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Abstract

The integration, visualization, and overall management of battle-space
information for the purpose of Command and Control (C2) is a chal-
lenging problem. For example, how can one assimilate incoming data
rapidly in a highly dynamic environment, to allow the battle comman-
der to make timely and informed decisions? In this paper, we present a
spatial-temporal statistical approach to estimating the battlefield, based
on noisy data from multiple sources. Specifically, we examine the danger-
potential field generated by an enemy’s weapons in the spatial domain and
extend it to incorporate the temporal dimension. We propose that maps
of fields of this sort are very effective decision tools for the battle comman-
der; methods for rapid updating of the maps is an area of current research.
This includes visualization of the predictions and the uncertainty associ-
ated with them. It is the quantification of uncertainty in C2 predictions
that distinguishes our statistical approach from deterministic approaches.
In this paper we describe an object-oriented combat-simulation program
from which we generate noisy battlefield data; in the absence of real data,
we apply our methodology to these simulated data.

1. A Brief Introduction to C2

Command and Control (C2) and related variants (C3, C4I, etc.) are umbrella
terms used to describe a body of research and applications dedicated to prepar-
ing all branches of the armed forces for the “War After Next” [2]. Applications
incorporated into the greater C2 framework include, but are not limited to,
command applications, operations applications, intelligence applications, fire-
support applications, logistics applications, and communications applications.
C2 needs are shared by all branches of the armed services. Consequently, appli-



cations should be sufficiently flexible to work across services and across allied
forces, as needed. In order to be applicable to future wars, applications need to
be able to convert a flood of data from a wide variety of sources into information
and knowledge in a timely manner. These concepts are now taught in a focused
way by the U.S. Military, during officer training [3].

In preparing for the Command Post of the Future, tools should be developed
with the following three goals in mind: to rapidly visualize the battlespace,
to rapidly analyze the battlespace, and to rapidly understand the battlespace.
When visualizing the battlespace, the prototypical commander wants a variety
of information, and urgent information needs to be highlighted so that time-
critical decisions can be made. In addition, the location and status of friendly
and enemy forces need to be available to the commander. In order to facilitate
the rapid visualization and understanding of the battlespace, to provide the
ability to receive and send information while mobile, and to begin converting
that information into knowledge, is critical to the battle commander. Facility
for intelligent alerting and reporting, as well as customizable tactical display
elements, need to be integrated into any C2 application.

Systems developed for C2 applications need to keep several general capa-
bilities in mind. The military currently suffers not from a lack of data but
from a flood of data. Data arrive from multiple sources and possibly multiple
nationalities. Data arrive in visual, verbal, and other sensor formats, and also
from historical data bases. At the same time, there is a distinct deficiency of
information and knowledge. C2 applications should aim at developing decision
aids that can turn massive amounts of data into highly useful information and
that reduce the number of viable options available to the commander at key
decision-making junctures. Further, even though there are large amounts of
data available, developed systems must be able to deal with missing and cor-
rupted data. In addition to traditional causes of missing or corrupted data,
military applications face the potential problem of hostile corruption. In a war,
it should be anticipated that data could be actively intercepted, altered, or
destroyed by unfriendly forces.

Given the wide variety of battle scenarios possible in future wars, systems
developed for C2 need to be scaleable between large-scale operations and unit
tactics. At the same time, these systems need to provide all war fighters with
a common picture of any particular battlespace. Finally, and perhaps most
crucially, information processing needs to be completed quickly. To the modern
war fighter, time is of the essence and it is projected that speed of processing
will become even more vital in the future.

