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FOREWORD

The Thirty-Fourth Conference on the Design of Experiments in Army Research,
Development and Testing was held on 19-21 October 1988 in the auditorium of the
Physical Sciences Laboratory on the campus of New Mexico State University, Las
Cruces, New Mexico. Mr. John Lockert, Director of the White Sands Missile
Range, stated his installation would serve as the host for this meeting. He
selected Mr. William Agee to act as the chairperson for local arrangements.

The attendees appreciated the quiet and efficient manner in which this
gentleman handled the many tasks associated with this event., He is also to be
commended for his planning arrangements for a tutorial which was scheduled to
be held two days before the start of this conference.

The original format for the Design of Experiments Conferences, which are under
the auspices of the Army Mathematics Steering Committee (AMSC), was outlined by
the eminent statistician, Professor Samuel S. Wilks, who served as conference
chairman until his death. Through these symposia the AMSC hopes to introduce
and encourage the use of the latest statistical and design techniques into the
research, development and testing conducted by the Army's scientific and
engineering personnel. It is believed that this purpose can be best pursued by
holding these meetings at various government installations throughout the

country.

Members of the program committee were pleased to obtain the services of the
following distinguished scientists to speak on topics of interest to Army

personnel:

Speaker and Affiliation

Professor Herbert A. David
Iowa State University

Professor Ronald R. Hocking
Texas A&M University

Professors Donald L. Iglehart
and Peter W. Glynn
Stanford University

Professor Emanuel Parzen
Texas A&M University

Professor Edward L. Wegman
George Mason University

Title of Address

Some Applications of Order
Statistics

Diagnostic Methods - Variance
Component Estimation

Computational and Statistical
Issues in Discrete-Event
Simulation

Two Sample Functional
Statistical Analysis

Parallel Coordinate
Density Plots




Four days before the start of the planned two-day tutorial on "Topics in Modern
Regression Analysis", its speaker advised Mr. Agee he could not give his
planned lectures. Fortunately, Professor Ali Hadi of Cornell University was
able, so to speak, to save the day. The attendees were very pleased with Dr.
Hadi's interesting and informative tutorial on "Sensitivity Analysis in Linear
Regression",

Dr. Marion R. Bryson, Director of the U.S. Army Combat Development
Experimentation Center, was the recipient of the eighth Wilks Award for
Contributions to Statistical Methodologies in Army Research, Development and
Testing. This honor was bestowed on Dr. Bryson for his many significant
contributions to the field of statistics. These started by providing
statistical consulting while he was on the faculty of Duke University. This
era was followed by full-time work devoted to directing analytical studies for
the Army. Since then, he has provided overall technical direction to the
Army's most modern field test facility. His published works include papers on
a wide range of topics of importance to the Army, including methods for scoring
casualties, designing field experiments, and inventory control problems.

The AMSC has asked that these proceedings be distributed Army-wide to enable
those who could not attend this conference, as well as those that were present,
to profit from some of the scientific ideas presented by the speakers. The
members of the AMSC are taking this opportunity to thank all the speakers for
their interesting presentations and also members of the program committee for
their many contributions to this scientific event.

'PROGRAM COMMITTEE

Carl Bates Robert Burge Francis Dressel
Eugene Dutoit Hugh McCoy Carl Russell
Doug Tang Malcolm Taylor Jerry Thomas

Henry Tingey

iv
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SOME APPLICATIONS OF ORDER STATISTICS"

He A. David
Department of Statistics
102D Snedecor Hall
Iowa State University
Ames, IA 50011-1210

ABSTRACT. Suppose that the random variables X,,...,X, are arranged in
lin S *o € xh:n. Then X.., 1is called the r-th order

statistic (r = 1,...,n). Order statistics, and functions thereof, have been
used extensively in such diverse areas as quality control, the estimation of
parameters, life testing, data compression, selection procedures, and the
study of extreme meteorological phenomena. In this paper we focus on
applications of order statistics to (a) estimators that are resistant to
outliers, (b) current measures of location and dispersion such as the moving
median and the moving range, and (c) some problems in reliability.

ascending order as X

1, INTRODUCTION. If the random variables X)seee,X, are arranged in
ascending order of magnitude and then written as

X € oo € X € oee € X
n

1:n r:n :n?

we call X_.  the r-th order statistic (0S)(r = l,...,n). Usually X;,...,X;

are assumed to be a random sample from some underlying population.

The subject of ordervstatistics deals with the properties and applica-
tions of these ordered random variables and of functions involving them.
Examples are the extremes xlzn and xn:n, the range Wn'- xn:n - xlzn, the

extreme deviate (from the sample mean) xn.n - i, and the maximum absolute

deviation from the median (MAD) 1= 2% nlxi - MI, where the median M
———— goeey
1
equals X (n odd) and 5(X X (n even).
(2:l :n 2( (9):n (9 + l)?n
2 2 2

All these statistics have important application. The extremes arise in
the statistical study of droughts and floods, as well as in problems of
breaking strength and fatigue failure. The range is well known to provide a
quick estimator of the population standard deviation g, whereas MAD is a more
recent estimator of ¢ valuable because of its high resistance to wild
observations (outliers). The extreme deviate is a basic tool in the detection
of such outliers, large values of (xn'n - X)/o indicating the presence of an

*Keynote Address, 34th Conference on the Design of Experiments in Army
Research, Development and Testing, New Mexico State University, Las Cruces,
October 19, 1988. Prepared with support from the U. S. Army Research Office.




excessively large observation. Order statistics have also been used in such
diverse areas as quality control, life testing, data compression, parameter
estimation, and selection procedures. A general account of the subject is
given in David (1981). The statistics of extremes is treated in more detail
by Galambos (1987). For a recent collection of articles on order statistics
see also the special issue on Order Statistics and Applications of Communica-
tions in Statistics, Theory and Methods, Vol. 17, No. 7 (1988), edited by N.
Balakrishnan.

In the following sections of this paper we focus on applications of order
statistics to (a) estimators that are resistant to outliers, (b) current
measures of location and dispersion such as the moving median and the moving
range, and (c) some problems in reliability.

2. RESISTANCE TO OUTLIERS Order statistics play a prominent role in the
study of outlying observations. A typical model for a single outlier in
normal samples is given by (2.1):

2
Xl,...,xi_l N x1+1,ooo, xn ~ N(u,d ), i= l,ooo,n (2.1)

X, ~ N(u + Ao, 02),
where all X; are independent and i is unknown. If Gi is known and A > 0

(outlier on right), then the statistic D = (xn.n - X)/o (Grubbs, 1950) is

well known to be optimal (in a widely accepted sense) for the detection of the
outlier. If 02 is unknown, studentized versions of D, hpply. For an

extensive account of the subject of outliers see Barnett and Lewis (1984). It
should, however, be noted that the above "classical” tests for outliers are
less effective when the number of outliers may exceed one, the actual number
being unknown. In that situation, statistics more resistant to the presence
of more than one outlier may well be preferable (e.g., Hampel et al., 1986).

We will not consider tests any further, but turn to procedures for the
estimation of u and 0 under (2.1) and related models. To estimate M under
(2.1) we confine ourselves to the class of linear functions of order
statistics with symmetrical weights:

n

=a, >0, T a, =1, (2.2)

L (a) = 2 aX, owvwitha ., 1

i=1 i=]

In the absence of an outlier (X = 0), L is clearly an unbiased estimator
of u. However, as A + ®, we have ELu(a) + ® unless a, = 0. This suggests
n-1

searching for robust estimators within the class L a; xi,n. The
1=2 :



standardized bias and mean sq&ared error (MSE) of Ln(a) under (2.1) can be
obtained with the help of tables of the first two moments of normal order
statistics in the presence of an oﬁtlier (David, Kennedy, and Knight, 1977),
For example, under (2.1) the standardized bias E (1) of L (a) is given by

EL (a) - X -
n i:n
5 = T aj_E (__0_—-)’
or
b (A) = Laa, (), (2.3)

where ci.n(x) is the expected value of xi:n for u = 0, 0 =1, Note

that a  (0) is just the widely tabulated expected value @, of the i-th 0S,
Zyq In random samples of n from a standard normal population. Clearly,

a . (}) is a strictly increasing function of A. Also, since for A = = (2.1)

leaves us with a random normal sample of size n = 1 plus an observation at *®,
we have

ai:n(“) = %gip-1? 1= 1,.00,071 %nsn (=) ==, (2.4)
(and likewise ai:n(-.) =% 1’ i=2,.00,n al:n('.) = o,
Some results for samples of 10 are shown in Figures 1 and 2, where

10

= 1

xlo ;s the sample mean 10 i xile
1 9

leO(l) is the trimmed mean 3 g xi:lO

w ™Mo

1
WIO(Z) is the Winsorized mean Tﬁ-(2x3:10 + xi:lO + 2x8=10)

rlo(a) is the median %(x + ), etc.

s:10 ¥ %6:10
The figures are confined to A > 0 since results for A < 0 follow by skew-
symmetry in Fig. 1 and by symmetry in Fig. 2.

BIAS b (A). Since a, 2 0V 1 we see from (2.3) that the bias is a strictly

increasing function of A for each of the estimators, and from (2.4) that

b(®) =La a . (2.5)

This gives the numerical values placed on the right of Fig. l. The jagged
graphs are the corresponding "stylized sensitivity curves” (Tukey, 1970;

Andrews et al., 1972) obtained by plotting Ln(alzn-1’°"’an-l:n-l’x)

against A. In particular, for the median we have
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1
: ) (@559 * 1) 22 0<A<a,
md a eeey O A = *
10 Y71:9? 179:9? 1 1
§(c5:9 + 66:9) 2 °6:9 A c6:9
= 0,1372 6

The last result is the same as given by (2.5). In fact, each of the horizon-
tal lines serves as an asymptote to the corresponding bias function. It is
seen that the median performs uniformly best.

MEAN SQUARED ERROR MSE(A) . No clear-cut results emerge. The sample mean
does best for A < 1.5 but is quickly .outclassed for larger A, Overall, Tlo(l)
performs best, although the more highly trimmed TIO(Z) is slightly superior
for very large A.

EXTENSIONS

l. The intuitively appealing result that for symmetric unimodal distributions
the median is the least biased among the L -estimators can be formally

established under (2.1) and also for a class of symmetric non-normal
distributions (David and Ghosh, 1985).

2. For n € 20 appropriately trimmed means still do well in the MSE sense when
compared with much more complex estimators, but for A sufficiently large
and n not too small are inferior to the best of the adaptive estimators
such as Tukey's biweight (Mosteller and Tukey, 1977, p. 205).

3. An often used alternative outlier model replaces the second line of (2.1) by

X, ~ N(u, 1262) 25

For this model location estimators remain unbiased but their variance is
increased. Since bias has been sidestepped, only the variance of the
estimator needs to be studied (David and Shu, 1978; Rosenberger and Gasko,
1983). :

CASE OF SEVERAL EXTREME OUTLIERS. For q(1 € q < % n) outliers Rocke (1986)

defines as a measure of outlier resistance of an estimator of location T the
"expected maximum bias” Dp(n,q) by

DT(n,q) = E{s“p[IT(zl:n-q’""Zn—q:n-q'xl""'xq)|}’ (2.6)

where the supremum is taken over all possible choices of the constants
Xl,...,lq and the Z's are the normal 0S. When T = L,» the supremum will

evidently occur when the A's are all + ® or all - ®, As Rocke points out, by
focusing on the worst case of bias one need not specify the usually unknown
distribution(s) of the outliers. It suffices to model the good observations
which more generally could be from any standardized distribution.

It appears that unwittingly Rocke does not use (2.6) but in fact works
with the standardized bias



,...,Zn_q n_q, ,ooo, )} (207)

I1f the good observations were independently generated from a unimodal
symmetric distribution (mode = maximum), then again the median can be shown to

D; (n,q) = E{T(len_q

*
have the least bias DT(n,q) among L -statistics (Rocke's proof is incorrect;
see the appendix). -

3. CURRENT MEASURES OF LOCATION AND DISPERSION

Let X; be a sequence of independent random variables with cdf Fi(x)

(1 =1,2,...)s Then s, (1) . (x ) may be called a moving sample of

ver oo Xiine

1)

size n, and x(iz, the r-th 0S of Sn , the moving r-th 0S. Moving maxima

(r = n) and minima (r = 1) were studied by David (1955) under homogeneity
(Fi(x) = F(x), 1= 1,2,...,) in the course of an investigation of moving

(1) o (1) _ 4) o,
ranges W X in " xl. (i = 1,2,...)c The latter have a longer history
(Grant, 1946), being natural companions to moving averages on quality control
charts. Such charts are particularly appropriate when it takes some time to
produce a single observation,

Moving medians are robust current measures of -location and, like moving
averages, smooth the data; see, e.g., Tukey (1977, p. 210). Cleveland and
Kleiner (1975) have used the moving midmean, the mean of the central half of

" the ordered observations in each sn(i), together with the mean of the top half
and the mean of the bottom half, as three moving descriptive statistics
indicating both location and dispersion changes in a time series.
Since S, (1) and Sn(j) involve common random variables iff

H |1 - j| < n, we see that xiiz and x(j: are independent for d”n and
dependent otherwise, with n - d rv's in common. To begin with, we assume
homogeneity. Then the joint distribution of Sn(i) and Sn(j) will be
stationary and will depend only on F(x), n, and d. We therefore consider
Sa (1) and S (1+d), and more specifically x(l) and x(1+d)

(r s = l,ooo,n) Let
- (1)y . (1+)y |
Igh(d) Pr{rank (xr:n) g, rank (Xs:n ) h}, (3.1)
where rank (Y) denotes the rank of Y in the combined sample Xppooe Xpqe It
follows that



(1) (1+d)) . £
E(xr:n xs:n‘ ) g,h'gh E(xg:n+d xh:n+d)' (3.2)
1)’ x(1+d))
:mm’ “s:n

moments of ordet statistics in samples of ntd from a distribution with cdf

This permits calculation of cov(xi in terms of the first two

F(x), since the 'gh can be obtained by combinatorial arguments (David and
Rogers, 1983). The joint distribution of xifi and ngl has been investigated
by Inagaki (1980).

