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FOREWORD

The first U.S. Army Conference on Applied Statistics was held 18-20 October 1995, at the headquarters
of the U.S. Army Research Laboratory (ARL) in Adelphi, MD. The conference was cosponsored by ARL,
the U.S. Army Research Office (ARO), the U.S. Military Academy (USMA), the Training and Doctrine
Command (TRADOC) Analysis Center-White Sands Missile Range (TRAC-WSMR), the Walter Reed
Army Institute of Research (WRAIR), and the National Institute of Standards and Technology (NIST).
The U.S. Army Conference on Applied Statistics is successor to the U.S. Army Conference on the Design
of Experiments, a historic series of meetings that formally concluded in 1994 after 40 years of service to
the Army. Today’s Army faces challenges that are far ranging and encompass many topics in which
probability and statistics have a contribution to make, in addition to experimental design. This new
conference reflects a broadening of scope with the goal to promote the practice of statistics in the solution
of diverse Army problems.

This first conference offered much with respect to that goal. Toward statistical education, the conference
was preceded with a short course, "Tree-Structured Methods," given by Professor Wei-Yin Loh of the
University of Wisconsin at Madison. Several distinguished speakers, from govemment, industry, and
academia, spoke during invited general sessions: Professor William J. Conover, Texas Tech University;
Dr. John W. Green, DuPont; Mr. Roy Reynolds, Director, TRADOC Analysis Center-WSMR; Professor
Max Woods, Naval Postgraduate School; and Professor James E. Gentle, George Mason University.
Contributed talks developed new methodology, detailed successful applications, or requested guidance
from a panel of experts in attacking an Army problem that had resisted standard statistical approaches.
A special session was devoted to the unique difficulties of advanced warfighting experiments.

The Executive Board for the conference recognizes several individuals for their contributions to conference
details: Dr. Douglas Tang, WRAIR; Dr. Mark Vangel, NIST; Dr. Eugene Dutoit, U.S. Army Infantry
School (AIS); and Dr. Paul Deason, TRAC-WSMR. Drs. Barry Bodt and Malcolm Taylor, ARL, are
recognized for organizing and hosting the meeting. Dr. Bodt oversaw the publishing of the Proceedings.
Special thanks is due Mrs. Patricia Cizmadia of the Protocol Office, ARL, who, with Mrs. Tammy
Bassford and Ms. Karen Moore assisting, served as site coordinator for the conference.

Executive Board
Robert Burge (WRAIR) Barry Bodt (ARL) COL Ricky Kolb (USMA)
Malcolm Taylor (ARL) Eugene Dutoit (AIS) Jerry Thomas (ARL)
Douglas Tang (WRAIR) Jock Grynovicki (ARL) Mark Vangel (NIST)
David Cruess (USUHS) Carl Russell (TEXCOM) Paul Deason (TRAC-WSMR)
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NONLINEAR MIXED EFFECTS METHODOLOGY
FOR RHYTHMIC DATA

R. J. Weaver and M.N. Brunden
Pharmacia & Upjohn, Inc., Kalamazoo, Michigan 49001

ABSTRACT

We develop methodology for a mixed effects Cosinor model suitable for analyzing rhythmic data. None of the
currently used procedures for nonlinear mixed effects models can be directly applied to the Cosinor model. Our
approach combines ideas from the areas of time series analysis and mixed effects model methodology, and addresses
the inherent limitations of the current procedures, as well as new problems encountered when combining the
methodologies.

INTRODUCTION

In many biological investigations data on an endpoint of interest is collected repeatedly over time for each
of several individuals, which in turn may be part of a between individual experimental design. Biological time series
of this type typically exhibit rhythmic behavior. As is common with biological data, there may be significant
variation among individuals in these rhythm characteristics.

This experimental setup suggests using a random or mixed effects model, where a common functional form
is assumed for each individual, but some or all of the parameters are considered to vary among the individuals. It
is then of interest to estimate the group parameters (fixed effects) and their covariance matrix, and perhaps make
comparisons between them. When the period of the rhythm is unknown, most commonly used models are nonlinear
in their parameters.

Various methods are proposed in the literature for nonlinear mixed effects model, but there are several
unique aspects to this particular problem that preclude using these methods directly. Ordinary nonlinear least squares
estimation is difficult to use for these models due to multiple local minima. As an alternative, periodogram based
estimators can be used.

Again due to the nature of the model, nonlinear mixed effects methodology using the usual Taylor's series
approximation to the expected response do not work well. Problems also occur when the data are pooled together
to estimate the fixed effects, as in Vonesh and Carter's EGLS methodology. These problems will be examined in
detail, and a new two-stage methodology is proposed. This methodology is shown to perform well not only in
rhythmic data models, but also in general nonlinear mixed effects models from pharmacokinetics and growth curve
problems.

THE MIXED EFFECTS COSINOR MODEL

THE GENERAL MIXED EFFECTS MODEL

We will consider a general form of the mixed effects model, similar to that described by Lindstrom and
Bates' .

Assumption Al. A similar functional form is assumed for each of the N individuals, that is
y,;zf((bi:Xi) + e t=1,2,...,N

y;isan X 1 vector of observations,
d;isap X 1 vector of (unknown) parameters for individual ,
X, is the n; X p within individual design matrix,

where




f(¢,X) isthe nX1 expected value of the response at ¢,,X, ,
€, is random error, assumed to be N(0,X)) .

’

Assumption A2. Each individual's true parameter vector can be expressed as

with $; = A;ja + B;b;

A; ap X g between individual design matrix,

o agq X 1 vector of fixed effects,

B; ap X rdesign matrix indicating the random parameters,

ar X 1 vector of random effects, for which we will assume 5, ~ N (0,9)

This model setup includes growth models, random coefficient regression models, population pharmacokinetic
models and repeated measures models as special cases. The fixed effects « can be interpreted as the group mean
parameters, and in the case of a single group are sometimes referred to as the population parameters. The &, are
interpreted as the i individual's parameters deviation from the group or population mean parameter vector. Qur main
interest is in estimating « and the unique elements of the covariance matrix ¥. Depending on the experimental
situation, it may also be of interest to estimate the individual parameter vectors ¢, and/or o°.

Methodologies for the case when the within individual model is linear in its parameters have been developed

by, among othere, Laird and Ware , Jennrich and Schiuchter *, and Vonesh and Carter *. For the nonlinear case,
Steimer 3, Racine-Poon 6, Sheiner and Beal 7, Lindstrom and Bates %, and Vonesh and Carter ® are useful references.

THE WITHIN INDIVIDUAL MODEL - THE COSINOR MODEL

For the within individual portion of the analyses, we will use a model proposed for the analysis of biological rhythms
by Halberg, Tong and Johnson °, called the Cosinor model. Consider a time series Y. t=1,2,..., n, where

¥i=aycos(wyt) +Bosin(wyt)+e, = Ajcos(wyt + 0,) + €,

where the errors ¢, are assumed to be independent with E (¢ ) = 0 and Var (€ ) = o? for all 7. In the second
parameterization, A , is the amplitude, @, is the frequency and 0, is the phase of the cosine curve. Further details
have been given in Halberg, et. al. °, Nelson, et. al."" and Bingham, et. al'> . This model has been extensively used
and reported in the chronobiology literature, and computer programs for its implementation have been published by
Monk and Fort ** and Vokac' .

PROBLEMS WITH CURRENT NME METHODOLOGY

NONLINEAR L EAST SQUARES ESTIMATION FOR THE COSINOR MODEL

The Cosinor model with unknown frequency is not linear in its parameters, nor can it be made linear by
a transformation of the data. The most common approach to parameter estimation in such models is nonlinear least
squares. These methods involve some type of iterative search procedure, beginning at a an initial guess for the
parameters and proceeding until a specified convergence criterion is met. Difficulties arise for the Cosinor model
because the objective function to be minimized, the residual sum of squares

Q,(a,p,w) = En: [y, - acos(wt) - PBsin(wt)]?
=1




has many local minima, maxima and inflection points. This problem has been discussed in some detail by Rice and
Rosenblatt °, who state that the local minima occur with a separation with respect to the frequency of abouf n
The main implication is that convergence to the global mimimum is very sensitive to the choice of starting values.

We will illustrate this difficulty using the example by Rice and Rosenblatt '*. The model considered is the
Cosinor model with ¢, = 1.0, B, = 0.0, (or alternatively, A, =1.0, 6, = 0.0).®, = 0.5 and n = 100. To examine the
problem quantitatively, a single realization of this model with Gaussian noise of mean O and variance 1 was
randomly generated. Using this data set, the parameters were estimated by nonlinear Jeast squares. The c.alculauons
were made using the IMSL subroutine RNLIN, which utilizes a modified Levenberg-Marquardt algorithm. The
default convergence parameters of IMSL were used. To examine the dependence of obtaining 2 gooq least squares
fit on the starting values, we fit the model to this set of data 100 times, each time with different starting values. In
each replication, the starting value for A, was set to 1.0 and starting values for , and @, were randomly .generated
from the Uniform distributions (-7, 1) and (0.3, 0.7). This corresponds to about the level precision in starting values
that might be obtained by "eyeballing" the data. The objective function for this set of data and range of par-ameters
is shown graphically in Figure 1. As expected, it quite rough and displays numerous local minima, maxima and

inflection points.

Figure 2.2
With these randomly generated starting values, Nonlinear Least Squares Objective Function

the procedure converged to or stopped near the global
minimum only 15 times out of the 100 replications.
One of the more common problems was with the
algorithm becoming stuck in extremely "flat" regions of
the objective function, and failing to meet the o
convergence criteria. The choice of starting value for
1s especially critical. When the starting value was more
than about .05 away from the true value, the algorithm
would always converge to a local extrema rather than -
the global minimum. This is not surprising based on
the shape of the objective function's surface. The s
starting values must fall within or near the long, narrow
depression centered on ® = 0.5 or there is little chance Figure 1
of success.
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Another series of fits was performed with the starting values for w generated from the Uniform distribution
(45, .55), and starting values for © and A generated as before. This corresponds to essentially knowing the true
frequency, or using a good estimate obtained from some type of independent preliminary analysis of the data. In this
best case scenario, the proper estimates were obtained 92 times out of 100.

These examples indicate that it is extremely risky to rely on just a single set of starting values, even if they
have been well chosen. The use of something like the GRID option of PROC NLIN of SAS, or random selection
of starting values over a selected range will greatly improve the chances of finding the global minimum. Overall,
these problems make the use of nonlinear least squares estimation troublesome for the Mixed Effects Cosinor model,
where we have individuals with varying true parameter values.

TAYIL.OR'S SERIES APPROXTMATION
Both the Sheiner and Beal (NONMEM) and Lindstrom-Bates procedures make use of a Taylor's series

approximation to the expectation function. This essentially utilizes a linear function to approximate a nonlinear
function in a region of the true parameters. While it works well for many nonlinear functions, intuitively it does




not seem reasonable for periodic functions such as the cosine. To illustrate how it can be inadequate, we will
consider the basic model with all parameters considered random, i.e. when A; = B; = I,. The model, suppressing the
subscript i, can then be written as

¥, = (ag + by)cos[(w, + by)t] + (B, + b,) sin[(w, + by)t] + e,
Taking the derivative of the expectation with respect to the parameters (o, By, «y) and evaluating at p = 0,0, 0)*
we get

y, = (cz0 + bl)cos((oﬂt) + (BO + bz)sin(o)ot)

+b3t(ﬁocos(m ot) - aosin((oot))

The third term of this approximation involves the
value ¢, and for a nonzero realization of b;, it will increase Figure 23
In magnitude as r increases. This results in the Taylor's Series Approximation
approximation worsening as the length of the data series
gets longer, which is a very undesirable property. This is 22’
shown graphically in Figure 2. The model shown has ¢, = ;g
Bo = 25 andgw = 27m/24, with the vector b randomly g 20
generated from a Normal distribution with mean zero and .fe 13.
covariance = ol
a0l
1 .1 .01 -0t
-50 N ) )
T = '1 1 .01 [ 10 20 30 Tl:!:) 50 60 70 80
.01 .01 .001

Figure 2

The actual model was then calculated for three periods, and graphed with the Taylor's series approximation
superimposed on it. The approximation is quickly diverging from the true model, even for this relatively short series.

NAIVE POOLED DATA APPROACH

The Naive Pooled Data approach has been used for estimation of population parameters, and is also the first
step of the Vonesh and Carter noniterative algorithm for nonlinear mixed effects models. This procedure pools the
data from all individuals and estimates the population parameters.When the underlying model is the Cosinor, the
Naive Pooled Data approach can result in problems if the individuals do not all share the same true phase. This well
known problem of phase differences in biological time series has been discussed by Sollberger . Simply put, if
phases differ among individuals, degrees of cancellation will occur if the data are pooled. This phenomena is
sometimes referred to as interference. The most extreme case occurs when two data series have phases differing by
™ radians (180 degrees), when the cancellation is total and a horizontal line would be fit to the data.

As an example of this difficulty, we generated 10 data series of 100 points each. Each series had an identical
amplitude of 8.0 and frequency of 0.5, but a randomly generated phase from a Uniform distribution on the interval
(0,27). To this signal was added randomly generated Gaussian noise with zero mean and variance of one. Each
individual series had a substantial signal/noise ratio, and was clearly rhythmic to the naked eye. When the ten series
were pooled and the Cosinor model was fit, this evidence of rhythmicity was masked, giving an estimated amplitude
of 0.2095, not much different than a horizontal straight line.




NEW METHODOLOGY FOR THE MIXED EFFECTS COSINOR MODEL

INTRODUCTION

It is evident that no currently proposed methodology can be directly applied to the Mixed Effects Cosinor
Model. We will introduce new methodology that is flexible enough to be used for the general mixed effects model,
while at the same time is more appropriate when our within-individual model is the Cosinor. Our strategy is to use
a two-stage procedure, where the first stage is to estimate the individual parameter vectors. In our case, we will use
the Adjusted Composite Periodogram estimators of Weaver ' for the Cosinor model . These estimators are chosen
because unlike the nonlinear least squares estimators, they are essentially unbiased. For other types of problems, the
first stage could be maximum likelihood, least squares, or some other type of estimation. Once we have obtained
individual parameter estimates, the second stage is essentially a linear mixed effects problem, but with the additional
information of estimated covariance matrices for each individual parameter vector. We will propose a 4 step
noniterative procedure, which is similar to Vonesh and Carter * in that it utilizes estimated generalized least squares
for the fixed effects and method of moments for the random effects covariance matrix ¥.

FIRST STAGE - PARAMETER ESTIMATION

Recall that the true parameter vector for individual i is given by ¢; = A;e + B, b, . We now add

Assumption A3. For each individual, we can obtain an estimate of its parameter vector, denoted by d)i , which
has covariance matrix C,. We also obtain an estimate of this covariance, which we call C; . The matrix C,

will typically be a function of &)i . We assume that
¢, 1b,~ N(¢;,C;).

For many types of models, these estimates could be the maximum likelihood estimate and its asymptotic
covariance matrix, or nonlinear least squares estimates.. It can be shown that the marginal distribution of the
parameter estimates is

é, ~ N(A,a,C, + BYB}).

SECOND STAGE

Step 1.  Initial estimation of the fixed effects parameters. We will first estimate the fixed effects «,
assuming the random effects are equal to zero. This can be done by minimizing

N
Q, = E (¢, - A;) éi—l ( &)i - Ax)
i=1

which gives the usual generalized least squares estimate

Step 2. Estimation of the random effects. Using these estimates of ¢, we can compute the residuals. These




residuals can then be fit to a random coefficients regression model to estimate the b;. The model is written as

€ = Bb; + ¢, e; ~N(0,C;)

and the usual estimates are the generalized least squares estimates

A

b, = (Bic;'B,)'Bic e, .

The variance of the estimate is
Var(b,) =¥ + (B/C;'B,)™!
To estimate the above quantities, we can replace C; with ¢ i -

Step 3.  Estimation of the Random Effects Covariance Matrix ¥. An estimate for ¥ will be obtained
using the Method of Moments. Construct the following matrices

B=(b1b2...5N)‘ A=(aya,...ay)
Sy =B (Iy-A(A'A)'4')B

where the vectors g; are group indicators. S,, is just the sample variance-covariance matrix for the b, corrected for
the between individual effects. Then, by equating S, to its expected value, we get

N
¥ - ( Sy - Y. (1 - ai‘(fi‘A)-lai)(B,.‘c‘;lBi)-l] /(N - k).
i=1

In some cases, this will give a nonpositive semidefinite estimator. To guarantee a positive semidefinite estimate, we
will do the following : Let A" be the smallest root of

= 0.

N
l Spy - A Y, (1- a/(A'A)ta)(B}C'B)?
i=1

If A* <1, then we will use the modified estimator

N
v - (sbb -2 Y (1-4/d 'A)‘lai)(B,-'Ci'lBi)‘l] /(N-E).
i=1

This type of modification has been described in Bock and Peterson '® and Efron and Morrid® . As mentioned by
Vonesh %, the need to make this adjustment is suggestive of some type of model misspecification, usually in
designating which parameters are random effects.




Step 4.  Updating the parameter estimates. Since we now have an estimate of ¥, we can update
the estimates of a and b, using the marginal distribution of ¢i . The population parameters are obtained by
minimizing

N
Qv =Y (é)i - Ai“)t(éi + Bi@Bit)—l((i)i - A;0)
i1

to get the new estimates

i 2

N
& =| Y A/C, + BYB))'4,| Y A/(C,+B¥B)d,.
i=1 i=1

The usual estimates of the b, for known ¥ are empirical Bayes, as in Laird and Ware %, for example. We
can substitute our estimate for ¥ from step 2, obtaining

b, = ¥B/(C, + B¥B})'é¢,.

We can now stop the procedure, as Vonesh and Carter do, and obtain non-iterative solutions. An alternative
would be to update the residuals, and repeat steps 2 through 4 in an iterative fashion until the estimate of ¢
converges. In practice, this will probably produce little change in the estimates.

After we have obtained final estimates, we will estimate the individual's true parameter vector as
A / A A

The updated estimate can also be expressed as

b; =Aq + Wb, - WAL = W, + (- WA

where
W, = B,(B/C,'B,)B/C;".

In this form, it is easy to see that the estimate is a weighted combination of the within individual estimate and the
population estimate.

Our estimates of the population parameters will have estimated variance-covariance matrix
-1

N
Var(g) = | Y A/(C, + B¥B})) 4,
i=1

Vonesh and Carter ° discuss a similar global two stage approach. They considered the case where the first
stage uses nonlinear least squares and the second stage EGLS. They prove for the special case of a single group that
for the estimates of the fixed effects to be consistent, then both N and the minimum »; must go to infinity. Our
procedure may have similar asymptotic properties, especially with respect to N. The requirement of the minimum
n, being large is less certain in our procedure. We improved the first stage, where we replaced the biased nonlinear




least squares estimates with the essentially unbiased Adjusted Composite Periodogram estimators. More research
needs to be done into the asymptotic properties of our procedure.

SIMULATION STUDY

A simulation was conducted to verify that the Adjusted Composite Periodogram estimation procedure and
the Two Stage EGLS methodology give reasonable results when used together in analyzing the Mixed Effects
Cosinor Model. The basic experiment to be simulated consisted of data series of 120 points for each of 10
individuals. First, 10 sets of parameter values were randomly generated as

; -0.60 0.0300 -0.0090 0.0005
B;| ~ N, -0.20 {, | -0.0090 0.0100 -0.0003
, 0.2618 0.0005 -0.0003 0.0001

1

Using these parameter values, the data were then randomly generated from the Cosinor model

y; = a;cos(w;t) + B sin(w;t) + e, t=1,2,...120

with e;, ~ N(0,0.1). These data were
then analyzed by the Two Stage EGLS Table 1. Mean Parameter Estimates from 1000

methodology with the Adjusted Composite Simulated Experiments
Periodogram estimation procedure used in the

first stage. The basic experiment and analysis Parameter True Mean Std.
was replicated in this fashion 1000 times. Table Value Dev.
1 gives the results of this simulation. They
indicate that the Mixed Effects Cosinor a -0.6000 | -0.60467 | 0.05846
Methodology performs very well under the B —0.2000 -0.20258 0.04079
conditions of this simulation.
o 0.2618 0.26173 | 0.00321

DATA EXAMPLE - PROLACTIN LEVELS IN
SHEEP Wy 0.0300 0.03067 |} 0.01632

In this data example, we examine the v -0.0090 | -0.00919 | 0.00832
seasonal rhythmicity of prolactin levels in sheep, 12
and the effect of environment on these levels. Wi 0.0005 0.00047 | 0.00065
The study consists of 10 sheep, five of which
were housed under normal outdoor conditions Y2 0.0100 0.01053 0.00695
?md five of \jvyich were hqused under controlled, v -0.0003 | -0.00028 | 0.00045
indoor conditions. Prolactin levels (ng/ml) were -
obtained twice each week for approximately four Vs 0.0001 0.00010 | 0.00005

years from early 1983 through early 1987. We
use a subset of these data, consisting of 279
points from July 27, 1985 to March 27, 1987.
This range of data was chosen to allow the sheep which were moved indoors to acclimate to their new conditions.
The data were log transformed.It is of interest to estimate the rhythm parameters for these two groups, and to
compare them.

Individual parameter estimates were obtained using the adjusted Composite Periodogram estimators, ax?d
the fits were very reasonable overall. We now consider the second stage model. The between animal design matrix
is constructed designating each animal to one of two groups. We first analyze the data considering all of the
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parameters to be random effects from the same Table 2
distribution. To do this we choose B ;=1 ,. In this .

setup, the matrix 9 has 6 unique elements to be . .

estiriated. The estimates of the fixed effects and ¥ Population Estimate Std.

are given in Table 2. We also are interested in Parameter Error

whether the fixed effects are different for the two a, 0.6875 0.03768

groups. This was examined by testing the following

hypothesis H,: o ;= ,; H,:B,=8,;and H;,: B -0.4748 0.05619

®,=®,. The hypothesis H, : and H, : were

rejected by both the Chi-square and F approximations, i, 0.0608 1.219-3

while H; was not rejected by either. The frequency o, 0.3384 0.03718

estimates correspond to periods of 361.9 and 371.4

days, respectively. These are essentially one year B, 0.1101 0.05664

periodicities. ~ @, 0.0592 1.264E-3
Examination of the individual parameter 0.005885 -0.004259 -0.000055

estimates indicates that in the control, outdoor animals .

the parameter estimates seem to be less variable than ¥ =| -0.004259 0.01390 0.00024

in the experimental animals. To account for this in -0.000055 0.00024 7.987E-6

the model, we allow the variance of the random

effects to be different in the different groups. This is

accomplished by using B ;= A . The random effects

covariance ¥ will now have the form Table 3
¥, 0
¥ = ¥ Population Estimate Std. Error
0 %, Parameter
o, 0.6868 0.03352
and has 12 unique elements to be estimated. The
results of this analysis are given in Table 3. The By -0.4722 0.03613
estimates of the fixed effects are essentially the same © 0.0608 1.643E-4
as before. As before, the hypotheses H, and H were !
rejected by both the Chi-square and F approximations, o, 0.3344 0.02278
while H; was not rejected by either. The most
striking result of this analysis is that the variation in B 0.1110 0.04997
the frequency parameter in the experimental animals @, 0.0592 1.981-3
is about 3000 times the variation in the control
animals. The estimate of ¥ had to be adjusted to 0.004981 -0.001068 2.709E-6
assure positive definiteness, suggestive of model _| _ _ _
misspecification. ¥, 0.001068 0.004693 -2.797E-6

2.709E-6 -2.797E-6 2.5T4E-9

The extremely small estimate of frequency
variation in the control animals suggest that it could 0.001624 -0.003088 -0.000059
b idered a fixed effect, while the much large _

e considered a fixed effect, while the m ger v, -0.003088 0.01051 0.00026

variation in the experimental animals indicates we
may want to leave it as a random effect. We can -0.000059 0.00026 7.559E-6

accommodate this in our second stage model by
appropriate choices of the B, We use the following




10000
B;,=/01000
00000

Using these choices of B, results in
ay + by
b, =|By + by

@,

1 =1,2,3,4,5

1=1,2,3,4,5

00100
B,=|00010
00001

1 =6,7,8,9,10.
a, + by,

¢,‘= Bz+b4i

w,; + by,

1=6,7,8,9,10.

The data were reanalyzed using this model. With this specification, we don't have to adjust the estimate of ¥. The

results are given in Table 4.

These analyses seem to indicate that environment influences the prolactin cycle in sheep. Animals subjected
to outdoor conditions have stronger evidence of a regular cycle, as indicated by the larger amplitude in the Cosinor
model. They are also more closely entrained to the seasons, with their frequency well modelled as a fixed effect of
approximately a one year period. Animals brought indoors show evidence of decreased amplitude and in the absence

of the seasonal influence,

more widely varying frequencies. For these animals, the frequency is adequately modelled as a random effect.

SUMMARY

In this paper, a new procedure for
analyzing nonlinear mixed effects models is
proposed. It is a two-stage procedure, requiring
estimation of individual parameter vectors and
variances in a separate first stage. These
estimates are then used as input to the second
stage. The second stage is a four-step procedure
similar to the procedure of Vonesh and Carter “.
It utilizes generalized least squares for estimation
of the fixed effects and the method of moments
to estimate the variance of the random effects.
This overall procedure allows us flexibility in the
estimation procedure of the first stage. This is
very important for the Mixed Effects Cosinor
Model, since we desire to use the Adjusted
Composite Periodogram estimators in the first
stage.

Table 4
Population Estimate Std. Error
Parameter
o, 0.6867 0.03336
B, -0.4721 0.03761
W, 0.0608 1.612E-4
o, 0.3329 0.02116
B, 0.1109 0.04846
0, 0.0592 1.261E-3
. 0.004365 -0.001161
! -0.001161 0.005235
0.001290 -0.002922 -0.000055
¥, =| -0.002922 0.009815 0.00025
~0.000055 0.00025 7.328E-6
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ABSTRACT

Target values are assessments keyed to the enemy’s perception of the function of its assets, assets the enemy
threat commander requires for the successful completion of his mission. This report discusses the assignment of
target values, as an aid to target selection for engagement, based on stochastic optimization. In particular, we
determine values that minimize expected damage to the friendly unit when the enemy targets are engaged in order
of decreasing value. This approach has three advantages. First, it is based on a realistic tactical scenario in which
k enemy targets are engaged, one by one, by friendly fire until all are destroyed, and the enemy independently returns
fire on the friendly forces. Second, it is mathematically amenable and allows us to derive globally optimal results.
Third, addressing the psychological and political exigencies to reduce fratricide, it enables us to determine the impact
on a target’s value given some probability it is actually a friendly target. Though the basis of this research is fire
support targeting, it has potential application in any scheduling or rationing framework (i.c., multimedia networks;
allocation of medical resources; scheduling vehicle maintenance).

INTRODUCTION

In our previous work, we defined target value to maximize the damage inflicted on an array of enemy targets.l'2
We call that the "Damage Inflicted” model. This gave some interesting, but not completely satisfying, results. In
this paper, we consider an approach to minimize the damage inflicted by the enemy. We call this the "Damage
Received” model. This seems to be a better model for at least three reasons:

(1) it gives exact optimal results,
(2) it allows us to consider other factors such as friendly fire damage, and
(3) the model reflects a more realistic battle assessment.

We will illustrate these points for a simple discrete shot battle.
THE MODEL

We consider a battle in which a friendly battery engages k enemy targets. The strategy is to engage a single
enemy target until it is removed before firing upon the next target in the ordering. The battery itself is not fired
upon. In the discrete shot battle, each enemy target fires one shot against the remaining friendly forces in one time
unit. Hits are independent; each hit results in one unit of damage. The battle continues until all k enemy targets
are removed. The expected total damage to the friendly forces is the aggregate of the damage inflicted by each of
the k enemy targets.

Approved for public release; distribution is unlimited.
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Consider the following parameters for each enemy targeti=1,2,...,k
k = number of enemy targets
p; = single shot probability of removing target 1
r; = single shot probability of target i inflicting damage
f, = probability of target i being friendly.
THE DISCRETE BATTLE
DEFINITIONS
. Dij is the damage inflicted by target j while target i is being engaged, where i< j and i, j are enemy targets.
« D is the total damage inflicted by the enemy during the battle.

» Dq is the damage inflicted by the enemy during the battle if enemy targets i and i+1 are interchanged in the
target engagement ordering.

We shall establish these definitions in the following Lemmas.
LEMMA 1

The expected value of Dj; is

The proof is as follows. Let N; be the number of shots until enemy target i is destroyed. Then,

T.
1
since N; is geometrically distributed.
Since D is the cumulative damage inflicted by the enemy during the battle, the next result follows immediately.

If the enemy targets are engaged in the order 1, 2, . . ., k, the expected total damage incurred by the friendly
forces is

k ko k
Epl=X ¥ 1-% ¥ by
i=t j=i Pi  i=1 j=i

This pertains to any order of engagement, especially one that is not determined with the aid of a value algorithm.

To obtain an optimal target value ordering based on the parameters of interest, we need to examine the effect
on the damage incurred by the friendly forces if the target engagement ordering is interchanged. The following is

a key result.
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LEMMA 2

If adjacent enemy targets i and i+1 are interchanged, where i = 1,2, .. ., k-1, the expected total damage
increases; that is, .

E [DT] >E[D] iff p;- 1> Pir - Gt

The proof is as follows. The battle consists of i = 1, 2, ...,k segments. In each segment, one of the enemy
targets present is engaged. We assume the damage inflicted by the enemy during a segment is independent of both
the target engagement ordering and the damage inflicted during any other segment of the battle. That is, the
expected damage in segment i is unchanged if any pair of targets, other than the pair (i, i+1), is interchanged.

If adjacent targets i and i+1 are transposed, where i=1,2,...,k-1, consider the expected damage over

segments i and i+1 for, first, the transposed target engagement ordering and, second, the target engagement ordering
in the natural order. The difference between the expected damage for each condition is

E(Dy]-E (D] =| 0 0, G |Hth,
Pis1 Pi Pi Pis1

LH L]

EXE

Therefore,
. n Tiv1
E [Df] - E[D]>0 iff — - —>0,
Pi+1 Pi
and

E [DT] > E [D] iff pi. ri > p1+1 * ri+1'

For the discrete battle, if we define p; as the vulnerability of target i and r; as the threat of target i, the value may
be expressed as the product of the vulnerability and the threat.

DEFINITION

The value of enemy target i is
Vi=p-L-

THEOREM 1

In a discrete battle, if the enemy targets are engaged in order of decreasing value, the expected total damage to
the friendly forces is a minimum.

Consider any pair of targets in which the left-hand target has a smaller value. Lemma 2 asserts that the expected
total damage will decrease when the targets are transposed. This process may be continued until the target array is
arranged in order of decreasing value.

15




FRIENDLY FIRE
Close to the surface of battle planning processes, the aspect of friendly fire casualties influences decisions and
operations orders. To introduce this factor into the target value algorithm, we define a new parameter, f, the
probability that target i is friendly. We redefine the threat of target i as r; (1 — ;) and determine the impact of this
parameter on a target’s value with respect to reducing expected damage.
Optimal results are easily obtained for the discrete battle. The approach considers a hit on a friendly target to

be equivalent to one unit of damage; it also assumes the presumed friendly target inflicts no return damage on the
friendly forces. Only minimal changes to the previous section are required to introduce the friendly fire parameter.

LEMMA 3
In a discrete battle with possibly friendly targets, where i = 1, 2, . . . , k, the expected damage is

.

L-b)n i
E [Dy] = %

_(l;i')ﬁ+ £, ifi=j.

\

The proof is as follows. To examine the possible damage to the friendly forces from target j while target i is
being engaged, let FJ be the event that target j is actually friendly, then

Obviously, E [Dy | Fl= 0, if i < j (recall that the friendly target is not returning fire; therefore, there will

be no expected damage), and E [D; | Fl =1, if i = j (i.e., a friendly target is destroyed).

E [Dy | f’j] is equivalent to E [Dj] of Lemma 1. Using the arguments of the previous section, we obtain the
optimal results.

DEFINITION
The value of enemy target i is
Vi= (o n)(1-5)
THEOREM 2

Given a discrete shot battle with possibly one or more friendly targets in the strike zone, if the targets are
engaged in order of decreasing value, the expected total damage to the friendly forces is a minimum.

THE DISCRETE BATTLE WITH FINITE AMMUNITION SUPPLY
Does the available ammunition load affect the target engagement ordering? In particular, if the battle terminates
after N shots have been fired (or all k targets have been removed), is there a target engagement ordering that

minimizes expected damage? The answer is not immediately obvious and the algebra much more painful, but the
key result paraliels that for the discrete battle.
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Since the ammunition supply is finite, the number of shots to remove a fzrget is a finite random variable; hence,
the proof of Lemma 1 does not apply.

Assume the same discrete battle in which the friendly and enemy forces have N rounds of available ammunition
each. The battle will end when one side has expended all N rounds.

Denote the portion of the battle in which enemy target i is engaged as the i segment. Let T; be the length of
segment i (i.e., the number of shots until enemy target i is removed or the ammunition supply is exhausted). T; is
a geometrically distributed random variable with success probability p; and censored at N.

LEMMA 4

Let T, be the number of shots to remove target 1, with success probability p;. It can be shown that
P(Tl 2 n) = qln—l, thuS
1-q N
E|T,|= —1_, where q =1-p;.
[r]- 2=

To verify, we make use of results from the theory of expected values of positive discrete random variables and
the theory of finite geometric series. Forn=1,2,...,N

N N
E[n]= ¥ PTzm= ¥ o

n=1 n=1
N

1-q
(1 -4

Let T, be the number of shots to remove target 2, with success probability p,, then

N N
1 _ % ~RY
Pz((h“ql)
N-1
-(N-1) g™ -4 __, ifp =p=p.
P

, if py # p;
E[Ty) =

ol- 3|

.

The proof applies the preceding results with a fixed number of shots to remove target 1, which we defined as
T,. Looking at segment 2 with an ammunition supply reduced to N - T,

1 - qN-Tl
E [Tlel] = Pz
Thus,
B[n]-L-Le il
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where

and
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Z
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—_
.
K=l
Z
|
+
=)
2
L
=
=
I
o
[ %]
I
o

From Lemma 4, we can state the following theorem.

THEOREM 3

The expected damage in a discrete battle with two enemy targets and finite ammunition N is

E[D] = (rl + 1'2) E [Tl] + I E[TZ] .

From this it can be shown, in a fashion similar to that for the discrete battle with infinite ammunition, that

E[DT] > E[D]iffp, * 1y > P, " 1p.
We can apply the methodology behind Lemma 4 to derive E [T3], E [T4], and so forth, but the resuits become

increasingly complex. This was, in fact, carried out for the three-target case; computer calculations of expected
damage for the six permutations led to the following surprising definition and theorem.

