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FOREWORD

The Thirty- Fourth Conference on the Design of Experiments in Army Research ,

Development and Testing was held on 19-21 October 1988 in the auditorium of the

Physical Sciences Laboratory on the campus of New Mexico State University , Las

Cruces , New Mexico . Mr. John Lockert , Director of the White Sands Missile

Range , stated his installation would serve as the host for this meeting. He

selected Mr. William Agee to act as the chairperson for local arrangements .

The attendees appreciated the quiet and efficient manner in which this

gentleman handled the many tasks associated with this event . He is also to be

commended for his planning arrangements for a tutorial which was scheduled to

be held two days before the start of this conference .

The original format for the Design of Experiments Conferences , which are under

the auspices of the Army Mathematics Steering Committee ( AMSC ) , was outlined by

the eminent statistician , Professor Samuel S. Wilks , who served as conference

chairman until his death . Through these symposia the AMSC hopes to introduce

and encourage the use of the latest statistical and design techniques into the

research , development and testing conducted by the Army's scientific and

engineering personnel . It is believed that this purpose can be best pursued by

holding these meetings at various government installations throughout the

country .

Members of the program committee were pleased to obtain the services of the

following distinguished scientists to speak on topics of interest to Army

personnel :

Speaker and Affiliation Title of Address

Professor Herbert A. David

Iowa State University

Some Applications of Order

Statistics

Professor Ronald R. Hocking

Texas A&M University

Diagnostic Methods - Variance

Component Estimation

Professors Donald L. Iglehart

and Peter W. Glynn

Stanford University

Computational and Statistical

Issues in Discrete- Event

Simulation

Professor Emanuel Parzen

Texas A&M University

Two Sample Functional

Statistical Analysis

Professor Edward L. Wegman

George Mason University

Parallel Coordinate

Density Plots
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Four days before the start of the planned two-day tutorial on " Topics in Modern

Regression Analysis " , its speaker advised Mr. Agee he could not give his

planned lectures . Fortunately , Professor Ali Hadi of Cornell University was

able , so to speak , to save the day . The attendees were very pleased with Dr.

Hadi's interesting and informative tutorial on "Sensitivity Analysis in Linear

Regression " .

Dr. Marion R , Bryson , Director of the U.S. Army Combat Development

Experimentation Center , was the recipient of the eighth Wilks Award for

Contributions to Statistical Methodologies in Army Research , Development and

Testing . This honor was bestowed on Dr. Bryson for his many significant

contributions to the field of statistics . These started by providing

statistical consulting while he was on the faculty of Duke University . This

era was followed by full -time work devoted to directing analytical studies for

the Army . Since then , he has provided overall technical direction to the

Army's most modern field test facility . His published works include papers on

a wide range of topics of importance to the Army , including methods for scoring

casualties , designing field experiments , and inventory control problems .

The AMSC has asked that these proceedings be distributed Army -wide to enable

those who could not attend this conference , as well as those that were present ,

to profit from some of the scientific ideas presented by the speakers . The

members of the AMSC are taking this opportunity to thank all the speakers for

their interesting presentations and also members of the program committee for

their many contributions to this scientific event .

PROGRAM COMMITTEE

Carl Bates

Eugene Dutoit

Doug Tang

Robert Burge

Hugh McCoy

Malcolm Taylor

Henry Tingey

Francis Dressel

Carl Russell

Jerry Thomas

iv
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SOME APPLICATIONS OF ORDER STATISTICS *

H. A. David

Department of Statistics

102D Snedecor Hall

Iowa State University

Ames , IA 50011-1210

•• . S X

n : nº

ABSTRACT Suppose that the random variables X1 , ... ,n are arranged in

ascending order as X1 :05 Then Xe : n is called the r-th order

statistic ( r = 1 , ... , n ) . Order statistics , and functions thereof , have been

used extensively in such diverse areas as quality control , the estimation of

parameters , life testing , data compression , selection procedures , and the

study of extreme meteorological phenomena . In this paper we focus on

applications of order statistics to ( a ) estimators that are resistant to

outliers , ( b ) current measures of location and dispersion such as the moving

median and the moving range , and ( c ) some problems in reliability .

1. INTRODUCTION . If the random variables X2 , ... , xo are arranged in

ascending order of magnitude and then written as

X

rin
¥ 1 :n s ... ax

< X

n : n '

we call Xx : n the r-th order statistic ( os ) ( r = 1 , ... , n ) . Usually Xp ,... ,xn

are assumed to be a random sample from some underlying population ,

n : n

The subject of order statistics deals with the properties and applica

tions of these ordered random variables and of functions involving them .

Examples are the extremes X1 : n and Xn : n , the range Wn Ym : n - X1 : n , the

extreme deviate ( from the sample mean ) X - X , and the maximum absolute

deviation from the median ( MAD ) max

1 ,, n \ - M ) , where the median M

equals x ( n odd ) and }(x ) ( n even ) .

( ( ?): ( + 1 ) : n

All these statistics have important application . The extremes arise in

the statistical study of droughts and floods , as well as in problems of

breaking strength and fatigue failure . The range is well known to provide a

quick estimator of the population standard deviation o , whereas MAD is a more

recent estimator of o valuable because of its high resistance to wild

observations ( outliers ) . The extreme deviate is a basic tool in the detection

of such outliers , large values of (x - X ) /o indicating the presence of an
nin

+ X

: D: n

* Keynote Address , 34th Conference on the Design of Experiments in Army

Research , Development and Testing , New Mexico State University , Las Cruces ,

October 19 , 1988. Prepared with support from the U. S. Army Research Office .
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excessively large observation . Order statistics have also been used in such

diverse areas as quality control , life testing , data compression , parameter

estimation , and selection procedures . A general account of the subject is

given in David ( 1981 ) . The statistics of extremes is treated in more detail

by Galambos ( 1987 ) . For a recent collection of articles on order statistics

see also the special issue on Order Statistics and Applications of Communica

tions in Statistics , Theory and Methods, Vol . 17 , No. 7 ( 1988 ) , edited by N.

Balakrishnan .

In the following sections of this paper we focus on applications of order

statistics to ( a ) estimators that are resistant to outliers , ( b ) current

me asures of location and dispersion such as the moving median and the moving

range , and ( c ) some problems in reliability .

2 . RESISTANCE TO OUTLIERS Order statistics play a prominent role in the

study of outlying observations. A typical model for a single outlier in

normal samples is given by ( 2.1 ) :

X, ....,81-1 , X1+ 2 ... , x ~ N ( 4,02 ) , i = 1 , ..1 , ... , n ( 2.1 )

x, ~ N ( u + do , 02 ) ,
i

nin

where all X, are independent and 1 is unknown .
If o2 is known and a > 0

( outlier on right ) , then the statistic D. ( x X) /0 ( Grubbs , 1950 ) is

well known to be optimal ( in a widely accepted sense ) for the detection of the

outlier . If o2 is unknown , studentized versions of Dn apply . For an

extensive account of the subject of outliers see Barnett and Lewis ( 1984 ) . It

should , however , be noted that the above " classical" tests for outliers are

less effective when the number of outliers may exceed one , the actual number

being unknown . In that situation , statistics more resistant to the presence

of more than one outlier may well be preferable ( e.g. , Hampel et al . , 1986 ) .

We will not consider tests any further , but turn to procedures for the

estimation of u and o under ( 2.1 ) and related models . To estimate u under

( 2.1 ) we confine ourselves to the class of linear functions of order

statistics with symmetrical weights :

> 0 ,

n n

Ln( a)
Σ a . X with a Σ

an- 1+ 1 = a11 ^ '

: 1 .

a1
( 2.2 )

i= 1 i= 1

In the absence of an outlier ( 1 = 0 ) , L is clearly an unbiased estimator

of u . However , as 1 + co , we have EL . ( a ) + co unless a 30 . This suggests

n- 1

searching for robust estimators within the class Σ
ai

The

:
i =2

n

2



standardized bias and mean squared error (MSE ) of L. ( a ) under ( 2.1 ) can beLn

obtained with the help of tables of the first two moments of normal order

statistics in the presence of an outlier ( David , Kennedy , and Knight , 1977 ) .

For example , under ( 2.1 ) the standardized bias E (1 ) of L. (a ) 18 given by

E L ( a) - u X

E

n

21:n _̂ ),8

E agt

or

a , a

1 °1 : 0 ( 1 ) ,

21 : n '

a

i : n

bo(1)
Σ

n
( 2.3 )

where a Note

(^) is the expected value of Xi : n for H = 0 , 0 = 1 .* i : n

that az :n (0 ) is just the widely tabulated expected value a1 : n of the i-th os ,

in random samples of n from a standard normal population . Clearly ,

( 1 ) is a strictly increasing function of i . Also , since for 1 = o , ( 2.1 )

leaves us with a random normal sample of size n - 1 plus an observation at “ ,

we have

( ) i = 1 , ... , n- 1 ( 2.4 )

1 :n - 1)i : n

( and likewise a ( -- ) i = 2 , ... , n
i :n °1-1 : n ' a1 : n ( -0)

Some results for samples of 10 are shown in Figures 1 and 2 , where

10

1

X10 is the sample mean 10 X1 : 10
1

9

T10 ( 1 ) is the trimmed mean Σ Χ .

i : 10

sa a

n : n

( -) = " ,

sa

Σ

0
0
1

2

W10( 2 ) 1s the Winsorized mean to (2x3 : 10 * 4:10 * 23:10

T1064 ) is the median { { *5 : 10 X6 :10), etc.

The figures are confined to a > 0 since results for ^ < 0 follow by skew

symmetry in Fig . I and by symmetry in Fig . 2 .

BIAS B (̂ ) .
Since a

ai
> OV i we see from ( 2.3 ) that the bias is a strictly

increasing function of 1 for each of the estimators , and from ( 2.4 ) that

bno) = { az ºi:n - 1
( 2.5 )

This gives the numerical values placed on the right of Fig . 1 . The jagged

graphs are the corresponding " stylized sensitivity curves " ( Tukey , 1970 ;

Andrews et al . , 1972 ) obtained by plotting 1 ( :n-| ...,« n- 1:1-101 )

against i . In particular, for the median we have

3
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0 < 1 < 06 : 9

med 10 ( 1:0, ...,49:904) -

{ ( 25 : 9 +1 ) - }

(05:9 + : 9 ) - { * :9 > 46 : 9
3

0.1372 6

The last result is the same as given by ( 2.5 ) . In fact , each of the horizon

tal lines serves as an asymptote to the corresponding bias function . It is

seen that the median performs uniformly best .

ME AN SQUARED ERROR MSE ( 1 ) : No clear-cut results emerge . The sample mean

does best for ^ < 1.5 but is quickly .outclassed for larger i . Overall , T10 ( 1 )

performs best , although the more highly trimmed T10 ( 2 ) 1s slightly superior

for very large i .

EXTENSIONS

The intuitively appealing result that for symmetric unimodal distributions

the median is the least biased among the In -estimators can be formally

established under ( 2.1 ) and also for a class of symmetric non - normal

distributions (David and Ghosh , 1985 ) .

2 .
For n < 20 appropriately trimmed means still do well in the MSE sense when

compared with much more complex estimators , but for 1 sufficiently large

and n not too small are inferior to the best of the adaptive estimators

such as Tukey's biweight (Mosteller and Tukey , 1977 , p . 205 ) .

3.

An often used alternative outlier model replaces the second line of ( 2.1 ) by

x, ~ N (u , 1262) > 1τ

i

For this model location estimators remain unbiased but their variance is

increased . Since bias has been sidestepped , only the variance of the

estimator needs to be studied ( David and Shu , 1978 ; Rosenberger and Gasko ,

1983 ) .

CASE OF SEVERAL EXTREME OUTLIERS . For all < q < n) outliers Rocke ( 1986 )

defines as a measure of outlier resistance of an estimator of location T the

"expected maximum bias“ Dq( n , q ) by

De (n ,g) - Eſsupl |T(21:n-q...,20-4 :n-qu .... ,)|),
( 2.6 )

where the supremum is taken over all possible choices of the constants

λA pocoosd , and the z's are the normal os . When T - L
L'no the supremum will

evidently occur when the l's are all + cor all - . As Rocke points out , by

focusing on the worst case of bias one need not specify the usually unknown

distribution( s ) of the outliers . It suffices to model the good observations

which more generally could be from any standardized distribution .

It appears that unwittingly Rocke does not use ( 2.6 ) but in fact works

with the standardized bias

5



DE <n,q) - E{T(21:n-q ...,2n-q:n-q."....,-)}.
( 2.7 )

If the good observations were independently generated from a unimodal

symmetric distribution ( mode = maximum ) , then again the median can be shown to

have the least bias D (n ,q) among -statistics ( Rocke's proof is incorrect ;

see the appendix ) .

*

3 . CURRENT MEASURES OF LOCATION ANDDISPERSION

3

Let Xy be a sequence of independent random variables with cdf Ff ( x )
( i )

( i = 1,2 , ... ) . Then s. (x2 ,...,X2+n -1) may be called a moving sample of

( 1 )

the roth OS of sso the moving r -thos . Moving maxima

n

size n , and x( 1 )
r : n '

( r = n ) and minima ( r = 1 ) were studied by David ( 1955 ) under homogeneity

( F2 ( x ) = f( x ) , 1 = 1,2 , ... , ) in the course of an investigation of moving

( i )
ranges W x (1) - XI.) ( 1 = 1,2 , ... ) . The latter have a longer history= X

non

( Grant , 1946 ) , being natural companions to moving averages on quality control

charts . Such charts are particularly appropriate when it takes some time to

produce a single observation .

n

Since sa

Moving medians are robust current measures of location and , like moving

averages , smooth the data ; see , e.g. , Tukey ( 1977 , p . 210 ) . Cleveland and

Kleiner ( 1975 ) have used the moving midmean , the mean of the central half of

)
the ordered observation

s in each S. together with the mean of the top half

and the mean of the bottom half , as three moving descriptive statistics

indicating both location and dispersion changes in a time series .

( 1 )
s
j

involve common random variables iff

( 1 ) ( j)d = 11 - j < n , we see that x and X are independent for dan and

dependent otherwise , with n - drv's in common . To begin with , we assume

( 1 )
homogeneity . Then the joint distribution of s. and s. (1) will be

stationary and will depend only on F(x ) , n , and d . We therefore consider

( 1)SA 1 d
)
and X

( r , s 1 , ... , n ) . Let

rin S : n

n

and so

S =

TT

'gh (a ) Pr {rank ( x( !? ) = 8 , rank (x{ 1+d)) - h } , ( 3,1 )
r : n S : n

where rank (Y ) denotes the rank of Y in the combined sample X1 , ... , xntd . It

follows that
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sin '

TT

8 ,hghrin

r : n ' S : n

E( x (1) x { 1+d ))( ) ) - Σ E(X&:ntd hints).
( 3.2 )

This permits calculation of cov( x( 1) , x {1+d )) in terms of the first two

moments of order statistics in samples of ntd from a distribution with cdf

F(x ) , since the 1 can be obtained by combinatorial arguments ( David and
gh

Rogers , 1983) . The joint distribution of x( 1) and (I) has been Investigated

by Inagaki ( 1980 ) .

rin S : n

With the help of ( 3.2 ) it is possible to evaluate the auto - covariance

structure under homogeneity of the moving median and , in fact , of any linear

function of the order statistics oʻx( ) = ax

- ^
+ Q x That is , we

). 1^ 1 : n

can find

( i )

+
.

n n : n

COV

(czt) , -2 })

in terms of the first two moments of the OS for sample sizes up to 2n- 1 from a

distribution with cdf F(x ) .

Electrical engineers have made extensive use of moving order statistics

in digital filters . They view a moving sample as a window on a sequence of

signals x1 , x2 , ... and speak of median filters when using the moving median to

represent the current value of the signal , thereby " filtering out " occasional

impulsive disturbances ( outliers ) ( e.g . , Arce , Gallagher, and Nodes , 1986 ) .

More generally , the median may be replaced by a's to give order statistic

filters ( e.g. , Bovik and Restrepo , 1987 ) .

For example, suppose that in the automatic smoothing of a basically

stationary time series one is prepared to ignore single outliers but wishes to

be alerted to a succession of two or more high ( or low ) values . This calls

for use of moving medians in samples of three , since clearly a single outlier

will be smoothed out but two successive large values will result in two large

medians . The following small example illustrates the situation , where for

purposes of comparison we have added the much less informative moving mean x
i

.

3 1 1 10 2

*1
4 39 10 2 1

( i )

* 2 : 3
1 1 2 4 3 4 9 9 2

x
ب
ن
ا
ی
ا

4

41/늘 51/
3

5173 7 7결
7

i w
i
t
h

When X1 , x2 , ... are not 11d , even the distribution of order statistics in

7



a fixed sample becomes complicated although a fairly elegant expression for

the pdf can be written down in terms of permanents ( Vaughan and Venables ,

1972 ) if the X's are not identically distributed but still independent . It is

easily seen that the moving median and other order statistics will reflect

trends except for a smoothing at th ends . Thus for the following sequence ,

where the upward trend is underlined , we have

15 2 3 4 6 9

*
12 14 117

i

( i )

* 2 :33
2 2 3 4 6 9 12 12 11

X, 273
ب
ہ
ا
ن
ا

2

2 433 673
9 11 12 103

i

- 11 + 211

r : n '

For a linear trend given by

X
1 = 1,2 , ... ( 3.3 )

i i

where the 24 are i.i.d. , we evidently have

??( ) KID (T) = ( j - 1 ) 1 ,

with covariances COV (x{1 , X(?) ) ( 1,8 1 , ... , n ) independent of i .

Consider now a particular sample X ,, x2 , ... ,X2m- 1 (m 2,3 , ... ) with

symmetric un imodal distributions . Then under ( 3.3 ) , which need hold only for

the sample in question , we see that for t >

Prįrank X, - 1 } increases with 7 .

Thus Xrin will tend to lead the trend , reflect the current state , or lag the

trend according as r है and will do so increasingly as t increases ; for

txo , the results are reversed . However , in contrast to the sample mean ,

whose variance remains unchanged under a linear trend , the variance of the

sample median increases with T. ( I am indebted to Dr. W. J. Kennedy for some

computations verifying the latter intuitively obvious result . ) Thus the use

of the median , under locally linear trend , is appropriate primarily as

protection against outliers . In this situation , but under nonlinear trend ,

Bovik and Naaman ( 1986 ) consider the optimal estimation of Ex . by linear

functions of order statistics .

4 . SOME PROBLEMS IN RELIABILITY

There is a well -known immediate connection between order statistics and

the reliability of k - out -of - n systems .

Definition A k-out-of-n system is a system of n components that functions if

and only if at least k (k = 1 , ... , n ) of its components function .1 Series and

parallel systems correspond to k = n and k = 1 .

8



Let X ( 1 = 1 , ... ,n ) be the lifetime of the i-th component and

R_ (x ) = Pr {X. > * } its reliability at time x ( the probability that it will

function at time x ) . Then the reliability of the system s at time x is

Rs (x ) = Pr {Xn-k+ 1 : n > x } .

If the Xy are independent ( but not necessarily identically distributed ) one

may write ( Sen , 1970 ; Pledger and Proschan , 1971 ) .

Rg ( x) = (x) ( 1 - R/(x)]--,
A i= 1

n

where ^
41

= 0 or 1 , and A is the region
Σ Δ,

Δ.Σ k .

i
It can be shown that a

1= 1

n

series ( parallel ) system is at most ( least ) as reliable as the corresponding

system of components each having reliability R(x )
1

£ R (x ) . An excellent

i= 1

general account, covering also important situations when the X, are not

independent , is given in Barlow and Pros chan , ( 1975 ) .

n

I will conclude with a problem in reliability , quite different from the

above , that was suggested by an enquiry from Malcolm Taylor ( see Baker and

Taylor , 1981 ) . A fuze contains n detonators , r of which must function within

time span to The ideal requirement r = n may be too demanding in practice and

r = n- 1 suffices .
The n times to detonation , X2, ... ,Xn, may reasonably be

regarded , I was told , as a random sample from a normal population . Let

P ( r ; n , t ) be the probability that at least r detonations have occurred in time t .

Now , for a random sample from any continuous distribution with cd f F( x ) ,

P ( n ; n , t ) is just

Pr{X :n - X1 : n < t }XL : n < t } = ns ( F(x+t )nº (F(x+t) - F( x ) 17-1 đF( x) ,

the cdf of the sample range ( Hartley , 1942 ) . Let Aj ' and A2 be the events

-1 X : n < t and X X2 : n < t , respectively . Then ,

P (n- 1 ; n, t) = Pr{A ,' U Ay}

Pr { A, ' } + Pr{Ay } - Pr {A, 'Ay } ( 4.1 )

X

n - 1 : n nin

The event Aj ' occurs if n - 1 or n-2 of X1, ..., fall in the interval

( X1 : n , X1 : n + t ) and Az if n-2 of the X, are in ( X2 : n , X2 : n + t ) .+ t ] . Since A2

includes the event that n - 1 of the X, are in ( X1 : n , X1 : n + t ) , we can avoid

unnecessary duplication by replacing A , ' in ( 4.1 ) by Ay , the event that

exactly n - 2 of the Xy are in ( X1 : n : X1 : n + t ] .

9



We have immediately , writing n ( j ) = n ( n- 1 ) ( n-j + l ) , that

Pra,} - n(2) ( F ( x+t ) - F(x ) ] n-2-1 - F(x+t ) ] df(x ےم(

and

Pr { Az } - n (2 ), [ P (x+t ) = f (x ) ]" -2 F (x )dF(x ) .

The joint occurrence of Ay and Az is illustrated below for n = 6 .
We

have

* + **

x+t

*

ytt

X

1 : n = X: $2 : n - y

Pr{ A ,Az } = ( 3/21*** [ F ( x + t ) - P(y )] - }(PCy +t) - F ( x + t ) ] dp( y ) F( x )

From these results P ( n- 1 ; n , t ) has been tabulated in David and Kinyon

( 1983 ) when F(x ) 0 (x ) . Note that P ( n - 1 ; n , t ) may be interpreted as the

probability that at least n - 1 out of n independent normal N ( u , 0% ) variates are

within an interval of length to .

EXAMPLE . As in Baker and Taylor ( 1981 ) suppose that X1 , ... , xn are independent

normal variates with o = 10-5 . The entry P ( 6 ; 7,3 ) 0.9587 tells us that the

probability of at least six detonations out of a possible seven within time

span 30 is 0.9587 . By comparison , the probability of seven detonations is

only 0.6601 , as found from tables of the cdf of the range ( Pearson and

Hartley , 1970 ) .

David and Kinyon ( 1983 ) also give an expression , involving a triple

integral , for P ( n-2 ; n , t ) . It should be noted that P ( r ; n , t ) has received

much attention by quite different techniques in the special case when the Xy

are independent uniform variates ( e.g. , Neff and Naus , 1980 ) . From a

different viewpoint again , writing

P ( r ; n , t ) Pr{ä ( 1 < t } ,

where

min ( x2+ -1:n - X :n),

i= 1 , ... , n-r+ 1

we may regard (5) as a measure of dispersion . In fact , H (a) is the length

of the shorth, the shortest a-fraction of the ordered sample ( Andrews et al . ,

1972 ) . It has recently been shown (Grübel, 1988 ) that H. (a) is asymptotically

normal ( for fixed a ) .
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APPENDIX

H. A. David and C. C. Yang

Correction to ' Outlier resistance in small samples '

By DAVID M. ROCKE

Biometrika ( 1986 ) , 73 , 175-81

The author does not stay with his own definition of Dy ( n , q ) but in fact uses

Dy ( n ,q) - E { T ( 27 ... , ?n= 2 ), ... , -) } .

Even with this change the proof of the theorem on p . 176 is in error since the

combinatorial term associated with should be 600 ), not ("79 ) . However ,

since 8 * the theorem follows directly from Case 2 of David and
r-a

Groeneveld ( Biometrika ( 1982 ) , 69 , 227–32 ) and has essentially been proved in

P. K. Sen (Ed . ) Biostatistics ( 1985 ) North - Holland , pp . 309-11 .

n-r

)n r
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MULTI-SAMPLE FUNCTIONAL STATISTICAL DATA ANALYSIS

Emanuel Parzen

Department of Statistics

Texas A & M University

College Station, Texas 77843-3143

ABSTRACT. This paper discusses a functional approach to the problem of compar

ison of multi-samples (two samples or c samples, where c > 2). The data consists of c

random samples whose probability distributions are to be tested for equality. A diversity

of statistics to test equality of c samples are presented in a unified framework with the

aim ofhelping the researcher choose the optimal procedures which provide greatest insight

about how the samples differ in their distributions. Concepts discussed are : sample distri

bution functions; ranks; mid -distribution function; two- sample t test and nonparametric

Wilcoxon test; multi-sample analysis of variance and Kruskal Wallis test; Anderson Darling

and Cramer von Mises tests; components and linear rank statistics; comparison distribu

tion and comparison density functions, especially for discrete distributions; components

with orthogonal polynomial score functions; chi-square tests and their components.

1. INTRODUCTION. We assume that we are observing a variable Y in c cases or sam

ples ( corresponding to c treatments or c populations). The samples can be regarded as the

value of c variables Y1,..., Yc with respective true distribution functions Fi(y), ..., Fc(y)

and quantile functions Q1(u ), ..., Qc(u ). We call Y1, ..., Yc the conditioned variables (the
value ofY in different populations ).

The general problem of comparison of conditioned random variables is to model how

their distribution functions vary with the value of the conditioning variable k = 1, ... , C ,

and in particular to test the hypothesis of homogeneity of distributions:

Ho : F1 = ...== ... = Fc = F

The distribution F to which all the others are equal is considered to be the unconditional

distribution of Y (which is estimated by the sample distribution of Y in the pooled sample).

2. DATA. The data consists of c random samples

Y (j), j = 1 , ... , nk

for k = 1 , ... , .. The pooled sample, of size N = n1 + ... + nc , represents observations of

the pooled (or unconditional) variable Y. The c samples are assumed to be independent
of each other.

3. SAMPLE DISTRIBUTION FUNCTIONS. The sample distribution functions of

the samples are defined ( for -0 < y < co ) by

F"(y) = fraction Sy among Yx (.).

The unconditional or pooled sample distribution of Y is denoted

F*(y) = fraction Sy among Yk (.), k = 1 , ... , C .

We use to denote a smoother distribution to which we are comparing a more raw

distribution which is denoted by a ". An expectation (mean) computed from a sample is

denoted E.

Research Supported by the U.S. Army Research Office

15



4. RANKS, MID -RANKS, AND MID - DISTRIBUTION FUNCTION. Nonparamet

ric statistics use ranks of the observations in the pooled sample; let

Rx(t) denote the rank in the pooled sample of Yk (t ).

One can define Rx (t) = NF *(Y : (t)).

In defining linearrank statistics one transforms the rankto a number in the open unit

interval, usually Rx (t)/ ( N + 1) . We recommend (RX (t) – .5) /N. These concepts assume

all observations are distinct, and treat ties by using average ranks. We recommend an

approach which we call the “ mid-rank transform " which transforms Yk(t) to plyk(t) ) ,
defining the mid -distribution function of the pooled sample Y by

P(y) = F "(y) – .5p (y).

We call

p ^ ( g) = fraction equal to y among pooled sample

the pooled sample probability mass function .

5. SAMPLE MEANS AND VARIANCES. When the random variables are assumed

to be normal the test statistics are based on the sample means ( for k = 1 , ... , c)

nk

YE = E (Yx) = ( 1 /nk) Yu (t).
t=1

We interpret Yk as the sample conditional mean of Y given that it comes from the kth

population . The unconditional sample mean of Y is

Yº = E[Y] = p.191 + ... + p.cYc ,

defining

Pok = nk / N

to be thefraction of the pooled sample in the kth sample; we interpret it as the empirical

probability that an observation comes from the kth sample.

The unconditional and conditional variances are denoted

Nk

VAR " [Y ] = ( 1 /N) { {Y{(j) - Y-}2)
k = 1 j= 1

nk

VAR "[Yk) = ( 1 /nk ) {Y{(j ) – Y6732

j= 1

Note that our divisor is the sample size N or nk rather than N -c or nk - 1. The latter

then arise as factors used to define F statistics .

We define the pooled variance to be the mean conditional variance:

01
2

=

P.K VAR "[ Y ]
k = 1
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6. TWO SAMPLE NORMAL T TEST. In the two sample case the statistic to test

Ho is usually stated in a form equivalent to

T = {Yi - Y2 ; } / 0 ^ { ( N / ( N − 2) ) ( ( 1 /nı) + ( 1 /n2 ) ) } .5

We believe that one obtains maximum insight (and analogies and extensions) by expressing

T in the form which compares Yi with Yº:

T = { (N – 2)p.1 / (1 – P.1) 3.5 { Y {- - Y - } / o ^

The exact distribution of T is t (N – 2) , t -distribution with N – 2 degrees of freedom .

7. TWO -SAMPLE NONPARAMETRIC WILCOXON TEST. To define the popular

Wilcoxon non -parametric statistic to test Ho we define Wc to be the sum of the nk
ranks

of the Ye values; its mean and variance are given by

E [Wk) = n( (N + 1)/2, VAR (Wk) = n1n2 (N + 1) / 12

The usual definition of the Wilcoxon test statistic is

Te = {Wk – E [W .]}/ {VAR /Wk]}.5.

The approachwe describe in this paper yields as the definition ofthe nonparametric

Wilcoxon test statistic (which can be verified to approximately equal the above definition

of T1, up to a factor { 1 - (1/N)2 }.5)

T1 = {12(N − 1) P.1/ ( 1 – P.1)}.5(Ri-- .5 },

defining

ni

Rj+ = (1/01) E(Ri (t) – .5) /N
t = 1

= (W1/nįN ) - ( 1/2N)

One reason we prefer this form of expressing non - parametric statistics is because of its

relation to mid -ranks;

Rk' = E (P * (Yk)]

One should notice the analogy between our expressions for the parametric test statistic

T and the nonparametric test statistic Tı ; the former has an exact t (N – 2) distribution

and the latter has asymptotic distribution Normal{0, 1 } .

8. TEST OF EQUALITY OF C SAMPLES NORMAL CASE. The homogeneity of

c samples is tested in the parametric normal case by the analysis of variance which starts

with a fundamental identity which in our notation is written

VAR "( Y) = P.x { Y ! - Y-}2 + 0-2{Y
k = 1

The F test of the one-way analysis of variance can be expressed as the statistic

T2 = Ś P.x/Thal?
k=1

- [( 1 – P.x)]T FxI?
k= 1
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defining

Tue = (N – c ){ Y6 - Y - } / o

TF = {(N – c) P.k/ ( 1 - P.1) } ^ { Y - Y -}{ c ^

The asymptotic distribution of T²/(c - 1) and TFX are F (c - 1,N-c)and F(1 , N -c)
respectively.

9 . TEST OF EQUALITY OF C SAMPLES NONPARAMETRIC KRUSKAL

WALLIS TEST. The Kruskal-Wallis nonparametric test of homogeneity of c samples

can be shown to be

k = 1

TKW2 É (1– P.x )/TKWH/?

TKW1 = {12 (N – 1 ) p.x / ( 1 – P.x)}"${ Rk - .5}

The asymptotic distributions of TKW2 and TKW are chi-squared with c 1 and 11

degrees of freedom respectively.

10. COMPONENTS. We have represented the analysis of variance test statistic T2

and the Kruskal-Wallis test statistic TKW2 as weighted sums of squares of statistics T Fk

and TKWk respectively which we call components, since their values should be explicitly

calculated to indicate the source of the significance ( if any) of the overall statistics. Other

test statistics that can be defined can be shown to correspond to other definitions of

components.

11. ANDERSON DARLING AND CRAMER VONMISES TEST STATISTICS. Im

portant among the many test statistics which have been defined to test the equality of

distributions are the Anderson -Darling and Cramer -von Mises test statistics. They will

be introduced below in terms of representations as weighted sums of squares of suitable

components.

12 . COMPARISON DISTRIBUTION FUNCTIONS AND COMPARISON DEN

SITTY FUNCTIONS. We now introduce the key concepts which enable us to unify and

choose between the diverse statistics available forcomparing several samples. To compare

two continuous distributions F( . ) and H( . ) , where H is a true or smooth and F is a model

or raw , we define the comparison distribution function

D(u) = D(u; H , F) = F (H- (u ))

with comparison density

d(u) = d(u ; H, F) = D' (u) = f ( H - ? (u ) )/ h (H- (u )).

Under Ho : H = F, D(u) = u and d(u) = 1. Thus testing Ho is equivalent to testing

D(u) for uniformity.

Sample distribution functions are discrete. The most novel part of this paper is that

we propose to form an estimator Dº(u) from estimators H " (.)andF( .) by using ageneral

definition of D( . ) for two discrete distributions H ( .) and F (.) with respective probability

mass functions PH and Pf satisfying the condition that the values at which ph are positive

include all the values at which pf are positive.
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13. COMPARISON OF DISCRETE DISTRIBUTIONS. To compare two discrete

distributions we define first d(u) and then D(u) as follows:

d(u) = d(u ; H, F) = PF (H- (u )) /P # ( H - 1(u )),

D(u) = d (t )dt.

We apply this definition to the discrete sample distributions F^ and Fl to obtain

da"(u ) = d(u; F “ , FK )

and its integral Dk"(u ).

Weobtain the following definition of dié"(u ) for the c sample testing problem with all
values distinct:

di"(u ) = N /nk if ( Rx (j) - 1 ) / N < u < Rx (j )/ N , j = 1 , ... ,Mike

== 0, otherwise.

A component, with score function J(u) , is a linear functional

Tx ( )= "}(u)dt+(audu
It equals

Rx(j) /N

(1 )
N

J (u)du

j=1
( Rx (j) -1)/N

which can be approximated by E ( J ( P ^ (Yk)) ].

nk

14. LINEAR RANK STATISTICS. The concept of a linear rank statistic to compare

the equality of c samples does not have a universally accepted definition . One possible

definition is

Th"(J) = (1/12) J (Rx (j) – .5) /N)

j= 1

However wechoose the definition of a linear rank statistic as a linear functional of di "( u ),

which we call a component; it is approximately equal to the above formula.

We define

Tx (T)= ( (N − 1) VARIJU) p.x / (1 – P.1)* [*}(x){dx?(u)– 1}du ( ! )

where U is Uniform {0,1}, E (J (U )]= Só J(u)du ,

VARIJ(U ) = ["{"(u) – E |JU} } ?du.

Note that the integral in the definition of T1 "( J ) equals

$ " a{J (u )d { Dk"(u ) – u} .
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The components of the Kruskal-Wallis nonparametric test statistic TKW2 for testing

the equality of c means have score function J(u) = u –.5 satisfying

E(J (U) ] = .5, VAR [ J ( U )] = 1/12 .

The components of F test statistic Tạ have score function

J(u)( = 2{Q^(u) - Y -} / 09

where Q^(u) is sample quantile function of the pooled sample Y.

15. GENERAL DISTANCE MEASURES. General measures of the distance of Dº (u )

from u and of ď(u) from 1 are provided by the integrals from 0 to 1 of

{ & (u ) – 1}?, {Dº(u) – u } , { D " ( u) – u}? /u ( 1 – u) , {&(u) – 132

where d` (u) is a smooth version of ď(u). We will see that these measures can be decom

posed into components which may provide more insight; recall basic components are linear

functionals defined by ( !)

T (1)= [ "}(w)dt(w)du.
If$ ;(u ), i= 0, 1 , 2, ... , are complete orthonormal functions with do = 1, then Ho can

be tested by diagnosing the rate of increase (as a function of m = 1,2, ...) of

[ {am (u ) – 1 ] ?du = Ï1T(4:12
i= 1

which measure the distance from 1 of the approximating smooth densities

m

dm(u) = T (€:) i(u ).
i= 1

16. ORTHOGONAL POLYNOMIAL COMPONENTS. Let pi (2 ) be Legendre poly

nomials on (-1,1);

P1 (2) = 1

P2( z) = (3x2 - 1 ) /2,

P3( x) = (528 – 3x) /2,

P4(2) = 3524 – 30x2 + 3.

Define Legendre polynomial score functions

$ L ; (u ) = (2i + 1 )." P:(2u - 1 ) .

One can show that an Anderson -Darling type statistic , denoted AD ( D "), can be repre

sented

AD ( D ) = "{{D*(a) – u}*/ ( 1 – u ) } du

= 11 (6L;)]2/[i(i + 1))4L ( 1
i = 1
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Define cosine score functions by

$ C ; (u ) = 2.5 cos(inu ).

One can show that a Cramer -von Mises type statistic, denoted CM ( D “), can be repre
sented

CM ( D ) = [ "{0%) – u}du

ΣΤ'(φC;)12 /(επ)/ π ?
i= 1

In addition to Legendre polynomial and cosine components we consider Hermite poly

nomial components corresponding to Hermite polynomial score functions

¢H( )H ; (u ) = (i ! ) --5H ;(9- (u) )

where Hi(2 ) are the Hermite polynomials:

H1 (x) = I,

H2 (2 ) = x2 – 1 ,

H3( x) = 23 – 31,

H4(2) = 24 – 6x2 + 3 .

17. QUARTILE COMPONENTS AND CHI-SQUARE. Quartile diagnostics of the

null hypothesis Ho are provided by components with quartile " square wave " score functions

SQ1 (u) = -2.5,

= 0,

-2.5

: -1 ,

SQ2 (u) = 1 ,

=

= 1 ,

SQ3 (u) = 0

= -2.5 ,

0 < u < .25,

.25 < u < .75 ,

.75 < u < 1 ;

0 < u < .25 ,

.25 < u < .75 ,

.75 < u < 1 ;

if 0 < u < .25 or .75 < u < 1 ,

.25 < u < .5 ,

.5 < u < .75 .= 2.5 ,

A chi-squared portmanteau statistic , which is chi-squared (3 ), is

i=1

CQx = (N − 1 )p.k/ ( 1 – P.k ) 17 (SQ :)]2N È 2

(N − 1 ) p.x / (1 – P.x) [ "{dQ= (u) – 1 }ºdu

defining the quartile density (for i = 1 , 2, 3, 4)

dQx (u ) = 4 {Dk"(i(.25)) – Dilli – 1) .25) , (i – 1 ) .25 < < < i (.25)
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A pooled portmanteau chi-squared statistic is

CQ =(1 - P.K) CQKŚ 1
k = 1

18. DIVERSE STATISTICS AVAILABLE TO TEST EQUALITY OF C SAMPLES.

The problem of statistical infereence is not that we don't haveanswers to a given question;

usually we have too many answers and we don't know which one to choose. A unified

framework may help determine optimum choices. To compare c samples we can compute

the following functions and statistics:

1) comparison densities: dk"(u ),

2) comparison distributions Di"(u ),

3) quartile comparison density”dQk (u ), quartile density chi-square

CQ« = (N − 1)P.x/ ( 1 – P. ) [" {dQ (w) – 1)?du .

4) non - parametric regression smoothing of dex "( u ) using a boundary Epanechnikov kernel,

denoted dk (u ),

5) Legendre components and chi- squares up to order 4 are defined using definition ( ! ) of

T:

TL (i) = T6"(OL :)

CLk(m) = 1T44(0) 12

m

i=1

CL(m) = ( 1 – P.k) CL_(m)Ś 1–
k = 1

ADk = IT Lx (0)1°/ili+ 1 )

i= 1

AD= Ẻ(1 – P.x)ADK
k = 1

6) Cosine components and chi-squares up to order 4 are defined :

TCx(i) = Tk "(° C ;)

CCk(m ) = \ TCx (0) 12

m

i=1

CC(m) = {(1 – P.k )CCk( m )
k = 1

CMx = ¿ \TC (0) 27 (i7) 2
i= 1

Ź(1 – P.x )CM4
CM =

k = 1
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7) Hermite components and chi-squares up to order 4 are defined :

THx (i) = T($H;)

CHx (m ) = TH:(0) 12

m

CH(m) = (1- P.k)CHx(m )Ś –
k = 1

density estimators dk ( u ) computed fromcomponents up to order 4 ,

entropy measures with penalty terms which can be used to determine how many

components to use in the above test statistics

19. EXAMPLES OF DATA ANALYSIS . The interpretation of the diversity of statis

tics available is best illustrated by examples.

In order to compare our methods with others available we consider data analysed by

Boos (1986) on ratio of assessed value to sale price of residential property in Fitchburg,

Mass., 1979. The samples (denoted I, II, III, IV ) represent dwellings in the categories

single- family, two-family, three- family, four or more families. The sample sizes (54 , 43,

31, 28 ) are proportions .346, .276 , 199, .179 of the size 156 ofthe pooled sample. We
compute Legendre, cosine, Hermite components up to order 4 of the 4 samples; they are

asymptotically standard normal.We consider components greater than 2 (3) in absolute
value to be significant (very significant).

Legendre, cosine, and Hermite components are very significant only for sample I,

order 1 ( -4.06, -4.22, -3.56 respectively ). Legendre components are significant for sample

IV, orders 1 and 2 (2.19, 2.31). Cosine components are significant for sample IV , orders I

and II (2.36 , 2.23) and sample III, order 1 (2.05 ). Hermite components are significant for

sample IV, orders 2 and 3 (2.7 and -2.07) .

Conclusions are that the four samples are not homogeneous (have the same distribu

tions ). Samples I and IV are significantly different from the pooled sample. Estimators

of thecomparison density show that sample I is more likely tohavelowervalues than the

pooled sample, and sample IV is more likely to have higher values . While all the statistical

measures described above have been computed, the insights are provided by the linear rank

statistics of orthogonal polynomials rather than by portmanteau statistics of Cramer- von
Mises or Anderson -Darling type.

20. CONCLUSIONS. The goal of our recent research (see Parzen (1979) , ( 1983))

on unifying statistical methods (especially using quantile function concepts) has been to

help the development of both the theory and practice of statistical data analysis. Our

ultimate aim isto make it easier to apply statistical methods by unifying them in ways

that increase understanding, and thus enable researchers to more easily choose methods

that provide greatest insight for their problem . We believe that if one can think of several

ways of looking at a data analysis one should do so. However to relate and compare the

answers, and thus arrive at a confident conclusion, a general framework seems to us to be

required.

One of the motivations for this paper was to understand two-sample tests of the

Anderson -Darling type; they are discussed by Pettitt (1976) and Scholz and Stephens

( 1987) . This paper provides new formulas for these test statistics based on our new def

inition of sample comparison density functions. Asymptotic distribution theory for rank

processes defined by Parzen (1983) is given by Aly, Csorgo, and Horvath (1987) ; an excel

lent review of theory for rank processes is given by Shorack and Wellner (1986 ).
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However one can look at k sample Anderson -Darling statistics as a single number

formed from combining many test statistics called components. The importance ofcom

ponents is also advocated byBoos (1986) , Eubank, La Riccia, and Rosenstein (1987) and

Alexander (1989) . Insight is greatly increased if instead of basing one's conclusions on

the values of single test statistics, one looks atthe components and also at graphs of the

densities of which the components are linear functionals corresponding to various score

functions. The question ofwhich score functions to use can be answered by considering

the tail behavior of the distributions that seem to fit the data .
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For samples I and IV , sample comparison distribution function Dº(u)

Housing Value/ Price FOUR FAMILIY ASSESSE
1

Housing Value /Price SINGLE FAMILY ASSESS
1

.9

.7 .7.

.61

.5 ) .5

.41 .4

.3 .3 )

.2 .2.

.1.1

3 .5 .7 .3

For samples I and IV , sample comparison density (u ), sample quartile density dQ" (u)

(square wave), nonparametric density estimator d´ (u )

1.5714
Housing Value /Price FOUR FAMILIY ASSASSI Housing Value/Price SINGLE FAMILYASSESS

2.8889

5
2.5

2

3

1.5

2

1

For samples I and IV , Legendre, cosine , and Hermite orthogonal polynomial estimator of

order 4 of the comparison density, denoted d4(u) , compared to sample quartile density

dQ°(u) .

les, cos (x's ), Her ( t's) Density Leg, Cos (x's ), Her ( ' s ) Density

.2899 1.694

1.5
2

1.8

1.6

1.3

1.1

1.4

1.2.

.7.

.5

.3 )

.11

..093
S .7 .3
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Reliability of the M256 Chemical Detection Kit

David W. Webb & Linda L C. Moss

U.S. Army Ballistic Research Laboratory

Abstract

The U.S. Army uses the M256 Chemical Detection Kit (CDK ) to indicate the presence

or absence of certain agents in the battlefield, which is indicated by a color change on the kit.

Strength of response is also influenced by the quantity of agent. Lots must meet reliability

specifications to be considered "battle- ready". How do we go about collecting and analyzing

our data so as to evaluate its reliability ? Other problems of interest include quantifying how

the agent quantity affects the response and if there are differences between the two manufac

turers of the M256 CDK. Consultants at the Ballistic Research Laboratory have employed a

dose -response framework to study the reliability problem . We use a binary response

(present /not present) and assume a lognormal distribution in arriving at a response curve for

each lot. Assessments of our approach and suggestions for alternative approaches are asked

of the panel.

27



Descriptionof Kit

The M256 Chemical Detection Kit (CDK ) is used to detect the presence /absence of

dangerous concentrations of toxic agents by color-changing chemical reactions. Each CDK

contains twelve samplers, which are the actual testing devices. Four types of agents can be

detected with the CDK . The tests indicate

a ) if it is permissible to remove the protective mask following an agent attack,

b) if agent is present in the air or on surfaces suspected of contamination,

c ) if any agent is present after decontamination operations.

The U.S. Army requires that the samplers exhibit at least a 92.5 % reliability (with 90 %

confidence) in responding to agent concentrations at the specification levels. However, the

kit should not be so sensitive that soldiers wear their mask at safe levels of concentration,

thereby interrupting other battlefield duties.

On the back of each sampler are complete instructions for testing and colored examples

of safe and danger responses. After performing the test, a paper test spot is checked for any

change of color. The color change will not usually be an exact match with the colors shown

on the back of the sampler. This is because the response depends upon the agent quantity.

To make matters more complex, when the agent is present the observed response may be

nonuniform with a few shades of the danger response showing.

Test Conditions & Restrictions

The lots of kits differ in manufacturer ( A or B), age ( 1-8 years), and storage site (8 sites

in the United States and Europe ). Not all combinations of these three factors are

represented in the design matrix; in fact, the design matrix is very sparse. For example, there

was only one lot that was eight years old.

Most lots contain ten or more kits ( therefore, 120 or more individual samplers). Some

lots contained as many as 1000 kits, while others had as few as one kit.

