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FOREWORD

The Thirty-sixth Conference of the Design of Experiments in Army

Research , Development and Testing was held 17-19 October 1990 on

the campus of the University of Delaware . This university served

as one of its hosts , the other host being the Ballistic Research

Laboratory ( BRL) . Back in 1987 the Thirty-Third Design Conference

had these same hosts . Professor Henry B. Tingey was the

Chairperson on Local Arrangements for the University and Mr. Jerry

Thomas served in this capacity for BRL . The members of the Army

Mathematical Steering Committee ( AMSC ) , sponsor of these

conferences , take this opportunity to thank these gentlemen for

their excellent handling of the many problems associated with this

meeting .

The original format for the Design of Experiments Conferences ,

which are under the auspices of the AMSC , was outlined by the

eminent statistician , Professor Samuel S. Wilks , who served as

conference chairman until his death . Through these symposia the

AMSC hopes to introduce and encourage the use of the latest

statistical and design techniques into the research , development

and testing conducted by the Army's scientific and engineering

personnel .

Members of the program committeecommittee were pleased to obtain the

services of the following distinguished scientists to speak on

topics of interest to Army personnel .

KEYNOTE ADDRESS

Design of Experiments for comparing the Performance of Several

Multi-Stage Procedures for Selecting the Normal Population Having

the Largest Mean When the populations Have a common Variance .

Professor Robert E. Bechhofer

Cornell University

Professor David M Goldsman

Georgia Institute of Technology
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Speaker and Affiliation Title of Address

Dr. Paul A. Turkey

Bell Communication

Research

Some Graphical Techniques for

Data Analysis

Professor Howard M. Taylor

University of Delaware

Stochastic Models for

Particals in a Moving Fluid

Professor Erik V. Nordheim

University of Wisconsin

Statistical Consulting

Professor Arthur E. Hoerl

University of Delaware

Ridge Regression in Practice

Each year , two days before the start of the conference , a two-day

tutorial is presented . This year Professor Russell R. Barton , now

at The Pennsylvania State University , presented a tutorial entitled

"Graphical Design of Experiments ." It was held on the campus of

the University of Delaware . His notes on this meeting are being

published in these proceedings .

Since no U.S. Army Wilks Award would be given in 1990 , the hosts

decided to have an invited speaker after the banquet . Professor

Tingey invited Dr. John C. Bailar , Department of Health and Human
Services , to talk on "John C. Bailar's Laws of Data Analysis . " It

turned out to be one of those rare talks that all members in the

audience could enjoy .

The AMSC has requested that these transactions be published and

distributed Army -wide so that the information in them might assist

Army scientists with some of their statistical problems . Committee

members would like to thank all the speakers for their interesting

presentations and also members of the Program Committee for their

many contributions to this scientific meeting .

PROGRAM COMMITTEE

Gerald Andersen

J. Robert Burge

Carl Russell

Jerry Thomas

Barry Bodt

Eugene Dutoit

Douglass B. Tang

Carl Bates

Jock Grynovicki

Malcolm Taylor

Henry Tingey
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AGENDA

THIRTY - SIXTH CONFERENCE ON THE DESIGN OF EXPERIMENTS

IN ARMY RESEARCH , DEVELOPMENT , AND TESTING

17-19 October 1990

Hosts : The Army Ballistic Research Laboratory

Aberdeen Proving Ground , Maryland

and

The Department of Mathematical Sciences

The University of Delaware

Newark , Delaware

Location : The University of Delaware

Wednesday , 17 October 1990

0815 0915 REGISTRATION
Clayton Hall Lobby

0915 0930 CALL TO ORDER
-

Henry B. Tingey , University of

Delaware

OPENING REMARKS
-

David Roselle , President of the

University of Delaware

0930 1200 GENERAL SESSION I

Chairperson : Jerry Thomas , U.S. Army Ballistic

Research Laboratory

0930 1030 KEYNOTE ADDRESS :

Robert Bechhofer , Cornell University

1030 1100 BREAK

1100 1200 SOME GRAPHICAL TECHNIQUES FOR DATA ANALYSIS

Paul A. Tukey , Statistical Research Group , Bell

Communication Research

1200 1300 LUNCH
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Wednesday ( Continued )

1300
O

1500 CLINICAL SESSION

Chairperson : Malcolm Taylor , U.S. Army Ballistic

Research Laboratory

Panelists : Robert Bechhofer , Cornell University

Arthur E. Hoerl , University of Delaware

Emanuel Parzen , Texas A&M University

A RANK CORRELATION APPROACH FOR TREND DETECTION OF

MILITARY SPARE PARTS DEMAND DATA

Barnard H. Bissinger , Hershey Foods Corporation ,

and John R. Boyarski , Operations Analysis

Studies , U.S. Naval Ships Parts Control Center

ARTILLERY COMPUTER METEOROLOGICAL MESSAGE ZONE

THICKNESS FOR ALTITUDES ABOVE 20 km

Abel J. Blanco , U.S. Army Atmospheric Sciences

Laboratory

ABRAMS TANK INSPECT AND REPAIR ONLY AS NECESSARY

( IRON ) ECONOMIC MODEL

Albert Van Horn , U.S. Army Tank - Automotive

Command

1500
O

1530 BREAK

1530 1710 TECHNICAL SESSION 1

Chairperson : John Robert Burge , Walter Reed Army

Institute of Research
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Andrew Thompson , U.S. Army Ballistic Research

Laboratory

AN ITERATIVE TECHNIQUE FOR TARGET DETECTION AND

SEGMENTATION IN IR IMAGING SYSTEMS

Duc M. Nguyen , U.S. Army Electronics Command ,

Center for Night Vision and Electro-Optics

DATA ANALYSIS BY INFORMATION STATISTICS

Emanuel Parzen , Texas A&M University

1830 1930 CASH BAR Clayton Hall
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Services

Thursday , 18 October 1990

0830 1000 TECHNICAL SESSION 2

Chairperson : Jock Grynovicki, U.S. Army Human

Engineering Laboratory
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ARABIAN NATIONAL GUARD (SANG )

George Anitole and Ronald L. Johnson , U.S. Army

Belvoir Research , Development and Engineering

Center

MAINTAINING INCREMENTAL OPTIMALITY WHEN BUILDING
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Terence M. Cronin , U.S. Army CECOM Center for

Signals Warfare

AN ALGEBRAIC DERIVATION OF THE VARIANCE OF THE

GEOMETRIC DISTRIBUTION

Richard M. Brugger , U.S. Army Armament ,

Munitions , and Chemical Command

A LINEAR PROGRAMMING MODEL FOR QUEUING IN

OPERATIONAL AVAILABILITY

William C.C. Hoffman , Dyncorp , Electromagnetic

Environmental Test Facility

1000
O

1030 BREAK

1030 1200 TECHNICAL SESSION 3

Chairperson : Fred M. Grimes , TEXCOM Combined Arms

Test Center
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Donald M. Neal , William T. Matthews , and
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DESIGN OF EXPERIMENTS FOR COMPARING TIIE

PERFORMANCES OF SEVERAL MULTI-STAGE PROCEDURES

FOR SELECTING TIIE NORMAL POPULATION IIAVING TIIE

LARGEST MEAN WIIEN THE POPULATIONS IIAVE A

COMMON VARIANCE *

Robert E. Bechhofer

School of Operations Research &

Industrial Engineering

College of Engineering , Cornell University

Ithaca, NY 14853

David M. Goldsman

School of Industrial & Systems Engineering

Georgia Institute of Technology

Atlanta, GA 30332

Abstract

We study the performance characteristics of indifference- zone procedures for selecting the normal

population which has the largest mean when the populations have a common known variance . The

procedures considered are the open sequential procedure of Bechhofer, Kiefer and Sobel and a truncated

version of that procedure by Bechhofer and Goldsman, the closed multi-stage procedure of Paulson

which eliminates populations indicated as being non-contending, and an improved version of that

procedure by Ilartmann . The performance characteristics studied are the achieved probability of a

correct selection , the expected number of stages required to terminate experimentation, and the

expected total number of observations required to terminate experimentation . All performance

characteristics are estimated by Monte Carlo sampling. In addition , the same problem is considered for

the case of common unknown variance. IIere the competing procedures are the open non -eliminating

two- stage procedure of Bechhofer, Dunnett and Sobel , the open eliminating two- stage procedure of

Gupta and Kim, and the open eliminating multi-stage sequential procedure of Paulson as improved by

Hartmann. Particular emphaşis is placed on the fact that when designing the experiments to compare

the performance characteristics of these procedures there are many relevant factors which inust be

varied in the conduct of the experiment in order that meaningful and generalizable results can be

obtained .

Rescarch partially supported by the U.S. Army Research Orlice through the Mathematical Sciences

Institute of Cornell University.
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Bechhofer ( 1954 ) proposed a statistical procedure for selecting the normal population which has

the largest population mean with prespecified controls over the probability of a correct selection . Over

the years many additional procedures have been proposed to solve this problem . All of these

procedures guaranteed the following indifference -zone probability requirement :

Prob {Correct selection } > P* whenever

M[k] - " [k- 1 ]
> :*

Here

M
<

[
< ... <

“ [k ] are the ordered values of the population means # ; ( 1 si 5 k) ; the

values of the
Mi

and

MG]
( 1 < i , j = k) are assumed to be unknown as is the pairing of the

40]

( 1 < js k) with the k populations. The constants { 8 , P * } with 0 < 5* < 0 , 1 /k < P * < 1 are

specified by the experimenter prior to the start of experimentation.

Each of these procedure at the time that it was suggested possessed certain virtues which made it

worthy of consideration . But it was not until recent years that any serious attempt was made to

compare the relative merits of these procedures . The ultimate objectives of such a study would be to

determine whether any particular procedure dominated any other procedure(s) , and if so, in what

respect and under what conditions . Such comparative studies could then make it possible to

recommend which procedure it would be preferable to use in certain particular environments.

The first such comprehensive study was reported by Bechhofer and Goldsman ( 1989) ; in that

study which dealt with the cases in which the populations have a common known variance , the critical

performance characteristics were compared for the single-stage procedure of Bechhofer ( 1954 ) , the two

stage procedure of Tamhane and Bechhofer ( 1977 , 1979 ) in which populations indicated as being non

contending can be eliminated after the first stage , the open non-eliminating sequential procedure of

Bechhofer, Kiefer and Sobel ( 1968 ) , and the truncated version of that procedure by Bechhofer and

Goldsman ( 1987 , 1989 ) , and the closed multi-stage procedure of Paulson ( 1964 ) in which population

can be eliminated at any stage after the first, and an improved version of that procedure by Hartmann

( 1988) . Most recently Bechhofer, Dunnett, Goldsman and Hartmann ( 1990 ) studied the same selection

2



problem for the case of common unknown variance . The procedures considered were the open non

eliminating two -stage procedure of Bechhofer, Dunnett and Sobel ( 1954) , the open two-stage procedure

of Gupta and Kim ( 1984 ) in which non-contending population can be eliminated after the first stage,

and the open multi-stage procedure of Paulson ( 1964 ) as improved by Hartmann ( 1991 ) in which

population can be eliminated at every stage after the first .

In the talk presented , results and conclusions for the case of common known variance were

discussed in great detail . It was pointed out why the case of common unknown variance introduced

special design problems in terms of the large factorial experiment to be conducted . The final factorial

experiment as it was conducted is described below. The results of the experiment are reported in

Bechhofer, Dunnett, Goldsman and Hartmann ( 1990 ) .

3



Design of a Large Factorial Experiment to Compare the

Relative Performances of Four Multi-Stage Procedures for Selecting the Population with the Largest

Mean when the Common Variance is Unknown

The procedures:

a ) Bechhofer -Dunnett- Sobel ( 1954)

b) Paulson- Hartmann with = 8* /4 ( 1991 )

c ) Paulson-Hartmann with d = 8 * /2 ( 1991 )

d ) Gupta -Kim ( 1984 )

New underlying factor:

The value of the unknown variance which plays its role in terms of the ratio 0/8 * where 5 * > 0

is specified .

New design factor:

This is under the control of the experimenter. Common number of observations ( nn ) per

population which is taken in the first stage .

Factors affecting the performances of each procedure:

a) Number of populations: These were set at three levels:

k=3,5,10 .

b) Specified p *-values: These were set at 2 levels:

p*= 0.75 , 0.90 .

c) Ratios o/8* : These were set at two levels : 0/8*=2,3 .

d) First- stage sample sizes: These were set at four levels :

ni
= 5, 10 , 15 , 20 .

e) Configuration of the population means: These were set at

two levels: least- favorable and equal means.

Thus for each procedure a 5 - factor experiment was conducted with 3x2x2x4x2 = 96 factor-level

combinations. For each combination at least 10,000 independent MC experiments were conducted .

The responses recorded for each experiment were:

a) The achieved probability of a correct selection .

b) The estimated expected total number of observations to

terminate sampling.

c ) The estimated variance of the total number of

observations to terminate sampling .

d) The estimated expected number of vector-observations to

terminate sampling.

e) The estimated variance of the number of vector

observations to terminate sampling.
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ARTILLERY COMPUTER METEOROLOGICAL MESSAGE

ZONE THICKNESS FOR ALTITUDES ABOVE 20 KM

Abel J. Blanco

U.S. Army Atmospheric Sciences Laboratory

White Sands Missile Range, NM 88002-5501

ABSTRACT The U.S. Army is developing new field artillery systems that

have longer range ( 50 km ) capabilities . As a result , extended altitude

computer meteorological ( met ) messages are now required for aiming

adjustments that compensate for met effects along the high apogee

trajectory The following experiment is designed to select an optimal zone

thickness : aerodynamic parameters for an artillery rocket assisted round

are assumed and the Ballistic Research Laboratory general trajectory model

is used to simulate impacts computed from using observed met data and

observed data averaged into proposed zone thicknesses for the altitudes

extending above the current 20 km computer met message height. Measured

upper - air wind , temperature , and pressure data collected during the four

seasons at White Sands Missile Range , New Mexico , are converted for use in

artillery surface - to - surface applications . The 226 rawinsonde flights,

including data up to 30 km height, are partitioned into monthly data sets ,

and tests of significance are used to determine an optimal thickness . The

corresponding impact paired differences between the observed data and the

proposed zone averaged data yield statistics that demonstrate the 1 - km zone

average as the optimally selected thickness for extending the computer met

message .

1 . INTRODUCTION . The U.S. Army Atmospheric Sciences Laboratory ( ASL )

continues to support the U.S. Army Field Artillery School ( USAFAS ) in

extending the application of the artillery computer meteorological ( met )

message at altitudes above 20 km . In lieu of unavailable measured data , a

software technique ( Blanco , 1981 ) was developed to extend the application to

3 km from the maximum ordinate . By 1983 , ASL refined a composite algorithm

allowing use of estimated higher altitude met data . Persistence of the last

computer met message line data and satellite climatology or available

artillery fallout met message were merged into an automated procedure that

selects the best options for extending the artillery computer met message .

The USAFAS now has a new requirement of extending the computer met message

to a maximum ordinate of 30 km . The 10 km extension dictates using measured

data instead of the early proposals of using estimated data . The only

constraint is that one can easily overload the fire control computer with
too much met data . The current met array allows 27 observations for each

met parameter --wind direction , windspeed , virtual temperature , and pressure .

These 27 lines remain the same and the new fire control computer storage

requirements are determined upon selecting the optimal zone thickness that

best describes the atmospheric state between 20 km and 30 km

surface . The only expected change in the field operations is to continue
collecting met data up to 30 km above the surface . All other required

software changes will be transparent to the user .

This paper presents an optimal zone thickness for the extended
artillery computer met message at altitudes above 20 km . The method used in

selecting the zone thickness that can be standardized for artillery

applications includes the following experiment : aerodynamic parameters for
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an artillery rocket assisted round are assumed and the Ballistic Research

Laboratory ( BRL) general trajectory model ( Lieske and Reiter , 1966 ) is used

to simulate impacts computed from using observed met data and observed data

averaged into proposed zone thicknesses for the altitudes extending above

the current 20 km computer met message height . The corresponding impact

paired statistics between the observed and proposed zone thicknesses are

used to document the selection of the optimal zone thickness .

The analysis of these results includes mean component inferences . The

Student t - test and the F- ratio analysis of variance comparison are used to

determine a significant difference between the observed and the 1 - km zone

thickness and between the observed and the 2 - km zone thickness . A mean

vector inference test known as the Hotelling's T² is also used for an easier
interpretation of results . This test also allows faster calculations when

using available utilities from the International Mathematics and Science

Library ( IMSL ) . In summary these statistics demonstrate the 1-km zone

average as the optimally selected thickness for extending the computer met

message . With this zone thickness, 10 new lines are added to the computer

met message .

22. DESIGN OF EXPERIMENT. The U.S. Army Field Artillery is developing

new weapon systems that have a longer range (assume 50 km ) capability . To

reach this new range the projectile must go through a higher apogee . The

projectile propagates through more atmosphere and spends a longer time under

the influence of atmospheric parameters of wind , temperature , and pressure .

Since met effects are known to be major contributors to the artillery error

budget , deployment of met teams in the battle area is required to measure

the atmospheric parameters , prepare formatted messages , and disseminate

computer met messages to the fire control centers . These messages are used

in making final aiming angle adjustments before ordering fire for effect .

Figure 1 presents a two - dimensional plot of height versus range for the

two modes of fire -- low quadrant angle and high quadrant angle . New

aerodynamic and ballistic coefficients at the higher mach numbers were

incorporated in the BRL general trajectory model to simulate firings of a
modified M549Al rocket assisted round . The assumed future configuration of

a 155 - mm weapon system fired at White Sands Missile Range , New Mexico , did

not reach an apogee of 30 km . For the low - angle simulations, the projectile

apogee is at 23 km above the surface . For the high - angle simulations, the

projectile apogee is at 26 km . Of course the simulation can perform the 30

km apogee ; but at this higher angle of fire the BRL test on maximum angle of

attack exceeds a predefined criterion , which indicates that the projectile

is not trailing the trajectory and there is the possibility of actual round

Following the BRL criteria , this report evaluates results from

simulations containing 23 to 26 km apogees corresponding to the low and high

quadrant angles .

Robert Lieske , 1990 , Memorandum SCLBR - LF - T ( 340 ) , " Maximum Ordinates for

Extended Range Ordnance , " U.S. Army Ballistic Research Laboratory , Aberdeen

Proving Ground , Maryland .
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Figure 1 . Assumed 155 -mm cannon projectile trajectory .

All effective fire includes met adjustments, and table 1 presents the

zone thicknesses for three artillery met messages . Today's artillery

meteorology still depends on a balloon - borne sensor to provide the

appropriate wind , temperature , and pressure measurements . In computing the

fallout message for example , the balloon is tracked up to 30 km above the

surface . The current computer met message provides met data up to only 20

km because cannon artillery has not exceeded this maximum ordinate . Special

artillery rockets have the capability of exceeding this altitude , and the

USAFAS has requested methods of extending the application of the available

computer met message . To this date the software estimations have been

appropriate only because the required extension was within 4 km of the last

observed computer line data . With the advent of future artillery systems ,

there is a need to extend the computer met message to a maximum ordinate of

30 km . Met hardware and software are already available and the only task is

to standardize the zone thickness within the 20 to 30 km altitudes .

ASL .

This task has been a cooperative effort between the UASFAS , BRL , and

ASL recommended all 1 - min observations ; however , the USAFAS is

constrained to available computer storage space in the fire control centers

and cannot support this ~ 300 m thickness . BRL has assumed aerodynamic

characteristics and provided ASL with the point mass trajectory model for

use in computing the desired long - range cannon fire . An experiment is then

designed to prepare met messages that contain 1 -min observed data , 1 -km zone

averages , and 2 - km zone averages , These formatted data are then input to

the BRL point mass general trajectory model for simulating impacts. All

replicates are then paired and statistical results are interpreted to

determine if proposed averaged data and the observed data are significantly
different .



TABLE 1 . FM 6-15 ATMOSPHERIC ZONE STRUCTURE

FALLOUT

0

BALLISTIC

0

1

2

3

4

5

1

6 2

7

ل
ی
ا

HEIGHT

METERS

SURFACE

200

500

1.000

1.500

2,000

2.500

3.000

3.500

4,000

4,500

5,000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

13.000

14,000

15,000

16.000

17.000

18.000

19,000

20.000

8

9

LINE NUMBERS

COMPUTER

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

10 4

11 5

12 6

13 7

14 8

15 9

10

* * *

30,000

* * *

15

3. METEOROLOGICAL DATA BASE . An available set of upper - air data

containing observations up to 30 km was retrieved from met support provided

for special projects at White Sands Missile Range , New Mexico , during 1989 .

A sample of 226 rawinsonde flights containing representative sets for each

of the four seasons is used as the met data base . Table 2 presents all

replicate rawinsonde flights with Holloman , White Sands , and Small Missile

Range containing the larger samples .
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TABLE 2 . NUMBER OF RAWINSONDE FLIGHTS COLLECTED DURING 1989

MONTHLY FLIGHTS

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC TOT

HOLLOMAN 2 3 6 12 3 6 8 7 64

WHITE SANDS 8 2 6 1 B 3 6 6 8 10 66

JALLEN 1 1 7 6 16

STALLION 1 1 3 1 1 1 8

SMR 4 2 7 1 6 6 16 9 8 3 1 60

NW 30
1 1

1 3

TULA SITE
1 1 1 2 1 1 7

OASIS

N

B 2 1 2 12

LAS CRUCES 1
1

TOTAL 8 18 2717 8 18

WINTER

43

10 34 23

SPRING

66

12 30 28

SUMMER

71

11 8

FALL

46 226

Each rawinsonde flight in this data base was reduced into the 26

computer zone averages by using a linear fit methodology . Given the

particular data (W equals wind , temperature , or pressure ) versus height, one

can interpolate for any information within the adjacent observed data by

using the linear coefficients ( a and b ) :

a

Wi + 1 ) - W ( 1 )

2 ( i + 1 ) Z ( i )

b
W ( i ) Z ( i + 1 )

Z ( i + 1 )

- Wi + 1 ) Z ( i )

Z ( i )

( 1 )
>

where the range of application is within Z ( i ) and Z ( i + 1 ) . Then for a

given height H between Z ( i ) and Z ( i + 1 ) , one can compute the value of the

met parameter w by

W = a H + b . ( 2 )

With this linear coefficient method , one can derive the value of the met

parameter at the bottom and top of any defined zone thickness . Figure 2

illustrates the position of the data ( 0 ) and the location of the artillery

zones ( H ( i ) ' s ) . The total AREA defined by the vertical axis , the bottom

horizontal line at height H ( 1 ) , the top horizontal line at height H ( 2 ) , and

the met parameter function within the interval H ( 1 ) and H ( 2 ) is calculated

by the sum of the composite areas . For example ,

2 ( 2 )

ss
dwdh ( ah + b ) dh

( ah + b)

2

ah

2

+ bh ( 3 )

H ( 1 )

computes the area by integration between H ( 1 ) and 2 ( 2 ) . Repeating the

interation between 2 ( 2 ) and 2 ( 3 ) and 2 ( 3 ) and H ( 2 ) yields the composite

11



areas , and the sum of these areas defines the total AREA . Using the Mean

Value Theorem , one can derive the mean value of the particular parameter

within the artillery zone thickness by

W - AREA
( 4 )

ΔΗ

Since the atmospheric pressure is exponentially related to the height, the

natural log of the pressure is computed before the linear fit and averaging

routines are executed . At the end , the exponential function is applied to

the output to express the zone pressure average .

Z(6)

H(3)

Z(6)
H

E

z(4)
1

H(2)
G

6 Z(3)
H

T

Z(2)

H(1)

4241

MET PARAMETER

(wind, temperature, pressure )

Figure 2 . Met data and zone thickness .

In computing the wind zone averages , the artillery interpolates for the

x and y balloon positions at the bottom and the top of each artillery zone

then divides by the time the balloon ascends from the bottom to the top of

the zone . Note from table 1 that the computer zones are not the same

thickness . Since actual computer met messages are not available , the best

estimate for reproducing the artillery met message from the available

rawinsonde data is that described in this section .

Figures 3 through 5 present reduced computer met messages extended to a

higher altitude with the actual observed data and the two proposed zone

averages . Note that line 0 or the surface is at the Holloman site elevation

of 1258 m and the top of line 26 is at 21258 m . In the experiment this

structure is fixed and the only variable is the data from the top of line 26

to the last available met observation . These plots present the observed

wind component profiles for the December 22 flight at the extended computer

met message heights . The observed data represents 1 min or about 300 m

interval observations . Using the information in figure 3 as input to the

BRL general trajectory model , one can compute a 43506 - m range and a 5137 -m

12



cross - component impact for the assumed future projectile fired at a high

quadrant angle of 1150 mils . In figure 4 , the extended observed data is

averaged into 1 km zones , and the simulated impacts demonstrate almost

identical results . However , when one averages the observed data into 2 km

zones , as represented in figure 5 , the simulated impacts demonstrate a -64 m

range and +53 m cross difference .

HOLLOMAN WIND COMPONENT PROFILES DEC 22 , 1989
30000

28000

26000

24000

OBSERVED DATA

SIMULATED IMPACT

HANGE 43506

CROSS 5137
22000

20000

18000

16000

H
E
I
G
H
T

A
B
O
V
E

S
E
A

L
E
V
E
L

(m)

11000
10

12000
10

LS

10000

8000
12

6000

4000

o A

2000

NORTH - SOUTH EAST -WEST

0

-30 -20 -10 0 10 20 30 40

WIND COMPONENTS ( m/s )

Computer wind components extended with observed data .Figure 3 .

HOLLOMAN WIND COMPONENT PROFILES DEC 22 , 1989
30000

28000

32

26000

24000

8N
S

8F

km ZONE DATA

SIMULATED IMPACT

RANGE 143502

CROSS 5136

22000
O

20000

18000

16000

H
E
I
G
H
T

A
B
O
V
E

S
E
A

L
E
V
E
L

(m)

14000

12000

10000

8000

6000

4000

o

2000

NORTH - SOUTH EAST-WEST
0

-30 -20 -10 0 10 20 30 10

WINO COMPONENTS ( m / s )

Computer wind components extended with 1 km averaged data .Figure 4 .
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HOLLOMAN WIND COMPONENT PROFILES DEC 22 , 1989
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Figure 5 . Computer wind components extended with 2 km averaged data .

4 . ANALYSIS OF SIMULATED IMPACTS . For the six available Holloman

December met messages , one can compute 18 impacts representing the observed,

1 km , and 2 km averaged data . Figure 6a presents these simulated impacts .

The impacts derived from using the December 22 averaged profiles presented

in the last three figures are now identified with a 6 . Note that the dark 6

represents two impacts and the light 6 represents the other . One can see

the same general results for the other numbered impacts . For this month the

simulated impacts derived from using the observed and 1 km averaged data are

almost identical . Pairing the impacts resulting from the observed data with

the corresponding impacts from the 1 km and 2 km averaged data , one can see

a significant difference in using the proposed zone thicknesses as

illustrated in figure 6b . Not all results include this easily derived

graphical interpretation ; therefore , tests for the mean component

inferences were automated (Rickmers and Todd , 1967 ) .

SIX SIMULATED IMPACTS USING

0.3 , 1.0 , & 2.0 km MET ZONE THICKNESS

OBSERVED VERSUS PROPOSED ZONE

PAIRED DIFFERENCES

RANGE (m ) o's Ikm ZONES # ' s 2km ZONESRANGE ( M )

100

1
1880

580 59

CROSS ( m ) CROSS ( m )

188580 1000 3 58

4통

Figure 6a . Simulated impacts . Figure 6b . Paired differences .
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The pairedThe first statistical test is the Student t - test .

differences in , average , and sigma ) are used to derive a t -value

computed

à 8

od

( 5 )

where

à
average difference between pairs

8 hypothesized pair difference

ºd
standard error

°à

In this paper and in general s is made equal to 0 . By comparison with the

t - table value , one can determine presence of a significant difference using

the 5 - percent alpha risk . If the computed value is within the † table

value , then one can accept the null hypothesis that no difference exists .

Another test is the F - ratio analysis of variance . Theoretically the F

distribution is the square of the Student t and a conclusion for the two

tests is the same . However , the F - ratio analysis of variance provides other

information that the Student t does not . In computing the different ratios ,

F

variance of means

variance for errors
( 6 )

a significant difference among the six met rawinsonde flights was revealed .

In the selected two - factor setup of the F - ratio test , each observation is

assumed to be determined by the following four possible effects : the general

mean of the data , a possible zone thickness effect , a possible atmospheric

( rawinsonde flights ) effect , and the effect of the error in our hypothetical

mathematical model of the sum of the variances .

These tests were performed on the component impact differences .

Analyses of the results were difficult to interpret because , as illustrated

in table 3 , the cross - component 1 - km average contains the computed t- and

F - values outside the corresponding table values . The conclusion is that the

1 - km average provides significantly different cross - component impacts than

those impacts derived from the observed data . Different conclusions from

the individual comparisons for each component impacts were not encouraging .

The graphical results in figure 6b indicate that the observed and 1 - km zone

averaged data provide similar impacts and should not be considered as

significantly different . This is certainly true when considering the lethal

radius of the delivered munition . To maintain agreement with the graphical

results , a third statistical test was automated .

The Hotelling IP test uses the mean vector impact differences and

allows easier interpretation of the inference results . Table 3 now reveals

that there is no significant difference between the observed and the 1 km

averaged data for the December flights collected at Holloman . However , the

comparison between impacts derived from the observed and the 2 km averaged

15



data reveal that there is a significant difference . Under these atmospheric

conditions and this high quadrant angle of fire , the met data must be

formatted into 1 km averages to allow accurate artillery fire .

TABLE 3 . INFERENCE TEST RESULTS

USING HQE SIMULATED IMPACTS FOR DEC HOLLOMAN MET DATA

F RATIOSTUDENT I

cross range

2.57 2.57

cross

6.61

range

6.61

HOTELLING T ?

vector (F)

6.94TABLE VALUE

1 km ZONE 2.71 - 1.55 7.33 2.4 1 3.77

2 km ZONE 5.90 -7.06 34.82 49.83 20.04

Not only are the Hotelling results easier to interpret but this test

also allows faster computations by using subroutines from the IMSL . No new

software development or table lookup is required . The computed T2 value is

defined ( Johnson and Wichern , 1989 ) as the quadratic form ; and knowing the

mean and the covariance matrixes , one can derive the result by utilizing the

IMSL subroutine , "blinf . "

T2 quadratic form "blinf " ( 7 )

T ? - n ( - M ) s (3M) ( 8 )

where

n

X

( pxl )

1

n1 금 X ;
j -1

(p &p )

1

n- 1 》 ་-1) (%, -x)
j -1

M

( pxl)
a plausible value for the mean

р
2 ( the range and cross variables )

X
the matrix of paired impact differences .
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The distribution of T' has the following F distribution relationship :

(n - 1 ) P

(n p )

F

Pin -p

where

n is the number of paired impact differences and

pis 2 representing the range and cross variables .

Solving for F in the above equation , one can compare the computed value

with the table value obtained by using the " fin , " IMSL subroutine . Another

method to determine the presence of a significant difference is to compute

the probability - 1 - " fdf" where " fdf " (IMSL subroutine ) is the cummulative

distribution . The alpha risk is then used as the criteria to demonstrate

presents of the null hypothesis , no significant difference .

5 . EXPERIMENTAL RESULTS . In general the statistical comparisons yield

results from the following categories : ( 1 ) during stable weather conditions

all proposed zone averages demonstrate agreement with observed data ; ( 2 )

during unstable weather conditions all proposed zone averages demonstrate

disagreement with observed data ; and (3 ) under certain weather conditions

one zone average exists that is a better observed data estimator than the

other proposed zone average .

The Hotelling results for each month are listed in table 4 . Beginning

with the Holloman , December , high quadrant angle results which have already

been discussed in the previous two sections , let's define the " N " for no

significant difference and the " Y ", for a significant difference . By

reviewing the results in table 3 , one can see that the computed F for the 1

km zone is within the + table values and that the computed F for the 2 - km

zone is not within the t table values . Therefore , for the high quadrant

angle we note an " N " for the 1 - km zone and a " Y " for the 2 - km zone during

the month of December . For February there are only two rawinsonde flights

( n) and since the Hotelling test requires that the number of variables be

equal to the degree of freedom ( p ) , the ( n - p ) computation in the

denominator of the Hotelling distribution leads to a division by zero . So

the other symbol, " . , " in the table indicates that there is not enough data

to complete the test . For the other stations , " ." may also indicate that

there is no data for completing any mean inference test .

Overall, the majority ( 30 cases ) of the Hotelling mean vector inference

test of the paired impacts derived from the met flights averaged into the

different zones reveal no significant difference . In the minority ( 12

cases ) , particularly for low quadrant angle of fire , none of the proposed

zone met averages are representative of the observed data . This observation

is true for all months during the year but seems to occur more often at the

SMR station , which is located closer to complex terrain . Eight of the

remaining 11 cases show that the 1 - km - zone averages yield better impact

results than the 2 - km - zone averages . This further demonstrates that the

1 - km - zone averages produce almost identical simulated impacts as those

produced by using the 1 - min (~300 m ) observed met data .
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TABLE 4 . SIGNIFICANT DIFFERENCE BETWEEN OBSERVED AND PROPOSED ZONE

LOW QUADRANT ANGLE

USING HOL SIMULATED IMPACTS FOR MONTHLY MET DATA

1 2 3 4 6 6 7 8 9 10 11 12

1 km ZONE N N N N N NN Y Y N N N

2 km ZONE N N N Y N N Y Y Ν Ν Ν

HIGH QUADRANT ANGLE

1 km ZONE N N N Y N N N N N N N

2 km ZONE N
O

N N Y N N N N N Y Y

N

O

USING SMR SIMULATED IMPACTS FOR MONTHLY MET DATA

LOW QUADRANT ANGLE

1 3 4 6 6 7 8 9 10 11 12

1 km ZONE Y Y Y Y Y N N N

2 km ZONE Y Y - Y Y - Y Y Y N

HIGH QUADRANT ANGLE

1 km ZONE N N • N N • Y N N N

2 km ZONE N - N - N N - N Y N

O

0

.

USING WSD SIMULATED IMPACTS FOR MONTHLY MET DATA

LOW QUADRANT ANGLE

2 3 4 6 6 7 8 9 10 11 12

1 km ZONE Y Y N N Y N Y N

2 km ZONE Y Y • Y N Y N Y N

HIGH QUADRANT ANGLE

1 km ZONE N N - N Y N Y N N

-

O

2 km ZONE Y · N · N N N N N N

6 . SUMMARY AND RECOMMENDATION . From the majority of the 226 rawinsonde

flights evaluated , it is revealed that the atmospheric state can be

accurately represented by either 1 or 2 km zone averages . Under this

condition the artillery may use the already available fallout zone extension

to the computer met message . However , this paper also identifies cases

where the atmospheric state could not be represented by any of the proposed
( 1 km or 2 km ) zone averages . Under this condition the artillery must use

all available observation to allow accurate artillery fire . Since the 1 min

( ~ 300 m) would require some 33 new lines to extend the current computer met

message to the new height of 30 km , the 300 - m - zone thickness is not a

possible solution because of the limited fire direction computer storage

constraint . The upper minority of cases reveal that the 1 km is

representative of the observed met data . This result and the majority of

cases that reveal no difference in zone thickness indicate that the 1 - km

zone is the optimal of the two proposed zone thicknesses .
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In conclusion , it is recommended that 10 new lines be required to

describe the atmosphere between 20 and 30 km above the surface . Future fire

direction computers shall have storage available for 37 lines of met

information . Each line shall contain an average value for wind direction ,

windspeed , virtual temperature , and pressure at the designated height . The

extended computer met message zone structure for long - range artillery

surface - to - surface fire shall be composed of ten 1 -km zones averages .
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A RANK CORRELATION APPROACH FOR TREND DETECTION OF
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ABSTRACT

The prediction of future demands for each of over 200,000 demand - based repair parts is crucial

to the readiness of the Navy , and certainly other branches of the Armed Services . Item mana

gers with only eight quarters of history are responsible for ordering that which is sufficient

to fill material requirements over an average eight quarter procurement leadtime and simul

taneously staying within economic bounds and excess material constraints .

Pivotal in demand prediction is the ability to determine whether the demand time series are

stable or , if trending , are they increasing or decreasing .

Former methods do not seem to do the job now , and one reason is that the average procurement

leadtime is nearly twice what it was 10 years ago .

The present approach has turned to the use of nonparametric analysis, in particular , using

Kendall's S (or T ) . The following factors and levels are considered :

Window Size : N = 4 , 6 , 8 , 10 sample sizes of recorded demand

Demand Level : Poisson , low , medium , high , very high average quarterly demand ;

Ratio of ôli : Five levels dependent on the level of demand

Extensive simulation , as well as actual demand data , are used to estimate the degree of type 1

and type 2 errors and the expected performance of the "s" statistic for various combinations

of demand and variability levels . Kendall's "S" does a good job confirming no trend when

there is no trend . Also , it is satisfactory to detecting trend when there is trend and

discriminating between increasing and decreasing trends .

The weakest link in the chain , so to speak , is detecting the commencement of a trend in demand

immediately following a nontrending period , as well as identifying when a trend has terminated

and the process generating demand is now stable . A lag of maybe three periods can occur .

However , proper selection of window length plays an important role here in minimizing the re

action time .

I. INTRODUCTION . Prior to this research , the Navy had been using a trigger

trend statistic to identify situations where demand was trending ; namely,

2 (D2 + D2)
T =

D2 + D2 + D3 + D.

( 1 )

where Di , D2 , D3 , and Du are , respectively , the last four quarterly demands , Di

being the most recent . Thus, the trend statistic " T " was simply the ratio of

twice the sum of the last two quarters of demand compared to the sum of the
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last four quarters of demand . The value of this statistic could range from a

minimum of zero to a maximum of two .

When this statistic's value lay between .9 and 1.1 , it was concluded that

no appreciable change in the demand pattern had occurred and the last demand ,

Di , was exponentially smoothed with the last forecast to compute a new fore

cast . The nontrending smoothing weights were :

.1 ( D ) + .9 ( Last Forecast ) = New Forecast

On the other hand , when this statistic was less than .9 or greater than

1.1 , it was concluded that a trend existed and the smoothing weights were in

creased to .3 and .7 , thereby placing more emphasis on recent demand .

Experience over the last decade showed an increase in the percent of con

tracts for material that had to be cancelled because excess material was on

hand or on - order . The counterpart to this , insufficient material on -hand or

on - order , was also on the rise . Additionally , procurement leadtimes in the

past 10 years have risen from a year on the average to two years , significantly

increasing the material forecast horizon .

Both top management and individual item managers believed that this trig

ger was overreacting , that it was too sensitive to random noise in the system .

This study was undertaken to examine the trend detection method more closely .

Chart I portrays evidence confirming these management concerns from the quar

terly trend statistics for the period June 1987 through March 1989 .
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Our first examination of formula ( 1 ) was done by using a table of random

numbers to obtain a sample frequency distribution of the trend statistic . The

demands were separated into three categories ; 0 to 1 , 1 to 5 , and 6 to 9 units

of quarterly demand .

Using a sample of size 40 , we obtained for the random nontrending ( low

usage rates ) demand of size 0 or 1 the following pattern of values for the

statistic :

Trend Statistic .67 1.00 1.33 2.00

Lili ***Frequency 5 3 19 4 9

It is easily seen that using trigger values of .9 and 1.1 would conclude

that demand was trending 53% of the time for low demand items . Furthermore ,

it is interesting to consider the 16 possible permutations of Os and ls over

the eight quarters . Here we find the values for the trend statistic to be :

Trend Statistic 0 2/3 1 4/3 2

i | HAFrequency 3 2 5 2 4

So much depends on the case of four consecutive periods of zero demand .

This situation has no numerical value , but common sense would indicate that we

should assign these cases the value of one . If this is done , the statistic is

biased to the right of one . Also , it is interesting to note what percentage

would be declared trending using different lower and upper bounds on the trig

ger statistic .

Trigger Statistic

Threshold Bounds Percent Triggered

Low High

.9 to 1.1

.8 to 1.2

.7 to 1.3

.6 to 1.4

70%

70%

70%

43%

Thus , the trigger trend statistic would still indicate trend in 43% of the

cases even using for a lower bound any number from 0 to .6 , and for the upper

bound , any value from 1.4 to 2 . At this point , it became clear that no sta

tistic such as this should be used on a string of zeros and ones . Yet , the

majority of items managed by the Navy have characteristically low demand

rates .

A similar analysis was conducted for the medium demand category ( one to

five demands per quarter ) using a random sample of size 20. The following

table was obtained for the same statistic (values were rounded off to the

nearest tenth ) :
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Trend Statistic .3 .6 .8 1.1 1.3 1.4 1.6

H3130Hz HülFrequency
1 5 2

Again , the mean is slightly larger than one and the present lower and

upper bounds on the trigger ( .9 , 1.1 ) would signal trend on the lower side

about 35% of the time and about 40% on the upper side . A simple examination

of the data suggested changing the thresholds to .6 and 1.6 for low and high

cutoffs to obtain 80% assurance that a trend is not declared for common sta

tionary demand situations .

Finally , for the high demand (values of six to nine demands per quarter )

using a random sample of size 30 , we found the following values :

Value .87 90 .91 .93 .961.97 11.0011.03 | 1.04 | 1.07 / 1.13.1.14

4 * 到 引 21.0 * 14:20):")Frequency 1 1 2 3 6 1

For high demand items , it appears that the trend statistic becomes more

stable and lies within a decreased computational range . The threshold values

( .9 , 1.1 ) hardly come into play . So in these situations , the probability of a

Type I error is relatively small and may be tolerable .

In September 1989 , action was taken to widen the trigger trend threshold

values from ( .9 , 1.1 ) to ( .6 , 1.4 ) in an effort to reduce the Type I error .

CHART II details the reduction in the number of items designated as trending

after these changes were accomplished . Significant reductions were achieved

for high and medium demand items , but low demand items were relatively un

affected , experiencing almost a flat (45,000 to 50,000 items ) trend declara

tion level . This finding is consistent with our theoretical conclusions dis

cussed earlier relative to the trigger trend statistic expected performance

for low demand items with a large percentage of zero observations.

This relatively minor forecasting change , based only on straightforward

extensions of probability theory and operations analysis techniques , led to an

immediate 10 million dollar per quarter reduction in inventory requirements

changes. Requirements changes ( churn ) due to quarterly reforecasting of de

mand was measured in June 1989 as approximately 30 million dollars per quarter

at SPCC . of this amount , 10 million dollars worth of changes was attributed

directly to the prior overly sensitive trend trigger thresholds of ( .9 , 1.1 )

invoking ( .3 , .7 ) smoothing on about 11,000 high and medium demand items .

These reductions were primarily due to decreases in the amount of quarter

to quarter change in the key inventory requirements areas of economic order

quantity and reorder point computations. Operationally , whenever unnecessary

or unwarranted requirements changes are reduced , better estimates of future

needs and budget requirements can be made and rework of procurement orders are

reduced . Likewise , significant reductions can be achieved in excess material

on - order as forecasts become more stable .
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From the theoretical aspect , we recognize in formula ( 1 ) that by dividing

the numerator and denominator of the statistic by four , that it is essentially

a quotient of the means of a sample of size two and a sample of size four .

Furthermore , the two means are correlated in that the two most recent quarters

of demand appear in both the numerator and denominator .

Much has been written on the product and quotient of two random variables .

It is a theoretically complicated subject. Only in the restricted situation

of two normally distributed variables that are correlated has an explicit

density function been derived . In this case , E. C. Fieller in 1932 showed

that if x and y are bivariate normal with correlatione , the statistic

X Hz

2 =

y • My

OyOg
/

has frequency function

8 (2 )

( 1-02) + dz

II (1 - 2pZ + 2 ) - ~ 3230

It doesn't seem defensible to try to invoke such theory in our present situa

tion . Now that it was clear that the previous method used to detect trends

was problematic , our attention and research turned to alternative methods for

trend detection and estimation .
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II . FIRST ATTEMPTS TO IMPROVE . Having concluded that the trigger - trend

statistic had serious operational limitations (poor trend detection and poor

stability confirmation) we began research into alternative methods for trend

detection in time series data . Our goal being to select and evaluate a method

which was :

Simple to use and interpret by Inventory Managers.

Robust .

Invariant to distribution assumptions .

Excellent ability to confirm stationary demand .

Relatively good ability to detect substantial trends and process

change .

Could be used effectively with small sample sizes .

We sought first to identify a suitable method to detect trends and then sub

sequently select a method to ascertain the level of trend present .

The work of Gini provided a fundamental understanding of the relationship

of the variance between individual observations and the variance of the series

of observations . From this research , we come to the common sense , but much

overlooked conclusion , that for a nontrending time series , each of the obser

vations are equally likely events . That the highest and lowest values may be

first , last , or in the middle of the series and yet no trend may be present .

Tintner's work on the variate difference method provided an important in

sight and understanding to our most prevalent demand pattern ... the ZIG - ZAG

demand pattern . From his work , we were able for the first time to realize

that the majority of our items were not trending but rather oscillating be

tween values of high to low observations . Many trend detection methods ex

perience difficulty in handling oscillating demand patterns and , in particu

lar , our trend- trigger statistic is overly sensitive to such common demand

relationships .

Closely related to all this is what we call the mean squared successive

differences . Here we compute the average of the squares of the (n - 1 ) success

ive differences between successive elements in a random sample of size n . It

has been shown that the expected value of this statistic , namely of

E (x1+ 1 - x, ) ?
( 2 )

n- 1

But the expectedis 202 , when the base population distribution is normal .

value of the ordinary sample variance , namely of
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s2
Σ ( x , - ) 2

n - 1

is of . Therefore , we can say the ratio

N
o
r
a

has expected value 2 .

Dr. von Neumann gave us the distribution function of n , and in 1942 Dr.

Hart provided a table of its values . However , as has happened in so many

other situations , Dr. von Neumann assumed the sample came from a normal dis

tribution . So , in order to use this statistic , we are parametrically bound.

When data has an upward trend , 82 will increase much less than sa , so n would

be less than 2 . On the other hand , if the data rapidly goes up and down ( a

situation which we now face to which our present trigger seems to be sensi

tive ) , 82 will increase proportionally greater than sa. Then n will be grea

ter than 2 and would be unsatisfactory .

Some attention was also given to using a sign test or a runs test using

the median . The analysis showed such examination would not detect nonrandom

ness when n did .

III . TREND DETECTION USING RANK CORRELATION APPROACH . In this work , it is

difficult , if not impossible , to defend any assumption of normality . A mea

sure which is robust is desired . Kendall's S (Tau) is based on the ranks of

observations as opposed to the magnitudes associated with them . What is im

portant is that the " S " distribution is independent of the distributions of

the variables of interest , e.g. , the independent and dependent variable in

linear regression . Interesting and useful is the fact that if two variables

have a monotonic relationship , their ranks will have a regression that is

apparently linear . Hence , the ranks can be considered to be transformed

variables .

Let us now discuss the concept of rank correlation as it applies in our

case to demand observations over a period of time . Consider a set of data

values ordered in time ; i.e. , demand observations ranked by quarter :

(xi , yi ; Xi+ 1 , 71 + 1; ... ; X , y )

where

x - 1 2 3 4 5 6 7 8 ( time in quarters )

y = A B C D E F G H ( observed values )
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If there is a trend , there will appear to be an arrangement or ordering to

the data . That is , if the ranks are correlated , then as "x " increases "y "

will generally increase or decrease . Where there is no trend , we should ex

pect the values to be randomly arranged . Kendall refers to the first case as

" array " and the second as "disarray " in the data .

Step :

( 1 ) Let us first arrange one rank in its natural increasing order :

Time = X1 , X2 , X3 . . .

x

Then we compare all possible ( 2 ] demand observation values two at a

time . For example, for the first paired observations :

where yı - A and yz B

( 2 ) Upon inspection , if we find that yz > Yı , implying that B > A , then

Kendall would call the pair concordant , since the values are in agree

ment or arrayed with respect to the ordering of time . For each such

pair assign a score of +1 .

( 3 ) However , if we find that yz < yı , implying that B < A , then the pair

is called discordant , since the values are in disagreement or disarray

with respect to time . For each such pair , assign a score of -1 .

( 4 ) In the special case where yz - Yı , that is B - A , the pair is consid

ered to be tied in ranks and a score of zero is assigned .

( 5 ) The Kendall " S " statistic is simply the sum of the number of concor

dant pairs less the sum of the number of discordant pairs . It is a

measure of the rank correlation between the order of the variables in

time and their order in magnitude . The following table displays the

probabilities that the absolute value of " S " attains or exceeds a

specified value for a sample size of eight observations :

KENDALL "S " PROBABILITIES

SAMPLE SIZE OF 8 OBS

• PROBABILITY " S " ATTAINS OR EXCEEDS A SPECIFIED VALUE

s ! PROB IS PROB

1

2

.548

.500

.452

.406

.360

.317

.274

.237

.199

. 169

. 138

.114

.089

.0715

5

6

7

8

9

10

11

12

13

16

17

18

19

20

21

22

23

24

25

26

27

28

.054

.043

.031

.024

.016

.012

.0071

.005

.0028

.0018

.0087

.0005

.00019

.00011

.000025

3
9



The Kendall " S " statistic measures the degree of rank correlation on

ordering present in the data . Its range is equal to the maximum

number of pairs of comparisons that can be found between the two

rankings . In the present case , " S " will range from ( -28 , +28 ) :

[ 2 ]
n ( n - 1 )

2

8 (8-1 )
• 28

2

In this case , if we assume a nontrending stationary demand time series

with 28 possible rank combinations , one would expect from theory that

exactly 14 pairs would be concordant and 14 will be discordant yield

ing ( " S "=+14-1450 ) an " S " value of zero . Inspection of the above

table would suggest that this condition would occur about 55% of the

time .

Where the data is perfectly arranged in increasing or decreasing

order , " S " would attain values of (+28 , -28 ) , respectively . Between

these extremes of perfect to zero rank correlation probabilities can

be assigned for observed values of " S " which can form the basis for

hypothesis testing against the existence of trend .

( 6 ) Construct an hypothesis test against the existence of trend .

- H.:

H :

No trend exists

Trend is present in the data

We will reject the hypothesis H. that no trend is present in the data

if the probability of " S " equals or exceeds a specified critical

value . In the table above , we selected a critical value of about

seven percent yielding an " S " value of 13 which must be achieved or

exceeded before we would reject the hypothesis of no trend present in

the data .

For the reader not familiar with Kendall's S ( Tau) in trend analysis , we

present a numerical example :

NAVY PART NIIN 00-025-3457

Demand 1 2 2 3 2 3 7 2

Quarter 3 4 5 6 7 81 2

oldest Latest

Rule : Subtract every demand from each one that precedes it . If great

er , assign +l ; if less , assign -1 . If equal , assign 0 . Sum the

positive and negative scores to calculate " S " .
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1

2 .

2

3

2

3

7

2

S=Σ

+1

+1 0

+1 +1 +1

+1 0 0

+1 +1 +1 +1

+1 +1 +1 +1 +1 +1

+1 O 0 -1 0 1 - 1

+7 +3 +3 -1 +2 0 -1

1
0

S +13

Pr ( S = 13 ) * .958

since

Pr ( s < 12 ) - .946 Pr ( s > 12 ) - .089

S > 13 + .072

Pr ( S < 14 ) - .969 Pr ( S > 14 ) - .054

Owen's Tables Kendall's Table

Thus, Kendall's " S " with an error probability of about 7% suggests a high

probability of an upward trend present in the data . Kendall's Tau (a ) like

wise , is a simple linear transformation of " S " and is calculated by dividing

" S " by 28 . With an effective operating range of ( -1 , +1 ) , Kendall's Tau (a )

parallels the range of the Pearson correlation coefficient of parametric sta

tistics .

IV . NONPARAMETRIC TREND ESTIMATION . It is well known that an outlying

observation can have an appreciable effect on the position of the parametric

least squares fit . On the other hand , the regression that passes through the

sample median of X and , simultaneously , the sample median of Y instead of the

centroid , is less sensitive to outlier observations. If , in addition follow

ing Sen , we use for the slope the median of the set of slopes determined from

all possible pairs of points , we will have induced more stability. For "n"

data points , the slope set will have n (n- 1 ) /2 slopes and this seems to have

something in common with the calculation of Kendall's S (Tau) to detect trend .

It is interesting to note that the classical least squares estimate of slope

can be obtained from a weighted average of these individual slopes as can be
done for the intercept .

The 28 slopes have a median of .29 , while the least squares estimate is

.40 . The centroid is (4.5 , 2.75 ) while the median point is (4.5 , 2 ) . It is

simply accidental that both intercepts equal .93 .

From Sen we have N - 21 (nonzero ) , n - 8 , (2 )

= .054 and U* 14/28 , we calculate

28 and using Kendall's en

* -{21 43 } ** --1.4
( 3 )
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Then , the lower and upper 90% rank confidences values are

1

M₂
3 ( 21

S

12.12 ) : 4.44 4 ( 4 )

M3 - 121
( 21 + 12.12 ) - 16.56 17

(5 )

where we rounded down on the lower rank and up on the upper rank , as recom

mended by Conover . So the 4th ranked slope and the 17th ranked slope gives us

our 90% two - sided confidence interval of the slope ; i.e. , ( -.25 , .5 ) .

The following graph provides a comparison of classical least squares re

gression and the nonparametric methods in fitting the time series data from

our example . It is clear from the graph that a positive trend component

exists in the data ; however , the median regression method provides a more con

servative trend estimate . Thus, this method is less sensitive to the one out

lier observation sustained in period seven . This attribute may be of partial

significance in those situations where the trend component effect is used to

compute future average demand values eight or more periods into the future as

is the case with Navy inventory control systems .
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EXPERIMENTAL DESIGN . Our overall objective was to evaluate the per

formance of the Kendall " S " trend test across a broad range of expected de

mand , variability and trend levels , while maintaining control of key variate

factors to ensure the results reflected intrinsic expected model behavior /

performance . Specifically , we sought to access the ability of the Kendall " S "

statistic to :

Detect demand trends .

Transition effectively between alternating trend /no trend periods .

Confirm demand stability in the absence of trend .

Determine the average lag and delay in identifying trend commencement /

trend termination .

To maintain maximum control of the key design factors , we initially chose

simulation . By using simulated data we could specify certain factors and

levels precisely :

The underlying mean demand of the base population .

The degree of variability about the mean .

When a trend was introduced and its level /magnitude .

The random variable noise level present in the data via the standard

deviation to mean ratio .

These types of factors and levels usually affect the ability to detect the

presence of a trend or to confirm the lack of a trend (demand stability ) .

Our trend generating function is :

New Mean Demand [ Mean Demand at Beginning of Trend ]

x ( 1 + (Period Multiplier x (Period Into Trend ) Period Power )]

" Alpha " " Beta"

In algebraic symbols this is

y , - y . ( 1 + a ( x ) ]

The sign of a determines the direction and magnitude of the expected equipment

population increases or decreases . The Beta exponent or period power is used

to adjust the rate of increase or decrease in an item's individual expected

failure rate per installed population .
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Each item started with a stable demand period - initialization phase

followed by two periods of trend , first a moderate trend and then a stronger

trend to reflect increasing population and failure rate - a growth phase .

The trend was then turned off to represent the " top of the ramp " steady state

typical middle phase of the system support life cycle . Next we induced a

strong negative trend to reflect the effect of de - installations ; i.e. , popu

lation " decline phase " . Finally , the above decline was followed by a stable

" final residual support phase " period .

For medium , high , and very high demand , we used :

α -

Periods 1

Periods 9

Periods 18

Periods 26

Periods 34

Periods 42

8

17

25

33

41

50

no trend

a = .05 , B - 1.5

.3 , B - .8

no trend

Q =- -.02 , B 1.5

no trend

WeThe following graph shows the general shape of such a demand activity .

need to explain next how we induced random variation noise .
O
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We generated two random numbers from a uniform distribution on ( 0,1 ) .

Call them R, and Rz. Then by M. Muller's method , we calculated

V = ( -2 log R2) .5 x (Cos 2 I R2)

for normal deviation on ( 0,1 ) . To convert V to a normal distributed variable

with mean y and standard deviation o , we used the transform

V2 = V XO + H

Poisson random variable noise was generated using Martin's method based on

a method suggested by Kahn . Briefly , one begins by generating N uniform ran

dom numbers U, and successively multiplying them until the following inequal

ity is satisfied :

N

II Hi < eop

Inc

Then (N - 1 ) is the desired Poisson random variable value with a mean of np .

When the first random variable number generated satisfies the inequality , then

the Poisson variable is assigned the value zero .

In the previous Section III , we illustrated the calculation of Kendall's S

( Tau) for a window of (sample size ) 8. It is apparent this statistic can be

calculated for other size windows and we felt it necessary to examine the re

action of this statistic to various size windows . Obviously , a longer window

is not as susceptible to change as a shorter window . As will be seen , we will

take our known generated pattern and utilize various window lengths on such a

time series by dropping off the earliest number in the window and adding on

the latest one . We will do this for window sizes of 4 , 6 , 8 , 10 , and 12 .

The second factor for which we seek the effects at various levels comes

from scientific judgment and experience in this field of work . We have seen

patterns or the lack of such according to the volume of demand for a part .

Consequently , we have classified demand into five categories or levels : very

low , low , medium , high , and very high , given by :

Demand Category Average Demand

Very low demand

Low demand

Medium demand

High demand

Very high demand

.5 to 4 per year

1 per quarter

3 per quarter

9 per quarter

20 per quarter

3
8



The third factor of concern is demand variability which we need to simu

late and control . After much analysis of actual data , it was decided to use

for the measure the ratio of the average variability to the average demand ,

the standard deviation to mean ratio or coefficient of variation .

The selection of levels for this factor appeared not to be independent of

the levels of the second factor . A sort of Pareto distribution analysis of

over 9000 randomly selected parts gave us the following two -way table :

Variability Level

Standard Deviation /Mean Ratio

VL LO MD HI VH1Demand Category

.64VL

LO

MD

HI

VH1

.49

.40

.16

.14

.14

.70

.30

.28

.28

.71

90

.55

.53

.53

1.00

1.21

.91

.93

.93

1.60

1.26

1.13

1.12

1.06

VI . FINDINGS RESULTS RECOMMENDATIONS . The 50 various data sets used in

the study each consisted of 50 quarters of demand ; that is , for each combina

tion of demand and variability , a simulated demand data set was generated . In

addition , this was done for Case ( 1 ) · a set with three periods of trending/no

trend and Case ( 2 ) · a set without trends ( stationary ) . TABLES I

vide graphs of the simulated demand observation data sets used in the study .

