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FOREWORD

The Thirty -Fifth Conference on the Design of Experiments in Army

Research , Development and Testing had as its host the TRADOC Test

and Experimentation Command , Experimentation Center (TEC ) ,( TEC) , Fort

Ord , California . This conference was planned for 18-20 October

1989 , and was held in the Monterey Beach Hotel , Monterey , CA. The

earthquake on 17 October prevented several of the speakers from

attending this meeting ; and while the power was off , problems arose

for many of the speakers . Dr. Marion Bryson , Director of TEC ,

served as local host and conference coordinator . He and members of

his staff are to be commended for supplying innovative and

immediate solutions to many problems associated with the quake.

Without their support the conference would never have succeeded .

The Army Mathematics Steering Committee ( AMSC ) is the sponsor of

the Conference on the Design of Experiments . Members of this

committee would like to thank D. Hue McCoy , TRADỌC Analysis

Command, for organizing the Special Session on " Statistical Issues

Related to Combat Modeling . The speakers were Hue McCoy , Bill

Baker ( BRL ) , and Eugene Dutoit ( Infantry School ) . This session

achieved its purpose of stimulating a dialogue between combat

modelers and the statistical community . The AMSC members feel that

the addresses by the principal speakers , as well as the contributed

papers by Army and academic personnel , also stimulated the

interchange of ideas among the scientists attending this meeting .

Noted below is the list of invited speakers selected by the Program

Committee :

Speaker and Affiliation Title of Address

Professor Robert Bechhofer

Cornell University

An Appraisal of several

Multistage Selection

Procedures

Professor William J. Conover

Texas Tech University

Latin Hypercube Sampling , a

Way of Saving Computer Runs

Professor Gary Koch

University of North Carolina

at Chapel Hill

An Overview of Statistical

Methods for categorical Data

Professor David W. Scott

Rice University

Statistical Data Analysis

Another event associated with each of these conferences is a two

day tutorial . This year , Ronald Hocking of Texas A&M University

presented a tutorialtutorial entitled " Analysis of Linear Models with

Unbalanced Data . " It was held two days before the start of the

conference and was conducted in the TEC Protocol Building at Fort

Ord .
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As the master of ceremonies at the banquet and the recipient of the

wilks Award last year , Dr. Marion BrysonBryson had the honor of

announcing the winner of the ninth U.S. Army Wilks Award , Professor
Boyd Harshbarger . He was selected becausebecause of his research

endeavors , his promotional activities for Army applications , his

unending supply of speakers for these conferences , and his help in

numerous ways to carry the Army forward in many important

statistical areas . Because of ill health , Professor Harshbarger

was unable to attend the conference . Dr. Douglas Tang ,

representing the Army statistical community , accepted the award on

his behalf .

Members of the Army Mathematics Steering Committee would like to

thank the members of the Program committee for guiding this

scientific conference , and to also thank the Mathematical Sciences

Division of the Army Research office for preparing the proceedings

of these meetings .

PROGRAM COMMITTEE

Carl Bates

Eugene Dutoit

Douglas Tang

Robert Burge

Hue McCoy

Malcolm Taylor

Henry Tingey

Francis Dressel

Carl Russell

Jerry Thomas
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AGENDA

THE THIRTY-FIFTH CONFERENCE ON THE DESIGN OF EXPERIMENTS

IN ARMY RESEARCH , DEVELOPMENT , AND TESTING

18-20 October 1989

Host : TRADOC Test and Experimentation Command

Experimentation Center ( TEC )

Fort Ord , California 93941-7000

Marion R. Bryson , Director

Location : Monterey Beach Hotel

2600 Sand Dunes Drive

Monterey , California 93940

Wednesday, 18 October 1989

0730 - 0900 REGISTRATION

0915 · 0930 CALLING THE CONFERENCE TO ORDER :

Marion R. Bryson , Director

TRADOC Test and Experimentation Command

Experimentation Center ( TEC )

WELCOMI NG REMARKS

0930 . 1200 GENERAL SESSION I

Chairperson : Marion R. Bryson , TRADOC Test and Experimentation

Command , Experimentation Center

0930 • 1030 KEYNOTE ADDRESS :

AN APPRAISAL OF SEVERAL MULTI STAGE SELECTION PROCEDURES

Robert Bechhofer , Cornell University

1030 • 1100 BREAK

1100 - 1200 STATISTICAL DATA ANALYSIS

David W. Scott , Rice University

1200 - 1330 LUNCH
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Wednesday ( Continued )

1330 . 1500 CLINICAL SESSION A

Chairperson : Barry Bodt , U.S. Army Ballistic Research

Laboratory

Panelists : William J. Conover , Texas Tech University

Jayaram Sethuraman , Florida State University

Nozer Singpurwalla , George Washington University

HAS VARIABILITY BEEN REDUCED?

Gary Aasheim , U.S. Army Armament , Munitions and Chemical

Command

WHICH DISTRIBUTION APPLIES ?

Gary Aasheim, U.S. Army Armament , Munitions and Chemical

Command

1330 . 1500 TECHNICAL SESSION 1

Chairperson : Francis Dressel , U.S. Army Research Office

MODELING DEPENDENCE INDUCED BY COMMON ENVIRONMENTS

Mark A. Youngren , U.S. Army Concepts Analysis Agency

EVALUATION OF DESERT CAMOUFLAGE UNIFORMS BY GROUND OBSERVERS

George Anitole , Ronald L. Johnson , V.S. Army Belvoir

Research , Development and Engineering Center , and

Christopher Neubert , U.S. Army Materiel Command

ELIMINATING CALCULUS DEPENDENCY IN THE DERIVATION OF DODGE'S u

Richard M. Brugger , U.S. Army Armament , Munitions and

Chemical Command

HOW SHOULD ERROR ESTIMATES OF FIXED CAMERA CALIBRATION

CONSTANTS BE COMPUTED?

William S. Agee and Andrew C. Ellingson , V.S. Army White

Sands Missile Range

1500 - 1530 BREAK
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Wednesday ( Continued )

1530 • 1710 TECHNICAL SESSION 2

Chairperson : Malcolm Taylor , U.S. Army Ballistic Research

Laboratory

PROMOTING STATISTICAL LITERACY AND INTERACTION OF RESEARCHERS

AND STATISTICIANS

Emanuel Parzen , Texas A & M University

BAYESIAN INFERENCE FOR NONHOMOGENEOUS POISSON POINT PROCESSES

USING EXPERT OPINION AND DATA

Nozer D. Singpurwalla , George Washington University

RANDOM MAPPINGS

Bernard Harris , University of Wisconsin-Madison

Thursday , 19 October 1989

0815 0945 APPLICATION SESSION

Chairperson : Carl Bates , U.S. Army Concepts Analysis Agency

HANDLING UNCERTAINTY IN EXPECTED VALUE MODELS

Mark A. Youngren , U.S. Army Concepts Analysis Agency

APPLICATION AND CALIBRATION OF A STOCHASTIC C3 COMBAT MODEL FOR

OUTER-AIR AND INNER-AIR BATTLES

Izhak Rubin , University of California at Los Angeles and

Israel Mayk , U.S. Army Communications and Electronics

Command

LOADING AND MATERIAL PROPERTY UNCERTAINTIES IN FINITE ELEMENT

ANALYSES FOR ORTHOPAEDICS

Shirish Chinchalkar and D. L. Taylor , Cornell University
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Thursday ( Continued )

0815 · 0945 TECHNICAL SESSION 3

Chairperson : Jock 0. Grynovicki , V.S. Army Human Engineering

Laboratory

NONNEGATIVE ESTIMATION OF VARIANCE COMPONENTS IN MIXED LINEAR

MODELS WITH TWO VARIANCE COMPONENTS I

Thomas Mathew , University of Maryland

NONNEGATIVE ESTIMATION OF VARIANCE COMPONENTS IN MIXED LINEAR

MODELS WITH TWO VAR I ANCE COMPONENTS II

Bimal Kumar Sinha , University of Maryland
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Florida State University
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Chairperson : Carl Russell , U.S. Army Operational Test and

Evaluation Agency

Panelists : Robert Bechhofer , Cornell University
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Emanuel Parzen , Texas A & M University

APPLICATION OF A COMPOSITE DESIGN TO TEST A COMBAT SIMULATION

MODEL

Carl B. Bates , U.S. Army Concepts Analysis Agency

APPLICATION OF RESPONSE SURFACE METHOD TO RANDOM VIBRATION

Mircea Grigoriu , Cornell University

1015 • 1200 TECHNICAL SESSION 4

Chairperson : John Robert Burge , Walter Reed Army Institute of

Research

DISTRIBUTION THEORY FOR VAR I ANCE COMPONENT ESTIMATION

DIAGNOSTICS

Jock 0. Grynovicki, U.S. Army Human Engineering Laboratory

and John W. Green , University of Delaware
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Chairperson : William S. Agee , White Sands Missile Range
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Barnard H. Bissinger , Pennsylvania State University
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Russell R. Barton , Cornell University
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STATISTICAL DATA ANALYSIS:

HOW FAR WILL COMPUTER GRAPHICS TAKE US?

David W. Scott

Department of Statistics

Rice University

P.O. Box 1892

Houston , Texas 77251-1892

ABSTRACT. In this paper we survey the directions researchers are following in statistical

graphics. Hardware support for animation and of color is expanding rapidly while price is at least

decreasing. While a fairly optimistic scenario can be drawn , the most correct statement we can

make about the future of graphics and statistical computing is that the uncertainity has never

been greater. Potential obstacles towards effective use of computer graphics are discussed, particu

larly in the academic setting. Strategies to break these bottlenecks will be suggested. Otherwise

excess CPU cycles may remain so .

1. INTRODUCTION . Each year at the annual meeting of the National Computer Graphics

Association , a gala dinner is held at which the winners of various computer graphics contests are

presented. As the winning computer-generated images and videos are presented, with bumble bees

darting among flowers and pool balls refleaing the images of a futuristic shiny room , one is

overwhelmed by the shear raw power and impact of the presentation. There is not (yet) a category

for statistical presentation , but one senses this is not out of the question.

The impact of modern computer graphics on statistical education and practice has not yet

been great. Eddy et al. in a recent article in Statistical Sciences have attempted to describe future

computing needs and trends, and graphics is an important part of the overall picture. The average

statistician retains a small collection of typical images that are recycled over and over: scatter

diagrams including residual plots, frequency curves such as histograms, curve fits such as regression

lines, elliptical contours of normal densities including principal components; the list is surprisingly

small. Far more emphasis is given to tables: summary statistics tables, chi- squared tables,

analysis of variance tables, tables of percent iles, and spreadsheets. This follows the natural incli

nation of statisticians to present a parsimonious summary of an incidence of data analysis: choose

a powerful model well - studied in the literature, estimate parameters and determine significance,

and present results summarizing the model in tabular and sometimes graphical forms. Image pro

cessing, animation , rotation are all very unparsimonious statistical tools.

Historically, technology has affected the relative importance of these forms. Early data

analysts such as John Graunt and William Petty favored tabular presentation, after all, paper was

a dear commodity. William Playfair showed the array of graphical presentation of business data

was worth the paper. Computation was expensive, and the human efbrt required for creating

effective graphs was relatively cost - effective. Karl Pearson began the trend towards testing and

tabular presentation, but devoted much energy to graphs in the form of frequency curves. Fisher

and others accelerated the tabular form with analysis of variance and maximum likelihood , which

emphasizes parametric analysis over the more graphical nonparametric analysis. The emphasis

was on mathematical statistics. The rapid increase in number crunching ability spawned the crea

tion of statistical packages, with largely numerical output. Graphics was not ignored in such pack

ages (certainly not in the past few years), but the quality was relatively low and options limited .

Quality graphics output is still much more expensive than computing, but the absolute price of

both has decreased so dramatically that we are seeing an explosion of interest in graphical statis

tics. Truly impressive packages for personal computers are available and SAS and SPSS have pro

vided similar capabilities for mainframes. Separately, many non -statistical companies provide

software for presentational graphics, aimed at business markets. ISCOL is one example , but such

quality products cost even academic workers many thousands of dollars.
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2. CURRENT IMPACT OF COMPUTER GRAPHICS. How strong has the impact of com

puter graphics been on the statistical community ? To look at many journals and statistical text

books, you would be hard pressed to detect any revolution . In its fourth edition , Hogg and Craig's

classical textbook on mathematical statistics contains only five figures! The Journal of the Ameri

can Statistical Association is showing the change, but in unexpected ways. Roughly half of the

papers contain only tables. Those with figures contain more figures than papers ten years ago, but

ironically the quality is poorer. Ten years ago artwork was professionally drawn ( if only approxi

mating truth ). Many figures today are drawn by PC's, which are acceptable but clearly inferior in

presentation quality and impact of their professional cousins. But the cost is so much less that we

accept substandard quality. The very recent increase in laser graphical output partially justifies

the premature switch to PC graphics.

The long and short of it is that we are within five years of everyone having the ability to

produce very high quality two-dimensional graphics virtually without cost . In other words, we

have succeeded in automating the kinds of graphs William Playfair drew 200 years ago.

3. NEW DIRECTIONS IN COMPUTER GRAPHICS. The emphasis of this paper is on

how much farther will computer graphics take statistics ? Why is there a trend towards newer

graphical presentations? Graphics is at odds with classical statistics because graphics is non

parsimonious. A graph cannot be neat ly summarized or reduced to a few key coefficients and p

values. Graphs demand close scrutiny and invite speculation and interpretation, something hardly

ever seen in parametric analyses. But the fundamental distinguishing feature is that graphs are

subjective, imprecise, manipulative, yet powerful. One novel multivariate graph is the Chernoff

face. An entire conference in 1978 was devoted to evaluating the subjective aspects of this tech

nique, in particular, coping with the almost infinite possible alterative constructions for individual

datasets. There is no consensus whether it is a serious statistical tool. The discipline of statistics

attempts to be very precise about its imprecision , and many statisticians do not find graphs precise

enough to serve as the analysis, preferring tables and statistics.

Yet the whole new technology of computer graphics and enhanced graphics chips has opened

up the possibility of a new generation of presentation graphics. More statisticians are focusing

their research effort in this area , and are represented by the new ASA section called statistical

graphics. The concerns about limitations of the old style graphics are even more critical in the

new style of graphics. The key additional features are color, solids rendering, translucency, and

animation ; the Pixar machine is the state -of-the - art for all of these features. If we consider the

exploratory graphical tools for high dimensional data, we see that an important part of data

analysis is luck . For the higher the dimension , the smaller the fraction of data that can be

" explored ” in a given amount of time. Thus different workers examining the same multivariate

data will probably see disjoint parts of it - quite in contrast to a parametric world using principal

components. Even the order in which the data are examined can be a factor, given the inevitable

fatigue. Some research is already under way to help automate the searching process (reminds me

of the computer science project to automate the game Rogue, called rogomatic). But real objec

tions have been made about this imprecise form of data analysis. The use of color excludes those

who are color blind . The use of stereo viewing techniques is maddeningly unsuccessful for a large

percentage of professionals. Each new subjective element increases the power of the data analysis

but decreases the reliability and widespread usefulness of these techniques. Publishing is virtually

impossible, until CD -ROM publishing is available. A nonexhaustive list of projects includes: pro

jection pursuit (Tukey, Friedman , Stuetzle ); animated scatter plots (Tukey, Huber, Donoho );

exploratory methods ( Tukey and Tukey); density estimation (Scott, Thompson, Tarter ); glyphs

and stereo (Carr and Nicholson ); grand tours (Buja and Asimov ); programming languages (Becker,

Chambers, Donoho, Huber); programming environments (McDonald ).

4. MANAGING THE FUTURE. But enough about how hard it all will be and how unap

preciated it all may be. Are we going to be able to sustain research in novel statistical graphics?

As an engineering undergraduate in 1968, I used to wait in line to use a Wang time- sharing calcu

lator terminal ( it actually could do the transcendental functions to twelve significant digits! ) . Once
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we began doing our number crunching through programming languages, we could accept and track

the new computing resources with almost no overhead . So in the past fifteen years, I have written

Fortran (and PL / T) programs on as many types of hardware . The only overhead was learning a

new editor, a few system commands, and the faster and bigger machine was immediately increas

ing productivity and opening new horizons. There is still a bit more of that to be had. With the

workstations now available, we have finally obtained the luxury of wasting a huge fraction of CPU

cycles. This is of course a correct state of affairs given the relative cost of faculty time. Idle CPU

seconds are costly only in terms of maintenance; idle graphics workstations cannot yet be justified

as maintenance costs are very high .

But we must face two developments. The first is parallel computing. The second is graphics.

Statisticians can probably make the most effective use of parallel computers than any single group

of researchers, because much of our computing involves very loosely coupled computation such as

Monte Carlo simulation. Numerical analysts, on the other hand, face tightly coupled computation

which provides real gains only in rather specific situations. Theoretical limits exist to performance

in tightly coupled systems, no matter how many parallel processors are available. But all that

aside, to effectively use hypercube or other parallel architectures is not a straightforward exercise.

It is even worse than having to give up your favorite programming language and return to assem

bler. Serious allocation of time and other supporting resources must be made at this time. One

reaction is that it is not worth the effort and just to wait until some computer scient ist writes an

incredible parallel compiler that takes non -parallel code and optimizes into parallel environments.

(Not too likely in my opinion. Gene Golub at Stanford in a comment after a lecture by John Rice

lamented that there weren't enough numerical analysts to go around to try and make parallel algo

rithms for each differential equation and hardware configuration .)

Graphics presents the same challenge. With more modest efort, one can produce useful pic

tures on a PC or graphics terminal of the William Playfair variety. Playing with the color tables

can be fun. Choosing the specific 256 colors from the 16,777,216 choices can be a bit frustrating.

Graphics chips have helped enormously, putting frequently used graphical transformations into

hardware and supporting animation . The interface with these chips is at about the same level as

other graphics commands, almost at the assembler level, pixel by pixel. Some systems are avail

able at the command level to avoid this, but the convenience eventually becomes the limitation ,

both in functionality and performance. At a somewhat lower level, graphics standards have

appeared, such as CORE and GKS. But any commercial outfit will admit that the advantages of

portability are outweighed by the benefits of performance allowed by assembler programming. But

most academics are satisfied by “ prototype” systems rather than commercial performance.

My observation is that with graphics systems it is very difficult to build upon previous work .

Each new generation of hardware demands a complete new attack . As the graduate students who

did the previous system disappear, the next generation of students have a more difficult task get

ting up to speed. For the better hardware often has many more capabilities, so reproducing the

previous system often much harder. Therefore, less time is available for extending the previous

system and actually less research gets done. This is a bit overdrawn, but accurately reflects what

has happened over the past fifteen years. At Berkeley, a biostatistical researcher developed a

analysis and graphical system on some IBM hardware that he nursed for eight years beyond its

supported lifetime, before finally biting the bullet and updating hardware. At Rice and Stanford

and other places, graduate students who worked on very specialized hardware and produced very

useful systems, graduated and went away. What was left was a collection of faculty who had

directed the research but who did not have the time to actually program the system , maintain it ,

or even fully understand it . Thus the next generation of graduate student basically found it

impossible to effectively use the machines. Maintenance costs and down-time were significant as

the expensive hardware aged, and using the previous student's system frustrating and not

research ). The apparent time to start new and create a wholly new system was determined too

risky, since rumors that the machine might be sold ( since no one was using it ) began to circulate .

The traditionally successful faculty / graduate student relationship was found wanting. The need

for continuity implied the need for a new type of person in the picture (nontraditional), the staff

support group. These persons can usually be recruited from recent graduates by offering post -docs,

3



research positions, and other positions not commonly found in statistics groups. Thus there is a

need to restructure research personnel to continue this work . The systems are too complex for

individual faculty to manage (much less to retrain unproductive faculty ). Fewer and fewer gradu

ate students are able to master the complexities of these systems in the few years available and

make real contributions. Those who can leave quickly, leaving behind a serious void in continuity,

rendering expensive equipment unusable almost overnight. These statistics and computer science

wizards are not well -recognized as doing valid statistical research worthy of tenure track (as

opposed to statistical computing ). The result is inability to do the desired research , which neces

sarily includes extensive systems development. We seem to be moving towards the system used by

sciences, many post -docs per faculty member as well as support staff to provide full-time research

effort and continuity of systems expertise and support , something that can not be even partially

satisfied by faculty and students alone. Unfortunately, the job market is so strong in statistics as

opposed to these other areas that it will be very difficult to build up new centers and move

towards the big research lab model.

This will be a rather traumatic trend . It is well-known that using programmers greatly

reduces output (due to decreased reliability of code and less intimate knowledge of the problem )

and decreases hands-on experimentation that leads to new developments, but senior faculty time

can not usually be allocated significantly for this purpose. Debugging purely graphical systems is

extraordinarily difficult. Dr. Banchoff at Brown University reports that Roger Penrose found a bug

in a four -dimensional hidden -line removal algorithm by simply watching it perform . Testing will

be an enormous headache and problem . Everything looks so pretty when the output is graphics.
Difficult to be critical. We have watched computer science departments try and manage very large

development projects. Statistical researchers will have to pay attention to how these efforts have

been organized and managed . Statisticians seem to be a bit impatient and more satisfied with pro

totypes of systems than is healthy for the profession.

Another approach has been to move to novel computing environments that hold the promise

of improved user productivity and portability. The LISP machines fall into this category.

At Battelle Labs in Richland , Washington , Wes Nicholson and Dan Carr have pioneered

research into the use of glyphs and stereo viewing for data analysis. In 1983 they invited a dis

tinguished panel of statisticians and computer scientists to review and criticize their progress. It is

clear from the reprinted papers and discussion that the visitors could not decide what was " funda

mental research " and what was merely “ systems development . " This lack of a clear understanding

of the joint roles of these activities has hindered the professional development of many young

computer -bound statisticians.

5. CONCLUSIONS. We asked the question of how far will computer graphics take us? The

answer is a long way, but not with the current research structure. Graphics requires as much sup

port as supercomputing or parallel architectures, but may not get it directly. Many of the sciences

and engineering departments have received adequate laboratory resources and statistics must be

added to the list . The need for and trend towards graphics can not be altered , but we can work on

improving presentation quality and effectiveness, such as Bill Cleveland ( 1985) and others have

been attempting to evaluate . Statisticians have contributed much to the burgeoning field of

" scientific visualization , ” but it is computer scientists who have dominated the funding in the field .

A closer working relationship to the fields of application is already occurring but more should be

expected. Finally, examples of figures shown in the original talk may be found in the references
below .
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CHRISTOPHER J. NEUBERT
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ABSTRACT

The standard U.S. Army desert camouflage uniform appears dark against U.S. and Saudi

Arabian desert backgrounds. Prototype uniforms were developed and evaluated in the desert

Southwest in 1986. Test results led to further evaluation, in 1987, of seven new uniforms, plus

the standard uniform. Uniforms were shown in all possible pairs, at ten sites, to U.S. Marine

Corps and Fort Belvoir personnel, who served as ground observers. The uniforms were judged

on their ability to blend with the background. The best of each pair was independently

selected. An analysis of variance and Duncan's Multiple-Range Test statistics were performed .

It was determined for most sites, and across all sites, that three new uniforms were

significantly (a < 0.05) best in blending with the background.

1.0 SECTION 1 - INTRODUCTION

The standard U.S. Army desert camouflage uniform is made in a pattern consisting of

six colors. The predominant color areas are tan, khaki, light brown, and dark brown. Small

light-brown areas outlined in black are scattered throughout the other color areas. This

uniform was taken to Saudi Arabia in 1980, and viewed against multiple desert backgrounds.

In all cases the uniform appeared dark and did not blend well with any of the observed desert

backgrounds. This information was given to counter-surveillance personnel at Natick RD&E

Center, MA . A series of seven prototype desert uniformswas thenmade andgiven to Fort
Belvoir for a desert evaluation in 1986. Analysis of this data identified uniforms 4, 5 , and

6 as being the most effective in terms of blending with the U.S. desert test sites investigated.

Using the additional test information collected by Belvoir as a basis, Natick then

developed uniforms 8, 9 , 10, and 11 for further evaluation. These uniforms, along with

uniforms 4, 5, and 6 and the standard U.S. Army uniform, identified as uniform I , were

evaluated in the U.S. desert Southwest in 1987. The quantitative analysis of their ability to

blend with various Southwest desert backgrounds is the subject of this report.

2.0 SECTION 2 - PROCEDURE

2.1 Test Uniforms

A total of eight camouflage uniforms were evaluated. The following is a description

of each uniform:

Uniform # 1--Standard U.S. Army Desert Day Camouflage Pattern

A six -color pattern now in use by the U.S. military consisting of the colors Light Tan

379*, Tan 380*, Light Brown 381 *, Dark Brown 382*, Black 383*, and Khaki 384* .

Uniform #4

A three-color pattern of Light Tan 379*, Khaki 384*, and Light Brown 381 *.
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• Uniform #5

A three-color pattern of Light Tan 379*, Tan 380*, and Khaki 384*.

• Uniform #6

A three -color pattern of Desert Tan 459*, Khaki 384*, and Light Brown 381 * .

Uniform # 8

A solid-color uniform of Tan 380*.

• Uniform #9

A solid-color uniform of Khaki 384*.

• Uniform # 10

A three-color pattern of Khaki 384*, brown** and sand**.

• Uniform # 11

A two-color pattern of clay** and Khaki 384*.

*Natick numerical color designations

**No numbers assigned

2.2 Test Sites

A total of ten sites were selected for the study. All the desert sites contained sparse

vegetation similar to that found in areas of interest in the Middle East. The soil ranged in

color from a light buff/tan to gray and dark brown, and represented a good cross-sectional

spectrum of different-colored desert backgrounds. The order of the ten sites as they will

appear throughout this study is seen in Table 1 .

Table 1

Site Order Identification

Site # Color Location

1

2

3

4

5

6

7

8

9

10

Buff

Light Gray

Very Light Tan

Dark Beige Tan

Light Tan

Dark Tan

Beige Tan

Light Beige Tan

Tan

Gray Tan

Yuma Sand Dunes, AZ

Ogilby Road, Tumco, CA

Yuma Proving Grounds, AZ

Anza Borrego State Park, CA

Tank Trail, 29 Palms, CA

Salton Sea, CA

Anza Borrego State Park, CA

Anza Borrego State Park, CA

Jean Dry Lake Bed, NV

Rt. 15, Baker, CA

2.3 Test Subjects

The test subjects consisted of U.S. Marine Corps enlisted men from Camp Pendleton ,

CA, and civilians from the U.S. Army Natick Research, Development, and Engineering Center,

Natick , MA , and the U.S. Army Belvoir Research, Development, and Engineering Center, Fort

Belvoir, VA. A maximum of 15 observers to a minimum of 10 observers were used at each test

site . All subjects had at least a corrected visual acuity of 20/30 and normal color vision.

2.4 Data Generation

The eight uniforms were viewed, individually , in all possible pairs ( 28) . The viewing

distance from the subject to each pair of uniforms was about 25 meters. The observers were
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told to select the one uniform from each pair that best matched or blended with the

surrounding background in terms of color. The observers were instructed to discount

shrubbery if present. This instruction was necessary, because of the very sparse shrubbery in

the deserts of the Middle East when compared with the U.S. desert Southwest. The mean

preference with associated standard error, 95%confidence intervals, analysis ofvariance,
and Duncan's Multiple-Range were calculated for all sites, and averaged across all ten sites .

The higher the mean preference, the more preferred the colors were rated by the ground

observers as blending with the desert background.

3.0 SECTION 3 - RESULTS

The camouflage uniforms were evaluated at each of the ten sites to determine which

colors best blended with the desert environment. Section 2.4 describes how the data was

generated for all sites , and when averaged across all sites. Table 2 shows the uniforms that

best blended with each site and when averaged across all sites.

Table 2

Summary of the Best Desert Uniforms for Each Site

in Ability to Blend with the Background

1 9 10 115

X

Uniforms

6 8

X

X

X

X

X

X

xx

X

x

x

X

X X

xX

Site 1

Site 2

Site 3

Site 4

Site 5

Site 6

Site 7

Site 8

Site 9

Site 10

Across All

Sites

X

X

X

X

X

x

X

X

x

XX

X X

X X x

The statistical results of each site for the above best camouflage uniforms will not be

included, because they would be too voluminous to present in these proceedings. This data is

available upon request from the U.S. Army Belvoir Research, Development and Engineering

Center, ATTN: STRBE-JDA, Fort Belvoir, VA 22060. Table 3 contains the mean preference

with associated standard error and 95% confidence interval for the ability of the desert

uniforms to blend with the background, when averaged across all sites. Figure 1 is the graphic

display of Table 3. Table 4 is the analysis of variance performed to determine if there are

significant differences between the various camouflage uniforms in their ability to blend with

the desert backgrounds. Table 5 identifies which uniforms differ from each other through the

Duncan's Multiple-Range Test.
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Table 3

Mean Preference Rating for Desert Background Blend

and 95-Percent Confidence Intervals ( Across All Sites)

Standard

ErrorUniform N Mean

95% Confidence Interval

Lower Limit Upper Limit

to

to

to

1

4

5

6

8

9

10

11

116

116

116

116

116

116

116

116

0.8190

4.3966

4.7845

2.5345

4.5000

0.9397

3.9655

3.6466

0.0761

0.1266

0.1340

0.1725

0.1197

0.0902

0.1278

0.1878

0.6683

4.1458

4.5190

2.1928

4.2630

0.7610

3.7124

3.2745

to

to

to

to

to

0.9696

4.6473

5.0500

2.8761

4.7370

1.1184

4.2187

4.0186

HIGH

o 5.0

S.OSO0

4.6473
4.7370

I
I

B
L
E

ND

4.3190
4.2187

4.01864 a

2630
4.14 38

3.7124

2.8781

ΤΟ

3.07 3.2745

I
2.0

2. 1928

1.1184

A
B
I
L
I
T
Y

0.9898

I

0.6683

I

0.7610

0.0

LOW
1 s 6 9 10 כ11 ס

CAMOUFLAGE UNIFORM

Figure 1

Desert Camouflage Uniform Ability to Blend with the Desert Background ,

Means, and 95-Percent Confidence Intervals (Across All Sites)

Table 4

Analysis of Variance for the Ability of the Camouflage

Uniforms to Blend with the Desert Background (Across All Sites)

Source

Degrees of

Freedom

Sum of

Squares Mean Square F-Test Level

140.4009 0.0000*Uniforms

Error

Total

7

920

927

2046.1379

1915.3793

3961.5172

292.3054

2.0819

Bartlett's Test for Homogeneous Variance

Number Degrees of Freedom = 7

F = 19.23 Significance Level = 0.000++

*Significant at a less than 0.001 level
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Table 4 indicates that there are significant differences in the ability of the camouflage

uniforms to blend with the desert background. The Bartlett's Test indicates that the variance

for each uniform is not homogeneous, i.e., significantly different, so they are not necessarily

from the same population.

Table 5

Duncan's Multiple-Range Test

for All Sites Combined, Daylight

BEST 1 UNIFORM 4

4.3966

UNIFORM 8

4.5000

UNIFORM 5

4.7845

2 UNIFORM 11

3.6466

UNIFORM 10

3.9655

3 UNIFORM 6

2.5345

WORST 4 UNIFORM 1

0.8190

UNIFORM 9

0.9397

4.0 SECTION 4 - DISCUSSION

A review of the data for sites 1-10, and for all sites combined, shows that camouflage

uniforms 4, 5, and 8 were the most effective in blending with the desert terrain. These

uniforms had mean blending values of 4.3966, 4.7845, and 4.5000 respectively (Tables 3 and

5). With the exception of site 5 (Table 2), where camouflage uniforms 6 and 10 were judged

as best blending with the desert background, uniforms 4, 5, and 8 had at least one member

among those that blended best with the desert background. The overall mean-blending values

for the uniforms do not differ significantly from each other (Table 5 and Figure 1 ) .

Additional review of the data indicates that the standard camouflage uniform (# 1 ) and

uniform 9 had the worst blend with the desert background, when averaged across all sites .

The data for this study appears fairly clean; however, one large and pressing caveat

must be taken into consideration, before any final decision on desert uniforms is made. The

uniform tests conducted so far have been in the U.S. desert Southwest. Any future conflicts

in which a desert camouflage uniform will be used by U.S. forces will, in all probability, be

in the Middle East. These deserts tend to be lighter and more tan than the grayer desert of the

United States. They also have much less vegetation. The best camouflage uniforms from this

study should be evaluated in the areas of interest in the Middle East for final determination

as to color blend with the background. The resulting data may necessitate color modifications

of the uniforms to ensure that the best possible blend with the deserts of interest is achieved.

5.0 SECTION 5 - SUMMARY AND CONCLUSIONS

A total of eight camouflage uniforms were evaluated as to their ability to blend with

desert backgrounds in the U.S. desert Southwest. Ten sites were used. The uniforms were

viewed in all possible pairs (28 ), and with the one selected from each pair that blended best

with the background. The results of this evaluation produced the following conclusions:

a. Camouflage uniforms 4, 5, and 8 blended best with the U.S. desert backgrounds.

b. Standard camouflage uniform 1 and prototype uniform 9 were the least effective

in blending with the U.S. desert backgrounds.

c . An additional desert camouflage evaluation should be conducted in the Middle East,

to ensure that the best uniform is selected for the U.S. military.
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HAS VARIABILITY BEEN REDUCED ?

Gary Aasheim

U.S. Army Armament , Munitions and Chemical Command

Product Assurance and Test Directorate

Tool and Equipment / Aircraft Armament Branch

Rock Island , Illinois 61299-6000

Often changes are made in measuring methods and in production methods

with at best , only checks to determine whether or not the changes affected

variability . After a change is made , a natural question is - Did the

change affect measurement precision or product uniformity ?

I am not aware of an established method for analyzing before and

after sample results to answer that question for all situations . Of

course , if the before and after change samples are from the same

population , the standard F - test can be used .

But sometimes the before - change samples are from one set of

populations and the after - change samples are from a different set of

populations .

One method for dealing with this situation is to compare the pooled

before change variance with the pooled after change variance using an

F - test . However , if one or both sets of populations are heteroscedastic ,

this method seems to be of marginal soundness . What are some possible

approaches for dealing with this latter situation ?
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WHICH DISTRIBUTION APPLIES ?

Gary Aasheim

U.S. Army Armament , Munitions and Chemical Command

Product Assurance and Test Directorate

Tool and Equipment /Aircraft Armament Branch

Rock Island , Illinois 61299-6000

1. Faced with the questions - do the sample measurements support the
customer's belief that a given dimensional requirement was not met to the

degree required by the contract , and , if not , what dimensional

requirements could be met to the required degree ? - a co - worker of mine

took the 60 sets of 20 readings ( see below) and checked for normality by :

a . transforming the readings in each set by dividing each difference ,

reading minus set sample average , by the set sample standard deviation .

b . treating the 1200 transformed readings as a single sample of 1200 .

c . finding the average , standard deviation , skewness and kurtosis of the

transformed readings , plus the standard deviations of the latter two

statistics based upon the assumption that the 1200 readings were from a

normally distributed population .

d . breaking the transformed readings by size into 26 groups and running

a chi - square goodness - of - fit test where the expected values were based

upon the normal distribution .

2 . Two considerations drove the transforming and pooling efforts above .

First , running 60 tests for normality would have taken more time and work

than the approach taken . Second , when my co - worker gained an initial

acquaintance with the data by computing sample averages and standard

deviations and by counting readings outside the dimensional requirements ,

he did not spot any obviously atypical readings and , so , felt that an

assumption of a single underlying statistical distribution with different

parameters for different populations was reasonable .

Is there a better approach than that used by my co - worker ?.
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LOT DATA TO ACCOMPANY WHICH DISTRIBUTION APPLIES ? PAPER FOR

35TH DESIGN OF EXPERIMENTS CONFERENCE

L от NUMBER

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

64 54

62 64 77 63

64 63 88 64

61 84 63

64 62 78 64

69 61 80 61

67 63 88 65

74 64 86 62

72 64 74 59

74 61 75 63

72 62 78 66

64 68 85 65

64 64 82 63

66 61 87 66

59 61 81 65

67 68 81 63

67 66 87 66

58 65 85 62

60 62 83 68

59 63 87 65

62 64 75 59

58

53

60

68

63

63

66

68

62

51

74

62

58

64

54

68

64

56

66

59

63 82 61 81 62 90 68

73 88 60 85 61 84 64

63 94 71 87 60 85 62

65 101 76 83 55 99 65

63 107 61 82 60 82 65

65 86 60 88 62 80 70

62 92 66 71 59 88 57

69 89 66 85 60 77 60

62 89 58 84 59 83 60

63 70 58 83 62 83 59

66 94 63 73 65 74 59

66 82 63 89 58 77 60

62 87 65 86 62 83 61

62 96 69 81 62 78 60

67 95 62 100 58 80 62

65 95 68 78 58 81 58

68 87 65 91 62 85 58

67 90 64 85 60 81 68

62 90 63 86 64 72 61

63 86 61 81 62 75 64

72

66

68

58

62

69

67

74

65

62

68

64

65

66

61

71

66

67

62

58

65 62 65 64 63

64 54 55 60 69

61 62 73 69

63 64 55 65 69

63 62 59 65 70

61 65 61 69 74

64 62 5966 70

65 59 63 63 70

62 61 63 59 70

60 60 63 66 73

63 66 62 68 70

65 60 65 64 63

65 57 73 61 71

60 58 58 65 69

66 69 65 71 66

62 60 74 77 69

65 62 69 62 70

59 62 64 52 66

59 63 60 61 76

67 57 62 63 72

L 0 T N UMB E R

8
5

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

- 8 . .

63

61 70

56 66

59 71

57 74

59 69

58 69

61 65

66 66

60 70

60 62

69 71

61 69

62 73

61 71

60 67

60 68

58 72

63 65

64 65

65

64

58

54

60

64

70

60

63

61

61

60

56

65

64

61

57

54

64

59

63 61 70 60 64

71 68 58 57 66

68 60 67 64 68

67 64 62 56 71

71 59 66 61 66

65 62 68 58 62

62 68 68 70 67

69 61 68 62 68

65 66 62 59 67

65 61 63 60 65

64 60 68 60 68

61 63 67 60 64

65 59 68 60 61

68 59 75 61 69

70 63 85 58 63

68 56 76 68 65

65 59 72 64 69

68 60 65 65 71

69 60 67 56 68

61 65 66 58 66

58

57

59

65

62

63

62

60

62

66

63

63

64

56

60

61

63

61

62

59

66 63 64 61 67

67 54 63 62 67

62 55 59 68 65

60 60 70 75 66

60 62 73 72 64

57 61 61 65 68

59 61 67 68 70

61 62 73 72 60

61 63 74 71 67

61 62 68 70 59

60 57 65 63 57

61 57 63 66 65

65 63 66 61 71

56 64 63 61 69

63 71 62 62 67

61 63 69 59 71

60 59 71 60 69

54 63 72 59 64

73

63

60

67

67

68

71

71

66

67

74

67

65

74

71

68

60

65

63

66

65 56 66

64 62 68

74 66 67

69 55 62

79 60 65

63 62 68

70 61 65

59 56 59

63 61 62

73 56 65

66 62 61

67 63 61

59 62 57

61 55 61

65 63 57

64 60 56

65 57 61

60 65 65

68 62 69

61

62 67 66 68

57 61 72 67 63 52 65

64
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LOT DATA TO ACCOMPANY WHICH DISTRIBUTION APPLIES ? PAPER FOR

35TH DESIGN OF EXPERIMENTS CONFERENCE ( Cont . )

LOT N U M в Е R

103 104 105 106 107 108 109 110 111 112 113 114 115 116 123 124 125 126

-

m
1
0
0

57 67 72 63

64 57 69 72

57 63 70 78

58 76 64 75

62 64 63 70

61 69 61 68

54 77 68 74

55 74 74 67

59 63 83 76

62 61 66 74

55 64 64 72

53 65 51 69

70 66 59 75

54 69 66 72

54 73 61 74

66 56 70 72

68 63 61 70

71 66 62 70

54 71 67 64

61 79 63 67

75

58

63

66

67

67

73

76

64

61

64

63

63

63

67

66

74

62

62

63

60 57 56 64 68 59 69

67 60 59 63 62 65 78

61 61 62 75 62 61 71

58 59 66 64 55 62 67

55 65 72 78 59 61 63

59 63 58 61 68 68 63

59 63 59 61 63 60 67

57 60 62 69 62 59 79

63 55 72 66 65 64 75

59 60 63 66 56 66 64

52 60 64 68 66 65 71

62 55 57 63 60 59 72

58 57 61 57 61 65 74

5963 55 66 62 66 70

60 55 65 61 61 62 72

63 62 66 63 59 60 80

60 64 60 69 58 58 91

57 58 60 75 60 58 56

53 58 60 72 63 63 67

56 58 60 63 59 60 63

63

64

69

69

74

68

69

63

64

64

65

60

60

63

66

71

73

68

69

75

63

70

70

70

64

72

65

70

59

57

57

62

66

58

53

62

38

63

61

65

58

45

67

63

49

71

56

71

68

63

60

70

60

67

72

67

69

56

64

61

62

62

62

64

62

57

63

67

64

66

56

63

69

68

64

66

69

69

79

70

67 80

68 74

69 89

65 87

58 90

65 94

67 83

65 85

64 82

63 91

64 86

69 86

66 80

69 82

70 85

65 89

67 84

66 90

65 86

65 84

LOT NUMBER

127 128 129 130 131 132

60 86 61 64 56 89

59 92 59 73 65 91

56 81 60 81 61 91

61 100 62 76 64 100

59 76 59 73 57 89

59 97 57 67 62 91

65 97 61 65 62 83

58 87 58 83 57 103

59 83 61 69 59 109

65 79 64 70 59 97

66 88 56 74 55 92

67 87 57 81 57 90

68 80 64 67 61 100

66 85 65 74 64 85

64 89 60 71 60 90

67 87 65 87 63 98

71 97 69 78 61 95

59 88 68 77 56 74

65 87 64 88 63 88

62 65 70 63 11093

17





STATISTICALLY BASED MATERIAL PROPERTIES

Donald M. Neal and Mark G. Vangel

U.S. Army Materials Technology Laboratory , SLCMT-MRS

Watertown , Massachusetts 02172-0001

ABSTRACT

This paper describes statistical procedures and their importance

in obtaining composite material property values in designing struc

tures for aircraft and military combat systems . The property value is

such that the strength exceeds this value with a prescribed probabil

ity with 95 % confidence in the assertion . The survival probabilities

are the 99th percentile and 90th percentile for the A and B basis

values respectively . The basis values for strain to failure measure

ments are defined in a similar manner . The B value is the primary

concern of this paper .

INTRODUCTION

Many traditional structural materials , which are homogeneous and

isotropic , differ from composite materials which have extensive

intrinsic statistical variability in many material properties . This

variability , particularly important to strength properties , is due not

only to inhomogeneity and anisotropy , but also to the basic brittle

ness of many matrices and most fibers and to the potential for prop

erty mismatch between the components . Because of this inherent sta

tistical variability , careful statistical analysis of composite mate

rial properties is not only more important but is also more complex

than for traditional structures .

This paper addresses this issue by discussing the methodologies

and their sequence of applications for obtaining statistical material

property values ( basis values ) . A more detailed analysis showing the

various operations required for computation of the basis value is

presented by the authors in the statistics chapter of the MIL- 17 Hand

book ( ref . 1 ) . The procedures in this handbook required substantial

research efforts in order to accommodate various requirements ( eg .

small samples , batch to batch variability , and tolerance limits ) for

obtaining the basis values . Guidance in selection of the methodology

came from the needs of the military , aircraft industry , and the Fed

eral Aviation Administration ( FAA ) . Some of the procedures include

determination of outliers , selection of statistical models , tests for

batch to batch variation , single and multi -batch models for basis

value computation and nonparametric methods . In figure 1 , a flowchart

is shown outlining the sequence of operations .

19



An important application of the basis property value is to the

design of composite aircraft structures where a design allowable is

developed from this value . The process usually involves a reduction

in the basis values in order to represent a specific application of

the composite material in a structure ( for example , a structure with a
bolt hole for a particular test and environmental condition ) . One

common approach in the design process requires the design allowable be

divided by the maximum applied stress or strain and the result to be

greater than one . The basis value is also used in qualifying new

composite material systems to be used in the manufacture of aircraft .

In this case , the values are obtained from an extensive test matrix

including both loading and environmental conditions . The value also

provides guidance in selecting material systems for specific design

requirements .

The paper also shows how material strength variability and the

number of test specimens can effect the determination of reliability

numbers . Methods are presented for obtaining protection against this

situation by providing a tolerance limit value on a stress correspond

ing to a high reliability . A comparison between deterministic and

statistical reliability estimates demonstrates the inadequacy of the

deterministic approach. A case study is presented describing the

recommended procedures outlined in the MIL- 17 Handbook for determining

statistically based material property values .

RELIABILITY ESTIMATES

Sample Size Variability

The importance of determining a tolerance limit on a percentile

value is graphically displayed in figures 2 and 3 . The cumulative

distribution function ( CDF ) of the standard normal ( mean equals 0 ,

standard deviation 1 ) is plotted for sample sizes of 10 and 50 , using

25 randomly selected sets of data . In figure 2 , for n equals 10 , the

spread in the percentile is 2.1 for the 10th percentile . In figure 3 ,

for n equals 50 , the spread is .7 for the same percentile . The

results show the relative uncertainty associated with small sample

sizes when computing reliability values . The range in the percentile

can also depend on the amount of variability in the data ( i.e. , the

variance ) .