Statisticians have a unique perspective on the challenges presented by C2 and
thus have an opportunity to contribute to research and applications. Statistical
techniques can help make the transition from the flood of data to meaningful
information and knowledge for decision making. For example, consider the area
of situational awareness. The statistician might consider probabilistic frame-
works, scaleable algorithms, and sequential decision-making. In particular, one



might examine methods of estimating and predicting the threat or danger to
a region, posed by enemy constituents. Additional areas of interest are change
and anomaly detection, measures of information and understanding, and deci-
sion theory. Statisticians should examine source data, developing methods to
address confidence, accuracy, and completeness of such data. They might also
consider the validity of results after information processing and the quality of
database information. Other research areas should focus on the representation
of uncertainty or confidence in statistical results and might involve algorithms
that allow statistical inference to be decentralized. Note that, in addition to
providing processing stability in a hostile environment, such decentralization
should lead to increased inference speed through parallel, distributed process-
ing.

In conclusion, Command and Control (C2) is a broad field, providing a wide
variety of options for statistical research and applications. In this paper, we
give particular attention to one aspect, namely optimal mapping of the regional
danger posed by enemy constituents in the battlespace. In Section 2, we develop
an abstraction of C2 for statistical modeling and analysis and define the spatial-
temporal danger-potential field. In Section 3, we discuss the object-oriented
combat-simulation program we have developed in some detail. In Section 4,
we examine the data for C2 decisions and the possible degradations such data
might suffer. We consider analysis of the data with regard to estimating danger-
potential fields in Section 5. Finally, in Section 6, we summarize our efforts and
discuss future directions.

2. Abstraction of C2 for Statistical Modeling and Analysis

Before considering C2 from a statistical point-of-view, it is important to
examine the nature of the battlespace, D, and the data that might emerge from
it, as well as the state process of interest. By the state process, or Y-process, we
mean the underlying spatial-temporal process describing the battle, assuming
perfect, noiseless, complete knowledge. It was decided that, regardless of the
choice of Y, a flexible simulation tool would be developed to produce imperfect,
noisy, incomplete data Z. To define the tool properly, a set of definitions and
rules were established. In order to keep the structure as flexible as possible, we
settled on the following hierarchical design for any battlespace object.

At the largest size, the battlespace was defined to be a meta-object. For a
particular simulation experiment, the battlespace contains all the other objects
in the hierarchy. The next smallest class of objects is made up of constituents. In
general, a constituent is an object that cannot be further combined (in the scope
of the experiment) with another object of that class in a meaningful way. Specific
examples of constituents include the environment in which the battle occurs,
tanks and other offensive objects, and radar towers and other passive sensing
objects. It should be noted that for battles of a larger scale, a constituent might
actually be a group of ‘smaller’ objects. For example, a group of three tanks on
patrol together might be considered a constituent in a battle scenario of broad
enough extent. In the scale considered in this paper, single tanks are considered



Figure 1: Hierarchical Design of Battlespace Object
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to be constituents. Constituents are made up of elements. Elements are a
smaller class of objects that have a specific sort of activity assigned to them. A
tank constituent, for example, might have one or more human elements, mobility
elements, sensor elements, and weapon elements. Elements of the environment
constituent might include terrain and weather. The smallest classes of objects
in our hierarchy are functions and parameters. Functions and parameters work
together to define specifically how elements perform their activities. Functions
may have deterministic or random aspects associated with them, and parameters
provide the necessary numeric arguments for functions. Again, for a movement
element of a tank constituent, functions might include a deterministic ‘head
straight for your target’ function (‘goStraight’ object) or a ‘random walk toward
your target’ function (‘goZigZag’ object). Either of these functions might accept
parameters such as maximum speed, mean angle, and the standard deviations on
speed and angle. Other functions might include those describing targeting error
(‘coneError’) or other scenario-specific activities. Functions need not necessarily
be limited to acting on parameters. For instance, in more complicated models,
elements of a given constituent might interact according to some element-level
function. It is conceivable that even higher-level interactions or functions might
also occur, but our analysis will focus only on the parameter-level functions for
the time being. In the design of this hierarchy, additional object classes could
be inserted for more complex simulations. For example, a component class could
be inserted between constituents and elements.