We are restricted to the number of samplers that may be tested at any time since the

test chamber is large enough to hold only six samplers. Another restriction lies in the fact that

testing laboratories are only available for the length of time designated in the work contract.

This usually is no more than two months.
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The test equipment that controls the concentration of agent in the test chamber is very

accurate and precise, but it is slow . It may take about an hour to change to a higher concen

tration. When going from a high to a low concentration, the waiting period may be several

hours since the high concentration tends to leave a residual amount of agent in the test

chamber.

Our Approach

We have decided to evaluate each agent and the chosen lots separately. From each

manufacturer, we have selected one lot from the available age groups. Also, we have tried to

choose lots of similar age from the manufacturers so that they can be paired and we can look

for general trends. In all, we have chosen fifteen lots ranging in age from 1 to 8 years.

Although the sites are in varying climatic areas, most of the warehouses are humidity and

temperature controlled ; therefore the locations are treated as homogenous. Differences

existing between manufacturers are not considered in our initial design, but will be addressed

later.

We have taken the route of estimating the reliability of each lot at the specification level

of each agent. We have also chosen a dose -response type experiment, where our dose is the

agent concentration and the response is safe /danger. For the purpose of determining

response, U.S. Army manuals specify a set of nine color chips that progressively range from

the " safe" color to the "danger" color. The manual also states a cutoff color for the Bernoulli

response. ( In most cases, color chips 1-3 correspond to a safe response, while chips 4-9 are

considered danger responses.)

We have made the assumption that the response curves follow that of the lognormal

cumulative distribution functionwith unknown mean and standard deviation . The lognormal

was selected based on historical precedent, although we note that the log -logistic would have

also been a reasonable choice.

To choose the concentration levels at which to run the tests, we have considered several

candidate sequential designs. In light of some of our restrictions, however, none of these

would be very practical (e.g., Robbins-Monro would have required too much laboratory

time).

Instead, we have chosen a two- stage " semi"-fixed design. In the first stage, 11 samplers

are tested at seven different levels; one concentration level set at an estimated mean, three

concentrations above this estimated mean , and three concentration levels below the

estimated mean , each being a multiple of the standard deviation away from the mean . Mean

and standard deviation estimates are based on the results of a pretest (which for the purpose

of brevity is deleted from this presentation ). The multiple of the standard deviation is chosen

so that the specification level will be covered by the seven test concentrations.
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Stage I

Concentration Number of Samplers

1

1

Îy - 3ka ,

în - 2k

hy-kôl

î

Ñ ,

în

Any + 3kô

N
W
N

+ 2k1
1

1

11

Note: k is chosen so that the seven test concentrations cover the specification level. î and ê,

come from the pretest.

At the conclusion of Stage I, the data are analyzed using the DiDonato- Jarnagin max

imum likelihood estimation algorithm to produce new estimates of the parameters, în and

ôn. In Stage II, nine more units are tested at five concentration levels ; one level set at the

new estimated mean, and at two levels above and below this, each now being a multiple of the

new standard deviation from the mean .

Stage II

Concentration Number of Samplers

- 2

<
<
<
<
<

1

2

3

2

1

în + ô

+ 2ô2

9

At the conclusion of Stage II, the parameter estimates for the lot are re -evaluated using

all 20 data points, giving us a final û and ô . With these final estimates, the .925 quantile is

estimated by h +
2,925)

â .

By taking the variance of the above equation, we get an estimate of the variance of the

.925 quantile,

Var (î ) + (2(925)? Var(ë ) + 2 Z( 920) Covcê ô )

( The DiDonato- Jarnagin algorithm gives the values of the variances and covariance term .) If

the one-sided 90 % upper confidence limit of the .925 quantile is less than the specification
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concentration, then we can conclude that the lot meets the requirement for that particular

agent.

We do not have a statistical technique per se for detecting significant differences

between manufacturers or sites. Our " approach" would be to simply look for any obvious

trends or differences. To study the age issue, a separate accelerated life test will be con

ducted at a later date .

Questions

1. Is our approach appropriate for determining an extreme quantile ?

Can one estimate a quantile when considering more than two possible responses (e.g.,

the nine color chips) ?

2 .

3. How might we statistically compare the reliability of the manufacturers (or sites) ?

Concluding Remarks

Following our presentation, we heard comments and suggestions from the clinical ses

sion panelists and audience. Two major concerns were expressed by several persons. First

was uneasinessd towards our assumption of a log -normal distribution. Some respondents felt

this to be a potentially dangerous assumption, especially since we are estimating the tail of

our distribution. Secondly, some persons questioned our method of estimating the mean of

the distribution, and then extrapolating to the .925 quantile. These two problems could lead

to some very erroneous conclusions.

In general, the comments we heard confirmed our beliefs that this is a very difficult

problem to analyze, in light of the small sample sizes and other laboratory constraints to

which the test is subjected. Although no definitive alternative approaches arose from our dis

cussions, some possible attacks that were suggested to us included --

1. Sampling more towards the tails of the distribution.

2. Isotonic regression.

3. Testing at the specification level and employing a general linear model approach

with the color chip number corresponding to the color change as the response and

age, manufacturer, and storage site as variables.

We would like to thank the panelists and audience for their many suggestions and

remarks.
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COMPARISON OF RELIABILITY CONFIDENCE INTERVALS

Paul H. Thrasher

Engineering and Analysis Branch

Reliability , Availability , and Maintainability Division

Army Materiel Test and Evaluation Directorate

White Sands Missile Range , New Mexico 88002-5175

ABSTRACT

OnlySome confidence intervals on reliabilities are investigated .

binomial events are considered . Only the narrowest two - sided and the upper

one - sided confidence intervals are calculated . Three methods of estimating

the distribution of reliabilities are reviewed and compared . These are the

Fisher i an approach , the Bayesian approach with the ignorant prior , and the

Bayesian approach with the noninformed or non informative binomial prior . Both

the width and location of the confidence intervals differ for these three

methods .

INTRODUCTION

Reliability estimates are not as straightforward as might be expected .

Measurement of a number of successes x in a sample size n quickly leads to a

point estimate of the reliability R equal to x/ n . Estimates of confidence

intervals are more difficult to obtain however . Two things in addition to the

data are needed for confidence interval estimation . First , some function must

be used to describe the reliabilities . Second , a method must be selected to

locate the confidence interval within the function .

The purpose of this paper is to compare various functions describing

reliabilities . For simplicity , all tested items will be assumed dichotomous

and independent . That is , the binomial b ( x ; n , R ) is assumed to describe the

random variable x if n and Rare known . The problem is to select a function

for R when x and n are known . The three functions considered here are based

on ( 1 ) the Fisherian approach and ( 2 ) the Bayesian technique using prior

distributions of R when ( A ) R is equally likely to be any value between zero

and one and ( B) R is unknown numerically but it is known to be a binomial

par ameter .

To focus attention on the comparison of the confidence intervals from

these three functions , the methods used to locate the confidence intervals are

restricted in this paper . Only two methods are used in calculations ; one is

one- sided and the other is two - sided .
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The one- sided confidence interval considered is the upper confidence

interval . This is based on the premise that having a reliability too low is

much more serious than the reliability being too high .

a

The two - sided confidence interval considered is the narrowest possible

( Rankin ) . This is illustrated in Figure 1 . It is located by adjusting the

confidence limits until ( 1 ) the sum of the areas under the tails is and ( 2 )

the functions of these two limits are equal . This correspondence of narrowest

interval with equal heights is a geometrical property . It is not based on the

choice of the function describing R. It may be demonstrated by ( 1 ) starting

with the confidence limits of points equal heights , ( 2 ) moving the left

confidence limit to the right , and ( 3 ) noting that the right limit has to be

moved further to the right in order to keep the sum of the areas under the

tails constant . This is shown in Figure 1 by the dashed lines . A similar

argument starts by moving the narrowest confidence limit to the left .

Other possible two -sided confidence limits , not calculated in this paper ,

are illustrated in Figures 2 and 3 . These are the traditional equal-division

of- area- under- the- tails interval and the maximum - likelihood - estimator- in - the

center interval . The first is the easiest to calculate . The second has a

symmetric appeal but it is non- existant when the peak of the curve is not at

R =0.5 and l -a is sufficiently large .

FISHER IAN APPROACH

The traditional Fisher ian approach ( Mann , Shafer , and Singpur walla )

considers sums of binomial probabilities . This approach yields two Beta

functions . The lower confidence limit is obtained from one Beta function ; a

second function is needed for the upper limit .

Lower confidence Limit :

The lower ( 1 - a ) 100 % confidence limit R is defined by P [R >R ] =1 - a. An

alternate expression is P [R < R ]= a . The limit R is the largest value of R that

makes the data x and n plausible . Plausibility is defined as satisfaction of

the degree of confidence l -a of correctly selecting the right R. The lower

100% confidence limit of Ris R =0 because all values of R satisfy R >0 .

Increasing R requires a decrease in 1-2 or an increase in a . This increase in

R shifts the binomial distribution of the possible measurements i which

resulted in the single measurement x . For the limiting case of R = 0 , the
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binomial blijn ,R) consists of a single spike of unit height at i =0 . As R and

a increase , bli ;n ,R) takes a shape illustrated in Figure 4 and described by .

0( 1 ;1 „ B) = ( ) e'(1-R)N1

where the number of ways of obtaining i successes in n trials if found from by

n !

(0) 11 (n-1)!

n ( n - 1 ) ... ( n - i +1 )

i ( i -1 ) ... ( 1 )

The extent of the shifting from the single spike is determined by the data

x and n . The value of R is determined in two steps . First , R is increased

until the sum b ( x ;n ,R )+ b( x + 1 ;n ,R ) + ... + b (nin ,R ) equals the probability a making

the confidence relation P [R <R ]= a or P [R >R ] = 1 - a untrue . Second , the continuous

variable R is decreased infinitesimally making the confidence relation

P [R > R )= 1 - a just barely valid . Thus R is neither too large or too small to be

a ( 1 - a ) 100 % lower confidence limit on R when

- Į (?) *(1-R)n- 1.

The extraction of R from this equation can be facilitated by using a Beta

function as described in the following paragraph . Before doing that however ,

it is expedient to note that a measurement of x=0 implies that R = 0 for all

values of a This special case isn't algebraically included in the following

Beta function . It is adroitly described by an argument based on Figure 4 :

when x =0 , R has to be o to make b ( 0 ; n ,R) = 1 and bli ; n ,R) =0 for all i #0 .

.

The Beta function of Ris

f ( R )

r ( a+ b )

r ( a ) r ( b )

Ra- 1 ( 1 -R ) 6-1

where a and b are parameters . Using the equality of the gamma function r ( j )

and the factorial ( j - 1 ) ! when j is an integer yields

f ( R )

( a + b - 1 ) !

( a- 1 ) ! ( 6-1 ) !

Ra- 1 ( 1 -R ) 6-1 .
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Postulating that the reliability is described by f ( R ) and setting the area to

the left of R at a yields

=

R

ſ

0

f ( R ) dr .

Repeated integrations by part yield

a + b - 1

Σ

jua (***b-2)e' (1-2) a +b - l - 1.

aComparison of this summation and the summation for in the previous paragraph

yields a=x and a+ b - 1 = n . Thus the parameters in the Beta function for the

lower limit R are a= x and b = n + 1 - X .

Upper Confidence Limit :

The upper confidence limit R defined by P [R < ] =1 - a is obtained from

another Beta function . Arguments similar to those in the proceeding section

yield the upper Beta function in four steps :

( 1 ) Ř is in the binomial sum

a = (?) Ri ( 1+R) n- 1,
i =0

( 2 ) Ris the lower limit of integration over the second Beta function

1

s f(R ) dR ,1
0

a

*****PR )dr,

( 3 ) repeated integrations by parts transform this integral to the summation

a ' - l la ' + b ' - 1

1
1 Ři (( 1-R) a'+b' -1-1,

(* **
-1-1 , anda

i =0

( 4 ) the second Beta function parameters are identified by x= a ' - 1 and

n= a ' + b ' - 1 to be a ' = x+ l and b ' = n - X .
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This Beta function does not describe Ã when x= n because rib ' ) = r ( 0 ) = ( 0-1 ) !

is meaningless . For this special case , R = 1 for all a . This may be seen from

a binomial distribution symmetric to Figure 4 .. Using an R near 1 and an a

containing binomial terms from j =0 to j =x= n , it is easily seen that is 1

even when R is 1 . Since Ã continuous , R = l for any value of 1 -a .

a

BAYESIAN APPROACH

The Bayesian approach ( Martz and Waller ) uses the data x and n to update

a prior distribution g ( R ) describing R to a posterior distribution g ( R \ x )

describing R after x is given . The algebraic relation between these two is

based on the equality of the joint density n ( x , R ) to both the product

g ( R \ x ) f ( x ) and the product f( xIR ) g ( R ) . Thus the posterior is found from

g ( R \ x ) = f ( x1R ) g ( R ) / f ( x ) .

This expression is simplified by noting that ( 1 ) the conditional density of x

given R is

f ( xIR ) b ( x : n R ) = ( * ) ** (1-R)n-x

and ( 2 ) the marginal density f ( x ) from the integral of h ( x , R ) = f ( x1R ) g ( R ) is

1

f ( x )

1

[ f( x1R ) g ( R ) DR

od; )
RX ( 1 -R ) n- X g ( R ) dr .

Thus the general posterior is

RX ( 1 -R ) n- X g ( R )

g ( RIX )

RX ( 1 -R ) n- X g ( R ) dR
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Ignorant Prior :

One prior that can be used is the uniform distribution g ( R ) = 1 for O<R< 1

and g ( R ) =0 elsewhere . This is sometimes called the ignorant prior because all

values of R between 0 and 1 are equally likely . That is , there is no evidence

to favor the selection of any value of R over any other R between 0 and 1 .

Use of this prior in the general posterior yields

RX (1 -R)n
X

g ( RIX )

=

1

o
RX ( 1 -R ) N- X de

Integration by parts evaluates the denominator . The posterior is thus

r ( n+2 )

g ( RIX ) R( x+ 1 ) -1 ( 1-R )(n-x+ 1)-1.

r ( x +1 ) :( n- + 1 )

This is a Beta function with parameters a= x+ l and b= n- x+ 1 .

Noninformed Prior :

A second prior that can be used recognizes that the reliability is a

binomial parameter but has no information about its value . This is sometimes

called the non informed or non informative binomial prior .

Every non informed prior is based on a transformation making the

probability density insensitive to the data . For the binomial parameter Rin

b ( x ; n , R ) , it has been empirically found ( Box and Tiao ) that plots of

K ( x ,n )b ( x ; n , ) versus 4 yield very similar curves for fixed n and different

x's when ( 1 ) K ( x , n ) is determined by numerical integration to make the area

under K ( x ,n ) b (x ;n , o ) equal to one and ( 2 ) ¢ is given by

Arcsin ( R1 /2 ) .

Figures 5 and 6 show that for 0<x< n these similar curves become nearly equally

spaced along the axis as n is increased . The non informed argument assumes

that all n+ l curves are essentialy equal and equally spaced for all n . This
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makes being noninformed about x equivalent to being ignorant about The

prior assumption that ( 1 ) x is unknown but ( 2 ) the situation is described by

the one of these curves thus leads to a prior distribution of 4 that is

uniform between p =0° and p=90° . The corresponding prior of R may be found

from the transformation of variable technique ( Freund and Walpole ) by applying

do

g ( R ) - hlo )

。 dR

Using h ( * ) = 1 and sin ( o ) =R1 / 2 in this equation yields g ( R ) =1 / ( 2 [ R ( 1 -R ) ] 1/2 ) .

Use of this binomial non informed prior in the general posterior yields

RX-1 /2 ( 1 -R ) n- x -1 / 2

g ( RIX )

1

R ( x+ 1 /2 ) -1 ( 1 -R ) ( n- x+1 /2 ) -1 dR
( 10

The denominator is recognized as an integral over a Beta function . It is

evaluated to be r ( x+1 /2 ) :( n - x+ 1 /2 ) / r ( n +1 ) . The posterior is thus found to be

a Beta function with a = x + 1 / 2 and b = n - x + 1 / 2 .

COMPARISON OF CONFIDENCE INTERVALS

The three methods reviewed in the previous sections have been applied to

confidence intervals on reliability . Both two - sided and one- sided intervals

have been investigated .

Narrowest Two -Sided Intervals :

Figures 7 through 15 show distributions and narrowest two- sided 80%

confidence intervals . Figure 7 illustrates the symmetry about x= n / 2 . Thus

graphs for x< n / 2 are not needed to investigate trends . Figure 8 is one

example of the destruction of symmetry by making x> n/ 2 . Figure 9 shows that

when x=n the symmetry is so completely destroyed that the narrowest two-sided

intervals are actually upper one- sided intervals . Figures 10 , 11 , and 12 and

Figures 13 , 14 , and 15 show the effect of increasing n : for fixed x , the

confidence intervals all become narrower but the relationship of the

Fisherian , ignorant , and non informed intervals retains an order .
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The effect of changing x for fixed n is seen to be a change in the order

of the Fisherian , ignorant , and non informed intervals . The Fisher ian interval

seems to be the widest . For x near n/ 2 , the ignorant interval seems to be

narrower than the non informed interval . For x near n however , the non informed

interval seems to be the narrowest of the three .

Upper One- Sided Intervals :

Figures 16 through 31 show distributions and upper one-sided 90 %

confidence intervals on reliability . The lower confidence limit appears lower

for the Fisherian analysis than for the Bayesian analyses . The Bayesian

ignorant and noninformed priors seem to lead to two sets of results .
The

lower confidence limit appears lower for the non informed when x is near n / 2

but higher for the noninformed when x is near n .

The symmetry of the Beta functions makes the lower confidence limits for

x near O such that the Fisherian is lowest , the noninformed Bayesian is next

lowest , and the ignorant Bayesian is the highest of the three . This is shown

in Figures 25 though 28 . These figures and Figures 29 through 31 also show

that large n leads to fairly close agreement between the three methods .

CONCLUSION

The three methods are all on sound theoretical ground but give different

results . No single method provides most logical confidence intervals . The

choice between methods has to be based on goals and philosophy . Since the

Fisherian method leads to the widest confidence intervals , it is the most

conservative approach . Since proponents of the Bayesian method prefer priors

which contain more information than the ignorant or non informed prior , the

Bayesian method ( without a prior based on previous tests/ calculations ) does

not meet all the goals of analysts with a Bayesian philosophy . Thus the

Fisherian method seems to be a good , conservative method for the initial

analysis . This initial analysis can provide a prior for a future Bayesian

analysis of addition data from a future test .
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Environmental Sampling: A Case Study

Dennis L. Brandon

US Army Engineer

Waterways Experiment Station

Vicksburg , Mississippi 39180

Abstract Sampling strategies have been developed to accomplish

various environmental objectives . The objectives may be : ( 1 ) to

estimate the average of characteristics in a population; (2 ) to estimate

the variability of characteristics of interest in a population ; ( 3 ) to

decide if characteristics of interest in a population meet certain

standards or criteria ; ( 4) to identify the source ( s ) which caused

characteristics in a population to exceed standards . A study designed to

achieve objectives 3 and 4 will be presented . Modifications and

alternate approaches will also be discussed .

Background Navigable waterways of the United States have and will

continue to play a vital role in the nation's development. The Corps , in

fulfilling its mission to maintain , improve , and extend these waterways ,

is responsible for the dredging and disposal of large volumes of sediment

each year . Nationwide , the Corps dredges about 230 million cubic yards

in maintenance work and about 70 million cubic yards in new dredging

annually at a cost of about $450 million . In accomplishing its national

dredging and regulatory missions , the Corps has conducted extensive

research and development in the field of dredged material management .

Federal expenditures on dredged material research , monitoring , and

management activities have cumulatively exceeded $ 100 million .

Techniques developed to evaluate contaminant mobility in dredged material

can be applied to other contaminated areas . Accordingly , the plant and

animal bioassays are two techniques developed to assess the environmental

impact of dredged material in wetland and upland disposal environments .

These bioassays, surface soil samples, groundwater samples , and

additional plant tissues were used to evaluate a contaminated site in

western California .

The case study site is approximately 200 acres with both upland and

wetland areas ( see Figure 1 ) . This site was known to have very high

concentrations of metals in surface soils . Major pathways for

contaminant mobility are the meandering stream which flows north and the

drainage ditches . Also , tidal inundation affects a substantial portion

of this site .

The objectives of the study were to : ( 1 ) define the extent of the

hazardous substance contamination on the site ; ( 2 ) identify the sources

of the hazardous substances detected on the property ; ( 3 ) evaluate the

extent of migration of the hazardous substances on the property ; ( 4 )

assess the bioavailability , mobility , and toxicity of the hazardous

substances detected on the property ; ( 5 ) evaluate the condition of the
wetland and upland habitats on the property . This paper focuses on the

use of soil samples to achieve objectives 1 thru 4 .
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SAMPLING PLAN The sampling plan was formulated based on previous

soil and water data , historical information , and the potential pathways

for contaminant mobility . The sampling locations are shown in Figure 1 .

Three samples were collected at some locations and one sample was

collected at the other locations . The triplicate samples were used in

statistical comparisons . This sampling plan reduced the cost of the

investigation by allowing a selected number of sample locations to be

tested extensively while other sample locations received one- third the

cost and effort . A total of 178 samples were collected and analyzed for

As , Cd , Cu , Pb , Ni , Se , and Zn .

area .

There is an analogy between the strategy used here and the disposal

philosophy of many Corps elements . Most dredging and disposal decisions

are made at the local level on a case by case basis . Often , the

environmental objective is to prevent further degradation of the disposal

Therefore , samples are collected at the dredge site and disposal

site . A statistical evaluation performed on the chemical analysis of the

samples becomes the basis for determining whether degradation will occur .

In this study , samples were collected at the remote reference area and an

area of degradation ( i.e. contamination ) . Ten triplicate samples were

collected in the remote reference area . Twenty - eight triplicate samples

were collected in the area of contamination . Locations having a mean

concentration of metals in soil , plants, or animals statistically greater

than similar data from all remote reference locations were declared

contaminated . These concentrations provide a judgemental basis for

classifying the 64 single sample locations .

Three sources of contamination were identified from historical

information . One additional source was indicated by the soil analysis

and later verified with historical information . Sources were thought to

be areas with several high metal concentrations in a vicinity and a

gradual decrease in metal concentrations as one moves away from this

area . The sources found in this study appeared to have released metal in

two different forms . One method was to bury or discharge contaminants

associated with a solid material in an area . The other source discharged

highly contaminated liquids into a stream . Identifying sources was

further complicated by the fact that some of the discharges were

intermittent and possibly hadn't occurred in several years . This study

was successful in identifying sources which discharged contaminants

associated with solids. Identifying the source of liquid discharges was

more difficult due to seasonal fluctuation of the stream .

The soil analysis was partially successful in achieving objectives 1

thru 4 . The extent of contamination from known sources was established

and locations requiring further investigation were identified . This plan

has been augumented with additional sampling . These samples further

delineated the extent of contamination horizontally across the site and

vertically down the soil profile . As a result of this study , 26.5 acres

were declared contaminated .
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A Generalized Gumbel Distribution

Siegfried H. Lehnigk

Research Directorate

Research , Development, and Engineering Center

U.S. Army Missile Command

Redstone Arsenal , AL 35898-5248

A generalized Gumbel ( extreme value type I ) distribution class is

introduced . In addition to the usual shift and scale parameters this new

distribution contains an arbitrary positive shape parameter . The classical

Gumbel distribution results as special case for shape equal to unity .

Microcomputer -based algorithms for estimation of the parameters are present

ed . They are based on the moment equations and on the logarithmic likelihood

function associated with the distribution density . A program diskette for

microcomputer use will be made available upon request . A combined paper by

this author and Charles E. Hall , Jr. , will be published elsewhere .
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A Generalization of the Eulerian Numbers with a

Probabilistic Application

Bemard Harris

University of Wisconsin , Madison

C. J. Park

San Diego State University

1 Introduction and Historical Summary

In this paper we study a generalization of the Eulerian numbers and a class of polynomials related

to them . An interesting application to probability theory is given in Section 3. There we use these

extended Eulerian numbers to construct an uncountably infinite family of lattice random variables

whose first a moments concide with the first n moments of the sum of n + 1 uniform random

variables. A number of combinatorial identities are also deduced .

The Eulerian numbers are defined by

АAni

-- 1=1*(***) 61-v ..
) * , 3 = 0,1,2, ..., N = 0,1,2 , ....

( 1)

)

They satisfy the recursion

Anj = jAr-19s + (n- % + 1) Ar-10-1 ( 2)

and the Worpitzky (25) relation

I*

W
E

( ***- + )
AN ( 3)

Also ,

Anj = Anonjoli ( 4)

aܼܲܛ
AN snl. ( 5)

jal

In addition, they possess a number ofcombinatorial interpretations which are described below .

Let X , = { 1,2 ,...,n } and let Po ( k ) be the number of permutations of the elements of X,

having exactly k increases between adjacent elements, the first element always being counted as

an increase .

For n = 4 , the 24 permutations and the number of increases are given in Table 1.1 .
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Table 1.1

Permutation Number of increases

1 1234 4

2 1243 3

3 1324 3

4 1342 3

5 1423 3

6 1432 2

7 2134 3

8 2143 2

9 2314 3

10 2341 3

2413

2431

n
u
s

H
3124

NNNWN
W

3142

15 3214

16 3241

17 3412
3

18 3421 2

19 4123 3

20 4132 2

21 4213 2

22 4231 2

23 4312 2

24 4321 1
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As seen from the tabulation , P4 ( 1) = 1 , P4 ( 2) = ! 1 , P4 ( 3) = 11 , P4 ( 4 ) = 1 , which concides

with Aaj, j = 1,2,3,4 .

Let

An ( t) = Anjit'.

(6)

j= 1

a

FO

Then

1 - t

Î An(t).x*/ ,t+1 . ( 7)

1 - t exp [ ( 1 – t) ]

The above relations and some of their properties can be found in [8] ; the polynomials (6) are

also discussed in L. Carlitz (4 ). These results may also be found in the expository paper of L.

Carlitz (3) . The formulas ( 1 ) and ( 2 ) are also given in L. v . Schrutka [21 ) .

Désiré André [ 1 ] established that Anj is the number of permutationsof {Xn} with j “ elementary

inversions ” . He also established that Anj is the number of circular permutations of { Xq+ 1 } with ;j

" elementary inversions” . The equivalence of these two results with the enumeration of the number

of increases in permutations of { Xn} can be trivially established.

G. Frobenius ( 15) studied the polyomonials

Ap( q ) = Anjalin ( 8)

j= 1

introduced by Euler, and established many of their properties. In particular, relations with the

Bernoulli numbers are given in ( 15) .

In D. P. Roselle [20] , the enumeration of permutations by the number of rises, Anj, is related

to enumeration by the number of successions, that is , a permutation a of { x , } has a succession if

( i) = i + 1 , i = 1,2 , ..., n .

Some number theoretic properties of Anj are given in L. Carlitz and J. Riordan (7 ) and in L.

Carlitz [5] .

In this paper, we study a generalization of the Eulerian numbers. A generalization in a dif

ferent direction was given by E. B. Shanks [22] , who apparently did not note a connection of his

coefficients with the Eulerian numbers. L. Carlitz [2] noted the relationship of Shank's results to
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the Eulerian numbers and obtained representations for these generalized Eulerian numbers using

results due to N. Nielsen (17] ..

F. Poussin [ 18] considered the enumeration of the number of inversions of permutations of

' {xn} which end in j, 1 sism This produces a decomposition of the Eulerian numbers. She

also introduced a polyomial generating function for these numbers. The sums of these polynomials

are the Euler-Frobenius polynomials.

Another deomposition of the Eulerian numbers with a combinatorial interpretation is given by

'J.F. Dillon and D.P. Roselle ( 12] .

J. Riordan (19) lists many properties of the Eulerian numbers in Exercise 2, page 38-39 and de

scribes the combinatorial interpretation of the Eulerian numbers in terms of triangular permutations

(which is equivalent to the elementary inversions described by André [ 1]) . He also gives a brief

table ofthe Eulerian numbers on page 215. See also L. Comtet ( 10 ), where generating functions for

the Eulerian numbers are given and the Eulerian numbers are obtained by enumerating the number

of permutations with a specified number of increases. Many properties of the Eulerian numbers are

given as well as their historical origins in terms of sums ofpowers.

F.N. David and D.E. Barton ( 11 ) suggest the use of the Eulerian numbers as a statistical test for

the randomness of a sequence of observations in time, employing the probability distribution given

by

Pri = Anj / n !, j = 1,2 ,... , n . ( 9)

The generating function (7) is derived and employed to obtain the moments and cumulants

of the distribution (9) . In particular, David and Barton show that the factorial moments are the

generalized Bernoulli numbers. However, David and Barton do not make any identification of

these distributions with the Eulerian numbers.

Using probabilistic arguments, Carlitz, Kurtz, Scoville and Stackelberg [6] showed that the Eu

lerian numbers, when suitably normalized, have an asymptotically standard normal distribution.

This was accomplished by representing the distribution Pnj as the distribution of a sum of indepen
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dent Bernoulli random variables. S. Tanny (24) demonstrated the asymptotic normality by utilizing

the relationship of the Eulerian numbers to the distribution of the sum of independent uniform ran

dom variables and applying the central limit theorem .

L. Takács [23] obtained a generalization of the Eulerian numbers which provide the solution

to a specific occupancy problem . Namely, let a sequence of labelled boxes be given, the first box

labelled 1 , the second box 2, and so on . At trial number n distribute | balls randomly in the first

n boxes so that the probability that each ball selects a specific box is 1 /n and the selections are

stochastically independent. For i = 1 , the probability that j– 1 boxes are empty after trial number

nis Anj/n !, j 1,2 , ... , M. Takács' paper contains many references and describes additional

combinatorial problems whose solution is related to the Eulerian numbers.

Finally, L. Toscano [25 ] obtained formulas expressing the Eulerian numbers in terms of Stirling

numbers of the second kind.

2 Generalized Eulerian Numbers

We now introduce a generalization of the Eulerian numbers and investigate its properties.

Let 8 be an arbritrary real number and let

j
n + 1

Ani ( 8) Σ

(
( -1 ) " ( 8 + ; – u )", j = 0,1, ... ,min = 0,1,2 , .... ( 10)

v=0 V

These polynomials are mentioned in L. Carlitz, D.P. Roselle and R.A. Scoville (8] . As noted

there, Anj ( 0 ) are the Eulerian numbers. These polynomials are also used by P.S. Dwyer ( 13] to

calculate sample factorial moments. Dwyer does not relate these to the Eulerian numbers.

We begin our analysis with the following theorem :

Theorem 1. Let n and k be non -negative integers and let 8 be any real number. Then
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Palace--ġest( )---- 6-5-2

Σ g . 0

n

( + j) ( ) Ani ( 8)
a

( 11 )
n !

is independent of 8 for k = 0,1,..., n .

Proof. The following identity ( see N. Nielsen , [ 17] , page 28) will be utilized in the proof.

+ j - 1

( 1 - 8) " = >

1-1) Ér="(***)
( 8 + j – v) " ." ( 12)

j=0

Let A and E be the operators defined by

A ( f( x) ) = f( 2 + 1 ) – f( x)

and

E ( f ( x )) = f( I + 1 ) .

Then, it can be shown that (C. Jordan , [ 16])

*'- -»*( :)
Er-v . ( 13)

In particular, for r = 0,1,..., n ,

A' ( 8 + j) (n) = ( -1)? ( 8 + ; +9 – 1)(n)

= m (o )( 8 + i) (n-1), ( 14)

the last equality follows from elementary properties of the function ( 8 + j ) ( n ) (C. Jordan, [ 16], p.

51 ) . Thus, for r = 0,1,..., n, from (12) we have

( 8 + j) (---) Ś(-1) ! ( 8 + j + 9 – 1)(n) / (o). ( 15)
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Hence ,

.
Marech - - 6506 ( :')--- 6-5-

--538 (***) .---- (:-) -* •*--"you
( 16)

Thus, it follows that

MIUM) ( 8) = ( -1)

*= =>(***) (*******-*) -- (***)(-5-3-yemen
( 17)

Setting I = 8+ n- k - 1 + 1 in (12) we get

8 + n - k - 1 + ;

( n - k - 1 + 1 ) * = ☺
j=0 n ) »*(*:").6-8-

30-1*(***)

and hence

Mix ] "(n) ( 8) = S ( -1) ( n- k - 6 + 1 )" / (mk) ( 18)

and is independent of 8 .

In particular, Him (M) ( 8) = 1 , Hin -1M) ( 8) = ( 2 " – 1 ) /n and Him-21 ") ( 8)

4 " -3 " 1 + 3 (2 - ) - 1 "
= ( 3" – 2n+1 + 1) / n ( n – 1) , M m3j ".

A brief table of Mix) " ( ) for k = 0,1,2,3 and n = 0,1,2,3 is given in the Appendix to this

(m) ( )
( 1)

( n )

paper.

The Nielsen identity ( 12) seems to have been discovered in a somewhat less general context by

Paul S. Dwyer ( 13) , who employed it to calculate factorial moments by means of cumulative sums;

see also Ch. A. Charalambides (9) , who in addition to discussing Dwyer's work also showed that

these generalized Eulerian are related to enumeration of compositions of integers.
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The following corollary will be subsequently employed.

Corollary. Let n and k be non -negative integers with k sm Then

n+ 1

( 8 + j) * ( -1 ) "( 8 + j - u) " ( 19)

is independent of 6.

Proof. We can write

( 8 + j) * = [ Brk( 8 + j)(6), ( 20)

r=0

where Brk are the Stirling numbers of the second kind. Since the coefficients Boks do not depend on

8, substituting (20) into ( 19) and interchanging the order of summation , we get

k

Hero ( 8) = 3 BrkHanya)( 8) , ( 21 )

r = 0

which is independent of 8 .

Prior to demonstrating that the independence of 8, noted in Theorem 1 and its corollary can not

be extended to k = n + 1 , we will need to calculate the derivative of Min ( 8) . Thus, we have:

Theorem 2. Let n and k be non-negative integers and let 6 be any real number. Then

en ( 8) = kue2 ( 8) - 3 (+)
H1) ( 8) . ( 22)

r=0

Proof. Since

Heren ( 8)
-ز- 5 + 1 ( 31) -194 + 3-6

sobre 46+5)* ( + ).-13*5+3-->>

( :r-seg ( ) ---" 643-oje
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Comparing the first term with (19) and employing the Pascal triangle identity on the second

term we get

duo ( 8)

db

ki , ( 8 ) +
1

( n - 1) !

( 23)

Further,

( -1) '( 8 + j – v) -1

916+ * [(:)•( -.)]<==%6+5+vary

(6- s (t)------

---6 +ndo ( ) -1 %6+ ---

(a+b Ex641)* ( )"

4 *6* ) – -1* ( ) (6+n-)snico.

n

+ ( -1) "( 8 + j - 0)*1 . ( 24)

From (13)

( 25)

since it is the nth difference of a polynomial of degree n – 1. The second term on the right hand

side of (24 ) is - 1) ( 8).

In addition ,

( -1 ) ' ( 8 + ; – u) *1

(a- grousers ( 0-1 )

a- 9x6+5°F (: ) (-»*(843-0-1)

Ĉ( 6 + 7 ) " 1 ) ( -3)*(6 + 5 -0=1)

I
I

( n . – 1 ) !
j=0

1

( n - 1 ) !
v = 0

87



I
W
I

( -1)* +1 ( 8 + j -U – 1 ) -1

1

( n - 1 ) ! v = 0

(-1) u* l( 8 + j - 0 ) 1

-in-1) [18£ [ ) --JEC:)

( ) 910-1+ ::) (-3 °( +1+1)---

in-b (+)Ec••»"$ (:).

-- ( * ) = 0

(+) .

( 6 + 5 +

( 26)

Thus, by (23), (25) and (26) we have shown that

dum ( 8)

ds
ke .( 8) + H 1)( 8) -

o
r

k
k

dua(8) - krem, (5)kuton 8 - )
( or 1 )

( 8) , ( 27)

r=0

establishing the theorem .

Corollary 1. For 1 < k < m , then

kulit , ( ) = 5 H - 1) (8). ( 28)

( n )

Proof. By the Corollary to Theorem 1 , Win (8 ) is independent of 8 for 0 Sk < n and hence

du ) ( 8)
= 0 for such values of k .

db

Corollary 2. If k = n + 1 , then

dibenta ( m) ( 8)

db
= Cost 1,1 - ( n + 1) 1)( 8) , ( 29)1

where Cmt 1,9 is a constant (depending on n but independent of 8) .
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Proof. From the Corollary to Theorem 1 and Theorem 2, ( n + 1) Hram ( 8) is independent of 8 and

n + 1

all terms in Hinn 1)( 8) with the exception of r = n are independent of 8. This last

term is ( n + 1) (N -1) (8 ).

Corollary 2 can be extended to k = n + 2 and so forth, but the expressions obtained become more

complicated and do not appear to be particularly useful. However, we do make use of Corollary 2

in the next theorem .

Theorem 3. For every n , Hanna ( ) is a polynomial of degree n + 1 in 8 with leading coefficient

( -1 ) " .

Proof. We proceed by induction , using Corollary 2 to Theorem 2.

= 0,41
du? " ( 8)

0,40 (8) = 8. Then = C2,1 – 241° ( 8) = C2,1 – 28.
d8

For n =

Performing the indicated integration , we have

v ( 8) = C2,18 – 82 + d,

where d is an unspecified constant.

Assume that the conclusion holds for n = m. Then

duel momenta ( 8)

db

( m)

= cm + 2 ,m + 1 - ( m + 2 ) de

m+ 1

= Cm + 2 , m + 1 - ( m + 2) ( 208m+ 1(m + 2) ( 2087+ + Ea;8m+ 1 =;) , ( 30 )

j= 1

where ao is +1 or – 1. Integrating, we get Hemmet ( 8) = -208m+ 2 + Pm + 1 ( 8 ), where Pm + 1 ( 8) is a

polynomial of degree m + 1 .

A table of week) ( 8) appears in the Appendix for n = 5 , k = 0,1 ,-5, k = 0,1 , ... , 10 and selected values of

8.
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3 Applications to Probability Theory

1

Let U1, U2 ,..., Ugoti be independentrandom variables uniformly distributed on ( 0,1 ) . Let

Spot1 = U ;. The distribution of Sm+1 is well-known and is given by the probability density

function

1 n + 1

for ( I) ( -1)'( 1 – u )" , 0 < I < n+ 1 , ( 31 )
n !

20 V

(for example, see W. Feller ( 14] . ) Where

0 , i - aco

( I – a). = ( 32)

2I - 2 , I - a 20 .

Write

Sht1 = [ Spot 1 ] + 8,

where [ Sn 1 ] denotes the integer part of Sht1. Clearly 8 is a continuous random variable and

0 58 < 1 ; [ Sn+1 ) is a discrete random variable with carrier set {0 , 1 , 2 ,... , n }.

The conditional distribution of Sht1 given that the fractional part of Spot 1 is 8 is given by

P {Sn+ 1 = 2 | 1 – [ 2] = 0} = fsmilj + 8) / fs... ( j + 8) ,] 8 ( + 8 ( 33)

j = 0

where j + 8 = 2 , j = 0,1, ..., Mi i.e. j = [ 2] .

From (31) ,

for (j + 8) =
-

(-1) '( % + 8 – u ) .
n!

But j + 8 - v > 0 is equivalent to u Sj , thus we get

f ( " : " )

$(" ")
for ( j + 8) ( -1) '( % + 8 – u) " , ( 34)

which is Anj ( 8) /n !. Also,
D

fsu ( j + 8) = 1 = "10 ")(8)
1-0
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and thus ( 34) is a discrete probability distribution with carrier set {8,1 +8, ... , + } .

Let Wtot 1,8 be the random variable whose distribution is given by (34 ). We then have the fol

lowing theorem .

Theorem 4. The moments of order k = 0,1,..., n of W2+ 1,8 coincide with the corresponding

moments of Spt1 , that is,

E {Skrt 1 } = E {W 1,8),k = 0 , 1 , ... , 3 O 38 < 1 . ( 35)

Proof. E { sh 1 } = Es(E{S: 18}) = Es{ E { W1,6 }},

However,

E {W * 1,8 } ( j + 8) + ] ! ) ) j6( -1)' ( % + 8 – v) " ,

which is independent of 8, by the Corollary to Theorem 1 .

A brief table of W + 1,8 for n = 5 is given in the Appendix.

Remark. It is easy to see that the marginal distribution of 8 , the fractional part of Snt 1 , is uniform

on ( 0,1 ) . An elementary proof follows.

P{8 56") = 3 , **fsu, (2)de

-$* fem ( 1 + udu

= $*(f . (j + u))du;

but .gfsmrt ( j + u) = 1 for everyO su < 1. Hence

P{8580) = 65

j=0

du = 8* .

Finally, we note that Wm+ 1,8 is asymptotically normally distributed . This is stated in the following

theorem .
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Theorem 5. As n +00 , for 0 3 8 < 1 , the distribution of

12

Vin + 1) ( Wmis- ( + ) )
( 36)

coverges weakly to the standard normal distribution .

Further,

Anj (8 ) 6 e -:(j+8=(n+1)/2) ( 1 + 0( n- t )) . ( 37)
n !

Proof. Both (36) and (37) are immediate consequences of the representation of Amy (C) as the con

ditional distribution of the sum of n + 1 independent uniform random variables on ( 0 , 1 ) given the

fractional part of the sum and the central limit theorem .

V in
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Appendix

This Appendix is devoted to some tables illustrative of some of the quantities introduced in the

body of the paper.

Table A.1

Table of ( 8), k = 0,1,2,3; n = 0,1,2,3

Elo 1 2 3
n

01 8 8( 8 – 1 ) 8( 8 – 1 ) ( 8 – 2)

111 I 1 + 8–82 - (html) 283 +382 – 8 – 1 + n

211 nt!
(ost 1) (392) 1 + 28 – 283 _ (93+ 1)3n

311 (m+ 1903-2 (no+1)( 1)( -2)
3 + 1

2

12

12 24
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Table A.2

The Distribution of W2+1,8, n = 5 , 8 = .1 , .4 , .5 , .9

W 8 = 1 8 = .4 8 = .5 8 = .9

8 8 x 10-8 9 x 10-5 3 x 10-4 .005

1 + 6 .013 .044 .062 .177

2 + 8 .260 .396 438 .545

3 + 8 .545 .476 : .438 .260

4 + 6 .177 .083 .062 .013

4 + 6 .005 6 x 10-4 3 x 15-4 5 x 10-8

Note the symmetry for 8 = .5 and that 8 = .9 and 8 = .1 are identical when the column for

8 = .9 is read going up and 8 = .1 is read going down ( the entries 8 x 10-8 and 5 x 10-8 differ

as a consequence of rounding errors).
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Table A.3

Hi(8 ), n = 5 , k = 0,1, ... , 10; 8 = 0 , .1 , .3 , .5 , .7 , .9

8 = 0 .1 .3 .5 .7 .9

k = 0 1

1

1 1 1 1 1

1 3 3 3 3 3 3

2 9.5 9.5 9.5 9.5 9.5 9.5

3 31.5 31.5 31.5 31.5 31.5 31.5

4 108.7 108.7 108.7 108.7 108.7 108.7

5 388.5 388.5 388.5 388.5 388.5 388.5

6 1432.50 1432.50 1432.53 1432.55 1432.53 1432.50

7 5431.50 5431.51 5432.01 5432.48 5432.31 5431.69

8 2118.7 21117.60 21122.56 21129.77 21129.66 21122.07

9 84010.5 83989.19 84020.48 84096.88 84116.67 84049.80

10341270.5 341018.48 341121.81 | 341763.40 342089.16 341628.77
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The Analysis of Multivariate Qualitative Data

Using an Ordered Categorial Approach

S. M. FreeH. B. Tingey

University of Delaware

E. A. Morgenthein

Bristol-Meyers

ABSTRACT

When the experimental units being classified are sub -sampling units in the study, an

ordered categorical procedure cannot be applied directly. Further, the count data ob

tained which is routinely analyzed by univariate statistical methods, ignores the depen

dence among the responses . A modification of the method developed by Nair ( 1986, 1987 )

is used to derive the scores and indices, which are analyzed by nonparametric AOV. An

example from teratogenicity studies is used to illustrate the technique.

Introduction

This problem arises from the consideration of studies where a reproduction safety test

must be performed prior to the use of drug, chemical or food additive. The standard pro

tocol in such studies requires that pregnant female subjects ( usually rodents) are randomly

assigned to one of four treatment groups. The appropriate dosage is administered shortly

after the beginning of gestation . When the animals are near term , they are sacrificed

and the number of potential offspring are counted. Other data collected are the number

of implantation, early and late fetal deaths, number of live offspring and the number of

fetuses according to various degrees of increasing severity of malformation . Also data on

continuous variables such as fetal weight are collected . It is unclear from the literature

which statistical methods are appropriate for the analysis of this type of data.

For continuous measurements one may quickly turn to the analysis of variance. For

count data describing the number of fetuses with or without some qualitative outcome,

other methods have evolved . A per -fetus analysis using total of early death and total

number of implantation in a Fisher exact -test or a chi- squared test of independence may

be performed, but this appears to inflate samples sizes and ignores the dependence of

observations within litters. A review of per -fetus analysis is given by Haseman and Hogan

( 1975 ) who conclude the per letter analysis is more appropriate.

All but one of the proposed methods for per-litter analysis consider a single outcome.

The need to include within and among-litter variation negates the use of simple binomial

or Poisson models for count data. In the methods which consider several single responses,

a problem of family error rate arises. Since the tests are not independent, the nominal

family error rate cannot be exactly determined. The multivariate method developed by
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Ryttman ( 1976) relies on the assumption of normality which is violated in the case of

fetal deaths. This lack of success, however, does not preclude a multivariate approach . In

situations where ranking the categories from mild to severe is possible, ordered categorical

models may be applied and the family error problem may be eliminated .

In this paper we obtain a scoring system for various outcomes which produces a severity

index for each litter. This index is sensitive to location shifts. The modeling which follows

will be based on this index.

The study design prohibits the straight-forward application of ordered categorical pro

cedures because the items ( fetuses) are not independent. Thus a scoring procedure allows

consideration of the effect of letter size on severity of the response, as a whole, in the litter.

Here the sampling unit is the fetus or individual. Three observations should be made; i)

results are different per litter than for per fetus, ii ) per litter evaluates the proportion of

fetuses affected rather than the numbers of affected litters, and iii) observed treatment

control differences is less significant than per-fetus indicates ( via simulation ).