Often in structural design , a design allowable value is obtained

from the basis value . A design allowable is an experimentally deter

mined acceptable stress value for a material ( called an allowable

stress ) . The allowable is a function of the material basis value ,

layup , damage tolerance , open holes , and other factors .and other factors . It is usually

numerically determined for some critical stress region located within

the structure . In using the allowableIn using the allowable it is required that the criti

cal stress be less than a proportion ( margin of safety ) of the allowa

ble stress value . Determining a property value from only 10 strength

tests using 90 % reliability estimates without confidence in the asser

tion could result in a nonconservative design situation . In order to
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prevent this occurrence and provide a guarantee of the reliability

value , a tolerance limit ( i.e. a lower confidence bound ) on the per

centile is recommended . The MIL- 17 Handbook statistics chapter

describes methods for obtaining basis values for a prescribed toler

ance limit .

Definition of the B-Basis Value

The B-basis value is a random variable where an observed basis

value from a sample ( data set ) will be less than the 10th percentile

of the population with a probability of .95 . In figures 4 and 5 a

graphical display is shown of the basis value probability density

functions for random samples of n equals 10 and 50 respectively .

Samples are from the same population as in figures 2 and 3. The

vertical dotted lines represent the location of the population 10th

percentile (X 10 ) . The probability density function of the population

is also displayed in the figures . Note that 95 % of the time the basis

value is less than X The graphical display of the basis value

density function shows much less dispersion for n equals50 than for n

equals 10 ; therefore , small sample sizes often result in very conser

vative estimates of the basis value .

STATISTICAL METHODS - MATERIAL PROPERTY VALUES

Flowchart Guidelines

Since the statistical procedures and the flowchart ( figure 1 )

have been published in the MIL- 17 Handbook ( ref . 1 ) and ( ref . 2 ) , this

paper will only present a brief description of the methods , their

purpose , interpretation of results , and the need for following the

order of application suggested by the flowchart . The authors have

written a computer code which performs the necessary computations for

obtaining the basis values as described in the flowchart . The code is

available on a diskette , which can be used on various computers

including PC's that are IBM compatible . Both the executable and

source code are on the diskette . This code is available free of

charge from the authors . The flowchart capability was tested by

applying the recommended procedures using both real and simulated data

sets . The results of the simulations showed at least 95 % of computed

values were less than the known 10 % point , this is consistent with the

definitions of ' B ' -basis value , see also ( refs . 1 and 2 ) .

A

The flowchart has two directions of operations , one is for the

single batch ( sample ) , and the other is for the multi -batch case .

batch could represent specimens made from a manufactured sheet of

composite material representing a roll of prepreg material . Published

MIL- 17 Handbook basis values are usually obtained from five batches of

six specimens each .

Initially , let us assume the user of the flowchart has only a

single batch or more than one batch but that the batches can be pooled
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so that a single sample analysis can be applied . The first operation

( see figure 1 ) is to determine if outliers exist in the data set . A

more detailed discussion of outlier detection schemes and applications

are published in ref . 3 . The method selected is called the Maximum

Normed Residual ( MNR ) procedure ( ref . 4 ) and is published in the

MIL- 17 Handbook . It is simple to apply and performs reasonably well

even though it assumes that the data is from a symmetric distribution .

The analysis requires obtaining an ordered array of normed residuals

written as

NR ( x1 - 3 ) / s , i=1 , " " ' n
( 1 )

8

where x is the mean , s is the standard deviation ( SD ) , and n is the

sample size . If the maximum absolute value of NR; ( MNR ) is less than

some critical value ( CV ) ( see refs . 1 and 2 ) , then no outliers exist .

If MNR is greater than cv, then an outlier x is determined from the

largest NR, value .

Outlying test results are substantially different from the pri

mary data . For example , assume that the data set contains 16 strength

values and 15 range from 150 to 200 KSI while the other is 80 KSI .

The MNR method would identify the 80 KSI value to be an outlier . The

80 RSI specimen should be examined for problems in fabrication and

testing If a rationale is determined for rejecting this test result ,

then do not include the outlying test value in the data set when

obtaining the basis value . If there is no rationale for rejection ,

the outlier should remain unless the test engineer believes that a

non-detectable error exists .

.

It is important to identify the existence of outliers but also of

equal importance to resist removing the values unless a rationale has

been established . Leaving in or arbitrary removal of outlying values

can adversely effect the statistical model selection process and

consequently the basis value computation . An outlier in a data set

will usually result in a larger variance and a possible shift in the
mean when compared with the same data without the outlier . The amount

of shift and the variance increase depends on the severity of the

outlier ( distance removed from the primary data set ) . It is suggested

that for small samples ( n is less than 201 critical values correspond

ing to a 10 % significance level be used ( see refs . 1 and 2 ) in order

to identify outlying values . If the sample is greater than 20 , then
use the 5 % level . It is often difficult to test for outliers when

there is a limited amount of data ; therefore , the 10 % level will

provide additional power to detect outliers . This level will also

result in more chance of incorrectly identifying outliers . Outliers

can be incorrectly identified from data sets with highly skewed dis

tributions ; therefore , it is suggested the box -plot method ( refs . 1

and 3 ) be applied for determining outliers in this situation .
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Goodness of Pit Test - Distribution Function

Referring to figure 1 , the next step is to identify an acceptable

model for representing the data . In the order of preference the three

candidate models are Weibull , normal , and the nonparametric method .

The Weibull model is

F.
w ( x ) = 1 exp [ - ( x /a ) , where ( 2 )

x is greater than 0 , Q is the scale parameter , and B is the shape

parameter , is considered first in the ordering of the test procedures .

The Anderson - Darling ( AD ) goodness-of-fit test statistic ( refs . 1 and

5 ) , is suggested for identifying the model because it emphasizes

discrepancies in the tail regions between the cumulative distribution

function of the data and the cumulative distribution function of the

model . This is more desirable than evaluating the distributional

assumptions near the mean since reliability estimates are usually

measured in the tail regions . The Anderson - Darling test statistic and

the observed significance levels computations are described in refs . 1

and 2 . Example problems are also shown in ref . 1 , demonstrating

computational procedures for applying the AD method .

In following the flowchart , if the Weibull model hasn't been

accepted as a desired model , then a test for the normal distribution

is suggested ,

Fy( x ) = -127,172 Jexpl- (t-4)2/202jat ( 3 )

2
where it is the mean , and o is the variance . The AD test for the

normal model is similar to the test for the Weibull . The procedure

used to identify the normal model is also in refs . 1 and 2. It should

be noted that for small samples reliable identification of a model to

represent the data is difficult unless some prior information of the

population is known .

If the Weibull and normal models are rejected , then a nonparamet

ric method can be used to compute the basis value ( see flowchart ) .

This method does not assume any parametric distribution as described

above . Therefore , model identification is not required , although

application of the method can often result in overly conservative

estimates for the basis value .

The conventional nonparametric method ( ref . 6 ) requires a minimum

of 29 values in order to obtain a ' B ' -basis value , and 300 are needed

for the ' A ' -basis number . This paper presents a method for obtaining

' A ' and ' B ' basis values for any sample size . The method is a modifi

cation of the ref . 7 procedure involving the ordered data values

arranged from least to largest with the basis value defined as

B = X ( 0 ) K ( X16 ) - X , 1 ) ) ,
( 4 )
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th

where X is r value X is the first ordered number .

values

sizes n . Note , in the case where ' A ' values are required for small

sample sizes , it is suggested that nonparametric methods be applied

unless some prior information of the model is known . This is because

of the limited information available in the lower tail region of the

distribution , which can result in erroneous estimates of the reliabil

ity numbers . The ' A ' -basis value is often used in design where a

single load path exists ; therefore , it is essential that the value be

conservative .

Weibull Method - ' B ' -Basis Value

Returning to the sequence of operations as outlined in the flow

chart , if the Weibull model is accepted , then determine the basis

value from the following relationship

( 5 )

B = a[ln(1/8, 11/8

where Â and â are maximum likelihood estimates of the shape B and

scale of the Weibull distribution . That is , these estimates maxi

mize the likelihood function , which is the product of probability

densities ( 2 ) evaluated at each of the n data values . Tables for P.

as a function of the sample size n and the code for determining ô and

are given in refs . 2 and 3 .

Normal Method - ' B ' -Basis

If the Weibull model was rejected and the normal model is an

acceptable representati
on

of the data , then compute the basis value as

B = X - RS ( 6 )

where and s are the mean and sd , and Kg is obtained from tables in
refs . 1 and 2 .

PROCEDURES FOR MULTIPLE BATCHES

Anderson-Darling Test

If there are more than one batch of data being analyzed , then a

significance test is required in order to determine if the batches may

be pooled or if a multi -batch statistical analysis is to be applied

( see flowchart ) . Note , the outlier test is to be applied to pooled

data prior to testing . The recommended test is the K-Sample Anderson

Darling Test ( refs . 1 and 8 ) which determines if batch to batch varia

bility exists among the K batches . This test is similar to the AD

test for identifying acceptable statistical models for representing
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data . In the K sample case , paired comparisons are made for the

empirical CDF's while the other AD methods compare a parametric CDF

with an empirical CDF . In all cases , this comparison involves the

integration of the squared difference of the CDF's weighted in the

tail region of the distribution . the K -sample AD is basically a two

sample test in that each sample ( i batch ) is individually compared

with the pooled R-l other batches , repeated K times until each i

batch has been compared . The average of these K two-sample tests

determines the K - sample AD test statistic . Tables of critical values

and a detailed description of the method and its application is shown

in refs . 1 , 2 , and 8 .

If a significant difference is noted among the K batches , then ,

as shown in the flowchart , a test for equality of variance is sug

gested using a method in ref . 9. Application of the method , tables ,

and the necessary relationships for computing the test statistic are

given in refs . 1 and 2 . The variance test is suggested only as a

diagnostic tool . Sample test results that have large variances rela

tive to the other batches may identify possible problems in testing or

manufacturing of the specimens . Equality of variance is not required

when applying the Modified Lemon method , as discussed below , in the

multi-batch case . Although the Modified Lemon method is based on the

assumptions of equality of variance and normality , simulation results

have shown that these assumptions are not necessary . After testing

for equality variance , it is suggested that the basis value be

obtained from application of the Modified Lemon method ( see figure 1 ) .

The Modified Lemon Method

Composite materials typically exhibit considerable variability in

strength from batch to batch . Because of this variability , one should

not indiscriminately pool data across batches and apply single batch

procedures . The K -sample Anderson - Darling test was introduced into

the MIL- 17 Handbook in order to prevent the pooling of data in situa

tions where significant variability exists between batches . For the

situation where the K-sample Anderson - Darling test indicates that

batches should remain distinct , a special basis value procedure has

been provided . This method , referred to as the ' ANOVA ' or ' Modified

Lemon ' method , will be discussed next . A detailed description for

applying the method is shown in refs . 1 and 2. For a discussion of

the underlying theory , see ref. 10 , the original Lemon paper , and ref .

11 , the Mee and Owen paper which modifies the Lemon method .

The Modified Lemon method considers each strength measurement to

be a sum of three parts . The first part is an unknown constant mean .

If one were to produce batches endlessly , breaking specimens from each

batch , the average of all of these measurements would approach this

unknown constant in the limit of infinitely many batches . Imagine ,

however , that one were to test many specimens from a single batch .

The average strength approaches a constant in this situation as well ,

but this constant will not be the same as for the case where each

specimen came from a different batch . The average converges to an

overall population mean ( a ' grand mean ' ) in the first case , while the
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average converges to the population mean for a particular batch in the

second case . The difference between the overall population mean and

the population mean for a particular batch is the second component of

a strength measurement . This difference is a random quantity - it

will vary from batch to batch in an unsystematic way . We assume that

this random variable has a normal distribution with a mean of zero and

some unknown variance which we refer to as the between batch component

of variance . Finally , in order to arrive at the value of a particular

strength measurement , we must add to the sum of the constant overall

mean and a random shift due to the present batch a third component .

This is another random component which differs for each specimen in

each batch . It represents variability about the batch mean . It also

is assumed to have a normal distribution with a mean of zero and an

unknown variance , which is referred to as the ' within batch ' component
of variance .

The ' Modified Lemon ' method uses the data from several batches to

determine a material basis property value which provides 95 % confi

dence on the appropriate percentile of a randomly chosen observation

from a randomly chosen future batch . This basis property provides

protection against the possibility of batch - to -batch variability

resulting in future batches which have lower mean strength than those

batches for which data are available .

To see what this means , imagine that several batches have been

tested and that this statistical procedure has been applied to provide
a ' B ' -basis value . Now , imagine that you were to get another batch

and test a specimen from it . After this you obtained still another

batch and tested a specimen from it . If you were to repeat this

process for infinitely many future batches , you would obtain a distri

bution of strength measurements corresponding to a randomly chosen

measurement from a random batch . You can be 95 % certain that the

basis value which you calculated originally is less than the tenth

percentile of this hypothetical population of future measurements .

This is the primary reason why the Modified Lemon method is advocated

by the MIL- 17 Handbook - it provides protection against variability

between batches which will be made in the future through the use of

data which is presently available .

An illustrative example of this method applied to nine batches of
material is shown below . The data sets did not pass the K-sample AD

test for pooling . Let the batches be

1 2 3 4 5 6 7 8 9

61.3

68.5

62.5

66.0

66.6

64.8

69.5

66.5

64.7

64.9

65.2

70.3

66.0

72.7

67.1

67.7

65.7

61.9

68.0

63.3

74.6

66.2

68.2

69.1

68.9

65.0

70.9

65.4

66.5

64.9

75.8

75.2

71.5

69.6

66.1

72.8

75.0

66.3

69.5

71.9

71.9

71.0

69.5

69.5

72.6

74.6

68.7

76.3

76.6

66.2

72.4

72.8

109.6

26



with a single outlier , 109.6 determined from MNR method . Let's assume

109.6 was an incorrect test result and replaced by 69.6 , a corrected

test value .

After a substantial amount of computation ( see refs . 1 and 2 )

involving sums of squares , within batch and between batch variances ,

non-central t distribution , etc. , the ' B ' -basis value is

' B ' = 60.93

The summary statistics are

Batch
ni

l
x
i

Si

1

4

5

6

7

8

9

7

5

5

7

6

5

5

6

7

65.60

66.32

67.84

67.33

66.93

71.64

71.10

71.52

71.80

2.99

2.33

2.84

4.17

2.45

4.03

3.33

1.96

3.88

It should be noted the value of 60.93 is lower than 61.9 of nonpara

metric solution from the pooled sample . The Modified Lemon method can

be overly conservative ( low basis values ) in order to guarantee 90 %

reliability with 95 % confidence . The number of batches and the varia

bility between and within the batches effect the computation of the

basis value . If there are few batches and large between batch varia

bility with small within batch variability , then this situation could

result in very low basis numbers depending on the amount of variabil

ity and number of batches .

In figure 6 results from application of flowchart procedures are

shown for three batches of five specimens of AS4/Epoxy material tested

in compression . In this case , the mean strength values show a small

amount of variability while there is a relatively large spread within

each data set . ' B ' -basis results from the flowchart application are

for the following : ANOVA ( Modified Lemon ) , Weibull , Normal , Lognor

mal , and nonparametric methods . Not included in the flowchart results

are a list of assumptions that were violated . The results show a

small difference in basis values except for the nonparametric solution

which has the low value of 167.1 . The Weibull method was suggested

since it passed the K-sample AD test and the AD goodness-of-fit test .

The relatively large within batch variances and small differences in

mean values made it possible to pool the batches .

Figure 7 shows another result of computing the ' B ' -basis values

using the ANOVA , Weibull , and normal methods applied to another three

selected batches from same population as in figure 6 . The ANOVA

result of 15.7 KSI is substantially lower than those from the other
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two methods . Unfortunately , this is a result of a large difference in

mean values preventing pooling of the batches resulting in the

required ANOVA application . The large difference in mean values in

addition to relatively small within batch variability resulted in this

extremely low basis value . A ' B ' value of 6.5 was obtained from the

simple normal analysis using the three mean values . The result shows

that for this example the ANOVA method primarily depends on the batch

means . The above results would suggest obtaining more batches or

investigating testing and processing procedures .

In figure 8 , results are shown for the case of randomly selecting

another batch from the same population described in figure 7 . In this

case the ANOVA result shows a value of 105.4 KSI which is substan

tially larger than the 15.7 RSI recorded for the three batches . The

importance in having a larger number of batches is shown from these

results in figures 7 and 8 . Also , with more data available , the

pooled results for Weibull and Normal model also resulted in less

conservative values .

Figure 9 presents results showing where a substantial amount of

within batch data is not necessary . In case in the ANOVA results for

three batches of 100 data values each , resulted in 154.9 KSI while for

case 2 , three batches of ten each , a ' B ' -basis value of 152 KSI was

obtained . This result emphasizes the importance of being able to

obtain more batches rather than increasing the batch size . However ,

the ANOVA results in figure 6 show three batches can provide reasona

ble results similar to pooled results if small differences in mean

values relative to batch variances exist . Note that for very large

batch sizes , the K - sample AD test can reject pooling of data even

though there is a small difference in mean values . This rejection is

statistically correct , but the user of the flowchart may consider the

difference in the batch means not of engineering importance .importance . In this

case the user can make the decision of pooling or not pooling , since

there will be a small difference in basis values from pooled or

unpooled results . If there are large batch differences and the ANOVA

method is suggested from the flowchart , then adding more batches can

reduce the conservatism . The ANOVA method is a random effects model

which determines a basis value representing all future values obtained

from the same material system and type of test . In order to provide

this guarantee in the presence of large batch to batch variability ,

there is the potential for it to be overly conservative which was

shown in figure 7 .

Reliability at Basis Stress Value

Figure 10 conceptually describes the statistical reliability of a

simple structure in tension as it relates to the ' B ' -basis applied

stress value . In the example shown in the figure , ten percent of all

the specimens ( structures ) will fail when subjected to load s . This

statement should be incorrect at most one time in twenty ( 95 % confi

dence ) . S is the ' B ' -basis value obtained from strength ( failure

load ) measurements from specimens of similar material and geometry .

This statistical guarantee that at most 10 % of the specimens will fail
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can provide the engineer with a quantitative number for selecting and
applying material in composite material structures . This is unlike

the conventional deterministic property value approach which is an ad

hoc procedure that reduces the mean strength measurements in order to

obtain some design value which can result in a potentially over or

under design situation . In applying the statistical basis value , it

is assumed the material , geometry , and loading conditions in the

structural design situation is similar to those obtained from the

strength measurements . This is also true for deterministic property

value applications . In the following sections the inadequacies of the

deterministic approach are discussed in more detail .

Reliability Values Statistical vs. Deterministic

In figure 11 the results of a simulation process involving the

random selection of ten values from population of 191 strength meas

urements repeated 2,500 times are graphically displayed . For each

simulation a design number or_material property value is obtained from

each of the three procedures X / 2 , ( 2/3) , and the MIL- 17 flowchart .

The mean value of the data set is X. The reliability values , as shown

in the figure , are obtained by evaluating the population probability

distribution fit to the 191 values at the design numbers .

In the case where the mean is reduced by a factor of 1/2 , the

strength values are very low ( 90 KSI ) , and the reliability is

extremely high ( 1.0 ) . The engineer may not be able to afford such a

high reliability value of 1.0 ( to twenty significant digits ) at the

expense of having design values as low as 90 KSI when mean strength is

180 KSI . The factor of 2/3 increases the design value but reduces the

reliability to approximately .999 . The flowchart ' B ' -basis calcula

tion provides higher strength values with acceptable reliability

numbers . The other two procedures show an element of uncertainty by

depending on the chosen factor . If the engineer used the factor of

1/2, this would result in an extremely over design situation require

either rejection of the material or the design . Alternatively, if the

engineer used the mean strength as design number , the reliability

would be reduced to .5 , although strength values would be much higher .

The flowchart procedure removes the uncertainty by providing a guaran

teed minimum reliability of .90 without unnecessarily reducing the

basis value . The minimum reliability can be increased to .99 if

necessary by using ' A ' -basis computations as outlined in the MIL- 17
Handbook .

Effect of Variance on Reliability Estimates

In figure 12 the effects of variance differences as they relate

to reliability estimates are shown from a simulation process . This

involved randomly selecting ten values from each of two separate

normal distributions with same mean of 100 and different SD's of 5 and

25 repeated 2,500 times . The reliability values are obtained in a

similar manner as described in the previous section , except the proba

bility values were obtained from the normal distribution . In the case
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where the SD is 5 , there is very little_dispersion in the reliability

values . Again , the design number from X / 2 is substantially lower than

the basis value using the flowchart process , although the reliability

is very high for this number . In comparing this with the results

using SD of 25 , a substantial increase dispersion of the reliability

values particularly for the basis results using flowchart methods .

The flowchart results show similar reliability estimates for both SD's

of 5 and 25 , although for the X / 2 the reliability has been reduced

substantially from twelve nines to .96 . This is the result of the

deterministic ( X / 2 ) approach being independent of variance . This is

not an issue if 50 % reliability is required , but for 90% reliability ,

variability is important . Dividing the mean by two can be nonconser

vative for situation when the distribution has a large spread ( long

tail ) . In order to make adjustment for this situation , the flowchart

method ( basis value ) is suggested . See results in the figure where

the basis value adjusts to a lower level but maintains the same range

for the reliability estimates . The basis value will guarantee a

reliability by adjusting the design value while the safety factor

approach cannot guarantee reliability . This result suggests using the

basis method if it is important to maintain a certain level of relia

bility . The overall issue is that the flowchart methods will provide

property values with specified reliability with 95 % confidence while

the deterministic approach is an ad hoc approach with no control of

the resulting reliability estimates .

CONCLUSIONS

This paper is an exposition of the statistical procedures

described in the MIL- 17 Handbook for obtaining material property

values . Its primary goal was to introduce the MIL- 17 statistics

chapter to the users so that they may use it more effectively . The

methods and the sequence of operations suggested by the statistics

chapter flowchart were analyzed with respect to their effectiveness ,

purpose , and limitations . By following the flowchart procedures ,

guidance is provided to the user so that reasonably accurate property

values may be obtained without relying on ad hoc schemes which could

potentially result in either excessively low or high values .

Each method and its order of application were discussed with

respect to their specific purpose , such as model identification , batch

to batch variability recognition , outlier detection , and the basis

value computation . There are situations where low basis values will

result , not because of limitations in the statistical procedures but

are usually the result of very large or small data sets , large batch

to batch variations , or model recognition .

The comparison between the statistical reliability and the deter

ministic approach showed a preference for statistics since it was able

to guarantee a specified reliability in contrast to a deterministic

method which is primarily an ad hoc process resulting in considerable

uncertainty as to the corresponding reliability estimates . Finally ,

the authors have attempted to provide a satisfactory definition of a

ЗС



statistically based material property value by introducing the toler

ance limit concept and its importance . A number of illustrations were

presented showing the advantage of the tolerance limit over the deter

ministic approach .
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FIGURES 2 AND 3 SAMPLE SIZE EFFECT ON RELIABILITY
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FIGURES 4 AND 5 BASIS VALUE PROB. DENSITY FUNC.
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FIGURE 12 RELIABILITY / STRENGTH COMPARISON:

A CASE STUDY • STAT. VS DETERMINISTIC
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STATISTICAL CULTURE: PROMOTING THE PRACTICE OF STATISTICS

Emanuel Parzen

Department of Statistics, Texas A&M University

Abstract

This paper proposes a framework, called Statistical Culture, for studying the practice

of statistics with the aim of improving the health of statistical science as measured by how

well citizens and scientists use it as a tool in their daily life and research . We identify

a paradigm for lifelong learning based on identifying five (parallel, non - hierarchial) levels

of statistical literacy: consumer, applier, consultant, collaborator, theorist. We support

accreditation of statistical literacy. We make recommendations for how statisticians can

promote public recognition of the importance of statistics, statistical literacy, and interac

tion between researchers and statisticians. We propose " solutions ” to the use of statistics as

a scientific method by research which aims to unify and guide thinking about the diversity

of statistical methods and theories.

Contents: Statistical Culture as a Paradigm for Lifelong Learning, Solutions, Prob

lems, Levels, Excellence, Statistical Culture Levels Theorem , Olkin - Sacks Report , Statis

tical Culture Applications Theorem , Statistical Culture Research Problems.

KEYWORDS: Foundations, Teaching, Statistical Literacy, Statistical Science, Unification

of Statistical Methods, Statistical Culture.
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STATISTICAL CULTURE : PROMOTING THE PRACTICE OF STATISTICS

Emanuel Parzen

Department of Statistics, Texas A&M University

STATISTICAL CULTURE AS A PARADIGM FOR LIFE LONG LEARNING: The

health of a society is becoming increasingly dependent on its statistical literacy, and how

statistics is practiced. Modern society is data -rich and has an ever -increasing need to

understand how data becomes information (useable knowledge). The goal of continuous

improvements of quality of processes involved in the delivery of products or services requires

that decisions be based on the information in data, not just on opinions or guesses; this is

the main recommendation of the philosophy of Ed Deming ( see Mann (1988) , p . 15) .

This paper proposes that the practice of statistics at any of its levels should be a lifelong

endeavor characterized by the features that are being advocated as the requirements of

paradigms for lifelong learning that will be required in the 21st century ( according to John

Sculley (1989) , p. 1057) :

• " It should require rigorous mastery of subject matter under expert guidance.

• It should hone the conceptual skills that wrest meaning from data .

• It should promote a healthy skepticism that tests reality against multiple points

of view .

• It should nourish individual creativity and encourage exploration .

• It should support collaboration .

• It should reward clear communciation .

• It should provoke a journey of discovery.

• And above all it should be energized by the opportunity to contribute to the total

of what we know and what we can do."

The study of how to achieve the lifelong learning process required for the practice of
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statistics is called " statistical culture . "

This paper seeks to show the important role of " statistical culture" in the practice of

statistics. It supports the concept of accreditation of statistical literacy at various levels.

The challenge for statistical education will be to find ways of bringing to the process

of instruction the passion for discovery that drives excellent statistical thinking.

SOLUTIONS: Statistical culture (the study of the practice of statistics) has goals

of elegance and utility. The elegance of statistical culture is obvious; it enhances the

fun of doing statistics. The utility of the study of the culture of statistics is to motivate

statistical " steersmanship ” , developing consensus about (and implementing) the actions

needed for continuously evaluating and improving the health of the discipline and profession

of statistics.

Statistical culture can be said to be the study of the maps (geography, current history)

of statistics, rather than its ancient history (as in the history of statistics up to 1900 ). It

is the study of the maps of statistics from the point of view of understanding its current

state of the art and influencing its future development.

Statistical culture can be defined to be the study of:

how statistics is, and ought to be, practiced;

where statistics has applications ( see Table 1 ) and who is doing the applying;

what to teach in statistics courses ;

why statistics works;

when are competing probability models and statistical methods successful;

accreditation of statistical literacy (rather than competency) at various levels.

To promote the practice of statistics, statistical culture seeks:

1. To develop maps of statistical methods which will help applied statisticians to strive

for continuous improvement of methods, to learn new methods to consider as alter

natives, to compare competing methods, to more confidently obtain conclusions from
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comparisons of the results of competing methods of statistical data analysis of data

of a certain type, to obtain problem -driven results from methods -driven results, to

obtain substantive conclusions from data for which prior substantive knowledge was

not available.

2. To develop maps of statistical theories which help theoretical statisticians to define

frontiers of research and thus understand the sense and purpose of research which

otherwise may seem unfocused and unmotivated .

3. To develop maps of the relations between statistics and other fields of knowledge and

research which will help interactions between statisticians and researchers in other

disciplines provide more recognition to the research contributions of statisticians.

4. To develop maps of the contributions that statistical literacy and the practice of statis

tics can make to a nation's quality of life and world competitiveness.

5. To organize (each year , in each community) Statistical Science Awareness Days to

promote the practice of statistics and public recognition of outstanding statisticians.

Statistical culture (which develops unifications, maps, frameworks) is urgently needed

in order to improve the image of statistics among scientists and professionals. It would

provide the ability to objectively recognize by suitable awards more statisticians as "out

standing" contributors to the missions of their organizations as well as to the discipline

and the profession of statistics.

Unification of methods is one of the important facets of the use of the scientific method

in any field of research (and therefore, a fortiori, in statistics). Unification of statistical

methods does not prevent statisticians from using ad hoc solutions (which many claim is

their preferred approach ) but rather encourages and guides such methods by clarifying

the methods available which may be chosen ad hoc; therefore the ultimate goal of research

(such as Parzen (1989) ) on Grand Unified Theories of Statistical Methods, denoted GUTS,

is " grand unified ad hockery " .
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PROBLEMS: Statisticians are increasingly aware that there are urgent problems in

the discipline and profession of statistics; we argue that problems can be solved if they are

discussed using scientific methods and a framework for the "culture” of statistical prac

tice. Examples of such problems are : declining enrollment of statistics doctoral students,

difficulty of attracting young people into a career in statistics, teaching statistics to engi

neers ( Penzias (1989) ) , misunderstanding of the role of statisticians in quality control and

quality manufacturing (Hahn (1989) ) , expressions of dissatisfaction in the profession of

statistics about the appreciation and utilization of statisticians (Boroto and Zahn (1989)

and McPherson (1989) ) , failure of leading statisticians to continuously promote statistical

culture (to be providing leadership to the study of promoting the practice of statistics),

failure of many statisticians to be literate at appropriate levels in a diversiły of statistical

methods (including time series analysis).

LEVELS: We believe that one can apply the scientific method to the study of statistical

culture ( the investigation of how statistics is , and ought to be, practiced ); answers to

such questions should not be based on prejudices but on a consensus of the philosophical

writings of successful statisticians. From recent literature about statistics (Bodmer (1985) ,

McPherson (1989) ) one can conclude the following first step in drawing a map of the

practice of statistics (which we state below in more detail as the Statistical Culture Levels

Theorem ).

The practice of statistics occurs at three levels of understanding and practice:

popular,

science- related professionals, and

professional statisticians;

further the practice of statistics by statisticians can be divided into three levels:

consulting

collaboration

theory and methods.
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EXCELLENCE: Statistical culture aims to provide a framework which stimulates

statisticians to understand and applaud each other's work ( indeed, there seems to be too

much joy in " statistician bashing” ); this may be a general failing of human nature but it

seems to be an urgent problem for statistics. The use of the word " level" should not be

interpreted as implying a vertical or series structure, with activity in statistical theory at

the top . The levels form a horizontal or parallel structure; it cannot be emphasized enough

that the understanding required in each level involves different aspects of the practice and

methods of statistics. A possible analogy is the saying: "Use the talents you possess; for

the woods would be very silent if no birds sang except the best."

Statistical culture does aim to support the search for excellence. Criteria should be

developed to rate good statistical practice as either average, superior, or exceptional; one

criterion is whether it is done at the level of " what ,” “how ," or "why" .

STATISTICAL CULTURE LEVELS THEOREM: CONSUMER , APPLIER ,

CONSULTANT, COLLABORATION, THEORY AND METHODS DEVELOPMENT. TO

promote the practice of statistics, we propose that it is useful to identify five levels of

practice, defined as follows.

I. Statistical consumer:

knows definitions of statistics;

appreciates the concept of variability (distribution of outcomes );

has the ability to understand statistical models and graphical presentations of data

analysis;

does not have a working knowledge of statistical methods or the ability to carry out

a statistical analysis;

appreciates the role of statisticians in the battle for statistical literacy (competence in

understanding, applying and advancing statistical reasoning).

Statistical literacy at the consumer level can be defined to be knowing that public
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policy should be based on answers to the questions: “ What can happen? What are the

odds ( probabilities) ? How do you know the odds ? ”

II. Statistical applier. Distinguish two levels :

II( A ). knows basic statistical methods used to determine and obtain needed information;

ability to use menu driven statistical computing packages; fits all problems into con

venient routine statistical conceptualizations;

II ( B ). ability to use command driven statistical computing environments;

understands the assumptions underlying statistical methods and can adapt statistical

methods to provide ad hoc methods for problems at hand;

Scientists and engineers involved in research or development should be statistical appliers;

those that become more statistically self-sufficient can become more responsible to be their

own statistical consultants.

III. Statistical consultant:

skilled in transforming data into information ;

has the ability to examine facts and serve as referees of statistical analyses;

aware of the most modern statistical methods;

not actively involved in the scientific language and perspective of the problems being

studied so that conversation between client or customer and consulting statistician is

less a dialogue and more a monologue;

requires abilities to interview clients to obtain an understanding of their problems,

and to communicate with clients by oral presentations and written reports;

often advised to use simple techniques for scientists unable to appreciate subtleties of

statistics;

helps contribute to research on the consulting process .

IV . Statistical collaborator:

statistician is a collaborator on the project and is a catalyst and potential advocate of
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actions and directions to be pursued in the project;

collaborative research often ( if not always) leads to joint publications and /or joint

research grants;

has mathematical training adequate to understand the philosophy and vigor of statis

tical methods but not completely the rigorous proof of their theory;

has ethical, administrative, and diplomatic skills, especially those required for large

scale and long term research projects;

helps contribute to research on the collaboration process.

V. Statistical theorist:

inevitably mathematically well trained,

seeks to develop and teach the logical structure of statistical methods, to understand

how they are born and how they die, how they can be made to work better and why

they work ;

basic research in general methods that provide analogies between applications;

fundamental research in analogies between methods (patterns which general methods

share with other general methods);

mathematical research on the properties of statistical methods can be considered an

other level within the theory level.

OLKIN -SACKS 1988 REPORT : The distinction between consulting and collaboration

is based on how " equal" the statistician is regarded as a member of the research team . Olkin

and Sacks (1988) used the names " advisory collaboration " and " interactive collaboration "

(or Type A and Type B) for what we call “ consulting" and " collaboration " . We quote the

report (p . 12) :

“ Typically, the statistician engaged in advisory work will adapt existing methodology

to the problem at hand and create computable versions of known techniques. Another

mode of collaboration is much more interactive in nature and involves work to develop
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novel techniques and methods to deal with broader substantive questions. This second

type of collaboration leads to research on statistical issues that may subsequently advance

knowledge both in the substantive field and in statistics itself.

" The survey responses indicated a high frequency of Type A research , while sounding

a common theme that Type B research does not receive sufficient time, money, or recog

nition of its value. The short - run ' advisory consultation ' rarely becomes the 'long -range

interactive collaboration .' Yet it is the interactive mode that has the greater potential to

break new ground and lead to statistical innovations of far -reaching significance for the

future conduct of science, and it is this type of collaboration that the panel feels must

receive the attention of the disciplines and of NSF and other funding agencies. "

STATISTICAL CULTURE APPLICATIONS THEOREM: Another map required to

guide the practice of statistics, called a Statistical Culture Applications Theorem , is given

in Table 1 which lists disciplines represented in cross- disciplinary research involving col

laboration by faculty members in " statistics programs” in universities . The fields and

percentages are vaguely adapted from Table 5 of the Olkin - Sacks report. The conjectured

percentages are intended to motivate passsionate discussions ( and, eventually, research ).

An interesting research program is to investigate the proportion of new degrees in statistics

that take employment to apply statistics in each discipline listed in Table 1 .

The interests of statisticians may also be studied by investigating the distribution of

1987 doctorates among broad fields of statistics ( see Cox , Voytuk, and Hart (1989) ) :

Probability and Math Stat 143

Biometrics and Biostatistics 37

Psychometrics 9

Econometrics 25

Social Sciences Statistics 49

TOTAL 263
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The racial/ ethnic composition of mathematical doctorate degree recipients in the pe

riod 1975 to 1986 was as follows:

White Black Hispanic Asian

Math Sciences, total 89.8% 1.4% 1.4% 7.1%

Prob & Math Stat 85.9% 1.5% 1.5% 10.9%

The percentage of degrees to foreign citizens is 40% in statistics and 45% in mathemat

ics. The percentage of math - science doctorates working in education is 50% for statistics

and 60 % for mathematics; 25% of statistics doctorates are university faculty members.

50



Table 1: Disciplines Where Statistics is Applied

Disciplines Represented in Statistical (and Time Series Analysis)

Cross- Disciplinary Collaborative Research

( Conjectured Percentage of Statisticians in Universities Involved in Collaboration)

Health and Life Sciences (25%, 25%)

Medicine

Public Health and Epidemiology, Biostatistics

Biology

Ecology

Fisheries and Wildlife

Environmental Sciences

Pharmacology and Toxiocology

Genetics

Entomology

Forest Science

Physiology

Engineering and Mathematical Sciences ( 15%)

Engineering

Computer Sciences

Operations Research and Reliability

Mathematics

Signal Processing

Image Analysis and Pattern Recognition

Industrial Statistics

Defense Statistical Standards

Hydrology

Behavioral and Social Sciences (15%)

Psychology, Cognitive Sciences

Economics, Econometrics

Education

Sociology

Political Science

Sample Survey

Government Statistics

Physical, Chemical, Earthand Atmospheric Sciences (10%)
Chemistry, Chemometrics

Geology, Geophysics

Physics, Astronomy, Chaos

Meteorology

Oceanography

Agriculture (4%)

Animal Science

Soils and Crop Sciences

Agricultural Economics

Veterinary Medicine

Food Science

Business Administration (4%)

Finance

Forecasting

Law (2%)
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STATISTICAL CULTURE RESEARCH PROBLEMS:

DEFINITIONS OF STATISTICS AND STATISTICAL SCIENCE . Is a suitable defini

tion of statistics (which is similar to that of McPherson ( 1989) , p . 224) " form expectations,

make observations, compare observations and expectations, continuously improve" ? Is a

suitable definition of statistical science “ the science of analyzing data by varying conditions

(probability models and estimation criteria) under which one analyzes a data set” ? Note

that laboratory science learns about a phenomenon by varying the experiments conducted

to generate observations about the phenomenon.

EFFECTIVENESS RANKING OF STATISTICS PROGRAMS: Statistics programs

in U. S. universities are usually ranked by their contributions to research in statistical

methods and theory. Should they also be ranked by their effectiveness with regard to

their success in adding to the U. S. work force new degree holders (bachelors, masters,

doctorates) who have received education to practice statistics at the various levels we

have identified ? Should we regard as unsatisfactory the following current appropriate

proportions being produced on the average in the U. S.

800/10000consumers (pre-calculus course)

consumers ( post -calculus course)

appliers

200/10000

100/10000

10/10000
consultants

collaborators 4/10000

theorists 2/10000

One category in which it is particularly urgent for statistics programs to increase the

number of students is consumer (post-calculus) courses since this is the source which

suplies candidates for all other levels of statistical practice. Desirable goals for the fraction

of students in introductory courses who are taking a course with calculus prerequisite is
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30% .

UNDERGRADUATE EDUCATION: Provide students with a grid of introductory

courses in statistics which introduce the elegance and utility of statistical thinking, meet

the needs for training at various levels of statistical literacy, are appropriate to students'

scientific interests and mathematical backgrounds, and meet the goals of training all work

ers to become statistically literate at the consumer level, and many researchers to become

statistically literate at the applier level.

The television series " Against All Odds ” provides excellent supplementary material

for undergraduate statistical education. An exposure to the methods and applications

discussed in " Against All Odds” can be defined to be a superior grade of statistical literacy

at the consumer level.

GRADUATE EDUCATION : Design graduate education in statistics to successfully

provide training at each level of the practice of statistics, and which educates graduate

students to have broad interests in applied , theoretical, and computational modern statis

tics. Students should have available courses in statistical culture which expose them to

the role played by statistical methods in each of the disciplines listed in Table 1 .

One of the important expected benefits of the study of statistical culture is to help

the development of communication, mutual respect and cooperation between statisticians

involved with various levels of practice of statistics. Graduate students in statistics come

from an extreme diversity of backgrounds. The study of statistical culture would actively

encourage them to communicate more with each other ( as well as with their faculty ) about

the expertise which they should acquire as students and also during their careers . Such

discussions should be part of the graduate curriculum in a first year course (which could

be called Statistical Forum or Statistical Culture) which would also help students decide

about whether they want a master's or doctor's degree.

53



STATISTICS AND RELATED FIELDS: Identify the relations between statistics and

mathematics, between statistics and probability, between statistics and computing, and

between statistics and the design of scientific investigations.

STATISTICAL VITALITY : How much of the current vitality of statistics derives from

the availabililty of jobs in industrial statistics, biostatistics, and environmental statistics ?

Further, how do these areas of application compare with regard to the comparative devel

opment of the various levels of statistical practice?

THE URGENT NEED FOR MERGERS OF STATISTICIANS !

Statisticians in the United Kingdom are currently calling for a more unified less con

fusing public image of Statistics by merging the Royal Statistical Society and the Institute

of Statisticians. Statistical Culture is the study of how statisticians of various levels can

successfully merge.

If we want to successfully achieve “ Viva Statistical Science ” is it a prerequisite to also

successfully acheive “ Viva Statistical Culture” ? I believe that the answer is an unequivocal

yes if we take as our motto “ Always remember... Statistics is Fun " (where fun can have one

or more of the meanings: fun ( elegant), functional (useful), functional (abstract analysis ),

function ( graphical), function ( estimation ), fundamental).
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PROCLAMATION

City of College Station

WHEREAS, there is no future without statistics,

WHEREAS, the future of our nation requires every citizen to have statistical maturity to

understand and implement decisions inevitably based on the analysis of data,

WHEREAS, students planning careers should be made aware of the importance, relevance,

and beauty of statistical science,

WHEREAS , to help accomplish the above goals the week of April 23rd - 29th has been

proclaimed National Science and Technology Week and Mathematics Awareness Week ,

WHEREAS, to stimulate awareness of statistics as a discipline at the interface of science

and mathematics, the Statistics Department of Texas A&M University is organizing a

program for Statistical Science Awareness Day on April 21 , 1989 ,

NOW THEREFORE I, Larry J. Ringer, Mayor of the City of College Station, do hereby

proclaim April 21 , 1989 as :

" STATISTICAL SCIENCE AWARENESS DAY ”

in College Station , Texas, and urge all citizens to study the proposition that quality

of life in the high tech world of the future requires each person to have some level of

statistical maturity.

PASSED AND APPROVED THIS THE 13th DAY OF April, 1989 .
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0. Preliminaries

In this report, some techniques for studying random mappings and related problems are dis

cribed . This summary concentrates primarily on methodology developed by the author. Conse

quently, the work of other scientists, active in this area, will not receive extensive treatment in this

report. A nonnograph is in preparation , which will give substantial treatment of the history of the

subject and an extensive bibliography.

The present report will concentrate on two methods used by the author to obtain result in the

theory of random mappings.

The first of these is the use of classical combinatorial enumeration methods. The second ap

proach is the use of a “ composition theorem ” to construct generating functions. The latertechnique

has wide gencrality, leading to many distinct results upon specialization of the parameters.

1. Introduction .

Let X., be a finite set with |xn | = n and let T , be the set of all mappings of X , into Xm. If

a , ß € Tn, then define ( a.B) ( 3) = alB ( 2 ) ) for every I e X,. With no loss of generality, we can

take X , = {1,2,... ,n }. ( It will be convenient to introduce some exceptions later, for which the

choice X , = {0,1,... ,n } has some minor advantages). Clearly |Tml = 7 " .

Let Pr, be a probability measure on the subsets of T,.Various mathematical models are obtained

by appropriate choice of Pr. When there is no risk of ambiguity, the measure will be denoted by

P.

2. Representations of themappings.

- In this section -wo-introduse--two-additionalrepresentations fora mapping aeTy, which are

useful in many applications.

First, there is a one -to -one correspondence between a class of labelled directed graphs Gn,

known as functional diagraphs, and Tn, the set of mappings of Xn into Xm. This can be demon

strated as follows. Fix act , and let ceX,. The if al I) = y , draw the directed edge from I to y .

Such a graph will have vertex set X , and have exactly one edge emanating from each vertex . These

graphs are in fact characterized by that property. Similarly, if a labelled graph whose vertex set in
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X, is given for which exactly one edge emanates from each vertex , define al I) as the terminus

of the edge leaving I for each teX,. Because of this isomorphism , we will identify each mapping

with its corresponding graph and employ the same notation and terminology for both .

Another representation may be constructed as follows. Let An be an n x n matrix constructed

as follows. If a( i) = j , then let Qij = 1 , otherwise let Qij= 1 , otherwise let Qij = 0. Such a matrix has exactly one

" one " in each row . Also , assume there is an n x n matrix of " zeros” and “ones" with exactly one

"one” in each row . Then, if the “one” in row i is in column j, set a ( i) = j, i = 1,2 , ... , th

The three representations, the mapping, the directed graph and the matrix can be used inter

changeably.

3. Properties ofMappings.

Let aer , be a fixed mappping. For every sex , define to = I, I1 = a( I) , I2 al11)

a ( I ) , .... That is, in general let Im + 1 = alIm ) = @ " ( 11) = q *** 1(10) , for all m 20 .

If for some m > 0,4"( I) = y, then y is the mth image of 1; the set

Sa ( I ) = {Io, I1,...}

is the set of successors of I under a.

If for some m < 0,0"( I ) = y , then y is a mth inverse of I under a. In general, am( I) , m <

0 , may not exist or may not be unique.

Let

P. ( I ) = ů (a (1)};

P & ( I ) is called the set of predecessors of 1.

If there exists an m > O such that " ( I ) = I, then I is said to be a cyclic element under a

and the set

Ca( I ) = { I, a ( I), (I ),... , -'( I )}

is the cycle containing I. The least such m is the length of the cycle containing 1. If I is not cyclic,

define Ca ( 2 ) = $ . The set of cyclic points under ais Ca = y Calz ).
sex ,
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If there is an r 2 0 and an 3 > 0 such that

a'( I) = a ( y ),

then I and y are equivalent under a. It is easy to see that this is an equivalence relation and

the equivalence class containing , Kal I) ,is called the component containg 1. This equivalence

relationship decomposes X, into equivalence classes, which are called the components ofX, under

a. If X , = K. ( I ), then a is said to be connected (more precisely, the graph of a ,Ga, is connected ).

Also it is easy to see that each component has exactly one cycle.

Fix I and consider the set {z , a ( I), Q ? ( I),...}.Since teX , and \Xn = m this set can have

at most n distinct elements. Hence there are r 2 0,8 > 0 such that a'( I) = a ***( I ) . The set

{@ "( I), c ** '( I),..., @ ***- ( } is the cycle in the component Ka( I ).

