. If the detection was not correct, the data collector in-
formed the observer to continue looking, and the truck proceeded down the observation path.
This search process was repeated until the correct target was located.

The target CUCVs were rotated between the two test sites on a daily basis, until all vehicles
had been observed by at least 15 observers at each site. Their orientations with respect to the
sun were kept constant at both test sites. The vehicle side windows were left open to eliminate
shine, and a tarpaulin was used to cover the windshield and rear window. The vehicles were
positioned so that the left side was facing the direction of observer approach.

3.0 SECTION III-RESULTS

Tables 2, 3, and 4 show the detection data for the 5/4-ton CUCVs painted in 1, §, 10, 15,
and 20% gloss. Table 2 gives the mean detection range in meters for each gloss level, and its
associated 95% confidence interval. Table 3 shows the analysis of variance? performed upon
the data of Table 2 to determine if there were significant differences in the detection ranges
i.e., gloss has an effect upon detection range. Table 4 indicates which gloss levels differed sig-
nificantly from each other. Figure 1 is a graphic display of the detection ranges of Table 2.
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Table 2

Mean Gloss Detection Ranges (Meters) and 95 Percent Confidence

Intervals.
95 PERCENT CONFIDENCE
% GLOSS STANDARD INTERVAL

LEVEL N MEAN ERROR LOWER LIMIT UPPER LIMIT

1 31 580.0000 138.3944 529.2433 630.7567

30 790.1333 216.3083 709.3715 870.8951

10 31 971.0000 117.7326 927.0429 1014.9571

15 30 1078.3333 114.1195 1035.7252 1120.9415

20 3t 1153.9677 93.1967 1119.7875 1188.1480

Table 3

Analysis of Variance for Vehicle Detection Across
Five Levels of Paint Gloss

DEGREES
OF
SOURCE FREEDOM SUM OF SQUARES MEAN SQUARE F-TEST
GLOSS 4 6,611,277.3660 1652819.3415 81.7597
ERROR 148 2,971,691.1011 20215.5857
TOTAL 152 9,582,968.4671

BARTLETT’S TEST FOR HOMOGENEOUS VARIANCES

NUMBER DEGREES OF FREEDOM = 4,
F = 6.49661911766 SIGNIFICANCE LEVEL a = 0.0003
*Significant ata less than 0.001 level.

SIG LEVEL

0.00000*

Table 3 indicates that there are significant differences in the ability of the ground observers
to detect 5/4-ton CUCVs of different degrees of paint gloss. The Bartlett’s Test indicates that
the variances for each level of paint gloss are not homogeneous, i.e., significantly different, so

they are not necessarily from the same population.
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Table 4

Individual Comparisons Identifying Which Levels
of Paint Gloss Differed Significantly from Each Other

1% Gloss and 5% Gloss

COMPARISON = -210.13333 SUM OF SQUARES = 673198.30383
F = 33.301 SIGNIFICANCE LEVEL =  0.00000 ***

1% Gloss and 10% Gloss

COMPARISON = -391.00000 SUM OF SQUARES = 2330808.68852
F = 115.298 SIGNIFICANCE LEVEL = 0.00000 ***

1% Gloss and 15% Gloss

COMPARISON = -498.33333 SUM OF SQUARES = 3786107.92350
F = 187.287 SIGNIFICANCE LEVEL = 0.00000 ***

1% Gloss and 20% Gloss

COMPARISON = -573.96774 SUM OF SQUARES = 5106304.01613
F = 252,592 SIGNIFICANCE LEVEL = 0.00000 ***

5% Gloss and 10% Gloss

COMPARISON = -180.86667 SUM OF SQUARES = 490691.26667
F = 24.273 SIGNIFICANCE LEVEL = 0.00000 ***

5% Gloss and 15% Gloss

COMPARISON = -288.20000 SUM OF SQUARES = 1245888.60000
F = 61.630 SIGNIFICANCE LEVEL =  0.00000 ***

5% Gloss and 20% Gloss

COMPARISON = -363.83441 SUM OF SQUARES = 2018183.50002
F = 99.833 SIGNIFICANCE LEVEL = 0.00000 ***

10% Gloss and 15% Gloss

COMPARISON = -107.33333 SUM OF SQUARES = 172806.66667

F = 8.548 SIGNIFICANCE LEVEL =  0.00346 **

10% Gloss and 20% Gloss

COMPARISON = -182.96774 SUM OF SQUARES = 510390.01586
F = 25.247 SIGNIFICANCE LEVEL =  0.00000 ***

15% Gloss and 20% Gloss

COMPARISON = -75.63441 SUM OF SQUARES = 87215.15248

F = 4.314 SIGNIFICANCE LEVEL =  0.03779 *

The following levels of paint gloss differed significantly from each other: 1% vs. 5%, 1%
vs. 10%, 1% vs. 15%, 1% vs. 20%, 5% vs. 10%, 5% vs. 15%, 5% vs. 20%, 10% vs. 15%, 10%
vs. 20% and 15% vs. 20%.

* Significant at a less than 0.05 level

*¢ Significant at a less than 0.01 level

*¢* Significant at a less than 0.001 level
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Figure 1. Detection Range In Meters for CUCVs Painted in Five Levels of Gloss

The Bartlett’s Test for homogeneity of variance was significant at less than « = 0.001.
Thus, it can not be assumed that all the sample variances are from the same population. This
assumption is required to perform the parametric test of analysis of variance and associated in-
dividual comparisons. When the Bartlett’s Test is significant, non-parametric tests should be
used to determine the relative positioning of the sample statistics. Two such non-parametric
tests were performed, the Krushkal-Wallis One-Way Analysis of Variance and the Mann-Whit-
ney U Test®" The Krushkal-Wallis Test determined that there were significant differences be-
tween the levels of paint gloss. The Mann-Whitney U Test, based upon the Chi-Square
distribution, determined the probability of individual gloss percentages differing from each other.
These tests, while not as powerful as the parametric test, yielded the same general results, and
are available upon request from the U.S. Army Belvoir Research, Development and Engineer-
ing Center, ATTN: STRBE-JDS, Fort Belvoir, VA 22060. It is not unexpected that the varian-
ces for ecach gloss level were not homogencous. Each level of gloss was different from the
preceding by 5%. These equal differences in shine are not perceived as such by the human
eye. The 1% gloss was seen as dull, however the S through 20% paint gloss was perceived as
being reflective. This is verified by viewing the differences in mean detection for the gloss per-
centages of 1 vs. 5, 5 vs. 10, 10 vs. 15, and 15 vs. 20 (see Table 5). If the variances were nor-
mally distributed, the mean differences between percentages of gloss would be about the same.
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Table §

Mean Differences In Detection Range (Meters) Between Gloss Levels

% GLOSS MEAN DETECTION RANGE DIFFERENCE
1vs. § 580 790 210
5vs. 10 79 9N 181
10vs. 15 971 1078 107
15vs. 20 1078 1153 75

4.0 SECTION IV - DISCUSSION

Figure 1 and Tables 2 through 4 clearly show that the higher the percentages of paint gloss,
the longer the mean range of target detection. The differences between the 1% gloss detection
range, and the §, 10, 15, and 20% gloss detection ranges are significant well beyond the @ =0.05
level. This a value is the probability that one will make a decision that the levels of paint gloss
are significantly different in the resulting detection ranges when they are not. For this study,
the decision is that the higher gloss paint levels of 5, 10, 15, and 20% will have a longer range
of target detection than the 1% paint gloss level. In the world of statistics, if a decision has a
probability of being wrong 5 or less times out of 100 ( @ = 0.05) then this is an acceptable
risk. If this probability of being wrong is greater than 5 times out of 100, the risk is not accept-
able, and the decision is rejected. In the present study, these levels of differences in mean
detection ranges tend to get smaller as the percentage of paint gloss increases (Figure 1 and
Tables 2 and 4), but they never exceed the a = 0.05 level. With the exception of the paint gloss
comparisons 10 vs. 15% and 15 vs. 20%, which are significant at « = 0.003 and 0.037 respec-
tively, the other comparisons are significant at an « level less than 0.001. The differences be-
tween the detection means asymptotes as the percentage of the gloss gets higher (see Figure 1).
This is due to the fact that targets with a higher gloss are easier to see than targets with a lower
gloss. For example, increasing the paint gloss from 1 to 5% would increase the mean detection
range by 210 meters (Table 5).

It was also observed that as the level of paint gloss increased, the visual perception of a
pattern decreased. The camouflage pattern was difficult to discern at paint gloss levels of 10%
and above.
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5.0 SECTION V- SUMMARY AND CONCLUSIONS

Five 5/4-ton CUCVs were painted in the standard woodland United States/German thrce
color pattern with the following paint glosses:

® 1% (standard)
5%

10%

15%

20%

A minimum of 30 ground observers per paint gloss level were driven toward each of two sites
on marked observation trails in the back of an open 5/4-ton truck. The subjects were looking
for military targets, and they informed the data collector when they thought they saw one. If
the detection was correct, the closest alphabetic ground marker to the truck was recorded. From
this letter, the exact distance to the target from the truck was determined. If the detection was
not correct, the search continued with the truck traveling down the observation path until the
test target was seen. An analysis of the resulting data provided the following conclusions:

A. The targets with the higher paint gloss of 5, 10, 15, and 20% were significantly easier
to detect than the target with the 1% paint gloss.*

B. The higher gloss paint levels of 5, 10, 15, and 20% will have a significantly longer range
of target detection than will the 1% paint gloss level, which will increase their vulnerability to
enemy fire.

C. In that the 5% paint gloss vehicle was detected, on the average, 210 meters farther
away than the 1% paint gloss vehicle, one can not recommend any increase in the paint gloss
over the 1% currently being employed by the U.S. military.

* Low visual reflectance is particularly important in woodland backgrounds where reflection and
brightness are relatively low. Its effect in bright backgrounds such as desert or arctic environments,
where reflections from glossier paints may be lost in the noise, remains to be evaluated.
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SENSITIVITY ANALYSIS
OF A NONSTOCHASTIC MODEL

A.A.Khan
US Army Concepts Analysis Agency
Bethesda, MD 20814-2797

ABSTRACT. Simulation models are now widely used as analytical tools. New
models are usually subjected to quality assurance criteria before they can be
employed in studies. This practice is prudent as well as useful in learning the
characteristics of a newly developed simulation model. Also, itis necessary to find
those parameters which have a significant impact on the response variable [1].

Mobilization Based Requirements Model (MOBREM), the model examined in
this article will be used for policy studies and budget planning. Before it can be so
employed , we subjected it to sensitivity analysis. Since the model is deterministic,
there are no random errors in the response variable; therefore, the usual statistical
methods are not applicable. In their place, the ‘summary statistics’ R2 has been used
judgmentally.
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1-0 INTRODUCTION. The results in this report deal with the sensitivity analysis of
the simulation model, Mobilization Based Requirements Model (MOBREM). This
model has been designed to provide the U.S. Army with 'a responsive, consistent,
and auditable system for determining the Continental United States (CONUS)
resources required to support mobilization’ [2]. This model was developed over a
five year, five-phased period, from 1979 to 1984. It was delivered to Concepts
Analysis Agency (CAA) in August 1984. Since then, the model has been used for the
training of operators and for performing policy studies in connection with
mobilization.
1-1  Sensitivity Analysis. A new model, before it can be used for any study, must
be tested for its sensitivity to input parameters. In this report, we address the
following issues:

a. From aselected list of input parameters (or factors), find those
parameters which have a significant impact on the response variable.

b. Rank order the significant input parameters.
The response variable in this study is the manpower requirements by the major
Army Commands (MACOMS) Installations, by Army Functional Dictionary (AFD)
code, and by time periods from Mobilization day (M-day) to day of hostilities (D-
day).
1-2 Background. MOBREM is a very large and complex simulation model. For
our purpose it is essential to keep in mind that it is a deterministic model. There are
no random number generators in the subroutines or modules. Repeated
observations do not provide estimate of ‘variance’. If we repeat an experiment with
fixed input values, we do not get a new value for a response variable. For this
reason the classical statistical procedures have to be modified to meet the specific
situation of MOBREM. In particular, F-test and t-test are not valid. We use R2, the
coefficient of determination, as the index of goodness of procedures used in our
analysis..
2-0 OVERVIEW OF MOBREM. It will help in understanding the objectives of this
study to have some perspective in mobilizing large numbers of people. To provide
the reader with the magnitude of the numbers involved, we presentin Table 1 the
initial and final stages of mobilization in MOBREM. We will skip the details of
organizational complexities and the organizations which are required to manage
this operation.
2-1  CONUS Base. The major functions of CONUS Base ’organizations are to
provide the support that enable units to be deployed, trainees to be be trained, and
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equipment and supplies to be shipped to the theater or within CONUS. They also
provide medical support for theater medical evacuees as well as those patient loads
generated in CONUS installations [2].

2-2  Projections. A profile of organizationsin CONUS in peace and war is given
below. Itillustrates the staggering magnitude of manpower involved from the
initial to the final phase of mobilization. The organizational complexities to
synchronize various phases of this process quantitatively is the most important
function of MOBREM, but will not be discussed here.

Table 1
CONUS Base Organizations
Units Peacetira)eo g’;rengths g:%ré;g)?ﬁs
TDA
OSA and OCSA 3.7 6.8
Joint and DEF ACTV 6.7 7.1
OSA and ARSTAF FOA 46.7 46.0
Commands in CONUS 347.6 658.7
Army Reserves 25.8 0
National Guard 204 0
TOE
Training division 32.0 52.9
Training spt units 4.1 45
GSF units 29.8 371
Sep inf bde 19.0 20.1
Other 3.9 4.1
Totals 539.7 8373

49



Table(s) of allowances (TDA) is the number of slots allocated to different
organizations, it includes both civilian and military, and table(s) of organization and
equipment (TOE), i.e., the number of personnel authorized to keep a unit of army
functional.

3-0 DESIGN OF EXPERIMENT. The initial list of 30 parameters was pared down to
9 for this study to economize on computer time; since each run of MOBREM takes
about 12 hours to complete. The selection of the final list of input parameters and
their levels was carried out with the help of both civilian and military analysts.

3-1.  Choice of Design: A two-level fractional factorial design was planned for
sensitivity analysis. The full design was complieted in two stages. In the first stage,
the 9 factors included both scalar and matrix inputs. The non-scalar inputs were
treated as scalars by the following convention:

High value +CV
Low value -C.V

where Cis a constant, V is a non-scalar. In this way the design is the usual fractional
factorial design. At the initial stage of the study, we are interested only in
‘sensitive’ parameters, their interactions are of less importance. By ‘sensitive,’ we
mean those inputs which produce a large impact on the response variable. A
Plackett-Burman (P-B) design was deemed most suitable in this phase [4]. The 9
parameters are listed below:
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FACTOR DESCRIPTION

>

M-Day to D-Day

Work week

Training load

Show rates

Hospital rates

Deploying MTOE levels
Non-deploying MTOE levels
TDA levels

Other levels

- I 66 mm O N ®

Only Factors A and D are scalars

The smallest P-B design to accommodate 9 parametersis a 12 run design given
below . A P-B design allows us to assess the impact of the main effects, which in this
layout are not confounded with higher order interactions [5].
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Table 2
PLACKETT-BURMAN DESIGN

ISTAGE
PACKAGES
RUNIA B € D E F G H |

1 + - + - - -+ o+
2 + -+ - - - %
3 - + -+ - - -
4 + - + + - + - - -
5 + - + + - + - -
6 |+ + + - + + - + -
7 -+ o+ -+ o+ -+
8 - -+ o+ o+ -+ o+ -
9 - - - + -+ o+
MM+ - - - + + + - +
11 - o+ - - - + -
22 1- - - - - - - - -

+ HIGH LEVEL

- LOW LEVEL

‘PACKAGE’ stands for a policy, i.e., a particular combination of input values.

3-2. Second Stage Design. At the first stage, results showed that only 5 factors
were important enough for further investigation. These are:

Table 3
FACTOR DESCRIPTION
A D-Day to D-Day
cl Training load
C2 Training equipment
H1 TDA fill
H2 TDA equipment
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H2 is the corresponding level of equipment allowed to the unit. In this scheme, all
parameters are scalars and the second stage P-B design is shown in Table 4.

Table 4
P-B DESIGN
Il STAGE
Run | A C1 C2 H1 H2
13 - - - - -
14 + + + + -
15 + + + - o+
16 + + -+ o+
17 + -+ + +
18 -+ o+ o+ o+
19 + + - - -
20 + - o+ - -
21 + - - -+
22 + - -+ -
23 -+ o+ - -
24 -+ -+ -
25 -+ - - #
26 - -+ o+ -
27 - -+ -+
28 - - -+
+ HIGH LEVEL
- LOW LEVEL
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4-0 LINEAR MODEL. The collection and analysis of data depends on the -
mathematical model which we postulate to explain the relationship between the
response and the input factors. The selection of a fractional factorial design at two
levels, a resolution lll design (P-B Design), was made with the object of estimating
the main effects; higher order interactions can be sacrificed at this stage. The
reasons can be summarized as follows [6]:
® Not much is known about the model on how different inputs impact on
the output.
® In this situation it is best to assume a linear model.
® All experiments under uncertain conditions are conducted with some risk.
If later, it is found that interactions are more important, one can re-run
the simulation model to obtain additional observations. Simulation
models can be run anytime one chooses to do so, provided time and
resources are not prohibitive.
® Simpler mathematical models help in clearer exposition of the conclusions.

4-1  Analysis. At thisstage the assumptions of linearity and additivity are
convenient to model our results. !f the experimental region is not large, higher
order interactions need not be included in the expression connecting the response
to the input [7]. We approximate the functional relationship between the response
y and the input factors x1, x2, ..., x9 by Taylor’s expansion.

y=Ag+A1x1+A2x2+..+Agx9 +R (1)

where Aj(i=0, 1, 2, ..., 9) are unknown constants and R is the remainder term in the
Taylor's series expansion.. Observe that this model does not have stochastic
components and therefore statistical techniques cannot be applied. We use the
least square (l.s.) methods in the estimation of A; and use R2 to measure the
adequacy of the model (1). For a clear discussion of two-level fractional design and
the techniques of estimation of main effects, we refer to [8]. The least square
technique is used in (1) to evaluate and partition the total sum of squares into the
component sum of squares. Each component is attributable to a specific factor, plus
the sum of square due to the remainder term. This analysis is carried out for the
datain the first stage. A typical run with the response variable at each time period
isshown in Table 5. |
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Table 5

Ti:\nfof;c;’m Mag?)t:\liver
Requirements

M+10 318671
M+20 314747
M+30 354932
M +40 367936
M +50 403887
M +60 442291
M +90 479470
M +120 498009
M + 150 504354
M +180 501839
M+210 497962
M + 240 497845
M + 270 497494
MOB-AV 532915

Since there is an ANOVA at each time period and for each run, there are
13x12=156 ANOVAs. These are not listed here, but the result of the analysis is
shown in Table 6, showing the ranks of the factors in descending order.
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Table 6
Ranking of Packages in Descending Order

Factor Package
B Workweek
C Training
H TDA
A M-Day to D-Day
G Non-deploying MTOE levels
F Deploying MTOE levels
D Show rate
E Hospital
|

Other Personnel

Visual analysis at this stage is most effective, Figure 1 shows the response variable
against time, when grouped according to the levels of Factor B (workweek). Factor
B is the driver of the manpower requirements, a result confirmed by the usual
ANOVA techniques. Figure 2 clearly indicates the main effects which have clear
impact on the response variable. Apart from B, A and C produce measurable impact
on manpower requirements up to time M + 100, after that the effects of these
factors isdampened out. Other factors have negligible effects as can be seen by
inspecting Figure 3. This combination of ANOVA, graphs of main effects and
aggregating results by each level of Factor B is carried out for a selected group of
AFD’s. The results confirm the hypothesis that the ranking in Table 6 is valid for the
sampled AFD aggregations. This simple computer intensive graphical technique has
been extensively used in this study.

4-2 |l Stage Analysis. Since the workweek parameter is so decisive, no further
investigation is required to measure the sensitivity of the response variable to this
parameter at this stage. In the |l stage of design, a 60-hour workweek was fixed.
The number of input factors was narrowed to 5 factors. Again, a resolution |l
design was used to generate simulation data. The factors in the Il stage design are
givenin Table 7.
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Table 7

Packages in the Il Stage Design

Factors

A
c1
C2
H1
H2

C1and C2 are the elements of the vector input C of the | stage design. Likewise, H1
and H2 are the components of the vector H of the | stage. At the second stage, all
paramenters are scalars. The two values of the parameters at this stage are chosen

Description
M-Day to D-Day
Training load
Training equipment
TDA fill
TDA equipment

within the range of their values at the first stage.

The same method of ANOVA is used as in the first stage. A sample ANOVA (for run
13) isshown in Table 8. The response variable is the manpower requirements on
M + 270 day, i.e., 270 days after mobilization day. Sensitivity of a factor is measured
by its contributions to the total sum of squares. The overall ‘fit’ is measured by ‘R’

as given below.
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Table 8
ANOVA ForRun 13

32:;&?:: Sum of squares
A 4.000
H1 495952900.000
H2 0.250
c1 6272402402.250
C2 0.250
Explained 6768355306.750
Residual 119041.000
Total 6768474347.750
R2=93%

The explanation of response by the input factors are quite satisfactory with H1 and
C1 being most important factors. The impact of A, H2 and C2 are negligible. Now
we have 13 x 16 = 208 ANOVAs. Figure 4 shows the time series due to each of the 5
factors. Effect due to C1is dominant, followed by H1. Effect due to A is significant
up to M + 120 days, after that its impact on the response diminishes. Factors C2 and
H2 are negligible.

4-3 Summary. We have summarized the data from the first stage design using
regression equations. Only half the runs (B = +) from Table 2 have been utilized in
deriving these equatio'ns in order to compare these results with those of the second
stage design (Table 4). The regression equations and their R2 values are given
below. The dependent variable y is the manpower requirements, the independent
variables are A, C1 and H1. Only the data for time phases from the mobilization day
(M-Day) to 90 days after it (M + 90) are shown.

ForM+10 y=315567-3.4A +52198C1-5756 H1
R2=99%

ForM+20 y=249976+77.1A +66016C1 + 56508 H1
R2=97%
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ForM+30 y=248656.7+479.1A +86945C1 + 73635 H1
R2=96%

ForM+40 y=255859-216.7A + 104387.5C1 + 85470 H1
R2=98%

ForM+50 y=265077-644.9A + 121675.5C1 + 92054 H1
R2=99%

ForM+60 y=261767.3-882.6A + 142257C1 +96510 H1
R2=99%

ForM+90 y=278884.7 + 135.6A + 173240.5C1 + 96904 H1
R2=99%

We plan to use these results along with the second stage data to apply response
surface methodology for more refined predictive equations.
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ABSTRACT

The traditional univariate analysis of the repeated measures design is
obtained by treating subjects and their associated interactions as random
effects. This analysis requires that certain variances and covariances of the
dependent variable at various combinations of within-subject factors be equal.
Instability of the variance and covariance components may mask significant
effects and compel the researcher to utilize a less powerful multivariate
technique.