With the help of (3.2) it is possible to evaluate the auto-covariance
structure under homogeneity of the moving median and, in fact, of any linear
function of the order statistics @ 'x = a x + o0 + @ x ., That is, we

) 171:n n:n
can find

1) ,ﬂ!(j;)

-_(
cov (C x( ) » (

in terms of the first two moments of the 0S for sample sizes up to 2n-1 from a
distribution with cdf F(x).

Electrical engineers have made extensive use of moving order statistics
in digital filters. They view a moving sample as a window on a sequence of
signals X}, Xp,ees and speak of median filters when using the moving median to

represent the current value of the signal, thereby "filtering out” occasional
impulsive disturbances (outliers)(e.g., Arce, Gallagher, and Nodes, 1986).
More generally, the median may be replaced by @'x to give order statistic
filters (e.g., Bovik and Restrepo, 1987).

For example, suppose that in the automatic smoothing of a basically
stationary time series one is prepared to ignore single outliers but wishes to
be alerted to a succession of two or more high (or low) values. This calls
for use of moving medians in samples of three, since clearly a single outlier
will be smoothed out but two successive large values will result in two large
medians. The following small example illustrates the situation, where for _
purposes of comparison we have added the much less informative moving mean x

i L]
x, 3 1 1 10 2 4 3 9 10 2 1
(1)
X,5.3 1 1 2 4 3 4 9 9 2
- 2 1 1 1 1 1
X, l3 4 4-3- 5-3- 3 53 7-3- 7 45

When X, ,X5,... are not 1id, even the distribution of order statistics in



a fixed sample becomes complicated although a fairly elegant expression for
the pdf can be written down in terms of permanents (Vaughan and Venables,
1972) if thie X's are not identically distributed but still independent. 1t is
easily seen that the moving median and other order statistics will reflect
trends except for a smoothing at the ends. Thus for the following sequence,
where the upward trend is underlined, we have

x, 5 2 1 3 4 6 9 12 14 1 7
<) 2 2 3 4 6 9 12 12 11
X3

- 2 2 ] ] 2 1 2

x1 23 2 23 43 63 9 113 123 103

For a linear trend given by

Xi = {1 + Zi, i = 1,2,000 (3.3)

vhere the Z; are i.i.d., we evidently have

Wy - ul = oo,

with covariances cov (xiti,’ngz) (r,s = 1,..f,u) independent of i.

Consider now a particular sample X;,Xy,¢ee,Xo ) (m = 2,3,...) with

symmetric unimodal distributions. Then under (3. 3), which need hold only for
the sample in question, we see that for 120 -

Pr{rank xi = 1} increases with T.

Thus X.., will tend to lead the trend, reflect the current state, or lag the
trend according as r % m, and will do so increasingly as T increases; for
7<0, the results are reversed. However, in contrast to the sample mean,
whose variance remains unchanged under a linear trend, the variance of the
sample median increases with t. (I am indebted to Dr. W. J. Kennedy for some
computations verifying the latter intuitively obvious result.) Thus the use
of the median, under locally linear trend, is appropriate primarily as
protection against outliers. In this situation, but under nonlinear trend,
Bovik and Naaman (1986) consider the optimal estimation of EX; by linear
functions of order statistics.

4. SOME PROBLEMS IN RELIABILITY

There is a well-known immediate connection between order statistics and
the reliability of k-out-of-n systems.

Definition A k-out-of-n system is a system of n components that functions if
and only if at least k (k = 1,...,n) of its components function. Series and
parallel systems correspond to k = n and k = 1,



Let Xi(i = ]l,.00,n) be the lifetime of the i-th component and
Ri(x) = Pr{x1 > x} its reliability at time x (the probability that it will
function at time x). Then the reliability of the system S at time x is
Rg(x) = Pr{X . ., ..>x}
If the X; are independent (but not necessarily identically distributed) ome
may write (Sen, 1970; Pledger and Proschan, 1971).

n A1 l-A1
Rg(x) =: 1 R () [1-RG()] 7,
A i=1
n
where Ai = 0 or 1, and A is the region ¢ Ai > ke It can be shown that a
i=1

series (parallel) system is at most (least) as reliable as the corresponding

n

system of components each having reliability R(x) = & L Ri(x). An excellent
i=1

general account, covering also important situations when the xi are not

independent, is given in Barlow and Proschan, (1975).

I will conclude with a problem in reliability, quite different from the
above, that was suggested by an enquiry from Malcolm Taylor (see Baker and
Taylor, 1981). A fuze contains n detonators, r of which must function within
time span t. The-ideal requirement r = n may be too demanding in practice and
r = n-1 suffices. The n times to detonation, X)ye0e,X,, may reasonably be

regarded, I was told, as a random sample from a normal population. Let
P(r; n,t) be the probability that at least r detonations have occurred in time t.

Now, for a random sample from any continuous distribution with cdf F(x),
P(n;n,t) is just

Pe{x - X, <t} =af7 [Fxrt) - B)™ a0,

l:n

the cdf of the sample range (Hartley, 1942). Let A;' and Ay be the events

xn-l:n - xl:n <t and xn:n - x2:n < t, respectively. Then,

P(n-1; n,t) = Pr{A, ' A}
= Pr{A;'} + Pr{a)]} - Pr{A 'A)} (4.1)

The event Al' occurs if n-1 or n-2 of X;,...,X; fall in the interval
(X).:nsX1:n * t] and Ay if n=2 of the X; are in (X, . ,X;., + t]. Since A,
includes the event that n-1 of the X; are in (X;, ,X;., + t], we can avoid
unnecessary duplication by replacing Al' in (4.1) by A, the event that

exactly n-2 of the X; are in (X X0t t].

l:n®* "1



We have immediately, writing a(d) . n(n-1) ... (n=j+1), that

pria} = n(Z)I:, [F(x+t) = F(x)]P72[1 - P(x+t)] dF(x)

and
Pr{Az} - n(z)f:. [F(x+t) - l’(x)]“..2 F(x)dPF(x).
The joint occurrence of A) and A, is illustrated below for n = 6. We
have
= —— - }f o— }
| | x+t y+t
xl:n = x xZ:n =y

Pr{AIAZ} - n(3)f:.f:+t[F(x+t) - B(I" 3 [R(y+t) - F(x+t)] dF(y)dF(x)

From these results P(n-1; n,t) has been tabulated in David and Kinyon
(1983) when F(x) = ®(x). Note that P(n-1l;n,t) may be interpreted as the

probability that at least n—-1 out of n independent normal N(u,az) variates are
within an interval of length to.

EXAMPLE. As in Baker and Taylor (1981) suppose that X;,...,X  are independent

normal variates with o = 10-5. The entry P(6;7,3) = 0.9587 tells us that the

probability of at least six detonations out of a possible seven within time
span 30 is 0.9587. By comparison, the probability of seven detonations is
only 0.6601, as found from tables of the cdf of the range (Pearson and
Hartley, 1970).

David and Kinyon (1983) also give an expression, involving a triple
integral, for P(n-2; n,t). It should be noted that P(r; n,t) has received
much attention by quite different techniques in the special case when the Xy
are independent uniform variates (e.g., Neff and Naus, 1980). From a
different viewpoint again, writing

P(r; n,t) = Pr{ﬁ (I) < t},
where nn

X

s o(r
Hn(ﬁ) = ain (x1+r-1:n - i:n)’

1-1' s ,n’r"'l
we may regard Hn(ﬁ) as a measure of dispersion. In fact, Hn(c) is the length
of the shorth, the shortest a-fraction of the ordered sample (Andrews et al.,
1972). 1t has recently been shown (Grubel, 1988) that Hn(a) is asymptotically
normal (for fixed a).
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APPENDIX
H. A, David and C. C. Yang

Correction to 'Outlier resistance in small samples'
By DAVID M. ROCKE
Biometrika (1986), 73, 175-81
The author does not stay with his own definition of DT(n,q) but in fact uses
Dy(n,q) = E{T(zl,...,zn_q,ﬁ,...,ﬂ)}.

Even with this change the proof of the theorem on p. 176 is in error since the
combinatorial term associated with § _ should be (::2), not (n;q). However,
iince Gn-r = Br-q’ the theorem follows directly from Case 2 of David and
Groeneveld (Biometrika (1982), 69, 227-32) and has essentially been proved in

P. K. Sen (Ed.) Biostatistics (1985) North-Holland, pp. 309-11.
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MULTI-SAMPLE FUNCTIONAL STATISTICAL DATA ANALYSIS

Emanuel Parzen
Department of Statistics
Texas A&M University
College Station, Texas 77843-3143

ABSTRACT. This paper discusses a functional approach to the problem of compar-
ison of multi-samples (two samples or ¢ samples, where ¢ > 2). The data consists of ¢
random samples whose probability distributions are to be tested for equality. A diversity
of statistics to test equality of ¢ samples are presented in a unified framework with the
aim of helping the researcher choose the optimal procedures which provide greatest insight
about how the samples differ in their distributions. Concepts discussed are: sample distri-
bution functions; ranks; mid-distribution function; two- sample t test and nonparametric
Wilcoxon test; multi-sample analysis of variance and Kruskal Wallis test; Anderson Darling
and Cramer von Mises tests; components and linear rank statistics; comparison distribu-
tion and comparison density functions, especially for discrete distributions; components
with orthogonal polynomial score functions; chi-square tests and their components.

1. INTRODUCTION. We assume that we are observing a variable Y in ¢ cases or sam-
ples (corresponding to ¢ treatments or ¢ populations). The samples can be regarded as the
value of ¢ variables Y;,..., Y. with respective true distribution functions Fr’le%y), ceey F g)
and quantile functions Q, (u?, ey Qc(u). Wecall Yj,...,Y. the conditioned variables ( e
value of Y in different populations). .

The general problem of comparison of conditioned random variables is to model how
their distribution functions vary with the value of the conditioning variable k = 1,...,¢,
and in particular to test the hypothesis of homogeneity of distributions:

Hy:Fi=...=F.=F

The distribution F to which all the others are equal is considered to be the unconditional
distribution of Y’ (which is estimated by the sample distribution of Y in the pooled sample).

2. DATA. The data consists of ¢ random samples
Y.(5),7 =1,...,n;
for k =1,...,c. The pooled sample, of size N = ny + ... + n, represents observations of

the pooled (or unconditional) variable Y. The ¢ samples are assumed to be independent
of each other.

8. SAMPLE DISTRIBUTION FUNCTIONS. The sample distribution functions of
the samples are defined (for —oco <y < 00) by

F"(y) = fraction <y among Yi(.).
The unconditional or pooled sample distribution of Y is denoted
F*(y) = fraction <y among Yi(.),k=1,...,ec.

We use " to denote a smoother distribution to which we are comparing a more raw

distribution which is denoted by a . An expectation (mean) computed from a sample is
~denoted E".

Research Supported by the U.S. Army Research Office
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4. RANKS, MID-RANKS, AND MID-DISTRIBUTION FUNCTION. Nonparamet-
ric statistics use ranks of the observations in the pooled sample; let

Ry(t) denote the rank in the pooled sample of Y(t).

One can define Ry (t) = NF*(Yi(t)).

In defining linear rank statistics one transforms the rank to a number in the open unit
interval, usually Rk(:? /(N +1). We recommend (Rg(t) — .5)/N. These concepts assume
all observations are distinct, and treat ties by using average ranks. We recommend an

approach which we call the “mid-rank transform” which transforms Yi(t) to P(vy(t)),
deﬁm.n‘ g the mid-distribution function of the pooled sample Y by

P (y) = F*(y) — .5p"(y)-

We call
p*(y) = fraction equal to y among pooled sample

the pooled sample probability mass function.

5. SAMPLE MEANS AND VARIANCES. When the random variables are assumed
to be normal the test statistics are based on the sample means (for k = 1,...,¢)

Y~ = E[Yi] = (1/n) ) Yil2).
t=1

We interpret Y;~ as the sample conditionﬂ mean of Y given that it comes from the kth
population. The unconditional sample mean of Y is '

Y = E-[Y] =paY17+...+p.Y,
defining
P =ni/N

to be the fraction of the pooled sample in the kth sample; we interpret it as the empirical
probability that an observation comes from the kth sample.
The unconditional and conditional variances are denoted

VARTY] = (1/N) Y (% () - Y
k=1j3=1
VARTY] = (1/n) Y_{%i(s) - Yic)?
1=1

Note that our divisor is the sample size N or n; rather than N — ¢ or ny — 1. The latter
then arise as factors used to define F statistics.
We define the pooled variance to be the mean conditional variance:

[
02 = pi VARTY}]
k=1

16



6. TWO SAMPZE NORMAL T TEST. In the two sample case the statistic to test
Hj is usually stated in a form equivalent to
T = {Y1" - Y }/o"{(N/(N - 2))((1/m1) + (1/m2))}®

We believe that one obtains maximum insight (and analogies and 'extensions) by expressing
T in the form which compares Y1~ with Y™:

T ={(N-2)p1/(1-p.1)}{(Yi -Y}/o"
The exact distribution of T is t(N — 2), t-distribution with N — 2 degrees of freedom.
7. TWO-SAMPLE NONPARAMETRIC WILCOXON TEST. To define the popular

Wilcoxon non-parametric statistic to test Hg we define Wy to be the sum of the n; ranks
of the Y}, values; its mean and variance are given by

E[Wi] = ng(N +1)/2, VAR[W] = nyna(N +1)/12
The usual definition of the Wilcoxon test statistic is
T}, = {Wi — E[Wi]}/{VAR[W]}°.

The approach we describe in this paper yields as the definition of the nonparametric
Wilcoxon test statistic (which can be verified to approximately equal the above definition

of Ty, up to a factor {1 — (1/N)2}-5)
Ty = {12(N — 1)p.1/(1 - p1)} *(R — 5},
defining

R = (1/n) Y (Ro(8) - S)/N
. =1 .
= (W1/n1N) — (1/2N)

One reason we prefer this form of expressing non-parametric statistics is because of its
relation to mid-ranks;
Ry~ = E"[P"(Yy))

One should notice the analogy between our expressions for the parametric test statistic
T and the nonparametric test statistic T;; the former has an exact t(N — 2) distribution
and the latter has asymptotic distribution Normal{0,1}.