DEFINITION

The value of enemy target i is
Vi=p; 5.

1

THEOREM 4

For any finite ammunition supply N, the ordering of targets by their value V; produces a minimum expected total
damage to the friendly forces over all k! enemy target engagement orderings.

SIMULATIONS
This paper discusses absolute optimal results for the discrete battles described within. Even though the battles

are somewhat simplistic, they do provide some indication of how to rank a target set. A mathematical analysis of
a more complex scenario would be too complicated to yield simple target values.
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To verify the target value algorithms in a more realistic setting, we studied the models by means of simulation.
The battle consisted of four enemy targets, three friendly targets, and one friendly battery. Each enemy target
randomly fired at one of the three friendly targets, and each friendly target randomly fired at one of the enemy
targets. The battery fired at the enemy in some specified order. The enemy did not engage the battery until all three
friendly targets were removed. The battle ended when either side lost all four of its targets.

The battle was simulated 5,000 times for each of the 24 enemy target engagement orderings. We simulated two
models: discrete battle with infinite ammunition and discrete battle with finite ammunition. For each case, we
calculated the rank correlation to examine the degree of similarity between the theoretical expected damage from the
mathematical model and the actual expected damage over the 5,000 simulated battles. The results were impressive

(see Table 1).

The theoretical target value models were designed to minimize the damage inflicted by the enemy on the friendly
forces. In the more realistic simulated battle scenario, we also observed the frequency with which all enemy targets
were removed, an event appropriately defined as victory. Certainly, we would expect the minimizing of enemy-
induced damage to have an indirect effect on increasing the friendly forces’ chance of victory. It was not surprising
to observe a significant negative correlation between rank orderings to minimize loss and the number of victories
in the simulated battles (see Table 2).

Table 1. Rank Correlation Between Theoretical and Actual Damage

Model Correlation
Discrete With Infinite Ammo 0.929
Discrete With Finite Ammo (4 rounds) 0.907

Table 2. Rank Correlation Between Loss and Victory

Model Correlation
Discrete With Infinite Ammo -0.928
Discrete With Finite Ammo (4 rounds) -0.859
CONCLUSIONS

The models presented have several strengths.
« They are somewhat realistic.
« They allow us to derive simple, intuitive values for targets.

« They consider the influence of intelligence information (ie., the possibility of a friendly target in the firing
sector) on the values.

The simulations support the theoretical results. Thus, the product of vulnerability and threat seems to produce
a good value for ranking targets to produce optimal results. Further consideration should be given to constructing
better models to assess friendly fire. We also need to develop more sophisticated battle simulations to validate the

target engagement orderings.
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This applied research in optimal target value assessment algorithms may be applied to operations other than war
(OOTW) (e.g., rationing medical care in a trauma situation, scheduling vehicle maintenance).
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METHODOLOGY FOR THE CURVE FITTING OF NONLINEAR RIDE CURVES

Andrew W. Harrell
U.S. Army Engineer Waterways Experiment Station
Vicksburg, MS 39180-6199

ABSTRACT .

This paper discusses the application of a non-linear
regression technique for describing the relationship between
vehicle ride performance and surface roughness. Curves considered
for the best-fit come from a two parameter linear envelope of
hyperbolas whose asymptotes are the vertical and horizontal axes.
The non-linear curve fitting method utilizes the singular-value
decomposition of the design matrix of the curve fitting problem.
This matrix evaluates the two members of the envelope of functions
at the data points. A procedure was developed to use a combination
simple search of the parameter space along with a varied solution

‘of the Marquardt minimization procedure The primary source of data

for fitting the curves comes from a series of experlmental tests of
military vehicles conducted over the last 25 years in various
locations. The results of the fitting,in terms of sums of sgquares
of residuals, were examined as a represention of simulations which
used a vehicle dynamics model. These results were compared to those
obtained with another curve fitting method in order to validate the
procedure. This other method used a simple search of the parameter
space initiated by a three point interpolation formula. Curves for
vehicle test data were calculated and compared with the curves
which had been drawn manually.

INTRODUCTION

PURPOSE. To develop a non-linear regression methodology. This
methodology should be applicable to accuratedly and consistently
representing surface roughness versus ride-limited speed
relationships. It should allow for extrapolation beyond the data
ranges. The curve produced can then be used in the Nato Reference
Mobility Model (NRMM) vehicle speed prediction program and also to
determine the effectiveness of VEHDYN2 as a ride simulator (Ahlvin
1992 [1], Creighton 1986 [2]).

SCOPE. This paper will examine several numerical statistical
methods each of which involves computing estimates for several
undetermined coefficients of basis function approximations. The
standard non-linear least-squared approach and a singular-valued
matrix approach are examined first. Then the more general Marquardt
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method, which allows the undetermined coefficients to enter in a
non-linear way with respect to the basis approximation functions,
is examined. Also, a simple coefficient search method was employed
for comparison with the first two methodologies. Graphs displaying
the results of the fitting are computed, and tables measuring the
effect of varying tire pressure on the residuals to the fit are
calculated. A full discussion of the different methods of how ride
curves are determined and the non-linear regression methods which
are applicable is contained in the pending report by Harrell [&],
"Methodology for the Curve Fitting of Nonlinear Ride Curves,"
listed in the bibliography.

METHODOLOGY TO FIT NONLINEAR CURVES TO THE SURFACE ROUGHNESS/RIDE
LIMITED SPEED RELATIONS?!

The restrictions on a ride curve that helps it to be
determined are the location of the asymptotes. These asymptotes are
determined in terms of test data by plotting the ride limited speed
on the vertical and the surface roughness on the horizontal axis.
The vertical asymptote must be either the y-axis or right of the y-
axis because it is postulated that it is possible for any vehicle
to approach infinite ride-limited speed on a completely smooth
surface. The vertical asymptote must also stay to the left of the
first data point because that data point proves there is a limit on
speed at that surface roughness. The horizontal asymptote is above
the x-axis because it is postulated that it 1is theoretically
possible for a vehicle to cross any surface as long as it goes slow
enough.

Two different approaches were taken to find a solution for
this hyperbola. 1In the first approach, a method was taken that
would search all possible coefficients for the best fitting curve.
The second approach manipulated existing MATHCAD functions so they
would give hyperbolas which met the requirements mentioned above.
Both methods gave satisfactory ride curves.

DIRECT SEARCH METHOD. The searching method was first employed in a
Fortran program which attempted to find the best coefficients
(A,B,C) for the equation below.

1 RMS is an acronym used in the characterization of the surface
roughness of terrain. It means root mean squared. It is determined by first
detrending the surface elevation measurements taken at one foot intervals in a
terrain profile and then computing the ordinary square root of the variances
of the measurements from the detrended value. Ride limiting speed represents
the speed at which vehicle vibrations at the driver seat reach absorbed power
limits of 6-watts.
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The original Fortran program which, was written by Richard Ahlvin
in 1982, varied A and B between 0 and 20, and C between 0 and 0.6.
These values were determined by examining the range of the data
from the experiments and trying different values for the
coefficients by trial and error. The program computed the sum” of
squares of the residuals for each possible combination and the
lowest was chosen as the best fit. A flowchart for this Fortran

program is shown in Figure 1.

The Fortran program'was then transferred to a MATHCAD sheet by
Mr. Robert Demillio in order to graph the results.

MAROUARDT METHOD AND SINGULAR VALUED DECOMPOSITION METHOD. The
other method of plotting ride curves used MATHCAD’s built-in
function which performs the Marquardt method to fit a curve to a
series of data points. In order for this function to be useful in
generating ride curves, there had to be a way to restrict the
asymptotes. The only way to keep the vertical asymptote within the
given constraints was tc define the B coefficient as 0, while the
A and C coefficients were computed by the Marquardt method. As long
as the B coefficient was 0 and the data points were valid, the
horizontal asymptote remained above the x-axis. The result with
the lowest sum of the squares of the residuals was the best fitting

hyperbola.
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Variables A,B,C are used for
3 parameters in the formula
A

+B

y:
x+C

Read in data points to
be fitted

SSR calculates the sum of
~ the squares of the
residuals for A,B, and C

bestA=A
> > — Is SSR of A,B,C the lowest yet? Yes bestB =B
bestC=C
N
JIN ° _ %
N s A <207 /
A=A+0.1] : : ~
N Yes
No
. Is B<20?
B=B+0.1, A=0
Yes
Ng
Is C<0.6?
C=C+0.01,B=0,A=0
Yes
' Ng

Best Fitting hyperbola is

bestA
y = ————— + bestB
x +bestC

Figure 1 Flowchart of a Fortra

o ] n program to i
coeﬁflcn.ents.of the .rlde curve by minimizing ’Ehe gsum of s flanrd th?
residuals using a direct search of the coefficient spacequ == °
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For the second method,we follow the approach outlined in
Press et al, 1992 [11].

The general form of the model is:

M

. y(x) = ; a X, (x)
=1

where X;(x),...Xy(X) are arbitrary fixed functions of x, called

the basis ~ functions. For example, the functions could be:
1,x%,%° xM-1
1% 1 *eey .

In order to generalize the approach to linear least squares
fitting, we introduce the function:

M
N Yi-~ E:EHfA%(XE)
k=1 ]
G .

1=1 1

where the symbol o; in the denominator is the standard
deviation or measurement error of the ith data point.

Taking the derivative of the above expression with respect to
all the m parameters a, , setting it eqgual to zero, regrouping and
renaming the variables in terms of covariance functions yields a
set of linear matrix equations (called the normal equations of the
fitting problem) to solve

E aps*ay = Py

J=1
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where

i=1 0_1
and
N
Vi*X (x;)
Br = 2:‘*L—'3‘i“
i=1 G;

These matrix equations can be solved by either Gauss-Jordan
elimination procedure or, in the case, when the normal equations
are very close to singular, by the singular value decompostion
approach.

These functions are now implemented in the MATHCAD
spreadsheet, symbolic calcuation program.

As a first approach, we assume that in our problem the
hyperbolas of the fitting problem will all have the x and y axis as
asymptotes. Therefore an envelope or family of possible fitting
curves can be defined as:

where A and B are two parameters to be determined.
This is an example of the previous general non-linear curve fitting

problem where x,; = 1/x, X, = 1, and 2a; = A, a, = B.

The above family of hyperbolas gives a best hyperbolic fit to
the data using two arbitrary parameters which are 1linear
coefficients of two basis functions 1/x and 1. If, however, it is
desired to consider the effect of translating these curves parallel
to the x-axis, it is necessary to use a non-linear fitting scheme.
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If we solve the formulas determining the above curves for x,
we get:
X = =
() 7-B

We can see the effect of translating these curves parallel to the
X-axis by adding another parameter C to this family:

x(y) = +C

Solving for y and switching the names of two of the parameters, we
get a three parameter family of non-linear curves: 2

y(x;4,B,C) = AB+C

To solve this problem we use a modification of the methodology
above. We seek to minimize:

yv; —y(x;4,B,C)

N
= >

1=1 1

]

We have the same equation to solve:

M
Z Crs*ay; = By
7=1

but now:

Py?

1
€. = — 2 A
. 2 da, Oa,

J

where a, is one of the parameters: a,b,c,

and
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ﬁ __laxz
B =
2 da,

The solution search method of Marquardt, as implemented in the
C language in the reference by Press et.al, 1992 [11], can now be
used to solve these non-linear equations for the three parameters.
This method requires an initial approximate guess of the solution.
The two parameters determined by the previous linear fitting
approach along with a value of 0 for the third parameter C can be
used for this initial approximation to the solution.

In order to test the software, we first tried to fit a family
of hyperbolas of this type to a set of points generated by adding
random numbers to a given hyperbolic equation. The results show
that in this situation both software procedures, the Gauss-Jordan,
and the singular value decomposition work approximately equally
well. However, because of the more flexible ability of the singular
value methodology in all circumstances, we decided to use it for
this situation. Figure 2 shows a copy of the MATHCAD sheet used to
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Program to compute best fit of a three parameter family of hyperbolas
to given data.

202 vo=1 VY tells which coeffs to function and its derivatives

NPTS =8 g +8

initial values u,=7.668 u =0 u, :=5.404 o8 11
= . f =
mi=2 x :=READ(Rms1) (x.8) x- g,
y. :=READ(Ridehy4) e o2
=1 - l & (x- &)

1

This program computes non-linear fitting coefficients A,B,C (shown as g0,g1,g2
above). It uses the Marquardt method. The program uses as initial guesses

the values for A and C and computes using the singular-valued decomposition
(SVD)the best least squares fit. It uses an initial value of zero for B.

r:=Mrqmin(x,y,s,u,v,f)

best coeff. values and the sum 24818 14.705 1:=0..20
of squares of residuals for each r=1-0977 0 -
fiting coeff. P <>
0918 0 w.’:=f(’]—,r<0 )
J 7
0
Best fitting solution  —-
» T T
0 .
o
. T a -
10 o \\u
Th—
0 1 !
4] 1 2 3

Figure 2. MATHCAD program to compute ride curves.
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M1025 HMMWV, 15/29 PSI
Empty

50

6-WATT SPEED (MPH)
s 3
T I

B
I

Q 05 1 15 2 25 3 35 4
SURFACE ROUGHNESS RMS (NCHES) © '

9 tracel

—— trace2

— trace3

Tracs 1 represents the data points collectad from 1892 field tests gs répd@d inthe
Technical Report GL-82.07, Mobility Performance Tests of the High Mobilty Multi-Purpose
Wheeled Vehicle with a Central Tire Inflation System and Towed Traifer. (the pts by

themssives are dispiayed),

Trace 2 represents the 6 watt ride curve for the HMMWV computed by the above Mathicad
shest from the data points in trace 1.

Trace 3 represents the 6 watt ride curve as shown in the repart GL-62.07. (the pts. were
taken off the curve in ﬂ;g report and conneciad by straight interpolating fines).

Figure 3,Ride curve for the unloaded 1025 HMMWV

30




calculate the ride curve. The data points for this program are
extracted through a MATHCAD read statement which refers to the
corresponding data file. Figure 3 shows the results of applying
this procedure to the historical test results, and standard vehicle

information on performance.

The results of two of the methods of fitting hyperbolas
to the ride curve data are displayed below. Data points from tests
of the 10 ton Heavy Expanded Mobility Tactical trucks (HEMMT) were
used. The vehicle was tested in both the loaded condition (60,145
1bs) and the unloaded condition (38,018 1lbs). Tire pressures are
given in pounds per square inch for both the two front and two rear
tires. More details about the tests are contained in the report by
Schreiner et. al. , 1985 [13]. The Marquardt function was compared
with the direct search method. The searching method gave results
similar to the Marquardt method which is evidence that the ride
curves are accurate. Tables 1 and 2 give a comparison between the
two fitting methods.

Table 1
TOTAL CURVE FITTING ERROR MEASURED
SUM OF SQUARES OF RESIDUALS

HEMMT in
Unloaded Condition

surface Type Tire Search Mrgmin Method
Pressure Method

Standard Highway 60/70 128.7 128.6

Cross Country 35/40 37.2 36.9

(clay)

Sand 20/30 24.7 24.6

Emergency 15/19 30.0 30.0
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Table 2
TOTAL CURVE FITTING ERROR MEASURED IN
SUMS OF SQUARES OF RESIDUALS

HEMMT in
Loaded Condition

surface Type Tire Search Mrgmin Method
Pressure | Method

Standard Highway | 60/70 89.5 89.4

Cross Country 35/40 57.1 57.0

(clay)

Sand 20/30 25.7 25.7

Emrgency 15/19% 23.7 23.7

After comparing the different methodological approaches it was
decided to use the Marquardt method as implemented in the MATHCAD
sheet. In order to make sure the Marquardt ride curves were
accurate and met all of the restrictions, the ride curves were
computed for the HEMTT and compared to the old ride curves. A
complete set of the ride curves which have been calculated can be
found in the pending report by Harrell [5]. Points for these graphs
were taken from the most recent field tests that could be found for
each vehicle. To calculate the 6 watt limit, a curve was drawn
through the data from the field tests and the speed at 6 watts was
taken to be the limit for that RMS value.

CONCLUSIONS AND RECOMMENDATIONS

Both the standard linear least square method and the singular
value linear least square method give basically the same results.
Both these methods assume that the x-axis and the y-axis are
asymptotes of the family of curves. These results can be improved
by using the 2-parameter values determined for the linear family of
hyperbolas augmented by zero as initial values for a non-linear
three parameter family of hyperbolas. For this family, we do not
assume that the y-axis is the y-asymptote; only that the y-
asymptote is parallel to the y axis. This assumption corresponds
with the physical situation that the O0-RMS ride limited speed is
not infinity but the vehicle’s highest speed. The results of
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computing the sum of squares of residuals are displayed in Table 3
below. These residuals will be the vertical distances between the
data points with a given x-cordinate and the corresponding point on
the fitting curve with that same x-cordinate.

Table 3

COMPARISON OF RESULTS OF FITTING
RIDE CURVES TO DATA

Vehicle Tire Tire Residuals
Pressure Deflection | using,
Marquardt
method
HEMTT 60/70 . 2.1 inches | 129
UNLOADED .
35/40 3.2 inches | 37
20/30 4.3 inches | 25
15/19 4.7 inches | 30
HEMTT 60/70 2.1 inches | 89
LOADED .
35/40 3.2 inches | 57
20/30 4.3 inches | 26
15/19 4.7 inches | 24

Another piece of information that is evident from this table
is the sensitivity of the effects of changing tire pressure for
computation of the NO-GO? speed values for this vehicle. If we use
the Marquardt method to model the ride curve we see that an upper
limit on the total possible error in determination of the ride-
limited speed cutoff changes by a factor of 129/30 in the unloaded
case and a factor of 89/24 in the loaded case. Possible future work
could include the design of a series of experimental ride tests to
further validate these conclusions.

2 Here we mean by NO-GO speed only the ride-limited part of the overall
speed prediction program‘s computation.
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ABSTRACT

A non-standard method, called Criterion-Free Curve Fitting (CFCF) is developed for fitting
mathematical functions to statistical data consisting of x,,y; pairs (generally, n-tuples). CFCF is more
flexible than standard linear methods that minimize sums of squares of residuals. Also, CFCF is robust to
data outliers, to the presence of errors that are non-normal or heteroscedastic, and to whether independent
data (as well as dependent data) variables may also contain measurement errors.

The present paper has been modified in some respects from what was presented at the Conference, as
follows: (1) Numerical results are included; (2) Simultaneous solutions are recommended for computing
the candidate parameter values; (3) Confidence intervals are discussed and; (4) “Quasi-Median Point
Estimation,” advocated at the Conference, is discussed but not recommended, as numerical experiments
fail to support their effectiveness in fully removing the influence of data outliers.

INTRODUCTION

Traditional curve fitting to statistical data relies on least-squares regression estimation of parameters
that select a curve (or surface) from a family of curves (surfaces) corresponding to the possible parameter
values. Least squares curve fits are particularly elegant and computationally efficient when the curves are
linear. When the data errors are also normal, independent, and homoscedastic, the error analyses are
particularly tractable in both a symbolic and computational sense, and the least squares method is
provably optimal. The theoretical and computational advantages of the method under idealized data
conditions provide a strong incentive to transform variables, where feasible, to linearize the function to be
fit. Accordingly, linearization is very common in practice. However, linearization typically comes at the
cost of optimality of the fit, and of a reliable and meaningful error analysis. Moreover, linearization is not
always feasible.

Even though least squares curve fitting, with or without the help of linearization, is convenient and
therefore very common in practice, it remains fragile with respect to the presence of data outliers, and to
model assumptions as to normality, independence, and homoscedasticity of errors, and also to whether
measurement errors may be present in the independent variables as well as the dependent variables.
Moreover, the number of useful linearizing transformations is itself limited, so that least squares curve fits
must necessarily remain limited in application.

What is needed is a curve fitting methodology that is flexible (i.e., widely applicable) and robust
(where least squares fails to be robust). To meet this need we will introduce an unconventional, heuristic,
computationally intensive approach to curve fitting, called Criterion-Free Curve Fitting (CFCF).

CFCF, typically, requires repeated numerical solutions of systems of possibly nonlinear equations (K
equations if there are K parameters to fit). In principle, this can often be exceedingly complex and
impractical, especially if the process is to be automated and repeated many times (as CFCF indeed
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requires). Fortunately, it often happens in practical applications that additional information is available in
the form of initial ballpark estimates, or perhaps constraints, that can help to identify the solution in an
acceptably efficient manner. CFCF therefore promises to provide a highly practical approach to curve
fitting in many cases where traditional methods fail.

It turns out that CFCF requires that point estimates be generated from random sample distributions.
This will lead us to an explore the merits of some candidate point estimators.

THE PROBLEM

We want to fit ¥ = f(x;@) from a family of functions characterized by parameters Qwto data
points (x;,yy), or equivalently, f(x,y;a)= 0 from a similarly characterized family of equations.

We want to do this without minimizing

Z(residuals)z or Y |residuals| or median{|residuall}

or other such criterion.

We will accomplish the necessary fit via a method which we call Criterion-Free Curve Fitting
(CFCF), which is explained in the following section via a combination prototype and example.

CRITERION-FREE CURVE FITTING: EXAMPLE AND PROTOTYPE

We choose for illustration the simplest non-trivial example:

y=a+bx
which we already know how to fit by any of several traditional techniques.
The CFCF procedure works as follows:
Choose an arbitrary pair of distinct indices, (i,j). (If there were K parameters to fit we would choose
K distinct indices. Here, K=2)
If the data were error-free we would have

¥y, =a+bx,
y,=a+bx,

and we could solve for the parameters a,b . We will do this, as if errors were not present. However, as the

data are presumed to contain errors, this procedure will instead merely yield candidate estimates a;;, b,.j

indexed on the points that generated them. (In general we would have K parameters, and each candidate
parameter value would therefore need to be characterized by K distinct indices.)

We next repeat the process with another pair (i,j), again obtaining candidate estimators a,, b,.j . We

keep repeating the process until either: (1) All distinct pairs (K-tuples) have been exhausted or; (2) the
distributions of the candidate values have all stabilized. In the latter case, we must select the (i,j) pairs
randomly.

Note that in a more general case we would have a system of K non-linear equations to solve for the K
candidate parameter estimators. Assuming that solution techniques are available to solve the particular
equations at hand, it may still happen that the errors present in the K x,y data points may be such that
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these data points fail to lie on one of the assumed family of parametrized curves. In such a case (by
definition) solutions for the candidate parameter values cannot be found. If/when this happens, the
recommended procedure is to simply ignore this particular K-tuple of x,y values and to go on another set.

The estimators @, b are then defined as point estimators from the respective distributions of the
candidate values {a,.j }, {b,J} .

It might seem that the means of these distributions would be the most appropriate point estimators.
In the illustrative example, however, the set of candidate slopes b,.j will include some slopes that happen to

be between nearby points, each of which is noisy. Some of those candidate b,.j. are therefore likely to

contain large errors and therefore to behave as outliers that might disproportionately contaminate the
sample means. Any genuine outliers that may be present in the original data would further contaminate
the means, probably significantly. In contrast, the medians are expected to be robust, both to noisy data
and to outliers.

The issue is explored numerically in Tables 1 and 2. Table 1 presents results for the prototype
example,

y=a+bx+e¢

with a=1,b=1,¢= Normal(u=0,6" =1).
This is a standard textbook case for which linear least squares regression is provably optimal. Table 1
verifies this, and further shows that CFCF also gives reasonably good results (i.e., close to least squares)
when based on the median (rather than the mean) for point estimation, except when the number of data
points is small (e.g., 5).

Table 2 explores the same case, modified so that simulated outliers have been added randomly with
probability 0.05 (i.e., each data point has this probability of having an outlier added to it). Each outlier is
generated as a normally distributed random variable with a mean of 0 and a variance of 100. For this case,
linear least squares regression is no longer optimal, but is seriously degraded by the outliers. CFCF based
on the mean is also degraded. However, CFCF based on the median continues to give good results,
essentially indistinguishable from those for which there are no outliers (as in Table 1).
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Table 1

Numerical Results for the Simple Case, y =a+bx+¢&
with a=1,b=1,& = Normal(u=0,0" =1)

(100 replications of each solution. Sampling of data is with replacement.)

RMS Errors
A A
a b
No.of | Sample Linear CRCF CFCF Linear CRCF CFCF
data | Size, (i,j) | Regression (Mean) (Median) | Regression (Mean) (Median)
points pairs
5 20 1.04 1.35 130 - 33 40 .39
10 20 .60 1.24 1.07 .10 .20 .16
50 .64 .90 .80 11 .14 .13
100 .74 91 .86 .12 13 .13
25 50 .45 1.13 .69 .028 071 .043
300 .36 .53 49 .026 .039 .030
50 100 .33 1.08 48 .011 .034 .015
400 .30 .64 .36 .010 .021 011
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Table 2

Numerical Results for the Simple Case, y = a +bx + £ + y with Outliers
with a=1b=1,& = Normal(u=0,0° =1)
Normal(u = 0,06” = 100), probability = 0.05
0, probability = 095
(100 replications of each solution. Sampling of data is with replacement.)

and Outliers y = {

RMS Errors
A A
a b
No. of | Sample Linear CFCF CFCF Linear CFCF CFCF
data | Size, (i,j) | Regression (Mean) (Median) | Regression (Mean) (Median)
points pairs
5 20 2.36 2.75 2.27 .66 .74 .59
10 20 1.90 3.97 1.04 32 .51 17
50 1.40 242 .94 24 .33 15
100 1.80 241 .86 .30 .38 15
25 50 1.03 2.80 .68 .08 .18 .04
300 .96 127 .50 .07 .09 .04
50 100 .66 3.22 .50 .02 .10 .02
400 .66 1.44 41 .02 .05 .01
POINT ESTIMATION

Given the results shown in Tables 1 and 2, it is tempting to try to devise a point estimator that would
be numerically close to the mean when the data is ideal, but that would remain insensitive to outliers and
to other departures from ideal data. Such an estimator would therefore share in most of the advantages of

both the median and the mean.

One attempt to construct such an estimator is described in the following section. The proposed
estimator is called, for lack of a better name, the Quasi-Median. Unfortunately, numerical exploration
shows that the Quasi-Median fails to fully remove the influence of data outliers. Results are therefore not
included in Tables 1 and 2, and the Quasi-Median is accordingly not recommended in practice.

It is possible that a trimmed median might work better, but this alternative has not been explored.
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QUASI-MEDIAN POINT ESTIMATION

We begin by assuming that we have N data points denoted by x;. Note that these x; have nothing to
do with the (x;,y;) data points that we have been considering. They are simply any data sample for which
we seek a point estimate. Assume further that the data are sorted so that

X, £x, << Xy,
Define also the median index, m, by

m=(N+1)
2

If N is even, then there is no x,,. However, this will not cause a problem, because we will not be needing a
value for x,,. '

Ideally, what we would like is to take the mean of the presumably “good” points in the middle of the
distribution, and discount the presumably “bad” points far from the middle. To approximate this, we

define the Quasi-Median, Q, as
Q = Z WX,

where the w; are weights, large near the median and small far from the median.

There are many ways to define such weights. One way is as follows:
2 Y 42
w, = cR_(X’—:‘) )
where R is an exogenously chosen “influence ratio” defined as
w w
R=—"> =7 (e.g., R=100)
W, Wy

and c is chosen to make

dw, =1

With this definition, it is readily shown that
limQ = mean
'R—>l .
lim O = median
R—w
As a practical matter, one would want R to be big enough to discount outliers near i=1, i=N, but small
enough to allow contributions from data near i=m.

ASSESSMENT OF QUASI-MEDIAN POINT ESTIMATION

Unfortunately, numerical experiments show that the Quasi-Median works about as well as the
median, but not better, when the data is satisfies the standard assumptions and no outliers are present.
With outliers, the Quasi-Median fails to discount the outliers fully, and as a consequence is inferior to the
median. It is possible that a trimmed median might work better, but this was not explored.

Accordingly, the Quasi-Median, though perhaps interesting in its own right and potentially useful in
other circumstances, cannot be recommended for use in the CFCF method.
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CONFIDENCE INTERVALS FOR THE PARAMETER ESTIMATES

Confidence intervals for the CFCF parameter estimates are exceptionally easy to determine. This is a
consequence of the fact that the CFCF procedure generates statistical distributions for each of the candidate
parameter estimates. These distributions can be displayed as histograms, and confidence intervals can be
read directly from them (with interpolation as may be necessary), for any specified confidence level. Such
confidence intervals can be symmetric or asymmetric, as needed.

Consistent with the heuristic nature of CFCF, no explicit theories (or fragile assumptions) are needed
to estimate confidence intervals.

REPRESENTATIVE APPLICATIONS OF CFCF

CFCF, though inherently robust, is also more flexible than standard linear least squares curve fitting
procedures. To illustrate this flexibility, we will outline how CFCF can be used to fit data to mathematical
functions that do not lend themselves to linearization, and for which standard methods therefore fail. Two
examples will be presented.

EXAMPIE |
Our first example is
y=A(x+c)’
which is a generalization of the standard linearizable case for which ¢ = 0. This more general case does
not lend itself to linearization by taking logarithms, because In(x + ¢) does not simplify into anything
tractable for use in a least squares minimization. In contrast, CFCF is relatively straightforward.

We start by choosing indices i,j,k (because there are 3 parameters to determine). Then
Vi = A(xi +c)b
y; = A(x; +c)’
Divide, take logarithms, and rearrange to get
_ Iny,-lny,
In(x, +¢)-In(x; +c¢)
Repeat for indices i,k. Comparing, we eliminate b and get

In(x, +¢)-In(x; +c) Iny,-Iny,

In(x; +¢)—In(x; +¢) - Iny,—-Iny,
or, with some rearranging,

kel b3

(x, +c)h[")(xj +c)ln(“")(xk +c)h{;_:] =1

This can be solved numerically for c. At 2 minimum, the existence of a solution will require that all
three y; be of the same sign. Numerical experimentation with this expression suggests that the expression
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is well behaved and gives a unique solution (when a solution exists) that can readily be found by any of
several standard numerical techniques. Given a solution ¢z, one can solve readily for by and then for Ay

Repeating as necessary for other i j,k leads to distributions of the {Ay},{bix},{Cix}, from which point
estimates A4,b,C (e.g., the sample medians) and confidence intervals can be obtained numerically.

EXAMPLE 2
Our second example is
y = Asin(ax +b)
If there were sufficient data, with the x; equally spaced, we might be able to identify @ as the
dominant frequency obtained from a Fourier transform of the y; data. Even then, it is not clear how we

would obtain estimates for A,b. In contrast, the CFCF method does not make any special demands on the
data, and provides estimates for all three parameters.

We proceed by choosing a triplet i.j,k of data, whereupon

¥ _ sin(ax, +b) _ sin(ax;, ) cosb + cos(ex; ) sinb
Y, - sin(ax; +b) - sin(cx ;) cosb + cos(wx, ) sinb
Rearranging, we obtain
¥; sin(ax ;) -y, sin(ax, )
¥, cos(wx;) - y; cos(ex ;)
Repeating for indices i,k and comparing to eliminate b, we have
Y sin(ax,) —y, sin(ex;) _ y, sin(ax, ) - y, sinarw,)
¥, cos(ax,) ~ y, cos(@x,) ¥, cos(a;)~; cos(@x,)
With some rearranging and simplification we can write this as
y;sinfo(x; - x, )]+ y, sinfo(x, - x; N+y; sinfo(x, —x,)]=0
which can be solved numerically for @, provided the particular ijk data admits of a solution. Note that

@ = Ois always a solution, though (usually) spurious. Numerical experimentation with this expression
shows that we seck (via any of several standard numerical techniques) the smallest solution for @ in the
half-open interval 0 < @ < 27 (if 277 is the smallest solution, replace it by 0). Given the solution, we can
readily backtrack to solve fortan(b) , and thus b, . Further backtracking gives us A4, .

tan(b) =

Repeating as necessary for other i,j,k leads to distributions of the { A,.jk 3£ b,.j,C 3 @y} from

which point estimates 21, I; s @ (e.g., the sample medians) and confidence intervals can be obtained
numerically.

CONCLUSIONS

A non-standard, computationally intensive heuristic method, called Criterion-Free Curve Fitting
(CFCF), has been developed for fitting mathematical functions to statistical data consisting of x;y; pairs
(generally, n-tuples). CFCF is more flexible than standard linear methods that minimize sums of squares
of residuals. Also, CFCF is robust to data outliers, to the presence of errors that are non-normal or
heteroscedastic, and to whether independent data (as well as dependent data) variables may also contain
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measurement errors. CFCF readily lends itself to numerical estimates for confidence intervals of all
estimated parameters.

The CFCF method requires point estimates to be made from sample data distributions. Over
conditions that may include data outliers or other non-ideal data features, the median appears to be
preferable to the mean as an estimator. An attempt was made to devise a point estimator, called the Quasi-
Median, that might preserve the best features of both mean and median. Unfortunately, the Quasi-Median
fails to live up to its intended purpose of fully removing the influence of data outliers when these are
present. The Quasi-Median is therefore not recommended. It is possible that a trimmed mean might work
well, but this possibility was not investigated.

As part of the computationally intensive process, it is in general necessary to solve a system of K
(possibly non-linear) equations for candidate values for the K parameters. This is difficult to do as part of
a general-purpose software package. It is likely, therefore, that in the foreseeable futvre it will be
necessary to write special-purpose software to solve these equations, or to adapt available “general
purpose” equation solvers to repetitive solutions. In some cases, prior knowledge of “ballpark values” of
the parameters may be needed, either to ensure that the solution algorithm converges to a solution or to
ensure that it identifies the correct solution.

CFCF is therefore unlikely in the foreseeable future to be included as part of a statistical package that
could be friendly even to the mathematically unsophisticated orcasual user. In contrast, CFCF is more
likely to remain foreseeably in the toolbox of the professional statistician. This is perhaps ironic, given the
conceptual simplicity of the method and its freedom from sophisticated assumptions and theoretical
justification.
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INDIVIDUAL BIOEQUIVALENCE:
THE BIOEQUIVALENCE SENSITIVITY RATIO
COMPARES CRITERION OF BIOAVAILABILITY MERIT

Marshall N. Brunden and Thomas J. Vidmar
Biomathematics Group, Pharmacia and Upjohn Incorporated
Kalamazoo, MI 49001, USA

ABSTRACT

The sensitivity ratio, used in physical science to compare competing methods of measurement, is applied to the
bioequivalence problem in pharmaceutical science. Simply stated the sensitivity ratio is the ratio of the true process
variability expressed as a function of the measured process variability via a delta method argument. As applied to
the bioavailability problem, the AUC serves as a measurement of an individuals’ true bioavailability for a
formulation. The standard deviation of this true bioavailability provides a criterion for the quality, or merit, of this
formulation with regard to bioavailability. The ratio of test to reference formulation merit results in a bioequivalence
sensitivity ratio (BSR). This quantity may be used to estimate individual bioequivalence as the BSR parameters are
in terms of the marker measurements. The test formulation is inferior to the reference when this ratio is appreciably
less than unity. Application is made to a data set from the literature.