It should be noted that one or more commanders may be associated with



each level of this hierarchy. An overall battle commander would be associ-
ated with the battlespace at the meta-object level; at the military-constituent
and military-element levels, a commander would receive orders from the overall
commander but would also direct actions associated with that constituent or
element. Even at the lowest level of the hierarchy, one can imagine a func-
tion commander who is responsible for performing the tasks described by the
function and who follows orders from higher levels of the hierarchy.

At this point, a brief notational comment should be made. For the purposes
of formulating the battlespace model and developing the analysis, constituents
are notated as vectors. Offensive-type constituents, such as tanks, are notated
as wk, for k = 1, 2, . . .. Observer-type constituents, such as radar towers, are no-
tated as vi, for i = 1, 2, . . .. In initial work, this vector is interpreted strictly as
the Cartesian coordinates of the constituent in question, but it can be thought
of more generally as the state of the constituent in question. Elements of a
particular constituent are assumed to be located at the same location as their
‘parent’ constituent, although this assumption could be generalized if the con-
stituents are distributed. When time is incorporated into the analysis, these
vectors become functions of t. Specifically, in spatial-temporal-analysis settings,
offensive-type constituents are notated wk(t) and observer-type constituents are
notated vi(t). This notation refers to the location (or state) of the constituent
in question at time t.

Consequently, all our analyses are done on continuous fields rather than on
grids or lattices, although the grid is used for some numerical and visualization
algorithms. For convenience, we have started with a region that is a rectangle
of fixed size. In this paper, we focus on simple, flat terrain elements, but later
work will include the effects of more complex terrain elements.

To carry out a battlespace simulation, we need to define the number, posi-
tion, and type of constituents that would exist within a battle. This could be
done in advance or assigned randomly in an obvious way (e.g., Poisson distri-
bution [4] for numbers of objects, constrained and scaled uniform distribution
or Beta distribution [4] for location coordinates). For initial experiments, two
general classes of constituents were settled on: weapons and observers. We
shall discuss observers in greater detail later (see Section 4, where data collec-
tion and degradation is considered), but we note here that observers are defined
by functions and parameters associated with their viewing area and their error
types.

Weapons, in general, have more complicated functions and parameters than
do observers. For the simplest scenarios, only functions and related parame-
ters associated with movement and offensive elements need to be considered.
For more complicated scenarios, defensive functions and parameters need to be
defined as well. Movement parameters include such things as autoregressive
parameters [1] and error types, assigned waypoints, and commands. Offensive
functions and parameters include targeting functions (such as ‘coneError’) and
the explosion parameters used below. Defensive parameters include the amount



of damage that an element can suffer and still be operational and the amount
of resistance an element carries against damage. We recognize that many addi-
tional parameters might be of interest to the experimenter, and so provision for
their inclusion later was incorporated into the design of the simulation.

All functions were stipulated with an eye to keeping them and the simulation
tool as flexible as possible. Some parameters, for example explosion parameters,
were assumed to be specified and deterministic, while other parameters, for ex-
ample instantaneous velocity, were given probability distributions. For a single
time unit, the velocity parameter might be distributed as a scaled Beta ran-
dom variable. Targeting is assigned a radius-angle error distribution [6]. This
idea is discussed further in Section 4 but, in general, it was decided to apply
error to the radius and angle from the weapon to the target, rather than to the
Cartesian coordinates of the weapon-to-target displacement. For initial simula-
tion experiments, waypoint parameters were chosen to be purely deterministic,
with the idea that later they may be a random function based on commander
orders and affected by environmental parameters. Waypoints are pre-specified
locations in space that a given mobile object is ordered to reach at pre-specified
times. One way to model randomness in waypoints is to consider the location-
based error arising from landmark-based orders. That is, a constituent might
be instructed to move to a specific landmark element within the natural- or
urban-environment constituent, rather than to a specific set of coordinates. If
the location of the landmark element is known with error, a level of uncertainty
emerges.