8. TEST OF EQUALITY OF ¢ SAMPLES NORMAL CASE. The homogeneity of

c samples is tested in the parametric normal case by the analysis of variance which starts
with a fundamental identity which in our notation is written

[
VARTY] =) pi{Vi - Y} + 02
k=1
The F test of the one-way analysis of variance can be expressed as the statistic

A
T2 =) " plTil?,
k=1

[
=Y (1-p,)|TF/%,
k=1
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deﬁning.
" Ty =(N-e){Yp -Y}/o
TF,={(N-c)pr/(1—p)}{Vi - Y}/o

The asymptotic distribution of T2/(c—1) and TF? are F(c—1,N —c) and F(1, N —¢)
respectively.

9. TEST OF EQUALITY OF ¢ SAMPLES NONPARAMETRIC KRUSKAL-
WALLIS TEST. The Kruskal-Wallis nonparametric test of homogeneity of ¢ samples
can be shown to be

TEKW? = (1 - px)ITKW)|2.
k=1
TKW), = {12(N — 1)p/(1 - px)} (R~ - .5}

The asymptotic distributions of TKW?2 and TKW ,f are chi-squared with ¢ — 1 and 1
degrees of freedom respectively.

10. COMPONENTS. We have represented the analysis of variance test statistic T2

and the Kruskal-Wallis test statistic T KW?2 as weighted sums of squares of statistics T F},
and T KW, respectively which we call components, since their values should be explicitly
calculated to indicate the source of the significance (if any) of the overall statistics. Other
test statistics that can be defined can be shown to correspond to other definitions of
components. .

11. ANDERSON DARLING AND CRAMER VON MISES TEST STATISTICS. Im-
portant among the many test statistics which have been defined to test the equality of
distributions are the Anderson-Darling and Cramer-von Mises test statistics. They will
be introduced below in terms of representations as weighted sums of squares of suitable
components.

12. COMPARISON DISTRIBUTION FUNCTIONS AND COMPARISON DEN-
SITTY FUNCTIONS. We now introduce the key concepts which enable us to unify and
choose between the diverse statistics available for comparing several samples. To compare
two continuous distributions F(.) and H(.), where H is a true or smooth and F is a model
or raw, we define the comparison distribution function

D(u) = D(u; H,F) = F(H™(u))
with comparison density
d(u) = d(u; H, F) = D'(u) = f(H ™' (u))/h(B ™} (u)).

Under Hy : H = F, D(u) = u and d(u) = 1. Thus testing Hy is equivalent to testing
D(u) for uniformity.

Sample distribution functions are discrete. The most novel part of this paper is that
we propose to form an estimator D”(u) from estimators H™(.) and F~(.) by using a general
definition of D(.) for two discrete distributions H(.) and va} with respective probability
mass functions pg and py satisfying the condition that the values at which pg are positive
include all the values at which pr are positive.

18



18. COMPARISON OF DISCRETE DISTRIBUTIONS. To compare two discrete
distributions we define first d(u) and then D(u) as follows:

d(u) = d(u; H, F) = pp(H ™' (u))/pe(H ™ (u),
1
D(u) = / d(t)dt.
0
We apply this definition to the discrete sample distributions F* and F"; to obtain
di"(v) = d(u; F*, Fy")
and its integral Dk'(tﬂ.
We obtain the following definition of d;"(u) for the ¢ sample testing problem with all
values distinct:

di"(v) = N/ng if (Ri(5) —1)/N <u < Ri(3)/N,5 =1,...,ng,
=0, otherwise.

A component, with score function J(u), is a linear functional

: 1
T,"(J) = /o J(u)dy"(u)du

It equals W/
Nk Ru(5)/N
1/n N : J(u)du
0/ LN iy T
which can be appraximated by E"[J(P"(Yk))]-

14. LINEAR RANK STATISTICS. The concept of ‘a linear rank statistic to compare
the equality of ¢ samples does not have a universally accepted definition. One possible
definition is e

Ti'(J) = (1/n4) ) J((Ri(4) - 5)/N)
=1

However we choose the definition of a linear rank statistic as a linear functional of d;"(u),

which we call a component; it is approximately equal to the above formula.
We define

1
T,() = (¥~ 1) VARU@)lps/(1 -2 [ T ) -1 ()
where U is Uniform{0,1}, E[J(U)] = J3 J(u)du,
1
VAR[J (V)] = /o {(J(v) - E[J(U)]}?du.
Note that the integral in the definition of T;"(J) equals

1
/o J(u)é{Dy"(u) — u}.
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The components of the Kruskal-Wallis nonparametric test statistic T KW? for testing
the equality of ¢ means have score function J(u) = u — .5 satisfying

E[J(U)] = .5, VAR[J(U)] = 1/12.
The components of F test statistic T2 have score function
J(v) ={Q(v) - Y}/o"
where Q"(u) is sample quantile function of the pooled sample Y.

15. GENERAL DISTANCE MEASURES. General measures of the distance of D™(u)
from u and of d"(u) from 1 are provided by the integrals from 0 to 1 of

{T(w) -1}, {D(v)-v}?, {(D(v)-ul/u(l—u), {d(x)-1}

where d*(u) is a smooth version of d"(u). We will see that these measures can be decom-
posed into components which may provide more insight; recall basic components are linear
functionals defined by (!)

1
() = /o J(w)d" (v)du.

If ¢;(u),s=0,1,2,..., are complete orthonormal functions with ¢ = 1, then Hy can
be tested by diagnosing the rate of increase (as a function of m =1,2,...) of

1 m
/o {dm() - 1}%du = 3 [T(#:[?
. =1

which measure the distance from 1 of the approximating smooth densities

dm(u) = ) T ()¢5 (u).

1=1
16. ORTHOGONAL POLYNOMIAL COMPONENTS. Let p;(z) be Legendre poly-

nomials on (-1,1):

n(z)=z

p2(2) = (3z% —1)/2,

p3(z) = (52° — 3z)/2,

p4(z) = 35z* — 3022 + 3.
Define Legendre polynomial score functions

SLi(w) = (2i +1)Sp;(2u - 1).

On:egan show that an Anderson-Darling type statistic, denoted AD(D"), can be repre-
sen

AD(D") = /0 D () = w)u(l — w)}du
=) T (6L:) 2/ (i(5 +1))
=1
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Define cosine score functions by
#Ci(u) = 25cos(imu).

On:e::ia.n show that a Cramer-von Mises type statistic, denoted CM(D"), can be repre-
sen

"
cM(D) = /o {(D"(6) - u}2du

[~ <}
=Y IT(6C;) 2/ (im)?
1=1
In addition to Legendre polynomial and cosine components we consider Hermite poly-
nomial components corresponding to Hermite polynomial score functions

¢H;(u) = (1) P H; (@7 ()
where H;(z) are the Hermite polynomials:
H(z) =z,
Hy(z) = 2% -1,
Hy(z) = z° - 3z,
Hy(z) = z* — 622 + 3.

17. QUARTILE COMPONENTS AND CHI-SQUARE. Quartile diagnostics of the
null hypothesis Hy are provided by components with quartile “square wave” score functions

5Qi(w) =-2°%  0<u<.25
=0, .25<u<.75,

= 2'5, A5 <u<l;
SQ2z(u) =1, 0<u<.25,
=-1, 25 < u<.75,
=1, J5<u<l;
SQ3(u) =0 fo<u<.250r.75<u<1,

=-25 = 25<u<.,
=2%  5<u<.75.

A chi-squared portmanteau statistic, which is chi-squared(3), is

3
CQr=(N-1)pir/(1—py) Z IT7(5Q;) 2

1=1
1
= (N = D)p/(1-pa) /0 (dQu(v) — 1)%du

defining the quartile density (for ¢ = 1,2, 3,4)
dQi(u) = 4{Dy"(¢(.25)) — Di"((s — 1).25), (¢ — 1).25 < u < i(.25)
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A pooled portmanteau chi-squared statistic is

CQ=) (1-pr)CQ
k=1

18. DIVERSE STATISTICS AVAILABLE TO TEST EQUALITY OF ¢ SAMPLES.
The problem of statistical infereence is not that we don’t have answers to a given question;
usually we have too many answers and we don’t know which one to choose. A unified
framework may help determine optimum choices. To compare ¢ samples we can compute
the following functions and statistics:

1) comparison densities: dk'%),
2) comparison distributions Dy (u),
3) quartile comparison density dQj(u), quartile density chi-square

1
CQx= (N - 1)p4/(1 - p) /0 {dQi(y) — 1)%du.

4) non-parametric regression smoothing of d;"(u) using a boundary Epanechnikov kernel,
denoted di"(u),

5) gegendre components and chi-squares up to order 4 are defined using definition (!) of
&

TLi(s) = T}, (¢L;)

CLi(m) = Y |TLy(5)]?
=1

CL(m) = Y- (1~ px)CLy(m)
k=1

ADg =Y |TLg(s)[2/i(i + 1)

=1

[
AD =) (1-p;)AD;
k=1
6) Cosine components and chi-squares up to order 4 are defined:

TCi(s) = Ti"(6C3)

CCy(m) = 3 ITCH()?

1=1

cC(m) = Y (1 - px)CCi(m)
k=1

o0

CM;, = Y ITCL(5) [/ (i)?

=1

c
CM =) (1-pi)CM;
k=1
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7) Hermite components and chi-squares up to order 4 are defined:
TH(s) = T}, (¢H;)

CHi(m) =) |TH(3)?

1=1

CH(m) =) _(1 - px)CH(m)
k=1

8) density estimators di"(u) computed from components up to order 4,
9) entropy measures with penalty terms which can be used to determine how many
components to use in the above test statistics

19. EXAMPLES OF DATA ANALYSIS. The interpretation of the diversity of statis-
tics available is best illustrated by examples.

In order to compare our methods with others available we consider data analysed by
Boos (1986) on ratio of assessed value to sale price of residential property in Fitchburg,
Mass., 1979. The samples (denoted I, II, III, IV) represent dwellings in the categories
single-family, two-family, three-family, four or more families. The sample sizes (54, 43,
31, 28) are proportions .346, .276, .199, .179 of the size 156 of the pooled sample. We
compute Legendre, cosine, Hermite components up to order 4 of the 4 samples; they are
asymptotically standard normal. We consider components greater than 2 (3) in absolute

value to be significant (very significant).
' Legendre, cosine, and Hermite components are very significant only for sample I,
order 1 (-4.06, -4.22, -3.56 respectively). Legendre components are significant for sample
IV, orders 1 and 2 (2.19, 2.31). Cosine components are significant for sample IV, orders I
and IT (2.36, 2.23) and sample III, order 1 (2.05). Hermite components are significant for
sample IV, orders 2 and 3 (2.7 and -2.07).

Conclusions are that the four samples are not homogeneous (have the same distribu-
tions). Samples I and IV are significantly different from the pooled sample. Estimators
of the comparison density show that sample I is more likely to have lower values than the
pooled sample, and sample IV is more likely to have higher values. While all the statistical
measures described above have been computed, the insights are provided by the linear rank
statistics of orthogonal polynomials rather than by portmanteau statistics of Cramer-von
Mises or Anderson-Darling type.

20. CONCLUSIONS. The goal of our recent research (see Parzen (1979), (1983))
on unifying statistical methods (especially using quantile function concepts) has been to
help the development of both the theory and practice of statistical data analysis. Our
ultimate aim is to make it easier to apply statistical methods by unifying them in ways
that increase understanding, and thus enable researchers to more easily choose methods
that provide greatest insight for their problem. We believe that if one can think of several
ways of looking at a data analysis one should do so. However to relate and compare the
answer:l, and thus arrive at a confident conclusion, a general framework seems to us to be
required.

One of the motivations for this paper was to understand two-sample tests of the
Anderson-Darling type; they are discussed by Pettitt (1976) and Scholz and Stephens
(1987). This paper provides new formulas for these test statistics based on our new def-
inition of sample comparison density functions. Asymptotic distribution theory for rank
processes defined by Parzen (1983) is given by Aly, Csorgo, and Horvath (1987); an excel-
lent review of theory for rank processes is given by Shorack and Wellner (1986).
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However one can look at k sample Anderson-Darling statistics as a single number
formed from combining many test statistics called components. The importance of com-
ponents is also advocated by Boos $1986), Eubank, La Riccia, and Rosenstein (1987) and
Alexander (1989). Insight is greatly increased if instead of basing one’s conclusions on
the values of single test statistics, one looks at the components and also at graphs of the
densities of which the components are linear functionals corresponding to various score
functions. The question of which score functions to use can be answered by considering
the tail behavior of the distributions that seem to fit the data.
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For samples I and IV, sample comparison distribution function D"(u)

Nousing Value/Price FOUR FANILIY ASSISSE l!ouil! Value/Price SINCLE PANILY ASSESS

For samples I and IV, sample comparison density ¢ (u), sample quartile density dQ(u)
(square wave), nonparametric density estimator d"(u)

; g7yq Mousiog Value/Price TOUR MNILIY ASSISSE "y

For samples I and IV, Legendre, cosine, and Hermite orthogonal polynomial estimator of
order 4 of the comparison density, denoted d4(u), compared to sample quartile density

dQ"(u).
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Reliability of the M256 Chemical Detection Kit

David W. Webb & Linda L. C. Moss
U.S. Army Ballistic Research Laboratory

Abstract

The U.S. Army uses the M256 Chemical Detection Kit (CDK) to indicate the presence
or absence of certain agents in the battlefield, which is indicated by a color change on the kit.
Strength of response is also influenced by the quantity of agent. Lots must meet reliability
specifications to be considered "battle-ready”. How do we go about collecting and analyzing
our data so as to evaluate its reliability? Other problems of interest include quantifying how
the agent quantity affects the response and if there are differences between the two manufac-
turers of the M256 CDK. Consultants at the Ballistic Research Laboratory have employed a
dose-response framework to study the reliability problem. We use a binary response
(present/not present) and assume a lognormal distribution in arriving at a response ‘curve for
each lot. Assessments of our approach and suggestions for alternative approaches are asked
of the panel. '
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Description of Kit

The M256 Chemical Detection Kit (CDK) is used to detect the presence/absence of
dangerous concentrations of toxic agents by color-changing chemical reactions. Each CDK
contains twelve samplers, which are the actual testing devices. Four types of agents can be
detected with the CDK. The tests indicate

a) if it is permissible to remove the protective mask following an agent attack,
b) if agent is present in the air or on surfaces suspected of contamination,
c) if any agent is present after decontamination operations.