A vertex sex , is said to be of height m under a if m is the least non -negative integer such that

a( 1) is cyclic. The set of vertices of height m is called the mth -stratum of a, Sm ,c. Also , the

height of a is defined as

Ha = max { Sm ,a 7 0} .

Note that So,a is the set of vertices cyclic under 2 , Ca.

The restriction of a to Ca defines a mapping, which we call the permutation induced by a .This

mapping, denoted by a* , is a permutation on a subset of X , of cardinality Cal .

Finally, we introduce the notion of the order of an element aet ,. Consider the set of distinct

elements in {a, a ?, ...} . The cardinality of this set is the order of a. If a is a permutation, this

reduces to the usual definition of the order of elements in a group. We denote this by O ( a ) and it

is well-known that

O ( a ) = 0 ( a *) + max ( 0 , Ha – 1 ) .

4. MathematicalModels.

In this section , we provide illustrations of some of the commonly employed choices of Pr, and

the mathematical structures that they describe.
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1. Let P{ali) = ; } 1,2 ,...,n and let the random variables ali) be mutually

independent. The Pr, is the measure which assigns probability n- * to each mapping in Tn.

We will refer to this as the symmetric case .

2. Let P {a( i) = j} = if ; # i , P{a( i) = ;} = 0 , and let alt) be mutually independent

ramdom variables. Then Pr, is the measure which assigns the uniform probability distribu

tion over all mappings with no fixed points.

3. Let P{a} = n ! - ' if a maps X, onto X, and otherwise . Then Ps, is the uniform measure

over the set of permutations on X,.

4. Let P{ali) = 1 } = p and P{ali) = ; } = , for j # 1. Also , let a( t) be independent

random variables. Then if p > , the set ofmappings is known as mappings with an attracting

center. If p < ,these are referred to as mappings with a repulsing center.

Other assignments lead to random rooted labelled trees, forests of random rooted labelled trees,

random connected mappings, and so forth.

In the sequel, we restrict to the symmetric case . The other cases will be treated in the more

extensive manuscript, which is in preparation.

5. Probability Distributionns for the Symmetric Model.

For this case , Pr, = no" for every mapping aeT ,. We first establish theorem 1 .

Theorem 1 .

( n - 1 ) !

P {lSc ( I )| = k , 1La( 2) | = ;}
nk ( 5.1 )

( n - k) !

Isisk sm, where Lal I ) is the cycle in Ka( I );

P {IS & ( 1 )| = k}

( n - 1 ) ! k

( n- k ) ! )

( 5.2)

P{ IL&( I) ] = ; }

j) - ]
( n - 1) !

( n - k ) ! mt
( 5.3)
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also

E|La( I) ] = E {\ SalI )|+ 1 }/2 . ( 5.4 )

Proof. Since the probability that al :) jj, j = 1,2 ,..., n , i = 1,2 , ... , nis n- and the

images of each element i are independent random variables, we have:

P { I$ & ( I)] = k , \ La( 1) | = ;} =

Pla'( I) + I , ( I ),...,& '( I),0 < r Sk - 1,ak( I) = 2 * -}( ) }

( n - 1 ) !

( n- k) !

verifying (5.1 ); (5.3) follows trivially. To establish (5.2), one need only sum (5.1 ) over j,

isisk. To establish (5.4),note that E |La( 1 )|||S & ( I )] = k} = **!, therefore,

Es«s)E {\La(5)|||Sa( )) = k} = E {\Salt)| + 1
).2

The following theorem will be repeatedly employed.

Theorem 2. The jointdistribution of So( a) | , IS1( a ) ,..., |S1(a ) is given by

P {[So ( a )] = no , Si ( a) ] = n1 , Sm-1 ( a) ] = Men1 }

Ini = n.
i20

n !

no!min me ...mana no", ( 5.5)

no!!...Mort!

where

=

Proof. | So ( a )] = n if and only if a is one - to - one and onto ; hence we obtain n !n-", which

coincides with ( 5.5) when Sola) ] = n .

Otherwise, assume (So( a ) < na Then, nolu then it is the number of ways of partitioning X ,

among the various strata. The no elements in So ( a ) can be permuted in no ! ways. Next for each

stratum S ;( a ) , with ( Si ( a )] = Mi, there are you? ways for the Mit1 elements in Si + 1 ( a ) to have

images in Si( a ).
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Remark. If somestratum , say Sila ) = $, then (5.5) = 0 unless Siti ( a ) Sm ( a) = 0.

Theorem 2 is basic to many items in the sequel. Marginal distributions available from Theorem

2 are the distributions of the number of cyclic points, the distribution of the height of the mapping,

the distributions of the number of elements in each stratum and the order of the mapping. The

following lemma will prove useful in many application of Theorem 2.

Lemma 1. For all complex z and arbitrary positive itegers q,

z(z + q)e-1-ŠE
9 !

m = 1 4 + .tha= 9+ 11 ! ... , bm ! 44...
( 5.6)

l1,... , bm 21

Proof. If q = 1 , the conclusion holds trivially. Therefore, assume that it holds for 1,2 , ... ,

9-1,9 > 2. Now

alat planlanan2( 2 + g) 4+1 = 2 24-189-62

ใน 1

9

= 29+ z !41 {11 + (9-11) }e-6-1

1 = 1 ܐܕ

Since 1 sq - bisa- 1 , the induction hypothesis applies and we get

2( 2 + g) 9-1 = 2 +
ܙܐܚܙ

( 3 )

I
M
I

( q - lı ) !

Σ ch

b + ...hm1=9-12
12 ! ... lmt1 !

ارامإلا

= + ΣΣ
q !

Σ zl.la ... Leonard
m = 1 h =1 ls+... har129–6 , ! 12 ! ... bm 1!

12 hor121

q !

= 2 + Σ
li ! ... IM !

M=2 l + -+ lmaq

Š zhi ya ...There

M - 1 :

11,...,bN 1

Since zi is the term for M = 1 , the induction is complete and (5.6) is established.
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We now have:

Theorem 3. The distribution of the number of cyclical elements Cal is given by

P {lCal = j} -
( n - 1 ) ! j

( n - j) !
( 5.7)

Proof. From Theorem 2,

P {\Cal = ;} = P {\So ( a )] = ; } =

Ej!m !..

n !

-j!jm me ...man ",
...Moms!

the sum running over all partitions of n- j. We rewrite this expression in terms of non -empty

partitions obtaining

P {ICal= ;} =

n !

-j ! jm me
j !ni! ... Nom !

Menhan " , ( 5.8)

the sum running overm = 1,2 , ... , n– 1 , 64, m2, ... , mm 2 1 with I n = něj.A comparison

of (5.8) with (5.6) show that this is related to ( 5.6 ) with a replaced by n- ; obtaining

j ( j + n- ; ) * -1
P {ICal = j } =

( n- ;) !

n !

no

n ! j

(n - j)! nj+1 ,j = 1,2 , ... , M

establishing Theorem 3.

Remark. Note that (5.7) and (5.2) are identical. There does not appear to be an obvious expla

nation for this coincidence.

Theorem 4. The probability distribution of Pal I) | is given by

( n - 1) ! ;;- 2 ( n - j) * ;

P {\ P & ( I)] = ; } - n . ( 5.9)
( n - 1)!(j – 1)!nm , j = 1,2 , ... ,

Proof. For j > 1 , let Xj-, be j – 1 specified elements of Xn; we can designate these as

I1 , I2 , ... , 13-1. Let I be a distinguished element of X , not in Xj-1. Let Ti be the setofmappings

64



a in T, with al X , - ( Xj-1 U {I}) ) = X, - ( Xj-, U {2}) . Define T2 as those mappings a with

alXj-1) = X ;- U {I} and a * I;= I for some k > 0. Let T * = Tin Tz. Then

P(pc)=1)-((;=:)
P {acT"" }, for j > 1 ,

and

P {acT * } = P {acli } P {acT2 }.

First, we have

P {acti } =

Therefore, we need to calculate P {aeT2 }. This is accomplished by restricting attention to Xj-1

and defining the mapping a satisfying a'I ; = QI;, i = 1,2 , ... , j 1 and QI = I. That is, a is

the restriction of a to I1 , ... , Ij - 1 and I becomes a fixed point.

Thus

mg

1 " m Nimli

( j - 1 ) !

{ ( 5.10)
mi! ... Nom !

the sum running over all non -empty partitions of j - 1. From lemma one, the sum in (5.10) can

readily be evaluated, obtaining

jj-2

P {aeT2 }
ni

and hence

j3-2
P {\ PalI)| = j} =

j - 1

establishing ( 5.9 ), for j > 1 .

If j = 1 , then {Xn -} - {I} is mapped into {Xn} - {z} ; there are (n − 1 ) -1 such mappings,

which also yields (5.9) .

Trivially, we have
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Remark. If | P &( I ) ] = n then I is cyclic and a is connected . This event has probability n -1

by (5.9 ).

Corollary 1.

Plika " (-) = )-(;)(+)'(1-1)
( 5.11 )

6. Asymptotic Extimates in the Symmetric Case.

We now obtain the asymptotic ( n +00 ) probability density functionsof| Sa ( I)\,\La( 3 )], ICal.

Accordingly, we establish the following theorem .

Theorem 5. The joint asymptotic ( n +00 ) probability density function of Sol, Lal is

given by

f(u ,v) = -4/2, Ocusu < oo, ( 6.1)

where u = v = tolon

The asymptotic ( n +00 ) probability density function of

ܐܦܠܠ

4 = 1Sc (I)\/ va

is

f( u) = ve - w2 /2 u > 0 . ( 6.2)

The asymptotic ( n +00 ) probability density function of

V := \La ( ) \/ va

is

f( 0) = V21 ( 1 - 0 ( u) ) , u > 0 , ( 6.3)

where 0 ( u ) is the cumulative distribution function of the standard normal distribution. Specifically

*( v) = [ (26)-te-- p2 de.
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Proof. In ( 5.1) let k = Vnu, l = Vnu and replace the factorials using Stirling's formula. This

gives

nr Vnu- te-vño

P {IS ( I ) = Vnu ,\La ( I)] = Vnv} ~
(n - vnu) Vautt

Vhu

mal 1 - )
the nutt

Expanding log ( 1 – u / vn ) is a power series, we get

f( u , v) = -0/2, 0 < usu < oo .

(6.2) and (6.3) are obtained by calculating the corresponding marginal distributions.

From these asymptotic relationships, we can obtain the following corollary.

Corollary 1. The means and variances are given by

(6.4 )

(6.5 )

E{\La(z)}^ (2ant, o ( \ La(z ) ) ~ n { } 27 ]

E{\S.(+)]}̂ { 2an), oʻ(\S ( ) ) ~ [ 2 : ]

E{\Col}~ {(2an) , oʻC \Cal) ~ n { 2 - ]

7. The Composition Theorem .

and

( 6.6)

Ti

In this section , we give an abbreviated treatment of the composition theorem . An extensive

discussion of this theorem and some generalizations of it will be treated in the future monograph.

Let Sl be the symmetric group on { 1,2 , ... , k }. To YeSk,wecan associate a partition {T1 , 12 ,... rk },

where is the number of cycles of length r . Clearly fir; = k. The k -tuple {11,12,...,tx } will

be referred to as the class of 7. A subset Mor of Sk will be called self -conjugate if and only if

it is the set of all permutations in a subset of the possible classes. It is easily seen that for every

desk, AMad-' = Mk. Now let Wibe given self -conjugate subsets of St and let W2 = \Wil, wo = 1

and let w denote the sequence {wki . Define

bu( z) = Îwaza/k ! ( 7.1 )

-Σων
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Let Win , ke s nbe the set of all B = Yty- !, where y is a one -to -one mapping of Xt into X ,

and TEWA. Now we enumerate the set of act , with

1. a * cWin for somek sn

2. acījn, the set of aet, of height sj.

The number of such mappings aet , will be decided by Vuji,n where Vw.3,0 = 1. Also, we denote

Vw, -1,0 by V ,n.

Theorem 6. Ifn20 and 0 sism

n !

Vojin - wao kaokang ...betul ( 7.2)
ko !ki !.....kj !

where the sum runs over ko + ki + ... + k; = my ko, k1 , ... , ki > 0 .

Proof. This is an immediate consequence ofTheorem 2. The following corollary is often very

useful.

Corollary 2. Let Vwan be the number of act , with a * cWkn , k fixed and 1 < ksno

Then

Vwn =-Š VWh, ( 7.3)

kal

and

1

Ver.
Wa
nt

( 7.4)

k - 1

Proof. The proof follows readily from Lemma 1 .

We now define

ky
n !

Vujinlto ,ti,..., tx) = E Whokokt ...kh , thoth the
ko!ki !...kj!

( 7.5)

and

( 7.6)Yuj(z;toti,..., t;) = Vujin(to,tı....,t;)z"/nl.
,... .

7
This leads to Theorem 7.
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Theorem 7 .

49,0( z; to ) = D. ( zto ) ( 7.7)

and for ; 21

Ywj(z;to, t. ...,tj) = 45-1 ( 2; to ,ti,... , tj-2,tj-1e* ). ( 7.8)

Remark. This theorem can be established in a formal algebraic sense . To obtain an equivalent

analytic formula, one needs to restrict to ſztj- 1e8 ,/ < e- andmax {\ztol,..., Izt ; l} < e- . Such

details are omitted here but are essential for asymptotic analysis.

Proof. Write

n !

V.:(2s,to,ti,..- )-gig. Enkolka....ky-n!(n =9)

When tho(koti)" ...(ks-2t;-1)k -1(kg–1t;) ?

- Dä what (koti)"...(ks-2t3-1)Σ Σ

- hvus-ialto- rts-2.ty-jean

(kj- 1t;z ) *

)4 g Chi-16;7)"

Let (20 ) = 20 , 41 ( 20,21, ) = zoeal and for j > 2 let

Mj(20,21,..., 2;) = 1j-1( 20,21,...,23-2,2j-1e" ) .

Theorem 8. For i 2 1 , we have

Agfeo ; 21, ... ;w ;} = zoe ^ -1( 21; ... , 2; ) ( 7.9)

Proof. The conclusion is immediate for j = 1. Assume that the result is valid for j-1,3 > 2 .

Then

Aj( 20,21,..., zj) = 13–1( 20,21, ...,23-2 ,2j-1e" )

= zo exp { 1 ;-2 (20,21, ... , 23–2, 2j -1e "') }

= zo exp {^ ;-1 (21,22 , ... , 2j -1,2; ) },
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establishing the theorem .

We now state and prove the composition theorem .

Theorem 9 .

Yuj( z; to , tı,... , tj) = P (Aj( zto ,zt1, ... , zt ;). (7.10 )

Proof. For j = 0 this is a consequence of Theorem 7. Also from Theorem 7,

Yuj( z; to,t1,...,t;) = 4w.j- 1 ( z; to, t1,...,tj-2,tj je* ).

Therefore ,

40.j - 1 ( 2; to,tj,...,tj -2 , tj-1e **s) = 0 , (13-1( zto ,... , zt ;-2, zt;-1e * )

- Ov (1 , (zto ,... , ztj- 2 , ztj- 1, zt;) ).

The following corollaries can now be easily established .

Corollary 3 .

Ywj(z ;to , ... ,tj) = OwlAj(zto , ... , zt; ) ) ( 7.11 )

Corollary 4. Let Aj( z) = 1 ; ( 2,2,... , 2) . Then

Ywj( z) = Oy( 1 ;(2) ) = Vw.jinz" /n !, ( 7.12)

TO

where no ( z) = z and for ; 21

Aj ( z ) = ze ^ -1 (3). ( 7.13)

Corollary.5. . Let Vojinyt be the number of mappings act , with a * £Wkn , QET jn and Cal = k.

Then

ΣΣΚωή,πιε

+kk

n
= OwlAj(zt,2 , ... , z) ) . ( 7.14)

n !
TO k = 0

The composition theorem provides enumerating formulas for mappings satisfying the hypothe

ses of Theorem 6. For such mappings it permits enumeration by number of points, number of

points on cycles, number of points in each stratum and so on . The ability to choose Wt provides

the generality of the results. Illustrations follow .
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Example 1 Let Wibe the set of k cycles, then the set of mappings considered is the set of

connected mappings.

Example 2 If Wibe the identity mapping for k = 1 and W * = 0 ,k7 1 , the set ofmappings

is the set of rooted labelled trees
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HANDLING UNCERTAINTY IN INPUT TO EXPECTED VALUE MODELS

Mark A. Youngren

Requirements Directorate

US Army Concepts Analysis Agency

8120 Woodmont Avenue

Bethesda, Maryland 20814-2797

ABSTRACT. Due to the large number of entities and processes that must be represented , combat

models at the theater level in the Army today are expected value models. An expected value model is

deterministic -- it uses the expected value of random variables as inputs and generally uses some sort

of expected value within the internal processes. The use of expected value models creates problems in

the proper interpretation of their output and ways for representing the uncertainty associated with

the model input and processes .

This paper suggests a method for handling uncertainty in the input data sets ( which usually

contain elements that are specific realizations of random processes) in situations where the outcomes

of interest can be expressed in binary variables (e.g. , " success" or " failure ” ). A theater nuclear

exchange is used as an example, having many different possible outcomes determined by random

processes. A method is provided for describing the space of all possible outcomes of the exchange and

partitioning the space into sets of outcomes which, if used as input into a theater- level conventional

simulation , are expected to lead to significantly different results. A method for sampling the most

probable outcome from each set is also explained .

an

This approach permits the construction of an experimental plan that requires a small number of

model runs, each run expected to provide a significantly different result . From these runs

estimate of the variability in the theater combat resulting from uncertainty in the input data (in

this case , the impact of a nuclear exchange) can be made.

1. Introduction . Modeling large systems and processes such as combat at the theater level is difficult.

The number of possible units and interactions has driven most modelers to use an expected value

approach. An expected value model uses the expected value of random variables as inputs and

generally uses some sort of expected value within the internal processes. The models are
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deterministic; that is , they will yield only one set of outputs for any given set of inputs . The use of

expected value models creates problems in the proper interpretation of their output and ways for

representing the uncertainty associated with the model input and processes. In a recent discussion

paper, Stockton ( 1989) provided the following example:

“ A Red unit will go northwest or northeast based on whether his strength at a given point is

above or below some threshold value. Let's say that the real -world probability of being above the

threshold is 0.6 and, if above, he will go northwest to face a very strong Blue force armed with

Supertank. If he goes northeast (probability 0.4 ) , he faces a relatively weaker force, armed with bows

and arrows. With several replications of a stochastic model, expected losses will consider both

possibilities and will develop expenditures of tank ammo and arrows; with an expected value model,

he will always go toward the stronger force, and no expenditures of arrows will be observed ."

Stockton correctly points out that the results of an expected value model, even when provided

expected value inputs, are not the expected value of the output. He suggests that the output of such

a model may be a “most likely value,” using his example. However, we can offer another example

which illustrates that expected value models also fail to provide a " most likely ” result.

Suppose in the example provided above that the Red force has a visual sensor that can see all of

the Blue forces traveling together (with probability 1 ) if the skies are clear, and cannot see any of

the Blue force if the skies are cloudy. To simplify, suppose that the skies are either clear or cloudy ,

and the probability that the skies are clear is 0.6 . How many Blue units are detected by the Red

force ? The expected value is 0.6 · ( 100 percent of the Blue units) + 0.4 · (0 percent of the Blue

units ) = 60 percent of the Blue units . Expected value models will normally apply expected values ,

either as inputs to the model (60 percent would be an expected value for the probability of target

acquisition ) or internal to the processes. Note, however, that acquiring 60 percent of the Blue force is

the least likely outcome, as it occurs with probability 0! Even if we chose the most likely result of

100 percent detection (which is not the way that expected value models generally handle continuous

variables as opposed to choices ), we run into problems.

Now let us combine the two examples. It is reasonable to suppose that if the Red force can see

the Blue force, or even a large percentage of the force, it will notice that one force is armed with

Supertank and the other with bows and arrows . Thus, given detection, it will engage the weaker

( bows and arrows) force. If we have the model take the most likely values in the two examples , it

will ( 1 ) detect 100 percent of the Blue force and (2 ) go northwest to engage the Blue force . Each

result is by itself most likely , yet the result is the most unlikely. Even if one modeled the Red force
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detection at 60 percent, the combination of a 60 percent detection (still sufficient to distinguish

between Supertank and bows and arrows) and moving northwest is unlikely.

Admittedly, these examples are simplistic. Yet it is true that expected value models not only fail

to yield the expected value of the output, they also fail to yield the most likely output. What, then ,

is the probability associated with the output of an expected value model ? The answer to that

question , unfortunately , is “ nobody knows. " This is why expected value models can yield

counterintuitive, contradictory, and / or nonsensical results when initially tested. The usual approach

when this occurs is to adjust input data , processes, thresholds, etc. until the model yields

" reasonable " results. Hopefully this yields a model that will provide suitably realistic results with a

different input data set, but there are no guarantees. We unquestionably have no way of determining

the likelihood of any given output from a complex expected value model.

2. Sources of Uncertainty . There are two areas of uncertainty properly associated with an expected

value model that must be handled: uncertainty in the model input , and uncertainty in the model

processes.

Unfortunately, a " blessed" input data set is often regarded as certain - if we have approval for a

set of numbers to be used in the study , then those numbers are the set to use to support our

analysis. Excursions from the base data set for purposes of analysis will vary only a small number of

data items by design; the others remain fixed . Some input data values are truly fixed ; the air

distance from Bremen to Munich is an example. Other values may be fixed by scenario ; for example,

the daylight hours vary by latitude and time of year; a scenario will fix a time and place that will in

turn determine the appropriate value for daylight. Unfortunately, these scenario -driven items are

often fixed arbitrarily, even when they may have an impact upon the analysis. For example, if a

force is particularly vulnerable to detection by a sensor that requires daylight , you can get different

results in a summer versus winter scenario (which will in turn be different than that obtained using

an arbitrary number like 8 hours or 12 hours ). This difference may even be apparent in studies that

seemingly are not associated with detection ammo rates could be significantly different, for

example. This is a simple, obvious example; many others, not so easily identified , exist . We must

regard the input data set as a single realization of many stochastic variables. It is not always clear

which realization to select for use averages do not always exist and may not be appropriate.

Furthermore, correlations exist between sets of these data inputs; for example, selecting the most

likely or expected values of cloud cover and rain independently may yield the combination of sunny

with 1 inch of rain ! Note that this problem exists with stochastic (Monte Carlo ) models -- they also

require a fixed data set that is not varied from run to run .
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Uncertainty also exists in the model processes. Stochastic models generally handle this

uncertainty through random number draws, although they are also subject to problems associated

with correlations ( separate random number draws generally require independence) and fixed values

such as thresholds. The examples provided above illustrate some of the problems associated with

handling process and input uncertainty within an expected value model.

3. Addressing Uncertainty in Expected Value Models. At this point, it would be nice to be able to

make a statement like “ the solution to this problem is easy ; one simply needs to... . ” Unfortunately,

there are no simple, universal solutions to the problems associated with addressing uncertainty in

expected value models. It is clear, however, that any methods that might alleviate the problem must

deal with the uncertainty associated with the data input as well as the uncertainty associated with

the model processes. Furthermore, the uncertainty in the input data justifies the following assertion:

executing an expected value model only once for a given data set does not provide a meaningful

result. If an expected value model is to be used to support analysis, the user must be prepared to

execute multiple runs, varying in some meaningful fashion the input data and /or the model

processes, in order to establish some measure of the uncertainty associated with the output of such a

model.

Ideally, such an approach will minimize the number of runs required (because running a large

expected value model can be very costly ), yet provide a significantly different result from each run ,

thus increasing the variance across all outputs. We want to be able to describe the probability that

the conditions represented in the input for each run (or conditions similar to those represented ) will

occur.

We have developed an approach to handling input uncertainty in theater -level expected value

models in situations when the outcomes of interest can be expressed in terms of binary variables;

i.e. , one can describe all events as " yes" or " no,” “ on ” or “ off,” etc. The particular application that

will be developed deals with a theater-level tactical nuclear exchange.

Several models of conventional warfare exist at the theater level . The model used at CAA is

called the Force Evaluation Model (FORCEM) . Like most theater-level models and scenarios ,

FORCEM is a low resolution expected value model, representing combat forces at the division and

higher level and time in 12-hour steps. The Nuclear Effects Model Embedded Stochastically in

Simulation (NEMESIS) research at CAA (Youngren (1989] ) documents an analytic model for

describing the possible outcomes of a theater - level tactical nuclear exchange. The methodology

described in this paper arose from the need to summarize the stochastic outcomes of the theater- level
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exchange as input to FORCEM .

4. The Scenario. In a theater - level battle where nuclear weapons may be employed , the commander

of the forces on a side may have an overall objective (such as stabilizing the forward line of own

troops (FLOT) in the defense or achieving a breakthrough in the offense ) that will necessitate the

use of nuclear weapons. In order to meet this objective, the commander will specify the defeat

criteria against each unit -- that is, the necessary degree of damage to be achieved against each unit

to meet his objective. The defeat criteria will differ from unit to unit depending upon the unit

mission , the posture, the equipment, etc. The criteria applied to larger units (such as divisions ) will

frequently focus fires on critical subordinate units. For example, the defeat criteria for a unit might

be achieving a latent lethal dose (about 450 rad) against at least 50 percent of the personnel in the

unit . The defeat criteria for a particular division might be to defeat at least 50 percent of the

infantry units or at least 40 percent of the armor units in the division .

Although the effects of a tactical nuclear laydown at the theater perspective are normally

described in terms of defeating divisions, tactical nuclear weapons within the theater are targeted

against forces at the company and battery level. The term subunit (also target or target subunit )

used in this paper denotes a combat organization (such as a company) that would be targeted by a

nuclear weapon . The size of the subunit will depend both upon the capabilities of the weapon system

used to engage the subunit and the targeting doctrine of the firer. For example, companies may be

targeted close to the FLOT using small, artillery- fired weapons, while battalions may be targeted

deep using missiles or air -delivered weapons. For purposes of exposition, we will refer to the low

resolution combat organizations represented in theater models such as FORCEM (usually divisions ,

although other forces may be represented as well) as units.

210
4

There are very many targetable subunits in a typical theater scenario, on the order of 104. As a

result, there are possible outcomes that can occur in terms of the defeat or failure to defeat each

subunit . Even if we look only at the defeat or failure to defeat the low resolution aggregate units

represented in our theater model ( usually several hundred ), we still have on the order of 2102

possible outcomes . Even with sophisticated techniques and considerable confounding, classical

experimental design approaches require at least one run per variable . The large amount of time and

effort required to execute even a simple run of a typical theater -level expected value model prohibit

more than a few model runs for any study. Classical experimental designs therefore obviously cannot

be applied . Our objective is to construct a plan that minimizes the number of different input data

sets (thus minimizing the number of theater - level model runs) yet fully reflects the range of possible

outcomes of the theater nuclear exchange.

77



5. A Method for Addressing Input Uncertainty in Expected Value Models. Describing the outcome of

the theater-level nuclear exchange on each unit in terms of defeat criteria allows us to define a

binary variable Bi , where B ; = 1 if the unit is defeated; 0 otherwise . Given the assumption that the

outcome is independent between units , the outcome of any exchange is simply a set of O's and l's

with the probability that any B ; = 1 equal to Pdefear(i), the probability that unit i is defeated , i =

1 , ... , m. Methods for easily calculating the probability of defeat for each targetable subunit are

given in Youngren (1989) . Given m units, there are 2" possible outcomes. Clearly , if we define defeat

criteria in terms of total numbers of potential nuclear targets (on the order of 104 ) , there are too

many outcomes to enumerate.

At the theater level, however, defeat criteria can usually be expressed in terms of divisions and a

limited number of other high value targets on the order of at most several hundred across a

theater . Each division , in turn, will have its defeat criteria established in terms of units subordinate

to that division . For example , suppose that a division j has 10 battalions of infantry ( engaged as

battalions) , 24 armored companies (engaged as companies ), and 20 batteries of artillery . The defeat

criteria for this division may be 50 percent of the infantry, 40 percent of the armor, or 60 percent of

both , with a separate criteria for artillery (divisional and nondivisional). In terms of maneuver

subunits, 5 infantry battalions or 10 armor companies must be defeated in order to defeat the

division . There are
( 10 +24) !

p ! (10 – p)! q! (24 - q)! ways of choosing p infantry battalions and q armored

battalions for defeat, and all combinations where p > 5, 9 > 10, or ( p +9 ) > 60 percent of the

subunit (which can be worked out for specific values of p and q ) lead to the defeat of this division .

If we assume that each subunit i, i = 1 , ... , 34 has a unique probability of defeat Pdefeat(i), we

probably do not wish to enumerate all sets of subunits where the division is defeated and compute

the joint probability ( which will be the product of Pdefeat(i) for the subunits i defeated and

(1 -Pdefeat( )) for the subunits that are not ) . Fortunately , this situation is readily amenable to

Monte Carlo solutions. We simply need to draw 34 binary pseudorandom numbers B ; such that each

number B ; = 1 with probability Pdefeat (1), and let a binary variable, say Dn , equal 1 if the set of

numbers B ; drawn correspond to division ; being defeated , 0 otherwise. If we perform N replications

of this experiment, we can estimate P[ division defeated ] Dn.If we do this for each division

j, then we have a probability Pdefear (div j) = PI division ; defeated ] for j = 1 , ... , ndiv, where ndiv

= the number of divisions.

na1

At the division level , we can define a binary variable 0; to define the outcome of the nuclear

exchange with respect to division j, j = 1 , = 1 with probability Pdefeat(div j) if

division j is defeated; 0 otherwise.

ndiv. O ;
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Across the theater, the theater commander will desire at least a certain percentage of units be

defeated in order for the employment of nuclear weapons to be considered effective. We can define a

binary function of the random variables 0 , ( ) , such that $( 0 ) = 1 if the commander's

objective is met; 0 otherwise. Clearly pl 9 ) is nondecreasing in O. The function º may be regarded

as identical to a structure function of a coherent system in reliability theory ( Barlow & Proschan

(1981] ) ; thus we can use results from coherent structure theory in our analysis of the nuclear

exchange issue.

For example, if any k out of m divisions must be defeated in order for the commander's

objective to be met,

$( 9 ) = ( 0, 0, .. Ox ) | ( 0 , 0,-- Ox ) || ( 0,02 ... 0k-10x+ 1) | . . || ( 0m- 4+ 1
Om ) ,

for all possible subsets of size k from the m units, 1 sk < m, where

( x ; ) || ( x ; ) = 1- ( 1 – x; ) ( 1 – x ; ).

max

Furthermore, we can bound P [ 6( 9 ) = 1 ) by (Barlow & Proschan ( 1981) p . 31 ) :

IT P[ 0 ; = 1 ] S P [60 ) = 1131 min, ncut iek.IL P [ 0 ; = 1 ] ,

1 < r < npath iĖ P ,

where P , denotes one of the npath =( mm ) possible min path sets (in this case, a min path set is

any set of k units), K, denotes one of the ncut == ( m " t1 ) possible min cut sets ( in this case, a

min cut set is any set of m = k + 1 units), and L X; = 1 - TT (1 -x ;). If we let poli ) =

P[ 0 ; = 1 ) , and number the units such that po ( 1) < p.(2) S s polm) , then

IT P[ 0 ; = 1 ) = IL P [ 0 ; = 1 ] = IL Poli) .

1 < rs npath iĖ Pr 1 < s < ncut iĒR,

m-k+ 1

Ti po( i) ;max min

i-m-k+ 1 i= 1

This example of a k out on m defeat criteria shows how we can estimate (through bounds) the

probability that the commander's objective may be met. Alternatively , PL 6( 0 ) = 1 ) can be

estimated using the same Monte Carlo technique used to find PL O; = 1 ] for each division j.

6. Partitioning the Space of All Possible Outcomes. At the theater level with a total of nt division

sized and high value targets, if we examine the nuclear exchange outcome 0; for each division (or

equivalent high -value target) , there are 2nt possible outcomes. It may be the case that it makes a

difference in the battle that follows the nuclear exchange which units are defeated or targets

destroyed in the exchange. Or, more simply , it may be how many units are defeated and targets

destroyed across the theater which makes a difference .
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It is possible to define sets of outcomes of the nuclear exchange that , given our best judgment,

we expect to have a significantly different effect on any subsequent theater - level battle (if all

outcomes have approximately the same effect, then there is one set consisting of all outcomes ). We

choose these sets by selecting partitions dividing the sample space ( space of all possible outcomes )

into strata such that the following properties are met:

( 1 ) All events within a given stratum will yield approximately the same overall theater - level

outcome. As a result of this assumption, we regard all events within any given stratum as

erchangeable.

(2 ) Any set of n events from n different strata are expected to yield n different theater -level

outcomes . Thus, any pair of events from two different strata are not exchangeable.

In practice, all events within a stratum will not be truly exchangeable, and the two events to

either " side" of any partition will likely lead to similar theater -level outcomes. Nevertheless, it is

possible to conceive of outcome sets with different results, and we assume for all of the development

below that these two properties are obeyed .

= 1

For example, suppose that there are 20 opposing divisions in a sector of combat. Our best

judgment, given the tactical and operational situation , is that the defeat of at least 7 divisions out of

the 20 will be required to avoid loss of territory (stabilize the FLOT-- which may be the

commander's objective). However, if 14 or more divisions are defeated , an opportunity occurs not

merely to stabilize the FLOT but also to conduct a successful counterattack . In this case, if O ;

if division i is defeated , i = 1 , 20 , there are 220 possible outcomes. We can partition the sample

space of possible outcomes into theĚ( 20 ) outcomes where 6 or fewer divisions are defeated , the

20 20

)k k

outcomes where 14 or more divisions are defeated .

ŠOk=7

The example given above involved two partitions (three strata ); the number of partitions

required depends on the number of significantly different theater-level outcomes that need to be

represented. Selecting the partitions will require experienced judgment and possibly some

experimentation with the theater model. If one is unsure about how many partitions to select , the

number of strata should equal the maximum number of theater model runs you can afford .
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7. Stratified Sampling from the Sample Space . Once the sample space ( space of all possible

outcomes) has been identified, it is possible to perform a stratified sampling from the sample space,

each sample from the outcome of the nuclear exchange model forming an input vector to the

theater -level conventional model. From each stratum created by our partitions, a single realization

can be sampled. A random sampling approach can be used ; however, since the actual likelihood of

all of the events within a stratum may vary widely , we recommend using a fixed sampling scheme,

in particular sampling the mode from each partition. Given the assumption of exchangeability

between events within a stratum, any choice will have a roughly equivalent effect on the theater

level outcome, so any choice is valid . Using the mode allows us to compensate for the fact that the

events within the stratum are only approximately exchangeable. A modal (most likely) outcome will

also form a plausible input suitable for subsequent analysis. The theater-level conventional model,

such as FORCEM , will be run ns times for each of the ns strata created from ns- 1 partitions, using

the outcome selected from each stratum as an input. If the second assumption that we made in

selecting the partitions is met, the ns battles simulated in FORCEM using outcomes from the ns

different strata should yield noticeably different results. The response surface estimated using these

ns FORCEM runs should provide a better representation of the variability possible in theater -level

combat where nuclear weapons are employed than a random selection of ns outcomes from the 2nt

outcomes possible, where nt is the number of targetable subunits in the theater.

The question naturally arises, " what if I am wrong in selecting the partitions?” Partitioning is a

judgmental process; more of an art than a science. The situation in which this technique is to be

used is one where many runs of the deterministic model are not possible; therefore, it is not possible

to sample the results of many outputs given many different input data sets describing different

nuclear exchange outcomes. As a result, we simply do our best to try and force realizations from

areas of the space of all possible outcomes where we think that the theater -level outcome will be

different. The impact of being wrong is not much different than being right . We still have another

point in the theater-level outcome space that you are sampling. The fact that the nuclear exchange

outcome did not lead to the theater - level outcome expected should be of great interest to the

analysis. Either the theater model has deficiencies in correctly representing the impact of the

exchange, or the theater situation is (surprisingly) robust to the exchange. If the theater outcome

that you tried to create ( by selecting the nuclear exchange outcome stratum ) is still of interest,

another run could be attempted ( if time and resources permit ), sampling from a more extreme point

within the stratum.
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8. Selecting the Most Likely Outcome (Mode) From Each Stratum . Selecting the mode from each

stratum is simple and not computationally intensive. The partitions defining the stratum will

establish the outcome vectors Q that fall within each stratum . Recall that po (t) = P [ 0; = 1 ) , and

let qo (j) = 1 – po(j). Order the po (j) and qo(j)'s together from the largest to the smallest value . To

select the mode within each partition , go from the first value ( po (t) or 4. (1) ) and select the outcome

0 ; = 1 for each po ( j) and the outcome O; = 0 for each qo (j). Continue until each target j has an

outcome assigned , making sure to assign only one outcome to each target . It will be necessary to

" skip " over the higher probability ( po (j) or 9. (,) ) for some targets j in order to have a total set of

outcomes fall within the partition.

This procedure can most easily be understood through an example. Suppose we have five

divisional units with the following probabilities of defeat ( P[ 0; = 1 ] ) : po( 1)1 ] ) : po ( 1 ) = 0.2 , po (2)= 0.2 , po (2 ) = 0.25 ,

po(3) = p.(4) = 0.4, p.(5) = 0.6. We also have the following strata defined in terms of number of

units defeated : { 0 , 1 } , { 2, 3 , 4 } , and { 5 } . We order our probabilities as follows: 90 ( 1 ) = 0.8 >

9. (2 ) = 0.75 > po (5 ) = 4. (3) = qo (4 ) = 0.6 > po(3) = po(4 ) = 4.(5) = 0.4 > P.(2 ) = 0.25 >

po ( 1 ) = 0.2.

The first stratum must have zero or one unit defeated . Thus our mode for the first stratum is

a
9. ( 1 ) .90 (2) .po (5) .96 ( 3) .90 (4) (i.e. , outcomes 0,=0, O2=0, 05= 1 , 03 =0, 04 = 0 ) , with

probability equal to (0.8)(0.75)(0.6) 3 = 0.1296. The second stratum must have two, three, or four

units defeated and the mode is q.( 1 ) .q.(2) .po (5 ) .q. (3 ) .po(4) , with a probability equal to

( 0.8 ) (0.75) (0.6) ?(0.4) = 0.0864 . In this case , we “ skipped” outcome 04 =0 with probability 0.6 and

selected outcome 04 = 1 with probability 0.4 so that we would have at least 2 units defeated for this

strata. Note that an equally likely selection would be q. ( 1 ) .90 (2 ) .p. (5) • q. (4) .po (3 ) . The third

stratum must have five units defeated and the mode is po ( 5 ) • p. (3 ) • po (4) .po (2) .po ( 1 ) , with a

probability equal to (0.6)(0.4) (0.25 ) (0.2) = 0.0048.

9. Interpreting the Results of Conventional Runs Using Stratified Inputs. If we wish to obtain an

output measure from the theater -level conventional model that we wish to average across all possible

outcomes (which is the sort of thing we normally do in our simulation models ), we need to construct

a weighted average from the ns runs conducted using the theater model. The weight assigned to the

output measure from each run k would be the total likelihood of all events within stratum k, k = 1 ,

ns. If it is possible to enumerate all of the possible outcomes ( nt sufficiently small ) , this

likelihood can be computed directly. If nt is too large , we can conduct a simple Monte Carlo

estimation of the probability Pt that an event chosen at random falls within stratum k, k = 1 ,

8
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ns. This is the straightforward process of estimating the vector { P1 , ... , Prs } from a multinomial

distribution .

We can return to the previous example to illustrate an exact computation of the likelihood of all

events within a stratum. ecall that the strata were defined in terms of number of units defeated :

{ 0 , 1 } , { 2 , 3 , 4 } , and { 5 } . The probability that 0 units are defeated is P { 0 }

90 ( 1 ) .q. (2) .90(3 ) .90 (4) .90 (5) = 0.0864. There are =

destroyed ; they are:

po( 1 ) •q.(2 ) .q.(3) • 9.(4) .q.(5) , 9. ( 1 ) .po(2) .9.(3 ) .q. (4 ) .q. (5) , 9. ( 1 .9. (2 ) .p. (3 ) .q. (4 ) .q.(5 ) ,

90 ( 1 ) : 4. (2 ) .90 (3 ) • po(4) .90 (5) , q. ( 1 ) .90 (2) .q. ( 3) .q. (4) • p.(5 )

with a total probability of 0.0216 + 0.0288 + 0.0576 + 0.0576 +0.1296 = 0.2952 . Thus the total

likelihood of the events in the first stratum is 0.0864 + 0.2952 = 0.3816 .

The calculations for P{2 } , P { 3 } , and P{4} are messy (more combinations) but straightforward.

The likelihoods are P{ 2} = 0.3612 , P { 3 } = 0.2012 , and P{4 } = 0.0512 , for a total likelihood of

0.6136 . The likelihood of the third stratum is P {5} = 0.0048.

10. Adjustments. In practice, several cases may arise where it is desirable to make some adjustments

to the basic model. We describe some of them here.

a . Likelihood of any realization within a strata being too small. In some cases, the total

likelihood of any realization from a particular strata may be too small to justify further

consideration . An example of this is the third strata ( { 5 } ) discussed in the previous paragraph. A

probability of less than 0.01 is likely small enough to ignore in our theater level modeling ( this

threshold is, of course , a matter of judgment) In cases such as this, we may wish to simply run the

conventional theater model with the modes from the more likely in the example, the first and

second) strata .

b. The modes from two strata are outcomes that are adjacent to one another. It is possible that

the modes from two strata are at the boundary of their respective strata, next to the same partition ,

and thus adjacent to one another in terms of an ordered outcome space. An example of this is also

provided in the previous paragraph , where the modes from the first two strata are adjacent to one

another in terms of units defeated (one unit defeated in the first stratum and two in the second ) . In

order to reinforce our second assumption (different results from different strata) , we may wish to

make a different selection from one stratum or the other in order to avoid similar results. Two

possible adjustments come to mind.
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zero are

( 1 ) The first adjustment is to select the next highest likelihood from within either stratum that

does not provide the same number of units defeated as does the mode. In our example, we would

choose either an outcome of zero units defeated from the first stratum or three or four units defeated

from the second stratum. The most likely outcome where units defeated is

4.( 1 ) .90(2) .q.(3) .q.(4) .9.(5) = 0.0864 . The most likely outcome where three or four units are

defeated is q.( 1 ) .90 (2) .po( 5) • p. (3) .po(4) = 0.0576. Since 0.0864 > 0.0576 , we could choose the

outcome of zero units defeated from the first stratum and keep the outcome we previously computed

(two units defeated ) for the second stratum .

(2 ) The second possible adjustment is to define partitions such that there are " gaps " between

the strata. In our previous example, we might define significantly different outcomes coming from

zero or one units defeated , three or four defeated, and five defeated , where the outcome of two units

defeated may be an ambiguous case leading to either the same result as { 0 , 1 } or { 3 , 4 } defeated

units. This approach may be more realistic, as the “ transitional cases ” at the boundaries of the

exhaustive strata may lead to theater outcomes that are not as clear cut as those nearer the center of

any particular stratum . The only drawback to this approach is the fact that the total likelihood of

drawing results from any of the strata will not equal one.

11. Repeated Exchanges. Until now, we have assumed that there is essentially only one nuclear

exchange of interest. In other words, we have assumed that the nuclear weapons will be employed

during a relatively small timeframe within the overall theater battle, and that the theater battle will

be conventional thereafter (at least for the duration of the conflict to be simulated ). However, it is

possible that a scenario may call for repeated exchanges of nuclear weapons. We can handle each

exchange by defining the outcomes through binary variables and stratifying the outcome space as

explained above. However, constructing an experimental plan with a reasonable number of runs of

the theater model becomes difficult . The difficulty rises from the total number of possible

combinations of individual exchange outcomes, even if only a few strata are chosen for each

exchange. For example , only three exchanges with only three significantly different outcomes (strata)

predicted per exchange will lead to 33 = 27 different possible outcomes after all three exchanges. It

is probably too expensive to execute this many runs of a theater- level simulation model.

To handle such a situation , we begin by determining the probability of defeating each theater

level unit and partitioning the set of all possible outcomes as explained previously . We can diagram

the 27 possible outcomes for our example as shown below in Figure 1. If 27 runs are too many to

execute on our theater level simulation, then we must select a smaller subset of the 27 outcomes to

actually use . The question is , of course , which subset do we pick? A stochastic simulation will
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randomly select paths through the " tree " ( Figure 1 ) by selecting individual exchange outcomes

randomly according to their likelihoods. When a stochastic simulation is run multiple times, the

paths with a high probability of occurrence will be selected multiple times and the paths with a low

probability of occurrence will be selected infrequently if at all. The result is a weighted set of

outcomes that can be used to estimate the distribution of the actual outcome after three exchanges.

In our case , we cannot even afford to run the model once for each possible outcome, much less

multiple times. However, we have the same objective of trying to determine a set of outcomes

corresponding to particular paths that can be weighted to estimate the distribution of the actual

outcome after three exchanges.

Figure 1. Possible Outcomes from Three Exchanges with Three Strata Each

Following the example diagrammed in Figure 1 , let us label the strata at each exchange as high

(H) , medium (M) , and low (L) corresponding to some exchange outcome along some measure ( e.g. ,

total units defeated ). We can bound the outcome using the extreme choices at each decision point in

our tree; i.e. , HHH for an upper bound and LLL for a lower bound. We can also choose an

intermediate outcome (MMM) in this case by choosing the intermediate result at each decision point

(note that there may not always be a clearly defined " middle " ). Beyond this, we need some sort of

rationale for selecting particular outcomes out of the 27 possible. It is important to note that the

variables are nested . For example, the middle outcome from a second strike following a high

outcome from the first exchange (HM) will be different from the middle outcome from a second

strike following a low outcome from the first exchange (LM), because the force strengths surviving

the first exchange (and thus the subsequent theater battle before the second exchange) are

significantly different.