This paper illustrates the use of a recently developed class of unbiased
variance component estimators and their associated diagnostics for examining
the data and the model assumptions. A comprehensive example is given for the
case of a three-way design with two factors repeated. '

1. INTRODUCTION

Repeated measures designs are one of the most frequently utilized classes
of designs in Army Research and Development. These designs offer a reduction
in the error variance due to the remaval of an individual's variability, are
efficient, and require fewer subjects to achieve the same power of the F test
as completely random or block designs.

This class of designs, sometimes referred to as within-subject designs,
obtain their name from the fact that one or more factors of the design are
manipulated in such a way that each subject receives all levels of the within
subject factor. The advantage of this approach is that subjects act as their
own control in their responsiveness to the various experimental treatments.
On the other hand, this type of design introduces intercorrelations among the
means on which the test of within subject main effects and interactions are
based.

- Due to this intercorrelation, three separate approaches have been
proposed in the literature. The first, the univariate analysis of the
repeated measures design is obtained by treating subjects as a random effect.
The linear model employed is called a mixed effects model, and the resulting
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analysis is a mixed model analysis of the repeated measures design. The
standard mixed model assumes certain variances and covariances of responses
are invariant across the experiment. For example, in a three-factor factorial
model with Factors 1 and 3 fixed and subjects (or Factor 2) random, a standard
assumption is that the covariance, 912, of responses at the same level of
Factor 1 and on the same subject (i.e., level of Factor 2) but at different
levels of Factor 3, is invariant across all subjects, all levels of Factor 1
and all combinations of distinct levels of Factor 3. More generally, if 6, is
the covariance between observations at the same levels of Factors indexed by t
and at different levels of the other factors, then standard mixed models
assume 6, is invariant across all levels of the factors indexed by t and
across all combinations of distinct levels of the other factors. This
assumption is referred to in the literature as compound symmetry. Huynh and
Feldt (1970) have shown this assumption to be a sufficient condition.

In the second approach, the multivariate method, the responses of a
subject are treated as a k-dimensional response vector. It is worth noting
that this approach is not as powerful as the univariate approach if the
assumption of compound symmetry is accepted.

Thirdly, a degree of freedom adjustment initially proposed for use by
Greenhouse and Geisser (1959) is used to adjust the numerator and denominator
degrees of freedom of the ratio. Huynh and Feldt (1970) have shown this
adjustment to be too conservative.

Difficulty in interpretation can occur when several dependent measures
are made for each experimental treatment and the assumption of compound
symmetry is rejected. This situation can result in a lack of degrees of
freedom and power since the response matrix, which is a multiple of dependent
variables and the number of unique within subject factor treatment
combinations, can equal or exceed the total number of subjects. In the
multivariate context, this can result in the degrees of freedom parameter
being very small.

Since it is common and necessary to record, evaluate and analyze numerous
measurements during developmental testing and human factors evaluation of
weapon systems and equipment, alternative approaches to assessing the effect
of treatment conditions on the response measurements need to be explored.

This paper introduces and demonstrates the use of unbiased, efficient
variance component estimators and their associated diagnostics in analyzing
the repeated measures design.

The problem of estimating variance components in random and mixed models
has been of interest to researchers for years as pointed out by Green and
Hocking (1988). However, over the last few years, new closed form expressions
for the estimators of variance components have been developed, based on the
equivalence shown in Green (1985, 1987); Hocking, Bremer and Green (1987); and
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Hocking (1985) of the variance component estimation problem to the problem of
estimating the covariances, 6, between appropriately related observations. In
addition, these estimators have been shown to provide information which will
be useful in diagnosing problems and suggest simple graphical procedures for
examining the influence of the treatment levels.

To introduce this general methodology, this paper will only consider
three factor repeated measures design with factors one and three repeated as
shown in Table 1. The number of levels of factor (i) is designated by a;.
Subjects are designated factor two. Factors one and three are the within
subject fixed factors. The traditional univariate repeated measures model
with subject and subject interactions considered random is

Y(ijkm) = M + A(1) + S(j) + AS(ij) + B(k) + AB(ik) +
SB(jk) + ABS(ijk) + E(ijkm)

where M is the overall mean, A(i) is the effect of level i of treatment or
factor A, S(j) 1is the effect of subject j, AS(ij), is the effect of level ij
of treatment combination AS, B(k) is the effect of level k of factor B,
AB(ik) is the effect of the AB treatment combination at level ik, SB(jk) is
the effect of treatment combination SB at level (jk), ABS(ijk) is the effect
of level ijk of treatment combination ABS, and E(ijkm) is the random error.
For the traditional univariate approach, it is assumed that A(i), B(k),
AB(ik), and M are fixed and S(j), AS(ij), SB(jk), ABS(ijk), E(ijkm) are zero
mean, independent normal random variables with variances ¢2' ¢12, ¢23, ¢123,
and §_ respectively. While the variables are independent, the responses are
corre?ated with the covariance structure found in Figure 1.

This covariance structure in Figure 1 suggests an alternative approach to
the linear model first proposed in Hocking (1983) and extended and developed
in Green (1985) to several classes of linear models. This approach relaxes
the requirement that the variance components be positive. Thus, the classical
model is replaced by specifying the response vector as normal with covariance
matrix as given in Figure 1 and mean vector determined from the expectation of
Y.

The only restriction on the covariance matrix is that it be positive
definite. This requirement is weaker than the classical requirement that the
¢2 be positive. An in-depth development of this alternative model can be
found in Hocking (1985).

The covariance, Gt, is between observations at the same level of factors
indexed by t and different levels of all other factors in the model. This
suggests examining the corresponding sample covariances. These sample
covariances, or averages thereof, yield the estimators of the 6.. Sample
covariances yielding estimators of 6, and 6, are given in Figure 2.
Similarly, 6,3 is analogous to the 6, estimator with subscript three
replacing one. For example, from Figure 2 one recognizes the 6, estimator as
the average of a;ary,; equal expectation sample covariances corresponding to
all combinations of i4i*, k4k*. Here ry is the level of Factor i minus one.
Similarly, 6,5, is the average of a;3rj equal expectation sample covariances
corresponding to all combinations o% i and k¢k*.
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COVARIANCE STRUCTURE
2 WITHIN SUBJECT FACTORS

cov (Y(i,i,k,m),Y(i*,j*,k*,m*) =
= 0 if i#i*j=j)"k=k*
012 = 024042 if i=zi*j=j k=k
= ¢2+¢23 if i-‘#i*,i:i*k:k*
0123 = 024012+4023+0423 if i=*ij=j*k=k*m*#m
0o + 0123 ijkm = i*j*k*m*

Figure 1: Covariance structure of three repeated measures design (Subjects random)

VARIANCE COMPONENT ESTIMATES

82 = 1 Y Y(vijk - yi.k.) (yi*jk* - yi*.j*.)
rz aisz ra ikzi*k* |j

812 = 1 Y 1 % (vijk. - yi.k.)(yijk*. - yi.k*.)

aigrs kK rz2 ij

Figure 2: Variance component estimates for ©o and ©12
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These covariances are unbiased and contain the djagnostic power. By
plotting these covariances (diagnostics) in table form, one obtains an
indication of the stability of the estimate and of suspect estimates.

In general, one looks for various characteristics and trends. For
example, (1) unusually large or small diagonal entries indicate abnormal
variability in the cell means for this level of the factor under
investigation, (2) special patterns in the off-diagonal elements such as a
particular column or row having the majority of its entries higher or lower
than associative rows or columns, indicate one or more cell means may contain
extreme outliers, and (3) large fluctuations in the off-diagonal entries
reflect high variability is the data.

Following the examination of the diagnostics, plots of treatment i vs.
treatment i* cell-means, where abnormal diagnostics have been identified, are
recommended. This will help the researcher identify the treatment cells
responsible for extra large or small variance component estimates. Finally,
the diagnostic procedure should conclude with an examination of the data in
the identified cells.

I11. REPEATED MEASURE DESIGN

To illustrate these diagnostic procedures, data from a repeated measures
design carried out by Malkin and Christ (1987) will be used.

A. Objective

The objective of the experiment was to conduct a laboratory flight
simulation to compare a cockpit keyboard, a thumb-controlled switch, and a
connected-word voice recognizer for data entry of navigation map coordinate
sets when (1) the entry of Universal Transverse Mercator (UTM) coordinate sets
is the sole task performed (No Flight) and (2) the entry of UTM coordinate
sets is performed concurrently with controlling a helicopter simulator while
flying a computer-generated external scene (Flight). For this paper, the
difference among the three methods of data entry for response and input time
will be evaluated for both the Flight and No Flight conditions. The original
paper also investigated error. However, no practical or statistical
difference was found for subject error in regard to any of the experimental
factors.

B. Methodology
Data were collected using 12 Army aviators assigned to Aberdeen Proving
Ground, Maryland as the experimental units.

The Aviation and Air Defense Division, Human Engineering Laboratory's
(HEL's) flight simulator was utilized for this study. The Crew Simulator
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consists of a cockpit cab with advanced controls and displays and an "out-the-
window" scene produced by Computer-Generated Imaging (CGI). The CGI, cockpit
controls, flight simulation, displays and results were driven or recorded
using two Vax computers. Training was administered to all subjects in the
operation of the voice recognition system and flight simulator. For an in-
depth accounting of the Apparatus and Training, the reader is referred to
Malkin and Christ (1987).

C. Procedure

Each subject entered eight UIM coordinate sets for each test condition.
The coordinate sets, which were selected from a scenario based on the Fulda
Gap area of Germany, were located on a kneeboard attached to the subject's
leg. A standardized, but different set of coordinates was used in each
condition. The'subject was tested in both conditions using one data entry
method before proceeding to the next data entry method. The order of the test
conditions were counterbalanced to control for learning.

D. Experimental Design

A 2x3x12 factorial design with repeated measures on the twelve subjects
was implemented. The within subject factors were data entry methods (voice,
keyboard and thumb-controlled switch) and task conditions (flight, no flight).
The dependent variables were input time and response time. For illustration,
the 2x3x12 repeated measures design along with input time can be found in
Table 2.

E. Results

Since the response measures were highly correlated, and only 12 subjects
were used, a multivariate analysis of variance was performed using the
univariate repeated measures model with subjects considered a random factor.
The approximate F ratios were then checked against the Greenhouse Geisser
adjustment and they agreed.

The results are shown in Figure 3. For response time, subjects were able
to respond significantly faster during the no-flight condition than during the
flight condition. There also was a significant interaction between data entry
method and task conditions. During the no-flight task condition, subjects
responded significantly faster when the keyboard was used to enter data.
However, during the flight task condition, subjects responded significantly
faster using either voice or the thumb-controlled switch (see Figure 4).

There were significant differences among the three mean impact times for
the data entry method. Subjects were also able to input data faster during
the no-flight task conditions than during the flight conditions. However,
there was no significant interaction between Task and Entry method (see Figure
5).

n



TABLE 2., METHOD BY TASK BY SUBJECT
(INPUT TIME)
Method
Voice Keyboard Thumb
1 2 3
Task Task Task
No No No
Flight Flight Flight Flight Flight Flight
Subiject 1 2 1 2 1 2
1 15.8 17.8 16.9 16.8 28.5 34,3
2 23,9 49,3 9.1 13.2 25.0 35.5
3 33.0 55.9 13.6 31.6 29.7 48.8
4 15.2 27.8 11.3 16.1 24,1 43,1
5 35.9 45,0 11.9 20.7 39.2 65.2
6 49.8 36.4 11.8 23,7 36.3 49,1
7 27.2 34.9 13.9 20,6 31.7 44,7
8 20.6 20.6 10.9 24,1 35.4 37.4
9 28.92 38.7 10.5 19.9 34,7 34,6
10 27.7 23.5 10,7 15.9 34,0 43,6
11 17,9 11,7 15.4 24,1 32.6 39.0
12 23.0 16.3 13.5 33.8 38.9 70.9
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MEAN RESPONSE TIME (SEC)

DATA ENTRY METHOD BY TASK

a —
7 — K
A (6.7 sec)
6 — ,
J T
5 - (5.5 sec)
4 =
. V'
3 — (3.5 sec)
i (2.3 sec)
v
2 - T
4 (2.0 sec)
_ K
1 (1.2 sec)
o ] LB
NO FLIGHT FLIGHT
LEGEND
V - YVOICE

K - KEYBOARD
T - THUMB SWITCH

Figure 4: Data entry methods by task for response time
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MEAN INPUT TIME (SEC)

DATA ENTRY METHOD BY TASK

80 -
T
) (48.5 sec)
40 —
o v
T (35.2 sec)
30 - (32.5 sec)
d v
(26.6 sec)
K
20 (21.7 sec)
o
K
10 - (12.4 sec)
o T T
NO FLIGHT FLIGHT
LEGEND
VY - VOICE

K - KEYBOARD
T - THUMB SWITCH

Figure 5: Data entry method by task for input time
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As a final note, the input time covariances for the within-subject
factors deviated extremely from the compound symmetry assumption whereas the
compound symmetry assumption for response time was acceptable. Therefore, the
variance component diagnostic procedure will be demonstrated for input times
only.

As previously pointed out, it is natural to estimate the covariances 6,
by corresponding sample covariances. In the balanced case, and for the
Malkin, Christ data, the estimates can be obtained from the ANOVA table (see
Figure 6).

For this example, a; = 3, a, = 12 and a3 = 2. The estimate of 02 is the
average of six distinct sample covariances. They can be displayed in a. table
such as Table 3-A. The off-diagonal elements are the sample covariances. To
avoid confusion, it is worth noting that the diagonal elements are not true
variances since i4i*. An alternative and simpler display of these sample
covariances can be found in Table 3-B. Again, the diagonal elements are not
true variances since k#k*.

Under the compound symmetry assumption, all elements of Table 3-A or
Table 3-B should be approximately equal. Therefore, the diagnostics provide a
illustrative procedure to check the compound symmetry assumption and identify
unique treatments combinations that contribute to this assumption being
violated.

In examining the 6, off-diagonal diagnostics of Table 3-A, the
covariances Keyboard No Flight vs. Voice Flight (-13.81) and Thumb No Flight
vs. Voice Flight (-12.47) are small when compared to the other off-diagonal
entries in the Table. In addition, Thumb Flight vs. Voice No Flight (40.78)
seems large in comparison. This large fluctuation indicates high variability
in the data.

The diagonal entries of Table 3-A indicates the covariances at the same
Task level but different Input levels. The large diagonal entry (43.26),
representing the covariance of Thumb Flight vs. Keyboard Flight, indicates
instability and variability in the cell means making up this covariance.
Referring to Table 1, the reader can see that the cell means for Keyboard,
Flight and Thumb Flight are larger and more unstable than the other Method
Task treatment conditions.

This suggests further examination of the specified treatment
combinations. Follow-up plots of subject mean input times by treatment
combinations reflecting the large or small covariances are shown in Figures 7
through 9.

Examinatin of these plots revealed that subjects (3, 5, 6 and 12) input
time contributed to the extremely high or low covariances.
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TABLE lll - A

DIAGNOSTIC
INPUT TIME
02
VOICE
NO FLIGHT FLIGHT
KEYBOARD NO FLIGHT -5.90 -13.81
FLIGHT 13.68 -5.07
VOICE
NO FLIGHT FLIGHT
THUMB NO FLIGHT 23.15 -12.47
FLIGHT 40.78 10.52
KEYBOARD
| NO FLIGHT FLIGHT
THUMB NO FLIGHT 0.19 16.01

FLIGHT 1.88 43.26
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The diagnostic plots for 6,5, and 6,; are shown in Table 4. For 0;,, the
plot consists of covariances based on the same level of Subject and Method,
but different levels of Task. The diagnostic plot revealed a spurious
covariance component of 76.2 for Voice No Flight vs. Voice Flight. A follow-
up plot (Figure 10) indicated that subjects (3, 5 and 6) input times
contributed to this large covariance.

Similarly, the diagnostic plot for 6,43, revealed large spurious
covariances at treatment combinations Voice No Flight vs. Thumb No Flight
(23.1) and Keyboard Flight vs. Thumb Flight (43.2).

It is worth noting that this diagnostic plot contains covariances based
on the same subject and Task levels but different Methods.

Follow-up plots (Figures 11, 12) for both covariances revealed that
subjects (3, 5, 6 and 12) input time were contributing to one or both large
covariance components.

Identifying what seemed to be a dichotomous population of subjects, a
review of subject records were undertaken to attempt to explain the reason
subjects 3, 5, 6 and 12 seemed to respond differently from the rest of the
subjects. A review of the records indicated that, in general, these pilots
were older (over 42 as compared to under 38), had a higher military rank, and
had spent as much time or more flying fixed wing or rotary wing aircraft, with
recent flying experience concentrated on fixed wing. Based on subjective
input from experienced pilots, differences between the aircraft in regard to
instrumentation and flying procedures could certainly account for the
difference in input times between fixed wing and rotary wing pilots.

A recalculation of the diagnostics with subjects 3, 5, 6 and 12 removed
revealed covariances that were more stable. In addition, in grouping the
subjects into Fixed Wing and Rotary Wing categories and reanalyzing the data,
the assumption of compound symmetry was accepted. Mauchly's criteria, which
is used to check this assumption, was found not to be significant at the .0l
level.

This information was made available to the Aviation and Air Defense
Division of the HEL so that this additional source of variability could be
controlled for future experiments.

V. CONCLUSIONS

The variance component estimates and associated diagnostic procedures
have been shown to be computationally and intuitively simple. All
calculations can be obtained using standard statistical packages such as
SPSSX, SAS, or BMDP.

The diagnostic procedures have been demonstrated to be effective in

checking underlying assumption (compound symmetry) of the repeated measures
model, and useful in identifying probable causes for the violation of these
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assumptions. This provides the researcher the option of removing spurious
observations, performing transformations, or controlling additional sources of
variability so that the data can conform to the standard assumptions such as
compound symmetry or to modifying the model. By circumventing the problems
associated with the traditional univariate repeated measures analysis, these
diagnostic procedures provide easier interpretation of the results and
increased validity of the conclusions derived from the data. The result is a
valuable statistical approach that can be applied in many areas including
developmental testing and human factors evaluation of weapon systems and
equipment.
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MODEL BASED DIAGNOSTICS FOR VARIANCE COMPONENTS

IN A GENERAL MIXED LINEAR MODEL

J. W. Green R. R. Hocking

Department of Mathematical Sciences Department of Statistics

University of Delaware Texas A&M University

Newark, Delaware 19711 College Station, Texas 777843
ABSTRACT

A new class of unbiased estimators is given for unbalanced mixed
models which have simple, closed-form expressions. These estimators
allow easy computation of variances which, when compared to minimum var-

iance bounds, show the estimators to be highly efficient.

Based on the estimator, a diagnostic methodology is developed for
assessing the effect of the data on the estimates. The source of nega-
tive estimates of variance components is often revealed, as well as

other sorts of instability and problems with the model or data.

An overview of the methodology and its growing literature is given,
illustrated by applications to several industrial problems. The method-
ology applies to all random and mixed models, regardless of the degree
of imbalance or pattern of crossed and nested factors. The diagnostics

flag only those features of the data which affect parameter estimates.
1. INTRODUCTION

The problem of estimating variance components in random and mixed
models has become a classical research area in statistics. Review

papers, such as those by Searle (1971), Harville (1977), Sahai (1979),
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Sahai and Khuri (1984) and Khuri and Sahai (1984), attest to the
importance of the problem and emphasize the fact that there are many

aspects of the problem which remain unsolved.

It is well known that in the case of balanced data, The ANOVA
estimators, or, equivalently, the restricted maximum likelihood estima-
tors (REML), have certain optimality properties. Graybill and Hultquist
(1961) showed that these estimators are uniformly best quadratic estima-
tors. Under the added assumption of normality, Graybill and Wortham
(1956) showed these estimators are UMVU. A discussion of these results
is given by Hocking (1985). Even in this ideal situation, the esti-
mates are often unacceptable in the sense of violating the implicit
assumption of nonnegativity. Several authors have proposed alternatives
which guarantee nonnegative estimates, including Thompson and Moore
(1963), Hartly and Rao (1967), Rao and Chaubey (1978) and Hartung
(1981). Searle (197lab) discusses various alternatives in some detail.
Examples show spurious data can lead to negative estimates and Leone, et
al (1968) have shown that negative estimates have non-trivial probabil-
ity of occuring. The fact that spurious data can lead to negative
estimates suggests that even positive estimates should be questioned

and stresses the need for good diagnostic methods.

In the case of unbalanced data, there is a sharp discontinuity in
theory. Except for special cases, minimal sets of sufficient statistics
are not known, and, even in those special cases, they are not complete.
Many estimators have been proposed and they fall generally into two
categories. In one category are estimators based on quadratic forms,

usually obtained from the mean squares of an AOV table. MINQUE and
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related methods are included.,in this category. There is no basis to
support the superiority of any of these approaches. Iterative methods
fall into a second category and include maximum likelihood and REML.
Other than large sample properties, little is known of the properties
of these estimators. 1In addition, the iterative computations often

encounter convergence difficulties.

The situation regarding the estimation of fixed effects parameters
(means) is similar. With balanced data, the estimates are not affected
by the presense of a non-scalar covariance matrix and they are UMVU
estimators. With unbalanced data, maximum likelihood leads to weighted
least squares estimators which depend on the unknown variance compo-
nents. The properties of fixed effects estimators computed using

estimated variance components are unknown.

The present paper discusses two contributions to the study of mixed
models. First is the development of a new class of unbiased estimators
for the case of unbalanced data which have simple, closed-form expres-
sions. These expressions allow easy computation of variances which,
when compared to minimum variance bounds, show the estimators to be

highly efficient.

The second contribution discussed is the development of diagnostic
methodology, based on the estimator, for assessing the effect of the
data on the estimates. The source of negative estimates of variance
components is often revealed by this methodology, as well as other

sorts of instability and problems with the model or the design.
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An overview of the methodology and its growing literature will be

given. Applications of the ideas developed will be discussed in the
context of several industrial problems for illustrative purposes.
It is to be stressed that the methodology applies to random and mixed
models, whether factorial or partially nested and whether balanced or
unbalanced. Indeed, completely nested designs have been succesfully
analyzed by this methodology by Hocking and M. S. Von Tress, but will
not be discussed here. Also not discussed here is the distribution

theory developed by Green and J. Grynovicki.

The problem of estimating variance components is shown to be equi-
valent to the problem of estimating the covariances between appropriate
related observations. A covariance is naturally estimated by the cor-
responding sample covariance. In fact, almost every covarariance, 6 ,
of the relevant sort can be estimated in an unbiased and efficient ¢
manner by a simple average of sample covariances, all having the same
expectation and all simply related to © , or else, by simple linear
functions of such averages. In balancedtcases, these sample covariances
have the same distribution. In any case, they provide diagnostic
power for examining the quality of the estimate of © . The diagnostics
are directly in terms of the effect influential factgrs have on
parameter estimates of interest. Thus, only features of the data
impacting on variance component estimates are highlighted. For small
problems, these diagnostics are conveniently displayed in tables, as
shown below. For larger problems, the diagnostics can be displayed
in simple plots, as indicated below and described by Green (1987).