The U.S. Army requires that the samplers exhibit at least a 92.5% reliability (with 90%
confidence) in responding to agent concentrations at the specification levels. However, the
kit should not be so sensitive that soldiers wear their mask at safe levels of concentration,
thereby interrupting other battlefield duties.

On the back of each sampler are complete instructions for testing and colored examples
of safe and danger responses. After performing the test, a paper test spot is checked for any
change of color. The color change will not usually be an exact match with the colors shown
on the back of the sampler. This is because the response depends upon the agent quantity.
To make matters more complex, when the agent is present the observed response may be
nonuniform with a few shades of the danger response showing.

Test Conditions & Restrictions

The lots of kits differ in manufacturer (A or B), age (1-8 years), and storage site (8 sites
in the United States and Europe). Not all combinations of these three factors are
represented in the design matrix; in fact, the design matrix is very sparse. For example, there
was only one lot that was eight years old.

Most lots contain ten or more kits (therefore, 120 or more individual samplers). Some
lots contained as many as 1000 kits, while others had as few as one kit.

We are restricted to the number of samplers that may be tested at any time since the
test chamber is large enough to hold only six samplers. Another restriction lies in the fact that
testing laboratories are only available for the length of time designated in the work contract.
This usually is no more than two months.
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The test equipment that controls the concentration of agent in the test chamber is very
accurate and precise, but it is slow. It may take about an hour to change to a higher concen-
tration. When going from a high to a low concentration, the waiting period may be several
hours since the high concentration tends to leave a residual amount of agent in the test
chamber.

Our Approach

We have decided to evaluate each agent and the chosen lots separately. From each
manufacturer, we have selected one lot from the available age groups. Also, we have tried to
choose lots of similar age from the manufacturers so that they can be paired and we can look
for general trends. In all, we have chosen fifteen lots ranging in age from 1 to 8 years.
Although the sites are in varying climatic areas, most of the warehouses are humidity and
temperature controlled; therefore the locations are treated as homogenous. Differences
existing between manufacturers are not considered in our initial design, but will be addressed
later.

We have taken the route of estimating the reliability of each lot at the specification level
of each agent. We have also chosen a dose-response type experiment, where our dose is the
agent concentration and the response is safe/danger. For the purpose of determining
response, U.S. Army manuals specify a set of nine color chips that progressively range from
the "safe” color to the "danger” color. The manual also states a cutoff color for the Bernoulli
response. (In most cases, color chips 1-3 correspond to a safe r&sponse, while chips 4—9 are

considered danger responses.)

We have made the assumption that the response curves follow that of the lognormal
cumulative distribution function with unknown mean and standard deviation. The lognormal
was selected based on historical precedent, although we note that the log-logistic would have
also been a reasonable choice.

To choose the concentration levels at which to run the tests, we have considered several
candidate sequential designs. In light of some of our restrictions, however, none of these
would be very practical (e.g., Robbins-Monro would have required too much laboratory
time).

Instead, we have chosen a two-stage "semi"-fixed design. In the first stage, 11 samplers
are tested at seven different levels; one concentration level set at an estimated mean, three
concentrations above this estimated mean, and three concentration levels below the
estimated mean, each being a multiple of the standard deviation away from the mean. Mean
and standard deviation estimates are based on the results of a pretest (which for the purpose
of brevity is deleted from this presentation). The multiple of the standard deviation is chosen
so that the specification level will be covered by the seven test concentrations.
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Stage I
Concentration Number of Samplers

- 3ko 1
B2 1
n :
B + ko, 2
B, + 2ko, 1
i, + 3k3, 1

11

Note: k is chosen so that the seven test concentrations cover the specification level. 2, and 3,
come from the pretest.

At the conclusion of Stage I, the data are analyzed using the DiDonato-Jarnagin max-
imum likelihood estimation algorithm to produce new estimates of the parameters, 4, and
3, . In Stage II, nine more units are tested at five concentration levels; one level set at the
new estimated mean, and at two levels above and below this, each now being a multiple of the
new standard deviation from the mean.

Stage I

Concentration Number of Samplers

i - 28, 1
i, -0, 2
i, 3
i, + 2, 2
i, + 20, 1

9

At the conclusion of Stage II, the parameter estimates for the lot are re-evaluated using
all 20 data points, giving us a final 2 and 3. With these final estimates, the .925 quantile is
estimated by 4 + Z 95 o.

By taking the variance of the above equation, we get an estimate of the variance of the
.925 quantile,

Var(R) + (2gps5)” Var(8) + 2z g5, Covi(f, 8)
(The DiDonato-Jarnagin algorithm gives the values of the variances and covariance term.) If
the one-sided 90% upper confidence limit of the .925 quantile is less than the specification
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concentration, then we can conclude that the lot meets the requirement for that particular
agent. ' '

We do not have a statistical technique per se for detecting significant differences
between manufacturers or sites. Our approach would be to simply look for any obvious
trends or differences. To study the age issue, a separate accelerated life test will be con-
ducted at a later date.

Questions
1. Is our approach appropriate for determining an extreme quantile?

2. Can one estimate a quantile when considering more than two possible responses (e.g.,
the nine color chips)?

3. How might we statistically compare the reliability of the manufacturers (or sites)?

Concluding Remarks

Following our presentation, we heard comments and suggestions from the clinical ses-
sion panelists and audience. Two major concerns were expressed by several persons. First
was uneasinessd towards our assumption of a log-normal distribution. Some respondents felt
this to be.a potentially dangerous assumption, especially since we are estimating the tail of
our distribution. Secondly, some persons questioned our method of estimating the mean of
the distribution, and then extrapolating to the .925 quantile. These two problems could lead
to some very erroneous conclusions.

In general, the comments we heard confirmed our beliefs that this is a very difficult
problem to analyze, in light of the small sample sizes and other laboratory constraints to
which the test is subjected. Although no definitive alternative approaches arose from our dis-
cussions, some possible attacks that were suggested to us includ

1. Sampling more towards the tails of the distribution.

2. Isotonic regression.

3. Testing at the specification level and employing a general linear model approach |
with the color chip number corresponding to the color change as the response and
age, manufacturer, and storage site as variables.

We would like to thank the panelists and audience for their many suggestlons and
remarks.
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COMPARISON OF RELIABILITY CONFIDENCE INTERVALS

Paul H. Thrasher
Engineering and Analysis Branch
Reliability, Availability, and Maintainability Division
Army Materiel Test and Evaluation Directorate
White Sands Missile Range, New Mexico 88002-5175

ABSTRACT

Some confidence intervals on reliabilities are investigated. Only
binomial events are considered. Only the narrowest two-sided and the upper
one-sided confidence intervals are calculated. Three methods of estimating
the distribution of reliabilities are reviewed and compared. These are the
Fisherian approach, the Bayesian approach with the ignorant prior, and the
Bayesian approach with the noninformed or noninformative binomial prior. Both
the width and location of the confidence intervals differ for these three ‘
methods.

INTRODUCT ION

Reliability estimates are not as straightforward as might be expected.
Measurement of a number of successes x in a sample size n quickly leads to a
point estimate of the reliability R equal to x/n. Estimates of confidence _
intervals are more difficult to obtain however. Two things in addition to the -
data are needed for confidence interval estimation. First, some function must
be used to describe the reliabilities. Second, a method must be selected to
locate the confidence interval within the function.

The purpose of this paper is to compare various functions describing
reliabilities. For simplicity, all tested items will be assumed dichotomous
and independent. That is, the binomial b(x;n,R) is assumed to describe the
random variable x if n and R are know. The problem is to select a function
for R when x and n are known. The three functions considered here are based
on (1) the Fisherian approach and (2) the Bayesian technique using prior
distributions of R when (A) R is equally likely to be any value between zero
and one and (B) R is unknown numerically but it is known to be a binomial
parameter.

To focus attention on the camparison of the confidence intervals from
these three functions, the methods used to locate the confidence intervals are
restricted in this paper. Only two methods are used in calculations; one is
one-sided and the other is two-sided.
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The one-sided confidence interval considered is the upper confidence
interval. This is based on the premise that having a reliability too low is
much more serious than the reliability being too high.

The two-sided confidence interval considered is the narrowest possible
(Rankin). This is illustrated in Figure 1. It is located by adjusting the
confidence 1imits until (1) the sum of the areas under the tails is 4 and (2)
the functions of these two limits are equal. This correspondence of narrowest
interval with equal heights is a geometrical property. It is not based on the
choice of the function describing R. It may be demonstrated by (1) starting
with the confidence 1imits of points equal heights, (2) moving the left
confidence limit to the right, and (3) noting that the right 1imit has to be
moved further to the right in order to keep the sum of the areas under the
tails constant. This is shown in Figure 1 by the dashed lines. A similar
argument starts by moving the narrowest confidence limit to the left.

Other possible two-sided confidence limits, not calculated in this paper,
are illustrated in Figures 2 and 3. These are the traditional equal-division-
of-area-under-the-tails interval and the maximum-1ikelihood-estimator-in-the-
center interval. The first is the easiest to calculate. The second has a
symetric appeal but it is non-existant when the peak of the curve is not at
R=0.5 and 1-¢ is sufficiently large.

FISHERIAN APPROACH
The traditional Fisherian approach (Mann, Shafer, and Singpurwalla)
considers sums of binomial probabilities. This approach yields two Beta
functions. The lower confidence 1imit is obtained from one Beta function; a

second function is needed for the upper limit.

Lower Confidence Limit:

The lower (1-¢)100% confidence limit R is defined by P[R>R]=1-4. An
alternate expression is P[R<R]=a. The limit R is the largest value of R that
makes the data x and n plausible. Plausibility is defined as satisfaction of
the degree of confidence 1l-q of correctly selecting the right R. The lower
100% confidence 1imit of R is R=0 because all values of R satisfy R>O0.
Increasing R requires a decrease in l-q or an increase in q. This increase in
R shifts the binomial distribution of the possible measurements i which
resulted in .the single measurement x. For the limiting case of R=0, the
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binomial b(i;n,R) consists of a single spike of unit height at i=0. As R and
a increase, b(i;n,R) takes a shape illustrated in Figure 4 and described by.

(iR = (1) &' 1™

where the number of ways of obtaining i successes in n trials if found from by

ny _ n! ~ n(n-l)...(n-1+1)
(i)' il (n-1)!  i(i-1)...(1)

The extent of the shifting from the single spike is determined by the data
x and n, The value of R is determined in two steps. First, R is increased
until the sum b(x;n,R)+b(x+1;n,R)+...+b(n;n,R) equals the probability o making
the confidence relation P[R<R]=q or P[R>R]=1-o untrue. Second, the continuous
variable R is decreased infinitesimally making the confidence relation
P[R>R]=1-q just barely valid. Thus R is neither too large or too small to be
a (1-q)100% lower confidence limit on R when

- (e e

i=x

The extraction of R from this equation can be facilitated by using a Beta
function as described in the following paragraph. Before doing that however,
it is expedient to note that a measurement of x=0 implies that R=0 for all
values of . This special case isn't algebraically included in the following
Beta function. It is adroitly described by an argument based on Figure 4:
when x=0, R has to be 0 to make b(0;n,R)=1 and b(i;n,R)=0 for all i:0.

The Beta function of R is

r(a+b) 1 b-1

f(R) = ——— R (1-R)P-

r(a)r(b)

where a and b are parameters. Using the equality of the gamma function r(j)
and the factorial (j-1)! when j is an integer yields

- (a'i'b-l)! a-1 . b-1
R = e & 0T

. 35



Postulating that the reliability is described by f(R) and setting the area to
the left of R at o yields ’

R
= f(R) dR.
a Of

Repeated integrations by part yield

atb-1 §
Q= iza <a+?-1> &1 (I_B_)a+b-1-i.

Comparison of this summation and the summation for 4 in the previous paragraph
yields a=x and at+b-l=n. Thus the parameters in the Beta function for the

Tower 1imit R are a=x and b=n+l-x.

Upper Confidence Limit:

The upper confidence limit R defined by P[R€§]=1-a is obtained from
another Beta function. Arguments similar to those in the proceeding section
yield the upper Beta function in four steps:

(1) R is in the binomial sum

a = izo(:)ﬁi (1R,

(2) TR is the lower limit of integration over the second Beta function

«= [FR) R,
R

(3) repeated integrations by parts transform this integral to the summation

a'-1 /a'+b’'-1 : - )
«= 3 ( ; )'51 (1-R)2'#0'-1-1 " ang
i=0

(4) the second Beta function parameters are identified by x=a'-1 and
n=a'+b’'-1 to be a'=x+l and b'=n-x.
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This Beta function does not describe R when x=n because p(b')=p(0)=(0-1)!
is meaningless. For this special case, R=1 for all ae This may be seen from
a binomial distribution symmetric to Figure 4.. Using an R near 1 and an a
conta1ning binomial terms from j=0 to j=x-n, it is easily seen that 4 is 1
even when R 1s 1. Since R continuous, R=1 for any value of 1l-4.

BAYESIAN APPROACH
The Bayesian approach (Martz and Waller) uses the data x and n to update
a prior distribution g(R) describing R to a posterior distribution g(R|x)
describing R after x is given. The algebraic relation between these two is

based on the equality of the joint density h(x,R) to both the product
g(R|x)f(x) and the product f(x|R)g(R). Thus the posterior is found from

g(R|x) = f(x|R) g(R) / f(x).

This expression is simplified by not1ng that (1) the conditional density of x
given R is

f(x|R) = f b-(x;n.,R)_ = (:>R" (I_R)nox

and (2) the marginal density f(x) from the integral of h(x,R)=f(x|R)g(R) is
1 1/,
f(x) = [ f(x|R) g(R) R = | (x> R* (1-R)™* g(R) dR.
0 0

Thus the general posterior is

RX (1-R)"* g(R)
g(R|x) = .

fl R* (1R)™X g(R) dR
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Ignorant Prior:

One prior that can be used is the uniform distribution g(R)=1 for O¢R<l
and g(R)=0 elsewhere. This is sometimes called the ignorant prior because all
values of R between 0 and 1 are equally likely. That is, there is no evidence
to favor the selection of any value of R over any other R between 0 and 1.

Use of this prior in the general posterior yields

RX -R N=X
a(R]x) = ——— .

[ R* (1R)™X dR
0

Integration by parts evaluates the denominator. The posterior is thus

2
g(Rlx) . I‘(n"' ) R(X-l'l)-l (I-R)(n-x+1)-1.

r(x+1)r(n-x+1)

This is a Beta function with parameters a=x+l1 and b=n-x+1.