Several approaches come to mind, both qualitative and quantitative. Qualitative approaches will

choose outcomes according to the strata ; for example, alternating sequences such as HML , LMH , and

MLH could be chosen.
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Quantitative approaches will look at the probability assigned to each stratum . For purposes of

illustration , assume that the probability for the outcomes ( H , M , L ) are ( .2 , .5 .3 ) respectively,

and that the probability for H , M, and L are identical for each of the three exchanges (in reality ,

this would be unlikely but it suffices for illustration ). We select our runs according to their

probabilities. For example, the most likely outcome will be MMM with probability (.5 )3 = 0.125 .

The next most likely are LMM , MLM, and MML with probability ( .5 )? ( .3 ) = 0.075 , etc. We can

concentrate on choosing the outcomes with the greatest likelihood (possibly in addition to the

bounds HHH and LLL) .

Interpreting the output becomes more difficult when we run only a subset of all possible

outcome strata . In our standard experimental plan, we run all possible outcome strata and weight

the result with the probability associated with the strata. If we do not make any adjustments (such

as defining non -adjacent strata ), the probabilities of a realization coming from a stratum will sum to

1. When we select a subset of outcome strata , the associated probabilities will not sum to 1. We

recommend normalizing the probabilities associated with the outcomes selected and proceeding

accordingly. An example should make this clear .

12. Repeated Exchanges – an Example. Suppose we have three exchanges with three significantly

different outcomes (strata) H , M , L with probabilities .2 , .5 , .3 respectively as stated previously . A

possible selection scheme might be the following.

( 1 ) Select the upper and lower bounds HHH and LLL. The associated probabilities are HHH =

( -2 ) 3 = 0.008 and LLL = (.3) 3( .3 ) 3 = 0.027 .

(2 ) Select the middle (qualitative) or modal (quantitative) outcome. In this case, they are the

same (MMM) with probability ( .5 ) 3 = 0.125 .

(3 ) Select the next most likely outcomes LMM, MLM, and MML. The associated probabilities

are equal at ( .5 ) ? ( .3 ) = 0.075 . Alternatively , some type of alternating strata sequence could be used .

This forms a subset of 6 outcomes out of the 27 possible. The total probability of a realization

coming from any of the 6 selected outcomes is 0.008 + 0.027 + 0.125 + (3 ) (0.075 ) = 0.385 . The

normalized probabilities are therefore:

HHH =
0.008

0.385
= 0.021

LLL =
0.027

= 0.070

0.385
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MMM =
0.125

0.385
= 0.325

LMM, MLM , MML =
0.075

= 0.195 .
0.385

This sums to 1.001 due to rounding error.

In this example we would execute six runs of the theater -level simulation model, selecting

realizations from the strata associated with each exchange as indicated above ( for example, MLM

would select from the middle stratum for the first and third exchange, and the lower stratum in the

second). The theater - level model output associated with each realization selected can be weighted

with the normalized probability of occurrence.

Note that we only account for 38.5 percent of the possible outcomes in terms of probability . As

a result, our estimates made from only six runs will not be as good as those produced from a larger

subset from the 27 possible.

13. Averaging the Results. To continue our example, suppose that an outcome for some particular

measure from a theater conventional model such as FORCEM was 125 for a run using input from

the first stratum, 75 for a run from the second stratum, and 25 for a run from the third stratum. An

average value for this measure would be derived from weighting the output from a given run with

the total probability of any realization coming from within the stratum. In our example, we have

( 125) ( .3816) + (75)( .6136) + (25)( .0048) = 93.84 . This value, along with the range of values

produced by the three different runs ( summarized perhaps with a weighted variance or other

statistic ), should be much more meaningful than the value obtained by running FORCEM only for

some arbitrarily chosen input set for the nuclear exchange outcome.

However, a word of caution is necessary . We started with the assumption that there is more

than one significantly different outcome in the theater context; in our example, there were three . A

single summary measure, such as the average, does not reflect this reality . Even a sample average

and variance will not inform a decisionmaker about the possible outcomes along with their

associated probabilities. Since the total number of runs of the theater conventional model will be ( by

necessity ) small, we recommend reporting all of the results, accompanied perhaps with a summary

measure . In cases of tactical nuclear warfare, we are often concerned with relatively unlikely events

(such as the exchange itself) that nevertheless have a very significant impact. Averaging obscures

this fact and can lead a decisionmaker astray.
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14. Summary. Using a deterministic, expected value approach to model a real-world situation such

as theater-level combat poses problems in selecting input data. A deterministic simulation demands

a single input data set for a model run, while the data may have to represent a process that is

inherently stochastic. An example is provided in this paper. The results of a tactical nuclear

exchange within a theater is inherently stochastic, driven by random events such as target

acquisitions. An " average " exchange outcome cannot properly be defined; an average fails to exist in

subset selection problems ( for example, if 20 units out of 50 are acquired on the average, which 20

are to be selected as acquired in the deterministic model ?) Even where averages can be defined , they

fail to reflect important variations in possible outcomes that may make a difference between winning

and losing the war in a theater simulation .

Ideally, a theater- level stochastic model would be used to properly reflect uncertainties inherent

in the data and processes represented by the model. However, the current state of the art in

hardware and software only permit us (at present) to model combat at the theater in a

deterministic, low -resolution mode. Thus, we must reconcile the need to provide an input to these

deterministic models with the reality of random outcomes .

2104If there are approximately 104 potential nuclear targets in a theater , there are possible

outcomes that can occur in terms of the defeat or failure to defeat each potential target . Even if we

look only at the defeat or failure to defeat the low resolution aggregate units represented in our

theater model, we still have on the order of 210% possible outcomes. A classical experimental design

approach that requires at least one run per variable obviously cannot be applied. The challenge ,

then , is to construct a plan that minimizes the number of different input data sets yet fully reflects

the range of possible outcomes of the theater nuclear exchange.

This paper outlines an approach to constructing such an experimental plan. We begin with the

probability of defeating a potential nuclear target Pdefeat (i) and determine from that the probability

of defeating the aggregate units represented in our theater model (such as divisions) . We can

characterize all possible outcomes of the exchange as sets of binary variables, where each binary

variable reflects the defeat or failure to defeat each unit. We then partition the outcome space into

strata such that outcomes from different strata lead to significantly different results in the theater

battle, and all significantly different outcomes are included in some stratum. Our experimental plan

consists of a nuclear exchange realization from each strata that corresponds to the most likely

outcome within that stratum. The theater-level model is run using the experimental plan to

determine the appropriate input data set to use to reflect the outcome of a theater nuclear exchange.
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15. Directions for Future Research. The techniques outlined in this paper form only a start at trying

to resolve the issue of how to handle uncertainty in input to large, complex expected value models.

They are presently limited to input processes that can be summarized in a reasonable number of

binary variables, where it is possible to make a judgment about the type of expected value model

output given sets of similar input realizations. Nevertheless, it is a step in the right direction . At

present, it is not infrequent to find studies based on a single model run per input scenario, without

any estimate of the variability possible in the results obtained .

Possible future research topics include extending the techniques to processes that can be

expressed in various states, the number of such states exceeding two. Better ways of estimating

partitions of the sample space may also be developed . A very realistic case in many theater scenarios

involves repeated realizations of random processes (in the context of the nuclear exchanges discussed

in the paper, this would imply many small weapon exchanges over a relatively long period of time) .

At present, we have no satisfactory way of handling this situation . Robust experimental plans that

can provide meaningful results over a large number of repeated realizations will be be necessary to

model such scenarios.
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Abstract

Stress analysis of the human femur involves uncertainties in material proper

ties , geometry, loads and boundary conditions. It is desired to propagate these

uncertainties through the Finite Element Method of stress analysis in order to

obtain the distributions of stresses and displacements in the femur. This would

provide better insight into bone behavior and the design of bone implants .

In particular, data from CT scans is currently used to estimate the Young's

modulus of bone. The CT number at any point within the cross -section is used

to estimate the apparent density at that point by means of a linear relationship .

Using experimental data published by previous researchers, Young's modulus

is related to apparent density.

Randomness in stresses and displacements can be studied by either a First

Order -Second Moment method or by simulation . This paper compares the accu

racy of FOSM with that of simulation for a simple deterministic 2 -dimensional

geometry. It is observed that second moment analysis can be adequate for

predicting accurately the first two moments of the structural response.

Randomness in loading is much easier to analyze as compared to randomness

in Young's modulus because stresses and displacements are linear functions of

the applied loads. This paper compares the relative importance of randomness

in loading to randomness in Young's modulus. Numerical experiments with

random material properties show that randomness in Young's modulus has

little influence on the randomness in stress when loading is also random.

* Graduate Student
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1 Introduction

A “ standard ” Finite Element Analysis assumes all input information to be determin

istic. In particular, loads, geometry, material properties and boundary conditions are

assumed by the analyst , to be known precisely. Consequently, the results of such

an analysis are also deterministic. In reality, there is considerable variability in this

input data. This randomness affects the structural response. Frequently, designers

use a 'factor of safety' to offset their lack of knowledge of the probabilistic aspects of

the response.

Stochastic FEM models uncertain input information by means of random vari

ables. The first two moments of the structural response can be obtained by a First

Order Second Moment method. Such a method can provide more detailed information

regarding the response as compared to the deterministic finite element method.

Finite element analysis of the femur is currently being performed assuming deter

ministic input, in spite of experimental evidence suggesting considerable randomness

in this input data. A study of the effect of randomness in loading and material prop

erties would help evaluate the accuracy of the deterministic solution. This paper

deals with the effect of randomness in loading and material properties on a simple

2 -dimensional model of the proximal femur.

2 Probabilistic Structural Analysis

Probabilistic Structural Analysis deals with analysis of structures in the presence of

uncertainty. It can be used to calculate the first two moments or the distribution

functions of the structural response. Structural reliability theory aims at calculating

the probability of failure for structural systems. Since there are no closed - form ex

pressions for stresses and displacements obtained by a finite element analysis, Monte

Carlo simulation (Shin 72] must be used to determine the distributions of the re

sponse. Since realistic structural analysis problems tend to be computationally inten

sive and that detailed probabilistic information regarding the random input data is

rarely available, the approximate technique of First Order Second Moment (FOSM)

method is sometimes more suitable for stochastic finite element analysis .

Some of the earliest work in this field dealt with eigenvalue problems involving

random media (Coll 69) . Subsequently, stochastic finite element analysis has also been

applied to beams with random rigidity (Vanm 83b) , turbopump blades (Nagp 87) , etc.

There are several methods of modeling randomness in material properties such as

Young's modulus. Vanmarcke ( Vanm 83a) suggested modeling the random Young's

modulus field as a spatially varying stochastic process. The Young's modulus for a

finite element can then be obtained by an averaging of the stochastic field over the

finite element . Liu (Liu 86 ] modeled the Young's modulus within an element by a

linear combination of random Young's moduli at the nodes of the element. Yamazaki

( Yama 88) considered the Young's moduli at centroids of finite elements as random
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variables . Der Kiureghian (Kiur 88 ) compared the averaging method with the centroid

method and observed that these two methods tend to bound the exact response

variability; the centroid method usually over - estimates the variability whereas the

averaging method usually under -estimates it .

3 Analysis

There is considerable variability in the input data for structural analysis problems in

biomechanics. Young's modulus in bone is currently estimated using CT (Computed

Tomography) scans . The grey value from these scans is used to estimate the apparent

density by a linear relationship . The apparent density is related to the Young's mod

ulus by an experimentally determined non - linear relationship. There is considerable

variability in this experimental data. Therefore finite element models of the proximal

femur have Young's moduli which are not deterministic. The grey values in a CT scan

are used to determine the geometry. Distinction between bone and tissue is is based

on a threshold which is chosen subjectively by the analyst. Hence the size of the bone

being analyzed is not deterministic. Moreover the exact location and magnitudes of

loads are not known precisely.

The results of a finite element analysis are affected by all these random inputs .

Stochastic finite element analysis can be used to determine the amount of randomness

in the response . Structural reliability can be used to determine the probability of

failure. But in structural analysis of biomechanical systems, where the modeling

uncertainties and approximations are high, a reliability index or a probability of failure

could be very inaccurate. Modeling approximations include use of linear elastic finite

element analysis instead of non - linear visco - elastic finite element analysis, isotropic

material models instead of transversely isotropic material models, etc.

The present study was aimed at comparing simulation and FOSM for finite ele

ment analysis of the proximal femur. Also, the relative importance of randomness

in material properties and loading was also studied . A typical coarse 3-D finite el

ement model for the proximal femur contains about 300 elements and 1200 nodes.

Stochastic finite element analysis of such problems is therefore too expensive. Hence

it was decided to analyze a 2D plane strain model of the proximal femur instead.

Deterministic analyses performed on both these models indicate that the results from

a 2D model are qualitatively the same as those obtained from a 3D model.

The random Young's modulus field was modeled using the Young's modulus in

each finite element as a random variable. Since the variability in Young's modulus is

very high, uncorrelated fluctuations in Young's modulus in adjacent finite elements

can give very unrealistic material property distributions . Therefore it was necessary

to assume that the Young's moduli in different elements were correlated by a spa

tially varying correlation function . An exponentially decaying correlation function of

the form e-d/L ( where L is the “ correlation length” ) was chosen because of the “ intu

itive ” feeling that Young's moduli in elements close-by should not vary independently,
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Figure 1 : Variation in standard deviation of displacements

whereas Young's moduli in elements far apart could be almost uncorrelated.

Preliminary analyses showed that correlation length plays a very important role

in determining the amount of randomness in the response. Figure 1 and figure 2

show the variation in the standard deviation of displacements and stresses with the

correlation length for a typical plane-strain analysis. With an increase in correlation,

stresses tend to become deterministic because stresses are independent of Young's

moduli, provided the Young's moduli are changed uniformly by a constant factor.

However the displacements in this case have maximum variability. When there is

little correlation between Young's moduli, the displacements are less random but the

stresses are more random . There is a considerable change in the standard deviation

of the response from a fully correlated to a fully uncorrelated case. In order to

obtain accurate second moments of the response, one must use a correlation function .

However, the correlation function in this case must be based on experimental data.

Figure 3 shows the measured pairs of Young's modulus and apparent density

(Cart 77) . The power law relationship shown is currently being used to predict the

Young's modulus given apparent density. However this data cannot be used to de

termine a correlation function because these samples are uncorrelated and their po

sitional data is not available. Another experimental study made by Goldstein et .

al . (Gold 89) gives apparent density and Young's modulus for 8 mm specimens in

the proximal and distal femur. Figure 4 compares the data presented in (Cart 77)
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and (Gold 89) . These two sets of data do not appear to be consistent. This can be

attributed to the following :

1. The specimens in (Cart 77] came from both human as well as bovine bone.

2. (Gold 89] does not contain any data for cortical bone.

3. (Cart 77] contains both fresh and embalmed specimens from different investiga

tors who probably performed experiments under different test conditions .

It was therefore decided to use the positional data of these specimens to esti

mate the correlation function , regression coefficients and variance by the method of

maximum likelihood .

The following relationship was assumed to exist between the Young's modulus

(E ) and the apparent density (2 )

In(E) = A + B ln ( e) + € ( 1 )

which can be written as

Y = A + BX + € ( 2 )
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where Y = ln ( E ) and X = In (e ); A and B are unknown regression coefficients and

e ~ N(0,0% ) is a normally distributed random error. This is consistent with the linear

regression on a log -log scale performed in (Cart 77) . 332 specimens were obtained from

the left and right proximal and distal femurs of two cadavers ( (Gold 89] ) .
Therefore we have

Y; = A + Bx; tei , i = 1 to 332

(3)

The following correlation function was chosen for the random errors ei's :

COV [ci, ej]= {[e:€ ;] = e-d/L.o2 ( 4)

where d is the Euclidean distance between the centers of specimens i and j .

The above correlation function is used with the following restrictions:

• There is no correlation between the errors E; from the proximal femur to the

distal femur.

There is no correlation between the errors e; from the left leg to the right leg.

• There is no correlation between the errors E; from one person to another.

The problem can now be stated in matrix form as follows :

Y = XB + E ( 5)

where

Y1

Y2

1 1 1

1 32

Y = X =

--() -- CE
( 6 )

:

yn 1 In /
nx2nx 1 nx1

n = 332 ( 7)

and

E[Y] = E(XB] + Ele] = XB ( 8 )

E[(Y – XB) (Y - XB )'] = {[et'] = 0?V (9 )

where V = f(L ) and L is the “ correlation length" . Maximum likelihood estimates

for the parameters A, B, o and I were calculated (Chin 89) .

.
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4 . Results

=

The maximum likelihood estimates obtained are given below:

Î 16.32 mm

Â = 6.82

в 1.4676=

( 10)

= 0.313

€

The relationship between E and p ( shown in Figure 4) can now be written as

E = 916p1.4676 )

where e ~ N(0 , ô2 ) .

Figure 5 shows the distribution of Young's modulus in the proximal femur with

an implant. Titanium was chosen as the implant material and its Young's modulus

(= 110 Mpa) is deterministic.

This problem was solved using both FOSM and simulation. For any function f (x )

(such as displacement or stress) of the random variables I (here, Young's moduli ),

a Taylor series expansion can be performed about the mean values of the random

variables :

T

f ( 3 ) = f ( ) +
(影)

(z- ) ( 12 )

This yields

Elf(2 )]= f ( )

Varls (z) = ( )"( ) ce( 影 )

(1
3
)

(1
4
)

where Cza is the covariance matrix of the input variables and r is the mean vector.

The mean response is thus the usual deterministic response. This analysis ignores the

distribution function of 2 and the non -linearity of f ( 2 ). It is however computationally

much faster than simulation . Simulation and FOSM results on plane-strain analyses

of the proximal femur indicate that FOSM is sufficiently accurate in predicting the

first two moments of the response. The error in mean and standard deviations of

stresses was usually well under 5 percent. Figure 6 compares graphically the stan

dard deviations of the stress in the inferior -superior direction obtained by these two

methods. Moreover, the marginal distribution of stress at any point was very close

to a Gaussian distribution . This suggests that in spite of the approximations made

in FOSM analysis, FOSM can be used as a reliable alternative to simulation .

The coefficient of variation can be defined as :

standard deviation

coefficient of variation =

(1
5
)

mean
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The coefficient of variation of stress as a result of randomness in Young's modulus

was about a third of that of Young's modulus. This suggests that stresses are not as

random as the Young's moduli.

Randomness in loading is easier to analyze because stresses and displacements are

linear functions of the magnitudes of the applied loads. Thus FOSM analysis can

accurately calculate the first two moments of the response. Moreover, the coefficient

of variation of stresses ( or displacements) is the same as the coefficient of variation of

the applied loads, provided the applied loads are fully correlated . Since the applied

load is not correlated to the Young's modulus, the resulting randomness in stress

is dominated by the randomness in loading. Moreover if the loads are Gaussian,

the resulting stresses and displacements will also be Gaussian and FOSM will again

produce accurate results.

5 Conclusion

This
paper studies the effect of uncertainties in material properties and loading on

stresses and displacements in the proximal femur. Simulation studies showed that the

approximate method of First Order Second Moment analysis can predict accurately

the first two moments of the response. The resulting marginal distribution of stress

was very close to being Gaussian. When the applied loads are deterministic and

the Young's moduli are random , the coefficient of variation of stresses was found to

be much less than that of Young's modulus. Since stresses are linear functions of

the applied loads the coefficient of variation of stresses is equal to the coefficient of

variation of the applied loads when the Young's moduli are deterministic. When both

Young's moduli and applied loads are random, the randomness in loads dominates

randomness in Young's modulus. Hence the resulting response can be predicted

accurately by modeling randomness in loading alone.
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Nonparametric Inference Under Minimal Repair

Myles Hollander

Brett Presnell

Jayaram Sethuraman

Department of Statistics

Florida State University

Tallahassee, FL 32306-3033

Abstract

This paper summarizes the results presented at the Army Research Workshop held

at Monterey, CA in October , 1989. A more detailed version will appear elsewhere.

In the age- dependent minimal repair model of Block , Borges, and Savits ( 1985 ),

a system failing at age t undergoes one of two types of repair. With probability

plt), a perfect repair is performed , and the system is returned to the 'good -as-new '

state , while with probability 1 - olt), a minimal repair is performed, and the sys

tem is repaired, but is only as good as a working system of age t. Whitaker and

Samaniego ( 1989) propose an estimator for the system life distribution F when data

are collected under this model.

Using the product integral representation of the survival function, a basic result

of Block, Borges, and Savits concerning the waiting time until the first perfect repair

is extended to allow for discontinuous distributions. Then using counting process

techniques, the large sample theorems of Whitaker and Samaniego are extended to

the whole line. These results are used to derive confidence bands for F, and to

determine a sufficient condition for their applicability on the whole line. Simulation

results for the bands are provided. An extension of the Wilcoxon two- sample test to

the minimal repair model is also examined .

1 The Minimal Repair Model

To fix notation, let F be a life distribution , let TF be the upper endpoint of the support of F

(possibly infinite), and let A (t ) = S(0,4)(F (8 - ))-'dF(s)be the cumulative bazard function

of F ,where F = 1 - F.

Now , for j = 1,..., n , let { X3,0 = 0 , X3,2, X.;,2,...} be independent record value

processes from F. These are Markov processes with P (Xjk > t | X ;0, ... , Xjk- 1)

F (t)/ F (Xj,4-1), for t > X ;;k - 1, k > 1. If AF (TF) > 0, define X ;;1= o for all I larger than

the first k for which Xjk = ff . In all cases we take p (TF) = 1. These processes represent

the failure ages of n systems under a " forever minimal repair " scheme.
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Perfect repair is introduced into this model by the use of independent uniform random

variables. This facilitates the construction of the o - field structure ( filtrations) necessary

to our analysis of the model through martingale methods. Thus we let { Uj,d : 15 is

n , k > 1 } , be i.i.d. uniform r.v.'s, and define

Sjok = | (Ujk splX;,k )),

v ; = inf { k : dj, = 1 } .

Thus observing { ( X ;,2,..., X jnx ;); j = 1 , ... , n } , is equivalent to observing n indepen

dent copies of the age-dependent minmal repair process of Block, Borges, and Savits

(BBS ) (1985 ), each until the time of its first perfect repair.

This structure provides us with a concrete starting point for a statistical analysis of the

BBS model. However, we need conditions which are sufficient to assure the finiteness of

X ;,v ;. Such conditions are given by the following result, which generalizes a result ofBBS to

the case of possibly discontinuous F. Though this generalization may not be important for

modeling system failures, it will be useful to us in proving large sample results. Also, the

proof of this result, which we sketch below , is more straightforward than the original proof

of BBS . The reader is referred to Hollander, Proschan, and Sethuraman (1989 ) (HPS) , for

detailed proofs of this and other results in this paper .

Proposition 1 Let H (t) = P ( X , St, u < 0) . Then

H(t) Полу(1 – dЛн)

exp

(- lim plot 3)1 (1-pomo)

Moreover, if either

(i) AF (TF ) > 0 ( and P (TF ) = 1),

or

(ii) F (TF- ) = 1 and So ? p(s) = +0,

then H is a proper distribution function and v is almost surely finite. Conversely, ifH is

a proper distribution function, then either ( i) or ( ii) must hold.

Proof. (Sketch) Note that

Ħ(t) = 1- P ( X , St,v < 0)

= 1- P (X; St, v = j).
; )j =

A conditioning argument shows that

H (t)

F (t) = 1+ /.../ da(ti)...dalt;),
j=1 osti<<t, St
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where

a(t) = Sou(2 – p ( o)F (0)
dF(3)

This is equivalent to

Ħ(t)

F (t)
M (0,4](1 + da ) = exp (aº(t)) II (1 + Aa(s ) ) ,

where a® is the continuous part of a and Aalt) is the jump in a at t . Here, M (0,4](1 + da)

represents a product integral. The theory of product integration with applications in

statistics is reviewed in Gill and Johansen (1987). The result follows from the last equation

after some algebra. O

We will say that a pair satisfying either (i ) or ( ii) describes a regular repair scheme.

2 The Whitaker -Samaniego Estimator

In this section, we derive a martingale representation for the Whitaker- Samaniego ( 1989)

estimator (WSE) . This representation is then used in conjunction with Rebolledo's Mar

tingale Central Limit Theorem and the techniques of Gill ( 1983) to derive limit theorems

for the WSE.

The Basic Martingale

Define

N ; (t) = # { k : Xjk st } ,

and

Fx = ( {N ;(s ) : 554,1 Si sn })

V o ( { Ujok : k > 1,13j sn } ) .

For the rest of this paper , ( Filizo will serve as the underlying filtration for all martingales.

Now let

N(t ) = # { (j , k ) : Xind St,k s vj, 1 sisn } ,

Y(t ) = #{ j : Xijn; t, 1 si sn } ,

and

M(t ) = N(t) – from Y(9 ) JA(9) .

In HPS, it is shown that M is a locally square -integrable martingale with predictable

quadratic variation given by

(M) (t) = o. Y(0) (1 – A1(c) ) dA(9).
( 1 )

This provides the basic martingale structure for further analysis of the minimal repair

model.
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as

A Martingale Representation for the WSE

Assume that F is continuous and that the pair ( F , p) describes a regular repair scheme.

Let X (h) be the kth ordered value of the set { Xjk : k svj,1 si sn } , let

T = min { X (k) : Y(X(4) ) = 1 } ,

and let J(s) = 1(8 ST). Then the Whitaker-Samaniego estimator (WSE) can be written

Ê(t) = 11(0.4 (1 – dâ)= II (1 - Aĥ(s)) ,
ost

where

J(3)

( ] Y ( )

Using Dubammel's equation (Gill and Johansen , 1989), (Ế - F)/F can be expressed

as an integral with respect to the martingale M:

F(t) –F (t) (8- )
dM(3 ).

F(t)

Â(t) = lowO2N ( o ).

So FCO)Y (5)

From this and ( 1 ) it follows (F - F)/F is itself a locally square - integrable martingale with

predictable quadratic variation process given by

2 dF (3)

F (s)Y (3)

This quadratic variation process essentially serves to identify the covariance structure of

the limiting Gaussian processes derived in the next section .

Large Sample Results

With the above representation , Rebolledo's martingale CLT and the methods of Gill (1983)

yield the following result, which extends Theorem 3.3 of Whitaker and Samaniego (1989)

to the whole line.

Theorem 1 Let ( F , p ) describe a regular repair scheme, with F continuous. Then the

following hold :

(i) As n ,

Vi (F - F ) P. F.B(C) in D (0,00 ),

where B is Brownian motion on (0,00 ), and

dF ( 3

C(t) = 1 # (8-)F(0)
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(ii) Asno,

R

V(F – F) 4 Bº(K ) in D (0,00 ),

where Bº is Brownian bridge on (0, 1 ) , and K = C/( 1 + C) .

Details of the proof of this theorem are given in HPS. We note here that the proof of

(i) does not require any additional conditions beyond regularity of the repair scheme. This

is in contrast with the analogous result of Gill (1983) for the Kaplan -Meier estimator in

the usual censored survival data model, where some condition on the amount of censoring

is needed. We will see below however, that an additional condition limiting the amount of

imperfect repair is needed to assure convergence of the expression in (ii) when an estimate

is substituted for K/F.

3 Applications

In this section , the asymptotic results of the last section are used to derive large sample

confidence bands for F and to obtain the limiting distribution of an extension of the

Mann -Whitney -Wilcoxon test statistic to the minimal repair model.

© ( t) = Slow hics-JÉCO)'

Confidence Bands

The result in part (ü ) of Theorem 1 suggests confidence bands based on the distribution

of the supremum of Brownian bridge. It is necessary however to estimate R/F in order

to construct the bands. Let be the empirical cdf of the Xixy, and let ñ = C /(1 + Ĉ) ,

where Ĉ is defined by

df (s)

Â ( ) (

We would like to have

în

v(P – F) - Bº( K ) in D[0,0],as n +00,

in order to justify asymptotic ( 1 - a) 100% confidence bands for F of the form

Ê # nahk,

(2)

where to is the upper a th quantile of the distribution of sup \Bº (t) I.

We can show that (2 ) holds on (0 , r) for any r < ff , but for the complete result, some

additional condition seems to be needed . Using the result of Prop.1, it is shown in HPS

that R/F and / are nondecreasing and that

K A

157sis 3h 를
and

Â Â
1 <

ĒSÊ
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Using this , it can be shown that a sufficient condition for (2) is that

Score (1– p(s)dA(s) <00.
A (TF- )

F (TF- ) (0,7p )

This condition requires that plt) + 1 as t f ff (at a rate sufficient for the convergence of

the integral), and hence provides a limit on the amount of imperfect repair.

Simulation results for the bands computed over finite intervals (in the case of constant

p) indicate that coverage probabilities are quite good for sample sizes of 50 or more . This

will of course vary with the parameters of the model. Simulations were carried out with

both Gamma and Weibull F, with varying shape parameters, and with various values

of p, various interval lengths, and various nominal confidence levels. As an example, the

following table gives the simulated coverage probabilities for nominal 95% confidence bands

over the interval (0, 4.744) when the underlying F is Gamma with shape parameter 2. (Note

that 4.774 is the ninety- fifth percentile of Gamma(2 ).) More extensive tables are provided

in HPS.

D

10

20

30

p = .50 p = .25 p = .10

.9025 .8660 .8710

.9270 .9125 .9187

.9460 .9287 .9327

.9515 .9398 .9395

.9528 .9540 .9452

.9515 .9517 .9495

50

100

200

An Extension of the Mann -Whitney -Wilcoxon Test

Using part (i ) of Theorem 1 , it is also possible to obtain the limiting distribution for

an adaptation of the Mann -Whitney -Wilcoxon two- sample statistic to the minimal repair

model. Here we assume that for i = 1,2, we observe n; BBS processes from (Fi, Pi), each

until its first perfect repair. In general we wish to test the pull hypothesis Ho: Fi = F2,

with typical one- sided alternatives specifying SF, dF , > 1/2, and two -sided alternatives

specifying SF, dF2 + 1/2.

A statistic analogous to the Mann -Whitney form of the Wilcoxon two -sample test

statistic is W, as given by

W SADA

s Ya( 3)
ΔΝΟ) > 0

3

£ fi(s)F:(8- )AN2( )

where Ê; is the WSE, AN ; ( s) is the number of failures at age s, and Y(s ) is the num

ber of items at risk at age s in the ith sample. This statistic is a natural estimator

of SF dF2 = P ( X , 5 X2), where X , and X , are independent random variables, with

X ; ~ Fi. Assuming continuous distributions, P (Xi < x2) = 1/2 under Ho, and in the

one-sided case , significantly large values of W provide evidence against Ho in the direction
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of SF ; dF > 1/2. For large sample sizes, we have the following result, which is proven in

HPS:

Theorem 2 If Fi and Fz are continuous, and the pairs ( F1,01) and (F2, pa ) describe reg

ular repair schemes, and if ni , na → oo in such a way that + 1,0<<1,

then

1

✓ + - + (3)

mitna

where

oi = 21* /* (s)F.(t)C (t)dF.( )dF (t),

oz = 26* ° F;(s)FX(t)C>(t)dF,(s)dFi(t).

.

Under the null hypothesis, Ho : Fi = F = F,

1 F*(s)

o 2 dF(s) .
Jo ( 3- )

For purposes of testing the null hypothesis in the large sample case, we thus propose

referring the test statistic

'으로 로Z =

+

FI (9) df:(s)

df(b) ==

to a standard normal distribution , where

1 ni (s) :(8-)AN:()

Y ? ( )
AN : (0 ) > 0

and Hi is the empirical distribution of the perfect repair ages the itb sample.

It is shown in HPS that the 0 ; are consistent, which justifies the use of this test. If

the Pi are constants ( see Brown-Proschan ( 1983 )), the above expressions simplify greatly

under Ho. If Fi = F2 = F, then Ai = foi, and the asymptotic variance in (3) reduces to

1 1

+

1-1 404 - P2 )

The pi's are of course consistently estimated by their MLE's, Pi, the ratio of ni to the total

number of failures in the ith sample, and for large samples, the statistic Z', given by

1/2
1 1

2 ' = W +

452 (4 - As ) ' 4n2(4 - Ôz).

can be referred to a standard normal distribution in order to test the pull hypothesis. Note

also that if Pi = P2 = 1 , then we are in the usual i.i.d. two-sample model, the W'SE's

reduce to the empirical c.d.f.'s, and W is just a multiple of the Mann -Whitney form of the

Wilcoxon rank - sum statistic. In this case, the above results yield

1
1/2

W
N(0,1 ),

12 na na

in agreement with the usual results for the Mann-Whitney-Wilcoxon test.

..]

+
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THE APPLICATION OF A COMPOSITE DESIGN TO

TEST A COMBAT SIMULATION MODEL

Carl B. Bates

US Army Concepts Analysis Agency

Bethesda , Maryland 20814-2797

ABSTRACT . A study is to be performed that involves the determination of a

mix of target acquisition systems that yields an improved capability at a

lesser cost . A primary candidate for the combat simulation is a two - sided

deterministic division-level ground combat model . Before the model could be

used in the study , the model had to be tested to determine its capability to

evaluate the combat effectiveness of mixes of target acquisition systems.

The test involved four factors , one qualitative and three quantitative

factors . Time constraints limited the number of simulations to 30 runs . A

composite design is presented , its application is illustrated , and its

efficiency is discussed .

1. INTRODUCTION . The test was to assess the sensitivity of mode 1

output to specified changes in input values for the four selected input

factors . The four factors are :

TYP Type of sensor ,

FRC The fraction of target elements for which the sensor has both

coverage and line-of-sight ,

TIM - The time , in minutes , that a sensor spends processing and

reporting a target it has detected ,

NUM The total number of sensors employed in a model run .
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Two types (A and B ) of sensors were to be evaluated . Three values were

ultimately selected for each of the three quantitative factors . The minimum

and maximum from operational performance were taken as the lower and upper

values . A "middle " value was then added . The values are :

FRC 0.1 , 0.5 , 0.9 ,

TIM - 0 , 5 , 10 .

NUM - 5 , 15 , 25 .

This gave a 2x3x3x3 full design . Time constraints , however , would permit

only 30 runs for the complete test .

2 . EXPERIMENTAL DESIGN . Therefore , the objective is to develop an

experimental design with not more than 30 design points . The design should

permit assessment of a full second-order model in the three quantitative

factors . Draper and John ( 1988 ) discuss response surface designs for

quantitative and qualitative variables . They give some first and second

order designs for 2k factorials and 2k-p fractional factorials . The decision

was made , however , that a single model involving TYP had no advantage over

two models , one for each of the two types of sensors . Now the problem is to

develop a response surface design (one of each sensor type ) for the three

three- level quantitative factors .

Let the three variables X1 , X2 , and X3 represent the three quantitative

factors . The second-order model we wish to investigate is :

y = B,+ ,X ,+ B2X2 +BXz+ Bux} +BX + BxX + B 12X ,X2+ 8,34,8 , + B23 * X , + e
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The 27 design points of the full 3x3x3 design are shown in Figure 1 . The

low , middle , and high values of the three variables are denoted by " O " , " 1 " ,

and "2 " , respectively . The eight corner points , (000 ) , ( 200 ) , ( 020 ) , ( 220 ) ,

( 002 ) , ( 202 ) , ( 022 ) , and (222 ) , would be a full 23 design if there were no

middle values . If these eight points are augmented with the center point

( 111 ) and the six center points of each plane , ( 211 ) , ( 011 ) , ( 101 ) , ( 121 ) ,

( 110 ) , and ( 112 ) , we have a design similar to a central composite design .

The design is given in Table 1 and illustrated in Figure 2. Box and Wilson

( 1951 ) introduced the concepts of composite designs . Myers ( 1971 ) and Box

and Draper ( 1987 ) discuss second-order composite designs . Myers, Khuri , and

Carter ( 1989 ) discuss recent and current response surface methodology

research .
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х3

(0,0,2 ) ( 0,1,2) (0,2,2)

( 1,0,2) ( 1,1,2) ( 1,2,2)

(0,0,1 ) (0,1,1 ) (0,2,1 )

(2,0,2) ( 2,1,2 ) ( 2,2,2)

( 1,0,1 ) ( 1,1,1 )
( 1,2,1)

(0,0,0 ) :(0,1,0) (0,2,0) x2

(2,0,1 ) (2,1,1 ) (2,2,1 )

( 1,0,0 ) ( 1,1,0 ) ( 1,2,0)

(2,0,0) (2,1,0) (2,2,0)

X1

Figure 1. 3X3X3 Design
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Table 1. Three - variable Composite Design

Run i X1 X2 X3

1 0 0

I
0
0
0

2 2 0

3 0 2 0

4 2 2 0

Corners

5 0 0 2

6 2 0 2

7 0 2 2

8 2 . 2 2

9 2 1 1

10 0 1 1

11 1 0 1

Star

12 1 2 1

13 1 1 0

14 1 1 2

15 1 1 1
Center

A three-variable central composite design is given in Table 2 .
The

literature on central composite designs discusses determining the value of a

to yield orthogonal designs . The value of a is the length of the axial

points shown in Figure 3 .
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X3

(0,0,2) ( 0,2,2 )

(1,1,2) ;

(0,1,1 )

(2,0,2) ( 2,2,2)

(1,0,1 ) (1,1,1 )
(1,2,1)

(0,0,0 ) (0,2,0 ) x2

(2,1,1 ) 1

( 1,1,0)

(2,0,0) (2,2,0)

X1

Figure 2. Composite Design
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Table 2. Three -variable Central Composite Design

Run + X1 X2 X3

1 -1 -1 -1

2 -1 -1 1

3 -1 1 -1

4 .1 1 1
23 factoral

5 1 -1 -1

6 1 -1 1

1

7 1 1 -1

8 1 1 1

9 -a 0 0

10 ta 0

11 0 -a 0

0
|
|
|

Axial

12 0 ta 0

13 0 0 -a

14 0 0 ta

15 0 0 0 Center

3. DESIGN EFFICIENCY . Myers ( 1971 ) discusses the efficiency of central

composite designs (ccd ) and shows that a three variable orthogonal ccd is as

efficient as a 33 factorial design for estimating the mixed quadratic

coefficients . The results , however , apply to only orthogonal ccd and do not

apply to the restrained composite design in Table 1 .

Because no information could be found on the efficiency of the

restrained composite design , a cursory evaluation was made of the design .

ACED , Algorithms for the Construction of Experimental Designs , developed by

Welch ( 1985 ) was used for the evaluation . Welch ( 1984 ) generalizes

Mitchell's DETMAX algorithm and discusses ACED . ACED has four optimality

criteria , D Optimality (DO ) , Average Variance of the Response Estimates (AV ) ,
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Axial

Figure 3. Central Composite Design

Maximum Variance of the Response Estimators (MV ) , and Average Mean Squared

Error of the Response Estimators (AM ) . AM was selected as the evaluation

criterion because it provided a robust balance between variance and bias .

The AM criterion is discussed in Welch ( 1983 ) .

The variances of the parameters estimates ( bs ) of the second-order model

are :

V (bo ) 12.0

V ( bi ) 28.6

V ( bis ) 5.8

V (bij )
1.9
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The variance efficiency is 99.6% and the bias efficiency is 91.6% .

Since these efficiencies were considered acceptable and time constraints

precluded further evaluation or design development , the composite design in

Table 1 was employed .

4. APPLICATION . The model was exercised for each sensor type for each

of the 15 design points in Table 1 . Several output variables were extracted

and analyzed . Testing was performed at the 0.05- level of significance . One

data set , Red personnel losses , is shown in Table 3 . The significant model

was considered to be :

Y= 941.2 + 1771.1X, + 483.5X, -9.5x2–196.3x, x ,

The unadjusted R2 was 0.90 . The residuals (91 -Y1 ) ranged from -743 to 568 .

The observed and the predicted values are shown in Figure 4. The confidence

intervals on Y ranged from +481 to +701.
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Table 3. Red Personnel Losses with Sensor A

Run + X1 X2 X3 y

1 0.1 5 1471

2 . 0.9 5 2333

3 0.1 10

u
n

919

4 0.9 u
n

1615

5 0.1

0
|

0
|
|
|

0
|

0
1
9

|
|
5

25 4313

6 0.9 25 2596

7 0.1 25 5159

8 0.9 10 25 2153

9 0.9 15 2670

10 0.1 5 15 4201

11 0.5 15 4038

12 0.5

0
1
9
0
5

15 2835

13 0.5 5 1823

14 0.5 5 25 3858

15 0.5 5 15 4146

The analysis results of this output variable is shown only to illustrate

application of the composite design , not to illustrate goodness of the final

fit .
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X3

(4313 4871) (5159, 4871)

( 3858/3616 );

(4201 4047)

(2596 2361) |(2153/2361)

(4038 3578 ) _(414643578). (2835 3578 )

( 1471, 11316 ) (9191316)

X2

( 26701,3108)

(18231 1632)

(2333, 1948) (16151948)

X1

Figure 4. Observed and Predicted (y.Y) Values
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5. SUMMARY. The 12-point Box-Behnken design which is the complement of

the 15-point composite design used was not considered . It may have provided

a more efficient design . Also not considered was shortening the six axial

points to give five levels for each of the variables . This may , too , have

been a superior design to the design employed . The 15-point composite design

employed was considered to be appropriate for the purpose of evaluating a

second-order model .
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Abstract

Distribution theory is developed for diagnostics used to investigate

variance component estimates and model assumptions in mixed or random

models . Estimation of variance components in a given model is the

equivalent of estimation of certain linear functions thereof. Each

such linear function is realized as an average of natural sample

covariances, that may be independent or correlated . The distribution

of the set of these sample covariances is developed in both cases,

thereby giving a formal basis for a diagnostic procedure that has been

used to identify sources of negative variance component estimates and

to reveal model deficiencies. This mixed or random analog of residual

analysis, complete with diagnostic tools, is presented. This involves,

in part, a re -examination of the model for mixed or random effects.

The distribution applies to any random or mixed model and is

illustrated here in actual repeated measures experiments and validated

by simulations.
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1.1 Introduction

The problem of estimating variance components is the equivalent of

the problem of estimating the covariance , Or, between appropriately

related observations. As alluded to in Hocking ( 1989 ), the estimate

is an average of sample covariances, individually referred to herein

as diagnostics, or is a simple linear function of such averages.

Therefore, the development of the distribution theory for the variance

component diagnostics will focus on the development of the distribution

of the sample covariances . It will be useful to consider these

as bilinear forms. For example, consider a three - factor factorial

experiment with factor 1 random and factors 2 and 3 fixed . To estimate

Oy = $, a sample covariance of the form

ai

C = 1/ (2,-1 ) * Ç (Yijk - 8.jik )(Pijk*. - 8.jk* )

is used , inwhich j + )* and k # *. This sample covariance can be written

written as a bilinear form

1 / ( n ) ( Z ;'AZ_), with Zi' - ( Pijk.) ;, Z = Y (if* k *.) ;,

A = I , - JA / a, and n = a,
1 .

Equivalently, the bilinear form can be written
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1 / (2n) [27,2 " ] [ 9 ] [ Z ] ( 1.1)

Except for rearranging indices, the bilinear form associated with any

diagnostic can be written as ( 1.1 ) . For simplicity, the examples

discussed assume a three - factor model, but the methodology is general.

If a nonfactorial model is assumed , still with only one

random factor and it is not nested , then a sample covariance of the

form C is still appropriate. However, depending on the nesting, one

of the conditions ; # j, k + k * might be relaxed. In the case

of four or more factors, the same results hold , so long as there is

only one random factor ( other than replication ) and it is not nested .

The distribution of Z ,AZ , depends on the covariance

structure of ( Z ;', 2 '). There are two cases to consider.
If there is

only one random factor, such as factor 1 , then

(Z; ',Z) ~ N (M, V ), inwhich u
3

(w's Hy'), and

V =

- Calea )
al

ci

with each of a and c being a simple linear function of the variance

components .

If factor 1 is not the only random factor, V may be more

complex and the diagnostics are non - independent paired observations.

This case will be discussed in section two.
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1.2
Background

The first explicit density function for the bilinear form ,

&1

C - (Pijk - 8.jk.)(Pijk .-8.jk!)/n,:

with n = ( a,-1 ) was developed by Pearson, Jeffery, and Elderton in 1929

based on independent sample pairs (Pijk.,Pijk ) having a

bivariate normal distribution with the variance - covariance structure

and
ܐܠܕܕ

of v below . In summary , they used the result that if Yijk. and

Pijk. are jointly normally distributed random variables, with

expected values
May

respectively, and covariance

v* la :) .

then the conditional distribution of Pijk ., given Yijk ., is normal with

expected value ( , + ) ( Pijk! -Mg) and standard deviation a ( 1-82) 1/2 .

Thus , the conditional distribution of C, given the aq vector (Pijk )

is normal with expected value ( P) S and standard deviation (al 1-8) S) 1/2 ,

where

S =

-
( Pijk. - 8.jk ) ?

As S is distributed (a) x
(a,-1)

the probability density function of C is

pos(n-1)/2exp( -S/ (2a ))

(27)1/2,1/2(1-3)1/2 b (2a)(n-3)/2((n- 1)/2)!

n

f ( c ) = X

exp
nc- (pa!/? )/a)

Jos. ( 1.2)

2a( 1-8 )
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Various other methods of deriving the distribution have been

demonstrated by Wishart and Bartlett ( 1932) , Hirschfeld ( 1937) , and

Mahalanobis , Bose, and Roy ( 1937 ).