For very large problems, reduction formulae, given by Green (1988)

are available to reduce the demands of these displays to managable
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levels. These are also discussed below. Since there are, in fact, many
ways to generate meaningful diagnostics, these same formulae allow one
to change from one representation to another, and even to increase the

number of diagnostic elements.

2. THREE- AND FOUR-FACTOR MODELS

To motivate the procedure and introduce some general notation, con-

sider a model with Factors 1, 2 and 3 ( or 1, 2, 3 and 4) with Factor i

having a levels. Letr =a -1, a =aa,r =rr , etc. Let
i i i 12 12 12 12
r =a = 1. Suppose there are n # 0 (or in the four-factor case,
0 0 ijk
n # 0 ) observations in the indicated cell. The empty cell problem
ijkt

will be reported on at a later date, although a brief discussion is
given by Hocking (1987). Five model will be described to introduce the
AVE-estimator and the diagnostic procedure. Two parameterizations are
given. One is standard. The other is equivalent, but suggests both the
diagnostic philosophy and the AVE-estimator, as well as an alternative
statistical model which is more general than the usual model and has

intuitive appeal.

2.1 Five Designs

To introduce the two parameterizations, consider the following three-
and four-factor designs.
Design 1. Factors 1, 2 and 3 are crossed, 2 and 3 are fixed and

1 is random.

Design 2. Factors 1 and 3 are fixed and crossed, Factor 2 is random and

nested in 1.

Design 3 is the same as Design 2, except Factor 1 is random.
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Design 4 is the same as Design .2, except all factors are random.
Design 5. Factors 1, 3 and 4 are crossed, 2 is nested in 1, 1 and 2 are

random and 3 and 4 are fixed.

2.2 Statistical Models for the Five Designs

In the case of design 1, a standard model is
(2.1) y(ijks) = M(jk)+ A(i) + AB(ij) + AC(ik) + ABC(ijk) + E(ijks),
where M(jk) is the population mean of responses at levels jk of factors
23 and the others are independent 0-mean normal random variables with
variances ¢ ,9o , 9 , ¢ and ¢ , respectively, and y(ijks) is the

1 12 13 123 0

s-th response at levels i, j, k of factors 1, 2, 3, respectively. It is
useful to compute © , the covariance of distinct observations at the
same level of factots indexed in t and at different levels of all other
factors. Also, © will denote the total variance in the response. Thus,
e =0 +e in the three-factor case. The covariance structure in
desigg llfg given by:

(2.2) Cov( y(ijks), y(i*j*k*s*) ) =

0 if ifi*
<) =0 if i=i*, j#j*, k#k*
1 1l
e =0 +¢ if ij=i*j*, kfk*
12 1 12
(=] =0 +¢ if ik=i*k*, j#j*
13 1 13
e =0 +0 +p +0 if ijk=i*j*k*, sfst
123 1 12 13 123
(<) = ¢ +6 if ijks=i*j*k*gk,
0 123

It should be observed that the parameterization given, in partic-
ular, the independence assumed of the "random effects", does not re-

strict the model. Rather, it indicates which of several equivalent
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parameterizations is used. The:covariance structures for the other
designs follow.

Design 2.

(2.3) y(ijks) = M(ik) + AB(ij) + ABC(ijk) + ABC(ijk),

where M(ik) is the population mean of levels ik of Factors 1 and 3, re-

spectively, and the other terms are 0-mean normals with variances ¢ ,

12
()] and ¢ , respectively. The covariance structure is given in (2.4).
123 0
(2.4) e =0
12 12
e =¢ +¢
123 12 123
e = ¢ +6
0 123
Design 3.

(2.5) y(ijks) = A(i) + AB(ij) + M(k) + AC(ik) + ABC(ijk) + E(ijks),

where M(k) is the population mean of Factor 3, level k and the other

terms are O-mean normals with variances 6 , ¢ , ¢ , o and ¢ , re-
1 12 13 123 0
spectively. The covariance structure is given in (2.6).
(2.6) e =0
1 1l
e =9 +p
12 2 12
e =0 +9
13 1 13
e =0+ +¢ +¢
123 1 12 13 123
e =0 +6
0 123
Design 4.

(2.7) y(ijks) = M + A(i) + AB(ij) + C(k) +AC(ik) + ABC(ijk) + E(ijks),
where M is the mean and the other terms are 0-mean normals with vari-

ances ¢ , o , 6,0 , 0 , ® . The covariance structure is in (2.8).
1l 12 3 13 123 0

(2.8) o =9
1 1
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e =0+9
12 1 12
e =0
3 3
@ =0+0+9
13 1 3 13
© =0+ +p+ 0 + 0
123 1 12 3 13 123
e =0 +0
0 123
Design 5.
(2.9) y(ijkts) = M(kt) + A(i) + AB(ij) + AC(ik) + ABC(ijk) +

AD(it) + ABD(ijt) + ACD(ikt) + ABCD(ijkt) + E(ijkts),
where M(kt) is the population mean of responses at levels k and t of
factors 3 and 4, respectively, and the other terms are independent, 0-
mean normals with variances o , ¢ , ¢ , 90 ,06 ,0¢ ,0 ,0

1 12 13 123 14 124 134 1234
and ¢ , respectively. The covariances are given by (2.6), excluding O,

0
and by
(2.10) e =0+0 +0 +90
134 1 13 14 134
e =0 +0 +90 +0 + 0 + 0 + 0 + 0
1234 1 12 13 123 14 124 134 1234
e =9 +6
0 1234
with © and © analogous to © and © . It is evident that esti-
14 124 13 123
mation of the © is equivalent to estimation of the & . There are two
t t
advantages to the © parameterization. First, these covariances are

t
rather naturally estimated by corresponding sample covariances. This

estimation idea is the basis of AVE-estimator introduced (for unbalanced
designs) in Hocking, Bremer and Green (1987), hereafter called (HBG). It
is equivalent, in the balanced case, to the usual ANOVA estimator (HBG),
Green (1985, 1988) and offers an efficient Hocking (1987), (HBG)
alternative in the unbalanced case. A second advantage is the pos-
sibility of a more general formulation of the model in terms of the

mean and covariance structure of the response vector, y. For example,

in design 1, the model can be specified by writing
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E[{ y(ijks) ] = M(jk) and COV ( y ), as given by (2.2).
The only restriction on the covariance structure is that the covariance
matrix be positive definite. This is true if all the ¢ are positive,
but also under more general conditions which permit indgvidual
"variance" components to be negative. Explicit requirements for pos-
itive definitness are given in Hocking (1985). Since physically, a
negative cova:iance is bossible ( See Green(1988), for an industrial
setting in which a negative covariance is quite sensible), this more
general formulation has some appeal. It also provides an explanation
for the negétive variance component estimates which frequently occur.

The validity of the AVE-estimator or the diagnostic procedure does

hinge on acceptance of this alternative model.
2.3 Estimation of Variance Components Arising from the Five Designs

It is natural to estimate the covariances © by corresponding
sample covariances. This is the basis of the diagnostic procedure. 1In
the balanced case, the estimates found are the usual estimates obtained

from an AOV table ( Henderson's type H3 or SAS type 2 ).

Some simple notation is introduced to facilitate the procedure.
The general form is given in Green (1987, 1988), (HBG) appropriate for
any design. For the present, forms needed for three or four factors are
given. These contain all the basic forms required in general. They

are not tied to any particular design.

To estimate the covariance, © , between observations at the same
1
level of Factor 1 but different levels of Factors 2 and 3, one of the
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following three forms is used.
-1
(a r ) 2C(l/jkj*k*).
23 23

-1
(a ra) )C(L/jkj*k*).
23 2 3

(2.11) C(1/23)

(2.12) C(1/2:3)

-1
(2.13) c(1/3) (a r ) YC(l/kk*).
3

In (2.11), the sum is3over all a r pairs of distinct levels j#j* of
Factor 2 and all a r pairs of dzsiinct levels kkk* of Factor 3. 1In
(2.12), the sum is303et the a r pairs of distinct levels of Factor 2
and all a x a pairs of level: gf Factor 3, whether or not distinct.

In (2.13)3the3sum is over the a3r3 pairs of distinct levels of Factor 3.

In (2.11) and (2.12),

-1
(2.14)C(1/jkj*k*) = € Y y(ijka)=y(.dk.) ) Y(ij*k*.)=Y(.*k*.) ),
1

where y(ijk.) is a cell mean and y(.jk.) is an (unweighted) mean of cell
means. (2.14) is a sample covariance of cell means at the same level of
Factor 1 and at indicated levels of Factors 2 and 3. (2.13) is the aver-
age of forms of the sort (2.15), which is a sample covariance of the
average responses of Factor 1 at indicated levels of Factor 3.

-2
a Z C(1l/jkj*k*)

2 ji*

= rl Z.( ;(i"(’) - ;(ooko) ) ( y(i.k*.) - ;(..k*.) )
i
Justification for using unweighted means of the cell means in the un-

(2.15) C(1/kk*)

balanced case is discussed in (HBG) and is as follows. Begin with the
balanced case, where the forms are clearly reasonable. (HBG) shows
that in the unbalanced case, if one uses these forms for all possible
balanced submodels of minimum cell frequency and averages these
estimators over all such submodels, the resulting average is the AVE-

estimator as described here. Which of the forms to use in a problem
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is determined by the nesting and fixed factors in the design and

is explored below.

To estimate the covariance, © , between observations at the same
12
level of Factors 1 and 2 but different levels of Factor 3, (2.14) or one

of the following two forms is used (in a three-factor model).

-1
(2.16) C(12/3) = (ar ) ) C(12/kk*),
33
-1
(2.17) C€(1,2/3) = (a r ) 2 C(i,2/kk*),
13 3
where the first sum is over all a r pairs of distinct levels k#k* of
33
Factor 3 and the second sum is also over these and over all a distinct

1
levels of Factor 1. Here,

(2.18) C(12/kk*) =t ) ( y(ijk.)=¥(..ke) )( Y(ijk*.)-y(..k*.) ) ),
12 ij
_l _ _ _ _
(2.19) C(i,2/kk*) = r2 2: ] ( y(ijk.)-y(i.k.) )( y(ijk*.)-y(i.k*.) )).
J
In all forms, by permutation of the indicies, one obtains analogous
forms appropriate for estimating the other covariances. Now consider

the five designs stated above.

Design 1.
@~ -AVE = C(1/23)
1
(2.20) ©~ ~-AVE = C(2,1/3)
12 ‘
@~ -AVE = C(3,1/2)
13
Design 2.
(2.21) ©~ -AVE = C(1,2/3)
12
Design 3.
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©~ -AVE = C(1/3) - a C(1,2/3)
1 2
(2.22) -1
©~ -AVE = C(l/3) +r a C(1,2/3).
12 2 2
Design 4.
©®~ -AVE and ©~ -AVE are as in Design 3.
1 12
(2.23) ©7- AVE = C(3/1:2)
3
@~ -AVE = C(1,3/2) + ©~ -AVE.
13 1

Design 5.
-1

C(1/34) - a * C(1,2/34)
2

(2.24) ©~ -AVE
1

-1
@~ -AVE = C(1/34) + r a * C(1,2/34)
12 2 2
-1
@~ -AVE = C(3,1/4) - a * C(13,2/4)
13 2
-1
©~ -AVE = C(3,1/4) + r a * C(13,2/4)
123 2 2

The estimators for the 14-and 124-interactions are obtained from those

for 13 and 123 by interchange of indicies.

In all cases, the highest order term (© or © ) suggests no
123 1234
sample covariance estimator, since, if the model is correct, the order of
observations within a cell is arbitrary. Also, some terms of highest
order in the non-nested factors are not well-represented by sample co-
variances of the obvious type. However, an AVE-type estimator can be

be based on deletion methods. Such are discussed in (HBG).

2.4 Estimation of Fixed Effects
Similar unweighted means are used to estimate the fixed effects.

102



It will be noted that the estimators of the fixed effects in a balanced
design are linear combinations of the cell means. The idea of averaging
over all possible designs of minimum cell size (provided that size is
not zero) leads to the same linear combination, except that with
unbalanced data, the cell means are based on different numbers of ob-

servations. The result is to replace an expression such as

-1
(2.25) M(ij)~ = Y (a n) y(ijks)
ks 3
in the balanced case by
-1 -1
(2.26) M(ij)~-AVE = a Y (n ) Y y(ijks).
3 k ijk s

(HBG) contains a discussion of fixed effects estimation in unbalanced
factorial models. Hocking (1987) continues this discussion, with
reference to partially nested models. Further joint work on this

latter topic is expected to appear soon.

2.5 Display and Use of Diagnostics

Now that the basic forms are evident, attention can turn to their
use. Each term C(p,v/d) is an average of sample covariances, all of which
have the same expectation. In design 1, the general representation

theorem Green (1988) gives the forms (2.20). The AVE-estimator of 6~
1
is C(1/23), which is the average of the a r /2 distinct sample covar-
23 23
iances C(l/jkj*k*), for j # j*, k # k¥, Each of these covarianaces is

an unbiased estimate of ©°. They can be displayed in a table, such as
1
Table 1, which shows a = 2 and a = 4. In this illustration, one 4-by-
2 3
4 table gives all the diagnostics. The off-diagonal elements are the

sample covariances. Since this table is not symmetric, all off-diagonal
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elements are printed. The diagonal elements are not true variances,
since j = 1 and j* = 2 there, while k = k*. If two tables were given,
one could compute and report the following variances.

(2.27) C(1/jkjk) = rzl Zj( y(ijk.) - y(.3k.) )2.

Under the usual assumptions for this design, all diagonal elements have
the same expectation, as do all off-diagonal elements. The table is
examined for outliers and patterns. Green (1988) gives moments of
these diagnostic elements. 1In this example, the elements C(1/jkj*k*)
for jk, j*k* =12, 13 and 13, 22 stand out as much larger than the
other entries. Also, the diagonal entries for k = 2 and k = 3 are much
larger than the other diagonal entries. This suggests further exami-
nation of the two combinations indicated. 1In a paper presented at the
Gordon Research Conference, August, 1987, and being prepared by the
present authors for publication, this table was part of an analysis
which detected a process shift in data from an actual chemical produc-
tion process. This point will be elaborated on below. One use of such
tables is the detection of problems in the underlying assumptions made
about the model. One conclusion drawn for the chemical data is that a

violation of this sort occurs. A physical consequence is the need to

redesign the production line to make a uniform product.

A second application of these diagnostic tables is the detection of
spurious data. The second point is illustrated in the context of a
wool fiber example discussed in Green (1987). The design is Design 2,
witha =2, a =5, a = 23. The estimate, C(1,2/3), of 8 1is the
averagé of thezsample govariances C(i,2/kk*), i = 1,2 and kli k* = 1,..,

23, A tabular display of these diagnostics would require two 23-by-23

tables, an unpleasant prospect. In the above cited article, these
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diagnostics are displayed in simple plots. For each value of k, the
value C(i,2/kk*) is plotted against k*, using as plotting symbol the
value of i. Figure 1 is the result for k = 5 and k = 6. Two features
stand out in this plot. First, the i = 2 values are almost all higher
than the corresponding i = 1 values. Second, the value for i = 2 and

k* = 11 are dramatically higher than than all other points, for both

k =5 and k = 6. A logical followup step is to plot y(ijk.) vs y(ijk*.)
for i = 2, k = 6, k¥ = 11 and all j. This is done in Figure 2. The
plotting symbol is A for j =1, B for j = 2, etc when i = 2, and 1 for
j=1, 2 for j = 2, etc when i = 15 If a sample covariance appearing

in the table is a stable estimate of © , one would expect a clear
linear trend in the plot of cell means%2 At i = 2, there is evident a
serious problem due to the effect of j = 1 (the point A). Serious reser-

vations about the sampling methodology are raised in the article by this

(and similar) points.

To return to the chemical data, a followup plot of cell means at
jk = 13 vs jk = 22 is shown in Figure 3. Here there is a strong linear
trend to the points, unlike the wool example. A possibly spurious point
is seen, but deletion of this point has little effect on the ©
estimate. The plotting symbol used indicates in which level o% factor 1
the data point falls. The symbol 0 is for i = 1-10, 1 is for i = 11-20,
etc. The plot suggests the higher levels of i give higher points. A
subsequent plot (Figure 4) of cell means y(ijk.) vs i, for jk = 12 (and
jk = 13, 22, 23 are similar) shows a ptondunced shift at around i = 30.
(a = 60 in this problem.) Process engineers verified a change in raw

1
material at this point.
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2.6 Reductions in Size of Didplays

If neither tabular nor graphical display seems feasible, Green
(1988) offers algebraic reduction formulae and partial summing methods,
which, together with the general moment formulae developed there, allow
smaller tables to be constructed which retain most of the diagnostic
power suggested by these examples. He describes a six factor design
which would require the display of 15,680 sample covariances. This
seems an unreasonable demand. The reduction formulae cut the required
display to 840 sample covariances, a reduction of 94 %. Further reduc-
tions are possible through partial summing of the diagnostic forms,

as described in the context of a glass manufacturing example.

Consider now design 5, with diagnostic forms given by (2.24).
Green (1988) considers a glass manufacturing example with a =a =5,
a =2, a = 3. These forms require displaying 630 diagnostic e1:ments.
Agtet appiying the reduction formulae, a display of C(13,2/4) is still
requi;ed. Conceptually, the terms C(ik,2/tt*) are displayed in table
form. Perhaps, for each value of i and k, an a -by-a table is con-
structed, the off-diagonal terms of which are t;e sam;le covariances.
The below-diagonal terms need not be displayed, since the table is
symmetric. Diagonal entries are sample variances, which also carry
diagnostic information. In the example, this requires 25 3-by-3 tables,
a rather onerous requirement. The graphical displays discussed above
"can be used if the number of terms is moderate. Even these displays
may be problematic for larger values of a , a and a . A simple remedy
is to work with "partial sums" described éelog. In t;e glass example,

the forms (2.24) can be replaced by:
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(2.28)
C(l1,2/4), with 15 elements
c(1/4), with 3 elements

C(13,2/4), with 30 elements through

-1 -1
a ) C(ik,2/tt*) and a ) C(ik,2/tt*)
1 i 3 k .
(2.28a) (2.28b)
C(14,2/3), with 80 elements through
-1 . -1 v
a ) C(it,2/kk*) and a ) C(it,2/kk*)
1 i 4 t

C(3,1/4), with 15 elements

C(4,1/3), with 9 elements.
This gives a total of 152 diagnostic elements, a reduction of 75 %. As
shown by Green (1988), the remaining elements have essentially the
same diagnostic power as a full analysis. Further reduction is possible
in thellast two terms. In this example, there are so few diagnostics in

in these two that further reduction makes little sense.

The analysis now is in four parts. (1) Outlier analysis associated
with each table finds those estimates more than 2(J away from the mean
for that table. (2) 1In the case of tables for the partial sums, if,
say, for some i, one of the off-diagonal terms in (2.28a) stands out,
then a table of C(ik,2/tt*) for just that i is constructed, or else a
univariate analysis of the estimates C(ik,2/tt*) is done ( either
using stem-and-leaf plots or a printout of values outside a 2- or 3-0J
confidence band). (3) Next, a "pattern analysis" of the tables may
bring out special patterns. There should be no pattern to the tables
if the statistical model assumptions are correct. (4) Next, the

the data set is examined to seek statistical cause for what was seen
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(1)-(3).

Each table shows appropriate, equal-expectation, sample covariances
- off the diagonal. Since these tables are symmetric, below diagonal
terms are omitted. The diagonal terms in these tables are variances, and

always have equal expectations under standard assumptions.

To continue with the illustration, Table 2 gives the diagnostics
(2.28a). The entry for i = 5, tt* = 12 stands out as large. This can be
judged by inspecting either the table or a stem-and-leaf plot, or with
the aid of a 2(J confidence band centered at the average value of
(2.28a). In this last regard, the following variance formula is helpful.
(2.29)

-1 2 2 2
VAR (Form 2.28a) = (ar ) [ a (© -6 ) +r (6 -6) + (6-6 ) 1.

32 3 124 14 3 12 1 134

From this, the standard deviation is 311.0 and the average value is seen
to be 329.5 Similar computations apply to the diagonals. A printout
of the forms C(ik,2/tt*) for i = 5, tt* = 12 outside a 30 confidence
band shows k = 3 and k = 4 account for the initial large estimate.
This in turn leads to an examination of the relevant data, where a large
difference between the values for j = 1 and j = 2 is found at these

locations. A complete discussion of this data is given in the cited

article, but this should indicate how the "reduction" techniques work.

In connection with the above analysis, the first two momemts of the
diagnostic forms involved in (2.28) are needed. General closed-form
expressions for moments of the required type are given. These are

functions of the 6 and apply to balanced and unbalanced cases.
t
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2.7 Repeated Measures Experimrnts

Grynovicki and Green (1988) contains a discussion of this method-
ology to repeated measures experiments. In the example described there,
the diagnostics lead to the discovery of two populations of subjects
not properly taken into account in the study and which raise serious
questions about the validity of conclusions to be drawn. The existence
of these two populations had not been previously suspected. Applications

to other repeated measures experiments, -such as medical experiments, are

readily apparent.

2.8 Computations

The computations involved in constructing the tables or plots pre-
sented above are minimal. Standard statistical computer packages will do
all calculations required, though some manipulation may be required to
print the diagnostic tables in a useful format. For example, SAS PROC
CORR, with the COV option will compute sample covariances and even
display them, often in appropriate form. The plots require additional
data manipulation, but again standard packages have the requisite

capability. All computations discussed here were done using SAS.

The reduction and partial summing ideas discussed make this method-
ology applicable to designs of all sizes. Since the methodology also
applies regardless of the degree of imbalance and to a large class
of mixed models, it can be seen to be useful in a wide variety of

problems.
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2.9 Efficiency of the AVE-Estimator

(HBG) and, more definitively, Hocking (1987) contain discussions
the efficiency of the AVE-estimator. This is done by comparing the
small sample variances of these estimators with lower bounds for this
variance, as given by Bhattacharya (1946) in an improvement of the
usual Cramer-Rao lower bounds. Closed-form expressions for these bounds
are not known, but they can be computed numerically for specific
designs. Such computation is reported in the cited articles for a
variety of cell frequency patterns and parameter values. Among the
conclusions reported there are the following.

1. The AVE-estimators of both variance components and fixed effects
are very efficient.

2. The efficiencies are monotonically increasing in all parameters.

3. The efficiencies depend on all parameters but the variances do not.

4. When compared to Yates' method (or the method of weighted square of
means or SAS type 3) or Henderson's method (or the method of fitting
constants or SAS type 2), there is little reason to distinguish
among these estimators on the grounds of efficiency, although

the AVE-estimator is generally superior except for small parameter

values.