Noninformed Prior:

A second prior that can be used recognizes that the reliability is a
binomial parameter but has no information about its value. This is sometimes
called the noninformed or noninformative binomial prior.

" Every noninformed prior is based on a transformation making the
probability density insensitive to the data. For the binomial parameter R in
b(x;n,R), it has been empirically found (Box and Tiao) that plots of
K(x,n)b(x;n,4) versus ¢ yield very similar curves for fixed n and different
x's when (1) K(x,n) is determined by numerical integration to make the area
under K(x,n)b(x;n,e) equal to one and (2) ¢ is given by

¢ = Arcsin(Rl/z)'

Figures 5 and 6 show that for 0<x<n these similar curves become nearly equally

spaced along the ¢ axis as n is increased. The noninformed argument assumes
that all n+l curves are essentialy equal and equally spaced for all n. This
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makes being noninformed about x equivalent to being ignorant about ¢. The
prior assumption that (1) x is unknown but (2) the situation is described by
the one of these curves thus leads to a prior distribution of 4 that is
uniform between 4=0° and ¢=90°. The corresponding prior of R may be found
from the transformation of variable technique (Freund and Walpole) by applying

do

g(R) = h(y)

Using h(¢)=1 and sin(4,)=R1/2 in this equation yields g(R)=1/{2[R(1-R)]1/2}.
Use of this binomial noninformed prior in the general posterior yields

- rx-1/2 (I_R)n-x-llz
g\RrR|Xx) = .
1
f R(x+1/2)—1 (I-R)(n-X+1/2)°1 dR
0

The denominator-i; recognized as an integral over a Beta function. 1t is
evaluated to be p(x+1/2)r(n-x+1/2)/r(n+l). The posterior is thus found to be
a Beta function with a=x+1/2 and b=n-x+1/2.

COMPARISON OF CONFIDENCE INTERVALS
The three methods reviewed in the previous sections have been applied to
confidence intervals on reliability. Both two-sided and one-sided intervals

have been investigated.

Narrowest Two-Sided Intervals:

Figures 7 through 15 show distributions and narrowest two-sided 80%
confidence intervals. Figure 7 illustrates the symmetry about x=n/2. Thus
graphs for x<n/2 are not needed to investigate trends. Figure 8 is one
example of the destruction of symmetry by making x>n/2. Figure 9 shows that
when x=n the symmetry is so completely destroyed that the narrowest two-sided
intervals are actually upper one-sided intervals. Figures 10, 11, and 12 and
Figures 13, 14, and 15 show the effect of increasing n: for fixed x, the
confidence intervals all become narrower but the relationship of the
Fisherian, ignorant, and noninformed intervals retains an order.
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The effect of changing x for fixed n is seen to be a change in the order
of the Fisherian, ignorant, and noninformed intervals. The Fisherian interval
seems to be the widest. For x near n/2, the ignorant interval seems to be
narrower than the noninformed interval. For x near n however, the noninformed
interval seems to be the narrowest of the three.

Upper One-Sided Intervals:

Figures 16 through 31 show distributions and upper one-sided 90%
confidence intervals on reliability. The lower confidence 1imit appears lower
for the Fisherian analysis than for the Bayesian analyses. The Bayesian
ignorant and noninformed priors seem to lead to two sets of results. The
lower confidence 1imit appears lower for the noninformed when x is near n/2
but higher for the noninformed when x is near n.

The symmetry of the Beta functions makes the lower confidence limits for
x near 0 such that the Fisherian is lowest, the noninformed Bayesian is next
lowest, and the ignorant Bayesian is the highest of the three. This is shown:
in Figures 25 though 28. These figures and Figures 29 through 31 also show
that large n leads to fairly close agreement between the three methods.

CONCLUSION

The three methods are all on sound theoretical ground but give different
results. No single method provides most logical confidence intervals. The
choice between methods has to be based on goals and philosophy. Since the
Fisherian method leads to the widest confidence intervals, it is the most
conservative approach. Since proponents of the Bayesian method prefer priors
which contain more information than the ignorant or noninformed prior, the
Bayesian method (without a prior based on previous tests/calculations) does
not meet all the goals of analysts with a Bayesian philosophy. Thus the
Fisherian method seems to be a good, conservative method for the initial
analysis. This initial analysis can provide a prior for a future Bayesian
analysis of addition data from a future test.
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Environmental Sampling: A Case Study

Dennis L. Brandon

US Army Engineer
Vatervays Experiment Station
Vicksburg, Mississippi 39180

Abstract Sampling strategies have been developed to accomplish
various environmental objectives. The objectives may be: (1) to
estimate the average of characteristics in a population; (2) to estimate
the variability of characteristics of interest in a population; (3) to
decide if characteristics of interest in a population meet certain
standards or criteria; (4) to identify the source(s) which caused
characteristics in a population to exceed standards. A study designed to
achieve objectives 3 and 4 will be presented. Modifications and
alternate approaches will also be discussed.

Background Navigable vatervays of the United States have and will
continue to play a vital role in the nation’s development. The Corps, in
fulfilling its mission to maintain, improve, and extend these wvatervays,
is responsible for the dredging and disposal of large volumes of sediment
each year. Nationwide, the Corps dredges about 230 million cubic yards
in maintenance work and about 70 million cubic yards in new dredging
annually at a cost of about $450 million. In accomplishing its national
dredging and regulatory missions, the Corps has conducted extensive
research and development in the field of dredged material management.
Federal expenditures on dredged material research, monitoring, and
management activities have cumulatively exceeded $100 million.

Techniques developed to evaluate contaminant mobility in dredged material
can be applied to other contaminated areas. Accordingly, the plant and
animal bioassays are two techniques developed to assess the environmental
impact of dredged material in wetland and upland disposal environments.
These bioassays, surface soil samples, groundvater samples, and
additional plant tissues were used to evaluate a contaminated site in
wvestern California.

The case study site is approximately 200 acres with both upland and
vetland areas (see Figure 1). This site was known to have very high
concentrations of metals in surface soils. Major pathways for
contaminant mobility are the meandering stream which flows north and the
d;ainage ditches. Also, tidal inundation affects a substantial portion
of this site.

The objectives of the study were to: (1) define the extent of the
hazardous substance contamination on the site; (2) identify the sources
of the hazardous substances detected on the property; (3) evaluate the
extent of migration of the hazardous substances on the property; (4)
assess the bioavailability, mobility, and toxicity of the hazardous
substances detected on the property; (5) evaluate the condition of the
vetland and upland habitats on the property. This paper focuses on the
use of soil samples to achieve objectives 1 thru 4.
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SAMPLING PLAN The sampling plan was formulated based on previous
soil and vater data, historical information, and the potential pathways
for contaminant mobility. The sampling locations are shown in Figure 1.
Three samples vere collected at some locations and one sample was
collected at the other locations. The triplicate samples were used in
statistical comparisons. This sampling plan reduced the cost of the
investigation by allowing a selected number of sample locations to be
tested extensively while other sample locations received one-third the
cost and effort. A total of 178 samples were collected and analyzed for
As, Cd, Cu, Pb, Ni, Se, and 2Zn.

There is an analogy between the strategy used here and the disposal
philosophy of many Corps elements. Most dredging and disposal decisions
are made at the local level on a case by case basis. Often, the
environmental objective is to prevent further degradation of the disposal
area. Therefore, samples are collected at the dredge site and disposal
site. A statistical evaluation performed on the chemical analysis of the
samples becomes the basis for determining whether degradation will occur.
In this study, samples were collected at the remote reference area and an
area of degradation (i.e. contamination). Ten triplicate samples were
collected in the remote reference area. Twenty-eight triplicate samples
wvere collected in the area of contamination. Locations having a mean
concentration of metals in soil, plants, or animals statistically greater
than similar data from all remote reference locations were declared
.contaminated. These concentrations provide a judgemental basis for
classifying the 64 single sample locations.

Three sources of contamination were identified from historical
information. One additional source was indicated by the soil analysis
and later verified with historical information. Sources were thought to
be areas with several high metal concentrations in a vicinity and a
gradual decrease in metal concentrations as one moves away from this
area. The sources found in this study appeared to have released metal in
twvo different forms. One method was to bury or discharge contaminants
associated with a solid material in an area. The other source discharged
highly contaminated liquids into a stream. Identifying sources was
further complicated by the fact that some of the discharges were
intermittent and possibly hadn’t occurred in several years. This study
wvas successful in identifying sources which discharged contaminants
associated with solids. Identifying the source of -liquid discharges was
more difficult due to seasonal fluctuation of the stream.

The soil analysis was partially successful in achieving objectives 1
thru 4. The extent of contamination from known sources was established
and locations requiring further investigation were identified. This plan
has been augumented with additional sampling. These samples further
delineated the extent of contamination horizontally across the site and
vertically down the soil profile. As a result of this study, 26.5 acres
wvere declared contaminated.
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A Generalized Gumbel Distribution

Siegfried H. Lehnigk
Research Directorate
Research, Development, and Engineering Center

U.S. Army Missile Command
Redstone Arsenal, AL 35898-5248

A generalized Gumbel (extreme value type I) distribution class is
introduced. In addition to the usual shift and scale parameters this new
distribution contains an arbitrary positive shape parameter. The classical
Gumbel distribution results as special case for shape equal to unity.
Microcomputer-based algorithms for estimation of the parameters are present-
ed. They are based on the moment equations and on the logarithmic 1ikelihood
function associated with the distribution density. A program diskette for

microcomputer use will be made available upon request. A combined paper by

this author and Charles E. Hall, Jr., will be published elsewhere.
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A Generalization of the Eulerian Numbers with a

Probabilistic Application

Bemnard Harris
University of Wisconsm. Madison
C.J. Park
San Diego State University

1 Introduction and Historical Summary

In this paper we study a generalization of the Eulerian numbers and a class of polynomials related
to them. An interesting application to probability theory is given in Section 3. There we use these
extended Eulerian numbers to construct an uncountably infinite family of lattice random variables
whose first n moments concide with the first n moments of the sum of n + 1 uniform random
variables. A number of combinatorial identities are also deduced.

The Eulerian numbers are defined by
' j [ as1 " | '
A.,-Z(—l)'( )(j-v)',j80,1,2,...,n; n=0,1,2,.... (0
v=e v
Ay = jAut y Hn = + 1) Aut jor 2
and the Worpitzky [25] relation
z--i(’*j")A,. 3
jo n
Also,
Aq"Ag.-jol; (4)
T Ay =l (5

j=t
In addition, they possess a number of combinatorial interpretations which are described below.
Let X, = {1,2,...,n} and let P,(k) be the number of permutations of the elements of X,
having exactly k increases between adjacent elements, the first element always being counted as
an increase.
For n = 4, the 24 permutations and the number of increases are given in Table 1.1,
79



O 00 9 O W & W N -

NN
PEREBIESa0RORE S

Permutation Number of increases

1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413

2431

3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

Table 1.1
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As seen from the tabulation, Py(1) = 1, P4(2) = 11, P4(3) = 11, P,(4) = 1, which concides
with 445,/ =1,2,3 4.

Let 4
Ant) = Ayt | 6
j=1
Then
el =3 AB)z*/nl,t # 1. ™

1 —texp[z(l -t)] 5
The above relations and some of their properties can be found in [8]; the polynomials (6) are

also discussed in L. Carlitz [4]. These results may also be found in the expository paper of L.
Carlitz [3]. The formulas (1) and (2) are also given in L. v. Schrutka [21].

- Désiré André [1] established that A,; is the number of permutations of { X, } with J “elementary
inversions”. He also established that A,; is the number of circular permutations of { X, } with j
“elementary inversions”. The equivalence of these two results with the enumeration of the number
of increases in permutations of { X, } can be trivially established.

. G. Frobenius [15] studied the polyomonials

Au(2) =j§'?l,A,,-z'f, S ®
introduced by Euler, and established many of their properties. In particular, relations with the
Bernoulli numbers are given in [15].

In D. P. Roselle [20], the enumeration of permutations by the number of rises, Ay, is related
to enumeration by the number of successions, that is, a permutation 7 of {X,} has a succession if
w(3) =1+1,5=1,2,...,n.

Some number theoretic properties of A,; are given in L. Carlitz and J. Riordan (7] and in L.
Carlitz [5].

In this paper, we study a generalization of the Eulerian numbers. A generalization in a dif-
ferent direction was given by E. B. Shanks [22], who apparently did not note a connection of his

-coefficients with the Eulerian numbers. L. Carlitz [2] noted the relationship of Shank’s results to
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the Eulerian numbers and obtained representations for these generalized Eulerian numbers using
. results due to N. Nielsen [17].
FE Poussin [18] considered the enumeration of the number of inversions of permutations of
‘ {X,} which end in j,1 < j < n This produces a decomposition of the Eulerian numbers. She
also introduced a polyomial generziting function for these numbers. The sums of these polynomials
" are the Euler-Frobenius polynomials. ’

Another deomposition of the Eulerian numbers with a combinatorial interpretation is given by
J.F. Dillon and D.P. Roselle [12]. ’

J. Riordan [19] lists many properties of the Eulerian numbers in Exercise 2, page 38-39 and de-
scribes the combinatorial interpretation of the Eulerian numbers in terms of triangular permutations
(which is equivalent to the elementary inversions described by André [1]). He also gives a brief
table of the Eulerian numbers on page 215. See also L. Comtet [10], where generating functions for
the Eulerian numbers are given and the Eulerian numbers are obtained by enumerating the number
of permutations with a specified number of increases. Many properties of the Eulerian numbers are
given as well as their historical origins in terms of sums of powers.

EN. David and D.E. Barton [11] suggest the use of the Eulerian numbers as a statistical test for
the randomness of a sequence of observations in time, employing the probability distribution given
by

Py = Ani/nl, j=1,2,...,n 9

The generating function (7) is derived and employed to obtain the moments and cumulants
of the distribution (9). In particular, David and Barton show that the factorial moments are the
generalized Bernoulli numbers. However, David and Barton do not make any identification of
these distributions with the Eulerian numbers.