Press ( 1967) presented some other equivalent forms of the

density ( 1.3) . Defining a sample of N independent observations

(211, 22) .... , (ZN1, Zn2) from Ng(u, v) , he found that for a = N- 1 ,

f ( c ) A (8% - ) /23, 8/2(nc)(n-1)/2e-rac

x1/2(28)(n-1)/2T n/ 2)
K (n-1)/2(Ind ),

( 1.3)

inwhich Ka(z) denotes a modified Bessel function , B = y no

where 7 and n are functions of p and the common variance (a) of

the Z's, and are equal to y = {a(1-2 )14,9 = [al 1-22 ) ?,

T = AB, and p = c/a inwhich c is the covariance of the Z's and a

the variance. When a is an integer, the Bessel function is referred

to as a modified Bessel function , and when a is an odd half - integer, it

is referred to as a modified spherical Bessel function of fractional order

or a Bessel function of the third kind. When the number of degrees of

freedom n is even , it is possible to express the density of C in terms

of elementary functions and to calculate the exact expression since

K (1-2 )/2(z) = ( 1/(22 )) "/ --

( n - 3 )/ 2
(n -5) /2 + 1)

jao Nj+ 1) ( n - 5) /2-)) (22 )

Press ( 1967) provided formulae for computing the exact

cumulative distribution function of the sample covariance for an even

131



number of degrees of freedom . In addition , percentage points of the

C distribution for seven values of n and p = 0 were tabulated.

However, for an arbitrary sample size, Press states that the

probability density function of C "is a complicated expression which

is difficult to evaluate ." To evaluate the probability density

function, it was necessary to develop an efficient formula for

calculating the distribution function of the covariance utilizing the

recursive properties of the Bessel function.

1.3 Distribution of the Sample Covariance for all Sample Siz

In developing the computational formula of the distribution,

two cases had to be considered. For the first case , N is even , and

(N-2) / 2 is an integer. The second case is that N is odd . Thus, the

calculation of the probability density function requires calculation

of the modified Bessel function for both integer and fractional order.

The computation of the modified Bessel function of integer

order requires two polynomial approximations for order 0 and 1 , which

will be referred to in this paper as koly) and ky( y ), respectively. These

approximations are precise to at least 1x10-8. The approximations are

defined in Abramowitz and Stegun (1964 ). From koly) and k ( y) and

results in Abramowitz and Stegun ( 1964 ), the following recursive

formula may be developed :
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k(n+ 1)(y) = ( 2n/ y) k( y) +( 2n/y) ky ( y) + (n-1)(y).
( 1.4)

For example, kz( y) = ( 2 / y ) k ,( y) + koly ),

( 4 )kz ( y)
and kg( y) + kz( y).

The above formula ( 1.4) is useful in calculating the

values of the ( n- 1 ) / 2 order Bessel function. To determine the value

of the Bessel function for fractional order the following relationship

found in Abramowitz and Stegun ( 1964 ) was used:

m-1

ey

(6 )* )(Y)=
( m + k - 1) !

k

Given the values of the Bessel function for a fixed n, the probability

density function of the distribution ( 1.3) was easily evaluated .

1.4 Calculation of CDF

The cumulative distribution function was computed using

Simpson's integration method . Simpson's method of numerical

integration approximates the probability density function by

a set of parabolas. In general, Simpson's rule gives

f(x)dx fo + fo + 4fn + 4 E f ; + 2. Ef

ਤੋਂ

where Ax = ( b-a) / n, f; = f ( a + jAx ).
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1.5 Tabulated Cumulative Distribution for the Diagnostics

Critical percentile points of the covariance distribution for

p ranging between -0.9 to 0.9 in increments of 0.1, with the sample

size N between 2 to 10, 15, 20, 25, 30 , 40 and 50, and the variances

equal to one are contained in Grynovicki ( 1989 ) . Specifically, this

paper gives the value of Cerit such that P [ C s Cerit] = a, for a = 0.01 ,

0.05, 0.10 , 0.90, 0.95, and 0.99 in which is the sample covariance

from a bivariate normal with mean 0 and indicated variance - covariance

matrix v.

1.6 CDF Program for Diagnostics

A computer program to calculate the cumulative distribution of

the sample covariance (C/(N- 1) ) or equivalently the variance component

diagnostics is presented in Grynovicki ( 1989 ). The program is written

in Turbo - Pascal Version 4.0®, see Miller ( 1987 ), and can be compiled

and run on any IBM -compatible or MacIntosh personal computer provided

Turbo - Pascal 4.0 is available. The program utilizes Simpson's

integration method and calculates the cdf using a tolerance of 10-6 .
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1.7 Validation of Distribution

For p = -0.9 to 0.9, in increments of 0.1 and for sample size

N = 2 to 10, and 50, a random sample of 1,000 sample covariances from

a bivariate normal were generated as follow . First, three sets of

1,000 independent standard normal variates ( Y , Yz, Y ) were

generated using the Box -Muller transform . Second, 1,000xN independent

samples from a bivariate normal distribution were generated with

specified variances and a covariance using the transformation

Z *1 = 0 (sin (A,) Y, + cos (A2) Y, ) and

Z *2 = 0 , (sin (Ag) Yg + cos ( Ag ) Y, )

in which

A, - arccos[(1021/(0,0 )) /2), and

Az = A, if 01220,

=
Al if 012 < 0 .

Finally, the 1,000 covariances were calculated by sequentially

selecting 1,000 pairs ( Z * 1, Z * 2) of N - vectors and calculating the

covariance Z * 'AZ* 2, where A - I -JJ '/ N, I is NxN identity matrix,

and J is a N column vector of l's .

As a partial check of the density function , a comparison of

the simulation and actual distribution was made using the Kolmogorov

Smirnov one -sample goodness -of -fit test. The test statistic is

D = maximum F ( x ) - S ( x ) l, -0 < x < 0 ,
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inwhich F and S are the theoretical and simulated distribution

functions, respectively. For a sample size of 1,000, the critical

value of this statistic is 0.043 at a = 0.05.

Comparison of the theoretical and simulated values was made

for values of N from 2 to 10 and 50 for values of pin increments of

0.1 , between -0.9 and 0.9, and for variances equal to one. Two SAS

computer programs were written to generate the simulated value and to

calculate the Kolmogorov -Smirnov maximum deviation statistic. These

programs are contained in Grynovicki ( 1989 ).

The calculated D for the specified parameters can be found in

Grynovicki ( 1989 ) . All 190 simulations were determined to have a

calculate D below 0.043. Thus, the simulated distribution is

consistent with the one derived when compared at the 0.05 probability

level.

It is worth noting that the maximum deviations occurred at the

center of the distribution and not at the tails.

1.8 Validation of Distribution for Diagnostic Tables

1.8.1 Introduction

Once the distribution for independent diagnostics was

developed and validated , the next step was to determine if the

distribution could be used in evaluating a table of diagnostics that

are correlated Searle ( 1971b) has shown that the correlation of two

bilinear forms is equal to
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Cov(Z1A1222, Z'zA34Z ) = tr( A12C23A34C41tr( A , C23A34C41 + A12C24A34C31),

in which E ( Z ) - E ( Z ) = E ( 23)E ( Z ) - E (Z .) = 0,

where Cuy Cov( Zu, Z) , if u # v and

Var(Zw, Z ), if u = v.

Also define Z : [Zi' , Zj', Zg', Z.'), so that Z ~ N (0 , V ) , inwhich

Cu C12 Cis C14

C21 C22 C28 C24

C31 C32 C3 C34

=

v Cos Congo
Case Co

To determine how well the derived distribution fits correlated

diagnostics, an experiment will be simulated at least 200 times and the

calculated diagnostics will be compared with the theoretical

distribution , For simplicity, I will consider a 3 -way factorial

experiment with factor 1 random and factors 2 and 3 fixed. In this

simulation , ly, the covariances of the form

C; = 1/( aj-1) { (Pijk,.-8.j,k,.)(Pijzkz.-8.igkz.) = 1/( a,-1 ) Z’A_222,

in which jį + jg and ky + ky will be the diagnostics used.
Also define

C, = 1/(2,-1)Ç (Pijkg.-9.jgkg.)(Yijek .- 9.jk .) = 1 /( aj- 1 ) Z;' A3424.

For this experiment if we let
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card j = # (j, iz) n ( ig, je },

card k
= # (ky, ky } n {kg, ka), and

card jk = # {(ję, kq ), (iz, kx )} n {( ig, kg), ( jų, kx) },

then the covariance of any two of the diagnostics for 0 , is

cov (C1,C2) = 20,2 if card ; = card k = 0,

Oz? + 0,022 if card j = 1 , card k = 0,

Oz? + 0,033 if card j = 0 , card k = 1 ,

Oz? + 0123 if card j = card k = card jk = 1 ,

040 12 + 0 013 if card j = card k = 1 , card jk = 0,

0 ;? + 0130123 if card j = 1, card k = 2, card ik = 1 ,

Oz? + 0,28125 if card j = 2, card k = card jk = 1 .

Also , the var ( C ) = 0 ;? + 0123”.

Other experimental designs are entirely analogous. If a

nonfactorial model is assumed with only one non - nested random

factor, a sample covariance of the form C is still appropriate

although, depending on the nesting, one of the conditions, j, + j;,

ky + ky might be relaxed . The variance -covariance matrix V
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still has the form assumed even though the variance and covariance may

be different functions of the variance components.

1.8.2 Simulation of a Three -Factor Factorial Experiment

The linear model used in this simulation was

Yijkt = M + Ai + ABij + ACik + ABCijk + dijkt ).

Here, M represents the grand mean and all fixed effects, and the

remaining terms are independent distributed normal with mean zero and

variance given by the associated variance component. The structure of

the covariance matrix for this design as defined in Hocking ( 1985) is

( 1.5)V = dy( Ag + A) + 112 ( Ag + A12) +213 ( Ag + A13) + d23 (A23 + A123),

where A = ( 1/ a*) G 0 G , 8...Ga Jo at з піна ,

G ; - 1 - 1/21/1' if i Å T or Jode, if i e T,

and i are the eigenvalues of V.

For this model, the variance for 2 associated with the

+

terms comprising the bilinear form has variance Var( Z ) = , +

$ 12 + $ 13 + $ 123. Its covariance is cov(ZZ ;) = $ z

Two cases of this design were considered . For the first case

ai 3, ag = 3 and ag = 2. In the second case , a, 3 3, az 3,

and ag = 4 . In the first case, 500 a, x aq x ag independent sample

from a standard normal distribution were generated and in the second
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case , 200 a, x aq x ag were generated. Both used Box -Muller.

Then , a sample of size a, x a x ag was sequentially selected

and multiplied by v1/2 where y1/2 is the same as formula

1.5 except that the eigenvalues are replaced by its square root.

For case one, 6 diagnostics were generated per iteration and

in the second case 36 diagnostics were generated giving 3,000

diagnostics for case one and 7,200 diagnostics for case two. The

value of the variance components was varied to obtain values of p

between -0.4 and 0.8. Due to the positive definiteness of the

variance covariance matrix V, -0.4 was the smallest value one could

expect from this design . The results for both cases are shown in

Table 1.1 . For case one, the maximum difference for the simulation

and theoretical distribution ranged between 0.037 and 0.11 . However,

for the critical probabilities of .01 , .05, and .l , the estimated

critical values were small and conservative. The P ( C s Cerit)

was always larger than what the simulation showed . The difference in

the agreement between the theoretical and simulation increased as one

increased in probability from 0.01 to 0.10. The maximum difference in

the two distributions occurred in the center of the distribution . For

the high critical values in case one and all critical values in case

two, the simulation and theoretical distribution agreed . The maximum

deviation between the theoretical and simulation ranged between .009

and .017 for case two. As in case one , the estimated critical values

were conservative.
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TABLE 1.1

Calculated Kolmogorov-Smirnov One Sample Statistic,

D , and Probability Differences at Critical Values for

Simulated and Theoretical Distribution of Variance

Component Diagnostics for Various Values of e

when Variances are Equal

az
3 2B

ag = 2

Difference at Critical Probabilities

a

P D .01 .05 .10 .90 .95 .99

-0.43 0.094 0.007 0.036 0.059 0.027 0.021 0.009

-0.21 0.110 0.008 0.040 0.071 0.016 0.016 0.007

-0.09 0.079 0.009 0.035 0.069 0.011 0.010 0.005

0.04 0.081 0.007 0.038 0.062 0.002 0.007 0.004

0.15 0.096 0.009 0.039 0.071 0.009 0.004 0.003

0.25 0.061 0.001 0.038 0.057 0.000 0.006 0.000

0.41 0.064 0.009 0.036 0.055 0.007 0.004 0.002

0.61 0.072 0.000 0.033 0.058 0.006 0.002 0.001

0.82 0.037 0.009 0.029 0.022 0.002 0.009 0.001

ag
* 3

ag
= 4

-0.43 0.017 0.001 0.003 0.002 0.007 0.003 0.002

-0.21 0.012 0.000 0.001 0.000 0.009 0.001 0.001

-0.09 0.013 0.001 0.001 0.002 0.008 0.002 0.001

0.04 0.015 0.002 0.001 0.004 0.008 0.003 0.002

0.15 0.021 0.000 0.000 0.001 0.009 0.005 0.000

0.25 0.013 0.002 0.001 0.003 0.006 0.003 0.001

0.41 0.010 0.003 0.002 0.005 0.008 0.003 0.000

0.61 0.009 0.002 0.003 0.007 0.006 0.004 0.001

0.82 0.014 0.002 0.008 0.011 0.005 0.006 0.006
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Based on these findings, one can use the table of diagnostics

to identify abnormally large or small covariances in the table. This

diagnostic method will allow researchers the tool to investigate

sources of negative variance component estimates, identify outliers

and reveal model deficiencies.

Having developed the distribution of the diagnostics for

bilinear form when the sample is from a set of independent

observations distributed N (4 , V ) , the next step is to develop the

distribution for the diagnostics (covariance) in which the assumption

of independent paired observations does not hold . The development of

this distribution and its validation is presented below .

2.1 Distribution Theory for the Variance Component Diagnostic

for Non - Independent Paired Observations

The final phase in developing the distribution theory for the

variance components was to consider the case where the sample

pairs ( Z1j2 Z2j);(j = 1 , 2, ay); are from a bivariate normal

distribution with variance - covariance structure

V =

lcinha

al + BJJ'

cl + dJJ'

cl + dJJ'

al + BJJ

The small letters represent linear combinations of the variance

components as specified by the linear model, I is an identity matrix,

and J is a column of ones. This circumstance arises when dealing

with a linear model of more than one random main effect and then only in regard
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to certain variance components associated with the interaction .

The Representation Theorem presented in Green ( 1987) allows the

diagnostics for designs of all sizes to be estimated in an

unbiased and efficient manner , regardless of the number of random

factors, or type of nesting. This theorem states that complex

diagnostics can be written as a linear combination of simpler sample

covariances . Each sample covariance is based on the levels of a

single factor. Thus, the only bilinear forms required are of the

type Zi'AZ , in which Z, and Zy are vectors of responses that vary the

levels of only one factor, and A =I -JJ' / ;, in which ą, is the number

of levels of that one factor. Thus, in developing the distribution of

the diagnostics for paired samples which are not independent, and

having already attained the distribution for the independent case, the

distribution of the diagnostics for any design with at least one

random factor will be completed .

2.2 Helmert Transformation

The first step in developing this distribution was to

determine a transformation that could change the variance covariance

structure so that the transformed paired observations would be

independent and have the variance - covariance structure

v . Condo)
al

CI
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Using all but the first row of the Helmert matrix as the matrix of the

transformation, it will be shown that the bilinear form

Z ;'AZ, - X ;" X , - X ,'A'X, + (aq- 1 ) X ,Xz. ( 2.1 )

in which X; = W2, W is the Helmert matrix excluding the first

row ,

A -1-( ) ( ...), and A'- ( og-1 - (Joy-1)(Jay-2') )

The Helmert matrix , H, is an orthonormal matrix. The first

row of H is J / (ay) 1/2 For s = 2, ag, the pth row of H has

its first r- 1 components equal to [r(t-1)] / , the pth component

equal to -( -1 ) / ( c( r- 1 ) ] / 2 , and the remaining components equal to 0.

PROOF OF 2.1 :

Let Zi' - ( Pilk., Yi2k., Piazk.),

Z; - ( Yilk ", Sizk , ... , 8 iazk ” ),

z w N.(0 , Cil) , and0 ,

Zz Nag(0, C22) , with

C11 = al + BJJ' ,

C22 - al + BJJ' , and

Cov( 21,2 ) = C12 = cl + dJJ', in which a, b, c, and d are linear

functions of the variance components.
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The Helmert matrix H is:

H - [ az -1/2), W ; ] - [W ,', W ,'). Also,

and

x - Hz - [ 2 ] - [ X ]

X -H2, - [ ] - [ ]

Then, X ; 'Xz = Z ,'H'HZ = 2 ; 'Z2, since H is orthonormal, and

X ,' X , = 2 ,' W ,' W ,22 + Z'W , W , 2y = a 2,22 + 2 ,' W , W , 2 %.

Rearranging terms,

X12'Xq2 = Z'W'W222

= X ; ' X , - 222,22

= 27 22 - az2,22

= Z ;'AZ

Since A = (1-JJ '/a, ) it follows that X 2'X22 = X 2 'AX22 +

(a2-1 ) 812-822 Thus, the bilinear form Z ,'AZ , is equal to XL, X22

Now , the variance covariance structure of X12, X22 ) is of the form

V =

( H :)
al

cI

since W CuW ' = al, W2C22W;' = al, and W ,CW ' = cl . Having

established that the bilinear form Z ;'AZZ = XL'AX22 + (aq - 1 ) X128221

the next step was to determine the distribution of X 2'AX22 + (az - 1 ) X1,822
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2.3 Distribution of Transformed Variables

First, one must realize that the bilinear form can be

written as a linear combination of central chi -squares and

that (22-1 ) 22 can be written as a linear combination of chi-squares.

Specifically, a property of the bilinear form is that

[ (1+0) x2(az- 2.j (1-P)x® (3-2)
x ]

Xu;'AZ-2X22
га

2

in which a is the common variance of X12 and X22, p is

the

correlation between Xı2 and X22, and xa is the central

(22-2 )

chi -square with (ag - 2 ) degrees of freedom .

PROOF:

Consider the product, X ,Xg, of deviations from the sample

mean inwhich X, and X , are singletons.

Let X ' = (X4, Xg ). Then X = ( X , Xx)' ~ N , ( 0, v) , where

0,2
v'

010р

0,201028

If A =

- ( 12 13 ) then X,X3 = x.xs)(1213 ) (xX x )
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The characteristic function is given by EleitX AX )

- ss exp [itX’AX - 1/2 (X , X2 )VX4,X ) ' ] dx, dXg,

which, since ( 1-2itAV) v-15 - V (1-2tiav)-4, may be written as

211771/2

1

SS exp [ -+ x_ ) (I-zitav )v15*XX )" ] dx, dx,
277 1/2

Let W [(1-2itav) v-1 )!

By the identity 27 /2w11/2-S...S exp ( -1/2X °W - 'x ) dxz...dX , one obtains,

- 1/2 (V(1-2itan)

(IV -2iDA VII)-1/2

1 - tip0,02

- 1/2 -tic,

-tio , 1/2

- 1,2
1 - tip ,02

(1-2it%0,02 + t2(1-8 3,20,2)"?

- [ (1.21to oz{i+)] [ 1 zito, zęci-) ) ) ".

It follows that X'AX - Ovo [( 1+p) K , - (1-P)K , ) in which

K, and K, are independent x ;? If zi' - (Y 11,9 127....Y lag- 1 )

and z' - Y21,Y22....,Y2ng- 1 ) then

z'az - X , X , = X ;' IX ,,
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where X, - wz;, w is the ag - 2 rows of the Helmert matrix, and

A = 1eg-2- Jogo 21 22-3. Then, the characteristic function

of zaz is

E (expitz,"Az, ) - E ( expi*X, 8X , )

ag - 2

* [(1.210.05 likes )( 210,021-9)] ]"

Thus, the distribution of Z'Az * is equivalent to the distribution

of 1 / 20102/ ( 1+ 0) K ,- ( 1-0) Ky] , where K, and K , are independent chi -square

variables with az - 2 degrees of freedom .

Second, one must show that ( ag - 1) &, & , is distributed as a linear

combination of central chi -squares. Specifically, if one defines

Y, = ( az- 1) 4/28, and 9, = (aq - 1 )/28g, then ( , 12) – Ng ( 0,2) , where

z - [ ! ]

and the distribution of ( a2-1) &, , is also that of (a +c)x -(a-c)x ?:

PROOF:

Let & - (8,8% ) - 15 [ 8' 9. ] [ X ]

in which X = WZ, as previously defined . Then

X ~ Nag-1 (0 , V ), and a N , ( 0,1 / (a2-1) Z ), where
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alog-1 C1,2-1

Claq-I alag-i10-12 [? ] [ 4 ] [::]

- [ ii ]

Define a 2X2 Helmert matrix , H =

Let Y; - ( 23-1) 4/28 Then 8 N ,(0,2) and9,9* = ( az- 1) 8,8 %.

[ 1 -1 ] Then

W' = ( W ,W2') = (HY) ' [ (9 + 92)/(2) 4/2, (9-92)/(2)1/2 ] and

(( 2) 1/2

W ~ N2

Niſ 0 (0 :) )

Thus (9,+9) / (2) 1/2 and (Y,-92) / ( 2) 1/2 are independently normally

distributed with variance ( a +c ) and ( a-c) , respectively. By Theorem

2.3 in Hocking ( 1984 ),

W,'W, ~ (a+c)x®,

W,'W, ~ (a -c)x® , and

W,'W, + W,'W, = 9,92 = ( a2-1) 8,8 .
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2.4 Distribution of Linear Combinations of Weighted Central

Chi- Squares

Define C - T T2, in which

T, -a, [ x *eyu?
and

- + 2x , ]

T , = b [ ** 7-8 +57 x, ]

az - [ (1 + 0) ],

by = a (( 1-2 ) ],

az > 0, b, > 0 , a* = ( a +c) / a, > 1 , 6* = ( a-c) / 6, > 1 , and

all the chi - squared variates are independent. The distribution of

T, can be represented by

F .,(x) - 9 Flag -b3(28/3),

È q=1 and the q are weight constants depending on ( 2 + c ) / 2, and az.
inwhich

The weight constant q , is equal to
૧ .

a

૧ =

-1/2(1-(1/a,))PIXr+ 1/ 2)

( r +1) T ( 1/2)

for r 20,

in which I ( 1/2) = 0 ), 1/2, and

I'r + 1/2)
1.3.5ood 2r- 1 ) VT

21

PROOF :

Let 6 , ( t ) denote the characteristic function of a centralܐܨ
܀

n

chi - square with n degrees of freedom and Vs(t) the characteristic

150



function of T;. Then, die (t) = ( 1-2it) **/ ,
and ,

because the chi - squared variates are independent,

17/ /(t) - 2012
20 %2

109.2)(1)$. x3.(t).

The characteristic function of a constant times a central chi

squared variate is given by Robbins, Herbert, and Pitman ( 1949) as

܀܇
( t ) = (1-2ia't)--/2 = [a (1-2it)-(a'-1) ]-a/2

- a**/2(1-2it)-1/2 (1-( 1 - 1 / a ) ( 1-2it)--)

- a*- /2(1-2it)-1/2( 1-(1 - 1/19(1-2it)-2 ) /2 . ( 2.2)

By the binomial theorem , we have for a > 0,

( 2.3)
a =/241-(1- 1/ a921* /2 { 4,2, for 12 < 11- 1/21*4

a* 2 1 , 4, ;2 0 (j = 0, 1 , ... ) , and Eq - 1. Since

11-2it/" < 1 , for all real t it follows from ( 4.3 ) that for a* > 1 ,

(1-2ia't)-a/2 = £ 4; ( 1-2it)-1/2-4 - Çq,
( t ) .

n+2j

Now , the characteristic function of T ;/ a, may be obtained

from ( 4.2) and the following defining identity for the constants q ,'s,

where N = 2 ,-1.

[ 2 -N/20-(1-1/2" Z'N /2 ] - Eqz, (14 s 1).

It follows that

(7/2,)(t) = ( 1-2it) - ( N / 2) [ .*-1/2 [1-(1- 1/2)(1-2it)-21" ]
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- 29961-21 )-(w/2-)

ܘܙܕܙ
9ܐܢ

. *

( t ) ,

( N + 2j)

which is the characteristic function of Tj/ az. Hence, the cdf of

Tj/ a, by inversion is Š4 FN+z(t),where Fn+zi( t) denotes

the cumulative distribution function of a central chi-square with N + 2i

degrees of freedom .

It follows on setting X = agT that the cdf of Ti is given by

4 Fx+31(x/a3).

Similarly, the cdf of T , is given by

29,5x=3(w/ by).FT,(w )

Since T, and Tq are linear combinations of central chi -squared

variates , if ff, and ff, denote the densities of T, and T,

respectively, then the pdfs of T, and T , are given by

frı - Ç (q /a,) fN +zi(x / aq), and

ft, - Ç (9/6,) fx+ 2/(w / by).
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PROOF :

EqFn+ 2i (8/2,) - Eq.IFn+x(x/a>).

By the Beppo - Levy Theorem (Morrison , 1987), this

IÇqFn+z(x/aj) - Fry/alx/ a).

Now , by Fubini's theorem (Wheeden and Zygmund, 1977),

F ' =

- (ÇqFxca(x/a) ) - Ç¢ **a(wa,)- { qfxa(2/2).

2.5 Probability Density for Diagnostics

In this section , the probability density function for T2-T, = C ,

which is the diagnostic when the sample pairs are not independent,

will be developed. Let f ( x ) and g ( w ) denote the pdfs of TT and T2

respectively. By convolution, the pdf of C = Ty- T, is

h ( t ) = f(t+w ) g (w ) dw. ( 2.4)

In the previous section , we have shown that

f ( x) = { (q/ ,) fN +2i(x / ay), x20, and
( 2.5)

g(w ) = Ç(4/b2) fn +2;(w / bz ), w20.
( 2.6)
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Since the series converge uniformly, permitting interchange of

integration and summation, we may substitute (4.5) and ( 4.6) into

( 4.4) , and letting M = N, one obtains

h ( t) = { { qq /(a,b ) { +z((t+w)/a,) { m +2;(w / be) dw -

49
t(2M +2i+ 2j - 2)/26 -(t/207)

ΣΣ 2¢M+3i+M+2)/24,M +2)/26, (M +2)/27(M +2i)/2) {(M +2) /2)

[ So0 +(agtba)/(2a4b3 )" „.M+23-2)/2(1+w)M +21-3)/2 ]

х

dw. ( 2.7)

It is worth noting that the integral given below ,

1 /TXM +2j/ 2) Soo e- 02+ bx)/ (2a3b23w ,{M +2j-2)/2 ( 1+ w ) (M + 2i- 2)/2 dw,

is the confluent hypergeometric function and is identical with the

function U (a , b, x) discussed by Slater ( 1960 ) . Having obtained the

distribution of the diagnostic, the problem of how to evaluate it

remained . This required the development of new recurrence relations

for the definite integral.

2.6 Distribution of Bilinear Form from Non -Independent

Bivariate Normal

It has been shown above that Z'AZZ = X ;' X , + (az -1 ) 8,82,

in which Xi is the Helmert transformed data. If an = 2, then Z'AZ , -

X , X , = (a2-1 ) 8,8%. It has also been shown that (22-1 ) 8,82 €

(a+c)x", - ( a-c) x? ,, where a is the variance of X and c is the covariance.

In the linear model context, the variance ( a) can

be broken down into a set of variance components comprising the
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covariance ( ), as well as a set that is not contained in the

covariance ( a ). Therefore, defining the variance as a = Q + B

and the covaraince as b = B, the distribution of

Zi'az - X , X , ~ 2404 ) [ (eleka - (l ) x, ]

Therefore, for N = 2, the distribution of the bilinear form is the

distribution of the covariance from independent paired observations

with twice the estimated variance.

2.7 Development of New Confluent Hypergeometric Recurrence Relations

2.7.1 Relation of Hypergeometric and Bessel Function

The calculation of the cdf for the bilinear form when the

sample pairs are not independent required the development of new

recurrence relations for the confluent hypergeometric function . In

the notation of Abramowitz and Stegun ( 1964 ), equations 13.1.10 and

13.2.5, U (a , b, x) is the confluent hypergeometric function of Kummer

and is given by

U ( a , b, x) 1/1(a) sext 70-1(1+t)b- 8-2 dt.

Abramowitz and Stegun give two special cases for which

U ( a, b, x) can be written in terms of the modified Bessel functions.

Using these relationships, initial values of the confluent

hypergeometric function for the cdf were obtained as follows.
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For the case N is odd and i = j, let r = (N 1 ) / 2 + i , and

X = 2z . Then 2r + 1 = N + 2i = N + i + j and r + 1/2 = N/2 + i =

N/2 + j. Using Abramowitz and Stegun equation 13.6.21 ,

U (N/2 + j, N + i + j, x) = U ( r + 1/2, 2r + 1 , 2z)

= 7-1/2 es (22 )* K (2)

1-1/ 2 ex /2 x =(N -1+ 2i)/2
K (N -1+ 2i)/2(x/ 2).

For the case N is even and i = j, let r = (N - 2) / 2 + i . Then

r + 1 = N / 2 + i and 2r + 2 = N + 2i = N + i + j. Using Abramowitz and

Stegun equation 13.6.24 ,

U (N/2 + j, N + i + j, x ) U ( r + 1 , 2r + 2, 2z)

27-1/2 et ( 22)et ( 22) - (25 + 1) /2 K (2 +1)/2(z)

= 7 •1/2 28/2 x=(N=1+ 2i)/2 K (N-1+ 21)/2(x/2).

Note that this expression is identical to the one obtained for odd N.

Now by choosing i = j = 0 and i = j = 1 with a = N/2 and b = N one is

now able to calculate two values for the confluent hypergeometric

function for a given value of x . Specifically,

U (N/2, N, x) = U ( a, b, x) and

U (N/2 + 1 , N + 2, x) = U (a + 1 , b + 2, x) .
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From these two starting values, a recurrence relation is needed to

obtain the remaining cases involved in calculating the probability

density function .

2.7.2
New Recurrence Relations for Confluent Hypergeometric Functions

The evaluation of the pdf depended on being able to calculate

U (a , b + 1 , x ) and U ( a + 1 , b + 1 , x) . From Abramowitz and Stegun

equations 13.4.16 , 13.4.18, and 13.4.19, replacing a with a + 1 and b

with b + 1 in 13.4.16 and 13.4.18, one obtains

( a + x ) U ( a , b , x) XU ( a , b + 1, x ) + alb - a - 1) U ( a + 1, b, x) = 0 , ( 2.7.1 )

( b - a - 1) U ( a, b- 1 , x) . + ( 1 - b - x ) U (a , b, x) + XU (a , b + 1, x) = 0, ( 2.7.2)

and ( b-a) U ( a , b, x) + U ( a - 1, b, x) - xU ( a , b + 1, x)+ = 0 . ( 2.7.3)

From these , it follows that

( b - a ) ( b - a - 1 ) U ( a + 1 , b, x) + ( 6 + x ) U (a , b + 1 , x)

= x ( a + x ) U ( a + 1 , b + 2, x ). ( 2.7.4)

Now , 4.7.1 and 4.7.4 are two equations in the two unknowns

U ( a + 1 , b, x ) and U ( a , b + 1 , x) and the known quantities U ( a, b, x)

and U ( a + 1 , b + 2, x) . The solutions by Cramer's rule are

U ( a + 1, b, x)
(x²) U ( a + 1, 6 + 2, x ) (b + x) U (a , b , x)

b ( b - a - 1)

and

U ( a, b + 1, x) =
(ax) U (a + 1, 6 +2 , x) + ( b - a) U (a , b , x )

b

From these, using recurrence relation 13.4.16 in Abramowitz and

Stegun , with b replaced by b + 1 , U ( a, b + 2, x) can be calculated in
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terms of U ( a , b, x) and U ( a , b + 1 , x) . The process can then be

continued to calculate U ( a, b + 3, x) and all other values of b for

a specific a value. Similarly recurrence relation 13.4.17, with a

replaced by a + 1, gives starting values U ( a + 1 , b + 1 , x ) and

U ( a + 1 , b + 2 , x) . Other entries are obtained for the remaining a + 1

elements by using the same recurrence relation . These recurrence

relations were used iteratively to calculate the U functions for fixed

i and all į Thus, the cdf can be evaluated .

2.8 Turbo Program for Diagnostics from Non - Independent Observations

A computer program to calculate the cumulative distribution of

linear combinations of central chi -squared variables or equivalently,

the variance component diagnostics based on non - independent paired

observations are presented in Grynovicki and Green ( 1990 ). The

program is written in Turbo - Pascal and can be compiled and run on any

IBM compatible personal computer on which Turbo - Pascal is available.

The program utilizes Simpson's integration method and calculates the

cdf using a tolerance of 0.0000006 .

2.9 Validation of the Distribution for the Diagnostics

For p between -0.2 to 0.8 the theoretical distribution was

compared to the diagnostics for 012 from a three -way hierarchical

experiment with factor 1 random , 2 nested in 1 and 3 fixed . In this

situation the paired observations comprising the bilinear form

are not independent. The experiment was replicated 500 times for

each simulation . The diagnostic has the form
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ç ( Tijk -Si.k.) ( Tijk -Fi.k )/(az -1).

Two cases were considered to determine how well the derived

distribution fits correlated diagnostics from the diagnostic table.

For case 1 , a; = 2, ay = 5 and ag
3 3. For this case there were

three diagnostics per experiment for 12. Case 2 differed from

case 1 in that ag was increased to 4. Both cases were generally

similar. The maximum difference for the theoretical distribution in

both cases ranged between 0.02 and 0.06 , as shown in Table 2.1 .

The difference between the theoretical and simulated numbers

for the critical values of 0.01 , 0.05, 0.10 , 0.90, 0.95, and 0.99

ranged between 0.002 and 0.039, with the maximum difference occuring

in the center of the distribution . The theoretical numbers were

conservative, as in the independent case .

2. 10 Tabulated Cumulative Distribution for the Diagnostics

Cumulative percentile points of the covariance distribution

for p ranging between -0.7 to 0.9 in increments of 0.1, for sample

size N of between 3 to 10, 15, 20, 25, 30 , 40, 50 , and for variance

equal to one are contained in Grynovicki ( 1990 ). Due to the restriction of

positive definitness , this range of parameters for p and N should be

sufficient for most designs. Specifically, this table gives the value

of Cerit such that p ( C s Cerit) = Q for a = 0.01, 0.05, 0.10, 0.90,

0.95, and 0.99. C is a bilinear form from a bivariate normal with

correlated paired observations.
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TABLE 2.1

Calculated Kolmogorov -Smirnov One Sample Statistic ,

D , and Probability Differences at Critical Values for

Simulation and Theoretical Distribution of Variance

Component Diagnostics for Various Values of

from Non - Independent Sample Pairs

ay - 3

Difference at Critical Probabilities

a

.05 .10 .90 .95
р D .01 .99

-.2 0.045 0.004 0.028 0.036 0.037 0.029 0.007

- 1 0.047 0.005 0.021 0.025 0.027 0.022 0.004

-.0 0.035 0.005 0.012 0.032 0.032 0.017 0.003

-
.
1 0.028 0.007 0.023 0.024 0.020 0.012 0.002

-.2 0.034 0.004 0.016 0.024 0.025 0.020 0.003

-.3 0.041 0.003 0.031 0.035 0.036 0.027 0.006

-.4 0.037 0.006 0.013 0.033 0.034 0.019 0.005

-.5 0.030 0.007 0.021 0.019 0.019 0.013 0.003

-.6 0.027 0.006 0.024 0.021 0.020 0.015 0.004

-.7 0.050 0.002 0.029 0.027 0.028 0.021 0.003

-.8 0.037 0.008 0.013 0.017 0.015 0.009 0.001

ay = 4

-.2 0.043 0.004 0.029 0.041 0.036 0.031 0.009

-.1 0.045 0.003 0.027 0.036 0.030 0.034 0.007

-.0 0.041 0.003 0.033 0.039 0.029 0.015 0.006

-.1 0.058 0.008 0.028 0.038 0.042 0.028 0.005

-.3 0.038 0.005 0.017 0.026 0.027 0.021 0.002

-.4 0.047 0.002 0.020 0.023 0.033 0.024 0.003

-.5 0.034 0.005 0.019 0.021 0.025 0.019 0.004

-.6 0.028 0.009 0.023 0.021 0.019 0.012 0.003

..7 0.035 0.006 0.008 0.015 0.020 0.011 0.005

-.8 0.006 0.0150.048 0.021 0.013 0.008 0.001
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2.11 Illustrated Example Using Eye Glass Manufacturing Experiment

As an illustration of the diagnostic technique in comparison

with its cumulative distribution, the diagnostic from an experiment

previously examined by Green ( 1987) concerning eye glass manufacturing

will be examined . The data for this experiment are presented in Table

2.2. Factor 1 ( run ) is random at five levels , factor 2 ( pot) is

random at two levels, and is nested in run, factor 3 ( journey) is

fixed at five levels , and factor 4 (period ) is fixed at three levels .

Factors 1 , 3, and 4 are crossed .

In the previous analysis, Green clearly determined that runs 2

and 5 were highly variable and that pot 2, in journeys 2, 4, and 5 was

clearly different from the rest of the data . The journey 2, between

pot difference is extreme, and the journey 4 and 5, pot 2 values were

from a different type of glass than all other responses .

Two diagnostic tables will be re - evaluated and are given in

Tables 2.3 and 2.4. Table 2.3 represents the covariance

Ç(Pijt. - Pi..t. ) ( Pijt. • - Pi..t. 9 / (az - 1 ) or, in Green’s notation, C ( 1,2/tt').

The variance covariance structure of ( Pil.t. , Pi2.t. , Yil.t.*, Pi2.t*.) is

V s

- (هلول

al + bJqJ2'

cl + dJ2J2

cl + dJZJ2

al + bJqJ2 )
in which

a = $ 12 + $ 123/ 5 + $ 124 + $ 1234/ 5,

b = 4 , + $ 13 / 5 + $ 14 + $ 134/ 5,
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TABLE 2.2

Glass Manufacture Data

Pot

1 2

Period Period

1 2 3 2 3

1

2

139

Run 3
们
S
8

仍
g
B
a
n
g

切
8
8
4
8
8

A
u
a
n
g
n
g
g
g
g

4

B
R
3
8

化

5

8
8

环
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TABLE 2.3

Diagnostics Ç( Pij.s.- P...)( Pij.&.* - 8:. : ")/ (az - 1 )

t "

1 2 3

50.001

2

3

4.00

0.32t

- 15.00

- 1.20

4.50

i.1

t*

1 2 3

1003. 501

2

3

658.60

432.20t

470.40

308.70

220.50

i = 2

t *

1 2 3

20.501

2

3

49.90

121.70t

44.20

107.60

95.20

i = 3

**

1 2 3

12.501

2

3

57.00

259.90t

34.00

155.00

92.50

i = 4

t*

1 2 3

1113.901

2

3

467.30

196.00t

571.10

239.60

292.80

i = 5
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TABLE 2.4

Diagnostics Ç(Pikt.- 9.2.)(Pixi.- 97) /(2, - 1 )

k * 1 2 3 4 5

250.7 207.1

336.4

1

2

k 3

4

5

-247.2

-131.6

497.5

-61.8

221.3

357.8

620.1

-136.5

-41.6

124.8

75.5

236.3

t = 1

ka 1 2 3 4 5

362. 1 -312.8

799.9

1

2 .

3

4

5

29.1

-488.5

631.2

-371.0

153.6

416.2

1009.6

k

- 107.4

174.1

-41.3

312.6

229.7

t = 2

ke

1

1 2 3 4 5

1012.7 350.0

676.0

1

2

k 3

4

5

-330.4

-488.6

1032.3

5.5

41.1

888.3

1286.9

337.1

763.8

103.4

968.3

1530.2

t = 3

164



c = $ 2 + $ 123/5, and

%, + $13/ 5.d :

Transforming the Ys with the Helmert matrix would result

in the transformed data having a variance covariance matrix of V with b

and d set to zero . The variance of the transformed data would be

$ 12 + $ 123 / 5 + $ 1234/ 5 = 260, the covariance ®ng + $ 123/ 5 = 210, and

pis 0.8, based on the variance covariance estimates given

in Green ( 1987 ). For these diagnostics, since N is 2, double the

variances and use the 95 % critical value with N = 2 and p = 0.8. The

95 % confidence interval, (-98, 1705.6 ), is narrower than the 30

criteria used previously. Due to the large variance of cell means for

this table, no outliers were identified. This is consistent with

the previous results. The high variability of runs 2 and 5 , and low

variability of run 1 is noticeable.

For Table 2.2, the variance of the cell means is $ 12 +

$ 123/ 2 + $ 124/ 2 + $ 1234 / 2 + 0, + $15 + 014 + $ 184 Table 2.4 represents

the covariance C (t, 1/ kk")

Ç (Pi.kt.- 8..kt.)(9i.Kt.-8..kt.)/( ,-1).

The variance - covariance structure of the cell means comprising this

bilinear form is

V =

Can
al

cI a )al

which a = %, + $2/2 +423 + $ 123 / 2 + $ 14 + $ 124/ 2 + $ 134 + $ 1234 / 2 and

c = 6, + $ 12 / 2 + $14 + $ 134 / 2.
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Using the estimates of the variance components found in Hocking ( 1989 ),

a = 701.17, and b = 92.43. Thus, the estimated correlation of the

independent paired cells of different journey conditions for a given

period is 0.132. Using the distribution theory, one can obtain an

estimate of the 95 % confidence interval (-442, 716). Based on this

interval, one can see that period 2 journey 2 and 3 covariance is

small and period 3 journey ( 3, 4) , (2, 5 ) and (4, 5) covariances were

outside the 95 % confidence interval specified above. The low

covariance in period 2 may be due to run 5, pot 2, period 3, journey

2, which was identified by Green ( 1987 ) as an outlier. The large

covariances are because of run 1, journey 5 and run 5, journey 2,

period 2 and run 5 , journey 3, 4. It should be noted that in run 5,

all responses were from different furnaces than were used in the other

runs .

2.12 Conclusions

The distribution of the diagnostics for a bilinear form when

the sample pairs are independent and not independent has been

developed , tabulated , and validated. This theory has been extended to

the diagnostic tables for all random and mixed designs. For the

special case when N = 2, it has been shown that the bilinear form for

non - independent sample pairs is equivalent to the independent case

with the variance doubled .
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Numerical Estimation and Properties of the Source Density Function
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ABSTRACT

The Source Density Function is a four-parameter class of one -sided probability density functions.

In order to exploit the Source Density Function's flexibilityin shape, programs were developed to

estimate the parameters which maximize the log-likelihood function for agiven data set.

INTRODUCTION

A brief review of the Source Density Function (SDF) is presented here a rigorous

development was done by Lehnigk [1 ]. The SDF, f ( x, P ), is generated from a delta function initial

condition solution of the generalized Feller equation.

f (x , P ) = B 66 x =(P -B + 1)/2 z ( + B -1)/2 1,[2 (xz /b)B2] exp[ -b -B (xB +zB )]

( 1)

P = ( z bp B )

z > 0; b > 0 ; p < 1; B>O

19 (.) is the modified Bessel function of the first kind,where q = -1 + ( 1 - P )/ B > -1 . The vector P is

composed of the four parameters which are calculated so that the log -likelihood function is

maximized. A data set of observations is formed , which is composed of ordered pairs of the

observation variable Xy, and the relative frequency of that observation fy. The data set,

{ (Xy fv )lv = 1,2 ,..., n with fo and fn +0 }, is used with f( x , P ) to form the log -likelihood function

°(P) .

O(P) fy In( f (xv , P ) )

( 2)

v=1

It should be noted that as z► both equations ( 1 ) and ( 2 ) approach the Hyper -Gamma density and

log -likelihood functions for a = 0 [2] . This will be refered to as the Hyper-Gamma limit of the SDF.

A transformation of the parameters is useful in simplifying the equations.
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O = zB /2 (3)

For a maximum of the log -likelihood function , the requirement exists that all of the

derivatives of $ (P ) must equal zero . These equations place a further restriction on o , and it allows

the elimination of the parameter b from the equations.

bB = ( B (B ) - 02 ) / (1 + 0) (4)

n

BCB) = fvexp( Beu) (5)

v = 1

Du = ln ( xv ) (6)

For b > 0 , it is required that B (B) - 02 > 0, thus 0 < o < « B (B ). Equation (4 ) allows the elimination

of b from ( 2 ), thus ( P ) is a three -parameter equation.

Ź0(0,3,4) = ln ß + 4 In (u ( B (B )-02) ) + (MB - 1)C - 4 B (B )+02 + fy In ( Su -1(Iv ) )

B (B )-02 v = 1

( 7 )

cc- Ï
fvpv

(8)

v = 1

Su -1 (t) = ( 2/ r) k -1 14-1(1) (1/2 ) 2k/ k! : ( k + 4 ) (9)

k = 0

Iv = 2uo ( B (B )-02)-1 exp (Bpv /2 ) ( 10)

u = 1 +4 ( 11 )

Equations (4-11) form the starting point for the numerical estimation of the source density function

parameters o , B, and u .
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METHODS FOR PARAMETER ESTIMATION OF THE SOURCE DENSITY FUNCTION

Initial attemps at parameter estimation of the SDF were based on the simultaneous solution

of the derivative equations of ( 7 ) set equal to zero . These equations had the following form .

n

0 = -0+ fv (Sq(Tv ))-1 d Sq( Tv) exp (Bpw/2)

v = 1 dry

(12)

n n

0 = ( B (B ) -02)( 1 +uBC) - uß

V=1

Σ fupvexp(Bew -o ( 13)fvpv ds (Iv) exp (Bpv)

v=l Sq(Iv) dry

( 14)0 = BC +ln( u (B(B) - 02)-1) + fv_ dsq (Tv)

v = l Sq(Tv) da

A three dimensional application of the Newton -Raphson method was used. The functions on the

right side of the equal sign of equations ( 12-14) were used to form a vector, F (0,3,4 ) and a 3x3

derivative matrix ofF(-) was numerically calculated . This matrix was inverted and premultiplied

the negative of F (-) to yield a change vector for the three parameters. This method failed to produce

useful results due to the complexity of the o(s) function which typically had differences between the

o -derivative and B -derivative functions that typically spanned 10 or more orders of magnitude. The

derivative based approach was abandoned in favor ofdirect optimization methods.