The Kendall " S " test was applied to each successive set of observations in the

window (moving through time ) in an attempt to identify trending and nontrend

ing processes .

III pro
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For each observation set within the moving window across the 50 data

points , we counted how often the Kendall " S " correctly identified the pre

sence of trend and how often it correctly identified the lack of trend ; i.e. ,

confirmed stability .

e .,

The evaluation to be used follows the following example for each window

size across the 50 data points .

ACTUALITY

TREND NO TREND

TREND 12 1

NO TREND 13 19

Р

R

E

D

I

C

т

TOTAL 25 20

SCORE 48% 95%

We call a Type I error the classifying of actual nontrending as trending

and a Type II error the classifying of trending as nontrending . In the above

table , we predicted 19 of the 20 no trending situations which means the pro

bability of a Type I error is 5 % ; whereas, of the 25 trending situations we

predicted only 12 , thereby having a probability of a Type II error of 52% .

So our immediate goal is to determine optimal window sizes in order to

minimize Type I and Type II errors . Initially , we set performance goals :

( 1 ) Maintain very high capability to confirm stability for

stationary demand patterns more than 88% of the time .

( 2 ) Maintain relatively high capability to detect that trend

influence has ceased more than 80% of the time .
O

( 3 ) Select window size maximizing trend detection while meeting

( 1 ) and ( 2 ) .

Practically this led us to minimize Type II errors for a specified Type I

goal . Now in using the Kendall " S " , we tried to hold to cutoff values that

were exceeded about 5 % . However , tabular values closest to 5 % had to be used .

These are given at the bottom of each column in the following tables .

The following five tables give the percentages that Kendall's " S " achieved

in being correct . Entries that are shadowed appear best for that window size .

For example , look at the table for very high demand . Note the situation ap

parently improves as you go from right to left and from top to bottom . But it

must be remembered that for rows above the last one , it is best to use a wider

window ; i.e. , larger sample size for the time series .
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The reader will note that observations like those in the previous para

graph are not as easily made for lower demand items . For the low demand

items , it appears we cannot come close to our goal for detecting trend . The

same can be said for the very slow Poisson case .

The sixth table to follow , " Overall Performance " , comprises the five pre

ceeding tables by washing out window length and sigma /mu categories .
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KENDALL " S " RESULTS

OVERALL PERFORMANCE

DATA SET HIGH MEDIUM LOW POISSON

T 40 • 75 % 20
-

40% 20 - 50% 30 - 50%

NT 80 - 95% 80 - 95% 90 - 100% 80 - 90%

ST 88 - 95% 88 - 100% 88 - 100% 85 - 90%

" T " TRENDING DATA SET

" NT " NONTRENDING BUT PREVIOUSLY TRENDING

" ST " STATIONARY DATA SETS

PERCENT IDENTIFIED CORRECTLY
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VII . THE LAG . The next five pages use the same set of data we used earlier

for high demand , trending and not trending , and low variability , symbolized

HDTR - 4 . On each computer printout , the 50 demand observations are blocked in

five blocks , as the induced demand goes from no trend to trend ( 1 ) , from trend

( 1 ) to trend ( 2 ) , from trend ( 2 ) to no trend , from no trend to trend ( 3 ) , and

finally to no trend . Then , using an S with a small probability · around 7 %

we followed s values in an interval and across intervals .

For example , the first page for a window of size 4 shows the five calcu

lated values of s for the eight values in the beginning no trend period indi

cate correctly no trend . On the other hand , starting with period 9 and

through period 17 , when we have a trend , the S statistic fails to pick up

trend throughout the entire period . Moreover , for four periods into the third

stage , the S statistic still fails to suggest trend . Finally , at period 22 ,

the S statistic indicates a trend and correctly predicts through period 25 .

We have indicated with a dash ( - ) when S is incorrect and with a star ( * ) when

it is on target . For this particular run of 50 demands , we see nine correct

calls out of a possible 25 for trending . However , out of 22 nontrending

cases , our statistics is correct 21 times , and so , is 95% correct , or if you

will , has a probability of a Type I error of 5 % . On the other hand , our sta

tistics selected only 36% of trending cases ; hence , we face a sample probabi

lity of a Type II error of 64% .

A similar explanation can be given for the other four cases of window

lengths 6 , 8 , 10 and 12 . It is apparent that window size of 6 or 8 does

better .

This delay or lag puts limitations on successful use of the S statistic

for forecasting as summarized in the chart following the five computer print

outs .

It seems we are faced with a problem which lies within that general pur

view described by Bennett and Franklin on page 688 entitled " Choice of Tests

for Non -Randomness " .

It will be observed that the sensitivity of the various tests

for nonrandomness of observations depends upon the type of non

randomness which is present . In cases where this can be anti

cipated from technical considerations , the appropriate test

may be selected in advance , but , if the choice of tests is

based on an examination of the results , the significance levels

are clearly biased . An obvious alternative , that of subjecting

all data to the same series of tests , is not free from criticism

since many of the tests are not independent , although the degree

of dependence is not yet known . It would appear that without

technical guidance , the best procedure is probably , to use a

series of tests , interpreting the significance levels as a general

indication rather than a specific prediction .

We wish to thank John Price of Hershey Foods who in the early stages pro

grammed for us the Kendall S with the assistance of Brent Burkholder . This

was later taken over by Emerson Evelhock who expanded the work to useful
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graphs . The demand forecast and trend simulation model was developed by CDR

Tom Bunker , SC , USN . Throughout all this, Charla Scheaffer typed and retyped

and stayed the course .
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Abrans Tank Inspect And Repair Only As Necessary ( IRON )

Economic Model

1. Introduction

On 22 March 1989 Lieutenant General Jimmy D. Ross the Deputy

Chief of Staff for Logistics proposed an initiative to establish

a point in the life of an Abrans tank when a depot level inspect

and repair only as necessary ( IRON ) program may be appropriate to

extend the service life of the tank . He recommended that TACOM

develop an Economic Model to provide the cost - benefit of this

IRON program . This model should predict the point in time when a

tank becomes an IRON candidate . As proof of the benefit , the

model Rust predict the extension of service life and the reduc

tion of operating and sustainment costs through this remaining

life . Finally , the results should be validated in a hardware

demonstration .

In response to this request TACOM and PM Abrams have devel

oped the Reliability Centered IRON ( RCIRON ) program . ( The RCIRON

program differs from the IRON program in that only certain

candidate components are inspected and repaired . ) For the purpose

of a validation test 60 MIIP tanks were transferred from Germany

to the National Training center ( NTC ) , Fort Irwin , California .

Fourteen of these tanks were selected for the RCIRON denonstra

tion . These tanks were sent to Anniston in December 1989 where

the RCIRON inspection was performed . These 60 tanks are currently

being tested at the NTC . The goal of the RCIRON
program

" preventive correction of impending failure " which can

is

Decrease the maintenance burden on field units .

Extend " combat life "

Decrease field Operating and Support ( O & S ) costs .

Our problem is to develop an optimun maintenance policy for

the implementation of the RCIRON for the entire M1 / M1A1 fleet .

This requires the establishment of periodic inspections for a

system composed of many parts , each of which has its own failure

rate and its own required frequency of repair . Since each iten

has its own expected time between failures , each will have its

own optimum tine for periodic inspection .

To maintain a system at the desired level
of operation

regular routine of test and inspection must be established . This

type of inspection is normally performed at the organizational

level . The maintenance organization may also perform preventive

periodic inspections and repairs on a scheduled list of items or

subsystems . There are , however , some parts of the system which

may require inspection and repair at a higher echelon , such as a

depot . It is assumed that by scheduling the inspection of item

little before the expected failure , the number of failures and

the costs of unscheduled downtime can be reduced enough to offset
the cost of scheduled maintenance . This is the basis of the

RCIRON program . Fifty parts have been identified as candidates

for the RCIRON Program . If there is evidence of failure or

deterioration at the time of inspection these parts be

repaired or replaced .

will
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2.0 Replacenent models

A large number of the models reviewed during this study

develop the optinua replacement time for a single type of part or

component . A model proposed by Samuel B. Richmond was suggested

as an economic useful life model for the RCIRON program .

The model equation is

were

T

f ( T ) B

tf( t ) dt + Tf ( t ) -2
A B

T = the preventive maintenance period

P = probability of failure before tine T

f ( t ) : cumulative probability of failure

A = cost of overhaul after failure

B = cost overhaul before failure

This nodel considers that if the cost a scheduled replacement is

less than the cost of a field replacenent then the scheduled

replacement is cost - effective . The model assumes that an item

will always be replaced at RCIRON inspection , and the main cost

will be the downtine required to perform the maintenance . The

nature of the RCIRON process is to inspect a component and

replace it only if necessary . This type of model does not meet

the requirements of the RCIRON progran .

3.0 Deteriorating Markov Process Model

A more realistic model is presented by A. S. Goldman and T.

B. Slattery in their 1964 book Maintainability . With some modifi

cation this model can be adapted for the RC- IRON program . This

model a 88unes that periodic inspections will occur at scheduled

periods of tine , miles or rounds . At the time of these periodic

inspections there is a probability that the item will have

deteriorated and should be replaced . There also exists a proba

bility that the item will have failed prior to the scheduled

inspection . Associated with these inspections and replacements

are incremental costs which contribute to the total maintenance

costs .

3.1 Model Requirements

The goal of a maintenance model is to develop an optinum

naintenance policy . In order to develop a realistic model and to

optimize the system retain certain system

characteristics must be determined .

These characteristics are ,

For each item :

1. Deterioration probability .

2. Probability of failure during deteriorated state .

3. Failure probability during normal state .

4. Average hours for preventive inspection .

5. Average hours for preventive repair .

6. Average elapsed time for field diagnosis and repair
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7. Average hours for field repair

For the systea :

1. Cost of setting up for preventive inspection .

2. Depot costs per hour .

3. Field costs per hour .

4. Cost of downtine

When this information is available the mathematical model

can be developed . The objective is to develop a method of

applying mathematics and economic theory to preventive

naintenance problems . The method described applies only to

preventive naintenance situation where the failure pattern

is predictable . This pattern 18 generally associated with

wear out failure distributions .

3.2 Mathematical Model

The periodic inspection model can be represented by the

following expression :

(C1, C , P ,+ ,x ,}
C - + T

Where :

T
Scheduled inspection period . ( Tine , miles ,
rounds )

i = ith iten to be inspected .

Ci = Unit cost of aaintenance and repair of the

ith iter of the system .

Cli = cost of periodic inspection of the ith iten .

C2i = Cost of preventive repair of the ith iten .

C3i : Cost of field failure of the ith item .

Pi = Probability of repair of ith iten .

Ei = Expected number of failures between periodic

inspections

The Goldaan/ Slatterly ( G / S ) model considers that the

main cost of maintenance is the custol Toslo duwilime . This

is also the main cost driver in the AMSAA model . The AMSAA

model also includes the cost of the average hours required

to replace the item . The G / S model also includes hours , but

in a different way . The G/ S model considers hours more as

an overhead factor . For the RC- IRON program the AMSAA

method will be used .
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The cost of inspection and repair can then be written as :

C1 ,-CX11, + C11,* T11,

cục D2 +c2 = 2

03. - CpxD3, + CRIXTRS.

Where :

Cli

C2i

cзі

CD

Ili

CIli

TIli

D2i

CR2 i

TR2i

D3i

CR3i

TR3i

: Cost of periodic inspection of the ith iten .

= Cost of preventive repair of the ith iten .

= Cost of field failure of the ith item .

= Cost of downtime . ( $ 1781 / day ) .

= Downtime due to inspection .

= Cost/hour of inspectors .

Hours required for inspection .

: Downtime due to depot repair .

= Cost/hour of depot repair . ( $ 46.69 /Hr ) .

= Hours required for depot repair .

: Downtime due to field repair .

: Cost/hour of field repair . ( $ 104/ Hr )

• Hours required for field repair .

3.3 Total Systems Cost

The total systems Cost is made up of the cost of

setting up the inspection process , the overhead costs of

maintaining the inspection and repair facility and the sun

of all the part inspection and repair costs . If the

inspection and repair facility was dedicated to the M1

program the total overhead costs would have to be included

in the cost of preventive inspection and repair . The depots

however are funded separately and the facility cost can be

left out of the cost equation . The expression for total

system cost can be written as :

,c،ܘ

Were' :

C = Total System Cost

Co = Cost of setting up inspection

Ci - Inspection and repair costs of the ith iten .

T • Scheduled inspection period . ( Tine , miles ,

rounds )

3.4 Failure and Deterioration Probability

In order for the RC- IRON program to be successful

items must be replaced before they have failed . One of the

goals of the RC - IRON program is to develop methods of

detecting the degree of deterioration of the items

inspected . When this has been done an item will be in one

of three states at the end of a time interval . The action

taken will depend on which state the item is in at the time
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of inspection . The state and actions taken are shown

in Table I.

Table I

State of Iten Action Taken

1. Good

2. Deteriorated

None .

Repair at next scheduled

inspection .

Repair ianediately .3. Failed

The data currently available fron Sample Data Collection

( SDC ) provides an estimate of the probability that an iteo

has either failed or is in good condition . This can be

expressed as :

R + Q - 1

Where :

R- exp ( -ext "}

and

alpha and B : parameters of Weibull distribution .

t = tine , ailes or rounds .

R = Reliability .

Q : Probability of a failure .

A model of the RCIRON process Rust include а third

probability and the state of the item can be expressed as :

pl + P 2 + p 3 = 1

Where :

P 2 =

P1 : probability that item is in good condition .

probability that item is in deteriorated state .

p3 = probability that item is in a failed state .

The method used to solve for the failure and deterioration

probabilities in the G/ S model is a deteriorating Markov

process . For a given interval of time each item can be

characterized by the probabilities pi , j that it starts in

the tine interval in state i and ends in state j . As an

example pl , l is the probability that the item remains in the

good condition through the interval and p1,3 is the

probability that item fails during the time period . These

probabilities can be arranged in a natrix as a special fora

of a Markov process . This matrix is known as the transition

matrix .
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Arranged in a matrix these probabilities are :

FINALSTATE ( )

Ps, Pa .. Rad

LITINLATATE ( 1 ) 1O 2.2 P., FOR AT

1 O 0

The process which can be described in this banner is a

special case of a Markov chain . The probabilitie
s that

item will be in the ith state at the end of the nulth tine

interval are given by

PI( Q ) , A ( P ) , ( n )

-12

AA , A , A ,

o Ana Mas Pl ( 8 + 1 ) , A3 (p + 1 ) , Alla + 1 )

1 0 0

Which can be abbreviated as

( Pi ( n ) ) ( pij ) = ( Pi ( n+ 1 ) ]

Since the item is assured to be good at the beginning the

condition for the iter at the start can be written as

[Pi ( 0 ) ] = [ 1,0,0 ]

iten after n transitions can then beThe condition of the

written as

[ A ( n ) ] [ Pi( 0 ) ] ( pi

If T is the period between preventive inspections and T is

the period of transition the number of periods between

inspections is equal to

N = TIT

the life of theThe number of preventive repairs during

tank would then be equal to

A = P12 x Ti / T

Were

Pi = number of preventive repairs

p12 - probability of transition to the

deterioration state .

TI = Useful life ( tine ,ailes , rounds )

T = Period between inspections

The expected number of failures can be computed using the

expression

P3 (1 )
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4. Sone Concerns

A najor area of concern is the applicability of the deteri

orating Markov to a systen were the time between

inspections is large . Most applications of this model

require that the tine y should be short , enough so that only

one change of state is likely but should be sufficiently

long 80 that à repair could be done in y tine . Another

problen is the use of a constant transition matrix

regardless of the age of the system . These factors do not

affect the validity of the basic model but linit the

usefulness of the methods of calculating the failure and

deterioration probabilities .

The model a8 presented represents a simplified solution to

the preventive maintenance probles and presents the basics

involved . There is very little data available on the

deterioration rate of Miconponents . It is hoped that the

results of the RCIRON will provide sone clues as to which

conponents exhibit deterioration . without this data the

nodel given is of little practical value . The example ,

however , serves to illustrate the elements involved in a

nore general treatient of the RC-IRON problen .

An extensive literature search failed to turn up an analyt

ical aodel that satisfies all the requirements of the

RC- IRON process . To over cone this and to develop an idea

of how the system would prefore it was decided to develop a

simulation sodel .

5. Simulation Model

The data required by a sinulation aodel 18 the sane as that

used in the Markov process nodel . The input requirenents

for the RCIRON nodel listed in paragraph 2.2 will provide

the inforaation necessary for a simulation rodel .

For each iter the following paraneters are required :

1. Miles to deterioration = Ti

2. Miles to failure during deteriorated state = Di

3. Miles to failure during normal state = Ri

4. Average hours for preventive inspection - DTIi

5. Average hours for preventive repair = RTDi

6. Average down tine at depot - DTDi

7. Average down time for field diagnosis and

repair = DTFI

9. Average hours for field repair RTFi

10. Miles at next failure = NTj , i

11. Miles at next deterioration = NRj, i

12. Cost of preventive inspection = INSPCi

For the systen :

1. Cost of setting up for preventive inspection = INSUP
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4 .

2. Depot repair costs per hour = $ 46.69

3. Field repair costs per hour = $ 104.00

Cost of downtine = $ 1784.00

5. Inspection schedule ( miles ) = INSPECT

6. Miles at next inspection = NEXTINSP

7. Total vehicle aileage = TMILES

8. Vehicle life = 20 years .

9. Average annual mileage = YMILES

10. LIFE : 20 * YMILES

A component will be in either of three states :

1. Operational

2. Deteriorated

3. Failed

If a component fails it is repaired and

replaced inaediately and returned to the operational state .

If a component is in the deteriorated state it renains in

that state until the next scheduled inspection . Each

component can renain in the deteriorated state for a

linited nunber of piles . If the deterioration

ailes plus the deterioration period is less than the miles

for the next inspection the part fails and is repaired or

replaced . The simulation begins by calculating the miles to

the next failure and the next change to the deterioration

state . This is represented by :

NTI , i = Ti

NR2 , i = Ri

The tines to failure are computed using a Weibull distribu

tion . The expression for this calculation is given as :

1 = EXP ( LOG ( LOG ( 1 / ( 1 - RND ) ) ) - LOG (ALPHAI) / BETAI)

where

ALPHA is the scale parameter

BETA is the shape paraneter

RND is a random uniform deviate

The time to deterioration
and the duration of the

deteriorated
state are not well known . Little or no data

has been collected showing these factors . In order to run

the model assumptions have been made to generate t h e

deterioration
tine and duration of the deteriorated

state .

The first assumption is that the time for a component to

enter the deteriorated state is less than the time to

failure . Components are likely to deteriorate
before they

fail . The time spent in the deteriorated state would depend

on a variety of maintenance factors . The deterioration

could be 80 subtle that the tank crew may not realize that

a problen exists . Other deterioration
would be 80 obvious
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that the crew would repair or replace the component after a

very
short deterioration period .

For the sake of

denonstrating the model it is assumed that the

deterioration
distribution is also a Weibull distribution

with a scale parameter 2 tines greater than the ALPHA of

the failure distribution . The expression for the time to

deterioration 18 :

Tj- exp( log( loglina ))) -log(- ) ) ) -log ( saj
Bi

The life of the tank is assured to be twenty years and the

average yearly sileage is about 1000 miles . It is also

assured that a deteriorated conponent would not go

undetected for 6 nonths or 500 ailes . The tine for a

component to renain in the deteriorated state the

difference between the failure tine and the deterioration

tine .

is

The rules for failing or passing inspection are :

1. If NT1i and NR11 < NEXTINSP then the component will fail

and TMILES will be equal to either NT1,1 or NR , i which ever

is the sallest and a new NTI , i and a new NR1 , i will be

calculated as :

NT2,1 = TMILES + Ti

NR2 , i = TMILES + Ri

2. If NT1,1 > NEXTINSP and NR1,1 < NEXTINSP then the

component will fail at the scheduled inspection and b

repaired or replaced . TMILES will be set equal to NEXTINSP

and a new NTJ , I and a new NR , i will be calculated as :

NT2 , i = TMILES + Ti

NR2.1 : TMILES + Ri

TMILES : NEXTINSP

Then a new NEXTINSP will be calculated as :

NEXTINSP = NEXTINSP + INSPECT

3. If NT1 , i < NEXTINSP and NR1,1 > NEXTINSP then the

Component will fail and be replaced ianediately . TMILES

will be set equal to NT1 , i and a new NT ) , i and a new NR ) , i

will be calculated as :

NT2,1 = TMILES + Ti

NR2,1 : TMILES + Ri
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If NT2 , i > NEXTINSP then :

TMILES : NEXTINSP

And a new NEXTINSP will be calculated as :

NEXTINSP = NEXTINSP + INSPECT

At each step in the calculation the cost associated with

the inspection , field and depot repair are accumulated

using the expressions :

FCOSTi = FCOSTi + DTFi + $ 1784 + RETI * $ 104

RCOSTi = RCOSTi + DTDi + $ 1784 + RTDi * $ 104

ICOST = ICOSTi + INSPCI

The iteration continues until TMILES > = LIFE . After each

run the total cost of naintenance for the vehicle life is

calculated and printed in a file for further analysis . The

scheduled piles between inspections is increnented and the

simulation 18 repeated until the scheduled naintenance

period is equal to the life of the vehicle .

6. Conclusions

Preliminary runs of the model were nade using various

deterioration factors and inspection times from 1000

miles to 20000 miles . The results obtained from

running the model were disappointing . The model did

not demonstrate that there was any advantage to the

RCIRON proce88 . Since we were dealing with an

unproven model using fictitious data we decided to

wait until the data from Anniston Depot and the tests

at the NTC were available before presenting the

results obtained by running the model .

The data obtained from Anniston did not provide us with

any additional estimates of deterioration times .

The data from the tests at NTC however were very

revealing . The tests at NTC were performed by three

different organizations . Each organization was assigned to

NTC for about two weeks during which time it was planned

that the tanks would travel about 300 miles . Each of these

periods is called a rotation . During the first rotation the

raw data showed that RCIRON tanks had a mean miles between

maintenance actions ( MMBMA ) of almost twice that of the

control tanks .

There were

results of the

the differences

several sources of variation affecting the

tests . The primary source of variation was

between the RCIRON and the control tanks .
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areThe other known sources the difference between

rotations and the fact that each tank was driven a

different number of miles . In order to determine the degree

of variation between the RCIRON tanks and the control tanks

the other sources of variation must be removed .

Several statistical test were performed to determine the

degree of the RCIRON tanks and the control tanks . The

difference between the two sample during rotation # 1 if

very significant . The difference during the other two

rotations is much less significant .

During rotation #3 the test show that we can be more

than 90% confident that the two sample are the same . From

this we can conclude that the benefit of the RCIRON process

is dissipated within the first 1000 miles after completion .

These results are sinilar to those of the simulation model .
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A Model for Optimally

Reducing Uncertainty

Andrew Anderson Thompson III

Ballistic Research Laboratory

Abstract

This paper presents a model that can be used for the optimal reduc

tion of uncertainty. There are three major components of the model. An

a priori surface used to describe the original state of the world represents

the measure that is to be minimized. A function representing the reduc

tion of the measure as a function of the resource needs to be supplied .

Based on these two functions a surface describing the optimal allocation

of the resource can be derived.

Introduction

This paper presents a model that can be used for the optimal reduc

tion of uncertainty. The components of the model will be presented with

some examples of their interactions and then several successful interpre

tations of the model will be discussed. The paper concludes by suggesting

some possible interpretations of the model. Hopefully, the reader will be

able to find some useful interpretations of this model.

There are three major components of the model. An a priori surface

used to describe the original state of the world represents the measure

that is to be minimized. A function representing the reduction of the

measure as a function of the resource needs to be supplied. Based on

these two functions a surface describing the optimal allocation of the

resource can be derived.

Uncertainty Surface

The uncertainty function represents the distribution of the attribute

that is to be minimized . In the case of a lifeboat, a bivariate normal distri

bution with a variance dependent on time provides a useful realization of

the uncertainty function as the probable unknown location . In many cases

the uncertainty will be based on odds and thus will be a likelihood surface.

Information Function

The information function reduces the uncertainty as a function of the

resource applied. This is the mechanism that transfers the measure of the

uncertainty function to a discrete category representing gain. This gain
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can be thought of as knowledge. A desirable property to require is that

the remaining uncertainty at a point is the same for two applications of

resource to a point and for an amount of resource equal to the sum of the

two but only applied once . Mathematically, the following property is

required

f (! p )x1+r ) = f (f (1(p ),r1),r2).

In the above equation, 1(p) represents the likelihood or uncertainty at

a point and r represents an amount of resource . A function that has this

property is the exponential function. Using the exponential function as the

information function and w(p) to represent the amount of reduction at a

given point the amount of uncertainty remaining can be represented as

10p ) e (?).

The amount transferred to expected information is

1 ( ) (1e (D) ).

Optimal Resource Surface

Koopman (1979) presents a theorem , based on methods used by J.

Willard Gibbs in thermodynamics, to define the properties of a likelihood

surface after an optimal resource allocation is completed. After an

optimal allocation , the likelihood density will have equal values in the area

of allocation and be less in the other areas. Performing an optimal alloca

tion amounts to passing a plane, that is parallel to the independent vari

ables through the target likelihood density so that the mass above the

plane is equal to the available resource . An optimal allocation divides the

potential area into an area of resource application and an area to be

ignored. In the area of allocation, the effort expended at each location will

be proportional to the amount of likelihood mass that is above the " cutoff"

plane. One way to visualize this is to consider the change in the gain of

information, and always apply resource to the regions associated with the

largest gains. First consider

a

+1(p)(1-2 ° (p)")\,_0 = 1 (p )w (p )
дar

Imagine a gridlike partition of 1 (p )w (p ) .
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Allocate resource to the cells with the largest value until they hit the level

of the next lower level.

Repeat this until all the resource is used .

The result is a surface that is flat in the region of uncertainty reduction.

One can imagine that the grid becomes the set of rational numbers.

Example 1.

As an illustration of the above ideas, three methods for solving a single

problem will be discussed. Consider a 3x3 matrix, where the value in cell

( i,j) [i and j running from 1 to 3] represents the uncertainty associated

with cell (ij) .

i = 1

= 2

= 3

0.20

0.10

0.05

j = 1

0.10

0.30

0.10

=2

0.05

0.05

0.05

= 3

The probability associated with the region corresponding to cell (2,2 )

is 0.3. Assume there is a fifty- percent reduction in the probability if a unit

of resource is applied to a cell. Fifty percent is transfered to the catagory

information gain. What sort of resource allocation will maximize the pro

bability for twenty units of resource ?

1. Method One: Proceed sequentially using a maximum - likelihood

method ; apply each unit to the area with the highest probability. After

each unit is applied, replace the original cell (call it C ] with " C ( 1 -DF) ," or,

here, (0.3 x 1/2 = ) 0.15. (That is, some of the probability is moved to the

category of knowledge.) For the allocation of the twenty rounds, the pro

cedure would follow this pattern :

Step 1 : Choose cell (2,2) , since it contains the greatest probability.

Replace 0.3 with (0.5 x 0.3 = ) 0.15 .

Step 2: Choose cell ( 1,1 ) , since it now contains the greatest

probability.

Replace 0.2 with (0.5 x 0.2 = ) 0.1 .
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Step 3: Choose cell (2,2), since it now contains the greatest

probability.

Replace 0.15 with (0.5 x 0.15 = ) 0.075

Now several cells have the equal maximum probability of 0.10. Here,

one can randomly choose any one of those cells. (When this possibility

exists , one can only speak of " an " optimal solution.)

Method One not only indicates the number of units to be applied to

each cell but also indicates the best sequence for delivery. This straight

forward method can be used when one has a discrete uncertainty surface.

2. Method Two. This method introduces the techniques used when one

has a continuous uncertainty surface . The method is to find the amount

of resource to apply to the highest-valued cell to reduce it to the level of

the cell containing the next lower value. Then apply the resource to both

of those cells until level of the next lower cell is reached . In this situation,

we assume that the effort is also continuous (i.e., that the resource can be

applied in fractional amounts ). This assumption is necessary in order to

calculate the optimal-resource surface.

If a unit is applied to cell ( 2,2 ), then the probability remaining would

be 0.15. Since this value is lower than 0.2, the reduction has gone too far.

The proper amount to apply to cell ( 2,2) is a fractional amount, enough to

have reduced it to 0.2 and no lower. Thus:

Reduce the value of cell (2,2) to the value of cell ( 1,1)Step 1 :

0.2 = 0.3 *0.5 ** n + n = 0.585 .

Step 2: Find the amount of effort that will reduce 0.2 to 0.1

0.1 = 0.2*0.5**n + n = 1

Step 3 : Find the amount of effort that will reduce 0.1 to 0.05

0.05 = 0.1 * 0.5**nn = 1

The derivation thus far has not made use of the fact that the resource

is limited. In this continuous case, the optimal allocation of ammunition

can now be derived by means of an " Effort Matrix" expressed in terms of

"E" -- the "minimal- effort value ." The value in each cell represents the

effort or resource to be applied to the corresponding area.

For the Effort Matrix corresponding to the given problem, each of

the cells with probabilities of 0.05 has some undetermined amount of
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effort E in it . The cells corresponding to the probabilty cells with entries

of 0.1 have one full unit more of effort in them, so they carry the value

1 +E. The cell corresponding to the value of 0.2 has yet one more unit of

effort, so its entry is 2+E. Finally, the cell with a value of 0.3 has an addi

tional 0.58 units of effort (rounded to two decimal places). Its entry is

2.58+E.

2 + E

1 + E

E

1 + E

2.58 + E

1 + E

E

E

E

The total effort expended is to be equal to twenty so by summing the

cells of the matrix and setting the total equal to twenty, we can find the

optimal effort for each cell:

20 = 9E + 7.58

E = 1.38

Thus, where the resource can be applied continuously, the optimal solu

tion is:

3.38

2.38

1.38

2.38

3.96

2.38

1.38

1.38

1.38

Returning to the original case of 20 integral units, if the resource

could not be subdivided, it would be necessary to enter integer numbers

of rounds in each cell. As an approximation, we would round off the

values in the cells to integer amounts and make further adjustments to

ensure that the sum is twenty . One plausible solution in this case is

3

3

1

3

4

3

1

1

1

3. Method Three.This method uses the ideas of Koopman; Gibbs ( 1928)

originally applied these ideas to a physics problem . Koopman derives two

formulas that can be used to find the optimal resource surface. The first

formula is used to find the area to apply resource. After this area has

been defined, the second formula is used to determine the amount to

apply to each point. This method is valid when the TLD is continuous

and is a formalization of the technique used in Method 2. The equations

used are:

Φ In ( 1 )

–A
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and

1
p (xy) w (x,y )

φ (x ,y ) =
In

(2)

w (x ,y )

is the total effort • (x,y) is the resource density at x ,y

p (x,y) is the probability at x , y

d is the height of the cut off plane

A is the area of application

eW ( 1,7 )
is the residual probability located at (x,y).

Equation 1 divides the uncertainty region into the two areas based on

the amount of resource available. Equation 2 is used to determine the

allocation at each point. As applied to the current example the steps are

as follows:

First, express the residual probability as an exponential. As we apply

more resource to a specific region the returns on each unit diminish in

proportion to the probability that remains in that region.This diminishing

rate of return is captured by the exponential function.

Second, solve Equation 1 for. is the height of the plane that cuts the

uncertainty surface at the level appropriate for that amount of effort.

(Note that integration can be replaced by summation for this discrete

case ).

Third, find the amount of effort at each of the nine points using Equation

2.

Fourth, find an integer solution.

Implementing these steps yields the following:

= PK + w (x,y ) = -In. 5 = .6931

Note that w (x,y) is constant and can be replaced by w.

ew (z,y )

9

20 £ (In ( p; * w ) - In 1)/w

i = 1

20w - E Inp; w

In 1 = + = .0133

-9
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*

1 Pi
W

Using ;

I
n

we get the optimal effort matrix

W

3.3819

2.3818

1.3817

2.3818

3.9669

2.3818

1.3817

1.3817

1.3817

Integerization of this solution yields the same result as the previous exam

ple. Note that this method will work for a continuous uncertainty surface .

Next an example using continuous resource on the bivarite normal distri

bution is presented. It is hoped that this example will serve to clarify all

the above ideas.

Bivariate Normal

In the continuous case Koopman's result guides us in finding the value for

the cutoff plane for a given amount of effort. In using this equation note

that the resource surface must be greater than zero at all points; we can

not use negative amounts of resource at an unlikely area and counterbal

ance this by applying more resource to more probable area. The value z

In ( 1) is the cutoff plane of the surface In ( p ( x,y) w (x,y )). All regions

where In ( p (x,y) w ) < In (^) are ignored. Assuming w (x,y) = w and In (1)

can be expressed as In (p (x´y ) w) Equation 1 can be expressed as

(3)

S

ss[in ( p ( x, y ) w ) - In (p (x ^y ' ) w )]dxdy/w.
A

This can be rewritten as

w 0 = SJ In (p (x ,y ) ) + In w - In(p (x " ,y ' ) ) - In w dxdy[ ) Y ]

(4)

A

SS (In p (x ,y ) - In p (x ,y )) dxdy

А

In this situation Equation 4 shows in , is inversely related to w. Equation

2 can be written as

1

φ (x ,y ) [In p (x,y ) - In p (xʻy )]. (5)

W

This indicates the amount of resource applied to each point is propor

tional to the difference between the distribution and the cutoff plane.

These ideas are applied to the following problem .

Example 2:
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Given a circular normal probability surface and constant information

function, describe the optimal resource surface . The uncertainty is

described by

(z +y3

p (x,y ) = (2003).4c 20

Taking the natural log we have

-(x² + y3)
In p (x y) = In (2103)-1 +

20.

Rewriting Equation 1 for this problem we have

-(x² + y3)
Q = SJ In (2003).- + + In w - In dxdy /w .

r (in (23) ' 2) duos( w262
А

The integrand is the equation of a concave downward parabaloid.

Next change to polar coordinates

2x A

-R2

+ In w - In a RdRdA (6)

202
00

The value in brackets as previously mentioned must be greater or equal to

zero . In terms ofAwe will use the following expression for Ind

wo = 55 In (2703-4 +
-Ea] parade

2

-A

In d = In (2003). + + In w .

202

Equation 6 can be written

-R2

wΦw = ss In + In w - In (2103) -1

2xA

-A²

w]
- In w RdRd

202202
00

2. А
3

-R A²R
S

ss
+ dRd Ꮎ

20
2

202
0 0

27

At
4

A

+S

= 5

de
dᎾ

8020
402

80



21 A "

802

*
4 wΦο ?TA "

402

A4
IT

-1
1/2

wΦ

+1 = (2103)-4e W.

IT

The optimal resource surface will be zero outside the circle of radius A;

within the circle the allocation is given by Equation 2 which simplifies to

(A2 -R3 /(w202)

The information gain for this example can be found by the following

method. Note from Figure 1 that P (information) is the volume bound by

the curve p (RO ) and the cutoff plane z = or the difference between

Figure la and 1b . The volume under the circular normal distribution is

given by

-R ?

202

1 - e

This volume contains a cylinder of radius A and height p ( A ); so we must

remove this volume from the previous value. The volume of the cylinder
is

1/2
-1 DW ,1/2

Φ w 1

1 A²h == 2πσ

வார

T

2πσ
еe

2
IT

so the expression for p ( information ) is

-1 ,BW ,1/2
1 Φw

O

1- (1+
eе

(7)

o TT

or

Next we extend this problem to quantify the relationship between

intelligence or reduced variance of the uncertainty distribution and

increasing the amount of resource. Assume a circular normal density yith
sigma of 100. Let w = .5 (the probability of missing the target is e

.61 ) and suppose there are ten units of resource , each unit having an

effective radius of thirty meters. Notice that both the standard deviation

of the uncertainty and the total amount of effort need to be in the same

units; thus the total effort needs to be an area. For this example the total
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effort available ( 9 ) is the number of resourceunits multiplied by the area

each covers or 10 * 7 * 30%. From Equation 7 above the probability of hit

is

1/2
(4500) /2

1 10 * .5 * 900 **
100

1 1+ = .146

100

-1

I
e

TT

If we instead use 20 units, the information gain is .246; however, if we had

reduced the target location error by fifty percent so sigma was 50 for 10

units the p (information ) would be .388. A reduction in sigma to 70

increases the probability of information to the same level as doubling the

amount of resource . These observations give guidelines for analysis of the

benefits of intelligence versus increasing the resource allocation.

Theory of Search

Koopman worked for the Navy during WWII and directed his energies

toward solving problems associated with getting convoys across the Atlan

tic, finding submarines, and directing maritime rescue operations. During

the course of his work he developed a formal theory of search. The model

presented by this paper is a slight generalization of search theory. In

order to describe the a priori location density of a target, knowledge of

the situation based on past experience or functional relationships must

suffice. For maritime rescue operations, the bivarite normal distribution

proved to be an adequate model. The detection function was based on

models of human observation from airplanes and several adequate

glimpse models were derived . Using these functions it was posible to allo

cate search time judisously. There was a major problem getting convoys

across the Atlantic. Using destroyer escort time as a resource to minimize

the probability of attack by a submarine and reasoning about submarine

tactics to build up probability of attack surfaces; it was possible for Koop

man and his associates to make reasonable allocations of destroyer time

and substantially decrease the sucessful the effects of the submarines.

Artillery Effectiveness

Problems associated with increasing the effectiveness of indirect artillery

fire have been addressed by Sandmeyer (1986 ). Targeting errors, target

size, and errors associated with a round need to be considered.

In order to see the connection between theory of search problems and

artillery problems, think of an artillery round as the detection function .

The round searches for the target. For a given number of rounds, the goal
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is to diminish the target likelihood density as much as possible . The

expected damage of a round is the convolution of the precision errors and

the damage function of the round. For artillery systems this convolution

will usually involve the bivariate normal distribution and the von Neuman

Carlton damage function . The target likelihood density is the convolu

tion of the target area, the target location errors, and the artillery mean

point of impact errors. The latter two are both assumed to be bivariate

normal distributions, while the target area function is usually a rectangle

whose height is the reciprocal of the target area . The optimal amount of

target damage can be found by using these two convoluted functions and

Koopman's theorem .

Our total effort is packaged into a discrete number of artillery

rounds, or expected damage functions, each of which have the same area

effects. It is not possible to apply the indicated optimal effort or damage

to each point; thus, it is impossible to achieve the optimal amount of dam

age. This optimal damage surface will serve as an upper bound on perfor

mance .

Recalling that the target likelihood density is broken into a part to be

searched and an area to be ignored, several theoretical observations can

be made. First, the amount of damage occurring outside the optimal area

is wasted effort in the sense that it could be applied more effectively else

where. Next, damage exceeding that indicated by the cutoff plane in the

search area is wasted effort. The best approach is to try to approximate

the optimal effort surface by the summation of translated expected dam

age functions. In most cases this will result in a target likelihood density

with ripples near the level of the optimal cutoff plane.

Richard Sandmeyer (1986) of the AMSAA developed a technique to

optimally approximate the optimal effort surface. There are three major

sections to his method.

1. Calculate the upper bound and optimal effort surface .

2. Calculate an approximate solution by using either integer program

ming or least squares techniques on a restricted domain. The res

tricted domain consists of all the points defined by the intersections of

grid that includes the optimal effort surface .

3. Starting with the previous solution, use a steepest descent technique

to arrive at the solution.

The theoretic upper bound is found based on Koopman's theorem.

The optimal effort surface can be calculated functionally for each point.

In finding this surface, it is assumed there are no restrictions on the effort

applied at each point.
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Step two of Sandmeyer's method involves finding a close approxima

tion of the best set of translated damage functions. This is accomplished

by looking at a discrete number of points and optimizing the approxima

tion over this set.

The third step of his method starts with the result of step two and

allows the aimpoints to drift into the positions of the best approximation.

Computationally the third step is the most expensive. Happily, for most

situations the result of the second step is within a few percent of the upper

bound. This method requires too much CPU time to be used in the field .

As Sandmeyer has already suggested the performance of this method can

be used to evaluate the effectiveness of other methods. It is clear that the

approach developed by Sandmeyer is not limited to solving problems

associated with artillery.

MedicalDiagnosis

In this situtation, an unknown desease presents itself through a subject or

patient as a set of symptoms. The goal is to identify the desease or short

of that find a treatment that gets rid of the symptoms. The parameter

space is the set of all known medical ailments; the goal is to reduce the

uncertainty as to the patient's condition in some optimal fashion . The

resource available to the physician is money, which is translated into

information via various microbiological and chemical tests and through
response to particular medical treatments. An a priori likelihood surface

can be built up from existing desease frequencies, knowledge of the

patient, and risk factors. After this a sequence of treatment and testing

can be developed that would be optimal in reducing the uncertainty sur

face associated with the patient. This would give both the patient and the

physician a formal method that explains a particular course of action.

Funding Problems

This class of problems arise when there is a limited amount of resource to

spend on a number of problems. The uncertainty surface can be inter

preted as the likelihood of benefit to society. The different programs will

have different reduction rates and these can be estimated from historical

data (or from pilot studies). In this case funding would allocated automat

ically after the politicians charactorized the uncertainty surface and the

social scientists evaluated the effectiveness of the various programs.

Conclusion

It is my hope that the ideas developed by search theory will find a wider
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application when presented as a general model for reasoning. Sand

meyers work has increased the domain of the problems by developing

approximation methods. On an intuitive level this model of reasoning can

be seen to operate in many fields. The advantages of having a formal

model are to be seen in a wider scope of applications and in more effi

cient problem solving.
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Abstract

This paper describes a method to detect and segment ground

targets in IR imaging systems using statistical models for target

and background . The detection method is an iterative technique

that subtracts the background from the scene , using a double window

filter with the assumed independent distribution function for

background . The outer size of the double window is determined

iteratively by the largest connected component remaining in the

The segmentation or boundary detection methods employs the

well -known statistical theorytheory of change detection in speech

segmentation . The likelihood ratio test is modified to improve the

performance. The design method was initially applied on laser

radar range imagery , but simulation results showed that the method

works well for both flir and laser radar range image , hence

promising an advanced technique for multisensor fusion algorithm .

Hypothesis modelling for target and background is analyzed and a

brief discussion of the fusion algorithm is also included .

1 . Introduction

The double window filtering technique has been used by many

investigators for target detection for several years ( 1 ) . The double

window filter approach is a general technique which tests a

statistic calculated from the target and the background. The sizes

of the inner and the outer windows of the filter are usually fixed ,

according to an estimation of the smallest and the largest target

sizes . Several factors limit the performance of the filter , such

as the requirement of knowledge of target size , time consuming and

the erratic behavior of the pixel classification near the target

boundary or inside a bimodal target . In this paper , we propose a

technique that attacks all those above problems by : i ) updating

apriori knowledge of target size by a feedback loop , ii ) speed up

the computational time of the filter by jumping the window instead

of sliding it pixel by pixel , and iii ) testing the statistic of a

pixel by generating several outer window statistics instead of

using its neighboring pixel . TheThe detection method is further

improved by incorporating a second test , which measures the

statistic of connected component against its immediate

surrounding pixels to reject possible clutter components . The

detected boundary is then refined using the log-likelihood ratio

a

1
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test which detects the boundary without requiring a threshold .
This likelihood ratio test is modified with apriori knowledge

( i.e. , knowing the direction changes ) to improve the

performance .

of

2 . Hypothesis modelling for target and background

Theorem [ 2 ] : let x1 , x2 , ..... , xn be independent and

identically distributed ( iid ) random variables

and Sn x1 + x2 + + xn

Sn E ( Sn )

let

Y

a ( sn )

where E (Sn ) is the estimation of Sn and a ( Sn ) is the

standard deviation of Sn ,

then random variable y

a ) has mean o , variance of 1

b) is the sum of small independent random variables .

2.1 Double window filter

The double window filter provides a technique to test the

statistics of the pixels inside the inner window against the pixels

inside the outer window , see Figure 1 .

OOTER WINDOW (O.W)

INNER WINDOW (I.W )

PIGURS 1

xij E ( Xij such that ije 0.W }

Let sij for ijeI.W

Of Xij such that ije 0.W }

where Xij are random variables of the array or image .

If the pixels inside the inner and the outer window are iid then ,

Sij has mean 0 and variance of 1 .

2
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2.2 Hypothesis models

the hypothesis for background

the hypothesis for target

Let Но denote

H1 denote

and

Hypothesis Ho :

versus

H1 :

{ Rij / 0 = 0 }

e. # 0,

{ Rij / 0 = 0, }

can

Here Rij represents the intensity of the ijth pixel and wij

represents a feature extracted from Rij that we may use to

distinguish the target from the background . In flir imagery , the

thermal intensity of the ta is usually different from the

surrounding background . In laser radar range imagery , at low

depression angle , the target be distinguished from the

background by observing the variation of the measured ambiguous

range , because it is often reasonable to assume the background

consist of rough surfaces . Therefore , a 3X3 window is used to

convert the range image to the variance image as a preprocessing

( or feature extraction ) step before using the double window filter .

Hence ,

for each pixel inside the inner window , compute

eij E { Bij such that ij € 0.W }

Sij

a { oij such that ij E 0.W }

0.w : outer window

where bij is the mean of Rij for flir images and wij is

the 3x3 window variance of Rij for laser radar range images .

Then ,

Ho : sij N ( 0 , 1 )

Hi : sij not belong to Ho

where N ( 0,1 ) denotes a normal distribution with mean 0 and

variance of 1. Note that the approximated normal distribution is

reasonable for both sensors because : i ) for flir imagery , the

thermal intensities can be assumed to be small independent random

variables ; ii ) for laser radar range imagery , the 3X3 window

variances of the ambiguous ranges approximated to be

multivariate Gaussian variables [ 3 ] .

were

3 . Implementation of the detection algorithm

Figure 2 illustrates the implementation of the feedback loop

for an ROI ( region -of - interest ) detection algorithm withwith two

options labeled as # 1 and # 2 . The first option determines the size

of the largest connected component in the scene , whereas the second

option determines the largest sizes , in horizontal and vertical ,

of the connected components remaining in the scene after performing

3
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FIGURE 2 - BLOCK DIAGRAM OF THE DETECTION METHOD
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a simple clutter rejection test . The outer window size is first

initialized and then the double window moves across the entire

image in such a way that its inner windows , which its size is half

of the outer window size , do not overlap , but are adjacent to each

other . This speeds up the computational time of the double window

algorithm , compared to the conventional method which moves pixel

by pixel [ 1 ] . Each pixel inside the inner window is tested against

the statistics of pixels inside the outer window , for which the

connected components are formed by pixels passing a threshold value

which is normalized to the outer window statistics ( explained in

section 3.1 below) . The sizes of these connected components are

then determined and fed back to the double window filter process .

This
process

is iteratively repeated while accumulating the

statistic for each pixel for each iteration . Pixel classification

is then performed to form ROI connected components . Each ROI is now

tested against its immediate surrounding background pixel statistic

to reject possible clutter component .

3.1 - Hypothesis test # 1 ( pixel classification )

on

Recall that sij is assumed to have mean 0 and variance of 1

approximately if sij belonged to the background . Therefore , a

threshold can be chosen base the justification of the

probability of error . That is , the probabilistic value of sij can

be estimated corresponding to the total number of iterations , and

is tested to determine whether not sij belongs to the

background , which has mean 0 and variance of 1 .

For example , a Student - t - test ( 4 ) may be formed as

or

E ( sij ) Z

test ta ( Student-t-test )

O (Sij ) / Vn

where ,

4
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Z

ta

: critical value of z for areas under the normal curve

: critical value of the t-distribution

: total number of iterations

• degree of confidence level

n

ช

The number of iterations is usually greater than 10 when using

the student-t-test . Moreover , this requires the accumulation of all

the statistical values of sij .

For more convenience , fewer computationsfewer computations and storages ,

binomial trial method can be used to test the hypothesis. For

example ,

a

let xij = 0

= 1

if sij < 2x

otherwise

and P ( Xij 0 ) P ( Sij < za ) = P

then for n trials , the probability that X = 0 occurred k times is ,

n !

P ( k )

k

--P

n-k

( 1-p )

k ! ( n-k) !

Hypothesis test : accept HO if k > r

H1 if ker

then

P (H1/HO ) 를3

P ( k)

k=0

From standard statistical tables which are available in most

statistical text books [ 4 ] , we can justify n , r , and p to obtain the

desired value of P (H1/HO ) . For example ,

From Table IV , page 513 of Reference [ 4 ] , if z « = 0.9 then p

= 0.815 at the significance level of 0.0005 ; From Table II , if n

= 5 and r = 1 then P (H1/HO ) < 0.0067 .

Since the assumption that the pixel values of background are

independently distributed may not be true in practice , we have to

justify the value of parameters based on the experiment . The

selected value of Z * can be determined either from mathematic

model or from the histogram .

with the selected value of 2 . connected components are

formed by ijth pixel such that the value of sij is greater than 2x
for each iteration . The outer window size can be determined

according to the sizes of these connected components for each

iteration , and the process is repeated with this new value .

3.2 Hypothesis Test # 2 ( clutter rejection )

From the previous process , the connected components are formed

by adjacent pixels such that for n iterations , P ( Xij = 1 ) > 1 -

5

9
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P ( H1/HO ) . In this process , we will test the statistics of these

components against the immediate surrounding background pixels to

reject possible clutter components .

Let
Ti and Bi be set of pixels as shown in Figure 3 ,

TRY

o
B (1)

.
TIGURI 3

and let Di

E ( @Ti ) E ( @ :)

Vaa(@t:) +
Our (@or)

where

E (@z ) E ( oij such that ije 2 }

ܗܘܕܙ ou { Bij such that ije z }

The Student-t-test may be used in this case . Once again ,

justification must be based on the real data experiments , and this

test ( SNR test) works as a simple clutter rejection method .

Suppose we have ,

Hypothesis HO D $ 1

versus Hi D 1B

then P (H1/HO ) 1 P ( Z < 1 ) - 1 - 0.8413 = 0.1587

This simple clutter rejection test uses the SNR and estimates

the sizes and shapes of the connected components to reject possible

clutter components . This process is illutrated in Figure 2 as the

option #2 in the feedback loop .

However , the final clutter rejection test is more important .

This test is derived from the analysis of the target and background

statistics to enhance the performance .

For ample , let D is a function of means and variances of

target and background ,

D = f (mp , og , mg , og )

Assume that target and variance are

background mean and variance , respectively . Then ,

mean greater than

6
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D

O

( my o 0 , ) * ( m , o oy )

where denotes a proportional operator and
* denotes an

improportional operator , i.e ,

if

mo
then > O oror mg/m ,

mg/m , > 1 .

Therefore , the improportional operator can be a subtraction or a

division .

For flir imagery ,

m , >
I g m

assume
my > co , + ๆ

10m , m

then D

Voir +

For laser radar imagery ,

Ho0 ," +

assume
me >

mi op < og

mg mo
then D =

Cof Voir
+

ܗ

Hypothesis HO : Da

H1 : D > a

where a is a constant , to be determined from the empirical

distribution . Note that , this constant can be modeled as a function

of range and weather conditions . In fact , these factors make the

target distribution function varied relatively to the background

distribution . Therefore , a constant setting threshold will have

false alarms or miss some detections in some images , i.e. , close

or long ranges images .

4 . Boundary Detection Method

4.1 - Statistical Theory of Change Detection ( 5 )

The use of the statistical theory of change detection in
speech segmentation has been known and very successful . The

results are impressive and well documented . Since the methods are

general , they are well suited for application to the detection of

the boundaries of objects in IR images . The likelihood ratio test

is the most common hypothesis test used to detect the time change

of an unknown autoregressive (AR ) model .

Let
Yn

Σ

i = 1

a . Yn-it un

7
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where var (Va ) os

o
= ( a ,, ag ....... , api on ? )

Hypothesis HO : 1,2 , ...... , n

Hi : © = 0, 1,2 , .... , r r?

e = 0, r+1 , .... , n

r and e's unknown

Here Ho denote a detection of no change and Hi denote a

detection of change .

Likelihood ratio test follows

max max

@,,

min

e.

log L (H1/H0 ) > a
r

which yields ,

max

r

P ( E) > a

P ( r ) n log • r log 3 : - (n-r) logão

1

ôr(W)
Σ

min

( У.

P

Σ

i

aai:ال.ر* k

( #W) k EW

ê (W) = arg min Σ

k 6 W

( YK

P

Σ

i = 1

ai م.ر

Wwhere denotes any one of the 3 window ( 1,2 , ....... , n } ,

(1,2,....., }, ( r + 1 , ...... , n } and # denotes number of the elements
of the referred set .

4.2 Modified likelihood ratio test

For our application , only H1 is considered and the log

likelihood ratio test can be simplified to ,

min P ( r ) = r log O(r) + ( n-r ) log on- r )

where , c'( r ) : sampled variance of the set ( 1,2 , .... , r }

in - r ) : sampled variance of the set ( r+ 1 , .... , n }

Appendix A gives an analytically proof of the log likelihood

ratio test base on the " ideal-stochastic" case . From the analysis

the sampled variances , the following heuristic tests

developed to improve the performance.

of are

8
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Hypothesis HỌ : e - ( mo o'o ) 1,2 , ..... n .

Hi : N ( m1 m'1 ) 1,2 , ... r.

n" N ( m2 oʻ2 ) r+ 1 ,

o’i ) are sampled mean and variance of the referred set .

case 1 : m1 > M2 o 1 o 2

( mi ,

min P ( r ) = rl 2mo ml + logoi ) + (n - r ) ( m2 + log o 2 )

case 2 : ml < m2 , O1 * o 2

min P ( r ) = r ( ml + log o 1 ) + ( n-r ) ( 2mon m2 + logo 2 )

case 3 : m1 # m2 31 > Ꮫ 2

min P ( r ) = r ( 20 0 ol + log ml ) + ( n-r ) ( 0 2 + log m2 )

case 4 : ml + m2 ol < o 2.

min P ( r ) rl 0 1 + log ml ) + ( n-r ) ( 20 0 - 0 1 + log m? )

Note that the direction of changes are known . The improvement

of these modified tests over the log likelihood ratio test was

illustrated in the previous report [6 ] by mean of the simulation .

4.3 Implementation of the Method

As previously described , the detection process generates a

binary ROI image . Since it is difficult to apply the test in two

dimensional data , we can now use a " spoke " [ 1 ] , as shown in figure

4 below , collocated with each ROI to obtain sequences of data in

one dimension and then apply the hypothesis test above to detect

the boundary .

Xn

ROI

TICURI

9
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1 ) For each line of the spoke , obtain a sequence of data from

the original image , which is correspondingly positioned along the

line and where its length is twice the distance from the centroid

to the boundary of its corresponding ROI . 2 ) Compute the value of

P ( r ) along that line and detect the boundary point as a point at

which P ( r ) is minimum .is minimum . 3 ) Repeat step 1 ) and 2 ) to obtain N

detected boundary point . 4 ) Connect these N ( usually 64 ) -points to

form an object boundary . Repeat the process for each ROI . Note that

the data must be interpolated , especially for small targets , to

acquire a sufficient amount of data for the test .

4.4 - Iteration Method

The outer window size is initialized and then iteratively

determined to feed back to the double window process . In the

boundary detection method , the length of a spoke line is

initialized from the ROI boundary , thus it can be iteratively

determined to feed back to the boundary detection process . For

both processes , these iterations update the target size and the

surrounding background region .

5. - Multisensor Fusion Algorithm

The availability of multisensor data raises the interesting

problem of how to fuse information obtained from different sensors .

The main difficulty is making a decision when the single-sensor

algorithms disagree with each other . Recall that the hypothesis

modeled for background distribution in different sensors all have

mean 0 and variance of 1 , after performing a double window filter

process on the data . Therefore , we cancan fuse data from multiple

sensors after that process , but before the detection .
Futhermore , segmentations from multisensor ( or different

segmentors ) can also be fused using the log - likelihood ratio test .

For example , suppose that Al and A2 are segmented objects from

two sensors ( or segmentors )

B
Al A2

Subsets Si

PICOR 5

Let B be the box as shown in Figure 5 and assume that there exists

an optimum segmented region that satisfies :

r

(
#Soptopt

) * logoO Sopt ++ ( # ( B - Sopt ) ) * log O ( B - Sope ) is minimum

10
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for all SiCB, where #x denotes number of pixels inside region X

and o x denotes standard deviation of pixels inside X.

Then we can apply the above formula to fuse the subsets of Al

union with A2 for obtaining a better segmentation . This is the

implementation of testing the log - likelihood ratio test in two
dimensions .

6 . Simulation Results and Discussion

a

Figure 6 illustrates the unprocessed original laser radar
images and their corresponding boundary detections . The connected

components are ROIS resulting from the detection and , as we shall

see, the pixel detection is just about 60 to 90 percent of the

target area but the boundary detection is as good as hand

segmentation . This is an advantage of boundary detection over

thresholding for processing a noisy image or large deviation data .
Figure 7 illustrates a ) the original flir image , b ) the

segmentation of a ) , c ) the zooming of data from b ) with zooming

factor of 3 ( also use for d) and f ) ) , d ) the zooming of data from

a ) using bilinear interpolation , e ) the segmentation of d ) , and f )

the down zooming segmentation from e ) . The segmentations seem to

work well as judging it by the human eye . Note that at present

time , the measurement of the segmentation accuracy is still in

controversy because of the difficulty of accurately located target

pixels in real images . For the zoomed case, the segmentation shows

to have an improvement over the unzoomed case , and thus for small

targets , data must be interpolated before testing the hypothesis

to detect the boundary .

However , most of the algorithms have a failing case and this

algorithm fails if the hypothesis is false or if the target shape

is not a simple N-side polygon . Therefore , a fusion algorithn for

segmentors is a must for seeking an optimal segmentation .