Univariate Analysis.

The simple analysis is based on litter as the experimental unit. This analysis is carried

out using binomial and poisson models. The binomial assumption states that conditional

on litter size the number affected is binomial. The analysis is based on transformed data,

usually the arc -sine of the observed proportion . The poisson model does not account for

litter size as it assumes the mean number affected is the same for all dose groups. The

analysis again used a transformation, usually the square root of the observed number.

Neither fits the data very well. This may be due to extra binomial or extra poisson

variability, as the case may be.

More sophisticated models are reviewed by Haseman and Kupper ( 1979 ) include: weighted

least squares based on proportion and unequal sample sizes. This approach due to Cochran

( 1943 ) requires sample sizes which are too large for this application. Others include, the

normal-binomial ( Luning et . al . 1966 ) , beta - binomial (Williams 1975) , negative binomial

(McCaughran and Arnold 1976 ) , correlated - binomial Altham ( 1978 ) , jackknife Gladen

( 1979 ) . Several nonparametric procedures have been tried, namely the Mann-Whitney U ,

the Kruskal-Wallis and the Jouckheere / Terspstra. Some attempts at multivariate analy

sis have been tried by Ryttman ( 1976) , log- linear models by Haberman and others ( 1974 )

and generalized linear models by McCullagh ( 1980 ) . All of the latter techniques have

distributional assumptions.

Since some of the ordered categorical procedures develop or accept scores for the cat

egories, this approach was pursued. Scores induce relative spacing among the categories.

Thus, a mean score may be obtained for each litter . This implies analysis by litter as a

sampling unit . We note that CATMOD in SAS allows for scoring, but the scores must be
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user specified .

Ipsen (1955 ) suggested a scoring for Bioassay. Instead of estimating an LD50 or ED50

based on number of survivors after x days, he ordered the data into categories with the

continuum represented by time (days) . The scores proposed are such that the variance of

the linear regression of mean scores on the log dose is maximized with respect to the total

variance. An adjustment is made if the scores do not reflect the ordering of the categories.

Bradley et.al. ( 1962) scores by maximizing the treatment sum of squares after scaling

relative to the error sum of squares. This is an iterative procedure which does not require

the assumption of linearity.

Using no distributional assumption , Nair (1986 , 1987) suggested some techniques for

analyzing ordered categorical data in the field of quality control. He showed the Taguchi

statistic for 2 x 2 tables, can be orthogonally decomposed into K - 1 components where

K is the number of categories. In the two sample case he showed the first components

is equivalent to Wilcoxon's rank test on grouped data. Thus, this components would be

sensitive to shifts in the multinomial model. Further, the second components corresponds

to Mood's rank test for grouped data, thus is sensitive to scale changes in the 2 x K model.

In the non equiprobable case the correspondence does not apply though the interpre

tation still holds. This result has been verified using a comparison density approach for

the two sample problem by Eubank, LaRiccia and Rosenstein ( 1987 ) .

The decomposition of Taguchi's accumulation chi-squared ( 1966 , 1974) requires the

solution of an eigenvector problem. Nair ( 1986 , 1987) provides the method for deriving two

sets of scores . These yield statistics that are approximately equal to those obtained from

the orthogonal decomposition, but do not require a rigorous solution. The approximate

and exact statistics have comparable power .

When applied to 2 x K tables, the first set of Nair's scores is sensitive to shifts in location

of the underlying random variable. It is reasonable to suggest, when applied to litters ,

these scores yield a continuous index useful for detecting shift. In teratogenicity studies

the location shifts of interest would be those that indicate a significant dose -response.

Nair's Method

As already mentioned , the first and second components of the orthogonal decomposition

correspond to the Wilcoxon and Mood rank test, respectively.

Wilcoxon tests ,

H : G(x ) = F(x )

H, : G (x ) = F(x – 8 )
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where F , G are two distribution functions.

Mood tests,

Ho : G(2 ) = F ( x )

Hi : G(x ) = F(2/0)
where A is a constant.

For more than two treatment groups the first component corresponds to the Kruskal

Wallis statistic for grouped data, and the second to the generalized Mood statistic . In

the general case ( except equiprobable) case the equalities are no longer exact , but the first

two components have good power for detecting location and scale shifts respectively. The

focus of this work is on location shifts .

Notation

Yik

= =

Observed frequency for the ( i , k ) th cell = i = 1,2

j = 1 , 2, ...K

Column total. = Ck = Yık + Y2K

Row total. R ; = Ri Ek Yik

Cumulative row frequencies Zik Σ-- Yij

Cumulative column totals. Dx = = C;

The row proportions Ri/N

The column proportions = Ck = Ck / N

Cumulative column proportion up to and including column k dk = Dk/N.

= ri =

Vector conventions used.

bold lower case letter = a vector

bold upper case letter = a matrix

transpose =

a vector raised to a power implies each element is raised to a power

( this is non standard )

t

Multinomial model. 2 X K case

Two random samples of size R; i 1,2 are drawn from two

multinomial populations.

For each population, the probabilities of the K outcomes are given by
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Pik k = 1 , 2 , ... K.

The cumulative probabilities for population i are given by

Tik = ΣF- Pij

If the K categories are assumed to be ordered the hypothesis is

Ho : Tlk = Tak k = 1 , 2, ... K

H : ( T1k T2k) < 0 for all K

(strict inequality for at least one k) .

Alternative statistics to Pearson's x ? .

Taguchi's statistic Te =

§14(1–d) "IŠR(24/R:– de)

If xip is the Pearson x2 statistic from a 2 x 2 table where column 1 contains the

cumulative frequencies of categories 1 through k and column 2 contains the cumulative

frequencies of categories (k+1 ) through K. Then,

K-1

Te = x² kP
k= 1

where Te is a “ ccs type statistic ” .

Te assigns weight Wk =

k under H.

(dx(1 – dx)]- to the kth term in the sum which is equal for each

K- 1

Nair's Statistic T = wk { R (Zik / Ri – dk)?Ź Ri
k= 1 i=1

The statistics in the class are obtained by the choice of the set { wk } where wk > 0

for k = 1 , 2, K – 1. The decomposition is carried out conditionally on the marginal

proportions. For yi , wk k = 1 , 2 , K – 1 , W is a diagonal matrix. Using the d we form

the (K – 1 ) ~ K matrix A by;

-dı

-dz

A =

1 - di -d1 ........

1 - d2 1 - d2 -d2 ...

:

1 - dk- 1 1 - dk- 1.... 1 - dk - 1 -dk- 1
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Thus T is given by

T = y A'W Ayı /Nrira .

To express T as a sum of squares in yi we need to express

AWA

as a product of a diagonal matrix, Q and its transpose. Let A be diagonal of order K

formed by the colum proportions { ck } and let I be the diagonal matrix of order ( k – 1 )

containing the eigenvalues of A'WAA then the decomposition yields

AWA = QгQ*

where Q contained the eigenvectors of A'WAA such that

Q = [1 Q]

satisfies

QAQ = 1

substituting QrQt into T above with

U = Q '(Nrıra)

yields

K- 1

Τ = Σ τ; U
j= 1

where the T ;'s are elements of the vector of eigenvalues, T , and U ;'s are elements of u .

Under H , the distribution of yı conditional on row and column proportions is multiple

hypergeometric with
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NrickE (Yık)

Cov( Yık, Y11) N( 1 – 1/N)-1r7r2 ( 1 – Ck ) k == 1

-N(1 - 1/N)rır2 ( ckci ) k + 1

or

E ( yi)

cou(y1

Nr11

N(1 – 1/N)-brır2A [( I – 1 ) · 1 *A]

1 is a K * 1 vector of ones. It follows that

E(u)

cov( u )

Nri (Q*A1 ) / Nrira

( 1 – 1 / N )-Q * A [I - 1 1 *A]Q

= 0

( 1 – 1 / N )-1

implies the U ;'s are uncorrelated with zero means.

Under H, it can be shown that the limiting distribution of yı converges to the multi

variate normal distribution as N goes to infinity. Thus

K-1 K-1

T = Σ τ; U, 2 4 Σ τ;x 1,51 ,j

j- 1 j= 1

a weighted sum of independent x ? random variables, each with 1 df

The approximate solution by Nair proposed two sets of statistics which have properties

the same as those obtained for the equiprobable case ( i.e. Ck 1 /k) . That is the first

component of Te or UE, 1 is equivalent to the Wilcoxon test on the 2 x K table and UE.2 ,

the second component, is equivalent to Mood's

K

M = { [k – (K + 1 )/ 2]{ Y1k.
k= 1

They do not require the solution of the eigenvalue problem as orthogonal decomposi

tion is not necessary. The first component , all observations in the category are assigned a
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score proportional to the midpoint of the category. The second component the scores are

quadratic in the midrank. Additionally, each set of scores is adjusted to satisfy orthogo

nality

To calculate the scores, let c be of length K with elements being the column proportions.

Form

0.5 0 .....

1 .5 0 .... 0

B =
:

1 1 .5

1 11 1

0... 0

1 .5

Let T = Bc and T* = T - .5( 1 ) . Note the T's are Bross's ridits . The first set of scores is

obtained from

1 = 1* / 1c* -*2

where * *2 is a vector of squares of elements of T * . The second set of scores is obtained in

two steps . First let

e = 1 * ( 1 – (c* 13 ) 1 ] – 1 .

Then

S = elce?

The approximate statistics for the 2 x K table are

V² = L / R ; + L2 ? /R2

where

Li 1'yi 1 , 2

and

V2 ? Sı ? /Ri + S2 ? /R2

where

S ; st i = 1 , 2
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which are comparable in magnitude and consequently in power to U , and U , respectively.

We now apply the method:

Conduct of the study and data:

PROTOCOL

1. Sprague -Dawley rat study

2. Herbicide: nitrofen (2, 4 - dichloro- 4 nitrodipheynl ether)

3. Test compound administered during organogenesis

4. Sacrifice prior to parturition and cesarean -sectioned

5. Record litter and fetal data

6. Administration of compound follows daily dose regimen

7. Treatment groups ; control and three dose groups

8. Inseminated females randomly assigned to 4 groups of 24 rats each

9. Dose levels. 6.25 , 12.5 , 25 mg/kg /day body weight on days 6-15,of gestation.

Controls: gavage solution w/o test compound

Live fetuses are weighed , sexed and examined for external malformations. They are

then sacrificed in order to perform the skeletal and visceral examination . Recorded are the

number of corpora luta on each ovary, number of implantations, number of fetuses, and

the number of resportions in each utrine horn . Table I displays the data for each rodent

and close level.

The following definitions are employed to categorize the fetuses: Dead - Early or late

resorption of dead at c - section, malformed - gross visceral or skeletal variation , growth re

tarded - body weight more than two standard deviation from the mean for the given sex

or by a range test . Normal - absence of any of the previous outcomes . Table's II and

III summarize the results by number and percent for each dose by category. It should be

noted that the differing number of letters is due to nonpregnant females, not toxicity.

The final columm of Table I is the calculated severity index. This index is calculated by

multiplying the score for the category by the number of fetuses in the category, summing

and dividing by the number of implantations , i.e. ,

SI = nºc/nº1 .

Details of the calculations of a severity index are given in the following example.

Consider the following sample data:
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Severity

Index

Table 1

Nitrofen Data - Strague-Dawley Rats

Number of Growth

Id Implantations Normal Retared MalformedMalformed Dead

Dose Group = Control (0.0 mg/kg/day b.v.)

19 1 1 0 0 0

8 4 3 0 0 1

11 5 4 1 0 0

7 8 7 0 0 1

1 12 9 0 3 0

16 14 14 0 0 0

24 14 11 0 3 0

6 15 15 0 0 0

9 15 13 0 1 1

20 15 12 0 3 0

22 15 12 1 2 0

2 16 14 1 1 0

16 16 0 0 0

10 16 16 0 0

12 16 14 2 0 0

17 16 16 0 0 0

23 16 15 0 0 1

3 17 11 0 6 0

5 17 10 0 6 1

13 17 13 0 3 1

15 17 13 0 2 2

21 18 13 0 4 1

Dose Group = Low (6.25 mg /kg / day b.w.)

32 1 0 0 1

28 12 10 0 0

43 12 9 0 3 0

26 14 10 0 0

31 14 14 0 0

39 14 11 0 3 0

41 14 9 0 5 0

47 14 10 0 4 0

48 14 14 0 0 0

33 15 10 0 0

38 15 10 0 0

40 15 13 0 1 1

45 15 12 0 3 0

25 16 11 0 5 0

27 16 12 0 4 0

34 16 10 0 6 0

35 16 12 0 4 0

37 16 9 0 7 0

44 16 12 0 4 0

46 16 11 0 5 0

36 17 7 0 2

0.00000

0.68423

0.25139

0.34212

0.49145

0.00000

0.42124

0.00000

0.31352

0.39316

0.34590

0.20142

0.00000

0.00000

0.15712

0.00000

0.12286

0.69382

0.85481

0.50790

0.55326

0.58890

A

2.73692

0.32763

0.49145

0.56166

0.00000

0.42124

0.70207

0.56166

0.00000

0.65527

0.65527

0.31352

0.39316

0.61432

0.49145

0.73718

0.49145

0.86004

0.49145

0.61432

1.24708
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Table I (Cont'd .)

Nitrofen Data - Strague-Dawley Rats

Number of Growth Severity

Id Implantations Normal Retared Malformed Dead Index

Dose Group = Control (0.0 mg/kg/ day b.w. )

54 2 0 0 2 2.73692

70 3 1 0 2 0 1.31054

59 4 2 0 2 0 0.98290

64 8 5 0 3 0 0.73718

53 11 4 1 5 1 1.25663

55 13 7 0 5 1 0.96661

58 14 7 0 6 1 1.03798

60 14 7 0 5 2 1.09306

65 14 8 0 5 1 0.89757

68 14 10 0 3 1 0.61674

62 15 6 0 6 3 1.33371

67 15 13 0 1 1 0.31352

71 15 8 0 4 3 1.07160

49 16 6 0 10 0 1.22863

69 16 11 0 1 0.66251

56 18 15 0 1 0.37047

57 18 13 0 0 0.54606

72 18 7 0 11 01.20133

Dose Group High (25.0 mg/kg/day b.w. )

91 2 0 0 1 1 2.35136

80 7 3 0 3 1 1.23348

86 8 6 1 1 0 0.40284

73 10 1 0 9 0 1.76923

77 14 3 0 11 0 1.54456

78 14 3 0 11 0 1.54456

79 14 2 0 12 0 1.68498

83 14 9 0 5 0 0.70207

93 14 1 0 12 1 1.88047

76 15 0 0 15 0 1.96581

84 15 6 0 9 0 1.17949

92 15 7 0 8 1.04843

74 16 4 0 11 1 1.52255

87 16 6 0 10 1.22863

94 16 8 0 8 0 0.98290

95 16 6 0 10 1.22863

96 16 4 0 10 2 1.57075

89 17 6 0 11 0 1.27199

90 17 0 0 11 6 2.23797

75 18 6 0 12 0 1.31054

81 18 6 0 12 0 1.31054

88 19 11 0 7 1 0.86829
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Table II

Group

Control

Low

Mid

High

Number of Implantations

Normal Gr.Retarded Malformed Dead Total

252 5 35 8 300

239 1 89 5 334

130 1 79 18 228

98 1 199 13 311

Table III

Group

Control

Low

Mid

High

Percent of Implantations

Normal Gr.Retarded Malformed

84.0 1.7 11.7

71.6 0.3 26.6

57.0 0.4 34.6

31.5 0.3 64.0

Dead

2.7

1.5

7.9

4.2
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Control

Low Dose

Middle Dose

High Dose

Totals

Number of Implantations (Fetuses )

Normal Gr.Retarded Malformed Dead Totals

252 5 35 8 300

239 1 89 5 334

130 1 79 18 228

98 1 199 13 311

719 8 402 44 1173

Calculate the column proportions:

Ck .61295823 .00682012 .34271100 .03751066

Calculate Bross's ridits ( 1958 ) by the formula The = ( co+ ci + ... + 2k- 1 ) + .5Ck where co = 0 :

Tk .30647912 .61636829 79113385 98124468

Now, let Ti = Tk - .5 :

TE -.19352088 .11636829 .29113385 48124468

=

Calculate the constant d = [c1712 + C2772 + C3752 + C4702]1/2 :
d [ .61295823( - . 19352088)2 + .00682012( .11636829)2 +

.34271100( .29113385)2 + .03751066 (.48124468 ) ) 1/2

.24654207

The vector of scores (Nair, 1986 , 1987) is then obtained by lk = Ti / d :

Ik -0.7849 0.4720 1.1809 1.9520

Shifting the scores so that the score for a normal implantation ( fetus) is zero, the final

scores are :

lm 0.0000 1.2569 1.9658 2.7369

Then, a litter with 11 implantations of which 4 are classified as normal, 1 as growth re

tarded, 5 as malformed and 1 dead , would have a severity index of:

SI= {0.0000(4)+1.2569( 1 ) +1.9658( 5 ) +2.7369( 1 ) ] / 11= 1.2566

This can be interpreted in light of the above scores , i.e. , an index near zero would be

indicative of a litter with nearly all normal fetuses at cesarean -section and a score near

2.7369 would be indicative of a litter with nearly all fetuses dead at cesarean-section .

Designs for the Analysis of the Severity Index

Five designs were evaluated which assume normality. The one-way classification , a

one-way classification using litter size as a covariate, a generalized randomized block using
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litter size as a blocking variable, and a weighted analysis using in one case litter size as a

weight and in another the square root of litter size. The results are summarized in Table

IV in terms of calculated F, associated P values and R2 .

Table IV

f F P R2

One way analysis 3,81 22.97 < .0001 .46

Covariance 3,80 25.99 < .0001 .53

Generalized RBD 3,65 20.52 < .0001 .58

Weighted AOV ( litter size) 3,81 15.62 < .0001 .37

Weight AOV ( littersize) 3,81 33.11 < .0001..55

As was expected the covariance and blocking provided an improvement over the one

way classification as measured by R ?. However, the magnitude of the improvement does

not seem to warrent the chance of violating the more restrictive assumptions placed on the

experiment by those designs. A better alternative, in the parametric case, may be using

the square root of litter size as a weight which provides nearly the same value of R² as

does the blocking design. However, we would prefer the one-way analysis for its simplicity

and robustness in application .

The normality assumption on the severity index is quite suspect in many situations.

As an alternative, the nowparametric Kruskal-Wallis procedure was carried out. In view of

the overwhelming significance of the parametric procedures, this result was not surprising

x2 47.75; af = 3 p < .0001 . Figure 1 compares the linearity of the mean severity index

and the median severity index.

Figure 1
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Statistical Procedure

The consideration of litter size is not necessary for analysis of the SI's . It is important

to note than the SI's are probably not normally distributed, particularly in the control

group and at the higher dose levels. The following is suggested for toxicity -teratogenicity

studies.

1. If the SI's are reasonably normal, calculate the AOV F - statistic for a one way layout.

Use this statistic to test for differences in location .

2. If F is significant, follow with linear constrasts to test for increasing trend .

3. If significant use Dunnett's procedure to compare control mean with each of the

treatment means to establish no - effect leve.

4. In the presence of non normality use a similar sequence of nonparametric test . e.g.

K - W, Jonckheere/ Terpstra , and Dunn's procedure.

SAS code is available which reads litter data, calculates scores, computes SI's and cal

culated the statistics . The results above have been " tested” by simulation analysis of

additional nitrofen studies and two other biological examples. Also, the method detects

different dose patterns with equal ability. The K - W test showed consistently higher power

than the F-statistic in the simulation studies.
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Abstract

The Anderson -Darling goodness-of- fit procedure emphasizes agreement

between the data and the hypothesized distribution in the extremes or tails .

An improved table of the quantiles of the Anderson -Darling statistic , useful

for small sample sizes, was constructed using the Cray - 2 supercomputer . The

power of the Anderson -Darling test is compared to the Kolmogorov and the

Cramér- von Mises tests when the null hypothesis is the normal distribution

and the alternative distributions are the Cauchy, the double exponential , and

the extreme value distributions.
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1. INTRODUCTION

Consider a random sample X1 , X2, Xn from a population with a

continuous distribution function. One method of testing the hypothesis that

the n observations come from a population with a specified distribution

function F (x ) is by a chi-square test. This test requires a subjective

partitioning of the real line R and a comparision of the empirical histogram

with the hypothetical histogram . A more objective method , is to compare the

empirical distribution function Fn(x ) with the hypothetical distribution

function F (x ) . The empirical distribution function based on n observations is

k

defined as F(x) if exactly k observations are less than or equal to
n

x , for k = 0, 1 , ... , n.

To compare the empirical and hypothetical distribution functions a

measure of their difference is required . Addressing this , Anderson and Darling

( 1952) considered the following metrics in function space :

wn = n | F ( x ) – F(x ) ] } {{F (x ) ] dF(x ) ( 1.1 )

and
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Kn Vo \F .(x) – F (x)/V6F (x )} . ( 1.2 )sup

-00 < x < 0

Samples producing large values of wî (or Kn) lead to rejection of the null

hypothesis that the population distribution function is F (x ) . One of the

contributions of Anderson and Darling was the incorporation of a non-negative

weight function 4 in ( 1.1 ) and ( 1.2 ) . By a suitable choice for 4, specific ranges

of values of the random variable X, corresponding to different regions of the

distribution F (x ) , may be emphasized. For 4 [F (x)]= 1 , wả becomes the

Cramér-von Mises statistic (Cramer, 1928 and von Mises, 1931 ] and Kn

becomes the Kolmogorov statistic (Kolmogorov, 1933) .

The tails of the distribution function will be accentuated in the

investigation detailed in this paper; Anderson and Darling suggest using

1

[F(x)]= F(x)[1 – F(x)]

With this choice for the weighting function , metric ( 1.1 ) becomes the basis for

the Anderson-Darling statistic .

In Section 2 , the Anderson-Darling test statistic is developed ; in

Section 3, the most accurate tabulation to date of the test statistic is provided.

In Section 4 , the description and the results of a power study are given in

which the Anderson -Darling, the Cramér-von Mises , and the Kolmogorov

statistics are compared .
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2. THE ANDERSON -DARLING STATISTIC

For a fixed value of the random variable X, say X = x , the empirical

distribution function F.(x ) is a statistic, since it is a function of the sample

values X1 , X2 , ... , Xn : The distribution of this statistic is established as a lemma .

... ,

Lemma (2.1) : IfIf Fn(x ) is the empirical distribution

function corresponding to a random sample X1 , X2, Х.

of size n from a distribution H( - ) , then for a fixed x , nFn(x )

is distributed binomial (H(x ) , n ) .

Proof:

P (nFn(x ) = k ) = P ( exactly k values x; < x ) , for k = 0 , 1 , ... , n .

Let Z; = 14--0, x' (X; ) , where the indicator function I is defined as

1. if - < x; < x

I(-0,x) (X; )

0, otherwise .

Then EZ; counts the number of sample values x; < x .

Here each 2; ~Bernoulli (H(x ) ) , so * Z ; ~ binomial (H(x ) , n ) .

Therefore,

P( nFn(x ) = k ) = P( exactly k values x; < x )

= P( EZ ; = k )

n

k H(x )* (1 –H(x)**
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From Lemma 2.1 ,

EF_(x))= * =[nF,(x)]– H(v)
and

Var[F2(x)}= var[of.xx)]– H(x ) [1– H(x) }
(2.1 )

.

To assist in the determination of a suitable weighting function 27.),

that is, a function that will weight more heavily values in the tails of the

distribution F(x ) at the expense of values closer to the median, consider the

expectation of the squared discrepancy e[F (x)– F(x)]?
It is important to

keep in mind that the value x is fixed , so F(x) is a constant , and the

expectation is with respect to the random variable Fn(x) whose distribution was

established in Lemma 2.1 . Then

E [F_(x) – F(x ) ] * = n E [F.(x) – H(x) + H(x ) – F(x)]

-- ||--at- fova )

v

which , after algebraic manipulation (Appendix A) yields the variance and bias

-- LA (1861 –H«»}}+free)–H«s)}]
( 2.2 )
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Under the null hypothesis H .: H(x) = F(x) Vx, (2.2 ) becomes

n E (F.(x) – F(x) ] ° = F(x)[1– F(x) ] .
( 2.3 )

1

Anderson -Darling chose as a weighting function , 4F(x)]
F(x) ( 1 - F (x )]

Weighting by the reciprocal of (2.3 ) takes into consideration the variance of

the statistic Fn(x ) and also maintains the objective of accentuating values in

the tails of F (x) .

With this choice of weighting function and without loss of generality

assuming xi < x2 < ...< xn , let F (x) = u , dF(x )= u, dF (x ) = du, and F (x; ) = U;. Then

the Anderson -Darling test statistic (2.4 ) can be rewritten as expression ( 2.5 ) by

expansion and integration (Appendix B) .

(F.(x ) – F(x)]
W == ns dF (x ) ,

-- F(x) ( 1 – F (x)]
( 2.1 )

W = -n (25–1)n u; + ( 2 ( n – j )+1) In (1–4 )
(2.5 )
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3. DISTRIBUTION OF THE ANDERSON -DARLING STATISTIC

The asymptotic distribution of wê was derived by Anderson and

Darling (1952) . Lewis (1961 ) undertook the tabulation of F( z ; n ) = P(wi < 2 )

for n =1, 2 , 8 and for incremental values of 2 over thethe interval

(0.025, 8.000 ). Lewis ' table entries were computed using a Monte Carlo

procedure to generate an empirical approximation Fm( z ; n ) to the distribution

function F ( z ; n ) based on m samples of size n . At that time , computational

restrictions essentially limited the accuracy of the table entries to within

0.00326 of the true value .

Following an analogous procedure based on expression (2.5 ) and the

observation that the U; are distributed U (0,1 ) (Feller , 1966) , the table appearing

in Lewis' paper was recalculated using a Cray-2 supercomputer. A

Kolmogorov -type bound (Conover, 1980) was used to construct a 95%

confidence band for „ he distribution function F ( z; n ) .

In general , the width of a ( 1 – a) 100% confidence band is equal to

twice the value of the ( 1 – a ) 100 % quantile of the Kolmogorov statistic

Km Vm Fm (x) – F (x ) , where m is the number of samplesup

-00 < x < 0
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values used in the construction of Fm(x ). With n fixed, the 95% confidence

band can be made arbitrarily small by a suitable choice for m , the number of

Monte Carlo samples. The commonly tabled (Miller, 1956) asymptotic

approximation for the 95th quantile is 1.358Nm . However, Harter (1980 )

suggests using

1

1.358

where r = (m + 4 ) (3.1 )

2
r

m +

3.5

for an improved approximation.

Using approximation (3.1 ) to construct a 95% confidence band with

the width not exceeding 0.001, the value for m must be at least 7,375.881 . In

this simulation, m was chosen to be 7.4 million . Table 1 lists the

reconstruction of Lewis' table , now accurate within 0.0005 . Again , z ranges

from 0.025 to 8.000 and for n = 1 , 2 ,1 , 2 , ... , 10. The column labeled " oo " contains

the asymptotic values, rounded to four decimal places.
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4. POWER STUDY

The power of the Anderson -Darling test was compared with two other

goodness-of- fit procedures based on the empirical distribution function : the

Kolmogorov and the Cramér -von Mises tests. The Kolmogorov statistic

introduced in Section 1 as metric ( 1.2 ) with weighting function 6 (F(x ) ] = 1

becomes

Kn sup

0 < x < oo

VnIF(x ) – F(x) . (4.1 )

For an ordered sample xi < x2< . < xn and F(xi ) = uj , ( 4.1 ) may be

evaluated using D = max (D+ , D™ ) , where

andD+ = max

i ( --)

---)
D

The Cramér -von Mises statistic , defined as

wa = n 5 (F1(x ) – F(x)] DF(x )* df )

can be reduced to ( 4.2 ) for ease of computation (Appendix C);

-



w:--
12i -1

2n

+

(4.2 )
12n

In the power study, two cases were considered. Case 1 corresponds to

the situation in which the parameters of the hypothesized distribution are

completely specified . Case 2 corresponds to the situation in which the

parameters are not specified and must be estimated from the sample data.

For both case 1 and 2, the null hypothesis is

H .: A random sample X1 , X2, Xn comes from a normal population•••

or

H: H(x ) = F (x ), where F(x ) ~ N(2,6) .

As alternative hypotheses, the Cauchy, double exponential , and extreme value

distributions were chosen, each with location parameter the same as the null

hypothesis. This provided a heavy -tailed, light-tailed, and skewed distribution ,

respectively, against which the power of the three goodness -of- fit tests are

compared.

The power functions do notnot exist in closed form ; they are

approximated empirically via a Monte Carlo simulation . To determine a point

on the power curve , a large number of samples of size n was generated from a

specific distribution serving as the alternative hypothesis . The number of

times the null hypothesis was rejected at a specific level of significance was

recorded . The ratio of the number of rejections , Y, to the total number of
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samples generated, N, provides an estimate , p = Y /N , of the probability of

rejecting the null hypothesis when it should be rejected ( power ). The value @

determines a point on the power curve corresponding to a specific sample size

n, a specific significance level a, and a specific alternative hypothesis.

To determine the number of samples of size n required for a

sufficiently accurate estimate of p , a nonparametric technique was employed .

Since the counter Y is distributed binomialſ : ; p ,N) where the parameter p is

the true but unknown power, and since an approximate confidence interval for

p can be constructed (Conover, 1980) using

1 - Q = P.

-2 ਕਿ ' ਅji + ਨੂੰ ਜਾ try
( 4.3)

samples of size n continued to be generated from the alternative distribution

until the confidence interval for p given in (4.3 ) was sufficiently small .

The confidence interval coefficient 1 - a was chosen to be 0.975 and

the confidence interval width not to exceed 0.025 . Then the confidence limits

(4.3 ) were successively evaluated until the interval width was satisfied .

Considering a "worst- case " scenario in which p 1/2 and the variance of its

estimate õ is greatest , equating Y/N 1/2 in (4.3 ) suggests that samples of

magnitude 8037 might be required . A minimum value for N of 100 was

imposed to prevent premature termination of the procedure .
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4.1 . Case 1 : Distribution Parameters Specified .

The power study for case 1 specified the parameters of the

hypothesized distribution as N(0,1 ) . The results of the study are summarized

in Figures 1 – 12. For each of the three distributions serving as an alternative

hypothesis , samples of size n = 5 , 10, 15 , 20 were chosen for study and , as

previously mentioned , the location parameters of both the null and alternative

hypotheses coincided . The scale parameter for the alternative hypothesis were

values from 0.025 to 3.000 in increments of 0.025 .

The level of significance for the study was 0.05 . The critical value for

each test was determined from tables in Conover (1980) for the Kolmogorov

test , Stephens and Maag (1968) for the Cramér - von Mises test , and Table 1 in

Section 3 of this paper for the Anderson-Darling test .

The Anderson -Darling test demonstrated overall superiority for the

sample sizes and hypotheses chosen for this study. This is perhaps to be

anticipated in view of the emphasis on agreement in the tails by the

Anderson -Darling procedure , but the magnitude of difference over the

Kolmogorov and Cramér - von Mises tests is impressive.

The power curves corresponding to n = 10 , 15 , 20 are distinguished

by their characteristic of decreasing to a global minimum before becoming
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monotone increasing. An explanation of this feature is suggested by

consideration of Figures 13 - 15 in which the distribution functions of the

N (0,1) and Cauchy (0,5) are compared. There it is seen (Figure 14 ) that

corresponding to s = 0.50 the two distribution functions are similar; an

increase (decrease) in the scale parameter s causes the tails of the distributions

to become more distinct . Values in a neighborhood of 5 = 0.50 marked the

global minimum throughout the study.

4.2 . Case 2 : Distribution Parameters Estimated .

The Anderson -Darling, Kolmogorov, and Cramér - von Mises

goodness-of- fit tests were developed for use in case 1 where distribution

parameters are specified, and so precludes their use in the more likely situation

where parameters must be estimated . In practice , these procedures are

sometimes used anyway with the caveat that the tests are likely to be

conservative. Stephens (1974) provides adjustments to the test statistics that

enables the tests to be used to test the assumption

H .: H(x ) = F (x ) , where F (x) ~ N(M, oʻ) and the population parameters are

estimated from the data.

The results of the power study for case 2 , are summarized in

Figures 16 – 27. As in case 1 , the sample sizes are n = 5 , 10 , 15 , and 20 , and
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the level of significance is 0.05 . Both location and scale parameters coincide;

the scale parameter are values from 0.025 to 3.000 in increments of 0.025 .

The power plots are horizontal , demonstrating that power does not

change with scale parameter and provides empirical support for Stephens

transformations. Power increases with increasing sample size , as would be

expected. When both location and scale parameters agree , all three tests are

competitive for the sample sizes and alternative distributions chosen for this

study.
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APPENDIX A: EXPECTION OF SQUARED DISCREPANCY

BETWEEN AN EMPIRICAL DISTRIBUTION FUNCTION

AND A SPECIFIED DISTRIBUTION FUNCTION

To help find a suitable weighting function, 4[F(x)] , lets look at

• E[944 )

2

ne [F.(x) – F(x)] = n E [F_(x)– H(x) + H(x) – F(x)]

- eff-w-ow)-fow -to

-- {fontw)-- from afrow ow!

+ fos-ro}

- 1 € [F«) – Hcx) ° – 2 frw) – Huis H x)

+ fr«) – Huca )

}E n (x) – H(x )

2

2

= n E [F.(x) – H(x)] few ) }
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= n E[F.(x)?– 2 F. ( x ) H ( x) + H®(x)-2 Faceb (x) +F(x)) + f(x) -Ha)

-- E[ . *) – 2 H(x) E [F.(x)) + H*(x) + {F(x) – H(x )+{re)–How]

n

H (x) {1 – H(x)} + H²(x) – 2 H (x) + H²(x)
n--

+ fra) – H64-

- E [vslx) = -1)-- front - How + farvas - )"

Under the null hypothesis, i.e., H .: H(x) = F(x ) ,

n E[F_(x)– F(x) ] ’ – F(x ) [ 1 – F (x)) .
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APPENDEX B: EXPANSION AND INTEGRATION OF

THE ANDERSON -DARLING STATISTIC

W ?
2

n

n s

(F. (x) – F (x )]

F (x ) (1 – F(x)]

dF (x )

Xi
n-1n

s

(F2 (x ) – F (x )]

F(x) (1 – F(x) ]
dF (x) + Es

[F. (x) – F(x)]

F(x) ( 1 – F(x ) ]
dF (x )

k- 1 XL

+ S

(F2(x) – F(x)] 2

F(x) ( 1 – F (x )]

dF (x)

Xa

Let F ( x ) 3 U

dF (x) du

F(x;) = U;

2

k

u
li Uk + 1

n- 1 n

: n
10 – u ?

u ( 1 – u)

du + Es du +

+ £
( 1 – u )?

u ( 1 – u)

du

k- l UK u ( 1 – u)0

du--fa -sc-way -20).

•f***--
. In un
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– u, - In ( 1 – u ) + 9
du

u ( 1 – u)

Uk + 1

2k u

+
-

s du

u ( 1 – u)n
Uk

Uks + 1

+

u?

u ( 1 – u)

du

+

-1 + un - In un
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------

=

uz – In ( 1 – u )

+ Σ In (Uk+ 1 ) – In ( 1 – Uk+ 1 ) – In Uk + In ( 1 – uk )1 ]2
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+ Σ
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+
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APPENDLX C: DERIVATION OF THE

CRAMÉR -VON MISES STATISTIC

For an ordered sample x , 3x2 < ... xn the empirical distribution

function is defined as

0
x < x1

k

F.(x) for
Xk < x < Xk+ 1

n

1 xn < x

The Cramér - von Mises statistic may be written

ns (F.( x) – F (x )] dF (x )x) Fx? x
oo

X1

= nis F.(x) – F (x )]- dF (x ) + E F.(x ) – F (x )]2 DF (x )

-- E T F. (x) – F(x) %* af(x

+ (F.(x) – F(x ) ] 2 dF ( x)

suLet F(x)

dF (x )

F(xi) = u;

= du
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Then

n [ F (x ) – F(x)] dF (x )
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Completing the square,
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Nonpare, a Consultation System for Analysis of Data

J.C. Dumer III

T.P. Hanratty

M.S. Taylor

US Army Ballistic Research Laboratory

ATTN : SLCBR -SE - P

Aberdeen Proving Ground, MD 21005-5066

Abstract. Nonpare, a consultation system for analysis of data using nonparametric

statistical procedures, is under active development. It is intended to serve as an

intelligent interface that will act as a guide, an instructor, and an interpreter to a body of

statistical software. Nonpare exists as a prototype, with a limited release planned in 1989

forfield testing.
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1. Introduction

Statistical software packages, to large extent, accept any properly configured

data set and proceed to process it . Few if any checks are made to ensure the adequacy

of the data and the suitability of the analysis, and little is done to provide an

explanation or interpretation of the results. This requires a great deal from the user.

Declining computation costs, together with increased availability of computers and

proliferation of statistical software, has further enhanced the opportunity for faulty

data analysis. Application of expert system techniques from artificial intelligence to

produce more cognizant software is one approach to reversing this unfortunate trend.

In 1985, a workshop sponsored by AT & T Bell Laboratories brought together

many of the active investigators in artificial intelligence and statistics and was the

genesis of a book by the same title edited by Gale ( 1) . This reference is in essence the

proceedings of the workshop; but the papers given there, some with extensive

bibliographies, provide the most complete centrally-located account of research in this

topic to date.

This report details an effort underway at the US Army Ballistic Research

Laboratory (BRL) to develop a consultation system for analysis of data using

nonparametric statistical procedures. The system , called Nonpare, is intended to

serve as an intelligent interface that will act as a guide, an instructor, and an

interpreter to a body of statistical software. The system is currently a prototype, with

a first release planned for 1989 for field testing.

2. Nonpare

Nonparametric statistics is too large an area to hope to encompass at once,

especially if the entire field of mathematical statistics is partitioned into parametric

and nonparametric procedures. The common -sense approach to construction of

consultation systems suggests limiting the domain of application, but nonparametric

statistics has qualities that make it strongly appealing.

Nonparametric data analysis is characterized chiefly by the absence of

restrictive distribution assumptions - notably freedom from dependence on the normal

(Gaussian ) distribution . Many nonparametric statistical procedures are exact rather

than approximate for small data sets, and they are the only confirmatory procedures

which can be used to analyze data collected on a nominal or an ordinal scale of

measurement. For these and other compelling reasons advanced, for example, by

Conover, (2] Hollander and Wolfe, (3) and Lehmann , (4) nonparametric procedures

find use in a wide variety of disciplines.

2.1 The System Structure

Nonpare uses Genie, an expert system shell developed at the BRL (5) to

provide a frame -based production system with forward and backward inferencing as

well as an explanation facility that allows the user to interrogate the system - what

hypotheses are being entertained, what rules are being verified, what facts are in

evidence. Genie was chosen over commercial expert system shells for the research

and development of Nonpare because of its accessibility for modification .
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Nonpare, shown schematically in figure 1, consists of three subsystems in

addition to Genie.

Genie

inference engine

forward

reasoning
user

knowledge

base

explanation

facility

backward

reasoning

nonparametric

data

analysis

system

dictionary

Figure 1. Nonpare system overview .

The system dictionary is a facility whose purpose is to provide on-line

explanation of statistical jargon that may appear during the interactive dialog between

Nonpare and the user. Expert domain knowledge, codified in English -like rules,

resides in the knowledge base. Once an appropriate procedure(s) has been identified,

the data are analyzed and the results explained by the nonparametric data analysis

component. Graphics is used to summarize the data and enhance the explanation . In

total, the user is led within system limitations to an appropriate statistical procedure

through an interactive process in which the user is questioned and can in turn question

the consultation system. Nonpare is written in Interlisp-D and currently runs on

Xerox 1100 Series Lisp machines.

3. An Illustrative Session

Following the dictum of American educator John Dewey ( 1859-1952) that

"We learn by doing," a detailed session with Nonpare follows, in which the main

system features are illustrated.

Example 3.1

Suppose that a ballistician needs to assess the effectiveness of a newly

designed kinetic energy penetrator against a specific armor plate. In particular, the

experimenter would like to establish whether the probability of perforation exceeds

.80, a level already attained with existing technology. Fourteen rounds are fired, and

(perforation and ( n )onperforation recorded to obtain: n, p, p, p, n , p, P, P, P, n , p, P,
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P, p. Is the Pr{perforation } > .80 ?

(A diversion here. Searching for a statistical procedure with a set of data

already collected is precisely how not to proceed. The purpose for collecting the data

should first be established, and then the statistical tools available to support this

purpose determined. Then the collection and analysis of data can proceed in an

informed manner . Lamentably, the methodology -search scenario is enacted over and

over again; so this example is not too contrived .)

It should be apparent from the onset that the question regarding

Pr {perforation } > .80 can never be answered unequivocally yes or no, but only with

some degree of qualification.

Nonpare presently has nineteen distinct data analysis procedures at its

disposal; the number continues to increase. No assumptions have been made about

their frequency of use; one procedure has not been declared most likely to be

exercised, a second procedure next most likely, and so on , since the base of potential

users is so broad. For the user, this means that any procedure is a likely starting point,

as in this session, the dialog of which begins in figure 2. In the remainder of this

section, the conventions that boldface denotes system prompts and brackets contain

user input will be adopted. An occasional system response may be italicized but

should not be confusing within the context of its appearance.

l'o you have a sample X1 , ... , xn ? y

Are you interested in whether the data conform to a specified
distribution ? n

Are you interested in the probability of occurrence of a particular

category or event ? y

Enter the name of the category of interest - > perforation

Are the n trials producing the values X1 , Xn independent ?
A

Figure 2. Beginning dialog with Nonpare.

l ' n

The session begins with a question about the configuration of the data.

Do you have a sample X X ? The data, n, ..., P, look like X , ... ,p, look like X, ... , Xn; respond

[ y ]es.

Are you interested in whether the data conform to a specified distribution ?

Nonpare is investigating a possible goodness -of-fit situation. A statistician ,

anticipating an approach to this problem, might find a [ y ]es response is appropriate

here. A nonstatistician , for whom this portion of the system is designed, and who is

interested in whether Pr {perforation } > .80, should respond (njo, as indicated .

Are you interested in the probability of occurrence of a particular category or

event ? [ y es. The user is interested in the probability of occurrence of a perforation .

176



Enter the name of the category of interest. (perforation ). Domain -dependent

terminology is being introduced .

Are the n trials producing the values X,, X , independent ? Suppose the user is

unsure of the technical implications of the term " independent." An acceptable

response is (What is independent] - as shown in figure 3.

1 ' "

Are then trials producing the values X1 ,

dependent

xn independent ? what is in

Independence relates to freedom from external influence or control- here ,

the reference is to measurements ( uata ) being free to assume values

without regard to other measurements that may be made .

Are the n trials producing the values X1 , ... , Xn independent? y

Does each trial have the same probability p of producing the perforation

Are you interested in considering whether the probability of occurrence

of the perforation equals or is bounded by some specified value p * ?

? y

Figure 3. A call to the system dictionary.

Independence relates to freedom from external influence or control – here, the reference

is to measurements (data ) being free to assume values without regard to other

measurements that may be made.

This illustrates a dilemma for the subject area specialist. It may be impossible to

rigorously define a term without reliance upon other terms that are equally obscure to

a user with only a modest statistical background. This is the case here, where

independence is bound to basic concepts of probability theory. Nonpare's response

conveys the notion, but regrettably not the substance, of independence. More work is

needed here. For now , assume the experimenter has collected a set of independent

data.

Are the n trials producing the values X,, ... , X, independent ? [y ]es.

Does each trial have the same probability p of producing the perforation ? [ y ]es.

Notice that Nonpare is now using language the user provided, when it talks about

probability of perforation.

Are you interested in considering whether the probability of occurrence of the

perforation equals or is bounded by some specified value p* ? [ y ]es. The user is

interested in the inequality Pr {perforation } > .80. After a [ y] es response, the system

suggests a possible approach, shown in figure 4.
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The binomial test is an appropriate procedure . To execute the

binomial test , use the menu to complete this statement :

I am interested in testing the null hypothesis that : The probability

of occurrence of the perforation

Pick One

equals some value p

does not exceed pa

is at least p *

Figure 4. A call to the nonparametric data analysis subsystem .

The menu allows the user to select either a two- sided or one-sided test of hypothesis

and is a potential source of error. Beginning statistics students, not realizing that a

null (or empty) hypothesis is chosen to be rejected, might mistakenly choose is at least

p* at this juncture. Here again, some level of statistical competence is required.

Selecting the hypothesis does not exceed p* from the menu using a mouse, the user

obtains for confirmation (figure 5) the statement:

I am interested in testing the null hypothesis that: The probability ofoccurrence ofthe

perforation does not exceed p *.

I am interested in testing the null hypothesis that : The orobability of

occurrence of the perforation does not exceed po

Specify the sample size n - ) 14

Specify a value for p * - ) .80

Specify the number of datum values assigned to the perforation - 11

Figure 5. Hypothesis confirmation and input parameter declaration.

Specify the sample size n. ( 14)

Specify a value for p*. (.80)
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Specify the number ofdatum values assigned to the perforation. [ 11]

The first two "Specify ... " commands determine the appropriate binomial distribution;

the third determines the size of the critical region for the statistical procedure, which

is explained in figure 7, following the system -generated histogram shown in figure 6.

Region of Rejection

Pr (X )

.25

.13

0
Anih

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

х

Figure 6. Statistical graph summary.

The histogram displays the probability of observing exactly n ( n = 0, 14)

armor perforations in fourteen shots if the true (but unknown) Pr { perforation } = .80.

A statistician will readily assimilate this graph. If the user merely looks at it as a plot

involving n rounds in which the light gray region, corresponding to n > 11, holds some

special significance, and it provides some reassurance regarding the unseen

computations, it will have served its purpose here. Figure 7, which appears on the

terminal simultaneously, explains that

The critical level of this test, corresponding to the light gray region, is .69
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This means that if you reject the hypothesis ( The probability of occurrence of the

perforation does not exceed .8 ) you do so with a .69 probability of being in error.

The critical level of this test , corresponding to the light gray region ,

is .69

This means that if you reject the hypothesis ( The probability of

occurrence of the perforation does not exceea .8.) you do so with a .69

probability of being in error .

Would you like to run the binomial procedure again ? in

Figure 7. Explanation and interpretation of results.