3. OTHER LITERATURE

The first article on the general diagnostic philosophy described
was Hocking (1983) which applied these ideas to balanced randomized
block designs. Alternative models, such as discussed above, which

allow for negative estimates of variance components, were discussed by
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Smith and Murray (1984) for cértain two-factor models, but no diagnos-
tics were described there. The first major development of diagnostics
was given by Green (1985), a dissertation written under the direction of
Hocking. Results based in part on this were reported by Hocking (1985)
and Hocking and Pendelton (1985). It deals with balanced, random models
only, but, with minor changes, applies to mixed models. Matrix expres-
sions for various diagnostic forms and moments are given which simplify
computations by hand or computer for balanced designs. Since most
diagnostic forms in the unbalanced case are unweighted linear functions
of the cell means, many results from the balanced case apply with

little or no change to the unbalanced case. Hocking and Bremer were.the
first to notice the unbalanced extension. Some results from this

source will appear in a more available format in the near future.
Results from (HBG) are discussed in (HBGb), although in the conference

proceedings, an administrative error omitted one author's name.
4. CONCLUSIONS

A diagnostic procedure has been shown to be both intuitively simple
and effective in judging the quality of variance component estimates.
It applies to both small and large problems. All calculations, displays
and plots can be (and were) done by standard statistical computing
packages. The diagnostics are themselves estimates of the components
in question, and, as such, indicate in a straight forward manner, what
impact various features of the data have on the overall estimates. Only
features of the data affecting the parameter estimates are flagged. The
methodology applies to both balanced and unbalanced designs with no

missing cells. A sound theoretical basis exists for the procedure. In
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the balanced case, the overall-. estimator based on the diagnostics is a :
standard one obtained from equating mean squares to expected mean
squares, whereas in the unbalanced case, the estimator is new and com-
pares favorably with standard estimators in terms of efficiency. 1In
addition, in the unbalanced case, the estimator is in closed form,

which simplifies both computation and theoretical inquiry. Also of
importance is the fact the method applies in any random or mixed model
to all components of variance other than the highest order in the non-
nested factors, and even to some of these, without moﬁification, as well
to fixed factors. With some modification, these. estimates apply to these

highest order terms as well.

The diagnostic methodology brings out many noteworthy features of
the data directly in terms of their.effect on parameters of interest.
Even for large data sets, the tabular and computational requirements are
modest. The reduction formulae and univariate confidence interval
approach reduce the need for tabular displays to a reasonable level.
Unbalanced models are handled in the same way as balanced models, and
with little added trouble. The methodology is sufficiently flexable to
allow the user to tailor some computations to suit the needs of a
particular problem, yet sufficiently standardized to be easily learned

or programmed.
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TABLE 1. Diagnostics C(i/jkj*k*) for ©

w N =

=

1
Chemistry Data
j=1 STEM & LEAF
k
1 2 3 4
6.8 16.7 14.6 9.7 30 |23
20h
11.7 31.5 33.2 12.2 20 |3
10h|5777
10.5 31.1 27.1 17.3 10 |0122
0 |8

8.1 16.9 22.6 11.3

13



-1
TABLE 2. Diagnostics a E: C(ik,2/tt*)
3 k

Glass Data
t*
STEM & LEAF 1 2 3
10 0 1 | 131.2 -43.5 -28.9 I
9
8 2 t 2 156.0 - 1.2 l i=1
7
6 | o0 3 44.5 |
5 | 55 ,
4|o
3| 01 B
2 | 4 1 2 3
1 37 _ _
0 1 | 1582.2 821.6 546.8 |
-0 | 0348 | I
t 2 = 517.7 304.9 I i=2
3 | 392.5 |
t*
1 2 3
1 i 89.2 242.2 170.7 i
t 2 | 761.4 599.0 i=3
3 593.3 |
t&
1 2 3
1 ! 241.5 133.6 -82.0 I
t 2 I 586.6 396.4 { i=4
3 | 594.0 |
t*
1 2 3

1 I 1631.8 1023.0 6554.0

t 2 893.2 306.4 i

(1]
wn

3| 392.1 |

114



‘) JO BnTea ST STXP TPIUOZTIOH °T JO T2A3T ST TOquis

But3jorg *9 pue g = % 103 (43A%/2‘T)D soT3isouberg e3ieg TOOM °T FUNOIJ

¥Z ZZ 0z &8l

91

1 4}

z1

ot

1 4

st €z

1z 6L (i

-1

14}

ti

_...__._._'__._.—'——..-—Q.—.-Q_—"_—’__'_-Q_-'__’—_'__._

v0°0

$0°0

90°0

L0°0

80°0

oL°0

(S

L0

€L°0

—_—— O -

O e Ua)

115



*siaqunu Aq T

T 103 asoyy ‘sia3llar &q pajouadp ¢

= 1 103 sonfea ayly °*9 = ) Sa 1T = Y JO suesaw [T9D °eleg TOOM °T IFUNOIJ
. 9 Liod
68 e°e L9 9°8 $°9 v'e €°9 -9 (S ] o'e 6L 9L LL 9L $°L vl €L T°L
3
]

—————e— e e e === ———

T°L
€L
v
$°¢L
9L
L e
8L
6L
o°e
L9
T8
€8
ve
$°3
9°3
L'e

116

)

T

MOk



SO0t

*ST253T 09
sey (1) T 1030ed °933 ‘0Z-TT = T 103 ST T ‘0T-T = T 103 ST Q :Toquis

But3ijord €T = AL sa gz = %L jo suesw (713D ‘e3eq Aiystway) °¢ IYNOIJ

([ ]} s6 oe se oe - SL oL $9

*> > &> *> &>

' 3

AvG 40 INTIVA S1 TOINAS

. 119

TTNdAAS
€1%d3SeZZNAAS 40 L0

€ Nvd | 3QIS SA Z NOvd Z 3GIS WO¥d SNVIW 173

117



*1 sa g1 = %f Jo suesw [T3D "e3ed A13sTwayd 'y JUNOIJ

14 ov 14 (173 ST oz st oL

€e

- 80:
| Singas

avy 3A €1 WVd-3QIS

118



23

REFERENCES

Bhattacharyya, A. (1946), "On some Analogs of the Amount of Information
and Their Use in Statistical Estimation", Sankhya 8, 1-14,201-
208, 277-280.

Graybill,F.A. and Hultquist,R.A. (1961), "Theorems Concerning
Eisenhart's Model II", Annals of Mathematical Statistics 32,
261-269.

Graybill, F.A. and Wortham, A.W. (1956), "A note on uniformly best
Unbiased Estimators for Variance Components", JASA 51, 266-268.

Green, J. W. (1985), Variance Components: Estimates and Diagnostics,
Dissertation, Texas A & M University

Green, J.W. (1987), "Diagnostic Procedure for Variance Components for

Both Large and Small Designs", submitted to Technometrics.

Green, J.W. (1988), "Diagnostics for Variance Components Suitable for
Designs of all sizes", submitted to Technometrics.

Grynovicki, J.0. and Green, J.W. (1988), "Estimation of Variance
Components and Model-Based Diagnostics in a Repeated Measures
Design", Proceedings of the Thirty-Third Conference on the
Design of Experiments.

Hartley, H.O. and Rao, J.N.K. (1967), "Maximum Likelihood Estimation for
the Mixed Analysis of Variance Model", Biometrics 54, 93-108.

Hartung, Joachim (1981), "Nonnegative Minimum Biased Invariant
Estimation in Variance Component Models", The Annals of
Statigtics 9, 278-292.

Harville, D.A. (1977), "Maximum Likelihood Approaches to Variance
Component Estimation and to Related Problems", JASA 72, 320-

340.

19



24

Hocking, R.R. (1983), "A Diagnostic Tool for Mixed Models with
Applications to Negative Estimates of Variance Components",
Proceedings of the SAS Users Group, New Orleans, LA., 711-716.

Hocking, R.R. (1984), "Diagnostic Methods in Variance Component Estima-
tion", Proceedings of the XII-th International Biometrics Cop-
ference, Tokyo, Japan, 49-58.

Hocking, R.R. (1985), The Analysis of Linear Models, Monterrey,CA,
Brooks-Cole

Hocking, R.R. (1987), "A Cell Means Analysis of Mixed Linear Models",
submitted.

Hocking, R.R., Bremer, R.H. and Green,J.W. (1987), "Estimation of Fixed
Effects and Variance Components in Mixed Factorial Models

Including Model-Based Diagnostics", submitted to Technometrics.

Hocking, R.R, and Green,J.W. (1985), "New Expressions for Variance
Component Estimators with Diagnostic and Modeling Implications",
unpublished manuscript.

Khuri, A.I. and Sahai, H. (1984), "Variance Components Analysis: A
Selective Literature Survey", Technical Report No. 226,
Department of Statistics, University of Florida, Gainesville,
Florida.

Leone, F.C. and Nelson, L.S. (1965), "Sampling Distributions of Variance
Components. I. Empirical Studies of Balanced Nested Designs”,

Technometrics 8, 457-468.

Leone, F.C., Nelson, L.S., Johnson, N.L. and Eisenstat, S. (1968),
"Sampling Distributions of Variance Components, II. Empirical

Studies of Unbalanced Nested Designs", Technometrics 10, 719-

738.

Nelder, J.A. (1954), "The interpretation of Negative Components of

120



25

Variance", Biometrika 41, 544-548.
Rao, P.S.R.S. and Chaubey, Y.P. (1978), "Three Modifications of the

Principle of the Minque", Communications in Statistics 47, 767-

778.

Sahai, H. (1979), "A Bibliography on Variance Components", International

Statistical Reviews 47, 177-222.

Sahai, H. and Khuri, A.I. (1984), "A Second Bibliography on Variance
Components", Technical Report No. 217, Department of Statistics,

University of Florida, Gainesville, Florida.

Searle, S.R. (1971), Linear Models, New York, John Wiley & Sons

Searle, S.R. (1971), "Topics in Variance Component Estimation",
Biometrics 27, 1-76.

Smith, D.W. and Murray, L.W. (1984), "An Alternative to Eisenhart's
Model II and Mixed Model in the Case of Negative Variance
Estimates", JASA 79, 145-151.

Snedecor, G.W. and Cochran, W.G. (1963), Statistical Methods, Ames,

Iowa, Iowa State Press.
Thompson, W.A. Jr. and Moore, J.R. (1963), "Non-Negative Estimates of

Variance Components", Technometrics 5, 441-449.

121



Digitized by (;00816



THEORY OF SEMIREGENERATIVE PHENOMENA

N.U. Prabhu
School of Operations Research and Industrial Engineering
and Mathematical Sciences Institute
Cornell University, Ithaca, NY 14853, U.S.A.

Abstract: We develop a theory of semiregenerative phenomena. These may be viewed as a
family of linked regenerative phenomena, for which Kingman ([6],[7]) developed a theory
within the framework of quasi—Markov chains. We use a different approach and explore
the correspondence between semiregenerative sets and the range of a Markov subordinator
with a unit drift (or a Markov renewal process in the discrete time case). We use
techniques based on results from Markov renewal theory.

Keywords: Semiregenerative phenomena and sets, linked regenerative phenomena,
quasi—Markov chains, standard phenomena, stable states, lifetime, Markov renewal
processes, Markov additive processes.

Introduction and Summary. Let the set T be either [0,0) or {0,1,2,...}, E a countable
set and (02, P) a probability space.

Definition 1. A semiregenerative phenomenon Z = {Zt ¢ (t,£) € TxE} on a probability
space (92, P) is a stochastic process taking values 0 or 1 and such that for (tr,lr) € TxE
(r21), with 0=1ty<t; <..<t, jEE we have

P{Z, , =2, , =..=Z, , =1|Zy. =1}
AN 1.4, = 2o
1 P{z 1z } (=9 W
= = 1 = 1 =j .
=1 tboph 04 0
For each (€ E, denote Z,= {Z, ,,t € T}. Since
P{Z, ,=Z, y=..=1Z, ;=1|Zy =1}
1,0~ il o0 = 2o @
T
—P(Z, ,=1|Z =1} T P{Z, , ,=1|Zq,=1]},
bl 0T T Ty el 0L

Z,isa (possibly delayed) regenerative phenomenon in the sense of Kingman (7] in the

continuous time case T = [0,»), and a recurrent event (phenomenon) in the sense of Feller
[5] in the discrete time case T = {0,1,2,...}. The family Z’ = {Zf’ € E} is a family of

linked regenerative phenomena, for which a theory was developed by Kingman [6] in the
case of finite E; later he reformulated the results in terms of quasi—Markov chains
(Kingman [7]). We explain this concept below.
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Example 1. Let J = {Jt’ t € T} be a time—homogeneous Markov chain on the state space

E and denote
Zte = 1{Jt=e} for (t,[) € TxE. (3)

The random variables Zt , satisfy the relationship (1), which is merely the Markov
property. More generally, let C be a fixed subset of E and

Ztl = l{Jt=e} for (t,l) € TxC. (4)

These random variables also satisfy (1) and thus Z = {Zt o (t,£) € TxC} is a

semiregenerative phenomenon. In particular, suppose that C is a finite subset of E and
define

K, =J, if J,eC, and =0 if J ¢C. (5)
Then {K,,t €T} is a quasi—Markov chain on the state space C U {0}. o

While the quasi—Markov chain does provide a good example of a semiregenerative
phenomenon (especially in the case of finite E), it does not reveal the full features of these
phenomena; in particular, it does not establish their connection with Markov additive
processes. Thus, let

¢={(t,0) € TxE: Z,, = 1}. (6)

We shall call ¢ the semiregenerative set associated with Z. The main theme of this paper
is the correspondence between the set ¢ and the range of a Markov renewal process (in the
discrete time case) and of a Markov subordinator witi a unit drift (in the continuous time
case). Kingman ([7], p. 123) has remarked that associated with a quasi—Markov chain
there is a process of type F studied by Neveu [9]. The Markov subordinator we construct
for our tpurpose is indeed a process of type F, but we concentrate on properties of the
Efﬁg[% ](; this process. For a detailed description of Markov additive processes see Cinlar
,[3])-

To complete Definition 1 we specify the initial distribution {aj, j € E}, where

P{ZOj =1} = 3 (7

with a.> 0, ¥a, = 1. Asin the case of regenerative phenomena, it can be proved that the

relation (1) determines all finite dimensional distributions of Z and that Z is strongly
regenerative (that is, (1) holds for stopping times). We shall write Pj and E. for the

J
probability and the expectation conditional on the event { ZOj =1}.
In the discrete time case we call Z a semirecurrent phenomenon and denote

ug () = P{Zy = 112 = 1} 8)

where “jk(o) = 5jk' In the continuous time case let
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Py (t) = P{Zy = 112y, = 1) (9)

where ij(O) = O The phenomenon is standard if

In this case it is known that the limit
1 — P.(t)
lim —— (jeE) (11)
t-0+

is known to exist (possibly infinite); if this limit is finite, then j is said to be stable.

We consider semirecurrent phenomena and provide some examples. The main result
is that the semirecurrent set { corresponds to the range of a Markov renewal process
(MRP) and conversely, a semirecurrent set can only arise in this manner. For details of
the results from Markov renewal theory used in this paper see Cinlar ([4], Chapter 10). We
construct a Markov subordinator with a unit drift whose range turns out to be a
semiregenerative set. In the case where E is finite we prove that every semiregenerative
set corresponds to the range of a Markov subordinator. Our approach yields results
analogous to Kingman's (FZ], Chapter 5) for quasi—Markov chains. While our approach
(b on Definition 1) is thus more rewarding in these respects, our techniques are
simpler, being based on properties of Markov renewal processes. Bondesson [1] has
investigated the distribution of occupation times of quasi—Markov processes. We shall not
investigate this problem for semiregenerative phenomena.

In the literature there are extensive investigations of semiregenerative processes.
These are processes imbedded in which there is an MRP (or equivalently, a semirecurrent
phenomenon). We take the view that semiregenerative phenomena are important by
themselves and therefore worthy of study. In particular, the theory developed in this paper
provides a proper perspective to the work of Kulkarni and Prabhu [8] and Prabhu [10].
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1. Introduction

Knowledge-based consultation systems (often called expert systems) have become common in the last
decade. Outside the field of statistics, several commercial systems have been built. Within statistics
progress has been limited to methodological feasibility studies, beginning with REX (Gale and Pregibon,
1982; Pregibon and Gale, 1984; Gale, 1986b). Since then Muse (Dambroise and Massotte, 1986),
Express (Carisen and Heuch, 1986), and unnamed systems by Berzuini and others (1986) and Dearius
(1986) have been described.

I mention these first level consultation systems to distinguish Student from them. Student is more than a
consultation system, since it is primarily a tool to help a statistician build such consultation systems.
But since Student also serves as the vehicle for the constructed knowledge-based consultation systems, it
includes the capabilities of the first level consultation systems.

Student is designed to allow a professional statistician to build a knowledge-based consultation system
in a data analysis technique by selecting and working examples and by answering questions. The
statistician does not need to know the internal representation of the strategy demonstrated, and does not
need to know how o write a knowledge based program. He does need to be fluent in the underlying
statistical system, a more natural expectation of a statistician,

REX is a working demonstration of the type of consultation that Student will provide. It allows a
novice to use advanced regression techniques safely by systematically checking the assumptions of the
techniques. It provides guidance to what tests need to be done and when, interpretation of the results of
tests and plots, and instruction in statistical concepts. It has appeared that REX, while designed for use
by novices, is interesting to expert statisticians, because it makes explicit much knowledge that has not
been formalized. Most experts have also expressed interest in using such a consultation system because
it automates many tasks that they know they want to do, but don’t always do.

Like REX, Student is based on an underlying statistical analysis system, and constitutes an interface to
that system. Student uses Quantitative Programming Environment, QPE, (Chambers 1986) as the
underlying system. Briefly, QPE has been designed as a successor to S (Becker and Chambers, 1984).
The external syntax and appearance have been largely maintained. But QPE was designed to be an
environment, that is, to contain programming, browsing, debugging, and editing capabilities. The design
of Student assumes that the statistician using Student to create a consultation system knows how to use
QPE.

A methodological prototype study of Swdent (Gale 1986c) was built using Lisp and a Symbolics
machine. The current version of Student is intended as a product definition study. It is programmed in
the language provided by QPE, since this would be the most likely delivery language for a product. The
goals of the QPE version are to study issues such as speed, usefulness to statisticians, and generality of
the conceptual framework used by Student This version is currently a partially developed system that
has only begun to be used by statisticians. It has not yet begun to answer the product issues posed, but
shows the knowledge acquisition methods more clearly than the prototype, and has begun to be used to
acquire a few different data analysis strategies.

By using QPE, hardware and software requirements are minimized. QPE will run in most Unix™
environments. Wherever QPE runs, Student will run. Student is not a product, but if it were, it would
require a machine with Unix, and QPE software.

This articale appeared in the Bulletin of the International
Statistical Institute, Vol. 52, pp 1-18. Permission of the
author and the editor of that journal to reproduce it here
is appreciated.
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What Student adds to the capabilities of REX is the capability to acquire its knowledge base by
interview and demonstration. The demonstration approach was proposed by Gale and Pregibon (1984),
and tested in the Lisp prototype (Gale 1986¢).

The knowledge base used to conduct a particular method of data analysis has been called a strategy,
and the term will be used here. Section 4 defines strategy. Briefly, a data analysis strategy includes
knowledge about the kinds of problems that can occur in using the method, how to test for them, what
to do if they occur, and how to communicate the problems and solutions to a novice user.

The importance of acquiring a strategy by interview and demonstration is considerable. In the current
state of building knowledge-based consultation systems, two distinct roles, usually played by two
different people, are standard. One is the role of subject matter expert, and the other is the expert in the
inference engine used, or knowledge enmgineer. In building REX, I played the knowledge eagineer,
while Daryl Pregibon played the statistical expert. This procedure requires the knowledge engineer to
leamn a lot about the subject matter, or the subject matter expert to leamn a lot about the inference engine
and programming, or both.

Student’s primary goal is to allow a statistician, who does not know how the infereace engine is built, to
build a knowledge based consultation system without the involvement of a knowledge engineer. This
should support greater efficiency in building consultation systems in data analysis.

There is a substantial secondary benefit as well. A statistical consultation system will be used in many
other ground domains, such as physics, psychology, or business analysis. Current Al techniques are not
adequate to handle knowledge in multiple domains, so we built REX with the explicit assumption that
the user was willing to learn statistics concepts and vocabulary. This assumption will be reasonable for
many analysts, but it will be unreasonable for many managers or low frequency users of statistics.

Student provides the means to specialize the knowledge and vocabulary used to guide a consultation in
data analysis. Because it can leam by interviewing a statistician using locally relevant examples, it can
be provided with strategies shaped to local environments. This will increase the market size for a
Student-like product as compared to a REX-like product.

Another significant benefit of removing dependence on a knowledge engineer is the capability to
specialize a system (0 a local environment. When Student is first acquired by a group such as a quality
engineering group, a specialist statistician can select examples from the group’s files and work them in
the Student environment. After this specialization training, the engineering experts would use Student
for consultation, returning to the statistician with problems beyond its training. When such a problem
seemed frequent, the statistician would work it as an addition to the strategy. If it seemed infrequent,
then it would be worked by hand.

There have been three main challenges in building Student. First, the system had to support the
acquisition of the first example. In a rule based system, the first rules to be acquired are typically
different from later rules, because a rule based system uses a core of rules to encode control information.
A subject matter expert would not be able to provide control information.

Second, Student had to acquire knowledge from a new example that was consistent with its previous
examples. Consistency means that all the examples that the statistician considered as properly worked,
remain so when the additions to the strategy are made.

Third, the system had to support deliberately inconsistent changes to strategies over a long period of
time. Current technology, such as used for REX, results in a "compiled” strategy, which is difficult to
change.

The current version of Student has made clear that the first two of these challenges have been met, and
it suggests that the third can be met. These challenges have been met by the development of an
artificial intelligence technique called knowledge-based knowledge acquisition (Gale, 1986e).
Knowledge-based knowledge acquisition means restricting the domain of knowledge that can be
acquired, and developing a conceptual mode! of the restricted domain.

Student is restricted to acquiring daia analysis strategies. It is not a general purpose knowledge
acquisition program for a general purpose inference engine. With this restriction, I have been able to
provide a conceptual model for strategies of data analysis. For instance, we know we have to deal with
data sets, and we have provided representations to deal with them. The conceptual model specifies that
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2. The Appearance of Student to the Statistician

The appearance of Student to the statistician is partially conveyed by the following transcriptions of
sessions with Student. The sessions show how a statistician begins to instruct Student. This phase
demonstrates most clearly the knowledge built into Student, as opposed to the knowledge thet it
acquires,

2.1 Introducing a New Data Analysis Method

In the first session, work is begun on a strategy for a data analysis technique new to Student. This is
the first stage of building a new consultation system. The example supposes that spectrum analysis
(Bloomficld 1976) is to be defined for the system. The statistician’s entries are shown by a ">" and
boidface text. The computer’s screen output appears in italics.