INTRODUCTION

Manufacturers who wish to market new formulations of approved drugs must establish that the new drug is
bioequivalent to the old. It is well recognized that while population bioequivalence requires that the average
bioavailability of two compounds be sufficiently close (Sheiner ' ), more is needed. One would like to conclude that
the two formulations have similar distributions as well.

We consider the case of a reference (R) and test (T) formulation from which we may obtain subjects’
measurements of bioavailability parameters (AUC, etc.). There is an obvious distinction among the property B (true
bioavailability) to be measured and the actual bioavailability marker measurement Y made for that purpose. In
actuality there is more than one type of marker measurement for assessing bioequivalence.

The problem is of comparing the two compounds’ relative merits and the more basic question of whether the
test formulation is bioequivalent to the reference formulation. The choice between the two formulations is not only
a technical question but is also dictated by medical and economic factors.

Initial forays 2* into assessing the bioequivalence among two formulations concentrated singly upon acceptable
differences between the two populations’ (L. and [,) mean bioavailability markers. With use of the error variance
from an (ANOVA) and the difference in sample means of the reference and test formulations, a (1 - a)x

100% confidence interval is formed for the difference in population means, L, and i, resulting in
k, < (W, - M) <k, . Clinically, it will have been decided that the two formulations can be considered
bioequivalent if K, < (u, - W) < K, . The decision rule is to accept bioequivalence if k > K, and
k, < K, . Hauck and Anderson * reformulated the problem by making nonequivalence the null hypothesis and
bioequivalence the alternative hypothesis using the population means . and |, . Their statistic results in
a noncentral t - distribution. Replacing the sample estimate s, for the unknown population standard deviation o,
allows treatment of the noncentrality parameter as approximately a known constant. Consequently the problem can
be reformulated by using the central t - distribution.

The recent concept of individual bioequivalence is discussed by Anderson and Hauck * . These authors define
bioequivalence in an individual jas 1 - K, <Y, /Y, <1 +K, , where Y; is the measured bioavailability
marker of formulation i (i = R,T) in the j® subject and K 1s the equivalence criteria. They let P, be the population

Approved for public release: distribution is unlimited.
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proportion of subjects where the two formulations are individually bioequivalent and MINP the minimum acceptable
proportion that must be bioequivalent in order to call the formulations bioequivalent. They then test
H: P, < MINP versus H,: P, > MINP.

A very recent paper by Schall and Luus ® addresses population and individual bioequivalence through difference
among the population means . and |, . Their general idea is to use a comparison of the reference formulation
to itself (repeatability) as a basis for the comparison of the test with the reference formulation. They then evaluate
this new criteria by use of bootstrap confidence intervals.

More recently Esinhart and Chinchilli 7 provided an extension of the Anderson and Hauck * method by applying
tolerance intervals.

‘We propose a criterion of bioavailability merit for assessing the individual bioequivalence. This criteria does
not involve the transformation of the marker measurements into dichotomies based upon a definition of
bioequivalence and the subsequent establishment of the minimum acceptable proportion as in Anderson and Hauck’.
Neither does this method require the that the references formulation be compared to itself as done by Schall and
Luus .

The definitions of criterion of bioavailability merit and bioequivalence sensitivity ratio are not new and are
paraphrases of John Mandel’s ® definitions of a criterion of technical merit and relativity sensitivity. He considers
two measurement processes M; and M, to determine the same property Q and develops a sensitivity ratio comparing
one process to the other.

We consider two formulations of a drug used in a bioavailability measurement process for Yg(reference) and
Y (test). Both Yy and Y are functions of a subjects bioavailability potential B, for the drug. Since Yy and Y are
functions of the same B, they also are functionally related to each other. We will show how the sensitivity ratio can
be used to compare two formulations’ individual bioavailability when there is acceptable population bioavailability.

STANDARD DEVIATION OF PREDICTED BIOAVAILABILITY POTENTIAL

Let Y,, i=R,T represent the measure marker value of bioavailability and B, an individual characteristic that we
define as the subject bioavailability potential for a drug. At this point our presentation is conceptual but it is
recognized that B may be represented by a function of those constants related to the modeling of drug concentration
in the individual. A relationship must exist between Y and B:

Y, = f,(B) (1)
f, is considered to be a differentiable function of B such that f‘.’ (B) # 0 for every B on a given interval of
the real line.

If we had the calibration curve of marker Y, in terms of bioavailability potential B , we could use it to
estimate a value of B, , given by ﬁl. for any measurement value Y, .

In general R 4
B, = f; (X)) = g(Y)

Where g, is defined on the range of f, .

Let g, represent the error of measurement of marker Y|, then applying the law of propagation of

error * we have
dg,(Y)
%, % gy
i

The above expression is a valid approximation if the error €; in Y, is small corresponding to Y,
(ie. & <<Y ) If Y =f(B) isalinear function in B the expression given by (2) is exact.

o, @
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Since g, = £ is the inverse function of f; ,

dgx(Yi) - 1
dr, 4f,(B)

Then inserting this result into (2) we have: o

k! )

Op =
4 l«#,(m
dB

Surprisingly we observe that this equation allows us to convert the standard deviation of the measured marker
Y,, ©, ,intoa standard deviation of the individual "estimated” bioavailability potential Bi , although the actual
estimate is not necessary. What is required is a knowledge of the tangent to the unknown calibration curve. We
will see in comparing two formulations® standard deviations of individual "estimated” bioavailability potential that
this will not cause us a problem.

COMPARISONS OF ESTIMATED INDIVIDUAL BIOAVAILABILITY POTENTIAL

Consider the two measurement processes Yy and Y associated with the test and reference formulations. To
"estimate” the subject bioavailability potential B , we will use the two calibration functions given in equation (1).

Define the formulation with the greater bioavailability merit as the one that has the smaller o,
Consider next the ratio of the two standard deviations of "estimated” individual bioavailability mern given

by (3): B
o3, o, df(B)
dB

Since the marker responses of the reference and test formulations are functions of the same subjects’
bioavailability potential B, both Y and Y, must be related to each other.

dy
If Y, is plotted versus Yy then the derivative T may be written as
ay, B
id Differentiating equation (1) and substituting we have:
R
"dB
ax  d®
4B _ _dB
LA
. dB dB
and equation (4) becomes:
o

Y. Y e || Y.

BSR[—-Z ] | | | __!‘ ©)
) 48 s, o, dry

This is the bioequivalence sensitivity ratio (BSR) of the test formulation with respect to the reference

formulation. Remarkably, this ratio of the standard deviations of the individual "estimated” bioavailability potential

estimates, ﬁi associated with the two formulations can be expressed in terms of parameters related to the two

marker measurements Y and Yy, without having the calibration curves of Y and Y, in terms of B.

The following is taken from Mandel’. Consider Figure 1 where the AUC’s for subjects A & B for both the
reference and test formulations are displayed. The relationship between the reference and test formulation is
represented by the curve. Based on this figure, we would state that the reference formulation is better able to

49




differentiate between subjects” A & B since the change in the AUC for the reference formulation, call it AY, is
larger than the change in the test formulation, AY, . However, the arguement does not consider the error involved
in measuring the AUC for the reference or test compound. Therefore, a better comparison would be

AY. AY AY || O,
T Z | =<4 |—=|. the absolute value to take into account a decreasing curve. Note that for points
S, o, AY, o,

A & B that are fairly close to one another, what we have described is simply equation (5).

Graphical Interpretation of Sensitivity Ratio

30} SubjectB

change in ref.

Subject
change in test

8
¥
standard dev. of ref.

Reference Formulation AUC
&
T

standard dev. of test

<+
1 1 1 1 1 I ]
1 3 5 7 9 11 13 15
Test Formulation AUC

Figure 1

In equation (5) as o, /o, increases the bioavailability merit of the reference formulation decreases with
respect to that of the test formulation. If this ratio is appreciably less than unity, the test formulation is "technically"
inferior to the reference formulation. Then of the two formulations, the reference formulation has a greater ability
to detect a real difference in subject bioavailability potential (individual bioequivalence).

4, (B) _
& (B)

the curve of Yy versus Y. The standard deviations of &, and o, may also not be constant throughout the
range of variation of Yy and Y, By plotting the bioequivalence sensitivity ratio versus Y, one obtains a complete

picture of the individual bioavailability merit of the test formulation relative to the reference formulation (ie. the
bioequivalence sensitivity curve of the test formulation relative to the reference formulation).

Unless the relationship between Y, and Yy is linear ( ie. ¢ , a constant ), the slope will vary along

It should also be noted that the value of the individual bioequivalence sensitivity ratio is invariant  with respect
to any transformation of scale (eg. if we took logarithms of the Yy measurements). The proof is simple and involves
using the transformation Y;" = T(Y,). Next dY,'/dY, and 6"y, are substituted into BSR(Y,/Y;) which is shown

to reduce to BSR(Y/Y).
STRATEGIES FOR TESTING OF INDIVIDUAL BIOEQUIVALENCE
USE OF THE REFERENCE FORMULATION COMPARED TO ITSELF
In summary, we have demonstrated that conditional upon an acceptable population bioequivalence, the individual

bioequivalence, as measured through a bioavailability marker, may be assessed through the use of a criterion of
bioavailability merit and a bioequivalence sensitivity ratio. The result is the ratio of the standard deviations of
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individual "estimated" bioavailability potential of the test formulation to the reference formulation for the drug in
question.

One could consider using the bioequivalence sensitivity measure to first compare the reference formulation to
itself (second trial) as the basis for evaluating the bioequivalence sensitivity measure comparison of the test
formulation to the reference formulation. This strategy was recommended by Schall and Luus * when using the
differences between two bioavailabilities. However, it is easily shown that this strategy offers no advantage when
using the bioequivalence sensitivity measure.

Let BSR(Y. /Yy) denote the bioequivalence sensitivity of the reference formulation with itself and BSR(Y,/Yy)
the bioequivalence sensitivity of the test formulation relative to the reference formulation.

Y. Y,

Then if BSR[ YT }BSR - > K, 0<K<1 , we say the test formulation has acceptable bioequivalence.
R R

The particular value for K, which defines acceptable bioequivalence would be a regulatory concern.

It is easy to show that the BSR of the reference with itself has no dividend since

Y Y, Y,
BSR[ YT }/BSR[ 7 J BSR( 7 ] , and only the latter realization is necessary to test for bioequivalence.
R R’

R

DEFINITION OF ACCEPTABLE INDIVIDUAL BIOEQUIVALENCE

Y.
If BSR TT > K, 0<K<1 , then the test formulation has acceptable bioequivalence. It is easily
R

Os
shown that this is equivalent to < .%, 15%3» That is, when the standard deviation of the test
O

formulation bioavailability is acceptable in relation to the standard deviation of the reference formulation
bioavailability.

Say, that the value of K is chosen such that the bioequivalence sensitivity of test with respect to the reference
is .80 of the bioequivalence sensitivity of the reference with respect to itself. K=.8 translates into a standard
deviation of the test formulation "estimated" bioavailability potential which may beupto 1/K = 1.25 larger than
the standard deviation of the reference formulation "estimated” bioavailability potential and yet be considered
bioequivalent.

MODEL AND NOTATION

We propose the following model for observations from a two period crossover design:
Vi = Wit T v Sy Ny,
where i = R,T,j=1,...,.nand k = 1,2 .
Where y,, isthe marker measurement (possibly log transformed) taken in the k™ period on subject j receiving
the i* formulation. We let EQ,li) =n; +m, =W + S, +x, , with Var (y,1)) = E(m 2a) =

Further, E(p,) = E; +S,) = 1, , Var(n, ) -E(S’ ) -0'2 and Cov,(M, 1) = PO, ©, . Thlsmodells
similar to that proposed by Anderson and "Hauck * for 1nd1v1dual bloeqmvalence aside from the inclusion of the

period effect.
Then, the marker responses for R and T may be written:
Yrig = Br YT * sk, * Mgk

yﬁk=pr+“k+sl)+nﬁk
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The population expectations are given:

E()’m) = Pp T T

E()'zyk) =Ryt T By
The population variances are given by:

Var(ygy) = E(Sy; + Mgyl = 0,2 + 0,2 = o,

Var(yy,) = E(S; + nm‘)2 = 0,2+ °w,2 =0,

Let the subject effects conditional on subject j within each formulation i, be a "structural” component. That is,
S, = h,.(Bj) , where B. is a constant which represents subject j’s bioavailability potential for the drug (at a
particular dose). The function &, imparts the marker effect due to formulation i as a function of this
bioavailability potential for the drug. To be consistent with our overall model the expectation of &, (B;) overthe
population J of subjects is E(S)) = Ej[h,.(Bj)] =0 , the varance of h(B;) over ] is

EJ.(S..J?) = E, (h,.(Bj))ﬂ = crbf. , and the covariance of reference and test given by
) .(k(B))] = po,0,.

J

E,(8:;55) = E[(he(

Now, the marker responses for R and T given subject j in period k may be written:

Yrjk 7 Ko * hg(Bj) + Mgy

Y1k lj By * hr(Bj) * ey
The individual expectations are given:

Y&k = E(Y)uk l]) = Bpp * R(Bj)

Y’}g = E()’m IJ) B * hT(BJ) ©)

The variances conditional on j are given by:

Var(Yp) = E(ngy,) = o,.}

= 2 2
Var(Y;) = E(nz, Y = o,

From (6) we see that the mean bioavailability response from both the reference and test formulations are
functions of both the population bioavailability and subject bioavailability potential. This is the functional
relationship of Y; to Yy among subjects that was alluded to within the introduction. If the population levels of
bicavailability p, and p. differ by an acceptable quantity the remaining issue is the individual bioequivalence
which is specifically addressed in the next two sections.

EXPERIMENTAL DESIGN AND TESTS

Y.
SIMPLE MODEL FOR THE CALIBRATION FUNCTION fi(Bj) and BSR(TT)
R

The subject marker measurement bioavailability potential calibration functions for the reference and test given
in equation (6) are compatible with compartmental models used for the pharmacokinetic modeling of drug distribution
with first-order output. Many of these models result in a similar expression for the total area under the plasma-level
time curve *: 0

i

y

AUC, =

Q. is the quantity of drug available for formulation i and C, is the drug clearance for formulation i within
subject j. In crossover studies ° C,; 1s often considered a constant among formulations (ie. C,=GC )
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Considering the log(AUC) we then have:
Y, = log(AUC,) = log(Q,) - log(C)).

Then Y, isalinearfunctionof Y. having an intercept ( log(Q;) - log(Q,) ) and aslope of unity. To allow
for testing of a formulation effect on clearance we write:

Yu = lOg(Q‘) . £ XlOg(Cj) =M+ Y‘X(Bj)
Here the log(C;) may be considered to be the subjects bioavailability potential B, , for the drug.
The bioequivalence sensitivity ratio (5) is then:
i
o,

BSR e = dr, O -
Yy dy, o,
If v, = 1 for i = R,T the ratio of the two formulations standard errors of estimated bioavailability merit is:
m[zz] i dY-j LA
Yy dy, o, S,

On the other hand, in bioavailability studies it is often assumed that <5e.2 = o't,_'2 =
This results in:

Yr
Yr

RE
Tr

@)

BSR(E] = dry

dYy

Yz
Ir

e

The remainder of this paper will concentrate on estimators for and their application.

EXPERIMENTAL DESIGN CONSIDERATIONS

Hopefully, transformations of Y, and Y may be found which provide both for homoscedasticity of S, and .,
and a linear relationship of Y, with Y;. We will reject (individual) bioequivalence if

(v )
Y Y.
BSR 7’. is not sufficiently high (at least K). Then our null hypothesis is H,: BSR TT <K versus
\" k) Y R
the alternative hypothesis H _: BSR _Y_T >K ,oralower (1 - )x100% confidence limit of
(o ) R
Y.
BSR ?f. . In section 4 we saw that it was not necessary to compare the reference with itself as a basis for
R
y,

\
evaluating the bioequivalence sensitivity of the test formulation with respect to the reference formulation. This would

imply that only one replication of marker measurements is necessary.

We propose a 2-period crossover design using n = n, + n, subjects (Jones and Kenward '%):
Is it usually argued that in bioavailability trials * no carry over effect exists. The

full model fixed effects are:
Sequence Group No. Subjects Period 1 Period 2
1 (Reference, Test) n, M, + %, WL+,
2 (Test, Reference) n, M+ T, M, + T,

The appropriate analysis format with expected mean squares is:
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Source Degrees of Freedom Expected Mean Square
Total 2n-1
Between Subjects n-1 0'?,, + 20'2
Periods 1 Gy + n(m, -m,)/2
Formulations 1 oy + ne(i -1 )22
Within Subjects n-2 o

POPULATION BIOEQUIVALENCE

Using the error variance from the ANOVA ( swz, ) and the difference in the sample means for the reference and
test formulations ( L. - 1, ) we may form'a ( 1 - a ) confidence interval for the difference in

population means . - W, , where typically a=.05,:
- 20y
(Pr'“x)"AUD (Pr'pg)f—;-
The (1 - a) x 100% confidence interval is given by:
Zsfv

(Rr=Bg) + t._za-g)J —

where t,., (1 - 0y/2) is student’s t-deviate with (n - 2) degrees of freedom and « is usually .05. If these limits are
within an acceptable range K ,K, we have bioequivalence. Where the response is the logarithm of the
measurement marker, the antilogarithm of both ( i, - 1, ) and the confidence limits is taken. The resulting
interval will appear as an interval for w//u’, where p =exp (/). .

INDIVIDUAL BIOEQUIVLAENCE

. . R/ . . .
From equation (7) we see that we must estimate __  and its standard error. Consider next, a set of pairs

Yr
Bre B 1] = [(Frieli = M) i = bes)] - Since ¥, 1j =y, + B, and p, is the mean of
formulation i within period k we have [Am /28 | j] = [YTBj’YRBj] .
There exist corresponding measurements

Yild = By + Y(B) + ny,,; and

1 ¢ 1 ¢
Yix = By +"Esu"’_2“uk'
nja n ja1

. . - . 1 ¢« 1¢
Let Sijk[l = (yijkl-’ -yijk) = ‘YiBj M - " ESTj = 72“1,1 = ‘YiBj + Eijk[j .

=1 Jj=1
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Then we may write our model:
YrB; = BrgYrby
23
Yr
Bz li>8gsil7) = (YB;YrBy) + (Egyey»Eryry) Where (8, 17,85 1)) is observed,
YrB, is the true value of the dependent variable, Yy, is the true value

where we wish to estimate Bmz =

of the independent variable and (Eqeyy»Egsryy) s the the vector of measurement errors.

The above is the classical measurement errors model.

MAXIMUM LIKELIHOOD (ML) ESTIMATION

Kendall and Stuart !! address this problem within their Functional and Structural Relationship chapter. If we
assume that E(E,, *) = AE(E,, *), where A =1 , their maximum likelihood estimator of B, under
normality assumptions is given by

2 2 2 2 \2 2 12
_ (Sar ~ Ss R) *l( Ssr ~ sak) * 455351]

= 8
BTIR 2Syrer ®
L] -2 » — .
-E (8"" " 87) 2 (871' - 8“) E (87; = 87)(3%; — &)
where s, = .’_".__n_._ , 55 = 2 : , and 25 = 31 . o

Kendall and Stuart * also demonstrate the consistency of B, .

For confidence interval estimation about B, define B, =tan(6) and B, =tan(8). Then the lower
(1 - @)x100% confidence limit about 6 is:

2 2 _ 2 1l (9)
0 =8 - Ssin-! Zt{ SsrSsT ~ Serar Jz
. .

(n - 2)[(-9:3 - sgr)z * 4Sazxer]

where t is the appropriate "students” deviate for (n - 2) degrees of freedom for the confidence coefficient being used.
Then for B, ,the lower (1 - )x100% confidence limitis tan"(8,) .

There are limits on (9) due to the periodicities of the tangent function. The absolute difference between the
estimated and actual theta must be less than or equal to .25 radian = 45 degrees for the formulation to hold. In
addition, the sin"}(A) does not exist for A > 1 and consequently the confidence interval about theta would not exist
for the value of the t-statistic used. This is due to either to small o and/or n. Fuller ' has also developed

- BT/R - BT/R

S

Bra
random variable and it is suggested, that in small samples, t is approximated by Student’s t-distribution with n - 2
degrees of freedom.

an estimator Sﬁ,. of the standard error of Bm . The quantity ¢ is approximately a N(0,1)

BOOTSTRAP ESTIMATION METHODOLOGY

As an alternative to estimating B, in the formulation 7Y.(B) + Epri = Bra%e(B) + Epy,; the
bootstrapping methodology of Efron and Tibshirani '* was adopted. Since both v, and Y. are known to be
associated with error terms, the method of bootstrapping pairs in a no-intercept regression model was used. Each
bootstrap estimate consisted of sampling n pairs with replacement followed by a least squares estimate of Bm ,
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a total of 500 times. In this case, n is the number of pairs in the original data. All calculations were done using
the SAS  software system.

A robust bool was also implemented and was similar except that each observation was weighted by w;
where w, = min 1,?2-( I/n)m/lDFFitsjl) and DFFits; is the usual diagnostic described by Belsey, Kuh, and
Welsch *%," This particular weight was suggested by Hettmansperger '¢. A weighted regression was then performed
on each bootstrap sample.

A lower 95% confidence interval for the bootstrap estimators of ., was computed by using the bootstrap
percentile estimator as described by Efron and Tibshirani ** . The method uses the same methodology as described
in the estimation of Bm with the exception that one thousand samplings were employed to calculate B‘m .
The lower 95% confidence bound for B, is then the 5.0% percentile of the B°. . distribution. Bootstrap
estimation has the added avantage of not having to assume E (Em“.z) = E(ER}.,‘ U’)
EXAMPLE OF THE POPULATION AND INDIVIDUAL

BIOEQUIVALENCE CALCULATIONS

VIRGINIA COMMONWEALTH VERAPAMIL DATA

A four sequence, four period, two treatment study was conducted on 23 normal subjects at the Department of
Pharmacy and Pharmaceutics at Virginia Commonwealth University to determine if a test formulation of verapamil
should be considered bioequivalent to a reference formulation. This data set is analyzed within Esinhart and
Chinchilli ’.

We have pointed out it is only necessary to have a two period, two treatment study to use our proposed
methodology. For an example of our methodology we will analyze the period 1 & 2 data only.

A univariate, linear model on log(AUC) was constructed with subject effects (df = 22), period effects (df = 1)
and formulation effects (df = 1). The test for formulation effects was not significant (p = .5251). Based on least
squares the estimated 90% and 95% confidence intervals for average bioavailability (test/freference) are (0.8135 -
1.0981) and (0.7884 - 1.1330). Since the 90% confidence interval lies between 0.80 and 1.20, one would reject
bioinequivalence in favor of bioequivalence. This result is similar to that found by Esinhart and Chinchilli 7 . Next
we estimate the BSR by ML, bootstrap, and robust bootstrap methods with 95% confidence limits and a bootstrap
percentile estimator as outlined within Sections 6.5 and 6.6. This resulted in the estimators shown within Table I.

Table I. Estimators from Virginia Common data

estimation method BSR Lower 95% C.
ML .861 608
bootstrap .689 547
robust bootstrap .689 517

The bootstrap and robust bootstrap estimators are very close, while the ML estimate appears to overestimate the
bioequivalence sensitivity ratio. We elected to go with robust bootstrap estimation as it is possible that "outlier”
observations may exist with small differences among the test and reference formulations variances. The estimate
of BSR indicates that the test formulation is "technically” inferior to the reference formulation. We may say that
the standard deviation of the individual bioavailability potential for the test formulation is estimated to be 1/.689=1.45
of the reference formulation.

The lower 95% confidence bound is estimated to be .517. We apply a rule analogous to the rule used for the

56




90% confidence interval for population bioequivalence (average bioavailability) to the bioequivalence sensitivity ratio.
We cannot reject bioinequivalence in favor of bioequivalence as the 95% bound is not greater than or equal to the
critical bound of .80. As a consequence we conclude that the test formulation is not individually bioequivalent. This
same conclusion was reached by Eisenhart and Chinchilli’.

Sec Figure 2 for the data points used and the fitted lines relating the test formulation to the reference
formulation. We note that the bootstrap and robust bootstrap lines overlap.

Verapamil Data (Virginia Commonwealth University)
Periods 1 and 2
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Figure 2

DISCUSSION

Our proposed methodology provides information regarding the similarity of distributions of a test and reference
formulations marker values through the use of a criterion of bioavailability merit and the resulting bioequivalence
sensitivity ratio. This methodology has the valued property of invariance with respect to any transformation of scale
in the marker responses. In addition, only a two period study needs to be conducted as there is no need or advantage
in comparing the reference formulation to itself as a basis of comparison of the test with the reference formulation
in assessing individual bioequivalence. This leads to both a savings in time and money.
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RELIABILITY ESTIMATES OF COMPLEX STRUCTURES

ASIT P. BASUL
UNIVERSITY OF MISSOURI-COLUMBIA

ABSTRACT

In this paper Bayesian methods for estimating reliability of complex structures are
considered. The topics considered are reliability estimation of complex systems,
especially when there are no failures.

IThis research has been supported by the U.S. Air Force Office of Scientific Research under grant no.
F49620-95-1-0094.
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1. INTRODUCTION

Let X, a nonnegative random variable, denote the lifetime of a physical system with
cumulative distribution function (cdf) F(x). Then, the mission time reliability, R(x),
is the probability that a system will function at mission time x. That is,

R, =R(x)=P(X>x). (1.1)
A second definition of reliability for the stress-strength model is given by
R,=P(X<Y), (1.2)

where X and Y are independent random variables. Here, Y denotes the strength of a
component subject to stress X. As an example, let X denote the chamber pressure
and Y the burst pressure of a solid propellant rocket engine. The engine is
successfully fired if X<Y.

In this paper Bayesian methods for estimating reliability of complex structures are
considered. Bayesian estimates for complex systems are considered in Section 2. In
Section 3 we consider estimating the probability of a rare event when no failure has
occurred.

2. BAYES ESTIMATES

Consider the exponential distribution. Let 8 = -i—, 6 >0, A>0. Here, the density

function, conditional on expected lifetime 6(6 > 0), is given by
1 —x/8
f(x|6) = i (x> 0), (2.1)

with survival function
R(t6) =F(t]6) =P(X > 48) = &%, t > 0 (2.2)

and the random parameter 6 has a given prior distribution g(6). Here, g(6) is
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chosen to reflect prior knowledge about 8. Considerable literature exists discussing
inference problems relating to 6 and F(t|§). See, for example, Basu and Tarmast
(1987), Balakrishnan and Basu (1995), and Berger (1985).

Let g(0) be the conjugate prior, the inverted gamma density
a‘l)

g(6) = ) 6" e, 9> 0. (2.3)

Here, the hyperparameters o and v(e, v> 0) are chosen to reflect prior knowledge.

Denote this by

6 ~IG(¢, v). (2.4)

Let X =(X;, X,,....X,) be a random sample from f(x]9). Then, the posterior distribution

of 6 ~IG(a+T,v+n), where T = ¥ x,.
1

Under squared error loss

A

8=(a+T)f(v+n-1) (2.5)
Var{8x} = (a + T)z/[iv +n-—1)2(v+n—2)].

Posterior bayes estimate of survival function F(t|6) is
Ft)= 1+ tfa+T)]™" 2.6)

and
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Var{F(tle)M=(l+ 2t )‘f”*“)_(l+ t )J(M). 2.7)

o+T o+T

For a k-out-of-p system with independent exponential component lifetimes f(x,l6.),

system reliability is

P

R~ S [TF0,.) 17,0 |

1=k 1

Here, Ea_ is over all (5)) distinct combinations o = (aj(l),aj(Z),. . a]-[j)) of the
integers {1,2,...,p} taken j at a time such that exactly j of the X,’s are greater than t.
Assume 6. ~ IG( a,v,) i=1,2,...,p. Then, the Bayesian estimates are

~ p —(v+n;)

Ry(t) = [[[1+t/(er, + T)]

i=1

for the series (k=p) system. For parallel system

=1 - 1 l—] t T(wni)
g 1l e 1B

3. ESTIMATING PROBABILITY OF FAILURE OF A RARE EVENT

Consider a highly reliable physical system with reliability R=1-P. Here, failure may
be a rare event, and the probability P of occurrence of a failure may be quite low.
One may want to estimate the probability of failure based on a random sample of
size n when a failure has not occurred at all in a random sample of size n. Here, Y,
the number of failures, is zero. The maximum likelihood estimate (MLE) of P is
zero for all n. This is contrary to our knowledge that the rare event does occur.

The Bayesian estimate of P is a natural one. Basu, Gaylor, and Chen (1996) have
considered this problem of estimating the probability of occurrence of tumor for a
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rare cancer with zero occurrence in a small sample. Conditional on P, Y follows the
binomial distribution with parameters n and P. Denote this by

Y|P ~Bin(n, P). (3.1)

Let the prior distribution of P be beta with parameters a, b. That is, P~B(a, b). The
density function of P is given by

1
B(a, b)

g(P) = P> (1-P)"", a, b>0, 0<P<l. (3.2)

Using Bayes’ theorem, the posterior density of P given the data Y=y is given by

1
a+y,b+n-y)

Ply) = P Y(1-P)" ™ 0<P<l, (3.3)

which is B(a+y, b+n-y).

Here, the parameters a and b are chosen to reflect prior knowledge and expert
opinion. The informative prior is the conjugate prior for P. If there is no prior
opinion, one could use the noninformative prior (Jeffreys’ prior) for P with a=b=.5,
which is B(.5, .5).

Using the above prior and squared error loss function, the Bayesian estimate of P is

given by

A (3.4)
a+b+n

Note

P-cLi(l-0—, (3.5)
n a+b
where £ is the maximum likelihood estimate, " is the mean of the prior
n +

<1.

distribution, and O<c=
a+b+n

If y=0,
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A a
P= ) 3.6
a+b+n (36)

P— 0, the MLE, as n— . From (2.4), the Bayesian estimate of reliability is given by

R-1-p_2tn-y 3.7)
a+b+n

Now consider the underlying random variable X, conditional on the parameter 6,
to be continuous following the exponential distribution. Here, X denotes the
lifetime of a system with conditional density given by (2.1).

Here, reliability at mission time t is (2.2) and probability of failure by time t is
P=P(tjg)=1-8"%. (3.8)
Let Y denote the number of failures in a random sample of size n and, as before, is

Bin(n, P). When there is no failure, using (3.7) and (3.8) with y=0, 6 can be
estimated from the equation

a6 _ b +n

a+b+n’

That is,

6 = -t/I(b+n)/(a+ b+n)|. (3.9)

Note, as n— @, § — indicating that the expected lifetime is quite high.
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Using Wearout Information to Reduce Reliability Demonstration Test Time

W. M. Woods
Naval Postgraduate School
Monterey, CA 93943

ABSTRACT

Formulae are developed for the maximum and minimum linear test time required to demonstrate a given
lower confidence limit requirement for component reliability whose failure time has a Weibull distribution with
known shape parameter, §. When B> 1, these test times are shown to be significantly smaller than the
corresponding required test time under the exponential distribution.

INTRODUCTION
Acronyms
WLT actual linear test time accumulated on all items tested under the described test plan when failure

time of each test item has a Weibull distribution

mWLT, MWLT [minimum, maximum] value of WLT

ELT exponential linear test time; value of WLT when S=1

LCL, UCL [lower, upper] confidence limit

Notation

R(® reliability function

Wei(r; 4, ) Weibull distribution with R(f)=¢~ )

&t ) exponential distribution with R(¢) = e_;u

f number of failures in sequential time censored test plan

T, lifetime of i component tested in sequential time truncated test plan,i= 1,2, ..., f
Tf+1 test time accumulated on component pumber f+ 1 before the test is terminated
xi’,,n 100y percentile point of chi-square distribution with »n degrees of freedom

2
Ka.0 Tyauen 2

A 1007% LCL of R, for R(z,) is specified where R, and ¢t are given. The time to failure of the device is
Wei(z; A, ) where B is known. The following reliability demonstration test is performed:

Items are tested sequentially until they fail or the sum of their test times raised to the 8 power total to
a given value T({S at which time testing is terminated. T}, is chosen so that if a given number, f, of

Approved for public release; distribution is unlimited.
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failures occur in the (0, TO‘B ) test period, then the computed 1003% LCL for R(z,) equals R,. The tests
are administered and the number of failures, F, observed. The LCL specification is validated if F < f.
If B# 1, the actual linear test time accumulated on all items tested is random. Minimum and maximum
values, nWLT and MWLT, of this random time are derived and their ratio to the linear test time, ELT, (8= 1),

are computed. The results show that approximately one half of the linear test time for §= 1 is required if §=1.25
and R, = .95 at the 80% level of confidence.

MAIN RESULTS

Suppose time to failure of a device is Wei(s; 4, §), B> 1, and the time censored reliability demonstration
test described in the Introduction section is run to validate a specified 1009% LCL value of R, for R(z,). Then

1
mWLT _[ —lnRy (l 3) @
ELT | K(r.f)
and
MWLT [ —(1+f)InR (1—%) ®
ELT | K(1.f) '

Table 1 displays values of equations (1) and (2) for selected values of 3, Ry, f;, and }=.80. When < 1,
MWLT as defined by equation (15) is actually the minimum value of WLT and mWLT is the maximum value of
WLT. See the Appendix section for details.