Since the investigation began with the assumption (null hypothesis) that the

Pr {perforation } = .80, the evidence collected - eleven perforations, three

nonperforations - is not sufficient to support abandonment of that assumption. A

probability of being in error of .69 is more than a reasonable person would be willing

to assume. And so, the response to the original question, Is the Pr { perforation } >

.80 ? is a qualified no , the qualification being expressed through invocation of the

critical level.

Would you like to run the binomial procedure again ?

At this juncture, an experimenter might well be asking a number of "What if ..."

questions. " What if I had been able to afford three more firings ?" or, "What if I had

observed one more perforation ?" and so on. A response of [y ]es here allows the user

to exercise the binomial procedure directly, without having to respond again to all the

preliminary questions. A (n)o response is given, but this is an excellent place to use

Nonpare's tutorial capabilities to study the sensitivity of the binomial procedure to

modification of parameter values or slight changes in the data.

Are you interested in determining an interval in which the probability p of

occurrence of the perforation lies?

The foregoing analysis suggests that an assertion that the probability of perforation

lies in the interval (.80, 1 ] cannot be made. What interval might be expected to

capture this unknown parameter ? A response of [y ]es causes this question to be

answered, first graphically, as in figure 8 , and then verbally, as in figure 9.
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CONFIDENCE INTERVAL

with 95.0 % Confidence Level

p= .78

A
.48 .94

Figure 8. Display for a 95 % confidence interval.

Figure 8 shows that the Pr { perforation }, whose estimate based on the

fourteen firings is = .78, lies within the interval (.48, .94] with a high level of

confidence. This interval is so broad one can see why the assertion that

Pr{perforation } > .80 is ill-advised. The formal interpretation of the confidence

interval is given as

The probability of occurrence of the perforation is contained in the interval [ .48,

.94 ) with an a priori probability.95 .

Are you interested in determining an interval in which the probability a

of occurrence of the perforation lies ? y

The probability of occurrence of the perforation is contained in the

interval [ .48,94 ] with an a priori probability .95 .

Would you like a confidence level other than 95 ? n

Figure 9. Explanation and interpretation of the confidence interval.

Would you like a confidence level other than .95 ? (no ). The 95% confidence level

was prechosen. A [y ] es response allows the user to control the confidence level. The

session is terminated with a (njo response, shown in figure 9.

At the conclusion of the session the inference engine displays a fact solution

tree for all the intermediate decisions leading to the final conclusion. Buttoning with a

mouse any node of the fact tree produces the logic leading to that location. In figure

10, fact11 was buttoned , and the corresponding trace is displayed beneath the fact

tree. These are features of the inference engine rather than Nonpare, but they are

valuable as diagnostics to the developer and provide some measure of reassurance to

the user.
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4. Conclusions

Nonpare, a consultation system for analysis of data using nonparametric

statistical procedures, has been described; and most of its operational features have

been illustrated. The essence of the system is the rule - based interface with

accompanying software for data analysis and the interpretation of the ensuing

computations. Nonpare is under active development, but its feasibility as an

operational system has been established . Enlargement of the rule -base and the

addition of more statistical procedures is clearly indicated before it can approach its

potential. Not surprisingly, tangential problems in basic research have been spawned

by this effort. A first release is planned for 1989 for field testing.
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Numerical Estimation of Gumbel Distribution Parameters

Charles E. Hall , Jr.

Research Directorate

Research, Development, and Engineer ing Center

U.S. Army Missile Command

Redstone Arsenal, AL 35898-5248

ABSTRACT. The parameters which maximize the log - likelihood function

of the Gumbel distribution were estimated by two different methods . A

der ivative approach was used, which calculated the intersection of the

zeros of the implicit functions obtained from the derivatives of the

log - likelihood function. A direct maximization was also performed.

Both methods yielded positive results .
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EXPERIMENTAL DESIGN AND OPTIMIZATION OF BLACK CHROME

SOLAR SELECTIVE COATINGS

I. J. Hall and R. B. Pettit

Sandia National Laboratories

Albuquerque , NM 87185

ABSTRACT . Some years ago Sandia Laboratories was given the

task of investigating selective coatings for solar applications.

Early experimental results , which were based on one variable at

the time experiments , produced acceptable coatings in the

laboratory . However , when full scaled parts were coated by

commercial electroplaters , the coatings quickly degraded when
heated in air . At this point a systematic approach using a

fractional factorial design was used to determine both the

effects and interactions between several variables , including the

bath composition ( four variables ) , current density , plating time ,

substrate , and bath temperature . Response surface for the

optical properties of the coatings were constructed for both the

as -plated and the thermally aged samples . These response

surfaces were then used to specify ranges for the bath

compositions, and other plating parameters , that provided

coatings with optimum thermal stability . With proper control of

the plating variables , selective coatings were obtained that

should maintain high solar absorptance values during years of

operational at 300 ° C in air .

1 . INTRODUCTION . Two variables are of interest to

selective coating investigators , namely , absorptance ( a ) and
emittance ( E ) . Good selective coatings have high a's and low

E's . In our investigations we concentrated on making a as large

as possible and settling for the corresponding e if it was not

" too big" . The independent variables that effected a and e

divided themselves into two groups (bath variables and plating

variables ) in such a way that a split-plot experimental design
would have been appropriate . The bath variables would have been

associated with the whole plots and the plating variables with
the sub - plots . The bath variables were chromic acid , trivalent

chromium , addition agent and iron . and the plating variables were

plating time , current density , bath temperature , bath agitation

and substrate . For a specified combination of bath variables a

entire set of experiments were possible for the plating variables

as in a split-plot design . Because of many constraints we did run

the experiment as a split-plot design . The dependent variable

readings ( a's ) were obtained by coating a substrate and then

measuring the absorptance with a Beckman Model DK_2A

spectroreflectometer . Readings were obtained for the substrate

both as-plated and as-aged . The as-aged readings were obtained

after the specimens were heated in a 450°C furnace for 40 hours

while the as-plated readings were taken before they were

subjected to any extreme environments . The aged readings were

the most important because we were concerned about the thermal

stability of the coatings , i.e. would coatings not degrade at

high temperature for extended time periods . The experimentation

was done in three phases that are briefly described below .
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2 . Experimentation . Based on previous experience , we

decided that the bath variables were most important and thus we

concentrated most of our efforts on investigating these

variables . The plating variables were set at nominal values . We

used standard response surface methodology to guide us in the

experimentation . ( See Box , Hunter , and Hunter , " Statistics for

Experimenters " , Chapter 15 , 1978 ) The first phase consisted of

running a 1/2 replicate of a 2* factorial experiment on the four

bath variables . The experimentation was done in a rather limited

range of the factor space . The results of this experiment were
used to determine a path of steepest ascent ( Phase two ) . Three

more experiments were done along this line of steepest ascent .

These experiments would normally indicate a region in the bath

variable space that would produce larger a values . In our case

however all the coatings turned grey after a short time in the
furnace - a highly undesirable result . The most valuable

information from these three bath experiments was that a " cliff "

existed in the response surface . Because of time limitations we

did not repeat the experiments along the steepest ascent line .

Based on a combination of engineering judgement and factorial

design methodology , several more baths were mixed and the a's
measured on the coated substrates ( Phase three ) . A total of

eighteen baths were mixed and the results from these baths were

used to estimate a quadratic surface - i.e. a was written as a

function of a second degree polynomial in the four bath variables

and the variable coefficients were estimated using a backward

stepwise statistical package . The final regression equation had

11 terms including the constant term with an R ' = 0.96 . Several

graphs were drawn based on this equation that allowed us to map

out an acceptable region in the bath variable space . This space

was very near the " cliff " in the response surface . A limited

number of experiments also were done involving the plating
variables for a fixed bath . Based on these experiments

we were

able to specify ranges for the plating variables as well .

3. Summary.Using response surface methodology we were

able to determine the variables and the range of variables that

produced stable selective coatings . The procedures developed in

the laboratory were subsequently implemented in a production

environment with excellent results . The close interaction

between the statistician and the experimenter led to a

satisfactory solution with a rather limited number of

experiments .
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DETERMINATION OF DETECTION RANGE OF

MONOTONE AND CAMOUFLAGE PATTERNED FIVE -SOLDIER

CREW TENTS BY GROUND OBSERVERS

George Anitole and Ronald L. Johnson

U. S. Army Belvoir Research, Development

And Engineering Center

Fort Belvoir, Virginia 22060-5606

Christopher J. Neubert

U.S. ArmyMateriel Command

Alexandria , Virginia 22333-0001

ABSTRACT

Field evaluations have determined that camouflage patterns reduce detectability ranges for

uniforms and vehicles in woodland environments. This study identified the effects of three pat

terned and two monotoned Five -Soldier Crew Tents using detection ranges and number of false

detections as determined by ground observers. The distance of correct detections were recorded

along with the number of false detections. An analysis of variance for the detection ranges and

number of false detections was performed. The Duncan's Multiple-Range Test was used to

determine significant differences (a = 0.05) in groups of tents . From this data, it was deter

mined that the three patterned Five -Soldier Crew Tents were more difficult to detect than the

two monotone tents .

1.0 SECTION I - INTRODUCTION

Several years ago , the U.S. Army decided that camouflage patterns have a definite ad

vantage when used on uniforms and vehicles in woodland environments . This had led to a similar

consideration for tents , since the current U.S. Army tents are solid ( i.e. , monotone) color . Tents

present a large , relatively smooth form , making them conspicuous targets . The use of patterns

to break up this signature could increase camouflage effectiveness . However, before such a

judgement could be made , a field test was planned to determine the relative merits of various

patterns versus monotones in a woodland background. The Natick RD&E Center fabricated

three patterned tents and two monotone tents for evaluation . In consultation with Belvoir , the

patterned tents were fabricated in the standard four- color uniform pattern, one in the standard

pattern size and the other two in progressively larger expanded patterns . The two monotone

tents were in colors Forest Green and Green 483 (483 being the textile equivalent of paint color

Green 383) . A test plan " was developed by Belvoir at the request and funding of Natick , and

the field test was conducted by Belvoir at Ft . Devens, Massachusetts, in the summer of 1987 .

This report describes the test and its results .
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2.0 SECTION II - EXPERIMENTAL DESIGN

2.1 Test Targets

Five, Five-Soldier Crew Tents were supplied by Natick for this study in the following pat

terns and colors:

• Tent A - Standard size four -color uniform pattern repeated every 27.25 inches

• Tent B - Forest Green

• Tent C - Expanded four- color uniform pattern repeated every 36 inches

Tent D · Expanded four- color uniform pattern repeated every 50 inches

• Tent E - Green 483

2.2 Test Sites

The study was conducted at the Turner Drop Zone, Ft . Devens, Massachusetts, a large

cleared tract of land surrounded by a mix of coniferous and deciduous trees resembling a central

European forest background. Two test sites were selected . Site # 1 was located on the western

end of the drop zone, so that the morning sun shone directly upon the test tent. Site #2 was

located on the eastern edge of the drop zone, so that the afternoon sun shone directly upon the

test tent. An observation path, starting at the opposite end of the drop zone from the test tent

location, was laid out for each site . Each path followed zig-zag, random length directions toward

its test site, and afforded a continuous line of sight to its respective test tent location . The

paths were within a 30° to 40 ° cone from the target tents, and were surveyed and marked at ap

proximately 50-meter intervals using random letter markers. For Site #2, the distance between

markers after the first 15 markers was about 25 meters along the path. A night evaluation in

volving other camouflage targets led to this procedural change . The markers and distances from

the tents are shown in Tables 1 and 2.
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Table 1

Distances of Markers to Tents for Site # 1

ALPHABET

MARKER

ALPHABET

MARKER

DISTANCE IN

METERS ALONG

PATH FROM

STARTING POINT

TO TENT

S i
s à

Y

Q
9

L L

F

Р

E

к

F !

P :

E '

K :

А

XZD
N
I
C
3
0
0

<+D
a
m
o
n
r
o
x
a
s

:

1,162.64

1,128.57

1,094.00

1,049.93

1,008.07

978.31

947.02

902.75

858.10

817.81

778.91

750.15

709.76

674.87

702.65

677.99

648.46

613.35

602.56

594.57

578.05

561.16

541.70

525.33

505.62

483.64

A '

T '

V '

B '

M '

U

H '

R '

N '

Xх

1 I !

D '

E
n
c
o
n
o

C

O

J

G '

W '

DISTANCE IN

METERS ALONG

PATH FROM

STARTING POINT

TO TENT

464.78

446.74

428.17

413.48

398.46

383.34

364.64

346.27

334.46

322.69

308.59

289.59

281.60

269.08

253.16

235.50

217.81

199.60

178.93

158.76

141.15

120.05

102.34

85.37

62.81

41.84
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Table 2

Distances of Markers to Tents for Site #2

ALPHABET

MARKER

ALPHABET

MARKER

DISTANCE IN

METERS ALONG

PATH FROM

STARTING POINT

TO TENT

DISTANCE IN

METERS ALONG

PATH FROM

STARTING POINT

TO TENT

F

w

U

1,205.36

1,168.83

1,130.58

1,086.03

1,048.10

1,006.15

982.00

974.13

942.37

E

P

H

653.34

613.20

574.09

540.30

513.10

496.46

с

R

V 475.57

O

M

1 901.58

S

F

W '

U

'

:

R '

V

B 869.75

858.01J

L

459.10

417.71

379.40

338.25

296.90

278.53

258.20

220.73

180.87

143.94

Х

G

851.64

841.26

803.95

764.09

723.46

O

D I '

B 'Y

s

T

N

695.32

673.60

111.00

69.76L '

23 Test Subjects

A total of 153 enlisted soldiers from Ft . Devens served as ground observers . All person

nel had at least 20/30 corrected vision and normal color perception. A minimum of 30 observers

were used for each test tent, about evenly split between test sites . Each observer was used only

once.

2.4 Data Generation

The test procedure was to determine the detection distances of the five tents involved by

searching for them while traveling along the predetermined measured paths. Each ground ob

server started at the beginning of the observation path, i.e. , marker S for Site # 1 and marker

F for Site #2. The observer rode in the back of an open 5/4-ton truck accompanied by a data

collector . The truck traveled down the observation path at a very slow speed, about 3-5 mph .

The observer was instructed to look for military targets in all directions except directly to his

rear . When a possible target was detected, the observer informed the data collector and pointed
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to the target. The truck was immediately stopped, and the data collector sighted the apparent

target . If the sighting was correct, i.e. , the Five -Soldier Crew Tent, the data collector recorded

the alphabetical marker nearest the truck. If the detection was not correct, the false detection

was recorded, and the data collector informed the observer to continue looking. The truck

proceeded down the observation path. This search process was repeated until the correct tar

get (tent) was located.

The tents were rotated between the two test sites on a daily basis, until all tents had been

observed by at least 15 observers at each site . (This number of observers allows the use of

parametric statistics which have a good opportunity to yield absolute conclusions) . Their orien

tations with respect to the sun were kept constant at both test sites. The Five -Soldier Crew

Tent was positioned so that a full side was facing the direction of observer approach.

3.0 SECTION III-RESULTS

3.1 Range of Detection

Tables 3, 4, and 5 show the detection data for the Five -Soldier Crew Tents. Table 3 gives

the mean detection range in meters for each tent, and its associated 95 percent confidence in

terval . Table 4 shows the analysis of variance performed upon the data of Table 3 to deter

mine if there were significant differences in the detection ranges, i.e. , if pattern and color had

an effect upon detection range . Table 5 indicates which tent patterns and solid colors differed

significantly from each other in this respect. Figure 1 is a graphic display of the detection ran

ges of Table 3 .

Table 3

Mean Detection Ranges (Meters) and 95 Percent

Confidence Intervals.

STANDARD

ERROR

95 PERCENT CONFIDENCE

INTERVAL

LOWER LIMIT UPPER LIMITTENT N MEAN

31 327.54 280.68

30

A

B

с

D

E

127.75

173.74

129.42

161.79

214.94

32

30

30

427.71

351.17

387.12

674.88

362.83

304.51

326.76

594.62

374.40

492.58

397.83

447.59

755.14
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Table 4

Analysis of Variance for Tent Detection

Across Five Levels of Color Variation

DEGREES

OF

SOURCE FREEDOM SUM OF SQUARES MEAN SQUARE F - TEST SIG LEVEL

4 22.0083 0.00 *TENT COLOR

ERROR

TOTAL

2,377,907.968

3,983,214.260

6,361,122.228

594,476.9927

26,913.6099148

152

* Significant at a less than 0.001 level.

Table 4 indicates that there are significant differences in the ability of the ground observers

to detect the Five-Soldier Crew Tents in different four - color patterns and solid colors

755.1411

*

594.6183

R
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E
T
E
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T
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N

(M
E
T
E
R
S

)

785

770

755

740

725

710

695

680

665

650

635

620

605

590

575

560

545

330

SIS

SOO

485

470

455

440

425

410

395

380

365

350

335

320

305

290

275

260

492.5799

447.5931

397.8280

374.3987

*

362.8314

326.7615

304.5039

280.6794

B с D E

FIVE SOLDIER CREW TENTS

Figure 1. Mean Ranges of Detection and 95 Percent

Confidence Intervals for Five -Soldier Crew Tents
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Table 5

Duncan's Multiple-Range Test (Range of Detection)

SUBSET 1

GROUP MEAN

SUBSET 2

GROUP MEAN

SUBSET 3

GROUP MEAN

А с E 674.88327.54

351.17с D

351.17

387.12

427.71D 387.12 B

The harmonic mean group size is 30.58 . The subsets are significant at a = 0.05

The Duncan's Multiple-Range test separates a set of significantly different means into sub

sets of homogeneous means. One of the assumptions is that each random sample is of equal

size . Since this was not true, the harmonic mean of the group was used as the group size . As

seen above, the range of detection was the shortest for tents A, C, and D and these tents do

not differ significantly from each other (a = 0.05) . Tent E had the longest mean range of detec

tion and is significantly (a 0.05) different from the other 4 tents in this respect.

3.2 False Detections

The number of false detections is defined as the number of times a target other than the

test target is detected by an observer. In this study such detections are rocks, trees , shadows,

etc. These detections, as a rule, are a function of how hard it is to detect the test target . The

more difficult the detection task, the greater the number of false detections . Tables 6 , 7 , and

8 show the false detection data. Table 6 gives the mean false detection value, and its associated

95 percent confidence interval, for each of the Five -Soldier Crew Tents . Table 7 contains the

analysis of variance performed upon the data of Table 6 to determine if there were significant

differences in the rate of false detections . Table 8 indicates which tent patterns and colors had

significant rates of false detection .

Table 6

Mean False Detection Rates and 95 Percent Confidence Intervals

Standard

Error

95 Percent Confidence

Interval

Lower Limit Upper LimitTent N Mean

31 4.87 3.27 3.67 6.07

30 3.53

m
o
n

0
0
>

3.38

2.53

1.96

2.76

4.48

4.0832

30

2.59

2.67

2.833.87 4.90

3.2130 2.50 1.91 1.79
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Table 7

Analysis of Variance for Rates of False

Detection across Five Levels of Color Variance

DEGREES

OF

FREEDOMSOURCE SUM OF SQUARES MEAN SQUARE F -TEST LEVEL

4 90.086 22.521 3.50 0.009TENT COLOR

ERROR

TOTAL

148 6.44953.417

1043.503152

Significant at less than 0.01 level.

Table 7 indicates that there are significant differences in the rates of false detection for

the Five -Soldier Crew Tents.

6.0717

S 4.8986

4.4776

4.0829

3.6702

F
A
L
S
E

D
E
T
E
C
T
I
O
N

*

3.1211

28348

2.5890
26671

1.7878

E

FIVE SOLDIER CREW TENTS

Figure 2. Mean Rates of False Detection and 95 Percent

Confidence intervals For Five -Soldier Crew Tents
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Table 8

Duncan's Multiple -Range Test

(Rates of False Detection)

SUBSET 1

GROUP MEAN

SUBSET 2

GROUP MEAN

B 3.532.50

3.38 D 3.87

4.873.53 AB

D 3.87

Harmonic mean group size is 30.58.

The rates of false detection for tent groups E, C, B, and D, and B, D, and A were not sig.

nificantly different (a = 0.05) . However subset 1 is significantly different from subset 2 .

4.0 SECTION IV . DISCUSSION

The Duncan's Multiple -Range Test (Table 5) shows that the group of Five-Soldier Crew

Tents A, C, and D had the shortest detection range. Tent A is the standard size woodland

uniform four- color pattern, while Tents C and D are expansions of this pattern . The pattern at

Tent A is repeated every 27.25 inches, the pattern for Tent C is repeated every 36 inches, and

the pattern for Tent D is repeated every 50 inches . Tents C, D, and B are significantly different

from each other. Tent B is solid color, Forest Green. Tent E, which is not solid color Green

483, had the longest mean detection range (674.89 meters) , and this is significantly (a = 0.05)

longer than any of the other means for the Five-Soldier Crew Tents. Thus, it can be concluded

that the patterned tents are harder to detect from ground observation, but that the pattern

should not be expanded beyond the repeat of every 36 inches . The human eye is probably resolv

ing the larger pattern repeated every 50 inches as being different from the tree and bush back

ground (the color brown, in particular, becomes distinguishable from the woodland background

when overexpanded) .

When working with detection ranges, the question of field data stability is always paramount

to the amount of weight that can be given to the test conclusions. One of the best methods to

determine data stability is through a test- retest procedure. Field studies are very expensive and

time consuming, so this data is very rare. We do have such an opportunity to examine this type

of data for the Turner Drop Zone . A ground evaluation of camouflage nets was conducted in

the summers of 19853 and 19874. The net sites and test procedures were identical to the sites

and test procedures in which the Five-Soldier Crew Tents were evaluated. In both net studies ,

the standard camouflage net was evaluated. In 1985 this net had a mean detection range of

411.75 meters, while in 1987 the mean detection range was 414.41 meters . This difference in

mean detection range is only 2.66 meters . From these results, it is inferred that the mean detec
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tion ranges for the Five-Soldier Crew Tents are stable, and solid conclusions about their

camouflage effectiveness can be made.

The analysis of false detections seen in Table 8 and Figure 2 also lends credence to the

belief that the Five-Soldier Crew Tent A had the best performance as to camouflage effective

ness, with Tent E the worst performance. In the following discussion of false detections in Sec

tion 3.2, it would be expected that Tent A, being the hardest to find, would have the most false

detections, and Tent E the least number of false detections. This is exactly what occurred, with

Tent A having a mean false detection rate of 4.87, and Tent E a mean false detection rate of

2.50. Duncan's Multiple-Range Test (Table 8) shows that the two rates of false detection dif

fer significantly (a = 0.05) from each other . The false detection rates of tents B, C, and D are

not in the expected ordinal position . The expected order, based upon mean range of detection,

would be B, D, and C, while the true order of rates of false detection is C, B, and D. However,

a check of Tables 5 and 8 shows that these tents are not significantly different from each other

either for range of detection or for rate of false detection. Thus, from a statistical view, these

three tents are considered to have the same ordinal position.

5.0 SECTION V -SUMMARY AND CONCLUSIONS

Five, Five -Soldier Crew Tents were evaluated by ground observers to determine their

camouflage effectiveness as measured by the mean detection range and the mean rate of false

detection . These tents were in the following four -color camouflage patterns and solid colors :

• Tent A - Standard size four -color uniform pattern repeated every 27.25 inches .

• Tent B · Forest Green

• Tent C - Expanded four- color uniform pattern repeated every 36 inches

• Tent D - Expanded four- color uniform pattern repeated every 50 inches

• Tent E - Green 483

A minimum of 30 ground observers per Five-Soldier Crew Tent were driven toward each of two

sites on marked observation trails in the back of an open 5/4-ton truck . The observers were

looking for military targets, and they informed the data collector when they thought they saw

one. If the detection was correct, the closest alphabetic ground marker to the truck was recorded.

From this letter , the distance to the tent from the truck was determined. If the detection was

not correct, i.e. , false detection, it was noted on the data sheet. The ground observer then con

tinued the search, with the truck traveling down the observation path until the test target was

seen. An analysis of the resulting data provided the following conclusions :

A. Five-Soldier Crew Tent A was the most camouflage effective, with the lowest mean

range of detection and highest rate of false detections.

B. Four-color pattern Five -Soldier Crew Tents are more camouflage effective than solid

colors .
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C. The expanded four- color pattern, repeated every 50 inches, is too large to be effective

in denying detection . (The color brown becomes distinguishable from the woodland background

when overexpanded) .

D. The solid colors Green 483 and standard Forest Green should not be used.

E. The mean range of detection data appears to be very stable. A test-retest field study

using identical sites and test procedures in the summers of 1985 and 1987 involving the stand

ard camouflage net yielded mean detection ranges of 411.75 and 414.41 meters respectively.
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ABSTRACT

The Probability and Statistics Branch of the Ballistic Research Laboratory was asked to

develop a procedure of acceptance testing for armor packages. Because the available sample

sizes were extremely small, wewere unable to identify a sampling plan directly applicable to

this problem . Accordingly, we have devised a new procedure by adapting an existing tech

nique, known as chain sampling, to both the attribute portion ( structural integrity) and the

variable portion (penetration depth ) of the acceptance testing process. Operating charac

teristic curves and power curves are presented for this procedure, and suggestions are made

concerning the simultaneous use of quality control charts.
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I. INTRODUCTION

In most cases a consumer's decision concerning whether or not to accept a manufac

tured product is based on an examination of a sample from that product. When General

Mills introduces a new pre -sweetened breakfast cereal, they spend millions of dollars in

advertisement costs with the hope that the consumer will sample it. Here, the consumer con

siders the entire supply of this new cereal as a single manufactured lot, to be accepted or

rejected. Product acceptance, in this case, corresponds to the consumer purchasing more

boxes of the new cereal.

This is merely an everyday example of what is known as acceptance sampling, that is,

various techniques which allow for discrimination between an acceptable product and an

unacceptable one. Sampling may be based on an attribute criterion, a variable criterion, or

some combination of these. In our example the consumer may judge the sweetness of the

cereal as satisfactory or excessive ( attribute ), or he may measure the time in milk before the

cereal becomes soggy (variable ). Sampling by attributes is a dichotomous situation in that,

based on a particular attribute, each item is either defective or non - defective; rejection occurs

if there is a high percentage of defectives in the sample. Sampling by variables establishes an

acceptable level of a particular variable, and rejection occurs if its sample value crosses the

acceptable threshold . Of course, in our example of a box of cereal, the sample size was one.

Generally, this will not be the case ; but occasionally, for one reason or another, the consumer

is forcedto make a decision based upon a very small sample size.

Because decisions are made from samples, there is some risk of error, either the error of

accepting a bad product or the error of rejecting a good product. The amount of protection

desired against such risks can be specified. The Acceptable Process Level ( APL) is a high

quality level that should be accepted 100 ( 1-2 ) % of the time; a is thus defined to be the

producer's risk. The Rejectable Process Level (RPL) is a low -quality level that should be

accepted only 100 (B ) % of the time; B is thus defined to be the consumer's risk . Unfor

tunately, these error factors vary inversely; that is, as the consumer's risk grows, the

producer's risk diminishes and vice versa. The Operating Characteristic (OC) curve is an

important part of any acceptance sampling plan, since it provides a graphical display of the

probability of accepting a product versus the value of the particular parameter being

inspected. The OC curve is a function of APL, RPL, a , and B, as well as sample size. Given a

particular acceptance sampling plan, the OC curve depicts the associated error risks and

demonstrates the relationship among all of the variables.

The US Army Ballistic Research Laboratory ( BRL) has developed acceptance sampling

plans for armor packages. These plans were briefed to the Project Manager M1A1 on 14

April 1988 at Aberdeen Proving Ground, Maryland. Their general structures were accepted

with the guidance that the processes would be officially adopted pending some refinements.
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II. CHAIN SAMPLING

Numerous sampling techniques exist, each with special properties that make it applica

ble to particular situations. Sampling plans reviewed in the literature required sample sizes

much larger than those feasible for armor testing. In our case extremely small sample sizes

were warranted due to the expense of both the armor and the testing procedure, augmented

by the destructive nature of the test itself. Accordingly, we have devised a new procedure by

adapting an existing technique, chain sampling, for use in this project.

Chain sampling is particularly appropriate for small samples because it uses information

over the past history of production lots. Even with small samples, it is possible to accept a

marginal lot provided that a given number of lots immediately preceding ( i.e., the chain ) were

acceptable. When a consumer uses an expendable product such as the breakfast cereal in our

previous example, he utilizes chain sampling in his decision of whether or not to subsequently

purchase the same product. If the first or second box he buys is unacceptable, he will prob

ably discard the product forever. However, if the tenth box is unacceptable, he might con

tinue with one more purchase of the same cereal taking into consideration its past history of

nine boxes of acceptable quality.

An advantage of chain sampling is its automatic incorporation of reduced or tightened

inspection procedures when applicable. That is, as quality remains acceptable over a period

of time and our confidence grows, the sample size is reduced ( or, more accurately, samples

are taken less frequently ). If quality becomes marginal, inspection is tightened by taking sam

ples more frequently. When quality diminishes to the point where a production lot must be

rejected, the production process is stopped and necessary adjustments and corrections are

made. At that point a new chain begins and continues as before.

Certain assumptions must be made before chain sampling is considered as a sampling

technique. In particular, production should be a steady, continuous process in which lots are

tested in the order of their production. Also, there should be confidence in the supplier to

the extent that lots are expected to be of essentially the same quality. Generally, a fixed sam

ple size will be maintained with the investigator taking more or fewer samples as tightened or

reduced inspection is dictated .

III. ACCEPTANCE SAMPLING PLAN

The armor packages tested at the BRL consist of a right side and a left side, which are

designated as one set. One month's production is considered to be a production lot. Every

month we continue testing one set at a time until a decision can be made about that produc

tion lot. For a given set, one shot is fired into each side; and, if spacing on the target permits,

a second shot follows. In each of the first three months, a total of at least four shots is

required in order to make a decision concerning that month's production. This provides addi

tional confidence during the early stages of the plan. There are two portions of the accep

tance sampling plan. The first is structural integrity, handled using attribute methods; the

second is depth of penetration of a particular round fired into the armor, handled using vari

able techniques. For both portions, decisions concerning a production lot should be based

upon the data from all available shots on that lot.
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A combined chain sampling plan was proposed. The maximum length of the chain was

fixed at eight, meaning that after the chainhas been established, we will consider the current

set along with the seven immediately preceding. While the chain is growing, there is an area

between the criteria for acceptance and rejection in which we can make no decision. At least

one set will be tested each month; but if no decision can be made, tightened inspection will

dictate the examination of additional sets, possibly up to a maximum of eight. Table 1 shows

the relationships among months, sets, andshots for this particular procedure. Note that the

maximum number of sets and, hence, the maximum number of shots decrease over time as

the chain is being formed. Following the third month and the concurrent drop in the

minimum number of shots, then when the chain is at its full length (definitely by the eighth

month), oneset and at most four shots are all that is required in order to make a decision for

each subsequent production lot.

A rejection in either the structural integrity or the penetration depth will result in overall

rejection of the production lot. In that case production is stopped, adjustments and correc

tions are made, and testing resumes with the construction of a new chain . If neither measure

results in a rejection but at least one falls within the no - decision region, another set should be

examined and both categories re -evaluated using the additional data .

A. Acceptance Sampling by Attributes

Projectiles are fired at these packages, which are then inspected for structural integrity.

With attribute sampling, only two outcomes are possible. The structural integrity is assessed

to be either defective or non - defective, regardless of the number of shots. Any decision to

either accept or reject a lot is based on the number of defective plates in the sample being

considered

Chain sampling is employed in this attribute sampling plan. Results from the most

recent eight sets influence decisions regarding a lot. A lot can be either accepted or rejected

at any time (except for one case discussed in the next paragraph ). In the early stages of sam

pling there is also an area in between acceptance and rejection where no decision is rendered

immediately but sampling is continued. After a chain reaches its full length of eight sets, a

decision to accept or reject is made immediately.

In the sampling plan, a safeguard is built in to prevent rejection of a good lot after only

one set. If there are no defectives in the first set, the lot is accepted. Otherwise, no decision

is made. Subsequently, rejection would occur only when there were three or more failures in

the most recent eight sets.

Table 2 shows the decision rules for a chain building to a maximum length of eight. The

OC curves for this plan are depicted in Figure 1. It shows that for a chain at full length, the

probability of accepting a lot whose true defective rate is 5% is equal to 0.96, while the proba

bility of accepting a lot whose true defective rate is 10% is equal to 0.79. Power curves for

the plan are depicted in Figure 2. For a chain at full length, the probability of rejecting a lot

from a process whose true defective rate is 5% is equal to 0.04, while the probability of reject

ing a lot whose true defective rate is 10% is equal to 0.21 . (Note, if these probabilities are

deemed to be unsatisfactory, a different plan providing more satisfactory levels could be

developed by varying the maximum chain length or modifying the decision rules).
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TABLE 1. Relationships Among Variables in Chain Sampling Procedure

Required Sets

Minimum Maximum

Required Shots

Minimum MaximumMonth

1 1 8 4 32

2 1 7 4 28

3 1 6 4 24

4 1 5 2 20

5 1 4 2 16

6 1 3 2 12

7 1 2 2 8

8 1 1 2 4

9 1 1

N

4

k 1 1 2 4
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TABLE 2. Decision Rules for Acceptance Sampling by Attributes.

DECISION RULES

SET

NUMBER ACCEPT REJECT NO DECISION

1

1

f, = 0 f, Σ1

2 2 2

2
Σ f = 0 Σ fΣ3 1 < Σ f; < 2

1 = 1 i - 1 i = 1

5 5 5

5
Σ f = 0 Σ f;Σ3 1 < Σ f < 2

i = 1 i - 1 1 = 1

6 6 6

6
Σ f < 1 Σ f, Σ3 Σ f = 2

i= 1 i = 1 i = 1

7 7 7

7
Σ f < 1 Σ f, Σ3 Σ f = 2

1 = 1 1 = 1 1 = 1

8 8

8

Σ f < 2 Σ f:Σ3

----

i - 1 i - 1

9 9

9
Σ f; < 2 Σ fΣ3

1 = 2 1-2

k k

k

Σ f < 2 Σ fΣ3
O.O.

i = k - 7 isk- 7

f, = number of failures in set i
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B. Acceptance Sampling by Variables

When primary interest is in a process level rather than a percent defective, sampling by

variables is the proper procedure. For the armor packages, depth of penetration for a partic

ular munition was the process level of interest. When variable sampling plans are established,

two major assumptions must be satisfied : first, the distribution of the variable of interest

must be known; and second, a good estimate of its standard deviation must be available.

In our particular problem there were 22 baseline shots from which we were to determine

a distribution and estimate its standard deviation, as well as establish acceptable and reject

able process levels (APL & RPL ). The 22 shots had a mean( X ) of 5mm with a standard

deviation (sy) of 30mm . The data had been transformed, allowing for both positive and nega
tive penetration values. When plotted, the data appeared normal; and, indeed, the hypothesis

of normality could not be rejected using statistical goodness-of-fit tests. The APL was esta

blished at 20mm ( 1/2 baseline standard deviation from the baseline mean) and the RPL was

set at 80mm (2 1/2 baseline standard deviations from the baseline mean ). as the probability

of rejecting at the APL was set at 0.05; and B, the probability of accepting at the RPL , was

allowed to vary with the sample size -- for a sample of size four, B would equal 0.10 .

As in the attribute case, a set consists of a right side and a left side. For each set an

attempt will be made to fire a second round into each side. Because this might not always be

possible, due primarily to discrepancies between the aim point and the hit location, each set

can result in either two, three, or four data points, depending on whether or not both shots on

each side are considered to be good hits. It is important that during the first three months,

while the chain is being formed, at least four shots are available upon which to make a deci

sion . Table 3 outlines the decision rules for the variable sampling plan. Like the attribute

sampling plan, it incorporates chain sampling with a maximumlength of eight sets. The plan

will not reject based on the first sample, and it has a region of no decision until the chain

reaches its full length. In this table, X represents the mean penetration depth for all shots

currently considered , s represents the standard deviation of this sample, n is the total number

of shots used in computing X , and t.9s represents the 95th percentile of the t-distribution for

the appropriate degrees of freedom ( n - 1). Thus, n can vary from 2 to 32 depending upon the

length of the chain and the number of shots available on each side of the armor package.

Because n varies so widely, any one of many OC curves may be applicable. Figure 3

shows these curves for sample sizes 2 , 32, and many integers in between. The abscissa value,

D, represents a multiple of sy from Xy; thus, the numbers in parentheses are the penetration

depths in millimeters. Note that for all n , the probability of accepting at the APL is 0.95

( 1-a ). Because the probability of accepting at the RPL is too high for n=2 and n =3, the pro

cedure will not allow lot acceptance at these small sample sizes (see Table 3). Table 4 pro

vides the values for the t- statistic for ( 1- a )-levels of 0.99 and 0.95 and degrees of freedom

from 3 to 31.

Power curves show the probability of rejecting a particular lot. Generally, they are noth

ing more than the complement of OC curves. However, for our procedure this is not the

case, since there is a region of no decision . Figure 4 shows the power curves for this variable

sampling procedure. Basically, there are two sets of curves -- the first two pertaining to a =

0.05 and the next three pertaining to a = 0.01. Note from Table 3 that in order to reject
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TABLE 3. Decision Rules for Acceptance Sampling by Variables.

DECISION RULES

SET

NUMBER ACCEPT REJECT : NO DECISION

1 ( n < 4)

-
-
- ALL

X - APL X-APL

1 ( n = 4) < t.95
-719> t 95

siva s /n

X-APL X -APL

2 ( combine with 1 ) < t.95 <

.
.
.

> tt.95

s /n s /n

X-APL X -APL X -APL

3 (combine with 1,2) - > 1991.992St.95 > t 95

siva siva s /n

X.APL X -APL X.APL

7 ( combine with 1-6) < t 95 - >19911992 > t gi

s /n s / vn s /va

X -APL X -APL

8 ( combine with 1-7) < t .95
- >tوک

-
-
-

siva siva

X.APL X -APL

9 (combine with 2-8) stos >اود

.
.
.

siva siva

X-APL X APL -74,95k ( combine with ( k -7 ) - (k - 1)) <tوک

.
.
.

s /n siva

At least four shots are required in each of the first three months;

otherwise, regard as "No Decision".
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TABLE 4. Values of the Cumulative t - Statistic

Degrees of Freedom

(0-1)

( 1- a ) - level

0.95 0.99

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

2.35

2.13

2.02

1.94

1.90

1.86

1.83

1.81

1.80

1.78

1.77

1.76

1.75

1.75

1.74

1.73

1.73

1.73

1.72

1.72

1.71

1.71

1.71

1.71

1.70

1.70

1.70

1.70

1.70

4.54

3.75

3.37

3.14

3.00

2.90

2.82

2.76

2.72

2.68

2.65

2.62

2.60

2.58

2.57

2.55

2.54

2.53

2.52

2.51

2.50

2.49

2.49

2.48

2.47

2.47

2.46

2.46

2.45

*This table is abridged from Tables of the Probability Integral of the Central t-Distribution

by R.E. Mioduski, BRL TechnicalNote # 1570, August 1965.
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before the chain is at its maximum length, we use the smaller o -level, and Figure 4 shows

some possible sample sizes for a = 0.01. If we reject at an a -level of 0.05, our sample size

must be somewhere between 16 and 32; and these curves are also shown in Figure 4. Gen

erally, the power curves are of more interest to the producer than the OC curves, since they

highlight the producer's risk.

C. Quality Control Charts

Variations in the manufacturing process are either random or assignable. A process is

" in control" when only random variations are present. Assignable variations, if uncorrected,

may eventually result in rejection of a manufactured lot. However, they can often be

identified through the use of quality control charts.

A quality control chart is a graphical comparison of test data with some previously com

puted control limits. The most common quality control chart is the Shewhart chart, named

for its originator, Dr. Walter A. Shewhart. Figure 5 is a Shewhart control chart for mean

penetration depth, the variable of interest in our armor package acceptance sampling plan.

The APL is the central line with an upper control limit equal to the RPL two baseline stan

dard deviations away from the APL If we were concerned about extremely low penetration

depths, we would incorporate a lower control limit as well. Assuming a normal distribution

with parameters equal to those of the baseline data implies that if only random variations are

present, 99.38% of the time the mean penetration depth of the sample will fall below the

upper control limit. This leaves a false- alarm frequency of less than 1% ( 0.62 % ) - so low that

this control limit seems to be a reasonable threshold to distinguish between random varia

tions and assignable variations.

The mean penetration depth is plotted for consecutive sets of armor plate. If, over a

period of time, we see a drifting toward the control limit, the process can be examined and

adjusted. This might possibly eliminate some future rejection ofan entire lot.

A similar chart should be constructed for the range of penetration depth within the sam

ple, to insure that the variability of the armor packages is not increasing. A third chart for

structural integrity, the attribute of interest in our acceptance sampling plan, would also be

useful. In each case appropriate upper control limits must be established.

Over the years alternative quality control charts have emerged, each with their own set

of advantages and disadvantages. One of the most popular has been the cumulative sum con

trol chart ( cusum chart). Here, decisions are made based on all the data rather than just the

last sample. An advantage of the cusum chart is that it often displays sudden and persistent

changes in the process mean more readily (that is, with fewer samples and less expense) than

a comparable Shewhart chart. However, control limits are somewhat less intuitive and,

therefore, more difficult to establish . Somewhere in between the Shewhart chart and the

cusum chart are quality control charts that use some, but not all, of the past data. Many of

these techniques incorporate a weighting factor, providing more weight to the most recent

data .
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It is important that some type of quality control charts be represented in the acceptance

sampling plan. They are relatively easy to maintain and might provide early warning signs

which could be beneficial to both the producer and the consumer .

IV . CONCLUSIONS

Generally, it is not feasible for a consumer to inspect every item from a production lot

that he might want to purchase. A judicious choice of a lot acceptance plan will allow him to

sample the production lot and determine with a pre-established level of confidence whether

or not it meets his specifications. Chain sampling is a particular method of lot acceptance

sampling used when sample sizes are small. It utilizes the most recent lot information to pro

vide more confidence in the decision .

In testing armor packages for acceptance by the US Army, chain sampling provides a

logical method, since destructive testing dictates small sample sizes. A technique involving

both structural integrity (attribute sampling) and penetration depth (variable sampling) has

been proposed. One set of armor packages is represented by both a left side and a right side.

The procedure allows for accepting the production lot (one month's production ) after exa

mining just one set. It allows for rejecting the production lot only after testing at least two

sets . There is a region of no decision ; but after the chain has reached its maximum length of

eight sets, a decision must be rendered.

Operating characteristic curves and power curves provide the probability of accepting

and rejecting lots given a percent structurally defective ( attributes) and given a mean penetra

tion depth (variables).

In addition to the acceptance sampling plans, control charts should be used for both the

attribute and variable parameters. These charts display sample results for particular parame

ters such as percent defective, mean penetration depth, and variability of penetration depth.

The data might be presented as individual sample points or as sums over a preceding number

of samples. By continually examining the control charts, we can see when one of the parame

ters is drifting toward the rejection region, enabling the producer to make adjustments and,

possibly, preventing rejection of an entire lot of armor plate.

The proposed lot acceptance plan was briefed to the Project Manager M1A1 on 14 April

1988 at Aberdeen Proving Ground, Maryland. It was approved and will be adopted subject to

any refinements agreed upon by both the US Army Ballistic Research Laboratory and the

Project Manager.
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SOME NOTES ON VARIABLE SELECTION

CRITERIA FOR REGRESSION MODELS

( AN OVERVIEW )

Eugene F. Dutoit

U.S. Army Infantry School

Fort Benning , Georgia

Abstract . There are several decision rules for determining when

to enter additional independent variables into linear multiple

regression . Three of these are : ( 1 ) examining the incremental

significance in the multiple correlation coefficients , ( 2 )

Mallows ' ce statistic to determine the best combination of

independent var iables , and ( 3 ) considering the changes in

magnitude of the standard error of estimate . This paper will

examine some of the interrelationships between the three methods

cited above . These relationships will be applied to a data set

and the results presented .

Acknowledgement . The author wishes to thank Professors Ron

Hocking and Emanuel Parzen for their comments and suggestions .

It is this spirit of freely shared ideas that makes these

" Design of Exper iments Conferences " valuable to Army

statisticians .

1 . The Problem .

Given experimental data in the form :

Y Х , X2 Хэ X

Y , X 11

X21

Xon

Ya

Y =

X , z

X22

Xoa

X າ

Xə

Хээ

Xia

Xza

Xoa

.

.

Yn Xno Xna Xna Xna

where (X1 , X2 , Xo , X ) are candidate

independent var i ables ( that make sense according to some

theoretical bases ) and Y is the dependant var iable . The

researcher wants to form some model

Y ' : b , X. ( 1 )

i = 1

where K< 9 . This would indicate the model ( equation 1 )

consisted of the best set of candidate independent variables .

This paper will provide an overview of the following measures

and criteria in order to shed some light on this problem .
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2 . The Multiple Correlation coefficient . ( R2 )

Inor emental Significance . The well known test for the

incremental significance in R2 by adding an additional

independent var i ablevariable X , into equation ( 1 ) is :

F : ( 2 )(RP.1.3....kı - Ray.1.2...ka) 1 (ki - ka)

Rzy .y.1,2 , ...K . ) L ( N - K , 1 )

where ki = number of independent var iables for larger R2

ka = number of independent var i ables for smaller R2

= larger R2

R ? 2 ... : smaller R2

N = number of cases

Rzy :
. . .k 1

Y. .be

The test follows an F distribution with degrees of freedom equal

to ( ko ka ) , ( N ko - 1 ) .

in

b . Adjusted R2 . As independent var i ables are added to

equation ( 1 ) , the value of R2 will also increase . This

increase may be small ( i.e. , statistically not significant ) .

order to account for this mathematical increase in Rz , the

so-called shrinkage formula is used to calculate an adjusted

R2 as :

R2 adj = RPK ( 3 )k ( 1 R ? )

N K - 1

where k : number of independent var iables in regression .

N = number of cases .

3 . Mallows ' Cp Statistic . Myers ( reference 1 ) presents the Cp

statistic in the following form :

Cp = p + ( S2 @ 2 ) ! N
@ 2

p) ( 4 )

where p = K + 1

99

= estimated variance of the complete model ( i.e .;

all independent var iables included ) .

the candidate ( subset )sa • estimated variance of

model .

N = number of cases .

ģ2 and 52 are obtained as the residual mean squares from

the regression ANOVA .