>student( )

Do you want to

1. get a consultation from me
2, instruct me in a strategy
>2

There is no currently selected analysis. Do you want
1. univariate description

2, simple regression

3. New Analysis

>3

Please type a word for the name of the new type of analysis ( analysis)?
>spectrum .

At least one variable is mandatory for spectrum analysis.
What is the name of the first required variable?
>time.series

Each inpwt variable will be copied to a standard QPE variable.

What standard name would you like to use for the time series variable?
>x
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time series is now the required variable for spectrum analysis.
Please enter another name for another required variable,
or'.’ (dot) if there are no more.

>o

There are no opiional variables now. Please
enter a name for a variable, or °.’ (dot) if there are none.
>.

Notes on the session to this point:

The session begins from within QPE by calling student just as any other QPE function is called. Since
Student is built within QPE, it is easy to use Student for routine analyses, switching to the full power of
QPE if the analysis becomes non-routine.

The first point that Student must establish is whether the user is a statistician who wants to instruct
Student, or a consultation client. This is essentially a branch to two entirely different programs which
share the same data structures. The data structures are acquired from statisticians and used for
consulting.

Student then asks which analysis will be worked on. Any existing analysis may be modified by a
statistician. Notice that the list of options provided is a dynamic one that depends on what kinds of
analyses Student knows about. Also, the option to add a new kind of analysis is only shown if the
mode asked for was student.

The reason we know that we must have at least one mandatory variable is that we are doing data
analysis. There may be other mandatory variables, and there may be optional variables. This is a clear
and simple example of how the restriction to data analysis provides information which enables
knowledge acquisition. By organizing the information about data analysis as much as possible, we try
to build a formal cognitive model of data analysis.

The session continued:

Analysis Revision Menu

1. select or define analysis (spectrum now)
2. create a new strategy (copy or construct)
3. define a new example

>2

There is no existing strategy to copy.
Please type your last name.
>gale

Please type a word to use for the strategy name
(or just a'.’ (dot) to accept "gale" as a default).
>.

Analysis Revision Menu

1. select or define analysis (spectrum now)
2. create a new strategy (copy or construct)
3. define a new example

4. select a strategy

S. delete a strategy

6. stabilize a strategy

7. refine the gale strategy

>7
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Strategy Refinement Menn

1. show strategy & statuses
2. select or define an example
>1

NAininputs  OK
final.calculation OK

Notes on the continuation.

Once an analysis is selected, the top level menu becomes the analysis revision menu. An analysis is
needed to select the dynamic entries 0 the menu. The menu shows that with a minimally defined
analysis, we can definc a new strategy or a new example.

The session continued by defining a new strategy. The system records the name of the author of the
strategy, and gets the date it is begun from thé operating system.

Communication requires many names, and they have to be convenient for the people using Student.
Thus, Student needs to ask a lot of names. Wherever possible, the sysiem suggests a default, but the
final choice is up to the statistician,

After creating an empty strategy, the analysis menu has expanded. Before there was a strategy, there
were none to select or delete, 30 there was no sense offering these options. A strategy is "stabilized” to
make it available for comsultation. So long as a strategy is considered stable, it can be used for
consultation, and it cannot be modified. This is just a reminder 1o the statistician, since it is simple to
stabilize and destabilize, or to copy a stable strategy and modify the copy. But it is important that the
statistician carefully consider which strategies Student will be allowed to use for consultation.

Thig session is ended as Student shows the two minimal features automatically created for any new
strategy. QPE provides "NA" as the result when asked to take the logarithm of a negative number, or to
divide by zero. Student infers from NA's in transformed variables that inappropriste mathematical
manipulations have been made. The knowledge about the limits of the functions is thus distributed
among the functions themselves. If it were not there, it could be provided as background knowledge,
but there is no reason to duplicate the knowledge. This does mean that strasegies need 10 specify what
should happen if an original input contain NA's. The feature initially provided will detect NA in any
input, but awaits learning what to do until some example triggers it. The other feature initially provided
is an empty shell 10 place a final calculation and report into.

Before the strategy extension cycle can be begun, an example must be provided.

22 Introducing an Exampile

In this session, Student is shown the existence of a new example. No demonstrations can be made
without examples, so this step is necessary to continue constructing a consultation system. The user has
selected simple regression analysis (Mosteller and Tukey 1977) for this session, at a point just after
defining simple regression and one minimal strategy named "basicsr.”

Analysis Revision Menu

1. select or define analysis (simple regression now)
2. create a new strategy (copy or construct)

3. define a new example

4. select a strategy

5. delete a strategy

6. stabilize a strategy

7. refine the basicsr strategy

>3

Please type a word (o use for a short name for this example.
> brain.body

Please type a word (o use for the response variable data set.
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> brain.y

Please type a word o use for the explanasory variable data set.
> brainx

Do you have a weight variable for this example?
> mo

Please type a brief description of the brain.body example.

> The respounse variable is the average brain weight in grams,
the explanatory variable is the average body weight in kilograms,
for 62 terrestrial mammalian species. Data from Weisberg, p128.

Notes on this session:

The simple regression data analysis method was defined to have two required inputs and one
input. The required inputs are called "response” and “explanatory”, and the internal QPE names
and "x". The optional input is called "weight" and its internal name is "w." This session shows
the information acquired by Student is put to use and becomes difficult to distinguish from
knowledge it starts with.

If the short name had been chosen as "brain,” the system would have located "brain.y” as a data set
named by concatenating the short name and the internal name of the response varisble. It would have
assumed that the data set was s0 named precisely to be used as the initial input for the response
varisble. It would likewise have found "brain.x™ as a data set for the explanatory varisble. As it is, the
system has checked that the data sets of the given names exist. It then constructs code to assign theso
initial values 10 the data sets "y" and "x.” It does not execuse this code now, but stores it as part of the
definition of the example.

The system did not find a data set named "brain.body.w", so it asks if there is a weight variable for this
specific example. When it learns that there is no weight variable, it uses stored code describing how to
generate default values for the weight variable. The code used was acquired by demonstration during
the initial definition of the simple.regression analysis frame.

The description of the example is treated as unprocessed text. It is available 10 those modifying a
strategy t0 see what examples the strategy was developed with. Asking for it is a reminder to the
statistician that the information will be needed by others later. It is probably easier 0 give this
information now than in the future. The reply given here shows that there is information that could be
broken down and some of it made available to the machine. The meaning of each variable, their units,
the sampling units, and the source of the data might each need to be asked individually.

23 Strategy Extension

This session shows the usual cycle for strategy extension. It begins with a minimal strategy for simple
regression. I have shown this session without the full menus, only the menu line selected by the user as
the user’s input.

;

L
-«

g%

Analysis Revision Menu
> 7. refine the basicsr strategy

Strategy Refinemens Menu
> 2. show examples and evaluations
brain - unanalyzed

Strategy Refinement Menu
> 3. select an example
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The only example available is the brain example.
> 4, analyze the example

beginning to consider NA.in.inputs feature with no argument
beginning to consider final.repor: feature with no argument

Strategy Refinement Menu
> S. REVISE strategy by inserting a new feature

Which feature is the last one correctly analyzed?
1. none of the below are correct

2. NA.in.inputs(none)

3. final.report(none)

>2

Please type a word to use for a name for the new feature.
> skewness

Please tell me why skewness is important for simple regression.
> The skew points are unduly influential.

Please type a word to use for a name for this test (the ... test),
or just a’.’ (dot) to accept skewness as a default.
>.

Please type a word to use for a QPE name for the test statistic,
orjusta’'.’ (dot) to accept skewness as a default.

>,

Type 'return()’ to make your last expression define skewness.
Student: qtls<-qti(y) #quartiles of y

Studens: qtis

(4., 1725, 169.)

Studen:: (qtis[3]-qtis[2])/(qtis{2]-qtis{1])

11.4528

Student: return()

The value of skewness on this example is 11.4528.
What preliminary LOWER limit do you suggest?
>18

What preliminary UPPER limit do you suggest?
>3

The interpretation of the first test result is severe.
Is this your intention?
> yes

This tess has just one input variable. This can be treated

as an argument if you want, but doing so will make the result
unavailable to further computation.

Do you want this to be a feature with an argumens?

> yes

Please type a word to use for a short name for this transform (the ... transform).

> log
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I am setting up a temporary environmens. Please show me how to make a log
transform by providing code to redefine ALL NECESSARY inpwt variables,
ENDING with a redefinition of y.

Type 'return()’ to make your last expression define y.

Student: log(y)

(3.79549, 2.74084, ...

Student: return()

You have shown me: expression(y <- log (y ) )

is this a satisfactory definition of the log transform?
>yes

The log transform will reduce the problem severity from severe to mild.
Is the log transform acceptable to you?
>yes

Committing to the log transform.

Strategy Refinemens Menu
> 4. analyze the example

beginning to consider NA.in.inputs feature with no argument

beginning to consider skewness feature with argument y
making log transform

beginning to consider final.report feature with no argument

Notes on the session:

All strategics for a given analysis method share the same set of examples, each defined by specifying the
input variables. Each strategy has its own records about how well the strategy has analyzed the
example. Each example has status unanalyzed, acceptable, or unacceptable. To start with, an example
is unanalyzed, After a strategy revision, all examples arc marked unanalyzed.

After selecting and analyzing the brain example, it is found to be unacceptable, because there is no basis
for declaring it acceptable. One action possible for an unacceptable example is to declare it is
acceptable. Then it is so marked, and the pattern of transformations and their reasons (features of
arguments) is stored. Any other analysis that makes the same sequence of transforms for the same
reasons will be automatically marked acceptable. An acceptable example can be declared unacceptable,
which causes the pattern to be stored as a known bad pattern.

The other options for an unacceptable example all revise the strategy. The scssion shows one way to
revise the strategy, by inserting a new featre. Other ways include deleting a feature, and revising a
feature. To insert a feature, we must know how far the analysis is considered correct. Then the new
feature will be inserted so that it will be tested following the last correct feature.

The acquisition of a test shows the system collecting code to define the test. The statistician is in a
slightly modified QPE environment, free to examine data known to Student, call on any predefined QPE
functions, and 1o plot as may be useful. The modifications are that the user may not refer to data not
known 0 Student, and may not make an assignment to a global variable known to Student. When the
user types ‘return()’, a legal QPE expression with a special interpretation here, control returns to
Swdent. The program then cleans up the series of expressions into a minimal set required to define the
desired variable. In the example, the line on which the statistician examined the values of the quartiles
will be deleted.

Student will infer lower and upper limits from the statistician’s actions over many cxamples. But when
there is only one example, the induction method fails. Therefore a set of preliminary limits is requested.
Their importance declines as more examples become available. The preliminary limits can also be set
by an automased Monte Carlo method, but it is too slow for interactive use.
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The system examines the code produced, and finds that only one variable was used 10 define skewness.
In such a case, generalization is frequently useful. It simplifies the process of reconstructing any given
value t0 have such generalized functions not be used in further calculations. This appears (0 be
acceptable in common cases where generalization is useful. If it is unduly restrictive, a more complex
internal method can be programmed.

The system then asks for a demonstration of what to do if skewness is found to be a problem. A
transform specifies each input’s new value. The previous values of the inputs and intermediate results
based on them are available for the new specification.

Student always creates a temporary environment when it considers a transform. The transform is made
in the temporary environment, and the test for the feature is applied. If the result is still unacceptable,
the transform is not committed, but the original environment is restored. This procedure is followed
even on the time that Student is shown how t0 make the transform.

This completes the demonstration of the skewness feature. Student now works the example by making
the log transform of the response variable. The next step will be to show it that the skewness of the

explanatory variable needs to be examined. This will be much shorter to show, since the same feature
can be reused with a different parameter.

3. The Knowledge Acquisition Method
3.1 A Critique of Knowledge Acquisition in REX

Developing a strategy for use in REX was a labor-intensive process. Two phases can be distinguished.
mmmmummmmfanwmwu.mlnegnmdncawm
regression examples that clearly showed some frequent problems. He analyzed them using
menﬁsﬁeﬂnﬂwmwimmmﬁcmwmmm of examples, he
studied the traces and abstracted a description of what he was doing. Weeodedthnuanmegyfot
REX and tried it on a few more examples. He revised the strategy completely at this point, and the
second phase began.

In the second and longer phase, one of us would select one additional regression example and run REX
interactively on the chosen example. Since we selected the example knowing what would streich REX,
REX usually reported a severe problem that it didn’t know how to fix. Then we would modify the
strategy so that the example would be handled. This process was iterated through about three dozen
more examples.

Based on this experience, and on a feeling that it was typical of other techniques, we do not believe it is
possible to build a data analysis strategy without working through many examples. One must make
many decisions to build a strategy, and there is no literature simplifying the task. Therefore the only
available defense of a strategy is to demonstrate performance, which requires working many examples
more than those used to build the system. On the other hand, our experience also leads us to believe

values of the test for which the demonstrated technique holds.

However, the way in which we worked examples for REX was far from ideal. The first difficulty with
our method was assuring ourselves that a strategy modified to work one additional example still worked
all previous examples. We could by brute force run REX in batch mode on all previous examples and
see if the performance was the same. Usually we reasoned that most of the previous examples could not
be affected, and checked the few that might be affected by hand. Naturally, the more examples worked,
the more severe this problem became. The need to check consistency in batch mode for a system
designed to be interactive reduced the flexibility of the strategy developed.

Second, the method used was the epitome of the currently standard two-person development of expert
systems. [ built the inference engine used while Daryl was responsible for the strategy developed.
Whenever Daryl wanted to do something he hadn’t done before, we had to huddle, as Daryl was
learning a language he would only use to build one program. In a department with twenty professional
statisticians and one person intimately familiar with the inference engine, it was not clear how many
additional data analysis techniques could be handled by this two person approach.
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Third, it would be difficult 10 modify the strategy in REX. Modifiability is important because a growing
literature on strategy (Gale, 1986a; Haux, 1986) can be expected to suggest desirable changes. It is also
important because users will probably want to modify strategies to their particular needs. However, the
first two problems would make this difficult: 10 specialize the program a local statistician would have to
learn a language used by no other program in the world, and the modifications made might inadvestently
destroy some capabilitics of the strategy.

However, the development of REX contributed greatly w0 following work. It provided us with the
beginnings of a conceptual model for data analysis: a data analysis consists of a desired calculation,
assumptions required for the calculation t0 be meaningful, tests for the violation of the assumptions, and
transformations to ameliorate the violations. The classes of frames used in REX provided us with an
initial list of classes of primitives that has remained useful and has been expanded into a fuller
conceptual model of data analysis.

33 Knowledge Acquisition in Student

The necessity of working examples to build a data analysis strategy suggested the possibility of
acquiring strategies directly through that process. A system should assist the teacher in establishing
consistency across all examples worked, and should not force a statistician to learn an obscure language.
It appeared that examples might provide a language suitable for communication between statisticians and
computers.

The first issue encountered in designing Student was how 10 learn from the first example. In a sysiem
without knowledge, there is simply no basis for use of information provided in working an example. By
providing Student with the conceptual framework induced from REX, we have built a sysiem that can
deal meaningfully with an example even when it has seen no previous examples. The rather limited use
of code collection in Student shows how much of the knowledge it is acquiring is not knowledge that
could be inferred from just watching the analysis of an example. Even for the perts heavily dependent
on code, if the system did not have some notion corresponding 80 "plot”, "test”, and "transform”, it
would not be able 10 deal with code having these different functions. In short, understanding the first
information provided is possible because the system is limited to data analysis, and because it has been
possible t0 build a conceptual framework for data analysis.

The conceptual framework used in the current version of Student has the fifteen classes of primitives
shown in the following table. Each instance of a primitive is represented by a frame. In the table,
indentation shows that names of instances of the primitive indented occur as values in some slot of the
superordinate primitive. That is, the relation shown by indentation is ‘‘uses information from.'’

analysis
input variable
example
feature
test
plot
transform
report
strategy
linear
conditional
repeated
concept
class
consultation

Each primitive has a set of slots, which are also chosen to reflect the structure of data analysis. As an
example, a simple primitive is the input variable frame, which has only a few slots:
input variable

external name of inpwt

required or optional
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default if optional
data type
internal variable name

The content of the instances of these primitives is the information that a consultation system must have.
For instance, when asking a consulting client for a specific input, it is necessary 10 know the common
name of the input. Likewise, the system must know whether to insist upon having a given input
varisble before beginning the analysis (required or optional), and what default to use if the user does not
have an optional input. The system must also know what data type the input requires 10 determine if
submitted data is possible. Since we do not want 10 overwrite input data with later calculations, we
need a standard variable name 10 copy the input to.

Knowledge-based knowledge acquisition in this context means specifying how the contents of each slot
will be acquired. For the input variable primitive, each slot could be acquired by asking the teaching
statistician. Most of them could also be acquired more actively. The internal name could be creatsd
from the external name and perhaps a unique number. Acceptable data types could be inferred from the
data types of the inputs to the set of examples provided. Optional variables and their defaults could be
inferred as those with repeated inputs. It scemed better in each of these cases to ask the teaching
statistician and then use the information to check inputs 10 teaching examples.

Thus, specific techniques designed for the specific knowledge in each slot were chosen. Student uses
four specific techniques: interviewing, limits induction, Monte Carlo leamning, and background
knowledge.

Most cases are handled by interviewing. Knowing what is needed, and having a statistician at hand, it is
easy 10 just ask. Even so, exactly how to ask for the information varies between menus, fill in the
blank, multiple simultaneous choice, and free response. And of course the prompts vary with the item.

Monte Carlo leamning can establish initial notions of the distributions for test results. The distributions
in turn can be used to set initial cut points, or limits for distinguishing severe, mild and insignificant
cases of assumption violations.

Limits induction is inference of limits on test ranges from test results and action (transform) or non-
action by the statistician. Let v; be the value of a test on the ith data set, and a; be T or F as the
statistician acted or didn’t act. Set the lower cut point as max(v;!a;=F) and the upper cut point as
min(v; 1a;=T). Thea for test values above the upper cut point, the statistician has always acted, and for
values below the lower cut point, the statistician has never acted. This simple scheme is slightly
modified w0 include the Monte Carlo results.

Knowledge-based knowledge acquisition has several advantages. First, the information in each siot is
necessary for a consultation program. Sysiematizing the knowledge 0 acquire from a statistician speeds
construction because the sysiem won’t forget what is needed.

Another advantage of knowledge-based knowledge acquisition can be shown in the acquisition of an
input variable. It is almost always appropriate to run a number of tests on each input variable by itself.
Without knowledge-based knowledge acquisition each time a new variable is given, a battery of tests
must be specified by the teaching statistician. However, it is easy 10 keep track of what tests have been
used for all input variables by data type, and t0 suggest these to the statistician. Since the tests are
based only on knowing the data type of the input, they will ofien be appropriate in many different data
analysis procedures. The domain knowledge we are using here is that the tests are similar in many
different analysis types, and that they are reasonably organized by data type.

As another example, a statistician may notice afier some time of programming that an optional input
variable is possible. One would then back up and increase the generality of numerical procedures t0
accommodate the extra varisble. With knowledge-based knowledge acquisition, the statistician is
encouraged w0 think of optional inputs at the beginning of the construction process, thus avoiding the
costs of reprogramming. This encouragement may not always be effective, but it can only work in the
direction of reducing the problem. In shost, by providing a framework for data analysis, the statistician is
encouraged 0 think in previously successful terms.

Acquiring first examples does not address all the problems in building a knowledge acquisition system.
However, the domain restriction has been useful for extending a given body of knowledge as well as
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beginning it. Extension of knowledge for a given data analytic technique involves demonstrating more
assumptions, how 10 detect their violation, and how t0 fix them. The same techniques used for initial
acquisition suffice here. However, it is also necessary to check consistency for previously worked
examples.

Knowledge-based knowledge acquisition has also been useful for dealing with consistency as the number
of examples and the strategy have grown. Consistency means that after incorporating information on a
new assumption, the recommended analyses of all previously worked examples are not changed. This is
a requirement analogous to logical monotonicity. Some changes can be proved consistent by using
domain knowledge. The domain knowledge consists of a theorem, and the proof consists of verifying
the hypotheses of the theorem, so this is not automatic theorem proving. The proof may use data that
could be specified and collected when the previous examples were demonstrated. This will be more
efficient than rerunning examples. Other cases, such as showing that a new test is not passed for an old
example, require new calculations. Domain knowledge is able to specify data to save that will make
such checking faster than completely reworking an example.

Of course, the check may find that a change is inconsistent. That is, that the recommended analysis for
at least one previous example has changed. Then the statistician will need to revise the existing body of
knowledge. This might just consist of blessing the revised analysis for the inconsistent examples. Or it
may require revising the strategy, perhaps revising the assumption just added. This can be assisted by
domain knowledge encoded as editing procedures.
33 A Critique of Knowledge Acquisition in Student

Interviewing is useful. A knowledge-based interview is easy to write, since one knows exactly what to
acquire. Interview procedures attached 10 slots are easy (0 keep track of, so that it is easy 10 see if all
slots can be acquired.

A research issue is how much can and should be acquired by interviewing, and how much must or
should be provided as initial knowledge. The Lisp prototype tested this by attempting to acquire
everything by interviewing. It appeared that everything could be acquired this way. However,
experience with this extreme approach led to deciding to provide some items as initial knowledge. The
collected reasons used 0 justify initial provision of an item were

(1) distractingly frequent requests for information,

(2) richly structured information,

(3) stable and non-controversial information.
For example, data types (vectors, matrices, time series, ...) are being built in for reasons 2 and 3. An
initial core of technical definitions will be provided for reasons 1 and 3.
The original idea of programming through demonstration of techniques on examples nceds further
development. In the Lisp version of Student, demonstration of examples seemed slow and clumsy. As
Student has developed, the settings in which demonstrations occur have been restricted 10 key points
sbout a particular example, so that the demonstrations become short sequences in 8 well understood
setting. This has helped, and it is useful when describing a plot or test 10 have an example 0 do the
operations on immediately. However, the process is still not flexible enough 10 allow exploration and
final selection of one of several approaches tried. The statistician needs 10 approach the system with a
clear idea of what will be demonstrated. There is, however, key information in the examples and I
believe the current system is a useful start towards a more flexible system.
We found in building REX that the most powerful explanations in statistics were not verbal, but
graphical. Thus we programmed before and after plots for each transformation. Student is able to make
these automatically from plots acquired while being shown how to detect an assumption violation. This
is a convenience.
Monte Carlo leaming seems like a technique with much wider applicability for statistical systems to
learn about statistical tests. Its use will be limited to overnight applications.