Using probabilistic arguments, Carlitz, Kurtz, Scoville and Stackelberg [6] showed that the Eu-
lerian numbers, when suitably normalized, have an asymptotically standard normal distribution.
This was accomplished by representing the distribution P,; as the distribution of a sum of indepen-
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dent Bernoulli random variables. S. Tanny [24] demonstrated the asymptotic normality by utilizing
the relationship of the Eulerian numbers to the distribution of the sum of independent uniform ran-
dom variables and applying the central limit theorem.

L. Takdcs [23] obtained a generalization of the Eulerian numbers which provide the solution
to a specific occupancy problem. Namely, let a sequence of labelled boxes be given, the first box
labelled 1, the second box 2, and so on. At trial number n distribute / balls randomly in the first
n boxes so that the probability that each ball selects a specific box is 1/n and the selections are
stochastically independent. For [ = 1, the probability that j — 1 boxes are empty after trial number
nis Asi/nl,j = 1,2,..., n Takdcs’ paper contains many references and describes additional
combinatorial problems whose solution is related to the Eulerian numbers.

Finally, L. Toscano [25] obtained formulas expressing the Eulerian numbers in terms of Stirling

numbers of the second kind.

‘2' Generalized Eulerian Numbers

We now introduce a generalization of the Eulerian numbers and investigate its properties. -
Let § be an arbritrary real number and let
J

n+1
A,;(6)=Z( )(—l)"(6+j—v)",j=0,1,...,n;n=0,1,2,.... (10)
v

v=0

These polynomials are mentioned in L. Carlitz, D.P. Roselle and R.A. Scoville [8]. As noted
there, A,;(0) are the Eulerian numbers. These polynomials are also used by P.S. Dwyer [13] to
calculate sample factorial moments. Dwyer does not relate these to the Eulerian numbers.

We begin our analysis with the following theorem:

Theorem 1. Let n and k be non-negative integers and let § be any real number. Then
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(“) 1 hud B (k) i n+l v . "
b ®(®) = 3+ HPY (=1)"(5+1 - )
n =0 v=0 v
l "
= ;'-12’;(6+j)(").4¢(8) (11

is independentof § fork=0,1,...,n
Proof. The following identity (see N. Nielsen, [17], page 28) will be utilized in the proof.

(a:-&)"=§‘:(z+j-1)é(-li”(n+l)(8+j—v)". (1)
v=0 v

j=0 n

Let A and E be the operators defined by

A(f(z)) = f(z+1) - f(z)

and
E(f(z)) = f(z+1).
Then, it can be shown that (C. Jordan, [16])
aT= (=D ( " ) E, (13)
v=0 v

In particular, forr =0, 1,...,n,
1=0

AT(S+ )™ = i(—l)‘ ( : ) (5+j+r—Dh™

=n"(5+ )", (14)

the last equality follows from elementary properties of the function (8 + j)¢® (C. Jordan, [16], p.
51). Thus,forr=0,1,...,n, from (12) we have

(8 + j)™m =i(—1)‘(:)(5+j+r-t)<'°/n<'>. (15)
=0
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Hence,

Jj=0 v

n J 1
b (8) = (64 HP S ( " ) (=D*(8+j—v)*
v=0

: n w—k . —_ j .
= %22(—1)‘(7‘ ¢ )(8+j+n—k—l)(‘)2(n+l )(_1)"(5.,.1-_”)»/”(-&).
™ j=0 =0 l

v=0 v
(16)
Thus, it follows‘ that
vk n—k \&([8+j+n—k-1\J n+1
py (8) = (-1 ( ) p ( 7 ) S (-1 ( ) (8+j—v)*/n(™h
I=0 l j=0 n v=0 v
17
Settingz =8 +n—k — |+ 1in (12) we get '
s [ f+n—k-Il+j |\ < +1
(n—k’—l+l)"=2( " ’)2(—1)"(” )(sw'—v)'
j=0 n v=0 v
and hence . )
(m w [ n—k »/ (nF)
p™ (8) = 3 (=1) (n—k—1+1)*/n (18)
© =0 l
and is independent of 6.

In particular, pm(”).(G) =1, pay (8) = (2" = 1)/n and pg, o (8)
=(3"=2™! + 1) /n(n—1), ppasf®(8) = LFAR=L

A brief table of (™ (8) fork=0,1,2,3 andn=0,1,2,3 is given in the Appendix to this
paper.

The Nielsen identity (12) seems to have been discovered in a somewhat less general context by
Paul S. Dwyer [13], who employed it to calculate factorial moments by means of cumulative sums;
see also Ch. A. Charalambides [9], who in addition to discussing Dwyer’s work also showed that

these generalized Eulerian are related to enumeration of compositions of integers.



The following corollary will be subsequently employed.
Corollary. Let nand k be non-negative integers with k£ < n. Then

1
(™ (8) -—E(GH)"E( nt )(—1)"(8+2'-v)" (19
j=0 v=0 v .
is independent of §.
2;99{. We can write .
(5+ )= Bu(s+ )P, (20)
= .

where 8, are the Stirling numbers of the second kind. Since the coefficients B, do not depend on
8, substituting (20) into (19) and interchanging the order of summation, we get

k
&) =Y Bringy™ (8), (21)
r=0

which is independent of é.
Prior to demonstrating that the independence of §, noted in Theorem 1 and its corollary can not
be extended to k = n+ 1, we will need to calculate the derivative of p " (§). Thus, we have:
Theorem 2. Let n and k be non-negative integers and let § be any real number. Then

d (n) (n) =k (»~1)
ORI TTORD M I Vel OF (22)

r=0

Proof. Since

v=0

n ] 1
FIOEESYITIL > ( " ) (=D*(8+j - 0)",
j-0 v

v=0

(W
dpsy (6) "lrzk(“”k-lz( )(—l)”(6+j—v)"

..1)!

S5+ ) 2( )(‘-l)“(8+j-v)'—'.

j=0 v=0
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Comparing the first term with (19) and employing the Pascal triangle identity on the second

term we get
d“" B (6 + = 36+ ) E S | PR R Loy
1)! v—1
(23)
Further,
I (n
k v : -1
(n_ DT X E(8+;) 2_:0 ( ) ) (=1)*(8+j—v)
1 ks P v "1
* oD ———(§+n) g ( ) ) (-1)(6+n—v)
& 11): E(5+J)*Z( ")(-l)"(6+j-v)"". (24)
v .
From (13) |
A™(&~ ) = Z':(—l)" ( " ) (5+n—v)*~! =0, (25)
- y=0Q - v .
since it is the nth difference of a polynomial of degree n — 1. The second term on the right hand
side of (24) is p("") (6).
In addition,

1)o E(8+J) E( "1 )(-1)'(a+,-_v)-l

v=0

Jj-1 f

1.2(8+:)2 IS AR
) 1

Jj=0

Jj=1 /n

_1), E(5+;) E

=1 \ v

)(—1)”'(6+;‘—v—1)*‘

87



u-l \ -l . .
(,,_1).2[(8—1+;)+1] 2 (-N*"'(E+j-v-1)

J=1 v/

it
r v+l — N n~1
('n-l)! E( )g(”"-“l) g( ) (-D)™'((§—14+j) —v)

(nfl),E( )E“H)E( )(—1)""'(8+J’—v)"“

j=0

r=0

=—2( )ps*"’(s). (26)

Thus, by (23), (25) and (26) we have shown that

) L
dpr (0 _ 1 () + 4D (5) - 3 ( k.) w0 (8),
d5 r=0 r

or

(n) =1
'dm‘ds“) (..)1(5) E ( k ) (n—l)(a), (27)
r

r=0
establishing the theorem.
Corollary 1. For1 < k < n, then

r=0

k-1 k
ku® (8 =3 p™v (8). (28)
r

Proof. By the Corollary to Theorem 1, p " (§) is independent of § for 0 < k < n and hence
d—“::# 0 for such values of k.

Corolla_rz2. Ifk=n+1,then

ppge1 M (8)

e = a1 — (04 D (8), (29)

where c,.1 4 is a constant (depending on n, but independent of §).
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Proof. From the Corollary to Theorem 1 and Theorem 2, (n+ l)p. (8) is independent of § and

n+1
all terms in g p¢*1 (8) with the excepnon of r = nare mdependent of §. This last
T

term is (n+ l)p(’"‘)(é).
Corollary 2 canbe extended to k = n+2 and so forth, but the expressions obtained become more

complicated and do not appear to be particularly useful. However, we do make use of Corollary 2
in the next theorem.

Theorem 3. For every n, p%’,:),l (8) is a polynomial of degree n+ 1 in § with leading coefficient
(=" '
Proof. We proceed by induction, using Corollary 2 to Theorem 2.

l)
Forn=0,ui?(8) = 6. Then 9'12—(—1 c21 —2p0(8) = ez - 26.
Performing the indicated integration, we have
p(8) = c2.6 — 8% + d,

where d is an unspecified constant.

Assume that the conclusion holds for n = m. Then

(m+l) 8
—lm*dzs# = Cm+2,m+1 — (m+ 2)!‘5::)1
m+1
= Cm+2,m+l —(m+2)(ao™"' + E 018"“1—’)» (30)
j=1

-where ag is +1 or —1. Integrating, we get pm,,z‘)(&) = —ag8™2 + P,,1(8), where Pp.1(8) isa
polynomial of degree m + 1.

A table of u{¥)(6) appears in the Appendix forn= 5,k =0,1,..., 10 and selected values of
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3 Applications to Probability Theory

LetU;,Us,..., U be independent random variables uniformly distributed on (0, 1). Let
[ 2
Sw1 = 2} Ui. The distribution of S, is well-known and is given by the probability density

function

w1
S8 (2) = - E ( ) (-D(z-v),0<z<n+1, (31)
(for example, see W. Feller [14].) Where
(:r—-a)+={ 0, z-a<0 (32)
z—-a, —a2>0.

Write

Sw1 =[Sw1]+354,
where [ S,.1] denotes the integer part of S,,.; . Clearly 6 is a continuous random variable and
0 < 6 < 1;[S,1] is a discrete random variable with carrier set {0,1,2,...,n}.

The conditional distribution of S,.; given that the fractional part of S,.; is § is given by
P{Sw1 =z|z—[2] = 8} = f5,, (i + 8)/ ) f5..(j + &), (33)
j=0

where j+é6=12,j=0,1,...,n ie. j=[x].
From (31),
1 ntl
foum(G+8) ==3 (=D +6-v);.
nl v=0

Butj + 6 — v > 0 is equivalent to v < j, thus we get

1 < 1
fsan (J +8) =;,—E("+ )(—1)"(.7'+8—v)", (34)
v

v=0
‘which is A4,;(8) /n!. Also,
Y fon(G+8) =1=pg " (8)

j=0
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and thus (34) is a discrete probability distribution with carrier set {§,1 + §,...,n+ §}.
Let W15 be the random variable whose distribution is given by (34). We then have the fol-

lowing theorem.

Theorem 4. The moments of order £ = 0,1,...,n of W, s coincide with the corresponding
moments of Sy, , thatis,

E{St }=E{Wk s}, k=0,1,....m 0 <6< 1. (35)

Proof. E{Sk1} = Es(E{Sk16}) = Es{E{W;.15}}.

However,
1 & I [ n+1 ]
E{W:ol,s}=gz(]+8)"z( ) (-1 + 8 -v)",
j=0 O \ v
which is independent of §, by the Corollary to Theorem 1.
A brief table of W, s for n= 5 is given in the Appendix.

Remark. Itis easy to see that the marginal distribution of §, the fractional part of S, 1, is uniform
on (0, 1). An elementary proof follows.

P<8}=3 [ fo(a)ds

=0

LI
= E-[) fs.ﬂ(] + u)du

j=0

& n
= [ 2 G+ w))ds

j=0

but ?:;fg,,(j+ u) =1 forevery0 < u < 1. Hence

8‘
P{6 < &) =[o du = 6°.

Finally, we note that W, s is asymptotically normally distributed. This is stated in the following
theorem. |
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Theorem 5. Asn — oo, for0 < 8§ < 1, the distribution of

12
ey (o= (34)) (36)
coverges weakly to the standard normal distribution.
Further,
e ame B0 (14 o)), (37)

Proof. Both (36) and (37) are immediate consequences of the representation of 4’5@ as the con-
ditional distribution of the sum of n+ 1 independent uniform random variableson [0, 1) given the
fractional part of the sum and the central limit theorem.
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Appendix

This Appendix is devoted to some tables illustrative of some of the quantities introduced in the

body of the paper.
Table A.1

Table of u{} (6),k=0,1,2,3;n=0,1,2,3

klo 1 2 3

oj1 & 8(86-1) 5(6-1)(6-2)
111 2L 1468 —(%t) 283+382-6—-1+n
2|1 3t (wDCed) 1425-28% — (exdn
sl1 g eagm cdeges
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Tablc A2

The Distribution of Wy.15, n=35, §=.1,4,5,9

W 6=1 =4 =5 =9
§ 8x10"% 9x10-5 3 x10— .005

1+§ 013 044 062 177
2+8 260 396 438 545
3+6  .545 476 ©.438 260
4+6 1AM .083 062 013

4+86 005 6x10* 3x154 5x10-%

Note the symmetry for § = .5 and that § = .9 and § = .1 are identical when the column for
§ = .9 is read going up and § = .1 is read going down (the entries 8 x 10~% and 5 x 108 differ

as a consequence of rounding errors).
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Table A.3

pk(8),n=5,k=0,1,...,10;6=0,.1,.3,.5,.7,9

§=0 q 3 5 v 9
=0 1 1 1 1 1
1 3 3 3 3 3 3
2 9.5 9.5 9.5 9.5 9.5 9.5
3 315 315 31.5 ‘315 315 315
4| 108.7 108.7 108.7 108.7 108.7 108.7
5| 388.5 388.5 388.5 388.5 388.5 388.5
6| 1432.50 | 1432.50 | 1432.53 | 1432.55 | 1432.53 1432.50
7| 5431.50 | 5431.51 | 5432.01 | 5432.48 | 5432.31 5431.69
8| 2118.7 | 21117.60 | 21122.56 | 21129.77 | 21129.66 | 21122.07
9| 84010.5 | 83989.19 | 84020.48 | 84096.88 | 84116.67 | 84049.80
10 | 341270.5 | 341018.48 | 341121.81 | 341763 .40 | 342089.16 | 341628.77
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The Analysis 6f Multivariate Qualitative Data
Using an Ordered Categorial Approach

H. B. Tingey E. A. Morgenthein S. M. Free
University of Delaware Bristol-Meyers
ABSTRACT

When the experimental units being classified are sub-sampling units in the study, an
ordered categorical procedure cannot be applied directly. Further, the count data ob-
tained which is routinely analyzed by univariate statistical methods, ignores the depen-
dence among the responses. A modification of the method developed by Nair (1986, 1987)
is used to derive the scores and indices, which are analyzed by nonparametric AOV. An
exainple from teratogenicity studies is used to illustrate the technique.