The following interpretation is based on the discussion from the

Myers ( reference 1 ) text :
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Figure 1

c
o

Ce -

4M
N

A.

B.

1 C

1 2 3 4

P

Reference to equation ( 4 ) shows that if 52 < § 2 , the plot

of Cp will fall below the line cp = p . The above inequality is

desirable for it states that the variation about some subset

regression model is less than the variation about the full

Only point c in the above diagram meets this condition .

This concept will be discussed in the following paragraph

concerning the standard error of estimate about regression . It

should be noted that if { S2 = 92 } , then equation ( 4 ) becomes

Cp = p . This is always the case for the full model . An

alternative format for Cp is given by Daniel and Wood ( reference

2 ) as :

[ N - 2 pl ( 5 )Сp = RSS .

i2

where p = k + 1 ( as before )

RSS = residual sum of squares with k independent variable

( p parameters )

ô

before ) .

residual mean square of the complete model ( as

toIt can be shown ( not here ) that equation ( 5 ) is equivalent

equation ( 4 ) .

ЗА . Another Alternative Form for Co.

variables , the total regression model

Given a independent

is :

î
+ b X 1 + baX2 + ... + baXa ( 6 )

The regression ANOVA table is presented below as Figure 2 .

Figure 2

Regression ANOVA Full Model

Source DF SS MS

Explained 9 ( N- 1 ) ( 52y ) ( R2 )

Residual ( N - 9-1 ] Say1 *aN -9-1

N - 1

52v1a
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The model with k independent var iables : where k < a is :

Î = a + bix , + b2 X2 + ... bm: Xma ( 7 )

The regression ANOVA table is given in Figure 3 .

Figure 3

Regression ANOVA - Subset Model

Source DF SS MS

Explained k ( N - 1 ) (S2 ) (Rm)

Residual ( N -K- 1 ] Say1 ** 5² ,N - K - 1

N - 1

У 1xit:

where

(SP ) ( 1 - R :)Say1 X = N - 1

N- K - 1

( 8 )

( S2 ) ( 1 - R )Syix , = N- 1

N -9-1

Referring to the Myers format of Cp ( equation 4 )

substituting equations ( 8 ) for 52 and ĝ 2 :

Cp = ( k + 1 ) + ( Say IX SPYTX ) ( N - k - 1 )

S2ye

Further substitution ( reference equations ( 8 ) ) and s

algebra yield another format for the cp test :

Cp = ( N - 2k 2 ) ( 9 )( N -9-1) ( 1 -R2 . ) -

( 1 - R ? )

Note that in various forms the cp test can be expressed as a

function of R2 , Say X , N , 9 , k . This leads to another

independent decision method , namely the standard error of

regression ( Sylx ) .

4 . Sy IX ... When performing step -wise regression , the value of

S2Y1X usually gets smaller as independent variables are added

to regression . In other words

S2Y1X > SPY I X6 +1 ( usually ) . ( 10 )

However , this is not always the case . The ratio is actually

V

SPY IX

S2Y IX 1

1

( 11 )

Note that equation ( 4 ) allows for cases where some subset model

has less var iance ( 52 ) than the variance for the complete
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model (@ 2 ) . in this case the co plot is below the line

( i.e .; point C in Figure 1 ) .1 ) . This can be expressed in Figure 4 :

Figure 4

SylXw.

Minimum value of Sy ] Xor

해 54.1 2 3 k

The minimum value in Figure 4 corresponds to point C in Figure

1 . The subset of regression that has minimum variance would be

the best predictor of the dependent variable Y. The ratio

described by equation ( 11 ) can be rewritten to gain some insight

to the process . From equations ( 8 ) the following expressions
can be inferred :

SPYIX ( S2x ) ( 1 - R ?.:)N - 1

N - K - 1 ( 12 )

SY IX 1 ( S2Y ) ( 1 - RALE )N- 1

N- K - 2

The ratio in inequality ( 11 ) now becomes :

( 13 )SPYIXw == k( N- K - 2 ) .

SZY I X.21 ( N - k - 1 )

1 - Rak

1 - R ? ... + 1

where < 1N - K - 2

N- K - 1

and 1 - R ? > 1

1 -R2 + 1

Therefore , the value of the ratio cited as inequality ( 11 )

will depend on the magnitudes of the ratios shown above .
Note

that equation ( 3 ) ( R .. ; ) contains a shrinkage factor with

terms ( 1 - R ? :) and ( N - K - 1 ) . These terms are also contained
in equation ( 13 ) . Intuitively it appears that the adjusted

correlation coefficient ( R2 ... ) should be a maximum for the

subset of regression where S2Y1X is a minimum . The value of

Co should also be minimum for the same subset of independent
variables .

5 . Example The following example was taken from Myers

( reference 1 ) . It is found on page 110 , Table 4-1 . The example

uses sales data for asphalt shingles obtained from ( N = 15 )

districts . The variables considered in this example are :
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X 1

X2

X₂

X

Y

Number of promotional accounts .

= Number of active accounts .

Number of competing brands .

= District potential .

• Sales in thousands of dollars .

The results of a step wise regression are given below :

Figure 5

Stepwise Results

STEP

1

2

3

4

VARIABLE

3

2.3

1 , 2 , 3

1 , 2 , 3 , 4

SY | X *

49.99

6.67

4.98

5.12

ADJ R2 *

.609135

.99303

.99612

.99590

р

2

3

4

5

Co *

1227.1

11.4

3.4

5
2

Notice that the last step ( number 4 ) has a Cp value equal

( 5 ) . This is always true for the full model . Also note that

step 3 is the best subset regression . It isIt is this step

( var iables X1 , X2 , X3 , ) where the values of Syl x and cp

are minimum and adjusted R2 is maximum .

The results of all var i able cases is presented in Figure 6 .

The combination shown in step 11 is the best subset regression .

It is the same combination of optimum values of R2adj, Syl

and Cp ( variables X1 , X2 , X3 , ) .

Figure 6

All Cases

*

务*

STEP

1

ΝΝΝΝ
Ι
Ο

.

VARIABLE

1

2

3

4

1,2

1,3

1,4

2,3

2,4

3,4

1,2,3

1,2,4

1,3,4

2,3,4

1,2,3,4

Sy l x

82.49

58.63

49.99

79.05

60.53

51.71

81.26

R2

.01200

. 50101

.63725

.09284

.50900

.64169

. 11509

.99403

.50422

.68051

99695

.51395

.68959

.99404

.99707

ADJ R2

-.06400

.46263

.60935

.02306

.42716

.58197

-.03240

ce

3361

1692

1227.1

3085.1

1666.8

1213.9

30 11.2

4

5

6

7

8

9

10

11

12

13

14

15

6.67

60.82

48.83

4.98

62.90

50.27

6.97

5.12

.99303

.42159

.62726

99612

. 38139

.60493

. 99241

.99590

2

3

3

3

3

3

3

4

4

4

4

5

11.4

1683.1

1081.4

3.4

1651.9

1052.4

13.3

5

.
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6. Summary . This paper has examined several methods of

determining when to enter additional independent var iables

linear multiple regression in order to form a optimum subset

from all the candidate variables .

The interrelationships between Cp , Sytx and adjusted R2

are studied . These three indicators appear to provide the same

information in the model selection decision process . Although

they all lead to the same decision regarding the subset

regression selection , each measure provides a different

perception on the subject .
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TWO -STAGE TESTING OF COMBATVEHICLE TIRE SYSTEMS

Barry A. Bodt

US Army Ballistic Research Laboratory
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ABSTRACT

An effort is underway to enhance the battlefield survivability of combat vehicle tire sys

tems. The Army is currently investigating several new tire technologies with regard to their

ability to function after battlefield degradation. The tires, in a run -flat condition, must sup

port some vehicle mobility according to that vehicle's mission profile. The immediate objec

tive of this program is choosing, for further research, the most promising among the new tire

technologies. The presenter has been tasked to develop an appropriate test plan.

Sound experimental strategy, for this or any study, must be accompanied by a clear

understanding of the problem (s) to be resolved. A list of question areas worth exploring to

help gain this understanding is suggested by Hahn ( Technometrics, 1984) as part of more

general guidelines. The presenter demonstrates their usefulness to that end in the above

mentioned tire program . The test plan and the process by which it evolved is discussed .
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TWO -STAGE TESTING OF COMBAT VEHICLE TIRE SYSTEMS

1. INTRODUCTION

An effort is underway to enhance the battlefield survivability of combat vehicle tire sys

tems. The impetus for current investigations dates back to a 1979 issue paper, submitted to

DA by the US Training and Doctrine Command ( TRADOC ). In 1985 the Tank Automotive

Command (TACOM ) established a tire task force, the need for which was supported by the

results of a 1984 independent evaluation of one tire system performed by the Operational

Test and Evaluation Agency (OTEA ). OTEA observed that when the run -flat tires for the

High Mobility Multi-Purpose Wheeled Vehicle (HMMWV) were run flat for 30 miles, the

tires became unserviceable and had to be replaced. The objective of the TACOM Tire Task

Force is to identify a survivable tire system (STS) technological replacement which demon

strates acceptable battlefield survivability. A two-phase approach (operational and technical)

has been adopted to screen available STS technologies in search of candidates for more

intense research and development. The operational phase, considering the standard and

seven new STS technologies, was completed by the Combat Developments Experimentation

Center (CDEC) in 1987. The technical phase, the focus of this paper, is being conducted by

the Vulnerability Lethality Division ( VLD ) of the Ballistic Research Laboratory (BRL)

according to the test plan developed by the Probability and Statistics Branch (PSB) of the

Systems Engineering and Concepts Analysis Division (SECAD ) of the BRL.

This paper is intended to accomplish two tasks. The first is to discuss the test plan that

has been adopted for the technical testing phase not in great detail but sufficiently to

demonstrate the degree to which experimental objectives are satisfied. As part of the discus
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sion it is shown how , for example, tire performance specifications, factors thought to

influence performance, and physical and budgetary constraints are incorporated in the test

strategy. The second is to illustrate the usefulness of well-defined consulting guidelines in

extracting the necessary information from experimenters. Any sound experimental strategy

must be accompanied by a clear understanding of the problem to be resolved, but informa

tion essential to that understanding is often difficult to obtain. The fragmented manner in

which information is passed from client to consultant inhibits a cogent assimilation of facts

needed for efficient problem solving. Hahn ( 1984) suggests imposing the structure of ques

tion area guidelines (see Figure 1) both to help sort the information coming in and to direct

consultation sessions down new promising paths.

The remainder of the paper is organized as follows. In Section 2 the problem and test

plan are developed, punctuated by Hahn's guidelines. It is hoped that this presentation will

both give fair treatment to the Army concern as well as illustrate a reasonable approach to

consultation . In Section 3 a brief critique of the test plan's strengths and weaknesses is given,

followed by some closing comments .

2. EVALUATION OF THE TEST PLAN

Problem information is divulged in this section according to Hahn's guidelines, and that

constitutes our presentation of his technique. We seek only to show how encompassing those

question areas are by developing in full the Army's problem through their use. In the text,

italicized words and phrases refer back to guidelines in Figure 1. The guidelines have been

juggled to allow for a logical presentation and the order shown in Figure 1 corresponds, with

few exceptions, to that of this section. This is simply a matter of convenience and not a claim
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1. The objectives of the experiment.

2 . The variables to be held constant and how this will

be accomplished (as well as those that are to be

varied ).

3. The uncontrolled variables

which ones are measurable.

what they are and

4 . The response variables and how they will be meas

ured.

5.

Special considerations which indirectly impose

experimental constraints.

6. The budged size of the experiment and the dead

lines that must be met.

7. Conditions within the experimental region where the

expected outcome is known; the anticipated perfor

mance is expected to be inferior, especially for pro

grams where an optimum is sought; and experimen

tation is impossible or unsafe.

8 .
Past test data and, especially, any information about

different types of repeatability.

9. The desirability and opportunities for running the

experiment in stages.

10. The anticipated complexity of the relationship

between the experimental variables and the

response variables and any anticipated interactions.

11. The procedures for running a test, including the ease

with which each of the variables can be changed

from one run to the next.

12. The details of the physical set-up .

Figure 1. Important Question Areas for Statisticians to Address.
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for an ideal sequence. In fact, each consulting session is likely not only to naturally gravitate

toward different orders but also to move around from area to area, possibly returning several

times to some.

2.1. Understanding the Problem

Let us begin by considering objectives. We consider two types; military and experimen

tal. The military objective is that HMMWV tires remain serviceable when degraded through

battlefield exposure to small caliber munitions and shell fragments. Serviceable means that

the tire exhibits performance consistent with the standards specified in the NATO - Finabel 20

A 5 1956 NATO Test Procedure. Summarized expectations set forth therein say that the

combat tire must possess ( as nearly as possible) the same over the road performance as the

classic radial tire in terms of maximum vehicle speed and lateral and longitudinal traction and

stability. After degradation, normal military performance of the vehicle is still required when

no more than two tires (one drive and one steering) are damaged. The experimental objective

is to screen six, including the standard, tire systems with the purpose of selecting a subset for

further research, development, and the eventual upgrading of combat tires. The selection cri

teria must be driven by the military objectives summarized above.

Question areas 2-4 in Figure 1 each concern variables. It is in the identification and

classification of these variables that the experimental strategy begins to take form . In Table 1

the most important ones are given. Care is taken to initially classify them as candidates for

response, design or nuisance variables and to subclassify them for each of the last two

categories. The scale of measurement is also noted. A short definition of each of these vari

ables is given in the appendix. Because the variables listed in Table 1 represent only those
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considered essential, all must be incorporated in the experimental strategy. We briefly dis

cuss several of them here so that the reader may gain a sense of the complexity of the prob

lem .

The logical starting point for discussion is with tire technology, for it is the selection

from among these prototypes that is the objective of this experiment. Six manufacturer

offerings, including the standard, are to be considered, but there are basically only four tech

nologies. When combat tires are exposed to small caliber munitions and shell fragments they

will surely tear, puncture, or in some other way be damaged so as to induce partial or com

plete deflation. Then in order for military objectives to be satisfied, the survivable tire will

either successfully negate this damage or be structurally capable of supporting vehicle mobil

ity without benefit of full tire pressure. Taking the first tact, the sealant tire systems contain

chemical compounds which are intended to flow to a source of air loss, solidify, and thereby

negate the threat damage. Run -flats take the second tact and are able to support the vehicle

with a metal or plastic insert which acts in the tires stead when the tire is deflated . Self

supporting tires are so named because molded into the tread is a rigid fiber glass band,

designed to carry the tire's full load in the absence of tire pressure. Solid urethane tires cir

cumvent the problem by containing no air to be lost, but they do so at the cost of additional

weight, inhibiting vehicle mobility (Drelling et al., 1987).

A limitation of the CDEC exercise is that tire degradation from shell fragments is not

considered. Interest in the more irregular punctures and tears caused by the shell fragment

threat is a consideration in involving the BRL in the technical phase of experimentation. To

make inferences about tire performance after fragment damage the consensus is that either

live shells should be detonated near standing tires or the expected resulting fragments should
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be simulated. A special consideration in long range plans is that an acceptance test consistent

with current testing be developed. Due to the repeatability requirements inherent in accep

tance testing the shell- detonation approach was dropped in favor of fragment simulation

This decision led to variables involving fragment shape, size, and velocity. Due to budget

and time constraints it appears unreasonable to select many values for each and then proceed

in a factorial manner when incorporating them in the design. Rather we option to create two

fragment profiles, each representative of a distinct threat. Avoiding great detail, a standard

BRL fragment design is specified for shape. Velocity and mass are determined as follows.

Each are a function of the distance between the shell at detonation and the tire. The distance

selected corresponds to a 50% mobility kill for the vehicle according to models accessed by

the Army Material Systems Analysis Activity ( AMSAA ). Avoiding the experimental region

where the expected outcome is known, we do not consider distances so close that the personnel

are not likely to survive . The median velocity and mass among computer simulated frag

ments possessing an appropriate trajectory then serve as representative values for these

characteristics. Trial firings suggest some deviations in these choices so that resulting dam

age seemed similar to actual fragment damage previously observed .

Other factors of keen interest include the terrain traveled and tire position, motion, and

pressure. The mission profile for the HMMWV dictates that it shall be able to travel primary

roads, secondary roads, and cross country. Further it suggests that in a characteristic mission

those three terrains might comprise 30%, 30%, and 40%, respectively, of the total mileage

covered. Tire position refers to its designation as a drive tire or a drive and steering tire; the

HMMWV is 4 -wheel drive. In addition to this one-at- a - time damage, recall that the NATO

Finabel standards require acceptable performance when two tires on the vehicle are
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damaged. When attacked, the HMMWV may be moving or at rest. Proponents of the

sealant technology claim that if the tire is in motion when punctured, then the sealant

mechanism will be more effective in finding and repairing the damage. Past test data indi

cates that tire pressure may influence the type of puncture, that is, clean or ragged. Manufac

turer recommended high and low pressures for each tire will be considered .

The special consideration that this experiment complement the CDEC exercise fixed two

important test definitions. TACOM decided that the response would remain defined as miles

until failure. Failure occurs when either the tire begins to come apart when in use or the

operator must slow to less than 50% of normal operating speed in order to maintain control.

Under a rigid value for normal speed, failure could depend on the size and strength of the

operator. We propose to account for that by establishing a profile on operators ( actually driv

ing teams) in their normal operation of the vehicle . The 50% rule is then based on normal

team performance. Driving teams are established to avoid failure due to fatigue. Past test

data reveals that some degraded tires remain serviceable after 100 continuous miles of opera

tion . In order to avoid truncated data, the test course is extended to 125 continuous miles, but

at the additional cost of trial time. It is felt that if two operators are allowed to rotate after

each 25 mile lap, then fatigue will not enter into the failure determination.

2.2 Test Plan

The test plan will be implemented in stages. A fairly large number of experimental con

ditions define the experiment outlined in Section 2.1. To examine each of these conditions in

a factorial manner will require more resources than the experimental budget will allow ; for all

but the standard tire no more than 30 prototypes will be made available. Moreover, recall
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that the principal objective of this study is to facilitate comparison among tires. Placing too

much emphasis ( sample allocation) on ancillary issues may partially obscure (weaken conclu

sions regarding) the main experimental focus. For these reasons, resource limitations and

emphasis, we choose to run the experiment in two primary stages.

The division of testing meets the above concerns. In stage 1 all the experimental condi

tions are incorporated in the design as factors or fixed test procedures. Only the standard

HMMWV tire is considered in stage 1. The purpose of this stage is two- fold . First the vari

ous test conditions may be examined. It is hoped that some will prove unnecessary for inclu

sion in stage 2, thereby increasing the experimental information per sampled test condition.

Second, test procedures may be smoothed . Field test exercises nearly always present unex

pected problems, often resulting in samples which must be invalidated for the analysis. Here

we run only the risk of wasting some more plentiful, standard tires instead of the scarce new

prototypes. In stage 2 the prototypes will be examined by an experienced testing group under

the conditions remaining after stage 1. Since the complete details will not be available until

stage 1 is concluded, we defer further discussion of stage 2 to future papers. In the remainder

of this paper stage 1 testing serves as the main focus.

Stage 1 will be run as a 1/2 replication of a 4x2* factorial design, requiring 32 observa

tions. The design factors, each discussed in Section 2.1, are listed in Table 2. The 4 levels for

threat include a 7.62mm round fired at 45° and 90° obliquity on the sidewall, a small fragment

simulator, and a large fragment simulator. Note that only 2 tire position levels, drive or steer

ing, are considered. The case in which two tires are damaged, requiring twice as many sam

ples, is handled only in a limited sense. Imbedded in the stage 1 factorial design are four

treatment combinations having two damaged tires which arise from a 1/2 replicate of a 2 *
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design . The remaining 4 observations are already included in the principal stage 1 design.

The other three factors are handled as previously noted. This design allows hypothesis tests

on all main effects and on most first-order interactions. Due to the anticipated complexity of

the relationship among variables some first- order interactions can be sacrificed to the experi

mental error formed by the remaining second, and above, order interactions. The remaining

variables are addressed in stage 1 as suggested in Figure 2.

Randomization for the stage 1 design is complete except in the case of driving team ,

vehicle, and terrain . In consideration of theproceduresfor running a test and the ease in which

variables can be changed and the details of the physical set up some compromises were made.

The complete randomization of the driving teams is not possible because both teams are to

be used simultaneously. The first driver in the rotation for each team was randomized. As

indicted in Figure 2, four vehicles are used but are not included as test factors. To mitigate

their effect on the outcome, they have been selected according to age and state of repair and

have been partially randomized over the design . Also noted in Figure 2, the three terrains

mentioned in Section 2.1 comprise the test track. The course layout attempts to mix or ran

domize the terrains so that not all the mileage for one type will be traveled before the next is

encountered .

3. CRITIQUE OF APPROACH

In this section we address the primary advantages and disadvantages of the test plan

interpreted in terms of the stated military and experimental objectives and follow with some

comments pertaining to the consulting technique employed. Beginning with the military

objectives, all of the variables considered important by TACOM or the NATO Finable Stan
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dards are included in the test plan in a manner suitable to TACOM . Sometimes this requires

compromise, such as in the use of terrain . Terrain is considered only through its inclusion in

the test course in proportions consistent with the HMMWV mission profile. For some other

variables the military interests are clarified in the test plan. For example, normal operating

speeds in the failure definition are more sensibly tied to the normal performance of individual

driving teams. Also, efforts to handle the fragment threat result in a reasonable fragment

simulation procedure which may be used in follow -on acceptance testing.

With regard to experimental objectives, the selection of STS prototypes for further

research and development follows directly from analysis of the second testing stage. Further,

the stage 1 plan imposes an analyzable design structure on a complex problem providing for

the testing of all important hypotheses. In addition, running the experiment in stages has the

emphasis and resource advantages mentioned in Section 2.2 . However, the test plan has

several weaknesses. By examining the standard tire only in stage 1, comparisons between it

and other STS prototypes are hindered . Experimental error is an issue since complete ran

domization is not possible and since some pooling of low -order interactions into the error

term may be necessary. Choice of an error term for the imbedded test of the two - tire effect

is far from straight- forward, particularly since four of the eight observations must be used in

the analysis twice. Finally, we had to take some liberties in the combination of variables to

form factors so that a design would be possible with the available samples.

As to consulting, we cannot prove the usefulness of Hahn's guidelines, but we hope that

the illustration is convincing. Surely, the information can be obtained through other methods,

but the imposed structure of this approach facilitates a very comprehensive investigation. In

the end, all methods must be judged by the experimental strategies which they help to
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develop, but their performance is hopelessly confounded with the skills of the consultant using

them . Of course the purposes of those strategies are to meet both application objectives and

satisfy statistical theory. Whether this strategy satisfies those purposes, and if not, whether

fault lies with the consultant, the approach, or the problem are questions left for the reader to

decide.

.
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APPENDIX

terrain the three driving surfaces listed as primary road, secon

dary road, and cross country. Each will induce different

tire stress and all are included in the vehicle's mission

profile.

tire position placement of the damaged tires. In testing, the right

front, right rear, or both may be degraded.

vehicle High Mobility Multi-purpose Wheeled Vehicle

(HMMWV). This vehicle's tire system is the program's

focus. The individual HMMWV effect is an issue.

driver operator of the vehicle. The influence of different drivers

should be accounted for.

tire motion the state of the tire, either static or rolling.

threat obliquity 90°

0 ° 450

tire technology six Survivable Tire Systems to be compared.

fragment shape partially determines the nature of the tear or puncture.

fragment size partially determines the nature of the tear or puncture.

fragment velocity partially determines the nature of the tear or puncture.

road temperature effects the tire vulnerability. Previous testing revealed

reduced susceptibility to puncture with low tire pressures.

vehicle load influences tire stress.

driving speed influences tire stress .

distance to tire
refers to distance traveled by fragment or small caliber

munition

round threat munition (s) to be used.

miles until failure
response.

delivery method fragment propelling methods considered.
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# shots on tire the number of punctures to be made in each tire to

obtain its degraded state .

subjective assessments comments solicited from drivers regarding handling of

vehicle when tires are in normal or degraded mode.
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Parallel Coordinate Densitiesi

Edward J. Wegman
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Fairfax, VA 22030

1. Introduction. The classic scatter diagram is a fundamental tool in the construction of a '

model for data. It allows the eye to detect such structures in data as linear or nonlinear features,

clustering, outliers and the like. Unfortunately, scatter diagrams do not generalize readily beyond three
dimensions. For this reason , the problem of visually representing multivariate data is a difficult,

largely unsolved one . The principal difficulty , of course , is the fact that while a data vector may be

arbitrarily high dimensional, say n, Cartesian scatter plots may only easily be done in two dimensions

and, with computer graphics and more effort, in three dimensions. Alternative multidimensional

representations have been proposed by several authors including Chernoff (1973) , Fienberg ( 1979) ,

Cleveland and McGill (1984a ) and Carr et al. ( 1986).

An important technique based on the use of motion is the computer-based kinematic display

yielding the illusion of three dimensional scatter diagrams. This technique was pioneered by Friedman

and Tukey ( 1973) and is now available in commercial software packages (Donohoe's MacSpin and

Velleman's Data Desk ). Coupled with easy data manipulation, the kinematic display techniques have

spawned the exploitation of such methods as projection pursuit ( Friedman and Tukey , 1974) and the

grand tour ( Asimov, 1985) . Clearly, projection -based techniques lead to important insights concerning

data . Nonetheless, one must be cautious in making inferences about high dimensional data structures

based on projection methods alone. It would be highly desireable to have a simultaneous

representation of all coordinates of a data vector especially if the representation treated all components

in a similar manner . The cause of the failure of the standard Cartesian coordinate representation is the

requirement for orthogonal coordinate axes. In a 3 - dimensional world , it is difficult to represent more

than three orthogonal coordinate axes . We propose to give up the orthogonality requirement and

replace the standard Cartesian axes with a set of n parallel axes.

2. Parallel Coordinates. We propose as a multivariate data analysis tool the following

representation . In place of a scheme trying to preserve orthogonality of the n -dimensional coordinate

axes , draw them as parallel. A vector (x1 , X2 , Xn) is plotted by plotting x, on axis 1 , x, on axis 2

and so on through Xn on axis n. The points plotted in this manner are joined by a broken line. Figure

2.1 illustrates two points (one solid, one dashed ) plotted in parallel coordinate representation. In this

illustration , the two points agree in the fourth coordinate. The principal advantage of this plotting

device is clear. Each vector (X1 , X2, ... , Xn) is represented in a planar diagram so that each vector

component has essentially the same representation.

The parallel coordinates proposal has its roots in a number of sources . Griffen (1958) considers

a 2 - dimensional parallel coordinate type device as a method for graphically computing the Kendall tau

correlation coefficient. Hartigan (1975) describes the " profiles algorithm ” which he describes as

“ histograms on each variable connected between variables by identifying cases.” Although he does not

recommend drawing all profiles, a profile diagram with all profiles plotted is a parallel coordinate plot .

There is however far more mathematical structure, particularly high dimensional structure, to the

parallel coordinate diagram than Hartigan exploits. Inselberg ( 1985) originated the parallel coordinate

This research was sponsored by the Army Research Office, Contract DAAL03-87 - K - 0087
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representation as a device for computational geometry. His 1985 paper is the culmination of a series of

technical reports dating from 1981. Finally we note that Diaconis and Friedman (1983) discuss the so

called M and N plots. Their special case of a 1 and 1 plot is a parallel coordinate plot in two

dimensions. Indeed, the 1 and 1 plot is sometimes called a before - and - after plot and has a much older

history. The fundamental theme of this paper is that the transformation from Cartesian coordinates to

parallel coordinates is a highly structured mathematical transformation , hence, maps mathematical

objects into mathematical objects. Certain of these can be given highly useful statistical

interpretations so that this representation becomes a highly useful data analysis tool.

3. Parallel Coordinate Geometry. The parallel coordinate representation enjoys some elegant

duality properties with the usual Cartesian orthogonal coordinate representation. Consider a line e in

the Cartesian coordinate plane given by l: y = mx + b and consider two points lying on that line, say

( a, ma + b) and (c, mc + b ). For simplicity of computation we consider the xy Cartesian axes mapped

into the xy parallel axes as described in Figure 3.1 . We superimpose a Cartesian coordinate axes t,u on

the xy parallel axes so that the y parallel axis has the equation u= 1. The point ( a, ma+b) in the xy

Cartesian system maps into the line joining ( a, 0) to (ma+b, 1) in the tu coordinate axes . Similarly,

(c, mc + b ) maps into the line joining (c, 0) to (mc + b, 1). It is a straightforward computation to show

that these two lines intersect at a point ( in the tu plane) given by I : ( b (1 - m ) , ( 1-m)-4) . Notice

that this point in the parallel coordinate plot depends only on m and b the parameters of the original

line in the Cartesian plot. Thus I is the dual of I and we have the interesting duality result that

points in Cartesian coordinates map into lines in parallel coordinates while lines in Cartesian

coordinates map into points in parallel coordinates .

For 0 < (1 - m )- < 1, m is negative and the intersection occurs between the parallel

coordinate axes . For m= -1, the intersection is exactly midway. A ready statistical interpretation

can be given . For highly negatively correlated pairs, the dual line segments in parallel coordinates will

tend to cross near a single point between the two parallel coordinate axes . The scale of one of the

variables may be transformed in such a way that the intersection occurs midway between the two

parallel coordinate axes in which case the slope of the linear relationship is negative one.

In the case that (1 - m ) <0 or ( 1 -m)-' > 1, m is positive and the intersection occurs external

to the region between the two parallel axes. In the special case m= 1, this formulation breaks down.

However, it is clear that the point pairs are ( a, a+b) and (c, c+b). The dual lines to these points are

the lines in parallel coordinate space with slope 6-1 and intercepts -ab- and -cb- respectively. Thus

the duals of these lines in parallel coordinate space are parallel lines with slope bº. We thus append

the ideal points to the parallel coordinate plane to obtain a projective plane. These parallel lines

intersect at the ideal point in direction 6-7. In the statistical setting, we have the following

interpretation. For highly positively correlated data, we will tend to have lines not intersecting

between the parallel coordinate axes . By suitable linear rescaling of one of the variables, the lines may

be made approximately parallel in direction with slope bºl. In this case the slope of the linear

relationship between the rescaled variables is one. See Figures 3.2 for an illustration of large positive

and large negative correlations. Of course, nonlinear relationships will not respond to simple linear

rescaling. However, by suitable nonlinear transformations, it should be possible to transform to

linearity. The point-line, line-point duality seen in the transformation from Cartesian to parallel

coordinates extends to conic sections. An instructive computation involves computing in the parallel

coordinate space the image of an ellipse which turns out to be a general hyperbolic form . For purposes

of conserving space we do not provide the details here.

It should be noted , however, that the solution to this computation is not a locus of points, but

a locus of lines, a line conic. The envelope of this line conic is a point conic. In the case of this

computation, the point conic in the original Cartesian coordinate plane is an ellipse, the image in the

parallel coordinate plane is as we have just seen a line hyperbola with a point hyperbola as envelope.

Indeed, it is true that a conic will always map into a conic and, in particular, an ellipse will always

map into a hyperbola. The converse is not true. Depending on the details, a hyperbola may map into

an ellipse, a parabola or another hyperbola. A fuller discussion of projective transformations of conics

is given by Dimsdale ( 1984) . Inselberg (1985) generalizes this notion into parallel coordinates resulting
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in what he calls hstars.

We mentioned the duality between points and lines and conics and conics. It is worthwhile to

point out two other nice dualities. Rotations in Cartesian coordinates become translations in parallel

coordinates and vice versa . Perhaps more interesting from a statistical point of view is that points of

inflection in Cartesian space become cusps in parallel coordinate space and vice versa . Thus the

relatively hard - to -detect inflection point property of a function becomes the notably more easy to

detect cusp in the parallel coordinate representation. Inselberg (1985) discusses these properties in

detail.

4. Further Statistical Interpretations. Since ellipses map into hyperbolas, we can have an easy

template for diagnosing uncorrelated data pairs. Consider Figure 3.2. With a completely uncorrelated

data set, we would expect the 2 -dimensional scatter diagram to fill substantially a circumscribing

circle. As illustrated in Figure 3.2, the parallel coordinate plot would approximate a figure with a

hyperbolic envelope. As the correlation approaches negative one , the hyperbolic envelope would deepen

so that in the limit we would have a pencil of lines, what we like to call the cross - over effect. As the

correlation approaches positive one, the hyperbolic envelope would widen with fewer and fewer cross

overs so that in the limit we would have parallel lines . Thus correlation structure can be diagnosed

from the parallel coordinate plot. As noted earlier, Griffen (1958) used this as a graphical device for

computing the Kendall tau.

Griffen , in fact, attributes the graphical device to Holmes (1928) which predates Kendall's

discussion . The computational formula is

r = 1
4X

n (n - 1)

where X is the number of intersections resulting by connecting the two rankings of each member by

lines, one ranking having been put in natural order. While the original formulation was framed in

terms of ranks for both x and y axes, it is clear that the number of crossings is invariant to any

monotone increasing transformation of either x or y, the ranks being one such transformation . Because

of this scale invariance, one would expect rank - based statistics to have an intimate relationship to

parallel coordinates.

It is clear that if there is a perfect positive linear relationship with no crossings, then X = 0

and r = 1. Similarly, if there is a perfect negative linear relationship, Figure 3.2 is again appropriate

and we have a pencil of lines. Since every line meets every other line, the number of intersections is

(2 )
4

r = 1 -1 .

n(n- 1)

It should be further noted that clustering is easily diagnosed using the parallel coordinate

representation.

so that

=

So far we have focused primarily on pairwise parallel coordinate relationships. The idea

however is that we can , so to speak, stack these diagrams and represent all n dimensions

simultaneously. Figure 4.1 thus illustrates 6 - dimensional Gaussian uncorrelated data plotted in

parallel coordinates. A 6 -dimensional ellipsoid would have a similar general shape but with hyperbolas

of different depths. This data is deep ocean acoustic noise and is illustrative of what might be

expected .

Figure 4.2 is illustrative of some data structures one might see in a five -dimensional data set.

First it should be noted that the plots along any given axis represent dot diagrams ( a refinement of the

histograms of Hartigan ), hence convey graphically the one -dimensional marginal distributions. In this

illustration, the first axis is meant to have an approximately normal distribution shape while axis two

the shape of the negative of a x?. As discussed above, the pairwise comparisons can be made. Figure
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4.2 illustrates a number of instances of linear (both negative and positve), nonlinear and clustering

situations. Indeed, it is clear that there is a 3 -dimensional cluster along coordinates 3, 4 and 4.

Consider also the appearance of a mode in parallel coordinates. The mode is, intuitively

speaking, the location of the most intense concentration of probability. Hence , in a sampling situation

it will be the location of the most intense concentration of observations. Since observations are

represented by broken line segments, the mode in parallel coordinates will be represented by the most

intense bundle of broken line paths in the parallel coordinate diagram . Roughly speaking, we should

look for the most intense flow through the diagram . In Figure 4.2, such a flow begins near the center

of coordinate axis one and finishes on the left - hand side of axis five .

Figure 4.2 thus illustrates some data analysis features of the parallel coordinate representation

including the ability to diagnose one - dimensional features (marginal densities ), two -dimensional

features (correlations and nonlinear structures), three-dimensional features ( clustering) and a five

dimensional feature (the mode). In the next section of this paper we consider a real data set which will

be illustrative of some additional capabilities.

5. An Auto Data Example. We illustrate parallel cooordinates as an exploratory analysis tool

on data about 86 1980 model year automobiles. They consist of price, miles per gallon, gear ratio ,

weight and cubic inch displacement. For n = 5, 3 presentations are needed to present all pairwise

permutations. Figures 5.1 , 5.2 and 5.3 are these three presentations. In Figure 5.1 , perhaps the most

striking feature is the cross - over effect evident in the relationship between gear ratio and weight. This

suggests a negative correlation. Indeed , this is reasonable since a heavy car would tend to have a large

engine providing considerable torque thus requiring a lower gear ratio . Conversely, a light car would

tend to have a small engine providing small amounts of torque thus requiring a higher gear ratio .

Consider as well the relationship between weight and cubic inch displacement. In this diagram

we have a considerable amount of approximate parallelism ( relatively few crossings) suggesting positive

correlation. This is a graphic representation of the fact that big cars tend to have big engines, a fact

most are prepared to believe. Quite striking however is the negative slope going from low weight to

moderate cubic inch displacement. This is clearly an outlier which is unusual in neither variable but in

their joint relationship. The same observation is highlighted in Figure 5.2.

The relationship between miles per gallon and price is also perhaps worthy of comment. The

left -hand side shows an approximate hyperbolic boundary while the right-hand side clearly illustrates

the cross -over effect . This suggests for inexpensive cars or poor mileage cars there is relatively little

correlation . However, costly cars almost always get relatively poor mileage while good gas mileage cars

are almost always relatively inexpensive.

Turning to Figure 5.2, the relationship between gear ratio and miles per gallon is instructive.

This diagram is suggestive of two classes. Notice that there are a number of observations represented

by line segments tilted slightly to the right of vertical (high positive slope) and a somewhat larger

number with a negative slope of about -1 . Within each of these two classes we have approximate

parallelism . This suggests that the relationship between gear ratios and miles per gallon is

approximately linear, a believable conjecture since low gears = big engines = poor mileage while high

gears = small engines = good mileage. What is intriguing, however, is that there seems to be really

two distinct classes of automobiles each exhibiting a linear relationship , but with different linear

relationships within each class .

Indeed in Figure 5.3, the third permutation, we are able to highlight this separation into two

classes in a truly 5 - dimensional sense . The shaded region in Figure 5.3 describes a class of vehicles with

relatively poor gas mileage, relatively heavy, relatively inexpensive, relatively large engines and

relatively low gear ratios. Figure 5.4 is a repeat of this graphic but with different shading highlighting

a class of vehicles with relatively good gas mileage, relatively light weight, relatively inexpensive,

relatively small engines and relatively high gear ratios . In 1980, these two characterizations describe

respectively domestic automobiles and imported automobiles.

6. Graphical Extensions of Parallel Coordinate Plots. The basic parallel coordinate idea
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suggests some additional plotting devices. We call these respectively the Parallel Coordinate Density

Plots, Relative Slope Plots and Color Histograms. These are extensions of the basic idea of parallel

coordinates, but structured to exploit additional features or to convey certain information more easily.

6.1 Parallel Coodinate Density Plots. While the basic parallel coordinate plot is a useful

device itself, like the conventional scatter diagram , it suffers from heavy overplotting with large data

sets . In order to get around this problem , we use a parallel coordinate density plot which is computed

as follows. Our algorithm is based on the Scott ( 1985) notion of average shifted histogram ( ASH) but

adapted to the parallel coordinate context. As with an ordinary two dimensional histogram , we decide

on appropriate rectangular bins. A potential difficulty arises because a line segment representing a

point may appear in two or more bins in the same horizontal slice . Obviously if we have k n

dimensional observations, we would like to form a histogram based on k entries . However, since the

line segment could appear in two or more bins in a horizontal slice, the count for any given horizontal

slice is at least k and may be bigger. Moreover, every horizontal slice may not have the same count .

To get around this, we convert line segments to points by intersecting each line segment with a

horizontal line passing through the middle of the bin . This gives us an exact count of k for each

horizontal slice. We construct an ASH for each horizontal slice ( typically averaging 5 histograms to

form our ASH). We have used contours to represent the two -dimensional density although gray scale

shading could be used in a display with sufficient bit - plane memory . An example of an parallel

coordinate density plot is given in Figure 6.1 . Parallel coodinate density plots have the advantage of

being graphical representations of data sets which are simultaneously high dimensional and very large.

6.2 Relative Slope Plots. We have already seen that parallel line segments in a parallel

coordinate plot correspond to high positive correlation ( linear relationship ). As in our automobile

example, it is possible for two or more sets of linear relationships to exist simultaneously. In an

ordinary parallel coordinate plot, we see these as sets of parallel lines with distinct slopes. The work of

Cleveland and McGill ( 1984b) suggests that comparison of slopes ( angles) is a relatively inaccurate

judgement task and that it is much easier to compare magnitudes on the same scale . The relative

slope plot is motivated by this. In an n -dimensional relative slope plot there are 1-1 parallel axes,

each corresponding to a pair of axes , say x; and xj, with x; regarded as the lower of the two coordinate

For each observation, the slope of the line segment between the pair of axes is plotted as a

magnitude between - 1 and +1. The maximum positive slope is coded as +1, the minimum negative

slope as -1 and a slope of oo as 0. The magnitude is calculated as cos n where n is the angle between

the x; axis and the line segment corresponding to the observation. Each individual observation in the

relative slope plot corresponds to a vertical section through the axis system . An example of a relative

slope plot is given in Figure 6.2 . Notice that since slopes are coded as heights, simply laying a

straightedge will allow us to discover sets of linear relationships within the pair of variables X;
and

6.3 Color Histograms. The basic set-up for the color histogram is similar to the relative slope

plots. For an n - dimensional data set, there are n parallel axes . A vertical section through the diagram

corresponds to an observation. The idea is to code the magnitude of an observation along a given axis

by a color bin, the colors being chosen to form a color gradient. We typically choose 8 to 15 colors.

The diagram is drawn by choosing an axis, say xk , and sorting the observations in ascending order.

Along this axis, we see blocks of color arranged according to the color gradient with the width of the

block being proportional to the number of observations falling into the color bin . The observations on

the other axes are arranged in the order corresponding to the xx axis and color coded according to their

magnitude. Of course , if the same color gradient shows up say on the Xm axis as on the Xk2
then we

know XL is positively “ correlated ” with Xm. If the color gradient is reversed , we know the " correlation "

is negative. We used the phrase " correlation " advisedly since in fact if the color gradient is the same

but the color block sizes are different, the relationship is nonlinear. Of course if the Xm axis shows

color speckle, there is no " correlation " and Xx is unrelated to Xm. An example of a color histogram is

given in Figure 6.3 ( for purposes of reproduction here it is really a gray -scale histogram ).

7. Implementations and Experiences. Our parallel coordinates data analysis software has been

implemented in two forms, one a PASCAL program operating on the IBM RT under the AIX

operating system . This code allows for up to four simultaneous windows and offers simultaneous

axes .

Xj .
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display of parallel coordinates and scatter diagram displays. It offers highlighting ,. zooming and other

similar features and also allows the possibility of nonlinear rescaling of each axis . It incorporates axes

permutations and also includes Parallel Coordinate Density Plots, Relative Slope Plots and Color

Histograms.

Our second implementation is under development in PASCAL for MS -DOS machines and

includes similar features. In addition , it has a mouse-driven painting capability and can do real-time

rotation of 3 -dimensional scatterplots. Both programs use EGA graphics standards, with the second

also using VGA or Hercules monochrome standards.

We regard the parallel coordinate representation as a device complementary to scatterplots. A

major advantage of the parallel coordinate representation over the scatterplot matrix is the linkage

provided by connecting points on the axes . This linkage is difficult to duplicate in the scatterplot

matrix. Because of the projective line- point duality , the structures seen in a scatterplot can also be

seen in a parallel coordinate plot. Moreover, the work of Cleveland and McGill ( 1984b ) suggests that

it is easier and more accurate to compare observations on a common scale. The parallel coordinate

plot and the derivatives of it de facto have a common scale and so for example a sense of variability

and central tendency among the variables are easier to grasp visually in parallel coordinates when

compared with the scatterplot matrix . On the other hand, one might interpret all the ink generated by

the lines as a significant disadvantage of the parallel coordinate plot. Our experience on this is mixed .

Certainly for large data sets on hard copy this is a problem . When viewed on an interactive graphics

screen particularly a high resolution screen , we have often found that individual points in a scatterplot

can get lost because they are simply not bright enough. That does not happen in a parallel coordinate

plot. However, if many points are plotted in monochrome, it is hard to distinguish between points.

We have gotten around this problem by plotting distinct points in different colors. In an EGA

implementation, this means 16 colors. This is surprisingly effective in separating points. In one

experiment, we plotted 5000 5 - dimensional random vectors using 16 colors, and inspite of total

overplotting, we were still able to see some structure . In data sets of somewhat smaller scale, we have

implement a scintillation technique. With this technique, when there is overplotting we cause the

screen view to scintillate between the colors representing the overplotted points. The speed of

scintillation is is proportional to the number of points overplotted and by carefully tracing colors, one

can follow an individual point through the entire diagram .

We have found painting to be an extraordinarily effective technique in parallel coordinates.

We have a painting scheme that not only paints all lines within a given rectangular area , but also all

line lying between to slope constraints. This is very effective in separating clusters. We also use

invisible paint to eliminate observation points from the data set temporarily. This is a natural way of

doing a subset selection .

References

Asimov, Daniel (1985) , " The grand tour: a tool for viewing multidimensional data, " SIAM J.

Scient. Statist. Comput., 6, 128-143.

Carr, D. B. , Nicholson , W. L., Littlefield, R., Hall, D. L. (1986) , “ Interactive color display

methods for multivariate data ,” in Statistical Image Processing and Graphics, (Wegman , E. and

DePriest, D., eds.), New York: Marcel Dekker, Inc.

Chernoff, H. ( 1973) , “Using faces to represent points in k -dimensional space , " J. Am . Statist.

Assoc., 68, 361-368.

Cleveland , W. S. and McGill, R. (1984a ), " The many faces of the scatterplot," J. Am . Statist.

Assoc ., 79, 807-822.

Cleveland, W. S. and McGill, R. ( 1984b) , "Graphical perception : theory, experimentation, and

application to the development of graphical methods,” J. Am . Statist. Assoc., 79 , 531-554.

Diaconis, P. and Friedman, J. ( 1983) , “M and N plots , " in Recent Advances in Statistics, 425

447, New York : Academic Press, Inc.

252



Dimsdale, B. (1984 ), “Conic transformations and projectivities, ” IBM Los Angeles Scientific

Center Report # 6320-2753.

Fienberg, S. (1979), " Graphical methods in statistics," Am . Statistician, 33, 165-178 .

Friedman, J. and Tukey, J. W. (1973), " PRIM - 9 " a film produced by Stanford Linear

Accelerator Center, Stanford , CA Bin 88 Productions, April, 1973.

Friedman, J. and Tukey, J. W. (1974) , " A projection pursuit algorithm for exploratory data

analysis,” IEEE Trans. Comput., C - 23, 881-889.

Griffen , H. D. (1958 ), "Graphic computation of tau as a coefficient of disarray ," J. Am .

Statist. Assoc., 53, 441-447 .