TABLE 1
MWL T
VALUES OF ( T mWL J FOR 80% LCL
ELT = ELT
Ry = 90 Ry = 95

8 f=1 f=2 f=3 f=1 f=2 f=3
8 1.94,231 192,252 190,269 | 2.32,2.76 2.30,3.02 2.28,3.22
9 134,145 134,151 1.33,1.55| 145,157 145,163 1.44,1.68

1.1 0.79,0.74  0.79,0.71 0.79,0.70 | 0.74,0.69 0.74,0.67 0.74, 0.65
12 0.64,0.57 0.65,0.54 0.65,0.52 | 0.57,0.51 0.57,0.48 0.58,0.46
125  0.59,0.51 059,048 0.60,043 { 0.51,044 051,041 0.52,0.39
1.3 0.54,0.46 0.55,0.43 0.55,040 | 0.46,0.39 046,036 0.47,0.34
1.5 041,033 042,029 042,027} 0.32,026 0.33,0.23 0.33,0.21
2.0 0.27,0.19  0.27,0.16 0.28,0.14 | 0.19,0.13 0.19,0.11 0.19, 0.10

In Table 1 for Ry = .90, f=1, B=1.25 the ratio MWLT/ELT is 0.59. That is if time to failure has a
Wei(t; 4, 1.25) distribution and = 1.25 is used to compute TO[3 in the time truncated test, then the largest linear

test time required to demonstrate an 80% LCL of .90 for R(z,) is roughly 0.59 of the test time required to
demonstrate this same LCL specification if we assume the time to failure has an exponential distribution. This is a
significant reduction in required linear test time for such a small amount of wearout; i.e., 8= 1.25. Note that this
ratio is the same for all values of 7.
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APPENDIX

If f failures occur during the sequential time truncated test plan then

f+l
> rf=1f. ®

i=1

It is well known, [1], that if 7T is &A) and time censored testing is performed as described in the
Introduction section (8 = 1), then the 1003% LCL, R(to) L for R(z,) is

R(tg), = "0 @
where A, = K(3, HIT,,. Setting the right number of equation (4) equal to R, and solving for T, yields

=ELT. &)

()P
If T'is Wei(; A, B), B+ 1, then 70 is &(AP). In this case, the 1007% LCL, R(zo) 1o for R(tg)=e (%) is

_( 2P ) tg
R(ry), =e “ ©)
when (lﬁ ) =K(7,f) / Toﬁ . Setting the right member of equation (6) equal to R and solving for 7}, yields
i
K7,
TO =1 ————(7 f) . @)
—InRy
When 8 # 1, WLT is random. When f failures occur,
7 .
WLT = Y T; +Tyyy t)
i=1
and from equation (3)
1
f o)B
{8577 e
1

Consequently WLT is a function of Ty, T, ..., T, If B> 1, the maximum of WLT occurs at values of
Ty, T, ..., Tythat satisfy the set of f equations

1
P K f B B
—a?ZTi+ - T =0 i=12,..,f. (10)
il1 1
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Taking partial derivatives yields the f equations

1
f B
l—Tiﬂ—l[TO—Zfiﬁ] =0 i=12,..,f. (11)
1
Solving for T, yields
1
G=(5-31 )P =1p  i=12..r. (12)

That is, the maximum of WLT occurs when all 7} are equal and

(f+1zf =1, (13)
Consequently,
1
1;-=T0/(f+1)/3 i=12,..,f+1. (14)
Therefore,
f+l 1
MWLT = 3 T; =Ty (f+1)' 5 15)
i=1

where T, is given in equation (7). Dividing equation (15) by equation (5) with T, replaced by its expression in
equation (7), yields

1—L
MWLT _ [—(f+1)lnRO] 2

(16)
ELT K(y.f)

The smallest value of WLT, mWLT, will be equal to the T, of equation (7) which occurs if T, 1 = Ty That is,
mWLT = T,,. Dividing equation (7) by equation (5) yields

-1
mWLT=[—1nROJ B an
ELT | K(v.f))

If f < 1, the expression for MWLT in equation (15) yields the minimum value of WLT in equation (8) and
Ty is its maximum value. That is, MWLT is the minimum value of WLT and mWLT is the maximum value of
WLT.
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A Bayesian Pareto Analysis for System Optimization
James R. Thompson and Roxy D. Walsh, Rice University

1 Introduction

We present a brief outline for a strategy for system optimization for the United States Space
Station. Most statistical derivations have been relegated to the Statistical Appendix, which
the reader may choose to reference as necessary. A more detailed outline for statistics and
probability may be found in the appendix of [8].

There are a number of paradigms for quality improvement. Our orientation will be toward
that of the late W. Edwards Deming [1,3]. Nevertheless, since our special interest here
concerns techniques for system optimization of the NASA Space Station, we will find it
appropriate to make some modifications in order to account for the special challenges which
the Space Station presents.

Deming was largely concerned with industrial systems which had produced numerous
rather similar goods over long periods of time. The Space Station is unique, and it has yet
to be built. When it has been completed, it will be, for some time, a “one of a kind” system,
highly complex, new in concept and purpose, without the luxury of direct experiential
information.

There is always the temptation when dealing with a new project as revolutionary as the
Space Station surely is to “start from zero” to assume that one is forced to deal with the
completely new. In our opinion, such a temptation should be resisted. There are, admittedly,
less complex systems which can shed light on the task of system optimization of the Space
Station. To achieve integration of such information is a formidable task, and in such a short
time we can only attempt to formulate a framework by which this task might be achieved.

2 Pareto’s Maxim

The philosophy of Deming is based on ancient precedents. First, there are the notions of
logical consistency and the reproducibility of experiments. These discoveries of Aristotle,
buttressed by St. Paul and St. Thomas Aquinas, clearly most important in the ethos
of the West, form the basis for the so-called “scientific method,” with which the Deming
paradigm is completely consistent. Then, there is a harking back to the harmony of the
late Middle Ages, when craft guilds in the cities of Europe formed the early modalities of
production, based not so much on laissez-faire competition as on cooperation. Deming had
very little patience with decisions based on short range economic gain. Suppliers should not
be changed lightly, for a change in input to a system must generally produce changes in the
output of the system. In this regard, it should be noted, Deming follows the lead of Henry
Ford [2], whose empirical adherence to something very like SPC, put him at variance with
classical freetraders. And, like the medieval masters of crafts, Deming holds as sacred the
encouragement and skill development of workers. To Deming, throwing away an experienced
and well trained employee is not only wicked but stupid, at least as stupid as throwing away
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money.

Most important as a precursor of Deming was the Italian sociologist and economist
(his doctorate, however, being in civil engineering) Vilfredo Pareto. A major basis of the
paradigm of statistical process control is the empirical observation of Vilfredo Pareto that
the failures in a system are usually the consequence of a few assignable causes rather than
the consequence of a general malaise across the system. This insight is generally known as
Pareto’s Mazim. It is, of course, easy to state “laws” and “maxims”. There is little reason,
a prior, to give Pareto’s Maxim any more credence than Pyramid Power or Transcenden-
tal Meditation. Perhaps the greatest of the considerable accomplishments of W. Edwards
Deming is the demonstration of nearly half a century as to the practical implication of the
Maxim of Pareto.

To give an example of Pareto’s Maxim, let us imagine a room filled with blindfolded
people which we would wish to be quiet but is not because of the presence of a number of
noise sources. Most of the people in the room are sitting quietly, and contribute only the
sounds of their breathing to the noisiness of the room. One individual, however, is firing a
machine gun filled with blanks, another is playing a portable radio at full blast, still another
is shouting across the room, and, finally, one individual is whispering to the person next to
him. Assume that the “director of noise diminution” is blindfolded also. Any attempt to
arrange for a quiet room by asking everyone in the room to cut down his noise level 20%
would, of course, be ridiculous. The vast majority of the people in the room, who are not
engaged in any of the four noise making activities listed, will be annoyed to hear that their
breathing noises must be cut 20%. They rightly and intuitively perceive that such a step is
unlikely to do any measurable good. Each of the noise sources listed is so much louder than
the next down the list that we could not hope to hear, for example, the person shouting
until the firing of blanks had stopped and the radio had been turned off.

The prudent noise diminution course is to attack the problems sequentially. We first get
the person firing blanks to cease. Then, we will be able to hear the loud radio, which we
arrange to have cut off. Next, we can hear the shouter, request that he be quiet. Finally,
we can hear the whisperer and request that he also stop making noise.

If we further have some extraordinary demands for silence, we could begin to seek the
breather with the most clogged nasal passages, and so on. But generally speaking, we would
arrive, sooner or later, at some level of silence which would be acceptable for our purposes.
This intuitively obvious analogy is a simple example of the key notion of quality control.
By standards of human psychology, the example is also rather bizarre. Of the noise making
individuals, at least two would be deemed sociopathic. We are familiar with the fact that
in most gatherings, there will be a kind of uniform buzz. If there is a desire of a master of
ceremonies to quiet the audience, it is perfectly reasonable for him to ask everyone please to
be quiet. The fact is that machines and other systems tend to function like the (by human
standards) bizarre example and seldom behave like a crowd of civilized human beings. It is
our tendency to anthropomorphize systems that makes the effectiveness of statistical process
control appear so magical.

Following the Maxim of Pareto, the basic approach of Deming is to prioritize the inves-
tigations of potential causes of system suboptimality so that we spend our resources
on dealing with those where difficulties are most likely to be found. The general
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device used by Deming to achieve this prioritization is the Control Chart largely based on
mean behavior. In mature systems operating for a reasonable time, the mean control chart
will prove invaluable. However, as we shall see later on, we need to make some modification
in order to handle a new, one of a kind system such as the Space Station. The approach
we shall develop will be in the spirit of Deming, though our techniques will be somewhat
modified to handle the “one of a kind” situation presented by the Space Station.

3 Deming’s Basic Approach

In our preliminary material, which is oriented toward industrial production, we rely heavily
on material from books by Thompson [4], [6], Thompson and Koronacki [5] and Williams
and Thompson [7]. Problems encountered in the optimization, say, of the Space Station are
somewhat different from those of industrial production, since they involve a fundamentally
new and unduplicated system. The wealth of data assumed by the standard techniques
of Statistical Process Control is not to be taken as a given. Hence, we shall develop a
procedure which allows much more utilization of historical analogy and expert opinion than
is characteristic of the Deming paradigm. Nevertheless, no discussion of system optimization
would be complete without attention to the management paradigm of the late W. Edwards
Deming. And our treatment will be very much in the spirit of Deming with modifications
necessary for the highly complex “one of a kind” system represented by the Space Station.

At the end of the Second World War, Japan was renowned for shoddy goods produced by
automatons living in standards of wretchedness and resignation. The formalism of the Zen
culture of Japan appeared to be at the opposite pole of Aristotelian realism which character-
ized the nations of the First World. If there were ever a society apparently unpromising for
rapid industrial progress, amongst the civilized nations of the world, postwar Japan would
appear to appear to have been amongst the most unpromising.

Deming began preaching his paradigm of Statistical Process Control in Japan in the early
1950s. By the mid 1960s, Japan was a serious player in electronics and automobiles. By
the 1980s, Japan had taken a dominant position in consumer electronics and, absent tariffs,
automobiles. Even in the most sophisticated areas of production, for example, computing,
the Japanese had achieved a leadership role. The current situation of the Japanese workers
is among the best in the world. A miracle, to be sure, and one far beyond that of, say,
postwar Germany, which was a serious contender in all levels of production before World
War II.

It would seem impossible that the Deming paradigm, which involves no new hardware and
which, culturally, seems poles apart from Zen formalism and notions of group tranquility,
could have made the difference. The fact is that Deming had made several incredibly
important observations {7]:

e The key to optimizing the output of a system is the optimization of the system itself.

e Although the problem of modifying the output of a system is frequently one of lin-
ear feedback(easy), the problem of optimizing the system itself is one of nonlinear
feedback(hard).
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e The suboptimalities of a system are frequently caused by a few assignable causes.
These manifest themselves by intermittent departures of the output from the overall
output averages.

e Hence, it is appropriate to dispense with complex methods of system optimization and
replace these by human intervention whenever one of these departures is noted.

¢ Once an assignable cause of suboptimality has been removed, it seldom recurs.

e Thus, we have the indication of an apparently unsophisticated but, in fact, incredibly
effective paradigm of system optimization.

4 Pareto and Ishikawa Diagrams

In free market economies, we are in a different situation than managers in command
economies, for there generally is a “bottom line” in terms of profits. The CEO of an
automobile company, for example, will need to explain the dividends paid per dollar value
of stock. If it turns out that these dividends are not satisfactory, then he can take “dramatic
action” such as having his teams of lobbyists demand higher tariffs on foreign automobiles
and instructing his advertising department to launch intimidating “buy American” cam-
paigns. Sometimes, he might take even more dramatic action by trying to build better
automobiles (but that is unusual). We note that if the decision is made to improve the
quality of his product then there is the question of defining what it means for one car to
be better than another. It is all very well to say that if profits are good, then we probably
are doing OK, but a reasonable manager should look to the reasons why his sales should
or should not be expected to rise. Uniformity of product is the measure which we will be
using to a very large degree in the development of the statistical process control paradigm.
But clearly, this is not the whole story. For example, if a manufacturer was turning out
automobiles which had the property that they all ran splendidly for 10,000 miles and then
the brake system failed, that really would not be satisfactory as an ultimate end result, even
though the uniformity was high. But, as we shall see, such a car design might be very close
to good if we were able simply to make appropriate modification of the braking system. A
fleet of cars which had an average time to major problems of 10,000 miles but with a wide
variety of failure reasons and a large variability of time til failure would usually be more
difficult to put right.

The modern automobile is a complex system with tens of thousands of basic parts. As
with most real world problems, a good product is distinguished from a bad one according
to an implicit criterion function of high dimensionality. A good car has a reasonable price,
“looks good,” has good fuel efficiency, provides safety for riders in the event of an accident,
has comfortable seating in both front and rear seats, has low noise levels, reliably starts
without mishap, etc., etc.

Yet, somehow, consumers manage to distill all this information into a decision as to which
car to purchase. Certain criteria seem to be more important than others. For example,
market analysts for years have noted that Japanese automobiles seem to owe their edge in
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large measure to the long periods between major repair. One hears statements such as, “I
just changed the oil and filter every five thousand miles, and the thing drove without any
problems for 150,000 miles.”

Long time intervals between major repairs make up one very important criterion with
American car buyers. Fine. So then, an automotive CEO might simply decide that he
will increase his market share by making his cars have long times til major repairs. How
to accomplish this? First of all, it should be noted that broad spectrum pep talks are of
negative utility. Few things are more discouraging to workers than being told that the
company has a problem and it is up to them to solve it without any clue as to how this is
to be achieved.

A reasonable first step for the CEO would be to examine the relative frequencies of causes
of first major repair during a period of, say, three months. The taxonomy of possible causes
must first be broken down into the fifty or so groups. We show in Figure 1 only the top
five. It is fairly clear that management needs to direct a good deal of its attention to
improving transmissions. Clearly, in this case, as is generally true, a few causes of difficulty
are dominant. The diagram in Figure 1 is sometimes referred to as a Pareto diagram,
inasmuch as it is based on Pareto’s Mazim to the effect that the failures in a system are
usually the consequence of a few assignable causes rather than the consequence of a general
malaise across the system.

300(!)(

Number of Failures
g

:

.

Trangnision }
Suspension
Paint
Enginc
Brakes

Figure 1. Failure Pareto Diagram.

What is the appropriate action of a manager who has seen Figure 1?7 At this point, he
could call a meeting of the managers in the Transmission Section and tell them to fix the
problem. This would not be inappropriate. Certainly, it is much preferable to a general
harangue of the entire factory. At least he will not have assigned equal blame to the
Engine Section with 203 failures (or the Undercoating Section with no failures) as to the
Transmission Section with 27,955 failures. The use of hierarchies is almost inevitable in
management. The Pareto diagram tells top management where it is most appropriate to
spend resources in finding (and solving) problems. To a large extent, the ball really is in the
court of the Transmission Section (though top management would be well advised to pass
through the failure information to the Suspension Section and indeed to all the sections).
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Figure 2. Transmission Failure Pareto Diagram.

What should be the approach of management in the Transmission Section? The obvious
answer is a Pareto diagram on the 27,955 faulty transmissions. That may not be realistic.
It is easier to know that a transmission has failed than what was the proximate cause of
that failure. We might hope that the on site mechanics will have correctly diagnosed the
problem. Generally speaking, in order to save time, repair diagnostics will be modularized:;
i.e., there will be a number of subsections of the transmission which will be tested as to
whether they are satisfactory or not. Naturally some of the transmissions will have more
than one failed module.

Clearly, Module A is causing a great deal of the trouble. It is possible to carry the
hierarchy down still another level to find the main difficulty with that module. The problem
may be one of poor design, or poor quality of manufacture. Statistical process control
generally addresses itself to the second problem.

The “cause and effect” or “fishbone” diagram of Ishikawa is favored by some as a tool
for finding the ultimate cause of a system failure. Let us demonstrate what such a diagram
might look like for the present problem.

Paint gine Suspenson

NONN

Module A

Brakes

Figure 3. Fishbone (Ishikawa) Diagram.

The fishbone diagram should not be thought of as a precise flowchart of production. The
chart as shown might lead one to suppose that the transmission is the last major component
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installed in the car. That is not the case. We note that Figure 3 allows for free form
expression such as might come about in a discussion where a number of people are making
inputs as to an appropriate representation on the blackboard. Each of the paths starting
from a box is really a stand-alone entity. We have here developed only one of the paths in
detail. We note that in the case of Transmissions, we go down the next level of hierarchy
to the modules and then still one more level to the design and quality of manufacturing. In
practice, the fishbone diagram will have a number of such paths developed to a high level of
hierarchy. Note that each one of the major branches can simply be stuck onto the main stem
of the diagram. This enables people in “brainstorming” sessions to submit their candidates
for what the problem seems to be by simply sticking a new hierarchy onto the major stem.

5 An Approach for the Space Station

The foregoing industrial examples bear on system optimization for the Space Station. Yet
they differ in important aspects. An industrialist might, if he so chooses, simply allocate
optimization resources based on customer complaints. We note that we were dealing with
nearly 30,000 cases of transmission complaints alone. We have no such leisure when we
consider system optimization of the Space Station. We cannot simply wait, calmly, to build
up a data base of faulty seals and electrical failures. We must “start running” immediately.
Thus, we will require an alternative to a hierarchy of histograms. Yet there are lessons to
be learned from the industrial situation.

5.1 Hierarchical Structure

First of all, in the case of building a car, we recall that we had a hierarchy of parts of the
system to be optimized. We did not simply string out a list of every part in a car. We
formed a hierarchy, in the case of a car, we had three levels. Possibly, in the complexity
of the Space Station, we will need to extend the hierarchy to a higher number than three,
possibly as high as six or seven levels.

A top level might consist, say, of structure, fluid transmission, life support, electrome-
chanical function, kinetic considerations and data collection. Again, we note that modern
quality control seldom replaces a bolt or a washer. The irreducible level is generally a “mod-
ule.” We would expect such a practice to be utilized with the Space Station also. If we
assume that we have a hierarchy of six levels and that there are roughly seven sublevels
for each, then we will be dealing with approximately 76 = 117,649 basic module types for
consideration.

In Figure 4 below, we demonstrate the sort of hierarchical structure we advocate through
three levels. Even at three levels, using seven categories at each stage, we would be talking
about 7% = 343 end stages.
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Figure 4.Three Levels of Hierarchy.

5.2 Pareto’s Maxim Still Applies

Again, in the case of the Space Station, it would be folly to assume that at each level of the
hierarchy, the probability of less than satisfactory performance in each category is equally
likely. We do not have experiential histograms to fall back on. Classical flow charting will
not be totally satisfactory, at least in the early days of operation. We need an alternative
to the (say) six levels of histograms.

5.3 A Bayesian Pareto Model

Let us suppose that at a given level of hierarchy, the failures (by this we mean any depar-
tures from specified performance) due to the k components are distributed independently
according to a homogeneous Poisson process. So, if t is the time interval under consider-
ation, and the rate of failure of the ith component is 6;, then the number y; of failures in
category 1 is given (see C.2.1) by

i

(@)y 1)

F(3:162) = exp(~6:6)=

The expected number of failures in category ¢ during an epoch of time length ¢ is given
by

X
Y e.t Yi
Byl = 3 et G0 2 =6;t
;=0 y":'
¥i .
Similarly, it is an easy matter to show that the variance of the number of failures in category
i during an epoch of time length ¢ is also given, in the case of the Poisson process by 6;t.
Prior to the collection of failure data, the distribution of the ith failure rate is given by the
prior density:
-1 6
07" exp(—3)

i) = —————— 0
PO = e 2)
Then, the joint density of y; and 6; is given by taking the product of f(y;|6;) and p(6):
f:t)v 67t exp(—§)
f(yi, 6:) = exp(-—eit)( )' B: @)

ys! D(a;)B8;%
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Then, the marginal distribution of y; is given by

i

i ” —8. _1_ yitai—=1 g9
) = | ettt = e

Yi !F(ai i
v

il (0) B (t + 1/ B;)vitess

Then the posterior density of 8; given y; is given by the quotient of f(y;,8;) divided by
flys):

Iy + o) (4)

9(6sly:) = exp[—0;(t + 1/8:)]0:¥ Tt + 1/8,)¥* /T (yi + o) (5)

Then, looking at all k categories in the level of the hierarchy with which we are currently
working, we have for the prior density on the parameters 6;,0s, ..., 6,

o exp(—$)
[(a;) 8™

Similarly, after we have recorded over the time interval [0,t], y1,¥y2,. ..,y failures in each
of the modules at the particular level of hierarchy, we will have the posterior distribution of
the 6; given the y;,

9(01,02, .-, Oklyr, y2,- - yk) = Hf:l exp[_ei(t + l/ﬂi)]eiyrﬂxi“l(t + l/ﬁi)yi+ai/r(yi + )
(7)
It should be observed in (7) that our prior assumptions concerning ¢ had roughly the same
effect as adding «; failures at the beginning of the observation period.
We note that

p(el,ez,...,ok) = Hf:l (6)

El6:) = (yi + ) (8)

2
t+ 1/ﬁi
Furthermore,

Var(8;] = ( )2 (yi + ) ©)

4
t+1 / B;
We note that if we rank the expectations from largest to smallest, we may track for each
time period, we may plot E[t6;] values to obtain a Bayesian Pareto plot very similar to the
Pareto plot in Figure 1.

How shall one utilize expert opinion to obtain reasonable values of the «; and ;7 First
of all, we note that equations (8) and (9) have two unknowns. We are very likely to be
able to ask an expert the question, “how many failures do you expect in a time interval
of length ¢?” This will give us the left hand side of equation (8). An expression for the
variance is generally less clearly dealt with by experts, but there are various ways to obtain
nearly equivalent “spread” information. For example, we might ask the expert to give us
the number of failures which would be exceeded in a time interval of length ¢ only one time
in ten.
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5.4 An Example

Let us suppose that at the top level of hierarchy, we have seven subcategories. At the
beginning of the study, expert opinion, leads us to believe that for each of the subcategories,
the expected “failure rate” per unit time is 2, and the variance is also 2. This gives us, before
any data is collected, a; = 2 and B; = 1. So, for each of the prior densities on 8; we have
the gamma density shown in Figure 5.
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Figure 5. Priors without Data.

However, after 5 time units have passed, we discover that there have been 100 “failures” in
the first module, and 5 in each of the other modules. This gives us the posterior distributions
shown in Figure 6. Clearly, we now have a clear indication that the posterior on the
right (that of the first module) strongly indicates that the major cause of “failures” is
in that first module, and that is where resources should be allocated until examination of
the evolutionary path of the posteriors in lower levels of the hierarchy give us the clue to
the cause of the problem(s) in module seven, which we then can solve.

LA

8
Figure 6. Evolving Posterior Distributions.

30 40

Perhaps of more practical use to most users would be a Bayesian Pareto Chart, which is
simply the expected number of failures in a time epoch of length seven. From (7) we note
that :

Elt6;) = (yi + o) ———

We show such a chart in Figure 7.
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One very valid criticism might have to do with the inappropriateness of the assumption
that the rates of failure in each category at a given level of hierarchy are independent. The
introduction of dependency in the prior density will not be addressed here, since the study
of the independent case allows us conveniently to address the evolution of posterior densities
without unnecessarily venturing into a realm of algebraic complexity.

5.5 Allowing for the Effect of Elimination of a Problem

It should be noted that when we solve a problem, it is probably unwise to include all the
past observations which include data before the problem was rectified. For example, if we
fix the first module in Figure 6, then we should discount, in a convenient way, observations
which existed prior to the “fix.” On the other hand, we need to recognize the possibility that
we have not actually repaired the first module. It might be unwise immediately completely
to discount those 100 failures in the 5 time units until we are really sure that the problem
has been rectified. Even if we did not discount the failures from the time period before the
problem has been rectified, eventually the posterior distribution would reflect the fact that
less attention needs be given to repairs in the seventh module. But “eventually” might be
a long time.

One way to discount records from the remote past is to use an ezponential smoother such
as

=(1-1r)2_1+7z

where a typical value for r is 0.25. Let us consider the data in Table 1. Here, a malfunction
in the first module was discovered and repaired at the end of the fifth time period. z;
represents the number of failures of the ith module in the tth time period. z;p = ;.
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Table 1
Module | 20 | 21 | 2zi2 | 2i3 | 2ia | 2is | 2i6 | 2i7 | zis | zi9 | 2i10
1 2 20 118 |23 |24 |15 | 2 2 0 2 1
2 2 1 1 2 0 1 2 0 1 1 2
3 2 1 2 0 1 1 1 2 1 0 0
4 2 0 2 0 2 1 1 1 1 2 0
5 2 2 1 0 0 2 0 0 2 2 1
6 2 0 2 1 1 1 1 1 1 2 1
7 2 1 1 0 2 1 1 1 1 0 2

Application of the exponential smoother with r=.25 gives the values in Table 2.

Table 2
Module | 20 | 21 Zi2 Zi3 Zi4 Zis Zip Zi7 Zig Zi9 Zi10
1 2 6.5 9.38 | 12.78 | 15.59 | 1544 | 12.08 | 9.56 | 7.17 | 3.29 | 1.57
2 2 1.75 | 1.56 | 1.67 1.25 1.19 1.39 1.04 { 1.03 | 1.01 | 1.75
3 2 1.75 | 1.81 | 1.36 1.27 1.20 1.15 1.36 | 1.27 { 0.32 | 0.08
4 2 1.5 1.62 | 1.22 1.41 1.31 1.23 1.17 | 1.13 | 1.78 | 0.45
5 2 2.00 { 1.75 | 1.31 0.98 1.24 0.93 0.70 | 1.02 | 1.76 | 1.19
6 2 1.5 1.62 | 1.47 1.35 1.26 1.20 1.15 | 1.11 | 1.78 | 1.19
7 2 1.75 | 1.56 | 1.17 1.38 1.28 1.21 1.16 | 1.12 | 0.28 | 1.57

In Figure 8, we show the exponentially weighted Pareto chart at the end of time interval 5
and at the exponentially weighted Pareto chart at the end of time interval 10.

20

10 |

1
1 2 3 4 s 6 7

Figure 8. Exponentially Weighted Pareto Charts.
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In Figure 9, we show time lapsed exponetially weighted charts for all ten time intervals. It
is clear that by the end of the ninth time interval, we should consider relegating module one
to a lower level of risk of failures and reallocating inspection resources accordingly.
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Figure 9. Time Lapsed Exponentially Weighted Pareto Charts.
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ABSTRACT

We have developed a test statistic via the likelihood ratio approach to test Hy: p,= p, where p,isa parameterin the
product of a trinomial with parameters n, p,, p, and a binomial with parameters N, p* = p,p, +p, . We have done so only
in the special case where the observed cell frequencies x and y in the trinomial are such that x +y =n. This technique is
applied to an example comparing warriors on simulators. The requirement in the war games example is to establish the
superiority of one player over the other despite the fact that they are engaging in combat environments with unintentional
handicaps.

INTRODUCTION

The application presents itself as follows: Two warriors engage in a series of contacts via two simulators. These
simulators, for various reasons (software or resolution differences) may exhibit unalike environment portrayals. The goal
is to determine whether these warriors are equally skilled. There is a true underlying probability (denoted by p, ) which on
afight contact is the chance that warrior 2 will kill warrior 1. This kill probability is for a realistically (matching) display
of the environment.

An initial sampling of » gridded sites of the paired simulators' environments is conducted. This is done to classify the n
sites. There are a number of sites where warrior 1 and warrior 2 see a realistic portrayal of the environment characteristic
(abush, a valley, etc.) , a few sites where warrior 2 does not, some where 2 has it but 1 does not, and sites where the item
is missing from both screens. The first and last set of points are classified as matching sites and are denoted by x. When
warrior 1 sees the environment characteristic and the opponent does not, this is referred to as an advantage warrior 2 point.
It is advantageous to warrior 2 due to the manner of operation of the software in that warrior 1 would take refuge behind the
bush but warrior 2 would note a clear shot to be taken. It is assumed that warrior 2 takes the utmost opportunity of this
situation and kills warrior 1. The frequency of these sites is denoted by y.  Advantage warrior 1 points then number
n-x-y.

Now, engagement occurs. The type (match, advantage 2, or advantage 1) of site is not recorded during the sample of
N contacts. We assume independence contact to contact. Let t be the number of wins out of the N tries. Associate this
value with warrior 2.  In the simulated environment warrior 2 does not have probability p, of securing a kill at each
opportunity (contact). In fact, let us assume that if the site is of the advantage warrior 2 type then the probability of a kill
is 1 for warrior 2 and if it is an advantage warrior 1 type point then the probability is 0. Only on matching points is the
probability of a kill equal to p, , the unknown value which we need to test.

More elaborate descriptions of war game simulators can be found in publicly released documents such as the Army RD
& A Bulletin.?

The specific formulation of the problem presents itself as a product of a trinomial and a binomial where the parameter
of the binomial is a function of those of the trinomial. Let X, y, n - x - y denote observed cell frequencies in a sample of n
observations from a trinomial distribution with probabilities p,, p,, 1 - p, - p,. Lettand N - t denote observed cell
frequencies in a sample of N observations from a binomial with probabilities p” and 1 - p” where p* =p,p,+p, . Sowe
let T =1 if a site s of the matching type and warrior 2 wins or if the siteis of the advantage warrior 2 type.  Then
Pr(T=1) = Pr(match and warrior 2 wins) + Pr (advantage warrior 2) = Pr (match) * Pr (warror 2 wins) +
Pr (advantage warrior 2) = p, p,+ p, assuming independence of the environment portrayal and of winning. Thus the

n

frequency t mentioned above is ZT, where T; is Bernouilli with parameter p,p,+p, .
i1

Approved for public release, distribution is unlimited. *
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So the probability function is:

n!N!
xIYl(n-x-yNAN-10)!

Sinxy N - 2. P (1= PPy @y p,+PY (1P - P! )

whereO<x<n, O<sy<n, O<t<N, O<p,+p,<1, 0<p,< 1.
The problem is to determine a test for Hy: p, = p, versus the alternative H,: p, # p,, where p, is a specified proportion.

This formulation is more complex than others treated elsewhere in the literature. This is even true when we made the
additional simplifying assumption thatn - x - y =0 . In terms of the simulator application this amounts to stating that the
data shows that warrior 2 has all the advantage points. This is not an unrealistic assumption. In a simulation environment
it is frequently the case than one piece of hardware has a higher resolution than the other and thus would paint all the bushes,
valleys etc. and its paired equipment will portray virtually none.

Quesenberry and Hurst * developed methods to deal with simultaneous estimation for multinomial proportions but from
a single distribution, not for a product as we have here. Bailey * and Fitzpatrick and Scott ° offer improvements and updates.
Goodman 7 does view several multinomial populations but his estimation procedures require the use of contrasts with
known coefficients. Our p, p,+p, isnot in this category. Madansky ® is motivated by an application in the field of
reliability and does deal with the product of distributions (but only binomials) and none of his separate binomial parameters
are expressed as functions of the other binomial parameters. Koyak® is inspired by a common marketing index to view
estimation of a function which is the sum of the squared parameter values of a single multinomial distribution. This function
is more complicated than a contrast but yet only deals in the single multinomial case. Madansky's use of the likelihood ratio
test gave impetus to apply that technique to our problem. This approach is employed in the following sections in order to
develop a test statistic. Recently, there has been advocacy for using likelihood ratio tests (see Meeker and Escobar'®).

Elsewhere we have proposed an alternative conceptualization of this problem'!. That method uses conservative
confidence intervals in a two-stage approach. The first stage focuses on defining the range of possibilities concerning the
differences in the "look" of the environments. The second stage addresses the quantification of the battle portion. We are
able to attach a 90% confidence level to a range of proportions indicating kill ratio potential on a completely matched (fair)
environment. If that range includes p = .5 then either warrior could be triumphant in a non-handicapped situation. The
advantage of the confidence interval method is that t can be 0 or N and x can be 0 or n, plus there is no requirement for
n-x-y=0 which are assumptions used in this paper. The disadvantage is the lack of precision in the intervals.

METHODOLOGY

Presently, we have restricted attention to the case where n - x - y = 0. With this consideration, view the probability
function defined in (1) as a likelihood function where p,, p, and p, are now variables. Under the null hypothesis set p, to
a value and maximize (ignoring constants)

L @5 py) = ®oPx + P (1 -Po P py)N-thx P, )
whereO<p,<s1,0<p,<1 and O<p,+p, <1

The assumption made here is that sampling has occurred from both the trinomial and binomial distributions (that is n,
N =0). Inthecase where 1< x< n-1land 1 <t<N- 1 this surface defined in (2) is readily investigated. Only the resulting
theorems are presented here.

Theorem 1. Withn,N#0; l<sx<n-landl<t<N-1and Po>((aN-t)/xX@+t))H+1]" 3)
then L (p, , p,) has exactly 1 local maximum interior to the (0,0) - (0,1) - (1,1) triangle at

p, = (x/pom) (n+1)/ (N +)), p,=((n-%)/n) (a+1)/ (N +n)). @)
If p, is smaller than or equal to expression (3) then there is no local maximum interior to the triangle.

Theorem 2. Withn,N#0; Isxsn-1land 1 <t<N-1thenL(p,, p,) has 1 and only | local maximum along the
wallp, + p,= 1. The maximum occurs at p, = 1 +T - (T + ((p, (- X)) / ( 1 - pg) (N +m)))*

where I'= { p, N+n(2p, - I) + (1 - pp)x - t}/ {2 (1 - pp) (N +n)} ©)

and thus p, =1 - p,. If p,=1 there 1s no local maximum along the wall p, +p, = 1.
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Theorem 3. Withn, N=0; l<x<n-1landl<st<N-1landxn > 1-(¥N)thenL (p,, p,, Po) is maximized at
p=¥n,p,=@-X)/n, pp= (/Nx)-((-X)/x) ©6)
having functional value ((t/N) (1 - (t/ N)¥"* (x/0)* ((n - X)/n)).

Theorem 4. Withn, N#0;1<x sn-landl <t <N-1andx/n<1 - (t/N) then the two candidates for maximizing
L(p,. ,-p) are the points p,= [(@ N -0)/(x @+ )+ 1],

p,=((-x)/n)((m+t)/N+m)),p,=1-py (7) and
Po=0, py=1+[x-@+1))/N+n), p=1-ps ®

These theorems were all proved in the standard manner by viewing the partial derivatives with respect to p, , p,and p,
of the likelihood function expressed in (2). For example, in proving Theorem 1 we noted that 6L(.) / dp, bas N +x + 1 roots.
There are X - 1 roots at p, = 0 which give L(.) a value of zero and are of no interest. Also, thet - I roots at p, = -p, /p, and
the N -t-1atp, = (1 - p,)/ p, are of no interest since they lie outside our constraint triangle. The important factor in
oL(.) /op, is -xp:-(N «X)pl pl - (V+20p, p, P, 0P, P+ P, Viewed from the perspective that p, is constant, this is a
parabola. We generated those two roots.  Details can be found in Hoffman."