7 . Conclusions

This paper has presented i ) an iterative technique that uses

a double window filter for target detection ; ii ) the implementation

of a log - likelihood ratio test to refine the boundary of a detected

object without requiring a threshold . For this latter case , the

concept of partitioning an object into several subregions ( just as

we have done with a spoke) demonstrated that , an object ought to

be thresholded at several levels , rather than by a single value .

That is , the object is first estimated by segmenting with a

threshold value , and then partitioned into subregions to find a

threshold value for each subregion . This concept should be

implemented by a technique that uses a normalized threshold value

for segmentation to improve the performance . Even though this is

true , the optimal performance can not be gained by a single method
due to the presence of clutter components near the target .

Therefore , a fusion algorithm for segmentation is needed to reach

the goal, and the log-likelihood ratio test appear to be a good

candidate of hypothesis test for this fusion algorithm .

11
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FIGURE #6

( a )

(b)

( c )

( d ) ( e ) ( f )

FIGURE #7
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APPENDIX A

Proof of the log-likelihood ratio test for an " ideal -stochastic "

case

Problem : let s be a set of random variables (81 , 82,. . , sn )

hypothesis 03 01 ( 81, 82 , ......, Sk }

e 3 02 (( 8k + 1 , ......, en } 01 + 02

rlog o *( ) + (n-r ) log on ? (n- r ) is minimum atprove that y ( r )

r 3 k in these two cases ,

case 1 : 01 : E { 81,82 , .. sk )

O2 - E { 8k+1 , .... sn )

var {81, 82, .... , 8k ) : var ( sk + 1 , .. , sn ) o²

case 2 : 01 = var (81 , 82,. , sk }

02 • var ( sk+ 1 ,. , an )

E {81 , 82,. , sk } = E { sk+1 , sn ) - E { 81 , 82 , sn ) = 0

whore O'( ) : sampled variance of the set ( 81 , 82 , . , 8r )

en }ou '( n - 1 ) : sampled variance of the set ( 8r+1 ,

0 < < n , 0 < k < n , n > 0 .

Notice that the meaning of the " ideal - stochastic " in this problem

is ,

Wo assume that o (r ) • o (k ) for all r less than k

and
o (n-r ) • o ( n - k ) for all r greater thank .
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case 1 : 01 = E ( sl , s2 , ..... sk )

62 = E ( sk + 1 ,..... , sn }

var ( s1 , s2 , ... , sk } = var ( sk + 1 , ... , sn ) ܗܐ

proof :

Since var { si } o , for vien and E { si } + E { sj } for i<kuj

then , o* ( r ) > 0 and o'ln-r ) > o *for all ren .

o ( r ) --> 0 . oʻ ( n-r ) ---> o

y ( r ) r* log o*( r ) + ( n-r ) log on- r ) is minimum at r = k

at r = K ,

=>

²

s

case 2 : 01 = var { s1,s2, ......, sk } = 0 ,

02 = var (sk + 1 , ...... , sn } O 0 ;*

E {s1 , s2 , ...., sk } = E { sk + 1 , ..... , sn } = E {s1,s2 ,.... , sn }sn } = 0

y ( r ) - r * log o' ( r ) + ( n - r ) * log o "(n - r )

for this case , to prove y ( r ) is minimum at r = k , we have to

prove that < 0 forrkdy / dr = y ' ( r )

and y'(o)
> O for r > k

proof :

o ( r ) -& for rsk

[k * 0 ," + (r - k ) * 0,*]/ r = Q ( r ) , r > k

o? ( n-r ) [ (k - r ) * 0,* + ( n-k ) *0*1 / ( n-r )

Ol?

= B (r )
r < k

r > k

y ( r )
s

r* log o ' + (n - r ) * log{ $ (r ) } rak

r* log { (r ) ] + ( n-r ) * log oz ? r > k
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COMPARISON DENSITY UNIFICATION OF STATISTICAL METHODS

FOR CONTINUOUS AND DISCRETE DATA

by Emanuel Parzen

Department of Statistics, Texas A&M University

Abstract

The analysis of a univariate continuous sample is

proposed as a probability model identification process

consisting of four steps, each of which yields a distribu

tion function , respectively denoted F , F, F,F; each

represents the outcome of successive steps in the anal

ysis. Step 0: F , the true distribution function ; Step 1 :

pu, the fully non -parametric sample distribution; Step

2 : F ^ = F( . ; 0^) , a smooth distribution function obtained

from a parametric model F( . ; 0 ) whose parameter 6 is ef

ficiently estimated by 0^; Step 3 : Comparisons of obser

vations F and expectations F ^ are provided by suitable

sample comparison density functions (denoted ( ") which

are fully non - parametric estimators of a comparison den

sity (denoted d or d(u) , o su < 1) which compares F

and F ^; Step 4 : F, a smooth -parametric estimator of

F, is obtained from a smooth estimator – which we rec

ommend as the optimal way to provide a goodness of

fit test of F to F. Examples demonstrate the insights

obtainable from this approach .

Step 2 : form expectations; Step 3 : compare observations

and expectations (goodness of fit of model to data) ; Step

4 : if model does not fit observations, revise model to fit

(by estimation of the comparison density ).

I believe that one should try to answer the philo

sophical question : what makes statistical inference possi

ble (what makes it possible for us to be able to infer from

data probability models that fit the data) ? We propose

that the answer includes the following fact: if G is a dis

tribution function which one considers as a model for the

true F, the transformed random variable W G(Y) has

distribution function F (G- 1 (u) ) and quantile function

G(F- 1 (u) ) , both of which equal the identity function u

when G = F and F is continuous.

Probability Model Identification Fundamental Ap

proach : Base estimation criteria on the idea that for a

continuous random variable the closeness of a model G

to the true F is judged by measures which test the hy

pothesis that W = G(Y) is Uniform (0,1).

To test a hypothesis Ho about a random variable W

of which one has observed W1, ... ,Wn (a random sam

ple) early researchers (going back to the first hypothesis

testers such as Laplace ( 1754)) , proposed ( 1 ) comput

ing a suitable test statistic T, (2 ) determining exactly or

asymptotically the distribution under Ho of the statistic

T; (3) using this distribution to determine a rejection

critical region R of values of the statistic T, assuming

a specified probability of rejection a; (4) reporting re

jection of the null hypothesis H. if the observed value

of T belongs to R , or at least reporting a p -level of the

observed value of T (defined to be the largest value of a,

probability of rejection, whose rejection critical region

contains the observed value of the test statistic T) . This

paper proposes to form critical regions that represent

differences from 1 of the probability density or quantile

density of transfomed random variables W on the unit

interval.

1. Introduction

We propose the concept of unification of statistical

methods in order to develop a general philosophy of sta

tistical data analysis. We propose that ways of thinking

about statistical ends ( goals) and means ( procedures) are

needed that provide a framework for implementing and

comparing several different approaches to a data anal

ysis problem . We believe that unification has benefits

which include: existing ( often parametric) methods will

be better understood ; many new (often nonparametric)

methods will be developed . The new methods are usu

ally computer intensive; consequently unification of sta

tistical methods can be considered to be closely related

to computational statistics. We define computational

statistical methods as characterized by being graphics

intensive and number crunching intensive.

This paper provides an introductory account of

our approach to unification for the case of observations

Y1,..., Yn which are a random sample of a continuous

random variable Y with true unknown distribution func

tion F, quantile function F- 1 , and probability density

function f . The estimation of these functions is called

the Probability Model Identification Problem .

Our approach implements our favorite definition of

statistics : Step 1 : make and summarize observations;

2. Parametric Probability Model Identification

Step 1 of data analysis is to form fully non

parametric estimators: the sample distribution func

tion F (x ) and the sample quantile function Qº(u)

FW - (u ), where

=

Fº( ) = fraction of sample < i , - < 3 < 0

The sample probability density f does not exist
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as an ordinary function but the notation is used as a

symbolic function which has meaning as an integrand .

The sample expectation Eg( y )] is defined by

defining cross entropy of two continuous distributions F

and G

H(F; G) = (-2) [ Ⓡ (1089(y)f(y)dy.
E % 9 ( Y )) = (1/n ) ( Y ;)

We define entropy of F by
j= 1

which can also be expressed as an expectation with re

spect to F: H(F) = (-2) / (108f(y)f(y)dy.
o

We define Kullback information divergence by

Ele(Y)]= {" gly)df (w)
(log (g(y) /f (y) ) f (y) dy

= H(F; G) - H(F) .

Step 2 forms fully parametric estimators F^( ) and

Q (u) of the form

o

F *( 1) = F(x ; 04) ,

Q^(u) = Q (u ; 8^)

where @^ is an optimal estimator of the (vector) param

eter 8 of a parametric model which we express as a hy

pothesis Ho given by

Important inequalities are I(F; G) > 0 , H(F; G) >

H(F) .

The procedure of maximum likelihood estimation

can be expressed in terms of information theory con

cepts. The population likelihood is negative cross en

tropy. If the true f (y) equals f (y ; 6.) then –L( ) has

its minimum value at 0 = 00 , and the minimum value

is the entropy H (F( . ; 60 ) ) . Similarly the sample likeli

hood L (0 ) has its maximum value at 6 = ^, and the

maximum value satisfies :

Ho : F( ) = F(2 ; 0)

for some value of the vector parameter 0.

The maximum likelihood principle of estimation

forms O^ as the value of maximizing L " (© ), the sam

ple (average log) likelihood, defined by

L " (0 *) = -H (F ", Fo-) < -H ( F").

When the parametric family fl . ; 0 ) is an exponential

model,

Lº (@) = (2/n) log f (Y1, ..., Yn ; O)

= (2/n) log f ( Y;; 0)
[* (0 “) = max [ " (©) = -H(F( .; 0^))

j= 1
the neg -entropy of the fitted distribution .

Expressions for L * (@) that we find useful for interpreta

tion are

L * ( ) = 2E (log( Y ;0) ]

= 2 log f (y ; 0 )dF " (y)21

= 25"

3. Comparison density functions

For F fixed , minimimizing population cross - entropy

H(F; F( . ; 0) ) is equivalent to minimizing population in

formation divergence I(F; F( . ; 0 ) ) . One can regard this

as a mathematical measure of how closely one can ap

proximate F by a member of the parametric family

F( . ; 0 ) . But we prefer a more statistical interpretation

in terms of the comparison density function of two con

tinuous distributions F and G, defined as follows:

log f (Q*(u) ; 8 )du

Sample likelihood is an estimator given the obser

vations of the population likelihood d'u ; F , G) = 9F- ( u ) / fF- ( u)

One can show that

L(0 ) = 2 log f (y ; 0 ) dF(y)ſ f(

21"

d(u; F, G) = D '( u; F , G ),

= 2 log f (Q (u) ; 0) du

= -H(F; F( .; 0) ) ,

defining

D(u : F , G ) = G(F- ' (u) ) .
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One can show that

I(F; G) = (-2)G ( ) - log d(u : F , G) du.
.

their (asymptotic) distributions when parameters are es

timated, and they do not satisfy the vital criteria of ( 1 )

looking at the data and (2 ) providing insight into how

to revise the model when it does not fit.

The " components” approach chooses score functions

Ji (u) , ... , Jm (u) satisfying for j = 1 , ... , m

$ 5;(u)du =0, $ }( u )du = 1,

[ 1; ( w )JA (w )du = 0 for j * *

Components are statistics T ( “ linear detectors”)

which are linear functionals in d(u) of the form

We interpret I ( F, G) as a measure of the closeness to 1

of the density d (u : F , G ) .

The information and comparison density interpre

tation of maximum likelihood estimation that we are

proposing can be expressed as follows: population likeli

hood is related to I(F; F(.; ) ) which measures the close

ness of F ( . ; 0 ) to F by measuring the closeness to 1

of d(u ; F; F( . ; 0 ) ) , the derivative of D (u ; F , F( . ; 0 ) )

F(F- 1 (u) ; 0 ) which is the quantile function of the ran

dom variable We F(Y ; 0 ) ; maximum likelihood esti

mation of is equivalent to finding the value of 0 of the

transformation from Y to Wo which is closest to a Uni

form (0,1) distribution as measured by the distance of the

sample quantile function F(F* - ( u) ; 6 ) from D(u) = u.

The estimation process in Step 2 uses quantile func

tions . Step 3 uses distribution functions for goodness

of fit tests ; one measures how close the fitted model

FC. ; 0 ^) = F^( . ) is to F by how close to uniform is the

sample distribution function Dº( u ) = FM ( F^ - ' (u )), also

denoted Dº = F (Q )

To understand why the sample distribution function

is more convenient note that it is an estimator of D(u)

F(F- 1 (u ) with derivative

T ( ) ;) =[1,01= 5;(u)=(u)du = 5 *5;(u)aDº(u)

= ( 1/n) ŻJ;(Wx) = E4J;(W )]

n

t= 1

Components often can be shown to be asymptot

ically normal (under the null hypothesis) independent

N(0 , 1/n) random variables. Component tests judge sig

nificance of n.6T* ( J;) and nSk,m , defining chi-squared

test statistics

m

Skm = IT (J;)]\ " 12.
d(u) = f ( F - 1(u )}/ f" (F *- ( )). j=k

An estimator d'` (u) leads to a revised estimator f (y) by The Cramer - von Mises goodness of fit test is a

" quadratic detectors in the sense that it can be expressed

as a weighted sum of squares of components:f (y) = d " ( F *( y )) f ( y ).

[ 10(a) – u)*du = §w;105,07?
j= 1

Step 3 of our approach to statistical data analysis studies

various diagnostics of Dº(u) which measure the signifi

cance of its difference from u, and forms sequences of

smooth approximations d`(u ) of the symbolic derivative

dº(u ). Step 4 chooses an optimal d`(u ), which could be

identically 1 ; if this is not the case, one obtains a revised

probability density estimator f ( y).

where

$; (u) = 2.5 cos(jtu) , w ; = 1/ja .

The Anderson - Darling goodness of fit test is a

quadratic detector:

5. 10 ( e) – u) * /* ( 1 – u)du = Žu;(0,c72
j= 1

4. Diagnostics of comparison distributions

The sample distribution function D = F ( Q ) of

W = F"(x) is called a sample comparison distribution,

estimating D = F(Q^) which measures how well the true

F is approximated by the fitted model F “.

Classical goodness of fit statistics are portmanteau

statistics, such as the Cramer-von Mises and Anderson

Darling tests in the continuous case and the original Karl

Pearson Chi-Square test in the discrete case . We do

not recommend them because it is difficult to determine

where

Vj( u) = (2; + 1 ) .p; (24 – 1 ) , w ; = 1/3(i + 1 ) . " , pj(t)

are Legendre polynomials on (-1,1) .
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where v is the integrating factor that guarantees that

do, m is a density.

Hermite polynomial goodness of fit test can be de

fined by a quadratic detector with w ; 1/3,

4 ; (u) = (5 !) - 6H ; (0 - ' (u)), H ; ( )

are Hermite polynomials.

A quadratic detector can be interpreted as

6. Order determination

The problem of goodness of fit can be regarded

as a problem of determining the optimal order m and

whether the optimal order m* = 0. As m increases,

do ,m (u) converges to d(u) = d(u ; F^, F ) and IRoldo,m )
increases to

fla( dº (u ) – u)?du

a distance from 1 of a smooth density estimator I Rold ") = IR- 1 (d(u ; F “, F^) )

oo

d"(u ) = 1+ w;[ ;, &}$; (u)
j= 1

which is the Moran goodness of fit, or non -parametric

entropy, test .

The combination of F (.) F( . ; 0 ^) and do,mi is

regarded as an estimator F. A random sample from

Flan can be generated from a random sample from F^

using do ,m . and the rejection method of simulation.

5. Comparison density estimation

The novel elements of this paper are the role of the

comparison density function , and especially the proposi

tion that estimation of the comparison density function

can be used to motivate and interpret components. In

terpret sample components T ( J ;) as estimators of

T () ;) = *5 ; (w ) ! (u ) du = { 1} ^ )) F(2)

Consider all d(u) obeying the constraints that for

j = 1 , ... , m

T ( J ;) = T ( J ;);

one determines da ,m , defined as the density obeying the

constraints which minimizes

IRi ( d) = log$f*f()du,for d = 1 ,

1Rold)=> [" {log d(u) }d(u) du , for d = 0,

IR- 7 (4) =2 / 1- log d(u) } du for d = -1,

IRa (d) = {2/2 ¢ 1 + 1} } Log * {d(w) } } ++ du for A.

7. Examples of One Sample Continuous Data

Analysis

National Bureau of Standards NB10 Measurements:

Freedman , Pisani, Purves in their textbook on Statistics

(p.94) report 100 measurements of the 10 gram check

weight NB10 made at the National Bureau of Standards.

They report : “The normal curve does not fit at all well.

The normal curve does fit the data with three outliers re

moved. The normal curve fitted to these measurements

has an average of 404 micrograms below 10 grams, and

a standard deviation of about 4 micrograms. But in a

small percentage of cases , the measurements are quite

a bit farther away from the average than the normal

curve suggests . The overall standard deviation of 6 mi

crograms is a compromise between the standard devia

tion of the main part of the histogram (4 micrograms)

and the three outliers, representing deviations of 18 ,

30 , and 32 micrograms. In careful measurement work,

a small percentage of outliers is expected. The only un

usual aspect of the NB10 data is that the National Bu

reau of Standards reported its outliers; many investiga

tors don't . Realistic performance parameters require the

acceptance of all data that cannot be rejected for cause. "

The NB10 data illustrates the statistical analysis

strategy that we propose be routinely applied to data .

Step 1. Specify a parametric probability model for the

data (here the model is normal ). Step 2. Estimate pa

rameters of the model (here mean and standard devia

tion ) to be 10 grams-404 micrograms and 6 micrograms

respectively. Step 2* . Robust parameter estimation by

Renyi information of index between 0 and 1 obtains as

estimators of a normal model ( fitted to the part of the

data that can be well fitted by a normal model) the same

mean and a standard deviation of 4 micrograms. Step

m

We call IR, (d) Renyi information of index d .

An explicit formula for d1 ,m is the truncated Fourier

series :

d1 ,m = luj, d ] J ; (u ).
j= 1

An exponential model with parameters (1 , ... , 0m is

the form of dom :

m

log do,m (x)= 04 JU(u )– (01 ,..., 0m )
k= 1
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a step function estimator computed from increments of

D(u; F ( , 0 “), FM ) over 8 sub- intervals.

4 : Goodness of fit test of normality by traditional tests .

Step 5 : Maximum entropy estimator of comparison den

sity d(u ; normal model, data) clearly indicates the na

ture of the data; a poor fit of normal model to data.

Shape of dº(u) in interior of interval (0,1) can be inter

preted as expected curve if d` ( u) estimates

Cheng and Stephens Break Stress Data

(Stem and Leaf)

27 1.55

28
d(u ; N(0 , (6)^) , N(0 , (4 ) ^ ) )

kexp {-.5 (x2– 1) (6- ' ( x) ) ? } , « = 6/4.= k exp

29 | .89

30.07 .65

31 | .23 .53

32 | .23 .28

33 / .28 .28

34 | .15 .15

35.03 .03

36 | .20

37 | .07 .36

38

.53

.69

.74

.15

.32

.82

.98

.74

.44

.44

.86

.62

.61

.86

.74

.86

.74

.73.61 .90

.7
8

.36 .36

39 |

40.28

8. One Sample Discrete Data Analysis

Step 1 : Identify a parametric family of probability

mass functions plz; 0) to model the sample probability

mass function pº(a ).

Step 2 : Parameter estimation . Maximum likelihood

estimator g^ can be obtained by minimizing

IR- 1 (d(u; F ", F( - ; ) ) )

(-2) log{p(3;6)/ p*( )}p"( )

Peaks of d (u) at u = 0,1 indicate longer tails than

normal. In general, one must decide whether to con

sider these tails in dº(u) as outliers or as evidence that

a longer tailed distribution than the normal should be

used to model the data. In Figure 1 two graphs illus

trate the comparison density estimation process: the

raw estimator (u ) superimposed on a smooth esti

mator d(u) ; the exponential model smooth estimator

do,4° , the orthogonal polynomial estimator d1 ,4 , and

a naive step function estimator d* representing incre

ments of Dº (u) on 8 equal subintervals. Diagnostic

tools at step 1 which help identify probability models

for the data are illustrated by a IQQ plot of the sample

quantile function of the data versus the quantile func

tion of a normal with density f (3) = exp ( - * ). The

informative quantile function of the sample is defined

Qr(u) = {Q*(u) - Qº(.5 ) } / 2 { Q ° C.75) – Q ° C.25 )}.

Breaking Stress of Beam: Cheng and Stephens

( 1989) give a data set of breaking stress of 41 beam spec

imens cut from a single carbon block of graphite H590,

and discuss goodness of fit tests of the hypothesis that

the data is normal. Let F ( - ; 0^) denote the normal dis

tribution with maximum likelihood estimated value of

0. They show that Moran's statistic , which is equivalent

to IRo(d (u ;F (-; 0“ ), F ) " correctly rejects the hypoth

esis that the sample is normal, in contrast to more tra

ditional empirical distribution based statistics (such as

Kolmogorov -Smirnov and Cramer -von Mises) which ac

cept the hypothesis of normality for the sample tested .

The comparison density estimation approach indicates

the nature of the data; an excellent fit of normal model

in interior of interval (0,1) but peaks at u = 0,1 indi

cate outliers or long tails ( clearly evident in stem and

leaf table of the data) . One conjectures that a symmet

ric extreme value distribution would be a more appro

priate model. Figure 2 illustrates the comparison den

sity estimation process for a normal model F( - ; 0 “) . The

graph of D(u ; F( - ; 8^) , F “) is graphically well fitted by

a uniform distribution, and therefore passes traditional

goodness of fit tests. The raw estimator d(u ; F( - ; 0“) , FM)

is superimposed on a smooth estimator. The exponen

tial model smooth estimator d ^(u ) is superimposed on

A parametric estimator of p is p(x) = p(q ; 8 “) . Mini

mum chi-square estimation uses the modified chi-squared

distance

IR ; (d ( u; F ™, F ( ' ; )) ) = {(p(1; 0 ) / pº (z )) – 1} ^ p^ ( )

Step 3 : Parametric hypthesis testing. To test a hy

pothesis Ho about the parameter 6 , let Ho^ denote the

minimum -modified chi square estimator of A under H .;

equivalent to likelihood ratio tests is the test statistic

I Ri(d (u ;F " , F ( - ; 08.-) ) ) - IRi(d (u ;F ", F ( - ; 8^) ) )

Step 4 : Goodness of fit test of Ho : p = pl . ; 0^) or

equivalently Ho : d(u ; F (:; 8 “), F ) = 0. Test the signifi

cance of the difference from zero of

IR (d (u ;F ( - ; 04) , FM )) = IR- 2 (d (u ; F " , F( - ; 0 ^) ) ) .

Step 5 : Maximum entropy goodness of fit tests and

estimators do, m(u) of d(u ; F ( - ; 0 * ) , F) are obtained by
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minimizing IRo( d“) among densities d`(u ) satisfying, for

k = 1,..., m and specified score functions Jk (u ),

Rayner, J. C. W. and Best , D. J. ( 1989) . Smooth Tests

of Goodness of Fit, Oxford University Press , New

York.

( Jk, d "] = ( Jk, d )]

defining (u) = d(u ; F( - ; 0 “) , F “). For m large enough

dom (u ) equals (u ) and IRoldo,m ) increases to a test

statistic (alternative to that of Step 4) I Ro ( d (u ;F( : ; 8“) ,

F " )).

Step 6 : Rejection simulation nonparametric estima

tion of F. Use an order determining criterion to deter

mine an order m * with the properties: if m = 0, ac

cept Ho; if one rejects Ho use do,m "(u) as the density

to be used in the rejection method of simulating a ran

dom sample from F. The combination of F( .; ^) and

do,m . "(u) is regarded as an estimator F.

Read , T. R. C. and Cressie, N. A. C. (1988 ) . Good

ness of Fit Statistics for Discrete Multivariate Data,

Springer Verlag, New York.

Renyi, A. ( 1961) . "On measures of entropy and infor

mation . " Proc. 4th Berkeley Symp. Math . Statist.

Probability, 1960, 1 , 547-461 . University of Califor

nia Press: Berkeley.
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Figure 1

Test NB10 Measurements for Normality

Hindi

Raw ( u) to test normality, smooth by d`(u)

1.00

往 自

Estimators (u ; normal, data) Orthogonal Polynomial ;

Exponential Model (graph closest to graph of step function ):

2.3

yy

IQQ Plot (Q01 , QʻI) Qo Normal
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Figure 2

Test Breaking Stress Measurements for Normality

L
D(u ; F (-;8 “), F ) to test normality

LIL

Raw (u) to test normality, smooth by orthogonal polynomial dº(u)

7

그

Estimation d ' (u; normal , data) Exponential Model ,

Step function
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DEVELOPMENT OF DESERT CAMOUFLAGE NETS

FOR SAUDI ARABIAN NATIONAL GUARD (SANG)

George Anitole and Ronald L. Johnson
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ABSTRACT

The objective of this program was to determine the best camouflage net colors and texture for

Saudi Arabian desert backgrounds. The program began with a fact-finding visit to Saudi Arabia . Two

of the findings of this visit were that the standard U.S. Army desert net was too dark, and that a

light - colored monotone net would best fit in with the backgrounds. Using this information , and

spectrophotometric readings of soil samples, a series of test nets were constructed for a field test in

Saudi Arabia. Twenty - four nets of different colors were constructed for use in the full -scale test. The

standard U.S. Army desert camouflage net was used for comparison purposes . Five test sites, repre

sentative of terrain colors generally found in the SANG operational areas around Riyadh and Hofuf,

were selected. The test procedure involved a selection and ranking process as to their ability to blend

with the background . The nets were narrowed down to six final candidates, and then these six were

ranked in their order of preference. This data was statistically analyzed, and the final color/texture

recommendations made. This project joined the expertise of an engineer, statistician, and psychologist

into a working operational research team to develop a new camouflage net for SANG.

1.0 SECTION I -- INTRODUCTION

The Belvoir Research, Development and Engineering Center (BRDEC) was requested by the U.S.

Army Project Manager, Saudi Arabian National Guard (PM, SANG) to provide assistance in developing

a camouflage program. A fact-finding team was dispatched to Saudi Arabia to determine the specific

requirements for the program . The primary areas of interest were the vicinities around the capital ,

Riyadh, and Daman -Hofuf, the center of the oil-producing area along the Persian Gulf. It was found

during the visit that the U.S. standard desert camouflage net was too dark for the light desert backgrounds

of these areas . As a result, a program to develop a new camouflage net for SANG was begun.

Spectrophotometric readings of soil samples taken of the areas of interest during the fact -finding

visit , along with color slides of the areas, were analyzed and studied to determine a spectrum of desert

colors for use in the construction of a series of camouflage nets for a field evaluation in Saudi Arabia.

The field evaluation narrowed the spectrum of colors . The remaining colors were further refined, and

other colors were added for a second field test . Eleven desert tones were developed for the second

field test . All the nets constructed for the second field test were monotones since it was determined

during the first field test that monotones blended better with the Saudi Arabian light-colored deserts.

In addition to color, the variable of texture was also investigated . Texture is defined as the degree

of perceived roughness of the camouflage net . Texture is caused through the incision cuts in the material
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making up the net . The shadows caused by the incisions gray out the color of the net . The larger the

incision cuts, the more the net color is affected. The incision size used on the standard U.S. Army net

was too large and tended to gray out the light garnish colors which would blend well into the desert

background. Two smaller incisions were developed for testing the eleven selected garnish colors . These

incisions were identified in this report as "small" and "smaller" . This report describes the second field

evaluation of the camouflage nets that took place in Saudi Arabia, with the objective of determining

the most effective camouflage net colors and texture (incision pattern) for use in the Riyadh and Hofuf

regions of Saudi Arabia.

2.0 SECTION II -- EXPERIMENTAL DESIGN

2.1 Test Nets

The same color was used on pairs of nets, i.e. , one for the small incision size net and one for the

still smaller size incision net . In addition to these nets, a two-color net (i.e. , one color on each side)

was developed for each incision size for evaluation in both light and darker desert areas. Two standard

U.S. Army desert nets were also included for control and comparison purposes, making a total of

twenty-six hexagon nets. The small incision nets were identified by Roman numerals I through XIII.

The smaller incision nets were identified by the lower case alphabetical letters a through m. Note that

test nets V and e had a different color on each side, and that test nets VIII and h were the standard

U.S. camouflage nets with the standard incision size .

2.2 Test Sites

A total of five sites were selected, four at Riyadh and one at Hofuf. The site locations and color

designations were as follows:

Site 1 - Tan ; Riyadh

Site 2 - Light Tan ; Riyadh

Site 3- Brownish Tan; Riyadh

Site 4 - Grayish Brown; Riyadh

Site 5 - Reddish Tan; Hofuf

The exact site locations were selected so that the nets were always observed against the terrain ,

and not highlighted against the sky.

2.3 Experimental Design

The nets were set up at each site , separated by incision size reading " I" through "XIII" for the

small incision group and "a" through "m" for the smaller incision group . A red flag was placed on the

first, sixth , and tenth nets, thus subdividing each of the two incision size groups into three smaller groups

of five, four, and four.

The test procedure involved a selection process during which the thirteen nets from each incision

size grouping were narrowed down to three final candidates within each incision size, and the final

three from each incision size were grouped together and ranked in the order of preference . The subjects

first selected three nets from each incision size subgroup (i.e. , five, four, and four) which best blended

with the background. The results were tabulated in the field, and the best three nets were kept, with

the others being taken down. This left three subgroups of three nets each. The next iteration involved

selecting the best two nets from each new subgroup. Again the results were tabulated in the field, and
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the worse net for each subgroup was taken down. This left a total of six nets standing for each incision

size group. These six nets were then rated as to color blend and texture , with one being the best rating

and six the worst . The results were tabulated and the three best nets from each incision size setup

were identified and moved to make one final group of six nets . The ranking in order of preference as

to color and texture was performed as before , to determine which color and incision pattern best blended

with the background. Note that this one- through-six rating was the first time the small and smaller

incision size nets were evaluated as one group. For all the ratings, described above, no ties were allowed.

A briefing was read to the observers, at the start of each test, describing the sequential setups of

the nets, and pertinent instructions for each particular phase of the test . All evaluations were performed

between the hours of 1200 and 1400 for proper sun angle and minimum shadows . Each day was clear

and hot with temperature ranges between 118-130 degrees Fahrenheit. This procedure was repeated

for each of the five test sites .

2.4 Subjects

A total of sixteen male subjects ( seventeen for site 1) were used as observers for each of the five

sites . The subjects were screened for visual acuity using a reading card produced by the American

Optical Corporation . Pseudo-Isochromatic Plates were used to screen each potential observer for color

vision . In order to participate in this study, both screening tests had to be passed . All subjects were

employees of the Vinnell Corporation, stationed in Riyadh.

3.0 SECTION III -- RESULTS

Of the twenty-six color/texture combination desert camouflage nets tested, thirteen advanced to

the final selection process in at least one of the five sites . Table 1 summarizes the placement of these

nets for each site . Net "c" was added only to aid in computer data analysis, by completing the pairing

off of the color/texture combinations . It was not used in the final grouping for any of the five sites .

Table 1

Final Placement of the Desert Camouflage Nets for Each of the Five Test Sites

Net Sites Total

1

N

41

No1 Yes 1

3

No

No

Yes

5

No

Yes

No

No

Yes

Yes

No

Yes

=>
X
X

No

Yes

No

Yes

No

No

AW N

Yes No Yes

No Yes3 No 1

XII

No

Yes

No

2Yes

NoXIII Yes

No

Yes

Yes

2

a No No 2

с

No

No

Yes

0

e

No

No

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No

Yes

3

4i

No

No

Yes

No

Yes

Yes

Yes

No

No

Yes

No

No

Yes

k
2Yes

No1 2

m No No 2
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3.1 Net Color

The same colors, with the exception of nets V and e, appear for each of the two textures. Nets

V and e were reversed to show their darker side when used on sites 3 and 4 in order to evaluated

the side which matched the background closer . Normally, the color perceived of a one-color net is

a result of a visual integration of the garnish color and the incision shadows producing a third color.

In the case of reversible nets, with different colors on each side, the color perceived is actually a

fourth color . This is the result of the visual integration of some of the color visible from the reverse

side of the net. Therefore color IX on one side of net V or e is perceived slightly altered by the

addition of color XI on the reverse side caused by the convoluting garnish . It is this " fourth " color

that was evaluated during the net tests .

Using the numerical values of one being the best, six the least preferred, and seven as not

being in the final set of nets for color/texture evaluation at each of the five sites, the mean value

of acceptance with the associated 95% confidence interval was determined . This descriptive data

is shown in Table 2 and pictured graphically in Figure 1. The higher the value of preference, the

less preferred is the net color/texture .

Table 2

Mean Preference and 95 - Percent Confidence Intervals for the

Final Desert Net Colors, Small and Smaller Incisions, Averaged Across All Sites

Net Sample

Size

162

162

162

162

Color

l /a

111 /C

Vje

IX /i

XI/K

XII/1

XIII /m

Mean

6.43

6.38

4.92

3.60

5.91

Standard Standard 95% Confidence Interval

Deviation Error Lower Limit Upper Limit

1.2355 .0970 6.24 to 6.62

1.3606 .1069 6.17 to 6.59

2.0851 .1638 4.60 to 5.24

2.2881 .1797 3.24 to 3.96

1.8776 .1475 5.62 to 6.20

2.0828 .1636 5.20 to 5.84

1.8556 .1458 5.41 to 5.99

162

162 5.52

162 5.70

Colors IX/ i and V / e are the most preferred colors with mean preferences of 3.60 and 4.92

respectively . The associated confidence interval states that there is 95% confidence that the true

mean preferences rest between the upper and lower limits shown in the table . An analysis of variancel

was performed upon the data in Table 2 to determine if there were significant differences between

colors when compared with sites ( Table 3) .
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Figure 1. Graphic Display of Table 2

Table 3

Analysis of Variance for Net Colors as to Blend With Sites

Degrees of

Freedom F -Ratio

Mean

Squares

156.4938

3.4432

Significance

Level

0.000 *

Sum of

Squares

938.9630

3880.4938

4819.4568

6

Source

Colors

Error

Total

45.4500

1127

1133

Bartlett's Test for Homogeneous Variances

Number Degrees of Freedom = 6

F 15.428 Significance Level a = 0.000 *

* Significant at a less than 0.001 level
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Table 3 indicates that there were significant differences in the ability of the desert net colors

to blend with the background. The Bartlett's Test indicated that the variances of each color were

not homogeneous, i.e. , significantly different, so they are not necessarily from the same population.

The Duncan's Multiple- Range Test ( Table 4) was used to determine where these significant

differences in colors occurred. This test separates a set of significantly different means into subsets

of homogeneous means .

Table 4

Duncan's Multiple-Range Test Desert Net Colors

Best Worst

Subset 1 Subset 2 Subset 3 Subset 4

Color Mean Color Mean Color Mean Color Mean

IX/i 3.60 Vle 4.92 XIII 5.52 III /c 6.38

XIII /m 5.70 I /a 6.43

XI/K 5.91

Table 4 showed that the best color was IX/i for blending with the desert backgrounds.

Table 5 contains the nonparametrical results of the Kruskal-Wallis One -Way ANOVA as a double

check upon the Duncan's Test. The Bartlett's Test indicated that the variances for each level of

color were not homogeneous . Parametric tests , such as Duncan's , assume homogeneity of variance .

Color

l/ a

III /C

Vle

IX /

XI/K

XII

XIII/m

Table 5

Kruskal -Wallis One-Way ANOVA – Desert Net Colors

Sample Size Mean Rank

162 708.72

162 704.22

162 471.28

162 308.15

162 638.24

162 575.41

162 566.49

Total 1134

Sample Size

1134

Chi-Squared

181.5825

Significance Level

0.000 *

Sample Size

1134

Corrected for Ties

Chi-Squared

223.8419

Significance Level

0.000 *

* Significant at a less than 0.001

These results were in agreement with Table 3 above.
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3.2 Incision Size

Table 6 showed the descriptive data for the small and smaller incisions , which is the second

variable of interest .

Table 6

Mean Preference and 95 - Percent Confidence Intervals

for the Small and Smaller Net Incisions , Averaged Across All Sites

Incision

Size

Small

Smaller

Sample

Size

567

Mean

5.16

5.83

Standard Standard 95% Confidence Interval

Deviation Error Lower Limit Upper Limit

2.30 .0963 4.97 to 5.35

1.74 .0731 5.69 to 5.97567

6.0 5.97

*

5.8

5.69

PREFERENCE

5.6

5.4 5.35

5.2

O
F

*

5.0

4.97

LEV EL

4.8

SMALL INCISION SMALLER INCISION

IN CI S I O N SI Z E

Figure 2. Graphic Display of Table 6

Table 6 and Figure 2 showed that the small incision was preferred over the smaller incision .

Table 7 contains the analysis of variance performed upon the data of Table 6 to determine if these

differences are significant.
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Table 7

Comparison of the Mean Preference of the Small Incision vs the smaller Incision

Degrees of Sum of Mean Significance

Source Freedom Squares Squares
F -Ratio Level

Incision 1 128.6808 128.6808 31.0538 0.000 *

Error 1132 4690.7760 4.1438

Total 1133 4819.4568

Bartlett's Test for Homogeneous Variances

Number Degrees of Freedom = 1

F 42.300 Significance Level a = 0.000 *

* Significant at a less than 0.001 level

Table 7 indicated that the two textures , small and smaller incisions , differed significantly

(a < 0.001) from each other . The small incision blended better with the desert background than the

smaller incision . The Bartlett's Test indicated that the variances of the two textures were not

homogeneous, i.e. , significantly different, so they are not necessarily from the same population .

Table 8 contains the nonparametric results of the Kruskal-Wallis One -Way ANOVA Test as a

check upon the Duncan's data. The Bartlett's Test indicated that the variances for the two levels

of texture were not homogeneous . Parametric tests , such as Duncan's, assume homogeneity of

variance .

Table 8

Kruskal-Wallis One -Way ANOVA – Textures Small and Smaller

Incision Sample Size Mean Rank

Small 567 532.04

Smaller 567 602.96

Total 1134

Sample Size

1134

Chi-Squared

13.2978

Significance Level

0.0003

Sample Size

1134

Corrected for Ties

Chi-Squared

16.3925

Significance Level

0.0001

These results are in agreement with those of Table 7 .

3.3 Color and Incisions

It important to determine if the variables color and texture were independent of each other.

To determine this, a two-way analysis of variance was performed, and the results are seen in Table 9 .
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Table 9

Source

Colors

Incisions

Interaction

Error

Total

Two -Way Analysis of Variance for Color and Texture

Degrees of Sum of Mean

Freedom Squares Squares F-Ratio

6 938.963 156.494 48.666

1 128.681 128.681 40.016

6 150.233 25.039 7.786

1120 3601.580 3.216

1133 4819.457

Significance

Level

0.000 *

0.000 *

0.000 *

* Significant at a less than 0.001

This table verifies the results of Tables 3 and 6 with significant F values for colors and incisions.

It also shows a significant interaction between colors and textures. This means that for some nets,

the effect of either color or incision was more important than for other nets.

3.4 Nets

The following analysis was done to determine the best net (s) in their ability to blend with the

desert background . Table 10 contains the descriptive data.

Table 10

to

Mean Preference and 95 - Percent Confidence Interval

for Final Camouflage Nets on Ability To Blend With Desert Backgrounds

Sample Standard Standard 95% Confidence Interval

Nets Size Mean Deviation Error Lower Limit Upper Limit

Small incision

1 81 6.42 1.2027 .1336 6.15 6.69

81 5.75 1.7141 . 1905 5.37 to 6.13

V 81 4.32 2.4332 .2704 3.78 to 4.86

IX 81 2.81 2.3298 .2589 2.30 to 3.33

XI 81 6.23 1.5594 .1733 5.90 to 6.58

XII 81 5.31 2.2397 .2489 4.81 5.80

XIII 81 5.25 2.1362 .2374 4.77 to 5.72

Smaller incision

a 81 6.44 1.2748 .1416 6.16 to 6.73

с 81 7.00 0.0000 .0000 7.00 7.00

e 81 5.52 1.4501 .1611 5.20 to 5.84

i 81 4.38 1.9658 .2184 3.95 to 4.82

k 5.58 2.1087 .2343 5.11 to 6.05

1 81 5.73 1.9040 .2116 5.31 to 6.15

81 6.16 1.2694 .1410 5.88 6.44

to

to

81

m

to
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Figure 3. Graphic Display of Table 10

An analysis of variance was performed upon the data in Table 10 to determine if there were

significant differences between the camouflage nets in their ability to blend with the desert back

grounds.
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Table 11

Source

Analysis of Variance of Nets as to Blend with Sites

Degrees of Sum of Mean

Freedom Squares Squares F-Ratio

13 1217.8765 93.6828 29.1330

1120 3601.5803 3.2157

1133 4819.4568

Significance

Level

0.000 *Nets

Error

Total

Bartlett's Test for Homogeneous Variances

Number Degrees of Freedom = 13

F 9.120 Significance Level a = 0.000 *

* Significant at a less than 0.001 level

Table 11 indicated that there were significant differences in the ability of the final desert nets

to blend with the background. The Bartlett's Test indicated that the variances of each net were not

homogeneous, i.e. , significantly different, so they were not necessarily from the same population .

The Duncan's Multiple-Range Test ( Table 12) was used to separate this set of significantly

different means into subsets of homogeneous means.

Table 12

Duncan's Multiple-Range Test - Final Camouflage Nets

Best

Subset 1

Net Mean

IX 2.81

Subset 2

Net Mean

V 4.32

i 4.38

Subset 4

Net Mean

k 5.58

1 5.73

Subset 5

Net Mean

1 5.73

III 5.75

m 6.16

XI 6.23

Subset 3

Net Mean

XIII 5.25

XII 5.31

e 5.52

k 5.58

1 5.73

III 5.75

Subset 6

Net Mean

m 6.16

XI 6.23

I 6.42

a 6.44

Worst

Subset 7

Net Mean

I 6.42

6.44

7.00

a

сIII 5.75

m 6.16

Net IX was the most preferred by the ground observers as to its ability to blend with the desert

backgrounds. Nets V and i were in the second-best group. Note that net IX and i were the same

color . The only difference between the two is the size of the incision . Net IX has small incisions,

while net i has smaller incisions.

Table 13 contains the nonparametric results of the Kruskal-Wallis One-Way ANOVA as a double

check upon the Duncan's Test. This was done, because the Bartlett's Test indicated non- homogeneity

of variance and parametric tests, such as Duncan's, assume homogeneity of variance .
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Table 13

Net

Kruskal -Wallis One-Way ANOVA -- Desert Nets

Sample Size

81

- E >

Mean Rank

707.63

597.9381

81 422.30

IX 81 244.13

692.50XI 81

XII 81

XIII 81

a 81

558.17

501.58

709.80

810.50

520.25

81

81

81

3-T-D
O

372.17

583.9881

81 592.65

631.4181

Total 1134

Sample Size

1134

Chi-Squared

219.7193

Significance Level

0.000 *

Sample Size

1134

Corrected for Ties

Chi-Squared

270.8542

Significance Level

0.000 *

* Significant at a less than 0.001

These results are in agreement with Table 11.

4.0 SECTION IV -- DISCUSSION

Table 1 identified the seven nets, their color, and type of incision , that made the final six

preferred nets for at least one of the five desert sites, on their ability to blend with the background .

An inspection of Tables 2-5 indicated that color IX/i was the most preferred color in the ability to

blend with the desert backgrounds. It was significantly (a < 0.001) better than the second most

preferred color Vle . The data in Tables 6-8 indicated that the small incision was significantly

(a < 0.001) preferred over the smaller incision in blending with the desert background. Table 9

shows a significant (a < 0.001) interaction between the variables of color and incision . This is in

terpreted to mean that for some nets , the effect of color and/or incision size is more important than

for other nets . All colors are going to appear even lighter when textured with the smaller incision.

The smaller the incision size, the more garnish material is visible , and the less " graying" out of the

color will result , due to the smaller shadows. Conversely, the larger the incision cut, the less garnish

surface is visible , and the more "graying" out of the visible color surface by the effect of shadows.

The effects of the interaction of color and texture are also seen in Tables 10-12, which identify which

camouflage nets were the most preferred in blending with the desert. Net IX is the same color as
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net i , only it has the small incision cut, while net i has the smaller incision cut . Yet net IX is all

alone in the group that best blended with the desert background. Net i is in the second-best group,

along with net V, which has the small incisions . Net e , which placed in the third group, had the

same color as net V, only it was textured with the smaller incision cut . For darker colors such as

XI/k, the smaller incision cut created a lighter overall color and enabled the net to blend better

with the desert than the small incision cut .

The parametric Duncan's Multiple-Range Tests and the nonparametric Kruskal -Wallis One -Way

ANOVA tests were in close agreement with each other . This occurred even though the Duncan's

Multiple-Range Test yielded a significant F value . Previous work by Neubert et all had found

similar results . Thus it appears that the assumption that the variances must be homogeneous for

parametric statistics can be overlooked without obtaining invalid data.

5.0 SECTION V -- SUMMARY AND CONCLUSIONS

Eleven colors were selected for field evaluation in Saudi Arabia . Two incision sizes , small and

smaller, were also investigated. A total of twenty-four nets were made for this study . Twelve of

the nets had the small incision, and twelve nets had the smaller incision. The same color was used

on pairs of nets, i.e. , one for the small incision and one for the still smaller incision. In addition

to these nets, a two-color net (i.e. , one color on each side) was developed for each incision size for

evaluation in both light and darker desert areas. Two standard U.S. Army desert nets were also

included for control and comparison purposes, making a total of twenty -six hexagon nets . The

small-incision nets were identified by Roman numerals I through XIII. The smaller-incision nets

were identified by the lower-case alphabetical letters a through m. Test nets V and e had a different

color on each side , and nets VIII and h were the standard U.S. camouflage nets . A total of five

different sites were selected in Saudi Arabia. They were viewed by sixteen male subjects (seventeen

for site 1) . The nets were evaluated on their ability to blend with the desert background. A statistical

analysis of these ratings produced the following conclusions:

A. The most effective color was IX/i for blending with the desert background.

B. The small incision produced a net that blended better with the desert background. An

exception to this finding can occur when the net color is dark, such as color XI/k ( Tables 10 and

12) .

C. Net IX was the most effective in blending with the desert background.

6.0 SECTION VI - EPILOGUE

As stated in Section I , this study was done for SANG. The standard U.S. Army desert net,

identified in the test as nets VIII and h , remained in use with U.S. forces with minor changes.

However, with the advent of Desert Shield, the U.S. , based on the results of the SANG program,

began a special purchase of net IX for shipment to Saudi Arabia.
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Maintaining Incremental Optimality when Building

Shortest Euclidean Tours

T.M. Cronin

CECOM Center for Signals Warfare

Warrenton VA 22186-5100

Abstract.

Reported upon are experimental runs of an algorithm designed to maintain incremental optimality when

building tours for the Euclidean traveling salesman problem . Unlike the Lin-Kernighan edge exchange or Padberg

Rinaldi branch -and - cut techniques which begin with suboptimal tours and proceed by iterating in an attempt to

converge upon or exceed the Held -Karp lower bound, the new algorithm strives to maintain optimality as each city is

inserted. In previous Army research at the CECOM Center for Signals Warfare, proofs were obtained to show that

the underlying search space for the Euclidean traveling salesman problem is piecemeal quartic and hyperbolic. To

exploit this new knowledge, the author has developed a dynamic programming algorithm which begins with a

baseline tour consisting of the outer ( inner) convex hull of cities, and proceeds by adding a city at a time to the

interior (exterior). How the city is inserted into the existing tour is dictated by a set of quartic and hyperbolic loci

which separate existing and hypothesized subtours from each other. The insertion may involve three different non

linear operations: hyperbolic extension , quartic shunting, and quartic interchange. To test the efficacy of these

operators with regard to type 1 and 2 statistical errors, the algorithm as currently implemented is run against a

benchmark of city databases for which the optimal tours are known. For those runs which result in a suboptimal

solution , an explanation is sought to facilitate fixes to the formal design specification, and the code is subsequently

changed. In this paper, the most recent set of runs is analyzed and reported upon , and a prognosis for scaling up to

largedatabases is forecast. The theory predicts that a run should consume time as a function of n3, where nis the

number of cities; this bound is checked empirically by plotting city size vs. CPU time for several databases.

Background .

The Euclidean traveling salesman problem (ETSP) is a long -standing problem in optimization, having

roots and primary development in the field of operations research, with ancillary developments in the fields of

computational geometry and graph theory. As is the case with many obtuse problems in mathematics, the ETSP

may be succinctly stated. Given a set of cities and the distances between each pair, find the shortest tour which

visits each city exactly once , except the start city, which is revisited at tour's end. A tour is simply a closed loop

connecting all the cities; the formal mathematical name for a tour isaHamiltonian cycle. One of theinteresting

facts discovered early on is that a tour is not permitted to cross itself (F1). There are (n- 1 ) ! / 2 possible tours

through n cities, which is a combinatorially prohibitive number of operations to perform by brute force , so it is

therefore desirable to find an algorithm which arrives at a solution in polynomial time. The ETSP is a special case

of the general traveling salesman problem , the former bearing the distinction that the metrics involved are Euclidean

distances rather than arbitrary costs or weights.

To date, the Euclidean traveling salesman problem remains unsolved . By " unsolved ", it is meant that no

one has developed a formal proof of optimality for a polynomial-time algorithm guaranteed to produce the shortest

tour. In the mid - seventies, it was proven that the ETSP is NP -hard (G1 ) . This is a somewhat less damning

complexity result than that obtained for the general traveling salesman problem , which belongs to the NP -complete

class of problems (G2). There have been two camps of researchers working on the Euclidean version of the problem ,

with the earliest computational work dating back to the end of the second world war (L2 ). The first camp has striven

to produce an exact solution to the problem , and in doing so has pioneered advances in the field of linear

programming, including such techniques as the simplex algorithm , branch -and - bound, and branch -and -cut (P1 ). An

exact approach favors precision at the cost of performance. The second camp of researchers has settled for an

approximate approach , by resorting to heuristics which produce high quality solutions per unit of processing time.

The principal heuristic techniques are k -opt edge exchange ( the most advanced of whichis the iterated Lin

Kernighan ), simulated annealing, genetic algorithms, elastic bands, and neural nets (J1 ] . Generally, the approximate

techniques develop a solution with more speed than exact approaches, at the cost ofprecision. However,even this
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generality is moot, because some of the heuristic approaches render solutions orders of magnitude faster than others,

with only marginally inferior solutions.

Applications.

There are a myriad of applications for the traveling salesman problem . Among them are job scheduling,

resource -constrained scheduling, optimal component placement, minimal hookup wire, lowest transmission power,

and path - constrained network flow (L2, Jl ) . The structural similarities between the problems may be somewhat

subtle. For example, to map the traveling salesman problem onto job scheduling, the names of the cities are

replaced by job names, and the costs between cities are replaced by the job setup times between respective jobs. The

job times themselves are considered to be constants; the setup times between jobs turn out to be the crucial factor.

Some of the applications have been shown to be NP-complete problems ( e.g., resource -constrained

scheduling and path -constrained network flow ), and therefore have failed to yield to polynomial-time algorithms

(G2) . Thus, it would seem preferable at this point in time to approach suchproblems with approximate techniques.

However, in the long term , if a polynomial-time exact solution may be obtained for the Euclidean traveling

salesman problem , then it may be feasible to map the resultant algorithm onto one of the harder problems in such a

way that a high quality ( albeit suboptimal) solution is achieved . This mapping is arguably most suitable for that

class of problems for which the triangle inequality is valid.

Verifying the Optimality of a Tour.

To test a ETSP algorithm (whether it be exact or approximate ) against large databases, it is necessary to

have at hand some technique to verify an optimal solution in polynomial time. For city databases of size und

hundred or less, it is possible to use a variant of branch -and -bound to check optimality in reasonable computer time

(J1 ). However, when n becomes much larger than one hundred, certifying optimality begins to consume

unreasonable amounts of time. It is for this reason that a technique based on computing a lower bound on optimal

tour length has been developed (H1). This quantity, known as the Held -Karp lower bound, is computable in

polynomial time, and empirical results indicate that it is consistently within two percent of optimal (J1 ). Scientists

in the field of operations research have made good use of the bound. Rather than strive for an optimal tour,

researchers instead attempt to come within a reasonable neighborhood of the Held -Karp bound.

The Discovery of the Non-linear Search Space for the ETSP.

Despite over forty years of intense study by computer scientists and operations research analysts, the search

space for the Euclidean traveling salesman problem remained unspecified as of 1990 (i.e., it was not known whether

the mathematics of tour construction was linear, non -linear, or transcendental in the number of cities). This lack of

knowledge prompted the author to conduct experiments during the winter of 1990, in an attempt to characterize the

space by leveraging the recently developed field of computational geometry upon the problem . In 1968, researchers

at the Johns Hopkins University reported upon a slight modification to a theorem due to Barachet to show that an

optimal tour must preserve the order of theconvex hull of cities - the shortest tour must contain these cities in the

order in which they appear about the perimeter (B1 , B2) . This fact suggested that an experiment which inserts an

arbitrary city into a hull could serve as a valuable testbed in which to discover the geometric locus of equal hull

perturbation. Aperturbation is a subtour which leads into the interior of the hull through two adjacenthull vertices,

to capture cities which do not lie on the hull. In conjunction with a perturbation we introduce the elliptic distance

between a segment and a point p, which is defined to be the sum of the distances from the endpoints of the segment

to p, minus the length of the segment.

When comparing a perturbed hull segment against another perturbed segment, one is actually comparing a

confocal system of ellipses against another, under a continuous spectrum of elliptic distances. The foci of the two

families of ellipses are respectively the two endpoints of the hull segments being perturbed. In Army research at the

CECOM Center for Signals Warfare performed during the 1990 fiscal year, it was discovered that the search space

induced by the intersection of the two confocal systems of ellipses is in general fourth order (quartic ), and in special

cases hyperbolic (C2). The same non - linear behavior is manifested as more cities are added to the interior, which

means that the general search space is piecemeal fourth and second order regardless of the number of cities added to
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the tour from within the hull. Dynamic programming immediately suggested itself as an approach to the problem

which might provide the framework to keep track of the quartic and hyperbolic boundaries ofequal tour perturbation

when a new city is added to the existing space. Armed with the the new information about the non -linear search

space, the author has proceeded to develop a dynamic programming algorithm to maintain incremental optimality

when building shortest Euclidean tours.

A Dynamic Programming Algorithm for the ETSP.

The algorithm is based on a principle of incremental optimality: the shortest tour containing k cities is a

quartic and hyperbolic function of the shortest tour containing k - 1 cities. Beginning with a baseline tour consisting

of the convex hull of cities (the smallest bounding polygon containing all of the cities), one city at a time is inserted

into the tour in an attempt to preserve the original optimality guaranteed by the hull. As currently specified by the

algorithm , there are three types of topologies to maintain in parallel when developing a tour. First, the tour may be

simply extended by inserting the new city into the space between those two citiesforwhich the elliptic distance is

smallest; this topology is termed extension space. A second topology is one in which the new city causes a shunt

to be formed between two existing perturbations, to form a new perturbation between the two older ones; this

structure is called shunt space. The final topology is one which deals with interchanges between perturbations which

are " across the hull" from each other, this structure is termed interchange space. Extension space is designed to

capture the hyperbolic discriminator inherent to extending an existing perturbation, whereas shunt and interchange

space are models of the quartic discriminator instructing when to perform a global merger of perturbations.

A nested hull decomposition is computed during a preprocessing step. The decomposition may be

computed in 0 [n * log n ) time, as proven by Chazelle (C1 ) . The nested hull structure, also known as the " onion ",

is devised to control the order in which the interior cities are inserted . To limit the generation of greedy

perturbations, those cities nearest the outer hull are installed first. The set of hulls is visited one at a time, and each

hull is traversed in a counterclockwise fashion, until the set of all interior cities is exhausted . Therefore the order of

insertion is dictated by a major key equal to the ordinal number of the hull in which a city resides, with a minor key

equal to the relative counterclockwiseposition within the hull (N.B., there are exceptions based on the angle which

the city forms with the tour ). An alternative strategy is to begin with the innermost hull ( the core of the onion ) and

probe outwardsone hull at a time until all exterior cities are processed . Since the quartic and hyperbolic boundaries

extend both inside and outside the boundary defined by the current tour, the theory guarantees that it is legitimate to

process the nested hull decomposition in either direction, with the same optimal solution produced regardless of the

processing order. An example of bi -directional processing is demonstrated in the appendix for the capitals of the

forty -eight contiguous states of America.

The City Databases.

Seven sets of data (Fig. 1) are currently being used as a testbed for the dynamic programming algorithm .

The first is a ten city problem published by Barachetin 1957 (B1) . The optimaltour for this small problem is

discussed and derived below . The second set is a sixteen cityproblem which appears in a seminalcomputational

geometry textbook (P2 ]. The third , fourth , and fifth sets are databases of twenty, thirty -seven, and forty -one cities

which were generated to exhibit non -random behavior; they respectively represent a hull containing a single loop of

interior cities; a block letter "E" ; and a block letter "S" . For these three databases, the shortest tours are not known

with certainty insufficient resources precluded certifying optimality with the branch -and-bound technique utilized by

the operations research community ),but it is conjectured that they consist of the visually -obvious structured

boundaries of the hand -crafted figures. The loop dataset is discussed below , and a temporal history of the conjectured

optimal tour is contained in the appendix. The sixth dataset is a forty -eight city problem solved to optimality by

AT&T Bell Laboratories in 1985 (A1 ) . The development of its optimal solution is also contained in the appendix;

both an inside - out and outside- in nested hull traversal are graphically portrayed, with the same optimal solution

being obtained. The seventh and last dataset is a one hundred twenty - seven city problem formulated by the

University of Augsburg in 1989 (R1); this dataset has recently been solved to optimality by the new algorithm , but

a detailed description of the optimal tour is not included here, since it will serve as a primary example in the

development of a theorem to be published in a forthcoming paper (C3).

Also described below is a set of experiments in which eighty sets of cities are generated at random to be

used as databases to test the analytically -derived time complexity bound for the dynamic programming algorithm .
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For these eighty databases, the optimal tour lengths are unknown but are not required, for the sole purpose in using

the cities is to statistically test the run time performance of the current implementation of the algorithm , independent

of the fact that the solutions developed may not be admissible.