Hartigan, John A. (1975), Clustering Algorithms, New York : John Wiley and Sons, Inc.

Holmes , S. D. (1928 ), " Appendix B: a graphical method for estimating R for small groups,"

391-394 in Educational Psychology (Peter Sandiford, auth.), New York : Longmans, Green and Co.

Inselberg, A. (1985), " The plane with parallel coordinates," The Visual Computer, 1 , 69-91.

Scott, D. W. ( 1985 ), “Average shifted histograms: effective nonparametric density estimators

in several dimensions, " Ann. Statist., 13, 1024-1040 .

253



1

2

*

3 4
*

:

*
s
e
t F
i
g
u
r
e

2
.
1

P
a
r
a
l
l
e
l

c
o
o
r
d
i
n
a
t
e

r
e
p
r
e
s
e
n
t
a
t
i
o
n

o
f
t
w
o

n

d
i
m
e
n
s
i
o
n
a
l

p
o
i
n
t
s

.

254



у
u
l

(c,m
c

+b)

(m
a

+b,1)

C
A

(m
c

+b,1)
у

(a,m
a

+ b)

х
(a,0)

(0
,
0

)
X
i
t

F
i
g
u
r
e

3
.
1

C
a
r
t
e
s
i
a
n

a
n
d

p
a
r
a
l
l
e
l

c
o
o
r
d
i
n
a
t
e

p
l
o
t
s

o
f
t
w
o

p
o
i
n
t
s

.T
h
e

t
u

C
a
r
t
e
s
i
a
n

c
o
o
r
d
i
n
a
t
e

s
y
s
t
e
m

i
s
s
u
p
e
r
i
m
p
o
s
e
d

o
n

t
h
e

x
y

p
a
r
a
l
l
e
l

c
o
o
r
d
i
n
a
t
e

s
y
s
t
e
m

.

255



p= 1.0

p=0.8

p = 0.2 .

p = 0.0

p = -0.2

p = -0.8

p= -1.0

Figure 3.2 Parallel coordinate plot of 6 dimensional data

illustrating correlations of

p = 1 , .8, .2, 0 , -.2, -.8 and -1 .
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Figure 4.la Parallel coordinate plot of a circle.
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Figure 4.1b Parallel coordinate plot of 6 channel sonar data .

The data is uncorrelated Gaussian noise . The second

coordinate represents a relatively remote hydrophone and has a

somewhat different mean . Notice the approximate hyperbolic

shape .
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Figure4 , 2 A five dimensional scatter diagram in parallel

coordinates illustrating marginal densities, correlations, three

dimensional clustering and a five dimensional mode.
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Figure 5.1 A parallel coordinate plot in five dimensions of

automobile data . Note the negative correlation between gear

ratios and weight.
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Figure 5.2 The second permutation of the five dimensional

presentation of the automobile data. Notice the two classes of

linear relations gear ratio and miles per gallon.
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automobile data . Note the highlighting of the domestic

automobile group.
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Figure 5.4 The third permutation showing highlighting of the
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Figure 6.1 Parallel coordinate density plot of 5000 uniform

random variables. This plot has five contour
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Figure 6.3 Color histogram of 13 dimensional automobile data.

This plot is show in grey scale for purposes of reproduction.
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COMPUTATIONAL AND STATISTICAL ISSUES

IN DISCRETE -EVENT SIMULATION
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Abstract

Discrete- event simulation is one of the most important techniques available for study .

ing complex stochastic systems. In this paper we review the principal methods available

for analyzing both the transient and steady -state simulation problems in sequential and

parallel computing environments. Next we discuss several of the variance reduction meth

ods designed to make simulations run more efficiently. Finally, a short discussion is given

of the methods available to study system optimization using simulation .

Keywords: stochastic simulation, output analysis, variance reduction , parallel computa

tion, and system optimization .
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1. Introduction .

Computer simulation of complex stochastic systems is an important technique for

evaluating system performance. The starting point for this method is to formulate the

time varying behavior of the system as a basic stochastic process Y = {Y( t) : t > 0 } ,

where Y( • ) may be vector-valued . (Discrete time processes can also be handled .) Next

a computer program is written to generate sample realizations of Y. Simulation output

is then obtained by running this program . Our discussion in this paper is centered on

the analysis of this simulation output. The goal being to develop sound probabilistic and

statistical methods for estimating system performance.

Two principal problems arise: the transient simulation problem and the steady -state

simulation problem . Let T denote a stopping time and X = h{Y(t) : 0 3+ ST} , where h

is a given real - valued function. The transient problem is to estimate a = E{X } . Examples

of a include the following:

a = E{f(Y(to ) } ,

= E

E {id ."scy( ) s}
and

a = P{Y does not enter A before to } .

Here to is a fixed time ( > 0), f is a given real- valued function , and A is a given subset of

the state- space of Y. The transient problem is relevant for systems running for a limited

(but possibly random ) length of time that cannot be expected to reach a steady -state. Our

goal here is to provide both point and interval estimates for a.

For the steady-state problem we assume the Y process is asymptotically stationary

in the sense that

1

[* $(Y(9)ds + a
00 .as t = Here ► denotes weak convergence and f is a given real -valued function

defined on the state - space of Y. The easiest example to think about here is an irreducible ,

positive recurrent, continuous time Markov chain . In this case Y(t) = Y as t → oo and

a = E{f(Y) } . Examples of a in this case include the following:

a = E{Y* } (when Y is real -valued ),
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a = P{Y E A} ,

and

a = E{c(Y) } ,

where c is a given cost function. Again as in the transient case , we wish to construct both

point and interval estimates for a.

2. Transient Problem .

Assume we have a computational budget of t time units with which to simulate the

process Y and estimate a = E{X } , as defined in Section 1. In a sequential computing

environment we would generate independent, identically distributed (iid ) copies

(X1,71), (X2, T2 ), ... ,

where the Xi's are copies of X and Ti is the computer time required to generate X,. Let

N(t) denote the number of copies of X generated in time t; this is just the renewal process

associated with the id ti's. A natural point estimator for a is

N(O)

-{ 2izl
>

XN() = { No X; , N ( t) > 0

0 N(t) = 0.

The standard asymptotic results for X n (t) are the strong law of large numbers (SLLN)

and the central limit theorem (CLT ).

STRONG LAW OF LARGE NUMBERS. If E{Ti } < oo and E {\X1 1 } < 0o , then

KN ) + a a.s. as t 20 .

CENTRAL LIMIT THEOREM . If E {ti } < oo and var {X1} < oo , then

11/2[XN () - a ] ( E {Ti } . var {X1})1/2 . N(0,1 ) ,

where N(0,1) is a mean zero , variance one normal random variable. The SLLN follows

from the SLLN for üd summands and the SLLN for renewal processes. The CLT result

can be found in BILLINGSLEY ( 1968 ), Section 17.
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From the SLLN we see that Xn( e) is a strongly consistent point estimator for a . Thus

for large t we would use Xn(e) as our point estimate. On the other hand, the CLT can be

used in the standard manner to construct a confidence interval for a . Here the constant

E {t1 } . var {X; } appearing in the CLT would have to be estimated.

Suppose now that we are in a parallel computing environment with p independent

processors. Now we wish to estimate a for a fixed t as p 00. On the p processors we

generate iid copies of (X, 1) :

(X11,711 ), (X12, T12) , • * • , (XN(4) TIN (4)

( X21, T21 ), ( X22, 722) ( X2N ;(t), T2N ( ))

:

(X21 , Tp1), ( Xp2, Tp2 ) ,..., (XpN,(e),Tp,N ,(t)).

A number of estimators have been proposed for estimating a = E{X} . The most natural

estimator to consider first is that obtained by averaging the realizations of X across each

processor and then averaging these sample means. This leads to

P

ai (pt) = Σ
ti)

Ni ( t) '
P

where

Ni ( t)

FO

j=1

Nito Xij , Ni (t) > 0
Ni (t )

0 Ni(t) = 0 .

Here the processing endson all processors at time T , = t. If E { T1 } < oo and E{ | X | } < 0,

then for all t > 0

at( p , t) - E{Xn( e) } = E{X . 1 { est } } a.s.

as p > 0. Here 1A is the indicator function of the set A. Unfortunately, E{X } #

E{X . 14751} } and so as(p,t) is not strongly consistent for a as pŐ00 .

The next estimator for a was proposed by HEIDELBERGER ( 1987) . For this esti

mator we let all processors complete the replication in process at time t. The estimator

is

p Ni ( t) +1

ΣŚ *Σ Χ;;

az(p, t ) =

[Ni(t ) + 1]

j= 1

i= 1
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Here all processors complete by time

Te max (Til + Ti2 + ... + TiNi(t)+1).
isi SP

Unfortunately, T , → too a.s. as p + o. However, a2(p, t) is strongly consistent for a .

To see this, note that if E {\X 1 } < oo and P{r > 0} > 0, then as p 00

2.3 .

Ni (t )+1

E Σ Xij

j=1

az(e, t) E{X}
E {Ni(t) + 1 }

The equality about is simply Wald's equation. Finally, since az( p, t) is a ratio estimator,

a CLT is also available from which a confidence interval can be constructed.

The last estimator we consider was proposed by HEIDELBERGER and GLYNN

( 1987) . Here we set

as(p,t)=
to

Ni ( t) '

where

86 s t ( )
Ni( t) Ni ( t) + Xijl{tic > t}.

Given N(t) > 1 , Heidelberger and Glynn show that the pairs of random variables (X1,71 ) ,

...,(XN(1),TN(e))are exchangeable. Using this fact, they prove that E { $ ( )} = E {X1}.

Since the co's are id, we see that ag (t) is strongly consistent for a = E{X1 } . Since

the summands in a3(p, t) are üid, the standard CLT holds ( under appropriate variance

assumptions ) and can be used to develop a confidence interval for a. Note that the

definition of requires the ith processor to complete the replication in process at

time t, if no observations have been completed by time t; i.e. , Til > t. Thus the completion

time for all p processors is given by

To == max {max (t,Til) }.
i>1<م

While To - O a.s. as p + 0 ( if P { Til > t } > 0) , T , goes to infinity at a much slower

rate than is the case for a2(p, t) . They also show that the following CLT holds:

t1/2[XN (e) – a] = 0E1/2 { t1 } · N(0,1 )
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as t + oo , where we assume 0 < o? = var {X1 } < and 0 < E{i } < 0. Thus ( e )

can also be used in a sequential environment to estimate a .

3. Steady- State Problem .

The steady -state estimation problem is considerably more difficult than the transient

estimation problem . This difficulty stems from the following considerations: (i) need to

estimate long - run system behavior from a finite length simulation run ; (ü) an initial bias

( or transient) usually is present since the process being simulated is non -stationary; and

( iii) strong autocorrelations are usually present in the process being simulated . While

classical statistical methods can often be used for the transient estimation problem , these

methods generally fail for the steady -state estimation problem for the reasons mentioned

above.

Assume our simulation output process is Y = {Y(t) : t > 0 } and for a given real

valued function f

a(t) = { / *f[Y()]ds = a ( 1 )

As stated above, we wish to construct point and interval estimators for a . In addition to

( 1 ) , many methods also assume that a positive constant o exists such that the following

CLT holds:

Vilalt) – a]= 0.N(0,1 )

(2)

as too. From ( 1 ) and (2) we can construct a point estimate and confidence interval for

a provided we can estimate o. Estimating o is generally the hardest problem .

A variety of methods have been developed to address the steady -state estimation

problem . In Figure 1 we have given a break -down of these methods. Most of the methods

are single replicate methods, since multiple replicate methods tend to be inefficient because

of the initial bias problem .

Here we only consider single replicate methods. These methods are of two types :

those that consistently estimate o and those in which o is cancelled out.

For consistent estimation of o , we need a process {s (t ) : t > 0 } such that s ( t ) = 0 .
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In which case (2) leads to a 100 (1 – 8) % confidence interval for a given by

(alt) – z( 1 – 8/2)s(t)/ t1/2,a( t) + z( 1 – 8/2 )s (t ) /t1 /2 ) ,

where 0(z( 1 –8/2)) = 1-8/2 and 0 is the standard normal distribution function .

On the other hand, the canceling out methods require a non -vanishing process { Z(t ) :

t > 0 } such that

(t1/2(alt) – a) , 2( t) ) = (ON(0,1 ) , o 2 )

as t → oo . Then using the continuous mapping theorem ( cf., BILLINGSLEY (1968 ) , p.

30) we have

11/2 ( alt) – a)/Z( t) = N(0,1 ) /2 ( 3 )

as t + oo . Note from (3 ) that o has been cancelled out in a manner reminiscent of the

t - statistic .

First we discuss one of the methods in which o is consistently estimated , namely,

the regenerative method ; see IGLEHART ( 1978 ) for a discussion of this method plus

other background material. Here we assume that the simulation output process Y is a

regenerative process . We are given a real-valued function f and wish to estimate alf) =

E{f(Y) } , where Y(t) → Y as t + 0. Again it is convenient to think of Y as an

irreducible, positive recurrent, continuous time Markov chain . Let T(0 ) = 0, T1, T2,... be

the regeneration times for Y and set Ti = Ti - Ti - 1, i > 1. The ti's are the lengths of

the regenerative cycles. Next define the areas under the Y process in the kth regenerative

cycle by

Yal

The following basic facts provide the foundation for the regenerative method:

(i) the pairs {(Yk( f ), Tk ) : k > 1 } are iid;

( ü ) if E {I f(Y) 1 } < oo , then alf) = E { Y1 ( f) } / E {tr }.

The regenerative method can be developed on either the intrinsic time scale ( t ) or on the

random time scale (n) corresponding to the number of regenerative cycles simulated. On

the intrinsic time scale our point estimate for a is given by

1

alt , f) = f ( Y ( s ))ds,
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where t is the length of time the simulation is run . On the random time scale our point is

given by

an(f) = ïn ( f ) / Fm

where Yn ( f) ( respectively, in) is the sample mean of Y1( f ), ..., Yr ( f) ( T1, ..., Tn ). Here the

Y
process is simulated to the completion of n regenerative cycles. Using the basic facts

( i) and ( ii) above, it can be shown that both alt, f) and an(f) are strongly consistent for

alf) as t and n respectively tend to infinity. Next we define 2k = Yk (f ) - alf ) tk and

assume that var{Zk } = 0% < 0o . Then it can be shown that the following two CLT's hold

as t oo and n + 00 :

31/2[alt, f) – a ( f)] ( 0 /E1/7{ 11 }) N (0,1), ·

and

n ?/? lan (f) – a(f)] → (o / E {11 })N (0,1).

These two CLT's can then be used to construct confidence intervals for alf) provided both

o? and E { -1 } can be estimated . The mean E{r } is easily estimated by in and o can be

estimated from its definition in terms of Yi ( f) and 11.

Next we turn to a discussion of the principal method available for canceling out o .

This is the method of standardized time series developed by SCHRUBEN ( 1983) . Our

discussion is based on the paper GLYNN and IGLEHART ( 1989) and uses some results

from weak convergence theory; see BILLINGSLEY (1968) for background on this theory.

From our output process Y we form the random elements of C (0, 1) , the space of real- valued

continuous functions on the interval (0,1) , given by

1

Yn (t) = == [" Y(s)do

and

Xn(t) = n1/2[ýn (t) – at] ,

where 0 st s 1 and n > 1. Now we make the basic assumption that a finite, positive

constant o exists such that

Xn → OB as n → 00 , ( 4 )
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where B is standard Brownian motion . This assumption holds for a wide class of output

processes . To find the scaling process {Z(t ) : t > 0} consider the class M of functions

g : C [0 , 1]→ R such that

(i ) g(az) = ag(2 ) for all a > 0 and I e C[0, 1 ] ;

( ii) g(B) > 0 with probability one;

( ii ) g(x + ßk) = g(2 ) for all real B and I e C(0, 1) , where k( t) = t;

( iv) P{BE D(9 ) } = 0, where D(9) is the set of discontinuities of g .

The process

Yn (t) – at
Sn (t) = 0 st 31,

g (Yn)

is called a standardized time series. Using weak convergence arguments it is easy to show

from (4) that

Sn ( 1 ) → B( 1 )/9(B) ( 5 )

as n +0. Unfolding this CLT we have the following 100( 1 – 5 )% confidence interval for

a:

(Y (1) – z( 1 - 8/2)g ( ỉn), řn (1) + z ( 8/2 )g( Ýn )],

where P{B( 1 ) /9(B) < z (a) } = a for o sa s 1. Thus each ge M gives rise to a

confidence interval for a provided we can find the distribution of B( 1 )/9(B) . Fortunately,

this can be done for a number of interesting g functions.

One of the g functions leads to the batch means method, perhaps the most popular

method for steady -state simulation . We conclude our discussion of the method of stan

dardized time series by displaying this special g function. To this end we first define the

Brownian bridge mapping r : C [0 , 1]→ C(0 , 1 ) as

(1x)(t) = e (t) – tz(1 ), IEC(0 , 1), Ostsi

Now think of partitioning our original output process Y into m > 2 intervals of equal

length and define the mapping bm : C [0 , 1]→ R by

1/2

bm(2 ) =

[(---)
( x (i /m) – ( (i – 1 )/m) ?
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for I e C [0,1]. Finally, the g function of interest is gm = bmor. To see that Im corresponds

to the batch means method we observe that

27 1/2

1

Im ( Yn) = m- 1/2 į (Z.(m) – 2 ; ( n )

)]
m m

where

/ m

Zil " ) J(i - 1) n / m Y ( 3 )dx / (n / m )

is the ith batch mean of the process {Y(t) : 05t sn} . Specializing (5) to the function

=

Im we see that

Zi(n ) - a ]/9mlýn)= tm-1
n ( +

as n + oo , where tm- 1 is a Student's-t random variable with m - 1 degrees of freedom .

This follows from the fact that B( 1 )/9m (B) is distributed as tm- 1 since B has independent

normal increments. For other examples of functions g E M for which the distribution of

B( 1 ) /g(B) is known see GLYNN and IGLEHART (1989) .

4. Variance Reduction Techniques.

Once a basic method is developed to produce point estimates and confidence inter

vals for a parameter of interest, we turn our attention to making these methods more

efficient. Over the years a dozen or more techniques have been proposed to improve sim

ulation efficiency. Good references for many of these techniques are BRATLEY, FOX,

and SCHRAGE (1987), WILSON ( 1984 ). Here we have elected to outline three of these

techniques.

As we have seen in Sections 2 and 3, confidence intervals for parameters being es

timated are generally constructed from an associated CLT. Each CLT has an intrinsic

variance constant, say, oi . The idea for many variance reduction techniques (VRT's) is to

modify the original estimate in such a way as to yield a new CLT with a variance constant

oz < oſ . This will, of course, lead to confidence intervals of shorter length, or alterna

tively, confidence intervals of the same length from a shorter simulation run . Frequently
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VRT's are based on some analytic knowledge or structural properties of the process being

simulated .

The first VRT we discuss is known as importance sampling. This idea was first

developed in conjunction with the estimation of E{h(x)} = a , where h is a known real

valued function and X a random variable with density, say, f. Instead of sampling X from

f, we sample X from a density g which has been selected to be large in the regions that

are “ most important”, namely, where if| is largest . Then we estimate a by the sample

mean of h(X)f(x)/g(X); see HAMMERSLEY and HANDSCOMB ( 1964 ).

This same basic idea can be carried forward to the estimation of parameters associated

with stochastic processes. We generate the process with a new probabilistic structure and

estimate a modified parameter to produce an estimate of the original quantity of interest.

The example we consider here is the M / M / 1 queue with arrival rate 1 , service rate Me

and traffic intensity p = 1/4 < 1. Let V denote the stationary virtual waiting time and

consider estimating the quantity a = P{V > u } for large 4. When p is less than one, the

virtual waiting time process has a negative drift and an impenetrable barrier at zero . Thus

the chance of the process getting above a large u is small, and a long simulation would be

required to accurately estimate a. The idea used here in importance sampling is to generate

a so - called conjugate process obtained by reversing the roles of and H. For the conjugate

process the traffic intensity is greater than one, and the estimation problem becomes much

easier. ASMUSSEN ( 1985) reports efficiency increases on the order of a factor of 3 to a

factor of 400 over straight regenerative simulation depending on the values of and u . In

general, importance sampling can yield very significant variance reductions. Further work

along these lines can be found in SIEGMUND ( 1976) , GLYNN and IGLEHART ( 1989) ,

SHAHABUDDIN et al. ( 1988 ), and WALRAND (1987) .

P

The second VRT we discuss is known as indirect estimation . Assume we are interested

in estimating a = E{X} , but happen to know that E{Y} = aE{X} + b where a and b are

known . Sometimes it happens that a CLT associated with the estimation of E{Y} will have

a smaller variance constant associated with it than does the CLT for estimating E{X } . In

this case we would prefer to estimate E{Y } and we use the affine transformation above to

yield an estimate for E{X } . This idea has proved to be useful in queuing simulations where
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the affine transformation is a result of Little's Law . In general, variance reductions realized

using this method are not dramatic, being usually less than a factor of 2. For further

results along these lines, see LAW ( 1975 ) and GLYNN and WHITT ( 1986). While the

affine transformation works in queuing theory, it is conceivable that other transformations

might arise in different contexts.

The third and final VRT we discuss here is known as discrete time conversion . Suppose

that X = {X(t) : t > 0} is an irreducible, positive recurrent, continuous time Markov

chain (CTMC). Then X(t) → X as t oo and we may be interested in estimating

a = E{f(x)} , where f is a given real-valued function. As we have discussed above, the

regenerative method can be used to estimate a. A CTMC has two sources of randomness:

the embedded discrete time jump chain and the exponential holding times in the successive

states visited . The discrete time conversion method eliminates the randomness due to the

holding times by replacing them by their expected values. It has been shown that this

leads to a variance reduction when estimating a . Also, as an added side benefit computer

time is saved since the exponential holding times no longer need to be generated . Gains in

efficiency for this method can be substantial. Further discussion of this idea can be found

in HORDIJK , IGLEHART, and SCHASSBERGER (1976), and FOX and GLYNN ( 1986) .

еOk

5. System Optimization Using Simulation .

Consider a family of stochastic systems indexed by a parameter 8 ( perhaps vector

valued ). Suppose a(O) is our performance criterion for system 8. Our concern here is to find

that system , say Oo, which optimizes the value of a . For a complex system it is frequently

impossible to evaluate a analytically. Simulation may be the most attractive alternative.

We could aaively simulate the systems at a sequence of parameter settings 01,02, ...,

and select setting that optimizes a(@:). In general this would not be very efficient, since

k would have to be quite large. A better way would be to estimate the gradient of a and

use this estimate to establish a search direction . Then stochastic approximation and ideas

from non - linear programming could be used to optimize a.

Two general methods have been proposed to estimate gradients: the likelihood ratio

method and the infinitesimal perturbation method. We will discuss both methods briefly.
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Suppose X = {Xnin 20} is a discrete time Markov chain (DTMC) and that the cost of

running system for n + 1 steps is g (0 , X0,... , xn). The expected cost of running system

O is then given by

a(0) = Eo{g (0 , X0,...,xn)}, ( 6 )

where Eo is expectation relative to the probability measure P(O) associated with system 8.

If Eq {:} were independent of 0, we would simply simulate iid replicates of

Vg(0 ,X0, ..., xn ). By introducing the likelihood function L (0 , X0,...,xn) it is possi

ble to write a(6) as

a(O) = E { 9( 0, X0, •, Xn) L (0, X0, ., Xn) }

for a fixed value of 0. Then we can write

Va(O) = Eo {Og(0 , X0,..., xn) L (0 , X0,... , X , )} ,

where the interchange of V and E. must be justified. A similar approach can be developed

to estimate the gradient of a performance criterion for a steady -state simulation . For an

overview of this approach see GLYNN ( 1987) , and REIMAN and WEISS ( 1986) .

The second method which has been proposed for estimating gradients is called the

infinitesimal perturbation analysis ( IPA ) method. In this method a derivative , with respect

to an input parameter, of a simulation sample path is computed. For example, we might

be interested in estimating the mean stationary waiting time for a queueing system as well

as its derivative with respect to the mean service time. Since we are taking a derivative

of the sample path inside an expectation operator, the interchange of expectation and

differentiation must be justified in order to produce an estimate for the gradient Va(Q ) ,

say. The IPA method assumes that if the change in the input parameter, 0 , is small

enough, then the times at which events occur get shifted slightly, but their order does

not change. It has been shown that the IPA method yields strongly consistent estimates

for the performance gradient in a variety of queueing contexts; see HEIDELBERGER ,

CAO, ZAZANIS, and SURI ( 1988 ) for details on the IPA method and a listing of queueing

problems for which the technique works.
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Bayesian Inference for

Weibull Quantiles

Mark G. Vangel

U.S. Army Materials Technology Laboratory
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The posterior distribution of a two parameter Weibull

quantile for a noninformative prior may be obtained exactly

( Bogdanoff and Pierce , 1973 ) , although the necessary

numerical integration detracts from the usefulness of this

result . Credible intervals for this posterior have an

alternative frequentist interpretation in terms of

conditional tolerance limits ( Lawless , 1975 ) .

An approximation to the Lawless procedure was proposed by

Diciccio ( 1987 ) . This approximation does not involve

numerical integration and is of order o. In
( n- 3 / 2 ) ; apparently

P

it is adequate even for samples as small as ten .

The focus of this paper is on the use of Diciccio's

result for the routine calculation of Weibull quantile

posteriors . Even a nonbayesian may find the posterior cdf's

useful since they provide an easy graphical means for

obtaining accurate tolerance limits .

Examples from strength data for composite materials are

presented and a specific application of importance to

aircraft design is discussed .
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1. Introduction

The Weibull model is widely used to represent failure data in engin

coring applications. One reason is because the Weibull distribution is the

llaiting distribution of the suitably normalized minimum of a sample of

positive iid random variables under quite general conditions ( Barlow and

Proschan , 1975 , ch . 6 ) . The model is therefore appropriate for the strength

of a system composed of a string of many links where the strength of the

links are lid and the system fails when the weakest link fails (Bury , 1975 ,

ch . 16 ) . An example of a physical system which can be modeled in this way

is the strength of a brittle fiber in tension . Another reason why the

Weibull model is used is that the distribution is very flexible and con

sequently it often fits data well .

Inference for the Weibull distribution ( or , equivalently , for the

extreme value distribution , which is the distribution of the logarithm of a

Weibull random variable ) is complicated by the fact that the Weibull is not

in the exponential family , and consequentl
y the minimal sufficient sta

tistics are the entire sample . Also , although MLE's are easily obtained

iteratively , the distributio
ns

of the MLE's and pivotals based on the MLE's

can not be obtained in closed form . The same is true of linear estimators

of the Weibull parameters .

At least three approaches to Weibull inference have been taken . The

first is to tabulate approximate quantiles of the pivotals obtained by Monte

Carlo . From these tables one can obtain confidence intervals on parameters

as well as confidence intervals on quantiles ( tolerance limits ) for complete

samples ( Thoman , Bain and Antle 1969 , 1970 ) . A problem arises for incom

plete samples , since tables must be prepared by simulation for each censor .

ing configuration . The tables which have been prepared (Billman , Antle and

Bain , 1972 ) are inadequate . A second appraoch is to approximate the dis

tribution of the pivotals ( e . 8. Lawless and Mann , 1976 ) . These approxima

tions are empirical and consequently they are not very satisfactory from a

theoretical point of view .
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Finally we reach the third approach , which is the focus of this paper .

For any location- scale family (e.g. the extreme value family ) and any equiv

ariant estinators of the paraneters (e.8 . MLE's ) the distribution of certain

pivotals can by obtaioned exactly if one conditions on the ancillary sta .

tistics . From these pivotals one can get exact conditional confidence

bounds and tolerance llaits for any sample size . The method is applicable

to both complete and Type II censored samples ( 1.e. , samples for which only

the r smallest order statistics are observed ) and requires no tables .

Since the intervals have exact conditional confidence , it follows that they

are also exact unconditionally. In addition , this method has the advantage

of making use of all of the information with respect to the parameters which

is in the data ( the parameter estimates are in general not sufficient

statistics ) , though for the Weibull model this does not appear to be a

practical concern ( Lawless , 1973 ) . This conditional approach is apparently

due to Lawless , who introduced it in ( Lawless 1972 ) . An exposition of the

procedure appears in ( Lawless , 1982 ) , which is also useful as a guide to the

literature .

If one choses an appropriate noninformative prior distribution for the

parameters of a location- scale family , then the posterior distribution

either of the parameters or of a quantile conditional on the ancillaries are

formally identical to frequentist confidence and one -sided tolerance limits

respectively .

Bayesian and frequentist terminology may thus be interchanged freely

and I will do so in this paper . This is particularly valuable when

discussing tolerance limits , which have a frequentist interpretation which

is difficult for nonstatisticians to understand . A posterior cdf of a

quantile, however, is immediately understood intuitively . Such a cdf can by

used to obtain graphically arbitrary one sided and approximate two sided

conditional tolerance linits since for the cases discussed herein these

intervals coincide with noninformative prior Bayesian credible intervals .

The main disadvantage of this conditional approach is that it is com

putationally intensive . Many numerical integrations must be performed for
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each dataset as one iteratively approximates the confidence limit .

One goal of this project has been to implenent the Lawless procedure

for the extreme value distribution in a ' robust' FORTRAN program which can

be used with little user interaction . Another goal has been to investigate

• recent approximation to the conditional procedure (DiCiccio , 1987 ) which

is accurate to 0 , (n°8 /2 ). This approximation makes the the calculation of

posterior distributions feasible . A FORTRAN program to calculate and plot

the posterior distribution of Weibull quantiles which makes use of the

Diciccio result is discussed . The results of a small simulation to assess

the accuracy of the approximation are presented , though little effort was

spent on the simulation since the order of convergence in probability has

been determined .

2. The Weibull Distribution

The cdf of the Weibull distribution is

F (x ; a , b ) - 1 -e
- ( x /B )

where ß is a scale parameter and a a shape parameter . Maximum likelihood

estimation is straightforward . The following equation is solved by Newton

Raphson for a :

( &* xº log x ) ( E* xº)"? -1/• 1/a - 1/6 { log x,

where x, 3 xq s

size , and

* xr are the order statistics , n2r is the sample

I've - € wz . +(n - 1 )
i - 1

A FORTRAN subroutine ' WEIMLE ' for performing these calculations is given in

the appendix .
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3. The Extreme Value Distribution

Let X be distributed Weibull with shape a and scale B.
The distribu

tion of

Y - log(X)

is

H(y ; u , b )
0

G ( ( y - u ) ) - exp ( .exp ( (y-u) ) )

where

b . 1/a and u log B

are scale and location parameters respectively . The location- scale family

H (y ; u , b ) is called the extreme value distribution . Results for the

extreme value distribution are easily interpreted in terms of the Weibull

distribution , and vice versa .

4. Conditional Inference for Location -Scale Families

The presentation below follows Lawless ( 1982 ) . The distribution H (y ;

u , b ) is taken to be the extreme value distribution as in the previous

section . The parameter estimates û and ő may be taken to be MLE's , but the

results hold for any equivariant estimators that is any statistics ū and

Ő which satisfy

ū ( dy, + c , dy , + c ) - dūly, . y , ) + c

5 (dy, tc , dy, +c ) - d bly,, yg )

The maximum likelihood estimates are readily seenfor any c and any d > 0 .

to be equivariant .

285



Let the sample size be n and, to allow for Type II censoring, let rsn

be the number of data values . Denote the density of G ( ) by

G ' ( (y -u) ) - 14 8( (y-u) p)1b - ) b

First we demonstrate that the following randon variables are pivotal; that

Is they have probability distributions which do not depend on the

parameters :

Z2 , - ( -u)ů Ô 7. -Б . 2 , - а -u) » .

Let isr be the order statistics of a random sample from H ( y ) . Consider

the randon variables

У.

w
0

(y, -u) to .

The Wit are the order statistics of a random sample from G ( * ) and hence are

obviously pivotal . Since the estimator u is assumed to be equivariant we

have that

ûcw,, W.) - û ( ly, -u ) /o . ( y , “u )b ) :

18 ûcy,, . , y ) • u) ( ll - u ) /0 - 23

Hence 2, is pivotal . Similarly , 22 is a pivot since

Ô (w,, v ) - bay, ru ) / 6 ,

bly, y, ) - 22

( y , -1 ) / b ) :

Finally ,

2, - ( u - u ) /6 - ( ( a- u ) / 6) ( 5/6) - 7,77,

( x ,-úságThe quantities a, are immediately seen to be ancillary since

the la, ) are a random sample from G ( • ) , where G ( ) is a completely known

distribution . Only 1-2 of these ancillary statistics are independent since
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üreci ) • (ay,. ...و)۔ث)-۰
• O

and

oca, )-$(y,.....و,.1. • 1 .

The fundamental result upon which conditional Inference from a frequen

tist perspective is based is that the joint pdf of 12,, Zz , az , &.- 2 )

is of the form

h(24 . 22. ) – k(2 , 1 , n) 2, -1 ( 8( + 2,22 ) ) [ 6 ( 2,22 + 2,22).j*-*
iui

where kla , r , n) is a function of az , az , 4-2 only . The pdf of 12,,

22 ) given a is of the same form as h above except that the normalizing con

stant is different .

The proof is straightforward. Begin with the joint pdf of ( yi ,

yrl and make the change of variables

y.Y; - 2 + û .

A second changeThe Jacobian of this transformation is a constant given a .

of variables

û - 2, 6 + u - b2,22 + u

ô-2₂bb •

gives the desired result .
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3. Confidence Intervals for Extreme Value Quantiles

Using the pivotal density derived in the previous section , it is not

difficult to obtain exact confidence intervals on quantiles of the extreme

value (or equivalently , the Weibull) distribution . Toward this end , we

determine the distribution for the scale parameter pivotal 2g . This result

is of interest in it's own right since it leads to confidence intervals on

the extreme value scale (or Weibull shape ) paraneter . To get the density of

2ą , merely integrate out 2, from the joint pdf given in the previous

section , giving

h ( z, la ) - k (a) exp ( [a,22) 27 " ? / 12* exp (2, 2 ) )* .

Next , make the change of variables

? - Z, W7 /22 and 22 - 22

where

we
- ln ( oln ( 1 - P ) ) .

The joint density of 2, and Zo is

r • 1

f (zp . 22 ) a) 22 exp ( € ( a, 22 + 2,22 +
)

exp ( - £* exp ( 4,22 +222 + wo )) .

The cdf of ? can be expressed in terms of the density of ? , and 2, as

P (Z st ) • sdz , s dz, f(zp , 221 a) .
0

Change variables again , this time letting

y - exp (2,22 + W ,) &* exp (2,2% ) and zz - 22 :
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The double integral can now be written as a single integral by recognizing

that the integral over y is the incomplete gamma function :

PCZ, s t) - s dz , h ( z, 1a) I (exp ( tz , + w ) x * exp (4,22 ) , r )

0

where

I ( s , r ) - ( 1/[ ( r ) ) Ssx -2 es dx .

Since the pth quantile of an extreme value random variable is

X '
• u + W

" ob,

the pivotal 2 , can be expressed as

2 - (ů - x , ) ..

One

The probability distribution of a can therefore be used to obtain

exact conditional confidence intervals on extreme value quantiles .

first obtains the constant of integration k(a) numerically . Next , the

P (2 st) is evaluated numerically for sevaral choices of t until the

quantile of the distribution of 2, is determined to the desired accuracy ..

Finally , the confidence bound on x , is trivially obtained by pivoting .

6. A Bayesian Interpretation

Independently of Lawless , Bogdanoff and Pierce ( 1973 ) arrived at

results identical fo those outlined above from a Bayesian point of view .

Bayesian results are much easier to explain to nonstatisticians . This is

particularly true for the problem that I'm prinarily interested in , con

fidence intervals on a quantile , and the advantages of Bayesian motivation

for a particular application will be discussed in a later section .
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Let ( 91 ) be the order statistics of a Type II censored sample of size r sn

from an extreme value distribution . The usual joint noninformative prior

for the location parameter (u) and scale parameter (b ) of a location - scale

family is :

. (u) « constant (log (b ) ) constant

(u , b ) « 1 /b .

Using the expression for the extreme value pdf given in a previous

section , the corresponding posterior distribution is seen to be

(u ,b ly) + b« b • ( 3 + 1 ) exp (E (y, • u ) fo )

1-1

*' exp ( - £* exp ( ly, -u)0) ) .

The location parameter is readily integrated out giving

r (b ly) ( 1/6 ) exp ( [ y , f ) 118* exp (y; b) ] :

1-1

The normalizing constant is determined by numerical integration . Inference

based on this result will be shown in the next section to be formally equivo

alent to Weibull inference using the pivotal for the shape parameter .

Let y (u , b ) be any scalar function of the parameters about which in

ference is to be made . Assume that you , ) is monotonically increasing in u

for fixed b . If a function can be found which satisfies this condition

piecewise , then the following results may still be applied to each monotonic

section of the function . Some useful choices for are

vu, b ) • u ( location parameter )

vu, b ) - u + log ( -log ( 1-0 ) ) b (pth quantile )
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( u , b ) O exp (-exp ( ( t - u ) ( ) ) ) ( reliability at tine t )

( u , b ) - u • rb (mean ; y is Euler's constant )

Define the inverse function ( d , b ) by means of the relation

Win ( 8 , b ) , b ) - s .

The posterior cdf of u can be expressed as

P (y(u , b ) ss ly) - 5 P ( u s n ( s , b ) 1b , y) * (b ly) db

It is easy to show that the conditional distribution of a - exp (-u /b ) given

b is the following gamma distribution :

x ( 1b , y) ( 1/[ ( x ) ) ( £* exp (y , 1 )) 1 * ? exp ( - 1 &* exp (y, o) ) .

Simple algebra also shows that

P (u sn ( s , b ) 1b , y) - P (1 2 exp ( -n ( s , b ) ) 1b , y ) .

Combining these results , we have finally that

P ( ( u , b ) ss ly)

0

$ ( 1 -I (exp ( on ( s , b ) o ) £* exp (y , f ) , r ) ) a (b ly ) db/ ) b )

where I ( 0 , r ) denotes the incomplete gamma function

I ( 0 , r ) (1/6 ( r ) ) s *** ? exp ( -x ) dx .

0
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For a confidence bound on the pth quantile xy

n (8,5 ) wpb

and

P (X, 58) :(2-10I ( exp ( w, s /b * exp ( 9,76 ), r ) a(b 17 ) db .

The fact that for inference about quantiles and about the shape ( or , in

terms of the extreme value distribution , scale ) parameter the Bayesian

approach is equivalent to the Lawless conditional approach will be demonstr .

ated next .

I. Formal Equivalence of Bayesian and Frequentist Results

First we demonstrate that posterior intervals for the scale parameter

(b ) have an exact frequency interpretation . Let by be such that the post .

erior probability that b is greater than by is y . Since

P (D 26. ) - Pôros 677 ) - Y ,

we make the change of variable

za ob

and substitute for the y, in terms of the a . to get

y - farb ly) db - 5 exp (Ey , ) 6** 118 * exp ( y, po ) ]' dbsaco

by 61

DD

* s exp ([a, z )/ ( *exp (2, 2 ) ) ' 27-2
dz
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Bio ,

es exp ( [ a, 2 ) / 11' exp ( 2 , 2 ) ] * 2° • ° dz
0

Бъorba

esh(z 1g) dz .

To see the equivalence of the results for a quantile, we make the sub

stitution

t - sû . s)

and note that

exp (wy · 510 ( * exp ( 9,76 ) ) )
O

exp ( w, + tô û /o (s'exp (2,670 + û/D))) -

exp (w , + tôro ( * exp (2,670 ))).

The change of variable 2 - ôn gives the desired result .

8. The Log Generalized Gamma Distribution

The probability distribution of a generalized gamma random variable T

is

F. (X ; a , B. k ) - ( a / r ( k ) ) (xak- / pak ) exp ( - (x/B ) " ) .

Details on inference for this family may be found in ( Farewell and Prentice ,

1977 ) and ( Lawless , 1980 ) . Note that the case kNote that the case k - l corresponds to the

Weibull distribution .
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If I has a generalized gamma distribution , then Y - log (T) can be

written in the forn H • OW where

N - log(b) + log(k) /a ,

0 - 1 / (ak ? ! ? )

and w has the probability density

Ew (w ; k) - K - 112 /r (k) exp (k? / 2w • exp (w /k2/ 2 ) ) .

Y is said to have a log generalized gamma distribution .

By varying k , one obtains a family of location - scale dsitributions

ranging from the normal (k - .) to the extreme value (k - 1 ) . Although we

will restrict attention to the case k - 1 , it is straightforward to adapt

both the frequentist and the Bayesian approaches to arbitrary fixed k and

even to certain regression situations ( Jones et . al . , 1980 ) .

9. Approximate Inference for the Log Generalized Gamma Distribution

Let ū and 7 denote maximum 11kelihood estimates of u and o subject to

the constraint

Yoo - + wgā,

Уро "that is , the MLE of the pth quantile is required to equal
If û and @

denote the unconstraine
d MLE's , and if L( , 0 ) denotes the log of the log

generalized gamma likelihood , then the asymptotic distribution of the sta

tistic

V (ypo )
O -2 (Lū, Ō ) · LCŮ , ô ) ]

is x with one degree of freedom . Lawless ( 1982 , sec . 4.2 ) suggests that

inference based on V (ygo ) is acceptable for moderate to large samples but

that the approximation may be inadequate for small samples.
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DiCiccio (1987 ) has applied general techniques of Barndorf -Nielson

( 1986 ) in order to develop a computationally inexpensive modification to the

signed square root of V(yo ) which yields a likelihood ratio based approxim

ation suitable even for quite small sample sizes . The numerical integration

required by the exact methods is only troublesone for moderate to large

samples ; so the approximation is actually of questionable use over the range

of sample sizes for which it is inaccurate .

I will not reproduce the details of the Diciccio approximation here for

two reasons . The most important of these is that only the results are

presented in (DiCiccio 1987 ) and to repeat these results without having

studied their derivation would serve no purpose . A second reason is that

although the approximation is inexpensive to compute , the formulas are

messy , and to reproduce then here is to invite typographical errors . Inter .

ested readers should refer to (DiCiccio 1987 ) and to the FORTRAN implementa

tion as subroutine LAWAPX in the appendix .

:

10. The Accuracy of the Approximation

The Diciccio approximation can be shown to be accurate to 0. (n 3/2 )

( Diciccio , 1987 , p . 37 ) , so an extensive simulation study of accuracy is un

necessary . The results of a very small such study are presented in Table 1 .

Samples of sizes ranging from 10 to 30 were taken from Weibull populations

with different shape parameters . Both the Lawless and the Diciccio methods

were used to calculate 95 percent lower confidence limits on the tenth per .

centiles of the Weibull populations and the mean and standard deviation of

the percent different between the Lawless result and the Diciccio approxima

tion were calculated for 100 replicates for each case . One would expect

that the approximation error should be a rapidly decreasing function of n ,

and this is observed to be the case . The quality of the approximation is

also seen to be a function of the shape parameter of the population .

Halving the shape parameter ( from 10 to 5 ) approximatly doubles the mean

percentage error uniformly over sample sizes . Also , the approximation error

actually appears to be a function of the number of uncensored values rather
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than the overall sample size , which is not surprising. Overall, the

DiCiccio result appears to be satisfactory for samples of 10 or more un

censored values , and remarkably good for samples of 30 or more observed

values . This conclusion is based partly on the small simulation presented

here and partly on experimenting with various cases of real and simulated

data .

11. An Application : Composite Material Basis Values

A criterion used both by aircraft designers when choosing a material

for a specific application and by the Federal Aviation Administration when

certifying a new material for a structural aircraft application is the

material basis value . A ' B -basis value ' is defined to be a lower 95 percent

confidence limit on the tenth percentile of the strength distribution of a

material and an ' A -basis value ' is a 95 percent lower confidence limit on

the first percentile . The reason for these tolerance limits , which have

been used in the industry for decades , is that a designer is primarily

interested in the lower tail of the strength distribution . In order to

design a reliable structure , he would like to estimate the stress level at

which a material is 90 percent or 99 reliable . A tolerance limit is an

attempt to estimate these quantiles in a conservative way . Such conserva

tism is particularly necessary for advanced composite materials , which typi

cally have relatively high strength variability. Also , advanced materials

are generally expensive to manufacture and test , resulting in small sample

sizes .

The work presented here has been motivated by a need for improved

methodology for calculating basis values and for communicating lower tail

quantile information to the engineer . Typically , the engineer who routinely

calculates and interprets these numbers has little appreciation for the

rather convoluted frequency arguments behind tolerance limits . The long run

proportion of times a statistic calculated from successive samples of size n

from a hypothetical population is greater than a certain quantile of that

population is of little help to the statistically naive . The simple state

nent that the tenth ( first ) percentile is greater than the B -basis (A -basis )
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value with 95 percent probability is much more direct and intuitive . Also ,

the Bayesian approach presents all of the information in the data about the

lower tail quantile of Interest , which is what should be the ultimate

concern of the engineer anyway . The fact that the tolerance luit is only a

convenient summary statistic of this distribution becomes clear when the

wer is presented with the entire posterior and shown how to deternine

arbitrary tolerance limits graphically .

Table 2 presents B-basis value calculations for a graphite fiber/epoxy

material nade by four fabricators . Note the agreement between the Diciccio

and the Lawless calculations . Figure 1 consists of the four tenth per .

centile posteriors . Not only do two of the fabricators have nearly the same

B-basis value , they also have virtually identical quantile posteriors .

Several questions immediately come to aind : Why did the other two manufac

turers produce substantially weaker material?; Are other. lower tail quantile

posteriors for the two ' similar ' fabricators as close together ?; etc. Ex

amining the posterior rather than a summary statistic of the posterior leads

to insight into the data that might not otherwise be apparent . Figure 2

demonstrates that the B -basis value can be retrieved graphically .

Table 3 , Figure 3 amd Figure 4 present corresponding results for

another material : woven Kevlar fibers in an epoxy matrix . These data show

much less fabricator -to - fabricator variability than do the graphite/epoxy

data . This can readily be seen from the tolerance limit calculations . The

fact that there is essentially no evidence in the data to suggest that the

fabricators differ with respect to the tenth percentiles of their strength

distributions is made particularly clear by the ' overlapping' posteriors of

this quantile .

12. Conclusion

This paper reviews two results related to conditional Inference in lo

cation- scale families , emphasizing Inference on Weibull quantiles . These

methods are due to Lawless ( 1972 ) and Bogdanoff and Pierce ( 1973 ) . For the

case of inference on quantiles both procedures are equivalent , though the
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former is notivated by frequency considerations, while the latter is derived

fron a Bayesian point of view . The recent work of Diciccio (1987 ) greately

reduces the computational burden of both methods with little loss of

accuracy .