Limits induction is apparently a useful idea. It can describe what a statistician has actually done,
possibly pointing out a poorly worked example, or a poor test. It can be used 10 alert statisticians to
taking an action that is not consistent with previous actions, but can be changed easily if they insist.
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4. Statistical Strategy Repressatation in Student
41 Goals for Repressatation of Statistical Strategy

This section discusses what is meant by statistical strategy, how strategy is being used, and why it i
being studied. The purpose is t0 derive the goals that must be met by representations of stati
strategy.

The term statistical strategy has been used t0 denote integrating previously known tests
transformations into coherent total approaches 10 data analysis. Although the term was suggested
1981 by Chambers, there is as yet no generally accepted definition of this term. Daryl Pregibon
(1982) suggested that strategy would answer questions such as

‘‘What do I look for?**

*“When do I look for it?"*

*“How do I look for it?"’

*‘Why do I look for it?"*

‘‘What do I have to do to look for it?"*
Wayne Oldford and Steve Peters (1986) wrote *“The term ‘statistical strategy’ will be used here to label
the reasoning used by the experienced statistician in the course of the analysis of some aspect of a
substantive statistical problem.’’ David Hand (1986) stated ‘‘statistical strategy has been defined as a
formal description of the choices, actions, and decisions 10 be made while using statistical methods in
the course of a study.”” These definitions give the general flavor of the subject matter beginning 10 be
addressed and for which representations must be sought.

E
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have been proposed by Hand (1986) and Oldford and Peters (1986). Hand discussed four stages of
analysis, while Oldford and Peters distinguished four levels of strategy. That is, Hand was concerned
with entities which take place at different times, while Oldford and Peters® description is a classification.
Hand’s four stages are (1) formulate aims, (2) translate into formal terms, (3) numerical processing, (4)
interpretation. These stages were given specifically as stages in a multiple analysis of variance
(MANOVA), but they appear to me 10 be general. The first stage is concerned with what dependent and
independent variables are involved, how they are related, and what questions the researcher wants 10
explore. It is largely phrased in the language of the ground discipline. The second stage results in the
translation from a problem statement in the ground discipline 10 a problem statement in statistics terms.
within the statistician’s language. The fourth stage consists of translating back to the ground
As Hand points out, there will be various loops in an analysis, retuming (0 earlier stages
ecisi

Oldford and Peters suggest ‘operational level’ as a scale for thinking about procedures. At the
level are standard numerical procedures of statistics, such as least squares fitting or robust fitti
Selections from this level constitute the minimal components of a statistical package. Just above thi
level are such sub-procedures as collinearity analysis and influential data diagnosis. Each of
presupposes the existence of procedures in the layer below it. Above this layer lies a layer
techniques, such as regression analysis, spectrum analysis, or analysis of variance. The top-most
identifiable level has strategies for analysis and for design.

The levels idea rests on a notion of a procedure using other procedures as building blocks 0 carry out
its goals. The notion of stages is that of what is done first. The relationship between them is that the
high level strategies are used first and more frequently. The low level strategics are used later if at all.
Thus the higher levels of a hierarchy of techniques will correspond to the preliminary stages of a study.

43 Intentions i Studying Statistical Strategy

il

zgggg

communicating among themselves.

139



IP-16.1

Since the current uses of strategy are for programs, the representation must be interpretable by machine.
The assumed users of all the programs cited appear to be untutored in statistics. Therefore, it will be
important to interpret the numerical statistics in English. The strategy representation needs 10 ease
preparation of reports on what has been done.

Implicit in the choice of technique and application of technique uses is the opportunity 10 assist users in
many different techniques. The representation must then be capable of expressing how to make the
required choices in many different data analytic techniques.

Another possible use of strategy is for statistical education. By clarifying what features the various tests
and plots are designed 10 detect, when various features should be sought, and how to respond if they are
found, it should be possible to educate students more effectively. A representation suitable for education
may be coasiderably different from one for consultation, based on Clancey's experience with Guidon
(Clancey 1984). Without a setting in which to test this use, the requirements are unclear.

The goals that emerge for a representation for statistical strategy are that it should serve as a
communication medium between expert statisticians, students, and machines. It should be sufficieatly
expressive for strategies in the range of data analytic techniques. The machine uses include both
deciding what to do and reporting why.

43 The Feature/Imperative Representation of Strategy in Student

This section describes the strategy representation evolved through REX and Student. Another
representation is described by Gale and Lubinsky (1986), which compares the two representations.

The siatistical knowledge in Student is represented by a symbolic network. The lowest level of this
network consists of such things as strings representing commands to the statistical language, strings of
English text to show the user, numbers representing limits for interpreting tests, and lists of past results.
These lowest level entities are grouped into entities that represent such things as tests, plots, report
fragments, and transformations. These are in turn grouped to represent what we call features, and the
features are combined into strategies. This representation can be readily seen to correspond closely to
Oldford and Peters’ description of strategy by levels, although the conteats of the lower levels are
different.

Features represent statistical concepts such as outliers, mean, granularity, heteroscedasticity, and
symmetry. When a statistician examines a strategy used by Student, features are the lowest level
exhibited in the graphical presentation. When the Student program examines a strategy, it interprets the
same structure as a set of commands, or imperatively. Thus I have called this representation scheme
‘‘feature/imperative.’” When interpreted imperatively, the strategy directs the program through a series
of stages, analogous to Hand’s description, but much more restricted in scope.

The feature/imperative representation has evolved through development of REX, and the prototype study
for Student (Gale 1986c) to the current design. REX made two major contributions w0 following work.
The first was a viewpoint for thinking about data analysis as a diagnostic problem. Briefly, one should
list model assumptions (analogous to possible diseases), test the data set at hand for violations of the
assumptions (analogous to symptoms), and if found select a transform of the data (analogous to
treatment). The success of this approach depends on the representation of statistical knowledge. This
was the second major contribution of REX. REX had a set of statistical primitives including tests, plots,
assumptions, and transforms, which could be built with artificial intelligence techniques such as frames
with slots, or objects with attached methods.

Features, plots, tests, and strategies are entities with enough usefulness as concepts that it is also useful
to establish analogous entities in writing a program. The programing device used o represent these
entities is called a frame. A frame is in the first place a place to store information. Named slots specify
which information can be stored in the frame. Different types of frames are distinguished by what
information will be stored in them. The bare bones of the strategy representation can then be stated by
describing the types of frames, or primitives, used and what information is kept for each of them.

The Stdent prototype built on the insight gained from REX, and increased the number of primitives to
ten. The current design for Student uses most of the primitives from the prototype plus a few more, as
listed in the section 3. Descriptions of the primitives follow.
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The concept primitive keeps information about technical statistical words. The purpose is simply 10 be
prepared 10 define them for users. The more this definition can be tutorial, the better. This is the only
primitive not used directly in the strategy.

The data type primitive keeps information about vectors, matrices, upper right triangular matrices, etc.
There is a small collection of data types with a hierarchical structure. It provides information such as
how 10 verify that a data set is of the required type, and how to generate a random example for a Monte
Carlo study (Gale and Lubinsky, 1986).

The analysis primitive reflects that Student will handle several analysis techniques, such as regression
analysis, description of univariate data, spectrum analysis, and analysis of variance. The analysis frame
will show how many input variables are required, and how many are optional. It will also show what
strategies are available. The input variable primitives specify such things as name, data type, and
default value.

A strategy is validated by the examples that it works, and it is partially derived automatically from
examples. Therefore each strategy will deal with a group of examples, each represented by an example
primitive. The remainder of the primitives are used t0 express the strategy as a structure built of
features.

The feature, test, plot, and transform primitives originated in REX and have been used in each system
since. They describe how 10 test for a feature, hoe 10 show it to a user, and if its presence violates an
assumption, what transforms can be considered 10 alleviate the problem. The report fragment primitive
has been added 10 help generate a report. It seems likely to be elaborated.

The preceding discussion described how strategy in a broad sense is represented in Student. A strategy
in the narrower sense of the strategy primitive is described formally as a combination of features. The
combination used in Student is a programming language restricted by requiring a simple graphical
display of an expression in the language. This is based on a decision to encourage statisticians to think
about strategy by providing a vivid representation of a strategy. The restriction does not limit the
strategies that can be described, but it may make a description clumsy. In interactive use only the
graphical language is seen by the statistician. However, the formal language underlying the graphical
expression gives it a clear definition of its meaning. It may also be useful as an off line recording and

The language used is formally described as follows:
strategy = item (strategy / empty)

item = feature
/ if(" feature *)* (strategy ( 'else’ strategy / empty )
| ’else’ strategy )
/ *for(’ feature °)’ strategy

feature -' test-feature
/ strategy-feature

Informally, this is read that a strategy consists of a list of items. Each item is either a feature, a
conditional strategy, or an iterated strategy. A feature is either a test feature or a strategy feature. A
conditional strategy is a test on a feature, with one or two alternative strategies to consider depending on
the test. A conditional strategy is a repeatedly tested feature with a strategy to consider whenever the
test is passed.

The symbols of this language are given meaning by considering each feature, item, and strategy 0 be a
predicate having value present or absent. A test-feature (a feature primitive) contains a test that can be
applied 10 any example and a means of interpreting the test result to state that the feature is present or
absent. This is the “‘ground truth”’ on which the language builds. A strategy is present if and only if at
least one item is present. A strategy-feature has a strategy, and is present if and only if the strategy is
present. A feature is tested according to its type, test-feature or strategy-feature. A conditional strategy
is present if and only if the selected strategy is present. An iterated strategy is present if and only if the
feature is present at least once and the strategy is present at least once. The feature of an iterated
stralegy must have exactly one argument that takes integer values starting with onc. The iteration is
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pexformed over successive values of the argument and terminates when the feature is not present.

This language can be diagramed using a node for each item. The details are given by Gale and
Lubinsky (1986). Examples of the use of this notation for a strategy for unordered umivariate
description and the strategy used by REX are given there.

My belief is that this forms an easily leamed language for statisticians, that it forms a sufficiendy
expressive language for data analysis strategies, and that it can be easily used by a machine to analyze
data and report on the findings. All these points require further experience before the language is
suitable for a product.

S. Prospective

Key questions still need 10 be answered before a relisble and casy to use program for building
consultation systems will be available as a product. It is still not clear how far the conceptual model
provided in Student will generalize. or how far it can be made 10 generalize. It is not clear how casy
Student will be 10 work with, or how suitable the interface for statisticians is. The most fruitful avenue
of continued research would appear (o be 10 focus on statistical strategies, using Student 10 develop and
compare strategies in commonly used data analysis techniques. We need experience with statisticians
building strategies using Student and with consultations done using those strategies. This experience
will show us what the opportunities are for further artificial intelligence applications.
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ABSTRACT

Student is an expert statistician’s ool for building consultation systems in data analysis. To
use Student, the statistician selects a technique of data analysis and choses examples for
which the technique is appropriate. The statistician then demonstrates to Student how the
chosen data sets should be analyzed. Various leaming techniques are used by the Student
program 10 build a strategy for the data analysis sechnique. These include asking questions,
inference, Monte Carlo leaming, and background knowledge. Student tests consistency
between demonstrated examples and the evolving strategy. The statistician can change
cither the acceptable method for working an example or the strategy if the two are
. .

Student is built within the Quantitative Programming Environment, a new generation
statistical system. Use of Student only requires that the statistician know how to use QPE;
no other language is needed. Student is being used %0 build strategios for umivariste
description, simple linear regression, and spectrum analysis.

The key artificial intelligence technique used to build Student has been called knowledge-
based knowledge acquisition. This means restricting the domain for which knowledge can
be acquired (to data analysis), and providing a conceptual framework for the domain. The
conceptual framework for data analysis is expressed as a set of primitives representing such
statistical concepts as strategies, features, plots, and examples. A strategy is represented as
a network of frames each of which is an instance of one primitive.

RESUME

Swdent est un outil expert utilis¢ par les statisticiens pour coanstruire des systtmes de
consultation pour 1'anayse de données. Pour wiliser Student, le statisticien choisit une
techuque d’analyse des données et des exemples pour lesquels cette technique est
apppropride. Le statisticien démontre ensuile au Student comment les bases de données
choisis devraient &re analysées. Des technique d’apprentissage diverses sont utilisées par le
programme Student pour construire une stategie pour la technique d’analyse des données.
Ces méthodes comprennent poser des question, la déduction, 1’apprentissage Monte-Carlo et
les connaissances de base. Le Student teste le cohérence entre les exemples démontrés et la
statégie en cours. Le statisticien peut changer soit la méthode appropride pour résoudre un
exemple, s0it la stratégie si les deux sont en contradiction.

Le Student fait partic de I'Environnement de Programmation Quantitative (Quantitative
Programming Environment), un sysi’me statistique de nouvelle génération. Pour utiliser
Student, le statisticien n’a besoin que de savoir utiliser le QPE; aucun autre langage n'est
nécessaire. Student est utilisé pour développer des stratégies de description univaride, de
régression lincaire simple et d’analyse de spectre.

La sechnique-clé d’intelligence artificielle utilisée pour réaliser Student a &€ nommée
acqisition de connnaissances basee sur les connaissances. Ceci veut dire limiter le domaine
sur lequel des connaissaince peuvent &re acquises (pour 1’analyse de donnée), et fournir un
cadre conceptuel pour ce domaine. Le cadre conceptuel pour 1'analyse de données
s’exprime sous la forme d'une base d’opérations des concepts statistiques tels que des
stratégies, des fonctions, des tableaux, et des exemples. Une stratégie est représenté par un
réseau de cadres dont chacun est un exemple d’une opération.
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ON THE USE OF FACTOR ANALYSIS AS A PREDICTION TOOL

Oskar M. Essenwanger
U. S. Army Missile Command
Research Directorate
Research, Development, and Engineering Center
Redstone Arsenal, AL 35898-5248

ABSTRACT: Factor anelysis is generally considered as being a disgnostic tool in
statistical analysis. Since the mathematical background for factor analysis and the computation
of empirical polynomials is the sams, factor analysis can be useful as a prediction tool.

Factor analysis is compared with ordinary regression analysis &s a prediction tool and
some advantages utilizing factor analysis are discussed. In regression systems the individual
terms are not necessarily independent while the factors are orthogoy™. Predictors which have
a time occurence later than the time of prediction cannot be included into regression systems but
can be utilized in factor schemes. Furthermore, extreme values are usually underestimated in
regression systems. Thus factor analysis may fare better especially for predictands whose
frequency distributions are U-shaped rather than bell-shaped.

It will be demonstrated that prediction of ceiling height and cloud amount are two
atmospheric parameters which may be predicted better with factor analysis than with a
regression system.

1. INTRODUCTION. Many statisticians consider factor analysis as a diagnostic tool and
prefer ordinary regression analysis techniques for predictions. One of the reasons may be the
simplicity of the regression scheme. In addition, the aveilability of "canned programs” found
today even for the small microcomputers (P.C.) contributes to this easy handling. However,
regression analysis has some deficiencies which apply to factor analysis to a lesser degree. Eg.
a new set of coefficients must be calculated for every added or omitted predictor. It is also
known that predictors are not always independent from each other but the factors in factor
analysis are othogonal. Thus a smeller number of factors (predictors) can achieve the same
amount of residual (error) variance ssin regression analysis.

Factor analysis is related to empirical polynomials whilch have been used in predictions.
Consequently factor analysis is a prediction tool. In addition, two other facts are presented here
which may favor the use of factor analysis a9 & prediction tool. Is is well known thet regression
analysis is based largely on persistence. If values of 8 parameter within the prediction interval
are switching from a large positive deviation from the mean to an extreme negative departure
or vice verse the regression model will fail to account for this varistion. Furthermore, only
those predictors known at the time of prediction can be included into regression anslysis. In
turn, factors can be derived from any set of predictors including eiements whose value will not
be known at the prediction time.

It will be illustrated in the subsequent sections thet for prediction of ceiling height, cloud
cover, or visibility, the factor analysis as a prediction tool may be b e tter suited than
regression techniques.

2. MATHEMATICAL BACKGROUND. The regression model is based on:
(Y-¥)/Sa Ay (X -%y) + Ap(Rp-%p) 4 ...+ Mg (X0 -%) (1)
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In the factor analysis we can write:
(Y-¥)/5=ByFy +BoFp+... +Byfp (2)

where m<n. In the notations above Y is the predictand, X; are the predictors, F; the factors, A;,
B; are coefficients, and s or S denotes the standard devistion.

Examples for eqn (1) are given below for a prediction model of ceiling height:
Yp=Y-Y=192,+ 0.42,-0.423-1.724 + 2.6Z5 + 0.124 -7927 (3)

The predictors (Zi = xi-§,-) in this model are Z = visibility, Z, = zonal windspeed, Z3 =
tempersture, Z4 = relative humidity, Zg = surface pressure, Z = ceiling height, and Z5 = sky

cover with clouds. Three forecasts for particular days follow where the subscriptofthe ¥
indicates the hour of the day. In the first case Y, = 999 (synoptic code) at 11" on a particular

dey at Stuttgart {Germany), and Yg = 999 at 08M on this day. The predicted value fromegn (1)
was 984 which is very close. On the second day Y | was again 999 but Yg = 20. The predicted
value for Y { in this case was 125 which reflects the trend correctly but misses the magnitude

of the change. Another example of a8 missed prediction is 8 case where the ceiling height dropped
rapidly within 3 hours. Yg = 999,Y = 100, predicted 736. Again, the trend is consist but

the magnitude of the change is missed. It will be illustrated later that the factor model in these
cases of rapid change would have rendered 8 better prediction.

3. CLIMATOLOGICAL BACKGROUND OF PREDICTANDS. Before the factor model is
presented we may inspect the frequency distributions of ceiling height, cloud amount and
visibility (Fig 1-3). It is obvious that all three predictands do not conform with a bell-shaped
distribution where extremes have a low probability of occurrence (e.g. + 3 sigme = 0.27%).
The other important fact is found in a survey of changes of the value of the element within a
short time interval, here 08 AMto 11 AM (Table 1). In the last column of Tables 1A, B, C the
change from one side of the mean value (indicated by the double bar) to the other side is
summarized. We notice a change in 14, 9 or 18% for ceiling height, cioud amount, and
visibility, respectively. In these cases incorrect predictions by the regression technique
comprise a considerable amount of the total data. In addition, these tases of rapid changes may be
of particular interest to the forecaster.

4. FACTOR MODEL. !In this pilot study the first step of the factor model is & factor
analysis whose structure matrix is displayed in Table 2. {For technical details see
Essenwanger, 1986, 1987a, b,c) We deduce from Table 2 that factor one is highly related to
ceiling height and cloud amount at 08 AM (GMT) but also to ceiling height and cloud amount 3
hours later. Unrotated factors and rotated factors differ very little for the first two factors
which are the most important ones (see Essenwanger, 1987a).

The next step is the study of the factors. Table 3 exhibits the mean factors by ceiling
height groups as an example. While factor one has a numerical value of - 8.22 when the ceiling
height remains at 999 for the 3 hour time interval the value changes to - 2.40 when the ceiling
rises from <50 to 999 (code in 100 ft). The following predictions cover the two cases where
prediction by the regression model failed. In the first case a lifting of the ceiling height from 20
to 522 is calculated while the actual value is 999. This is & significant improvement over the
number of only 125 from the regression model. In the second case where the ceiling drops from
999 to 100 the factor model renders 490 versus 736 from the regression model. Again, a
significant improvement is obtained.
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The predictions from the factor model, aithough considerably bstter than from the
regression model, may not satisfy some skeptics. It must be stressed thet these forecasts are
based on mean factors, and batter models may be developed given time and effort. This isonlya
pilot study. The real factors on these individual days would have resulted in the prediction of the
precise observed value but even the utilization of mean factors was better than the forecast from
the regression model.

S. MODEL COMPARISON. While these individual cases prove that a better prediction with
the factor than the regression model could have been made in those particular cases it is
necessary to study a larger data sample. Table 4 provides a decision tree from observations of
ceiling height and cloud amount at 08 AM to derive the predicted value of ceiling height and cloud
amount at 11 AM. The numbers of Y, and Y 4 were based on the mean factors such s in Table 3

leading to prediction as shown in Table 4. These factors had been derived from a data sample of N
= 200 for Stuttgart ( 1946-1952) in January with a structure matrix as displayed in Table 2.
The squared deviation between predicted values from Table 4 and actual values were summed up
and divided by N and the variance. The results are disclosed in Tables SA, B, C, converted to
percentage.

The first column provides the results for the assumption that the value of the element is
the same at 11 AM as at 08 AM (persistence). The second and third column lists the residual
variance for one and four factors, respectively. Finally, the percentages in column 4 are given
for the regression model, utilizilng the observed value of the 7 elements at 08 AM without
inclusion of the ceiling height, cloud amount or visibility at 11 AM. The latter 3 values would
not be available at prediction time 08 AM but can be included into the derivation for the factor
model.

Inspection of Table S reveals that the residual variance for the factor model is
significantly lower than for the model based on persistence or the regression model. In fact, the
application of the F-test proves a statistical significance above the 97.5 level (for N = 50 the
threshold is 1.72, while for N = 200 the 99% value is 1.39 for the variances ratio, e.g. Hald,
1952). Table 54 displays the residusl variances (in %) for the three predictands from models
derived for this date set N = 200. Since we learn from Figure 1 that a data gap between 300 and
999 exists. One may suspect an excessive influence of missed extreme values. Therefore,
consideration was given to convert all 999 values to 400 in order to reduce the magnitude of the
variance and deviation from the mean for extreme values. As can be seen from the row “CEIL 2"
in Table Sa the percentage figures have changed very little. Thus the data gap has little to do
with the demonstrated improvement over the regression model by the use of a factor model.

It may be argued that the results should be favorable because the coefficients and factors
have been derived for this data sample of N = 200. Thus an independent sample of N = SO has
been studied. The results are depicted in Tables 5B and C. Two versions were investigated.

First (Table SB) the coefficients for the models from the data set of N = 50 were derived and the
same calculations as exhibited in Table SA were performed. This computation reflects the “ideal
case”. |t permits us to eveluate the degradation which is introduced by utilizing coefficients and
factors derived from a different dats sample such a3 the data of N = 200. Table SC shows that the
regression model experienced a larger increase of the residual variance than the factor model
evidenced by the increase of the ratio REGR/F | from Tables 5B to SC.

The critical observer may notice that the percentage for the residual variances are also
changed for the persistance model from Table 5B to Table SC. It may appear as a discrepancy st
first but it can be explained. The varisnces in the 200 data sample are not identical with the
variances in the 50 data sample. Consequently the percentage values change for Table SC in
accordance with the differences of the variances. It may be sssummed that given a large enough
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sample for Tables 5A and 5B this effect would disappear. This effect does not siter the basic
conclusion thet the factor model has provided better predictions than persistence or the
regression model.

It may be of interest that the factor model based on 4 factors (Table SC) did not render
much improvement over a single factor model although for ceiling height and cloud amount the
usage of 4 (mean) factors indicates a decrease of the residual variance (Tables 5A and B).
Whether this is a sign of a general trend or 8 peculiarity of this special deta set remains to be
seen. Nevertheless, the one factor model in this pilot study led to a smaller residusl variance
than the 7 parameter regression model.