Introduction

This problem arises from the consideration of studies where a reproduction safety test
must be performed prior to the use of drug, chemical or food additive. The standard pro-
tocol in such studies requires that pregnant female subjects (usually rodents) are randomly
assigned to one of four treatment groups. The appropriate dosage is administered shortly
after the beginning of gestation. When the animals are near term, they are sacrificed

-and the number of potential offspring are counted. Other data collected are the number
of implantation, early and late fetal deaths, number of live offspring and the number of
fetuses according to various degrees of increasing severity of malformation. Also data on
continuous variables such as fetal weight are collected. It is unclear from the literature
which statistical methods are appropriate for the analysis of this type of data.

For continuous measurements one may quickly turn to the analysis of variance. For
count data describing the number of fetuses with or without some qualitative outcome,
other methods have evolved. A per-fetus analysis using total of early death and total
number of implantation in a Fisher exact-test or a chi- squared test of independence may
be performed, but this appears to inflate samples sizes and ignores the dependence of
observations within litters. A review of per-fetus analysis is given by Haseman and Hogan
(1975) who conclude the per letter analysis is more appropriate.

All but one of the proposed methods for per-litter analysis consider a single outcome.
The need to include within and among-litter variation negates the use of simple binomial
or Poisson models for count data. In the methods which consider several single responses,
a problem of family error rate arises. Since the tests are not independent, the nominal
family error rate cannot be exactly determined. The multivariate method developed by
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Ryttman (1976) relies on the assumption of normality which is violated in the case of
fetal deaths. This lack of success, however, does not preclude a multivariate approach. In
situations where ranking the categories from mild to severe is possible, ordered categorical
models may be applied and the family error problem may be eliminated.

In this paper we obtain a scoring system for various outcomes which produces a severity
index for each litter. This index is sensitive to location shifts. The modeling which follows
will be based on this index. :

The study design prohibits the straight-forward application of ordered categorical pro-
cedures because the items (fetuses) are not independent. Thus a scoring procedure allows
consideration of the effect of letter size on severity of the response, as a whole, in the litter.
Here the sampling unit is the fetus or individual. Three observations should be made; i)
results are different per litter than for per fetus, ii) per litter evaluates the proportion of
fetuses affected rather than the numbers of affected litters, and iii) observed treatment -
control differences is less significant than per-fetus indicates (via simulation).

Univariate Analysis.

The simple analysis is based on litter as the experimental unit. This analysis is carried

out using binomial and poisson models. The binomial assumption states that conditional
on litter size the number affected is binomial. The analysis is based on transformed data,
usually the arc-sine of the observed proportion. The poisson model does not account for
litter size as it assumes the mean number affected is the same for all dose groups. The
analysis again used a transformation, usually the square root of the observed number.
Neither fits the data very well. This may be due to extra binomial or extra poisson
variability, as the case may be.

More sophisticated models are reviewed by Haseman and Kupper (1979) include: weighted
least squares based on proportion and unequal sample sizes. This approach due to Cochran
(1943) requires sample sizes which are too large for this application. Others include, the
normal-binomial (Luning et. al. 1966), beta-binomial (Williams 1975), negative binomial
(McCaughran and Arnold 1976), correlated - binomial Altham (1978), jackknife Gladen
(1979). Several nonparametric procedures have been tried, namely the Mann-Whitney U,
the Kruskal-Wallis and the Jouckheere/ Terspstra. Some attempts at multivariate analy-
sis have been tried by Ryttman (1976), log-linear models by Haberman and others (1974)
and generalized linear models by McCullagh (1980). All of the latter techniques have
distributional assumptions.

Since some of the ordered categorical procedures develop or accept scores for the cat-
egories, this approach was pursued. Scores induce relative spacing among the categories.
Thus, a mean score may be obtained for each litter. This implies analysis by litter as a
sampling unit. We note that CATMOD in SAS allows for scoring, but the scores must be
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user specified.

Ipsen (1955) suggested a scoring for Bioassay. Instead of estimating an LDjsq or EDsg
based on number of survivors after x days, he ordered the data into categories with the
continuum represented by time (days). The scores proposed are such that the variance of
the linear regression of mean scores on the log dose is maximized with respect to the total
variance. An adjustment is made if the scores do not reflect the ordering of the categories.

Bradley et.al. (1962) scores by maximizing the treatment sum of squares after scaling
relative to the error sum of squares. This is an iterative procedure which does not require
the assumption of linearity.

Using no distributional assumption, Nair (1986, 1987) suggested some techniques for
analyzing ordered categorical data in the field of quality control. He showed the Taguchi
statistic for 2 x 2 tables, can be orthogonally decomposed into K - 1 components where
K is the number of categories. In the two sample case he showed the first components
is equivalent to Wilcoxon’s rank test on grouped data. Thus, this components would be
sensitive to shifts in the multinomial model. Further, the second components corresponds
to Mood’s rank test for grouped data, thus is sensitive to scale changes in the 2 x K model.

In the non equiprobable case the correspondence does not apply though the interpre-
tation still holds. This result has been verified using a comparison density approach for
the two sample problem by Eubank, LaRiccia and Rosenstein (1987).

The decomposition of Taguchi’s accumulation chi-squared (1966, 1974) requires the
solution of an eigenvector problem. Nair (1986, 1987) provides the method for deriving two
sets of scores. These yield statistics that are approximately equal to those obtained from
the orthogonal decomposition, but do not require a rigorous solution. The approximate
and exact statistics have comparable power.

When applied to 2 x K tables, the first set of Nair’s scores is sensitive to shifts in location
of the underlying random variable. It is reasonable to suggest, when applied to litters,
these scores yield a continuous index useful for detecting shift. In teratogenicity studies
the location shifts of interest would be those that indicate a significant dose-response.

Nair’s Method

As already mentioned, the first and second components of the orthogonal decomposition
correspond to the Wilcoxon and Mood rank test, respectively.

Wilcoxon tests,

Ho: G(z) = F(z)
H,:G(z) = F(z — 6)
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where F, G are two distribution functions.

Mood tests,

Hy: G(z) = F(z)
H, : G(z) = F(z/6)
where 6 is a constant.

For more than two treatment groups the first component corresponds to the Kruskal
- Wallis statistic for grouped data, and the second to the generalized Mood statistic. In
the general case (except equiprobable) case the equalities are no longer exact, but the first
two components have good power for detecting location and scale shifts respectively. The
focus of this work is on location shifts.

Notation

Observed frequency for the (i, k)* cell = Y

Column total. = Cx = Y1k + Yok
Rowtotal. =R;= R, = YK Y,
Cumulative row frequencies Z; = E;;l Yi;

- Cumulative column totals. D) = E§=1 c;j

The row proportions = r; = R;/N
The column proportions = ¢, = C;/N
Cumulative column proportion up to and including column k di = Dy /N.

Vector conventions used.

bold lower case letter = a vector

bold upper case letter = a matrix

transpose = ¢

a vector raised to a power implies each element is raised to a power
(this is non standard)

Multinomial model. 2 x K case

Two random samples of size R; ¢ = 1,2 are drawn from two
multinomial populations.
For each population, the probabilities of the K outcomes are given by
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Pyk =12 ...K.
The cumulative probabilities for population i are given by
Tu = Tiaa Py
If the K categories are assumed to be ordered the hypothesis is

Ho: Tik = T2k k=1, 2, . K
H,: (f — ma) < Oforall K
(strict inequality for at least one k).

Alternative statistics to Pearson’s x? .

K 2
Taguchi’s statistic Tg = Y [de(1- d)] 7 Y. Ri(Zi/R: — di)}
k=1

1=l

If xip is the Pearson x? statistic from a 2 x 2 table where column 1 contains the
cumulative frequencies of categories 1 through k and column 2 contains the cumulative
frequencies of categories (k+1) through K. Then,

K-1
Tg = > X
k=1 :

where Tg is a “ccs type statistic”.

T assigns weight wy = [di(1 — di)]~! to the k™ term in the sum which is equal for each
k under Hy. "

K-1 2
Nair's Statistic T = E wy {Z Ri(zi/R; — di)?

k=1 =1

The statistics in the class are obtained by the choice of the set {wi} where wy > 0
for k =1, 2, ... K — 1. The decomposition is carried out conditionally on the marginal
proportions. For y;, wr k=1, 2, ... K — 1, W is a diagonal matrix. Using the d we form
the (K — 1) x K matrix A by;

1-d, —dy........ —d;
1- d2 1- d2 —dz... —dg

1- dk—l 1- dk-l ..... 1- dk—l "‘dk-l
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Thus T is given by

T = yiA'W Ay, /Nrir, .

To express T as a sum of squares in y; we need to express
A'WA

as a product of a diagonal matrix, @ and its transpose. Let A be diagonal of order I
formed by the colum proportions {cx} and let I' be the diagonal matrix of order (k — 1)
containing the eigenvalues of A'W AA then the decomposition yields

’ A'WA = QIrQt
where Q contained the eigenvectors of A'W AA such that
Q=[]
satisfies
QAQ =1
substituting QT'Q* into T above with V'
u = QYNrir)~}

yields

K-1
T = E Tjsz

i=1

where the 7;’s are elements of the vector of eigenvalues, 7, and U;’s are elements of u.
Under H, the distribution of y; conditional on row and column proportions is multiple
hypergeometric with
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E(Yik) = Nrick
Cov(Yik, Yu) = N(1 - l/N)"l‘l'sz(l - ck) - k=1
= —=N(1 - 1/N)rirs(ckci) k#1
or
E(yl) = NTIA].
coo(yy = N(1 =1/N)rmrA[(I — 1) - 1'A]

11is a K x 1 vector of ones. It follows that

0
(1 = 1/N)'T

E(u) = Nn(QAl)/vNmr;
cov(u) = (1-1/N)"1Q'A[l - 1 1*A]Q

implies the U;’s are uncorrelated with zero means.

Under H, it can be shown that the limiting distribution of y; converges to the multi-.
variate normal distribution as' N goes to infinity. Thus '

K-1 24 K-1 )
T=3) nU;?%L 3 mx1
j=1 j=1

a weighted sum of independent x? random variables, each with 1 df

The approximate solution by Nair proposed two sets of statistics which have properties
the same as those obtained for the equiprobable case (i.e. ¢ = 1/k). That is the first
component of Tg or Ug, is equivalent to the Wilcoxon test on the 2 x K table and Ug,
the second component, is equivalent to Mood’s

M =3[k - (K + 1)/2P Y

k=1

They do not require the solution of the eigenvalue problem as orthogonal decomposi-
tion is not necessary. The first component, all observations in the category are assigned a
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score proportional to the midpoint of the category. The second component the scores are
quadratic in the midrank. Additionally, each set of scores is adjusted to satisfy orthogo-
nality.

To calculate the scores, let ¢ be of length K with elements being the column proportions.
Form

Let r = Bcand ™ = 7 — .5(1). Note the 7’s are Bross’s ridits. The first set of scores is
obtained from '

1 =71/ cr?

where 7 *2 is a vector of squares of elements of 7* . The second set of scores is obtained in

two steps. First let
e =191 — (c*13)1] ~- 1.
Then
s = efctel.
The approximate statistics for the 2 x K table are

1/12 = L%/Rl + L22/R2

where
L,’ = lty,' 1, 2
and
V;»? = 51%/R, + S;%/R,
where
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which are comparable in magnitude and consequently in power to U; and U, respectively.
We now apply the method:

Conduct of the study and data:

PROTOCOL

Sprague-Dawley rat study

Herbicide: nitrofen (2, 4-dichloro-4 nitrodipheynl ether)

Test compound administered during organogenesis

Sacrifice prior to parturition and cesarean-sectioned

Record litter and fetal data

Administration of compound follows daily dose regimen

Treatment groups; control and three dose groups

Inseminated females randomly assigned to 4 groups of 24 rats each

Dose levels. 6.25, 12.5, 25 mg/kg/day body weight on days 6-15 of gestation.
Controls: gavage solution w/o test compound

© 0N ok W

Live fetuses are weighed, sexed and examined for external malformations. They are
then sacrificed in order to perform the skeletal and visceral examination. Recorded are the
number of corpora luta on each ovary, number of implantations, number of fetuses, and
the number of resportions in each utrine horn. Table I displays the data for each rodent
and close level. = s ;

The following definitions are employed to categorize the fetuses: Dead - Early or late
resorption of dead at c-section, malformed-gross visceral or skeletal variation, growth re-
tarded - body weight more than two standard deviation from the mean for the given sex
or by a range test. Normal - absence of any of the previous outcomes. Table’s II and
IIT summarize the results by number and percent for each dose by category. It should be
noted that the differing number of letters is due to nonpregnant females, not toxicity.

The final columm of Table I is the calculated severity index. This index is calculated by
multiplying the score for the category by the number of fetuses in the category, suinming
and dividing by the number of implantations, i.e.,

SI = n'c/n'l.

Details of the calculations of a severity index are given in the following example.

Consider the following sample data:
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Table I
Nitrofen Data - Strague-Dawley Rats

Number of ~Growth Severity
Id Implantations Normal Retared Malformed Dead Index

"Dose Group = Control (0.0 mg/kg/day b.w.)