Theorem 5. Given a probability function of the form in (1) where the data collected are such thatn, N#0; 1 < x s n-1
and 1< t<n- 1 then in order to test H: p, =p, versusH;: p, # p, at @ = &, calculate c=-2In (L (8)/ L (Q)) where
L (6) = maximum of the likelihood function in (2) evaluated at points identified in (4) and (5); L(Q) = maximum of the
likelihood function in (2) evaluated at points identified in (6) or in (7) and (8). Whenc > *(df=1,1- a;) we reject
Hy: po =P

Theorem 5 is a direct application of Wilkes work."

The preference is to not rely upon asymptotics. But, if we must it is imperative that we understand how good the fit is,
particularly in the small sample size cases. We therefore conduct a simulation (discussed below) to ascertain the

appropriateness of using the chi-square distribution.
EXAMPLE

With the simulators online we randomly select 4 common points on each of the two screens and note that 3 of them
portray the same physical attributes and that 1 point has a bush painted on one screen but not on the other. So we set n=4
and x=3. Next we allow the two warriors to engage in 5 battles. The warrior who has the "inferior” screen (i.e. no bush
painted) actually has the advantage (according to the data) and we see that he manages 1 kill in the 5 opportunities. Thus,
N=5 and t=1. Letus test H,;p,=.7 . Thatis p,=.7 means that we believe that our "advantaged" warrior is truly 2.33=.7/3
times better than his opponent. A quick assessment of this conjecture can be accomplished by considering the following.
Seventy-five percent of the points are fair, so .75*5 points where battle occurs, i.e. 3.75 points. If the probability of a kill
is .7 then our warrior should win .7*#3.75 = 2.625 of those. Additionally, 25% are automatically won by this warrior so credit
.25%*5 = 1.25 more kills for a total of 2.625+1.25 = 3.875. With the data showing only 1 of 5 we should reject Hy:p=p,=.7.

Here are the formal calculations: with [(n (N - t)) / (x (n +t)) + 1 ] = 484 being smaller than p,=.7 we must evaluate
expression (4). We find p,=.595, p=.1338 so pp, +p,=.555 and L(.) = .00063. Expression (5) must always be evaluated.
We calculate =926, p, = .869 with p, = .131 so pep, + p, =.739 and L(.) =.000292. Soour L(Q)=.00063. Figure 1
shows this constrained likelihood surface.

Now we turn to the unconstrained maximum calculations. Since x/n = 3/4 <1 - (/N) = 4/5 we must compute both
expressions (7) and (8). In expression (7) p, =.484 and p, =.1388 and p, = .8611 so pyp, +p, =.555 and L(.) = .00194.
For expression (8) we get p, =.777 and p, = .223 and thus L(.)=.0085 . So our L(Q) =.0085. Using Theorem 5 we
calculate c= -2In (L (8)/ L (Q)) =5.18. Since x*(df=1, 1 - « =.95)=3.84 wereject Hyp,=7.

In this example we were required to calculate both and interior local maximum and a wall local maximum under H,:p=.7.
Also for the unconstrained case since the usual estimator did not apply we were forced to view the two possibilities for
maximums given in (7) and (8). Note that the small sample sizes were selected to ease computational burden and that the
conclusion may be inaccurate since the statistic ¢ is only asymptotically chi-square. We discuss the asymptotic nature below.
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Figure 1. Likelihood Function
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DISCUSSION

We want to understand the risk involved with small samples in using the chi-square as our sampling distribution for our
test statistic. We decided to gain insight by viewing some simulation results.

Since we are concerned with the situations where p, is small (otherwise n - x - ¥y = z can not feasibly be zero), we explored
only those cases. We selected the cases where p, = .8 with p, =.20, .18, .16 and p,= .85 with p, = .15, .13, .11 and p,= .9
with p, = .10, .08, .06 and p,= .95 with p, = .05, .03, .01. We considered p, =1, .3, .5, .7, .9 for each of the cases along
with N and n equal to 5, 12, and 22. This resulted in viewing 180 separate simulations. Since the chi-square with one
degree of freedom is proper only where H, is true we needed to generate the t and x counts under this assumption. So a
"success" occurred (increasing x) when a generated random unit u was less than P, and likewise t was incremented by 1
when u<pgp,+p, . Foreach caseof the 180 caseswe generated 250 pairs of (t,x). We then derived our
-2In (L. (6)/ L (Q)) via a grid search for maxima.

We did indeed study all 180 cases, but we only need to present a few to discuss the general conclusions which seem to
present themselves. We illustrate these summarizationsin Tables 1,2 and 3. Those tables exhibited are for certain values
of po, p, and p, and N=n=5, 12, and 22 and contain the observed significance level (p-value) of the simulated distribution
corresponding to x* with one degree of freedom critical values of 2.70554 at o =.10 ,3.84146 at « = .05, and 6.6349 at
o =.01 . Additionally, the mean and variance of these simulated distributions are recorded and compared to the mean of
1.0 and variance of 2.0 for the chi-square.
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The cases presented in Tables 1 and 2 were the overall worst matches (at all sample sizes) to the expected a-levels.
Inherently, this is a difficult testing situation since the simulated binomials with extreme p, and p, p,+ p, (since p, is .1 and
.9) values are highly skewed.

Table 1. Characterization of the distribution of the test statistic when p,=.10, p,=.90 and p,=.16

p-value(.10) .000 .004 .080
p-value(.05) .000 .000 .036
p -value(.01) .000 .000 .000
mean 720 810 1.050
variance 330 .760 1.440
N=n=5 N=n=12 N=n=22
Table 2. Characterization of the distribution of the test statistic when p,=.90, p,=.80 and p,=.20
p-value(.10) .000 .008 164
p-value(.05) .000 .000 .020
p -value(.01) .000 .000 .000
mean .760 .910 1.030
variance .180 670 1.640
N=n=5 N=n=12 N=n=22

In virtually all cases, as the sample size increased the p-values better approximated the chi-square e.-levels. It appeared
occasionally that the nature of the simulations, ie. random fluctuation, interfered with a statement of this generality.
Variability in the a-levels would occur even if the actual distribution were x? with one degree of freedom when conducting
=250 random selections indicating a quantity either above or below the critical value. Here, variations of .02 from the true
«-level are usual since 2* [e *(1- & ) /250 ] * is approximately .02. So a strict convergence as the sample size increases
might not be observed.

The worst case occurred when N=n=5 with p=.30, p,=.95 and p,=.01. A p-value of .22 resulted. This is in comparison
to an expected a-level of .10. This case along with N=n=12 and N=n=22 appears in Table 3. Notice that the asymptotics
prevail as the sample size increases.

To summarize, the critical values from a chi-square distribution with one degree of freedom appear (at least from this
limited simulation study) to suffice for even relatively small samples sizes of 12. This would mean that for the war games
example, we could select 12 points on which to compare the simulator equipment and then later allow the warriors to engage
in as few as 12 combat scenarios.

SUMMARY

This 1s a likelihood ratio test to check on the probabilities of success on a trial conducted on an item drawn from one of
the classes of a trinomial population. This is a special case where the data shows no activity from one of the three classes
in the trinomual. The construction of the statistic is a straightforward application of the likelihood ratio principle and relies
on large sample approximation to compare it to a x> with one degree of freedom which is satisfactory for moderately large
(N=n=12 ) number of trials on the binomial and trinomial. The difficulty in the problem lies in the confounding of the
success percentage with the parameters of the trinomial.

Table 3. Characterization of the distribution of the test statistic when py=.30, p,=.95 and p,=.01
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p-value(.10) .220 120 124
p-value(.05) 024 .052 062
p -value(.01) .000 016 .016
mean 1.270 1.180 1.230
variance 2.330 2.660 2.580
N=n=5 N=n=12 N=n=22
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INTRODUCTION TO THE SPECIAL SESSION ON ADVANCED WARFIGHTING
EXPERIMENTS (AWEs)

Eugene Dutoit
Dismounted Battlespace Battle Lab
Fort Benning, Georgia 31905

ABSTRACT

This session introduction paper will present the general concept of the Advanced Warfighting
Experiment (AWE) and how it fits within the concept of the Battle Labs. These AWEs and the topic of
Model-Experiment-Model present statistical implications and problems that should be of interest to the
attendees of this conference. A few remarks will be made about the AWE regulations and some insights
from experimenters. The papers that were presented in this special session will follow this short
introduction.

INTRODUCTION

Battle Labs were formed so that the Army could be responsive to the needs of tomorrow. Today’s
reality shows that we posses a winning Army of world class excellence. We presently enjoy a technology
overmatch when compared to other Armies. However, today’s reality also indicates that the Army is
undergoing a period of downsizing and will have to continue to operate within an austere resource
environment. In contrast, tomorrow’s army will be smaller than the present force. Although smaller, the
Army of tomorrow will continue to exploit new technologies which will enable it to be more lethal. This
increased lethality will allow the Army to carry out missions of global reach and force projection. In order
to be responsive to the reduced resources and continued demand to maintain a world class force the Battle
Labs are to carry out evaluations and investigations in order to significantly reduce the current acquisition
milestones of eight to fifteen years to something much shorter. The goal is to field or acquire systems at a
faster rate and reduce technical risks at lower costs.

TRADOC REGULATION 11-1 BATTLEFIELD LABORATORIES PROGRAM

The following statements extracted from the cited TRADOC regulation describe the relationship
between the Battle Labs and experimentation.

1. Experimentation with real soldiers and real units is the central work of Battle Labs.

2. Experimentation means discovery learmning and listening to soldiers and leaders. Experimental work
should lead to requirements.

3. (Experiments) should examine the impacts on doctrine, training, leadership, organization, materiel
and the soldier (DTLOMS).

4. Experiments which demonstrate significant added value to warfighting capabilities may result in
senior Army leadership decisions for rapid acquisition.

5. The Battle Labs should employ three kinds of simulations; live, constructive and virtual. These are
briefly described below.

a. Live simulations employ actual soldiers and equipment operating together. This could happen on
instrumented ranges. Operational tests and AWEs are examples of live simulations.

Approved for public release; distribution unfimited.
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b. Constructive simulations rely on algorithmic and mathematical models. JANUS, CASTFOREM and
VIC are examples of constructive simulations.

¢. Virtual simulations involve manned simulators interacting within a synthetic environment (i.e., other
simulators). SIMNET used for training and development is an example of a virtual simulation.

6. The regulation discusses two kinds of experiments.

a. Advanced Warfighting Experiments are center of gravity culminating efforts focused on a major
increase to warfighting capability. They cross many or all of the TRADOC domains of DTLOMS (see
paragraph 4 above). Moreover, they impact most, if not all, of the battleficld dynamics and battlefield
operating systems. AWEs are approved and prioritized by the CG TRADOC. They have extensive
involvement by HQ DA, FORSCOM, AMC and OPTEC.

b. Battle Lab warfighting experiments (BLWEs) are single event or progressive iterative simulations with
primary relevance to a single battlefield dynamic. The focus of this special is on the AWE but the BLWE
can be considered to be a sub-set of the AWE.

INSIGHTS FROM THE POINT OF VIEW OF AN EXPERIMENTER.

1. Only one organization should be in charge and have control over all aspects of the experiment.

2. Establish clear entry requirements for new systems to participate in the experiment, These entry
requirements should be enforced. It may be wise to avoid putting the first prototype into the experiment.

3. Some new systems may require “master operators”; not just basic training. Also, some systems will
require new tactics, techniques and procedures (TTPs). Leaders should be trained first to obtain their
ideas on new/appropriate TTPs for experimental systems.

4. The integration of multiple systems into the AWE calls for innovative experimental designs versus the
traditional single system experiments.

PAPERS THAT WERE PRESENTED IN THIS SESSION.

The following papers were presented in this special session and are given in these Proceedings.

1. McCool, B.; Lyman, J.; Ferguson, J. Evolution of the Model-Test-Model Concept For Use In
Operational Testing & Advanced Warfighting Experiments

2. Grynovicki, J. ; Leedom, D. ; Golden, M. ; Wojciechowski, J. Performance Based Metrics for the
Digitized Battlefield
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Evolution of the Model-Test-Model Concept For Use In
Operational Testing & Advanced Warfighting Experiments

Bryson McCool, Jerry Lyman, and LTC John Ferguson
TRADOC Analysis Center - White Sands
White Sands Missile Range, NM 88002

ABSTRACT

Models and simulations (M/S) are valuable tools that can complement and augment live field testing and
experimentation (T/E). M/S can be used to develop more comprehensive and cost-effective T/E scenarios and
provide valid, credible, and timely operational effectiveness and suitability insights that often cannot be derived
directly from the T/E results. In turn, T/E offers the means to calibrate and validate the M/S to ensure battlefield
reality is being represented. 1 The Model-Test-Model (MTM) Concept, which embraces these reciprocal
relationships between M/S and T/E, was recently used to support the M1A2 Initial Operational Test and Evaluation
(I0TE) and the Warrior Focus Advanced Warfighting Experiment (AWE). In each effort, the M/S was used
extensively to expand the operational assessment of the T/E while the T/E provided a basis to realistically calibrate
the M/S to actual tactical operations.

INTRODUCTION

Appropriate and comprehensive scenario design is critical to the success and utility of force-on-force (FOF)
field tests and experiments. If the tests and experiments are well conceived, their execution will occur in an efficient
and cost-effective manner with all objectives being met. M/S can provide the T/E scenario development team with
additional capability to more effectively and responsively design, develop, and refine operational scenarios that are
doctrinally and tactically sound, are robust (i.e., sensitive to the performance of the system of interest), represent an
appropriate threat, and can adequately address the critical and pertinent operational T/E issues. Figure 1 graphically
depicts the pre-T/E phase methodology.

MTM/MEM PLAYERS
« Modelers —
- Testers/Experimenters OPTIMIZATION OF
« Evaluators T/E SCENARIOS
- Combat Developer
- Tactical Units - Issues -

* Can all critical operational T/E
issues and objectives be
adequately addressed?

LMNS /ORD HTEMP /TEP

08&0 CONCEPT

[ SCENARIO OPORDS

* |s the data collection plan
adequate?

DESIGN/

I T/E SITE INFORMATION * What are the impacts of the

T/E restrictions/limitations?

SCENARIOS

System performance &
characteristics data from
AMSAA, BRL, PM/PEO,
and HI-RES system
process modals.

¢ Will the T/E scenarios adequately
stress system performance?

* Are the tactics/doctrine credible
and sufficient?

Figure 1. Pre-T/E Modeling and Analysis

The operational orders or OPORDs (which describe the force laydowns, objectives, maneuver unit "avenues of
approach,” and approximate defensive locations for each of the required scenarios) are normally developed by the
appropriate school. The OPORDs and test range terrain data and conditions for each developmental scenario are
integrated into the constructive M/S to produce estimates of the force effectiveness measures and battle outcomes
that are expected to occur. If the M/S estimates of effectiveness for the 'experimental force' in a particular scenario
are not significantly greater than those for the 'baseline’ force, an analysis must be performed to determine what
changes are required to make the scenario more robust. To reduce T/E costs, constructive M/S can also be used to
simulate the baseline case (instead of actually fielding it), the results of which would define force effectiveness if the
enhanced or experimental system(s) were not being deployed.
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Figure 2 presents an overview of the post-T/E modeling and analysis methodology. After each live FOF event
is completed, the player location data for each participating entity, as well as the actual terrain and conditions, are
integrated into the constructive simulation. The M/S is then calibrated in an iterative fashion to replicate what
occurred in that test or experiment. Calibration is terminated when replication occurs within reasonable tolerances
based on statistical testing. The calibrated version of the constructive simulation can be used in several ways to
provide valuable insights from the live T/E. T/E issues that could not be adequately addressed during the live
experiments (e.g., what would have been the relative contribution of a particular weapon system if obscurants had
been used) can be evaluated in a 'what-if’ context. In addition, the sensitivity of force effectiveness to specific
system performance can be examined to quantify the synergistic impacts of certain critical systems as compared to
their collective impact.
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Figure 2. Post-T/E Modeling and Analysis

The TRADOC Analysis Center at White Sands Missile Range (TRAC-WSMR) supported the Operational Test
and Evaluation Command (OPTEC) for the M1A2 Initial Operational Test and Evaluation (IOTE). The M1A2
IOTE was performed at Ft. Hood, Texas, by OPTEC from August through December 1993 to assess the operational
effectiveness and suitability of the M1A2 Abrams tank under realistic battlefield conditions. The M1A2 Milestone
III Cost and Operational Effectiveness Analysis (MS III COEA) was performed by TRAC-WSMR (completed
March 1994) using the Combined Arms and Support Task Force Evaluation Model (CASTFOREM), a constructive
combat development model, and several high resolution scenarios to evaluate M1A1/M1A2 cost and operational

effectiveness.2

The Warrior Focus AWE, which was one of the integral components of the Joint Venture Task Force initiative,
was designed to explore the contributions of improved digitization and own-the-night systems and doctrine on the
modemn dismounted battlefield. The intent of this AWE was to use a series of live experiments, in concert with the
MTM (or MEM, i.e., Model-Experiment-Model) methodology, to evaluate the digitization and own-the-night issues
from the squad to battalion organizational levels. It was intended that the insights gained from this effort would be
used to evaluate the JRTC 96-02 rotation at Fort Polk, LA, the final AWE event. The Dismounted Battlespace
Battle Lab (DBBL) was responsible for directing the effort while TRAC-WSMR provided the analysis support.

M1A2 IOTE MTM APPLICATION

Figure 3 presents an overview of the modeling and analysis methodology developed and implemented by
TRAC-WSMR used to support the M1A2 IOTE.

DEVELOPMENT OF TEST SCENARIQOS

The M1A2 IOTE OPORDs were developed by the Armor School. The OPORDs and specific Fort Hood
terrain data for each scenario were integrated into CASTFOREM which in turn produced estimates of the force
exchange ratios and battle outcomes that were expected to occur for the M1A1 and M1A2 forces. The evaluation of
the results focused primarily on two issues for each of the test scenarios. First, the desired defensive positions and
corresponding ‘avenues of approach’ of the attacking force were optimized with respect to line-of-sight (LOS) to
ensure maximum visibility. Second, if there were not considerable differences in the CASTFOREM estimates of
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operational effectiveness between the M1A1 and M1A2 for a particular scenario, an analysis was conducted to
determine if the scenario could be made more robust. The results of the pre-test scenario evaluation were provided
to the test scenario development team for their review and subsequent integration.
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Figure 3. M1A2 IOTE MTM Methodology Overview

The operational effectiveness results from the M1A2 IOTE FOF trials were impacted by instrumentation
problems which caused low firer-target shot pairing rates. Thus, systems would fire rounds but many would be
assessed as misses when in reality, a hit occurred. Since the two opposing forces were not always killing (or being
killed) at reasonable or consistent rates, the resulting operational effectiveness measures (e.g., number of shots,
number of kills, number of losses, and loss exchange ratio) from the FOF trials were not as representative as they
could have been. The poor pairing rates in the FOF trials also meant the classical M/S replication of the test
operational effectiveness results could not be performed. Instead, it was decided to concentrate on that portion of
the FOF trials that possibly could be replicated. Since a firer-target pairing only impacts the shot and kill
assgssment, it was assumed the remainder of the engagement process up to 'trigger-pull’ should be repeatable using
MJS.

Initially, the actual player location data and conditions (e.g., force composition/structure, weapon/sensor
configurations, weather/atmospheric conditions, tactics and doctrine, etc.) from each of the FOF trials considered
were integrated into the M1A2 MS III COEA version of CASTFOREM and corresponding data bases. An iterative
calibration process was then performed to ensure that the various technical and tactical representations in the M/S
aligned as closely as possible with what was actually occurred in the test. Termination of the M/S calibration
process was achieved when the engagement profiles (i.e., the results of the engagement process up through ‘trigger-
pull) in the M/S replications and the test FOF trials appeared to be comparable. Cumulative time distributions and
range/time scatter distributions of BLUE shots were used to define the engagement profiles. As an example, Figure
4 presents the shot range versus time scatter distributions that resulted in an FOF trial and the corresponding 21 M/S
replications for one of the M1A1 defensive battles.

M1A1 IOTE Shot Range/Time Distribution M1A1 CASTFOREM Shot Range/Time Distribution

4000
"

®

0 o + +
20 25 30 35 40 45 50 20 25 30 35 40 45 50
Battle Time (Minutes) Battie Time (Minutes)

g

w
8
o

3000

g

8
(=]

Shot Range (Meters)

g

(=)

L]
A

Shot Range (Meters)

g
o

Figure 4. M1A1 Shot Range/Time Scatter Comparison Example
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Figure 5a presents the cumulative percentage of all M1Al1 shots over time resulting from a particular test FOF
trial and a single M/S replication (for which the BLUE kill results are the closest to what occurred in the FOF trial)
for the same M1A1 battle examined in Figure 4. Similarly, Figure 5b presents the cumulative number of M1A1 kills
corresponding to the shots in Figure 5a. Although considerably more shots were fired in the test FOF trial than in the
CASTFOREM replication (i.e., 143 versus 54), the relative BLUE force responsiveness (with respect to cumulative
shots and kills over time) between the two is comparable. Note that the differences in kill levels between the test
FOF trial and the M/S replication for a particular time interval were due to the differences in the outcomes of the
stochastic draws for the P(Kill/Shot) events. Based on the engagement profiles and the shot and kill results
examined for this M1A1 battle, it appears the engagement process simulated in the M/S replications was reasonably
close to what occurred in the test FOF trial.

Because a reasonably close alignment between the M/S replication and test FOF trial engagement profiles had
occurred, the M1A1 and M1A2 performance after ‘'trigger-pull’ was evaluated. M1A1/M1A2 tank proficiency
measures, i.e., P(Hit/Shot) and timeliness or interfiring times) were selected as the performance measures for
comparison due to the availability of data. Since the results after 'trigger-pull’ were questionable in the FOF trials
for P(Hit/Shot), the tank proficiency results from the IOTE crew gunnery trials were compared with corresponding
operational results in the M/S replications. The justification for this comparison assumes that the tankers should
perform at the same proficiency levels in the gunnery trials as in the FOF trials. Interfiring times, however, could be
corr;gared between the FOF trials and the M/S replications because that data was not biased by the instrumentation
shortfalls.

If there was a close similarity between the tank proficiency results from the gunnery trials and the M/S
replications and if the appropriate lethality data were being used in the M/S, it was assumed that the M/S replication
results should then provide a reasonable estimate of the 'upper bound' of the M1A1/M1A2 operational effectiveness
that was expected to have occurred during the FOF trials.

For the most part, the M1A1 and M1A2 engagement profiles were reasonably close between the test FOF trials
and the M/S replications. Some of the differences were caused by a considerable number of rounds being fired by
the BLUE tanks at ranges exceeding 3000 meters in the test FOF trials and not in the M/S replications due to
asystem performance data limitation. Also, some differences naturally occurred due to the effects of the BLUE
force killing and being killed at a reasonably faster rate in the M/S replications than in the test FOF trials. In almost
every case, the tank proficiency results from the M/S replications were somewhat greater than or close to what was
demonstrated in the JOTE gunnery trials. Timeliness results showed the M1A1 and M1A2 interfiring times in the
test FOF trials being somewhat shorter than in the M/S replications while the M/S replication and gunnery trial
interfiring times were comparable. However, the M1A?2 interfiring time advantage over the M1A1 was comparable
between the test FOF trials and the M/S replications. The M/S replication operational effectiveness results aligned
much closer with those from the Force Potency Analysis or FPA3 (a procedure used by OPTEC to 'reconstruct' the
test trials) than to the actual test FOF trial results. More specifically, the FPA operational effectiveness values were
within the minimum and maximum CASTFOREM values for 86% of the measures examined. In the cases where
the FPA and M/S replication results were not quantitatively close, the trends were similar.

VIS/P T I
For the third issue, the M/S test replication results were extended to assess the relative contribution of the Inter-

Vehicular Information System/Position Navigation System (IVIS/POSNAV) and the Commander's Independent
Thermal Viewer (CITV) subsystems to overall M1A2 operational effectiveness. The IVIS and POSNAV
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subsystems are intended to enhance M1A2 performance with respect to maneuverability, situational awareness, and
command and control (C2). The CITV subsystem, which allows the M1A2 to operate in a "Hunter-Killer' mode, can
enhance the M1A2 fightability characteristics (i.e., detect, engage, and kill at a faster rate) over those of the M1Al.
Before the IVIS/POSNAV and CITV impacts on M1A2 operational effectiveness in the M1A2 FOF trials could be
quantified, several assumptions were necessary. First, the IVIS/POSNAV representation in CASTFOREM allows
the M1A2s to call in fire support faster and more accurately than do the M1Als. However, other maneuver,
situational awareness, and C2 aspects of IVIS/POSNAV were not explicitly represented in CASTFOREM.
CASTFOREM does explicitly represent all "Hunter-Killer' aspects of the CITV. It must also be assumed that part of
the IVIS/POSNAYV impact can be implicitly represented in CASTFOREM by the M1A2 maneuvering ‘smarter’ than
the M1A1. This technique was successfully used in the M1A2 MS III COEA. Second, it must be assumed that the
M1A1 and M1A2 M/S replications for a particular battle provided a reasonable estimate of the upper bound of what
operational effectiveness was expected to occur (within the context of any explainable differences). Third, if the
after-action report from an M1A2 test FOF trial (which was further substantiated by IVIS/POSNAYV utilization by
soldiers in the test) established that IVIS/POSNAV was used appropriately during that trial, it was assumed that the
resulting M1A2 force maneuver data (which was used precisely by CASTFOREM) should reflect that usage of
IVIS/POSNAYV with respect to maneuver and situational awareness.

It was assumed that if the criteria discussed above constituted a valid premise, the following methodology (as
summarized in Figure 6) could then be used to provide an estimate of the IVIS/POSNAYV and CITV contributions to
M1A2 operational effectiveness. First, the M1A1 M/S replication was rerun giving CITV capability to the M1Al
(designated by 'CITV + M1A1). The CITV + M1A1 M/S results were compared to the M1A2 M/S replication
results and the differences reflected the relative impact of IVIS/POSNAV on M1A2 operational effectiveness.
Likewise, the CITV + M1A1 M/S results were compared to the M1A1 M/S replication results and the differences
measured the relative contribution of the CITV to M1A2 operational effectiveness independent of the
IVIS/POSNAYV impact. .

P/L from
MiAl
FOF trial
M1A1M/S CITV
CITV+ M1A1
M1A1 vs M1A2 M/S Replication
M1A2M/S IVIS/POSNAV
P/L from Replication Contribution
MiA2
FOF trial

Figure 6. Estimation of IVIS/POSNAYV and CITV Contribution

As an example, Figures 7a and 7b present the assessment of the impact of IVIS/POSNAYV and CITV on M1A2
operational effectiveness for a BLUE defensive mission. The after action report for this M1AZ2 trial reported a
moderate use of IVIS/POSNAV. As seen in Figure Sa, the results showed a considerable improvement in LER with
a 80% increase in shots, a 9% increase in kills, and a 48% decrease in losses for the IVIS/POSNAYV equipped force.
However, in Figure 5b, the CITV equipped M1A1 force showed only a very slight increase in operational
effectiveness over the M1A1 force.
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Figure 7a. IVIS/POSNAV Contribution To M1A2 Operational Effectiveness
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Figure 7b. CITV Contribution To M1A2 Operational Effectiveness

In general, the results revealed the IVIS/POSNAV contribution to M1A2 operational effectiveness to be
considerable in each of the examined battles. The CITV results however showed minimal increases in M1A1
effectiveness when the M1A1 had the 'Hunter-Killer' capability. This implied the better maneuver and positioning
demonstrated by the M1A2s (assumed to be due to IVIS/POSNAYV) was the primary cause of the increase in
operational effectiveness over the M1A1ls. Note that the case with the CITV removed from the M1A2 (i.e., the
M1A?2 with only IVIS/POSNAV) was not evaluated and compared to the 'full-up’ M1A2 case to assess the CITV
contribution in an IVIS/POSNAYV configuration. Since the IVIS/POSNAV subsystems provided the means for the
Abrams tank to move 'smarter’ (and thus be more effective and survivable), it was conjectured that there should be
more targets for the M1A?2 to engage in a typical battle as compared to that for the M1A1. If this indeed is the case,
the CITV contribution to operational effectiveness may be somewhat greater when configured with the
IVIS/POSNAV on the M1A2 than with no IVIS/POSNAV on the M1AL.

MI1A2 JOTE AND M1A2 MS III COEA CROSSWALK

Linking or crosswalking operational tests and the corresponding COEAs is critical if the decision makers are to
have consistent, credible, and meaningful information upon which to base their materiel acquisition decisions.
However, linkage between these two diverse entities is not a trivial endeavor. Field test scenarios are normally quite
restrictive with small forces (i.e., PLT to CO size on the BLUE side) due to limitations such as test range constraints,
safety considerations, and cost. In contrast, COEA scenarios are very robust (normally at the BN/BDE level or
higher) with a full combined arms 'flavor.” Because of these vast differences, it is virtually impossible to directly
compare the results from an operational test and those from the corresponding COEA. The primary intent of the
proposed linkage approach was to determine if the battlefield reality demonstrated in the field test was supported by
and consistent with that demonstrated in the M/S. This was achieved by analyzing those changes to the COEA M/S
required during calibration. If there were no apparent differences (i.e., no major changes to the COEA M/S, data, or
assumptions were required), it could be conjectured (within the limited scope of the analysis) that the COEA and
IOTE results were consistent and supportive of one another. If there were differences, the corresponding simulation
changes were noted and analyzed to assess the subsequent impact on the actual COEA results if those changes were
indeed applied to the COEA M/S and high-resolution scenarios.

After the P/L data and conditions for each test FOF trial were integrated into the COEA version of
CASTFOREM (described in Issue 2), several inconsistencies in operational effectiveness were noted between the
test FOF trials and corresponding M/S replications. In an iterative fashion, the M/S was calibrated by examining
various aspects of the engagement process to determine the causes of those inconsistencies (summarized in Table 1).

The target acquisition process in CASTFOREM allows a weapon system's sensor(s) to scan its battlefield area
of responsibility (i.e., field-of-regard or FOR) in a systematic fashion to find targets to engage. Each sensor scans its
FOR, a field-of-view (FOV) at a time. The FOR may be defined to include areas where there are few, if any, targets
(i-e., areas where the probability of a target being present is very low). In actual combat, tankers will follow a
similar type of procedure to search for targets. However, the mental and optical processes used by the tanker result
in a natural minimization of the time spent scanning areas where targets are not likely to be. To replicate this
phenomenon in the M/S replications, the direction and size of each weapon's FOR in CASTFOREM was further
optimized to realistically minimize the time expended searching in low target potential areas. M/S replication
engagement results then showed a comparability with what had occurred in the test FOF trials. Note that the search
process had been similarly optimized in CASTFOREM for the high resolution scenarios used in the COEA.

Normally in high resolution CASTFOREM scenarios, the defending force enhances its survivability by

developing and utilizing some form of cover. If the sitnation allows enough time for a deliberate defense, the
defensive vehicles will be dug in or in hull-defilade. If the time for the defending force to get into position is much
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shorter (i.e., a hasty defense), the M/S user must decide what the appropriate level of coverage should be, i.e., half
hull-defilade or fully exposed. There was some reference in the after-action reports that a portion of the
M1A1/M1A2s performed berm drills (i.e., the tanks would back down a hill to hide and then 'pop back up’ when
they wished to engage) when the terrain allowed it. To represent the berm drill phenomenon in CASTFOREM, the
BLUE defenders were assumed to be in a hull defilade posture once they reached their defensive positions. When
BLUE was moving to or out of their defensive positions, however, they were placed in a fully exposed posture.
Note that not all BLUE tanks in the defensive test FOF trials performed berm drills. Thus, placing the entire BLUE
force in hull defilade in the M/S replications meant the defending M1A1s and M1A2s may have survived somewhat
better than they did in the test FOF trials.

Table 1. M1A2 IOT&E and M1A2 MS III COEA Crosswalk Summary

Identified Difference
Between Initial COEA
M/S Replication &
Actual IOT&E Results

M/S Changes to
Align With IOT&E
[Calibration}

Impact on Consistency
Between IOT&E and

Cause(s) of
COEA

Differences

Optimize FOR direction
and size.

M/S tankers may be
spending too much time
scanning low target
potential FOVs.

Engagement rates in 10T were
somewhat greater than in initial
M/S. Optimizing FORs in M/S
will result in more realistic
detection process as
demonstrated in IOT and in
COEA.

Lower firing level in M/S
than in 1I0T.

Inconsistent BLUE
defending force postures.

in IOT, berm drills done as
a survivability tactic. In
M/S, BLUE defenders are
in hull defilade. Defending
forces in COEA normally in
some level of defilade.

Blue defending forces
assumed to be in hull
defilade to reflect impact
of berm drills.

Level of consistency of BLUE
defending force survivability
between |OT trials and M/S

depended on to what extent the

BLUE defenders performed
berm drills.

BLUE tanks fire
conventional rounds at

ranges greater than 3000m
in IOT but not in COEA.

In test, tankers can shoot
at any range. In M/S,
tank performance data is
not defined past 3000m
for conventional rounds.

Leave max range of
3000m in M/S.

Few, if any, shots fired in IOT
at ranges greater than 3000m
resulted in a kill. Thus the
3000m round limit should not
impact the consistency
between the IOT and COEA.

BLUE tank force engaged
deeper and more
effectively in COEA than in
I0T.

In COEA, STAFF round
was in M1A1/M1A2 basic
loads but not in IOT.

STAFF round not played
in 10T or in M/S replication
of IOT.

If STAFF had been played in
the IOT, the battle dynamics
would have aligned more with
that resulting in the COEA.

Tendency for M1A2

engagement capabilities to
be overstated in M/S.

The TC cannot perform
‘Hunter-Killer' 100% of the
time as other functions

must also be performed.

Set CITV utilization by TC
at 80% which is what was
used in COEA.

80% level of CITV utilization

was consistent between M/S
replication of IOT and COEA.

M1A1/M1A2 proficiency in
M/S greater than or equal
to that demonstrated in
gunnery trials in most
cases.

Accuracy data used in M/S
replications may not reflect
same tank proficiency as

demonstrated in FOF trials

Use proficiency data as
currently defined in M/S.

COEA and M/S replication
M1A1 force effectiveness
results may be slightly greater
than what would have
occurred in the FOF trials.

Interfiring times were
somewhat shorter in FOF
trials than in the M/S
replications.

Tankers in FOF trials may
have been firing at faster
than expected rates due to
the low pairing rates.

Since the interfiring times
in the M/S aligned with the
gunnery times, the M/S
was not altered.

M/S interfiring results are
consistent with COEA and
gunnery results. 10T firing
rates may have been more in
line if perfect test conditions
had resulted.