Database Optimality Known ? Length of Optimal Tour no

Barachet

Preparata

Loop

E -figure

S - figure

Capitals

Augsburg

Yes

Yes

No

No

No

Yes

Yes

948

1774

1919

1258

1770

3352

4731

10

16

20

37

41

48

127

The tourFigure 1 . The seven benchmark databases, with associated optimality information .

lengths are expressed as a function of pixels of the computer raster.

An Analysis of the Barachet Dataset.

Figure 2 is a visual graphic of a shortest tour evolving in time as interior cities are incrementally processed.

The data is the Barachet dataset, published in 1957 (B1 ). The original constellation of cities is shown in the upper

left corner , followed by a graphic of the convex hull, which in this case is simply a square . The dynamic

programming algorithm then proceeds to add each of the five interior cities to the tour. The simple extensions,

represented by the He operator, turn out to be not very interesting. The insertions which produce the most profound

changes are the interchange operators, designated Hs. As an example, the last state ( frame nine) is produced by an

interchange. The extension shown in the next - to -last frame causes the upper perturbation to yield two cities to the

extended perturbation as at frame nine, while at the same time producing a new perturbation from the top, which was

seen once before at frame number three . Ofcourse , the sequence would look quite different if the interior cities were

to be inserted in an order other than that dictated by the process of nested hull traversal, but the final tour would look

the same.

Hull HE HE Hs

..JA 区h

M IHE HE HE HS

Figure 2. Incremental Optimality Portrayed for the Barachet Data

An Analysis of the Loop Dataset.

Figure 3 is a tabular description of the algorithmic logic manifested when processing the twenty city loop

figure ( a graphic temporal history of the logic is contained in the appendix). Although the extension and shunting

operations are well represented, there are no cross -hull interchanges which occur in this database. The deferral
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operations occur because the city under consideration forms a more acute angle with the current tour than does some

other sample in the queue of interior cities. In such cases , the city forming the more acute angle is placed back in

the queue, and the other city is brought forward for processing. Actually, the deferral and extensionoperations are

mundane when compared to shunts and interchanges. The two interesting insertions for this dataset are the shunts

introduced by the addition of cities 19 and 112, both of which radically alter the global tour shape. In particular, the

insertion of city 112 causes the lower right portion of the tour to change from a " fishtail" shape to a concave loop.

It should be emphasized that the insertion of the cities in some other order might cause the ultimate loop behavior to
be displayed earlier, but the algorithm is designed to display the shortest tour for only the cities which are currently

entered. A partial tour for k cities may or may not structurally resemble the shortest tour for all n cities.

Entered City Insertion Operation Relevant Subtour

( 4,19,20 )

(4,5,19,20 )

(20,16,2)

(20,16,15,2)

( 20,16,15,14,2 )

(20,17,16,15,14,2)

(20,17,16,15,14,13,2 )

15

119

15

116

115

114

113

112

117

113

112

118

112

17

112

16

112

18

112

19

112

deferral

extension

extension

extension

extension

extension

deferral

deferral

extension

extension

deferral

extension

deferral

extension

deferral

extension

deferral

extension

deferral

leftsided shunt

leftsided shunt

( 20,18,17,16,15,14,13,2)

(4,7,5,19,20)

(4,7,6,5,19,20)

(4,8,7,6,5,19,20 )

110 extension

( 3,9,8,7,6,4,5,19,20 )

(4,5,6,7,8,9,12,13,

14,15,16,17,18,19,20 )

(4,5,6,7,8,9,10,12,13,

14,15,16,17,18,19,20 )

(4,5,6,7,8,9,10,11,12,13,

14,15,16,17,18,19,20)

111 extension

Figure 3. The dynamic programming result for the twenty city loop figure. The insertions of

cities 19 and 112 produce back-to-back shunting operations, each of which radically alters the

visual appearance of the optimal tour . A temporal history of this example (the loop dataset) is

contained in the appendix.

An Analysis of the United States Capitals Dataset.

The appendix concludes with two graphics which depict the development of the shortest tour for the forty

eight capitals of the contiguous United States. The first graphic demonstrates the same approach described above for

the Barachet and loop datasets: i.e. , a baseline tour consisting of the outer hull is established, and and the interior

cities are inserted incrementally by probing inward one hull at a time until all cities are exhausted . The first

interesting behavior occurs at row three, column five, with the introduction of Little Rock: Oklahoma City and

Jackson are interchanged into Little Rock's new perturbation . Another interchange occurs at row four, column two ,

when Frankfort is extended into Charleston's perturbation, which subsequently causes Montgomery to be

interchanged from below . Yet another interchange occurs in row four, column six , when the introduction of

Cheyenne first causes extension space to transpose Bismarck with Pierre , and then forces the interchange of Salt

Lake City. The final interchange occurs in row five, column three, when the newly introduced city of Lansing
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compels the cities of Albany and Harrisburg to be absorbed into Lansing's perturbation. By far, the most dramatic

behavior is encountered at row six , column seven , when the introduction of Springfield forces a left shunt.

Springfield is originally attached by extension space between Nashville and Frankfort, but the shunt operator then

links it to Jefferson City and synthesizes a new perturbation issuing from the hull segment with endpoints

consisting of Baton Rouge and Tallahassee . The final tour shown in row six , column 2 was proven optimal by

AT & T Bell Laboratories in 1985 (A1 ) .

Turning to the second graphic in the appendix concerning the forty -eight capitals, the alternative convex

hull approach is utilized . This time, the initial tour consists of the innermost hull in the nested decomposition,

with vertices comprised of Des Moines, Springfield, Indianapolis, and Columbus. The nested hulls exterior to this

hull are subsequently processed , beginning with the one nearest to the inner hull. Because the quartic and hyperbolic

loci remain valid regardless of the processing order, the same optimal tour is ultimately obtained at row six , column

two.

Some Remarks about the Augsburg Dataset.

The Augsburg dataset consists of the locations of one hundred twenty -seven beer gardens in the city of

Augsburg, Germany. This dataset has been solved to optimality by German researchers at theUniversity of

Augsburg, using a variant of branch -and -cut [R1 ). The same optimal tour is obtained by the dynamic programming

algorithm described in this paper. However, analysis of this dataset will not be described here, since it will serve as

the primary example in the development of a theorem to be published in a forthcoming paper (C3) .

Scaling Up : a 532-City Dataset.

A five hundred thirty -two city dataset was developed by Shen Lin when he was employed at AT & T Bell

Laboratories, and represents the locations of AT & T telephone offices in the contiguous United States. A certificate

of optimality has been obtained for this data by the originators of the branch -and -cut algorithm (P1 ). This database

is intriguing because it is the largest database certified to date for which the cities are randomly positioned in the

plane (a 2392-city dataset has been solved , but the constellation of cities is formed by repeating the same small

pattern of cities several times ). The dynamic programming algorithm has not yet been brought to bear upon this

database, but it may be feasible to describe the result of its application in the same paper in which the one hundred

twenty -seven city solution is discussed.

Time Complexity: A Worst-case Analysis.

The dynamic programming algorithm is continuing to evolve as a research and development tool, and as

such remains suboptimal. Nevertheless, it is instructive to perform a worst -case analysis of the code as currently

implemented. A condensed algorithmic flowchart is shown at Figure 4. The label " In " is the input loop, in which a

new city is input from the front of the queue of unprocessed interior cities. Upon entry from the queue, the city is

processed by a routine which checks for intra -perturbation optimality. The new city is first compared against every

segment in the current tour to discover the segment of least elliptic distance . This segment may or may not contain

the new city's nearest neighbor, so a subroutine is called to check the tour length if an altemative hypothesis allows

the connection to occur . To encourage the gradual introduction of cities relative to the perturbed hull, if some other

interior city forms a larger angle with the current tour, it is brought forward for processing and the candidate city is

put on hold . The intra -perturbation routine concludes by reordering the city's perturbation if necessary to achieve

optimality.

Next, a global heuristic is applied to determine if some tour segment forms a larger angle with the newly

inserted city than the segment to which it was attached locally via the elliptic distance computation. The global

interchange operator attaches the city to such a segment if it exists, and triggers a quadratic matching operation in an

attempt to absorb cities from other perturbations. Next in the processing sequence is the synthesis of the left and

right shunt topologies. The extended perturbation is attached to both the nearest perturbation on the left and the

nearest perturbation on the right, and new perturbations are generated respectively to the left and the right, between

the perturbations maintained by the extension space. Once the shunts are computed, the tour lengths for the

extension space, the left shunt space , and the right shunt space are compared , and the minimal topology is preserved.
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At this point, the interchange operator is invoked once again to absorb cities from other perturbations, using the left

and right extension edges of the new city's position as a baseline perturbation. To wrap up the processing of the

city, some housekeeping operations are performed to commit the tour and its length to computer memory, before

returning to the input loopto process any remaining interior cities.

I
n

Call the interchange operator

on the city if a larger angle is

found in preceding step

Input a new

interior city

Form the left shunt space

Form the right shunt space

Locate the perturbation

for which the elliptic

distance to the new city is

minimal

Find the nearest city in the

tour to the new city

Compare the tour lengths for

the left shunt space, the right

shunt space, and the extended

space

Attempt to locate another

interior city which forms a

larger angle with the

perturbed segment Call the interchange operator

on the city, using the left and

right extension edges

Reorder the extended

perturbation for

intra -perturbation optimality Update the length of the tour

and set the lastcurrent- tour to

the current tour

Locate the tour segment

which forms the largest

angle with the inserted city In

Figure 4. A high level flowchart of the dynamic programming algorithm as currently

implemented. For the sake of brevity, several comparison operations of complexity O [ 1] have

been omitted. An interchange operation (double box) is relatively expensive ; each interchange

entails a quadratic matching, four sorts, and four linear searches.

As the kth city is processed, it is possible for it to trigger two searches of quadratic complexity, eight sorts,

each of complexity k * log k, and fifteen searches of linear complexity. All of the boxes in the flowchart represent

processes oflinear complexity or faster, except for the two double boxes representing the interchange processes. The

interchanges are more expensive, in that they involve quadratic matching and sorting in a quest to globally merge

perturbations which may lie on opposite sides of the hull. Finally, there is a constant overhead Sos associated with
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the computer operating system and hardware suite . Therefore, the worst -case processing time tw is bounded by the

following cubic expression :

tw £ 12 k2 + 8k * log k + 15k + Sos ]

< 2/6 n * (n + 1) * ( 2n + 1) + 8/2 n * (n + 1 ) * log n + 12 n + (n+ 1) + Cos n

2 n3 + 4 n2 * log nlog n + 7/2 n2 + 4n * log n + (3/2 + Sos) n .

Complexity theorists refer to such a bound as a ceiling function , because it is derived empirically from an

algorithm which has not yet been proven to be optimal, and in general must be considered inferior to a theoretical

bound on performance. Conversely, a floor function is obtained analytically from worst - case analysis of an

algorithm known to terminate with an optimal solution (usually, once a floor function is established by theory ,

progress is rapid in bringing an algorithmic ceiling function down to converge upon the floor function ). Since a

floor function has to date not beenestablished for the Euclidean traveling salesman problem , it is necessary to

attempt to empirically lower the ceiling function by resorting to heuristic techniques. The operators depicted in the

flowchart are heuristic techniques designed to model the non -linear search space reported upon at (C2). The intrapath

operators at the left represent the hyperbolic portion of the locus, while those on the right approximate the

discriminator for the fourth -order components. Many of the minor processing steps which are of sublinear

complexity are intentionally omitted , to afford the reader as concise a view as possible of the global logic. The

author wishes to stress that the implementation is at best a stopgap measure , which is a useful research tool only

until more geometric facts about the search space become available. Indeed , the suggested implementation is already

obsolete, due to a new theorem with the potential to dispatch a significant portion of the interior cities during a fast

preprocessing step (C3 ).

An Experiment to Test the Validity of the Analytic Cubic Bound.

Tables 1-8 on the next page are a compilation of a set of experiments designed to test the validity of the

cubic bound developed in the preceding section of the paper. The algorithm as currently implemented was tasked

against sets of cities randomly distributed on a computer screen ( the author used the computer mouse to rapidly input

a set of random points to the screen , which were then utilized as coordinates for a city database ). The number of

cities simulated was allowed to vary from ten to forty -five, in increments of five . For a specific number of cities n,

ten sets of random data of size n were generated. Each set was processed by the dynamic programming algorithm ,

and the following parameters were monitored by the computer operating system : space (the number of Lisp cons

cells, or computerwords, consumed by the run ); time ( the number of seconds of central processing unit time

consumed by the run ); and allocation ( the number of seconds of CPU time devoted to dynamic reclaiming of

memory, using the Lisp garbage collector).

Only the CPU time (the central column of each dataset) was analyzed statistically . The sample mean ,

variance, and standard deviation were computed for each set ofCPU time data . In addition the best and worst run

time outliers were selected for each set. It was anticipated that the worst case outlier would be a good candidate to

compare against the cubic bound predicted by the analysis.

Figure 5 is a line graph of the experimental results. For the eighty runs of the algorithm listed in the

appendix, the best -case, average -case, andworst-case running times are plotted for each of the eight groupings of ten

cities. Also included in the same plot is the cubic bound; the bound is computed for each value of n, and is scaled

by the constant .0075 to render the graphic more compact in the ordinate dimension.

It is perhaps imprudent to extrapolate for values of n larger than those shown , but the cubic bound predicted

by the theory appears to be a reasonable ceiling function for the worst-case performance of the algorithm . Although

there is a gap between the bound and the worst -case outlier, there are valid explanations. One explanation is that an

insufficient number of samples were selected to see true worst - case behavior. Another explanation is that the author

was overly conservative when conducting a worst-case analysis of the computer code, causing the cubic bound to be

somewhat inflated. Yet another explanation is that a more judicious selection of a scalar multiplier of the cubic

expression could close the gap. The important thing to note is that the bound is visually well -correlated with the

worst -case plot, and that the general behavior of the two curves is markedly similar.
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295.444 115.531

348.702 136.283

257.743 110.176

263.191 106.129

239.093 97.718

249.739 96.802

244.238 91.558

n = 20, X= 40.857, 52 = 39.732, S = 6.303 n = 40, X= 260.306 , S2 = 1492.335, S = 38.631

1

2

3

4

5

6

7

8

9

10

63375

50002

48373

52179

33730

63618

67187

64343

62891

49037

72.603

47.761

56.510

67.577

65.259

77.347

81.024

78.275

75.275

56.832

38.143

41.782

27.231

30.072

32.730

39.047

40.680

37.596

35.368

28.396

1

2

3

4

5

6

7

8

9

10

329234 389.722 244.246

354376 411.498 156.177

382554 490.126 | 179.530

426650 593.475 208.267

293465 301.532 114.221

404882 505.157 173.208

384530 530.231 | 278.536

341033 413.296 3.390

335337 389.147 196.894

278591 344.297 178.995

n = 25, X = 67.846, S2 = 123.389, S = 11.108 n = 45, X= 436.848, 52 =8147,415, S = 90.263

Tables 1-8. Space, Time, and Allocation Complexity for Eight Sets of ETSP Experiments

(n is the number of cities per experiment ; Space is the number of Lisp cons cells consumed by a run ;

Time is the number of seconds of CPU time consumed by a run ; and Allocation is the time dedicated

to the Lisp garbage collector)
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Figure 5 . A line plot of the time complexity of the dynamic programming algorithm as a function

of the number of cities processed .

Summary .

Some very preliminary statistical experiments on the worst case behavior of an algorithm designed to

provide an exact solution for the Euclidean traveling salesman problem indicate that the run time of the algorithm is

in fact bounded by an expression cubic in the number of cities. The algorithm is based on some recent theoretical

results pertaining to the non -linear search space for the Euclidean traveling salesman problem , and as such the

computer code has not yet reached an optimal level of maturity. Nevertheless, it has proven useful to statistically

compare the performance of the dynamic programming algorithm against the cubic bound predicted by a cursory

examination of the currently implemented software. The worst-case statistical outliers compiled for each set of

experiments are indeed bounded by the cubic expression developed analytically from the current formal design

specification of the algorithm . It is apparent that the science of statistics is invaluable with regard to gauging the

probabilistic performance of an algorithm versus its analytic time complexity bound.

Future Directions of the Research .

An entirely independent issue is whether or not the algorithm is admissible: i.e., whether it terminates with

an optimal solution. It is desirable to attempt to prove that the dynamic programming technique is admissible ; a

proof by induction seems promising. Thus far, the implementation is proceeding in the spirit of the Hungarian

mathematician Lakatos, who contended that a theory is never truly proven until sufficient time has passed such that

the community at large accepts the theory, based on the fact that counterexamples cease to be forthcoming from

empirical testing (L1). The implementation discussed in the paper is at a stage where counterexamples can still be

found. However, the author feels that the counterexamples are sufficiently trivial to be local rather than global,

which indicates that the problems remaining to be ironed out are details of implementation rather than profound

issues of conceptualization. It seems important to pursue the proof of optimality ; otherwise, the new algorithm will

be vulnerable to the same kinds of criticism which plague all heuristic approaches to problem solving.

The algorithm will continue to undergo empirical testing, as the number of cities is scaled up. A good

source of benchmarks is maintained at reference (R1). As mentioned above, a one hundred twenty-seven city database
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has recently been solved to optimality by the dynamic programming algorithm . It is desirable in 1991 to move

ahead to a five hundred thirty -two city certified benchmark (P1 ). Unfortunately, there are only a handful of large

databases for which a certificate of optimality has been obtained .

In preparation is a paper which describes a new geometric result pertaining to the aspect angle which an

interior cityforms with the convex hull, and the positive implication of the result as a preprocessing step for the

dynamic programming algorithm (C3). It is premature to forecast the utility of the new theorem , but empirical

testing indicates that on the average a surprisingly large percentage of cities interior to the hull may be inserted into

the tour in a fast preprocessing step.
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AN ALGEBRAIC DERIVATION OF VARIANCE

OF THE GEOMETRIC DISTRIBUTION

Richard M. Brugger

Product Assurance and Test Directorate

U.S. Army Armament , Munitions and Chemical Command

Rock Island , Illinois 61299-6000

ABSTRACT. Typically , the variance of the geometric distribution is

derived using generating functions or moment generating functions . This paper

provides an alternative using algebra only .

1 . INTRODUCTION . Consider an unbounded sequence of Bernoulli trials ,

each triat having probability p of success and probability q = 1 - p of
failure . Let X denote the trial number of the first success . Then X is

distributed geometrically.

The geometric distribution plays an important part in many probabilistic

considerations . For example , it is the underlying reliability distribution

for an item that functions discretely with an assumed constant failure rate ,

such as a gun . It also plays an important part in sampling plans . Dodge's

original work on continuous sampling plans, described below , incorporated

geometric distributions extensively .

i

1
1

2. DERIVATION OF DODGE'S h . Dodge ( 1943 ) used the following derivation

of a geometric distribution curtailed after i trials (where i is fixed , not an

index ) . For the remainder of this paper 0 < p < 1 and thus 0 < a < 1 .

h = 1 (p+2pq+3pq +4pq2+...+ ipg -1) ( 1a )

1-9

. (1+2q+39 +49%+...+iqt-1 ( 16 )

P
1-9

P 옥
d q ?( 1 +9+9+q2+ ... +q ! )

1-9 da

p d (1-91+1 ( 10 )

1-9 da 1-9

i

(1
0
)

I
I

1
i

-

.

i

( 2a )

Considering only the derivative portion yields

1 + 1

d ( 1-q1+ 1) -1 -9

2

da 1-9 p

P (-1-1)q '+ (1-qi+1) ( 2b )

2

р
=

- )

(2
c
)
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So

.1-g"{ pi)
( 3a )

р

( 36 )

h = p

1 ii

1-9

1 (1-41(1+pi)) .

pp( 1-90 )

Brugger ( 1989 ) provided the following . Returning to the first expression :

1 (p+2pq+3pq2+4pq2+...+ipg -1) .

1-9

h =
( 1 )

i

Since p = 1-9 , this becomes

h = 1 ( 1-9+2 ( 1-4 ) 4+3 ( 1-4 ) q2+4 ( 1-9 ) q2+ ... + i ( 1-4 ) , 1-1 , ( 4a )

i

1-4

-

1 (1-9+29-292+342-34 +493-494+...+iq -2-1973 ( 4b )

i

1-9

1 ( 1+9+9++q +q4 + ... + 19-1-19 )

14
( 40 )

The first i terms within the parentheses follow a geometric progression , so the

above becomes

h 1 1-q iq ( 5a )

i i

1-9 р 1-4

1 1-91 piq ! ( 5b )

i

1-9 р p (1-91)

1
( 1-91 ( 1 +pi ) ) . ( 50 )

p ( 1-9 )

S

.

This is the same as Dodge's result ( see equation 3b ) , but in this latter case

only algebra was used to obtain the result .

3. DERIVATION OF THE MEAN OF A GEOMETRIC DISTRIBUTION . Using the method

described above , it is straightforward to derive the mean , E ( X ) , of a geometric

distribution :

00

E ( X ) = ? jpqj - 1 ( 7a )

( 76 )

j = 1

= 1p+2pq +3pq +4pq3+ ...

= *1-9 + 29-294 +39-39 ° + 49 ° -4q ' + ...

1+ 9+q ?+q2+q *+ ...

3

q4+... ( 70 )

=

( 70 )
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=

( 7e ): 1 = 1

1-9 р

4. DERIVATION OF THE VARIANCE . By definition ,

Var ( x ) E ( X² ) - ( E ( X ) ) ? ( 8 )

From equation 7e above

( E ( x ) ) 2 = 1/2 ( 9 )

is obtained .

E ( x? ) = ē j ?pqj - 1 ( 10 )

j = 1

( 106 )p+4pq +9pq2+16pq +...

1-4+49-442-942-942-1673-1644+...

1 +3q+5qP+7q2+ ...

( 100 )

( 100 )

It is claimed that the series in equation 10d will continue with coefficients

equal to the odd integers . This is easily proved . Let n be any positive integer .

Then

n - ( n- 1 ) 2 . n2-A2+2n- 1 ( 112 )

= 2n- 1 ( 116 )

( 12a )

where the expression in 11b is clearly an odd integer . Summing , we obtain

E (x ) = ï ( 2j - 1 ) qj - 1

j = 1

= 2 jq3-1 - 3-1
j = 1 j = 1

( 126 )

? ? jpqj - 1

-
( 120 )1

рp j = 1

12

р

1

р

( 120 )
.

р

=

-
1 ( 12 )

2

2

pº р

= 2-1 ( 128 )
2

p

i
m
eI

love

=

q 1 ( 129 ).

2

p
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Recalling that

Var ( X ) = E ( x2 ) - ( E ( x ) ) ? ( 8 )

it is seen that

Var ( X ) = 4+ 1
2

( 13a )1

2

pрр

=

( 136 )q

2

р

5 . EXTENSION TO THE NEGATIVE BINOMIAL DISTRIBUTION . If one is interested

in some positive integer n (n > 1) of successes in a series of Bernoulli trials

with constant probability p of success , the trial number of the n'th success is

distributed according to a negative binomial distribution , which is an extension

of the geometric distribution .

Then

E ( X , +Xz+... +Xn ) = nE ( X2 ) ( 140 )

n / p ( 146 )

( 15a )and Var ( x2 +x2+ ... +Xn ) = nvar ( x2 )

ng /p> ( 15b )
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A LINEAR PROGRAMMING MODEL FOR

QUEUEING IN OPERATIONAL AVAILABILITY

william C. Hoffman

P. O. Box 2005

Sierra Vista , AZ 85635

ABSTRACT . Operational Availability Ag is the term used to
refer to readiness of a military system for battlefield use . The

servicing of such a system can be divided into several stages , each

of which may be modeled by an Erlang type queue M / Ex/ s , s being the
number of service personnel . Maximum Operational Availability

is equivalent to minimization of Total corrective Maintenance Time

( TCM ) plus Total Administrative and Logistic Downtime ( TALDT ) .

Under appropriate constraints the maximum A , problem can thus be
formulated as a linear programming problem .

1. INTRODUCTION . TRADOC / AMC Pamphlet 70-11 , RAM RATIONALE

REPORT HANDBOOK , defines ( p . E.18 ) Operational Availability A, by

the following formula :

AO ( OT + ST ) / ( OT + ST + TCM + TPM + TALDT ) . ( 1 )

Here OT = Operating Time, i.e. , time during a mission profile when

the system is " on " and actively performing at least one

of its missions ;

ST = Standby Time , i.e. , the time during a given period when

a system is inoperative but is operable ;

TCM = Total corrective Maintenance Time , i.e. , the total time

spent on restoring a failed item to operational

condition ;

TPM = Total Preventive Maintenance Time spent in activities to

maintain an item in a specified condition ;

and TALDT = Total Administrative and Logistics Downtime spent

waiting for parts , arrival of maintenance personnel ,

or transportation , during a given period .

In a tactical situation Standby Time ST and Preventive Maintenance

Time PCM can frequently be neglected , in which case the above

formula reduces to

AO 1 / ( 1 + ( TCM /OT) + (TALDT/OT ) ) .

It is clear from this expression that for given oT , A is maximized

by minimizing TCM + TALDT :

max A. min ( TCM + TALDT } .
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The right hand side of this expression will provide the basis for

a linear programming approach to optimization of Operational

Availability .

The present approachapproach was suggested by a requirement for

deciding among competing maintenance systems for a deployed IEW
network along the FLOT ( Forward Line of Own Troops ) . The

maintenance structure consisted of as many as four stages : mobile

contact units ( BMCT ) which provided minimal repairs , usually in the

form of simple replacment of defective line replaceable
units

( LRU's ) , at the FLOT ; shop repairs ( BS ) at a forward level ; mobile

contact units ( LMCT's) dispatched from a rear light electronics
maintenance

company to handle more complex diagnosis and repairs ;
and a rear echelon repairrepair shop ( LS ) for major diagnosis and

repair / replacment . Associated with each level is a characteristic

MTTR ( Mean Time To Repair ) and an ALDT ( Administrative and Logistic

Downtime ) for maintenance . These parameters will play key roles in

the queueing models for the maintenance process ( es ) . Both the MTTR

sequence and the ALDT sequence may be modeled a four- stage ,

series Erlang queue M/ E, / s , where M represents " customers " ( i.e. ,

FLOT system elements with defective parts (LRU'S ) ) occurring at

random according to a Poisson process , El denotes an Erlang

distribution representing a four-stage FIFO service protocol , and

s denotes the number of servers , i.e. , maintenance personnel at any

given level .

2 . Estimation of Administrative and Logistic Downtime for

Maintenance (ALDTm ) . The expected waiting time at a defective LRU

site for maintenance personnel is given by the formula ( Gaver &

Thompson , 1973 , p . 505 )

E { WALDTm } = E (MTTR ) ; 4 ; / ( 1 - u ; ) , ( 2 )

where the summation on i runs over the 4 stages and the

" utilization " , or " traffic load factor " , is defined to be

u ; MTTR ;/ ( s ; MTBF ) , ( 3 )

Here s ; is the number of " servers " at stage i , and MTBF is the Mean
Time Between Failures . If u ; turns out to be greater than one , the

system saturates . Hence 0 < u ; < 1 will be assumed in the sequel .

Since then u/ ( 1 - u ) = u + 2 u z u , Eq . ( 2 ) may be written in the

series form

E { WaloIm } 2 3 (MTTR ); 4 ; = ( 1 /MTBF ) & (MTTR;)? ( 1 / s ; ) . ( 4 )

Apart from costs , the defining of an organizational structure

essentially resides in the assignment of personnel and facilities .

To utilize ( 4 ) in a linear programming formulation of optimality

for Ao we therefore introduce as a new variable x;, the reciprocal

of sir i.e. , the reciprocal of the number of servers at stage i .
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Inequality ( 4 ) then becomes

E {WALDTM } = ( 1 / MTBF ) E (MTTR ;)? x ;. ( 5 )

The introduction of the new variable x ; makes possible formulation

as a linear programming problem , but it is not an unmixed blessing .

Being a reciprocal , the variate x ; will accentuate the tendency of
a linear programming problem to give solutions in non- integer form

and may also lead to instabilities for small assignments .

3. Estimation of Administrative and Logistic Downtime for Transport

ALDTE . In the present model , the Administrative and Logistic

Downtime awaiting parts from CONUS is neglected since it exceeds

the hypothesized time scale . It only remains therefore to

formulate ALDTE . Since transport is involved , only the mobile

contact teams , the BMCT's and the LMCT's will contribute. The time

involved may be estimated by distributing the total number of

manhours spent by each in travel between base and FLOT and equating

this to the TALDTt requirement :

E { TALDTE/ F } = Probability { service by BMCT } . ( Mean roundtrip time

from BN to FLOT ) X , + ( 6 )

+ Probability { service by LMCT ) • ( Mean roundtrip time from

LEMCO to FLOT ) X3 .

These expected roundtrip times may be estimated either from data or

by dividing the doubled distance by the average speed of the mobile

contact unit . The probabilities of service by BMCT's or LMCT's are

estimated from appropriate decision trees .

4. Estimation of Corrective Maintenance Time . The average time

required for corrective maintenance is the Total Corrective

Maintenance Time , TCM , divided by the mean number of failures :

TCM/ F . In equilibrium this is the same as the MTTR divided by the

number of servers at any particular stage of the 4 - level

maintenance process :

E {WCM } = E (MTTR ;) / s ; = £ (MTTR;) X ; . ( 7 )

5. The Objective Function . Combining the results of Eqs . ( 4 ) , ( 5 ) ,

( 6 ) , and ( 7 ) leads to the following objective function for the

maximization of Ao :

min { TALDT + TCM } ~ min { [ (MTTR ,) ? /MTBF + MTTR, +

+ distancegs-Flot /kmphmcy) X, +

( 8 )

+ Li -2,61 (MTTR;) ? / MTBF + MTTR ; ] X ; +

+ [ (MTTR3) 2 /MTBF + MTTRZ + distance S-Flor/kmph MCT ] Xz .

+
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5. The constraints . It remains to formulate the constraints . We

need for this purpose the following result from elementary algebra :
If a , b , ay/ bą , ... an / bn are unequal fractions all of whose

denominators are of the same sign , then

min ( a ; / b ; ) s Ea ; / £b ; s max ( a ; / b ; ) , ( i = 1,2 , ... , n ) . ( 9 )

Relation ( 9 ) leads to the first of the constraints , the personnel

constraint :

Ei = 1,2,3,4* ; (number of stages ) / ( total number of servers ) .
( 10 )

The TALDTm constraint is given by ( 5 ) ; the transport constraint by

( 6 ) , and the TCM constraint by ( 7 ) . There is also a constraint

imposed by limitation upon the number of vehicles available for

assignment as MCT's .

6 . A Numerical Example . The application led to the following

linear programming problem ( LPP ) :

min ( 1.354x, + 0.1648x2 + 2.115x3 + 0.466x, }

subject to

TALDTM : 0.04x, + 0.0098X2 + 0.005X, +0.066X, > 0.07

TALDTE :
X , + 2xz > min TALDTE / F = 1.24

TCM : 0.314x, + 0.155x2 + 0.11 %, + 0.40%, 2 0.5

No. personnel : X, + x2 + x3 + x 2 0.36

Using STATGRAPHICS , the LPP solution was reached after 5 pivots .
The objective function took the minimum value 1.81 hours . The

solution vector for the x ; was

x = ( 0.00000 , 0.27556 , 0.62000 , 0.97272 ) .

these values correspond toTaking reciprocals ,

assignments of

personnel

SBMCT
=

~ 0 , Ses
1 ,= 4 ( -3.6 ) , SLMCT = 2 ( ~1.6 ) , and sus

which except for the BMCT value are eminently reasonable and do

correspond to assignments that were actually made in practice . The

continuous nature of the LPP solution isis of course evident .

Software for an integer programming solution was not available , but

might have led to better results . The impossible value for SBMCT

presumably corresponds to the sensitivity of reciprocals to small
values . However , such ansuch an extreme value is consistent with the

intuition that in the short-term AirLand Battle , under a

replacement rather than repair philosophy ( " design for discard" ) ,

the major part of maintenance should be concentrated in mobile

units closest to where needed . Error estimates for this aspect of
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the problem remain open . There is also the matter of the problem

being ill -scaled in that the coefficients of the objective function

differ by as much as two orders of magnitudetwo orders of magnitude from those in the

TALDTM constraint , for instance . This feature is known on occasion

to make computer solution of LPP's impossible .
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1 . Introduction

The ultimate test of new Army equipment is the field test by

user troops . Engineering tests can measure certain aspects of

the equipment's performance , however , it is only in the field

that the Army finds out about the true value of the equipment .

But getting meaningful test data from the field is greatly more

difficult than getting data from engineering tests . Engineering

tests can be closely controlled so that there is flexibility in

collecting test data by manual and instrumented means . During

field tests manual and instrumented data can only be collected if

it does not interfere with the troops using the equipment .

Further the troops must be using the equipment in a certified

operational manner . This constraint inhibits collecting all

desired data . This constraint becomes a big time problem when

test data is required from force -on - force engagements such as was

encountered in the Combat Vehicle Combat Performance

Operational Assessment ( CV-CPOA ) which the Combat Arms Test

Directorate ( CATD ) was tasked to perform in the spring of 1987 .

-

Although the mission was simple :

" Gather empirical data on the survivability of the Bradley

Fighting Vehicle ( BFV ) during simulated combined arms force - on

force combat operation against a realistically configured

threat " .

The execution was difficult ,

This paper discusses this operational test and how the vital

test data was collected and reduced to a large computer data base

which contained many data elements . The computer data base is

called the " BIG MAC " .

The Combat Arms Test Director who personally directed this

test had the foresight to assign an experienced test officer to

gather video and film data of all the events occurring during the

execution of the test so that a composite video film could

summarize these events . A seventeen minute video resulted from

this effort and is available for official use . The video gives

an excellent overview of the test .
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II . Background

The test was specifically designed to collect data on the

survivability of the currently configured BFV and three proposed

modifications .

The CV - CPOA test design methodology was driven by the

evaluation concept in the Operational Test and Evaluation Agency

( OTEA ) Independent Evaluation Plan . The Congressional defense

authorization bill mandating the BFV assessment specified live

fire and operational comparison testing of the Army version of an

enhanced survivability BFV (M2A1 and M3A1 KS ) and the Department

of Defense version of an enhanced BFV ( the ASTB ) . The Army's

assessment of Congressional intent and implied taskings revealed

the need for a data base that contained those elements of

survivability data that would facilitate a comparison of proposed

enhancements with a baseline using the basic BFV . An analysis of

all factors that contribute to or degrade the survivability of a

combat vehicle resulted in the following key data elements being

identified by CATD and OTEA for inclusion in a data base :

a . Distribution of direct fire aiming points and engagement

angles .

b . Exposure of target .

C. Motion of firer and target .

d . Frequency of indirect fire engagements .

e . Ammunition and personnel on board at time of engagement .

f .
Suppressive effects of firing port weapons .

Target acquisition and engagement frequencies .

h . Distribution of engagement ranges .

Research conducted by OTE: and CATD revealed a dearth of such

survivability data on the BFV . Available data included recent

live - fire studies that had been criticized by the Department of

Defense , the General Accounting Office , and Congress as being

unrealistic and biased . Other data existed that was based upon

modeling analyses that did not have credibility with the same

audience . Virtually no empirical operational data existed . Even

though the Congressional bill directed only a comparison test of

the two BFV versions , the absence of empirical survivability data

on the basic BFV led OTEA and CATD to design a test which would

provide such baseline data . This data had to be the product of

battalion -sized combined arms forces operating in a realistic ,

simulated combat environment . The combat operations had to be

representative of those described in AirLand Battle doctrine , and

the OPFOR had to be structured and trained to represent the

projected threat circa 1987-92 in a European SCORES V scenario
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setting . Phase I trials were based on this concept . The

principal data output required of phase I was the actual

distribution of all direct fire engagement angles and aiming

points .

In order to respond specifically to Congressional inquiries ,

direct comparative testing of the two BFV versions was necessary .

The optimal test design would have had the two enhanced versions

of the BFV used in the same type operations with the same size

forces and weapon types as those in phase I. However , this was

infeasible due to nonavailability of prototypes and surrogates ,

instrumentation limitations , and time constraints . Consequently ,

phase II was designed to be a scaled down examination of a Blue

platoon- sized force using the vehicles to conduct offensive

missions in a simulated combat environment . This scaled down

examination included comparison of the basic BFV , the HS vehicle ,

and the ASTB vehicle , all with 500 -horsepower engines . The Chief

of Staff , Army , later directed the inclusion of an ASTB version

equipped with a 600 -horsepower engine . Phase II trials were

based on this concept . As with phase I , the primary data

elements of interest were engagement angles and aiming points .

OTEA's evaluation concept was to examine the comparative

performance data produced in the phase II platoon trials and

scale up to the baseline data of the phase I battalion - sized

trials . The data from phases I and II was used as inputs into

the US Army Materiel Systems Analysis Activity ( AMSAA ) and the

Ballistic Research Laboratory survivability models to lend

further insights into the BFV survivability . The correlation of

the phase II data with the phase I baseline data and the outputs

of the models and other testing will allow the Army to predict

the performance of the various types of BFV's with respect to

their survivability enhancements .

Although Congressional interest focused on the data

pertaining to the survivability of the BFV ( M2 and M3 ) , OTEA ,

anticipating the need for similar data relative to other combat

vehicles , expanded the scope of the CV - CPOA to include concurrent

collection of similar data on the Mi tank , the improved TOW

vehicle ( ITV ) , and the M113 .

III . The making of the " BIG MAC "

The required data was collected by either instrumented

systems or test personnel .

a Instrumented data and collection systems . Described

below , in general terms , areare the instrumented systems used to

simulate tactical engagements and to collect and record data .

( 1 ) Video system . The video system served as the

principal means of data collection . Video tape was the data

155



source for aiming point , engagement angle , target exposure ,

firer - target motion , target acquisition , and player

identification . Each combat vehicle and hand- held HEAT weapon

was equipped with a coaxially mounted video camera and recorder .

Approximately two - thirds of the Red force vehicles also had a

through - the - sight video camera and recorder installed which

recorded what the gunner saw . At the beginning and end of each

trial , an image of a boresight panel was recorded . Both the

dimensions and the distance to the panel were known . The

internal clock of the video system was synchronized with Inter

Range Instrumentation Group -Format B ( IRIG-B ) time , and the

rounds counter was set to zero . At the end of each trial , the

video tapes were removed and annotated with the player

identification number , weapons systems type , and battle trial

number .

( 2 ) Flash box system . The flash box system was used

with the video system to provide an additional source for the

data required to determine the range between the firer and the

target . The flash box system is based on an infrared strobe

which flashes once every 3 seconds . The time of the infrared

flash is determined from a computer -driven cycle and

electronically relayed from the central computer to an infrared

strobe located on each combat vehicle . The flash of the target's

infrared strobe , which is invisible to the eye , was recorded by

video systems on the firing vehicles . The timing of the strobe

flash is a 3 - second cycle and is unique for each vehicle . This

provides a means of correlating the time of the strobe flash with

a player identification .

( 3 ) Multiple Integrated Laser Engagement System ( MILES )

( a ) The need existed for an Real Time Casualty

Assessment ( RTCA ) system to serve as a tactical scenario driver

by simulating direct fire weapons engagements and their effects .

Emphasis was placed on causing crews and gunners to execute

proper gunnery procedures under the most realistic conditions

possible . Only two RTCA systems were available-- the TCATA

Automated Field Instrumentation System ( TAFIS ) and MILES .

was selected as the principal component of the RTCA system

because it met the following critical test design considerations :

1 . MILES integrates the RTCA play of vehicular weapons

systems and individual soldiers .

MILES allows the play ot fully mobile , hand - held HEAT2 .

weapons .

3 . MILES requires gunners to aim at the center of mass

of a target in order to achieve a hit -- a characteristic

prerequisite to collection of meaningful data on aiming point

distribution .
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4 . MILES is the standard Army -wide training simulation

system which is readily accepted by US soldiers and can be

employed with minimal artificiality and no specific training .

( b ) The inherent limitations of MILES , such as fixed

time of flight for missiles and friendly - only lethality codes ,

were considered tolerable since the test design did not require

the collection of force exchange ratios or casualty counts as

data outputs and RTCA system was used only as an exercise driver .

( 4 ) I - MILES . To offset some of the inherent

shortcomings of MILES and to provide redundant data collection

capabilities , an enhancement to MILES was procured specifically

for this test . I - MILES was used as an addition to MILES and was

transparent to the soldier and to the basic MILES . It permitted

programming of vulnerability and lethality logic into the host

MILES , thus enabling the use of specific Pk's , effective ranges ,

and basic loads for all US and threat weapons systems .

Vulnerability was varied by tactical mission exposure . For

example , Pk for the BFV fully exposed in the offense differed

from the Pk for the BFV in hull defilade in the defense . I - MILES

stored all engagement data and provided a time - correlated history

of all MILES events . It also provided a method of obtaining the

intermediate data necessary to determine the range between the

firer and the target .

( 5 ) MILES Laser Detector Decoder System ( MLDDS ) . The

MLDDS was used to collect data on the frequency of engagement by

all weapons against the BFV in specific quadrants ( front , right ,

left , rear ) . In addition to the MILES sensor belts installed on

all combat vehicles , separate MLDDS sensor belts were installed

on the BFV's of one Blue force company in phase I and on the

IFV's and HS variants used in phase II . When a MILES laser

struck a sensor , the laser message and the firing weapon were

recorded and a sequential history of engagements was established .

MLDDS recorded small arms engagements . This data was necessary

for assessing the effectiveness of reactive tiles .

( 6 ) Position Reporting and Recording System ( PRRS ) . The

PRRS was used to collect the position location of each combat

vehicle at the time of engagement . Each combat vehicle was

equipped with a mobile unit which transmitted a signal at

prescribed time within each second . The signal has received by a

tower array and relayed to PRRS central where computers

calculated the combat vehicle location in grid coordinates . The

grid location and time were recorded on magnetic tape . Recording

of position location was necessary as intermediate step in

determining the range between firer and target for each direct

fire engagement .

( 7 ) Scanning laser system . During phase II , the

scanning laser system was used to determine when line of sight
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existed between the defending Red force vehicles and attacking

Blue force BFV's . In each medium and long range trial , a

scanning laser was installed adjacent to each Red force vehicle .

( For safety reasons , scanning lasers were not used in short range

trials . ) The laser transmitter was mounted on a tripod in such a

manner that the transmitter was at the eye level of the track

commander when the combat vehicle was in defilade . Line of sight

was established when the transmitter laser beam struck the laser

detector array system installed on the Blue force vehicle .
The

laser signal identification
, player identification

of the Blue
force vehicle , and the time were transmitted

by the Blue force

vehicle to a data collection system where they were stored on a

magnetic tape .

b . Manually collected data .

( 1 ) Prior to each trial a player roster was completed

for all participants . This form contained the trial

identification , unique player identification , and the

instrumentation on each player .

( 2 ) The time each trial started and ended and the reason

for the ending were recorded . The type of terrain and the

weather conditions for each trial and the times that obscurant

were used were also recorded .

( 3 ) At the beginning and end of each trial , a controller

recorded odometer and engine hour readings for each combat

vehicle assigned to the trial . The controller also recorded the

number of troops on each IFV , CFV , HS variant , and ASTB surrogate

at the start of the trial . During trial execution , the

controller noted the times when troops mounted and dismounted .

Controllers also reported any administrative situations which

might have invalidated a trial .

( 4 ) Indirect fire was played only during phase I trials .

Manually collected data on indirect fire engagements included the

time of artillery fire : the type of fuse , ammunition , and

weapon ; the size and number of volleys ; which artillery unit

should fire ; size and location of impact area ; and the

identification number of the vehicles in the impact area .

( 5 )
Each player completed a demographic questionnaire .

( 6 ) At the end of each trial , each combat vehicle turret

crewman and BFV squad member completed questionnaires on the

perceived effectiveness of their weapons to include use of the

firing port weapons against dismounted troops . The Red force

dismounted troops also completed a questionnaire on the perceived

effectiveness of Blue force suppressive fire .

( 7 ) At the end of each trial , the subject matter experts
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evaluated specific aspects of the trial -- maneuver , fire support ,

intelligence , engineer , communications , logistics , leadership ,

training , and use of the combat vehicle . They prepared a

narrative summary of the tactics and performance of each force

for each trial . All record trials were certified þy the senior

controller ( senior subject matter expert ) as being doctrinally

sound .

( 8 ) During phase II , three Blue force platoons rotated

among the HS variants and the ASTB surrogates . Each crew

conducted six consecutive trials in each vehicle . At the

conclusion of the sixth trail , each crew member completed a

questionnaire on the differences in combat performance of these

vehicles . The Red force players also completed a questionnaire

on the performance of the surrogates .

Data collected by instrumentation was compiled by the test

support contractor and test team and forwarded to the data

reduction center . DataData collected manually was edited at the test

site and then forwarded to the data reduction center .

a . The video tape and I -MILES record for a specific trial

were issued to a data reducer . When through - the - sight and

coaxial video tapes existed for a single vehicle , both tapes were

issued to two data reducers for simultaneous processing . The

video data reducer reviewed the video tape to determine when the

firing system engaged a target . This time of engagement is

referred to as a trigger -pull . A burst of 10 rounds from a 25

or 30 - millimeter cannon constituted a single engagement . The

time of the trigger - pull was indicated by the rounds counter

incrementing and by the IRIG - B time on the I -MILES record .

b . The data reducer used a specially fabricated , three

dimensional scale model to determine engagement angles and aiming

points for the M1 , M2 , and M113 type vehicles . The scale model

of each combat vehicle is mounted on a pivot so that the model

can be rotated through 360° in a horizontal plane . The reducer

oriented the model so that it matched the picture shown on the

video screen at the time of the trigger - pull . The horizontal

engagement angle between the firer and the target was read from

the scale and entered on the data reduction form . Discrete

angles were recorded for the hull and the turret orientation . A

pivoting bar attached to the base of the device and oriented to a

vertical scale was used to determine the vertical engagement

angle . Front , rear , side , and top view pictures of each combat

vehicle with 4 - inch grid squares superimposed over the pictures

were used to specify the location of the aiming point . From

these views the one that matched the video picture was selected

and the grid coordinates were recorded .

c . The data reducer determined the target vehicle

identification by noting the flash box counter number at the
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moment the target vehicle's strobe light flashed and correlating

that number to the vehicle identification number . When the

pairing report from the I -MILES was available , it was used to

validate target identification or establish it when the flash box

did not work .

d . Range between the firing and target vehicles at the time

of the trigger -pull was estimated by the data reducers using a

stadia overlay . The video data reducer positioned the stadia

overlay on the video tape and counted the number of stadia lines

for the size of the boresight panel . This established a

benchmark . the time of the trigger - pull , the data reducer

placed the stadia source over the video picture of the target and

counted the number of stadia lines for the target size . А

conversion table was used to determine the range based on the

number of stadia lines . This stadia range was entered on the

data reduction form .

e . Range data was calculated by a computer program which

used the PRRS -developed position locations of the firer and the

target at the time of the trigger -pull . This method required

positive firer and target identifications that were provided by

the video tape and/ or the I -MILES printouts .

f . If the PRRS and stadia ranges differed by more than 700

meters , a quality review group examined both ranges to assess

their accuracy . When the PRRS data was questionable for either

the firing or target vehicle , like data on other vehicles of the

same platoon was evaluated to verify the range . If the PRRS

range could not be verified , the stadia range was used . In those

cases where neither the stadia nor the PRRS range could be

determined , senior data management assistants viewed the video

and estimated the ranges at time of the trigger -pull .

g . Intervisibility data was derived from a computer program

that correlated the positions of the players at the time a Blue

force vehicle received scanning laser energy . A computer program

calculated the duration of the target vehicle exposure and the

distance the target vehicle traveled while exposed . The computer

program provided an output data set used in the production of the

phase II data base .

n . Data collection forms and questionnaires were edited by

quality assurance personnel and entered into a computer data

file . The data file was structured by player identification ,

trial number , and time of data event .

IV . " BIG MAC " structure

The data base is composed of two distinct files . The primary

file ( battle history ) is an integrated , chronological record of

all the activities occurring during the execution of a trial .
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This is called the " BIG MAC " . The other file ( descriptive data )

is an integrated record of the conditions surrounding the

execution of the trial and the subjective data collected during

the trial .

a . " BIG MAC " file . The primary data file was constructed

during an iterative process of data reduction , edit , and quality
review ,

( 1 ) The initial format was the file of reduced data from

the I - MILES and from the video and flash box systems . It

reflected the direct fire battle .

( 2 ) When the initial file reached data maturity , a

computer program correlated the position location of each firer

target pair . This data resulted in range being added to the

file .

( 3 ) Concurrent with the range process , a computer

program examined each engagement and calculated ammunition usage

for each firer . The same program also determined if squad

members were on board when the target was a BFV .

( 4 ) When the above steps were completed , the data was

merged with the artillery data and a time - correlated file was

output that contained data on all direct and indirect fires .

( 5 ) The integrated firing history was then merged with

the data file containing the trial start and finish data on each

vehicle . This process continued with a merge program that

incorporated the exposure data calculated by the laser system .

( 6 ) The end result was a battle history file for all

trials .

b . Descriptive data file . This file contains the

information on the conditions of each trial and the subjective

data collected . It is organized as subordinate records , each of

which is sorted by trial and time .

The mission of the test team was to produce a data base on

operational survivability in a timely and accurate manner . The

independent evaluator , OTEA , is responsible for data base

analysis and determining the specific answers to questions

regarding BFV survivability . A copy of the data base was

forwarded to OTEA in magnetic tape format . The data base was

derived from approximately 6,000 hours of video tape and 1,000

collection forms . The data base contains approximately 26,000

direct fire engagements , 1,200 indirect fire engagements , 3,000

intervisibility segments , and 19,000 descriptive events . The
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total data base contains approximately 2 million data elements .

The data presented clearly demonstrates the capability of the

data base to support analysis of the BFV survivability question .

V. The use of the " BIG MAC "

The basic purpose of the CV - CPOA operational test was to

provide realistic force - on - force test data to OTEA . They would

use the data in their evaluations to predict the operationally

survivability of the BFV and other Army combat vehicles . OTEA

provided " BIG MAC " data to the Ballistic Research Laboratory for

in their models to calculate survivability results . OTEA

completed its evaluation and reported its finding to Congress .

The findings led to some design changes to the BFV . The " BIG

MAC " had served its purpose but the " BIG MAC " is more than a data

base with a one time use . The data base is a rich source of

force - on - force test data . One can play some mind boggling games

with the number of ways the data can be sliced and diced . Due to

the large number of different data elements , reports can be

prepared with any number of data sets . For example , the

following type of reports can be prepared :

a . Direct fire weapons

engagement angles

Frequency of engagements and

b . Direct fire weapons Aiming point distributions

C. Direct fire weapons Engagement range distributions

d . Ammunition and personnel on board BFV at time of

engagement

e . Target exposure and motion of firer and target

f . Indirect fire weapons

Combat vehicle intervisibility and engagements.

h : Direct fire weapons distribution

In February 1988 , the Department of Defense Office of Test

and Evaluation ( DOTE ) asked that an extended evaluation of the

CV - CPOA data be made regarding a host of questions asked by DOTE .

The questions concern such things as , effect of direct and

indirect fire on both the red and blue target vehicles , effects

of line of sight on ranges of engagements , how was the ITV

engaged on the battlefield , order effects on engagement ranges as

the trial progressed , etc. The Deputy under Secretary of the

Army ( Operations Research ) tasked OTEA to respond to these

questions and to make the " BIG MAC " available to others . OTEA

responded by forming a Study Advisory Group of Army organizations

which would have an interest in the data . OTEA also obtained
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contractor support to prepare a data dictionary , data base

documentation for the " BIG MAC " and also provide assistance in

responding to the DOTE questions .

Several DAG members have used data from the " BIG MAC " to

assist them in their work . AMSAA compared " BIG MAC " hit

distribution data with the currently used cardioid distribution

data for tanks and the BFV . The comparison showed that the " BIG

MAC " data contained more " Head - on " shots . As a result , the Army

has decided to use the " BIG MAC " hit distribution data for future

AMSAA modeling work for tanks and BFV . The Infantry School has

used the " BIG MAC " data in some of their studies on TOW missile

firings .

Upon completion of the contractor's work on the data

dictionary and data base documentation , the " BIG MAC " will be

available to all Army organizations for official use and can

provide realistic force - on - force data to assist them in their
work .
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MODEL SENSITIVITY IN STRESS-STRENGTH RELIABILITY COMPUTATIONS

Donald M. Neal , William T. Matthews , and Mark G. Vangel

U.S. Army Materials Technology Laboratory

Watertown , Massachusetts 02172-0001

ABSTRACT

There has been a recent interest in determining high statistical reliability

in risk assessment of aircraft components . This paper identifies the potential

consequences of incorrectly assuming a particular statistical distribution for

stress or strength data used in obtaining the high reliability values .
The

reliability is defined as the probability of the strength being greater than the

stress over the range of stress values . This method is often referred to as the

stress - strength model .

A sensitivity analysis was performed involving a comparison of reliability

results in order to evaluate the effects of assuming specific statistical dis

tributions . Both known population distributions and those that differed

slightly from the known were considered . Results show substantial differences

in reliability estimates even for almost non -detectable differences in the

assumed distributions . These differences represent a potential problem in using

the stress - strength model for high reliability computations , since in practice

it is impossible to ever know the exact ( population ) distribution .

An alternative reliability computation procedure is examined involving

determination of a lower bound on the reliability values using extreme value

distributions . This procedure reduces the possibility of obtaining non

conservative reliability estimates . Results indicated the method can provide

conservative bounds when computing high reliability .
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INTRODUCTION

1
Stress

There has been an interest in quantitative reliability-based structural design for many

years. An early example is the structural reliability development by Freudenthal.

strength reliability computations are a principal consideration in structural reliability design .

Reliability methods have been considered for many structural applications including: civil engi

neering nuclear reactors, fixed wing aircraft,“ rotorcraft ," and space vehicle propulsion sys

Very high structural reliability is expected to be achieved for most applications . A

reliability goal of 0.919) per flight hour was suggested in 1955 by Lundberg for fixed wing

civil aircraft. Recently, Lincoln, 7,8 using reasoningsimilar to that of Lundberg,citeda reliabil

ity goal of 0.9(7) per flight for fixed wing military aircraft. The U.S. Army has instituted a

new structural fatigue integrity criterion for rotorcraft which has been interpreted as a

requirement for a lifetime reliability of 0.96).

tems.

The use of advanced materials whose structural properties are best characterized on a sta

tistical basis appears to be a stimulant for increased interest in statistical -based structural

design for airborne structures.

A significant feature associated with predictions of structural reliability is that the conse

quence of a failure event may be more than reduced system performance or the inconve

nience of a system being out of service; structural failure can be catastrophic in terms of loss

of life and property. In this context it is imperative to evaluate the sensitivity of structural

reliability predictions to uncertainties . It appears that this issue has received little attention
except for a brief note by Harris and Soms and a recent presentation by Berens.

10

There are many issues to be faced in obtaining quantitative structural reliability predic

tions . Such issues include system complexity (many components, multiple failure modes in

each component, and interdependence of component behavior ), sample or data set size

associated with structural loading spectrum conditions and with mechanical properties, and the

basis for characterizing structural qualification tests (the number of duplicate specimens and

methods for compensation for untested effects such as the effect of environment) .

In addition, when predictions of structural behavior are required in the high reliability

range, since sufficiently large data sets are usually not available, it is necessary to use parame

tric modeling methods. Assumed parametric functions permit extrapolation from available data

to determine the probability of failure . Since the probability of failure is extremely small,

this will always involve substantial extrapolation from what can be observed experimentally.

The estimated reliability will therefore depend strongly on the assumed parametric probability

density function (PDF). Slight deviation from the assumed model in tail regions can have

dramatic effect on high reliability estimates .

1. FREUDENTHAL, A. M. The Safety of Strucares. Trans. ASCE, v. 112, 1947 .

2. CORNELL, C. A A Probability Based Structural Code. J. Am . Conc. Inst., V. 66, 1969, p. 974-985.

3. U.S. Nuclear Regulatory Commission . Reactor Safety Study: An Assessment of AccidentRisks in U.S. Nuclear Power Plants. NRC Report
WASH -1400, 1975.

4. LUNDBERG , B. Fatigue Life of Airplane Spructures. J. of the Aeronautical Sciences, v . 22, no. 6, June 1955, p. 349.

5. ARDEN , R. W., andIMMEN, F. H. U.S.Amy Requirements for Fatigue Integrity . Proceedings of American Helicopter Society National
Technical Specialists Meeting on Advanced Rotorcraft Structures, Williamsburg , VA , October 1988.

6. SHIAO, M. C., and CHAMIS , C. C. Probability of Failure and Risk Assessment of Propulsion Strucoural Components. NASA Technical
Memorandum 102323, 1989.

7. LINCOLN, J. W. Risk Assessment for an Aging Military Aircraft J. of Aircraft, v . 22, no. 8, August 1985, p. 687.

8. CORNOG ,P. O., and LINCOLN , J. W. RiskAssessment ofthe F - 16Wing. Proceedings of the 1988 Structural Integrity Conference, San

Antonio, TX , WRDC - TR -89-8071, Wright- Patterson AFB , Ohio, 1989.

9. HARRIS, B.,and SOMS, A. P. A Nore on the Difficulty Inhereni in Estimating Reliability from Stress- Stength Relationships. MRC-2123,
Mathematics Research Center, U. of Wisconsin, AD -A073637, October 1980.

10. BERENS, A. StructuralRisk Analysis in Aging Aircraft Fleets. Proceedings of the 1988 Structural Integrity Conference, San Antonio, TX ,
WRDC -TR -89-8071, Wright-Patterson AFB, Ohio, 1989.
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In fact, one might argue, as does Freudenthal,11 that because of the extrapolation

involved , statistically -based high reliability calculations for complex systems must always be

suspect :

"When dealing with probabilities a clear distinction should be made between conditions

arising in design of inexpensive mass products in which the probability figures are derived by

statistical interpretation of actual observations or measurements (since a sufficiently large num

ber of observations are actually obtainable ), and conditions arising in design of structures or

complex systems. In the latter, probability figures are used simply as a scale or measure of

reliability that permits the comparison of alternative designs. The figures can never be

checked by observations or measurement since they are obtained by extrapolations so far

beyond any possible range of observation that such extrapolation can no longer be based on

statistical arguments but could only be justified by relevant physical reasoning. Under these

conditions the absolute probability figures have no real significance ....