The advantages of the Bayesian Interpretation , at least for Inference

on quantiles, has been demonstrated by means of an example from an engin

sering application .
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TABLE 1

Accuracy of the Diciccio approximation

A simulation of 958 lower confidence bounds on the 10th percentile using the

Weibull distribution with 100 replicates per case was performed . The

results are summarized below :

n r Shape Scale A% Stan . error of mean

10 10 10 1 1.09 .029

20 20 10 1 380 .0086

10 10 5 1 2.20 .059

20 20 5 1 .761 .017

30 20 5 1 752 .016
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TABLE 2

Carbon fiber / Epoxy specimen tensile strength data

95 % LCB on 10th percentile

Fabricator n Estimates (KSI )

Lawless Diciccio

A 48 244.1 244.3

B 36 271.4 271.6

с 33 228.2 228.5

D 25 269.5 269.8

TABLE 3

Kevlar fabric lepoxy specimen tensile strength data

95 % LCB on 10th percentile

Fabricator n Estimates (KSI )

Lawless Diciccio

A 23 77.58 77.64

B 18 76.36 76.50.

с 30 77.18 77.23

D 10 78.45 78.64
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Appendix : FORTRAN Listings

The following programs were developed on an Alliant FX / 8 and should run with

little modification on any 32 bit machine . However , the software has not been

tested to the point where it can be considered error free . The programs are

provides as a guide to an individual wishing to implement the algorithms discussed

in this paper .

+
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program loupom

Mark Vangelo 5/20788

Program to implement bouless ' procedure for

conditional confidence intervals on Quantiles

for a location / scale family . The family chosen

here is extreme value . Data may be Type Il censorer .

Note that conditioning on the incillaries gives the

equivalent of an HPD region for anoninformative

prior .

implicit double precision loone 0oz )

parameter limax = 500 )

characteri12 flenme

dimension alimar )

suna ,

common Idatl X

Common Ical enor a.

common Ico /

commor Ico / tol

data one 11.dúl

gati

data coarse , tine , eps 11.0-2 . 1.007 , 1.7057

•• lutout unit number one filenare

write 16. # ) Output unir number ? '

reao ( 5 , * ) iout

it ( iout one . 6 ) then

write 16 , # ) Filename ?

rean ( 5 . ' ( 012 ) ' ) Alena

olen ( unitsiouto file : tlenme , status = ' new ' )

end it

u
u
u

C

Inis urobras is tesie wir ! rarion data .

It can also be used for data from a file .

The first record of the input file has the

sample size and the number of uncensores values .

write 16. * ) Enter i for cota frpa file

write ( . # n for randon Oata . '

read ( 5. * ) icat

it ( icat sea . ) then

write ( 6 * ) ' Filename ? !

read ( 5 , ' ca1210 ) tlenme

ocer lunitsiouto1 . " ile : tlenne , stolus : ' olo. ' )

reac liout.1 . ) ne K

с à

с

10

note : the first field on eact remaining recors is

batch indicator not used for this orcyran .

do 10 isl , k

read liout.1 , # ) Jummy , li )

continue

call osvryn ( ke *

else

write ( 6 * ) ' Seed ? "

reac ( 5 m ) isee :

write ( to # 1 ' beinull Shane anc scale ?

read ( S. + ) sho , sol

write ( 6 * ) " Sarole size ? !

read ( 5. )

write 16 , * ) ' nuober uncensored ? .

rean ( S. * ) k

Al
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Get the pseudoorandom sample

call anset liseed ) -

call drnu id in , shper )

call dsvrgn in , x )

do 20 i : 1 . k

u li ) sel ** ( i )

continue

end if

20

•• Get the Veibull MLE'S

call unrele lesho , escl , ne ke x , eps , iter , 100 )

Extreme value location ( umu ) and scale ( ASO ) estimates

inu 3 dlog lesel )

isg : one lesho

:

. n

.

:

Write out what we have so far .

write ( iout , * )

write liout , * ) ' The Lawless conditional procedure '

write liout , * )

if ( ioat one . 1 ) then

write ciout * ) ' Seed is : eo

end it

urite liout . * ) • Sample size

write liout , * ) ' Aumter uncensoreo

it ( idat one . 1 ) then

write lioute * ) ' beitiull shape , scale she , sel

end it

write liout , * ) ' beibull MLES esni , eset

write liout , * ) ' Extreme value location :

write liout , * ) ' Extreme value scale rs :

write ( iout * )

write liout , * ) ' oibull Jata :

write lioute inu ) ( xlil , 1 : 1 . k

format ( " 110.4 )

.

: .

.

:

130

ܝ ܝ ܝ
•• lion , calculate the tolerance linie using Oren

exact metno ano viliccio's apororinationi .

write ( 6. # )

write 16. # ) ' Lower continence young calculation .

write ( 6. * ) Guantile ? "

( 5. * )

write ( 6. # 1 contidence coefficient ? '

( 5 , # ) gam

read O

1

reao

OO

Lowless conditional procedure itochnometrics , 1775 )

call lawles ( xene ke 01 3 ani , etol )

Diciccio's approximation ( technometrics , 14 : 7 )

call lawadu ( ne ne ko o aumatol )

brite out the toleranco limit results

write liout . * )

urite liouto * ) ' Lower continenco tound on a cuingilei

write liout , # ) ( Futrone Value on line icull ) .

write ( ioute # ) Probatility

write liouto * ) confidence : gar

write liout , ) ' Extreme volve quantil
e

: zr

write liout , # ) ' Lawless tolerance limits : . , etoli Toiletul

write liout , * ) Approximations : atol loglarolܝ
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write ( * . * ) ' 1 cdt, 2 - pdf ? '

read ( * . * ) itype

itype : 1

write ( * . * ) " Min and max for obscissa ? '
read (** ) gmine omax

write ( * . * ) " Min and max for ordinate coon for Tefaul :) ? '

read (** ) omin , on a x

call initt ( 960 )

call binitt

call comset liposer ( ! 11 , amin )

call comset libasex ( 12 ) , amar )

if ( omax one . zero ) then

call comset libasey ( 11 ) , orind

call comset libasey (12 ) , Omin )

end if

it citype .eg . 1 ) then

call nots (not ºng )

call check ( quant , cof )

call nots ( ครู )

call dsolay ( quanto cof )

oo 30 isl , nploto ]

call colot ( quant liung.1 ) , cot liang.1 ) )

continue

else if ( itype oea . 21 then

call nots Innlotting )

call check ( quart , dens )

call nots ( na )

call dsoloy ( ouanto oens )

do 60 isl , noloto !

call color ( quart ( iando1 ) , oens liung . 1 ) )

continue

eno if

call movabs ( C , 10Ún )

call anmode

read (**)

go to 2

enos it

60

write ( * , * ) wuit ? '

read ( # , ' ( al ) ' ) ans

it ( ans one . ' y ' ) go to ?

call finiti ( 0 , 700 )

Stop

end
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program Potpot

Mark Vangelo July 1961

Frogram to calculate and plot the posterior of a

percentile for the Weibull sodel . This program calls

subroutines from the Tektronix Plot 10 library .

character * 20 tlenne

character.1 ans

dimension : ( 1000 ) , cof 15000 ) , dens (5000 ) , quant 159.99 ) ,

ipoint ( 100 )

data zero , one 70.00 , 1.001

ipoint ( 1 ) : 0

na : 190

nplot : 0

E

1

Loop over all files .

write ( * , * ) usbrief outnuto 1 = complete output

read ( * , * ) ibriet

continue

write ( * , * ) Filename ? •

rear ( * , ' ( 220 ) ' ) flenme

if ( tlenme .eg . • ' ) oo to ?

nrlot nolot - 1

open ( unitslú , file: tlenme )

read ( 10. ) nsampe nons

do 10 1 : 1 , nobs

read ( 10 , * ) idumon ( icoint inplot ) + i )

continue

close ( 10 )

ipoint Inplotil : ipoint inplot ) + nots

l
u

C

с calculate the rosterior for a specified Quantile

write (** ) percentile ? "

reac (** )

if ( d.gt. one ) : Clini

write ( * , * ) Stange of values for posterior ?

read ( * , * ) amin , arax

do : ( Gnia roamin ) / ing - 1 . )

write ( # , # ) • Posterior of , 100 + !, ' percentila

write (**) fron. ' , 9min . to ' , Grås

write ( * . * )

dc 20 i = 1 , ny

ion : ( nplot . -11 * nc i

Quant ( idx ) = ( - ) # ศว • onin

call lawapa ( x lipoint inolot ) l ) , nsome , nos

quane ( ion ) Dr Cut lidx ) )

it lioriet .eu . 1 ) then

write (** ) quant ligulo com linda )

end it

continue

90 to 1

20

C

с

2

•• Sou plot ine results

continue

write ( # , # ) Plots ? '

read ( , ' ( al ) ' ) ans

it cans .ec . ' y ' ) then

C

Censity calculations not yet implementou .

Al
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write ( ... ) ' locot , 2 pdf po

read ( . itype

itype o

urite (. Min and mor for obscisso r

read goin, gaan

> ) Min and run for ordinate ( 0.0 for default ) ?

neid ouin , onar

coll initt ( 960 )

call binitt

coll conset riboser ( 11 ) , goin )

call conset ( ibaser ( 12 ) , qua :

if Conan .ne . zero ) then

call conset libosey ( 11 ) , onin )

coll conset libosey (12 ) , Omar )

end if

if citype .tq . 1 ) then

call nots ( nplot ng )

call check ( quant , cdf )

call nots ( na )

call osplay ( quant , cof )

do 30 isl , nploto]

coll colot ( quant ( fong.1 ) , cof liong.17 )

continue

else if ( itype .eg . 2 ) then

call nois ( nplot ing )

call check ( quanto dens )

coll npts ( na )

coll dsolay ( quanto dens )

do 40 isl , nploto1

call cplot ( quant liing.1 ) . dens liing.1 ) )

continue

end if

call novabs ( 0 , 1000 )

call annode

read (+ ,* )

90 to 2

end it

60

write ( * . * ) Quit ?

read ( + , ' ( all ' ) ans

if Cans one . ' y ' ) go to 2

call finitt 10. 700 )

stop

end
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program lausim

Mark Vangel , 10/ 14 / 8E

n
n
n
n
n
n

Program to test by simulation on approximation of

Diciccio ( 1987 ) to the Lowless condicional crocooupe .

implicit double precision loon , 002 )
par aneter ( imax 500 )

character # 12 flende

dinension ulimax )

Suma ,

common i dati

Common Teal choro .

Common Ico / D

Common lcd / tot

gan

C

data coarse , fine 11.0-2.1.2-7 /

Output unit number ano tilenare

write ( 6 # ) Output unie numuer ? '

read ( 5. * ) iout

it ciout one . 6 ) then

write ( 6. * ) " filename

read ( 5 , ' ( all ) ' ) tlenme

open ( unit : jout , file : flenme , status : ' new ' )

end it

7 .

n

•• Get simulation parameters

write ( 6 * ) " Seed ?

read ( 5 , # ) iseeo

write ( 0.6 ) " Weibull shape and scale ?

read ( 5 , ) shD sel

write ( 6 , 7 ) Sample size ?!

read ( S. * )

write 10. * ) vumbier uncensored

reao ( S. # ) k

write (6. ) Number of replicates ?

read ( 5 , * ) nsim

write ( 6. # ) iuaritile ? "

read ( 5. # ) O

write 16. * ) ' contigence coeficient ? '

read ( 5. # ) 9am

?

C

.C

.

nel

•• Write out what we have So far .

write liout # )

write lioute # ) ' The Lawless conditional crocedures

write ( iout . * )

write liout , * ) " Seed ' , isen

write liout . * ) " lounter of replicates

write ( ioute ) ' Sample size

write lioute * ) ' nummer uncensores

write liouto * ) ' Guantile

write liout . * ) continence coefficient

write lioute # ) ' heinull shape , scale So , Scl

write lioute * )

n

; **

.

crrarlicatesLoop over tne

call riset liseed )

s $ 0.00

SS 0.00

oo 99 1 : 1 . nsim
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с

Get the pseudoorandor Sample

call drawio.in , shue )

call dsvrgn Ino xr x )

do 20 i = 1 , k

( s ) : scl ** ( i )

continue

x

20

C .. Lawless conditional orocedure ( Technometricse ? ; ? !!

call lawles ( xen , K.
ng game etni )

C Ciciccio's aoproximation Itechnoretrics , 1977 )

call lauapx ( de neke De oam atol )

C error

C

Measure approxiaatior in terms of percent

opct 3 Catol etol ) Tetol # 16r .

C

C

Write out the tolerance limit results

write liout , # ) Lawless nisiccio , gelin :

erol atole doct

S
S doct

SS SS Oct Oct

continue

3بب
с

; . ) ) )

•• Nean ang stan . oev . of : error

S Sinsir

SS sort ( iss - ngin * s * 5.d I ingin insi

write liout , * )

write lioute ) • hvera error

write fiout ) " S : anci teviatico

S

.

:

Stof

end

AZ
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subroutine lowles ( x , na , ka , pa , gara , etol )

C

Mark Vangelo May 19 ! &

subroutine ' lawles ' calculates one sided lower tolerance limies

for the Weibull rodel using the Lowless condicional procedure .

This routine performs ' exacto calculations by numerical

integration . For even moderately dorae sandles the niciccio

approximation used in subroutine lauapr ' is very accurate

and computationally less troublesome than the method used here

C

n

k

D

9

etol

Data

Total sample size

Number of luncensored ) observations

Probability associated with quantile xo

confidence level for Ico on an

• Exact ' lower tolerance limit

Cineur )

( input )

lingue )

( Indu . )

( ! ngut )

( rutout )

Ket : Lawless , Technometrics 1975

implicit double precision cache 0-2 )

dimension X ( 1 )

common roari esho , escle XIU , ISO

common Ical Cnorr. Suma ,

COMRON Icel Do an Wp , t

Common Ico / tol

external antond , conf

data coarse , eos , fine 11.1-2 , 1.0-5 . 1. - 7 /

dato zero one , cloch inste 1.00 , od to 1.?co/

Oo

fut stult in common

na

kak 8

p 8 Do

oam
8

gamia

Oo

Get the Weibull " Liis

call warmle lesho , escle ne Ds . iter , inc )

C

C

C

C

Tolerance limit factor ranoe . This range is nosac

enouat. for virtually any practical confidence Cootricioni .

" iconto provides a first anproximorion to the rolerance

lirit . 101. that ' iconti returns lower tolerance limits .

gam : one • gan.

coll iconf ( xen , k , D. gain , tollmt )

one 9 am

tollat : log ( lesc Itolimi ) ** esho )

21 3 ct #tollit

zh & ch * tolimo

write ( * . * ) Laules : First guess : ' , loo ( toll )

Qam

C

C NOU go to log scale .

do 10 1 : 1 . k

( ) : log ( x ( i ) )

continue

ܙܐܪܙ

15

C

C Entrere value location Control and scale ( oso ) estirares

umu : log ( escl) .

one TesnoISO
8
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•. We need the ancillaries and their SUA

suna $ zero

do 20 1 : 1 . k

SURA suma + ( x lil olmu ) 1489 .

continue

с

ب ب ب ب ه

Next we obtain the constant of integration .

Use an adaptive quadrature routine to integrate

XATGNL on ( 0 , infinity ) .

Cnorm one

adserr

relers &

call dadagi ( antonde zero , i , atserre relerro xke err )

zero

eos

The normalizing constant

chora : one luk

write ( t * )

write 16. * ) ' The normalizino constant is
' , crora

с

oth quantile for standard extreme value distrinution

s log ( olog con . ** ) )WE

C

C Estimate oth quantile for data

AMU ** SO *ZD
8

n
n
n
n
n
n

Frent's algorithm to find tolerance limit factor SUS

that the integral of Yo Train from 1. , intiritys eiutis ' ;

The first pass has large error tolerar.ct save ting .

The second cass uses the final tolerance .

a

8

raxit = 10c

atserr zerc

relerr coarse

tol coarse

call orbren ( xcont , abserre

8

releri , 71 , 21. Tarie )

܀ܐܪ

Nove in for the bill .

marit : inc

21 : .950 '

zh : 1.0509 # 2h

relers : tine

tot : tine

call ozbren lacont , atserre relerre 21 , 21 , marin )

poltet : 2h

C

:C Calculate the rolerance linie

etol : exc ( xniu • 2h # x55 )

с

Restore the data

do 30 1 : 1 . k

« ( i ) exp ( ( i ) )

continue

8

30

C

return

end
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subrout ine l awapx ( x , nsampa , nobsa , pe , gama , atol )

Mark Vangel , July 1988

An excellent approximation to the one - sided Weibull
conditional tolerance limits of Lawless ( 1973 ) .

x

nsamp

nobs

P

Data

Total sample size

Number of uncensored ) observations

Probability associated with quant ile xp

Confidence level for lob on XP

Approximate lower tolerance limit

( Input )

( Input )

( Input )

( Input )

( Input )

(Output )atol

|
|
u0000

Ref : Lawless , Technometrics 1975

Diciccio , Technometrics 1987

implicit double precision cach , 0-2 )

dimension X ( 1 )

common par / ushp , usel , Xmu, msg

common / cont / pi gam , nsamp . nobs

external aconti

data maxit / 1007 , ops /1.d-5/

data coarse , fine 11.0-2 , 1.0-71

data zero , one 10. do , 1.do/

data cl , sh , di , oth 1.800 , 1.200 , 930o , 1.0500 /

n
n

Put stuff in common

P pa

gam one -gama

nobs nobsa

nsamp 3 nsampa

2

U
U

Get the MLE'S of the Weibull par ameters

call wornle ( ushpi usci , nsamp , nobs , xi eps , iter , naxit )

00000

Tolerance linit factor range . This range is broad

enough for virtually any practical confidence coefficient .

' icont' provides a first approximation to the tolerance

limit .

call iconf ( x , nsamp , nobs , pi gan , tollmt )

21 el • tolint

zh otolint

write ( . , Lawapx : First guess . , tollat

Brent's algorithm to find tolerance limit factor at

the desired confidence level . The first pass has a

large error tolerance to save time . The second pass

uses the final tolerance .

000000

maxit • 100

abrera • zoro

roler • coarse

tol • coarn

call dzbran ( aconti , absorr , relorr , 21 , zh , maxit )U
U

Move in for the kill .

Maxit • 100

21 • di .ch
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th ch .ch

relorr fine

tol • fino

call dzbron ( aconti , abserr , relorr , z1 , zh , maxit )

atol • zh

return

ond

All
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subroutine iconf (rensampe noose fogo tolimt )

Mart Vangelo October 1988

A non- iterative first approximation to the Lowless condicional

procedure loro alternativelyo to the posterior of a quantile under

• flat prior ) . The routine is written for two daramter Weibull

anilysis , but extension to the generalized 100 gamma ronily is

straightforward . This routine returns the estimated confidence

linit for a provided prodauility level and confidence thence

the ' j . · for inverse in the routine name ) . This routine is

approximately inverse to ' aconti . It provides the same result

as ' lowapx ' out with a less accurate aporomination .

O

C

Ret : Diciccio . Tid Tecnnometrics 1957 0.33

C

nsamp

nots

9

Data

Total sample size

Number of luncensorec ) observations

continence level tor Icoon

Probability associated with quantile na

Upper tolerance limit

linout )

( input )

( input )

lingur )

( Inout )

Trutout )

O

C tollat

implicit double orecision cache noz )

dimension x ( 1 ) , S ( 4 )

cata epse rarii 11.005 , 109 /

data zero , one , hall , inhalt , fuhalt

10.01 . 1.00 0.57 1.500 2.5001

C

C Get the weigull alris

call warmle lusho , usclensamie non se ers , iter , : ! ^ )

C

с Transtorm to exerene valve distri : ution .

uloc : loy lusel )

UScl : one Tusno

C

C

с

Calculate the derivarives of the loy likelinoo 2 !

the " LE .

D : log lolog Cone -0 ) )

do 36 j : 1 ,

sljs = zero

do 6C i = 1 , no ! ) s

: ( olulil ) -uloc ) luscl

( 12 • WD ) ** ) * er ( 2 )

slj ) : slj ) • t

continue

slj ) : slj ) Insamp -nobs , * t

continue

Z

:

40

30

C

020 : -nous

3 -S ( 1 )

00 ? : • Inoss s ( ? ) )

c3C : nots

021 : 7 * nons -s ( 1 )

012 : 3# 5 ( ! ) • 512 )

003 : nobs 3 * 512 ) 5 ( 3 )

04C s onobs

031 : - ( 3 # nois s ( 11 )

022 : - ( 4 * nots 5 * 5 ( 1 ) 5 ( 2 ) )

Cl ? : - ( 7 # sll ) 5 512 ) 51 ? ) )

004 : -nobs -17 * s ( 2 ) 6 * 5 ( ? ) 514 ) )
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The approximate mean ono variance of re the sianeo

square root of -2 times likelihood ratio is calculated inlored
terms of the dij .

vil : •802 / 1020 002 •011 *011 )

: ( vll ** half + ( - 0121 002 011 * 003 1002* .21 ) 12

( vil # l - d227002 ( 021 * 003 • 2+013 * 011 012** 2 ) 1072** ?

• 14 * 012.011* 093 004 * 011** 2 ) 1002** 3

.2* ( 011 *003 1002** 21 ** 211 16

( v1l **thhalt ( 030 - 3 * 021 * 011 1002 • 3 * 01? * ( 011 1002 ) # * ?

•003 * ( 011/002 ) ** 311 16

: ( val ** * ( 04 ) - ( 4 * 31 * 011 3 * 021** 21 100 ?

+ ( 6 * 022 * 011 ** 2 12 * 21 * 017 * 011 ) 1002# * ?

- ( 6 *021 * 003 * 011 ** 2 + 4 * 013 * 311** ? * 17 * ( 012.011 ) ** 21 lo ^ 2 ** ?

( 12 * 412*003 * 011 ** 3 004 * 011** " ) 1002 #

- 3 * d11** 4 * 003 * + 2 1002 *+ 5 ) ) 124

S

$

$

XMU a 2 * c

sort ( one 2 * ( + 3 * d * a * c ) * 11 * c ** 2 )XS9 :

•• Diciccio , equation 6 .

29 : norin ( 9 )

rg 8 RU * SG # 20

ур : uloc uscl #wn

tollmt : yo musel * ( suri ( vii ) Elro • C * ro ** ?
$ ( fvhalf * C ** ¿ d ) * r ** 3 ) )

C

с
Oo

Go to Weioull scale .

tollmt : exD ( tollmt )

с

return

end
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double precision function entgno ( 2 )

Proportional to the pdf of a certain pivotal Quantity .

The normalizing constante ' enorm's depenos on the

data and must be obtaineo by a preliminary numerical

integration . Unce ' cnorm is known , XI. TG " [. becomes à

pot and is used by YATOND during the primary numerical

integration to get the tolerance limit .C

с

Note : ' cnorm ' must be initialized ( to 1 ) before the

preliminary integration . Following thate ' enorme

can be assigned the value which makes X Traro ' .

implicit double precision ( aone 0-2 )

dimension r ( 1 )

common block .

X

- • ' sl ' is used by YNTGND . hence in

Common /dat /

Common Icel si

Common Ical chorm , SUIT a .

Common Ipari eshne escle

data zero one in.c. 1.00 /

X SC

ܙܐ

(:(:)هدهب)7ود

Dwr : one Il loat ( kel )

si zerc

t one

do 10 1 : 1 , K

it ( i oea . ) 1 051e cook 1 )

a : ( i ) )

si : si t * gero la 2 ** )

continue

anitong : ( sl Idule ( k ) ) ** ( - k ) # r.r

inting : incond #ex ( suno 12 ** WP -one ) )

untyno : intang #chora

return

end

1 )
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double precision function xconf ( ta )

Subroutine to determine the probability of

the oth quantile being less than Tit ) , where I is the

tolerance limit factor .

inplicit double orecision coon , 0-2 )

common Icti Do gamie WD t

COMMON Icon tol

external yntand

data zero . one 10.8V , 1.dur0.00

' t ' is to be found so that the integral of YA Triin Arna

10. infinity ) equals " Qan ' .

t : ta

abserr : tol

relers zero

call cacagi cyntando zero . 1 , doserre relerre vie ere )

iconf : xi «gam

C

This is just soine terminal outrut to amuse the user wila

ne's waiting for results .

write ( * , * ) · Tolerance factori cortiuence : t xi

return

enc
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double precision function ynigno ( 2 )

Function to calculate the integral for

determining the confidence .

inplicit double precision ( aoh , 007 )

Connon I Col De gam , 00 t

connon real enora , suma ,

connon lcci

data zero , one 10.00 , 1.00 /

no

S

с

pur
8 one Ifloat ( kel )

The first factor is the function which was inteoratos

to get ' enorm ' .

yntgno & antgnd ( 2 )

$

The second factor is the gamma cot evaluate : at a poin .

which depends on a quantity calculated in XVIGN " .

uplim 3 S * dexo ( wp.t * **pwr. )

one odgamsf ( float ( k ) , volim )

ynting : yntand *

return

end

a
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double precision function sconti ( + )

c

implicit double precision ( aon , 002 )

dinension ull )

common i dati

common I conti

.

same ,De gam nsamo nolis

call aconf (xensamb nobs , t , De Grou )

conf1 + prob • 94

return

end
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subroutine acont ( rensare notis , ar fi conti

Mark vangel July 198 ?

с

An approximation to the Lawless conditional procedure cor ,

alternatively , to the posterior of a quantile under flat princi .

The routine is written for tuo paranter Weibull analysis , tut

extension to the generalizeo log gomma tamily is straiontforwarr .
с

с

с Ref : Diciccio , T.J .. Tecnnonetrics 1987 0 . ??

C

1

O.

Oo

nsarp

nobs

9

D

cont

Data

Total sample size

Number of luncensored ) observations

Value for which f ( x = ( o ) is desire

Probability associater with Quartile in

f ( xo : a )

( input )

( Input )

( In : . )

( input )

( input )

( Outrut )

Oo

Oo

implicit double precision laene 007 )

dimension * ( 1 ) , S ( 6 )

Common roarl ushowe uscine xmueve Xscev

data eos , marit 11.0-5 , 109 /

data zero , one , halt , totalt

10.00 . 1.00 . Sul 1.5017

с

с
Oo

Get the constrained " Leise where cis constrainer to

be the oth quantile .

call cwnral ( De O Cano cscle nsara , no S. ers , icer , waris )

с

Transtore to extreme value districution .

uloc : los luscow )

cloc : log ( escl )

uscl : one lushow

cscl : one Icons

с

O.

2

Calculate the sicnej Saurre root of - 2 tices the 12 .

of the likelihooratio

: 10 ? ( -10 ; lone • ) )

cl zero

ul zero

do 20 1 : 1 , nots

t : log ( x lill

ellt oclocllcscl -ero ( - clocllcsel )

ul (touloc ) luscl •exu -uloc ) luscu )

continue

cl

ul

2

C

cl : cl -lnsamo - nous ) *enn ( lt oclocllcsel ) onci s +10 . ( csel )

ul : ul -insamo - nous ) * ein ( ( -uloc ) luscu) unciis * 10 . ( use ! )

syn :

lr : -2 * ( cloud )

log ( a ) ouloc • WD #uscl

syn : abs ( san ) Isori

: sgn * sort ( abs (ar ) )

C No calculate the derivatives of the 10g likelincos of

ine .

do 30 j = 1 ,

slj ) : zero

do 40 1 : 1 . not s

; ( lon ( uli ) ) -uloc ) luscl

t : ( 12 -UD ) ** j ) *ern ( 2 )

s ( j ) : 5 ( l ) +1

Z
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continue

s ( j ) : slj ) insamo - nons ) #t

continue30

020 5 onobs

011 3 -S ( 1 )

002 : - ( nobs + s ( 21 )

030 : nobs

021 : 2* nobs ( 1 )

012 - 3 * 5 ( 1 ) s ( ? )

003 : noos 3 * ( 2 ) s ( ? )

040 : • nots

031 : • 13 * nots s ( l ) )

02 ? : - ( 4 * nos 5 * $ ( ! ) $ ( ) )

013 : - ( 7 * $ ( 1 ) +35( ? ) " s ( ? ) )

CC4 : -nous - ( 7 ** ( 2 ) * ( ? ) ( L ) )

C

The ap : rorirate mean anc variance it r is calculato ; ir

terms of the oij .

vil : odc2 I ( 020 Adu ? -c ! 1 * 011 )

a 3

с

( vll ** half # l - di2100 ? - dll . c ' ? 1807 : 21 ) ?

: ( vl ) * ( - 42 ? 11 .) ? ( 21 * - ( . ? * ' * 0 ! ? ! : + : : ? ) ' : - :)
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-du3 * ( 011/3 ( ? ) ++ ) ) ) 14

( vli ** ? * lgo ? - ( 6 * * 3 ! * l133? 1 * :? ) Ini ?
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SUSROUTINE WNRMLE (Ae De SAP , Noes , X. AEPS . ITER , WAYIT )

MART VANGEL . MAY 1996
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ESTIMATE WEIBULL PARAMETERS Y MAXIMIIM LIKELIHncr

A WEIBULL SHADE PARAMETER PRETRUASC )
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IMPLICIT COUPLE DRECISION ( A - H , noz )

DIMENSION X ( 1 ) , CVTBL ( 25 ) , SMPTEL ( 25 )

с

C

19375
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SHAPE PARAMETER

DATA ATÓL 1257
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0
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SCALL ( 1 )
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CONTINUE

1ů
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8
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CONTINUE
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ELSE

DC 40 132 , NTEL

IF ( CVTÚL ( 1 ) L !. CV ) THEN .

A : SHDTBL ( 1-1 ) (SHPTPL ( I ) - SHOJOL ( 1 - ! ) ) *

$ ( CV - CVIFL ( 1 ) 1 ICVTil ( 1-1 ) -CVT ? L ( 1 ) )
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END IF

CONTINUE
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Ein IF
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SO
n
n
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S3 & ZE !

S4 ZERC
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CONTINUE
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SUBROUTINE CWNRML ( D ,AXP , pod , ASANDINOPS , X , AF ? ; , 175 , AXI"

MARK VANGEL , JULY 1983
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MAKING FISHER'S EXACT TEST RELEVANT

Paul H. Thrasher

Engineering Branch

Reliability , Availability , and Maintainability Division

Army Materiel Test and Evaluation Directorate

White Sands Missile Range , New Mexico 88002-5175

ABSTRACT

The Fisher- Irwin Exact Method is made relevant by including q-values in

the analysis . Q-values are post - test Type II risks . They provide information

which complements the Type I risk provided by the p- value . Reporting both the

p- value and relevant q-values enables managers to base decisions on both types

of risks . For references on q -values , see four papers by Thrasher in the

Proceedings of the Thirtieth through Thirty -Third Conferences on the Design of

Experiments in the Army Research , Development , and Testing , U.S. Army Research

Office, 4300 South Miami Boulevard , Research Triangle Park , North Carolina

27709-2211 .

Q-values are normally calculated using the same algorithm used to find

pre- test Type II errors . The q -value calculation inputs are normally ( 1 ) the

p-value instead of the pre- test Type I risk , ( 2 ) the sample size actually used

instead of the sample size planned , and ( 3 ) the same relevant values of the

parameter considered in the pre-test Type II risk calculation . Since the

Fisher- Irwin Exact Method doesn't historically have a design stage , there is

no pre- test algorithm available for modification . This paper develops the

necessary algorithm by extending the p- value calculation based on the binomial

rather than the hypergeometric distribution .

The q - value equations are developed and their mathematical properties are

examined . Computer programming methods are discussed . Examples are provided

for sample sizes both ( i ) small enough that a hand- held calculator can be used

and ( 2 ) large enough to require a digital computer . Numerical results are

interpreted from the viewpoint of a manager that must balance non -zero Type I

and Type II risks .

INTRODUCTION AND OBJECTIVE

The Fisher -Irwin Exact Method is a quick and straight forward technique of

comparing two samples of dichotomous items . The normally reported statistic

from this test is the p-value . The p-value is the probability of being wrong

in marginally rejecting a null hypothesis that the two samples are from one

population . In practice , managers conclude that the two samples are from

different populations if they believe the p- value is sufficiently low .

This method of analysis has not gained universal acceptance . The

reluctance to use this method may well be due to unbalanced reporting of

information . The p- value is used to report the Type- I error . This error is

sometimes called the producer's error , the contractor's error , or the error of

concern for the advocates of maintaining the status quo . Traditionally the
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method has not reported information about the Type - Il error . This error may

be called consumer's error , the government's error , or the error of concern

for the advocates of change .

The Fisher - Irwin Exact Method can provide relevant information about the

Type- 11 error . This additional information results from calculating and

reporting q-values . Q-values are the probabilities of being wrong in

marginally failing to reject the null hypothesis when the two samples are from

different populations. Since the two populations may differ in different

ways , there is a q -value for each pair of separate populations . Managers can

use a q- value , for a relevant pair of unequal populations , as evidence for

concluding that the two samples are from those different populations . They

reach this conclusion if they believe a relevant q-value is sufficiently high .

This paper provides equations for and examples of calculating ( 1 ) the

p - value and ( 2 ) q -values for the Fisher- Irwin Exact Method using a one- sided

analysis . This one- tailed analysis is used to reject a single population in

favor of two populations that differ in the direction indicated by the data .

This paper also discusses a digital computer program . This program has

been written to ( 1 ) handle the necessary voluminous calculations for large

sample sizes , ( 2 ) retain the analyst's identification of the two measurement

samples and the two mutually exclusive and exhaustive categories , and ( 3 )

prov.ide an report from which a manager can decide if future actions should be

based on one or two populations .

The Fisher - Irwin Exact Method may be implemented in different ways . At

the cost of redundancy , this paper uses more than one approach to illustrate

different viewpoints .

P -VALUE CALCULATION

The data for the Fisher - Irwin Exact Method , often called Fisher's Exact

Test , consists of four numbers . They and their sums are normally arranged in

a square array . The following array has double entries to illustrate both the

general situation and a specific example :

Sample I - Development :

Sample II Production :

Total :

Category 1 - Success :

r= 19

R -r=12

R = 31

Category 2 = Failure :

n- r= 2

( N - n ) - (R - r ) = 3

N - R = 5

Sum :

n= 21

N - n = 15

N = 36

-

Since the choices of Samples I and II and of Categories 1 and 2 are both

arbitrary , there are four possible ways the data can be arranged . The

ambiguity has been removed from the above table by naming the samples and

categories to make ( 1 ) na (N -n ) and ( 2 ) r/ n > ( R - r ) / ( N - n ) .

There are two methods of calculating the p- value . The best known uses

the hypergeometric distribution . The second uses the binomial distribution .

Both are described and illustrated in pages 195-203 of Bradley, James , V. ,

Distribution - Free Statistical Tests , Prentice-Hall , Inc. , 1968 .
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Hypergeometric Approach :

The hypergeometric approach is based on a population of Nitems which is

split into two samples of sizes n and N-n . The null hypothesis is that the

difference between the R and N -R items of the two categories did not influence

the sample selection . The probability of obtaining the data is the ratio of

( 1 ) the number of ways items from one category can be chosen for the two

samples to ( 2 ) the number of ways items of this category can be chosen from

the total population . Thus

P [ Obtaining the Data ]

n Cr Nan Cror

NOR

Both iCjwhere iCj is the number of ways of choosing j items from i items.

and iCi - j are found from the following relation of factorials :

i !

3

iCj = iCi -j
j ! ( i - j ) !

The p-value is the probability of obtaining the data or more extreme

partitions of the N -R items of Category 2. ( More explicitly , the p- value for

the one - sided or one - tailed test is the probability that the partition of the

N -R items will be as unbalanced as the data in the direction that the data

suggests . ) For the specific example , the p-value is

p-value
21C2 153 2141 1564 21Co 15C15C5

36C5 36C5 36C5

21 ! 15 ! 21 ! 15 ! 21 ! 15 !

2 ! 19 ! 3 ! 12 ! 1 ! 20 ! 4 ! 11 ! 0 ! 21 ! 5 ! 10 !

36 ! 36 ! 36 !

5 ! 31 ! 5 ! 31 ! 5 ! 31 !

a

: .253 + .076 + .008 = .34

A formal expression for the hypergeometric approach may be written in two

ways . Considering the possible distribution of the N-R items of Category 2

yields one of the two following equations :
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if ( 1 ) n- r is less than expected because n -ran [ ( N -R ) /N ) and ( 2 ) mI2 is

the minimum possible number of items in Sample I from Category 2 ,

nor

p - value = ē nCi N -nCN-R- i / NCN -R ;
i=12

if ( 1 ) n- r is more than expected because n-r>n[ ( N -R ) /N] and (2 ) M12 is the

max imum possible number of items in Sample I from Category 2 ,

p- value =

M12

į ni. N -nCN -R - i / NCN-R :
i = n- r

By considering the distribution of the R items of Category 1 instead of the

N-R items of Category 2 , this formal expression is written using two other

equations :

if (1 ) r is less than expected because ran [ R /N ] and ( 2 ) m11 is the minimum
possible number of items in Sample I from Category 1 ,

r

p-value = į nCi NunCR- i / NCR
i =
m11

if (1 ) r is more than expected because ran [R/ N ) and ( 2 ) M11 is the max imum

possible number of items in Sample I from Category 1 ,

p - value =

MU1

į ni NonCR- i / NCR
i = r

Binomial Approach :

The binomial approach is based on an infinite population from which two

independent samples are taken . Although the binomial parameter of the

distribution of Category 1 items may be estimated by R/ N , it is really

unknown . Fortunately for the p- value calculation , this parameter will cancel

from the equations regardless of its value . Denoting this binomial parameter

by p allows the probabilities of obtaining the two samples to be written as

P [ r ; n , p in Sample I ] = nCr pr ( 1 - p ) n- r and

P [R -r ; N- n , p in Sample II ] = N -n CR -r PR- r ( 1 - p ) ( N - n ) - ( R - r ) .
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With the restriction that these two samples are independent , the probability

of obtaining both samples is the product of the two above equations ; this

reduces to

P [Obtaining both Samples] = nCr N-NCROY pR ( 1 - P ) N - R .

The probability of obtaining one big sample size of N with Rp-type

observations is

P [ R ; N , p in Combined Sample ] NCR.PR ( 1 - P ) N - R .

Finally , the conditional probability of obtaining the two samples given that

the combined sample has been obtained is

P [ ( r in n ) and ( R- r in N- n ) | ( R in N ) ]

P [ Both Samples ]

P [ Combined Sample )

This equation is expressed in terms of the data by division of the two

previous equations . The result is

nCr Nan Cror

P [Obtaining the Data ]

in Gr Non CR- r DR ( 1 - P) N -R

NCR.PR ( 1- P)N - R
NER

This is the same equation as was obtained using the hypergeometric approach

and the rest of the calculation of the p - value proceeds identically .

The binomial equations in the above paragraph may be illustrated and

clarified by using ( 1 ) the data from this discussion's specific example and

( 2 ) the point estimate of p given by R / N = 31 / 36 = .861. The result is

P [ 19 ; 21 , .861 in Sample 1 ] = 21C19 ( .861 ) 1921C19 (.861)19 ( 1 - .861 ) 21-19 - .236 ,

P [ 12 ; 15 , .861 in Sample II ] = 15C12 ( .861 ) 12 ( 1 - .861 ) 15-12 - .203 ,

P [ Obtaining both Samples] 21C19 15C12 ( .861 ) 31 ( 1 - .861 ) 36-31

.0479 ( .236 ) ( . 203 ) ,
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P [ 31 ; 36 , .861 in Combined Sample ] - 36C31 ( .861 ) 31
( 1 - .861 ) 36-31

.189 , and by dividing equations

P [ ( 19 in 21 ) and ( 12 in 15 ) I ( 31 in 36 ) ] = .0479/ .189 - .253 .

The value of .253 is obviously the same intermediate result as was obtained in

the hypergeometric approach . In fact , any value of p yields .253 .

It is illustrative and useful to obtain P [ 31 ; 36 , .861 in Combined Sample )

without the assumption that all 36 items were selected from one population .

This is done by using the facts that ( 1 ) Sample I and Sample II were obtained

independently and ( 2 ) the 31 items in Category 1 could have been distributed

between the two samples in different ways . The calculation is summarized in

the following table . The starred row of this table corresponds to the data

and three intermediate results from in the preceeding paragraph .

R r ' Rori P [ r ' ; 21 , .861 ] P [R- r ' ; 15 , .861 ] P [ r ' ; 21 , .861 ] P [R- r ' ; 15 , .861 ]

31 21

31 20

31 19

31 18

31 17

31 16

10

11

12

13

14

15

.0433

.147

.236

.242

.175

.0961

.0348

.0981

.203

.290

.257

.106

.00151

.0144

.0479

.0700

.0450

.0102

2189

The last column contains the probabilities of the different ways that the 31

items can be distributed . The sum of this column is the probability of having

31 items from Category 1 in the two samples . The value of .189 obviously

agrees with the shorter calculation in the preceeding paragraph . A modified

version of the longer calculation of this paragraph will be needed in the

calculation of q - values .

Before calculating q - values , it is illustrative and useful to obtain the

p - value from the table of the preceeding paragraph . No te first that the .0479

in the last column of the starred row corresponding to the data agrees with

P [Obtaining both Samples ] from the short binomial calculation of two

paragraphs ago . Note second that the entries above .0479 in the table

correspond to probabilities of obtaining more unlikely partitions than the

data . Using these two facts yields

p- value = P [ Rejecting | Rejection Should Not Occur ]

.00151 .0479

+

.0144

+

.189.189 .189

= 34 .

336



This result of .34 does not depend on the number used for p . This may be

seen by ( 1 ) calculating another table using any p other than 31 /36 =.861 and

( 2 ) summing the probabilities of obtaining partitions as extreme as the data .

This last method of calculating the p- value emphasizes that the data are

viewed marginally . The data are viewed as unbalanced just enough to warrant

rejection of the single - population hypothesis .

Q -VALUE CALCULATION

Q-values , like the p-value , consider the data to be just sufficiently

unbalanced to warrent rejection of the single - population hypothesis. While

the p-value is the probability of getting results at least as unbalanced as

the data , q -values are the probabilities of more balanced results .

For Fisher's Exact Test , 4-values cannot be calculated by using the

hypergeometric approach . All q-values are conditional probabilities with the
condition being that two different populations provided the two samples . Thus

q -values must be calculated by using the binomial approach with different

binomial parameters, PI and PII, for the populations of the two samples . If

desired, these two parameter's may be replaced with PI and k where k= Pj / PII :
Most q-value calculations are functions of only one parameter and lend

themselves to a two dimensional power curve representation . For the Fisher

Irwin : Exact Method , there are two parameters so the representation must take

the form of a three dimensional power surface . Any specific point on this

surface does not exhibit as much information as the entire surface . To be

specific in the following calculation however , PI and pil will be taken as the

point estimates from the data . That is , the following q -value calculation

will address the error of concluding that p =P1- P11 when actually
Pier/ n =19 /21 = .905 , PII = ( R- r ) / ( N- n ) = 12 /15 - .800 ; and k= P [/P11-.905/.800=1.13

.

This addresses the intuitive concern of "making the mistake of ignoring what

the data's trying to tell us . '

Since a q- value for any specific Pi and PII is the probability of falsely

retaining the assumption that one p describes all items , a q -value is one

minus the probability of rejecting the assumption of a single population when

there are two populations described by PI and Pli : This can be calculated

from entries in a table of probabilities for all possible values of r

consistent with N , n , and R.

The remainder of this section considers two approaches to the q - value

equation , shows that the two results are equivalent , and discusses some

general mathematical properties .
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Category 1 Approach :

For the specific example in this discussion , one table used to calculate

a q-value for P1 =19 /21 and P11-12 /15 is

R pl Rori P [ r ' ; 21 , .905 ] P [ R - r ' ;15 , .800 ] P [ r ' ;21,.905 ]P [ R - r ' ;15 ,.800 ]

31 21 10

31 20 11

31 19 12

31 18 13

31 17 14

31 16 15

.122

.270

.284

.190

.0898

.0321

.103

.188

.250

.231

.132

.0352

.0126

.0507

.0711

.0438

.0119

.00113

.191

The sum of .191 on the lower right represents the probability of obtaining a

total of 31 items from Category 1 from the two samples . This probability can

be divided into entries in the right hand column to find the conditional

probabilities of obtaining possible numbers of items from Category 1 in

Samples I and II . Taking the data and more extreme divisions of the R items

from category 1 as evidence of rejection , the q-value is found from

1 - q- value P [Rejecting | Rejection Should occur ]

.0711 .0126

+

.0507

+

.191.191 .191

= .70 .

Using a more conventional approach , the q-value can be found from less extreme

divisions of the R items from Category 1 to be

P [ Failing to Reject | Rejection should occur ]q-value

.00113.0438

+

.191

.0119

+

.191 .191

: .30 .
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This procedure may be stated formally with the following equation :

P[ r ' ; n , PI ] P [ R - r ' ; N - n , PII ]

r - 1

Σ

p'rmin ( r ' )

max ( r ' )

q-value =

P[ r ';n ,P [ ]P [R-r ';N-n , P11]
p'emin ( r ')

where min ( r ' ) and max ( r ' ) are the minimum and maximum values of r ' allowed by

the constraints imposed by fixed values of N, n , and R. Increasing of p ' is

limited by the total size of both Sample I and Category 1. That is , r ' must

simultaneously satisfy r'an and r ' < R . Thus the upper limit on the above sum
is

max ( r ' ) = min ( n , r ) .

Decreasing of p ' is limited by the requirement that two measurements must be

non- negative . Possible measurements of Category 1 items in Sample I and

Category 2 items in Sample II lead to p ' >0 and ( N - n ) - (R - r ' ) > 0 = > p ' > n+R - N .

Considering the other two possible measurements leads to four other

conditions : R -r'cR , R- r ' < N- n , n- r'an , and n- r ' < N - R . These four conditions

are equivalent to the first two . Thus the lower limit of the above sum is

min ( r ' ) max ( 0 , n +R -N ) .