19 1 1 0 0 0 0.00000
8 4 3 0 0 1 0.68423
11 5 4 1 0 0 0.25139
7 8 7 0 0 1 0.34212
1 12 9 0 3 0 0.49145
16 14 14 0 0 0 0.00000
24 14 11 0 3 0 0.42124
6 15 15 0 0 0 0.00000
9 15 13 0 1 1 0.31352
20 15 12 0 3 0 0.39316
22 15 12 1 2 0 0.34590
2 16 14 1 1 0 0.20142
4 16 16 0 0 0 0.00000
10 16 16 0 0 0 0.00000
12 16 14 2 0 0 0.15712
17 16 16 0 0 0 0.00000
23 16 15 0 0 1 0.12286
3 17 11 0 6 0 0.69382
5 17 10 0 6 1 0.85481
13 17 13 0 3 1 0.50790
15 17 13 0 2 2 0.55326
21 18 13 o 4 1 0.58890
Dose Group = Low (6.25 mg/kg/day b.w.)
32 1 0 0 0 1 2.73692
28 12 10 0 2 0 0.32763
43 12 9 0 3 0 0.49145
26 14 10 0 4 0 0.56166
31 14 14 0 0 0 0.00000
39 14 11 0 3 0 0.42124
41 14 9 0 5 0 0.70207
47 14 10 0 4 0 0.56166
48 14 14 0 0 0 0.00000
33 15 10 0 5 0 0.65527
38 15 10 0 5 0 0.65527
40 15 13 0 1 1 0.31352
45 15 12 0 3 0 0.39316
25 16 11 0 S 0 0.61432
27 16 12 0 4 0 0.49145
34 16 10 0 6 0 0.73718
35 16 12 0 4 0 0.49145
37 16 9 0 7 0 0.86004
44 16 12 0 4 0 0.49145
46 16 11 0 5 0 0.61432
36 17 7 0 8 2 1.24708
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Table I (Cont’d.)
Nitrofen Data - Strague-Dawley Rats

Number of Growth Severity
Id Implantations Normal Retared Malformed Dead Index

"Dose Group = Control (0.0 mg/kg/day b.w.)

54 2 0 0 0 2 2.73692
70 3 1 0 2 0 1.31054
59 4 2 0 2 0 0.98290
64 8 5 0 3 0 0.73718
53 11 4 1 5 1 1.25663
55 13 7 0 5 1 0.96661
58 14 7 0 6 1 1.03798
60 14 7 0 5 2 1.09306
65 14 8 0 5 1 0.89757
68 14 10 0 3 1 0.61674
62 15 6 0 6 3 1.33371
67 15 13 0 1 1 0.31352
71 15 8 0 4 3 1.07160
49 16 6 0 10 0 1.22863
69 16 11 0 4 1 0.66251
56 - 18 15 0 2 1 0.37047
57 18 13 0 5 0 0.54606
72 18 7 0 11 0 1.20133
“Dose Group = High (25.0 mg/kg/day b.w.)
91- 2 0 0 1 1 2.35136
80 7 3 0 3 1 1.23348
86 8 6 1 1 0 0.40284
73 10 1 0 9 0 1.76923
77 14 3 0 11 0 1.54456
78 14 3 0 11 0 1.54456
79 14 2 0 12 0 1.68498
83 14 9 0 5 0 0.70207
93 14 1 0 12 1 1.88047
76 15 0 0 15 0 1.96581
84 15 6 0 9 0 1.17949
92 15 7 0 8 0 1.04843
74 16 4 0 11 1 1.52255
87 16 6 0 10 0 1.22863
94 16 8 0 8 0 0.98290
95 16 6 0 10 0 1.22863
96 16 4 0 10 2 1.57075
89 17 6 0 11 0 1.27199
90 17 0 0 11 6 2.23797
75 18 6 0 12 0 1.31054
81 18 6 0 12 0 1.31054
88 19 11 0 7 1 0.86829
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Table IT

Number of Implantations
Group | Normal | Gr.Retarded | Malformed | Dead | Total
" | Control | 252 5 35 8 300
Low 239 1 89 5 334
Mid 130 1 79 18 228
High 98 1 199 13 311
Table III
Percent of Implantations
Group [ Normal | Gr.Retarded | Malformed | Dead
Control | 84.0 1.7 11.7 2.7
Low 71.6 0.3 26.6 1.5
Mid 57.0 0.4 34.6 7.9
High 31.5 0.3 64.0 4.2
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Number of Implantations (Fetuses)
Normal Gr.Retarded Malformed Dead Totals

Control 252 5 35 8 300
Low Dose 239 1 89 5 334
Middle Dose 130 1 79 18 228
High Dose 98 1 199 13 311
Totals 719 8

402 4 1173

Calculate the column proportions:
¢ .61295823 .00682012 .34271100 .03751066

Calculate Bross’s ridits (1958) by the formula 7, = (co+c¢1+. ..+ Ck—1)+.5¢ck Whereco = 0:
e .30647912 .61636829 .79113385 .98124468

Now, let 77 =1, — .5:
Tr -.19352088 .11636829 .29113385 .48124468

Calculate the constant d = [¢;772 + com3? + Car3? + cy2]M/2
d = [.61295823(—.19352088)’ + 00682012( 11636829)* +
.34271100( .29113385)? +  .03751066(.48124468)%] /2
.24654207

The vector of scores (Nair, 1986, 1987) is then obtained by lk=12/d:
I, -0. 7849 0.4720 1.1809 1.9520

Shifting the scores so that the score for a normal implantation (fetus) is zero, the final
scores are:

[; 0.0000 1.2569 1.9658 2.7369

Then, a litter with 11 implantations of which 4 are classified as normal, 1 as growth re-
tarded, 5 as malformed and 1 dead, would have a severity index of:

SI=[0.0000(4)+1.2569(1)+1.9658(5)+2.7369(1))/11=1.2566

This can be interpreted in light of the above scores, i.e., an index near zero would be
indicative of a litter with nearly all normal fetuses at cesarean-section and a score near
2.7369 would be indicative of a litter with nearly all fetuses dead at cesarean-section.

Designs for the Analysis of the Severity Index

Five designs were evaluated which assume normality. The one-way classification, a
one-way classification using litter size as a covariate, a generalized randomized block using
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litter size as a blocking variable, and a weighted analysis using in one case litter size as a
weight and in another the square root of litter size. The results are summarized in Table
IV in terms of calculated F, associated P values and R2.

Table IV
f F P R?
One way analysis 3,81 22.97 < .0001 .46
Covariance : 3,80 2599 <.0001 .53
Generalized RBD 3,65 20.52 < .0001 .58

Weighted AOV (litter size) 3,81 15.62 < .0001 .37
Weight AOV (y/littersize) 3,81 33.11 < .0001 .55

As was expected the covariance and blocking provided an improvement over the one-
way classification as measured by R?. However, the magnitude of the improvement does
not seem to warrent the chance of violating the more restrictive assumptions placed on the
experiment by those designs. A better alternative, in the parametric case, may be using
the square root of litter size as a weight which provides nearly the same value of R? as
does the blocking design. However, we would prefer the one-way analysis for its simplicity
and robustness in application.

The normality assumption on the severity index is quite suspect in many situations.
As an alternative, the nowparametric Kruskal-Wallis procedure was carried out. In view of
the overwhelming significance of the parametric procedures, this result was not surprising

x? = 47.75;af = 3 p < .0001. Figure 1 compares the linearity of the mean severity index
and the median severity index.

Figure 1
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Statistical Procedure

The consideration of litter size is not necessary for analysis of the SI's. It is important
to note than the SI's are probably not normally distributed, particularly in the control
group and at the higher dose levels. The following is suggested for toxicity-teratogenicity
studies.

1. If the SI’s are reasonably normal, calculate the AOV F-statistic for a one way layout.
Use this statistic to test for differences in location.

2. If F is significant, follow with linear constrasts to test for increasing trend.

3. If significant use Dunnett’s procedure to compare control mean with each of the
treatment means to establish no-effect leve.

4. In the presence of non normality use a similar sequence of nonparametric test. e.g.
K - W, Jonckheere/Terpstra, and Dunn’s procedure.

SAS code is available which reads litter data, calculates scores, computes SI's and cal-
culated the statistics. The results above have been "tested” by simulation analysis of
additional nitrofen studies and two other biological examples. Also, the method detects
different dose patterns with equal ability. The K - W test showed consistently higher power
than the F-statistic in the simulation studies.
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A SMALL SAMPLE POWER STUDY OF THE
ANDERSON-DARLING STATISTIC AND A COMPARISON WITH

THE KOLMOGOROV AND THE CRAMER-VON MISES STATISTICS

Linda L. Crawford Moss, US Army Ballistic Research Laboratory
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Henry B. Tingey, University of Delaware

Abstract

The Anderson-Darling goodness-of-fit procedure emphasizes agreement
between the data and the hypothesized distribution in the extremes or tails.
An improved table of the quantiles of the Anderson-Darling statistic. useful
for small sample sizes, was constructed using the Cray-2 supercomputer. The
power of the Anderson-Darling test is compared to the Kolmogorov and the
Cramér-von Mises tests when the null hypothesis is the normal distribution
and the alternative distributions are the Cauchy, the double exponential. and
the extreme value distributions.
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1. INTRODUCTION

Consider a random sample X, Xy, ..., X, from a population with a
continuous distribution function. One method of testing the hypothesis that
the n observations come from a population with a specified distribution
function F(x) is by a chi-square test. This test requires a subjective
partitioning of the real line R and a comparision of the empirical histogram
with the hypothetical histogram. A more objective method, is to compare the
empirical distribution function Fj(x) with the hypothetical distribution

function F(x). The empirical distribution function based on n observations is
defined as F,(x) = k if exactly k observations are less than or equal to
n
x,fork=0,1,...,n.
To compare the empirical and hypothetical distribution functions a

measure of their difference is required. Addressing this, Anderson and Darling

[1952] considered the following metrics in function space:

Wz =n [ [Fy(x) = F(x)]* $[F(x)] dF (x) (1.1)

-0

and
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K,= sup Vi lF,(x) — F(\t)l\/WF(T)] . (1.2)
-0 < x < 00

Samples producing large values of Wf, (or K,) lead to rejection of the null
hypothesis that the population distribution function is F(x). One of the
contributions of Anderson and Darling was the incorporation of a non-negative
weight function ¥ in (1.1) and (1.2). By a suitable choice for ¥, specific ranges
of values of the random variable X, corresponding to different regions of the
distribution F(x), may be emphasized. For ¥[F(x)] =1, W2 becomes the
Cramér-von Mises statistic [Cramér, 1928 and von Mises, 1931] and K,

becomes the Kolmogorov statistic [Kolmogorov, 1933].

The tails of the distribution function will be accentuated in the

investigation detailed in this paper; Anderson and Darling suggesf using

1
Fx)1 —F(x)]

YF(x)] =

With this choice for the weighting function, metric (1.1) becomes the basis for

the Anderson-Darling statistic.

In Section 2, the Anderson-Darling test statistic is developed; in
Section 3, the most accurate tabulation to date of the test statistic is provided.

In Section 4, the description and the results of a power study are given in

which the Anderson-Darling, the Cramér-von Mises, and the Kolmogorov

statistics are compared.
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2. THE ANDERSON-DARLING STATISTIC

For a fixed value of the random variable X, say X = x, the empirical
distribution function F(x) is a statistic, since it is a function of the sample

values X,, Xg, ..., X,. The distribution of this statistic is established as a lemma.

Lemma (2.1): If F_(x) is the empirical distribution
function corresponding to a random sample X;, Xy, ..., X,
of size n from a distribution H(:), then for a fixed x, nF,(x
is distributed binomial (H(x),n). "

Proof:
P(nF,(x) = k) = P(exactly k values x; <x), for k =0, 1, ..., n.

Let Z; = I(_oo, 4 (Xi), where the indicator function I is defined as
1, if —oo < Xi S X
I(-oo, x| (Xj) =
0, otherwise .

Then £Z; counts the number of sample values x; < x.
Here each Z;~Bernoulli(H(x)), so £Z;~binomial (H(x),n).
Therefore,

P(nF,(x) = k) = P(exactly k values x; < x)
=P(XZ; =k)

B H(x)* [1 —H(x)]n-k ..

120



From Lemma 2.1,

E[F,(x)] = = & [0Fy(x)| = Hex

and

Var [F,(x)] = # Var [nFn(x)] =L H) (1 - HR)) (2.1)

To assist in the determination of a suitable weighting function %),
that is, a function that will weight more heavily values in the tails of the

distribution F(x) at the expense of values closer to the median, consider the

2
expectation of the squared discrepancy E[Fn(x) -—F(x)] . It is important to

keep in mind that the value x is fixed, so F(x) is a constant, and the
expectation is with respect to the random variable F,(x) whose distribution was

establiéhed in Lemma 2.1. Theﬁ

nE [F,,(x) - F(x)]2 =nE 'Fn(x) — H(x) + H(x) — F(x)]2

=nE {Fn(x) - H(x)}— {F(x) - H('{)}

which, after algebraic manipulation (Appendix A) yields the variance and bias®

92

=n . (2.2)

% {H(x){l - H(x)}}+ {F(x) - H(x)}
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Under the null hypothesis H,: H(x) =F(x) Vx, (2.2) becomes
nE [Fn(x) - F(x)]2 = F)[l — F(x)] . (2.3)

1
F(x) [1 =F(x)]

Anderson-Darling chose as a weighting function, Y[F(x)] =

Weighting by the reciprocal of (2.3) takes into consideration the variance-of
the statistic F (x) and also maintains the objective of accentuating values in

the tails of F(x).

With this choice of weighting function and without loss of generality
assuming x; < xp < ... <xp, let F(x) =u, dF(x) = du, and F(x;) =u;. Then
the Anderson-Darling test statistic (2.4) can be rewritten as expression (2.5) by

expansion and integration (Appendix B).

w2 of [Fy(x) — F(x)]2

=0 P L= Fe ) (24)

W2e=—n— lgl [(21-1 In u + (2(n—j)+1) ln(l—uj)]. (2.5)
&
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3. DISTRIBUTION OF THE ANDERSON-DARLING STATISTIC

The asymptotic distribution of W2 was derived by Anderson and
Darling [1952]. Lewis [1961] undertook the tabulation of F(z; n) - P(W? < 3)
for n=1,2,.., 8 and for incremental values of 2z over the interval
[0.025, 8.000]. Lewis’ table entries were computed using a Monte Carlo
procedure to generate an empirical approximation Fp,(z;n) to the distribution
function F(z;n) based on m samples of size n. At that time, computational
restrictions essentially limited the accuracy of the table entries to within}

0.00326 of the true value.

Following an énalogous procedure based on expression (2.5) and the
observation that the U; are distributed U[0,1] [Feller, 1966], the table appearing
in Lewis’ paper 'was recalculated using a Cray-2 supercomputer. A
Kolmogorov-type bound [Conover, 1980] was used to construct<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>