6. CONCLUSIONS. In predictions of atmospheric parameters such as ceiling height, cloud
amount, and visibility, a model based on factor analysis may be better suited then a regression
model. Thls may be due largely to the possibility to include predictands into the derivation of
the factor model. A factor model has also an advantage that only one set of coefficients must be
derived for the task of developing models for several simultaneous predictands. The resuilts of
this pilot study indicate a resl potential of factor models in certain atmospheric predictions.
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TABLE 1: CONTINGENCY TABLE OF CHANGES OF ELEMENT IN
PREDICTION INTERVAL

(STUTTGART (F.R.6.), JANUARY 1946-1953, N = 250)

A) CEILING HEIGHT (IN FEET)
11 AM

8 AM GMT <5000 5-10000 10-30000 NO CEIL > CHANGE

<9000 1t 043 4 2 4 64% 6%
9-10000 1t O 4 1 1 11 2
10-30000 1t 2 1 2 1 6 3
NO CEIL _2 1 1 15 19 3
2 63 10 6 21 1008 143

B) CLOUD AMOUNT (TENTH OF SKY COVER)

11 AM
GAMGMT  0-5/10 6-9/10 10/10 Y CHANGE
0-5/10 15% 4 0 19 4%
6-9/10 3 1 7 21 3
_10/10 2 10 _48 60 2
> 20 25 55 100 9%

C) VISIBILITY (Km)
1AM

8 AM GMT _ <3.2 32-8 3-20 >20 Y CHANGE

<3.2 km 20% 8 1 1 30% 10
3.2-8 km 6 12 4 1 23 6
8-20 km 1 7 14 3 25 1
>20 km 1 1 3 17 22 1

2 28 28 22 22 100 18%
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TABLE 2. STRUCTURE MATRIX
STUTTBART, JANUARY 1946-1953, 08 GMT

UNROTATED [|ROTATED (ORTHOGONAL)

u 44 353 -48 49| .13 .18 -93 .16
T 63 49 -42 -12| 36 52 -62 -20
RH 04 -66 -57 -44| 07 -32 .04 -92
CEIL -89 .21 -09 -01j-90 04 .15 .06

CL AMT 91 -24 04 01| 92 -07 -.18 -.10
Ln VIS .10 90 .18 -23(-06 .88 -.13 .32
CEIL 3 -8¢ .19 -20 .06(-92 -03 .04 .01

CLAMT 3| 91 -17 20 -03| 94 02 -08 .01

Ln VIS 14 88 .02 -34|-06 92 -19 .14
VAR 3.81 270 .86 .61)3.54 204 1.36 1.04
VAR 2 42 30 10 7§ 39 23 15 13

U = ZONAL WINDSPEED, T = TEMPERATURE,
RH = REL. HUMIDITY, CEIL = CEILING HEIGHT,
CL AMT = TOTAL SKY COVER,

Ln VIS5 = LOGARITH OF VISIBILITY

THE NUMBER 3 INDICATES THE ELEMENT 3 HOURS LATER.
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ceEIL gh

999
100-300
< 100

< 90

999
100-300
< 100

< 90

999
100-300
<100
< 50

(CEILING IN 100 ft.)

TABDLE 3. MEAN FACTORS BY 6ROUP3

CEIL 11b

999
999
999
999

100-300
100-300
100-300
100-300

<100
<100
<100
<100

CEILING HEIGHT

Fi

-8.22
-428
-2.17
-2.40

-3.34
39
95

1.42

-3.36
1.24
210
210

F2

.79
-1.34
a3
31

.80
.65
-17
.ol

.50
e
=31
=99
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F3

-13
-1.44
=950
- 42

.29
21
-.34
-.74

.24
.61
.06
-.05

=54
.81
.39
.40

-33
.30
.06
.02

30

ONOA OO =

g

125
115



TABLE 4. 6ROUP SELECTION USING6 MEAN FACTORS

A) CEILING HEIGHT (IN 100 FT.)

CHARACT

CEIL | CL. AMT CEIL | PREDICTED
gh gh oBs 110 | v, Y4
999 0 REMAIN 999 (9496 987.9
999 1-5 CHANGE <300 |[525.8 975.7
100-300 <8 REMAIN <300 202.2 155.4
100-300 ? CHANGE 999 |607.8 609.6
<100 10 REMAIN <100 93.1 32.0
<100 <9 CHANGE 999 4242 906.1
B) CLOUD AMOUNT (IN TENTH SKY COVER)
CL. AMT| CEIL | CHARACT| CL. AMT|  PREDICTED
gh gh oBs 10 v, v,
10 <30 REMAIN 10 9.6 98
10 30-100 CHANGE 6-9 9.2 9.2
10 >100 CHANGE 0-5 9.7 9.5
6-9 50 REMAIN 6-10 8.6 8.7
6-9 >50 CHANGE 0-5 6.4 6.0
4-5 999 CHANGE 6-10 46 6.0
0-3 999 REMAIN 0-5 1.9 1.7

Y = ONE FACTOR, Y4 = FOUR FACTORS
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TABLE 5. RESIDUAL VARIANCE (IN %) FOR THREE PREDICTION
MODELS

A) 200 DATA SAMPLE

PER3 Fiq F4 |BEGR |RATIO(REGR/Fy)
CEIL 996 [226 165 | 43.0% 1.90
CEIL 2 947 |[233 16.2| 415 1.78
VIS 904 |238 205| 69.0 290
CLAMT| 389 (163 11.4] 379 2.32

B) S0 DATA SAMPLE (IDEAL)

CEIL 1209 | 36.1 32| 62.7% 1.74
VIS 966 | 169 134 31.4 1.86
CL A 89.2 | 340 8.1]| 67.3 1.98

C) 50 DATA SAMPLE (200 DATA COEFF.)

CEIL 1280 | 396 350| 86.7% 2.19
VIS 426 | 157 16.1 | 66.0 4.20
CLA 8.9 1339 290| 699 2.09

PERS = PERSISTENCE, F{ = USING ONE, F4 = USING FOUR
FACTORS, REGR = REGRESSION MODEL.
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FIGURE 3.
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CONSISTENCY OF THE P-YALUE AND A SET OF Q-VALUES
IN A SCORING ACCURACY ANALYSIS

Paul H. Thrasher
U.S. Army Materiel Test and Evaluation/Engineering and Analysis RAM Division
U.S. Army White Sands Missile Range
White Sands Missile Range, New Mexico 88002-5175

ABSTRACT

One particular application, an investigation of bias in a scoring device,
illustrates the use of p-value and g-value analyses. The g-values, the post-
test estimates of Type II risks, are used to estimate a bias. This estimation

is shown to be meanjngful by the consistency of different analyses.

INTRODUCT ION

Hypothesis testing is a well established analysis technique. This fairly
rigid procedure can be outlined in distinct steps:!
(1) State a null hypothesis H, and an appropriate alternate hypothe-
sis H, regarding a parameter 6.
(2) Specify the acceptable Type I risk a of falsely rejecting H,, the
acceptable Type II risk B of falsely failing to reject H, when 6 has an
unacceptable parameter 6,, and the planned sample size o by using the

sampling distribution of an appropriate test statistic.
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(3) Obtain sample data.
(4) Decide and report whether or not to reject H,.

In the traditional hypothesis testing technique, the report of this reject
or not-reject decision conveys no information concerning the strength of the
evidence for the decision. There are, however, two methods that can be used
simultaneously to describe the evidence for rejection or non-rejection of H .

One method of indicating the strength of the decision is to calculate and
report the p-value.? The p-value is the smallest value of a that would have
allowed the sample data to cause H, to be rejected. A very low p-value
strongly implies rejection of H .

A second method of indicating the strength of the decision is to calculate
and report a q-value for eu.’ The q-value is the output of the algorithm that
was used to find B8 when the algorithm inputs o and np are replaced by the p-
value and the data sample size. A very high q-value strongly implies
rejection of H° in favor of Hl characterized by 8y

It is possible to combine the p-value and a q-value in a single measure of
evidence for rejection of H,. One combined measure is the ratio of a g-value
to the p-value.® A more informative combined measure 1is the ratio
(q-value/8)/(p-value/a) or (q-value/p-value)/(8/a).*

For analyses in which a, 8, and especially g, are not firmly established,
the most flexible and meaningful approach is to consider the post-test Type I
and Type II risks separately. Since there is a q-value for every 6, the
analyst should report the p-value and a set of g-values corresponding to a set
of 6,'s of possible interest. When these two methods are used simultaneously,

a decision can be based on a comprehensive view of the evidence.

158



APPLICAT ION

The data for the application discussed in this paper is presented in
Table 1. These data are estimates of Cartesian coordinates for points in a
vertical bIane. The abscissa is horizontal and the ordinate is vertical. Esti-
mates are reported from both a scoring device and a standard. The scoring
device is expected to have different horizontal and vertical characteristics
because of physical effects. The standard is more than an order of magnitude
more accurate than that which is expected of the scoring device. The two
partial scores of the scoring device are not independent. Each is obtained
from two intermediate results and one intermediate result is shared by the two
partial scores. The final result of the scoring device is normally obtained
by averaging the two partial scores. Tﬁ}s is not done here because

(1) the drop-outs of the 25 points do not coincide so averaging would
further decrease the sample size, and ‘

(2) comparison of the results from the two partial scores can tenta-
tively provide a check for consistency.

The primary approach used in this application is to do a p-value and g-
value analysis on the parameters describing scaling and fixed bjases. Linear
regression is used to find least-squares estimates of A and B in y = Ax + B
where y 1s the scoring device data and x is the standard data. Separate
calculations are done on both

(1) horizontal and vertical data and
(2) partial scores.
The parameter A should be unity‘if there is no scaling bias, and B should be

zero if there is no fixed bias.
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Table 2 contains results of a least-squares fit of a straight line to the
data. The coefficients of correlation are sufficiently low to suggest that
the fit is inadequate to specify A and B without reservations. Further indi-
cations of reservations are obtained by considering the ranges that are over-
lapped by the estimates of A and B plus and minus the corresponding standard
deviations. All four slopes are close to one, but the slopes for vertical
data have high standard deviations which overlap not only one but values quite
different from one. The intercepts for horizontal data are close to zero, and
the standard deviations overlap zero. The intercepts for vertical data are
above zero and their standard deviations, even though they are large, do not
overlap zero. The standard deviations of the means, obtained by dividing the
square roots of the sample sizes into the standard deviations of data from the
line, are all near or less than 0.4 meter. This implies that the random error
of the scoring device is near or less than 0.4 meter.

Table 3 contains the results of one-sided, Student's-t hypothesis tests on
B. A1l null hypotheses assume no fixed bias. The direction of each alternate
hypothesis was obtained from the sign of the data average. For horizontal
data from both partial scores, the p-values are sufficiently high and the q-
values, for possible biases further from zero than 0.2 meter, are sufficiently
low to suggest that there is no fixed bias. For vertical data, rejection for
p-values less than 0.10 and q-values greater than 0.30 suggests that there may
be a fixed bias of 0.6 meter to 1.2 meter. This agrees with the point esti-
mates tentatively suggested in Table 2.

Table 4 contains the results of one-sided, Student's-t hypothesis tests on

A. A1l null hypotheses assume no scaling bias. For both horizontal and
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vertical data, the p-values are sufficiently high and g-values, corresponding
to possible biases in the range of 0.8 1/m to 1.2 1/m, are sufficiently low to
suggest that there is no scaling bias.

An alternate approach used in this application is to investigate the bias
by doing a p-value and g-value analysis on A where A is the difference between
the scoring device and standard estimates of point location. These differ-
ences are obtained by subtraction of data from Table 1.

Table 5 contains the result of one-sided, Student's-t hypothesis tests on
A. A mean of zero would indicate no bias. For horizontal data from both
partial scores, the p-values are sufficiently high and the g-values, corre-
sponding to possible biases further from zero than 0.2 meter, are sufficiently
low to suggest that there is no bias. For vertical data, rejection for p-
values less than 0.10 and q-values greater than 0.30 suggests that there may
be a bias of 0.6 meter to 1.2 meter. This is in agreement with the point
estimates tentatively suggested in Table 2 and with the p-value and q-value

analysis of Table 3.

CONSISTENCY

This example illustrates the consistency of p-value and q-value analy-
ses. There certainly are issues that need investigation before the general
technique is judged to be universally applicable and reliable. One issue is
the effect of using critical levels of significance other than 0.10 and 0.30
for the post-test Type I and Type II errors. A more serious issue is the need

for a comprehensive study on the properties of the q-value. This study should
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include both theoretical and simulation investigations. It should consider
such factors as different underlying distributions and sensitivity to extra-
neous data. In the absence of such a study, however, this paper provides an
example of consistency in the p-value and q-value analysis technique.

Table 6 repeats information from Tables 3 and 5 in a format to allow easy
comparison between the two hypothesis tests on fixed bias B and total bias
A. Based on the retention of the null hypothesis that there is no scaling
bias, these two tests should give the same results.

When a decision needs to be made, the g-values are in close agreement for
the two hypothesis tests. For vertical data, the p-values and gq-values differ
only slightly for the two tests for bias.

For horizontal data, the agreement is not as good. In this case, however,
rejection is not warranted. This is indicated by sufficiently high p-values
and the sufficiently low q-values for biases bigger than the estimated
0.4 meter random error of the scoring device. Thus, for horizontal measure-
ments, g-values are not needed to estimate the size of the bias.

The results of the two p-value and g-value analyses are consistant where
consistancy is needed. Thus, this example supports the hypothesis that the

p-value and g-value analysis is meaningful.

CONCLUS ION

This application illustrates the value of the p-value and q-value analy-
sis. This type of analysis should be done to consider and report the best
post-test estimates of both Type I and Type II risks. Analysts should provide

managers with this information so managers can make informed decisions.
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TABLE 1.--Data for scoring device calibration

Point Data from Standard Data from Scoring Device
Identification (meters) (meters)
Partial Score One Partial Score Two
Group Point Horizontal Vertical Horizontal Vertical Horizontal Vertical
1 1 1.0 1.0 1.0 1.2 1.8 1.8
2 1 0.8 0.0 1.8 -2.8 1.5 0.7
2 1.1 -1.8 1.4 -0.4 0.7 -1.4
3 0.0 -1.2 - - -0.1 -0.9
4 1.6 -0.4 1.3 -0.7 1.1 -1.4
5 0.3 1.0 -0.2 2.3 -0.3 0.9
6 1.5 0.6 - - 1.4 1.2
7 1.0 0.4 2.3 5.0 1.0 0.5
8 0.7 0.4 0.6 0.9 0.7 0.3
3 1 1.0 2.1 1.2 2.6 1.1 4.3
2 0.5 -0.3 -0.5 4.2 0.1 1.2
3 -0.5 0.4 -0.8 1.6 -0.4 0.5
4 -0.2 0.5 0.0 0.6 -0.2 0.9
5 -0.3 0.7 -0.2 1.4 - -
6 0.2 0.7 0.1 1.0 - -
7 -0.3 0.7 0.2 1.9 -0.1 0.7
8 0.2 -0.5 0.1 0.5 0.0 0.7
4 1 1.0 0.9 0.0 2.8 0.8 1.1
2 0.7 -0.4 0.3 2.2 - -
3 -0.4 -0.3 -0.3 -1.6 -0.3 0.7
4 0.0 -0.6 0.1 -0.3 -0.3 -1.7
5 -0.2 -0.1 -1.4 5.6 -0.2 0.1
6 0.7 -0.5 0.4 -0.5 0.1 4.0
7 0.6 0.6 -2.0 2.6 0.6 2.7
8 1.4 -0.2 1.3 -2.3 1.1 -0.8
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TABLE 2.--Summary of 1inear regression

(Least squares fit of y = Ax + B for y = scoring device & x = standard data)

Measurement: Horizontal Horizontal Vertical Vertical
Partial Score: One Two One Two
Sample Size: 23 22 23 22
Correlation: 0.63 0.86 0.37 0.63
A (1/m): 1.039 0.927 0.996 1.149
B (m): -0.201 -0.038 1.022 0.591
sp (1/m): 0.279 0.123 0.552 0.320
sg (m): 0.212 0.101 0.437 0.265
Sy-1ine (M: 0.795 0.360 2.036 1.231
Smean y-line (M): 0.166 0.077 0.425 0.263
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TABLE 3.--Summary of Student's-t hypothesis tests on B
(B = Intercept fromy = Ax + B = fixed bias)

Measurement: Horizontal Horizontal Vertical Vertical
Partial Score: One Two One Two
Null: H,: Mean = 0 H,: Mean = 0 H,: Mean = 0 H : Mean = 0
Alternate: m:mM<0 H.: Mean < 0 H.: Mean >

Sample Size:
Average (m):
Std Deviation

of Mean (m):

P-Value:

Q-value for
Bias = 0.2 m:
Bias = 0.4 m:
Bias = 0.8 m:
Bias = 1.2 m:
Bias = 1.6 m:
Bias = 2.0 m:

Bias signs:

23
-0.201

0.212

0.177

0.036

0.005

0.0001
Close to 0
Close to 0
Close to 0

22
-0.038

0.101

0.355

0.015

0.0002
Close to 0
Close to O
Close to 0
Close to O
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23
1.022

0.437

0.015

0.96
0.92
0.69
0.34
0.10
0.02

0 H;: Mean > 0

22
0.591

0.265

0.019

0.92
0.76
0.22
0.016
0.0006
<0.00001
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TABLE 4.--Summary of Student's-t hypothesis tests on A
(A = slope fromy = Ax + B = scaled bias)

Measurement: Horizontal Horizontal Vertical Vertical
Partial Score: One Two One Two
Null: H,: Mean =1 H,: Mean =1 H,: Mean = 1 H,: Mean =1
Alternate: H;Mm>1 m:Mm<1 m:mM<1 H.: Mean > 1

Sample size:

Average (1/m):

Std Deviation

of Mean (1/m):

P-Value:

Q-Value for
Slope = Ry
Slope = S
Slope = T;
Slope = Uy
Slope = V;
Slope = W,

1/m:
1/m:
1/m:
1/m:
1/m:
1/m:

Slope subscript:

Considered biases for subscript 1:
Considered biases for subscript 2:

23
1.039

0.279

0.445

0.48
0.42
0.23
0.057
0.0094
0.0012

1

1

22 23 22
0.927 0.996 1.149
0.123 0.552 0.320
0.107 0.497 0.324
0.57 0.47 0.62
0.41 0.43 0.56
0.16 0.36 0.38
0.04 0.30 0.14
0.008 0.24 0.038
0.001 0.19 0.0076

2 2 1
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TABLE 5.--Summary of Student's-t hypothesis tests on A
(A = scoring device data - standard data = total bias)

Measurement: Horizontal Horizontal Vertical Vertical
Partial Score: One Two One Two
Null: H.: Mean = 0 H,: Mean = 0 H,: Mean = 0 H : Mean = 0
Alternate: H‘: Mean < 0 H;’ Mean < 0 H;: Mean > 0 H: Mean > 0
Sample Size: 23 22 23 22
Average (m): -0.183 -0.077 1.022 0.609
Std Deviation
of Mean (m): 0.777 0.354 1.989 1.208
P-value: 0.136 0.159 0.011 0.014
Q-value for

Bias = 0.2 m: 0.46 0.06 0.97 0.94

Bias = 0.4 m: 0.097 <0.00001 0.93 0.79

Bias = 0.8 m: 0.0048 Close to O 0.70 0.23

Bias = 1.2 m: <0.00001 Close to O 0.34 0.016

Bias = 1.6 m: Close to O Close to 0 0.089 0.0005

Bias = 2.0 m: Close to 0 Close to 0 0.014 <0.00001
Bias signs: - - + +
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TABLE 6.--Consistency of P-values and Q-values
(Comparison of results from hypothesis tests on B and 4)

Measurement: Horizontal Horizontal Vertical Vertical
Partial Score: One Two One Two
P-Value for B: 0.177 0.355 0.015 0.019
P-Value for a: 0.136 0.159 0.011 0.014
Q-value for
Bias = 0.2 m
for B: 0.036 0.015 0.96 0.92
for a: 0.46 0.06 0.97 0.94
Bias = 0.4 m
for B: 0.005 0.0002 0.92 0.76
for a: 0.097 <0.00001 0.93 0.79
Bias = 0.8 m
for B: 0.0001 Close to 0 0.69 0.22
for a: 0.0048 Close to 0 0.70 0.23
Bias = 1.2 m
for B: Close to 0 Close to O 0.34 0.016
for A: <0.00001 Close to 0 0.34 0.016
Bias = 1.6 m
for B: Close to O Close to O 0.10 0.0006
for A: Close to 0 Close to 0 0.089 0.0005
Bias = 2.0 m
for B: Close to O Close to 0 0.02 <0.00001
for a: Close to O Close to 0 0.014 <0.00001
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James R. Thompeon Empirical Model Building Preface

PREFACE

The study of mathematical models is closely connected to notions of
scientific creativity. As of the present, there is no axiomatic or even well defined
discipline which is directly concerned with creativity. Even though we cannot
display a progression of exercises which have as their direct objective the building
of creativity, we can attempt to accomplish this goal indirectly. A mastery of a
portion of Euclid’s treatises on geometry does not directly appear to build up a
potential statesman’s ability to practise statecraft. Yet many effective statesmen
have claimed that their studies of Euclid's geometry had achieved this effect.
More directly, it is clear that the study of physics would be likely to be helpful in
developing the ability to design good automobiles. It is this carryover effect from
one well defined discipline to another less defined one which has traditionally

been the background of science and engineering education.

Valuable though an indirect approach to the gaining of creativity in a par-
ticular area may be, it carries with it certain dangers. We are rather in the
same situation as the little boy who searched for his quarter, lost in a dark alley,
under a bright streetlight on a main street. There is no doubt that the main-
street searching could be of great utility in the ultimate quest of finding the quar-
ter. Many of the relevant techniques in quarter finding are similar, whether one
is looking in the light or in the dark. Hopefully, the study of technique, albeit
undertaken in a setting substantially different from that of the real problem, will

be at least marginally useful in solving the real problem.
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However, there is a natural temptation never to leave the comfort of ideal-
ized technique under the bright lights, never to venture into the murky depths of
the alley where the real problem lies. How much easier to stay on mainstreet, to
write a treatise on the topology of street lamps, gradually to forget about the lost

quarter altogether.

In its most applied aspect, technique becomes problem solving. For example,
if the little boy really develops a procedure for finding his particular quarter in
the particular dark alley where he lost it, he will have been engaged in problem
solving. Although it is difficult to say where problem posing ends and problem
solving begins, since in the ideal state there is continuous interaction between the
two, model building is more concerned with the former than with the latter.
Whereas problem solving can generally be approached by more or less well
defined techniques, there is seldom such order in the problem posing mode. In
the quarter finding example, problem posing would involve determining that it
was important that the quarter be found and a description of the relevant factors
concerning this task. Here, the problem posing is heuristic, difficult to put into
symbols and trivial. In the real world of science, problem posing is seldom
trivial, but remains generally heuristic and difficult to put into symbols. For
example, Newton's Second Principle states that force is equal to the rate of

change of momentum or

=-th-(mv). (0.1)
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The solving of (0.1) for a variety of scenarios is something well defined and easily
taught to a high school student. But the thought process by which Newton con-

jectured (0.1) is far more complex.