The M1A1/M1A2s in the test FOF trials often fired early long range shots in the 3000-4500 meters interval.
These shots very rarely resulted in a hit and/or kill, partly because of the low pairing rates but also due to the very
low hit and kill potential (i.e., PKSS) at those ranges. Performance data used in CASTFOREM to represent the
M1A1/M1A2 hit and kill phenomena were not defined at ranges greater than 3000 meters. Thus, the 3000 meters
threshold was used in the M/S replications and was consistent with what was used in the M1A2 MS III COEA. Note
that if the 3000 meter range threshold had been extended in CASTFOREM for the COEA, there may have been an
increase in shots fired but there would have been little, if any, difference in operational effectiveness because of the
low PKSS at those ranges.
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The M1A1 and M1A2 tanks in the COEA were equipped with STAFF rounds in addition to the standard
conventional tank rounds. The STAFF round is a fire-and-forget, antitank munition that allows the BLUE tanks to
engage targets more effectively and at significantly longer ranges than conventional tank munitions. The STAFF
round was not part of the M1A1/M1A2 basic load in the IOTE trials. It is apparent then that operational
effectiveness results, derived with and without the STAFF round, could be quite different. If STAFF had been
played in the IOT, it is likely the battle dynamics would have aligned more with those in the COEA.

The M1A2 tank commander uses the CITV to hunt for new targets while the gunner is engaging (i.e., Hunter-
Killer capability) which can dramatically impact the tank's target detection capability (especially as the number and
dispersion of targets increases). The M1A2 tank commander, however, has to perform other functions (e.g.,
command and control, mission planning, etc.) which means he will not be using the CITV 100% of the time during
the battle. To represent this phenomenon, the tank commander's CITV utilization level was set at 80% (derived and
approved by the Armor School) which is consistent with what was used in the M1A2 MS [II COEA.

The M1A1 and M1A2 operational hit proficiency demonstrated in the IOTE gunnery trials was slightly less
than or very close to that occurring in the M/S replications. Since the M/S tank accuracy data were not modified to
align with the gunnery results, the operational effectiveness in the M/S replications may have been slightly higher
than what may have occurred in the test FOF trials under perfect test conditions. The interfiring times in the test
FOF trials (especially for subsequent shots against the same target) are somewhat smaller than those in the M/S
replications. Since the M/S replication interfiring times align with those in the IOTE gunnery trials, consistency
between the test and the COEA prevails for this issue. This conclusion assumes that if the test conditions had been
perfect, the interfiring times between the IOTE gunnery and FOF trials might have been more comparable.

The M/S changes, required to calibrate CASTFOREM to align with the test characteristics and conduct,
collectively had a considerable impact on operational effectiveness results. However, in the context of the M/S
modifications required during calibration, the operational effectiveness results from the initial M/S replications
(which represent the COEA conditions and assumptions) and those using the calibrated M/S (which represent the
IOTE conditions and assumptions) appear to be consistent and reasonable.

WARRIOR FOCUS AWE MEM APPLICATION

The general approach to the analytical support for the Warrior Focus AWE was to employ a series of
integrated MEM phases to gain insights concerning the impact of enhanced digital and own-the-night systems on
dismounted force effectiveness. Figure 8 presents an overview of how live experiments and constructive
simulations were used as an analytical vehicle on which the AWE hypothesis and supporting global issues were
evaluated.

Global Issues

DIV Force Packige Issues

Constructive Simulation Post-.
[M/S Calibration
Janus &CASTFOREM & Validation]
Consirucive Live Experiment

Pre-Experiment
Simulation e TS SXDOIIO GO, JRTC 96-02 &
[Scenario Development] Supporting BLWEs

Janus

Figure 8. AWE Analysis Support Overview

Overarching global issues were addressed by evaluating six sets of issues that were categorized with respect to
force level (DIV, TOC, and soldier). Each force level issue in a particular set applied to one or more systems that

100




were grouped by tactical function. Con
primary modeling tools. Live exercises
Experiments (BLWE), and technical testing. The resulting
used in two ways. First, the data obtained from these even
to evaluate the appropriate AWE issues at the force level.

the synergisms resulting from the employment of the enh
simulations. These insights were then used to refine the
of one of the AWE dendritics in Figure 9. Second, this
constructive simulations which ensured the application
with the field experiment results. The validated constru
force level issues that could not be directly addressed by

Force Level issue

Global Category

Functional Issue

Tactical Function/ Command & Control
Partlupatmg * BCDSS (6) * SPR (7) * CTIS /TVS (56)
Systems « TRT (55) «LVRS (21) « AMPS (46)
« SLGR (47) « PDIS (48) - PWIS (60)
+ Ind. Soldier Radio
1
| | | |
MOE Accuracy of Friendly & OPFOR Common Picture Usefulness
Position Reporting Map Accuracy Consistency of INTEL
1 ‘ T
MOP Differences Between Accuracy of tracking Usefulness of
Perceived and Actual Maneuver Units, Mortar & Maneuver Control,
Positions ARTY PLTs, Scouts/Sensors, ARTY Targets, Fire
Obstacles, CSS Elements, & Cps Control, CSS, &
A Enemy Simation
Information
= Unit, Firing Bty, ADA, - Subjective Consi * Subjective Usefulness
+ OPFOR and BLUE P/L Data ubjective Consistency
[E)f:; ents outfSenser, gmbs;:;:gn& « Perceived BLUE/OPFOR Locations ~ Assessments Assessments
Positions (Actual & Perceived) T 1
Data Live Experiments Live Experiments Live Experiments Live Experiments
Source/
Report(s) EDR1&6 EDR 1 EDR 9 EDR 10

included the JRTC 96-02 rotation, supporting Battle

the live experiments.

Tempo of Operations

!

Digitization

Do the digitized C2 mitiatives result in more
effective mission planning and execution?

structive simulations, i.e., Janus and CASTFOREM, were used as the
Lab Warfighting
data obtained during the conduct of live exercises were
ts was processed to calculate MOP/MOE that were used
The results also allowed SMEs to develop insights into
anced systems and the corresponding TTP used in the
TTP as required. This process is illustrated in an example
data provided information for calibration/validation of the
of the constructive simulations was credible and consistent
ctive modeling was used to address both critical system and

Figure 9. Warrior Focus Analysis Dendritic Example

The iterative MEM process was composed of a set of supporting BLWEs that examined AWE issues and
objectives beginning at the soldier/section/ squad level up to battalion/TF level. The results from each level in turn
provided the benchmarks for the subsequent echelon level analysis where additional systems were evaluated in
concert with those already addressed at the previous level. Only those appropriate systems that could be realistically
evaluated at each force level were included at that level. The iterative process concluded at the battalion/TF level
resulting in the final validated constructive simulation required to support the AWE objectives and issues.
Constructive simulations were used before each of the live experiments to develop and refine experiment scenarios.
After each live experiment, constructive simulations were used to extrapolate and evaluate experimental results to
those scenarios not addressed in the live experiments. and provide insights for the next iteration. Technical tests and
additional experiments were used when possible.

It was initially planned that the appropriate exercise specifications that were to be used in the JRTC 96-02
(e.g., Fort Polk terrain, force structure and composition, TTP, etc.) would be integrated into the final validated
constructive simulation to provide a prediction of what should have occurred in the JRTC 96-02 rotation under
perfect conditions. After the rotation, the constructive simulations could have been calibrated to replicate what
actually occurred in the field. The differences between the constructive simulations predictive results and the
calibrated constructive simulation results, in terms of model modifications, then could be used to gain insights into

101




the results of the JRTC 96-02 exercise resulting in a better understanding of the representation of battlefield
phenomena in constructive simulations.

Conduct of the Warrior Focus AWE was impacted by digital hardware and software problems due to the
relatively early generation technologies that were fielded. These problems limited the scope of the live experiments
which in turn limited the availability of experimental data thus constraining the usefulness of the modeling.
However, the potential of these digital systems, even with the problems, became clear during the experiments as the
enhanced digital processing and dissemination of information increased the situational awareness of the BLUE units.
The experiments showed the own-the-night equipment to provide the BLUE dismounted forces a night range
advantage and increases the ability to move faster at night resulting in a BLUE unit being able to seize the objective

faster with fewer casualties. 4
OBSERVATIONS AND CONCLUSIONS

Figure 10 summarizes several of the reciprocal and complementary relationships between operational testing
and experimentation and M/S as demonstrated in the M1A2 IOTE and the Warrior Focus AWE. In these two
efforts, M/S was used to assist the test scenario developers to design more robust and comprehensive test scenarios.
M/S provided operational force effectiveness estimates that could be used to augment the test or experiment. The
scope of the IOTE and AWE were extended to specifically quantify the contribution of particular systems to
operational force effectiveness. Reciprocally, various aspects of the engagement process in the M/S were
benchmarked against actual engagement results in live field tests and experiments. The M/S calibration procedure
resulted in an intuitive understanding of the abstract representation of the many aspects of the engagement process in
the M/S and how it relates to battlefield reality as demonstrated in the T/E. With such an understanding, predictive
modeling results and T/E results could now be logically crosswalked based on any identified inconsistencies. While
only two examples were specifically addressed here, it is hoped the results will provide insights into how the
complementary aspects of operational testing and experimentation and constructive M/S can be used such that
critical materiel acquisition issues concerning operational effectiveness can be better addressed in the future.

>
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Figure 10. Complementary Relationships Between M/S and IOT
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ON THE PERFORMANCE OF WEIBULL LIFE TESTS
BASED ON EXPONENTIAL LIFE TESTING DESIGNS

Francisco J. Samaniego and Yun Sam Chong
University of California, Davis

ABSTRACT

It is common to plan a life test based on the assumption of exponentiality of observed lifetimes
or lives between failures. Analysts are then able to calculate specifically how many items should be
placed on test {or the number of observed failures it takes to terminate the test) and the maximum
total time on test required to resolve the hypothesis test of interest. Once the test data is in hand, one
has the opportunity to confirm the exponentiality assumption or to determine that an alternative
modeling assumption is preferable. The question to be discussed here is "What if the data point to a
nonexponential Weibull model?" Our purpose is to identify circumstances in which the available data
permit testing the original hypotheses with better performance characteristics (that is, smaller error
probabilities) than the test originally planned; a complementary analysis of situations leading to poorer
performance is also given. Further, we will give an indication of the potential savings in the number
of systems and the time on test that would accrue from having modelled the experiment correctly in
the first place. Various approaches to Weibull life testing, with special attention to testing hypotheses
concerning Weibull means, will be discussed. This paper is an expository presentation of issues and
methods that are treated in detail in a manuscript with the same title that has been prepared as a
commissioned paper for the National Academy of Sciences’ Panel on Statistical Methods for Testing
and Evaluating Defense Systems.

1. EXPONENTIAL LIFE TESTING

The widespread use of the exponential model in reliability and life testing studies is largely due
to its great tractability. For many different experimental designs, it is possible to develop an exact
analysis under exponential assumptions, and to determine, in advance, what resources are required
to meet whatever bounds or requirements are set regarding confidence levels or error probabilities.
Also, because many alternative lifetime distributions are "lighter-tailed” than the exponential, an
exponential test will often be conservative, with both the producer’s risk and the consumer’s risk
smaller than the nominal levels at which the test was planned. There are, however, a number of
difficulties that arise when exponential analysis is used in non-exponential situations. First, in those
cases in which the test is conservative, the opportunity to carry out a more efficient test, or to realize
some savings in test resources, was foregone. Further, the nonrobustness of exponential life tests,
especially when data is subject to some form of censoring, is well known. Of special relevance to us
here is the robustness study of Zelen and Dannemiller (1961) which documents the failings of
exponential life testing in Weibull environments. In short, a mis-applied exponential analysis can be
dangerously misleading. It thus behooves the analyst to seek to discover when an exponential
assumption is of dubious validity, and to execute an alternative analysis in such cases. In succeeding
sections, we will focus on the particular alternative of Weibull life tests. In the remainder of this section
we provide a brief review of the methodology of exponential life testing.

The problem of interest to us is the comparison of two means. We will assume that the null
hypothesis that the true mean of the system under study is equal to M(0) is to be tested against the
alternative hypothesis that the mean is M{1), where M(1) < M(0). We will refer repeatedly to a
document which describes in detail how such tests are carried out under the assumption of
exponentiality: Department of Defense Handbook H108. As explained in that handbook, and elsewhere,
one proceeds by fixing the operative levels of alpha (producer’s risk) and beta {(consumer’s risk), after
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which one may identify the required number of observed failures r and the maximal amount of test time
that would be required to resolve the test at the prescribed levels of alpha and beta. The test is then
executed by rejecting the null hypothesis if the total time on test T at the time of the rth failure is less
than some fixed threshold. The fact that the duration of the test, in real time, can be controlled, and
made suitably small by placing n systems on test, where n > r, while resolving the test upon the rth
failure, is an important side-benefit of the exponential assumption.

Since the mechanics of exponential life testing are quite well known, we discuss them only
briefly here. The simplicity of exponential analysis of life testing data derives from the known and
manageable distribution theory for the total-time-on-test statistic and from the fact that the
characteristics of these tests depend on the hypothesized means M(0) and M(1) only through the so-
called discrimination ratio D = M(1)/M(0). Thus, the needed number of observed failures may be
computed explicitly from the known value of the two error probabilities and this discrimination ratio.
The required total test time may then be computed as a function of r, D, the error probabilities and the
cutoff point of the appropriate chi-square distribution.

Implementation of an exponential life test design is facilitated by tabulations such as Table 2B-5
found in DoD Handbook H108. That table provides the values of the required sample size r and the
ratio T/M(0O) (and thus, indirectly, the required total time on test T itself) for selected values of D, alpha
and beta; using it, one can set up and carry out exponential life tests with ease. As will be explained
in the sequel, the table to which we’ve alluded is less than satisfactory for the kind of study we wish
to do, namely, an examination of the performance of Weibull life tests when the true underlying life
distribution is a nonexponential Weibull model. Handbook H-108’s Table 2B-5 is simply too sparse to
permit the identification of new values of r and T under these alternative circumstances. Some twenty
pages of Samaniego and Chong (1995) are dedicated to the expansion of that table, and to
computations based thereon. While these new tables will not be displayed here, we will comment on
their construction and general characteristics, and will discuss the types of conclusions that one can
draw from them. We first turn to a brief discussion of the Weibull distribution.

II. WEIBULL CONSIDERATIONS

The Weibull model is arguably the most popular parametric alternative to the exponential
distribution in reliability applications. Like the gamma model, it contains the exponential distribution as
a special case, so that the adoption of the Weibull assumption represents a broadening from the
exponential model rather than a rejection of it. The parametrization we will use is denoted as W(A,B),
where A is the "shape” parameter, that is, the exponent to which the lifetime t is raised in the
exponential portion of the Weibull density, and B, raised to the power 1/A, is a scale parameter of the
distribution. The mean M(A,B) and variance V(A,B) of a Weibull variable, in the parametrization above,
is easily derived in closed form, each involving the scale parameter and certain gamma functions
dependent on A. There are two elementary ways in which the Weibull and exponential models are
related. First, the Weibull model W(1,B} is just the exponential model with scale parameter B. Secondly,
and more generally, if X has the W(A,B) distribution, then X to the power A has the exponential
distribution with scale parameter B. Further, the Weibull distribution has an increasing failure rate (IFR)
when A > 1 and a decreasing failure rate (DFR) when A < 1. Another fact of special interest is that
the coefficient of variation of the Weibull, that is, the ratio of its standard deviation to its mean, is
independent of the parameter B. We will exploit this fact in the estimation of the shape parameter A
in Section V.

The statistical literature on modeling and inference based on the Weibull distribution is
extensive. A keyword search of the Current Index to Statistics, v. 1-19, shows that there were 647
articles published in Statistics journals between 1975 and 1993 on Weibulli-related topics. Surprisingly,
very little of this work is directly applicable to the problem of interest here: tests for Weibull means in
the general situation in which both parameters are unknown. Indeed, Lawless {1982) mentions that
"life test plans under the Weibull model have not been thoroughly investigated...it is almost always
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impossible to determine exact small-sample properties or to make effective comparisons of
plans...further development of test plans under a Weibull model would be useful.” It is our hope that
the discussion of Weibull life testing is this paper will contribute to a better understanding of the
possible advantages and risks these methods involve.

Before engaging in a Weibull analysis, one typically wishes to determine whether or not the
Weibull model is reasonable in the application in which its use is contemplated. Without giving much
detail, we mention some graphical techniques which have proven useful in explorations regarding the
Weibuliness of data.

Among the most revealing plot one can construct in such settings is the Total Time on Test
(TTT) plot. This is essentially a plot of total time on test at any particular time t against the fraction
of items in the sample that have failed by time t. To render TTT plots both manageable and
comparable, a rescaled version of the total time on test statistic is generally used, resulting in a plot
that fits inside the unit square. It is known that the theoretical TTT plot is linear for the exponential
distribution, and is concave (convex) for distributions with increasing (decreasing) failure rate. We
highly recommend TTT plots as a vehicle for recognizing nonexponentiality. While they don’t point an
analyst in the direction of a particular alternative model, a convex or concave plot is certainly
suggestive that a nonexponential Weibull model should be examined as a possible alternative. A good
reference on TTT plots is the paper by Barlow and Campo (1975).

A second graphical technique of interest, especially in the context of the present study, is that
of the Weibull probability plot. These plots are based on the fact that, if S{x) is the survival or reliability
function of the W(A,B) distribution, then In{-InS(x)} in a linear function of the parameters InB and A.
It is thus possible to plot an empirical version of the relationship above to see if the data supports a
hypothesized linearity. Such plots do give an immediate indication regarding the fit of the Weibull
model. They provide, in addition, estimates of the Weibull parameters associated with the best fitting
Weibuli curve (fit according to the least squares criterion).

Through the use of graphical methods, or otherwise, assume that the analyst, after gathering
data according to an exponential life test plan, determines that the data are more appropriately
modelled with a nonexponential Weibull. It will then be necessary to proceed with an analysis
appropriate for these broadened assumptions. The next two sections are dedicated to an examination
of various ways of carrying out a Weibull life test.

1li. WEIBULL LIFE TESTING - PART |

The classical theory of hypothesis testing yields its strongest results in problems in which the
null and alternative hypotheses are simple, that is, specify the underlying probability model completely.
In such problems, it is possible to construct optimal tests, that is, tests which minimize the consumer’s
risk beta among all tests with producer’s risk less than or equal to some fixed level alpha. The problem
of interest to us here is not of this type, and no "optimal” tests have been devised for solving the
problem. When observable lifetimes are distributed according to W(A,B), an hypothesis that the mean
is equal to some fixed constant K is equivalent to the statement that the parameter pair (A,B) lies in
the subset of the first quadrant of the plane for which the Weibull mean satisfies the equation M(A,B)
= K. This type of equation is a complex one, having no closed form solution. While the general
problem is thus analytically challenging, there is a simpler problem for which an exact and optimal
solution is available. We devote the present section to this simpler problem, with the goal of
constructing a "gold standard" against which solutions to the more general problem can be compared.

Let us, then, suppose that a random sample X{1),..., X{r) of size r is drawn from what was
originally thought to be an exponential distribution, and that the sample size r was determined from
an exponential life test with fixed values of alpha and beta for testing the null hypothesis that the mean
M = M(0) against the alternative M = M(1). Assume further that once the data was collected, the
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WI(A,B) model was adopted. Finally, let us make the simplifying assumption that the shape parameter
A of the distribution is known. Then, by exponentiating to create "observations" of the form X raised
to the power A, one can create a sample from an exponential distribution. The original null and
alternative hypotheses may be rewritten as simple hypotheses in the parameter beta. In this new
scenario, an optimal test exists: one should reject the null hypothesis M = M(O) if and only if the total-
time-on-test statistic based on the new, exponentiated observations is smaller than a particular
threshold. A very important change takes place in the process of making this transformation. The
discrimination ratio in this latter problem changes to D raised to the power A. This change is significant
in that the performance characteristics of exponential life tests depend very strongly on this parameter.
The discrimination ratio is a measure of the distance between the null and alternative hypotheses. If
that ratio is sharply reduced, the new testing problem can be resolved with much greater statistical
power. Of particular interest to us is the fact that the same nominal values of alpha and beta can be
achieved in the this new environment by a test based on a substantially smaller sample. It is important
to note that an increase in the discrimination ratio results in just the opposite phenomenon. Thus, life
testing in a Weibull environment is not necessarily advantageous to the tester. Fortunately, in many
engineering applications of the Weibull distribution, the shape parameter A turns out to be larger than
one, so that the opportunity for increased power and/or resource savings exists there.

A comprehensive analysis of the implications of a modeling shift from exponential to Weibull
is not possible without new tables for exponential life testing which specify required resources for
(essentially) a continuum of values of the discrimination ratio between zero and one. Because of its
sparseness, Table 2B-5 in DoD Handbook H108 in not suited for our purpose. In Samaniego and Chong
(1995), extensive tables are provided. Specifically, for four different alpha/beta pairs, tables are
constructed showing sample size and total test time requirements for discrimination ratios in the range
D = .01(.01).99. Further, for values of the (known) Weibull shape parameter in the range A = .1(.1)3,
the values of four measures of performance of the test in the transformed Weibull problem are
tabulated. These measures, and their definitions, are displayed below.

SSR = Sample Size Ratio = the ratio of the required sample size in the Weibull environment to the
sample size in the original exponential life test, both computed to achieve fixed, predetermined error
probabilities;

TTTR = Total Time on Test Ratio = the ratio of the maximum TTT required in the Weibull environment
to the TTT in the original exponential life test, assuming fixed, predetermined error probabilities;

BR = Beta Ratio = the ratio of consumer’s risks beta in the Weibull and exponential environments
when the required sample size in the exponential environment is also used in the Weibull environment,
with alpha fixed and equal in the two environments;

r/n = the ratio of the sample size in the exponential life test plan to the total sample size in a censored
Weibull life test (terminated at the rth failure) which achieves the nominal error probabilities of the
original plan.

The measures above are self explanatory, with the possible exception of TTTR. When one
transforms Weibull data to exponential data via exponentiation, one can compute the new required
sample size readily enough, given the new discrimination ratio, but the new required "TTT" is actually
a sum of exponentiated Xs. We therefore need to determine how large the sum of actual failure times
(that is, the sum of the Xs themselves) can be, given the value of the sum of exponentiated Xs. In
Samaniego and Chong (1995), sharp upper and lower bounds are given for the actual TTT given the
"TTT" of exponentiated failure times. When the Weibull shape parameter A is taken to be greater than
one, the numerator of the measure TTTR is taken to be the upper bound of the actual TTT. Because
of this, TTTR is a conservative measure, providing a figure that represents the guaranteed savings in
test time had a Weibull life test been carried out to achieve the nominal error probabilities. The actual
resource savings can, of course, be substantially greater than the bound this measure provides. When
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the Weibull parameter A is taken to be smaller than one, the lower bound on the actual TTT is taken
as the numerator of TTTR. This results in a bound which the actual TTT will exceed in the Weibull
environment. Since the case A < 1 is somewhat rare in the types of applications we have in mind, we
will not discuss that case further here.

An example of the use of the tables in Samaniego and Chong (1995) should be helpful at this
point. Suppose one wishes to test the null hypothesis that the mean lifetime M of a system of interest
is 1000 hours against the alternative that M is 500 hours (corresponding to a discrimination ratio of
.5 if the exponential model were to be assumed). Suppose that the predetermined levels of alpha and
beta are both .1. From the tables above, or from Table 2B-5 of Handbook H108, for that matter, one
can determine that the resources required to resolve the test are r = 15 observed failures and a
maximal TTT = 10,305 hours. Now, assume that it was determined in advance of the experiment that
the Weibull W(2,B) model was applicable. It can then be determined that a life test in the Weibull
environment, which is equivalent to an exponential life test with discrimination ratio D = .25, would
require a sample size r = 4 observed failures, and a "TTT" of exponentiated Xs equal to 2,220,529.4
squared hours. From these facts, we find that

SSR = .267 and TTIR = .289.

It is thus apparent that substantial savings in both sample size and total test tine can accrue when the
analyst is able to recognize a Weibull environment in advance.

Some commentary on the measure r/n is in order. As is well known, type Il {or "order statistic”)
censoring has no affect on the analysis of exponentially distributed life test data. It’s only impact on
the test is the very welcome contribution it makes to the time it takes to complete the test.
Unfortunately, the affect of censoring is different, and not as positive, in a Weibull environment.

‘Indeed, when the censoring fraction is too small, the performance characteristics of a Weibull life test

can suffer significantly. It is thus of interest to identify the amount of censoring that can be done in
a Weibull life test that corresponds to a TTT requirement that is equivalent to that in the original
exponential test plan. The ratio r/n, with r the required number of observed failures in the transformed
Weibull problem, identifies the total sample size n which accomplishes this equivalence. In the
numerical example above, we find from our tables that r/n = .084. From this, we deduce that a test
plan which places 48 systems on test and resolves the test upon the 4th failure would have a total test
time no larger than 10,305 hours, the test time associated with the exponential test plan based on 15
observed failures.

We close this section with some brief commentary on the major characteristics of the tables
mentioned above. In general, these tables confirm the fact that there are potential resource savings
available when one recognizes an IFR Weibull environment and carries out a Weibull life test instead
of an exponential one. It will be clear from these tables that the most substantial savings in TTT are
made in situations in which both the discrimination ratio and the Weibull shape parameter are high. It
must be noted, however, that when the discrimination ratio is high (say, larger that .7), the costs
associated with life tests are often exorbitant; thus, even though the resource savings afforded by a
Weibull life test are substantial, the cost of the alternative analysis is still likely to be prohibitive. It
appears that the kinds of problems in which recognizing a Weibull environment and performing a
Weibul! life test will be both feasible and economically viable will be those in which .3 < D < .7 and
A > 1.5.

IV. WEIBULL LIFE TESTING - PART 1l
In the preceding section, we focused on the performance of Weibull life tests under the
simplifying assumption that the Weibull shape parameter A was known. The assumption is not totally

whimsical, since engineering experience with a particular type of application might make such an
assumption quite reasonable. After all, the exponential assumption is nothing more than the
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assumption that the Weibull shape parameter is known to be equal to one. It is, however, clearly
necessary to move beyond this first step, and to engage seriously the question of how to execute a
Weibull analysis in the general two-parameter problem. In this section, we will examine three specific
possibilities in this regard.

The form of the optimal procedures in Section [l for testing hypotheses concerning Weibull
means immediately suggests a possible approach to the general problem: estimate the parameter A
from data, and carry out a Weibull test as in the preceding section, with the estimated A taken as the
known value of A. The performance of the resulting test procedure is naturally dependent on the
quality of the estimator used. Results by Neyman (1959) and by Gong and Samaniego (1981) suggest
that this "plug-in" approach tends to work well when "nuisance" parameters are replaced by root-n
consistent estimators. Of particular relevance in the present problem is Neyman’s paper, wherein the
theory of C(alpha) tests was developed. Neyman gave conditions under which such tests were locally
asymptotically most powerful.

The essence of a C(alpha) test is the substitution of one or more unknown parameters by root-n
consistent estimators, and the testing of hypotheses concerning a lower dimensional parameter. We
will examine two tests based on such an approach. The first is based on estimating the Weibull shape
parameter A by a root-n consistent estimator derived as a function of the sample coefficient of
variation. (See Sinha and Kale (1979) for a table relating the coefficient of variation of the Weibull
model to its shape parameter.) The second test is based on estimating A by the root-n consistent
estimator obtained from the best-fitting Weibull distribution from Weibull probability plots. The
asymptotic properties of estimators based on probability plots have been studied by Nair (1984).

The performance of a third procedure for testing between competing Weibull means has also
been studied. This is the likelihood ratio test for the null hypothesis that the mean M = M(0) against
the one-sided alternative that M < M(0). The numerical issues that arise in executing this test are
discussed in detail by Samaniego and Chong (1995). Since the likelihood ratio statistic is expected to
be large under departures from M = M(0) in either of two directions, we executed this test by doubling
the nominal tail probability and rejecting the null hypothesis only when the data is indicative of a mean
value smaller than M(O).

Samaniego and Chong (1995) report on an extensive simulation in which the performance of
each of the three tests above is compared to the performance of the best test possible, that is, the
uniformly most powerful test when the shape parameter A is known. We report briefly on our findings.
First, it is clear that when the underlying Weibull distribution is strongly DFR, that is when A is quite
near zero, Weibull life testing is nearly hopeless. Even tests which exploit knowledge of the true value
of A have low power at the alternative hypothesis. Since DFR Weibull models are of relatively littie
interest in most life testing situations, this deficiency of the tests examined is not particularly
worrisome. Our primary interest is in the behavior of our three general tests, as compared to the "gold
standard”, when the true shape parameter A is larger than one.

The most surprising and encouraging aspect of our simulation study is the fact that, when A
is an unknown value greater than one, the three procedures for testing means in the general two
parameter problem each performs nearly as well as the best test when A is known. As an example of
the surprising competitiveness of a two-parameter Weibull life test, consider testing M(0) = 1000
against M(1) = 50O at alpha = .1. Suppose fifteen systems are placed on test, as prescribed by an
exponential life test plan with alpha = beta = .1. If the data happens to be governed by a Weibul!
distribution with shape parameter A = 1.2, and the fact that A = 1.2 is somehow revealed to the
experimenter, the best test can executed by exponentiating, that is, raising each failure time to the 1.2
power, and applying an exponential analysis on the transformed data. Our simulations show that this
procedure achieves approximate error probabilities alpha = .11 and beta = .02. Now, suppose A was
in fact not known. How well would the analyst do using any of the general tests? The answers are
displayed below.
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cv-based test: alpha = .11, beta = .02,
Weibull plot-based test: alpha = .09, beta = .03,
Ir test: alpha = .13, beta = .02.

The performance of all three procedures is clearly indistinguishable from that of the best test in this
example. A general perusal of the error probabilities in the tables reporting our simulation shows that
this example is not an isolated instance of this type of performance.

V. DISCUSSION

As a general conclusion, it seems reasonable to state that our study strongly supports that
claim that Weibul! life testing can be both analytically feasible and economically effective. Our interest
in the general question of efficient alternatives to exponential life testing was rekindled by the recent
workshop on Defense Testing co-sponsored be the Department of Defense and the National Academy
of Sciences’ Committee on National Statistics. {See Rolph and Steffey (1994).) The optimistic
conclusion we have reached with regard to Weibull life testing must be tempered with some cautionary
words. First, it should be noted that our study is predicated on the tacit assumption that the analyst
has determined that a Weibull model is appropriate in a particular application. When this is the case,
and it is also determined that the applicable shape parameter is larger than one by at least some
specific positive amount, then one may indeed take advantage of the resource savings available from
using a Weibull test instead of an exponential test. The inclination to employ an [FR Weibull model!
without serious justification must be avoided. The allure of potential resource savings must not obscure
the dangers and costs of model mis-specification.

The studies reported in Section |V above are based on complete rather than censored samples.
When this work was presented at the First Army Conference of Applied Statistics in October, 1995,
the influence of censoring on these results was not yet known. Since that time, some simulations
based on type-ll censored data have been completed. Samaniego and Chong {1995) discuss this
additional Monte Carlo study. In brief, we may summarize our findings by stating that excessive
censoring affects the power of Weibull life test adversely, but that, under moderate censoring, the
performance of Weibuli life tests compare quite favorably to the aforementioned "gold standard”.
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PENETRATION AND DEFLATION ALGORITHMS FOR TIRE VULNERABILITY
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ABSTRACT

An improved methodology was developed for the U.S. Army Research
Laboratory’s Ballistic Vulnerability/Lethality Division to conduct vulnerability
analyses of wheeled vehicles subjected to attack from small steel and tungsten
fragments less than 0.65 g (10 gr). Sequential statistical methods were used to
collect and compute the velocity at which 50% of the fragments are expected to
perforate the target, Vso. Also the traditional THOR penetration equations were
improved upon for tires. Methodology was developed to predict tire deflation with
and without an on-board Central Tire Inflation System and to determine the level of
damage required to render a tire or tires nonfunctional within given time limits.

1. INTRODUCTION

The U.S. Army Research Laboratory’s Ballistic Vulnerability/Lethality Division (BVLD) reviewed the current
methodologies used to conduct vulnerability analyses of wheeled vehicles subjected to attack from steel and tungsten
fragments. This internal audit revealed that there was a lack of experimental data that would defend the use of existing
tire probability of kill functions (now called probability of component dysfunction, Pcq) and support the use of current
penetration equations when “small” fragments are considered. Additionally, the capability of an on-board Central Tire
Inflation System (CTIS) had never been considered explicitly in determining the level of damage required to render a tire
or tires nonfunctional within given time limits.

Consequently, an experimental program plan was developed with the goal of producing sufficient data to
substantiate the current tire vulnerability methodology or to allow for development of new methodology, if necessary.
The tire vulnerability modeling process proceeded by answering the following questions in order:

1. Do small fragments have the ability to perforate tires?

2. What are the effects of multiple perforations in a single tire?

3. If tires are perforated, what is the resulting deflation rate?

4. If the target has a CTIS, how does CTIS performance influence deflation rate?
5. What are the effects of perforations in multiple tires on a vehicle with a CTIS?

The experimental plan was developed to directly address these five questions. The ability to model fragment
perforation of tires was to be addressed by adding small steel and tungsten fragment data to an existing data set for the
development of an improved and more general penetration equation and by determining Vg ballistic limits for various
tire cross sections. The remaining questions which pertain directly to the validity of the existing P4 functions were to
be resolved via experimental firings at pressurized tires mounted on a vehicle with a CTIS and theoretical development
of governing equations. A Soviet BM-21 multiple rocket launcher (MRL) was selected as the target vehicle for several
reasons: it was available, it contained a CTIS, and additional tires were available for testing.

2. TARGET VEHICLE

The BM-21 MRL consists of a launcher assembly mounted on a URAL-375D chassis. The launcher assembly
contains 40 firing tubes for high-explosive-fragmenting munitions. Most of the discussion will focus on the
URAL-375D, since the tires and the CTIS are part of this truck. The URAL-375D is a 4.5-ton, three-axle 6 X 6 cross
country vehicle that may be used on surfaced roads, earthen roads, and on roadless terrain. The URAL-375D also
incorporates the use of adjustable inflation tires and a CTIS for increased mobility. The service manual (USSR, undated)
for this vehicle provides guidance for tire pressure settings and driving speeds for various road surface conditions.
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2.1 TIRE CHARACTERISTICS

The tires mounted on the BM-21 are 14.00-20 adjustable inflation tires, model 01-25. These tires consist of 10 plies,
are tubed, and have the typical cross-country tread design. The tire cross-sectional thickness varies both in the tread and
sidewall areas. The sidewall ranges from about 1.52 cm (0.6 in) to 2.54 cm (1.0 in) and the treads vary from about 5 cm
(21in) to 6.6 cm (2.6 in) with the area between the tread lugs around 2.54 cm (1.0 in).