The final form of the Category 1 equation is thus

r - 1

P[ r ';n , P [ ]P [R -r ';N -n ,P11 ]
p ' =max ( 0 , n+R -N )

q- value

min ( n , r )

P [ r ' ;n ,p ; JP [R -r '; N -n ,Phi ]

pi =max ( o , n +R -N )
COnte_N ) n P P11
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Category 2 Approach :

Using Category 2 instead of Category 1 leads to the following table :

N -R nn - ri ( N- n ) - ( R - r ' ) P [ n - r ' ; 21 ; 2/21 ] P [ ( N - n ) - ( R- r ' ) ; 15,3 /15 ] P [ Both]

5 0

5 1

5 2

5 3

5 4

5 5

5

4

3

2

1

0

.122

.270

.284

.190

.0898

.0321

.103

.188

.250

.231

.132

.0352

.0126

.0507

.0711

.0438

.0119

.00113

.191

The numbers in the right three columns are the same as in the previous table

used in the Category 1 approach . The calculation proceeds as before but the

indices in the summation appear differently :

P [ n - r '; 21, .0952 ]PC (N - n ) - (R -r ' ); 15,.200 ]

n-rl =0

1 - q - value
5

P [ n - r ' ; 21 , .0952 ] P [ ( N- n ) - ( R - r ' ) ; 15 , .200 ]

n - ri =0

.0126 .0507 .0711

+ + = .70 or

.191 .191 .191

5

P [ n - r ' ;21,.0952 ]PC (N - n ) - (R -r ' ) ; 15 ,.200 ]

n- pi = 3

q- value I
l

P [ n - r ' ;21,.0952 ]PC( N - n ) - (R -r ' ) ; 15,.200 ]

n- ri =0

.0119 .00113

s

.0438

+

.191

+ = .30 .

.191 .191

This procedure may be stated formally with the following equation :

P [n -r ';n ,1-P1]P [ (N -n )- (R - r ') ;N -n , 1- P11 ]

q- value

max ( n - r ' )

Σ
n - r ' = n - r+ 1

max ( n - r ' )

Σ

min ( n - r ' )

P [ n- r ' ; n , 1 - P1 ] P [ ( N - n ) - ( R - r ' ) ; N - n , 1 - P11 ]
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where min ( n- r ' ) and max (n -r ' ) are the minimum and maximum possible

measurements of Category 2 items in Sample I. By arguments similar to those

used in the category 1 approach , n- r'an and n - r ' < N -R imply that

max ( n- r ' ) = min ( n , N -R )

and n -ro and R- r ' >0 n- r'an -R imply that

min ( n- r ' ) = max ( 0 , n -R ) .

The use and interpretation of this result must of course be done in

conjunction with n > ( N -n ) and r/n > ( R -r ) / ( N -n ) . Interpretation must recognize

that the arrangement of the data in a standard format may or may not select

Category 1 as the category of primary interest and / or Sample I as the first

sample drawn and /or tested .

Equivalency of Methods :

Although the equations from the Category 1 and Category 2 approaches

appear quite different, they are equivalent . By using the binomial

probability relation P [ i ; m , p] =P [ m - i ; m , 1 - p] , the Category 2 equation may be
rewritten as

min ( n , N -R ) .

P [rº;n ,P [ ]P [R- r ';N -n , P11]

4- value =

n- r'an- r+ 1

min ( n , N -R )

Σ

n- r ' =max ( 0 , n -R )

P [r ';n ,P ] ]P [R -r ';N -n , PII]

The limits on the summations may be rewritten by using min(m , M ) --max( -m ,-M) ,

k+max ( m , M) =max ( k +m ,k + M ) , and k +min (m ,M ) =min ( k + m ,k + M ) to yield

max ( 0 , n+R -N )

P [ r ' ; n , P ] ] P [ R - r ' ; N- n , P11 ]
pi - r - 1

q - value
s

max ( 0 , n + R -N )

Σ{

r ' =min ( n , r )

P [ r ';n ,PI ]P[R -r ' ;N-N ,PIT )

By reversing the summation limits to correspond to the normal practice of

summing from low to high indices , this equation becomes the Category 1 result .
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Range , Sum with P -value, and Symmetry :

The q-value , like any other probability , is bounded by zero and one .

This is verified for the Category 1 equation by splitting the sum in the

denominator into two sums which first sum from r ' =min ( r ' ) =max ( 0 , n +R - N) to

p ' = r- 1 and then summing from p ' = r to p ' =max ( r ' ) =min ( n , r ) . Dividing both

numerator and denominator by the sum in the numerator then yields

1

q -value

min ( n , r )

Σ
rl =r

P [r ';n , PI ]P [R -r ';N -n ,PI ]

1 ta

r - 1

P[ r ' ,n ,p ] ]P [R -r ', N -n ,PII].

r ' =max ( ő , n +R - N )

Since this equation's ratio of the two sums is never negative but it will be

infinite if the data yields r=max ( 0 , n +R -N ) , q - value > 0 . Since this ratio can

be o by choosing PI and Pii equal to 0 or 1 , q -value < 1 .

When pj equals Pir , the q - value is one minus the p- value . This occurs

because the possible values of r ' are divided into two mutually exclusive and

exhaustive sets . One set contains possible measurements as unlikely or more

unlikely than r . The other contains values of p ' more likely than r . These

two sets identify conditional probabilities that are summed to find the

p-value and q - value . The p - value summation uses the unlikely set with both PI

and pic equated to any common probability . The q- value summation uses the

likely'set with any values of PI and PII: The mutual exclusiveness and
exhaustiveness of the two sets require that p- value + q -value = 1 when PI = PII :

For the Fisher - Irwin Exact Method , the q- value is symmetric about the off

diagonal in a plot of Pj versus Por . That is , symmetry is expressed by

q-value(Nin ,R,r ,P ],PII) = q-value(Non ,R.r, 1-P11,1-P1).

This may be seen by applying the binomial equation P [ i ; m , p] = m Ci pi (1-0 )m - i
to the Category 1 equation in a series of three equations :

r - 1

P [ r ' ;n ,PI]P [ R - r ' ;N -N ,PII ]

q - value =

p ' =max ( 0 , n +R -N )

min ( n , r )

Į

p ' =max ( 0 , n+R -N )

P [ r ' ;n ,PI ]P [R - r ', N - n ,PI ]
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rat in Gri Pz"' (1-21) -" N-n CR-p! Pun- ' (1 -P )N -n-R + ri
pi=max ( ő , n +R -N )

min ( n , r )

R - Np ' =max ( 0 , n+R -N ))
in Grio P2 " ' ( 1-21 )-r ' N-NCR-r Pur-r' ( 1 - PIT ) N - n -R+ r

r - 1

( No r ' Factor ) n Cry N-n CR -r P " ' ( 1 - P1 ) -" PL1 "' (1-P11)"
n+R-N) ro 1 " 'r ' =max ( 0 ,n +R -N )

mi? In Cro N -NCR-ro ppr ' ( 1-21 ) -m ' pu1-r '
(1-P11)" '

p ' =max ( 0 , n+R -N )

( No r ' Factor )

where the ( No no Factor ) is ( 1 - P1 ) " PIER (1 -P11)Non -R . This constant has been
factored from each term of the sum over p ' . After canceling this factor from

the equation , the symmetry is evident because substituting 1 -PI for Pi and

1 - P1 for PII yields the same equation .

The 4-value for the Fisher - Irwin Exact Method also is symmetric in n and

R. Applying iCj = i ! / j ! ( i - j ) ! to the above equation and canceling n ! and

( N- n ) ! yields

r (ar) (dpi)!(N-n-Ber") (2.670
q - value

r - 1

mi ?
p ' =max ( õ , n +R -N )

r ' ! (n - r ' ) ! (R - r ' ) ! (N - n -R + r ' ) !

min ( n , r )

r ' = max ( ő , n +R -N ) r ' ! ( n- r ' ) ! ( R- r ' ) ! (N - n -R +r ' ) !

DI (1-P1121

( 1 -PI) PII

PI ( 1 - PIT )

( 1 -P ) PIT

1

Substitution of n for R and R for n yields the same equation . Thus symmetry

is expressed by

q -value(N ,n ,Ror ,P1 »PII ) = q -value (N, R,n ,r , PI , PII ) .

This equation reflects the mathematical arbitrariness in identifying samples

and categories . The samples and categories normally are distinguished

physically ; but they are interchangeable mathematically.
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RECAPITULATION AND INTERPRETATION

The p-value and a relevant q- value can provide influencing factors for

management . If the p- value is lower than the risk allowed for the proponent

of a single population , management is inclined toward the decision that two

populations exist . If a relevant q -value is higher than the risk that the

proponent of two populations is willing to take , management is also inclined

toward the decision that two relevant populations exist . On the other hand , a

high p-value or low relevant q-value inclines management toward the decision

that there is one population .

Management will quite often be influenced by factors other than the

p- value and a relevant q-value . A subjective decision-making process will

naturally be used to consider all factors . The extremity of the lowess or

highness of the p- value and a q -value provides the subjective weight for these

two factors .

If management cannot determine threshold risks to indicate two

populations when the p - value is below and a q- value is above these thresholds ,

an alternate approach is to compare the p - value and a q -value . Management can

set a threshold ratio of Type II to Type I risks and compare a ratio of

q - value/ p -value to this threshold . TWO populations are then indicated if a

ratio of q -value/ p - value is too high . In a subjective decision-making process
considering many factors , the extremity of a q -value/ p - value ratio provides

the subjective weight of the Fisher's Exact Test factor .

Management should determine which two populations are relevant . Factors

other than the data may suggest specific populations. Management should

consider a q- value for each and every pair of relevant populations. If the

analyst is not provided with the PI and PII for any relevantly different

populations , the report to management should include a table of q-values for a

wide range of Pi and Pilº

For the primary example in this discussion , .34 is the p -value and .30 is

a q -value for the two populations suggested by the data . If these two

populations with pi = .9 and PII - .8 are relevantly different , the two risks of

.34 and .30 provide the basis for action . If the existence of these two

populations is considered as positive, .34 is the probability of making a

false positive decision . Similarly , considering the existence of only one

population as negative implies that .30 is the probability of making a false

negative decision .

If .34 and .30 are believed sufficiently low and high for probabilities

of false positives and negatives respectively , future action is based on the
existence of two populations with with Di and Dir estimated by .9 and .8 . If

.34 and .30 are believed sufficiently high and low , future action is based on

a single population .
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For this example, .30 / .34 = 1 /1.1 =.9 is a ratio of q -value / p - value .

Subject to the relevancy of P12.9 and Pu -.8 , 1 /1.15.9 is the ratio of risks

of making false negative and false positive decisions . Future action is based

on two populations if 1 /1.15.9 is believed sufficiently high . Similarly ,

future action is based a single population if 1 / 1.1 = .9 is believed

sufficiently low .

If the p-value and a q-value provide conflicting or indeterminate

indications that are unresolvable , the immediate future action is to do

additional testing . Additional testing should provide more definitive

information by yielding either a low p- value and a high q-value or a high

p-value and a low q- value . Naturally increasing the sample sizes may not

yield a proportional increase in all the data ; but if additional testing

actually doubled all the data in this paper's example , the results would be

.18 for the p - value , .35 for a q-value , and .35 / .18=2 for a q - value / p - value

ratio corresponding to Di - .9 and PIT -8. This possible decrease in the

p- value , increase in a q-value , and increase in a ratio of q -value/ p - value

would increase the tendency to base future actions on two populations .

COMPUTING METHODS AND RESULTS

A digital computer program has been written in Pascal /3000 to facilitate

the p - value and q-value analysis of the Fisher - Irwin Exact Method .

Two related manipulations are useful in extending the range of data which

yields q-values without computer over flows or under flows . The equation for

the q-value can be rewritten as

r- 1 C

q -value =
q

PT (1-PIT

pi=max(ó,n+R -N) r ' ! (n-ro)! (R-r') ! (N -n-R+r')! [ (1-P ) PII

min ( n , r ) [ PI (1-P11)

r ' ! ( n- r ' ) ! ( R- r ' ) ! ( N- n -R+ r ' ) ! ( 1 -P1) PII
p ' =max ( 0 , n + R - N )

C

where Cis any constant . The computer program can assign C with a value which

hinders the summed terms from exceed ing the computer's working range . To make

this assignment without over flowing or under flowing the computer , each term

must be considered as

C

sPI (1-P11)

r ' ! ( n - r ' ) ! (R -r ' ) ! ( N -n -R + r ' ) ! ( 1-01 ) PII
exp[ in ( TERMS ) ]
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nere the expression In ( TERMS ) in the exponential is

In ( TERMS ) In [C]

+ r ' [ in ( P1 ) + In ( 1 - P11 ) - In ( 1 - P1 ) - In ( P11 ) ]

- In[ r ' ! ) - In [ ( n - r ' ) ! ] - In[ ( R- r ' ) ! ) - In [ ( N -n -R + r ') ! ] .

The constant C can be selected to keep in ( TERMS ) within the computer's range

for x in exp ( x ) . ( e.g. -176 to 176 ) . For any value of p ' , this selection can

then be used to force C exp( in (TERMS )) into the computer's operating range

( e.g. , 8.6 ( 10 ) -78 to 1.15 ( 10 ) 77 ) . Naturally this programming technique is

successful only if r ' doesn't change too much in the summation between

max ( 0 , n+R -N ) and min ( n , r ) .

The range of computer calculations for the p- value can be extended by

using logarithms. One useful form of the p - value equation is

พ

p-value ¿ exp[ in ( n+ x ) + In(N-nCy) - In (NCZ)]) ]j = y

where the factors V , W , X , Y , and z are dependent on r , R , and N according to

the following table :

If R< ( N -R )

Factor If R< n If Ron

r

N
K

X<<

r

R

i

R - i

R

If R > ( N -R )

If (N -R ) < (N - n ). If ( N - R ) > ( N - n ).

( N - n ) - ( R - r ) ( N - n ) - ( R - r )

N -R
N -n

N -R - i N -R - i

i i

N -R N -R

n

i

R - i

R

The computer program operates from a terminal . At the start of the

program , the user selects either the terminal screen or a printer for the

program output . The information in Figure 1 then appears on the screen . This

provides the user with a brief summary of the analysis and asks the user which

four independent variables will be entered . Figure 2 provides an example of

the terminal screen after the output has been directed to a printer and the

user has chosen to enter N , n , R , and r . Figures 3a and 3b contain the output

for this input . Correspondingly, Figures 4 and 5 show input and output when

the user has entered r , n - r , R - r , and ( N- n ) - ( R - r ) . Finally Figure 6 shows an

example with both input and output on the terminal screen . For this example ,

the input produces a standard table in a different order than the data .
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Some results from the outputs in these figures ( and similar computer

executions ) are compiled in the following table. All possible measurements of

r for N = 36 , n =21 , and R=31 are included . The tabulated q-values are

referenced to o and •
instead of PI and PII : This is necessary because the

computer places the data in a standardly ordered table sometimes making Pi = 0

and PII -o and sometimes resulting in Pifo and P11-8 .

q-value forpoint -estimates

to replace .861

point

estimates

05.8 0.85

03.87

05.87

09.85

05.9

05.8p - value

I
s

o
l

이

16

17

18

19

20

21

.054

.292

.663

.337

.084

.008

.762

.810

.857

.905.

.952

1.000

1.000

.933

.867

.800

.733

.667

.000

.249

.306

. 297

.241

.000

.791

.381

.098

.902

.988

.999

.925

.644

.274

.726

.941

.995

.962

.766

.407

.593

.884

.987

.993

.924

.682

.318

.690

.941

This table emphasizes that management needs to determine relevantly different

populations instead of just considering the point - estimates suggested by the

data . As expected , the extreme r measurements of 16 and 21 lead to low

p - values indicating two populations . The two populations indicated however ,

are not those suggested by the point -estimates of A and p . ( o and are the

binomial probabilities that describe the two populations; they replace the

common - population point -estimate of 31 /365.861 . ) The q- values for those

point- estimates are identically zero . Although every manager is free to

determine how high a q- value needs to be for a two population decision , these

are low by any standard . Management must realize that no amount of testing

can prove that anything is either completely perfect or worthless . Instead ,

more reasonable values of o and must be considered . If o=.8 and o = .9 are

considered for r=16 ( or o = .9 and 'p = .8 for r=21 ) , the q-value of .791 ( or .941 )

is quite high . Even higher q -values are obtained when = .85 and $3.87 are

considered for r = 16 ( or o =.87 and p= .85 for r=21 ) . This reflects the fact

that it's easier to say two things are different if they don't have to be very
different . Considering possible populations for which o and 4 are on opposite

sides of the common - population point - estimate of 31 /36 =.861 from the point

estimates ( e.g. considering o = .9 and *= . 8 for r =16 or 95.8 and * = . 9 for r=21 )

leads to very high q -values . This reflects the compound fact that ( 1 )

obtaining data biased in opposite direction from two existing populations is

extremely unlikely so ( 2 ) the existence of such data strongly implies more

than one population . Less extreme but similar results are obtained for r

measurements of 17 and 20. An r measurement of 18 indicates one population

unless management is concerned about very extreme alternate populations .

Finally an r measurement of 19 indicates two populations if management is

careful about what those two populations are .
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The dependence of both the p - value and q-value on the number of

measurements is illustrated by the following example. Four measurements are

assumed to yield values of N , n , R , and r given by { N ,,N ,,N ,N }

{ 20,40,80,160 } , {noncong,n } { 10,20,40,80 } , {R , RÖROR ] = {17,34,68,136 ),

and { rzorzorgory } { Ś , 18 , 38, 72 ) . The second , third and fourth measurements

are just multiples of the first . All four of these hypothetical measurements

provide point estimates of o and 6 of 9/10= .9 and ( 17-9 ) /10=.8 respectively .

The interior of the following table contains sets of q -values from four

executions of the computer program . Each set has the q -value for the smallest

sample size first and the largest last .

old
.76 .80 .84

.86

.90

.94

{ .279 , .365 , .447 , .526 )

.180 , .217 , .232 , .221

.084 , .082 , .059 , .027

.352 , .472 , .595 , .721 )

1.237 , .303 , .356 , .397

.118 , .127 , .111 , .074 }

1.444 , .599 , .752 , .885

.316 , .421, .525 , .633

1.169 , .201 , .209 , .192

The corresponding set of p -values is 1.500 ,.331 ,.174 , .060 ). Note ( A ) that
increasing the sample size decreases the p- value and increases the q- value for

o = .9 and * = . 8 . Thus increasing the sample size , if the data remains

proportionate, increases the justification for deciding that two population

yielded the two samples. Note also ( B) that the p-value has a more pronounced

change than the q-values . Thus the p - value is more sensitive than the

q - values . A unusually high q - value thus has at least as much significance as

an unusually low p - value . Note finally ( C) that increasing the sample size

when A = .90 & $= . 76 , 95.94 & * = . 76 , 8 =.94 & * = . 80 , and o =.94 & * = . 84 eventually

leads to a decrease in the q-value . This corresponds to universal measurement

implying exact results . ( This large-measurement effect does not occur for

o =.86 & *= . 76 , p =.86 & * = . 80 , 95.86 & * = . 84 , and o = .90 & p =.84 because they

are on the opposite side of the point estimate from the extreme identified by

the alternate hypothesis .)

The program is designed so the user can keep track of a sample of

prominence and a category of interest . This enables the user to enter and

analyze management's relevantly different populations . For example , consider

the hypothetical case analyzed in Figures 7a and 7b . Suppose that a field

fired missile is being developed . Enough tests have been made on the initial

design to obtain 107 hits and 14 misses . A set of shorter missile fins in

proposed to make the field -assembly faster . A short series of tests on the

short- fin version yields 11 hits and 3 misses . The short- fin test is

prominent in the mind of the missile designer ; the short fins should not be

used if they significantly degrade the missile's per formance . Figures 7a and

7b contain the input and terminal- screen output of an analysis using the

Fisher- Irwin Exact Method . The first entry into the computer , 11 , identifies

the short- fin test as the sample of prominence and hits as the category of

interest . The p- value , .249, is somewhat low but the advocates of fast

assembly with short fins might claim that .249 is not close enough to zero to

warrant the conclusion that short fins have degraded the missile's accuracy .
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The q-value for p = 11 / 14 =. 786 and 9 = 107 /121= . 884 is .375 . That is slightly

higher than the p-value but it might not be large enough justify not using the

short fins . If management sets the desired requirement at o =.900 and decrees

that p= .850 is an unacceptable accuracy rate , the last table on Figure 7b

provides a basis for decision . The q-value for o = .900 and = .850 is .525 .

Since this is twice the p - value , management has a fairly strong basis for not

using the short fins . If management leaves the desired requirement at .900

and raises the unacceptable level to .890 , the q-value increases to .706 . The

argument for rejecting the short fins is thus quite strong if .890 is really

an unacceptable accuracy rate .

SUMMARY

The p-value and q- value analysis of the Fisher - Irwin Exact Method has

been developed . The p- value equation has been derived using two techniques :

hypergeometric and binomial. The binomial technique has been extended to

yield a q-value equation . This equation has been derived from two sources :

possible category one measurements and possible category two measurements .

This q-value equation has been shown to possess mathematical symmetry. The

q -value for PIEDII has been shown to equal one minus the p-value ; this was

predestined for the Fisher- Irwin Exact Method because it is a general property

of the p- value and q-values . A computer program has been written . This makes

the analysis practical . Analysts can perform voluminous calculations without

approximations. Managers can consider the relative sizes and importance of

the p-value and relevant q- values . Managers can decide if the two samples are

from one population or from two populations differ ing either (1 ) from the

combined point estimate of the population or ( 2 ) according to ( A ) a desired

population or standard and ( B) an unacceptable population . Computer generated

reports have been provided for communication between analysts and managers .

The development of the p- value and q -value analysis of the Fisher - Irwin Exact

Method has reached the stage of implementation .

CONCLUSION

The analyst has a responsibility to report all information influencing

the decision . This information should be in a form that can be understood and

used by the decision-maker . Reporting the p- value and relevant q- values

satisfies both of these conditions . The p- value and q -values provide the

decision-maker with estimates of the risks of making wrong decisions . This

makes Fisher's Exact Test relevant .
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Greetings ! Welcome to a computerized Fisher - Irwin Exact Test Analysis .

Two independent samples are initially assumed to be from a single population .

This assumption is rejected and the two samples are considered to represent

two statistically different populations if management reaches two conclusions :

1 ) The p- value is deemed sufficiently low and

2 ) A q -value for relevantly different populations is deemed sufficiently high .

The q-value is the probability of falsely deciding that two populations exist .

A q -value for two relevantly different populations is the probability of

falsely deciding that those two populations are one population .

This computerized analysis does a one sided test in the direction indicated by

the data . It requires four numerical inputs determining nine numbers :

Category One ( e.g. Success ) : Category Two ( e.g. Failure ) : Sum :

Sample One :

Sample Two : R- r ( N- n ) - ( R- r ) N - n

Total : R N -R N

r nor n

Data may be entered in two ways . The theoretical - statistician approach uses

" N , n , R , & p " . The reliability-engineer uses " r , n- r , R -r , & (N -n ) -R -r ) " .

ENTER RELIABILITY - ENGINEER / THEORETICAL - STATISTICIAN APPROACH " R / S "

Figure 1. Terminal screen at program initiation .
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ENTER RELIABILITY -ENGINEER / THE ORETICAL -STATISTICIAN APPROACH " R / S" S

ENTER SIZE OF POPULATION " N " 36

ENTER SIZE OF SAMPLE OF PROMINENCE " n " 21

ENTER # OF ITEMS FROM CATEGORY OF INTEREST IN POPULATION " R " 31

ENTER # OF ITEMS FROM CATEGORY OF INTEREST IN SAMPLE OF PROMINENCE " p " 19

ENTER " T " FOR TABLE OF Q -VALUES , " ANYTHING ELSE " TO SKIP TABLE
t

ENTER " C " FOR CLOSE LOOK AT Q -VALUE TABLE IN DATA SUGGESTED REGION ,

"ANYTHING ELSE " TO SKIP C

ENTER " M " FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE

THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE

SAMPLE OF PROMINENCE ( 1.E. REPLACE - 19 / 21 = 0.905 ) AND THE

SAMPLE OF NON -PROMINENCE ( I.E. REPLACE 12 / 15 = 0.800 ) ,

"ANYTHING ELSE " TO SKIP m

ENTER " A "

ENTER

.9

.8

ENTER " M " FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE

THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE

SAMPLE OF PROMINENCE ( I.E. REPLACE = 19 / 21 = 0.905 ) AND THE

SAMPLE OF NON -PROMINENCE ( I.E. REPLACE 12 / 15 = 0.800 ) ,

ANYTHING ELSE " TO SKIP m

ENTER " A " .87

.85
11

ENTER -

ENTER " M " FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE

THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE

SAMPLE OF PROMINENCE ( I.E. REPLACE O = 19 / 21 = 0.905 ) AND THE

SAMPLE OF NON -PROMINENCE ( I.E. REPLACE € 12 / 15 = 0.800 ) ,

" ANYTHING ELSE" TO SKIP m

ENTER " A " 1

.7ENTER ,

ENTER " M " FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE

THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE

SAMPLE OF PROMINENCE ( I.E. REPLACE O = 19 / 21. = 0.905 ) AND THE

SAMPLE OF NON -PROMINENCE ( 1.E. REPLACE 12 / 15 = 0.800 ) ,

" ANYTHING ELSE" TO SKIP skip

END OF PROGRAM

Figure 2. Sample of theoretical - statistician input .
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ANALYSIS OF FISHER'S EXACT TEST

In the following standardly ordered table , the sample of prominence and

category of interest are identified by the user as Sample I and Category 1 .

Sample 1 :

Sample II :

Category 1 :

19

R. r : 12

R = 31

Category 2 :

n

( N - n ) - ( R r )

N - R

2

3

5

N • n

N =

21

15

36

1
1

For this data , the post- test risk of a Type I error is p -value = 0.337 .

For this data's two suggested binomial parameters of the category of interest

( i.e. 0 = 19 / 21 = 0.905 and p = 12 / 15 = 0.800 ) , the post - test risk

of a Type II error is q -value = 0.297.

For other binomial parameters of the category of interest , q -values may be

estimated from the following table :

0.0 0.050 0.150 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950

0.050

0.150

0.250

0.350

0.450

0.550

0.650

0.750

0.850

0.950

0.663 0.956 0.990 0.997 0.999 1.000 1.000 1.000 1.000 1.000

0.182 0.663 0.866 0.946 0.978 0.992 0.997 0.999 1.000 1.000

0.058 0.389 0.663 0.827 0.917 0.963 0.986 0.996 0.999 1.000

0.020 0.210 0.456 0.663 0.809 0.903 0.958 0.986 0.997 1.000

0.007 0.105 0.285 0.483 0.663 0.804 0.903 0.963 0.992 1.000

0.003 0.048 0.158 0.314 0.491 0.663 0.809 0.917.0.978 0.999

0.001 0.019 0.075 0.174 0.314 0.483 0.663 0.827 0.946 0.997

0.000 0.006 0.027 0.075 0.158 0.285 0.456 0.663 0.866 0.990

0.000 0.001 0.006 0.019 0.048 0.105 0.210 0.389 0.663 0.956

0.000 0.000 0.000 0.001 0.003 0.007 0.020 0.058 0.182 0.663

For binomial parameters of the category of interest near those indicated by

the data , q -values may be estimated from the following table :

. 0.700 0.720 0.740 0.760 0.780 0.800 0.820 0.840 0.860 0.880 0.900

0.805

0.825

0.845

0.865

0.885

0.905

0.925

0.945

0.965

0.985

0.418 0.460 0.504 0.551 0.600 0.650 0.702 0.753 0.803 0.852 0.896

0.362 0.402 0.446 0.493 0.543 0.595 0.649 0.705 0.761 0.816 0.869

0.304 0.342 0.384 0.429 0.479 0.532 0.589 0.648 0.710 0.772 0.833

0.245 0.280 0.318 0.361 0.409 0.461 0.518 0.580 0.646 0.716 0.786

0.187 0.217 0.251 0.289 0.333 0.382 0.438 0.500 0.569 0.644 0.724

0.132 0.156 0.183 0.215 0.253 0.297 0.348 0.407 0.476 0.553 0.641

0.083 0.100 0.120 0.144 0.173 0.208 0.251 0.302 0.365 0.440 0.530

0.043 0.052 0.064 0.079 0.098 0.122 0.152 0.190 0.240 0.304 0.386

0.015 0.018 0.023 0.030 0.038 0.049 0.064 0.085 0.113 0.153 0.211

0.002 0.002 0.003 0.004 0.005 0.007 0.009 0.013 0.019 0.028 0.044

Figure 3a . First half of printer output from Figure 2 input .
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For binomial parameters of the category of interest near those indicated by

management , q - values may be estimated from the following table :

0 0.700 0.720 0.740 0.760 0.780 0.800 0.820 0.840 0.860 0.880 0.900

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

0.960

0.980

1.000

0.431 0.473 0.518 0.564 0.613 0.663 0.713 0.763 0.812 0.859 0.902

0.375 0.416 0.460 0.507 0.557 0.609 0.663 0.717 0.772 0.826 0.876

0.318 0.357 0.399 0.445 0.495 0.548 0.604 0.663 0.723 0.784 0.842

0.259 0.295 0.334 0.378 0.426 0.479 0.536 0.597 0.663 0.730 0.798

0.201 0.232 0.267 0.306 0.351 0.402 0.458 0.520 0.589 0.663 0.740

0.145 0.170 0.199 0.233 0.272 0.318 0.370 0.431 0.499 0.577 0.663

0.094 0.112 0.134 0.160 0.192 0.229 0.274 0.328 0.393 0.469 0.559

0.051 0.062 0.076 0.093 0.115 0.141 0.175 0.217 0.271 0.338 0.424

0.020 0.025 0.031 0.040 0.050 0.064 0.083 0.108 0.142 0.189 0.255

0.003 0.004 0.006 0.007 0.010 0.013 0.018 0.025 0.035 0.052 0.078

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

For binomial parameters of the category of interest near those indicated by

management , q -values may be estimated from the following table :

\ 0.750 0.770 0.790 0.810 0.830 0.850 0.870 0.890 0.910 0.930 0.950

0.770

0.790

0.810

0.830

0.850

0.870

0.890

0.910

0.930

0.950

0.970

0.617 0.663 0.708 0.753 0.797 0.839 0.879 0.914 0.945 0.969 0.987

0.568 0.615 0.663 0.711 0.759 0.807 0.852 0.893 0.930 0.960 0.982

0.513 0.561 0.611 0.663 0.715 0.767 0.819 0.867 0.911 0.948 0.976

0.453 0.501 0.553 0.606 0.663 0.720 0.777 0.834 0.886 0.932 0.968

0.389 0.436 0.487 0.542 0.601 0.663 0.726 0.790 0.853 0.909 0.956

0.321 0.365 0.415 0.469 0.529 0.593 0.663 0.735 0.808 0.877 0.937

0.251 0.290 0.336 0.387 0.445 0.511 0.583 0.663 0.746 0.831 0.909

0.181 0.213 0.252 0.297 0.351 0.413 0.486 0.569 0.663 0.764 0.865

0.114 0.138 0.168 0.204 0.248 0.302 0.368 0.449 0.547 0.663 0.791

0.058 0.072 0.090 0.113 0.143 0.182 0.233 0.301 0.391 0.510 0.663

0.018 0.023 0.030 0.040 0.053 0.071 0.098 0.137 0.196 0.288 0.434

For binomial parameters of the category of interest near those indicated by

management, 4 - values may be estimated from the following table :

0.0 0.600 0.620 0.640 0.660 0.680 0.700 0.720 0.740 0.760 0.780 0.800

0.900

0.920

0.940

0.960

0.980

1.000

0.064 0.076 0.090 0.105 0.124 0.145 0.170 0.199 0.233 0.272 0.318

0.039 0.046 0.055 0.066 0.079 0.094 0.112 0.134 0.160 0.192 0.229

0.019 0.023 0.028 0.035 0.042 0.051 0.062 0.076 0.093 0.115 0.141

0.007 0.008 0.010 0.013 0.016 0.020 0.025 0.031 0.040 0.050 0.064

0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.006 0.007 0.010 0.013

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 3b . Second half of printer output from Figure 2 input .
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ENTER RELIABILITY -ENGINEER / THEORETICAL -STATISTICIAN APPROACH " R / S " r

ENTER " TEST ONE NUMBER OF SUCCESSES " 20

ENTER " TEST ONE NUMBER OF FAILURES " 1

ENTER " TEST TWO NUMBER OF SUCCESSES " 11

ENTER "TEST TWO NUMBER OF FAILURES" 4

ENTER " T " FOR TABLE OF Q -VALUES , "ANYTHING ELSE " TO SKIP TABLE skip

ENTER " C " FOR CLOSE LOOK AT Q-VALUE TABLE IN DATA SUGGESTED REGION ,

"ANYTHING ELSE " TO SKIP skip

ENTER " M " FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE

THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE

SAMPLE OF PROMINENCE ( I.E. REPLACE = 20 / 2120 / 21 = 0.952 ) AND THE

SAMPLE OF NON -PROMINENCE ( I.E. REPLACE = 11 / 15 = 0.733 ) ,

"ANYTHING ELSE" TO SKIP

ENTER " A "

ENTER

.9

.8
11

R. "

ENTER " MH FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE

THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE

SAMPLE OF PROMINENCE ( I.E. REPLACE A = 20 / 21 = 0.952 ) AND THE

SAMPLE OF NON -PROMINENCE ( I.E. REPLACE 11 / 15 = 0.733 ) ,

" ANYTHING ELSE " TO SKIP m

ENTER " A "

ENTER " "

1

.7

ENTER " M " FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE

THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE

SAMPLE OF PROMINENCE ( I.E. REPLACE A = 20 / 21 = 0.952 ) AND THE

SAMPLE OF NON -PROMINENCE ( I.E. REPLACE 6 11 / 15 = 0.733 ) ,

" ANYTHING ELSE TO SKIP skip

END OF PROGRAM

Figure 4 . Sample of reliability- engineer input .
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ANALYSIS OF FISHER'S EXACT TEST

Although Test One, Test Two , Successes , and Failures may be interchanged

several ways mathematically, they have physical identities . To utilize these

identities , [A ] Test One ( i.e. the test with 20 Successes and 1 Failure ) is

taken as the sample of prominence ( i.e. it is considered physically more

important than Test Two) and [B ] Successes define the category of interest

( i.e. the most natural description of a test result is considered to be

Success instead of Failure) .

In the following standardly ordered table , the sample of prominence and

category of interest are identified by the user as Sample I and Category 1 .

Category 2 :

Sample I :

Sample II :

Category 1 :

20

R 11

R 31

( N -n ) - ( R r )

N. R

1

4

5

n

N .n

N :

21

15

36

For this data , the post -test risk of a Type I error is p- value = 0.084 .

For this data's two suggested binomial parameters of the category of interest

( i.e. o = 20 / 21 = 0.952 and d = 11 / 15 = 0.733 ) , the post - test risk of

a Type II error is q-value = 0.241 .

For binomial parameters of the category of interest near those indicated by

management , q -values may be estimated from the following table :

o . 0.700 0.720 0.740 0.760 0.780 0.800 0.820 0.840 0.860 0.880 0.900

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

0.960

0.980

1.000

0.785 0.815 0.843 0.869 0.894 0.916 0.936 0.953 0.968 0.979 0.988

0.741 0.774 0.806 0.837 0.865 0.892 0.916 0.937 0.956 0.971 0.983

0.690 0.726 0.761 0.795 0.829 0.860 0.889 0.916 0.939 0.959 0.975

0.628 0.667 0.705 0.744 0.782 0.818 0.853 0.886 0.916 0.942 0.964

0.556 0.596 0.637 0.679 0.721 0.763 0.804 0.844 0.882 0.916 0.945

0.471 0.511 0.553 0.597 0.643 0.690 0.737 0.785 0.832 0.876 0.916

0.374 0.411 0.452 0.496 0.543 0.592 0.645 0.700 0.756 0.812 0.867

0.265 0.297 0.333 0.372 0.416 0.465 0.518 0.577 0.641 0.709 0.780

0.152 0.174 0.199 0.229 0.263 0.302 0.349 0.403 0.466 0.539 0.623

0.050 0.059 0.070 0.083 0.099 0.118 0.143 0.174 0.214 0.267 0.337

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

For binomial parameters of the category of interest near those indicated by

management , q-values may be estimated from the following table :

O . • 0.600 0.620 0.640 0.660 0.680 0.700 0.720 0.740 0.760 0.780 0.800

0.900

0.920

0.940

0.960

0.980

1.000

0.302 0.332 0.363 0.397 0.433 0.471 0.511 0.553 0.597 0.643 0.690

0.225 0.250 0.277 0.307 0.339 0.374 0.411 0.452 0.496 0.543 0.592

0.149 0.168 0.188 0.211 0.237 0.265 0.297 0.333 0.372 0.416 0.465

0.079 0.090 0.102 0.117 0.133 0.152 0.174 0.199 0.229 0.263 0.302

0.024 0.027 0.032 0.037 0.043 0.050 0.059 0.070 0.083 0.099 0.118

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 5 . Printer output from Figure 4 input .

355



ENTER RELIABILITY -ENGINEER / THEORETICAL - STATISTICIAN APPROACH " R / S " S

ENTER SIZE OF POPULATION " N " 36

ENTER SIZE OF SAMPLE OF PROMINENCE " n " 21

ENTER # OF ITEMS FROM CATEGORY OF INTEREST IN POPULATION " R " 31

ENTER # OF ITEMS FROM CATEGORY OF INTEREST IN SAMPLE OF PROMINENCE " p " 18

ANALYSIS OF FISHER'S EXACT TEST

In the following standardly ordered table , the sample of prominence and

category of interest are identified by the user as Sample I and Category 2 .

Sample I :

Sample II :

Category 1 :

3

R. r = 2

R. 5

Category 2 :

n

( R = r )r ) =

N. R

( N -n )

18

13

31

N .n

N =

21

15

36
3

For this data , the post - test risk of a Type I error is p-value = 0.663 .

For this data's two suggested binomial parameters of the category of interest

( i.e. 0 = 18 / 21 = 0.857 and d = 13 / 15 = 0.867) , the post - test risk

of a Type II error is q - value = 0.306 .

ENTER " T " FOR TABLE OF Q -VALUES , "ANYTHING ELSE " TO SKIP TABLE skip

ENTER " C " FOR CLOSE LOOK AT Q -VALUE TABLE IN DATA SUGGESTED REGION ,

"ANYTHING ELSE " TO SKIP skip

ENTER " M " FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE

THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE

SAMPLE OF PROMINENCE ( I.E. REPLACE = 18 / 21 = 0.857 ) AND THE

SAMPLE OF NON -PROMINENCE ( I.E. REPLACE 6 = 13 / 15 = 0.867 ) ,

" ANYTHING ELSE " TO SKIP

ENTER " A "

ENTER " "

.8

.9

For binomial parameters of the category of interest near those indicated by

management , q - values may be estimated from the following table :

0.0 0.700 0.720 0.740 0.760 0.780 0.800 0.820 0.840 0.860 0.880 0.900

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

0.960

0.980

1.000

0.158 0.184 0.215 0.250 0.291 0.337 0.391 0.452 0.521 0.598 0.682

0.127 0.149 0.176 0.207 0.244 0.287 0.337 0.396 0.464 0.542 0.630

0.098 0.117 0.139 0.166 0.198 0.237 0.283 0.337 0.403 0.480 0.569

0.073 0.088 0.106 0.128 0.155 0.188 0.228 0.277 0.337 0.411 0.501

0.051 0.062 0.076 0.093 0.114 0.141 0.174 0.216 0.270 0.337 0.423

0.033 0.041 0.050 0.063 0.078 0.098 0.124 0.158 0.202 0.250 0.337

0.019 0.024 0.030 0.037 0.048 0.061 0.079 0.103 0.136 0.182 0.246

0.009 0.011 0.014 0.019 0.024 0.032 0.042 0.057 0.077 0.108 0.154

0.003 0.004 0.005 0.007 0.009 . 0.012 0.016 0.022 0.032 0.047 0.071

0.000 0.001 0.001 0.001 0.001 0.002 0.003 0.004 0.006 0.009 0.015

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 6 . Input and screen output in case that alters order in table .
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ENTER RELIABILITY- ENGINEER / THEORETICAL -STATISTICIAN APPROACH "RS"

ENTER " TEST ONE NUMBER OF SUCCESSES" 11

ENTER " TEST ONE NUMBER OF FAILURES " 3

ENTER " TEST TWO NUMBER OF SUCCESSES " 107

ENTER " TEST TWO NUMBER OF FAILURES " 14

ANALYSIS OF FISHER'S EXACT TEST

Although Test One , Test Two , Successes , and Failures may be interchanged

several ways mathematically, they have physical identities . To utilize these

identities , [A ] Test One ( i.e. the test with 11 Successes and 3 Failures )

is taken as the sample of prom inince ( i.e. it is considered physically more

important than Test Two) and [ B ] Successes define the category of interest

( i.e. the most natural description of a test result is considered to be

Success instead of Failure ) .

In the following standardly ordered table , the sample of prominence and

category of interest are identified by the user as Sample II and Category 1 .

Sample 1 :

Sample II :

Category 1 :

r = 107

R. r = 11

R : 118

Category 2 :

n

( R r ) =

N - R

( N -n ).

14

3

17

n :

N .n :

N

121

14

135

For this data , the post- test risk of a Type I error is p- value = 0.249 .

For this data's two suggested binomial parameters of the category of interest

( i.e. $ = 11 / 14 = 0.786 and a = 107 / 121 = 0.884 ) , the post - test risk of

a Type II error is q -value = 0.375 .

ENTER " T " FOR TABLE OF Q -VALUES , " ANYTHING ELSE " TO SKIP TABLE
t

For other binomial parameters of the category of interest , q- values may be

estimated from the following table :

o \ 0.050 0.150 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950

0.050

0.150

0.250

0.350

0.450

0.550

0.650

0.750

0.850

0.950

0.751 0.981 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000

0.154 0.751 0.926 0.976 0.992 0.997 0.999 1.000 1.000 1.000

0.022 0.429 0.751 0.897 0.959 0.985 0.995 0.999 1.000 1.000

0.003 0.190 0.516 0.751 0.884 0.951 0.982 0.995 0.999 1.000

0.000 0.064 0.289 0.549 0.751 0.880 0.951 0.985 0.997 1.000

0.000 0.016 0.124 0.329 0.559 0.751 0.884 0.959 0.992 1.000

0.000 0.002 0.035 0.144 0.329 0.549 0.751 0.897 0.976 0.999

0.000 0.000 0.005 0.035 0.124 0.289 0.516 0.751 0.926 0.996

0.000 0.000 0.000 0.002 0.016 0.064 0.190 0.429 0.751 0.981

0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.022 0.154 0.751

Figure 7a . First half of reliability- engineer input and screen output

for hypothetical missile modification analysis .
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ENTER " C " FOR CLOSE LOOK AT Q-VALUE TABLE IN DATA SUGGESTED REGION ,

" ANYTHING ELSE " TO SKIP C

For binomial parameters of the category of interest near those indicated by

the data , q -values may be estimated from the following table :

0 0.686 0.706 0.726 0.746 0.766 0.786 0.806 0.826 0.846 0.866 0.886

0.784

0.804

0.824

0.844

0.864

0.884

0.904

0.924

0.944

0.964

0.984

0.499 0.550 0.603 0.655 0.706 0.755 0.801 0.844 0.882 0.916 0.943

0.430 0.483 0.537 0.593 0.648 0.702 0.755 0.805 0.850 0.891 0.926

0.358 0.409 0.464 0.521 0.580 0.639 0.698 0.755 0.809 0.859 0.902

0.283 0.331 0.384 0.441 0.501 0.564 0.628 0.693 0.756 0.815 0.869

0.208 0.251 0.299 0.353 0.412 0.476 0.544 0.614 0.686 0.756 0.823

0.138 0.173 0.213 0.260 0.314 0.375 0.443 0.517 0.595 0.676 0.757

0.079 0.103 0.132 0.168 0.212 0.265 0.327 0.399 0.480 0.569 0.663

0.035 0.048 0.065 0.088 0.118 0.156 0.205 0.265 0.339 0.427 0.530

0.010 0.014 0.021 0.031 0.045 0.065 0.093 0.131 0.184 0.255 0.349

0.001 0.002 0.003 0.005 0.007 0.012 0.020 0.033 0.053 0.087 0.140

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.008

ENTER " MP FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE

THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE

SAMPLE OF PROMINENCE ( 1.E. REPLACE 11 / 1414 = 0.786 ) AND THE

SAMPLE OF NON -PROMINENCE ( 1.E. REPLACE 0 = 107 / 121 = 0.884 ) ,

" ANYTHING ELSE " TO SKIP m

ENTER "

ENTER " "

.85

.9

For binomial parameters of the category of interest near those indicated by

management , 9 -values may be estimated from the following table :

o . 0.750 0.770 0.790 0.810 0.830 0.850 0.870 0.890 0.910 0.930 0.950

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

0.960

0.980

1.000

0.618 0.673 0.726 0.776 0.824 0.867 0.905 0.937 0.962 0.980 0.992

0.550 0.608 0.666 0.724 0.778 0.830 0.876 0.916 0.948 0.973 0.989

0.471 0.532 0.595 0.658 0.721 0.781 0.837 0.887 0.929 0.962 0.984

0.384 0.445 0.510 0.578 0.648 0.717 0.785 0.847 0.901 0.945 0.976

0.291 0.348 0.411 0.481 0.556 0.634 0.712 0.789 0.860 0.919 0.964

0.197 0.245 0.302 0.368 0.442 0.525 0.614 0.706 0.796 0.877 0.942

0.110 0.145 0.189 0.243 0.310 0.389 0.482 0.585 0.696 0.805 0.902

0.044 0.063 0.088 0.123 0.170 0.232 0.313 0.415 0.539 0.679 0.822

0.009 0.014 0.022 0.034 0.054 0.084 0.131 0.201 0.306 0.454 0.646

0.000 0.000 0.001 0.002 0.003 0.006 0.013 0.026 0.056 0.122 0.265

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENTER " M " FOR MANAGEMENT INDICATED BINOMIAL PARAMETERS TO REPLACE

THE DATA INDICATED PARAMETERS OF THE CATEGORY OF INTEREST IN THE

SAMPLE OF PROMINENCE ( I.E. REPLACE φ 11 / 14 = 0.786 ) AND THE

SAMPLE OF NON -PROMENENCE ( I.E. REPLACE O = 107 / 121 = 0.884 ) ,

" ANYTHING ELSE " TO SKIP skip

END OF PROGRAM

Figure 7b . Second half of hypothetical missile modification analysis .
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