Direct optimization of various log-likelihood functions by Powell's Method have been

successful ( 2,3,4,5 ), so this technique was applied to equation ( 7 ). Initial runs, with the starting

point close to the actual parameters that were used to generate the data sets , were successful. But as

the starting point was moved further away from the solution, Powell's algorithm ran into

difficulties due to its inability to deal with the B - o boundary generated by B (B)-02 > 0, ( and the

flatness of $ ( ) ) .

Powell's method is an unconstrained minimization algorithm . To change a maximum into a

minimum , the function is multiplied by -1 . In this paper all equations will be presented as they

were derived, and it is understood that the log -likelihood function is multiplied by -1 in the

computer programs. The next alteration required is to change Powell's algorithm into a constrained

minimization . For the Log -Normal, generalized Gumbel, and the Hyper-Gamma distributions all

of the constraints were implemented in the calculation of the log -likelihood function. If in the

function subroutine, it was detected that a parameter had gone outside the allowable region, then

the function would force the offending parameter into the allowed domain. This proved satisfactory
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since for these distributions, all of the constraints and the direction vectors for Powell's algorithm

were parallel to the coordinate axis system , but for the SDF this was not the case on the B - 0

boundary. A modification to the Powell algorithm was made in the minimum bracketing

subroutine, MNBRK . If the function detected a parameter which was not in the allowable region a

flag was set, this flag was a signal to NMBRK that a constraint had been crossed . MNBRK would

then bisect the interval between the last good point and the desired point which had crossed the

boundry, and then try this new point. This procedure is repeated until the test point was in the

allowable region . This improved the region of convergence , but it still remained too limited .

To further modify Powell's algorithm to get a better convergence criterion , it was necessary

to examine the structure of the log -likelihood function for the source density function. Figures 1

and 2 show cuts of the log -likelihood function as it varies with o (B and u fixed ) and u (o and B

fixed ) with the two fixed parameters set at the solution values. The scales on these plots are to

demonstrate the flatness of the function . These indicate that the º ( ) function is a well- behaved

parabolic type function, and this continues even when the fixed parameters are set at non -solution

values, (of course with its extremum value decreased ). Unfortunately, this is not the case when

• (•) is made a function of B, with u and o set at the solution values, ( shown in Figure 3). During

the investigation it was seen that the left -hand peak ofFigure 3 was the extremum , while the right

hand was a false extremum . If the u or o parameter varied offof the solution value, the two peaks

moved towards each other and the left -hand peak was absorbed into the right-hand peak . This

demonstrates the existence of a ridge that connects the two maximums ofFigure 3 together. This

ridge must be followed by Powell's algorithm to locate the maximum . Figure 4 shows a typical

ridge in o - B - u space.

10-6 10-2

0 100
200 0 2

Figure 1. o (o ), B and u constant. Figure 2. o (u ), o and ß constant.
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14

H

4.6 4.7 4.8 B

o

Figure 3. ( B ), o and u constant. Figure 4. Powell's trajectory in O -B - 4 space.

At first inspection it appears that this ridge was exactly what Powell was developed for, but

there are problems with traveling along this ridge. The first difficulty is that the relative change in

traveling along this ridge is approximately 1 part in 105 to 106, and it takes numerous iterations

following the ridge. When the relative change along the ridge is divided by the number of iterations

required for that journey, this average relative change is usually less than the termination criteria for

Powell's method. Thus, Powell terminates the optimization on a false maximum . Two means were

employed to alleviate this problem . First, the entire Powell subroutine package was rewritten to

perform all calculations in double precision. The evaluation of the log-likelihood function was

always performed in double precision to improve accuracy. With Powell's subroutines being in

double precision, the termination criteria was improved, which helped to increase the range of

convergence. To further increase the convergence area an amplifier function, equation ( 15), was

applied to the log -likelihood function for a second pass after the termination criteria was satisfied

on the first pass by the Powell subroutine package.

= e10 ( 1060-0* ) - 1 ) ( 15)

©* was the final value of o from the first pass of Powell's algorithm . The second pass of Powell

was used to maximize the y function. The amplifier function increases the slope of the function,

while eliminating the large dc-offset. From earlier work with this amplifier, it was observed that

the termination criteria was effectively changed from 1 part in 6x106 (Powell in single precision,

and y calculated in double precision) to 1 part in 1010. The actual amount of increase in the

effective termination criteria on o is dependent on the difference in 0 and 0 *, a small difference

yielded a better termination criteria ( 1 part in 1011) while a large difference lessened the termination

criteria ( 1 part in 109). Unfortunately , these modifications did not fully solve the problem , but they
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did help. Occasionally, the function was so flat on the ridge that even with the amplifier function,

Powell's termination criteria was satisfied . It appears that increasing the gain of the amplifier

would be of assistance, but Powell's trajectory could be close to a boundary thus causing a large

change which would result in an overflow . Restarting the amplifier with a new q * did help to

extend the range of convergence; thus Powell's algorithm was running with three passes, one plain

and two with the amplifier.

Even with this, the convergence range did not equal the allowable space. In some regions,

the Powell algorithm would “ lock ” on to a false maximum . At some of these false maximums, a

plot of O as a function of one parameter o , B, or u would show a maximum , but a ridge did led

away from this point in a direction oblique to the coordinate axis. During initialization , the Powell

subroutine was given a set of direction vectors, which spanned the space, and Powell's method

searched for successive extremum along these direction vectors. The direction vectors were

changed, allowing an escape from the original false maximum but it would usually fall prey to

another. Similarly , Powell's algorithm at times needed to track along a curved ridge or boundary,

but this would trigger a similar false maximum . To get past the false maximum problem , a steepest

descent subroutine package was written . This method was successful in finding the ridge, but it

failed once on the ridge, due to the flamess.

A variable transformation was then tried . Changing to a did again help extend Powell's

range ,

et = B(B) - 02 ( 16)

but this did not fully solve the problems.

Figure 5 is the computer output from four runs. The 2 , ß and u values are the initial values.

The 2n B, , b and o , z are the final Powell estimates. All four runs did converge.

CONCLUSIONS

Application of Powell's method in three passes does produce accurate estimates of the

parameters of the Source Density Function . The major drawback is the requirement of a starting

point that lies in the convergence zone of the global maximum . In previous programs which

utilized the maximum log-likelihood principle with distribution such as , Log -Normal, generalized

Gumbel, and Hyper-Gamma, the moment estimates became the starting point for Powell's method.

The moment estimates for the Source Density Function require simultaneous solution of four
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SOURCE DENSITY FUNCTION CALCULATIONS

Data file is ISOFDATAISYNEX 15.DAT

Lambda = .800000E+001

Beta .300000E+001

Mu .300000E+001

长 七分 ### 分分分分分分分分· # 长者 分分分分分

THE POWELL ESTIMATES FOR THE SOUACE DENSITY FUNCTION

Lambda . 120232E+002

Beta .462324E+001

Mu .207676E+001

b . 115021E+002

.

Sigma .343231E+003

. 124994E+002Z

=

Lambda .500000E+001

Beta 1300000E+001

Mu 1300000E+001

公告公分 分 分 分 分 分 分 分 分分分分分分长长长长长: 公分分分分

THE POWELL ESTIMATES FOA THE SOURCE DENSITY FUNCTION

Lambda = . 120232E +002

Beta .462324E + 00.1

Mu . 207676E+001

b .115021E+002

U

3

Sigma

7

. 343231E+003

. 124994E+002
2

Lambda .000000 +000

Beta 1300000E+001

Mu 1300000E+001

分 分 分 分 分 分 分 分 分 分 分 分 分 是女生 号 外号处分

THE POWELL ESTIMATES FOA THE SOUACE DENSITY FUNCTION

Lambda . 120229E+002

Beta .462313E+001

Mu .207679E+001

b . 115019E+002

Sigma

2

.343193E+003

124995E +002.

0

1
1

Lambda - 1500000E+001

Beta .500000E+001

Mu .300000E+001

分会会长 分 分 分 分 ***

THE POWELL ESTIMATES FOR THE SOURCE DENSITY FUNCTION

Lambda . 120241E+002

Beta .4623S1E+001

Mu .207665E+001

b .115027E+002

a

Sigma

2

. 343338E +003

. 124992E +002

Figure 5. Four sample runs.
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nonlinear equations, and this has proved to be more difficult than the maximum log - likelihood

estimate .
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THE HUNTER PROBLEM IN A RANDOM FIELD OF OBSCURING ELEMENTS
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ABSTRACT

A hunter attempts to detect and kill targets within a field of obscuring elements , which

are randomly dispersed (trees in a forest). The targets move along paths in the field, which

are partially obscured by the random elements. When a target enters a visible segment of

a path it takes to (seconds) to detect it , and tı (seconds) to attempt destroying it. If such

a trial is not successful, other independent trials can be performed as long as the target is

visible. The number ofshooting trials that can be attempted depends on the number and

lengths of the visible portions of the path . Lower and upper bounds for the probability

of destroying a target are determined by using the methods of random visibility measures

previously developed by the authors.

Key Words: Poisson Shadowing process, Bernoulli Trials,

Visibility Probabilities, r -reduced measure of

Visibility, Detection Probability, Hitting

Probability
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0. Introduction

A hunter is trying to detect andhit a target in a forest. Suppose that a target is moving

along a path in the forest and the hunter is located among the trees at some distance from

the path . The path is only partially visible to the hunter: the invisible ( shadowed ) portion

of the path is obscured by the trees which are dispersedrandomly between the hunterand

the path . A target can be detected by the hunter if at least a certain part of it is visible .

After detection of a target , the hunter starts shooting . The targct continues to move along

the path in the same pace. During each shooting trial the target crosses a length of 1

of the path. Thus the number of shooting trials in cach visible segment depends on the

length of the segment. The shooting trials stop either when the target is hit or when it

enters an invisible portionof the path. When the target enters another visible segment, it

has to be detected again. For simplicity we assume that the shooting trials are Bernoulli,

with probability of failure 9 , 0 < q < l.

The problem of target hunting can be treated as a two or three dimensional shadow

ing problem . Two dimensional random shadowing problems were previously studied by

Chernoff and Daly ( 1 ) . Likhterov and Gurin (2) , Yadin and Zacks (3,4 ) . The methodology

developed in the present paper is also applicable to three dimensional versions of the above

problem . For example, if a hunter tries to shoot down a helicopter whose flying course

is partially obscured by crowns of trees. The three dimensional shadowing problem was

previously studied by Yadin and Zacks (5 ) .

In the present study we develop approximations for ( a) the probability of detection;

( b) the probability distribution of the maximal number of shooting trials N ; and ( c ) the

probabilityof survival of the target . We also provide numerical examples to illustrate the

goodness of these approximations.

1. The Model, Measures of Visibility and Failure Probabilities

Suppose that the hunter is located at the origin , 0 , and let C denote the path of

the target. C is assumed to be a smooth star shaped curve, defined by a piece -wise

differentiable function r (s ),SL Es < su , representing the distance from 0 to C in

orientation s . The polar coordinates of a point P on C are ( r ( s ) , ) . The end - points of

Care P and P The length of C is

g

~ IL
SU

L =

L. 1( s )ds
( 1.1 )

Lء

where

l ( s ) = (rº (s ) +[r? ( s ) + -(s)?]1/2

The trees in the forest are presented by random disks dispersed in a region between 0 and

C. Each random disk is characterized by coordinates (p, 0, y ) , where (0,0) are the polar

coordinates of its center and y is its diameter. The coordinates ( p , 0 , y ) belong to a set S

in Rº satisfying conditions which assure that 0 is not covered and C is not intersected by

random disks . Let B be the Borel o - field on the sample space S , and let N {B } designate

the number of disks whose coordinates belong to a set B of B. We assume that, for each

B&B , N {B } is a random variable having a Poisson distribution with mean

{v { B} = 1
VI /H(dp,dø)dG(yle,8)

( 1.2 )

B
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where G(ylp , ) is the conditional CDF of y , given ( 2,6) , and H(dp , do) is a o - finite

measure of (2,6) . Such a random field of disks is called a Poisson random field .

A point P on C is said to be visible if the line segment OP is not intersected by any

random disk. A point which is not visible is in a shadow . Themeasure of total visibility

on C is defined as

V = I ( s )l( s)ds
( 1.3)

~~ S

SU

(
>

IL

3

where I( s ) = 1 if P is visible, and I( s ) = 0 otherwise. Notice that V is a random

variable representing the total length of the visible portion of C. V is a sum of a random

number, M , of visible segments of C having random length Xi. X2,... , XM ; i.e.

M

V = Σ Χ . ( 1.4)

i= 1

A target is detected only if there exists at least one visible segment of length greater

than the minimal path length to required for identifying the target. In order to de

velop a formula for the probability of detecting a target, we introduce the notion of

T -reduced visibility measure, V(T ) , which is the total length of visible segments , each

one reduced by T units, i.e. ,

M

V ( ) = ( X ; -7 ) + ( 1.5)

i= 1

where at = max (a, 0 ) . The probability that a target is not detected is

po (To) = Pr { V ( To) = 0 } . ( 1.6)

On the other hand , the probability that C is completely visible is

P1 = Pr{V(T ) = L -T}, for all 0 STSL. ( 1.7 )

Indeed, when C is completely visible, M = 1 and X1 = L. Let N denote the number

of shooting trials, after detecting a target. If a single shooting trial requires a setment of

length 1 to be completely visible, then

M

N = [( X; - 70 + / T) , ( 1.8 )

i= 1

where (a) is the maximal integer not exceeding a . Notice that

M

Σ (X; – to – T)+ SNS (Xi – 7 )+4
1

NS (X:-1)+ ( 1.9)

i= 1

Hence, according to ( 1.5) and ( 1.9 ) ,

V ( 11 )/ T < N < V ( To ) / T , ( 1.10 )
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where Ti = To + T .

If the probability of failure in each shooting trial is q , and the shooting trials are inde

pendent ( Bernoulli ) , the number of shooting trials required until the first success, J , is

distributed geometrically. Accordingly, the probability of failure ( not hitting the target ) is

Q = E {qN } . Thus, according to ( 1.10 ) . lower and upper bounds for Q are, respectively,

Qc and Qi, where

Qi = E {q " (ti ) / } , { = 0,1 ( 1.11 )

Notice that Qi is the value of the MGF of V ( T;) at the point t = ( log D )/ T .

2. The Moments and MomentGenerating Function of VT).

For the sake of determining the inoments of V( 7 ) we introduce the following definition

of this measure ,

V T = Ir (s )/(s ) ds ( 2.1 )

where 1 ( s) = 1 if a segment of C of length 7 , centered at (r( s ) , s ) is completely visible ,

and Ir ( s) = 0 otherwise. $ 1 , - and su, are direction coordinates of points within C , of

distance 1/2 along C from sl and su respectively. More formally, let

L( s ) = 5. )dy
( 2.2)

Then, $ 1,7 = L- ' ( 7/2 ) and sunr = L - ' ( L - 7/2 ) .

The n- th moments of V ( T ) is thus

na ( ) = EU ].*Ir ( 8 ) / ( s)ds )" }

-- /| E{[]+(85)[1](63) s

( 2.3 )

i= 1

The set Anne is the simplex

An ,s = {(s1,... ,Sn); $ 1,5- < si < ... < sn- < 50, - } . ( 2.4 )

Furthermore, E { [ [ 1 (si)} is the probability that the union of n segments of C , each one, ,

of length 7 , centered at n points having direction coordinates si < ... < sn , is completely

visible. This probability is designated by Pn ( 81 , ... ,Sn; T ) . Thus the n - th moment of V ( 7)

i= 1

is

no ( T ) == n !

n!S...Spa(6....,dasmi ")[ It(s.)dsi ( 2.5)

i= 1

The method for determining Pn ( 81, ... , Sn ; T ) and Mn ( T ) is based on a general methodology

developed by Yadin and Zacks (3,4 ) for the special case of r = 0 the modifications required

for T > 0 , are given in a Technical Report (6 ) .
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3. AnApproximation to the CDF of V(T)

The cumulative distribution function (CDF) of V(T ) is a mixture of a two-point distribu

tion concentrated on {0 , L -T } and a distribution concentrated on the interval (0 , L - T ).

For the purpose of presenting the approximation discussed below, we consider a normalized

measure of visibility W (T ) = V(+ ) /(L –7) , which is concentrated on (0,1 ) . The CDF of

W( T ) can be represented as

0

Fr (w ) =

{

if w < 0

0 < w < 1

, 1 < w

po (T ) + ( 1 - po (T ) – Pı )F *, (w )

1

( 3.1 )

If, for example, G(yle, 0) is absolutely continuous then Fi (w ) is an absolutely continuous

CDF on (0,1). Let Mr (T ) denote the n-th moment of W (T ). Obviously, nn (T ) = (L -

T )" Hn( 1 ), n = 1,2 , ...

Furthermore, for n = 1,2 , ...

Ho (7 ) = pa + (1– po (r ) – ps ) "of wºdp; ( w ), ( 3.2 )

no
Applying the Dominated Convergence Theorem one immediately proves that lim Mo (T ) =

Pi for all 20 .

Explicit expressions for po (t ) and Fi (w ) are not available. We apply here a beta

approximation to Fi (w ) and provide a numerical approximation to po ( T ) . This type of

mixed -beta approximation was applied also in (3,4,5) . As will be shown in Section 6 , in

some special cases , the first ten moments of W(T ) and of the mixed-beta approximation are

very close. This indicates that in those cases one has a highly effective approximation. In

cases where the moments are not in agreement better approximation should be attempted .

The approximating beta -mixture CDF is given by the formula

0 if w < 0

ť (w ) = { po ( T ) + ( 1 – po ( T ) – pı)Iw (aq ,Br) , 0 5 w < 1

if 1 < w ,

(3.3)

1

where Iw ( a , b ), 0 < w < 1,0 < a, ß < oo , denotes the incomplete beta function ratio.

The probability pi of complete visibility of the segment ( SL , Su ) of C is determined by

the shadowing model, as shown later . The values of po (t ), a, and Br are determined by

equating the formulae of the first three moments of Ær(w ) to those of W(1 ) , as shown in

(3 ) .

4. Bounds for the CDF of N and for Q

Inequality ( 1.10 ) yields lower and upper bounds for the CDF of N. Indeed, from ( 1.10 ) ,

Fr.(1.)s Pr { N 5 n} SF 12 "
( 4.1 )

The CDF's in ( 4.1 ) can be approximated by the mixed -beta CDF (3.3 ) . According to

( 1.11 ) , the lower and upper bounds , for the failure probability Q , are the value of the
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MGF of W( Tili = 0,1 , at the point t = ( L – Ti) log q . Let Gr ( t ) indicate the MGF of

W( ) . This function can be expressed in terms of the moments of W ( 1 ) as

Gr ( t) = 1+ pi(e – 1 ) + Ź " (7) , -00 < t < 0o . ( 4.2 )

n= 1

Since (T ) 10 as n grows the infinite series in (4.2) converges faster than e , and

therefore a small number of terms will often provide a good approximation. Another

method of approximating Gr ( t) is by employing the MGF of the mixed -beta distribution

(3.3 ) with õ ( T ), a , and Br .

5. Numerical Example

In the presentsection we provide an example which demonstrates numerically the results

of the present paper. Weconsider the case of an arc C and annular strip S, which was

discussed in Section 6.1 . The parameters of this case are:

OL = -1/2, SL -7/3 , su = 7/3, 0, = */2 , r = 1 , w = .6 , u = .4 , 1 = 5 .

In addition, the diameters are uniformly distributed over the interval ( .1 , .5 ) .

In Table 5.1 we present the first 10 moments of W(T ) , for 7 = 0( .1 ) .4 . The correspond

ing moments of the mixed -beta distribution (3.3 ) are also given for comparison.

As shown in Table 5.1 , the first ten moments obtained from the mixed -beta CDF , Æ ,(w ),

differ from those of the correct distribution only at the 4th decimal place. This reveals an

excellent approximation to the CDF of W( t) by X- (w ), in the case under consideration.

In Table 5.2 we provide the parameters of themixed -beta distributions associated with
Table 5.1 .

The values of po ( T ) in Table 5.2, provide the mixed - beta approximations to the probabil

ities po (To ) ofnot detecting a target. This is obviously an increasing function of to . Thus,

in the present example, if To = .1, po (to) = .012 while if To = .4, p .( 1.) = .043 . pi = .27 is

the probability of complete visibility along the path . Since the moments of the mixed -beta

distributions Ę ,(w ) fitted so well those of W ( ),we replace Fri (zm ) with F : ( FR ),i2 =

0,1 . In Table 5.3 we present Fc: ( -T ) for Ti = 01.1 ) .4 , T = .1 .

SL – Ti

The values of Qi = E exp { t ; W ( Ti ) } } where t; = log ( 9 ) with q = .8 , are

also given in Table 5.3 .

Asseen in Table 5.3 , if T = .1 and To = .1 the lower bound of Q is .0967 and the upper

bound for Q is .1273 . If however, to = 0 then .0704 < Q < .0967 .

The bounds for the CDF of N are read from Table 5.3 in a similar manner. For example,

if To = 0 , T1 = .1 + To = .1 then for n = 6 , .0435 < P { N < 6 } < .0785 . If, To = .1 then

T1 = .1 + To = .2 and .0785 < P {N < 6} < .1253 . Thus, from the first two columns of

Table 5.3 we obtain that , when to = 0 , the expected number of trials, E {N } , is between
13.7 and 15.1 .

Sn

T
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1 2 3 4 SI 6 7 8

9

10
T

10.0 1.738

.738

.600 .398 .351.517

.517

.462

463

.425

.425

.378

.378

.363

.363

. 3421

342.600 .398 .351 .

10.1 . 351
O

.704

. 704

.561

.561

.479

.479

.427

.427

.393

. 393

. 369

.369

.338

.338

.329 !

.329

3211

321.351

10.2 .671

.671

.526

.526

.447

.447

.399

.399

.368

.369

347

347

332

.332

.321

.321

. 313 . 307

. 3131.307

0.3 .641

.641

.497

.497

. 421

.421

.377

.377

. 349

.349

.330

.331

. 318

.318

.308

.309

. 302

.302

.297

.2971

0.4 .614

.614

.471

.471

.399

.399

.359

.359

.334

.334

. 318

.318

.307

.307

.299

.300

.294

.294

.289

.290

TABLE 5.1 (lowerMoments of W ( T ) ( upper line ) and of F. ( w )

line ) for = 0 (.1 ) .4 and n = l ,
T

10 .

T

a ço ( t ) P1

0

at
B

τ

0 .2353 .0064 .27 3.3905 1.8888

.1 .2559 .0119 .27 3.0675 2.0334

.2. .2747 .0194 .27 2.8000 2.1640

.3
.2917 .0298 .27 2.6076 2.3093

.4 .3069 .0431 .27 2.4814 2.4808

TABLE 5.2 . The Parameters of the Mixed - Beta Distribution

F, ( w ) for t = 01.1 ) .4 . lo denotes the standard

deviations . )
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n 0.0 0,1 0.2 0.3 0.4

0 00,0ܪܪ 0 . 0119 0.0194 0.0298 0.0431

1

0.0065 6. 6122 0.0203 0.0318 0.0466

2 0.0075 0.0147 0.0255 0.0411 0.0613

3 0.0104 0.0211 0.0375 0.0804 0.0894

4 0.0166 0.0332 0.0577 0.0906 0.1307

5 0.0273 0.0520 0.0870 0 .1314 0.1836

6 0.0435 0.0785 0.1253 0.1819 0.2458

7 0.0662 0.1131 0.1723 0.2405 0.3145

8

0.0960 0.1557 0.2269 0.3052 0.3865

9 0.1333 0,2059 0,2879 0.3736 0.4585

10 0.1782 0.2628 0.3532 0.4430 0.5272

ܐܐ 0.2303 0.3252 0.4209 0.5106 0.5894

12 0.2890 0.3914 0.4884 0.5735 0.6423

13 0.3531 0.4592 0.5529 0.6288 0.6836

14 0.4208 0.5261 0.6115 0.6738 6 , 7117

15 0.4902 0.5891 0.6613 0.7063 0.7265

16 0.5582 0.6448 0.6992 0.7249 1.0000

17 0.6213 0.6896 0.7226 1.0000 1.0000

18 0.8750 ܘ.7183 1.0000 1.0000 1.0000

19 0.1139 1.0000 1.0000 1.0000 1.0000

20 1.0000 1.0000 1.0000 1.0000 1.0000

Q;
0.0704 0.0967 ܘ.ܐ213 0.1621 0.2000

in

TABLE 5.3 . The CDF F . with r ; . , 1 : = 0 ( . ) .4 ,1 " 0 ( 1

L=sy- Ski and the corresponding MGF Qi .
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COMBAT MODELING

One afternoon of the 35th Conference on the Design of Experiments in Army

Research , Development and Testing was devoted to a Special Session in the

important area of combat modeling. First on the agenda was a paper by Donald

H. McCoy entitled "Statistical Issues Related to Combat Modeling , " and is

published in these proceedings in the format of a slide presentation .
The

author advised the editor of these proceedings that most of the slides are

self -explanatory ; some are not . He figures that anyone who really wants to

follow up would contact him. The title of the second paper planned for this

session was " The Ballistic Research Laboratory Firepower Control Simulation

from Inception to Validation ," and is published in these proceedings .

Unfortunately , its author , Ann E.M. Brodeen , was unable to attend the

conference . Her place on the agenda was filled by a paper entitled " A

Nonparametric Approach to the Validation of Stochastic Simulation Models " by

William E. Baker and Malcolm S. Taylor . The last paper of the Special Session

was presented by Eugene Dutoit . The attendees were given a thirty-page handout

that he prepared for the convenience of the analyst who has to examine the

results of force -on -force combat modeling. He provided these proceedings an

abstract of this handout .
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O
TRADOC ANALYSIS COMMAND

(TRAC) 0
MISSION

The mission of TRAC is to conduct studies and analysis to

support doctrine, combat and training developments in the

Concept Based Requirements System ; lead the TRADOC team

conducting major studies and analysis ; and develop and

maintain analytic tools, scenarios and simulations for

analysis and training of Airland Battle operations world wide

GOALS

* LEADERSHIP

A Command whose leaders at all levels possess the highest

standards of ethics and professionalism , committed to

excellence in mission accomplishment and the well -being of

subordinates

* CENTRALIZED COMMAND OF ANALYSIS

A Command which provides analytic service based on a well

developed and managed study program with corporate

development of taskers and plans and fully coordinated

execution

* INTEGRATED ANALYSIS

A Command whose analytic process ensures a balanced

representation and linkage of the Army's functional areas

and echelons in a worldwide joint / combined operations and

environments which are simulated and analyzed

* DIRECTED RESEARCH

A Command which continually explores emerging technologies

and innovative approaches and harness them to improve the

quality and timeliness of its analytic products

* QUALITY PRODUCTS

A Command which is committed to excellance in Analysis and

delivers timely , high quality analysis and simulations to

meet the needs of Army leaders and trainers

PROFESSIONAL WORKFORCE

A Command composed of military and civilians who possess the

highest ethical and professional standards , and the desire ,

skills and ability to produce the finest analyses for the army
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ATTRITION COEFFICIENTS

INTERACTION OF FOUR PROCESSES

• LINE OF SIGHT

• TARGET ACQUISITION

• TARGET SELECTION

• FIRING AND KILLING

1

A : hx PF

EFK

WHERE

h : PROBABILITY THAT A TARGET BEING FIRED ON OR

ACQUIRED WILL BE DESTROYED BY THAT FIRER

BEFORE LINE OF SIGHT IS LOST OR THE TARGET

IS DESTROYED BY ANOTHER FIRER.

EFK - EXPECTED TIME THAT A FIRER SPENDS FIRING

AT A TARGET WHICH HE HAS ACQUIRED AND

SELECTED WHEN THE ENGAGEMENT ENDS IN A

KILL BY THE FIRER (CONDITIONAL KILL RATE ).

PF UNCONDITIONAL PROBABILITY OF FIRING

TRADOC ANALYSIS COMMANDI

-0
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ATTRITION COEFFICIENT

ASSUMPTIONS

EXPONENTIAL DISTRIBUTION OF

• TIME TO ACQUIRE

• DURATIONS IN VISIBLE OR INVISIBLE STATES

• TIME TO KILL

EFFECTS OF AN AGGREGATE GROUP CAN BE

REPRESENTED BY A NUMBER OF

* AVERAGE” ELEMENTS

TRADOC ANALYSIS COMMAND

-
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BASIC PARAMETERS

• NUMBER OF FIRERS

• WEAPON CHARACTERISTICS

- RANGE

- FIELD OF REGARD

• NUMBER OF TARGETS IN RANGE

• PROBABILITY OF LINE OF SIGHT

• ACQUISITION RATE

• RATE OF MOVING OUT OF LINE OF SIGHT

• RATE THAT OTHER WEAPONS KILL TARGETS

• SELECTION PRIORITIES

• KILL RATE

• FIRING RATE

TRADOC ANALYSIS COMMAND

O
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CURRENT RESEARCH EFFORTS

• AI BASED CORBAN REPLACEMENT

(TRAC -FLVN / TRAC -LA )

• ATTRITION MODELING RESEARCH

(ANCKER /GAFARIAN )

• ARMOR/ANTIARMOR WEAPONS MIX ANALYSIS

• GENERALIZED VALUE SYSTEM

(Dr. PARRY )

• EXPERT SYSTEM FOR POST PROCESSING

(TRAC -FLVN )

• JANUS/NTC COMPARISON

( TRAC -MTRY)

• MODEL-TEST-MODEL W/CASTFOREM

(TRAC-WSMR)

• TARGET SHADOWING

(Dr. ZACKS)

• VIC EXPERT SYSTEM TO PRODUCE

DECISION TABLES

• COMPETITIVE TRADEOFF MODELING

( Dr. ROBINSON)

• HIERARCHICAL ANALYTICAL NETWORK SYSTEMS

( Dr. CHARNES)
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Ann E.M. Brodeen

Director

U.S. Army Ballistic Research Laboratory

ATTN : SLCBR -SE - W

Aberdeen Proving Ground, MD 21005-5066

(301) 278-4109, AV 298-4109

Abstract

The Ballistic Research Laboratory Firepower Control Simulation

(BRLFCS) is designed, in part, to support the on -going investigation of

new ways of attacking the problem of data distribution on the

battlefield . Ideally, prior to being utilized, the model should be vali

dated, i.e., tested whether or not it reasonably approximates the process

of distributing tactical information across the battlefield. However,

model validation generally assumes the availability of empirical data in

order that some comparison may be made between the output gen

erated the model and real-world data . Unfortunately, a very limited

empirical data base exists for the validation process. This paper pro

vides an overview of BRLFCS related issues, i.e., characteristics, sup

ported applications, planned modifications. More importantly, a discus

sion of an approach proposed by Iman, Helton, andCampbell for vali

dating large -scale computer models by replacing empirical data with

model output will be presented in the context of the BRLFCS validation

process ( 1,2 ].
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I. Introduction

The BRLFCS is a large -scale information distribution model developed by the Weapon

Systems Technology Branch (WSTB ), System Engineering and Concepts Analysis Division

( SECAD ), BRL. Although a limited verification has been on - going as the model has evolved,

the question has been continually raised as to whether the model could be statistically vali

dated.

Currently, limited data exists for only a few tactical elements, e.g., the fire support team

headquarters (FIST HQ), the Field Artillery Battalion Fire Direction Center (FA Bn FDC ),

of the several included in the BRLFCS. This data was collected over the past several years

from statistically designed firepower control experiments conducted in both research facility

and field environments (3,4,5,6,7 ). From the scope of the previous tests, it became evident

that significant monetary and human resources must be expended to collect firepower control

data for even a single tactical node. However, the WSTB is constructing its own Firepower

Control Research Facility ( FCRF) which should ease past resource burdens tremendously.

Statistical validation of the BRLFCS is beset by not only the lack of experimental data,

but costly simulation runs and large numbers of input variables with differing characteristics,

e.g., qualitative and quantitative, discrete and continuous, ranges covering several orders of

magnitude. These are all familiar problems facing anyone wishing to validate a large-scale

simulation model. Although there has been innovative research done in this area, it, too,

assumes the availability of at least some empirical data (8]. Fortunately, there is a technique

which holds promise for validating large -scale models encumbered with the types of

aforementioned problems. This generalized technique was proposed by Iman, Helton, and

Campbell and is outlined in a two -part journal article ( 1,2 ).

This paper broadly outlines the techniques being proposed to validate the BRLFCS and

the preliminary steps which have been completed at the time of the writing of this paper to

place the validation process in motion . With this in mind, there are no results to report at this

time. However, the author would like to solicit comments and critiques of the proposed solu

tion to this problem , particularly from those who may have actually used the methodology.

II. The Ballistic Research Laboratory Firepower Control Simulation

a . Characteristics

The BRLFCS will be used to evaluate brigade (bde) area firepower control concepts for

maneuver (mvr) and fire support elements. It is not intended for the model to be all

encompassing, but rather to provide an overview of the distribution of tactical information

across the battlefield .

Some of the relevant features of the BRLFCS are presented in Figure 1. The version

represented is a maneuver battalion (mvr bn ) supported by field artillery units and is the ver

sion which will initially be validated. There also exists a brigade version which differs from the

battalion version in scale only. Of particular importance with regard to the validation process

is the fact the BRLFCS is a stochastic model, where stochastic model is hereby defined as
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one in which, for each set of input values, a set of output values occurs with a certain proba

bility. With such a model, any number of the input variables may be deterministic, so long as

at least one is stochastic. Although a deterministic simulation was initially considered, in

order to meet anticipated needs, a certain degree of randomness was built into the model,

with the capability to suppress it if desired . Therefore, certain features of the BRLFCS were

also designed to be stochastic. For instance, provision was built in to select the time a mission

is initiated. These times may be either assigned explicitly, or the mission initiation rate, i.e.,

number of missions per hour, can be given and the times assigned based on a random number

string.

Land Based

Any mix of Blue Forces, myr bde and below ,

including relevant fire support

Supports any conflict for which data transmission

requirements can be specified

Resolution down to individual radios / data distribution units

operates with 260 in game; provision for 500

Written in 'C

Input requirements: networks; units; transmission lengths

and times; transmitter characteristics and locations; scenario data

Outputs: unit and network loadings; queues; message and mission

timelines

Full scale runs made on a CRAY

Reduced scale runs made on a Gould 9600

Transmissions may be either TACFIRE or packet format

Accomodates both TACFIRE and packet switching networks

Processes performed in parallel

Figure 1. BRLFCS Features
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b . Concept

Although the simulation was planned so that it will be able to support future

Army /DARPA Command & Control Project (ADDCP ) activities, its principle function will

be to demonstrate and evaluate the potential of new concepts of dynamic fire support

management applications at the fighting level (bde and below ), in particular the BRL Infor

mation Distribution System ( IDS) fact-based technique [9] . * In support of the IDS, the

BRLFCS will be used to predict those links and/ or procedures for data dissemination that

result in excessive burdens on specific tactical nodes or networks, and to determine which

aspects of the information flow have deleterious effects on mission duration time or asset util

ization.

Overall, utilization of the computer simulation model should help narrow the focus of

the on -going tactical computer science research , preventing it from pursuing " blind alleys".

c. Planned Modifications

Since the BRLFCS is designed to address specific issues while continuing to support the

tactical computer science research effort, the simulation can be modified as needed. One

such issue which may necessitate investigation, and which directly impacts the build up of

queues in the network, is the manner in which high -priority missions entering a queue are

handled. Normally this type of mission should be immediately advanced to the top of the

queue for processing; however, the BRLFCS presently handles all missions on a first-in -first

out ( FIFO ) basis. While provision has already been built into the model to accomodate prior

ity missions, the computer code has not yet been changed to address this issue.

Two other issues which the simulation does not presently address are unit attrition and

multi-path information routings, ie., a more advanced scheme for routing packet message

types (only ) around the battlefield . These two issues are actually related in that, supposing a

unit is operating at reduced efficiency, it may become desirable to reduce, or supress alto

gether, the amount of message traffic passing through that node. Under the existing routing

algorithm pattern in the BRLFCS, this is impossible. As can be seen from Figure 2, the net

works are now connected by single gateways ( located at nodes 49 - 52, 54, 56, 78 , and 80),

thus forcing a transmitted packet message to follow a single path regardless of the number of

times the message must be sent. Such a scheme may allow queues of unacceptable length to

build up quickly.

The basic concept of the IDS is to design a system capable of representing, storing, disseminating, and displaying facts in a tactical

distributed computer environment.
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III. Validation of the BRLFCS

a . Verification and "Face Validation "

During the course of its evolution, the BRLFCS has been undergoing almost continual

verification; in other words, the correctness of the model is being established. This phase

may be loosely described as "debugging" the program , e.g. , determining the reasonableness of

values of certain model input variables and the correctness of the computer coding used. The

°C program language allowed the BRLFCS to be easily structured into modules, or subpro

grams. By running the model using data employed in its construction, and observing the out

put from these modules, both the developer as well as "experts" knowledgeable about infor

mation distribution system models feel comfortable the model is behaving acceptably. When

" experts" are insured a simulation is realistically representing the assumptions upon which it is

based, this is often refered to as a model having " high -face validity".

Performing such a verification is allowing for a more efficient, simpler simulation

design, which will eventually account for savings in computer time. Also, by previewing the

output of the simulation modules, an experimenter is protected against anomolies which

might occur in the responses when the model is used.

b . Anticipated Validation Approach ( es )

It was originally envisioned that verification and " face validation " of the BRLFCS, as a

complete system , would be the best that even recent advancements could offer, particularly in

light of the difficulty in obtaining experimental data. Winter, et al, states, " The quality of the

component models and the excellent knowledge of the random process along with a sys

tematic verification must be a substitute for validation (10 ]."

However, a literature search unveiled a sensitivity approach to the validation of large

scale computer models, which to the author's knowledge, has not been utilized at the BRL.

The approach is fully outlined in a two-part paper by Iman, Helton, and Campbell. Their

approach focuses on the construction of a response surface as a replacement for the model.

Underlying this approach is the substitution of model output for experimental data (due to

the lack thereof). The remainder of this paper will highlight some of the features and stra

tegies of this methodology which are beingimplemented into the validation of the BRLFCS.

Also planned is a statistical validation of the tactical nodes for which experimental data

already exists (and which is independent of any data utilized in the development of the simu

lation ). Referring to Figure 2, the tactical elements which will be validated are the FIST HQ,

nodes 69 - 72; Field Artillery Battalion Commander (FA Bn Cdr ), node 77; FA Battery Fire

Direction Center (FA Btry FDC) positioned at the FA BTRY HQ, node 80. Although some

similar type elements may be currently co - located with other types, or may even change their

physical location in future applications, they are otherwise generic in nature, e.g., the func

tions of FIST node 69 are equivalent to FIST node 70.

The approach for validating these nodes will entail a nonparametric procedure recently

developed by Baker and Taylor for a stochastic computer simulation model [8] .
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IV . Strategies and Features

a . Preliminary Discussions of Model Input and Output Variables

Although numerous types of descriptive data will be collected during each simulation

run , three model outputs have been identified as the measures that will be used in validating

the BRLFCS. The three outputs are: 1) net usage, ie., the percent of time a specific net is

occupied by message transmissions; 2) unit utilization, i.e., the percent of time a specific unit

is occupied with handling message traffic; and 3) mission duration.

The formats of the required BRLFCS inputs vary. Some require the simple assignment

of a numerical value for program identification purposes only, e.g., packet radios assigned a

code of 6, while others are strictly deterministic or stochastic in nature . Still others may

currently be designated as either deterministic or stochastic as mentioned in Section II.a.

Most of the present effort focuses on discussions being held between the model

developer and the analyst. As a result of these discussions, several issues were identied as

impacting the selection of an appropriate sensitivity technique. First, the developer has pro

vided the analyst with an assessment of each input variable’s anticipated impact on the model

output based on his " expert" opinion. Second, for analysis purposes, it is being assumed that

nonlinear relationships with the model outputs may exist. This does make the construction of

an appropriate response surface a bit more tedious, but doable. However, it is also being

assumed that there are no 2 -way or above interactions among the input variables. Third ,

since the three output measures constitute a time dependent function of model input, each

input variable must be examined to determine whether its importance changes significantly

over time.

b . Input Vector and Significant Input Variables Selection Techniques

Obviously, in order to fit a response surface, model output must be obtained for various

values of the input variables. The choice of which sampling scheme to use to select values for

the input vectors presented a problem . Random sampling is not appropriate and, as for the

other possibilities, e.g., stratified sampling, double sampling, it nearly boiled down to a " grab

bag" selection process. The sampling technique must take into consideration the possibility

that one or more of the input variables might change in importance over time, as well as

insure that all portions of each variable's sample space will be represented by input values,

even when that distribution of values covers several orders of magnitude.

The Latin Hypercube Sampling (LHS) technique claims such advantages over other,

more common , sampling schemes ( 1,2,12 ]. Another feature of this technique which makes it

even more advantageous to the BRLFCS validation process, is that the probability distribu

tions used with LHS do not necessarily have to be the " true " distributions In fact, if preferred,

the range of values for the input variables may be used in place of probability distributions.

For the majority of the BRLFCS input variables, their ranges of values is the only information

available .
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c. Input Variable Ranking and Response Surface Construction

One of the objectives of this sensitivity analysis will be to obtain a ranking of the poten

tially important input variables. This result will be used to help drive factors selected for

future IDS testing. There are several regression techniques which may be used to select a

"best subset " of the predictor variables. For the BRLFCS validation, stepwise regression will

be utilized initially to construct a response surface based on a linear combination of the

independent (input) variables ( 13 ].

Following an initial fit, several things should be checked, e.g., is the fit adequate, con

sistency of independent variable selection if similar dependent variables are present, are the

predictions reasonable. If the response surface is not providing a suitable representation for

model output, then additional work is needed. Earlier it was mentioned that there is the pos

sibility that the relationship between some, or all of the BRLFCS input variables and the out

puts is nonlinear. Iman, Helton, and Campbell suggest the use of rank regression as

developed by Iman and Conover [ 14 ]. Rank regression is a relatively simple concept. Data are

replaced with their corresponding ranks whereby usual regression procedures may be per

formed on these ranks.

d . Other Statistical Considerations

Only a few of the ideas that must be considered for the validation of the BRLFCS, or for

that matter any sensitivity analysis, have been outlined using Iman, Helton, and Campbell as a

guideline. No mention was made with regard to the actual validation of the response surface,

the various diagnostic tools available for obtaining preliminary information for the construc

tion of the surface, or data transformation. These issues are discussed in References ( 1,2) .

V. Summary

The technique outlined by Iman, Helton , and Campbell appears to be a viable approach

for validating the BRLFCS. Additionally, the use of the nonparametric technique developed

by Baker and Taylor for stochastic models seems appropriate for performing a statistical vali

dation of those tactical nodes for which experimental data exists.

A critique of these approaches, as well as suggested alternatives, are invited by the

author.
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A NONPARAMETRIC APPROACH

TO THE VALIDATION OF

STOCHASTIC SIMULATION MODELS
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ABERDEEN PROVING GROUND , MARYLAND

ABSTRACT

For three decades interest in simulation modeling and simulation languages has been

expanding, almost keeping pace with the phenomenal rate of growth of computer technology.

Lagging somewhat behind has been attention to the validation of the resulting simulation

models; that is, the establishment of some level of confidence that the model does, in fact,

accurately mimic some real -world process. In the last fifteen years, research in validation

techniques has been substantially increased; and one general conclusion has been that

statistical tests are desirable in the validation process.

We have adapted a nonparametric statistical technique to validate a stochastic

simulation, and this procedure has subsequently been applied to a computer model currently

in use at the US Army Ballistic Research Laboratory. Monte-Carlo methods have provided

an indication of the power of this statistical test.

KEYWORDS: Hypothesis Testing, Ranking Procedures, Power of Test
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I. INTRODUCTION

For three decades interest in simulation modeling and simulation languages has been

expanding, almost keeping pace with the phenomenal rate of growth of computer technology.

Lagging somewhat behind has been the concern for the validation of the resulting simulation

models; that is, the establishment of some level of confidence that the model does, in fact,

accurately mimic some real-world process. In the last fifteen years, research in validation

techniques has been substantially increased; and a consensus of general conclusions has

formed :

1 .
validation is problem dependent - there is no one general validation technique,

mainly because the output from a model may be independent or correlated,

univariate or multivariate, stationary or dynamic, and so forth; in fact, the model

itself may be deterministic or stochastic,

2.

in general, absolute validity is nonexistent - once a particular technique has been

established, the model is usually validated only for a specific purpose and over a

specific range of values,

3.

empirical data are necessary - in order to validate a model, some comparison of

output data with real -world data must be made; furthermore, these empirical

data must be independent of those used in construction of the model, and

4. statistical tests are desirable of the many methods proposed for validating

simulation models, the use of statistical tests seems to be preferred, possibly

because of the ability to establish some level of confidence.

Nonparametric validation methods generally involve a procedure known as hypothesis

testing. The initial step is to state a null hypothesis, usually" the simulation model is valid."

Then a level of confidence is established, often 95%; and a particular test statistic is chosen.

Two different errors are present in hypothesis testing. The first is called a Type I error and

occurs when a true null hypothesis is rejected. If the level of confidence has been set at 95 % ,

then it follows that the probability of a Type I error is 5%. However, in simulation model

validation a Type II error is the more important to control; this occurs when a false null

hypothesis is accepted. No level of confidence is pre -established to guard against accepting

an invalid model; but, for any particular statistical test, a measure of the protection against

this error is given by the power of the test, equal to the probability of rejecting the null

hypothesis when it is false.