Johnson 12

Nonparametric stress-strength procedures do not require specific parametric assumptions,

and so it might be hoped that such procedures could circumvent this difficulty. However ,

has noted that " The nonparametric approach has one serious drawback . In return

for its distribution free property, it is not possible to establish high reliability even with mode

rate sample sizes." With respect to the use of parametric models, Box13 has observed "all

models are wrong, but some are useful," meaning that no parametric statistical model should

be accepted uncritically. Whenever a model is used, it is the obligation of the analyst to

investigate the consequences of departures froman assumed model which, though small , are

consistent with available data. Harris and Soms has illustrated a "serious problem in the use

of stress-strength relationships in estimating reliability. " In particular, "stress -strength models

in reliability theory are highly sensitive to small perturbations in extreme tails ." The perturba

tions considered may arise from an alternative mode of failure such as the presence of a flaw

in a structure. Further, they note that the problem cannot be eliminated unless "astronomi

cally large sample sizes are employed ."

In the following, the examination of the sensitivity of structural reliability estimates

focuses attention on one of the previously cited issues: the selection of a parametric PDF.

The examination of the sensitivity of stress -strength reliability estimates is extended to addi

tion perturbation effects. The sensitivity of reliability estimates to the selection of parametric

models is considered with emphasis on graphical representations. The results are evaluated

with regard to the usefulness of parametric stress -strength models for application to the high

reliability regimeof 0.96) to 0.9(7) when the consequence of failure may be catastrophic. An

alternative reliability computation procedure is examined involving determination of a lower

bound on reliability which can be obtained independently of the assumed PDFs.

STRESS -STRENGTH MODEL

The statistical reliability as referred to in this report is determined in the following man

Shown in Figure 1 is the stress-strength model where f2 (s) and f1 (S) represent the

PDFs for the applied stress s and material strength S.

ner.

11. FREUDENTHAL, A M. Fatigue Sensiaviry and Reliability of Mechanical Sjøtems, Especially Aircraft Structures. WADD Technical Report
61-53, Wright-Patterson AFB , Ohio, 1961.

12. JOHNSON, R. A. Spess-Strength Models for Reliability. Handbook for Statistics, Elsevier Science Publishers, New York, v . 7 , 1988, p.
27 .

13. BOX, G. E. P. Robustness inthe Strategy of Scientific Model Building. Robustness in Statistics , R. L. Launer, and G. N. Wilkinson, eds.,
Academic Press, Inc. , New York, 1979.
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Normal stress - strength model

f(s) andf(s) are PDF Representation for Stress and Strength Values Respectively
0
.
1
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S = Calculated Stress

SzMaterials Strength

0
.
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Figure 1. Normal-normal stress -strength model.

Since the joint probability dR for the strength being greater than si can be written as ,

dR =

f2 (si ) ds sa fi ( S)as
( 1 )

then the reliability for all s values is

R = SCORE2(3)[po f1(S)ds]ds . (2)

PROBABILITY DENSITY FUNCTIONS

A wide variety of PDFs may be applied in obtaining R values. Some examples of PDFs

are as follows:

The PDF most often used in stress -strength models is the normal distribution (see Figure 1 ),

189) = N (8,0) exp{-}(354)}
(3 )
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where - 0 < s < 0o , u > 0, and o > 0. The mean of the population is y , and the stan

dard deviation o for this model.

A model which is more easily justified on physical grounds is the Weibull PDF,

10(9)= £ (8)$="exp(-C8ye ] (4)

where S > 0, a > 0, and B > 0. Despite the relevance of the Weibull distribution
14

to the

strength of brittle materials, it is not often used, possibly because it is more difficult com

putationally to obtain reliability values than with the normal model .

If S follows the Weibull PDF, then In(S) will have an extreme value distribution with PDF

'S

fmin ( 9) = b exp LSID
exp

bi
(5)

The distribution of - In(s) is

max(0)= 6 cap [- ( 570) -exp (-(**))]

(6)

Both of the above formulas are referred to as extreme value distributions . The use of

extreme value distributions in a stress-strength model is illustrated in Figure 2. The extreme

value distribution parameters are related to the Weibull parameters as follows:

b =

$ and u = - log a

In order to obtain the population Weibull shape and scale parameters B and a from the

known population mean y and standard deviation o, the following approximations are

suggested:

B = 1.27 ulo - 0.56 (7)

and

α = μ / Γ

r (x +1)

The functions defined in Equations 3, 4, 5, and 6 clearly have different shapes and they

exhibit dramatically different tail behavior. Since reliability estimates depend strongly on the

extreme upper tail of the stress PDF and the extreme lower tail of the strength PDF, the

choice of model will typically have a substantial effect on the reliability estimate . For exam

ple, R is usually higher when calculated from the normal distribution than when the extreme

value model is assumed.

Applying PDFs that are capable of obtaining accurate high reliability estimates ( e.g., 0.966 )

requires prior knowledge of the functional form of the population PDF in addition to the

14. BURY, K V. Suatistical Models in Applied Science. John Wiley and Sons, Inc. (New York , London, Sydney, Toronto ), 1975.
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availability of large data sets (e.g. , 1,000 replicate specimens). For lower reliability values

(e.g. , 0.9) , a goodness- of-fit test for PDF identification with a moderate amount of data is gen

erally adequate. The consequence of incorrect PDF selection and limited sample sizes are dis

cussed later in this report.

Stress -strength : extreme value

Strength
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Mean =51
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Figure 2. Stress-strength extreme value functions.

METHODS FOR COMPUTING RELIABILITY R

In determining R from Equation 2 it should be noted that the integration process does

not determine an area. The area A described by the intersecting functions in Figure 3 does

not represent a 1 - R failure probability. The area A is the probability (P) that either S < T

ors > T, that is ,

A = <P(S = T) + P (s > T ) , (8)

where T is the point of intersection of the two functions. The area A is obviously not the

same as the 1 - R from Equation 2 which determines P(S > s) jointly with P(s ).
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Stress -strength reliability model: normal-normal

Intersecting Area Does Not Equal 1 -R
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Figure 3. Stress -strength incorrect unreliability region.

Numerical Integration

Numerical integration procedures are usually suggested if a closed form solution of

Equation 2 is not available. The numerical integration process involves repeated application

of a method such as Simpson's Rule. The inner integral in Equation 2 is evaluated numeri

cally for each ordered si value i = 1 , ... , n resulting in an 11 (i ) array of values. Each of

11 (i ) is then multiplied by the corresponding f2 ( si) forming another array 12(i ) fz(si )li(i). R

is obtained from 12 array by reapplying the numerical integration method. This process will

usually provide accurate results for 51 sn s 101 , where n is the number of mesh points in

the integration process. Simulation results showed that the limits of integration can be

obtained from six standard deviations from the mean.

=

Closed form solutions are available when the assumed stress and strength PDFs are both

normal or both Weibull .

R Computation from Closed Form Solution

If both stress and strength data can be represented by normal PDFs Nus, 032) and Ncus,

os?), respectively, then,
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( )
(9)

μs -μς

R = P(S > s) = 0

os + o'z

where (0) is the standard N(0, 1 ) normal cumulative distribution function, Ms and us are

means, and os? and os are variances of the stress and strength, respectively.

If both fy and f2 in Equation 2 are Weibull with different scale parameters an and az,

but with a common shape parameter B, then the integration indicated in Equation 2 gives the

following closed form expression'

12

1

R =

( 10)
ai B

1+

02

The common shape parameter means that both the stress and strength are skewed in the

same way , which is a serious limitation . It is much more reasonable to have a stress distribu

tion with a heavy upper tail and a strength distribution with a heavy lower tail , but this is

not possible unless the shape parameters can be varied separately.

Nonparametric Method

This method does not assume a PDF for either stress or strength data . It determines reli

ability from the ordered array of m stress (s ) and n strength (S ) values, where each of the S

values are compared with all s values. R is the proportion of times S > s for the total num

ber of comparisons , that is

1

mon

R

M
3

Laj, where ai =

1 , S; > Sj .

0 , 5; ? Si
( 11 )

m n

This method is not useful for obtaining high reliability even for relatively large data sets.

It is obvious from Equation 11 that for high reliability calculations, mn must be very large ;

for example, 10º would be required in order to obtain R of 0.9(6).

The Weibull, normal , or other parametric PDFs can provide estimates of high R values

because of their ability to extrapolate beyond the available empirical data. Unfortunately, the

amount of extrapolation dependency determines the magnitude of relative error in R.

CONTAMINATED PROBABILITY DENSITY FUNCTIONS

In order to illustrate the sensitivity of high reliability calculations to small deviations from

assumed models, we will take the following approach. Consider the situation where with a

high probability of 1 - E , specimens are obtained from a primary PDF, while with probability E ,

specimens come from a secondary PDF. This probability model is referred to as a contaminated

model. The secondary component is called the contamination, and the probability ε is the

amount of contamination .

An example may help clarify this idea. Consider the situation where 97% of the time a

specimen is obtained from a population of " good" specimens while the remaining 3% of the

time consistently lower strength measurements are obtained , either due to manufacturing
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defects or to faulty testing. The primary PDF would correspond to the "good" specimens, the

contamination would represent the distribution of flawed specimens, and the amount of con

tamination is E = 0.03.

The following procedure is introduced in order to examine the effects of computing high

reliability values when uncertainties exist in selecting the functions for the stress-strength

model. Initially, high reliability values are obtained from the normal stress -strength model

(see Equation 9) using known PDFs with different mean values but equal coefficients of varia

tion . The difference in mean values were determined from the required level of high reliabil

ity . Another R value is then obtained by applying this known distribution with a small

amount of contamination (8) in order to show an almost undetectable difference graphically

between the true and contaminated PDFs. The effects of this difference in the reliability

computation is discussed in the following sections in order to examine the sensitivity of the

stress -strength model to the assumed PDFs. This procedure provides an effective way of

demonstrating the effects of assuming a specific PDF in determining high reliability.

The normal PDF with variance contamination for the strength data is,

Ns, (us, o , 3) = ( 1 - £) N (us, os 3) + EN (us, Ky os 3) , ( 12)

where us and os? are the mean and variance for the uncontaminated normal strength distribu

tion , Ki is a scaling factor, and 100 ε is the percent contamination.

The strength distribution with location contamination is

NsL WHL, os 2) = ( 1 – E) N ( us, os 3) + € N (us 1 K2 os, osos* ?) , ( 13)

where K2 is a scaling factor for the mean us, and the sign determines which tail of the distri

bution is to be contaminated and os is the variance on us + K20s. The location contami

nated PDF (see Equation 13) can provide reliability estimates to represent the potential of a

secondary failure mode. Contamination of the stress distribution would be similar to that in

Equations 12 and 13. It was not necessary to include contaminated distributions for both

stress and strength in order to show substantial reduction in the high reliability estimates.

The strength PDF contamination was sufficient.

A linear relationship to obtain R for the reliability models when a combination of both

contaminated and uncontaminated stress and strength normal PDFs can be written as,

R = ( 1 – E1) ( 1 – € 2) R 00 + E1 ( 1 – E2) R10 + E2 ( 1 – £ 1) Roi + E1 E2 R11

(1
4
)

where 100 & 1 and 100 £ 2 are percent contamination for the stress and strength distribution,

and the Rij values are obtained for the case of variance contamination only; that is,

( 15)

+ Osi
2

μς -μς

Rij = Φ
2

OS;

and for location contamination, RKL would be
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RKL = Ф

USL – HSK

2

Os + )
( 16)

Equation 14 can be extended to include all combinations of variance and location contamina

tion simultaneously, but it was not necessary for this sensitivity analysis. In Equation 16, if i,

j = 0, then there is no contamination; for i , j = 1 , then both stress and strength are contami

nated. For example, if there is contamination of variance of strength only, then

R = (1 – € 2) R 00 + E2 R01

(1
7
)

where

Mso M so
R00 = 0

2

+ 050

2OSO

and

Mso

Roi = Φ

uso

2

OS + Oso

2

LOWER RELIABILITY BOUND

A conservative lower bound on the reliability is introduced in order to protect against

incorrectly identifying statistical functions in determining high R. The boundis obtainedfrom
15

a method proposed by Bolotin, and modified to employ the extreme value PDFs (see Equa

tions 5 and 6). The method provides more conservative bounds than would be obtained from

standard methods which are dependent on the assumed PDFs. The selection of the extreme

value functions provides additional conservatism because of their heavier tails. The method is

simple to use and is not restricted to any specified PDF. The reliability bounds are (see

Figure 4) ,

1 WW2 > R > ( 1 - Wi) ( 1 - W2) ( 18)

where ( 1 - Wi)( 1 - W2) represents the probability s < $ i and S > Si, which can be a some

what conservative estimate.

The lower bound is then,

RL > ( 1 – W1) (1 - W2) , ( 19)

where

W2 = ss 12 (s) ds and W Su fy (s) dS

for any choice of si = Si

15. BOLOTIN , V. V. Scaristical Methods in Structural Mechanics. Holden -Day, Inc. , San Francisco, CA, J. J. Brandstaffer, ed ., 1969 .

175



Stress -strength extreme value model: Bolotin R -bound
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Figure 4. Bolotin reliability bounds using extreme value functions.

GOODNESS -OF -FIT TEST

The capability of determining desired PDFs from empirical data was investigated. The

choice of PDF will be shown in the following sections to have a substantial effect on high

reliability computations, so it is important to examine model selection procedures. A statisti
cal test of goodness -of-fit was introduced in addition to graphical displays in order to select

the desired PDFs. Empirical data used in the investigation was obtained by randomly select

ing a relatively large number of values from a known normal PDF. A comparison of known

contaminated PDFs and the uncontaminated PDF is made with respect to the empirical values.

RESULTS AND DISCUSSIONS

Variance Contamination

Shown in Figure 5a are reliability computation results and graphical display of a normal/normal

stress -strength reliability model, where a 1% (€ 0.01 ) variance contamination was introduced

and scaled by Ki = 4. The graphical display was obtained from application of Equations 12

3

16. ANDERSON , T. W., and DARLING , D. A A Test of Goodness -of-fil J. Am . Statis. Assoc., v. 49, 1954, p. 765-769.
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and 13, where N (us, os?) is defined in Equation 3. The graph shows an almost undetectable
difference between the contaminated and uncontaminated PDFs. This indicates that the

choice of ε and K are reasonable with respect to the potential differences between assumed

and actual PDFs. However, the reliability values differ substantially ( 0.9(6) versus 0.998989) .

This implies that either one failure in a million or 1011 failures in a million is predicted

depending on the selection of PDFs which can differ in probability values by less than 0.0005

in the extreme tail regions (see Figure 5b). Using " good" representative PDFs in the stress

strength model in predicting only a single failure will occur in one million operations (e.g. ,

number of flight hours) for R = 0.9(6) can result in a severe anticonservative estimate since

for almost identical PDFs, 1011 failures per million could also be predicted .

The accuracy of the high R estimates depends on the level of precision in defining the

extreme tail of PDFs. This requires selecting a PDF from a data set that accurately repre

sents the known population function in the extreme tail regions with a probability difference

of much less than 0.0005. Unfortunately, this would require an unrealistically large data set.

In current practice, if a very large data set is not available, then PDFs are selected from

smaller sets with reliance on the functional representation in regions less than first ordered or

greater than the largest value.

The stress-strength procedure is quite effective for the range of R values between 0.5

and 0.95 since usually in the extrapolation process, a small difference in the extreme tail prob

abilities values will not effect the required accuracy in R. Reliability results from uncontami

nated and variance contaminated (€ = 0.05 and Ky 5 ) PDFs showed no differences for a

known R = 0.95. Unfortunately, in order to obtain high reliability, extrapolation into the

extreme tail of the PDFs is required , thereby increasing the required level of precision neces

sary to distinguish between, for example, 0.998 and 0.966) .

In order to demonstrate the uncertainties in selecting specific PDFs from empirical data

when computing high reliability values, the following displays are shown in Figure 6. In

Figure 6a, a plot is shown of the empirical normal cumulative density function (CDF) and the

corresponding contaminated and uncontaminated normal distribution functions where the mean

is 50 and standard deviation ( SD ) is 5 , with sample size 4 = 100. Reliability values are also

tabulated from the stress-strength model results using all six candidate functions. For exam

ple , R (3 , 5) is the reliability obtained from variance contamination of 3% and a scale of 5

for variance. A statistical goodness-of-fit test that measures the relative differences in the

tail region of the distributions was applied in addition to visual inspection in order to estab

lish if each function could represent the CDF of the ranked data . Results showed this to be

true ; see Figure 6b for the tabulated observed significance level (OSL) which show in all

cases OSL > 0.05, a requirement for the assumed function to be considered from the same

population as the empirical data.

16

The results show that although each distribution fits the data quite well (see Figure 6b) ,

there is a large relative difference in R values : 0.96) for R (U.C) and 0.9957 for R(3, 5 ).

In Figure 7, the results are similar to those in Figure 5. The variance contamination was 1 %

with a scale factor of 6 for both os and 0s. Again , although the functions are similar, the rela

tive reliabilities differ substantially (0.9 (6 ) versus 0.9977197). As was the case in Figure

severe consequences could exist if R = 0.966) is assumed and the actual reliability was
0.9977197. Since this could result in a number of premature failures, 2280 in one million,

occurring compared to the assumed one failure in a million . The results showed a low level

of sensitivity to the selection of the factor Kı .
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Normal stress-strength models
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Figure 5a . Stress -strength normal functions with and without variance contamination.
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Normal stress - strength models
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Figure 7. Reliability /normal functions with and without variance contamination .

Location Contamination

In Figure 8, reliability computation results and a graphical display of the stress-strength

models are shown . The contaminated functions were obtained from 1% ( ε = 0.01 ) location

contamination as defined in Equation 13 where K2 = 4 and the (-) value is used for strength

and ( + ) value for stress . The contamination in this case represents a secondary failure mode

not considered when assuming a specified function from the test results. For example, ignor

ing the possibility that one in every 100 parts may have a lower strength level, say 4 standard

deviations from the mean , can result in the reliabilities tabulated in the figure . That is , for

the assumed correct model, R = 0.96), and the actual case where there was a lower strength

level having one chance in 100 of occurring resulted in R = 0.999459. Figure 9 provides

similar results to those in Figure 8 except there is a greater difference in reliability values

0.966) versus 0.991012 due to a greater shift (K2 = 6) in the mean value for the contami

nated PDF. With a 1 % contamination this result is predictable since one in a hundred times

a failure should occur because us - K20 is less than the mean of stress value. The above

figure shows the consequences of not being able to identify the correct function because of

the inability to always detect a flawed component. The result is the determination of an

overly optimistic reliability value when the true reliability could actually be orders of

magnitude less.
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Figure 8. Reliability /normal functions with and without location contamination .
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Figure 9. Reliability /normal functions with and without location contamination .
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The results in Figure 10 are similar to those in Figure 5 except these were obtained from

E = 0.03 and K1 = 3. If the estimated R3. If the estimated R = 0.9987350 is obtained from the empirical data

and a higher R value is required (R = 0.9(6 )), then a material with either greater strength or

less contamination would be required. In order to obtain the required 0.9 6) from the origi

nal contaminated model , a mean strength of 87 is required (see Figure 11 ) . The mean of 87

requirement may not be acceptable to the designer, but this situation can occur if there is a

substantial amount of dispersion in the strength data resulting in a long-tailed PDF. The

above situation shows when a potentially over-design situation could occur because of the

inability to identify the correct PDF in the stress -strength model due to inherent sensitivity

and lack of information in the tail regions. This could prevent a good design from being

accepted if it is required that the assessment of the design be based upon reliability only.
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Figure 10. Reliability / stress- strength with and without contamination.
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Normal stress -strength models
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Figure 11. Increased strength requirements for high reliability.

The display in Figure 12 presents four possible reliability values for the case where the

means and standard deviation are : stress (24, 2.4) and strength (51 , 5.1 ) . The result from

the uncontaminated normal is 0.9(6 ). R = 0.995043 was obtained from the contaminated PDF

application. Since, as was shown previously, the stress -strength model will often provide

either relatively very high or low R values depending upon the chance selection of the PDFs.

In order to compensate for the uncertainty in selecting the PDFs for stress and strength data,

extreme value distributions are introduced (see Figure 2) in the reliability computation . This

resulted in R = 0.999045 . Unfortunately, this did not provide a value lower than the contami

nated model result of 0.9950428. In order to obtain additional conservatism in the R esti

mate, a modification of a method by Bolotin is examined involving the determination of lower

bound on R (see Figure 4 and Equation 19) in conjunction with the extreme value PDFs.

The resultant lower bound estimate of 0.9796063 provides a significantly lower value than that

of the contaminated model . This was also true for all contaminated models in this study.

This lower bound estimate could provide some security in estimating R, although results

may be excessively conservative for some practical applications. In Table 1 , the distribution

of R values as a function of the sample size is presented. R values were obtained from

repeated application of the uncontaminated stress -strength model of Figure 5 using randomly

selected , normally distributed samples . For a sample size of 10, R ranges from 0.96) to
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0.998417 indicating the instability associated with small samples. Higher order quantiles (e.g. ,

60 % ) were not included since they were all greater than 0.96).

Table 1. DISTRIBUTION OF R VERSUS SAMPLE SIZE

Reliability R

Sample Size

Distribution

( % )

0.1

1

10

10 50 100 1000

0.998417 0.999932 0.999980 0.999998

( 1583) (68) (20 ) ( 2 )

0.999160 0.999968 0.999991 0.999998

(840) (32) ( 9) ( 2)

0.999943 0.999994 0.999998 0.999999

(57) ( 6) ( 2) ( 1 )

0.999994 0.999998 0.999999 0.999999

(6 ) (2 ) (1 ) (1 )

0.999999 0.999999 0.999999 0.999999

(1 ) (1 ) ( 1 )

( ) Corresponding Number of Failures Per Million

25

50

(1 )

Extreme value stress -strength model

Reliability =.9990451

(Extreme Value Model)

Reliability =.9796063

Bolotin Lower Bound (Extreme Value)

Reliability = .9999992

(Uncontaminated Normal Model)

Reliability = .9950428

(A Contaminated Normal Model)
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Figure 12. Reliability comparison : PDFs and lower bound.
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0.96)

A sample size of 50 or 100 provides reasonable stability, and a sample of 1000 shows

essentially no variability. The results from Table 1 show that for a sample of 1000, an esti

mate of R = would be acceptable. This is not necessarily correct since results from

the table only address the sample size issue which is independent of the uncertainties in the

PDFs selection process. There are two requirements for obtaining accurate high reliability val

ues from the strength model: large samples (n > 1000 ) and knowledge of the population

PDF. Reliability estimates of 0.95 are much less sensitive to the PDF assumption. If there

is a secondary failure mode due to occasional undetected poor manufacturing of the material

or an unusually large load occurs that is not accounted for in the design process, then

unknown lower reliability values (R < 0.95) can exist.

CONCLUSIONS

High reliability estimates from application of the statistical stress-strength model can vary

substantially even for almost undetectable differences in the assumed stress and strength

PDFs. Specifying high R values ( e.g., 0.966 )) for acceptable structural design can result in

higher failure rates than anticipated if the assumed PDFs contain shorter tails than actually

exist . Over-design situations can also occur when excessively long-tailed PDFs are applied to

the stress -strength model. An effective method for identifying this nonrobust behavior

involved application of contaminated and uncontaminated PDFs in the determination of

reliability values.

A suggested method for obtaining a lower bound on the reliability estimate provided

potentially overly conservative results but was effective in determing values that were lower

than any of the R values computed for the contaminated models.

The authors' position regarding the computation of high reliability of 0.96) agrees with

Breiman?? who says " The probability of failure Pp = 1 x 106 has an Alice in Wonderland
flavor and should be banned from nonfiction literature." It is therefore recommended that if

high reliability calculations are absolutely essential, then the results should be subjected to a

sensitivity analysis using contaminated distributions. High reliability values are meaningful only

when these values are not substantially affected by an amount of contamination (8 ) consistent

with the sample sizes, and a severity of contamination which is identified by engineering

judgement.
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IMPROVING NONPARAMETRIC TOLERANCE LIMITS FROM POOLED DATA

Donald M. Neal , Mark G. Vangel , and Trevor D. Rudalevige

U.S. Army Materials Technology Laboratory

Watertown , Massachusetts 02172-0001

Abstract

This paper introduces a method for obtaining an improved tolerance limit

value for a small sample S of material strength data by pooling with a much

larger sample L. This value represents a ' B ' basis material property number

defined as the 95% lower confidence bound on the tenth percentile of the popula

tion distribution .

In the pooling process both data sets are transformed to a common mean value

of zero in order to pool samples with significantly different strength levels .

Equality of variance is required between S and L. The basis values are obtained

from the pooled samples by application of both nonparametric and parametric

statistical models . Monte Carlo studies showed that by pooling both data sets S

and L , values could be obtained that were less conservative with lower variabil

ity than from application of S alone .
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Introduction

The statistically based material property value , or B-basis value , is a

statistic which is less than the tenth percentile of the population with proba

bility .95 . That is , the B-basis value is a 95% lower tolerance limit for the

tenth percentile . In Figures la and 1b , a graphical display is shown for the

basis value probability density function for sample sizes of n = 10 and 50 from

a standard normal population . The dotted vertical lines indicate the 10
10th

percentile ( X.10 ) of the population and the probability ( basis value

< X.10 ) = .95 for the basis value probability density function . The graphical

display of the basis value density functions show much less dispersion for

n = 50 than for n = 10. Therefore , small samples will usually result in lower

basis values .
[ 1 , 2 , 3 , 4 ]

In various procedures are described for determining

the statistical property values .

The motivation for the work described in this paper resulted from a need by

the aircraft industry to obtain a less conservative statistically based material

property value from a small sample of composite material strength data . Here

' conservative ' is to be interpreted to mean ' excessively low ' , which corresponds

to a design engineer's use of the word . Statistical conservatism , that is a

confidence exceeding the nominal level of .95 , need not be present for 'engi

neering conservatism ' to be a problem .

The use of small samples reduces the amount of testing and consequently the

manufacturing cost of composite aircraft structures . For example , in order to

qualify a composite material to be used in the manufacture of a commercial

aircraft , the FAAC5] requires property values for tension , compression , and

shear tests subjected to the environmental conditions : hot -wet , cold -dry , and

room temperature for three separate batches of material . In the development of
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a composite tail section by one of the major aircraft companies the cost of

testing was more than 20 million dollars . In addition to the cost , exces

sively conservative basis values can also result in an overdesign situation ,

since the value often provides information in determining structural design

allowables .

In order to avoid the penalty associated with using small samples in the

tolerance limit computation , a procedure is introduced in this paper involving

pooling a large sample with a smaller one in order to obtain the property value .

This is done in order to reduce the inherent variability that occurs from apply

ing the smaller data set .

In the pooling process the larger data set should be obtained from prior

available test results or from less expensive tests . Ideally , both samples

should be from the same test and environmental conditioning process . Various

combinations of tests and ply -orientations are shown in Figure 2 showing the

sources for combining the data sets . In the pooling process it is assumed for a

given material ( eg . , graphite-epoxy ) there are similar failure modes and conse

quently equality of variance[6 ] between the samples .

In order to avoid the uncertainties involved in identifying a statistical

model from a small sample when computing the basis value , two nonparametric

methods (Ferguson
[ 7 ]

and the Modified Hanson -Koopmans[8], are introduced . In

applying [ 7 ] , the larger set represents the prior and the smaller one the empir

ical data . In [ 8 ] an ordered array of strength measurements are obtained from

the pooled data sets . The tolerance limit is determined from a specific ordered

value multiplied by a factor determined from the sample size of the pooled data .

A parametric method [ 9] was also applied in the study in order to compare the
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effectiveness of the various methods . This involved a Weibull analysis , where

the shape parameter is obtained from the pooled sample .

A Reduced Ratio method[10] is recommended by the MIL-5 handbook for obtain

ing basis values from small samples . The procedure involves determining the

ratios of paired observations from a prior data set with a known basis value and

a new data set for which the value is to be determined . A lower confidence

bound is determined for the ratio values . The basis value is then obtained from

multiplying the bound by the prior value . This method is often overly noncon

servative .

Determination of Basis Values - Nonparametric Bayesian Method

The nonparametric Bayesian basis value is obtained from the following .
Let

represent the current empirical data which the basis value is to repre

{ xi }i

sent and{t}} the prior data obtained from test results or an assumed cumula

tive distribution function ( CDF ) F ( t ) .

Posterior Distribution

The posterior distribution using Bayes rule can be written as

Fr (tfxz * 2 ! < Sx,((-60,t))
( 1 ), X2 ... Xn ) = all - o0 ,

O (R ) + M

where n is the sample size of the current empirical data set and 2 ( R ) is the

prior data sample size . Sx [ ( - 0 , t ] ) represents the number of values from the

prior distribution less than or equal to t which are determined from the equal

ity between the corresponding ordered value of the CDF's and the quantile of t .
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Sell - o , t ] ) represents the number of current empirical data values x less

than or equal to t determined from the equality between their corresponding

combined ordered values of the CDF's of x and t and the quantile of t where Sx

represents the measure giving the mass of one to the point x .

Equation ( 1 ) can be rewritten in the following manner , if

Fo ( t ) = all t] ) /( R ) , ( 2 )

represents the prior CDF and

( 3 )

represents the current empirical data CDF , then

Fr ( t Xp • * 2 . • *x ) = 1 ESX --0, t ] )

xon ) = Pn Fo (t ) + ( 1 - Pn)F,(t/xz, xz , Xn(t x

(4)

represents the posterior shown as the weighted ordered array of CDF's , where

KIR)

KIR )+

( 5 )
n

determines the weight for the prior and current data . By inverting the

CDF's in Equation ( 4 ) , a value of t can be obtained corresponding to a specified

quantile .

Illustrations

A few simple examples will show the relative ease in obtaining the posterior

distribution F
nº

Let t : 1 , 2 , 3 , 4 , 5 , and F
.2 , .4 , .6 , .8 , 1.0 ,

X : 1 , 2 , 3 , 4 , 5 , and F.

n
: .2 , .4 , .6 , .8 , 1.0

Since Folt : P. F.

n 0
+ ( 1 PMFnin (tx2,X2 An )

Fn ( 1 1 , 2 , 3 , 4 , 5 ),Then ( .5 ) ( . 2 ) + ( .5 ) ( . 2 ) = .2
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This is the estimate for first ordered value for x obtained from a good choice

for the prior to

If t : 1 , 2 , 3 , 4 , 5 and F 8

.2 , .4 , .6 , .8 , 1.0 ,

x = 6 , 7 , 8 , 9 , 10
and

Fm ..2 , .4 , .6 , .8 , 1.0

( 1.0 ) ( . 5 ) + ( .2 ) ( . 5 ) 3.6Then
F.(6 6 , 7 , 8 , 9 , 10)

This is a poor estimate since .2 is the correct result . An unacceptable prior

produced this result . The CDF value for t = 1 using the above data is

F.(1 6 , 7 , 8 , 9 , 10 ) 1.2 ) ( . 5 ) = .10

A Bayes estimate of the mean can be obtained as follows ,

if Mo is the mean determined from a prior data set and xn is the mean of

current sample of test results , then the Bayes mean value for x,xn
is

X2 xn Polo •
( 6 )

where P. is defined in Equation ( 5 ) .

Nonparametric Tolerance Limit on the Bayesian Quantile Estimate

Since a basis value as described previously requires a tolerance limit on

the quantile estimates, the following describes the process for obtaining that

limit . Initially , a random sample Fly ) of size M : 2 (R ) + n is assumed inde

pendent of the mixture of the prior and empirical data sets shown in Equation

( 4 ) . By ordering the sample Fly ) , the following Y ( 1 ) • Y(2) Y(M ) values are

obtained . The probability density function for Y (0 : 1 < i < M can be written

UM- )

근

f x) .

( 1 -u ) M – 1

T ( M ) Z ( 1-7)

r (um ) r ( ( 1 -UM)

( 7 )

20
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where 2 ( 1 )

Ply, – y* )

? ( 1 ) • FlY ( 0 ) )) and i = UM with u representing the CDF value corresponding

to i . The tolerance limit y* for y, is defined as ,
q

: 1

2 = P[F (yg ) Fly* ) ]
th

where y is the 1000 percentile of y . Since

( M 1
q

UM -

m Z

Ply yo

ya

.S>
11 - z )'' -4 ) -,I

r (um ) r ( ( 1 - u ) M )

dZ ( 8)

from Equation ( 7 ) , then a 1 - 2 tolerance limit on yg can be obtained from the

following solving for u :

f ( z ) dz - 1-2 ,

(9)

where f ( z ) denotes the integrand in Equation ( 8 ) .

In the case of the ' B ' basis computation , a : .05 and q = .10 . Equation

( 9 ) can then be written as ,

, 10

S

( 1 - UM - 1
UM- )

) ( 1-2)
dz : .95 ( 10 )

r(um) ( ( 1 - u ) M )

See Table I for tabulation of u and M values that satisfy Equation ( 10 ) .

If , for example , UM = 1 and u = .034 , then

.10
M- 1

S +(z) = (mm) -(690)
= .95 ( 11 )

and M = 29 , that is PlY.10 · Y ( 1 ) ) 2.95 . The tolerance limit is then the

first ordered value Y ( 1 ) for the sample size of M = 29. A ' B ' basis value can
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now be obtained from the CDF in Equation ( 4 ) by the following procedures .

Solving for u in Equation ( 10 ) determines the lower tolerance limit of the CDF

of sample size M and from some distribution F (y ) where the i = uM .

Obtaining a lower ordered CDF value from Equation ( 4 ) that is approximately

th
equal to u determines the 1 - o tolerance limit of the p quantile of the

posterior CDF for a sample size M.

Example:

30

If there is only prior data {t; 3.3 and a ' B ' basis value is required where

t ;
5 , 6 , 7 , 8 , 12 , 16 , 20 , 25 , 40

and

Fo ( t ) .033 , .066 , .099 , 1.0

then for M = 30 , u = .034 from Table I..034 from Table 1. The basis value t .
t ;

is determined

from an approximate solution of u F ( tz ) resulting in tti 5 ; therefore , the

first ordered value of the prior represents the ' B ' basis value , which is the

same as the nonparametric quantile sign test[11] result , when the sample size is

30 .

O

Basis Property Values Nonparametric ( HK) Process

A nonparametric procedure ( HK ) [ 8] for estimating tolerance limits is intro

duced for computing the ' B ' basis value for any sample size > 2. The method is

a modification of Hanson -Koopmans
[ 12 ]

process . The modification has reduced the

excessive conservatism in computing property values when compared with the

original HK method .

The method involves the following . Let X2 : Xn be the order statistic of

an independent and identically distributed sample from a continuous distribution

F. Assume that F is log-convex , that is log F ( X ) is a convex function . The

class of log -convex functions includes a large enough group of distributions so
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that following procedure involving log -convex functions can be considered non

parametric .

The lower tolerance limits of the form

T

rs
Tps

: K x
Xp + ( 1 - K ) xs ( 12 )

can be obtained where r < s and K > 1 . When T

Trs is used with positive data

values , negative tolerance limit can be obtained which are not valid if the

distribution F is zero for any negative values . A practical solution to this

problem is to apply the Hanson -Koopmans approach by taking the log of the data

X , that is ,

T

rs

(1
3
)

TK log x Xr
: X

( * )*r

= k log xr + ( 1 - K ) 10g xs

and then obtain by exponentiation the following

+ ell - K ) log xs x ;
( 14 )

Xs

For most distributions of interest, Tij still provides conservative tolerance

limits , although technically Tij is valid for a class of distributions smaller

than the 10g-convex class corresponding to Tij .

In order to determine the ' B ' basis value , the i , j , and K values are

obtained for a given n are shown in Table II .

O

Weibull Model Property Values Pooling Data For Shape Estimate

A Weibull method was introduced by
[ 9 ]

in order to obtain ' B ' basis material

property values for various tests and conditioning processes of composite mate

rials . Although the Weibull scale parameters can differ depending on the type

of test or condition , the within sample variances are usually similar . By this

assumption , the data from the various sources are pooled in order to determine

an approximate population shape parameter c * for the Weibull distribution . In

order to obtain a basis value for some specified smaller data set y ( usually
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from tests and conditioning that requires considerable expense ) , the following

2

relation is applied :

'B' = By[- 1n( 0.90 ) }/ 2 *[2n/ X.95( 2n)]!! *
( 15 )

where the quantity 7.95 is the .95 Chi -square quantile with 2n degrees of

freedom , and n is the number of y values . By is the Weibull scale parameter

estimated from the smaller sample of size n . Equation ( 15 ) is not valid unless

can be adequately represented by a large enough sample to provide a good

approximation to the true value . The data is obtained from various tests

( tension , compression , and shear ) and conditionings ( hot , cold , hot -wet ) in

order to obtain the value < * .

The Pooling Process

In order to effectively apply the previously discussed methods , a moderately

large data set ( n > 30 ) is suggested . This is accomplished by pooling a smaller

set S ( limited available data ) of size ns with a larger set L ( from prior test

ing ) of size az In the HK process the objective is to represent s with com

bined data sets S and L of sample Sp with size m = niL + ns obtained from S and

L. In the Ferguson's Bayes method the prior is represented by L and the empiri

cal data by S. The Weibull analysis method obtains information for estimating

the population shape parameter o by pooling S and L and using S to determine

the scale parameter B.

Ideally , if the mean of S and L are equal and their variances are also

equal , then pooling could easily be justified . If the mean values differ , then

a normalizing procedure combined with an equality of variance test is required .
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This involves representing S and L by the distributions S* and L* with means

equal to zero , that is , let

s
S* =

I
l
l
e
s

and ( 16 )

L* =
L - ī

L

는

where S and L are means of the S and L data values . A schematic of this

transformation is shown in Appendix A. The variance equality between S and L

requirement is stated as ,

VAR[S*] = VARIL * ] . ( 17 )

In order to determine if equality of variance exists , the Siege ! - Tukey

nonparametric rank sum method[ 13 ]
was applied . The process involved combining

S* and L* values into a single ordered array and assigning low ranks to extreme

observations and high ranks to central observations . That is , assign rank i to

lowest number of the sequence , ranks 2 and 3 to the two highest values , then

ranks 4 and 5 to the next two lowest . This process is continuedi until alle

numbers in the sequence have been assigned a rank Ri . Note , for add number off

values , the middle value is not counted so that the highest rank is even . In

the ranking process , knowledge of the assigned values from S* and L* must be

retained .

The sum (R ) of the ranks is obtained for either S* or L* . Usually , the

smaller data set is selected in order to reduce the amount of computation . Rs

obtained from the S* ordering can be written as ,

Rs . ER
Ri where i depends on ordering of ranking for S*
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The hypothesis test for VAR[ S* ] = VAR [ L* ] involves applying the Wilcox Rank Sum

( two sample ) test
+ [ 13 ]

as follows . In order for the hypothesis to be accepted ,

then

Rs > Rc , where Rc is ( 18 )

a critical value obtained from tables in Reference ( 13 ) . The values are tabu

lated as a function of ns , NL , and a specified significance level . For example ,

a 10% significance level would represent a two sided test with a 5% to 95%

interval of acceptance . If RcIf Rc > Rs , then reject the hypothesis .

An example showing application of the above procedures is as follows ,

If sample from S* : 5 , 8 , 10 , 19 , 25

and If sample from L* : 4 , 9 , 12 , 14 , 16

then

Score 4 5 8 9 10 12 14 16 19 25

Sample L* S* S* L* S* L* L* L* S* S*

Rank 1 4 5 8 9 10 7 6 3 2

and RS = 4 + 5 + 9 + 3 + 2 = 23

= 19 for ns = "LThe critical value from the tables is Rc
= 5 with significance

level of 10% ( a two sided 5% level ) ; therefore , since Rs > Rc , there is no

significant difference in the variances between S* and L* at the 10 % level .

' B ' Basis Values for S* and S from Pooled Data

Bayes Solution

If the transformation ( Equation ( 16 ) ) has been applied and the equality of

variance is established between S* and L* , then ' B ' values can be obtained using

the combined data sets from both S* and L* . In the Bayes application let the

smaller sample x ( newly obtained data ) to be represented by the S* values and
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*

the larger sample t ( the prior ) by 1* . The approximate solution to u ~ F( ;

for j determines the ith ordered value representing the ' B ' basis value ( s

when u is obtained from the solution in Equation ( 10 ) .

" В

Nonparametric HK Method

The nonparametric [ 8] solution for obtaining ' B ' basis values involves pool

ing the values from S* and L* and letting the resultant array of values be x in

头*

Equation ( 14 ) with sample size m = ng + "L •nz Let this value be denoted Sp . This

method is very simple to apply yet provides accurate results for any sample size

greater than 2 . The basis values for S* is not sufficient since S and L were

the original data sets involved in the analysis . Therefore , the following

transformation is required :

#

: + 5
Š.95

( 19 )

where Sp is the required basis value for the small sample S. The 5 values

.95

represent the lower 95% confidence value for the mean of the S values . The

purpose of applying Ŝ
.95

was to prevent a situation where the required 95%

coverage was not obtainable due to variability in estimating the mean of s .

Sp values were consistently less than the 10% point , 95% of the time (defi

nition of ' B ' values ) . The results from both simulated and actual test data

showed on occasion excessively low Sp values , but the coverage was maintained

which was not necessarily so when I was substituted for 5.95 in Equation ( 19 ) .
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Weibull Method O

Estimating Population Shape Parameter

In Equation ( 15 ) the pooled estimate < * is obtained from the maximum

and L wherelikelihood estimator ( MLE ) using combined data sets S

*B

S/ and

p

% = LIÊ

る Ŝs and Å are the Weibull scale parameter estimates for S and L respectively .

If a basis value for S is required , then , after the initial equality of variance

between s

SA
and

LA
is established , the value can be obtained from the follow

ing :

' B's - Rst- 1n(0.90)}"'« * [ an/ 7.95 / 2n ) ] // **
( 20 )

In Appendix B a flowchart is shown summarizing the ordered procedures required

for applying methods described in this report .

Results and Discussions

In Figure 3A , the ' B ' basis value results are shown for the small sample S

with or without a contribution in the variance estimate from large sample L.
NB

is the nonparametric Bayes solution where the prior is represented by L with

sample size of
nL = 30 and empirical data by S with size ng = 6. The HK values

represent the modified Hanson - Koopmans method results where L and S are pooled .

W ( 6 ) and W ( 36 ) represents the property values obtained from the Weibull analy

sis [2 , 3]
with a sample of 6 and 36 respectively from S. The HK ( 36 ) was deter

mined from the modified Hanson -Koopmans method with 36 values from S only . The

data was obtained from randomly selecting samples from Weibull distributions

with scale p = 100 , and a randomly selected shape parameter al from a uniform

distribution . The range of al values were from 5 to 25 for L. The S distri

bution shape parameter as was 15. By introducing the variability in all
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evaluation of the equality of variance test can be made with respect to accepta

bility in pooling of L and S and using Las a prior in the methods . The NB , HK ,

and W ( 36 ) ' B ' basis values show the required coverage , that is , 95% of the ' B '

values are equal to or less than the 10 % point of the population distribution .

The results are exceptionally good in that they are almost exactly what is

required without being either overly conservative or nonconservative in addition

to verifying the acceptability of the equality variance test . W ( 6 ) and HK (36)

are slightly conservative because of the lower estimate measured from the true

10% point . The W ( 6 ) = 82.2 is not excessively conservative for ns = 6 , although

using data from a Weibull model could have been helpful . The Weibull result

W ( 36 ) should be a good estimate since the 36 values came from a known Weibull

model 6 = 15 , R = 100 . The fact that NB and HK provided equally good results

shows the methods can provide ' B ' values for a small sample , which are equiva

lent to those values obtained from a much larger Weibull sample , when pooling

the large and small samples . N ( 6 ) , basis value obtained from the normal

model [ 1 , 2 , 3 , 4 ] , result is nonconservative with ' B ' = 87.5 , although it is not

excessive for n = 6 .

In Figure 3B the range of ' B ' value results are shown with HK ( 36 ) and W ( 36 )

having significantly less variability than the other methods . This is due to

the much larger sample size which is available to estimate directly the ' B '

value . W ( 6 ) and N ( 6 ) have an excessively large amount of variability ( a range

of 45 to 95 ) which is due to the instability ( see Figures 1A and 1B ) in estimat

ing the parameters required to compute basis values from the small sample sizes .

The NB and HK solution show less variability ( a range of 55 to 92 ) than W ( 6 ) and

N ( 6 ) , but is still quite large due to the inability to estimate the mean value

from S for 6 data values when the reverse transformation is made in Equation
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( 19 ) . If the normalization process was not required ( L and S from the same

population ) , then variability in NB and HK can be reduced by applying pooled

non -normalized data to obtain mean value in the reverse transformation .

The experimental test results used in the analysis shownthe following fig

ures were obtained from published data in [ 14 ] . In Figure 4A , both S and I are

from the same population of short beam shear tests applied to Narmco composite

material . The NB and HK basis values were obtained by substituting the 5
.95

value in Equation ( 19 ) by Mn from Equation ( 6 ) for the reverse transformation

described in Equation ( 16 ) . The results in Figure 4A show excellent agreement

between the 10% point and the 95th percentile of the basis values for NB , HK ,

N ( 6 ) , and HK (36) .

In Figure 4B , variability in the basis value for NB and HK is very small

relative to W ( 6 ) and N ( 6 ) indicating the desirability of the proposed nonpara

metric methods . With S and L from the same population permitt Body the applica

tion of in Equation ( 19 ) . This resulted in a more stable less conservative

basis value since the Bayes estimator is determined from more information

file

in

than S.

In Figure 5A the ' B ' basis values were obtained from 1,000 random samples of

short beam shear test results . The material was manufactured by the Hercules

Co. , Utah . In all cases the coverage was obtained ( all ' B ' values less than the

10% point ) , although they were somewhat conservative . NB and HK were approxi

mately 9.2 where the 10% point is 9.8 . The W ( 6 ) value of 8.6 was exceptionally

low . The 6% difference between 10% point and the basis value obtained from NB

and
HK analysis is much better than the 14% difference determined from W ( 6 ) .

In Figure 5B the ranges are much smaller for NB , HK , and HK ( 36 ) when com

pared to W ( 6 ) and N ( 6 ) , which again shows the advantage of having more data
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available by combining the Land S samples . A low value of 7 and the highest of

9.5 from NB and HK is much better than 4.2 to 9.2 from W ( 6 ) method .

The NB and HK methods were very effective as shown in Figure 6A in obtaining

a ' B ' basis value for crossply tension test results (manufactured by Narmco )

when combining with prior available unidirectional tension data . The N ( 6 )

estimate also provided desirable coverage . Figure 6B shows less variability in

basis value estimates for the NB and HK procedures when compared to the small

sample W ( 6 ) and N ( 6 ) methods . The reduction in the variability in the ' B ' value

is the primary advantage of using NB and HK methods when compared to the W ( 6 )

and N ( 6 ) analysis results , although reducing the model identification issue is

also desirable .

Figure 7A shows excellent results for the NB and HK by providing ' B ' values

almost equal to the required 10% point . W ( 6 ) basis value is overly conserva

tive , and N ( 6 ) and HK (36) do not meet the required coverage rate by having

values somewhat greater than the 10% point . The results demonstrate the advan

tage of the NB and HK methods being a nonparametric procedure in determining

basis values for data obtained from relatively expensive ( unidirection small

sample ) test methods by pooling the data with less expensive ( short beam shear )

coupon test results .

Figure 7B shows the relatively small variability in the ' B ' estimate from NB

and HK and HK( 36 ) when compared to the small sample procedures W ( 6 ) and N ( 6 ) .

The ' B ' basis results from the crossply compression data using additional

data obtained from a very simple and inexpensive short beam shear testing proce

dures are shown in Figure 8A . The NB and HK methods show less conservative ' B '

estimates than W ( 6 ) . The ' B ' values from W ( 6 ) are somewhat conservative with
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N ( 6 ) results showing good agreement with the 10% point . The variability in ' B '

values in Figure 8B is similar to prior results in Figure 7B .

The crossply compression ' B ' values from sample of 6 Narmco material using

the additional 30 short beam shear data values from the material made by the

Hercules Co. are shown in Figure 9A . The NB and HK results are about 5% below

the 10% point which is not excessively low . Although excellent coverage was

obtained for N ( 6 ) , extensive variability in the basis value results is shown in

Figure 9B .

The results in Figure 10A show , for large sample of 90 and small sample of 6

obtained from random Weibull samples , excellent agreement between the 10% point

and the estimated ' B ' basis values . The exception is the SHB method ( see Equa

tion ( 20 ) ) which fails to provide the proper coverage . This result is probably

due to the instability in estimating scale parameterſ from a small sample of 6

values . If a lower 95% confidence was obtained for $ , then the SHB method.
could possibly provide satisfactory results . The similar results shown for both

رم

W ( 6 ) and W ( 96 ) show that if the Weibull analysis , even for small samples , is

applied to data from the Weibull population of data , accurate ' B ' basis values

can be obtained that provide the coverage and also are not overly conservative .

Results in Figure 10B show a value of 42 for W ( 6 ) could be obtained compared to

the 85 for the 95 percentile . Although acceptable coverage for W ( 6 ) was

obtained which was possibly due to the use of known Weibull data , the variabil

ity is substantial in the basis value estimate . Since it is impossible to

correctly identify models for small samples , it is suggested the nonparametric

methods ( NB and HK ) in this paper be applied since the methods do not require

prior knowledge of the assumed distribution . The SHB method shows relatively

low variability in estimating the basis value but does require knowledge of

distribution ( eg . , Weibull,normal) .
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Conclusions

Efficient tolerance limits ( ' B ' values ) can be obtained for small samples of

composite material strength data when pooled with a much larger data set of

similar material but obtained from potentially different mechanical properties .

Ideally , both small and large data sets should be obtained from the same test

and material in order to maximize the effectiveness of the proposed methods .

The proposed methodology resulted in reducing the overconservatism and excessive

variability obtained from using only the smaller sample in computing the toler

ance limit .
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Appendix B : Criteria for Combining Data S and L

sas -
Transform data S and L

to

common mean = 0

c
o
l
i
s
i

ELT

NO

Test
Do not

combine

data
VAR (S5 = VAR(L )

YES

Weibull

Combine data

as required for

methods

Compute
basis value

from

pooled data

Nonparametric
Method

Compute basis value

for S and L

Compute the 'B' value for

small sample size S
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Table I : M and u Values for Bayesian Basis Value Computation

M U M u M u M u

1 0.021953 51

2 0.017855 52

3 0.016529 53

4 0.016140 54

5 0.016199 55

6 0.016516 56

7 0.016997 57

8 0.017590 58

9 0.018264 59

10 0.018996 60

11 0.019769 61

12 0.020570 62

13 0.021391 63

14 0.022223 64

15 0.023060 65

16 0.023897 66

17 0.024729 67

18 0.025554 68

19 0.026368 69

20 0.027171 70

21 0.027959 71

22 0.028734 72

23 0.029491 73

24 0.030233 74

25 0.030959 75

26 0.031666 76

27 0.032361 77

28 0.033033 78

29 0.033695 79

30 0.034339 80

31 0.034967 81

32 0.035577 82

33 0.036172 83

34 0.036754 84

35 0.037328 85

36 0.037884 86

37 0.038420 87

38 0.038952 88

39 0.039461 89

40 0.039964 90

41 0.040459 91

42 0.040944 92

43 0.041409 93

0.041864 94

45 0.042314 95

46 0.042751 96

47 0.043182 97

48 0.043596 98

49 0.044009 99

50 0.044413 100

0.044804 101 0.057686 151 0.064302

0.045192 102 0.057856 152 0.064395

0.045565 103 0.058023 153 0.064514

0.045937 104 0.058188 154 0.064609

0.046301 105 0.058352 155 0.064717

0.046648 106 0.058517 156 0.064814

0.046996 107 0.058670 157 0.064912

0.047339 108 0.058837 158 0.065010

0.047673 109 0.059006 159 0.065099

0.048011 110 0.059156 160 0.065193

0.048318 111 0.059313 161 0.065273

0.048642 112 0.059454 162 0.065382

0.048945 113 0.059619 163 0.065462

0.049255 114 0.059761 164 0.065555

0.049563 115 0.059914 165 0.065658

0.049848 116 0.060051 166 0.065734

0.050144 117 0.060192 167 0.065822

0.050421 118 0.060344 168 0.065910

0.050695 119 0.060480 169 0.065996

0.050968 120 0.060628 170 0.066108

0.051238 121 0.060754 171 0.066192

0.051506 122 0.060883 172 0.066277

0.051771 123 0.061031 173 0.066384

0.052034 124 0.061162 174 0.066449

0.052284 125 0.061292 175 0.066530

0.052530 126 0.061420 176 0.066613

0.052773 127 0.061547 177 0.066705

0.053017 128 0.061679 178 0.066789

0.053244 129 0.061802 179 0.066872

0.053479 130 0.061933 180 0.066934

0.053702 131 0.062065 181 0.067007

0.053932 132 0.062179 182 0.067098

0.054160 133 0.062293 183 0.067176

0.054375 134 0.062430 184 0.067258

0.054600 135 0.062553 185 0.067333

0.054808 136 0.062667 186 0.067418

0.055017 137 0.062784 187 0.067486

0.055221 138 0.062894 188 0.067569

0.055435 139 0.063010 189 0.067628

0.055634 140 0.063128 190 0.067720

0.055831 141 0.063245 191 0.067794

0.056024 142 0.063344 192 0.067871

0.056215 143 0.063459 193 0.067952

0.056417 144 0.063550 194 0.068022

0.056599 145 0.063666 195 0.068103

0.056781 146 0.063763 196 0.068178

0.056960 147 0.063899 197 0.068237

0.057153 148 0.063985 198 0.068315

0.057332 149 0.064101 199 0.068388

0.057502 150 0.064197 200 0.068459

44
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Table II : Modified Hanson-Koopmans Constants for Basis Value

n
r S k

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4

5

5

6

6

6

7

7

7

8

8

8

8

9

9

10

10

10

11

11

11

11

11

12

35.177

7.859

4.505

4.101

3.064

2.858

2.382

2.253

2.137

1.897

1.814

1.738

1.599

1.540

1.485

1.434

1.354

1.311

1.253

1.218

1.184

1.143

1.114

1.087

1.060

1.035

1.010

1

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

12

12

12

13

13

13

13

13

13

13

13

14

14

14

14

14

1.373

1.344

1.315

1.270

1.245

1.221

1.197

1.174

1.151

1.129

1.108

1.083

1.064

1.045

1.027

1.009

1
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Abstract

The U.S. Army Ballistic Research Laboratory has been research

ing innovative methodologies directly applicable to the problem of tar

get value analysis ( TVA ), i.e., assigning values to targets for the purpose

of developing an optimal target engagement ordering. The problems

associated with assigning target values as an aid in target selection have

been examined by many approaches, by both other government agen

cies and contractors. Here the question is examined from the standpoint

of optimizing some utility function. Expected values of utility functions

are derived in terms of the two chosen research parameters, rate of fire

and probability of kill, using stochastic techniques. In the case of two

enemy targets, an optimal ordering for all utilities investigated is

obtained. Some special cases of utilities are considered and the results

generalized for an arbitrary mix of targets.
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1. Introduction

The problem of assigning values to targets as an aid in target selection has been exam

ined for over a decade by many approaches, e.g., Fire Support Mission Area Analysis, US

Army Material Systems Analysis Activity military worth study, classification tree methodol

ogy (another approach being pursued by the US Army Ballistic Research Laboratory (BRL)) .

During the summer of 1988, Dr. Douglas H. Frank, Associate Professor, Department of

Mathematics, Indiana University of Pennsylvania, worked with Ann E.M. Brodeen, one of the

BRL's principal target value analysis ( TVA ) investigators, to consider a probabilistic

approach to the problem . (Dr. Frank was assigned to the BRL under the sponsorship of the

US Army Summer Faculty Research and Engineering Program .)

Target values are assessments keyed to the enemy's perception of the functions of its

assets; TVA is the methodology which identifies potential high value target sets, i.e., assets

which the enemy threat commander requires for the successful completion of his mission ,

within the given tactical scenario . These targets, if successfully countered, can provide the

friendly force with a tactical opportunity. Although the TVA process may include complex

algorithms, it should be simple enough for the user, i.e., the soldier, to understand. Simply

put, he must be able to influence the process in order to meet the specific needs of his com

mander. For the field artillery to remain responsive, the soldier must be able to change target

priorities as quickly as the tactical situation changes and be able to interpret the overall

impact that such changes may have on the outcome of the operation .

Although TVA is a very subjective issue, the intent of this research was to show that

assigned target values can bebased on mathematical models. Two objectives were defined for

the proposed study: 1) define a value for each enemy target in a target array such that a tar

get engagement sequence can be determined, and 2) evaluate the target engagement

sequence from the standpoint of optimizing an expected utility function based on a desired

tactical outcome.

Details of the BRL's probabilistic approach to target value analysis based on a random

battle scenario are outlined in this paper.

2. The Battle

In our earlier research, we considered target engagement orderings to maximize the out

comes of a simple battle in which both the friendly fire unit and the enemy targets fired

simultaneously. Here, battle outcome probabilities and optimal engagement orderings are

considered in a manner similar to that of the simple battle ( 1,2) .

The random battle is between a single friendly fire unit and a group of enemy targets.

Each enemy target as well as the friendly fire unit fire independently and at a rate of fire that

is exponentially distributed with different mean rates and removal, i.e., kill, probabilities. The

kill probabilities are constant from volley to volley for both the fire unit and each enemy tar

get.
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2.1 Parameter Selection

Subject matter discussions held with MAJ William T. Dougherty, Field Artillery Coordi

nation Officer assigned to the BRL when the TVA probabilisticapproach was initiated, led to

the selection of target vulnerability and target threat as the parameters of interest. When

considering an enemy target's value, it is natural to characterize this value by the ability of the

friendly fire unit to remove the enemy target within some time frame, ie., target vulnerabil

ity, as well as by the ability of the enemy target to achieve its objective within that same time

frame, i.e., threat.Removal of the enemy target is considered to be either its complete des

truction or the infliction of a level of damage severe enough to abate the target's contribution

to the enemy force given some particular tactical scenario. The objective of the enemy target

might also be either the destruction of the friendly fire unit or the infliction of a severe level

of damage upon it. (It should be noted that the definitions of the parameters developed by

the principal investigators are in the interest of the research and may not be in accordance

with those of the field artillery community.)