We have no philosopher’s stone to unlock for us the thought processes of the
creative giants of science. And we shall not use the device of scientific biography
much in this treatise. However, the case study approach appears to be useful in
the development of creativity. By processes which we do not understand, the
mind is able to synthesize the ability to deal with situations apparently unrelated
to any of the case studies considered. It is the case study approach, historically

motivated on occasion, which we shall emphasize.

At this point, it is appropriate that some attempt be made to indicate what
the author means by the term Empirical Model Buslding . To do so, it is neces-
sary that we give some thought to some of the ways various scientists approach
the concept of models. We shall list here only those three schools which appear
to have the greatest numbers of adherents. The first group we shall term the
Idealists. The Idealists are not really data oriented. They are rather concerned
with theory as a mental process which takes a cavalier attitude toward the ‘‘real
world.” Their attitude can be summed up by, “If facts do not conform to theory,
then so much the worse for facts.”” For them, the ‘“‘model” is all. An example of a
pure Idealist is given by the character of Marat in Weiss' play MaratSade. Marat
says ‘“‘Against Nature's silence I use action. In the vast indifference I invent a
meaning.”” Although Idealists do crop up from time to time in the physical and

biological sciences, they have a hard time there. Sooner or later, the theories of a
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Lysenko, say, are brought up against the discipline imposed by the real world
and must surrender in the face of conflicting evidencs. But even in the hard sci-
ences, there is the possibility that ‘‘sooner or later’’ may mean decades. Once a
theory has developed a constituency of individuals who have a vested interest in
its perpetuation, particularly if the theory has no immediate practical implica-
tion, there will be a tendency of other scientists, who have no interest in the

theory either way, to let well enough alone.

The second group, that of the Radical Pragmatists (Occamites, nominalists)
would appear’ to be at the opposite end of the spectrum from that of the Ideal-
ists. The Radical Pragmatists hold that data is all. Every situation is to be
treated more or less sus generss. There is no ‘“‘truth.” All models are false.‘
Instead of model building, the Radical Pragmatist curve fits. He does not look on
his fitted curve as something of general applicability, rather as an empirical dev-
ice for coping with a particular situation. The maxim of William of Occam was
‘““Essentia non sunt multiplicanta praeter necessitatem,” roughly, ‘“The
hypotheses ought not to be more than is necessary.” The question here is what
we mean by ‘‘necessary.” All too frequently, it can happen than ‘‘necessary”
means what we need to muddle through rather than what we need to understand.
But few Radical Pragmatists would take the pure position of Weiss's Sade who
says ‘‘No sooner have I discovered something than I begin to doubt it and I have
to destroy it again...the only truths we can point to are the ever-changing truths

of our own experience.”
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The Realists (Aristoteleans, Thomists) might appear to some to occupy a
ground intermediate to that of the Idealists and that of the Radical Pragmatists.
They hold that the universe is governed by rational and consistent laws. Models,
for the Realist, are approximations to bits and pieces of these laws. To the Real-
ist, ‘‘We see through a glass darkly,” but there is reality on the other side of the
glass. The Realist knows his model is not quite right, but he hopes it is incom-
plete rather than false. The collection of data is useful in testing his model and
enabling him to modify it in appropriate fashion. It is this truthseeking, interac-

tive procedure between mind and data which we term Empsrical Model Buslding .

To return again to Newton's Second Principle, the position of the Idealist
might be simply that the old Newtonian formula

F=ma (0.2)

is true because of logical argument. But then we have the empirically demonstr-

able discovery of Einstein that mass is not constant but depends on velocity via

Mo
M == een— )

1
- v? ]? (0.3)
2
~ The Idealist would have a problem. He might simply stick with (0.2) or
experience an intellectual conversion, saying, ‘‘Right, Einstein is correct; Newton
is wrong. I am no longer a Newtonian but an Einsteinian” (or some less self-

effacing dialectical version of the above conversion.)

The reaction of the Radical Pragmatist might be, ‘You see, even an

apparently well established model like Newton's is false. No doubt we will soon
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learn that Einstein’s is false also. Both these ‘models’ are useful in many applica-

tions, but their utility lies solely in their applicability in each situation.”

The Realist is also unsurprised that Newton's model falls short of the mark.
He notes that the discovery of Einstein will require a modification of (0.2). He

readily accomplishes this by combining (0.1) and (0.3) to give

d mo
F=— v
1
dt ll_ v? ].2.. (0'4)
c2

He views (0.4) as a better approximation to truth than (0.2) and expects to hear

of still better approximations in the future.

The preceeding should give the reader some feel as to what the author
means by empirical model building (and also as to his prejudices in favor of the
Realist position). It is the process which is sometimes loosely referred to as the

"

“‘scientific method.” As such, it has been around for millenia—though only for
the last five hundred years or so has quantitative data collecting enabled its
ready use on nontrivial scientific problems. Realists might argue (as I do ) that
empirical model building is a natural activity of the human mind. It is the
interactive procedure by which human beings proceed to understand portions of
the real world by proposing theoretical mechanisms, testing these against obser-
vation and revising theory when it does not conform to data. In any given situa-

tion, a scientist’s empirical model is simply his current best guess as to the under-

lying mechanism at hand.
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The Radical Pragmatist position has great appeal for many, particularly in
the United States. There would appear to be many advantages to an orientation
which allowed one to change his ground any time it was convenient to do so.
But the ultimately nihilistic position of Radical Pragmatism has many practical
difficulties. For example, data is generally collected in the light of some model.
Moreover, from the standpoint of compression of information, a point of view
which rejects truth also rejects uniqueness, causing no little chaos in representa-
tion. Finally, the old adage that ‘‘He who believes in nothing will believe any-
thing”’ appears to hold. The Radical Pragmatist seems to join hands with the
Idealist more often than either cares to admit. There are certain groups who

seem to wear the colours of both the Idealist and Radical Pragmatist schools.

The above taxonomy of contemporary scientists into three fairly well defined
schools of thought is, obviously, an oversimplification. Most scientists will tend
to embody elements of all of the three schools in their makeup. For example, I
might be ( and have been) accosted in my office by someone who wishes me to
examine his plans for a perpetual motion machine or his discovery of a conspiracy
of Freemasons to take over the world. As a purely practical matter, because my
time is limited, I will be likely to dismiss their theories as patently absurd. In so
doing, I am apparently taking an Idealist position, for, indeed I know little about
Freemasonry or about perpetual motion machines. But without such practical
use of prejudice, nothing could ever be accomplished. We would spend our lives
‘“‘starting from zero” and continually reinventing the wheel. There is a vast body

of information which I have not investigated and yet take to be true, without
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ever carefully checking it out. This is not really ‘‘Idealism’’; this is coping. But
if I read in the paper that Professor Strepticollicus had indeed demonstrated a
working model of a perpetual motion machine, or if I heard that a secret meeting
room, covered with Masonic symbols, were discovered in the Capitol, then I
should be willing to reopen this portion of my ‘“information bank’ for possible

modification.

For similar practical reasons, I must act like a Radical Pragmatist more
often than I might wish. If I see a ten ton truck bearing down on me, 1 will
instinctively try to get away without carefully investigating considerations of
momentum and the likely destruction to human tissue as a result of the dissipa-
tion thereof. But I have the hope that the manufacturer of the truck has logically
and with the best Newtonian theory in tandem with empirical evidence designed
the vehicle and not simply thrown components together, hoping to muddle

through.

In sum, most of us, while accepting the practical necessity of frequently
assuming theories which we have not analyzed and using a great deal of instinc-
tive rather than logical tools in our work, would claim to believe in objective
reality and a system of natural laws which we are in a continuing process of per-
ceiving. Thus, most of us would consider ourselves to be Rationalists though we
might, from time to time, act otherwise. Perhaps the minimal Rationalist maxim
is that of Orwell’'s Winston Smith ‘‘Freedom is the freedom to say that two plus

two make four. If that is granted, all else follows."
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Section 3. Modular Wargaming

Checkerboard based games are of ancient origin, being claimed
by a number of ancient cultures. One characteristic of these
games is the restricted motion of the pieces, due to the shape of
the playing field. This is overcome, in measure, in chess, by
giving pleces varying capabilities for motion both in direction
and distance. Another characteristic of these games is their
essential equality of firepower. A pawn has the same power to
capture a queen as the queen to capture a pawn. Effectiveness of

the various pieces is completely a function of their mobility.

Figure 1

The directional restrictions of square tiles are a serious
detriment to checkboard games if they are to be reasonable
simulations of warfare. The most satisfactory solution, at first
glance, would appear to be to use building blocks based on
circles, since such tiles would appear to allow full 360 degree
mobility. Unfortunately, as we observe below, circles cannot bo

satisfactory tiles, since they leave empty spaces between the
tiles.
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Figure 2

A natural first attempt to overceme the difficulty of circles
as tiles would be to use equilateral octagons, since these allow
motion to the eight points of the compass, N,NE,E,SE,S,SW,W,NW.
Unfortunately, as we see below, this still leaves us with the
empty space phenomenon.
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Figure 3

None of the ancient games is particularly apt as an analogue of
combat after the development of the longbow, let alone after the
invention of gunpowder. Accordingly, the Prussian von Reiswitz
began to make suitable modifications leading in 1820
toAriegspiel . The variants of the Prussian game took to
superimposing an hexagonal grid over a map of actual terrain
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Motion of various units was regulated by their capabilities in
their particular terrain situation. The old notion of “turns” was
retained, but at each turn, a player could move a number of units
subject to a restriction on total move credits. Combat could be
instituted by rules based on adjacency of opposing forces. The
result of the combat was regulated by the total firepower of the
units involved on both sides in the particular terrain situation
A roll of the dice, followed by lookup in a combat table gave the
casualty figures together with advance and retreat information
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Figure 4

The Prussian game, together with later Amorican variants,
such as Strategos, were validated against actual historical
combat situations. In general, these games were excellent in
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their ability to simulate the real world situation. Their major
difficulty was one of bookkeeping. Frequently, a simulated
combat could take longer to play than the actual historical
battle. iIf the masking of movements and questions of
intelligence gathering were included in the game, a large number
of referees was required.

in attempting to take advantage of the computer, tbe creators
of many modern military wargames have attempted to go far
beyond resolution of the bookkeeping problems associated with
Kriegspiel/. Very frequently, these games do not allow for any
interaction of human participants at all.

initial conditions are loaded into a powerful mainframe
computer, and the machine plays out the game to conclusion
based upon a complex program which may actually look at the
pooled result of simulations of individual soldiers firing at each
other, even though the combat is for very large units. Any real
time corrections for imperfections in the game are, accordingly,
impossible. Any training potential of such games is, obviously,
slight.

Furthermore, the creators of many of these games may disdain
to engage in any validation based on historical combat results.
Such validation as exists may be limited to checking with
previous generations of the same game to see whether both gave
the same answer.

If we know anything about artificial intelligence (and
admittedly, we know very little), it would appear to be that
those simulations work best which appear to mimic the
noncomputerized human system.

Attempts to make great leaps forward without evolution from

noncomputerized system are almost always unsuccessful. And it
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is anotber characteristic of such a nonevolutionary approach that
it becomes quickly difficult to check the results against
realistic benchmarks. Befere anyone realizes {it, a new,
expensive, and, very likely, sterile science will have been
created soaking up time and treasure and diverting us from the
real world situation.

My own view is that it is botter to use the computer as a
means of alleviating the bookkeeping difficulties associated
with Ariegspiellike board games. [n the late 1970's and early
1980's, | assigned this task to various groups of students at
Rice. Experience showed that two hundred person hours of work
generally led to games which could emulate historical results
very well.

At least another five hundred porson hours would have been
required to make these games user-friendly, but the rough
versions of the games were instructive enough. One criticism
made against historical validation is that technology s
advancing so rapidly that any such validations are meaningless.it
is claimed that the principal function of wargaming ought to be
predictions of what will happen given the new technologies.
While not agreeing that parallels between historical situations
and future conflicts are irrelevant (and | note here that the
Strategy and Tactics hobbyists generally make games ranging
from Bronze Age warfare to S/arship Jroopers), | agree that the
predictive aspect, in the form of scenario analyses, is very
important.

Accordingly, one student created a game for conflict between
an American carrier task force and a Soviet missle cruiser task
force. Given the close-in combat which would be likely, it
appeared that if the Soviet commander is willing to sacrifice his
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force for the much more costly American force, he can effect an

exchange of units by a massive launch of missles at the outset of
the conflict. Clearly, such a playout could have serious
technological implications, e.g., the desirability of constructing
a system of jamming and antimissle defenses which is highly
resistant to being overwhelmod by a massive strike. Or, if it is
deemed that such a system could always bo penetrated by futher
technological advances on the Soviet side, it might be
appropriate to reconsider task forces based around the aircraft
carrier. In any event, | personally would much prefer an
interactive game in which | could see the step by step resuilts of
the simulation.

Also, a validation using, say, data from the Falkland conflict
could bo used to check modular portions of the game. World War
Il data could be used to check other parts. The validation would
not be as thorough as one might wish, but it would be a goodly
improvement on no validation at all. Some “supersophisticated”
unvalidated computer simulation in which the computer simply
played with itself and, at the end of the day, told me that
existing antimissle defenses were sufficient would leave me
neither comforted nor confident.

An integral part of any Ar/egsp/e/computerization should deal
with the resolution of the likely results of a conflict. A ready
means of carrying this out was made available via the famous
World War | opus of Lanchester (1916). Let us suppose that there
are two forces, the Biue and the Red, each homogeneous, and with

@8 sizes u and v respectively.

Then, if the fire of the Red force is directed, the probability a

particular Red combatant will eliminate some Blue combatant in

time interval [t t+A] is given simply by:
189



James R. Thempase : 82 Yargaming

(2.3.1) P{Blus combatant eliminated in [t,t+al cya,

where c; is the Red cosfficient of undirected fire. If we wish,

then, to obtain the total number of Blus combatants eliminated
by the entire Red side in [t,t+A], we will simply multiply by the
number of Red combatants to obtain:

(2.3.2) EIChange in Blue in [t,t+Al 1 = -v cA.
Replacing u by its expectation (as we have the right to de in
many cases where the coefficient is truly a constant and v and u
are large), we have:

(2.3.3) Aw/A = - cyv.

This gives us immediately the differential equation
(2.3.49) du/dt = - cv.

Similarly, we have for the Red side
(2.3.5) dv/dt = - cou.

This system has the time solution
(2.3.6) u(t)=uscoshd(cycolt-v, Y(cy/cy) sinh J(c co)t

V()=vgcoshd(cycolt-ug J(co/cy) sinh J(cicit

A more common representation of the solution is obtainod by

dividing (2.3.4) by (2.3.5) to obtain
(23.7) dwdv = c v/ cpu,

with the solutien

(2.3.8) u2- u°2 = cy/co( v2- v°2 ).

Now u and v are at “combat parity” with each other when
(2.3.9) 2 = ¢ /cy (V).

(A special point needs to be made here. Such parity models
assume that beth sides are willing to bear the same proportion

of losses. |If such is ]n’%t the case, then an otherwise less
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numerous and less effective force can still emerge victorious.
For example, suppose that the Blue force versus Red force
coefficient is .S and the Blue force has enly .9 the numerosity of
the Red force. Then if Blue is willing to fight until reducad to .5
of his original strength, but Red will fight only to .8 of his
original strength, then using (2.38) that by the time Red has
reached maximal acceptable losses, Blue still has 61% of his
forces, and thus wins the conflict. This advantage to one force
to accept higher attrition than his opponent is frequently
overiooked in wargame analysis. The empirical realization of
this fact has not escaped the attention of guerilla leaders from
the Maccabees to the Mujaheddin.)

Accordingly, it is interesting to note that if there is a
doubling of numbers on the Red side, Blue can only maintain

parity by seeing to it that czlc. is quadrupled, a seemingly
impossible task.

Lanchester's formula for undirected fire follows from similar

Poissonian arguments. The probability that a Red combatant will
eliminate some Blue combatant in [t,t+A] is given by

(2.3.10) Pla Blue eliminated by a Red in [t,t+A]]l =
Pishot fired in [t,t+A]]l P{shot hits a Blue] A.

Now, the probability a shot aimed at an area rather than an
individual hits someone is proportional to the density of Blue
combatants in the area, hence proportional to u. Thus, we have:

(2.3.11) P{Blue eliminated in [t,t+A]l = dyu A.

The expected number of Blues eliminated in the interval is

given by multiplying the above by the size of the Red force,
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namely, v.

So the differential equations are:

(2.3.12) du/dt = -dquv
dv/dt = -dyuv.

This system has the time solution:
(2.3.13)u(t)= (dy/d, ug-vgl/ldy/dy-vg/ugexpi-(d, ug- dy voith
v(t) = (d/dovg- ugl/ld/d, - ug/vgexpl-(d; vo- doug)tl.
Here, when dividing the equations in (2.3.12) and solving, we
obtain the parity equations:
(2.3.14) u-ug = dy/dy(v-vg).
in such a case, a doubling of Red's parity force can be matched
by Blue's doubling of d,/d,.

in attempting to match eitber law (or some other) against
historical data, one needs to be a bit careful. In 1954, Engel
claimed to have validated the applicability of Lanchester's
directed fire law for the Battle of iwo Jima. He used no records
for Japanese casualties and simply juggled the two parameters
to fit the record of American casualty data.
in a STAG report written in 1972 (1ater published in the
open literature in 1979), Thompson, using the partial Japanese
casualty records, showed that the directed fire model gave
answers much at variance with the data (sometimes off the
Japanese total effectives by a factor of four) and that the
undirected fire model appeared to work much more
satisfactorily. However, the bottom line in the Thompson paper
was that a homogeneous force model was probably not very
192



Jumes 0. Thempess 85 Wergamiag |
satisfactory in an engagement in which naval gunfire together
with Marine assault both played important roles. We shall
address the hetereogeneous force model probiem directly.

in this, the one hundred and fiftieth anniversary of the Battle
of the Alamo, it is perhaps instructive to consider a situation in
which a mixture of the two models is appropriate. Since the
Texians were aiming at a multiplicity of Mexican targets and
using rifles capable of accuracy at long range (300m), it might
be appropriate to use the directed fire model for Mexican
casuaities. Since the Mexicans were using less accurate
muskets (100m) and firing against a fortified enemy, it might be
appropriate to use the undirected fire model for Texian
casulaties. This would give

(2.3.15) du/dt = -dyuv

dv/dt = -c,u.
The parity equations are given by
(2.3.16) v2-vy2 = 2c5/d( u-ug).

The Texians fought 188 men, all of whom perished in the
defense. The Mexicans fought 3,000 men of whom 1,500 perished
in the attack. By plugging in tinitial and final strength

conditions, it is an easy matter to compute C2/d‘ = 17,952.

However, such an index is essentially meaningless, since the
equations of combat are dramatically different for the two
sides. A fair measure of man for man Texian versus Mexican
effectiveness is given by

(2.3.17) [ (dv/dt)/u ) /7 | (du/dt)/v] = Co/(dyu) .
This index computes the rate of destruction of Mexicans per
Texian divided by the rate of destruction of Texian per Mexican.
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We note that the mixed law model gives a varying rate of
effectiveness, depending on the numher of Mexicans present. At
the beginning of the conflict, the effectiveness ratio is a
possible 96 ; at the end, a romantic but unrealistic 17,952

The examination of this model in the light of historical data
should cause us to question it. What is wrong? Most of the
Mexican casualties occurred before the walls were breached.
Most of the Texian casualties occurred after the walls were
breached. But arter the walls were breached, the /Mexicans
would be using directed fire against the Texians.

We have no precise data to verify such an assumption, but for
the sake of argument, let us assume that the Texians had 100
men when the walls were breached, the Mexicans 1800. Then

(2.3.16) gives c,/dy = 32,727. The combat effectiveness ratio

co/(dyu) goes then from 174 at the beginning of the siege to 327

at the time the walls were breached. For the balance of the
conflict we must use equations (2.3.4) and (2.3.5) with the

combat effectiveness ratio c,/cy = 99 (computed from (2.3.8).

Personally, 1| am not uncomfortable with these figures. The
defenses seem to have given the Texians a marginal advantage of
around 3. Those who consider the figures too “John Wayneish"
should remember that the Mexicans had great difficulty in
focusing their forces against the Alamo, whereas the Texians
were essentially all gainfully employed in the business of
fighting. This advantage to a group of determined Palikari to
defend a fortified position against overwhelming numbers of a
besieging enemy is something we shall return to shortly.

Having, hopefully, transmitted some feeling as to the
advantages of common sense utilization of the method of
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Lanchester (borrowod in spirit from Poisson), we shall now take
the next step in its explication: namely the utilization of

heterogeneous force equations.

Let us suppose that the Blue side has m subforces
'“1’1-1,2,... - These might represent, artillery, infantry,
armour, etc. Also, let us suppose that the Red side has n
subforces (v;};.) o Then the directed fire equations (2.3.4)

and (2.3.5) beceme:
(2.3.18) ‘ljldt = - !..' to nk"C| i’vi

(2.3.19) ﬂ‘/ﬂt = - Ij.| to mlnCzl"llj.
Here, kij represents the allocation (a number between 0 and |
such that 2. o mkijj < 1) of the i'th Red subforce’s firepower

against the j'th Blue subforce. c; j represents the Lanchester

attrition coefficient of the i'th Red subforce against the j'th
Blue subforce. Similar obvious definitions hold for (lj,l and

[62“1.

(2.3.18) furnishes us a useful alternative to the old table
lookup In Ar/egsp/el Numerical integration enables us to deal
handily and easily with any difficulties associated with turn to
turn changes in allocation and effectiveness, reinforcements,
etc. Experience has shown that computerized utilization of
mobility rules based on hexagonal tiling superimposed on actual
terrain, together with the use of Lanchester hetereogeneous
force combat equations, makes possible the construction of
realistic war games at modest cost.

Beyond the very real utility of the Lanchester combat laws to
describe the combat mode for war games, they can be used as a
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mode! framework to gain insights as to the wisdom or lack

thereof of proposed changes in defense policy. In 1972 | wrote a
STA6 report (published in the open literature in 1979) to
address the problems of disparity of NATO and Warsaw Pact
forces. As we have observed in (2.3.9), in the face of a twofold
manpower increase of Red beyond the parity level, Blue can,
assuming Lanchester’'s directed fire model, maintain parity only

by quadrupling cy/c;. This has usually been perceived to imply

that NATO must rely on its superior technology to match the
Soviet threat by keeping c, always much bigger than c,.
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