Unfortunately, there is a tradeoff between the two error types; as the level of confidence

is increased (lower probability of a Type I error ), the power of the test is decreased (higher

probability of a Type II error ). This implies that one way to increase the power of a test is to

decrease the level of confidence in it. There are, however, more satisfactory ways; and they

will be mentioned in the summary of this paper. The important point to remember is that

when attempting to validate a simulation model using hypothesis testing, it is imperative that

the statistical test be a powerful one .
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II. LITERATURE REVIEW

As the electronic computer became a more powerful tool, computer simulation became

a more viable method by which the behavior of a given process could be characterized. As

early as the 1950's, articles were being published about computer modeling of entire systems;

and soon after, specialized simulation languages were developed. The pioneers in this field

realized the need for some assurance that the simulation output would be consistent with the

empirical data that were available. However, prior to 1967 there was very little written that

provided any explicit procedures which might be applied to determine the soundness of a

computer model. In that year several papers concerning this problem were published, and

two of them became a foundation upon which most subsequent efforts have been constructed .

In 1967, Fishman and Kiviat' provided definitions which differentiated the notions of

verification and validation, terms which had previously been used interchangeably.

" Verification determines whether a model with a particular mathematical structure and data

base actually behaves as an experimenter assumes it does. Validation tests whether a

simulation model reasonably approximates a real system .” Most individuals working in this

area today have subscribed to these definitions, although papers continue to be published

which donot discriminate between the two ideas. Figure 1, taken from a paper by Winter, et.

al.“, is a Venn diagramillustrating the relationship between verification, validation, and other
concepts within the field of computer simulation. Stone believed the word assessment "... is

preferable to validation which has a ring of excessive confidence about it." However, in this

paper we will continue to consider validation as defined by Van Horn , who expanded on the

previous definition by giving it a somewhat statistical flavor. " Validation ... is the process of

building an acceptable level of confidence that an inference about a simulated process is a

correct or valid inference for the actual process ."

1

Fishman, G.S. and Kivia PJ., Digital Computer Simulation: Statistical Considerations," Memorandum RM -5387 -PR , The Rand

Corporation , 1967.

2

Winter, E.M., Wisemiller, D.P., and Ujihara , J.K, Verification and Validation of Engineering Simulations with Minimal Data ,"

Proceedings of the 1976 Summer Computer Simulation Conference, 1976.

3

Stone, M., Cross-Validating Choice and Assessment of Statistical Prediction,' Joumal of the Royal StatisticalSociety, Series B -36, 1974 .

4

Van Hom , R , Validation,' The Design of Computer Simulation Experiments,Duke University Press, 1969.
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The second influential paper to appear in 1967 was by Naylor and Finger. In it they

proposed a three-stage approach to validation of a computer simulation. This technique, or a
modified version of it, has been used by numerous authors. Lawº has augmented their

approach with specific suggestions for each of the three stages:

develop high face-validity - insure that the simulation seems reasonable to those

people who are knowledgeable in the area,

1.

2 . test the simulation assumptions examine the data used in building the

simulation and empirically test the assumptions drawn from those data, and

3. compare simulation output data with empirical data use tests, statistical if

possible, to determine a level of confidence in the simulation

When attempting to validate existing models, the first two stages will often have already

been completed by the developer of the simulation leaving only the third stage, potentially the

most difficult.

S

Naylor, T.H. and Finger, J.M., Verification of Computer Simulation Models," Management Science,Vol.14 No.2, 1967.

6

Low , A.M., Simulation Modeling and Analysis,University of Wisconsin , 1979 .
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Not everyone subscribes to the three- stage approach to validation . However, there does

seem to be a general agreement that the third stage, comparing simulation output data with

empirical data, is crucial. Sometimes obtaining empirical data in the region of applicability is

very difficult, especially in engineering simulations. Winter, et. al.? mention in that case, “ The

quality of the component models and the excellent knowledge of the random process along

with a systematic verification must be a substitute for validation." However, Fishman and

Kiviat' are firm in their statement that " ... if no numerical data exist for an actual system , it is

not possibleto establish thequantitative congruence of a model with reality." In attempting

to perform this third stage, Wright' suggests that three questions be considered:

1. how do we intelligently compare simulation output data with empirical data,

2.

how do we collect and exploit the empirical data used in our tests, and

how do we transform the results of these tests into a confidence in the computer

simulation ?

3.

8

Finally, Baird, et. al.º warn that the empirical data used for comparison with the simulation

output data must be independent of those used in building the computer model; otherwise,

we have only verification of the simulation.

Tytula' has divided the many methods used for the data comparison into five general

categories:

1. judgemental comparison - this method seems to be the most widely used and

includes graphical analysis and the comparison of common properties such as the

mean and variance; it is easy to use and quite practical, but the impact of errors

in judgement is difficult to assess,

2. hypothesis testing - this method includes goodness-of-fit tests, analysis-of

variance techniques, and nonparametric ranking methods; since this will be the

category of interest in our report, the advantages and disadvantages will be

discussed in the succeeding section,

3.

spectral analysis - since the output of many simulation models is in the form of a

time series, this method is particularly useful; however, it is difficult to relate the

invalidity at a particular frequency to the overall simulation validity,

7

Wrighh, RD ., Validating Dynamic Models: An Evaluation of Tests of Predictive Power ,"

Proceedings of the 1972 Summer Computer Simulation Conference, 1972 .

8

Baird, A.M., Goldman, RB., Bryan, W.C., Holt, W.C., and Belrose, P.M., Verification and Validation of RF -Environmental Models -

Methodology Overview ," Boeing Aerospace Company, 1980.

9

Tytula, T.P., ' A Method for Validating Missile System Simulation Models," Technical Report B -78-11, U.S. Army Missile Research and

Development Command, 1978.
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4.
sensitivity analysis - this method can determine a range of parameter values and

assumptions over which the simulation is valid, but it is usually difficult to analyze

the effects of the characteristics drifting outside this range, and

5.

indices of performance - this method is useful in ranking models; however, it is

impossible to pick a value for a given index which will always imply a valid

simulation .

Validation is a difficult process because, as Tytula' points out, no single satisfactory

method exists. Most techniques are problem dependent; and, indeed, the output data of a

simulation may be independent or correlated, univariate or multivariate, stationary or

dynamic. In fact, Garrett states that, " The critical dimension affecting the applicability of

various techniques is that of the deterministic or stochastic nature of the output." Only a few

authors have attempted to provide a general validation technique - see Gilmour" for an

example. Most have developed methods which apply to a select subset of simulation models;

and, even then, the simulation is often validated only for a particular purpose or over a

particular range of values. In that case , care must be taken not to apply the simulation model

outside the validated region.

III. VALIDATION PROCEDURES

In this paper we will be examining hypothesis testing as a method for validating

stochastic computer simulation models. This type of procedure allows some level of

confidence to be attached to the results. When employing hypothesis testing, several

assumptions must usually be stated; but by using nonparametric ranking techniques we will

eliminate one major (and often unjustifiable) assumption - that the dataarise from a normal

distribution .

Sargentº2 notes that for hypothesis testing we generally assume a null hypothesis that the

simulation model is valid . Then by establishing a level of confidence for a particular

statistical test, we fix the probability of a Type I error in which we reject a valid model.

However, for simulation validation it is more important to minimize the probability of a Type

II error, that is, accepting an invalid model. The magnitude of the Type II error can be

determined by the power function of the statistical test where the power is the probability of

rejecting a false null hypothesis. For a fixed sample size there is a tradeoff between the two

error types, so that we can increase the power at the expense of the confidence level.

Unfortunately, the power can not be computed against an alternative hypothesis as general

as, " The simulationmodel is invalid "; and therefore, it must be examined against an array of

different specific alternative hypotheses. Nevertheless, we continue to search for powerful

10

Garrett, M., Statistical Validation of Simulation Models," Proceedings of the 1974 Summer Computer Simulation Conference, 1974.

11

Gilmour, P., ' A General Validation Procedure for Computer Simulation Models,' The Austrailian Computer Joumal, Vol.S No.3,

1973.

12

Sargen , R.G., Developing Statistical and cost-Risk Procedures for Validation of Simulation Models," U.S. Army Research Office

Proposal Number 18201-M , 1980.
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statistical tests with justifiable assumptions which will still provide acceptable levels of

confidence .

Let X = ( xy, X , ... XX ) be a vector of inputs to a simulation model, and let y be an output

resulting from X. Then y may take on many values is the case of a stochastic model. Let z be

the corresponding value from the real-world process given the same input vector. In general,

y will not be equal to z since X contains only a finite number of input variables; ostensively,

the most relevant ones. The purpose of the simulation model is to mimic the real-world

process. Thus, in attempting to validate it, we compare each empirical value with the

corresponding model output generated under the same conditions; thatis, the same values for

the vector X

Suppose there exist N pairs of data (y1, 2 ), (y2, 22), ( YN, Zn ) available for

comparison, where each pair corresponds to a different inputvector and where each y; is itself

be a vector of values from a stochastic model. Reynolds and Deaton note that because each

of the pairs was generated under different conditions, it would be incorrect to pool the data

and proceed with the testing of our hypothesis. Rather, we must find a statistical procedure

which examines each pair individually and then allows for the combination of these results

into one overall test that provides reasonable power. With this as our goal, we propose to use

a nonparametric statistical procedures - a process which combines independent cases of the

Mann -Whitney test.

A stochastic model provides a set of output values that, for each given set of input

values, occurs with a certain probability. Mihram states that this "... probability ... serves as

a measure of our human ignorance of the actual situation and its implications." Generally, the

behavior of the system is too complicated to include all of the appropriate inputs in the

computer model. Even if it were possible, the return in accuracy provided by such

thoroughness may be small. Refinement of a computer model usually leads to stochastic

modeling; and because of the abilities of today's computers, the use of such modeling has

substantially increased.

Given M replications, output of the model becomes a set of values y', y ?, .. M for each

set of input values which can be compared with ( in our case ) a single corresponding empirical

value z . Recall that X is a vector of most, but not all, of the relevant input variables. Then z ,

given the value of X , is a random variable reflecting the random error due to the exclusion of

certain factors from X. Also y, of course, is a random variable since the simulation model is

stochastic. We would like to show that Fly / X ), the conditional distribution function of y , is

equal to G (z|X ), the conditional distribution function of z for all - 00 < y, z < oo and for all

Х.

13

Reynolds, M.R , and Deaton, M.L , "Comparisons of Some Tests for Validation of Stochastic Simulation Models,"

Commun. Statist. - Simula. Computa.,Vol.11 No.6 , 1982.

14

Mihram , GA , Simulation : Statistical Foundations and Methodology,Academic Press, Inc., 197 .
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14

Çonsidering N different input sets, the available data consist of N observations

(vi, y ..., Y;̂, 2. ), (ya, yż, ... , Y2, 3 ), · (YN, YN, ..., YN , Zn ) of multivariate random

variables, where the ya's for anygiven observation share a common distribution. Mihram
suggests ranking y ;, Y;, ..., Y;", z; for each i ; if the model is valid, we would expect the z; to fall

somewhere in the middle of such a ranking. This is the initial step in a procedure known as

the Mann -Whitney test, a particular case in which one of the random variables, namely z ., bas

a sample size of one. Since we are dealing with N observations, we need a method by which

we can combine independent cases of the Mann -Whitney test; such a method has been

proposed by Van Elteren and referenced in a very clear example by Reynolds, et.al. ,

The Mann -Whitney test is a hypothesis test involving samples from two distributions that

ests for equality of the distributions. For each input set X a sample of M output sets
y, y , y is obtained from the computer simulation, and the empirical observation z

provides another sample of size one . The following three assumptions are made:

, ..., y

1) both samples are random samples from their respective populations,

2) in addition to independence within each sample, there is mutual independence

between the two samples, and

3) the measurement scale is at least ordinal.

The third assumption means that for any two observations on the random variable we can

distinguish which is larger and which is smaller.

Mм

The null hypothesis is that Fly /X ) = G (z /X ) for a given input set X. When we combine

N of these tests, in the manner suggested by Van Elteren, we have the null hypothesis of

G(z[X) for all -- < y, z < oo and for all X, which we can interpret as, The

simulation model is valid ." Let R; be the rank of zz in the ich observation (y;, Y;,...,

thus, R , is an integer between 1 and M + 1. Then a test statistic T is defined as the sum of

the Ri's over all N observations; that is, T = ER ; Very high or very low values of T will

yi", z;);

i

cause rejection of the null hypothesis. The theory behind the Mann-Whitney test is given in
Conover , and the combination of such tests is explained by Van Elteren

.

A fourth assumption is usually made, that both samples consist of random variables

from continuous distributions. This is to assure that there will be no zeros and, more

importantly, no ties. However, for this test, a moderate number of ties is tolerable; and they

are handled by assigning each of the tied values the average of the ranks normally due them .

15

Van Elteren ,P ., 'On the Combination of Independent Two Sample Tests of Wilcoxon ,"

Bulletin de l'Institute International de Statistique, 37, 1960.

16

Reynolds, M.R, Burkhart, H.E., and Daniels, R.P., Procedures for Statistical Validation of Stochastic Simulation Models,"

Porest Science,Vol.27 No.2, 1981.

17

Conover, W.J., Practical Nonparametric Statistics,John Wiley & Sons, Inc., 1971.
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As mentioned earlier, a misuse of hypothesis testing as a method of simulation

validation occurs when too little concern is shown for the power of the test. The power is the

probability of rejecting an invalid model, and we would like this probability to be as close to

one as possible. Unfortunately, the power can be calculated only for specific alternative

hypotheses. In order to generate power curves for this combination of Mann -Whitney tests, it

is convenient to make one additional, albeit restrictive, assumption; namely, the distribution

of the y's is the same for each vector of input values, and similarly for the distribution of the

z's. Although it would be preferable to avoid this assumption, it is necessary in order to test

against specific alternative hypotheses - in this case, a shift in the mean .

Figure 2 shows some power curves for this test when the underlying distributions are

normal and the mean of the distribution of the z's varies from zero . Recall that a true null

hypothesis would indicate that the means of both F and G tend to be equal to zero . These

curves were generated using a Monte - Carlo procedure which incorporated 10,000

replications. Note the increase in power as the number of observations increases. Figures 3

5 display some power curves for other alternative hypotheses, each figure assuming a

different common distribution for F and G with a corresponding modification of the mean of

G. Notice when the abscissa is equal to zero (when the null hypothesis is true), the

probability of rejection is 0.05 - the value chosen for the probability of a Type I error. The

faster the curve approaches one, the more powerful the test against that particular alternative

hypothesis. Although very narrow in their scope, these results do provide us with an

indication of the overall power of the test against a shift in location and allow us to determine

the extent to which the probability,of a Type II error might be reduced by an increase in

sample size. Reynolds and Deaton look at some test statistics similar to T designed to be

more powerful against other alternative hypotheses.

IV . EXAMPLE

18

The Vulnerability Analysis for Surface Targets (VAST) model is a computer simulation

currently in use at the Ballistic Research Laboratory to evaluate the effect of kinetic energy

projectiles or shaped -charge threats against a single surface target. It incorporates damage

from both the primary penetrator and any associated spall fragments; but currently it is

unable to handle damage resulting from blast, heat, and certain synergistic effects such as

ricochets. Furthermore, there is a variety of opinions, estimates, and decisions, all based on

the experience of the vulnerability analysts but generally providing vague and imprecise data,

which subsequently serve as input to the simulation. Nevertheless, results demonstrate

reasonable face validity, so an attempt at statistical validation of the model seems feasible.

A target description is produced by a separate computer code using a combination of

geometric figures and, once generated, can be viewed from any orientation. After a viewing

angle has been established, a rectangular grid is superimposed over the target in the plane

orthogonal to that angle. From a (uniform ) randomlyselected point within each grid cell, a

18

Hafer, T.P. and Hafer, A.S., Vulnerability Analysis for Surface Targets (VAST): An Intemal Point- Burst Vulnerability Model,"

ARBRL - TR -02154, U.S. Army Ballistic Research Laboratory, 1979 .
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ray is traced through the target; and a list is constructed of all components encountered. If a

spall-producing component is encountered, spall rays are traced from that point of impact to

all critical components in the target. These rays represent spall fragments whose size, shape,

and velocity are chosen at random from specified distributions.

Along each individual ray, residual masses and velocities of the primary penetrator and

associated spall fragments are used to calculate the probability of incapacitation for each

critical component. These are then combined over all critical components and provide a loss

of function ( LOF) for the particular cell, further combined over all cells to provide a LOF for

the particular orientation, and finally combined over several orientations to provide an overall

LOF for the target.

Data were provided by vulnerability assessors who had estimated loss of function for a

particular surface target based on their inspection of actual damage from a particular round

of ammunition - in this case, the function evaluated was the mobility function. When

attempting to compare model output with this empirical data, it was first necessary to

determine the exact point of impact on the surface target during the live- fire exercise. Then

the VAST model assumed thatpoint of impact to be the origin of the ray representing the

primary penetrator. Damage due to that ray and its associated spall rays were then combined

to provide a LOF value which could be compared with the empirical datum point. Therefore,

only one orientation was considered and, for that particular orientation, a ray originating at a

specific point within only one cell was examined. Encountering a spall-producing component

still required a random selection of spall characteristics; and because execution time was

reduced, the model was run using thirty replications - the output data appear in Table 1. This

output from the thirty two replications was compared with the empirical data, using the

method proposed for stochastic simulations.

Table 2 contains the results. Recall that R ; is the rank of z; in the ich observation

(y;, y},..., y , z), and T is defined as the sum of the R.'s. Under the null hypothesis of a

valid model, z has the same distribution as yi Yimounyn;andtherefore,R,isuniformly
distributed over the values 1, 2, ... , M + 1. Lehmann " shows how to establish critical values

against which the test statistic can be evaluated. Modifying his results by incorporating the

number of tied observations, we can calculate the expectation of the test statistic,

1

E [ T] [N (M + 2 ) ], ( 1)

2

and the variance of the test statistic,

1 1

[ N M (M + 2 )] IS ( - ).
12 12 ( M + 1]

i- 1j - 1

where N is the number of observations, M is the number of replications of the model, anddj
represents the number of tied values for the jeh tie in the ich observation with

ni
different ties

in the ich observation. Then T* = ( T - E [ T])/VVar (T) will have approximately a standard

Ν Π

Var ( T)

BA

(2)

19

Lehmann, EL , Nonparametrics: StatisticalMethods Based on Ranks,Holden -Day, Inc., 1975.
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TABLE 2. HYPOTHESIS TEST

Rank within

Shot Number Empirical Value Model Values

43 .734 16

44 .145 11

45 1.000 16

46 1.000 16

47 .100 8

48 .900 27

49 .930 31

50 1.000 16

51 .145 1

52 1.000 16

53 .668 27

54 1.000 16

55 1.000 31

56 .905 31

57 .550 11

58 1.000 22.5

59 1.000 24.5

60 .050 1

62 1.000 16.5

64 .100 13.5

65 1.000 16

66 .668 6

67 .953 7.5

68 1.000 31

69 1.000 16

70 1.000 24

71 1.000 24.5

72 1.000 30

73 1.000 16

74 .905 30

75 .668 15

76 1.000 16

1

Ranks = 584

Critical T -Values ( a = 0.05 ) = 435 (lower ), 589 (upper )

Critical T - Values ( a = 0.10) = 447 ( lower ), 577 ( upper)
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normal distribution. For our example we have 32 observations, 30 replications, and 51

instances of tied values with varying numbers of ties; in this case E ( T) = 512 and

Var
[ T]= 1521. We can calculate critical values by evaluating the equation 1 = 392 + 512,

where ż is the a / 2 percentile of the standard normal distribution. As shown at the bottom of

Table 2, there is insufficient evidence to reject the null hypothesis at an a -level of 0.05;

however, at an o -level of 0.10, the null hypothesis would be rejected.

Since the null hypothesis could not be rejected at an a - level of 0.05, we must be

concerned with the possibility of a Type II error; that is, accepting an invalid model. Figures

2-5 demonstrate the power of these tests against an alternative consisting of a shift in the

mean . Figure 3 shows that the power of this test is very good if F ( the distribution of the

model output) and G (the distribution of the empirical data) are both uniform . However, as

seen in Figure 4, if F and G are both Cauchy, then the power of the test is rather poor.

Reynolds and Deaton " have proposed other test statistics more powerful against

different alternatives; but for the loss of function data where empirical results that are close

to the value one tend to be assigned that value, a shift in the meanseems to be an appropriate

alternative hypothesis. Since the power against this particular alternative is fairly good

overall, our confidence in the hypothesis tests tends to increase. However, we would like to

be able to make these tests and other tests still more powerful and, in the future, will be

exploring methods to accomplish this.

V. SUMMARY

When referring to computer simulation models, a few authors continue to use the words

verification and validation interchangeably; however, most distinguish between the two terms.

Verification of a computer model assures that the simulation is behaving as the modeler

intends, while validation assures that the simulation is behaving as the real world does.

Verification is the process of debugging a computer program ; validation is making it

consistent with reality.

Prior to 1967 very little was written concerning the validation of simulations; but much

has appeared since then, and there has been general agreement on several points - the most

important being that to validate a computer simulation model, empirical observations are

necessary and statistical tests are desirable. All validation techniques can be placed into one

of five categories: judgemental comparisons, hypothesis testing, spectral analysis, sensitivity

analysis, and indices of performance.

Nonparametric ranking techniques are one class of statistical hypothesis tests. We have

advocated a combination of independent Mann-Whitney tests as a validation procedure for

stochastic simulation models. This is a statistical test which assesses empirical data to provide

a certain level of confidence in the computer model. The main disadvantage is the same as

that of all hypothesis testing techniques; namely, their concern for protecting against Type I

errors, sometimes at the expense of Type II errors. A Type I error results in rejecting a valid

simulation model - unfortunate, but not as potentially dangerous as accepting an invalid

simulation model, which is known as a Type II error. For any particular test we can get an

indication of the probability of a Type II error by generating a series of curves that will allow
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us to examine the power of the test against various alternatives.

Power is defined as the probability of rejecting a false null hypothesis, and we would like

this value to be as close to one as possible. For our advocated test we have evaluated the

power for some specific alternative hypotheses by incorporating a Monte -Carlo procedure

into a computer program , which allowed us to perform thousands of replications. Each

replication representsa case in which the alternative hypothesis was true, and we determined

whether or not the test rejected the null hypothesis. Obviously, we can not compute power

against an alternative hypothesis as general as, " The simulation model is invalid ." However,

in being more specific we are forced to examine an array of different alternative hypotheses;

and while a test may be powerful against a subset of these alternatives ( such as a shift in the

mean of a distribution ), it might be less so against others . The most we can hope for is

reasonable power against alternatives important to a particular investigation. The

combination of independent Mann -Whitney tests appears to have reasonable power against a

shift in the mean, but we would like to be able to increase it.

For any given alternative hypothesis there are several ways of increasing the power. One

such way can be seen in Figures 2-5 - increasing the number of observations. Another way is

to reduce the level of confidence in the test itself; that is, allow the probability of a Type I

error to increase. Because of the importance in this area of computer simulation validation,

we hope to develop other ways to make these tests more powerful against a wide range of

alternatives while still permitting them to provide acceptable levels of confidence in their

results.
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SMALL SAMPLE TESTS IN SUPPORT OF COMBAT MODEL ING

EUGENE DUTOIT

U.S. ARMY INFANTRY SCHOOL

FORT BENNING , GEORGIA

ABSTRACT THIS HANDOUT /REPORT HAS BEEN PREPARED FOR THE CONVENIENCE

OF THE ANALYST WHO HAS TO EXAMINE THE RESULTS OF FORCE-ON FORCE

COMBAT MODELING . THESE TESTS HAVE EXACT QUANTILE DECISION CRITERIA

FOR SMALL SAMPLE DATA SETS . THIS IS THE USUAL SITUATION FOR LARGE ,

COMPLEX , MANPOWER RESOURCE INTENSIVE AND TIME CONSUMING FORCE - ON

FORCE MODELS . HOPEFULLY THIS APPLICATION PAPER WILL PROVIDE A REF

ERANCE THAT WILL GIVE SOME OF THE COMMON ( AND EVENTUALLY THE UNCOMMON )

STATISTICAL DECISION CRITERIA APPROPRIATE FOR SMALL SAMPLES . POST

HOC /MULTIPLE COMPARISON TECHNIQUES WILL BE PROVIDED WHERE AVAIL

ABLE . THE HANDOUT IS LENGTHY ( 30 PAGES ) AND NOT APPROPRIATE FOR

PUBLICATION IN THE CONFERENCE PROCEEDINGS . IF YOU WANT A COPY OF

THE HANDOUT PLEASE CALL OR WRITE :

GENE DUTOIT

AV 835-3168/3166

COMM ( 404 ) 545-3165/ 3166

COMMANDANT

U.S. ARMY INFANTRY SCHOOL

ATTN: ATSH - CD -CS - OR (DUTOIT )

FORT BENNING , GA 31905-5400

REQUEST THE USERS OF THIS PRELIMINARY COMPILATION PROVIDE FEED

BACK . ARE THE RANGES OF THE VARIABLES ( TREATMENTS ,REPLICATIONS ,BLOCKS ,

ETC. SUFFICIENT TO MEET YOUR NEEDS? WHAT OTHER TESTS AND PROCEDURES

WOULD YOU LIKE TO ADD TO THIS INITIAL LIST?

TABLE OF CONTENTS :

1 . ONE-WAY INDEPENDENT SAMPLE CK : TREATMENTS , N =

REPLICATIONS )

A. TWO INDEPENDENT SAMPLES ( N s 3 , 4 ,

. 10 , . 20 ).

7 ) , ca : OS ,

B. K INDEPENDENT SAMPLES , KRUSKAL-WALLIS ( K = 3 , 4,1 , ( N =

3 , 4 , 5 ) , CA : OS , 10 , 15 )

B1 . FOST-HOC , ALL COMPARISONS ( K = 3 , 4 ,

3 , 4 , 5 ) , fa- .05 )

6 ) , ( N =

B2 . POST -HOC , TREATMENT VS CONTROL ONE -SIDED CK = 2

COMPARISONS ) , ( N = 2 , 3 , ... , 63 , CQ- .05 , 10 , 15 )

B.3 . POST-HOC , TREATMENT VS CONTROL TWO-SIDED ( K = 2

COMPARISONS ) , ( N = 2 , 3 , 62 , fa- .05 , 10 , 15 )

c . ORDERED ALTERNATIVES ( K = 3 , 4 , ... , 63 ( N = ,3 , 4 ,

8 ] [a- .05 , 10 , 15 )
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2 . TWO-WAY (CORRELATED SAMPLES ) CK = TREATMENTS , N - BLOCKS )

2 CORRELATED SAMPLES ( N = 4 , 5 ,A.

. 20 )

... , 7 ) , la7 = .os , .10 ,

82 ,
B. K SAMPLES , FRIEDMAN CK = 1 , 4 , 5 ) , ( N = 3 , 4 ,

ca : .05 , 10 , 15 ]

81 . POST -HOC , ALL COMPARISONS ( K = 3 , 4 ,

· , 8 ) , Ca x .05 )

.. , 63 , ( N =

2 , 3 ,

B2 . POST-HOC , TREATMENT VS CONTROL , ONE-SIDED ( K = 3

COMPARISONS ) , ( N = 2 , 3 , ... , 71 ,7 ] , caz .05 , 10 , 15 )

POST- HOC , TREATMENT VS CONTROL , TWO-SIDED ( K = 3

COMPARISONS ) , ( N = 2 , 3 . , 73 ,7 ) , a OS , 10 , 15 )

B4 . SEVERAL OBSERVATIONS FOR EACH TREATMENT IN EACH

NO TABLES PROVIDED BUT INCLUDED FOR ITS UTILITYBOCK

A , 62 , ( N = 2C. ORDERED ALTERNATIVES CK = 3 ,

73 , CQ = HOS )

3 . TESTS FOR DISTRIBUTIONS CK = TREATMENTS , N = REPLICATIONS I

TWO DISTRIBUTIONS ( SMIRNOVI , ( N = 3 , 4 ,( ) .o . , 101 , la :

.05 , 10 , 20 )

A.

5 ,THREE DISTRIBUTIONS ( BIRNBAUM-HALL ) , ( N = 4 ,

.05 , 10 , 20 )

101 ,

ca

10 ) , ( N =C. K DISTRIBUTIONS ( TWO-SIDED ) , CK = 2 , 3 ,

3 , 4 , ... , 101 , ca = .05 , .10 )

D. K DISTRIBUTIONS CONE-SIDEDI , CK = 3 , 4 , ... , 61 , ( N = 3 ,

101 , ca : .OS , .10 )4 ,

4 . CORRELATION

SPEARMAN ( N = 4 , 5 , 101 , ( a = .05 , 10 , 20 )
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A RESH APPROACH TO THIS VTEGRATED PROCUR7, AT PROBLE, VARTABL ? VARIANCE

B. H. BISSINGER

INTRODUCTION . The calculation of variability for our procurement problem

variable is of the utmost importance to the Navy supply system . After all ,

it is pivotal in setting safety level . It appears some of our best savants

have taken a crack at this and the history seems to point out that one should

distinguish among the following:

Models

Mathematical Statistics

Approximations

A change in any one of these may , and apparently does , affect the variance

calculation .

This new approach avoids the problems others have run into .

In the appendices are fundamental formulas, a careful statistical analy .

sis to be heeded , and a history of those attempts to solve this problem .

THE PICTUR !. First , let us look at a simple, but typical, constant situa .

tion . Suppose:

L • leadtine • 5 quarters

TAT • turn - around - tine • 2 quarters

D quarterly demand - 4 units

regenerations per quarter • 2 units

Then our net 2 • procurenent in a leadtiae is :

2 - ( L ) (D) · (L) (B) + (B ) ( TAT) or

D ( TAT ) + (D-3) ( L - TAT )

• 20 • 10 + 4 • 6 • 14
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Here is a picture drawn by CDR L. Atkinson :

Let's look at a similar situation where L , TAT, and D are the same but B is

increased to 3 .
sed Then 2 · 20 · 15 + 6.8 + 3 • 11 .

x x

- - - -
-

A similar deterministic portrayal was given by CDR T. Bunker as follows:

ATRIMONА

M

D

B

N

T

TT

TIME

L

These memonic heuristic diagrams are fine if used properly to set up the

relevant indeterministic expressions .

THE MACHTY. Lot fi O recovery rate and rg - repair rate so that

Pita is the percentage (decimal equivalent) of replenishment , and hence ,

1.5,52 • attrition rate .

From the just discussed and pictured process (model) we can write the
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procurement problem variable as :

2 - 2, - Zg + 2,

where

L

2,
Σ ,
i-1

L

Zg - ττ, Σ D,

1-1£

2ܕ|ܫܢܐܕ

D
Į

i - 1

The variance of Z is

o coz toz tog
· 2 COV (2, -2 ) + 2 COV (2, -2 ) · 2 COV (ZZ ; Z )

First let us compute the three variances:

E(Z, IL) - Lido U (BCZ, IL) ) - MOL

" (ZIL) - E (U (Z , IL) ) - 4200

2 2 - 2 + 4
.. VAR Z

Obviously , since 2, • 1 constant times 2,

VAR 2 - OL + ).

Also , since 2 , is the same as 2, except for T replacing L , and has the same

constant multiplier us zz .

VAR 2, - * (Moon
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Next the 2 COV ( 2 : 2 ) - 2 COV [ į Dry 7, 2 Ž :]1-1 1-1

- >- 25, S, VARw [ ] ]1-1

- 25,5,10 +

T

The 2 CoV ( 2 2 ) - 2 COV

[ Dei , ¿ 1]i-l 1

-255 [ ( ME menn]

Now E

2) 1,2 - ( co??]– 15 (const

Assuming L and T are independent, we get the above to be :

Art (og

so the 2 Cov ( -2 ) becomes :

2 г. , (+" • $ - -

- 27,52 4AT

The third covariance tera follows easily from the above and we have :
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2ܗܗr?-(,2.&);;ܪܚܨܘܽܘ

So , combining all six terms we get :

VAR Z - Mémorimos meno

+ r tur + 1

.2ܫܕܟܽܒ܀݂ܶܕܘܽܨ

܀2ܫܢܕܣܢܚܫܶܦ܀ܙ'ܶܗܣܫܐ

.ܐܕܟܟܟ܀ܶܕܙ.ܙ

-u.ܫܨܝܟ܀ܙ

܀::ܟܐܝ܀ܽܛܶ݁ܕ

rܐܶܘ : In?܀

. 7 r;; nec
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- (1.47 148 be

almostwork

+ 27,5, (1 • 775 ) (Muros

This last formula is a model builder's drean .
It has highly desirable

properties . First , note the coefficients add up to unity ,

(1 · 5757)
+ 2

25,5, 11 • 3,52 ) +

[ (1 • 5,5, ) +575 ) + ( 5,5,) * - 1

So they may be considered weights attaching importance to the factors they

multiply . Next , numerical values for the various factors are easily avail .

able and anyone can easily calculate the total expression .

Then it has sort of a group symmetry in that it is invariant under the

transformation sending L to I , I to L and 5,5, to 1.8, and vice versa .

Molecular chemists and physicists go into ecstasy over such formulas as they

say it shows strength .

Each ten hus noaningful sense as you read it . There is a fraction of

the variance of loadtia , demand , fraction of the variance of turn around .

time demand , and an interaction ter to make up the rest .

Lot's say 5,2 .9 which I au told is not unrealistic . We get back into

service 90% of what we bought after repairing . Then 1
O

1,52
.1 and our

1 2

coefficients becoa .:
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.01 on variance of leadtime demand

.81 on variance of turn - around - time demand

.18 on the interaction of the above two

It makes sense to put most of your weight on that which is most active . The

interaction term can be written as

2 15,5, (Map) · (1-3,5 ) ( OD ))

which is like an association index .

INALE . Process should always come first , like in Management Science

policy should precede procedure . I owe much thanks to J. Boyarski who ,

after suffering with the historical presentations as I went through then ,

impressed me with the Markov closed loop process we have here and stressed

the systems engineering aspects . I finally gave up on fiddling with what

everybody else had done and started fron scratch . It looks like it paid off .

Finally we see this is a true generalization of the consumable model in

that if I
125,52 - 0 ; 1 ... , no repairables , we find the correct expression for a

consunable .
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APREDNA

Certain randon variable expressions arise in the computations for the

variance of the procurement problem variable regardless of the model . Here

we give them and their variances.

In assuming the quarterly demands are i.i.d we compute the variance

of the randon variable sun of them as

L

VAR

Σ , - : + 4 %
1-1

Otherwise , we would have more complications . For example , if we assumed that

successive demands had correlatione, then an additional term of the form

4(4.1)p

would appear , thereby increasing the variance , We know the variance of a

mean of correlated variables cannot be driven down by increasing sample size .

As it is , we are assuming L and D are independent .

2 . For any two randon variables x and y :

B ( 3.5) - " synthyyomg's ' sy o's

If x and y are independent, this reduces to

8 (3• J) - " gy

3 . For any two randoa variables x and y :

- B ( by · 3 (7.9))

-
( 1 )

2 Moldog

( 2)

+ COV ( a ' ,, ' , ( 3 )
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For jointly normal with zero means CoV ( a ? , y') - 2 ( E(my ) ;?.

If x and y are independent this reduces to

܀-

2 2

y

(4)

ух у

4 . COV (la , x )
O

k (VAR ( x ) ) where k is a constant .

5 . COV (x , 8->) - -

6 . In the UICP formulation we assume the number of units demanded each

time period ( 1 ) is a randos variable De which is described by a fixed , known

frequency distribution and which is not autocorrelated . Also , it's assumed

the return - froa -repair each time period ( 1 ) is a randon variable Ry which is

described by a fixed , known frequency distribution and which depends on ( is

correlated to ) exactly one observation of demand , namely , the demand that

occurred a set turn - around - time (ī) prior ; 1.e. , De ... We run into the co

variance of Dy and Rd + t: To simplify it we further assume that :

3 - ? Plot

where P is the return rate of the ( 1-1) -th period times the survival rate

th

i period . Then we can write :

COT (Pq. Bl+T ? - COV ( D , PADR) - 8 (D ,P1P2) • B (DL) B ( P Pr)

B (P) B(D) · 3 (Pg) ( B(DL) ] *• 3

---

where we further assumed P and D are independent so that

B ( R ) B(P) E(D)
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7 . NASA uses the following approximations for o
ху :
oxy

2 2

po + 2 ou 4,00
уху

or

** (1+ )
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APPUDD

There is an essential point to be made regardless of the model used . nie

will illustrate it by considering three different expressions which are al .

gebraically equivalent in deterministic algebra and also which have the same

first moments when we consider the symbols to be random variables and switch

to the algebra of indeterminism . However , the second moments are not neces

sarily equal and , hence , neither are the variances calculated therefrom .

First consider the elementary algebra identity

X. X.0 ( 1 )

Now consider the related- in- fom random variable expression

, . .
( 2 )

1

where X, and X , are 1.1.d.
The mean of this randoa variable expression is 0 ,

and so it appears there is no need to distinguish between ( 1 ) and ( 2 ) . But

the variance of ( 2 ) ls 2014 while the variance of a constant like 0 is 0 .

Another simple example cones fron taking X + X - 2x and then making the

variables randon variables which leads to the contradiction 2013 - 404

Why all this very elementary talk? Well , consider :

7

Σ D, 意 。

(3)

1-1 1-1

Then cho vuricace of this is

VAR

(121)-- (1 )-1

-700 + 40% - 1107
(4 )
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while if we use deterministic algebra first , viz ,

7 7

Σ D,

4

Σ D
Di

i-1

Σ D,
1-1 1-5

we get

VAR

(112)
. 30 ( 5 )

So let us now consider three different expressions that exist in different

presentations of our procurement problem variable . These three expressions

are algebraically equivalent in deterministic algebra . Here they are :

L L-T LT

Σ D,
ol

D , - Σ{ D4+ 1102 1
D

i

1-1 1-1 + 1

( b ) (c)

It is easily seen that if we suddenly sake De L and T randon variables and

any two Dz . Os are 1.1.d and L and D.are 1.1.d and L and Dy are independent with 7 > ī , then the

nean of (a) , (b ) and (c ) is

(ī - TD

But the variances differ ! Lat us develop the variance of (a) .

T

Lot Y
1.
O

. Σ D,
1-1 1

21314,1) - Lugo Trey - (L T)MO

:: VAR {E(7,14,1)} - OL-T)
( 6 )

Nov

VAR ( Y,IL, T) - Top

( 7)

assuaing the Des aro 1.1.d.
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Then EIVAR (TIL, ) - 7 ; + Too ( 8 )

: . The variance of Y is the sum of ( 6 ) and ( 8 ) ,

VAR ( YX) - YO'L-T) ( the ) og

If we further assume L and T are independent, then

VAR ( YA) - Motos + (a1 +h ) 0%
( 9 )

LOT

How about (b ) . Let % 9 E D4 + 1
i - 1

VAR } - ( T - E) Best Bits ' L.I

- (T-F) dur * BLUE ( OL *5 + + 0 1 ( 10 )

Finally the varianc . of ( c ) , and we call Y • (c ) , is

VAR Y

Too + *o£ ++ (7 + 100% + Dog ( 11)

( ? )

The reader will notice several sipilarities and dissiailarities . Before

that , I call attention to the question mark under the plus sign in ( 11 ) . Sone

places I have found a ainus sign here ! The variances for ( a) and ( c ) are

siailar , the difference being ainor and depending on Integer versus contin .

uity for T. On the other hand , the variance of (b ) not only has a factor

( - T) on one ten as opposed to ( i + i) in (a) and (c ) , but it also has an in
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volved variance term which , heretofore , has been mysteriously handled . I refer

to

ose

The point is that ( a) and its variance are the correct approach .
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APPENDC

Back as far as 1963 when the PARS were being written ( PAR I · Application

D , Operation 6 ( Levels Computations for Repairables ) ) we find the formula for

the variance of attrition demand given to be

2 22 .

" D -IBB - o
. 2 COV ( BD )

(1)

where

D • quarterly depand

r - average repair survival rate

B • carcass return rate

OEBIB is broken down into the correct thre . terms , based on independence

of r and B , namely ,

F ost+ B ܀
( 2 )

( See APPENDIX A • formula (4 ) ) .

Further , assuming (a) that r is independent of B and D and (b ) that the

RFI regenerations for a given quarter are a function of demand fron a prior

quarter , the expression ( 1 ) reduces to

os - 2 i COU (B ,D)

and quickly is added

子f
O

COV (B , D) -
o

Also , under the assumptions :
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( a ) Demand during turn - around - time is Independent of attrition during

leadtin . less turn - around -time ;

(b ) Leadtime and turn around time are independent ,

the covariance of demand during procurement turn - around - time with attrition

during leadtime less turn - around - time is given to be

COV (DT,(D-EB) (L- T) - coloco 7 ) ]

Finally , the variance ( V ) of the procurement problea variable is given to be

- o
+ 2 COD ( DT , ( D - rB ) ( L - T ) )

T)DT ( D - rB ) ( L - T )
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It was in the mid- 60s when we were writing the PARS that Peter Zehna

turned his attention to accounting for attrition during turn - around -time .

He agreed with the others that we estimate from past history recovery rate

and repair rate , say f, and F, and then R - 1 • 122
is the attrition rate .

Also , we all assumed that I > I and that demands are mutually independent .

Initially we said the procurement problem variable 2 is to account for all

of the demands during a leadtia , less the regenerations during that time . It

was computed by accounting for the demands during turn - around - tin . T and add

ing the attritions during leadtia . less turn - around - cine . Zehna objected on

the grounds that this implicitly assumed that regenerations for a given lead.

tin . ar. function of demands during the leadtia . less turn -around -tin..

He proposed what he said was more realistic and computationally simpler.

He suggested we assume that regenerations are a function of the demands that

occur during turn around - tin . T. These regenerations are available for issue

during the leadtime L and occur at a rate 7,87 : Hence, they can be expressed

as the randoq variablo

1 .

I
m
m
o

Σ D,
1-1

D
g

( 1 )

So the procurement probla variable can be written

L

Z .

De 5,5
O

D
R D

oį
Σ P,PL ( 2 )

1-1 1-1 + 1

Using our usual formula for the variance of the randoa sua of randon

depands , Zohns obtained :
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o -r (wodowego ) + ( Mopedos e coz +01 ( 3 )

.olan - (1-R%)med(1-2 %)] + 10 + ( 1+r ) ) ( 4 )

In our usual notation for sample estimates this gives ,

Lī - ( 1-2 ° )ĪJ + ő lo$ + ( 1 + 2 °) 4) ( 5 )

Let's hold up here a ainute and go back and rewrite ( 2 ) as :

2 - R D

1-1į Σ , . D ( 6 )
ol1-1

Theg

VAR Z • VAR R

[ ]
( 7 )

+ 2 COV R

[c De $ 03
( 8 )

1-1

· 2 CON R
Dzi 03 ]

( 9 )

T

• 2 cov ( 10 )

Let us computo first the three covariances .

COV

[ ] Dzi a]1-1

272



( da)

au]-ܤܫܶܡ
x

i
B

ܕ

[l'ܶܪi 'Du
RCOV

T

-Bܗܬܐܐܢ
O

( 9a)ܫܽܘ܀ܶܛܘܽܨa [o
O

an]Dzi[,
COV

ܐܠ

.

T

( 10a)

.1[-':]-ܢܐܛ
x

De

.(10)•(9)•(8)etu combins (8 ) , (9 ) , ad (16 ) oܐNow

Xx

1

1 r-]-ܟܝܣܝܶܨܶܚܶܪ.'[ru-]ܢܝܶܡ [F

.-[ui܃ܨ-au]܀A«(11)-ܟܪ.ܶܛܘܪ

au
• VAR

..rܟ܀ܶܛܘ

where we assumed T and L independent .
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So altogether , by correct mathematical statistics , we obtain

VAR 2 - Rº contestRolmosketti + 4 +40+ kino + most miért

- 2B (mes were

(R®-2R+1) Immos mol + 2,00 + moi

Separating this into two terms , one on os and one on1 MB as Zehna did ,

yields

VAR Z O

[ (R® -28 +1)May MDOS + lo + (R® - 28 +1)ocling

- 1 + (1-2)*my + Lo + (1-2)* olles

We note this is very slailar to Zehna's result (4) . The difference lies

in the coefficients

(1-2)* vs 1-2 °

and

(1-2 )' n lte

So we see that Zahna's coofficient on upes is negative and, hence , makes

Moot is largera smaller coofficient . On the other hand , his coefficient on

by 2R .

In 1964 , J. W. Prichard of BUSANDA Navy Headquarters ( today NAVSUP ) pre

sented a paper entitled " Inventory Model for Repairable Itens · Theory and

Practices . "
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He let za • DL BL + BT - DT + (D-B) (L-T) be the randon variable of the

amount of material demanded in a leadtime by users and by the repair process ,

but not satisfied by the repair process . The variance of 2, becomes :

VAR {2 ,} - O + 6 *D -B)(L-1) + 2 COV ( DT , (D-B) (L-T) 1

The last tera , which is -204 ( (b-b) ] , is needed because of the obvious corre

lation between gross depand during a turn - around - time and the net demand to be

net fron purchase during that portion of the procurement leadtine in excess of

the turn - around - tin ..

The other two terus in the expression for VAR { 2, } can be expanded Into

the ford for suns over a randon interval of randon danands , viz

- To +52

• CD -1)(L-1) - (T - I) 10 + d + 2 COV (D , B) ]

+ (D-3) les o

The covariance ton 2 COD (D, B) is approximately equal to

2

吉 。

So we end up with

VaR { 2,} - Fof love of • ci- F) [ + 03-2 **]

(D-õj' lo + 01 · 2 DVD-bo
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Note that B is used here for rß in the PARS example. This same approach and

results were used by J. Schnelker .