2.2 CTIS CHARACTERISTICS

Soviet-designed tire-inflation systems were first included on pure transport vehicles in 1958. Two basic types of
CTIS’s were implemented in vehicle designs. The oldest type, introduced on the ZI1.-157 and resident on the BM-21, is
more complex and offers more flexibility to the operator (Warner 1987). This system contains control valves that can
isolate any individual tire or set of tires. The pressure in the tires with open control valves can then be adjusted either up or
down through the use of a three-way slide valve that has positions for inflate, deflate, and neutral (Warner 1987). The
newer design does not have the cab-mounted valves for each tire. In this case, air supplied through use of the three-way
valve is fed into a manifold and onto each axle of the vehicle from a common supply. The GAZ-66, ZIL-131,
URAL-1320, and KrAZ-25TB are known to use this system.

3. V5o BALLISTIC LIMITS

3.1 V5o EXPERTMENTAL PLAN

The intent of the ballistic limit experiments was to answer, at least in part, the first question listed in the introduction:
Do small fragments have the ability to perforate typical combat vehicle tires? Vs is that velocity at which 50% of the
fragments are expected to perforate the target. The Vg ballistic limit data are very useful in that they provide a quick
notion of what threat mass and velocity are required to defeat a target. It can also be used in some penetration equations to
provide predictions of residual velocity. The experimental matrix included a range of small fragment sizes, 0.13t00.37 g
(2 t0 5.7 gr), and tire thicknesses of 1.52 to 6.6 cm (0.6 to 2.6 in).

A single tire was used for the V5o and penetration equation portions of this effort. The tire was cut into 16
wedge-shaped sidewall pieces and 8 tread sections. Each section was rigidly clamped to a test stand so that the rubber
would be somewhat rigid.

The experimental setup for the Vso and penetration equation work consisted of a 5.56-mm gun, four velocity
breakscreens, and a stand to hold the tire sections. A piece of photo paper taped to the front of the tire section was used for
checking fragment orientation at impact.

The experimental procedure followed for the V5o work was the Up and Down Method, which is described in Darcom
Pamphlet 706-103 (U.S. Army Materiel Development and Readiness Command 1983), AMC Pamphlet 706-111 (U.S.
Army Materiel Command 1969), and JMEM Surface-to-Surface Manual JTCG/ME-61S1-3-4 (Joint Technical
Coordinating Group for Munitions Effectiveness 1982). Basically, the velocity is increased or decreased incrementally
depending on whether or not perforation is achieved. Experimentation stops when a specified number of firings have
been conducted or when a zone of mixed results is achieved.

3.2 V50 ANALYSIS AND RESULTS

The DiDonato and Jarnagin procedure (McKaig and Thomas 1983) was implemented to obtain unique maximum
likelihood estimates of the mean and the asymptotic standard deviation of the perforation distribution for various threat
masses against target thicknesses. The V'sg, also known as the ballistic limit, is the mean of the perforation distribution.
Also determined was the standard deviation of Vsg, which is a measure of the accuracy of Vso. Simply stated, if
additional data sets were provided with the same mass against the same target thickness, the Vg calculated could vary
from the one computed for the previous data set. The standard deviation of V5o indicates the amount of variability in the
V50 estimate.

Unique maximum likelihood estimates are possible as long as two restrictions hold. The first restriction requires a
zone of mixed results, in which the lowest velocity that perforated the target is smaller than the highest velocity that did
not perforate. The second restriction requires that the average velocity for the perforated data is greater than the average
velocity for the nonperforated data. When these restrictions did not hold, the standard deviation of the V50 calculation
was not possible. The Vso and asymptotic standard deviation estimates were then obtained using a nonparametric
method. This method used the three highest velocities that did not perforate with the three lowest velocities that did
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perforate. There were 279 firings conducted to obtain the data required for the Vg calculations. Ofthese, 131 data points
from perforating shots could also be used in support of the penetration equation development.

Comparing the perforation capabilities of steel and tungsten, given the same fragment mass against the same tire
thickness, demonstrated that tungsten has a lower Vsq than steel, more than 100 m/s lower (see Table 1). This is not
surprising since tungsten has a higher density (17.7 g/cm3) compared to steel (7.8 g/cm3).

Table 1. Some V5o Comparisons

Vsp (m/s)
Mass Tire Thickness
Steel Tungsten
@) [r] (cm) g
Mean Std. Dev. Mean Std. Dev.
1.52 Sidewall 550 * 330 6.74
0.13 [2] 2.54 Sidewall 704 27.54 471 6.00
2.54 Between Lugs N/A N/A 434 2.20
1.52 Sidewall 399 14.16 293 *
0.26 [4] 2.54 Sidewall 621 11.07 413 5.94
2.54 Between Lugs 624 52.52 382 8.73

N/A =0.13 g between lugs was not tested.
* Standard Deviation Vsq estimate not available, since there was not a zone of mixed results.

4. PENETRATION EQUATIONS

4.1 PENETRATION EQUATIONS EXPERIMENTAL PLAN

Danish (1968, 1973) had already developed penetration equations from experimental data that included steel right
circular cylinder (RCC) fragment simulators ranging in mass from 0.32 to 7.78 g (5 to 120 gr) fired against various tire
thicknesses. The intent of the experimental design developed for this effort was to supplement the work of Danish with
smaller RCC firings, from the Vg work, and with approximately 50 firings of real fragments so that the validity of the
penetration equations could be extended to the smaller fragment regime. The mass of the real fragments ranged in size
from 0.05t00.36 g (0.77 to 5.5 gr). They were fired against the sidewall, lugs, and between lugs. For the development of
the penetration equation, the procedure required that all firings produced fragments that perforated the tire sections.
Experiments were conducted with different striking velocities so that a range of overmatches was achieved for each
fragment mass and target thickness combination.

In the 1960s, The Johns Hopkins University developed a set of empirical penetration equations based on steel
fragments fired against various materials, including rubber, This effort, called Project THOR (The Johns Hopkins
University 1961), predicts residual velocity and residual mass given the following independent variables: target
thickness, average impact area of fragment, fragment striking mass, obliquity, and fragment striking velocity.
Coefficients were computed for each of the different target materials. The forms of the equations are as follows:

Vp = V- 102 (TA)® M€ (sec 04 V® )
and M; = M - 10f (TA)2 MP (sec 8)1 Vi, @)
where V; =residual velocity (fps) M; =residual mass (gr)
Vs = striking velocity (fps) M; = striking mass (gr)
T = thickness of target (in) 0 = obliquity angle (deg)
A = average impact area (in2) a,b,c,d,e,f, g h,i,j = empirically determined coefficients.

Danish (1968, 1973) realized that the use of rubber as a target material for tires was inappropriate, since tires have
nylon threading in addition to rubber. Therefore, he used the THOR form to update coefficients for the penetration of
steel fragments against tires.

Danish claimed that during his experimentation, fragment mass did not degrade when perforating tires. This claim
was substantiated in the very early firings conducted as part of the ballistic limit work. Thus, only a residual velocity
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penetration algorithm was deemed necessary. The experiments conducted by Danish included 641 fragments with the
range of mass size from 0.32to 7.78 g (5 to 120 gr). Both bias-ply and radial tires were included in the combined data set,
since statistical analysis showed they were not significantly different.

Our goal was to augment Danish’s data with smaller fragments and to account for fragment material differences.
Data for the algorithm development included data from 131 firings that perforated the target in the ballistic limit
experiment and 36 additional firings of real fragments along with 641 data from Danish’s experiments. This provided a
total of 808 data points for the development of a THOR-type penetration equation.

The THOR form (Equation 1) is nonlinear, and the coefficients could be determined using nonlinear least squares.
However, the nonlinear least squares simply performns a fit, and it is difficult to test for the significance of the estimators.
Except asymptotically, nonlinear regression does not provide the ideal statistical properties of unbiased and minimum
variance estimators, as linear regression. Also, there are no exact statistical tests on model parameters for nonlinear
regression (Myers 1990).

Although the THOR form is a nonlinear equation, it is intrinsically linear, since it can be transformed into a linear
form:
log (Vs—Vp) =a+blog (TA) + c log (M;) + d log (sec 0) + e log (V). 3)

Thus, the statistically significant variables and their corresponding coefficients can be estimated through the use of
multiple linear regression. The original THOR project conducted by the Johns Hopkins University proceeded in this
manner. Variables considered in the current anlaysis included the original THOR variables, separating the variables
thickness and area, and three variables that might account for threat material differences. They are K = shape factor
(cm%g@3)), D = density of material (g/cm?), and E = modulus of elasticity (megapascals). However, only one of these
three variables is necessary to describe material differences. The correlation between density and modulus of elasticity is
1.00; therefore, we dropped elasticity, since density is an easier variable to obtain. The correlation between density and
shape is -0.76 (in log scale). Either one (but not both) could be used in the model. The adjusted R2 value (Rzadj) using
either variable is 0.783. R2 s the ratio of the variation of the regression sum of squares for a given regression model to the
variation of the total sum of squares for a given data set. The closer this ratio is to unity, the more efficient the model is at
prediction. The adjustment to RZ accounts for the degrees of freedom in the model, and thus, allows for proper
comparisons among models with different numbers of independent variables. The variance inflation factors,
eigenvalues, and conditioning index for shape or density with the other significant variables are well within the
rule-of-thumb criteria (Myers 1990) for checks of ill-conditioning. These are measures of correlation between the
regressor variable to enter the model and the variables already in the model when performing a stepwise regression
procedure.

Shape was chosen over density since shape factor is more intuitive to a vulnerability analyst as an indication of a
fragment’s ability to penetrate. For example, a rod will perforate a target easier than a sphere of the same mass and
velocity. Using shape also meant that a vulnerability analyst would only need typical arena data for fragmenting
munitions and would not have to research material properties such as density.

4.2.1 Obliquity. The final form of the tire penetration equation does not include a term for target obliquity, since all
firings were conducted at a 0° obliquity. It was felt that obliquity would not be a significant parameter for a “soft” target
except for the increase of the target line-of-sight thickness. Danish (1968) had conducted four firings with 3.9-g (60 gr)
steel fragment simulators at an obliquity of 60° and came to the same conclusion about the significance of obliquity.

To further investigate the effect of obliquity, sixteen additional firings that perforated the 1.52-cm sidewall target
were conducted at a 45° obliquity. Three were steel and 13 were tungsten RCC fragment simulators; both types were
0.26 g (4 gr). Using the penetration equation, a check for consistency was conducted by changing the line-of-sight
thickness (by multiplying thickness by vZ) and using the new model to predict the residual velocity. The standardized
residuals are all within +2.2. Generally, if the residuals are random and within =+ 3.00, the model is in check.

4.2.2 Real versus Simulated Fragments. Both real and simulated tungsten fragments were included in the data set
of 808 points, providing a good opportunity to determine whether there is a significance between the two for developing
penetration equations. The total number of 112 tungsten fragments included 45 real and 67 simulated fragments. An
indicator variable in the regression analysis revealed that there is no significant difference between real and simulated
fragments.

4.2.3 Multiple Barriers. The penetration equations developed under the original THOR project were for
perforation of a single target plate. Over the years, the THOR equations have been applied recursively to successive
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plates even though the additional plates are beyond the limits of the data from which the equations were generated. Much
of the error associated with this practice comes from the fact that fragments are deformed and change shape when they
perforate metal plates. Thus, the shape of the fragments at successive plates would be changed from the original.

Bely et al. (1992) showed that, theoretically, implementing a recursive algorithm will not provide an unbiased
estimate of the final residual velocity. Their analysis showed that the residual velocity underpredicted
approximately 50 m/s for each metal plate perforated. However, tires are “soft” targets, and it was shown via
experimentation that fragment mass did not change upon perforation; therefore, it is possible that successive barriers may
be handled by the penetration equation in either a recursive fashion or by increasing the thickness term. In an attempt to
gain insights into this issue, a small excursion was conducted. Eighteen firings were conducted at the sidewall of an intact
tire. These 18 firings resulted in two 0.32-g (5 gr) and five 0.97-g (15 gr) steel fragment simulators that perforated when
fired at the 1.52-cm area of the sidewall. The intent was to perforate both sidewalls of the tire and to record striking and
residual velocities. The tire was not inflated so that a single tire could be used for this excursion.

The penetration equation was first implemented in a recursive manner to check agreement with the experimental
data. The residual velocity computed from the equation after penetration of the first side of the tire was used as the
striking velocity for the second tire barrier. The predicted versus observed plot for the final residual velocity revealed no
bias in the prediction, and the data fit well around the perfectfitline. When the tire thickness was doubled as input into the
penetration equation, the predicted residual velocity consistently overpredicted the actual value. Although this excursion
was taken on a very small sample, it does allow us to see that there are no gross errors for recursively estimating a
fragment through multiple barriers, when the target is “soft” relative to the fragment.

4.2.4 Coefficients and Goodness-of-Fit. The significant variables and their coefficients solved in the linear form
were transformed back into the original form as

Vem= Vg— 101479 0.411 Ms—0.191 TO.732 VSO.SSO. 4

The fit of the equation to the experimental data is reasonable as given by an adjusted R? of 0.783. The standard error,
also known as the square root of the residual mean square error (MSE), Ogog (vs — vr}» is 0.102. Both the R2 and the
standard error are comparable to Danish’s original fits with values of R2 = 0.752 and standard error = 0.096.

Figure 1 presents apredicted versus observed residual velocity plot, which shows that there is reasonable agreement
between the Equation 4 and the observed data set. If the model were a perfect representation of the data, all points on the
graph would fall on the solid, perfect fit line. It is obvious, by inspection, that the points do tend to cluster around the
perfect fit line, with slight overpredictions when V¢ is close to 0. (These overpredictions close to 0 can be corrected with
the incorporation of Vs to the THOR penetration equations. This is addressed in the expanded ARL report [Grote etal.
1996].) One datum, with a standardized residual of — 11.1, is encircled as an outlier. This was also an influential point
and therefore was omitted in this final fit. Other points that appear to stray from the perfect fit line have smaller
standardized residuals in the logarithmic scale. Omitting them did not substantially change the equation and thus were
not highly influential. Therefore, they remained in the data set for the model development.

Predicted versus Observed Vr
Al Data

1500

1000

predicted Vr (m/s)

Vr (mvs)

Figure 1. Predicted versus Observed Residual Velocity, All Data.
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5. TIRE DEFLATION AND CTIS PERFORMANCE
5.1 DEFLATION AND CTIS EXPERIMENTATL PLAN

The objective of the tire deflation effort was to determine how quickly tires would become inoperable in the absence
of a functional tire inflation system. A set firing matrix was not developed prior to initiation of this effort due to the
uncertainty of what combination of number of fragment perforations and sizes of fragments would be required to deflate
the tires within the time limits prescribed by traditional A-, B-, and C-kills. Traditional A-, B-, and C-kills correspond to
time to failure criteria of 5, 20, and 40 minutes, respectively. This, of course, also held true for CTIS performance
evaluation.

The experimental setups for the tire deflation and CTIS performance work were identical as far as instrumentation
and ballistics were concerned. The differences were in the configuration of the BM-21’s tire inflation components. In
both cases, the front driver’s side tire (designated as Tire 1) was used as the target tire. It was decided that the target tire
would remain stationary during the firing process for each experiment since Bodt and Schall (1991) showed that motion
of a tire was insignificant and otherwise would require a rather sophisticated setup. Furthermore, the vehicle had to
remain stationary during the tire deflation time to allow for collection of pressure-time data. A pressure gauge was
installed in line with the air hose connected to TFire 1. This allowed for monitoring of the tire pressure before and during
experimentation. Guns ranging in size from 5.56 mm to 12.7 mm were used to fire fragments and fragment simulators
ranging in size from 0.13 g to 13.4 g. The setup also contained a stripper plate for the plastic sabots used to hold the
fragments, two “sky screens” to measure velocity, and a steel barrier placed behind the front tire to protect engine
components of the BM-21 rocket launcher. Prior to conducting each tire deflation experiment, the CTIS was activated to
inflate Tire 1 to approximately 3.2 kg/cm? (45 psi). The valve to Tire 1 located in the truck cab was then closed to isolate
the tire from the rest of the inflation system. This was done to allow the tire to deflate as if it were on a vehicle that did not
have a CTIS.

The evaluation of the CTIS performance required a different valve configuration and required that the engine be
running throughout each experiment. All tire valves remained in the open position for each CTIS experiment. The CTIS
was configured in this manner to represent the CTIS design currently in use. This effectively meant that all of the tires
could deflate if a single tire were perforated.

5.2 TIRE DEFLATION ANALYSIS AND RESULTS

The single-tire deflation experiments were conducted to determine the validity of the functions that were being used
for tires for describing the probability of component dysfunction given a hit (Poq) at the 40-minute time criterion. These
functions are provided as inputs to vulnerability codes for use in determining the probability of causing component
dysfunction given ahitby a fragment of a certain size and velocity. If the existing functions were found to be invalid, new
functions or models were to be developed that could be implemented in vulnerability codes. The P.gi, functions are “step
functions” that correlate fragment mass—velocity combinations to a Pcgp, value. Figure 1 graphically represents one of
the two-step Pcqr, functions. “Two-step” means that for each mass, there are two velocity steps that give different Pegp,
values. Note that the P.q4p, values provided are for single fragment impact on a single tire. There is no ability to account
for the effect of multiple fragment impacts. Also note that this function is indicating that a single fragment as small as
0.06 g (1 gr) has the potential to cause tire dysfunction. Itis easy to understand why tires have been shown as being quite
vulnerable in many vulnerability analyses.

Function 1
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—— 15553
32402

——- 120608
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frmm e m ey

0.0

0 500 1000 1500
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Figure 2. An Example of a Step Function for the Probability of Component Dysfunction Given a Hit.
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The first assessment of the experimental data collected reveals that the existing functions dramatically overestimate
the vulnerability of tires to single fragment attacks. A few experimental results are provided below to illustrate the point
about the inadequacy of the existing P4/ functions:

1) It took five to six perforations, of a single 14.00-20 tire, by 0.26-g (4 gr) steel fragment simulators to deflate

the tire within 40 minutes.

2) 25-26 perforations by 0.26-g (4 gr) steel fragment simulators were required for deflation within 5 minutes.

Thus, it was clear that not only were the P.qp, functions invalid, but a completely new approach would be needed to
account for the effects from multiple fragment perforations. The new approach was to develop a model, utilizing

regression analysis of the experimental data and engineering calculations, that would calculate tire pressure as a function
of time, number of perforations, and fragment size.

Starting with the ideal gas law and experimental results on gas effusion, Equation 5 can be derived (see Grote
et al. [1996] for derivation) as

P(t) = P(0) e [t (constant Hn) R T/V)] )
where P = tire pressure (kg/cm?) H = area of a hole (cm?2) (assumes equal size holes)
P(0)= initial tire pressure (kg/cm?2) T = absolute temperature (K)
t =time (s) R =universal gas constant (84.73 kg ‘- cn/ mole ‘K)
n = number of perforations V = total volume of system (cm3).

The model (5) is based on ideal conditions uncomplicated by irregularly shaped holes of varying depths which can
change the nature of the air flow. Experiments do not provide a direct measure of the hole area or shape characteristics.
To make a link from the shot conditions of the experiments to the functional description of the tire pressure, a slightly
altered version of Equation 5 is used, incorporating the fragment presented area into a new constant C.

P(t) = P(0) e * O R'TV), ©
where C = {0.10205 (P,) + 0.19662 Z(P,)/n}*
and P, = presented area of a fragment at impact.

Cis not a function of the tire volume (V), the time (t) of the measurement, the initial tire pressure, or temperature. Itis
the only degree of freedom in Equation 6 for fitting to experimental data, and it is an implicit function of variables related
to hole geometry, number of holes, exposed area, and possibly other damage characteristics.

The empirical value for C starts with the basic exponential equation: Pi(t) =P(0)e ¢t * ), For each of the i = 58
data sets, the C; parameter was determined from a regression in logarithmic form: In(P;j(t)) = In(P(0)) -t - C;. The R?2
foreach was atleast 0.95. A common C was determined for the entire data set based on tire damage characteristics. Mass
and shape of fragment do not characterize the damage, but instead the fragment itself. However, the average fragment
presented area and the cumulative presented area on the tires do characterize damage. Both are statistically significant in
amultiple regression analysis and were included as independent variables. The overall fit for C, which is forced through
the origin, has anR? =0.957. Figure 3 shows the fit of the Tire Deflation Model (Equation 6) for four fragments, 0.26 g
(4 gr) each, perforating the tire. The three replications of the experiment illustrate the amount of experimentwise
variability in the deflation rate.

The data upon which the tire deflation model was based were for fragments of identical size. Experimental
excursions were conducted, showing the adequacy of the deflation model for tires of various sizes, for deflation caused by
perforation with multiple fragments of various sizes, and for perforation by much larger fragments. A comprehensive
discussion of these excursions is presented in Grote et al. (1996).
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gauge pressure (kg/cm*2)
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Figure 3. Example of Tire Deflation Fit for Four Fragments, 0.26 g Each.

5.3 CTIS PERFORMANCE ANALYSIS AND RESULTS

The capability of an on-board CTIS has never been explicitly modeled in a vulnerability analysis. Thus, additional
experiments were conducted to determine the effect a CTIS could have on the ability of fragments to deflate some or all of
the tires on the BM-21. After an appropriate engine speed was determined, 45 experimental firings were conducted.
Some interesting results that point out the significance of a CTIS are as follows:

1) The CTIS was able to maintain the maximum tire pressure in all six tires of the BM-21 when a single tire was
perforated 35 times by 0.26-g (4 gr) steel RCC fragment simulators.

2) Eleven perforations of a single tire, with 0.97-g (15 gr) steel fragment simulators, caused pressure in all tires
to drop to 2.46 kg/cm? (35 psi) in 1,227 s (~20 minutes) and 2.11 kg/cm? (30 psi) in 2,400 s (40 minutes).

3) A single perforation of a tire by a 13.4-g (207 gr) steel fragment simulator, fired from a 0.50-caliber gun,
resulted in a rapid drop in pressure that leveled off at about 2.5 kg/cm? (38.6 psi).

Experimentation never proceeded beyond the number of perforations mentioned in 2 and 3 above because once the
tires were deflated with those numbers of holes, they could not be reinflated by the CTIS. Since sufficient experimental
data could not be obtained to develop an empirical model for CTIS performance, theoretical models were sought.

As a first approximation of the CTIS system, the tires were all assumed to be instantaneously in equilibrium with
each other, and one pressure function sufficient for all tires. In effect, there would be one large tire with a volume equal to
the sum of the volumes of the individual tires. The reservoir tank, which is generally held at ~7.1 kg/cm? (100 psi) prior
to a leak, represented another volume. When the CTIS is set in the inflate mode and the engine speed is constant, the
compressor provides a constant number of molecules per unit time to the reservoir.

A reservoir tank for both this model and subsequent more complex models appeared to be unnecessary, since the
higher starting pressure almost instantaneously equilibrated with the tire pressures. Inclusion of the tank might be needed
if the volume in the tank were not such a small fraction of the tire volumes or if the tank pressure were allowed to rise far
beyond a fixed cut-off pressure. Without the reservoir, the air from the compressor is assumed to move directly into the
tire compartment.

This simplified model yields a closed-form solution:

P(t) = my/c - (my/c - P(0)) e U R'T/V)), @)
where P = tire pressure (kg/cm?), gauge pressure t =time (s)
m; = number of moles/time from compressor T = temperature (K)
P(0) = initial tire atmospheric (gauge) pressure (kg/cm?) V; = volume of tire (cm3)
¢  =rate constant for air leaking from tires to atmosphere R = universal gas constant
(and is estimated by the regression C-value) (84.73 kg - cm/ mole -K).

As long as the leak rate of each tire is small or the damage to each tire is essentially the same, this simplified form
gives very satisfactory results. However, when some tires have many holes and some have few or no holes, the individual
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tires can have quite different pressure histories. Note that if the flow rate from the CTIS (m) is set to zero in Equation 7, it
can be reduced to the Tire Deflation Model. A complete derivation is omitted for brevity.

An extensive effort was put forth in an attempt to try to preserve the simplicity of this closed-form model. We
believed the less information required about a target vehicle, the easier implementation would be in vulnerability codes.
Selective application of the simplified CTIS model to groups of tires with similar damage and the Tire Deflation Model to
tires with extensive damage could not capture the complexity of a flow in which the CTIS compressor air is dynamically
allocated according to relative pressures in the tires.

A complex model having separate air lines from each tire to a common junction which then connected to the
compressor was proposed. The model was simplified a bit by assuming the hoses connecting the tires to the common
junction were all of the same length and had the same flow characteristics. The value of the constant that characterized
these hoses was determined by fitting the model to data for which one, two, and three hoses had been disconnected from

the tires.

This model leads to a system of seven coupled, first-order, linear differential equations. A closed-form solutionis a
complicated sum of seven exponential terms and provides no more insight than a solution obtained by numerical
methods. The software developed used a simple Runge-Kutta technique to generate pressure histories for each of the
seven functions. Systems with a different number of tires can be used in the program by changing the number of tires in
the input

Py(t) = (RT/V)) [en®Po() -Pi®) ~ci Pi(t) ],  i=1,..n ®

Py'(t) = (RT/Vp) [my — coPo(t) - Z¢; Po(® —Pi(1)) ], i=1,...n. ®

To use this model, the analyst must be able to provide the number of tires connected to the CTIS, the initial tire
pressures, the volume of each tire, deflation constants from the regression formula for each tire, a constant used in
characterizing the flow rate from tires to the junction, the compressor capacity inmoles of gas per second, the airreservoir
volume (not critical — can be approximated), the air temperature, and the atmospheric pressure.

6. SUMMARY AND CONCLUSIONS

The ability of small steel and tungsten fragments to perforate tires was fully characterized, for a wide range of tire
thicknesses, via the ballistic limit characterizations and the development of a residual velocity penetration equation. A
residual mass algorithm was not developed since there appeared to be no erosion of the fragments upon perforation of the
tire targets. Small excursions were conducted to determine how target obliquity and multiple target barriers should be
handled when applying the residual velocity algorithm.

The issues of tire deflation and the effect of central tire inflation systems were addressed through the development of
three models. First, in the absence of a CTIS, Equation 6 should be applied to each tire individually. This equation was
developed via theoretical derivation and regression analysis of experimental data. When the vulnerability of a vehicle
thathas a CTIS is to be analyzed, the complex CTIS model presented in section 5 should be implemented. The simplified
model, Equation 7, provides a good representation when the tire damage is minimal or all tires are damaged to “nearly”
the same degree. It is a very difficult task to determine how “nearly” should be defined. Additionally, it is difficult to
deflate all tires within standard time criteria of 5, 20, and 40 minutes when minimal damage has occurred.

An issue that was not explicitly stated in the introduction, is the extensibility of the work conducted as part of this
effort to vehicles other than the BM-21 and the URAL-375D. Both the tire deflation and the CTIS models are in a general
form that allows for application to any other vehicle. To apply these models to other vehicles, certain parameters about
the vehicles must be known. For the tire model in Equation 6, the volume of each tire and the initial tire pressure must be
known. Of course, 2 minimum tire pressure must also be provided to determine whether a particular tire would be
considered nonfunctional. Additionally, the CTIS model requires the number of tires connected to the CTIS, an airflow
rate from the compressor and air tanks to the system of tires, and information concerning the connecting hoses.

Another issue for extensibility, which is not so obvious, concerns the use of the penetration equation that was
developed. Tire thickness is a major parameter in the penetration equation, yet most target descriptions have tires with
uniform thickness profiles. The differences in tire thickness were considerable over the tread and sidewall areas of the
BM-21 tires, not to mention variability that exists from tire to tire. This leads one to believe that to accurately apply the
penetration equation to any tire, the thickness profile of the sidewall and tread areas will be required. This further implies
that the geometric target descriptions of tires will have to be more detailed than those that currently exist.

119




7. REFERENCES

Bely, D., B. A. Bodt, and R. N. Schumacher. “Real Bomblet Penetration Evaluation,” BRL-TR-3400, U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1992.

Bodt, B., and J. Schall. “Survivable Tire System (STS) Test Analysis: Stage 1 Survivability,” BRL-TR-3226, U.S.
Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1991.

Chambers, J. M., and T. J. Hastie. “Statistical Models in S,” Wadsworth & Brooks/Cole Advanced Books &
Software, AT&T Bell Laboratories, Pacific Grove, CA, 1992,

Danish, M. B. “Perforation of Truck Tires by Compact Steel Fragments,” BRL-MR-1926, U.S. Army Ballistic
Research Laboratory, Aberdeen Proving Ground, MD, 1968.

Danish, M. B. “Perforation of Radial Truck Tires by Compact Steel Fragments,” BRL-MR-2269, U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1973.

Draper, N., and H. Smith. Applied Regression Analysis, Second Edition, John Wiley & Sons, Inc, NY, 1991.

Grote, R. L., L. L. C. Moss, and E. O. Davisson. “New Tire Penetration and Pressure Models for Improved
Vulnerabilility Analyses of Wheeled Vehicles,” ARL report in publication, 1996.

Joint Technical Coordinating Group for Munitions Effectiveness. “Joint Munitions Effectiveness Manual-Surface
to Surface, Fragmentation and Terminal Effects Data for Surface to Surface Weapons,” JTCG/ME-61S1-3-4, Revision
1, July 1982.

McKaig, A., and J. Thomas. “Maximum Likelihood Program for Sequential Testing Documentation,”
BRL-TR-2481, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1983.

Myers, R. H. Classical and Modern Regression with Applications, Second Edition, PWS-Kent Publishing
Company, Boston, MA, 1990.

The Johns Hopkins University. “The Resistance of Various Metallic Materials to Perforation by Steel Fragments;
Empirical Relationships for Fragment Residual Velocity and Residual Weight,” Project THOR Technical Report, No.
47, for the Ballistic Analysis Laboratory Institute for Cooperative Research, April, 1961.

U.S. Army Materiel Command. “Experimental Statistics - Section 2 - Analysis of Enumerative and Classificatory
Data,” AMC Pamphlet 706-111, 1969.

U.S. Army Materiel Development and Readiness Command. “Selected Topics in Experimental Statistics With
Army Applications,” DARCOM Pamphlet 706-103, 1983.

USSR. “Model URAL-375D Truck,” Service Manual Seventh Edition, USSR, Moscow, undated.

Warner, D. R.  “Ground Transport Vehicles (Current and Projected)}—Eurasian Communist Countries,”
DST-1150S-280-87, Foreign Science and Technology Center, Charlottesville, VA, 1987.

120




USING REAL-WORLD AND SIMULATION DATA
TO ESTIMATE A LOCATION PARAMETER

Dennis E. Smith
Desmatics, Inc.
P.O. Box 618
State College, PA 16804

ABSTRACT

This paper addresses the problem of estimating a location parameter y using observations from both a real-world
system and from a simulation model of that system in the estimation process. The paper examines, for a simple situation,
possible estimation methods and investigates how bias in the simulation model affects its usefulness. Even for the "nice"
case considered, one cannot be casual about how to use the two types of data.

INTRODUCTION

Simulation has become an indispensable technique for examining complex real-world systems or processes. Since
the advent of the digital computer, myriads of simulation models have been constructed. An important question is
whether a simulation model is valid, i.e., whether it adequately represents the real-world system it purports to emulate.

When real-world data is available (or can be obtained), simulation validation is often approached via hypothesis
testing; the question to be answered is whether or not the simulation is "accurate." However, a hypothesis-testing
approach will tend to result in many more inaccurate models being "accepted” than accurate models being rejected,
because of the usual imbalance between the probabilities of Type I and Type II errors. This situation can be ameliorated
to some extent by consideration of the operating characteristic (OC) curve associated with any test. The OC curve can
be used to make more reasonable trade-offs between the two types of errors. An approach that provides more
information than one based on a hypothesis test examines confidence intervals on the differences between simulation
parameters and those of the corresponding process being modeled. (For a further discussion of simulation validation
and references to the literature, see Law and Kelton'.)

In any event, even if a simulation model is not a faithful representation of the real-world system, that model may
still provide useful information. The question then becomes one of how best to use that information in light of the real-
world observations. For example, possible answers to this question might be that the simulation data should:

(1) beusedasis,

(2) be discarded,
or (3) bemodified in some defined manner.

PROBLEM SCOPE

This paper addresses the question of how best to combine two sets of data, one from a simulation model and the
other from the corresponding real-world system, when the mean of a univariate response is to be estimated. The
particular situation considered is one in which:

(1) nindependent real-world observations y,, ..., y, from N(u,0?) are available

and (2) m independent simulation observations w,, ..., W, from N(u+yo,0?) are also available.

Of course, the values of p, 0, and y are unknown. If y # 0, the simulation data contains a bias.

Approved for public release; distribution is unlimited.
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This situation is essentially a slippage model, which is often used in the investigation of possible spurious data.
(See Bamett and Lewis’, for example.) Although this problem framework could be generalized (e.g., to unequal
variances and correlated observations), an objective of this paper is to show that even for this simple and somewhat
unrealistic situation, there are still concems.

This paper examines the usefulness of the simulated data in estimating the location parameter p as a function of the
simulation bias y, adopting mean square error (MSE) as the criterion for evaluation. If there were no simulation bias,
then the maximum likelihood estimator, the pooled mean (ny+mw)/(n+m), would have minimum MSE. Since the

assumption of no bias is at best tenuous, this paper examines what happens to this estimator and three additional ones
for values of y # 0.

ESTIMATION OF y

Suppose it is decided to estimate p by using an estimator

f,=py+(1-pw

which, as a weighted average of the real-world and simulation observations, is of the same general form as the pooled
mean in which each observation is weighted equally, i.e., with p = p* = n/(n+m).

For general p, where p is a constant,
MSE(ft) = p*o’/n + (1-p)’[(0’/m) + y*o?} M
If only the real-world data is used (p=1), the estimator would be fi, =Y. For this estimator,
MSE({1,) = o*n ¥))

On the other hand, if both data sources were used, giving each observation equal weight, the estimator would be the
pooled mean

flpe = (Oy+mW)/(n-Hm),
for which
MSE(f,.) = o*(n+m+m’y?)/(n+m)’ ?3)

As one would expect, for values of y close to zero, the estimator fi- based on both sets of observations provides
a smaller MSE than that resulting from the use of only the real-world data. It can be seen from (2) and (3) that the use
of fi,. provides smaller MSE so long as |y| < [(n+m)/nm]"”. For larger values of |y|, the inflation in MSE rapidly
becomes catastrophic; the MSE is unbounded as |y| - .

Such catastrophic results could be avoided by never using the simulation observations, i.e., by always using the
estimator fi, =y. However, such a strategy ignores the opportunity to use the simulation data to obtain better estimates
when vy is small.