2.2 Two Target Battle

We first derive results for a battle with two enemy targets and then extend the results to

T targets.

Consider the following parameters for targets i = 1, 2 :

PB,= probability of friendly fire unit removing target i

PR = probability of friendly fire unit being removed by target i

Bi = mean rate of fire of friendly fire unit against target i

Pi = mean rate of fire of target i against friendly fire unit

:
B; = B ;P friendly fire unit firepower against target i

( vulnerability of target i )

R ; = PiPR = target i firepower against friendly fire unit

( threat of target i )

We first show that the results of the classic stochastic duel can be extended to a battle

between a single friendly fire unit and two enemy targets [3,4] . We assume target 1 is engaged

until it is removed before target 2 is engaged. The battle concludes when either the friendly

fire unit is removed or it has removed both targets. For our purposes we define a victory as

the removal of both targets regardless of whether or not the fire unit survives.
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If a target w has a mean rate of fire r and a kill probabilityp, then the probability of not

killing the target in some time h is

Qw (h ) = exphp . ( 1)

Eq. ( 1) will hereafter be referred to as Lemma 1. The following proof is offered .

Let X be the number of volleys fired during some time h. Then X has a Poisson distribu

tion with mean rh .

-rh ( rh)e

Q „ (h ) = E ( 1 -p )*
x !

x = 0

= ethern ( 1 -P )

= erhp .

( 2)

Our Lemma 2 states that in a battle with two enemy targets, the probability of the friendly

fire unit removing target 1 before being removed is

B

P [ 1 | NOT] (3 )

B, + R , + Ry

Lemma 2 is proved as follows. Divide the time of battle into units of length h and consider the

absorbing Markov process formed (5) . From this process the probability of the event occur

ring is

P,[1|NOT]= { [ 1 - Op, (h)]© ,(h) QR,(n))? (Q5,(h)Qr,( )Qx,( ))*
s = 0

[ 1 - QB, ( h )] QR,(h ) QR,(h )

1- ( QB, (h ) QR, ( h ) QR, (h ))

(4)
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Applying Lemma 1, we obtain

to (p PRL + ZPR) (BPg,+ PPR + ZPR)
e • e

P , [1 | NOT] = (5)

h(B,PB, + A PR +PPR
1 - e

B
Y

P [ 1 |NOT] = lim Ph [1 | NOT]
3

B , PB B

B,PB,+2 PR,+82 PR B + R + Ry

(6 )

h-0

In a battle between the friendly fire unit and target 2, the probability of destroying the

target is

B2

P [ 2 ]

(7)

B , + R

Lemma 3 is a well-known result [4] .

Theorem 1 defines w, the number of targets destroyed. The density of w is

R, + R

f ( 0 ) f( 1 )

B,R2

( B, + R, +R) (B +R)B, + R, + R

f ( 2 )

B, B2

(B , + R + R2) ( B + R )

( 8)

The event w = 0 is the complement of the event stated as Lemma 1. Because the battle is a

Markov process we have

f ( 1 ) = P [ 1 | NOT] :( 1 - P [ 2 ] ) and f( 2 ) = P [ 1 | NOT) .P [ 2 ] . (9)

The result follows from Lemmas 2 and 3.
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2.3 Multi Target Battle

Suppose there are T targets which are engaged in numerical order. We extend the

definitions of B ; and R , for i = 1, 2, ... , T.

T

Define Ş; = ER;, So = 0 , and Bo = 1. ( 10)

j = 1

The proof of Theorem 1 can be easily generalized. If w is the number of targets removed in a

battle with T targets, Theorem 2 states that the density of w is

W

B : Sw + 1

I
if w < T

B ; + S; Bw + 1 + Si = 0 W + 1

f(w ) =

(1
1
)

T

B;

II
if w = T

B ; + S;
i = 1

3. Evaluation Criteria

In general, decision makers such as gamblers, baseball managers, insurance companies, and

others engage in what is colloquially refered to as " playing the percentages", characterized by

a preference for the optimal act that yields the greatest long -run average profit. That is , the

optimal act is the one that would result in the largest long -run average profit if the same deci

sion were to be made repeatedly under the same conditions; as the number of repetitions

becomes large, the observed average payoff approaches the theoretical expected payoff. How

ever, many important decisions are made under unique sets of conditions, and it may not be

realistic to think in terms of many repetitions of the same decision situation. Indeed, many of

the field artillery commander's most important decisons are unique, high -risk situations,

whereas less important, routine decisions are ones that may be delegated to subordinates.

Therefore, it is useful to have an apparatus for dealing with one-time decision making.

Utility theory provides such an apparatus, as well as providing a logical method for

repetitive decision making. The term "utility" as conceived by Von Neumann and Morgen

stern ( 1947) is a measure of value used in the assessment of situations involving risk, which

provides a basis for decision making. Different sets of axioms that imply the existence of utili

ties with the property that expected utility is an appropriate guide for consistent decision

making are presented in Von Neumann and Morgenstern ( 1947), Savage ( 1954) , Luce and

Raiffa (1957), Pratt, Raiffa, and Schlaifer ( 1965 ), and Fishburn ( 1970).
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3.1 Construction of Utility Functions

The different algorithms for determining target values do not always yield the same tar

get engagement ordering. This poses the obvious question of which approach should be used.

The desired approach would be the one whose target ordering provides the " best" result.

However, if " best" is interpreted as " total victory", and if T, the total number of enemy targets,

is large, then " victory" for a single friendly fire unit would quite likely be a rare event. Thus,

additional criteria shall be considered for assessing " best" results.

Recall that the overall objective is to assign a value to each enemy target to determine

the order in which to engage the targets. This order should be chosen to maximize some

desired result of the battle. Therefore, consider a utility function, U, of the number of targets

removed, W , by the friendly fire unit during the battle . This function should depend on the

battlefield scenario as well as the desired battle objective of the friendly fire unit. Assume

that U ( W ) will be non -decreasing, U(0) = 0 and U ( T) = 1.

Generally, U(H) is assigned over a continuous range of possibilities; however, special

liberty has been taken in the analysis of the utility functions discussed below . Since each of

theseutility functions is based on the mathematical models assumption that an enemy target

either survives or is completely removed from the battle, these functions are evaluated only at

discrete points.

3.2 Utility Based on Total Victory

If the goal is to remove all enemy targets, then we wish to maximize f(T) . This is an

extreme example of a convex funtion.

ro, if W < T

U1 ( W )1-4

(1
2
)

if W = T.

B, BT

Note that f( T)
3

( B, + S, ) --- (Br + S )

+

Since the numerator is the same for all permutations, we must minimize the quantity,

T

II ( B ; + S;) .

i = 1
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3.3 Utility Based on the Number of Hits

If hitting all targets is not essential, and all targets are equally important, we may wish to

maximize the number of targets removed.

W

U2 (W)
=

( 13)

T

T

W

For utility two we wish to maximize 2 for f ( w ) .

T
w = 1

3.4 Utility Based on a Reduction in Threat

Lemma 2 shows that the combined threat of an array of targets acting as a single target

is the sum of their individual threats. Thus, in removing w targets, we reduce the overall

threat from S, to Sw + 1

Sw + 1

U3 ( W ) = 1

s,

(1
4
)

where we define St + 1 0. Note that U3 (W ) depends on prioritizing the targets according

to VAL 3, whereas utilities 1 , 2 and 4 are not dependent on any specific target value algo

rithm .

3.5 Inflective ShapedUtility

In many battles the enemy can be halted when it loses only a small proportion of its

forces. In these cases an inflective utility function seems appropriate. For convenience we

consider an extreme example of an inflective type function .

ro,
if w<.3T

U4(W) ( 15 )
1 , if W > .3T
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4. Values Based on Two Targets

For two enemy targets there are only two possible permutations: 1,2 or 2,1. The utility U

will be determined by the utility for target 1, that is, U ( 1 ). We will derive a generic target

value algorithm for all utility functions and examine the four special cases from Section 3.

4.1 General Optimal Results

Suppose U ( 1 ) = c is the same for either target permutation. Let E, (U ) and E2[ U ] be

the expected utilities for the orderings 1,2 and 2,1, respectively. From Theorem 1

E [ U ]

B (cRy + B2 )

( B, + R + R ) (B2 + R )

and

B2 ( CR, + B. )

E [U]

(1
6
)

( B2 + R2 + Rx ) ( B , + R, )

Setting E, (U ] > E, [U ] and simplifying, we obtain an inequality concerning the threat and

vulnerability for each target.

We now state Theorem 3. E, [U ] > EQ [ U ] if and only if

B, ( B + R ) B2( B2 + R )

( 17)

( B , + S ) ( cR, + B ) ( B2 + S ) ( cRy + B2 )

where S = R, + R , is a constant representing total enemy firepower.

Theorem 3 gives us a generic target value algorithm for utility c. The value of a target

with threat R and vulnerability B relative to a utility c is

B ( B + R )

( B + S ) (cR + B )

(1
8
)

The shortcomings of this definition are the presence of S which depends on the entire

array of targets and the limitation to utilitites which are independent of target orderings. One

approach is replace S by 2R (where S is based upon knowledge about target 1 only). We do

not recommend this since optimality is not guaranteed. We will see in some of the special

cases that an equivalent value without S can be obtained .
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To overcome the second objection, if the value of U ( 1 ) for an ordering can be

expressed in terms of the second target, we can redefine value by interpreting c for a target as

its utility value when it is second.

4.2 Value for Utility One

B + R

For utility 1, c = 0, therefore, the generic value algorithm reduces to

B + S

B, + R, B + R

since >

if and only if R , ( B , + R, ) > Ry( B , + R ) .

+

B, + S B, + S

Therefore, the definition of a value for utility one is

VAL1 = R ( B + R ) . ( 19)

In the two target value, the order of battle based on VAL 1 will maximize E [ U1 ] .

4.3 Values for Utilities Two and Three

For utility 2 , c = 1/2. No simplified value can be found for this case.

B ( B + R )
VAL2 =

( B + S ) ( 1 /2R + B )

(20)

Orders based on VAL 2 will maximize E ( U2 ) . VAL 2 can also be written as

R 2B 1

or but neither of these forms seems to

B + s ! R + 2B ) R + 2B S - R

1+

B + R

lead toward the elimination of S.
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In the case of utility 3, the value of c = ( 1 - R ) / S , therefore, the generic target value can be

written as the following definition

BS(B + R )
VAL3 =

( B + S ) ( R ?-R + BS)

(21)

No equivalent form without S is apparent.

4.4 Value for Utility Four

Given two targets for utility four, c = 0. Thus, we are interested in minimizing the pro

bability of no hits. This occurs when B, > By :

VAL4 = B.

(2
2
)

5. Concluding Remarks

Each of the values examined has interesting features. If the desired battle objective is to

remove as many targets as possible, then VAL 1 appears to be best. If the goal is to inflict as

much damage as possible on the enemy, as measured by U3, then VAL 3 seems most

appropriate. Unfortunately, VAL 4, which almost always gives optimal results when consider

ing a complete victory, does not perform well for other considerations.

One of the obvious needs is a method for acquiring accurate values for the vulnerability

(P) and threat (R) parameters. These values not only depend on inherent target characteris

tics, but also the battlefield conditions and the missions assigned to the friendly fire unit. Ini

tially, the literature could be perused for probabilities of hit and kill. One promising statisti

cal approach would be to utilize the CART software, with input in the form of experimental

data, simulated data, and officers judgments (5) .

Additional conditions for optimality of U1, U2, and U3, as well as other utility func

tions, should be developed.

The battle scenario is rather simplistic. Indeed, the battle may be criticized since it

assumes the friendly fire unit has only one weapon whose removal terminates the battle.

More sophisticated simulations should be developed and the results from all models should

be compared

The values and evaluation criteria presented in this paper may be used , but should be

regarded only as an interim step in the development of optimal target engagement orderings.
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A Performance Model for a System

Using Range and Angle of Arrival Information

Andrew Anderson Thompson III

Ballistic Research Laboratory

Abstract

This paper develops a performance model for a system using AoA and range

information to estimate the location of a target. The ideas used to derive and validate

the performance model are presented, and then a procedure for evaluating specific

sensor systems is discussed.

1. Introduction

Many sensor systems have been developed using angle of arrival (AOA) informa

tion for two separate receivers. As a rule of thumb the error associated with these sys

tems is a function of range to the target over the separation of the two receivers. As

this ratio becomes large, the estimate loses its value. H. Bruce Wallace of the Ballis

tic Research Laboratory ( BRL ) has proposed that range information also be utilized

in order to have a worthwhile target location estimate. There is a large class of poten

tial sensors fitting this description. These can be classified according to the type of

electronic processing they use and the parameters that are important for that type
of

processing. The goal here is to find a general model that allows for various levels of

detail in the performance evaluation of this class of sensor systems.

This paper develops a performance model for a system using AoA and range

information to estimate the location of a target. The ideas used to derive and validate

the performance model are presented, and then a procedure for evaluating specific

sensor systems is discussed .

First the two dimensional case is examined in detail. Then the results of applying

the same ideas to the three dimensional case are presented. Both models were vali

dated through the use of a simulation . The procedure used to validate the three

dimensional model is presented. The next two sections present some electronic

models from the literature associated with the accuracy of angle of arrival and range

measurements . Finally, a method for the evaluation of a particular system is given.

2. XY Covariance Model

In this section a performance model for a system processing one range measure

ment and one AoA measurement is presented. The measurements are from a polar

coordinate system but the system performance is to be in the Cartesian coordinate

system . The focus of the discussion is on how the measurement errors effect target

estimation in the Cartesian plane. The relationship between an xy location and an

AOA range coordinate is straight forward.

x = R cos ☺ + x ( 1 )

y = R sino + y.

when R is the range to the target and is the AOA to the target. For the rest of the

discussion we assume that x. = 0 and y = 0 .

235



A common approach for relating measurement errors to the x-y domain is

through the partial derivatives of the location with respect to the measured quantities

(Reference 1 and 2). In the x direction the changes caused by range measurement are

AR cos O. Changes caused by increasing the angle move x closer to the origin by the

amount R sin (AO) sin (O ). In deriving the following model several assumptions will

be made. Afterwards it will be shown that the assumptions are statistically reasonable.

Perturbations in x due to measurement errors are described by

x + Ax = (R + AR) cos ( © + A0).

After expanding the cosine term we have:

(R + AR) cos (© + 10 ) = R cos cos AO - R sin sin 40+

AR cos cos AO - AR sin sin AO .

Since 40 is small we will assume cos 40 = 1 also since AO is small we assume

sin AO = 40 and finally we assume AO AR = 0. So we now have:

(R + AR) cos (O + 10) = R cos + AR cos © - RAO sin O.

Recalling that x = Rcos we have

Ax AR cos -RA sin .

2

R

2

By a similar argument it can be shown that

Ay ~ AR sin © + RAO cos O.

Note taking partials of both the x and y values results in the same set of equations, and

thus those terms we have ignored correspond to higher order differentials. We will

assume the measurement errors have the following properties

E (AR) = 0

E (40) = 0

E (AR2) = 0 (2 )

E (40 %) = o

E (AR AO ) = 0.

Perturbations of x and y , can be expressed in terms of measured quantities as

Ax = AR cos - AOR sin ©

Ꭺ y = AR sin Ꮎ + A Ꮎ R cos Ꮎ

( 4x )2 = (AR)? cos? O + (AO)? R sin’O - 2 AR AO R sin © cose

(Ay)² = (AR)? sin? O + (AO)? R ? cos? o + 2 AR AO R sin cos ©

AR ? sin cos - 40 ? R sin cos - AR AO R sin? O + AR AO R cosa

Combining Equations 2 and 3, we get the following expressions for the variance and

covariance of the target location .

E (Ax) = 0

(3)

Ax Ay =
☺
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(4)E (Ay) = 0

E (Ax?) = or cos? o + o? R? sin’ e

E (Ay?) = or sin’o +6.R? cos? o

E (Ax Ay) = .5 (0?R sin 20 -oor’sin 20)

These equations describe the error matrix for the system in terms of the XY coordi

nate system . In matrix notation the covariance matrix of the estimated position would

be

lozie pooE ( Ax ?) E (Ax Ay )

LE (Ax Ay) E (Ay?)
2

poly o
у

By rotating the coordinates through the angle a defined by

2 E (Ax Ay)

tan- 2a =

E (Ax ?) - E (493)

we decouple the system and can determine the major and minor axis. ( This is derived

in Appendix A).

From Appendix A we have

Major axis = -

} {e (ar + E (ay) + ( ( E (ar) -E ( )2 + 4 E ( ar 1913.07}

(5)

Minor axis =

}{ E (ar) + E ( ay } - { CE (ar) - E(29132+ 4 E (ax ay3( 17

= 0

The following equalities were used to rewrite Equation 5

E (Ax?) + E (Ay?) = o’r sin? @ +0sin’e + o R² cos? o + or cos? o + o R sin’ o

= oʻR (cos? O + sin ? o) + o . R? (cos? o + sin’o)

= OR +6OR?

E (Ax?) - E (Ay2) = oʻR (cos? o - sin’O) + o OR ( sin” e - cos? e)

óc cos 20-0². R²cos 20

E(Ax Ay) = .50R sin 26-6 . R sin 20

Thus the major axis and minor axis are defined by

( CoR R R+ ) 2 2

( (oʻp + p?o?o) + ( oʻr - R ?o?o))

+

2
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.

R

The final simplification of theabove equation results in principle componentsof
either o and Ro In the case of uncorrelated measurment errors, the axis describ

ing the covariance structure are directly related to the measurement errors .

For the two dimensional case, performance can be discussed in terms of x and y

or in terms of principle components. Although the ideas are the same in three dimen

sions the relationships are more complex and it is difficult to give a purely tri

gonometric explanation.

3. XYZ Covariance Model

In three dimensions a covariance model can be derived from range, azimuth

angle, and elevation measurements. The elevation angle is measured from the posi

tive z axis and the azimuth angle, ¢, is measured from the x axis toward the positive y

axis. Using the same simplification arguments as for the XY Covariance Model the

following set of measurement error transformation equations is obtained .

Ax = AR sin cos 0 + AOR cos cos 0 - Aº R sin sin 0

Ay = AR sin sin 0 + AOR cos sin • + Aº R sin cos º

Az = AR cos - AO Rsin

0

2

R? sin ? ©

From these equations the covariance model can be found, the quantities of interest

are as follows.

o = oor sin? o cos? 6 + R² cost? o cos? ¢ + o R ? sin? O sin? ¢

ó y = o’ sin’ o sin? 6 + 6 R² cos? sin? $ + 6 , R ? sin’ e cos? ¢

0² 월 cos? o + 0

OXY oʻR sin? O sin $ cos ¢ + 6 %, R² cos? O sin cos 6-02 R’sin? O sin cos

sin cos © cos 0 - 6 R ? sin cos cos

o .
OYZ sin © cos sin -o-, R sin cos © sin •

By finding the eigenvalues and eigenvectors associated with this matrix, the principle

components and orientation can be found.

2

o

X

2

Z R

= 0

2

R

R

' xz = 0

= 0

4. Model Validation Effort

Both the XY and the XYZ models were compared with simulation data to verify

their performance. Using a Gaussian random number generator, errors for range and

azimuth or for range, azimuth, and elevation were generated. These errors were

added to the true values and then the position was calculated from the corrupted

values. Using ten thousand such points, the covariance of the target position was cal

culated and then compared to the covariance predicted by the model. The code

designed to perform the simulation is included as Appendix B.

As a first test, the determinants were compared to see if they were in agreement.

A test based on the asymptotic distribution of the sample covariance was used for this.

It is

det(S) .1)
Vn

det(E)
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is distributed as N (0,2p)

where

p is the dimension of the matrix

n is the degrees of freedom

In this case, an acceptance based on a determinant is not conclusive . These tests have

no sensitivity to the orientation of the covariance structure, and will not detect certain

differences in the magnitude of the major components of the matrix. For example, a

diagonal matrix with components ( 1 , 1) has the same determinant as the diagonal

matrix with components (.1, 10) or the matrix with row one elements (5, 3) and row

two elements (3, 2) .

The statistical properties of a covariance structure are described by the Wishart

distribution. The use of this distribution in the three dimensional case leads to six

independent tests. Each one checking a separate component of the covariance matrix.

Note that the off- diagonal terms are based on estimates of the diagonal terms and

thus have more uncertainty associated with them. The procedure used was as follows:

1. Calculate the error structure from the model.

2. Calculate the error structure from the simulated data.

3. Find the normalizing transformation based on the model.

4. Apply this to the result of step 2.

5. Test the resulting matrix to see if it is statistically equivalent to the

identity matrix .

In each of the cases investigated the model and the simulated data produced covari

ance structures that were statistically the same.

5. AOA Errors

The two models included are based entirely on thermal noise and should be used

as the best case situations. When additional sources of error are modeled it is usually

correct to take their root mean square with the error due to thermal noise. Dr. Alex

ander in (2) gives the following two equations for relating electronic parameters to 0

For pulsed AoA processing the thermal noise of a phase interferometer is given

by

( 360/21 ) C

Oth

20fd cos 4 ( S /N )INTG

For an amplitude monopulse the thermal noise is

25.4 Өв

Oth

(S/NINTG)" 2

where,

с is the propagation velocity (M/S)

f is the RF carrier (H2)

d is the spacing between the receiving antennas.

Өв is the antenna half power beam width (deg) .
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S /NINTG is the integrator output of signal to noise ratio.

6. Range Errors

Errors in range depend on the ability to measure the time of arrival of a given

pulse. The range error is o , = C /20, where q, is the time error. The time error is

dependent on pulse type, the following are suggested by Skolnik ( 3):

For a rectangular pulse

1/2

where Tis the pulse width

4 BE/N,
B is the bandwidth

E is the received signal energy

N , is the noise per unit bandwidth

(agen)

2
1/2

For a trapezoidal pulse

Tz? = 3 T T2

Ot

6 E/N.

T2 is the rise and fall time of the pulse

T, is the direction of the top of the pulse

For a triangular pulse

2 T2

02

V12 (2E /N ) /2

1.3842

For a Gaussian pulse of the form s (t) = exp (
2

1.18

Ot
1/2

TB (2E/N )

sin (πβτ)

If the pulse has the form

πβτ

then

V3

Ot

B (2 E / N .) /2

Continuous Wave Error

С

OR

41 Af (2 E /N .)1/2

where A f is the difference between the two frequencies.

The specific electronic model will vary depending on the method used to extract
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information from the signal. The models included above only represent some of the

common techniques. The important thing is that they relate specific electronic or

geometric parameters to the measurement errors associated with either range or

angle of arrival.

7. Analysis Method

In using these models to analyze the performance of a system , the following steps

must be taken .

1 . Choose a AOA error model and assign values to the parameter.

2. Choose a range error model and assign values to the parameters.

3. Use the range and AoA errors as input to the XYZ location model.

By following this procedure at a number of different points a system's perfor

mance can be presented as a function of target location.

8. Conclusion

The models presented herein can be used to evaluate the performance of many

range - angle sensor systems. The performance can be based on specific electronic

parameters such as frequency or pulse shape or on more general specifications such as

three degree angle with five percent range errors. This work could be continued by

designing a software package that includes the selection of the possible options.

This application is typical of the error analysis approach used in many engineer

ing studies. In this case , the extra step of checking the statistical validity of the model

was included. The dominant feature of this approach to system analysis is to start with

the measurement errors and follow them as they propagate through the system and

degrade the ideal system performance.
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APPENDIX A

We wish to find the angle a of rotation in the coordinate system to decouple the

system .

Ax = Ax cos a + Ay sin a

Ay = -Ax sin a + 4y cos a

In terms of the new coordinate system we have

E (Ax) = 0

E (Ay) = 0

E (Ax) = E (Ax?) cos? a + 2 E (x) (y) sin a cos a + E (Ay?) sin? a

= E (Ax?) + E (443) - E (Ax?) sin ? a - E (Ay2) cos? a

+ 2 E ( Ax Ay) sin a cos a

Recall that

1

sin a cos a = sin 2 a

2

1 - cos 2 a
2

sin ' a =

2

1 + cos 2 a
2

COS a

2

then

E ( Ax ?) = - (E (Ax} + E (6Y3) + [ E (Ax?- E (Ay )] cos 2 .

+ E (Ax Ay) sin 2 a

Similarly it can be shown that

1

E ?)
2

- Ε (Δx Δy) sin 2α

E (Ax Ay) = E (Ax?) sin a cos a + E ( Ax Ay) (cos? a - sinʼa)

+ E (Ay ) sin a cosa

1

( E (Ay3) - E (Ax?)] sin 2a + E ( Ax Ay) cos 2 a=

2

The covariance term will be zero if

tan 2 a

2 E ( ax Ay)

E (Ax2).- E ( ay ?)
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Note that for this angle

2 E ( Ax Ay)
sin 2 a =

(4 E (Ax Ay)2 + (E ( Ax?- E (6231/2

E (Ax?) - E (473)
cos 2 a =

(4 E (Ax Ay)? + (E (4x2) - E (443)31/2

Using these relations it can be shown that the major and minor axis are defined by

1/2 (E (Ax?) + E (442) + (E (Ax?) - E (Ay?) + 4E (Ax Ay)2) 1/2)
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APPENDIX B

#include < math.h >

#include " ranvar.h "

#include " stat.h "

main ()

{

float range ,r,r_sd ,r_var,r_sq;

float theta,th, theta sd ,theta_var;

float psi,p,psi_sd,psi_var;

float x ,y,z ,X_sum ,y_sum ,z_sum ,x_var,y_var,z_var;

float xsq ,ysq ,zsq.xy ,xz ,yz;

float r_sim ,th_sim ,psi_sim ;

float sinth ,costh ,sinpsi,cospsi,sin2th,cos2psi,cos2th,sin2psi;

float cov_xy ,cov_xz, cov_yz;

float x2_mod ,y2_mod,z2_mod,xy_mod,xz_mod,yz_mod;

float data det,model_det,minus,plus,z_test,prob ;

.

int i,n ,seed;

/ * initialize the variables for this run */

range = 50 ;

rsd = .05 * range; / * five percent range */

r_var = r_sd * r_sd;

r_sq = range *range;

theta =M_PI/4;

theta_sd = 5 * 2 *M_PI/ 360; / * five degree error elevation */

theta var = theta sd * theta_sd ;

psi =P1/4;

psi_sd = 5* 2*M_PI /360; / * five degree error azimuth */

psi var= psi_sd *psi_sd;

n = 10000 ;

seed = 23719;

/ * number of replications */

/ * random number seed */

xsq = 0;

ysq = 0;

zsq = 0;

x_sum = 0;

y_sum = 0;

z sum = 0 ;

xy = 0);

xz = 0 ;

yz = 0;

for (i =0;i < n;i ++ )
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/ * rv_gauss is a gaussian random number generator

the first two sections find the measured value

and calculate the position

*/

th = theta+ theta_sd * rv_gauss(seed );

r = range + r_sd * rv_gauss (seed );

p = psi + psi_sd * rv_gauss(seed );

z = r*cos(th) ;

x = r * sin ( th ) * cos(p );

y = r * sin ( th )* sin (p );

X sum+ =x;

y_sum + =y;

z sum + = z;

XSq + =x *x;

ysq + = y * y;

zsq + =2 *z;

xy + =x *y;

XZ + =x *z ;

yz + =y *z;

} / * end of replication loop * /

x = x_sum / n;

y = y_sum / n;

z = z_sum / n;

/ * the following values are the covariance elements based on

the simulations data

*/

x_var = (xsq -x * x_sum )/ (n - 1);

y_var = (ysq -y* y_sum )/ (n - 1);

z_var = (zsq -z * z_sum )/ (n - 1);

cov_xy = (xy -x * y_sum ) / (n - 1);

cov_xz = (x2-x* z_sum )/ (n -1);

cov yz = (y2-y *z_sum )/(n -1);

/ * the next section uses the model to find the predicted covariance

structure

* /

sinth = sin (theta );

sin2th = sinth * sinth ;

costh = cos(theta );

cos2th = costh * costh ;

sinpsi = sin (psi);

sin2psi = sinpsi* sinpsi;
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cospsi = cos(psi ) ;

cos2psi = cospsi* cospsi;

x2 mod = r_var* sin2th * cos2psi;

x2 mod+ = theta_var* r_sq* cos2th * cos2psi;

X2_mod + = psi_var* r_sq * sin2th * sin2psi;

y2_mod = r_var*sin2th * sin2psi + theta_var * r_sq* cos2th *sin2psi;

y2_mod + = psi_var * r_sq * sin2th * cos2psi;

z2_mod = r_var* cos2th + theta_var *r_sq* sin2th;

xy_mod = r_var * sin2th * cospsi* sinpsi + theta_var*r_sq * cos2th * cospsi* sinpsi;

xy_mod- = psi_var* r_sq*sin2th * cospsi* sinpsi;

xz_mod = r_var* sinth * costh * cospsi-theta_var* r_sq * sinth * costh * cospsi;

yz mod = r_var * sinth * costh * sinpsi-theta var*r_sq * sinth * costh * sinpsi;

/* perform determinate test

* /

plus = x_var *y_var * z_var;

plus + = cov_xy * cov_yz * cov_xz * 2;

minus = cov_xz *cov_xz*y_var;

minus + = cov_xy*cov_xy *z_var;

minus + = cov_yz *cov_yz *x_var;

data_det = plus-minus;

plus x2_mod *y2_mod*z2 mod;

plus + = 2 * xy_mod *xz_mod * yz_mod;

minus = xy_mod * xy_mod * z2_mod;

minus + = y2_mod *xz_mod *xz_mod;

minus + = x2 mod *yz_mod *yz_mod ;

model_det = plus-minus;

z_test = sqrt (n - 1) * (data_det /model_det - 1) ;

z_test / = sqrt(2*3) ;

prob = cnf(z_test);

printf("0) ;

printf (" **" );

printf(" Range : %f theta : %f psi : %f" ,range, theta,psi );

printf(" Od (range) = %f sd( theta) = %f sd (psi ) = % f",r_sd,theta_sd,psi_sd);

printf("Oimulated Var (X ) = %f model value was % f",x_var,x2_mod );

printf(" Oimulated Var ( Y ) = %f model value was % f",y_var,y2 mod);

printf("Oimulated Var ( Z ) = %f model value was % f",z_var,z2_mod );

printf("Oimulated Cov (XY ) = %f model value was % f",cov_xy,xy_mod);

printf(" Oimulated Cov (XZ ) = %f model value was % f",cov_xz,xz_mod );
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printf ("Oimulated Cov (YZ ) = %f model value was % f",cov_yz ,yz_mod );

printf ("O value of %f with probability of % f",z_test,prob);

}
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RELIABILITY DESIGN PROCEDURES FOR FLEXIBLE PAVEMENTS

Yu T. Chou

Research Civil Engineer , Pavement Systems Divisio

Geotechnical Laboratory

US Army Engineer Waterways Experiment Station

Vicksburg , MS 39180-6199

ABSTRACT : A procedure has been developed to analyze lay

ered elastic flexible pavement systems in terms of reli

ability . A computer program RELIBISA was prepared to

carry out the computations . The Rosenblueth's method ,

instead of the conventional Taylor series expansion , is

used to estimate the expected value and variance of the

strains ( dependent parameters ) based on the input mean

values of independent parameters , i.e. , aircraft load ,

layer thicknesses , and material moduli . The relationships

between the reliability level and the allowable strain

repetition of the designed system , which is established

with results computed using RELIBISA , provide a decision

making tool for engineers to design pavements at a desired

reliability level . The design can be optimized by select

ing thicknesses of the bituminous concrete and the base

layer so that the pavement fails in fatigue cracking of
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the bituminous concrete and in subgrade at nearly the same

traffic level for a given reliability level . The

reliability-strain repetition curves have a steeper slope

with the bituminous concrete strain failure criterion than

with the subgrade strain failure criterion , This steep

ness indicates that for flexible pavements designed using

the Corps of Engineer's failure criteria , the design has a

greater degree of uncertainty in preventing subgrade fail

ure than fatigue cracking of the bituminous concrete sur

face course . However , this may not be true in real cases

because the bituminous concrete failure criteria are

determined based on controlled laboratory test data which

do not consider the uncertainties existing in laboratory

to-field correlations . The actual performance of the

pavement with respect to fatigue cracking will be more

uncertain than is considered in the design . The sig

nificance of the failure criteria employed in the analysis

on the derived conclusions is discussed and illustrated .

It was found that the performance of a conventional

flexible pavement is sensitive , in descending order , to

variations of gear load Р the thickness of the gran

ular base ha the subgrade modulus Ez , the thickness

and modulus of the bituminous concrete surface course

hi
and E

1

, respectively , for the subgrade strain fail

ure criterion , and to variations of P , h , , E ,, E2 »

h2
and E

for the bituminous concrete strain failure

250
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criteria . Although pavement performance is more sensitive

to the variation of layer thickness than to variation of

the elastic modulus of the layer , the actual variation of

material moduli in the field is known to be much larger

than the variation of layer thickness . Strict control

during construction is recommended to reduce the degree of

material variability and thus to lessen the degree of

uncertainty and to increase the confidence level of the

designed pavement .

INTRODUCTION

The design of flexible airfield pavements in the US Army Corps of

Engineers (USACE) is currently based on two methods : ( 1 ) the Cali

fornia Bearing Ratio (CBR) equation that is empirical in nature and

yields a design thickness for a given design condition , and ( 2) the

multilayered elastic method that is analytical in nature and yields

stresses , strains , and deflections in the pavement system for a par

ticular loading condition and pavement geometry which in turn are com

pared with established failure criteria to determine the performance

of the given pavement . Both design approaches are deterministic ,

i.e. , a unique pavement system is designed for the specific set of

input variables necessary to solve the problem . The input variables

are unique . In the CBR method , a pavement thickness is determined

from given values of subgrade CBR , gear load and configuration , tire
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contact area , and design coverage level . The effect of material

variability on pavement performance is considered in the designer's

selection of the subgrade CBR value , and the design safety factor is

implicitly contained within construction specifications such as

compaction requirements .

A design methodology that has the capability of considering

design parameter variability in the USACE design procedure for flexi

ble airfield pavements using the elastic layered method is presented

in this paper .
The design procedure is expressed in probabilistic and

reliability terms , i.e. , the design pavement thicknesses at different

performance levels are computed for a range of reliability levels .

The designer can select the pavement thickness and in some cases

develop an overlay design scheme based on the desired reliability

level . The design procedure is incorporated in a computer program .

By using the procedure , the partial effect of the variability of each

design parameter on pavement performance can also be investigated , and

its effects on the final design can be quantified . Emphasis can be

placed on the crucial parameters to be tightly controlled in the con

struction phases and / or the crucial loading parameters dictated by the

intended use of the pavement .

PREVIOUS WORKS

Witczak , Uzan , and Johnson ( 1 ) of the University of Maryland ,

under a contract from the Waterways Experiment Station (WES ) , devel

oped design methodologies for rigid airfield pavements in terms of
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probability and reliability . The work involved design procedures

based on the Westergaard free edge stress slab theory ( 2 ) and the

multilayer elastic theory (3 ) . Taylor series expansion (4 ) was used

in the probabilistic analysis . The development of probabilistic and

reliability design methodologies for flexible airfield pavements has

been conducted at WES . Effort was first conducted on the CBR design

equation (5 ) . The work is briefly described in the next paragraph .

The original and the new CBR equation for flexible airfield pave

ments are shown below as Equations 1 and 2 , respectively .

A

t = a

26.1

Р

8.1 CBR
( 1 )

-0.0481 1,1562 ( log(( 10g CBR :-)

6414( 108 CHR ; 4)? - 0.473 ( 10- 0.6414
CBR •

log
P يه]}

( 2)

where

t = pavement thickness , in .

a = a traffic factor

P = single -wheel load ( or the equivalent single -wheel

load (ESWL ) in the case of the multiple -wheel loads ) , 1b

CBR = California Bearing Ratio of the subgrade soil

A = tire contact area , square inches
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Equation 1 was formulated in the 1950's , and Equation 2 was formulated

in the early 1970's based on additional test data ( 6 ) . The design

:parameters considered were the load P ( or the ESWL ) , the subgrade

CBR , the tire contact area A and the pavement total thickness h .9

The expected value and the variance of the dependent variable traffic

factor a were estimated using the Taylor series expansion and the

Rosenblueth method ( 7 ) . Differences in computed results between the

two methods were found to be small , although the derivation of the

expressions for Taylor series expansion is very complicated .
A com

puter program was developed to estimate the reliability of the

designed pavement system based on known variabilities of design param

eters . Results of the reliability analysis indicate that prediction

of pavement performance is most influenced by variations of pavement

total thickness and is least influenced by variations of tire contact

area A. The effects of variations of wheel load P
and subgrade CBR

are identical . The relative sensitivity normalized to thickness t

for parameters t
CBR , P , and A , in general cases , are

approximately 1 , 0.34 , 0.34 , and 0.01 , respectively . It was thus con

cluded that in the future analysis of pavements involving input param

eter variabilities , the effect of the variation of wheel contact area

may be neglected . It was also recommended that strict quality control

be exercised during construction to reduce variations of pavement

thickness and subgrade CBR , and that the Rosenblueth method ( 7 ) be

used because of its simplicity and accuracy in the probabilistic

analysis of layered elastic system .

:
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PROBABILISTIC AND RELIABILITY APPROACH

In analyzing a pavement structure in probabilistic and reli

ability terms , the expected value and variance of a function (such as

the computed stresses , strain , or load repetition ) should first be

determined , and the reliability of the design can then be evaluated .

The Taylor series expansion (4) and the Rosenblueth ( 7 ) procedure are

generally used . These methods are presented below .

Taylor Series Expansion . The Taylor formula or the expansion of a

function f (x) which has N continuous derivatives , about the func

tion's mean น is

f (x) = f ( ) + f ' (u ) (x 4 ) + f " ( ) (x – u ) ?

+ ... higher order terms + remainder ( 3 )

Since the expected value of (x - 2 ) is zero and the expected value of

(x - 1 ) 2 is the variance of x , i.e. , E (x u ) 0 and

E (x - x) 2 = 62 , the expected value of f (x)) becomes

х

E [ f (x) ]
f (u ) + { [ "f " (u )02

х

(4)

The variance of a function f (x) is

V[f (x )] = E [ f? (x ) ] - E [ f (x) ] 2 ( 5 )
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and

V[f(x)] @ [f'(u)]? - [f"(w)]2016
( 6 )

In Equations 4 and 6 , if the random variables can be assumed

normally distributed , the second-order terms may be neglected .

Equation 6 also assumes that the variables are uncorrelated .

Rosenblueth Method -- Equations 4 and 6 are obtained from the truncated

Taylor series expansion of the function about the expectations of the

random variables . This method requires the existence and continuity

of the first and second derivatives of the function . Rosenblueth

used the point estimates of the function , and the expressions for the

expected value are :

for one variable ( 7 )

for two variables ( 8 )

Eld")- + )

Ric" - *** +& + )

zich... +++++++

^)

N

-t

+ ε

N

+ ε

- +

for three variables ( 9 )
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ELEN ,
1

4

2

N N N N

+ ε + E + ε,

Htt tt- +-+ to

N

+ ε

tutt

N

+ ε

totト

N N

ε + ε

+ -- + +--

N N

+ ε + E

'-ttt '-t

( 10)

N NN N

+ ε + E

tot

+ E

++
દ

N

+ ε + EN for four variables

ELEN ,
N

+ • •

Ht

+ E for M variables ( 11)

M M

Note that the number of total terms to calculate the expected value of

Ea function (strain computed using the elastic layered BISAR pro

gram (8 ) ) which has

M

2MM variables is 2 and N has a value of

either 1 or 2 as shown in Equation 5 , i.e. , ε is represented by

f (x) and N

is the power of the function . +
and

€ _ in Equa

tion 7 are the strain values evaluated at the mean plus one standard

deviation of the variable and the mean minus one standard deviation of

the variable , respectively . Ex in Equation 8 is the strain value

evaluated at the mean plus one standard deviation of the first vari

able and the mean minus one standard deviation of the second variable .

Similar reasoning holds true for the other terms .

To reduce the number of variables in elastic layered method com

putations , variations of Poisson's ratio of pavement materials are

neglected , as it has insignificant effect on pavement response to

loads .
The variation of tire contact area can also be neglected in

this computation , based on the conclusion of the previous study of CBR

design method for airfield pavements ( 5 ) . To illustrate the use of

the Rosenblueth method , the computation of the expected value of the
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strain E for a two - layer flexible pavement is presented . The inde

pendent parameters considered but uncertain are the wheel load P ,

the elastic modulus and thickness of the top layer E and

1 hi

respectively , and the elastic modulus of the subgrade EE2
Other

parameters (wheel contact area and Poisson's ratio) are precisely

known , i.e. , the standard deviations are zero . For a four -parameter

problem , Equation 10 is used to determine the expected value of the

strain ε . Assuming that the standard deviations of the parameters

are

P
9

#

ºp , ºei · E2 , and Phi and that the parameters are arranged

in the order of
E, E2 , and h , (1.e. , the order of the

symbols ++++ .. , etc. ) , each term in Equation 10 is computed

using the BISAR program . Once the mean values for parameters Ē , Ē ,

Ē2 , and h , and their standard deviations Op , °el "Ez
and

are specified , the expected value of can be determined fromOni
E

Equation 10 , and the variance of ε is computed using Equation 5 .

Reliability Analysis --as soon as the expected value and the variance

of a function ( such as the strain values computed in an elastic

layered pavement system or the a factor in Equation 2 representing

the traffic performance level ) are determined , the reliability level

of the function can be computed . Reliability is defined as the proba

bility that the pavement system will perform its intended function

over its design life (or time ) and under the conditions (or environ

ment ) encountered during operation ( 9 ) .
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Two failure criteria are used ( 10) . The criteria for allowable

strain repetitions for the bituminous concrete is mathematically

expressed as

Nallowable
( AC )

10-4 ( 12)

where

EAC
A = 5 L0810 € + 2.665 L081014.22

+0.392

€ = maximum horizontal tensile strain at the bottom of the

asphaltic concrete layer

EAC
elastic modulus of the asphaltic concrete , psi

The criteria for allowable strain repetition N for the subgrade is

expressed as

A

200,000

E

subg

N

'Allowable

( subgrade)

( 13 )

where

A = 0.000247 + 0.000245
L0810

(Esubg?

E

subg
subgrade modulus , psi

ε

subg
subgrade strain , dimensionless

B = 0.0658 ( E

subg

, 0.559
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The bituminous concrete strain criteria in Equation 12 are

derived based on laboratory fatigue data on the breaking stress and

strain of bituminous base-course materials with about 5 percent air

voids . The subgrade strain criteria in Equation 13 are derived based

on the full-scale accelerated traffic test data .

The strain value E for each term of the Rosenblueth expression

(Equations 7 to 11 ) is computed using the BISAR program . The perfor

mance (strain repetitions to failure) of the pavement may be estimated

from the failure criteria shown in the equations for two different

failure modes .

with the strain value E
assumed normally distributed , the

number of allowable strain repetitions corresponding to € + Ecc (or

El + C • CV ( E ) ) ) can be determined from Equations 12 and 13 , and the

probability of ES E [ 1 + C • CV ( E ) ] is taken from the normal

distribution . CV ( E ) is the coefficient of variation of E which is

the ratio of the standard deviation of E to a mean of E , ( i.e. ,

odlē) , and C is the selected number varying from -3 to +3 . The

selection of с values less than -3 and greater than +3 are not

necessary because the areas under a normal distribution curve beyond

-3 and +3 standard deviations are negligible . The computations of the

reliabilities , and allowable strain repetitions are carried out in the

RELIBISA Computer program . The program logic of RELIBISA is presented

in Reference 10 . Although the program is prepared based on failure

criteria presented in Equations 12 and 13 , other failure criteria such
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as those for highway pavements and other design conditions for air

field pavements can also be used in the programs .

ANALYSIS OF THE FLEXIBLE PAVEMENT

In the analysis of an airfield pavement in terms of probability

and reliability , the RELIBISA computer program is used to calculate

the allowable load repetitions for a given pavement section for

various reliability levels . The input parameter variations are CV

( coefficient of variations) defined to be the ratio of the standard

deviation to the mean value of the parameter . For instance , if the

mean gear load is 178,000 lb and the CV of the gear load is assumed

to be 10 percent , the standard deviation of the gear load will be

17,800 lb , i.e. , 68.3 percent of the time the gear load would lie

between 160 , 200 and 195,800 lb (which is plus and minus one standard

deviation for a normally - distributed variate ) .

Relationships between reliability level and the corresponding

allowable load repetitions are established for many pavement sections

with various input parameter variabilities . The reliability of the

Corps of Engineers flexible pavement design model is 0.5 , ( .11 ) , but

the design method has higher reliability value because of the design

safety factor implicitly contained within construction specification

such as compaction requirements and the selection of subgrade CBR

value .
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Elastic Moduli of Pavement Layers--for conventional flexible pave

ments , the critical period during the year is the colder winter months

for the surface bituminous layer as the bituminous concrete becomes

more brittle and the warmer summer months for the subgrade as the sur

face layer becomes less stiffer . Accordingly , a modulus value of

1,000,000 psf and a Poisson's ratio of 0.3 are used in the bituminous

concrete strain criterion (winter ) , and a modulus value of 200,000 psi

and a Poisson's ratio of 0.5 are used in the subgrade strain criterion

(summer ) . The modulus value of the granular base material is assumed

to be 55,000 and 32,000 psi for the bituminous concrete strain crite

rion and the subgrade strain criterion , respectively . The selection

of these values is explained in Reference 10 .

Analysis of a Three - layer Flexible Pavement -- a gear assembly load of

178,000-1b B-747 aircraft was used in the computation . The aircraft

has twin - tandem gear assemblies and the wheels are spaced 44 by 58 in .

Each wheel load is 44,530-1b , and the tire contact pressure is

182 psi .

Two series of computations were made using the RELIBISA computer

program to analyze flexible airfield pavement parameters in terms of

probability and reliability . In the first series , the thickness of

the bituminous concrete surface course h , is held 9 in . , and a range

of granular base layer h2 is assumed . In the other series , the

thickness of the base layer h2 is held constant 30 in . , and a range

of surface layer h , is assumed . In both computations , the CV of
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the input parameters , gear load P , moduli of the bituminous concrete

E , , the granular base course E, and the subgrade Ez and the

thicknesses of the surface course

h , and the base course h2 were

assumed to be 0.1 , 0.15 , 0.2 , 0.25 , 0.1 , and 0.15 , respectively . The

computed results are plotted in Figures 1 and 2 for the subgrade

strain criterion (summer temperatures ) and the bituminous concrete

strain criterion (winter temperatures ) , respectively .

The curves shown in Figure 1 for the subgrade strain criterion

are generally parallel to each other , except in the area where the

reliability is close to one and zero . For a given bituminous concrete

thickness hy , increasing the thickness of granular layer h2
can

increase the allowable strain repetition of the pavement .
This is

also true if this procedure is reversed . Figure 2 shows that for the

bituminous concrete strain criterion , the performance of the pavement

can certainly be improved with the increase of the thickness of the

bituminous concrete surface layer hy (for a given thickness of the

granular layer ) . This is also true if the thickness of the surface

layer h , is held a constant and the thickness of the granular layer

na is varied , but the benefit reduces rapidly for very thick granular

layer , which is demonstrated by the closely spaced curves at greater

h2 values presented in the lower part of Figure 2 . The significance

of the curves is that for a given pavement thickness , the allowable

strain repetition to failure varies with its reliability level .
For

a 9 -in . bituminous concrete surface layer h , and a 20-in . granular

layer , the allowable strain repetition against subgrade failure

( Figure 1 ) at a reliability level of 0.5 is 8,500 strain repetitions ,
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i.e. , the chance of success of the design of this pavement to sustain

8,500 strain repetition of the B-747 aircraft load before failure is

.50 percent . Figure 1 shows that the chance of success can be

increased to 80 percent if the design strain repetition is reduced to

1,000 . If the 8,500 repetitions are considered as a 20-year design

period and the 1,000 repetitions are thus equivalent to 2.4 years ,

there is an 80 percent chance that the pavement can last 2.4 years

without failure (with routine maintenance ) , but there is only a

50 percent chance that the pavement can last a full 20 -year design

period .

It is to be noted that the flatter the slope of the curves in

Figures 1 and 2 , the greater are the uncertainties involved in the

design . However , the shapes of the curves are influenced by the

failure criteria (Equations 12 and 13 ) employed in the computations .

This will be discussed later in this paper . The curves in Figure 2

for the bituminous concrete strain criterion have steeper slopes than

those in Figure 1 for the subgrade strain criterion , indicating that ,

using the Corps of Engineers ' failure criteria , the designed pavement

may have a greater degree of uncertainty in preventing subgrade fail

ure than in preventing fatigue cracking of bituminous concrete surface

course .

For a given design strain repetition , the relationships between

reliability and pavement thickness can also be obtained from Figures 1

and 2 . Engineers can choose the pavement thickness suitable for the

selected reliability level of the design .
This point can best be
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demonstrated from the curves presented in Figure 3 which is plotted

from Figures 1 and 2 . Figure 3 shows the relationships between the

strain repetition and layer thicknesses h, and hat different

reliability levels . The relationships in Figure 3 can be helpful to

designers in selecting the allowable strain repetitions of a given

pavement section for a desired reliability level or to vary the layer

thicknesses hy and he that will be suitable for a specific design

performance level of the pavement for a given reliability level . The

slopes of the curves indicate the rate of change of allowable strain

repetition due to change of layer thicknesses h , or h2 · Obviously

the steeper the slope of the curve , the better the design for that

particular failure mode would be .

The curves in Figure 3b in the region where the granular layer

thickness h2 is less than 30 in . have generally the same slope as

those in Figure 3a . Since the unit cost of granular base course is

much less than the bituminous concrete surface course , it is

economically more beneficial to increase the thickness of the granular

base course (hy ) to prevent the pavement from subgrade failure .
This

is logical from the structural viewpoint , as the base course is placed

directly on the subgrade . However , the slopes in Figure 3b drop

slightly at greater h2 thicknesses , indicating the significance of

granular layer thickness increase also drops slightly at greater h2

thickness .
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Figures 3c and 3d show curves plotted for the bituminous concrete

strain criterion . The steep slopes in Figure 3c indicate the struc

tural benefit of increasing bituminous concrete thickness to prevent

the pavement from failure of surface cracking . The flatter slopes of

the curves in Figure 3d indicate relatively little significance of

base course support in a flexible pavement in the limitation of

fatigue cracking of the surface course . Figure 3d also shows that the

significance of base course reduces rapidly as its thickness continues

to increase .

The curves presented in Figure 3 provide engineers with a tool to

vary the layer thicknesses (h , or ha ) to be suitable for the spe

cific design performance level of the pavement and for a given reli

ability level of the design . An optimum design may be made to select

the thicknesses of the bituminous concrete and the base layers so that

the pavement fails in fatigue cracking and in subgrade at nearly the

same traffic level for the same reliability level .

The conclusions drawn from Figures 1 to 3 are based on a subgrade

modulus of 9,000 psi . Questions arise as to whether a stronger sub

grade support of the pavement would reverse the observed trend , Com

putations similar to those presented in Figures 1 and 2 were made for

a subgrade modulus of 25,000 psi . It was found that the relationships

between the reliability and the strain repetition are very similar to

those shown in Figures 1 and 2 , except that the curves shift to higher

strain repetition values because of stronger subgrade support .
This

is more predominate in the subgrade strain failure mode than in the
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bituminous concrete failure mode because stronger subgrade support has

a greater effect on pavement performance with respect to subgrade

failure than with respect to bituminous concrete failure .

Figures 1 and 2 show the relationships between the reliability

and strain repetition for a given set of cv's . Figure 4 shows results

of the effect of each individual parameter on the performance of flexi

ble pavements . Computations were made to vary only one parameter each

time while variations of the other five parameters were zero . The

results presented in Figure 4 are for the CV's of 0.1 . The figure

shows that the variabilities of different input parameters have dif

ferent degree of impact on pavement performance . For both subgrade

and bituminous failure criteria , the pavement performance ( allowable

strain repetition) is most sensitive to the variation of the aircraft

load Р For the subgrade strain criteria , the pavement performance

is more sensitive to variations of the thickness of the granular base

layer h2 (which is placed directly on the subgrade ) and the modulus

of the subgrade Ez · The pavement performance is less sensitive to

the thickness and modulus of the bituminous concrete surface course

hy and E , , respectively , and the modulus of the base course E2 ·

For the bituminous concrete strain criterion , the pavement performance

is more sensitive to variations of the thickness and modulus of the

bituminous concrete layer hy
and E.

1E
, respectively , and is less

sensitive to variations of the thickness and modulus of the base layer

h2 and Ez , respectively , and the modulus of the subgrade Ez · It

is interesting to note that the pavement performance is more sensitive

to variations of layer thickness than the elastic modulus of the layer
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material in both failure criteria , and it is least sensitive to the

variation of modulus of the bituminous concrete surface layer En
in

the subgrade strain criterion and to the variation of subgrade modulus

in the bituminous concrete strain criterion . Thus , the perfor

mance of a flexible pavement is sensitive in the descending order , to

Pvariations of
h2 Ez , hi Ez

and

E ,
in the subgrade

strain criterion , and to variations of P hi , E,
E, , E2 , ha ,

and Ez in the bituminous concrete strain criterion .

>

The significance of the results presented in Figure 4 may also be

explained from another viewpoint by using the values listed in

Table 1 .
Table 1 shows the ranges of computed allowable strain repe

titions within +l and -1 standard deviation of the subgrade strain

value for six different cases . In each case , the CV of one param

eter is equal to 0.1 , and the CV's of the other five parameters are

set at zero .
The subgrade strain value computed for the pavements is

0.0009404 in./in . Table 1 shows that the standard deviation of the

subgrade strain is the largest for the load P and is the smallest

for the modulus of bituminous concrete surface course E

1
When only

the variation of the load Р is accounted for , there is a 68.3 per

cent chance ( i.e. , the area within + l and -1 standard deviation under

a normal distribution curve ) that the predicted pavement performance

falls within the range of 56,160 to 479,000 strain repetitions .
If

only the variation of the modulus of bituminous concrete E , is

accounted for , the predicted performance for the same percent of

chance narrows down to a range from 142,500 to 169,670 strain
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Table 1 . Flexible Pavement Performance Variations as Functions of

Variations of Input Parameters (Subgrade Strain

Criterion) Flexible Pavement

Standard

Deviation

of Strain

o *

ε

Strain

Repetitions for

E to E o

E

Coefficient of Variation

E.

E , E2 hz
E.

PEp 2 €

0.1 0.0 0.0 0.0 0.0 0.0 0.0000940 56,160 479,000

0.0 0.1 0.0 0.0 0.0 0.0 0.0000077 142,500 169,670

0.0 0.0 0.1 0.0 0.0 0.0 0.0000249 117,540 207,120

0.0 0.0 0.0 0.1 0.0 0.0 0.0000618 78,790 321,140

0.0 0.0 0.0 0,0 0.1 0.0 0.0000330 107,580 227,570

0.0 0.0 0.0 0.0 0.0 0.1 0.0000724 70,360 365,940

*

The subgrade strain computed for the pavement is 0.0009494 in./in .

repetitions , indicating a smaller variation and thus a design with

less uncertainty .

VARIABILITY OF INPUT PARAMETERS OF FLEXIBLE AIRFIELD

The results presented in Figure 4 are based on the analysis

assuming that the input parameters have the same coefficient of

variation . In reality , some parameters have larger variations than

others . Although the pavement performance is more sensitive to the

variations of layer thickness than the modulus of the layer , it has

been found that the thickness variations in actual field constructions

are not very large ; the average CV's are generally near 10 percent .

(Nevertheless , efforts should be made to reduce pavement thickness

variation during construction as much as possible . ) The actual varia

tions of moduli of layer materials in the field are known to be very
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large . The CV of moduli can be as much as 50 percent or more . More

efficient construction methods and equipments should be used , and

strict compaction and quality controls should be exercised in con

struction to reduce material modulus variations . The control of load

variation is beyond the jurisdiction of pavement engineers . Since the

variation of aircraft load has a large effect on pavement performance ,

the airfield operators should be informed and advised to limit air

craft overload cases .

SIGNIFICANCE OF FAILURE CRITERIA

All the reliability - strain repetition curves shown in Figures 1

to 4 have steeper slopes for the bituminous concrete strain criterion

than for the subgrade strain criterion . It seems that flexible pave

ments designed using the Corps of Engineer's failure criteria will

have a greater degree of uncertainty in preventing subgrade failure

than preventing fatigue cracking of bituminous concrete surface

course . However , this may not be true for pavements in the field . It

is extremely important to point out that the subgrade failure criteria

( Equation 13 ) are based on traffic test data while the bituminous con

crete strain criteria (Equation 12 ) are derived based on laboratory

fatigue data , Since failure criteria derived from laboratory tests do

not consider the uncertainties existing in the laboratory - to - field

correlations , the actual performance of the pavement will be more

uncertain than is considered in the design . Even though the slopes of
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the reliability - strain repetition curves are steeper in the bituminous

concrete strain criterion than in the subgrade strain criterion , it is

not necessarily true that pavements designed using the Corps of Engi

neer's failure criteria will have lesser degree of uncertainty in pre

venting fatigue cracking of bituminous concrete surface course than

preventing subgrade failure . There is a need to incorporate the field

uncertainties into the laboratory determined failure criteria .
More

discussion on the significance of failure criteria on the reliability

strain repetition curves (Figures 1 to 4 ) is presented in

Reference 10 .

CONCLUSIONS

Based on the analysis of RELIBISA computer program which is a

layered elastic pavement design approach in terms of probability and

reliability , the following conclusions can be drawn for flexible air

field pavement design using the layered elastic method .