Here is a development by CDR Keith Lippert without the covariance term :

VAR ( DXT + ( D - IB ' ) (L-T) )
V ( DXT ) + V ( D - B ' ) ( L - T )

- B + T + (D- I+ ( D- 1B ')*(L-1 + (L-TDOÓ-TBY

- + = + (D- (-EB° ) (o tom) + ( -TDOB-EB

ob rk!
2

D - EB
-- og

assuming independence .
rB

r!
(IBO-W * 3 )*E(r) f(Bº)drd3 °

% B1 . 21B'N A3, + en ande)E(Bº) f( )dedB•

- 1 * • )* ¢ d - zawag,2(7)& si"
woh .E( r )de

- B ( 6 %) B (BⓇ) - 2

• 10 m.com

-os. + one ( this follows from our APPENDIX A equation ( 3 ) .

So in total for 2 - procurement problea variable
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2 2

v(z) - Dof + To + CD-CB')*(61 +61) + CI- ) 10. + + om

Compressing rB ' into simply B , this becomes

F܀-(܀ܘ ; *fc* (0-3 )* ( + ) + ( -7)( +
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LATIN HYPERCUBE SAMPLING :

A WAY OF SAVING COMPUTER RUNS

W. J. Conover

College of Business Administration

Texas Tech University

Lubbock , Texas 79424

ABSTRACT . When real - life situations are modeled using a computer

program , the computer program is frequently very large and takes a long time

to make each run . In order to get the most information from a limited number

of computer runs , latin hypercube sampling was invented . The wide -spread

usage of latin hypercube sampling attests to its value in producing precise

estimates of the output distribution parameters. In addition , a useful

method for inducing correlations among the input variables in simulations

is discussed .

1. INTRODUCTION The advent of high - speed computers has opened new

doors for solving difficult real -world problems. Computer codes are written

to simulate the behavior of the real -world situation , and then the codes are

run repeatedly on the computer to estimate the outcome under various

different circumstances , where those circumstances are used as inputs to the

computer code . Unfortunately , these computer codes often become very complex

in an attempt to make the codes as realistic as possible , and as a result

they take so long to run on the computer that the number of runs is limited

by time and money constraints . Also , computer codes become more complex when

the number of different input variables increases .

Thus the following situation often arises . A complex computer code is

written that mimics the real life situation as well as one can expect from

any computer code . It contains many , perhaps hundreds, input variables or

parameters that can be varied to represent different circumstances that

should be considered , and it takes so long to run on the computer that only

a few simulation runs ( say 20 to 100 ) are possible due to time and money

constraints .

How is this possible ? In everyone's mind there's the feeling that the

number of runs must be larger than the number of variables. However , that

notion comes from solving systems of linear equations, and does not apply

to computer runs . For example , one could simply choose a likely value for

each of the k input variables , and make a single computer run using these

values . Then one could use a different set of values for the input

variables , perhaps representing a possible undesirable scenario , and make

a second run on the computer . So k , the number of input variables , can be

much larger than n , the number of runs .

The question then becomes , how should the various values of the input

variables be selected so as to get the most information , in some sense , out

of a limited number of runs ? One approach is the deterministic approach ,

which says to select particular sets of values of the input variables that

you , or someone else , want to examine for one reason or another . The output

of the computer code then applies to the scenarios represented by those sets
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of input values . There are obvious advantages to this approach , but the main

disadvantage is that few , if any , probability statements can be made , and

often any kind of post -hoc analysis is very limited .

A second approach is to use a monte carlo approach , and randomly select

values for each input variable , one value at a time, and do the same for all

input variables . This assumes that each input variable has a known

probability distribution so a random selection may be made . Then the output

is one random value of the output. By repeating the procedure several times ,

several independent random observationsobservations are made the output , and

estimates of the output probability distribution can be made . This method

is called random sampling . It allows for many different types of probability

statements on the output , or concerning the relative importance of the

various input variables .

on

A third approach , called Latin hypercube sampling , is discussed in this

paper . It has been used for at least ten years by several national research

laboratories , notably Los Alamos National Laboratories and Sandia

Laboratories . It is used in at least 22 different countries for selecting

input variables in long - running computer codes , primarily for modeling

nuclear reactor behavior , and the behavior of deep underground nuclear waste

repositories . Inquiries regarding a computer code that facilitates its usage

should be addressed to Dr. Ronald L. Iman , Sandia Laboratories, Albuquerque ,

( 505 ) 844-8834 , who has gone out of his way in the past to make this program

available to prospective users .

The popularity of latin hypercube sampling is due to its characteristic

of having a relatively small variance , as compared with random sampling for

example , in the estimates of the output distribution . Thus the same types

of probability statements available from random sampling are also available

using latin hypercube sampling , but usually with much more precision .

2. LATIN HYPERCUBE SAMPLING . One characteristic of most computer .

coded models with many input variables is that some input variables are more

influential than others in affecting the outcome . We would concentrate our

attention on the more influential input variables , if only we knew which

ones they were . But that is often the purpose of the simulation , to find out

which input variables are the most influential on the outcome .

If we knew that the outcome was almost entirely dependent on one input

variable, say X1 , then we would almost certainly want to select values of

X1 that span its entire range . In this way we could see how the outcome

varies over the entire range of values of X1 , and we would have a complete

picture of the model's behavior . If we were allowed to make n runs on the

computer , we could divide the range of X1 into n intervals of equal length

and select one value from each interval for each run . Some of the intervals

may be very unlikely to experience in real life , however , and besides that ,

what do we do if the range of Xi is infinite? So it makes more sense to

divide the range of Xy into n intervals of equal probability , rather than

of equal length , and randomly sample one value from each interval. Thus all

of the n values of X1 carry the same weight, and no problem arises if the

range of X1 is infinite .
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The problem is that we don't know , before running the code , which

variable is the most important . Furthermore , in many situations there is

more than one output from the model, and while X1 may be the most important

input variable for output Yi, say , another input variable X2 may be the most

influential input variable for another output Y2 , say . Or if the output is

a function of time , one input variable may be the most influential one at

an early point in time , while another one may be the most influential one

at a later point in time. In fact this is the rule more than the exception .

How do we handle this situation ?

One obvious solution is to treat both X1 and X2 with equal

consideration . Stratify over the entire range of Xy to obtain the n values

of X1 as described above , and in a similar manner stratify over the entire

range of X2 to obtain the n values of X2 for the n computer runs. Then how

decide which values of X1 to pair with the values of X2 in the various

computer runs ? The approach used in this section is simply to pair them in

a random manner , as variables would be paired in real life if they were

independent of each other . In the next section a method of pairing is

discussed , to achieve a desired correlation between X1 and X2 . But for now ,

random pairing is used .

Of course it now becomes obvious what to do if a third input variable

X3 is also important . Stratify over the entire range of X3 to get the n

input values for X3 , and do a random permutation of those n values to match

them with the (X1, X2 ) pairs already established . A similar treatment can

be made of all of the input variables . In that way if one of them turns out

to be very important , it has been treated with importance by stratifying

over its entire range . If it turns out that one of the input variables is

of little or no importance in influencing the output , nothing is lost using

this procedure since all of the influential input variables are stratified

over their entire range . Including this unimportant variable neither aids

nor inhibits the amount of information obtained from the other variables .

Intuitively this seems like an efficient method for getting the most

information out of a limited number of computer runs , but how good is it

really? In an attempt to answer this question several different sampling

plans were compared using real computer codes , by McKay , Conover and Beckman

( 1979 ) , Iman , Conover and Campbell ( 1980 ) and Iman and Conover ( 1980 ) . In

all cases the output parameters were estimated with much more precision

using latin hypercube sampling than with any of the other procedures

examined , and the improvement was dramatic . This does not imply that there

are not better methods for selecting input variable , or that this same

dramatic improvement will be evident for all types of computer codes . It was

true for the codes we examined , when compared with random sampling and a

different form of stratified sampling.

One disadvantage of latin hypercube sampling is that even though the

estimates are very precise , no measure of the precision is available, as it

is when using random sampling . The solution to this problem lies in

replicating a latin hypercube sample several times . For example, if a total

of 100 runs is allowed on the computer , first use 10 runs , or 20 runs if you

prefer , for a latin hypercube sample , where each variable is stratified over
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10 (or 20 ) intervals . Then repeat the procedure for another 10 runs , again

stratifying over 10 intervals for each variable, butbut of course the

individual values are unlikely to be the same as before , and the random

matching of one variable with another is unlikely to be the same as before .

By repeating this procedure until the total number of runs is exhausted ,

several independent estimates of the output are obtained, where each

estimate has the precision one can expect from latin hypercube sampling , and

the group of estimates together provide an estimate of that precision . This

variation of latin hypercube sampling is explored by Iman and Conover

( 1980 ) , and as one would expect some precision is lost by this combination

of latin hypercube sampling and random sampling, but the benefit is in

obtaining a measure of the precision in the form of a standard deviation of

the estimate . The new level of precision is somewhere between pure latin

hypercube sampling and pure random sampling .

3. CORRELATING THE INPUT VARIABLES . Thus far it has been tacitly

assumed that the input variables are mutually independent, and therefore the

population correlation matrix is the identity matrix I.

01

0

0

оо

1 0

0 1

O
o

I -

o o o 1

The sample correlation matrix , the matrix of sample correlation coefficients

representing the actual correlation of the selected input values for the

various input variables , will be close to I , with differences due solely to

sampling variability .

Often the input variables in a computer code represent variables which

in real life are correlated . If the input variables in the computer code had

a sample correlation close to the real correlation between those variables ,

the result would be a more realistic simulation , with more believable

results . How can we match the input variables so that the matching is no

longer random , but rather contrived to achieve a target correlation? The

method described in this section shows how to achieve a target rank

correlation , which may be the closest we can come to achieving a target

correlation due to the possibility of long - tailed input distributions where

outlying observations dominate the regular correlation coefficient , but have

minimal effect on the rank correlation coefficient . Recall , the rank

correlation coefficient , called Spearman's correlation coefficient , is just

the regularregular correlationcorrelation coefficient computed the ranks of the

observations . See Conover ( 1980 ) for a complete description of rank

correlation .

on

An example can help describe the concept . Suppose n - 15 runs are

authorized on a model with k - 6 input variables . Three of the input

variables are mutually independent , and thethe other three are highly

correlated . The population correlation matrix C looks like this .
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X1 X2 X₂ X4 X5 X6

X1
0

1

C

X2

X3

X4

X5

X6

1

0

0

0

0

0

ܘ

ܘ

ܘ

ܘ

ܝ

ܘ

0

0

1

0

0

0

0 0 o

0 0 0

0 0 0

1 .75 -.70

.75 1 • .95

..70 • .95 1

.

Each input variable has 15 values, obtained by using the stratification

procedure described for latin hypercube samples. If the 15 values for each

input variable are permuted randomly the sample correlation matrix might

look like this .

X1 X2

X
3

X4 X5 X6

O

X1

X2

T X3

X4

X5

1.00

.10

..47

..23

26

.17

.10 ..47 ..23 .26 .17

1.00 ..31.07 .48 ..23

..31 1.00 .34 ..20 . 19

.07 .34 1.00 • .04 • .03

.48 ..20 • .04 1.00 .05

..23 .19 • .03 .05 1.00

0

X6

The matrix T shows how random correlations may differ from the target

value of zero , and sometimes the difference is fairly large . In this case

the target correlations are given in the matrix C. How can one obtain

correlations , albeit rank correlations, close to the ones in C ?

If the values of the input variables are permuted so that their

rankings agree with the following rankings , then their rank correlation

coefficients will be given by the rank correlation matrix M , given below .

X1 15

X2 15

Run Number 1 2 3 4 5 6

3 5 13 14 9

Ranks of 6 12 8 5 1

Variables X3 5 10 4 7 14 1

X4
2 1 15 10 11 8

X5 1 3 15 12 13 10

X6 15 13 1 2 7 8

7

2

4

2

9

5

11

8

8

3

8

6

6

12

9 10 11 12 13 14

10 6 1 7 11 12

7 9 13 2 11 10

13 6 12 15 3 11

12 3 13 5 14 7

14 8 9 2 7 11

3 6 4 10 9 5

5
4
4
9
4
4

15

4

14

9

4

4

14

X1 X2 X3 & 4 X5 X6

X1

X2

X3M -

1.00 .02 .05 .04 .22 • .08

.02 1.00 ..06 .08 ..01 ..05

.05 • .06 1.00 ..08.05 ..11

.04 .08 ..08 1.00 .73 ..70

.22 ..01 .05 .73 1.00 • .89

• .08 • .05 · .11 ..70 • .89 1.00

X4

X5

X6
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Note how close the rank correlations are to the target correlations

given above in the matrix C. Even the correlations aiming at the value zero

come much closer to zero than the random correlations in the matrix T. Thus

even if the input variables are independent , one may prefer to use this

procedure to obtain nearly orthogonal ( in the sense of ranks ) input vectors ,

rather than relying on random matching which may produce , by chance ,

correlations quite far from the target values of zero , as shown in the

matrix T.

It is necessary for the number of runs n to be larger than the number

of variables k * for which correlations are being designated , in order to use

this procedure. Note that k * may be less than the total number of variables

k .

One advantage of using the rank correlation coefficients becomes

apparent. The ranks, when paired as they are above , always result in the

rank correlation matrix M , no matter what the original numbers are , and

therefore no matter what the marginal distributions might be . Thus this

method of inducing rank correlations is free of any distributional

assumptions regarding the input variables .

Although we are using this method of inducing correlations in

conjunction with latin hypercube samples, it is in no way tied to latin

hypercube sampling . It works equally well with random sampling, or any other

way of obtaining values for the input variables . All that is required is a

rearrangement of the input values so that their ranks agree with a

prescribed set of ranks, in order to obtain a rank correlation matrix close

to the target rank correlation matrix .

Of course the big question is , how does one obtain the prescribed set

of rankings for any given rank correlation matrix , as given above for the

matrix M? As you would expect , the method is not simple . It can be done by

hand , but the Sandia computer program is recommended for convenience , since

it takes the difficulty out of the procedure. For those who are not afraid

of matrix manipulation , the procedure is as follows .

1. Start with any set of n numbers, called scores , where n is the

number of runs . We usually use normal scores , which are the i / (n + 1 )

quantiles from a standard normal distribution , i -1 , ... , n , which are

readily available from any table of the standard normal distribution

such as that in Conover ( 1980 ) . Denote those scores by a ( 1 ) , . , a ( n) .

2. Form a matrix R with k * columns in it , where each column contains

a random permutation of the n scores , and where k * represents the

number of input variables being correlated . Be sure all permutations

are distinct .

3. Find the sample correlation matrix T of R. Note that T is the

regular correlation matrix , not the rank correlation matrix . However

it is a characteristic of normal scores , and normal random variables ,

that regular correlation coefficients and rank correlation coefficients

are usually quite similar .
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4. Find a matrix Q such that QQ ' T , where Q ' denotes the transpose

of Q. Mathematicians have devised several methods for finding Q. The

one that we use is the Cholesky factorization scheme , which results in

a lower triangular matrix for Q.

5. Let the target correlation matrix be denoted by C. Find a matrix P

such that PP ' - C. Again , we use the Cholesky factorization scheme

because of its relative simplicity .

O O6. Find s PQ - 1 and compute R * RS ' . The ranks of the matrix R * ( one

column at a time ) are the ranks we are seeking . Any set of input
vectors with the same ranks as R * will have a rank correlation matrix

close in value to target correlation matrix C.

Why does this work ? First , the regular sample correlation matrix of R *

is C. This is a simple result that can be shown with a little matrix

algebra . Second , because we started with normal scores , the rank correlation

coefficients of R * are usually numerically close to the regular correlation

coefficients , given in C. Therefore any matrix with the same ranks as R *

will have the same rank correlations as R * , which should be close to c .
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GRAPHICAL TOOLS FOR EXPERIMENT DESIGN

Russell R. Barton

School of Operations Research and Industrial Engineering

Cornell University

Ithaca, New York 14853

ABSTRACT

Graphical methods for designing experiments have been used since the inception of

statistical experiment design , yet this approach has received little recognition in the

literature. This presentation surveys historical uses of graphical displays and shows how

graphical representations can clarify the difference between a bad design and a good one.

Some practical rules for generating new designs by graphical means are presented.

KEYWORDS: Experiment Design , Graphical Methods
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1. INTRODUCTION

How can graphical tools be used in the process of designing an experiment? First,

consider the steps involved in experiment design. One can think of this process as

composed of five steps. These must occur before any data are collected , and before

statistical analyses are performed. They are :

1 , define the purpose of the experiment,

2, identify the independent, intermediate , dependent, and nuisance variables,

3, classify the variables as quantitative or qualitative, linear or nonlinear effect

(independent variables ), and fixed or varied during the experiment (independent

variables ),

4, using the above information , choose or create a design, and

5 , validate the design .

This paper presents graphical methods for steps 2, 4, and 5 of this process. For step 2,

we will show Andrews and fishbone diagrams. Multidimensional point plots and a

variety of other techniques can be used in step 4. For step 5 , we will discuss graphical

properties of good designs, and the importance of checking projections.

Because of the high graphical content of this presentation, the format of the following

paper is unconventional. Its form is more like that of an oral presentation, with figures

placed on the left side of each page , and the accompanying text on the right (opposite

each figure) 1. This allows approximately sixty figures to be discussed in thirty pages,

which might otherwise have taken twice the space.

1 The following pages come from a session entitled " Practical Graphical Techniques for the Design and

Analysis of Experiments " presented by James Filliben , Gerald Hahn, and this author at the 1987 American

Statistical Association Winter Conference in Orlando, Florida. These figrues are more complete than the

Army Design of Experiments presentation in most ways, although some recent material was presented in

Monterey that is missing here .
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GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON

VIEWGRAPH TEXT

• OVERVIEW OF A THREE PART TALK

Practical Graphical Techniques

for the

Design and Analysis of Experiments
• ABOUT 20 MINUTES PER SECTION

• BEGIN WITH GRAPHICAL METHODS

FOR DESIGN--NOT JUST FOR VIEWING

DESIGNS, BUT FOR DESIGNING

DESIGNS .Russell A. Barton

James J. Fillihen

Gerald J. Halin WHY GRAPHICAL METHODS ?

> provide better understanding of design

>make it easy to generate a new design

> provides a layout to run the design from

PART 1 : GRAPHICAL DOX • START FROM A BROAD CONTEXT:

PART 2 : GRAPHICAL ANALYSIS
WHAT ARE THE EVENTS LEADING

TO THE NEED FOR AN EXPERIMENT ?
PART 3 : RECENT APPLICATIONS

2 Why is the experiment necessary ?

WE EMPHASIZE THAT THE SELECTION OF THE MATRIX OF

• What is known about the system that is being

investigated ?

EXPERIMENTAL POINTS REPRESENTS ONLY THE

PROVERBIAL TIP OF THE ICEBERG . THEREFORE ,

WE STRESS SUCH MATTERS AS THE ŅEED FOR CLEARLY

. What are the KEY VARIABLES:

Independent

Dependent

Intermediate

DEFINING THE GOAL OF THE TEST PROGRAM ,

ENUMERATING ALL POSSIBLE VARIABLES, AND HOW : Anticipated complexity of relationships?

TO HANDLE THEM . "

.G.J. Hahn

• Known constraints on:

variable /factor values

experimental procedure

• What is the expected outcome?
WHAT IS THE OBJECTIVE OF THIS INVESTIGATION ? "

-J.S. Hunter

Why use GRAPHICAL methods ?

right-brain, creative

powerful, robust

291



GRAPHICAL DESIGN OF EXPERIMENTS R. BARTON

VIEWGRAPH TEXT

3

What do we mean by GRAPHICAL designs ?

Sur

Andrews used representations that were

graphic indeed !

1

-N

They convey more than just the combin ; tions

of factor levels that will he triec . irigering

the viewer's imagination in think i forelle mie

often important details as well as the main

structure (cf viewgraphs 53&54 )

Process

10

E

At the first level of experiment design , one

needs to view the process that will he

investigated. This viewgraph shows the

representation Andrews used to plan

experiments for a meat processing operation .

Source: Andrews (1964 ).

4
Ishikawa's " fishbone " diagrams: quicker to

draw , help to identify appropriate

experiments to try.
to

VA
Several forms:

cause -effect

process -oriented

clustered lists7

ON

ON co

Oct

he

A process -oriented diagram for the axle

manufacturing problem would be organized

to have the major process steps on the

backbone, with subprocesses hanging off

these, etc. Causes of wobble would tend to

be the outermost 'bones'on the ' skeleton'

F

Z._

Word .

AR

Ice

Source: Ishikawa ( 1982) .

Figure 3.5 Causo -and -ollect diagram lor wolstoling Idlepension analysis)
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GRAPHICAL DESIGN OF EXPERIMENTS

.

R. BARTON

VIEWGRAPH TEXT

5

The following pages show graphical methods

to address specific kinds of designs , e.g. fac.
torial, lifetest, etc.

Greatest concentration on multidimensional

point plots for factorial and fractional

designs. Reason : the ratioOutline

What graphical tools exist to ald in designing experiments?
practical value

current use

What graphical concepts do these tools exploit ?

What are the strengths and limitations of graphical methods ?

What role can computers play in graphical DOX?

Summary - the place of graphical methods In DOX

Basic outline of the DOX portion of this talk

is at left

6

Graphical methods for DOX not recognised

as an entity historically. Computerized
literature search gave ZERO diues, keywords

in past 10 years with both GRAPHICAL and

DOX.

Source: Raktoe, et. al. ( 1981 ) .

13.1 A LIST OF CONSTRUCTION METHODS

The following inethods of constructing factorial designs

literature :

(i) Orthogonal arrays.

(ii) Balanced arrays.

(iii) Lalin squares and orthogonal Latin squares.

(iv) lladamard niatrices .

(v) liinile geometrics.

(vi) Confounding.

(vii ) Group theory.

( xiii) Algebraic decomposition.

(ix) Combinatorial topology .

(x ) Fuldover.

( xi) Collapsing of levels.

(xii) Composition (direct product and direct sum ).

(xiii ) Codes.

(xiv) Block designs.

( xv) Fosquarcs.

( xvi ) Weighing designs.

( xvii) Lattice designs.

(xviii) Finite graphis.

( xix ) One-at- a -lime.
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GRAPHICAL DESIGN OF EXPERIMENTS R. BARTON

VIEWGRAPH TEXT

7

THE MAIN POINT: it is easier to

understand , manipulate and create experiment

designs when they are represented

graphically. Mathematical descriptions can

be precise, sometimes clear, rarely easy in

manipulate.

" Definition 13.1 : A txn matrix A with entries

from a set S of s symbols is called an

orthogonal array of size n , t constraints , s

levels , strength d, and index a if any dxn

submatrix of A contains all so possible dx 1

column vectors based on s symbols of S

with the same frequency 2."

Source: Raktoe, et . al . ( 1981 ) .

-Raktoe, Heydayat, and Federer

8

.) no formal

M ( + shartno meprinde

el (o i netshotno tre minte

d) Onluette + contar paints

. ) Cute I Clangtaholtate minta

1 ) Carharttur + Ostaldo + centre minta

First volume, first paper in Technometrics,

primary journal for examples of graphical

DOX.

Several important concepts that will occur

again in later viewgraphs:

1 ) designs decompose into subsets

2) vertices of regular polyhedra make good

point subsets

3) use of point symbols to add information

to the plot.
ܐ

a

source : DeBaun ( 1959) .
O

.

OTOCOON

a.ocracmo

awITOMT
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GRAPHICAL DESIGN OF EXPERIMENTS R. BARTON

VIEWGRAPH TEXT

11

9

!

d

Multidimensional point plots are most

common graphical DOX tool.

... on
von Examples here show factorial point plois for

one-, two-, three-, and four -factor designs .
I

Iloilo

Source: Andrews ( 1964 ) .

I.

100 foon

iC
o
s
i
o
s

iin

- NIL

i
l

10

Another application, some minor variations in

presentation form . Dashed lines help locate

face -centered points.

10

Source : Myers ( 1985) .

0

ge
re
v
a
r

ܪܝܚ
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VIEWGRAPH TEXT

11

Youden : No scientist, when presented with

these designs graphically , would prefer the

one - at- a - time version on the left.

ric Aesthetic property apparent here : span the

design space. Will return to this again later.

A

Source: Youden ( 1972 ) .
Y

D

aܐ Iz

CHANGE ONE CHANGF TWO

VARIABLE VARIABLES

From 1 -Codeindie tohle

12

Youden's approach to representing an in

complete design, circa 1962:

TARR .

Program for three mointivo, ima vertik iherre chairma , ane malih iww comem .
A TABLE

l'arialla 1 .

1 Z

.222 2

Source: Youden (1962).
Giron

1 2 3

$ 1 1

7

13

"
*
*

YV

2 ci1 .

Almenntirirnte mrenrigt

ing Incion la climate r - r
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VIEWGRAPH
TEXT

13

Youden's choice for representing the same

design, circa 1972:

VARIAPLES Y ANO Y

AT SLEVEL S : ?

AT 2 LEVELS A PLOT

• CHAMGE ONE

VARIABLE AT A

TIME

O CHANGE TWO

VARIABLES AT

A TIME

Plot gives visual hints to confounding ' liem

that can be used not just to display designs,

but to create them as well .

Source: Youden ( 1972 ) .

PROBLEM . SELECT MOST INFORMATIVE

SIY POINTS FROM 16 POINT SPACE

friendolos

14

Box and Hunter used graphical models of

designs, and studied their projections to find

ones with " balance " .

0. T. . NO . ANO I. S. MNIER

Source : Box and Hunter ( 1961 ) .

Vinnan 2 - I'morlinn ni inln Lorre 7 Inchorinho.
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GRAPHICAL DESIGN OF EXPERIMENTS
R. BARTON

VIEWGRAPH
TEXT

15

;

Hunter used multidimensional point plots

(with appropriate reference lines ) to illus

crate many common designs.30
Jr

Here, graphical representation is fios

analytical use -- the designs had already heen

created .

11

J.
10

Source: Hunter ( 1985 ).

留 园 网
21

mo

16

e of Plots used effectively to illustrate fractional

design for an industrial application. This and

two following viewgraphs show fractional

factorial plots from recently published

applications.

ն

Shading here used to identify each of the two

half- fractions.

ha

Run order shown inside bubbles.

I
Source : Snee ( 1985a) .

298



GRAPHICALDESIGN OF EXPERIMENTS R. BARTON

VIEWGRAPH TEXT

17

Here the actual factor levels are used to label

a 24 design.

10 .

Source : Andrews ( 1964 ) .
en

81

TA

I 10

1 .

wit

18
Developing and understanding a graphical rep
resentation for the design can later be aug

mented to display the results of the experiment.

Bubbles of this 25-1 design show outcomes of

experiments.

2.0

1 .

- 122

( 0.17

Extension : use a symbol that conveys both

location AND spread at each design point when

design includes replication ( or is an inner

outer design a - la Taguchi).

I
LIJ 1.30

Source : Snee ( 1985a) .
42.00 3.00

So far, shown designs displayed graphically to reveal pro

perties. That is, plocs used DESCRIPTIVELY. How to use

graphical methods to GENERATE DESIGNS for particula

applications ? READ ON .......... >
2.30

to..

(most graphical references use plous for malysis or

presentation, not for design generation )
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GRAPHICAL DESIGN OF EXPERIMENTS R. BARTON

VIEWGRAPH
TEXT

19

HOW TO GENERATE DESIGNS

GRAPHICALLY:

PRINCIPLE # 1

( ------

(i.e. spread points out uniformly over space)

" ..It is proved (Appendix 1 ) that if a polynomial of any

degree d, is fitted by the method of least squares over any

region of interest R In the k variables, when the true

function is a polynomial of any degree dy > d ,, then the bias

averaged over A is minimized for all values of the

coefficients of the neglected terms, by making the moments

of order 0 ,+ d and less of the design points equal to the

corresponding moments of a uniform distribution over R."

Source: Box and Draper ( 1959 ) .

• G.E.P. Box and N.A. Draper

20

HOW TO GENERATE DESIGNS

GRAPHICALLY

PRINCIPLE #2

--------
... convenient to regard designs as built up from a number

of component sets of points , each set having its points

equidistant from the origin ...'

(if whole design too complex, use divide

and -conquer strategy to design smaller

components to be combined-- see viewgraphs

30 and 31 )
"... form the vertices of a regular polygon, polyhedron, or

polytope ..."

Source: Box and Hunter ( 1957) .

• Box and Hunter (1957)
1
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GRAPHICAL DESIGN OF EXPERIMENTS R. BARTON

VIEWGRAPH TEXT

21

HOW TO GENERATE DESIGNS

GRAPHICALLY

PRINCIPLE #3

( oooo----

"Choose new points to MAXIMIZE the minimum

distance from all existing design points.. "

(this consideration arises from primul

design considerations -- min variance for first

order model terms)

Source: Kennard and Stone ( 1969 ) .

-Kennard and Stone (1969)

22

Last point, used extensively by Box and

Hunter, was mentioned earlier.
SOME USEFUL CONCEPTS

for generating

GOOD DESIGNS

from

MULTIDIMENSIONAL POINT PLOTS

1 COVER THE DESIGN SPACEUNIFORMLY

2 DECOMPOSE COMPLICATED DESIGNS INTO

GRAPHICAL SUBCOMPONENTS

3 SPAN THE WHOLE DESIGN SPACE :

MAKE ADDED DESIGN POINTS FAR FROM

EXISTING POINTS TO MINIMIZE VARIANCE

FOR FIRST ORDER EFFECTS

4 CHECK PROJECTIONS TO PLANES

AND LINES
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VIEWGRAPH TEXT

23

600

T Box and Draper findings above give some

model independence.

700

10 20 BUT using graphical methods to gencrale

designs does not free us from thefact:

y = 4+ a.L ( T ) + a/AP) + E BALANCED
DESIGN GOODNESS DEPENDS ON THE

TRUE FORM OF THE MODEL BEING

INVESTIGATED .

14.000

12.000

PT

Source : Satterthwaite ( 1959) .

7.000

6.000

30 35 60

7
0

IN

y - 2+ 2 (PT) + 2 (TP ) + E UNBALANCED

2
4

To illustrate multidim . point plots for design,

first show a 3 - factor experiment to be run in

4 blocks of 2 .

A

口口口口

©: 10 : 009: :
Decomposition, projection, and spanning

(points2, 3, &4)used to generate gooddesign

here. (Decomposition is of cube points into

sets of antipodal pairs).

MOCKI NOCX2 ROOKS Nark

O

0IQ : 19 : 10: 四

Block effects confounded with main effects in

bad design seen from top and rear projections.

The relative merits of these two designs much

easier to see here than in their original (non

graphical) description ..

Source: Box, Hunter, and Hunter ( 1978) .

O
O
O
O

COOKI road LOCS Quarka

BLOCKED DESIGNS FROM

BOX, HUNTER & HUNTER,

(pp 339-341 )
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VIEWGRAPH TEXT

25

This figure shows a multidim. point plot for

a 25 factorial design. The blocks for the

design above (blocked designs from BH & H )

set in a row rather than a square because

additional structure here not present ahove.

0
Example: block effect ( 1 + 4 ) - ( 2 + 3) 11.mich

appear as an " interaction" pattern for while

an equivalent pattern , ( 1 + 2 )-(.3++) wouls
have a main effect pattem .

O :

d

A 2' Foctorial Design

led -block logot: loeten no lucten , Mect to boetan
INTERACTION

PATTERN

MAIN EFFECT

PATTERN

These plous and those to follow are easy to generale and

manipulate using a Macintosh (MacDraw ©). Pro.jections

ure NOT automatic , though .

2
6

Figure at left can be used as a template for

designs with 7 or more factors.

Fill in subset of dots at small cube vertices to

generate an incomplete or fractional 2 ° design.

Use two dot symbols, e.g.

for a 2' design.

A 2 Factorial Design

Sourse :

B ,HOH

Porot

303



GRAPHICAL DESIGN OF EXPERIMENTS R. BARTON

VIEWGRAPH
TEXT

2
7

Can do multidimensional point plots for 2 " 3"

designs, too .

Compare with Youden plot earlier, and

viewgraphs 31-34 .

d

A 2'3 ' Factorial Design

2 -way interaction patterns

28

BASIC

PATTERN

Second example from literature is a 27-2 frac
tional factorial. Next three viewgraphs

illustrate the three designs presented in the

reference .

0

laron muoto

vorlicos

smni cuban

vorticos

Value of "minimum aberration " designs is

consonant with graphical design principles.

For 2" designs, use decomposition and idea"

that best fractions span the space: best point

allocation , therefore , is based on three way

interaction pattern .

g

Tel : Reference: Fries and Hunter (1980) .

Izahclubcdg -adig
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VIEWGRAPH TEXT

29

BASIC

PATTERN

Imga cute

nilicos

small cuhn

vorticos

Identical small-cube forms denoted by

circles.

Good large -cube pattern .

Poor small -cube patter - can be fixeri.

El

g

All projections can be visualized without

much trouble.

Reference: Fries and Hunter ( 1980 ).

1 : 1 :

do

Izabct:adeg:bcdelg

30

BASIC

PATIENN
THE MINIMUM ABERRATION DESIGN

Inron cubo

vorlicos

smni cul

verlicas

Pattern here is good; stillsome flaws - the

choice of the particular 2 small-cube pattern

has a 2-way pattern on the large cube ,and two

waypattern separates levels of f based on

levels of d ( I = defg ).

At this point, can only push confounding

around ; not enough design points to fix .

= 1 :
Reference: Fries and Hunter ( 1980) .

Izabcdl : abceg - delg
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VIEWGRAPH
TEXT

31

TILL DESIGN

La

ir

Minimum aberration and incomplete block

examples were from academic literature .

This example from RCA, industrial research

problem . Design was generated graphically,

as shown here , for an experiment in 1982.

3 2

Full factorial was a 2 3 .

Designed a 1/2 fraction .

LO ME

FlinCTIONAL DESIGN
Source: Barton ( 1982) .

32

11

The 1/2 fraction was composed of three pieces,

following DESIGN PRINCIPLE #2. Easy to

see (and to design ) this way.

10

biselt

AZ
Note: numbers represent run order, which was

modified in final design.

--

Source: Barton ( 1982).
Subset a

place

to

Subset 3

عمس
don
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VIEWGRAPH TEXT

33

BOX -BEHNKEN DESIGN

Illustrates use of icons for complicated multi

dimensional point plots:

年

ca

=

e

d

r
t

M
E
C
T
I
C
N
O

F
O
N
T
S

I
N
M
O
N
T

n

Reference: Box and Behnken ( 1960) .

Box · Behnken 3 Fractional Design

34

Easy to generate alternative fractions using the

icons; Bad Barton at left.

i
n:

Some properties of both designs immediately

obvious:

no center

no extreme vertices ( violates #3)

Other properties ( like why Bad -Barton is bad )

not obvious without projections.
6 이

е

M

- d -

P
R
O
J
E
C
T
I
O
N

F
O
N
T
S

I
N
F
R
O
N
T

o

1

.

Bad · Barlon 3 ' Fractional Design
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VIEWGRAPH
TEXT

35

Multidimensional point plots for factorial

designs allow intuitive modifications to

incorporate constraints on the design space.FERTILIZANT TRIALS • TWO POSSIL DISICA'S

DESIGN 1 DESIGN 2

U

I

T

I

T

Snee ( 1981 ) gives rules used by CONSIN TO

place mixture design points on boundaries

caused by constraints. First example in this

presentation of " mental graphics".

N
I
Z
I

I
L
I
N
T
I

ܐ

Source: Snee ( 1985b) .

LO MILO
MI

ETI !1ZER I PIRTILIZER

now ! Force in le loroDow : long lonelle loromodulo e Dort

36

AAN Kablo

For many practical problems, constraints are

few enough to allow visualization
0.3

-and better control of the design.

( ' autre

l'ruimt Repetten

I.
1

Source: Kinzer ( 1985).เหอ Will

rock

Konctie Inne

I leuws

30€
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37

KINETIC SIVOY OR 0.XYLCHIC OXIDATION

EXPERIMONIAL REGION Another example showing constraints

limiting the experimental region.

Note: complex constraints may suggest a

transformation to the model factors.310

270

لو

T
E
M
P
E
R
A
T
U
R
S

*K)

2001

Source: Snee ( 1985b) .

2011

?
260

a
m

M
i
N
E

C
O
N
C
E
N
T
R
A
T
I
O
N
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10.02.0 10 6.0 8.0

OXYGEN CONCENTRATION

FIGURE 6. Ortho -Xylene Oxidation Kinctic Study - Ex

perimental Region is Dermed by Two Nonpewcollel Planes

in Iuren Dimensions ( Juusolo , Bacon, and Duwnic ( 19721) .

38

FACTORIAL

MULTIDIMENSIONAL

PLOTS

Multidim . point plots are useful concepts even

when they can'tactually be drawn. Fry () uses

" mental graphics" to construct fractional 2 3

designs from hypersphere designs composed

of multiple sets of 2 designs.

SUMMARY

Why factorial (hypercube )?

answer: limits # of factor levels, easier to do

math , plot results, and view design in

2-D, 3 - D , etc.

NEXT SECTION REVIEWS SPECIAL

METHODS FOR RESP . SURFACE / EVOP
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VIEWGRAPH
TEXT

3
9

U MOTOs
u
p
e
r
s
t
a
r

0 .

Yield 20sso

In an early EVOP worksheet, multidim. point

plots for design were part of the data
collection worksheet.

ALLAN I SMO5

nu ( 2 ) ( 3) ( 5 ) ( 9 )
Graphical design provides layout to run the

experiment from
meine.wuwu )

.. !

(uleiron te wenst

(14 ) Sou Tournesine tee on t | 78 | 82 | 638 181

( tol antorc iull web ( ws

771281

( a ) o uniw us :
71 72631

N .

ia Ann

Source: Box and Hunter ( 1959) .
ܪ•

. 0

(1.1 0 .

* , hol lyd

itby ...ha

* 7q.li.li.ro

poz. 27.70

5:12 . I often
•ܘܙܕ 2

ay

.....

F
WY

二

40

30 1

A simplex plan that is updated as runs are

completed can be used to choose the next run

point.
11.9 . ( Front)

26

11.097N )

IMIER

241
5

.

1090's)
10.SW)

12
To nils )

This is graphical sequential design.

Easier if superimpose contours of model fitting

a recent subset of observations; see next

viewgraph .

FEED
22

20

9.30
10.SIN ) iQ701 )

9.03 nitial)

99.59 (A )

7.-;!! ਹ

REACINII FEED KATIU

z !3 -
Source: Hahn,Bemesderfer,and Olsson (1986)

TABLE S

EVON TEST PLAN TO

OPTIMIZE CHEMICAE process
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41

11151 " W ) 119TATION15; Here the model is not a polynomial in the

usual (Taylor approximation ) sense, but

Hardy's (j interpolation function.
Y
A

Source: Barton ( 1985) .n
á
v
b
a
n
i

Reference : Hardy ( 1971 ) .

Apibenda nitlem tenfarteny signirnosnion ihan kunction erhin MRINCA

42

Above trajectory was for a Nelder-Mead

simplex sequential optimization strategy .

Hereare simplices of a different sort for DOX:

simplices arising from mixture experiments.

The next few viewgraphs review graphical

representations that have been used to create

and analyze mixture designs.

A ( 3,71 tortor A 13. 11 letra

Ide .

Source: Cornell ( 1981) .
A 14.31 latter

A 14. 71 Retro

mr. 1.1 . fell med 1. mal whepulipo.lootbe mtanperweite, - - I !
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As for factorial designs, point plots can be

used to identify subregions for study.

In addition to the usual mixture constraint.

most real mixture problems have additional

requirements that limit the design space.

4. tbd MSAN

SAN

Source: Koons and Wilt ( 1985 ) .

mCAN Os roa

1.- N.

! (KAN

1

I.

M. -Il
u

e:
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CONSIRAIMS More complicated constraints yield irregularly

shaped regions..105X ,
$ X . S.

89x, • box, • 100 %,•10 * x, 570

0sx, s.no

585x , • 90x , • 100 % ,ses

Snee's XVERT program dependson the

geometric concepts of edges, vertices, and face

centroids to select "good" design points.

Again, this is "mental graphics", since a

graphical image is used , but it is not actually

drawn .

Source : Snee (1981 ).

.

BX • Org • 100 %,

Figure 4. Three Component Mixture System With

Single Component and Multiple Component Con .

straints
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I tot nog toe met Imet

Four factor mixture experiments and

constrained subsets can be drawn effectively,

and have been used in industry .

Source: Hare ( 1985) .

X X ,

.
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NOMOGRAMS

This ends material on multidimensional point

plots for DOX.

and other

Nomogramsand graph paper graphs are

practical tools forDOX, but they are not in the

spirit of earlier material. Only a brief sample

here to illustrate the kind of advantages they

offer .

GRAPH PAPER

GRAPHS
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o
s

fil

os

l
y

Graphical technique here is one step removed

from design. It represents a mathematical

function of the design structure .
11

0

cin

Source: Box and Lucas ( 1959 ) .
ds

. 1.3

prie,)

Fig . 2. Thn orang mere for the fortion / 1 ,: 0.1, 021 with the optimal mbustinn

inclinaterthyhomey dota .

A graplrical aid lor D - opllonal design

(Hor & Lucm , 1999 )

48

This nomogram allows experimenter to choose

sample size required for desired accuracy of the

slope coefficient

ant

.

Source: Beech
90

B
T

:'9
1
1
1
8

F
R
I
T
T
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100+

50

Like a nomogram , this graph is used to show

the variance of maximum likelihood estimates

as a function of design parameters.

為

30

20

The model here is Arrhenius; design

parameters are test temperatures and test

time. Censored observations are expected.

10

Source: Nelson and Kielpinski ( 1975 ) .

3

3

2

N
O

1.0 2.0 3.0 5.0 10.0
20 1050 100

50

100

Because design properties are displayed

graphically, it ispossible to optimize other

design properties (i.e. other than variance of

estimates) by making graphical additions!

50

30

20

Example: minimize the maximum test

temperature without exceeding a variance limit.

po

1
0

Source: Barton and Nelson ( 1987).

5

ar

3

2

1.0 2.0 3.0 5.0 10.0 20 30 50 100
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Like the nomograms and graph -paper

graphs, the network design representations to

follow are one level removed from the

design.NETWORK

DESIGN

REPRESENTATIONS

Because of this, expect that they will be less

useful for design synthesis .

5
2

blocks treatment

levels
These plots, due to Butz , relate connectivity to

estimable contrasts .

For small examples, these plots can be used to

set up and evaluate designs for ANOVA

models.
2

2

3 Source : Butz (1982) .

NL IIFAIMENT

CONIRASIS

ESIME

AITATILE

GOWTIIS

OMECIFD
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392
Taguchi uses "linear graphs" to expose

confounding patterns in fractional designs.

They appear useful for choosing a defining

relation that yields a desired confounding

pattern .

6

07

2
4

IGURE I.Imam Germaha tee the lo stregoned Arreny.

Method of construction : unknown

(3)

Source: Taguchi ( 1980) .

7 1 13 11

12

15

10

54

Cuthbert Daniel's method for displaying

confounding patterns is more difficult to see

(for me). Used to analyze rather than generate.

Source: Daniel (1962).

The defining alone ANC Twenteling mitmn real world

I. ANC . Writeria mail, the theretowore :

A Mr.

A + AC

romather

The nie minder and then lattice and poligono le domainganto the ait olamde bevare Mased

The lin linea, bent wood in returner (sl, show the pain that nen proiemarind

that be, whowaww in memuncul bong the mermapemeting room and thewartempat

tre . I.Cling mellomme good for
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Graphical representations of hierarchy help to

develop nested designs for mixed and

random effects models.
1 .

I.

Naded or I boisen hulle ihmakan .

Andrews was particularly graphic.

:
Farmasing " loun i too loud thy moting Vmuate

S S

| ***
S.

Source: Andrews (1964 ).

se.

Tooting Within Tore Sampling Variation

A. 1 . A. A. A, A. A.

all

îi

ಕ್ರರರರ ರರರರ
பட்டயEstimating Analylke af Vwiastra
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A simpler, perhaps less informative

representation of the same design. This form

has been used by several authors.

TRUCKS

See also : Leone,Nelson,and Johnson (1968)

SAMPLES

nonANALYTIC

BATCHES

LCHEMATIC for ANDREWS HIERARCHIC DESIGN
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What graphical concepts do these

tools exploit?

1 Design Balance /Symmetry

2 Design Projections

3 "Face " Incidence of Design Points

4 Network properties: connectedness ,

etc.

5 Analog Computations

58

What are the strengths and limitations

of graphical methods?

+ Flexible

• make tradeoffs visually

incorporate constraints graphically

+ Robust

+ Uses powerful computer - human eye

+ Graphical DOX methods easy to use &

remember

Non - quantitative

Dimensional limitations
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Of course, computers play other roles in DOX,

e.g. DETMAX . Here we mean getting

computers to help with the plotting,

projections, views, etc.

What role can computers play in graphical DOX?

1

2

Make descriptive tools into prescriptive ones

•rapid plotting of alternative designs

•exhaustive plots of alternative designs for scanning

Interactive graphics

real time design manipulation

•computed design properties updated and displayed

Rule -based systems to manipulate geometric or network objects3

60

Even for DETMAX applications, graphical

methods resorted to for understanding and

evaluation .

11 Source: Mitchell ( 1974 ).

$DET
Ľ

3 LEVELS OF O DEMOTED

BY 0, 0 , ANO A

Irwonn I - Domingom ( onlandirma, krompte I.
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Examples of graphics shown here aren't meant

to be prescriptive; graphical DOX as a distinct

entity is too new.

Summary - the place of graphical methods in DOX This selection represents useful methods to

trigger your own imagination.
1 Graphical: Investigative, creative

2 Mathematical, Computer- Aided : confirmatory Try to find useful ways to handle designs with

many factors.

USE YOUR RIGHT BRAIN

(and may the force be with you ! )

Reference: Box ( 1984) .

NEXT:

GRAPHICAL

ANALYSIS
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