Another approach to this problem is to return to the validation framework and use the pooled estimator fi,. if the

simulation model is judged valid, or use the estimator {i, otherwise. An appropriate hypothesis test for testing model
validity would involve the hypotheses

Hyy=0
H:y#0

based on the t-statistic
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t = [nm/(n+Hm)] V43-W)/s

where s denotes the pooled estimated standard deviation. The critical region, assuming a significance level of «, would
be

ft| > t(a/2,n+m-2)
where t(a/2,n+m-2) denotes the upper «/2 point of a t-distribution with n+m-2 degrees of freedom.

If H, were rejected, the estimator fi, = y would be used, while if it were not rejected, the estimator fi,. =
(ny+mWw)/(n+m) would be used. An estimate of y is given by

¥=G§-wis
Therefore, the validation approach results in the use of the estimator

fipe if |¥] < [(@+m)/nm]"*t(a/2,n+m-2)

bt =4
It

i, if || > [(n+m)/nm]"*t(a/2,n+m-2)
where the value of « must be specified.
This estimator is based on an all-or-nothing rule whereby if ¥ is too large, only the real-world data is used, and if ¥
is not too large, all observations are used. Thus, a simulation observation is given either a weight of zero or equal weight

with each real-world observation, depending upon the size of .

A more flexible procedure would incorporate ¥ directly into an adaptive estimator. To arrive at a reasonable
adaptive estimator, note from (1) that by setting

OMSE(f,)/ap =0,
one finds that
p = (ntnmy?)/(n+m+nmy?) C))

provides the minimum MSE. If y = 0, p = n/(n+m), so that {1, reduces to the weighted average with each real-world and
simulation observation given the same weight.

Because y is an unknown parameter, the value of p providing the minimum MSE is also unknown. Thus, one might
consider substituting ¥ for y in (4) and using the resulting value as an estimate of p. This procedure results in an
adaptive estimator fi,. Because p is a random variable rather than a constant, MSE(f};) cannot be obtained by substitution
mto (1).

EVALUATION OF THE ESTIMATORS

In this paper, four possible estimators have been considered for the task of estimating the location parameter p with
real-world and simulation data. These estimators are:

M) g, which always uses the real-world and simulation observations weighted equally,
@ p, which always uses only the real-world observations,
3 4, which is based on a hypothesis test of the validity of the simulation,

and (4) f which is an adaptive estimator based on an estimate of y.
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The performance of these estimators does not depend upon the actual values of i and o since the bias of any simulation
observation is measured in units of o and location has no effect on the results.

To compare the performance of these four estimators for a set of n real-world and m simulation observations, their
MSEs must be evaluated for a range of y values. This poses no difficulty in the case of the first two estimators; the
required MSEs are given by (1) and (2). Unfortunately, things are not so easy for the other two estimators. For the MSE
of f1 one must compute, in (s, ¥, W) space, the expected value of [(ny+mWw)/(n+m)-p)* over the region

|F-W)/s| < [(n+m)/nm]**t(e/2,n+m-2)
and the expected value of (y-p)’ over the region
|§-w)/s| > [(n+m)/nm]"*t(e/2,n+m-2) .
For the MSE of the adaptive estimator fI,, one must evaluate the expected value of
[{ntnm{G-W)/s)*}yrmw)/ [ {n+mrtam[G-w)/s]*} -]

Because of their complexity, an analytic evaluation of these expected values is an impossible task; Monte Carlo was used
to evaluate the MSEs.

Performance of the four estimators was evaluated for two cases: n=3, m=10 and n=3, m=50. For the validity test
estimator {i, four values of & (.01, .05, .10, and .20) were considered. Table 1 and 2 list the MSEs of the four estimators
for these cases relative to the MSE of fi, =, which is 0%/3 in both cases considered. As can be seen, none of the four
estimators dominates or is dominated by any other estimator.

SUMMARY

It is clear that the pooled mean estimator fi ., with its unbounded MSE, is not worth considering. By using either
the validity test estimator f{i or the adaptive estimator fi;, one will come out ahead, or at least not too far behind, if |y|
is either small or large. It is for moderate values of |y|, approximately 1.0 < |y|/o < 3.0, that the worst things occur.
The adaptive estimator appears to be the rational choice since it provides reasonable gains (decreases in MSE) for small
lv| and, in the worst case, does not result in a substantial penalty.

These results indicate that a standard hypothesis test of model validity may be hazardous if the data is to be used
for estimation of . This can be seen from the tables.
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Table 1: MSEs of Estimators Relative to MSE(fi,) = MSE(y) for n=3, m=10.

Pooled Mean
[yl Estimator {i. Validity Test Estimator i Adaptive Estimator {1,
o=.01 o0=.05 o=.10 o=.20

0.0 0.23 0.29 0.39 0.50 0.66 0.62

- 0.5 0.68 0.77 0.91 0.97 0.99 0.75
1.0 2.01 2.02 1.75 1.58 1.32 1.07
1.5 4.22 3.34 2.27 1.82 1.38 1.20

) 2.0 7.33 3.96 2.19 1.60 1.25 1.17
3.0 16.21 2.80 1.32 1.17 1.13 1.11
4.0 28.63 1.28 1.15 1.13 1.10 1.05
5.0 44 .61 1.09 1.07 1.05 1.04 1.04

|
|
Table 2: MSEs of Estimators Relative to MSE( {i,) = MSE(y) for n=3, m=50.
Pooled Mean
|yl Estimator i, Validity Test Estimator [1 Adaptive Estimator {1
o=.01 o¢=.05 ¢¢=.10 &=.20

0.0 0.06 0.12 0.27 0.43 0.64 0.48
0.5 0.72 0.88 0.98 1.04 1.06 0.73
1.0 2.73 2.63 2.16 1.87 1.54 1.11
1.5 6.06 3.91 2.53 1.95 1.44 1.20
2.0 10.74 3.08 1.70 1.31 1.18 1.26
3.0 24.09 1.00 1.00 1.01 1.17 1.07
4.0 42.78 0.99 0.99 0.%9 1.00 1.05
5.0 66.81 0.97 0.98 0.%8 1.01 1.03
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THE EFFECTS OF A COMPUTER-AIDED TELEOPERATION TECHNOLOGY ON
OPERATOR WORKLOAD AND PERFORMANCE OF CONCURRENT TASKS

Monica M. Glumm and Jock O. Grynovicki
U. S. Army Research Laboratory
Human Research and Engineering Directorate
Aberdeen Proving Ground, MD 21005-5425

ABSTRACT

The feedback limited control system (FELICS) is a computer-aided
teleoperation (CAT) technology that enables the remote operator to designate
an extended path that the vehicle will automatically follow. This paper
describes the methodology and results of a study designed to quantify the
effects of this technology on remote driving performance and operator
workload in both single and dual task conditions. In the dual task condition,
the operator's ability to detect and identify targets while driving was also
measured. These data were compared with those obtained when the same
vehicle was operated in the standard mode of remote driving.

Generally, the findings indicate that operators in the CAT mode did not
attain the speeds and committed more driving errors than operators in the
standard mode (p < .001). In the CAT mode, operators rated the effort they
expended to achieve their level of performance higher than did those in the
standard mode (p < .05). In the dual task condition, driving errors increased in
the CAT mode (p < .05) and fewer targets were correctly identified than in the
standard mode of remote operation (p <.01).

INTRODUCTION

In both the computer-aided and standard modes of remote driving, the
operator's task is to designate the vehicle's path. In the standard mode, the
operator maneuvers the vehicle through the scene displayed on a video
monitor, providing continuous control input to which the vehicle responds in
near real time. In the computer-aided mode, the operator plots an extended
path within the driving scene which the vehicle will automatically follow. In
this mode, while the vehicle is maneuvering along the designated path, the
role of the driver is more that of a supervisor. During this interval in time,
the remote driver monitors the progress of the vehicle and watches for any
hazards that may not have been detectable from previous positions. This
technique of remote driving theoretically offers a reduction in operator
workload and potentially enables simultaneous control of another vehicle or
the performance of another task. Additionally, in this mode, driver
effectiveness may possibly be sustained at video update rates far below those
required to contro! a vehicle in the standard mode of remote operation. This

1 Measured using the Snellen visual acuity chart.
Approved for public release; distribution is unlimited.
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latter capability could result in significant reductions in communications
bandwidth and enhance vehicle survivability on the battlefield.

Although the concept of computer-aided teleoperation is not a new one,
there has been little research that supports the anticipated benefits of the
concept or that might assist in the development of a technology that will. This
paper presents the results of a study that may provide insight into the design
and training issues that challenge the developers of this concept -- issues that
must be resolved before some of the possible benefits of this new technology
can be realized.

The computer-aided teleoperation (CAT) technology assessed during this
investigation was the feedback limited control system (FELICS), developed by
AmDyne Corporation of Millersville, MD. An initial demonstrator was built
under a Phase 1 Small Business Innovative Research (SBIR) contract with the
Human Research & Engineering Directorate (HRED) of the U.S. Army Research
Laboratory (ARL). Further development of this system was funded by the
program manager-unmanned ground vehicles (PM-UGV) at Redstone Arsenal,
Alabama. The present study, which was conducted at the request of the PM-
UGV, attempted to quantify the effects of the FELICS on remote driving
performance and operator workload during both single and dual task
conditions. In this study, a reduction in the subjects' experiences of workload
was expected to be reflected in an increase in the operators' ability to drive
and detect and identify targets concurrently.

METHOD

SUBJECTS

The 32 military volunteers who participated in this study were licensed
drivers between the age of 19 and 34 years. All were screened to ensure color
vision and visual acuity of 20/20 vision in one eye and at least 20/100 in the
other eye (corrected or uncorrected).

APPARATUS

Research Platform and Control Statiops. The research platform was a four-
wheel, electrical golf cart, converted by the designer of FELICS to enable
operation in either the computer-aided or the standard mode of remote
driving. The control station used for driving the vehicle in the standard mode
consisted of a steering wheel, brake, and accelerator pedal. In the CAT mode, a
displacement joystick with knob controlled both the direction and steering of
the cursor that spawned waypoints, indicating the vehicle's future path. A
forward movement of the joystick advanced the cursor in the forward
direction. Turning the knob at the top of the joystick to either the left or right
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steered the cursor. A rearward movement of the joystick enabled the operator
to withdraw some or all of the waypoints plotted. If all waypoints were
withdrawn, the vehicle was stopped. This control design had been selected
during an earlier pilot study from two other candidate controllers, which
included the standard controls and a two-axis force stick that was supplied by
the contractor.

In the CAT mode, the vehicle's ability to attain maximum speed was
determined by the straightness and the length of the path (number of
waypoints) that the operator had plotted. The maximum number of waypoints
that could be laid on the course at any one time was restricted to 15 by the
contractor to minimize down-range and cross-range errors associated with
vehicle execution of the designated path. For each of the 15 waypoints
attained, another could be plotted. Each pair of waypoints was 1 m apart. Thus,
the maximum length path that could be plotted at any one time was
approximately 15 m (49 ft).

Yideo Camera and Monitors. For each mode of operation, the video image
was supplied by a 1/2-inch charged couple device (CCD) color camera mounted
on board the remote platform. A 6-mm focal length lens provided the remote
operator an approximate 55° horizontal and 43° vertical field of view (FOV).
The driving scene was displayed on a 13-inch color monitor. The terrain
scenes and targets were displayed on three 20-inch color TV monitors above
the driving display. The resolution of the camera, lens and display assembly
was 20/200 1. A different camera location was selected for each mode of
remote driving to accommodate the distinct differences between driving
technologies and to avoid biasing performance in one or the other of these
modes. The location of the camera used for operations in the CAT mode was the
decision of the contractor who designed the system. This camera was mounted
on the left side of a pan-tilt mechanism that was centered laterally on the
vehicle. The camera used for operations in the standard mode was fixed
approximately 0.8 m ( 2.6 ft) below the pan-tilt device.

Test Course. The study was conducted on an indoor test course where
driving speed and error are measured automatically. The course consists of
five segments that include straightaways, turns (right and left hand),
serpentine, figure 8, and an obstacle avoidance segment. For the first four
segments of the course, the measure of driving error is the distance traveled
off the roadway by one or more of the vehicle's wheels. For the last segment
(obstacle avoidance), error is based on the number of obstacles hit. For this
study, three-dimensional cloth objects were hung along the roadway of the
course to represent trees and shrubs that briefly obscured the remote
operator's view of the road ahead.

PROCEDURES

During the study, each of the 32 subjects was randomly assigned to one of
two groups. One group (Group A) was trained and tested in the CAT mode using
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FELICS, and the other (Group B) was trained and tested in the standard mode of
remote driving. Before training in remote driving, all subjects received
training in target recognition and identification, as well as instruction in
assessing their workload experience using the National Aeronautics and Space
Administration-Task Load Index (NASA-TLX). During training in remote
driving, each subject made consecutive runs through the test course in the
assigned mode of operation until an asymptote had been attained in both
driving speed and accuracy. The subject then completed two additional trials
in which he or she received practice in performing the target identification
and driving tasks concurrently. A total of six test trials was then performed in
the assigned mode of remote driving. During three of these trials, the subject's
only task was to drive the vehicle; during another three trials, the subject was
required to perform the driving and target-identification tasks concurrently.
The order of presentation of single and dual task conditions was
counterbalanced.

During test, each of the 16 subjects within Group A was shown different
target scenarios; however, subjects within Group B were shown the same
scenarios as their counterparts in Group A. During any given target scenario,
a total of 18 targets was presented. Each of the six target types was presented
once on each of the three target monitors in a randomized order. The locations
at which these targets appeared in the scene were also randomized. The sizes
of the targets varied, based on their location within the scene. Each target was
presented one at a time for 3 seconds. Target presentation was effected by
microswitches located every 4.9 m (16 ft) along the roadway of the test course.
Except for the obstacle avoidance segment, an equal number of targets were
presented in each course segment during each target scenario. In any given
course segment, those switches that effected target presentation were varied
among scenarios. A time-to-target presentation of 1 to 3 seconds was randomly
generated when a designated switch was tripped by the wheels of the remote
platform. One of the six target types then appeared at one of the six target
locations on one of the three monitors in accordance with a pre-determined
scenario on file in the computer. When the target was displayed, a counter
was activated. When the subject detected and announced “target,” the
investigator immediately depressed a pushbutton that stopped the counter.
Time to detect and vehicle speed at detection were stored. The subject was then
required to identify the target by owner and type. The investigator compared
the subject's response with the programmed scenario, noting whether the
target was correctly identified. After 3 seconds, the target automatically
disappeared from the screen.

RESULTS

ERROR

Mean driving error (distance traveled off the road) on the first four
segments of the course was subjected to an analysis of covariance (ANCOVA)
with driving mode (STD versus CAT) as a between-subjects effect, and task
conditions (single versus dual) and course segments as within-subject effects.
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A significant main effect was found for driving mode, F (1,29) = 21.6, P < .001,
with mean errors of .21 m and .77 m for the CAT and STD modes, respectively.
This main effect was attributed to difficulties that drivers in the CAT mode
experienced in judging waypoint positioning at distances from the vehicle.
The ANCOVA also revealed a significant main effect for condition, F (1, 29) =
4.34, P < .05 with mean errors of .77 m and 1.01 m for the single and the dual
task conditions, respectively. This finding simply indicates that drivers
commit more driving errors when required to perform a second task. The
significnt effect found for segment, F (3, 90) = 7.86, P < .001, is primarily
attributed to the greater driving accuracy achieved on the less difficult
straightaway segments of the course. More importantly, a significant
interaction for segment and driving mode, F (3, 90) = 7.66, P < .001, is shown in
Figure 1. This interaction is attributed to the lack of a difference in error
between the STD and the CAT mode on straightaways as compared to the large
differences in errors that occurred between these modes on the other
segments of the course. All other effects failed to reach significance at the .05
level of confidence.
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Figure 1. Mean driving error by remote driving mode and course segment
averaged over task conditions.

In the last segment of the course (obstacle avoidance) by contrast to the
first four segments, the measure of driving error was the number of obstacles
hit. Therefore, a separate ANCOVA was performed on this segment with
driving mode and conditions as within effects. The analysis revealed a
significant main effect for driving mode, F (1, 29) = 218.21, P < .001, with a
mean number of hits of .81 and 1.50 for the STD and CAT modes, respectively.
This effect is attributed to the design of the cursor and its offset from the
centerline of the vehicle which caused difficulties in judging vehicle position
with respect to obstacles. All other effects failed to reach significance at the
.05 level of confidence.
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SPEED

Mean driving speed on the first four segments of the course was also
subjected to an ANCOVA with driving mode (STD versus CAT) as a between-
subjects effect, and task conditions (single versus dual) and course segments as
within-subject effects. A significant main effect was found for driving mode,
F(1,29) = 196.3, P <.001, with mean speeds of 7.64 kph and 4.69 kph for the STD
and CAT modes, respectively. This main effect was attributed to a design
feature of CAT that automatically reduces the speed of the vehicle in
anticipation of turns to maintain vehicle stability. The ANCOVA also revealed a
significant main effect for conditions, F (1, 29) = 25.3, P < .001, with mean
speeds of 6.36 kph and 5.96 kph for the single and the dual task conditions,
respectively. This finding simply indicates that drivers drive more slowly
when required to perform a second task. The significant effect found for
segment, F (3, 90) = 296.0, P < .001, is primarily attributed to the greater speeds
achieved on the straightaway segments of the course by comparison to any
other course segment. Also, speeds in the turns were higher than those in the
less predictable serpentine. More importantly, a significant interaction for
segment and driving mode, F (3, 90) = 27.81, P < .001, is shown in Figure 2. This
interaction is attributed to the somewhat smaller difference in speed between
the STD and the CAT mode on straightaways as compared to the other segments
of the course. All other effects failed to reach significance at the .05 level of
confidence.
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Figure 2. Mean driving speed by remote driving mode and course segment
averaged over task conditions.

To be consistent with the analyses of error, a separate ANCOVA was

performed on course Segment 5 (obstacle avoidance) with driving mode and
conditions as within effects. The analysis revealed a significant main effect
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for driving mode, F (1, 29) = 72.35, P < .001, with mean speeds of 5.21 kph and
3.10 kph for the STD and CAT modes, respectively. As in the analysis of speed
on the first four segments of the course, this effect is attributed to a design
feature of CAT that reduces the speed of the vehicle in anticipation of turns.
All other effects failed to reach significance at the .05 level of confidence.

TARGET IDENTIFICATION PERFORMANCE

The chi-square statistic was used in the analysis of the mean number of
targets correctly identified with driving mode (STD versus CAT) a between-
subjects effect and course segment a within-subject effect. A significant main

effect was found for driving mode, 32 = 8.28, P < .01, with a mean number of
correct identifications of 9.80 and 8.42 for the STD and CAT modes, respectively.
This main effect may be attributed to a reduction in the amount of time that
subjects in the CAT mode spent in target inspection to confirm their identity.
All other effects failed to reach significance at the .05 level of confidence.

The mean time to detect those targets correctly identified and the mean
driving speed at the time these targets were detected were each subjected to an
analysis of variance (ANOVA) with driving mode (STD versus CAT) a between-
subjects effect and course segment a within-subject effect. In the anlaysis of
time to detect, all effects failed to reach significance at the .0S level of
confidence. However, the results of the ANOVA for driving speed at the time
these targets were detected, revealed a significant main effect for driving
mode, F (1,30} = 106.2, P < .001, with a mean speed of 6.21 kph and 3.97 kph for
the STD and CAT modes, respectively. As might be expected, a significant main
effect was also found for segment, F (4) = 135.2, p< .001, and there was a
significant interaction for segment and driving mode, F (4, 120) = 8.48, P < .001.

WORKLOAD

The results of the ANCOVAS for speed and error show that there was no
relationship between workload and driving speed in either mode of operation,
but the subjects’ ratings of their performance appeared to be influenced by
the distance they traveled off the road, t = 2.148, P < .05. An association was also
found between the subjects’ level of frustration and the number of obstacles
hit in the obstacle avoidance segment of the course, t = 2.460, P < .05. A multiple
analysis of variance (MANOVA) was performed to determine if there were
differences in the subjects’' ratings of workload demands between driving
modes and task conditions. The results of this MANOVA based on the Wilks
statistic indicate that, in the CAT mode, the subjects rated the effort they
exipended to achieve their level of performance higher than did those subjects
who operated the vehicle in the standard mode, F approx = 4.42, P < .05. The
subjects’ assessment of their workload in the two driving modes followed
similar trends in both task conditions. In the dual task condition, the
operators’ ratings of mental ( F approx = 9.52, P <.05) and temporal (F approx =
4.80, P <.05) demands increased significantly in both driving modes.
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DISCUSSION

In this study, when subjects were required to perform a second task while
driving, driving speed decreased in both modes of operation. In the CAT mode,
driving error on some segments of the course increased significantly, but
contrary to hypothesis, no relationship was found between these reductions in
driving performance and the subjects’ ratings of workload. In the dual task
condition, driving error in the standard mode was unaffected, and more
targets were correctly identified in this mode than in the CAT mode of
operation. These findings may reflect, in part, differences in time-sharing
efficiency between the two subject groups which to a great extent, as

Wickens! notes, are related to either differences in the automaticity of single-
task skills or to time-sharing skills acquired through practice.

For many, the task of driving a standard automobile over known terrain is
somewhat automatic when one arrives at his or her destination with no
memory of the trip. Although not quite as automatic, remote driving in the
standard mode shared more similarities to the on-board driving experience
than did CAT. Commonalities in control design and operation and in the
information provided in the driving scene, along with years of familiarization
with on-board driving, may have facilitiated time sharing of tasks in the
standard mode. Dissimilarities between the on-board driving experience and
CAT may have caused some conflict. In the everyday operation of a motor
vehicle, a driver engages in visual scanning and cognitive processing
activities not unlike those involved in the detection and identification of
targets. Wickens suggests that most learned time-sharing skills are probably
specific to a given task combination, but one might also expect a transfer of
these skills between some task combinations that are similar.

In this study, it was observed that subjects operating in the CAT mode
adopted one of three different driving strategies. Some chose to maintain as
many waypoints on the course as possible, regardless of segment difficulty, to
maximize vehicle speed. Others varied the length of the future path based on
segment difficulty and their ability to discern the edges of the road at
distances from the vehicle. In a third driving strategy, the subjects chose not
to plot an extended path in any segment of the course but rather to maintain a
relatively consistent number of waypoints in front of the vehicle. Generally,
in this latter strategy, the length of the path or the number of waypoints
maintained represented less than half the maximum allowed by the system. It
was observed that many of the operators who employed this strategy
maintained a fairly consistent speed through most segments of the course,
having less need to correct for gross deviations off the road. In some
instances, these subjects committed fewer errors and achieved overall course
speeds that were similar to operators who adopted more aggressive strategies.
The shorter the future path, however, the more closely this driving strategy
resembled operations in the standard mode and the more familiar experience
of on-board driving.
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Generally, those subjects who operated the vehicle in the standard mode of
remote driving attained greater speeds with fewer errors than did those
subjects who operated the same vehicle in the CAT mode. The significantly
lower speeds attained in the CAT mode are believed to be largely attributable to
a design feature that automatically reduces the speed of the vehicle in
anticipation of turns to maintain vehicle stability. Difficulties in judging
waypoint positioning with respect to road edges and obstacles at distances are
expected to be a major cause of errors. In many instances, subjects operating
in the CAT mode were observed to redraw a path two to three times, to correct
for actual or perceived errors in designation as viewed from new and closer
camera perspectives. This, too, may have contributed to reductions in vehicle
speed and to the higher levels of effort experienced by subjects in this mode.
The increase in errors in the dual task condition may not only reflect a
decrease in the accuracy of designating the initial path but possibly a
reduction in the speed and frequency at which deviations beyond road
boundaries were detected and thus, successfully corrected.

Problems in discerning the spacing between obstacles and road edges at
distances were compounded by uncertainties about the vehicle's position. In
the standard mode, operators were provided a view of the vehicle and ground
proximate to the remote platform. In this mode, operators appeared to gauge
with accuracy the position of vehicle's wheels with respect to road edges and
confidently cut corners in turns in pursuit of the most efficient path through
the course. In the CAT mode, however, a view of the vehicle could not be
captured within the operator's visual field unless all waypoints were
withdrawn and the vehicle stopped. In this mode, operators were forced to
estimate vehicle location based on the position of the cursor and the waypoints
it spawned. The design of the cursor, however, and its offset to the left of the
centerline of the vehicle made such estimates difficult. The cursor did not
resemble the remote platform in either shape or size. Operators knew
approximately where to position the cursor with respect to the centerline of
the road so as to center the vehicle between the road's borders, but they
remained uncertain about how far to the left or right of this point they could
deviate without overshooting these borders. In the CAT mode, there was a
greater tendency for operators to designate a path that closely conformed to
the curvature of the road. Waypoints that appeared to deviate from this more
reliable track were often withdrawn and the path redesignated. The design
and offset of the cursor created particular difficulties in the obstacle
avoidance segment of the course where differences in the clearances to the
left and right of the vehicle were a major source of confusion and error. In
this segment, operators underestimated clearances between the vehicle and
traffic cones to the left of the remote platform, causing them to make wider
turns around these obstacles. Limitations in the turning radius of the vehicle
combined with operator overestimation of the clearance between the vehicle
and traffic cones to the right of the remote platform resulted in obstacle hits.

CONCLUSIONS AND RECOMMENDATIONS

In both the standard and computer-aided mode of remote driving, the
operator relies on visual information within the scene to select a safe and
efficient path. As one might expect, deficits in information that may at times
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affect the teleoperator's ability to judge the suitability of more immediate
paths, may have an even greater impact on the operator's ability to assess the
suitability of distant terrain and designate with accuracy the route selected.
System resolution is not thought to have had a significant influence on
driving error in the current assessment, but it is expected to be a factor during
cross-country travel or in instances when road edges and obstacles are not as
well defined. ’

In this study, differences in driving performance between the two driving
modes are believed to have been influenced by design characteristics of the
specific CAT system assessed as well as by problems inherent to similar systems
and concepts that rely on the remote operator’'s ability to see and thus
accurately designate a suitable path at distances from the vehicle.

In the present assessment, one of the major causes of differences in speed
between driving modes is a design feature that automatically reduces the speed
of the vehicle in anticipation of future deviations from a straight line path.
Although the designer of FELICS believes computer control of vehicle speed
necessary to maintain vehicle stability, it is recommended that the system be
modified to provide the remote operator the option of assuming responsibility
for such decisions, as tactics direct and terrain permits.

In this study, the design of the cursor and its offset from the centerline of
the vehicle was a major source of confusion and error. It is recommended that
the cursor be redesigned to accurately depict the size and perspective of the
vehicle as the distance and the angle from which this cursor is viewed
change. The camera should either be centered laterally on the vehicle or
corrections made in the programming so that the centerline of the cursor
accurately denotes the centerline of the vehicle.

An increase in camera height may improve the operator's perspective of
the future path, and a zoom capability may provide some help in detecting
hazards and discerning road edges; image stabilization then becomes a
necessity. Sensors on board the remote platform may prove useful in
providing information about terrain roughness or the proximity of obstacles
and other hazards that may not have been detectable from previous positions.
Such sensors may be necessary when update rate and resolution are reduced to
achieve a reduction in communications bandwidth. Nonetheless, operator
perspective and the difficulties it may cause in judging vehicle position with
respect to road edges and obstacles at distances will remain a factor that may
limit the length of the future path and the accuracy with which it is
designated.
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ABSTRACT

Stemming from an experimentally verified power law for the rate of growth of cracks in metals, a
probabilistic description of crack propagation in structural members subjected to a cyclic state of tensile
stress is developed using the one-dimensional theory of Brownian motion. The second-moment statistical
characterization of the size of the crack at a specific future time is presented in closed form under certain
assumptions concerning the distribution of the random variables entering the formulation. After reaching
a critical size, the crack multiple splitting (proliferation) is described in the light of the theory of Markovian
branching processes.

CRACK GROWTH POWER LAW. DISCRETE REPRESENTATION

Based on experimental evidence, Paris and Erdogan' proposed that the crack-growth rate in metal
components be expressed in terms of the range of stress intensity factor by means of the following power
law:

da
— =C(AK)"
(AKY", (12)

where:
a = instantaneous crack size (The crack size is defined as the crack semi-length for a
centrally located through-thickness crack and as the crack length for an edge crack).
N = pumber of cycles
AK =range of stress intensity factor
C, m = experimental coefficients for the specific material being considered.

This power law represents well the scatter in the fatigue crack-growth behavior of metals for the domain
of the range of stress-intensity factor between the threshold value (AK,,) and the region of unstable crack
growth?®. The exponent m is frequently taken as deterministic for practical applications and the coefficient
C has been found to be log-normally distributed’. Expressed analytically, the probability density function

of C: logN( ., v.) is given by :

Approved for public release; distribution is unlimited.
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p(C) - ———exp —(——), 0<Cs<w
. , 1 .2
in which kc=uhc=lnuc--2-(c,

(o= Ope =l (1+v2),

and where p is the mean and v is the coefficient of variation of the variate in the subscript, C in this case.

The range of stress-intensity factor is related to the range of applied stress by the relation*:
T a
AK = § ymna F(—), (1b)
w

where S is the range of applied stress, with problem-specific distribution, and w is the specimen width, taken
as deterministic. The empirical fimction F (na/w) depends on the location of the crack within the specimen
and may be approximated by the expressions:

FE2) - «’sec(-’i‘h , (2a)
w w

for a centrally located through-thickness crack®, and:

; 0.752 +1.286 ;“’ . 03771 -sin(—g-g-) )
Ta w Ta w w
F(—) = | — tan(—) > (2b)
w na 2w na
cos (—)
2w

for an edge crack’.

Letting § = na/w, substituting eq. (1b) into eq. (1a) and grouping &-terms on the right-hand side of the
equation leads to the expression:
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This last equation represents the discretized, or finite difference, version of eq. (1a).

In order to simplify the problem as much as possible, the cyclic stress on the component will be assumed
to be simple harmonic with known frequency f and random amplitude range S (an ideal narrow-band
process). If we examine the effect of this cyclic stress on the crack during the small time interval At, then,
after substituting f At for AN, eq. (2b) gives the following expression for the departure from the initial

crack size, a, (random):

n

L-a-a,=-C(na, F( wa") Sy fAt. 3)

PROBABILISTIC DESCRIPTION OF CRACK PROPAGATION

Linearizing eq.(12) about the mean vector of basic variables, the moments of L may be estimated

from®;

2 2 2m. 2 mp 2
EQ) - u, = dgncpy ad o) = Agpg [og + (—=) o, (42)
73
for the expected value and the variance, respectively, in which:
4, - [ra [FC207)7 fa (4b)
o [“ao[ (_)] ] f L

w

The total time interval under consideration is envisioned as a sequence of time supersteps, each
subdivided into n time steps of duration At.
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Invoking the one-dimensional theory of Brownian motion®®, it can be shown that the accumulated
increment of crack size after a time interval n-At (n being an integer) has elapsed from the beginning of
the j-th time superstep, X,, is normally distributed with expected value and variance given by :

E(x) = n'y, and o: = n'oz, respectively . (5).

Therefore, the expected value and the variance of the crack size at the end of the j-th superstep may
be computed incrementally from:

2 2 2
E(aj) = E(ajo) + ny, and oaj = O, 1O+ 2 Ya,o

\Xpy 2 (63)

respectively, where a, is the crack size at the beginning of the superstep and v, is the covariance
between the random variables a, and x,, which may be expressed as:

Yo,. = E(ayx,) - nu E(ay. (6b)

J0"n

If the random variables a,,C,and S are assumed as statistically independent, the correlation term in
eq.(4b) may be obtained from’:

e Qm)

E(a,x,) = 2 AN-u -E(S™)- ““

-I(u,v), (6¢)

in which:

b= E@), v--—2, (6d)

and:

VIT P, g
w
I(p.,V) = (1*1) _53 (63)
[Tawvo 2~[F(%E(1+VC))]’”-e 247, 1

Figure 1 shows a typical example of the evolution of a statistical parameter (variance) for the random
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variable crack-size (a) in time’. All random variables entering the formulation for this example have
been assumed log-normally distributed. Notice in this example the rapid increase of the uncertainty in
predictions based on the variance of the random variable. Experience with numerous examples’
indicates that edge cracks in components of structural steel systems tend to grow at a faster rate than
central cracks and, therefore, should be more critically scrutinized.

NUMERICAL CONSTRUCTION OF CRACK-STABILITY PROBABILITY CURVES

Once the estimation of the statistical characterization of the crack size is established, the analyst may
automatically generate curves for the probability of not exceeding a pre-defined critical value of crack
size for the metal component™". Figure 2 shows a typical example of a numerically computed curve for
the probability of having a stable crack in the future. Notice the rapid reliability decay with time.
Thus, reliability predictions should be updated frequently with current measures of the crack size (a,)
once the crack size actually approaches its critical value.

PROBABILISTIC DESCRIPTION OF CRACK PROLIFERATION
After the crack size reaches its critical value (inherently random), the crack proliferation (multiple
splitting) is described in the light of the theory of Markovian branching processes™. Figure 3 shows a
schematic representation of the possible crack states. Only stable crack states are considered in this
investigation. It is assumed that, if the crack size exceeds its critical value, it has the potential to
multiply itself until it becomes i number of cracks at a future time t, when the observation takes place
(see Fig. 4); otherwise, the crack will merely increase in size during the time interval t.

At time t, the probability of still having a single crack is given by the model described above for the
single-crack propagation, i.e.:

R - P(a<a) Q

On the other hand, if failure is previously defined as the event of the crack becoming at least n cracks,
the probability of observing failure at time t is given by:

P,-1-R-Y P, ®)

i<n

where P; is the probability of the intersection of events [(a>a,) N (exactly i cracks develop at time t)].

Letting A; be the event that exactly i cracks exist at time t, on the condition that proliferation has
occurred (a>a,), one has

P, - P(4)(1 - R) (92)

And letting B, be the event that the state (a>a_) occurs at time t,, one notes that the set of events
{ B, } is complete and disjoint. Therefore, by the Total Probability Theorem, one has
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PA4) - zk: P4 /B)P(B) (9b)
Invoking the Markovian assumption for the random process a(t), one may write:
P(B) - R, (1 - R, (99
and, from the theory of branching processes', one has the conditional probability:
PA/B) = p(t) = pt - 1) = e R[1 - RN 1, (99)
where A is the density of the transition out of the single-crack state into bifurcation, and crack

annihilation is not possible (A must be determined experimentally).

Substituting egs. (9a-d) into eq. (8), one obtains an expression for the probability of failure at time t:

Po=(1-R)Y[1-% YR, (1-R) e %[1. %0 g0
i<n k

which must be computed numerically.
CONCLUSIONS

A mathematical model is outlined to evaluate the reliability of cracked metal components under cyclic
tensile stress during a specified time interval. Both centrally located and edge cracks are included in the
formulation. After reaching a random critical crack size, the potential crack proliferation is described in
the light of the theory of Markovian branching processes.
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