The relationships between reliability and strain repetition (such

as Figures 1 and 2 ) can be used to design a pavement in terms of prob

ability and reliability . For a desired reliability level , the thick

ness of the bituminous concrete surface course or the thickness of the

granular base can be varied to agree with the designed strain

repetition , or the allowable strain repetition can be modified for a

given pavement structure .
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For the subgrade strain failure criterion , equal changes in the

thickness of bituminous concrete surface course or granular base

course result in equal changes in allowable strain . Since the unit

cost of granular layer is less than the bituminous concrete course , it

is economically beneficial to increase the thickness of the granular

base to prevent the pavement from subgrade failure . The support from

base course has relatively lesser significance in preventing fatigue

cracking of the bituminous concrete surface course than increasing the

thickness of the bituminous concrete layer itself , and the signifi

cance reduces rapidly as the thickness of the granular base continues

to increase (Figure 3d) .

The performance of a flexible pavement is sensitive for the sub

grade strain criterion to variations of the following input parameters

( in the descending order) the gear load P , the thickness of the

granular base h2 , the subgrade modulus Ez , the thickness of the

bituminous concrete surface course the granular base modulus

E

1

.

E2 , and the modulus of the bituminous concrete surface course

For the bituminous concrete strain criterion pavement performance is

sensitive to variations of P , hy , E, E2 · h2 , and Ez ·

Although pavement performance is generally more sensitive to the vari

ation of layer thickness than to that of the elastic modulus of the

layer material , actual variations of layer thickness in the field are

known to be lesser than variations of material moduli .

The results of the reliability analysis are very much influenced

by the nature of the failure criteria employed . There is a need to
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incorporate the field uncertainties into the laboratory determined

failure criteria .

The relationships between reliability and strain repetition

developed for flexible pavements (Figures 1 to 4) can be used to

optimize the design . The thicknesses of the bituminous concrete and

the granular layers can be selected so that the pavement is failed in

fatigue cracking of the bituminous concrete and subgrade failure at

nearly the same traffic level and the same reliability level .

1
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Rick Nordheim University of Wisconsin October 1990

Nimble Consultant's Articles of Advice

Field of 64

Before first visit ar early in consulting relationship

1 Learn what you canabout the subject matter in client's field.

2 Learn what you can about client and client'sgroup.

3 At the beginning of your relationship with client, agree on expectations; what will be

done, by when ,and at what cost.

Particularly during first consulting session

4 Find outwhatclient's major objective is.

5 Recognize that client will often have difficulty articulating major objective.

6 Find out specifically what data are available ,how they were obtained , and what are

their units.

7 Determine relation between particular issue under discussion and overall research goals.

8 Find out about previous studies similar to the one under discussion.

9 Find out what statistical techniques are used in client's field.

10 Learn about the limits and constraints on client's problem .

11 Try to determine what client knows.

12 Try to determine client's view of statistics and statisticians.

13 Formulate goals as precisely as possible.

14 Determine who real decision -maker is.

15 Make client feel comfortable; avoid scolding and excess criticism .

16 Be prepared to spend some time on pleasantries.

17 Reassure a frightened client.

18 Avoid any adversarial relationship with client.

19 Do not let client lead you up the garden path .

20 Do not feel embarrassed when you do not know something.

21 Encourage client to expound on relevant substantive issues.

22 Try to evolve a relationship as collaborative equals.

23 Have a clear understanding of consulting service philosophy.

24 Be careful of the 'five -minute' question.

281



During all consulting sessions

25 Where possible ,make client feel like an expert.

26 Rephrase in your own words the major points made by client. (Do this often .)

27 Encourage client to rephrase major points.

28 At end of session , clarify in writingmajor decisions and subsequent goals for

consultant and client.

29 In suggesting solutions, present options and tradeoffs.

30 Encourage interchange among multiple clients.

31 Listen carefully to the throwaway line.

32 Be aware of body language.

33 Be friendly and patient.

34 Take good notes.

35 Have your homework done for every meeting.

36 Ask lots of questions.

37 Make sure the consulting environment is pleasant.

38 Be careful with client-consultant seating arrangements.

39 Avoid excessive interruption.

40 Avoid excessive lecturing.

41 Avoid appearing too theoretical.

42 Be aware of 'the politics' of a study (if such exists).

43 Make the statistical procedure fit the problem rather than the other way around.

44 Encourage pilot studies.

45 Probe into underlying assumptions.

46 Emphasize exploratory plots;make some during session if appropriate.

47 Tailor your suggestionsto the capabilities of theclient.

48 Realize a major role of consultant is helping client clarify understanding.

49 Do not hesitate to make general recommendations to general experimental effort

50 Realize you can always make a contribution .

51 Encourage subsequent visits by client at the earliest possible stage of the project.

52 Visit the client's home turf if possible.

While working on problem under discussion

53 Pay attention to details of design and experiment management.

54 Makesure data andcomputer output are carefully and continually scrutinized .

55 Examine carefully time- order ofdata.

56 Think carefully aboutwhat is (are) the experimental unit (s ).

57 Enumerate sources of error .

58 Dig hard on diagnostics.

59 Dig into literature, when necessary, in statistics or client's field.

60 Find the simplest solution that does the job.

61 Be aware of political reality.

62 Be prepared to make some compromises with the real world .

63 Meet all deadlines; approximate solutionson time usually better than definitive solution
late .

64 Make written reports clear with major points emphasized, with lots of plots, and with

minimum ofexcessive technical detail.
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THE SURVIVAL PROBABILITY FUNCTION OF A TARGET MOVING ALONG A

STRAIGHT LINE IN A RANDOM FIELD OF OBSCURING ELEMENTS

S. Zacks and M. Yadin

State University of New York at Binghamton

Binghamton, NY 13901

ABSTRACT. A target is moving along a straight line path. Random portions of the path

might be invisible to the hunter ( in shadow ) . Shooting trials are conducted only along

the visible segments of the path. An algorithm for the numerical determination of the

survival probability of the target is developed. This algorithm is based on the distribution

of shadow length which is also developed .

Key Words: Lines of sight; visibility probabilities; distributions of shadows ; survival prob

ability.

Acknowledgement: Research supported by the U.S. Army Research Office, Contract DAALO3

89 -K-0129 with the State University of New York at Binghamton .

1. INTRODUCTION .

The present study is focused on the problem of determining the survival probability of

a moving target, which is under attack by a hunter. The target (vehicle, tank, etc. ) is

moving along a straight line path, which is partially obscured from the hunter by randomly

distributed objects ( trees, clouds, terrain objects, etc. ) . The target can be destroyed by the

hunter only along the visible segments of the path. Visibility contact between the hunter

and the target is needed for to time units for a shooting trial to occur. In any given shooting

trial the probability that the target is destroyed is fixed . If the target survives a shooting

trial , another identical trial may be attempted if continuous visibility for to time units is

possible . If the target enters an obscured segment of the path, the shooting trials terminate,

until visibility contact is reestablished . Under the above assumptions, if the target has to

cross a visible segment of length L , its survival probability can be approximated by the

negative exponential function exp { -qL} , for suitably chosen constant q , 0 < q < oo . The

problem is that the number of visible segments on the moving path, between two specified

points Pų and Pu , and their lengths are random variables, whose distributions depend

on the characteristics of the random field .

The present study is based on the model of a random Poisson field of obscuring elements .

This model is presented in Section 2. Under the assumptions of this model, it is relatively

Typeset by AMS- TEX
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simple to derive the conditional distribution of the length of a visible segment on the right

hand side ( r.h.s. ) of a point, P. , on the path, given that the point P, is visible. This

distribution is given in Section 3.1 . On the other hand, it is more complicated to determine

the distribution of the length of a segment which is obscured (in shadow ). In Section 3.2

we present the methodology for determining the distribution of the length of shadows.

This methodology is based on a theory given by Chernoff and Daly ( 1957) . For a given

point P, on the moving path, Chernoffand Daly (C-D) define the functional T(x) , which

is the right hand limit of the shadow to the r.h.s. of Pz, cast by obscuring elements in

the field which intersect the ray R, from the origin O through Pr . Employing functions

K+ (x , y ) , which are defined in Section 2 and derived explicitly for the standard -uniform

case in the Appendix, we express the cumulative distribution function ( c.d.f.) of T( )

explicitly. The right hand limit of a shadow to the r.h.s. of Pr , is U(x) = lim T ^ ( ),

where Tn+1 (x ) T(T" (x)) , for n = 0,1 , ... , Tº (x ) = 2. The relationship between

the c.d.f. of Tn+ 1 (2) to that of T"( ) , n = 0,1 , ... is discussed in Section 3.2 . The

distribution of U(2 ) is obtained as a limit of that of T" (x ) . From the distribution of U(2 )

we obtain the conditional distribution of the right end limit of a shadow to the r.h.s. of

P. , given that P, is the first point in the shadow .

In Section 4 we employ the results of Section 3 to approximate the survival probability

function S(x , y ) along the moving path between the points P, and Py , I < y . The

function S(x , y) is given by the integral equation

n0

=

S(x, y) = A(x , y) +
"B(2,w)$(w,y)du

(1.1 )

where A (x , y) and B(x , y) are defined in terms of the distributions of the lengths of

visible and non - visible random segments, as shown in Section 4. An algorithm for the

discrete approximation of the solution of ( 1.1 ) is given in Section 5. Numerical solutions

based on this algorithm are provided there too. A Quick Basic program (version 4.5) for

computations can be obtained upon request.

In a previous Technical Report (7] we approximated the survival probabilities by deriving

lower and upper bounds to the distribution of the number of shooting trials, N , along

the path. The present study provides the method of computing the survival probability

function S(x , y ) , which is required for various applications. With the new algorithms for

determining distributions of shadows and survival functions we can tackle problems like

the Hunter-Escort problem, which will be discussed in another paper.
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2. THE RANDOM FIELD MODEL AND THE DETERMINATION OF VIS

IBILITY PROBABILITIES .

In the present paper we consider a two dimensional physical model. A generalization to

a three dimensional model can be done in a similar fashion to that of Yadin and Zacks (5) .

The moving path of the target is a straight line C. The Hunter is located at a point O (the

origin) , at distance r from C. Let U and W be two straight lines parallel to C , located

between 0 and C , at distances u and w from 0 , respectively; 0 < u < w < r . The

obscuring objects are modeled by a countable number of disks of random size, which are

centered at random points in the strip S , bounded by U and W. We consider a cartesian

coordinate system in which the y -axis is a straight line through 0 , perpendicular to C ,

which intersects U , W and C at the point (0 , u ) , ( 0, w ) and (0 , r) , respectively. A point

P, on C has coordinates (x , r) .

A random disk is represented by the random vector ( X , Y , Z ), where (X, Y) are the

random coordinates of the center of the disk , and Z is its random radius. Without loss of

generality, assume that the sample space of ( X , Y , Z ) is S* = S x [a , b ], where 0 < a <

b < 0o . Let B* be the Borel o - field on S* . Let {( X ;, Yi,Zi), i = 1, 2,... } represent a

sequence of countable random disks measurable w.r.t. the same space ( S * , B *, P) . It is

assumed that the random vectors are independent and identically distributed (i.i.d. ) , and

have a common distribution H (x , y ,z) . Let F(z | x , y) denote the conditional c.d.f. of the

radius 2 , given the center (X, Y ) is at (x , y ) . Let h(x , y) be the joint p.d.f. of (X, Y) ,

such that h(x , y ) = 0 for all (x , y ) & S. We further assume that the probability that a

random disk intersects either O or C is zero . Let B be any Borel set in B* . Let N{B }

designate the number of random disks with coordinates in B.

If { B1 , ... , Bm } is any finite partition of S* , m = 1,2 , ..., it is assumed that the

random variables N{ Bi } , i = 1 , ... , m are independent, having Poisson distributions

with expected values

u {B; } = 1 SS zdH(1 , y , z) , ¿ = 1,... , m , (2.1)

B;

0 < l < . Such a random field is called a Poisson field . The Poisson field is called

standard -uniform if dH ( x,y , z ) = hIc ( x, y)f(z)dxdydz , where 0 < h < 00 , C is a subset

of S which represents the field of view of the Hunter, and Ic ( x, y ) is the indicator function

of C. A point P, on C is said to be visible from O , if the ray R, from 0 through P, is not

intersected by random disks . In a similar manner we can define the notion of simultaneous

visibility of several points on C. In our previous papers (2,3,4] we have introduced the

functions K+ ( x , t ) and K- (x , t ) for 0 < t < oo ; where \ K + ( x , t) is the expected number
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of disks centered in S between the rays R, and Rott , which do not intersect Rz . Explicit

formulae for K+ (x , t ) , for the standard -uniform case , with a uniform distribution of radii

on [a , b ], 0 < a < b , is given in the appendix .

Let (L , U ] be an interval of the x -coordinates of the point on C belonging to a segment

of interest. Let L* < L and U* > U be properly chosen , and C* the set in S (trapez)

between the rays Rd. and Ru« . One can verify that the probability that P, is visible,

for some L < x < U , is

4(x) = exp { - (u { C * } - \K-( 1, x – L* ) – 1K + (x , U * - x )] } . (2.2)

For a formula of the simultaneous visibility of n points in (L , U) , see Yadin and Zacks (4) .

3. DISTRIBUTIONS OF LENGTH OF VISIBLE AND OF SHADOWED

SEGMENTS .

3.1 . DISTRIBUTIONS OF THE LENGTH OF VISIBLE SEGMENTS.

In the present section we derive a formula for the conditional c.d.f. of the length of a

visible segment to the r.h.s. of Pc , given that P, is visible.

Let I(2) be an indicator function which assumes the value 1 if P, is visible, and the

value zero otherwise.

Let L(2) be the length of the visible segment of C to the r.h.s. of P. , i.e. ,

L(x ) = inf{y :y2r, II I (u ) = 1 } – 2. (3.1 )

τ<usy

We derive here the formula for

V(1/2) = P { L (x ) < 1 ||(2) = 1 } .

(3.2)

= 1 - P { L (2 ) > 1 ||(2 ) = 1 } .

Let C* be the set of (x , y) points in S , which was defined in the previous section . We

derive the formula of V( 1 | x ) , for L < x < U , and 0 s15u - 1 .

Let C- (x ) be the set bounded by U , W and the rays R c. and Rg . Let C(x , 1) be

the set bounded by U , W and the rays R,, Rzte ; and C + (1 + x ) the set bounded by U ,

W , Ritz and Ru« . Notice that C* C- (x ) UC(x , l ) U C + (1 + z ). As before, we denote

by u {C} the expected number of disks having centers at the set C , as given by (2.1 ) .

Accordingly,

P {L(x ) > 1,1( x ) = 1 } = exp { - (u { C- (x ) } - \K- (x , x – L* )] – H {C(2,1) }

- [u {C+ ( 1 + x ) } – 1K + (1 + x , U * – 1 – x ) } }

= exp { -- { C *} + \(K-(x , x – L* ) + K + (1 + x , U * - 1 - x ) ] } .

( 3.3 )

286



Dividing ( 3.3 ) by ( 2.2 ) we obtain

P { L (x ) > 1 | ( x ) = 1 } = exp { - \ [K+ (x , U * — 2 ) – K + (1 + x , U * - 1 - x )]}. ( 3.4)

3.2 . THE DISTRIBUTION OF SHADOW LENGTH.

We have denoted by U(x) the right hand limit of the shadow on C to the r.h.s. of Pq .

Let D(u | m ) denote the conditional c.d.f. of U(x) , given that the shadow starts at Pz .

Consider the rays R, and Ry for y > 2. Let N(x , y) denote the number of disks

centered in S , which intersect both R, and Ry . Define the functional

T(x ) = sup { y :N(x , y) > 1 } . (3.5)

ܪܝܗ

Furthermore, let Ti+ 1 (x ) = T(Ti (z ) ) , i = 0,1 , ... where Tº (x )where T° (x) = x . Obviously, Ti+ 1 (x ) >

T' (x) , for all i > 0 , and therefore U(u ) = lim T \(z ). U(2) — is the length of the shadow

to the r.h.s. of Pz . We derive first the c.d.f. of T (2 ) . Clearly, {T(2) > t} = {N(x , t) > 1 }.

Thus,

P{T(2 ) St} = P{N(1 , t ) = 0} = exp {-u ( x, t) } , (3.6)

where u(x , t) = E{N(x , t) } . Furthermore,

u(x , t) = u {C* } - \K+ (x , U* – 1 ) – K- (t, t - L* ) + \K + (2,7 – 2) + \K- ( t, t - 7 ), (3.7)

where @ is the coordinate ofthe bisector between R, and Rt . Notice that , since K + (x , 0 ) =

K- (x , 0 ) = 0 for all 2 ,

u(1 , 1 ) = lim A(1,1)

= u{C* } - 1K + ( 2, u* – ) - \K- (X , 1 – L* ) .

tla

(3.8)

Hence,

lim P{ T(2 ) < t } = P(T) , ( 3.9)
t1I

which is the probability that P, is visible . Thus, the c.d.f. of T(2 ) , H( t ; x ) is zero for

t < x , it has a jump point at x , H ( c ; x ) = 4(x ) , and is absolutely continuous at t > x .

This property is inherited by the c.d.f. of T' (x ) , Hn ( t ; x ) . We provide now the recursive

relationship between Hn ( t ; x ) and Hn- 1 ( t ; x ) . Introduce the bivariate distribution

Gn ( t1 , t2 ; 2 ) = P{Tn - 1 ( x ) < tı, T " (x ) < t2 } .
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Since {T" (x ) < t } c {Tn - 1 ( x ) < t } ,

Hn(t;2 ) = P {T" (x ) < t}

= Gn(t* , t ; z ) ,

( 3.10)
all t* > t.

For I < z < y < t ,

P{T" (x ) < t | tn-2 (x ) = z ,Tn - (x ) = y} = exp { - (u (y, t) – u(z , t)} } . (3.11 )

Indeed, given that {TN-2 ( x ) = 2 , Tn- (x ) = y} , {T" (x ) > t} if and only if, there exists

at least one disk which intersects R, and Rt , but does not intersect R,. Hence,

Gr (45,12 ; 2 ) = S, " S.*exp{ -lu(4 , ta ) – 4(2,tz)}dG1–1(2,«;2). (3.12)

These bivariate c.d.f. can be determined recursively, starting with Giltı , ta ; 2) = H(+2 ; 2)

for all tı < t2 . Moreover,

G2 (tı , ta ; 2 ) =2 = *
e - (u ,ta)

[ "em-stadz) 2H(u;2)
(3.13)

Finally, since Hn+ 1(t; 2 ) = Hn (t; 2 ) for each t > x and all n = 1,2, ... the c.d.f.of U(2 )

is

no

P{U(2) St} = lim Hn(t;2). ( 3.14)

Thus , P {U (x ) < t } = 0 for all t < , and lim P {U(z ) < t } = $(x ) . The conditional

c.d.f. of U(x ) , given {I(2 ) = 0} is

t11

P {U (1) St} – 4 (x ), for t > 1

1 – 4(2)
P {U(x ) < t \ | (x ) = 0 } =

=

(3.15)

0 , for t < I.

We are interested , however, in the conditional c.d.f. D(u | 2 ) , where P, is the first point

( the left hand limit ) of the random segment in shadow .

Simple geometric considerations yield that the length of a random shadow cast by a

single disk, having left hand limit at Pz , with center on a line parallel to U at distance h

from 0 , and disk radius Z , is

Ū ( x ,h , 2 ) == tan ( 2 sin
-1

Z

h2 + x2

+ tan - 1

• ( - ) ) --
( 3.16 )
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where (xc , h ) are the coordinates of the center of the disk, with

2e= * + 2 (1+(?)?)".
( 3.17)

Thus, if a < 2 < b w.p. 1 , the minimal length of shadow starting at æ is

ûm(x ) = r tan ( 2 sin- ( B (x )) + tan( - ( )) -
2 (3.18 )

where

--=[*(3*3(--(0)")") "
(3.19 )

In Section 5 we provide computing algorithms for the numerical determination of the

c.d.f.'s V( 1 | 2 ) and D(u | 2 ) , and illustrate them with a numerical example.

4. THE SURVIVAL PROBABILITY FUNCTION.

In the present section we establish the integral equation ( 1.1 ) . Let P, and Py be a

visible point on C and a point to its right, L* < x < y < U* . The Hunter starts shooting

trials when the target is at Pz . The attack terminates when the target reaches Py , if

it has not been destroyed before. Let S(x , y) designate the survival probability function .

We recognize three exclusive and exhaustive events.

(i ) The visible segment to the r.h.s. of P, terminates at a point to the right of Py ;

( ii ) The visible segment on the r.h.s. of P, terminates at a point Pt , t < y , and the

length ofthe shadow starting at Pt is greater than y - t .

iii) The visible segment on the r.h.s. of P, terminates at a point Pt , t < y , and the

length of the shadow to the r.h.s. of Pt is smaller than y- t .

As mentioned in Section 1 , the conditional survival probability of a target moving on a

visible segment of length L is exp { -9, L } , for some 0 < q < oo . Accordingly,

S(x , y ) = e- 9( y - 2 ) ( 1 – V(y – < | 2 ))

-9(1-1 )(1 – D(y | t ) )dV ( t – < x
+

( 4.1 )

+

[ --- {fico $12,0 }]' ( = 1 t )ds ) av
S (z , y )D' ( 2 | t)dz dv( t – 2 | 2 ) ,

ūm ( t ) + t

a

where D' (z | t ) = OzD (z | t ) is the p.d.f. of D(z |t ) . Notice that D' (z | t ) = 0 for all

t < z 5ūm ( t) + t. Let 2m ( t ) = ūm (t) + t . Zm ( t ) is the first term on the r.h.s. of ( 3.18 )
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with x = t . Let tm ( z ) be the inverse of zm ( t) then, by changing the order of integration

we obtain

le---- {Scot$(2,1)]} (= 1 8)da}avce –1.4)

= "s<,»){/ ** *D( \t+2)av(+1e+z)av«\=)}d:

( 4.2)

Accordingly, define

( 4.3)

and

A(z , y) = e+elv-7)(1– V(y –2\2)+6****-*(1– D(yIt+a)ąV(t|2),

S **** -**D'(3]++ 2)av( * | - ) .
B(x , z ) = (4.4)

Thus, the integral equation (4.1 ) can be written as in ( 1.1 ) .

5. ALGORITHMS FOR DISCRETE APPROXIMATIONS AND NUMERI

CAL EXAMPLES.

In the present section we consider discrete approximations to the functions Hn (t ; x ) ,

Gn(tı , t2 ; 2) , n > 2 and S(x , y) .

For a given integer, N , partition the interval ( , y ) to N subintervals. Accordingly, let

8 = (y – x ) /N , to = x and t; = to + j8 , j = 0,1 ,... , N .

For i = 0 , ... , N , let

Â (i) = H(ti ; to ) = exp { -ulto, t; ) } . (5.1 )

For i = 0, ... , N and j = 1,... , N , le

Ĝ2 (i , j ) = exp{-(u( tx , t; ) – u( to , t; )) } - CÂ3 (k) – Â1 (k – 1 )] , (5.2)

k=0

where Â1 (-1 ) = 0. This is an approximation to ( 3.13) . Notice that Ĝ2 (0 , j ) = Â1 (0) for

all j = 0,1 , ... , N ; and for i > 1 , ji

Ĝ2(i , j ) = Ê (0) + exp{u( to , t; ) } . exp { -u( tk , t; ) } [Ħ (k ) – Â1 (k – 1 ) ) . (5.3)

k= 1

Moreover,

Ĝ2 ( i , j ) = Ĝ2 ( j , j ) for all i > j. (5.4)
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We compute afterwards recursively, for every n > 3 , i = 1 , .- . , N , j = 1,... , N

i i

Ĝn(i , j ) = exp { - (u (tı,t;)– uſtk ,t;))}(Ĝn-1(k ,1)– Ĝn- 1 ( k – 1,1 )
k=0l= k (5.5 )

- Ĝn- 1 ( k , 1 – 1 ) + Ĝn - 1 (k – 1,1 – 1 )] ,

and for < > ;

Ĝn (i , j ) = Ĝn(j , j ) . (5.6)

For i = 0 , Ĝn(0 , j ) = Ĝn- 1 ( 0, j ) = À1 (0) , j = 0 , ... ,N. After computing these functions

we determine În(j) = Ĝn (jj), j = 0,1,... , N . Ân(j ) is the discrete approximation to

the c.d.f. of T'" ( x ), namely Hn ( t ; 2 ) ; i.e. , Hu(t;; 2) ~ Ân (j ) .

In Table 5.1 we present numerical results obtained by applying this algorithm to the

following special case.

We consider a standard - uniform Poisson field , with uniform distribution for the disk

radius on the interval (a, b) . In the appendix we present the functions K + ( 2, t ), t > 0 , for

this case. We compute the numerical example for Table 5.1 with the following geometrical

parameters: p = 100 [m] , u = 40 (m) , w = 60 [m ] , a = 1 [m] , b = 2.5 [m] , x = 10 [m] ,

L* = -100 [m ] , U* = 100 [m] . We present in the tables the values of Ân(j ) , n =n = 1,2,3 ,

j = 0 , ... , 20 , when 8 = 1 [m] .

As seen in Table 5.1 , the convergence of Ân (j ) to the c.d.f. of U(x ) is quite rapid. We

have therefore approximated the c.d.f. D(u | x) by the sequence Ô j 1 i ) = D( t; I ti ) ,

i = 0,1 , ... , N , j = i, i + 1 ,... The function A(x , y ) was computed for the arguments

ti , tj , by the approximation

Â(N, N) = 1

Â ( N – 1, N ) = e- 90 ( 1 – ( 1 | N – 1 ) ) + ( 1 – ÞINN – 1 ))

Â(N – j, N) = e -j90 ( 1 – û( | N - ; ))
( 5.7)

+ e -9(1-1) ( (1| N - ; ) – û (1– 1 N – ;)).
l= 1

· ( 1 – Ď (NN- j + ?)), j = 2 , ... , N

where

(5.8)DẪN | x - 1 ) = 3D(N | N - 1 ) + DỰN | N – i + 1 ),

for all i = 1,2,... , N. Recall that Ô(N | N) = 0) = Ô(N | N + 1 ) .
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Table 5.1 . Values of Ân ( j) for two values of 1 .

Î1 (j )

l = 0.02 (1 /m2]

Ĥ2(j )

0.4914

Â3(j) | Â1 (j )j

0 0.4914

1 0.5434

1 = 0.2 (1 / m ]

h2 (3)

0.0000

Â3 ( )

0.4914 0.0000 0.0000

0.5434 0.5434 0.0000 0.0000 0.0000

2 0.6009 0.6008 0.6008 0.0000 0.0000 0.0000

3 0.6645 0.6642 0.6442 0.0003 0.0003 0.0003

40.7342 0.7336 0.7336 0.0021 0.0020 0.0020

5 0.8039 0.8030 0.8030 0.0130 0.0119 0.0119

6 0.8664 0.8652 0.8652 0.0576 0.0522 0.0522

7 0.9182 0.9170 0.9170 0.1828 0.1663 0.1663

8 0.9569 0.9559 0.9559 0.4164 0.3843 0.3842

9 0.9811 0.9804 0.6484 0.6482

0.9930 0.8507 0.850510 0.9934

11 0.9985

12 0.9999

0.9804 0.6842

0.9930 0.8763

0.9984 0.9707

0.9999 0.9981

0.9984 0.9590 0.9588

0.9999 0.9958 0.9957

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Similarly, we define

B(N, N) = 0

B(N – 1, N)

(5.9)

-gº/ V(1 | N – 1)ÊN | N – 1 ),

and for j = 2 , , N , 1 = 1 , ... , j we compute

(N – j,N – j + 1) = e -98(i= ?)[Ûi| N – j ) – Û (i– 1 | N - ; )] .N N 1

[ ĐKN - j + 1 | N –j ++ ) – DCN - j + 1 – 1 | N –j ++)) ,

i= 1 (5.10)

where DN – +1 – 1 | N - j + 1) = 0 .

-
-
-
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Table 5.2 . Survival Probabilities ŝ(N – 1, N) , for 1 = 0.02( 0.01 )0.05 ,

N = 20 ; a = 2 , b = 3.5 , r = 100 , u = 40 , w = 60 .

0.02 0.03 0.04 0.05

1.00000

0.83715

0.75808

30.61877 0.65867

0.62203

0.60025 0.65163 0.69179

0.68729

0.68505

0.68390

0.67817

0.66784

0.60001 0.65204

il"

0 | 1.00000 | 1.00000 | 1.00000

1 0.81711 0.82447 0.83112

2 0.69730 0.72040 0.74052

70. 70.69187 0.71965

4 0.56729 0.66572 0.70094

- 5 0.53352

6 0.51135 0.58728 0.64401

7 0.49677 0.57954 0.63987

8 0.48718 0.57489 0.63759

9 0.47460 0.56551 0.63027

10 0.45820 0.55111 0.61788

11 0.43776 0.53154

12 0.41376 0.50726 0.57671 0.63029

13 0.38732 0.47959 0.54917 0.60348

4 0.36009 0.45064 0.51979190.5

15 0.33382 0.42283 0.49155

16 0.30991 0.39803 0.46678

17 0.289020.37709 0.44652

180. 22 0.35999

0.25614 0.34607 0.41851 0.47687

20 0.24309 0.33427 0.40849 0.46864

Using these sequences, we compute

Ŝ(N, N) = 1

S(N – 1 , N) = Â(N – 1 , N)

and , for j = 2 ,... , N

14 0.57418

0.54589

0.52137

0.50189

0.27122 0.43073 0.48741

190.

1

N- 1

Ŝ(N – ,, N) = Â(N – ,, N) + B(N – j, N )+ Σ BIN – 3,i)Ŝ(1, N ). (5.11 )

i = N - j+ 1

The function S(x , y ) is approximated by Ŝ(0 , N) . In Table 5.2 we present the values of

Ŝ(N – j, N) , for the geometrical parameters of Table 5.1 , with a = 2[m] , b = 3.5 [m ] and
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several values of 1. Also here 8 = 1 [m ]. The value of q is –In(0.8) . This corresponds to

the situation in which one shooting trial takes as long as the target travels 1 [m] , and the

probability of destroying the target in one trial is 0.8 .
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Appendix: The Functions K + (2 , t) in the Standard - Uniform Case, With Uniform Dis.

tribution of radii on (a, b) .

Let K + (2, t , z) denote the area of the set bounded by the line bet , the ray Rc+t , t > 0 ,

and the lines U and W ; C is the line parallel to Rz , on its r.h.s. , of distance z from

it . This is the set of all disk centers between R, and Rett , of radius 2 = 2 , which

do not intersect Re . In order to simplify notation, we assume that w = r . In actual

computations we substitute xw/r and tw/r for x and t in the formulae given below. Let

d = (x2 + w2 )1/2 . Simple geometrical considerations yield:

t - 2

K+( 8,1,2 ) = 1 { < u } ["P20242 al

+1 {us < w } [2:1(tw-- zdj}]

( A.1 )
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=

where I { A} is the indicator set function, which assumes the value 1 if A is true, and the

value 0 otherwise.

Notice that K + ( x, t , z ) depends on x only via x2 . Symmetry implies that K- ( -2 , t , z) =

K + ( 2 , t, z ) K + ( - 3, t , z) for all - < < 0. Hence, K + (x, t) K- (x , t) and we

delete the † subscript of K. Finally, K(x , t) = E{K(x , t , 2 ) } with respect to the uni

form distribution of 2 over (a , b) . Let x1 = tu/d and x2 = tw/d . The function K(x , t)

assumes the following forms:

(i) If b < 21 ,

K(x , t) open (e- u fu(a+b)).
( A.2)

(ii) If a < 21 < b < 22

d

K(x, t)

w2 - u2

2w

t .

I i a

b - a u + w(

tw

b=a(z?–a?))

ho ( – x})+ 316463/6 - -?)).

(A.3)
1 b+

taw2
I 1

b - a

tw

2tw

( iii ) If a < x1 < 12 Sb

w2 – u2 I 1 a

K (x , t)
t

2w b - a u +wbdobaz(a} – a? ))

ziu ( ?w=*3- * - two plz

(A.4)
d2

(x - 2* ) ++

3(6– a)(** –zº ).

(iv) If zi sa < b 5 22 ,

tw d

K(x , t) =

- d² ( a2 + ab +62)

6twž(a + b) +2
(A.5)

(v) If xi Sa < x2 < 6

tw I2 a

K(x , t ) = 2164 (22 – a?)+
d ?

6tw( b
(73 – 2°). (A.6)

2 b - a

( vi) If x2 < a

K(x , t) = 0 . (A.7)
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Graphical Methods for Experiment Design

1. INTRODUCTION
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A. The Role of Experiment Design in Statistical

Methodology

Before we begin to study graphical methods for

experimentdesign, let's review the role of this

activity in the overall process of scientific

investigation. How does experiment design fit in?
This figure gives Horace Andrews' view of the

pursuit of knowledge as a repeating cycle of forming

hypotheses, designing experiments, collecting data ,

analyzing the data,leading to new or revised

hypotheses. Think of the steepness of this slope as

therate of knowledge increase. (Source: Andrews,

1964) .
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The experiment design playsa keyrole in

determining the slope of the line. A well-designed

experimentwillprovide maximum information for a

given level of effort. The amount of information

provided by the experiment or datacollection process

can be measured in several ways. Our concem as

statisticians will focus on threemeasures:

· Variance

Confounding

Bias

We'll discuss these concepts in some detail on the following pages. For now , we'll say that variance

measures the precision of our information, confounding the ability to make assertions about one

hypothesis independent of the verity of another, and bias the degree to which our estimates measure the

things we thinkthey measure.

A SIMPLE STOCHASTIC EXAMPLE:

WEIGH TWO ITEMS (A and B)

SCALE HAS ERROR WITH variance = 0co?

APPROACH 1 APPROACH2

Let's illustrate the importance ofexperiment design

for controlling variance. Most of our data collection

efforts will have to deal with random perturbations in

the values. Reduced variance of our estimates means

greater precision: greater information for the same

amountof work. Let's weigh two items, A and B

with a scale whose output contains a random

component with mean zero and variance 02. The

first picture shows one design to estimate the weight

of Aand B in two weighing sessions. The resulting

variance of the weights is o ? A less obvious

weighing design isshown as Approach 2. This

design also requires only two weighing sessions, yet

the variance ofthe estimates has been reduced by a

factor of two!

5,

AB

ܢܘܘ 1
=A+B

( C )

TE
-B А BO

ea

= A - B

( D )

varianco )
2

variancecâ) =
2

variance(B ) = o? variance ( )
( C -DY2

2
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EXAMPLE In this example, we'll see how experiment design
can be used to reduce bias. Consider a set of

experiments to estimate the first order polynomial
coefficients for a Monte - Carlo simulationmodel

output, y, which is a function of two parameters, X1
; ;

and x2422

: ;

The first design requires theminimum number of

runs. The estimated values for the coefficients are

random variables, since the simulation model output

has random variation. What is their expected value ?

If the simulation response truly has nononlinear

component, then the expected value (i.e. long run

average value) of the estimated parameters will be the

true values.

y = 2 + 2x,tazxz

â , =\Y2- Y , ) I (X12-4,1 ) =a , a,= ((yz+ya-(Yi+ y;)) / 2 (x12-X11) =a ,

àx= 1 -Yil ( X22 -X21) = a 2 & z = ((Y3+Yor-Wi+y2)) / 2 (X72-821) =a ,

BUT, suppose model was :

y = act @ x , tax. + аэх, х ,

However, if thetrue response has some nonlinear

component, as illustratedat left, the first design will

provide biased estimates for the linear coefficients.

That is, the expected value of the coefficient

estimates willnot be the true values. They will be

offset by an amount that depends on the nonlinear

terms.

THEN

â , -a, -23X21 â , -a ,

The second design requires an additional run,but the resultingestimates are notbiasedbythe presenceof

the interaction term if itis present. Planning designs to minimize bias may conflict with planning a design
to minimize variance . Wewill return to this issue later in our discussions.

B. Main Steps in the Design of an Experiment
"WE EMPHASIZE THAT THE SELECTION OF THE MATRIX OF

EXPERIMENTAL POINTS REPRESENTS ONLY THE

PROVERBIAL TIP OF THE ICEBERG . THEREFORE,

This concludes our brief motivation for the

importance of experiment design in the scientific

process. Now we need to review thesteps that must

betaken to produce an effective experiment design.
WE STRESS SUCH MATTERS AS THE NEED FOR CLEARLY

i

DEFINING THE GOAL OF THE TEST PROGRAM ,

ENUMERATING ALL POSSIBLE VARIABLES, AND HOW

TO HANDLE THEM . “

- Hahn

Of course, our whole design strategy depends on

what we hope to learnfrom our efforts. The quotes

at the leftsummarizethese issues, in the words of

two well -known applied statisticians.

Ourspecific interest is in computer simulation

models. The tableon the next pageis a classification

of common goals that engineers and scientists use

simulation models to achieve. The goals are

arranged in order of increasing computational

burden. The last three experimental goals apply in

design and policymaking settings.

WHAT IS THE OBJECTIVE OF THIS INVESTIGATION ? "

-J.S. Hunter
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GOAL DESCRIPTION

1 i nominal analysis, what- if comparisons

2 | sensitivity analysis, "insight“ , screening

3 | optimization ( constrained or unconstrained )

4 i tolerance analysis

5 | tolerance design

1MATHEMATICAL REPRESENTATION

F (x ), F(x ) vs Fly)

F (x )= F (Xo )+ F '(x0 )(X-Xo )+ ...

min g (F ( x )), s.t. XES , F(x) ET

Prob(F(x) = T ) and related statistics

Imax Prob ( F (x ) € 1), s.t. Elx ) ES

1

Goal I: Nominal analysis isused to test a theory or to validate a design. Often there is interest in

comparing a small number ofalternatives. For example, a pair of discrete event simulation runs might be

usedtocompare the performance of two alternative digital communications protocols. Here the vector

function F(x) will provide various measures of communications performance ( e.g.average delay,

maximum delay ,delay by message class, etc.). Schroer and Tseng (1987) use a ĎEDS simulation to

perform "what-if " analyses on alternative manufacturing system parameters.

Goal 2: Sensitivity analysis serves three purposes. First, it presents a local model of thesystem

response surface (e.g. a Taylorseries or least squares polynomial approximation) that can be used to study

theoperating behavior of the true system . Second, it provides an opportunity to screen outunimportant

factors before moving on tomore detailed experiments (goals 3-5 ). Third, it identifies highly influential

variables that require careful control for process stability or that require accurate estimation froin empirical

data. These roles are interrelated .

Goal 3: One might want to design a particular amplifier circuit to minimize power dissipation subject to

constraints on frequencyresponse, output power, componentcosts,and environmental Controls. This

optimization could bequite difficult if the decision vector x included thekindof circuit components used

(e.g. high or normal efficiency transformers)and if the response included random perturbations. It would

then constitute a discrete factor stochastic optimization problem with implicitly defined constraints ( and

objective function ). The satisfactory general solution ofsuch problemsis beyond the scope of current

methodology. On the other hand, cases where all variablesare continuous and deterministic have been

addressed in a number of studies (e.g. Freeman, et. al., 1988).

Goal 4 : Tolerance analysis identifies the multivariate distribution of the performance vector,F ( x ), that

will occur for a particular (multivariate ) distribution of the control parameters represented by x . For

example, if the holes in an electron gun grid have x,y location errors with a multivariate normal

distribution N ( CO ) , 01 ) , what will be the distribution ofthe spot size verticaland horizontal diameter

(Dy , DH)?

Goal 5 : Tolerance design involves trade -offs between incompatible objectives. The'optimal' design in

termsof circuit performance may result in adesignthat is difficult to manufacture. Component value

variations can easily move the operating point outside some set of constraints, resulting in low yield. A

more manufacturabledesign mightbe the point would allow for some variation in component values and

still maintain acceptable ( if not optimal) performance. These design problems are beyond the scope of this
course,
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EXPERIMENTAL DESIGNS

CLASSIFICATION :

PILOT / SCREENING / EXPLANATORY / CONFIRMATORY

Experiment design goals areclassified in another

dimension: the stage of the investigation; that is,

how far along the path of knowledge we have

progressed. At the earliest stage, a pilot

experiment is designed. Its main purposes are to

debugthe experimentrunning and datacollection

procedure, and to verify the feasible ranges for the

independent variables (see morebelow ).

Screening experiments maythen be run to

eliminate variables with little effect on system

performance. This allows us to reducethe size of

future designs to study the importanteffects in detail.

The first detailed experimentsmay still be

exploratory, in that the nature of the key variables

has not yet been established. Findings from such

exploratorydesigns should be checked with

additionai'data from a confirmatory experiment.

SEQUENTIAL / SIMULATANEOUS (run specs)

CONTINUOUS / DISCRETE (factors)
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Exercise 1 : Identify the purpose for an experiment you are considering in yourwork.

Give the purpose in words, and identify which if any goals in the previous

table correspond to yourinterests . Determine whetheryou are at the pilot,

screening, exploratory, or confirmatory stage.
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The second step in the experiment design process is

to identify variables or factors that will concern us in

the course of this investigation. This includes things

that we can adjust or control ( independent variables),

resulting system outputs or performance measures

(dependent variables), things that we can't control

butthat we know affect the system (nuisance

variables).

STEPS IN EXPERIMENTAL DESIGN

2 IDENTIFY

VARIABLES

INDEPENDENT

DEPENDENT

NUISANCE

INTERMEDIATE

These three kinds of variables are usually all that

statisticians identify inthe design process, but there

is afourth important class: intermediate

variables. Often a scientist or engineer will

understand the effect of one factor on a dependent

variable, but will not be able to control that factor

directly.

For example, the strength of a composite material may depend on the average size of gas bubbles in the

material, but this quantity cannot be controlled directly . Rather, bubble size is affected by mixing rates,

chemical composition, curing temperatures, etc. One of the most difficult tasks in the initial stages of

experiment design is to distinguish the intermediate variables from the truly independent, controllable
variables.

Thethird step in designing an experiment is where

modelingcomes intoplay. Usually we narrow the

scope of the investigation by deciding to hold some

independent variables fixedat particular values. For

the factors that will be varied , ranges must be

established .

3 CLASSIFY INDEPENDENT VARIABLES

WHICH VARIED , WHICH FIXED

WHICH QUANTITATIVE, QUALITATIVE

WHICH EFFECTS LINEAR ,NONLINEAR

We usually entertain one or more models of the

system response as a functionof the independent

variables of interest. Often this willbe aregression

model. We must also determine which variables will

be treated as quantitative (e.g. maximum vehicle

speed, total number of troops ), and which as

qualitative (e.g. kinds of vehicle, type of weather ).

The quantitative factors mayaffectthe response

variable (s) in linear or nonlinear ways.

Systems withall qualitative factors are often analyzed

with Analysis of Variance (ANOVA) models.

Systemswith some quantitative and some qualitative

independentvariables are often analyzed with

Analysis ofCovariance (ANOCOVA ) models.

Systemswith all quantitative variables are often

analyzed with Multivariate Regression models.
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Exercise 2 : Classify the variables for an experiment that you propose to conduct:

Independent Variables :

Quantitative :

-Linear:

-Nonlinear:

Qualitative :

Which of the above variables will be held fixed for the proposed experiment? Which will

be varied ?

FIXED : at what values ? VARIED : over what range?

variable value variable lower limit upper limit

Dependent Variables:

Quantitative (preferred ):

Qualitative (if you must):

Nuisance /Noise Variables:

Intermediate Variables: - -
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We are now ready to identify the set of conditions

that will be used for our experiment. This is the

fourth step in the design process, and the main focus

of this report. There are many ways to choose a

design for the experiment. The list at the leftcovers

many of these, both graphical and non - graphical

(Raktoe, Heydayat and Federer , 1981 ).

Furthermore , in addition to the considerations

imposed by the purpose , the number and kind of

variables, and the model, the design choice will also

depend on whether we want to use a simultaneous

orsequential strategy. For a simultaneous strategy

we establish a number of experimental conditions a

priori and collectdata for all conditions before

beginning analysis. This has advantages where

parallel runs arepossible, such asin agricultural

experiments, or for certain parallel computing

applications of simulation models.

A sequential procedure changes thedesign based on

the available information before each new data point

is collected. The settings for the next run are not

determined until the current run's results have been

analyzed.

In this course we well focus on graphical methods

for choosing the design points. We will devote the

greatest attention to simultaneous designs, but 1

evolutionary operation (EVOP) sequential designs
will be discussed also .

While the list above is long, the realistic strategies

available to engineers for developing an experiment

design are simple: a ) choose a design from a book ,

b) use a computer program to generate a design

basedonyour input specifications, or c) generate

your design graphically.

13.1 A LIST OF CONSTRUCTION METHODS

The following methods of constructing factorial designs

literature :

( i ) Orthogonal arrays .

( ii ) Balanced arrays.

( iii ) Latin squares and orthogonal Latin squares .

( iv) Hadamard matrices.

(v) Finite geometries.

(vi) Confounding.

(vii ) Group theory.

friii) Algebraic decomposition.

( ix ) Combinatorial topology.

(x ) Foldover.

( xi ) Collapsing of levels .

( xii ) Composition ( direct product and direct sum )

(xiii) Codes.

(xiv) Block designs.

(xv) F - squares.

( xvi ) Weighing designs.

(xvii ) Lattice designs.

( xviii ) Finile graphis.

(xix ) One-at-a-lime .

(xx) Trial and crror .

4 CHOOSE A DESIGN :

COOKBOOK

MATHEMATICAL (COED, E -CHIP , ACED)

GRAPHICAL
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Once a design has been selected, its mathematical

properties should be checked to verify that it will

provide information which meets thegoals for low

variance, bias, and confounding: Fortunately and

surprisingly, it is usually possible to assess the

quality ofthe informationthat thedesign promises

before we get the results! We'll discuss the

mathematics of this procedure for the General Linear

Model in a later section .

GRAPHICAL METHODS FOR

EXPERIMENT DESIGN

DESIGN STEPS:

I PURPOSE

2 IDENTIFY VARIABLES

3 CLASSIFY VARIABLES

4 CHOOSE OR CREATE A DESIGN

5 VALIDATE THE DESIGN
These five stepsof experiment design are

summarized in the table at the left. Only after

completing all five are we ready to carry out the

experiment, collect data, and analyze the results.

WHY GRAPHICAL METHODS ?

STANDARD DESIGNS WONT WORK

EASIER TO CREATE NEW DESIGNS WITH RIGHT BRAIN TOOLS

INTERPRETATIONS SIMPLER C. Overview of this Tutorial

CAN BE USED IN DATA ANALYSIS

rad

REGISTOAAN

MC

va

COVA
C

ING

FALLOS
EATON

In this course we will focus on steps two, four, and

five. For each of these activities we will present

graphical tools to make thesetasks easierand more

fun! Only step 5 will we deal in somedetail with the

statisticalmodels and analyses that will eventually be

performed.

Each new technique will be illustrated with one or

two examples. We introduce the main example in the

next section.

WONOGRON

ROVING

ANA

M

ENT

LAOS

MOVOM

TOON
WAVE sacen

There are exercises included for you to try to apply

these tools to a design problem that you have brought
with you .

5 :

1

By the end of the course you will be understanding

and using graphical toolslike those at the left. And

remember, an experiment that is welldesigned will

provideyou with maximum information, and will

usually be easier to analyze!
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It will be helpful to illustrate these methods by

considering examples along the way. We will return

often to one particularexample and follow it through

from beginning to end. It is based on a real studyof

a disk pressing operation.MINC

liaهم
EXTRLDEA

w

PUOX

SENSOR SIGNALS :

TEMPERNRE

MORAMIC PRESSURE

OSITION

DATA COLECTION

COMPUTER

MAIN EXAMPLE: Disk Pressing Operation

ooo

We want to understand a vinyldisc pressing

operation, andthrough this understanding improve

the quality of the product while reducingthe

manufacturing costs. The disk manufacturing

operation consists of a number of steps.

Alpha press for videodisc manufacture

First, vinyl pellets are melted and formed into a 3 "

puck by the extruder shown at the left. The puck is

removed from the extruder by a mechanical arm and

placed in a large press. The vinyl is compressed

between two steam -heated molds under hydraulic

pressure. When the molds nearly touch , a switch

triggers the end of the steam feed to the molds and,

after a short delay,coolingwater is pumped though

the same internalchannels in the molds. The

duration of this cooling cycle is controlled by a tirher.

After this time, the hydraulic pressure is released, the

press is opened, andthe disk is removed .

MINC OUTPUT CHARTS

ONE PRESSING CYCLE

( not to scale )
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One problem with disks is warp . Warp is measured

as peak -to -peak variations in the heightof the outside

edge of a disk as it is spun on a turntable. Too much

warp (more than 15 mils, say ) is unacceptable. We

expect that warp is caused by internal stresses in the

disk,whichmay in turn be caused by the rate at

which the vinyl is compressed to form the disk and

thecooling process. Wealso expect that thicker
disks willbe less susceptible to warp.

TIME

CHANNEL

TEMPESTIVE

:

TIME

The figures at the left show typical temperature,

pressure, and thickness profiles over a single

pressing cycle.

HYBAVU

PRESSRE

TIME
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PRESSING

Goals :

Low WARPP

Unfortunately, warp is not our only concern . We

also must worry about disk weight. Thicker, heavier

disks contain more material, and thus cost more. We

also know that changing timers and pressureson the

press will change the time it takes to make asingle

disk . Since the machines which make the disks are

expensive, a long cycle time will not be acceptable.

As in many experimental situations, wehavemultiple

competing objectives. Increasing the disk thickness

may decrease warp but it will increase disk weight

and consequently material costs will be higher.

We will return to this example to design an

experiment tolearn how the pressing parameters

affect warp, disk weight, and cycle time. We will

want to predict warp ,weight, and cycle time as

polynomial functions of the independent variables.

Wewill need to identify the key variables, choose

models, choose a design, and validate the design .

(We can think of our experiments as carried out on

an actual disk press or by running a complex

computer simulation of the disk pressing operation .)

Low DISK WEIGHT

(MATERIAL COST )

Low CYCLE TIME

( HIGH THROUGH PUT )
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Important Product &

Process Characteristio

(Responseil

Specifications
To Be

Developed

formulation

II . GRAPHICAL METHODS FOR IDENTIFYING

AND CLASSIFYING VARIABLES
To Be Specified

Ingredients (A.B.O

Concentrations

Spices

Preservatives

F
l
a
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?Te
nd
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m
p
o
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t
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st
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c.

How dowe identify and classify variables ? Without

tools, thisprocess can be long and confusing.

Exercise 2 wasintendedto provide a worksheet to

help in this process, but it can only serve as a list

checker, not a list generator.

Conditions

Temperature

Chopping Time

Retort Time

Aging Time and

Temperature etc.

Process
etc .. etc.

Optimum Sec

ToBe Specified

A. Andrews Diagrams

Random Variables

Knowni

Determinable ?

Controllable 17

One graphical tool for representing the factors of an

experiment is the AndrewsDiagram shown at the

left (Andrews, 1964). For this example, the goal is

tostudy the process of making SPAÑ ! The

incoming arrows represent independent and nuisance

factors, the outgoing arrows represent the dependent
variables of interest: flavor, texture, etc.

Tolerancos To Be

Set

This graphical tool isa start, but it fails to help us in two ways:

1 ) to understand the distinction between independent and intermediate variables, and

2) to represent complex causal relations involving intermediate variables, where a response variable

depends, through achain of intermediate variables, on one or more independent variables.

The Andrewsdiagram leaves us with the uncomfortable feeling that we haven't identified ALL of the

important factorsfor a particular experimental situation . The next two tools address these shortcomings.

B. IDEF Diagrams

CONTROL FACTORS

INPUT

OPERATION

OR

PROCESS

( A VERB)

OUTPUT

These causal diagrams were first presented by

Douglas Ross in 1977. These diagrams can be used

to describe the operation of any complex system .

They will help us to identify all the importantfactors

in the system weare tryingto model, and will enable

us to separate independent, nuisance, intermediate ,

and dependent variables easily.

IDEF diagrams (also known as SADT) are block

diagramswith a formal process for drawing and

labeling incoming and outgoing arrows. Arrows

indicate input quantities from the left, control

parameters fromthe top , enabling resources from the

bottom (mechanism ) and outputs to the right. The

action taking place is described in the box . Thus the

arrows are labeled with nouns ( factors) and the box

with verbs (model).

MECHANISM

OR

ENABLING RESOURCES

IDEF DIAGRAM: Basic Structure
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TIMERS

GLASS SWITCH

LOW -HIGH TRANSITION

RAM VELOCITY

MAX HYDRAULIC PRESSURE

EXTRUDER RPM

NUMBER OF EXTRUDER PINS

These figures illustrate the use of IDEF diagrams for

the disk pressing example. Notice that

a) the diagrams are hierarchical: it is possible to

break down the activities in a high level box to lower

level boxes. Outputs from one lower level box

which are inputs to another lower level box are

intermediatevariables.

b) a pattern of boxes from upper right to lower left

indicates a dominance /dependencerelation .VINYL

PELLETS
DISKS

MANUFACTURE DISKS

ALPHA PRESS

MOLDS

STEAM

HYDRAULIC PUMPS

COOLING WATER

TRIMMING BLADE OR BIT

The lower figure shows a more detailed breakdown

of the pressing activities. This allows one to identify

dependencyrelationships among variables,and to

uncover variables previously overlooked. For

example, we mustnow wonder whetherthere really

are nocontrol factors for the disk trimming

operation .

EXTALDEA APV

NUMBER OF EXTRLOERPNS

IMERS

GLASS SWITCH

LOWHIGH TRANSITION

RAM VELOCITY

MAX HYDRAULIC PRESSURE

Below are some general tips on using these

diagrams.
MANUFACTURE DISKS

wi

FEEDS

EXTRLOE

PUCK

PUCK

1 ) Break down to the bottom level of detail to

identify all important variables and classify them as

independent, intermediate , etc.
PRESS

PUCK
DISKS

WITH

FLASH

DISKS
REMOVE ,

TRA ,

STACK

2) Control variables ( top) are the 'independent' or

'nuisance' variables, if they come from outside the

mainbox, otherwise they are' intermediate'

variables. The dependent variables exit the main box

at the right. Distinguish independent variables from

nuisance variables by whether they are controllable

( the former) or not (nuisance ). Controllable means

there is a 'knob' to adjust the parameter.

TRMMING BLADE OR BITALP PRESS

MODS

STEAM

HYDRAULIC PUMPS

coa NG WATER

313



Graphical Methods for Experiment Design

II . IDENTIFY /CLASSIFY VARIABLES Page 14

Exercise 3 : Draw an IDEF diagram for a process or simulation model on which you

plan experimental studies . Carry the diagram to at least two hierarchical

levels of boxes, three levels if necessary. Create a list of independent,

intermediate, nuisance , and dependent variables from the diagram .
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MAIN CAUSES

MACHONES
MATEAULS

( etc )

( etc )

C. Ishikawa Fishbone DiagramsOEPENOENT

VARIABLE

Z too
POOR

TRANG
HOT

PEOPLE PROCESS

The relation between independent, intermediate, and

dependent variables is made clearer in an IDEF

diagram . Anothergraphical tool that makes this

relationship clear is the Ishikawa (1982) Fishbone

Diagram

SUB CAUSES

ISHIKAWA FISHBONE DIAGRAM : Basic Structure

AFTER PRESS WARP

These diagrams mustbe createdseparately for each

dependentvariable. That variable isnamed in a box

at the right edgeof the paper. A horizontal line is

extended totheleft, and diagonal lines representing

'causes' of the dependent variable are attached.

Ishikawa suggestsfourmain causelines: people,

machines, material, and process. Ofcourse you are

free to choose other main causes.

max COMPOSTON

CYCU IME

reAENeoBON

VOCITY

FML TEMP .
ROTAMSITON

TIME TO 12 NOMES
MOTBUP DFFERENCE

HEAD - U de TA

Rua PRESSURE
OOK WEINT

mesireagon

POST SOAK WARP

SPEEDOF MMERSON

TAMANG

CONOMOS

The diagram at the left illustrates afishbone diagram

for thedependent variable POST -SOAK WARP for

the disk pressing system . The diagrams below

shows a similar fishbones for cycle time and disk

weight. The latter two both occur as branches of the

warp fishbone as well (but are not elaborated there ).

This fishbone interaction is common for multi

objective studies.

TBREMNE

STONE

CONONTON

TME

As with the IDEFdiagrams, it is possible to readoff

the independent, dependent, etc. variables from the

diagram .

1 ) Independent and nuisance parameters are labeled

causes or subcauses which themselves have no

further subcauses ( impinging lines). If you think of

the diagram as a tree, these are likethe leaves.

2 ) Intermediate and dependent variables are causes or

subcauses which are in turn caused by other things.

They are branches with twigs or leaves attached .

There is at leastone dependent variable, the box at

the right of the diagram .

3) Independent and nuisance variables are

distinguished by whether a 'knob' exists.

Intermediate and dependent variables are

distinguished by whether or not you are directly

concerned about the parameter value (dependent), or

only about its consequential effect on other measures

of system performance ( intermediate ).

The circled parameters indicate the set that has been

chosen to vary in a hypothetical experiment. These

figures are from Young, et. al . ( 1987).

TBw.eroeNT

CONOMONS BETWEEN

PAESSING MO BATH

BATH CONONTONS

THE BETWEENasmina
TRODERMOarera

:
SEED Pressore W trogen

WON

raumON

nu

auw

meu

CYCLE TINE

ατα

MATEM

voory

OVCITY

N.LO WITON TIME

TBETRE

OF OCK
LOH TMGTON

Lord

Narres

EEDOM

Mwendo

TiONMOMO
W WICHOMON

DOK WEIGHT

nu au

merr

no como TON

NETWEONCUS

NOMMOma

aroundMOVE ON
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Exercise 4 : Draw a fishbone diagram for one dependent variable for a process or

simulation model on which you plan experimental studies. Carry the

diagram to at least two hierarchical levels of subcauses , more if necessary.

Create a list of independent, intermediate, nuisance, and dependent

variables from the diagram.
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COMPONENT

PREP

REWORK STUFFING PREHEAT

SEQUENCER

AUTO PARTS

INSERTION

INSPECT

BOARD

PREP

A

WAVE

SOLDER

TOUCH

UP

PROOUCTION

TEST
OUT

The block diagram (not IDEF !) above illustrates the

key steps in a printed circuit board manufacturing

operation. Assume we have built a discrete event

computer simulation model of this operation which

we will use to optimize the throughput.

This diagram shows a partially completed fishbone

diagram for the printed circuit board process. The

main causes have been chosen to correspond to

processes. The variables that have beenidentified so

far are :

APY HOLE
HOLE

DIAMETER
REGISTER

HOLE DUM OPTICAL

SPEC REGISTER DEVICE

MARKUS
ACCURACY STUFFING

FALED NSERTION

SEQUENCEA BN

FUNG PROCEDURE

ROUTING BENT

OF NSERTER
LEADS MISSING PAAT

ARM

THROUGHPUT

Independent:

holediameter specification

sequencer bin filling procedure

insertion arm routinginstructions

('register marks' needs more specification before we

have the appropriate 'knobs')

WAVE SOLDER TOUCH UP

Dependent:

throughput

ISHIKAWA FISHBONE DIAGRAM : Circuit Board Manufacturing

Intermediate :

% failed insertions

#missing part occurrences

hole diameter

Nuisance:

optical device accuracy

bent leads
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D. Discussion of Main Example

VARIABLES FOR THE DISK PRESSING EXAMPLE :

The IDEF and Fishbone diagrams have helped us to

perform Step 2 in the experiment design process.

For our disk pressing example, we have identified
the variables shownat the left. This list has been

shortened and simplified for this course presentation.

INDEPENDENT VARIABLES:

Timers T-6, T- 12 , T - 13 , T -22

Full Clamp Pressure

Lo-Hi Transition Pressure Threshold

Ram Velocity

Glass Switch Setting

Vinyl Composition

Soak Bath Temperature

Soak Bath Time

INTERMEDIATE VARIABLES (some of them) :

Time to Reach 12" Diameter

Bead -Hub Delta

Disk Temperature at Release From Press

Step 2 in experiment design involves identifying the

key variables. In Step 3 these variables are classified

as fixed or varied, linear or nonlinear,quantitative or

qualitative. All of these decisions areintimately

related to the mathematical model(s) that will be fitted

to the system response (s).

NUISANCE VARIABLES (some of them ):

Room Temperature

Maximum Steam Pressure

DEPENDENT VARIABLES:

Post-Soak Warp

Cycle Time

Disk Weight

OPERATIONALMODELING DECISIONS:

STEP 3 IN EXPERIMENT DESIGN

SELECT A SET OF DEPENDENT VARIABLES FOR STUDY

CLASSIFY THE INDEPENDENT VARIABLES :

WHICH VARIED IN EXPERIMENT WHICH FIXED

(SPECIFY RANGE) (AT WHAT VALUE)

WHICH QUANTITATIVE WHICH QUALITATIVE

WHICH LINEAR WHICH NONLINEAR
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600

T

700

Notethat we are considering the model form

BEFORE designing the experiment. The example

here illustrates the importance of this step. Imagine

an experiment to estimate a reaction rate that depends

on temperatureand pressure . Let y represent the rate

and letP and T represent pressure and temperature,

respectively. Here a particular design is afull

factorial for a model of the first sort. Thismeans

that each value T run in the experiment is run in

combination with each value of Prun in the

experiment.

10 20

P

y = ą , + a,f( T ) + a 1/P ) + € > BALANCED

14.000

12.000

If our model were based on the same two variables

but in a different way, say PT and T /P , then the

same design takes on a decidedlypoorer

appearance, and is no longer a full factorial!!

PT

7.000

6.000

30 35 60

7
0

Source: Satterthwaite ( 1959) .
ТІР

y = 2 , + a,(PT) + ą (T/P ) + ε = > UNBALANCED

DESIGN GOODNESS DEPENDS

ON THE MODEL

In our modeling work we will often fit polynomial

response models to simulation model outputs as a

function of simulation model inputs. These will take

the general form :

y; = — B; x j+ εj, ĉi are i.i.d.- N (0, 02)

Usually Xo = 1 , and the x's may be different

independent variables, powersof independent

variables, or products of independent variables. For

our temperature/pressure example, we may have

Xi1 = T , Xi2 = P, Xi3 = T2, xi4= P2, Xis = TP, and

so forth. The & ; are random variations, which are

usually assumed to be independent, indentically

distributed Gaussian random variables. We will

return to a more detailed discussion of this 'General

Linear Model' in Section V, where we also mention

some alternatives for metamodels of simulation

model outputs.

319



Graphical Mcthods for Experiment Design

III . MULTIDIMENSIONAL POINT PLOTS
Page 20

DEFINITIONS

III . MULTIDIMENSIONAL POINT PLOTS
Definition : An experiment is a set of one or more runs (of a simulation

model) made to meet a particular set of objectives.
A. Review of Design Terminology

Definition : An independent variable is a parameter of the ( simulation )

system that can be explicitly adjusted by the experimenter.

Definition : A design factor is an independent variable that will have its

value changed during the course of an experiment.

Our main focus in this section will be on graphical

methods for developing designs. First we will

review some basic concepts and terminology from

the field of experiment design. We will use many of

these terms in our discussions later with no further

explanation .

Definition : A design frame is a specification of

•which independent variables will be held fixed ( & valuc )

• design factors ( & ranges)

•what system outputs will be mcasured.

Definition: An experiment design is a set of specifications of design

factors for an experiment, along with a single specification

(vector) for the independent variables that are not design

factors.

Definition: A design inatrixdepends on the model to be fitted as well as

on the experimental conditions . There is a column in the

matrix for each term in the model to be fitted, and a row for

each (simulation model) run . Each row of the matrix holds ile

values of the model temis for the corresponding run .

TERMS AND TOPICS IN EXPERIMENTAL DESIGN

Nuisance variables:

Examples: random # seed , starting conditions, time

Blocking, nature of influence understood

( treat like any other design factor )

Randomization- nature of influence not understood

Factorial Designs:

An experimentrun for each possible combination of

factorlevels: if all factors ai cwo levels, then runs

correspond to venices of an n -dimensional cube.

Fractional Factorial Designs- not all vertices:

Full Factorial

23 (3 factors)

Fractional Factorial

231 (3 factors)

-
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EXAMPLE :

Model : y=2 + a , x , + 42X2 + 8zX ,X2 This illustration of the design matrix also gives us

our first graphical design. It is a ' factorial design.

1
2

x,

X , XL

х , 1 3 2 2

3 2

1 3 4 12

1 4 1

1.5

2 1 3 2 6

1 1 2 2

1 3

Another important class of designs are 'mixture

designs. Inchemical formulation problems, one

often has to have the components add to 100 % .

Thus arbitrary combinations are not possible. This

kind of experimentation can be important for strategic

models aswell, where the total resource pool is

fixed, and the choice is how to deploy the resources

or what to purchase with them .

(1,2) (3.3)

- 1

Source: Scheffé (1958)

*.21

F. 1.- Some le , my Laurces .
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TERMS AND TOPICS IN EXPERIMENTAL DESIGN

Confounding

Design won't allow independent estimation of two

or more model parameters .

Example : change iwo variables from previous run,

and simulation output improves. Which change (or

both ) caused the improvement?

Resolution :

A mathematical measure of the nature of confounding

for various fractional factorial designs.

For practical design problems, 'optimal designs

often do not make sense , because there may be

considerations or constraints that cannot be described

mathematically.
Bias :

What if postulated model is wrong? What impact on

parameter estimates?

Optimal Design:

Optimal in a limited mathematical sense . Definitions

of optimality based on properties of the matrix x'x,

( X is the design matrix )

Example : D-Optimality < == > max determinant ( x'x)

X

( for a fixed number of rows in x )

Optimality depends on the panicular model.

E

*2
2
1

;

i
i ;

These figures remind you of the issues of bias and

confounding. For thefirst pair, the design at the

right guards against bias inthe first order terms

caused by a nonzero interaction (x1x2) term . The

secondpair illustrate full and partial confounding of

two effects.

X

* 12
* 12

X2
* 2

х

* 1 1

COMPLETE

CONFOUNDING

PARTIAL

CONFOUNDING
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" Definition 13.1 : A txn matrix A with entries

from a set S of s symbols is called an

orthogonal array of size n , t constraints , s

levels , strength d , and index 2 if any dxn

submatrix of A contains all so possible dx 1

column vectors based on s symbols of S

with the same frequency 2. "

Recall that your main strategies for choosing a design

are cookbook, software, and graphical. Each

approach hasadvantages, and none should be used

exclusive of the others. One advantage of graphical

design is the clarity of the presentation . This makes

it easy to communicate your study to others in your

organization or to your clients. Compare theclarity

of idea with the mathematical description at the left.

Historically, graphical methods for experiment

design have not been recognized as an entity . A

computerized literature search of scientific journals

gave zero entries with keywords graphicaland

experiment design in the last ten years. Yet

graphical methods have been used by outstanding

statisticians to develop well known designs,

including Box's central composite design. Let's

look at some of these designs and see what we can

learn about creating our own.

-Raktoe, Heydayat, and Federer

B. Examples of Graphical Design

I level facinial Arsime

One Factor To Factres

(631

Lets begin with the simplest and most frequently

used class of designs: factorial designs. These are

applicable when we have quantitative variables with

simple upper and lower bounds on reasonable

values.

C
h
ụ
p

T
i
n

tempe

TE01

110

Temperature Temperatur

fepure 10

I we level iacterial than

lurer at

truly run

(ARH

100 )

I

1

1C
h
o
p

T
i
m
e

Here we return to the Andrews (1964) SPAM study.

The graphical representation here is very simple,

with designs for experiments involving one, two,

three , or four independent variables ( factors). Note

that the four-dimensional case is represented as a

pair of cubes. We will use this approach to generate

even higher dimensional designs.

( ASI

40

( 021
3 min

1.10 140 "

Temperature

Ketert

1.ee

Fru Farters

suelen tur !

(681
1 ( 015

min

1

1

1

1

T

A

I

( 113)

Oye
1001 Process

021
( 0101

I minNort

Time

hat

140 *
140

Irmare Immedia

Aging
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Here we see a template for a 25 factorial design. For

experiments with many factors, we will usually

choose to run only a fraction of these points. This

diagram , then can be thought of as a template for

identifying conditions that will be run . At these

vertices, we will draw a circle, square, triangle, or

some other marker.

e

How do we decide which corners to choose ? Of

course , one could use a standard fraction, choose a

defining relation , or use a computer package to do

this. We will illustrate here how to do it

graphically.

d

5

A 2 Factorial Design

(ci 4 -block layout:

factors is factors , blocks is blocks )

VARIABLES X AND Y

AT 3 LEVELS; Z

AT 2 LEVELS

CHANGE ONE

VARIABLE AT A

TIME

O CHANGE TWO

VARIABLES AT

A TIME

Z

PROBLEM : SELECT MOST INFORMATIVE

SIX POINTS FROM 18 POINT SPACE

Fieras & Comparison of realbode for more intensive mudy of three variebten

Consider these two designs described in two ways

by Youden (1962, 1972 ). The design representation

at the top makes it clear that the one ata time strategy

is inferior in terms of covering the design space to

the two variables at a time design. Thepreferred

design is shown in tabular form in the lower figure.

Its advantages are no longer apparent. It is

interesting to note that Youden presented the clearer

representation ten years after the tabular form . Do

you think he created the design using the table or the

graph ? Which do you think would be easier ?

TABLE 4 .

Program for three variables, Inco with three choices, one with two choices. What advantages do you see in the two- factors at a

time design ?
X

N

X

Variables

X

v
y

Z
2 -?

ySix sets

1 2

N

Li
3 1S

X

6

X

Y

Z

Y Y
v

2

у

Z
?
Z

1
Z 2

Above coefficients are reigh

ing factors to estimate I - X
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9
ENDURING VALVES

Y

ric
G

Consider these two designs for estimating the effects

of three independent variables, X, Y, and Z on a

dependent variable, say W.

F

Source: Youden ( 1972)
A

8

A

X

X Х Q: Why might you say that the design on the right is

'better' than the design on the left ?D E

IZ
Z

A: Lots of ways to answer. Jot down yours:

CHANGE ONE

VARIABLE

CHANGE TWO

VARIABLES

G. E. P. BOX AND J. S. HUNTER

This figure illustrates that each projection is a full

factorial. That means if any one of the three factors

has insignificant effect on W, we will have gotten a

full factorial design on the other two factors for free!

Box and Meyer (1986) call this 'exploiting effect

sparsity '. That is, when westudy many factors, we

expect that most of them will have littleeffect on the

dependent variable (here called W ).

X2

Q: How do we check that we will be able to exploit

effect sparsity ?

A: Look at the projections of the design. Do they

yield full factorialsor at least good fractions ?

Q: What does a 'good fractional design' look like ?

l'IGUNE 2 — Projection of 211; into tlırcc 22 factorials.

A: Check the confounding patterns

Source: Box and Hunter (1961 )
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These diagrams can be viewed in two ways. First,

consider anexperiment with two independent

variables, X and Y. We will study their effect on a

dependent variable W. To compute the main ( linear)

effect of X, we would subtract the average of the W

values measured at the light circles from the average

W values at the dark circles on the leftmost figure.

The XY interaction effect on W would be measured

by subtracting the average W's at the light circles

from the average at the dark circles for the rightmost

figure.O -

- O -

MAIN EFFECT
TWO -FACTOR

INTERACTION
( To see this , label the low and high X and Y values

as 0 and 1 respectively, substitute the values in the

model a +bX +cY +dXY to get a formula for each of

the four points, and then perform the subtraction )

NOW view the figure in a different light. Suppose

that the DARK circles correspond to a HIGH value

of a third independent factor, Z. How do we

measure the main effect (linearcoefficient) for Z ? By

subtracting the average of the light circles from the

average of the dark circles. Forthe design at the left,

the same quantity is also used to estimate the main

effect for X. Thus for the design at left, we will not

be able to separate the effects ofX and Z We say

that the main effect ofX is completely confounded
with the main effect of Z.

Q: In this new light, which of these designs is to be

preferred ?

A: The design on the right.

Q: Why ?
- O - O -

MAIN EFFECT

AND

TWO -FACTOR

INTERACTION

AND

z

z

A: Statisticians assume (sometimes wrongly ) that

second order effects ( nonlinear) will be less

important than first order ( linear) effects. Thus the

second design confounds the coefficient of Z with

the XY interaction coefficient, and the XY interaction

coefficient is assumed to be smaller and less

important than any of the main effects for X, Y, or

z .
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We have learned several graphical lessons from these

simple designs :

Block

I -

check projections for goodness

• look for patterns ofconfounding

• make the design points 'cover' the design space

• make the design points as far from each other as

possible

-

II- -

Let's try to apply this information to the 'Bad Block '

example from Box, Hunter, and Hunter ( 1978) .

-

III

I
+

IV

+

Consider an experiment to estimate the effect of three

independent factors, a, b, and c, on a dependent

variable e. Furthermore, there is a nuisance variable,

d, that forces us to block our experiment to try and

provide equal values of d within a block .

Unfortunately, the homogeneous block capacity is

only two, so we can't run all 8 combinations of the

other three factors in one block . How should we

assign runs to blocks ?

Undesirablo ve Batter

Incomplete Block Docigo

Froa Bea . Huarar , os Humor , pp.339-341 The figure at the top of the page shows two designs

represented in the typical tabular fashion. The three

columns on the left correspond to one design , the

three columns on the right to another. For example,

the first design has a high, b high , and c low for the

first point in block one, and a and c high and b low

in the second. Can you tell which of these two

incomplete block designs is defective ? Can you tell

why?

O

10 : 10 : 00:10
The figure on the lower half of the page shows

graphical representations of the same two designs,

along with the three projections found by dropping

either a , b, or c.
OLOCK 2

BLOCK 3
BLOCK 1

BLOCK 4

Q: What are the blocks confounded with in the top

design ? In the bottom ?

O : 10 ; 10 : 10 :
Q: As a statistician , which design would you prefer,

making the normal assumptions aboutmain effect vs

secondorder confounding?

BLOCK 4

BLOCK 1 BLOCK 2
BLOCK 3

BLOCKED DESIGNS FROM

Notice also that the top design violates our other

design principles: thepoints on a cube are not as far

apart as possible, nor do they cover the space as well

as possible.

BOX, HUNTER & HUNTER,

(pp339-341)
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( OM'UTING MAIN 11 ( TS ( OMI'UTING TWO -WAY INTERACTIONS

Two factor

I
Two factor

I.

- U
a 0- . -

ab : O

Thrcc l'actor: Thircc Factor

a b
ab: ac :

bc :

COMI'UTING: TURU -WAY 1111.CTS

Trec Factor:

abc :

CONFOUNDING OF EFFECT

OR

PARITY OF EFFECT

a : • in

The graphical patterns of confounding are based on

the graphicalpatterns for computing main effects and

higher order interactions. There are two graphical

operations that induce confounding. The first, which

we'll call confounding ofeffect, superimposes the

graphical pattern for one effect in the same fashion as

another. In the first example at the left, the hi-lo

pattern for main effect c is the same as the hi- lo

pattern for main effect a or an ac confounding.

Confounding of effect ç with main effect a if

means chi

means c = lo

DO

The second figure illustrates another way

confounding patterns may appear graphically, which

we call confounding ofparity. Here we have four

factors, with factor c coded by squares and circles.

The c main effect is confounded with a again within

a single level of d, but the sense of the confounding

(parity) reverses between the lo and hi values for d .

This gives an acd confounding term in the defining

relation for the design.

dhid lo

Confounding of parity of c-a confounding
with

main elfect d in a 4 - factor design
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( ) Main cilice

We can evaluate even larger designs graphically, but

first we need to look at higher order confounding

patterns. The figure at the left is from Box, Hunter,

and Hunter ( 1978 ) and shows the interaction patterns

for 3 - factor experiments. Thus if we color code a

fourth factor on a three - factor plot, the color pattern

will convey which effect the fourth factor is

confounded with. In fact, we can carry this tool to

higher dimensions by looking at some (not all) of the

confounding patterns.

TxC CXKTKK

( 1 ) Teolacha nutcractures

+

Т С x K

(c ) Threc.factor interaction

d = 1

b
b

Here is a fractional factorial design from Fries and

Hunter ( 1980) . Can you pick out interaction patterns

graphically ?

a a
a

d

confounded

with

a

d

confounded

with

d

confounded

with

abc
ac

CONFOUNDING: I'ATTERNS :

OUTER INNER

bcdg: &

The bc interaction pattern on the small cubes has

been circled . This pattern falls on the dg interaction

pattern on the large cube ( the alternate dg vertices

have the other bc interaction pair ). Thus bc is

confounded with dg, as shown in the second term of

the defining relation. Similarly on these cubes, the

main effectof a is confoundedwith the main effect of

f. The opposite patternoccurs on the complementary

dg interaction nodes. Thus dg is confounded with

af, the third term in the defining relation . Finally, the

a-f main effect confounding switches sense for

opposite sets of the bc interaction (we already knew

this since bc is confounded with dg, but we can see it

graphically directly ). Thus af is confounded with bc,

thefirst term in the defining relation .

adfg: &

parity confounding

g

0 .
p - 1 :

e

d

1 = abcf = bcdg - adrg
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CONFOUNDING: I'ATTERNS:

OUTER INNIR

des

& .

plealxccg:

Q: What should be our goal in developing a better

design graphically ?
parity confounding

A: Lay out our points in patterns that correspond to

high order interactions, not main effect patterns.c

9

In this figure, we are able to generate a pattern that

corresponds to three -way interaction on the large

cube vertices, but the small cube vertices still show a

main effect (a) pattern which is confounded with the

large cube three way interaction (deg). Thus we

have an adeg term in the defining relation.

1-1 :

d

I = abcr - adeg=bcdefg

CONFOUNDING: PATTERNS:

OUTIER INNIER

dolg:

This third attempt is deceiving! It appears that we

have done it, getting three -way interaction patterns

on both the small and large cube vertices. But we

have forgotten the f maineffect (square vs circle ). It

is completely confounded with the three factor

interaction (deg) on the large cube vertices. Thus we

still have one four- letter word for this fractional

design! At least it's repeatable: defg.

abceg:
&

g

Note : these designs appeared in the original article,

but the graphical representations did not. The last

design was cited by the authors as the 'minimum

aberration' design because it minimized the number

of words in the defining relation that had minimum

length.

polo

e

d

l - abcdi -abceg-derg
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Exercise 5 : Using the template below , fill in points for a 'good' 1/2 fraction design .

(Hint : check projections and interaction patterns as you go).

с

O:b b

a a

e

S
e
x

с

b b

a a

d
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Exercise 6 : Can you ' fix ' this design by moving just one point?

A B C D E

+

-

+

-

+ +

-

-

+ +

-

- -

+ 1

-

I I

1
++

+

+

+
+

+
+

'
'

'

-

+

-
-

I
+

1

-

+
-

+

+ + + +
-

+

-

-

+ +

+ + + +

+ + + +

+ + + +

Exercise 7 : You have a model for a response W as a function of two parameters, X,and

Y. You expect the response to be nonlinear, and so a two -level factoriales

not satisfactory. You have enough resources to run 9 experiments, so a 32

factorial design is possible. Unfortunately,your available design space is

not rectangular ( see below ). Lay out your 9 runs within the designspace

provided below :

I
N
D
E
P
E
N
D
E
N
T

V
A
R
I
A
B
L
E

Y

INDEPENDENT

VARIABLEX

Box represents allowable range for values of X and Y
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Q: How do we choose the design points in

complicated situations when the factors can take on

three or more levels ??
".. convenient to regard designs as built up from a number

of component sets of points, each set having its points

equidistant from the origin ... " A:

<---

"... form the vertices of a regular polygon, polyhedron, or

polytope ..."

- Box and Hunter ( 1957)

This figure shows a graphical design from the first

paper in the first issue of Technometrics (DeBaun,

1959). This design is broken down into graphical

subcomponents to make it easier to understand.

8

21

l
o

CUBE

O OCTAHEDRON

CUBOCTAHEDRON

CENTERPOINT

FIGURE 1
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11
да

3b
30

* Hunter (1985) illustrates many common designs

graphically as the vertices or edge points of regular

polyhedra.

3d 3e 30

*

第四
39

3h
31

FIGURE 3. (30 The Imory - Soren Paints comprising the sofectoniet: ( 3b ) theo your frecriand factoriel, the Torahedron .

With or withoun Center Point:13c) The Moosure Politopo, dipyramid or " Sior " Design:13a) The Cube or ? rectorial,

With orwithon Center Paint :(30) The Central Composite Design:(31 and 3g ) Two views of the Cubotichodron or for

Betank on Design:(Jh and 3 ) Two 3x 3x 3 Latin Squeres.

Let's summarize our discoveries about how to

generate good designs graphically. These ideas are

not new , as these quotes illustrate.

Remember, it is easier to view a complicated design

as being made up of simpler graphical components.

... convenient to regard designs as built up from a number

of component sets of points, each set having its points

equidistant from the origin ..."

Source: Box and Hunter ( 1957)

... form the vertices of a regular polygon , polyhedron, or

polytope...
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Also, keep design points as far apart as possible:

span the designspace.

Source: Kennard and Stone ( 1969)

Unfortunately, the Box and Draper goal is in conflict

with measures taken to minimize bias. To minimize

bias, the distribution of points in space should appear

to come from a uniform distribution. A uniform

distribution does not put points at the extreme

locations, but spreads them evenly over the design

space. Thus there will be a tension between the

second and third goals when you design

experiments.

Source: Box and Draper (1959)

This table presents ourfindings on generating

graphical designs. Let's apply these tools to a real

design problem

"Choose new points to MAXIMIZE the minimum

distance from all existing design points.."

" ...It is proved (Appendix 1 ) that if a

polynomial of any degree d, is fitted by the

method of least squares over any region of

interest R in the k variables, when the true

function is a polynomial of any degree dz > d ,,

then the bias averaged over R is minimized for

all values of the coefficients of the neglected

terms, by making the moments of order d ,+ d2

and less of the design points equal to the

corresponding moments of a unitorm

distribution over R."

SOME USEFUL CONCEPTS

for generating

GOOD DESIGNS

from

MULTIDIMENSIONAL POINT PLOTS

• COVER THE DESIGN SPACE UNIFORMLY

CHECK PROJECTIONS TO PLANES

AND LINES

SPAN THE WHOLE DESIGN SPACE:

MAKE ADDED DESIGN POINTS FAR FROM

EXISTING POINTS TO MINIMIZE VARIANCE

FOR FIRST ORDER EFFECTS

DECOMPOSE COMPLICATED DESIGNS INTO

GRAPHICAL SUBCOMPONENTS
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We return to our discussion of the disk pressing

problem . Suppose we have narrowed the list of

factors to vary to the list shown at the left. Upper

and lower limits are specified for each independent

variable, and whetherthey appear to have linear or

quadratic effect on disk warp values.

REDUCED LIST OF INDEPENDENT VARIABLES

FOR THE

DISK PRESSING STUDY

NONLIN ?

LINEAR

VARIABLE

GLASS SWITCH

RAM VELOCITY

COOLING TIME ( T - 12)

LOW -HIGH TRANSITION

FULL CLAMP PRESSURE

LOWER LIM

4.900

LOW (-1)

12 SEC .

200PSI

UPPER LIM

4.925

HIGH (+1)

15 SEC.

600PSI

LINEAR

LINEAR

NONLIN

1500PSI 2000PSI NONLIN

Before we design the main 'exploratory' experiment,

we'll try to design a small 'pilot' experiment. The

purpose of the pilot experiment is toverify that the

proposed ranges for the independent variables are

feasible (we don't break the press) and to debug the

experiment running and datacollection process. It is

analogous to kicking the tires and checking the

brakes before beginning a long trip.

PILOT EXPERIMENTS

WHAT ARE THEY ?

WHAT ARE THEY FOR ?

HOW IMPORTANT

ARE THEY ?
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Exercise 8 : You have a total of six runs available for a pilot experiment. Identify the

six runs you choose to make graphically and state why you chose them .

Below is a filled -out full-factoríal design requiring 72 runs, followed by a

template for you to use to place yourdesign points.

(Spend 5 minutes individually, then 5 minutes in groups)

FULL FACTORIAL DESIGN

4.925

GLASS SWITCH (GS) :

4.900

15

C
O
O
L
I
N
G

T
I
M
E

(C
T

)

12

2
0
0

4
0
0

6
0
0

L
O

-HI T
R
A
N
S
I
T
I
O
N

(L
H

)

1500 1800 2100

CLAMP PRESSURE (CP)

LOW RAM VELOCITY HIGH

DESIGN TEMPLATE

4.925

GLASS SWITCH (GS) :

4.900

15

12

2
0
0

4
0
0

6
0
0

L
O

-H
I
T
R
A
N
S
I
T
I
O
N

(L
H

)

1500 1800 2100

CLAMP PRESSURE (CP)

LOW RAM VELOCITY HIGH
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Exercise 9 : You have a total of twenty-one runs available for an exploratory

experiment. You will want to fit a model that is linear in three terms (glass

switch, ram velocity , and cooling time) and quadratic in two variables

( low -high transition pressure and full clamp pressure ). Identify the

twenty -one runs you choose to make graphically and state why you chose

them .

(Spend 10 minutes individually, then 10 minutes in groups)

DESIGN TEMPLATE

4.925

GLASS SWITCH (GS):

4.900

15

C
O
O
L
I
N
G

T
I
M
E

(C
T

)

2
0
0

4
0
0

6
0
0

12

L
O

-H
I
T
R
A
N
S
I
T
I
O
N

(L
H

)

1500 1800 2100

CLAMP PRESSURE (CP)

LOW RAM VELOCITY HIGH
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C. Constructing a Design for the Main Example

This figure shows the full 72 -run factorial design and a 36 -run 1/2 fraction . How was the 1/2 fraction

chosen ? The breakdown into graphical subcomponents is made clear on the following page.

FULL FACTORIAL DESIGN

4.925

GLASS SWITCH (GS) :

4.900

15

C
O
O
L
I
N
G

T
I
M
E

(C
T

)

+
2

o

12

L
O

-H
I
T
R
A
N
S
I
T
I
O
N

(L
H

)

.
2

1500 1800 2100

CLAMP PRESSURE (CP) ,

LOW RAM VELOCITY
$

HIGH

FRACTIONAL DESIGN
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FRACTIONAL DESIGN

AS EASY-TO-RECOGNIZE COMPONENTS

(easy to choose run order by labeling points)

+

+
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For 3-level designs such as this one, confounding properties are much harder to detect, and will require

the mathematical checks discussed in Section V. The figure below shows a modified design with

improved confounding patterns. This was generated byMaster of Engineering candidates after a one hour

tutorial on these graphical techniques ( Young, Moore, and Girard, 1987).

FINAL RUN

&CO回 向
550

400 LH

4.925

CS

250

.1

RV

12 CT 15

800 a
1900 1700 1550

P. RUNS THAT DUPLICATED PLOT RUNS

2P . RUN WAS DUPLICATED N FRAL EXPERIMENT ANO DUPLICATED PILOT RUNS

Figure 12
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Exercise 10 : Use graphical methods to design an experiment to fit a response

metamodel to atsimulation system of your choice . The design should be

for at least three independent variables, at least one of which is at more

than two levels. At least ten runs should be planned.
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-209
( 4.05

D. Displaying Results onGraphical Designs+1.66
(245

"
( 1.22 5.22

Graphical designs provide another advantage: they

provide a frame on which to visualize the system

responses. This allows one to interpret the findings

more easily and to propose appropriate models for

the response function more easily.

..63 6.47

Chaka

Irms

Ni - 7

193 1.30

-268
.

. (5.68 )

The simplest examples of such a display are shown

here. The first is from Snee (1985a). Pearson

( 1934) draws simple examples of brick strength vs.
kiln location .

DIAGRAMMATIC SECTION OF KILN

2.06 (9.38

2.51 6.79

(asco

2

foord

3

fooooI'wa - 92

wity- "

3

(01.01
(rez)

( 4313 471)

( 5159. 4871)
7

67701

8 9

( 7 )

( 3853616 )

FIGURES IN BRACKET ARE AVERAGE STRENOTNO

or MICKS IN LB. Pen... IN. MON THC . ncalon .

(4201 40477

(
25962361) :

(215V2361)

This figure is from Bates (1989) . Elaborate physical

design models are illustrated below and on the

following page.
(40387378). (41462578)

(28353578)

( 1471.1316

(9191316 )

( 26701 :'3108 ) Sources:

below : Box and Wilson (1951)

next page: Neyman ( 1935)

.( !! ? !1632)

(2333.1948)

( 16151940)

Box's physical model of the original central

composite design wasless complicated than the

figure below . A simple bare wire structure, it was

augmented to display response values using insulated

wire. Each vertex was wrapped with a piece of
insulated wire. The color of the insulation was

keyed to the level of response, from red to blue to

white. Design points with intermediate values of the

response function were wrapped with the two

adjacent colors ( red & blue orblue & white ).

Model on loan from J. Stuart Hunter)

OM
o
s
t

p
o
s
s
3
0
0

T
i
m
e

Temperature

FIGURE 1 :5. PHOTOGRAPH OF A THREE DIMENSIONAL, MODEL SHOWING THE CON

100RS OF THE APPROXIMATE PLANE STATIONARY RIDGE SYSTEM CONSTRUCTED

(1.8 TIIE BASIS OF TRIALS RUX AT TIE POINTS INDICATED BY THE MARBLES. A

DESCRIPTION OF THIS PARTICULAR EXPERIMENT IS FOUND IN SECTION 8. THE

TYPE OF EXPERIMENTAL DESIGN USED IS THAT 543USTRATED IN FIGURE 8.
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FIG.L.
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.2

2 .

1 .

FI

ST

2

2 .

О
о
о
о

о
о
о
о

•0 •0

ܘ ••ܘ

Another way to display the level of response is with

the size of the ball at the vertex. For two - factor

experiments at two or more levels, this display is

called a bubble chart. This example is for an

experiment comparing the performance of several

types of optimization algorithms with several

strategies for computing finite difference derivatives

(Barton, 1990 ). A larger circle means that the

effectiveness was higher.

8x

opt

n

o

O
O
O
O

О
О
О
О

О
О
О
С

О
О
О
О

1

FI

c

8

6 0

Algorithm

C. conjugate gradient (alg500 )

B : BFGS ( alg500 )

6: Gay's BFGS (alg611)

0. Davioon optimally conditioneo

Figure 9. Diameter of circles represents average rank of function reduction for each

finite difference method on 18 test functions, with test function arguments

shified by 100. Rank comparisons over all optimizacion codes. Function

accuracy 2 decimal digies, shifted starting points.

FIRST 30 ITERATIONS

This figure from Barton (1985) shows the contours

of the fitted response function superimposed with the

sequential simplex (Nelder-Mead) design points.

1
H
i

H-
1

H
I

It is also possible to label the design points withtheir

run order, to look for confounding problems. The

figure at the left is from Snee ( 1985a). A better

approach would be to shade the circles

corresponding to run order, or to size them from

small circles to large based on run order. This would

help to make confounding patterns more obvious.

16

Casehartie

1. 17

1. - 12

ةز-
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IV . EXERCISE REVIEW:

A. Fishbone /IDEF Diagrams

B. Multidimensional Point Plot

!
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V. VALIDATION OF EXPERIMENT DESIGN

YALIDATING DESIGNS THATHAVE BEEN CREATER GRAPHICALLY

GRAPHICAL TOOLS EXPLOIT THE POWER OF THE "RIGHT BRAIN

• CREATIVITY

• INSIGHT

BUT THESE TECHNIQUES ARE QUALITATIVE AND PRONE TO ERROR

These techniques allow us to use the creative human

graphical processing resources to create new designs

and to gain insight on design properties. Graphical

methods are necessarily qualitative, however. We

need to back up our graphical work with precise

mathematical measures of design goodness.
WE NEED MATHEMATICAL CHECKS :

• CANWEESTIMATETHEPARAMETERS ?

• HOWGOODWILLOUR ESTIMATES BE ?

HOW BADLY WILL THEESTIMATESBE CONFOUNDED ?

• HOW WELL CAN WEEXPECTTHEMODELTO PREDICT ?

A. Importance of the Model

A GENERAL LINEAR MODEL
As we discussed earlier, theproperties ofan

experiment design depend closely on the kind of

model the experimenter has chosen. What properties

do we care about ? These include

• estimability of parameters

the variance of the parameter estimates

• the covariance /correlation of

• the mean square prediction error over the design

space

Y = a + a,,,* QqX₂ + a₂x3 +
( ,

+ error

[yitarq,xirarcáo gostericit come

errori d ~N(0,0 )

The most common applications in simulation

metamodelingwill beGeneral Linear Models:

ANOVA, ANOCOVA, or Regression models with

iid Gaussian error. There are other interesting

choices for metamodels, particularly for deterministic

computer simulation output ( Sacks, Schiller, and

Welch, 1989). At present these models require

computer-aided selection of design points.9.X0
error

DESIGN MATRIX

B. The General Linear Model and the Design Matrix

x x , x, x5

X

ya chy

We will often represent a single dependent variable

(say WARP) as a y, and the independent variables as

x's. In this formulation the unknown parameters are

the a's and the value of 02. Note that the a's appear

LINEARLY in the formulation . The x's do nothave

to be linear, as illustrated by the fourth factor. This

could also be written as X4 rather than (x2)2.

M

variance- covariance of

(To
r
ó
x
o e
r
o

A

å

The observations are indexed by a letter (i), and the

independent variable coefficients are indexed by

another letter (j). The x's are indexed by both letters.

The representation is often Xij , rather than as shown
at left. This model can be written in matrix form .

The matrix X is called the design matrix.Σ ;- cov(lâ., &;)

Z = *(XX)"
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Exercise 11 : Construct the design matrix (don't forget the column of 1's for the

intercept) for the following design

X2

-
-

1

1

х .

.2 -1 1 2

-1

a ) when the model is

y = 2o + a , X , + azxz + error

b) when the model is

y = 2g + a , x , + azxz + azx ,Xz + error
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C. Measures of Design Goodness

OPTIMAL DESIGN:

D-Optimality

maximize det(XTX )

Measures for the goodness of a design will be

difficult to generate for arbitrary models of system

response. For the general linear model, though, we

have a simple situation : the goodness of the design

for fitting a general linearmodel will depend only on

the properties of the X matrix . In particular, the

estimate for the variance -covariance matrix for the

parameter estimates (except the estimate for 02)

depends on (X'X) -1 . Since the x's for a candidate

design are known before the results are collected

(only the y's are unknown) we can assess the quality

of the design before the experiment is run !

corresponds to minimum volume confidence ellipsoid for

model parameters, i.e. tightest estimates

E -Optimality

maximize minimum eigenvalue of XX

corresponds to minimizing maximum prediction error over

a unit sphere The list at the left presents two of the traditional

definitions of good or 'optimal' designs. In general

we would like the diagonal entries of to be small.

This corresponds to small variances for our

parameter estimates. We would like the off -diagonal

elements to be even smaller. This corresponds to

low confounding of effects, that is, smallcovariance

of parameter estimates.

SAS CODE to check E

CMS FILEDEF DESI DISK DESIGN DATA A; D. Checking ( x +x ) and ( x +x ) -1

DATA DESIGN ;

INFILE DESI;

INPUT X1 X2 X3;

X1 X1 - X1 * * 1 ;

X1 X2 • X ? * X2;

The code at the left is for SAS. We enter the design

and can augment it if we have nonlinear x terms in

the general linear model. Don't forget to include a

column of 1's if you have an intercept term . We can

study the resulting matrix which is (except for the

factor 02 ) the variance covariance matrix E.

Other software such as MATLAB ACED, COED,

etc.can be used to generate mathematical properties

of design goodness for general linear models.

ETC

PROC MATRIX ;

FETCH X

SIG FAC =

DATA - DESIGN ;

INV ( (x' ) ** );

X SIGFAC;
PRINT X
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Exercise 12 : Construct the design matrix (don't forget the column of 1's for the

intercept) for your own problem . Use SAS, MATLAB, ACED, or any

other software to evaluate (xTx)-1.
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E. Graphical Views of ( x +x ) and ( x + x )-1

MANUFACTURING SYSTEM LAYOUT

DESIGN PROBLEM While it is easy to generate these matrices, it is

difficult to understand the design properties for

designs with more than two or three parameters.
TASK 1

MACHINES

TASK 2

MACHINES

TASK 3

MACHINES

TASK 1.2 OR 3

MACHINES

Instead we'll look for way to represent these matrices

graphically! Understandthat these graphics are for

analysis rather than generation of new experiment

designs. They are used for checking rather than

creating

We'll begin by introducing a new example. We'll try

to design an experiment where the factors are

quantitative but integer, and the realistic values

correspond to smallintegers. An analogy might be a

'battle deployment plan where the number of

divisions to assignto an area must be selected.

In our example the simulation model represents the performance of a small manufacturing operation. The

goal of our study is actually optimization, but it was pursued by Kleijnen and Standridge ( 1987) through

fitting a polynomial approximation for sensitivity analysis and insight (goal 2 ).

Thefigure at the top of this page illustrates the manufacturing systemlayout problem . The factory

produces a single product, which requires threetasks to be performed in sequence. Special machines are

available to perform each of these tasks. In addition, flexible manufacturing machines are available (at

higher cost)which can perform all three machiningoperations. Tomeet throughput requirements on task

1,5.2 machines are required. For task 2, 1.3 machines are needed. For task 3 , 2.6 machines are needed .

We cannot purchase a fractional machine, and so without any flexible equipment we will need six

machines for task 1 , two machines for task 2, and three machines for task 3. On the other hand, the

purchase of one flexible machine could reduce the demand on one or more other tasks, and so reduce the

number of machines needed. If only five machines for task 1 , one for task 2, and two for task 3 are

purchased, two flexible machines will be needed to meet throughput requirements.

The goal of this design is to estimate the throughput as a function of the number of machines of each type

that are purchased. This is expected to give some insight on the most economical choice. Of course, there

are only 2x2x2x3 =24 possible configurations, so the exact answer can be had for the cost of 24 simulation

runs. We assume that we have a budget of only 8 runs from which we must make a decision .

ORIGINAL DESIGN

X2

X1

V

The original design had a serious problem . Can you

see it graphically ? The effect of the number of

flexible machines (x4) is confounded with the

number of machines of type 3 (X3-- here re -coded as

+1 rather than 2 or 3) . Since the confounding is only

partial, it is hard to eyeball how severe the problem

is. We need to look at the covariance and correlation

matrices.1
X4

+1

X3

351



Graphical Methods for Experiment Design

V. VALIDATION OF DESIGN Page 51

EXPERIMENTDESIGNS

FOR A

MANUFACTURING DESIGN PROBLEM

ORIGINAL DESIGN
KLEINEN DESIGN

0 0

This figure shows several designs along with the

original design. Which is better ? In what way?

These are difficult questions to answer, even when

the variance -covariance matrix is available. For only

8 runs, the matrix with all main effects, two factor

interactions, and a quadratic term for the number of

flexible machines IS NOT INVERTIBLE. To study

the covariance matrix the model must be limited to a

few terms.

x
2

X1

K.X4

X )

MODIFIED ORIGINAL DESIGN EXPANDED X4 DESIGN
The second figure illustrates the entries of the

variance -covariance factor (X'X ) -1 for the original

design . The edge length of each diagonal block is

proportionalto thesquare root of the diagonal entry

in (X'X )-1. Thus the size of the diagonal blocks are

proportional to standard deviations of coefficient

estimates and the areas are proportional to their

variances. This structure determines the size of the

off-diagonal blocks. Each block's shading is

proportional to the absolute value of the correlation

coefficient of the two parameters corresponding to

that row and that column. The on -diagonal blocks

areshaded 100 % (black ) because a term's correlation

with itself is 1 .

ORIGINAL DESIGN

1 X1 X2 X3 X4 X14 X23 X4

Q: How was this graphic created ?

A: Using CanvasTM for the Macintosh . The

softwareallows one to see the edge dimension of a

square as it is created . It also provides a numerical

scale (0-100 ) for shading boxes. MatlabTM was used

to generate the covariance / correlation data. The code

forone of these is shown at the left.

Q: What will a good design look like ?

Matlab Code:

A3 = ( -1-1-1-1

1-11-1

-111-1

11-1-1

-1-111

1-1-11

-11-11

11111

A: The overall size of the box is determined by the

sum of the standard deviations of all estimated

parameters. The smaller the better. If we are

particularly interested in a subset of the parameters ,

this sub -box should be small. Furthermore, the off

diagonal shading should be as light as possible. It

should be white in the sub -box corresponding to our

most important parameters (no confounding),and it

should be pale in the rows and columns which

overlap the sub - box but are outside it.

H = H - 1

AA3 = ( A3 BCDEFGH )

B = ( A3 (:, 1) . * A3 (:. 2 )]

C = ( A3(:, 1 ) . * A3(: .3 )]

D = ( A3 (:, 1 ) . * A3 (:, 4 )]

E = ( A3(:,2 ) . * A3(:, 3 )]

F = ( A3(:, 2 ) . * A3(:,4)]

G = ( A3(:,3 ) .* A3(:, 4 )]

H = (A3 (:, 4 ) . * A3(:4)]

XTX = AA3' * AA3

con (AA3)

% XTXi = inv(XTX )
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Thefigures on this page show the graphical representationof the correlation /variance structure for all

candidate designs. The important effects are the constant ( 1 ) , the quadratic term (X44 ) and the linear terms

X1 , X2, X3 , and x4.

.

Note particularly:

the original design has substantial confounding

the overall box for the original design is bigger than the designs at the right

the modified original design eliminates confounding from the sub -box of interest while providing the

same accuracy on parameter estimates

• the Kleijnen box is smaller overall and smaller for the key effects that it does estimate

• the Kleijnen design cannot estimate one of the key parameters (X44)

• the expanded x4 design provides both a smaller box and estimability of (X44 )

EXPERIMENT DESIGNS

FOR A

MANUFACTURING DESIGN PROBLEM

ORIGINAL DESIGN KLEUNEN DESIGN

I XI X2 х3 X4 X14 X23 X44 1 X1 X2 X3 X4 X14 X24 X34

6X23 )

MODIFIED ORIGINAL DESIGN EXPANDED X4 DESIGN

1 X1 X2 X3 X4 X13 X24 X44
1 X1 X2 X3 X4 X23 X4 X44
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This graphical tool for analysis of correlation and

covariance needs further revision . It is not clear

from the picture that the Kleijnen design cannot

estimate the quadratic effect. This is important,

though; it is like throwing the baby out with the
bathwater.

It is interesting thatcovariance patterns can be traced

from dark cells to the corresponding variable labels

on the boundary. If the matrix could somehow

include all model terms (not just an estimable subset)

one could construct Taguchi linear graphs by reading

the dark boxes as edges between variables. An

example of Taguchi linear graphs is shown here.

This is also a good reminder that the Taguchi Linear

Graphs, just like the graphical correlation /covariance

matrices, are useful for analysis (or cookbook look

up) but not for creating new designs.

Source : Pignatiello and Ramberg (1985)

302

5

043 5

6م

07

2 6 4

FIGURE 1. Linear Graphs for the lo Orthogonal Array.
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VI. SUMMARY

1 DEFINE GOALS
We have examined graphical methods for three of the

five steps in designing experiments. These methods

are easy to learn, fun to do, and provide a new

dimension of insight to the qualities and

consequences of a particular design.
2 IDENTIFY VARIABLES

3 CLASSIFY VARIABLES

4 DESIGN EXPERIMENT

5 VALIDATE DESIGN

Graphical designs are not a replacement for other

design techniques. Like other techniques, they have

their own advantages and disadvantages. But until

recently, they have not been publicized.

STRENGTHS AND WEAKNESSES

OF

GRAPHICAL METHODS

+ FLEXIBLE

• MAKE TRADEOFFS VISUALLY

• INCORPORATE CONSTRAINTS GRAPHICALLY

+ ROBUST ( to adegree ; for Ist order models & interactions )

USES POWERFULCOMPUTING DEVICE

(human vision system and right brain )

+ EASY TO USE AND EASY TO REMEMBER

+ EASY TO TEACH

- NOT QUANTITATIVE

- DIMENSIONAL LIMITATIONS

355



Graphical Methods for Experiment Design
VI . SUMMARY Page 55

As this quote from George Box ( 1984) suggests,

graphical methods are perhaps more important for

design than for analysis, since design is a highly

creative activity. In this age of computerized

statistical packages, errors in analysis can always be

redone, but an error in design cannot be fixed by a

clever analysis.

1

It is well-known inal wnile the left brain plays a

conscious and dominant role, one may be quite un

aware of the working of the less assertive right brain .

For example, the apparently instinctive knowledge of

what to do and how to do itenjoyed by an experi

enced tennis player comes from the right brain . It is

significant that this skill may be temporarily lost if we

invite the tennis player to explain how he does it , and

thus call the left brain into a dominant and interfering

mode.

In this context we see the data analyst's insistence

on “ letting the data speak to us “ by plots and displays

as an instinctive understanding of the need to en

courage and to stiinulate the pattern recognition and

model generating capability of the right brain. Also, it

expresses his concern that we not allow our pushy

deductive left brain to take over 100 quickly and

perhaps forcibly produce unwarranted conclusions

based on an inadequate model.

While the accomplishment of the right brain in

finding patterns in data and residuals is of enormous

consequence to scientific discovery, some check is ob

viously needed on its pattern -seeking ability, for

common experience shows that some pattern or other

can be seen in almost any set of data or facts. A check
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VII. FURTHER TOPICS

A. Graphical Designs for Many Factors and/or

Many Levels
NESE SUBSETS

MAP ONTO THE

DESKGNS BELOWb d

Graphical methods for experiment design are

inherently low -dimensional. How can they be used

to help design experiments with many factors ?

C

painos :

с

o
3,3

3

It may be possible to develop low -dimensional

designs on a subset of the factors and 'paste' these

subset designs together to form the complete design .

Pasting here means a 1-1 pairing between the design

points for one subset of factors and the design points

for the other subset. The goodness of the design will

depend not only on the (graphical) quality of the two

subset designs, but on the way in which the subset

design points are paired. This is illustrated in the

figure at the left. Two full-factorial 22 subset

designs (a, b and c,d) are paired in two different

ways, yielding two different 24-2 designs .

с
pairings:

1.1

3.3

b

3

IL

I
2

15 )

Some designs can be projected onto a lower

dimensional space. Draper (1985) found that a

Plackett-Burman (1946) design for 11 factors had

only two possible projections* in 5 dimensional

space. They are illustrated graphically at the left.
5

1

( 4 )

Projecting designs into lower -dimensional space can

help in design analysis, but its value for design

synthesis remains unclear.
a

2

* allowing sign changes and permutations of axes

5

b
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Evenwith relatively few dimensions, say six, it can

be difficult to visualize and develop a design if the

factors each occur at three or more levels. In this

case the nested cube approach described earlier

becomes visually distracting rather than helpful.

6

One way to simplify the representation is to

substitute iconsforthe smaller cubes. The figures

here show icons for small cubes for a Box -Behnken

( 1960) design. Each small cube has 27 possible sites

for anexperiment, based on the 33 plan for these

three factors.

FRACTION OF 3 DESIGN
CONIC

REPRESENTATION

Using these icons gives this representation for the

Box -Behnken design for 6 factors at three levels.

Some characteristics of the design are immediately

apparent from its graphical representation. First,

none of the extreme comers of the design space are

included in the design. Second, the center point is

not included .

e

d b d

1P
L
A
N
E

P
A
Q
J
E
C
T
I
O
N

O
F

P
O
I
N
T
S

I
N
F
R
O
N
T

1 1 0

ti 1

ti 0 t1

0 0

0 0 t1

0 ti o

0 0

Otto

0 0 1

tl tl 0

tl Ot1

0 11 11

6

Box Behnken 3 Fractional Design
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.
.
O

These icons also make it easier to synthesize new

designs by manipulating the icon patterns. This

design has poorer properties than the Box-Behnken

design. Reasons become clear when one looks at the

design projections. Those for the front face of the

large cube (projecting out d ... ) are shown at the

left of the figure.

e

Again, these weaknesses are more clear by looking at

the design and its projections than by trying to read

and compare the tabular representations at the lower

right of each figure.

C

5

d 3 с d e

P
L
A
N
E

P
R
O
J
E
C
T
I
O
N

O
F

P
O
I
N
T
S

I
N
F
R
O
N
T

0:11

11

: ! :10

9 21

0 : 1

0

0 0

0 41 0

0 0 : 1

# 1 1 0

011

0 11 21

B. Mixture Experiments

Bad - Barton 3 * Fractional Design

While mixture experiments are often associated with

chemical and petroleum industries, they are useful in

many resource allocation problems as well. They

can be used for military strategy, medical treatment,

and corporate strategic planning.

. * , - 5

0

A 1

A ( 3. 2! lattice A ( 3. 3 ) lattice

-1

A ! 4.31 lattice

Mixture experiments involve factors whosesum

must be a constant. For example, the constituents of

a chemical compound must sum to 100 % . The

capital expenditures for a large corporation must sum

tothe amount allocated for this purpose ( if we

include a dummy category : reserves). Optimal

weapon mix for strategic forces might bestudied

through mixture experiments, especially as budget

constraints become ever tighter.

A 14.2 ! lattice

FIGURE 2.1. Sume ( 1. ml and . mi simplex-lattice arrangements. m – 2 and m - 3.

Figure 2. Experimental Region for instant Soup Thickener Study.

X ,

Design points for a mixture experiment are

represented graphically as points on or ina simplex

( triangle, tetrahedron, etc.), in contrast with the

cubes and rectangles used for factorial designs. The

figures at the leftshow designs for three and four

factors at two and three levels ( Cornell, 1981 ).

: 3 fach

X
X

In addition to the usual mixture constraint, most

practical designs have additional requirements that

limit the design space . These constraints may be to

focus the study on reasonable mixtures, as in the

figures from Koons and Wilt ( 1985) and Hare

( 1985) at the left, or they may be due to real limits,

as shown in the figure from Snee (1981 ) on the

following page.

15. Gran * SAN

100 % Tach

fech
10- Craft

*** SAV

MRP VAN ..(
Sectio

n

359



Graphical Methods for Experiment Design
VII . FURTHER TOPICS Page 59

9,1

CONSTRAINS

. 108x, 5.50

65X , • 9ox • 100x2.5
.105x 570

0sx, 570

00S8X, 90%; 100 , 95

This design is limited by 5 bounding constraints on

the three components in the mixture, and by two

multiple-component constraints. The design points

selected for the experiment are indicated by solid

dots .

The computerized design software XVERT (Snee,

1981 ) uses geometric concepts of edges, vertices,

and face centers to select good design points. This

approach to design can be thoughtof as mental

graphics, since a graphical image is used but is not

actually drawn.

bix, • 90X; • 100 %; • 95

Figure 4. Three -Component Mixture System With

Single Component and Multiple Component Con :

straints

C. Incomplete Block Designs

A graphical representation for an incomplete block

design was presented on page 27. Ablocking

variableis thought ofmuchas any other factor,

except that a) it is qualitative, notquantitative, and b )

there are usually more than two values (blocks).
30]: 110 :

POKI ROCK 2 03 ROCK

وأ

0
0
0

D

10:10 : 10:00

The blocking factor is usually qualitative, not

quantitative . This makes checking for confounding

patterns more difficult. The graphical

subcomponents corresponding to eachblock must be

shuffled around, mentally at least, to identify

confounding patterns. The confoundingon page 27

is seen by pairing the second and third blocks against

ROCK 1 NOO

the 1-4 pair.

ALOCK

27.6.1 Geometrical Configurations

Several designs arise for translation of geometrical configurations:

e.6 , the Desargue configuration of

2 triangles in perxpcrtive gives rise

to design for 10 imrulments in

blacks of 3. If we take any regular

' n prulyhedron and regard the prints as

treatments and the faces as blocks,

we get a partially balanced itsevalno

plete block design . Forexample, with

Fitne: 27 . a cule (Figure 27 ) uc get the design

'Mental graphics' yields several general classes of

partially balancedincomplete block designs. These

are described at the left by Kempthorne (1952) .

D. Network Representations

The edges of a multidimensional point plot, along

with the design points, make up a network that

directly represents the design. There are also

indirect network representations that can be useful in

creating and analyzing designs.
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blocks
treatment

levels

2

2

This network represents the allocation of factor levels

to blocks. Butz (1982) relates connectivity in such

networks to estimable contrasts of factor levels.

These plots can be used to develop and analyze

designs for use with ANOVA models.

3

3

ALL TREATMENT

CONTRASTS

ESTIMABLE

BIPARTITE

GRAPH IS

CONNECTED

As mentioned on page 53 , Taguchi's 'linear graphs'

provide analytical insight, but do not really help

generate designs. They illustrate confounding

patterns graphically by labeling nodes and edges with

effects. For example,the triangle at the upper left

indicates that the main effect of factor 5 will be

confounded with the 1-4 interaction effect in that

design.

3 02

5

5

V
O

04

6

07

2

0 The linear graphs make cookbook design selection a

more effective approach. A catalog of these network

representations makes it possible to select a design

with confounding patterns that match the particular

needs at hand.
( 3 )

7 13 11

66 12

3 9 15 14 Sources: Taguchi (1980) and Pignatiello and

Ramberg ( 1985)
2

10

The deñning contrast is +1BC. The coniounding patient can be summarized
as 1 +ABC. Written out is more detail, the three contrasts measure :

. + BC

B + C

C.B. respectively.

The six poiols of the lattice of Figure la designate the six efiecus just listed.

The tie-lines, first used in reierence (5 ) , show ibe pains ebat are confounded.

ibat is , whose sum is measured by thecorresponding contrast. This orer - simple

Cuthbert Daniel (1962) also used networks to

represent confounding patterns in fractional factorial

designs. These are harder to decipher. Their

usefulness seems to be for design analysis, not

design synthesis.

8

B
с с

с
D

.1

a )
(6 )

(c )

Fig. 1. Coalovediac patterns al 21 for 2-4 sad 2-1.
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TRUCKS

SAMPLES

ANALYTIC

BATCHES

1 Graphical representations are helpful in developing

nested designs for random and mixed effects models.

The simple schematic at right makes the sampling

pattern clear. Leone, et. al. ( 1968) use these simple

figures to present their hierarchical designs.

SCHEMATIC for ANDREWS' HIERARCHIC DESIGN

rieure :

Vededor lleirarchic Design

D

ܕ .

T
.

Te ac .

Eminating Truck -un - iruct Operatore on

S.

இந்தின்
::: 111

S. S , S, S. S. S , S , S S. S SS

Estimate Within . Truck Samping Variatura

de A. Ag

DooOoo 0.0
Eximatine Analytical Variation

Andrews used more elaborate representations for

nested designs. The figures take more time to draw ,

but they can prompt the experimenter to think about

importantprocedural or design issues. This

elaborate figures may well have merit over its simpler

counterpart above.

E. Nomograms

6 1
1
6
-
1

) - K
E
L
E
P
T

.

Anon

Nomograms are graphical aids for computation. In

experiment design they can be used fordesign

(choosing sample sizes, operating conditions) or for

analysis ( identifying design properties such as

variance of the estimated parameters ). In the

example at the left, Villars (1951) shows the relative

efficiency of ANOVA designs as a function of the

number of levels of the treatment factor and the

number of replications.

T.

18.

TATS

HEUTE A

DOMPLICATION

-
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100

5
0

3
2

TARANAS

ZAPATOS

20

i9.0.5

10

5

3

2

This nomogram from Nelson and Kielpinski ( 1975)

is for high temperature accelerated lifetests. It allows

one to identify the variance of a predicted response as

a function of test temperatures and sample

proportions.
WA

1

1.0 20 3.0 5.0 100 20 30 50 100

100

50

30

20

Nomograms can be modified graphically to provide
alternative or additional information. This allows

one to optimize other properties ( than prediction

variance) by adding graphical constructs to the

figure. This example allows the experimenter to

choose test conditions that will yield the required

accuracy while minimizing the maximum test

temperature. This is important because high test

temperatures can introduce failure mechanisms that

are not active in the normal operating range.

10

翻 度 自

5

3

Source: Barton (1987)
2

I

1.0 20) 30 50 100 20 ?0 100

yet.Var faciesi tekura

a 2.4

b 2 10.3
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PRECISION OF THIC GRADIENT

K.31 lavet

There are many nomograms aid in sample size

determination . The example at the left is from Beech

( 1961 ) for the selection of sample size to estimate the

regression coefficient to a desired precision.
.
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