Recognizing that maps are an intuitive way to present knowledge, we now
focus on mapping some sort of summary of the Y-process based on imperfect,
noisy, incomplete data, Z. As an example, consider the damage potential posed
by an enemy unit or set of enemy units. This should be particularly interesting
to a commander, and it exhibits a lot of space-time variability. From the damage
potential, we wish to estimate a danger-potential field generated by a set of
enemy units and to examine the uncertainties associated with it. We consider
our study illustrative of the general problem of producing statistically optimal
maps that evolve with the changing battlespace.

We see the damage potential of an enemy weapon as analogous to gravita-
tional potential; that is, the damage that a weapon could do to a target, can be
thought of as being equal to the damage potential of a weapon element times
an armor parameter that depends on the target’s ability to protect itself. Thus,
the damage potential of a given weapon element is equal to the damage it could
do to any target constituent with a unit armor parameter.

Clearly, the assumption that a missle applies damage at a precise confined
location is unrealistic. Consequently, all damage was considered to be of an
explosive type, that is, affecting a continuous region and being a non-increasing
function of distance from the impact point. The following formula describes one
possible form of the damage potential at a distance r from the impact point:



δ(r) =
{

α(1− (r/R)p1)p2 , for 0 < r < R
0, else, (1)

where α, R, p1, and p2 are all explosion parameters defined for the weapon
element in question. Under this definition, a single location in the battlespace
can be affected by damage resulting from nearby impacts in the space, and the
damage potential will vary with the distance from the impact.

Before continuing, consider the following notational conventions. Specifi-
cally, let wkl denote the lth location impacted by weapon wk, allowing a single
weapon to have possible multiple ‘hits’ in a short, specific time interval. For the
purpose of this paper, attention will be focused on single-impact weapons with
the impact location denoted wk1. Further, denote f(wk1|s,wk) as the proba-
bility density function of an impact at location wk1 given the weapon is located
at wk and is aiming at location s. Similarly, let vij denote the jth location
observed by observer i in a specific time interval. Notice that enemy weapon
constituents may not always be distinguishable by an observer and, thus, we do
not know in general to which weapon each vij refers. However, for the purpose
of this paper, we shall assume that the observe can identify the weapon without
ambiguity and we thus let vik denote the location observed by observer i for
weapon k.

We define the danger potential, generated by a single weapon element at
location wk, as the expected damage at any location s:

g(s;wk) =
∫

wk1

δ(rs,wk1)f(wk1|s,wk)dwk1; s ∈ D. (2)

The distribution, f(wk1|s,wk), is based on the same radius-angle probability
distributions given in Section 4. It should be noted that, given the parameters
of the k-th weapon, g(s;wk) can be computed ahead of time, thus reducing the
amount of time it takes to generate a danger-potential map over D.

We further assume that danger is summable. That is, we define the danger
potential to an object at a specific location, from a set of enemy weapon ele-
ments, as the sum of the individual danger potentials of each weapon element.
Such a definition makes sense if the individual damage potentials are summable,
as we now illustrate. The danger potential at s is,

g(s; {wk}) =
∫

wk1

∑

k

δ(rs,wk1)f(wk1|s,wk)dwk1 (3)

=
∑

k

∫

wk1

δ(rs,wk1)f(wk1|s,wk)dwk1 (4)

=
∑

k

g(s;wk), (5)



where
∑

k δ(rs,wk1) is the damage potential of the multiple weapons {wk1}.
Though danger potential g(s;wk) was defined above in a purely spatial set-

ting, there is a natural extension to the spatial-temporal setting. Consider an
offensive constituent at location wk(τ) and time τ . Then the expected damage
potential at location s and time t > τ , not only depends on the probability of
applying damage, but also on the probability of the weapon’s location at unob-
served times. That is, in addition to taking an expectation over the targeting
distribution, as in (2), the expectation of the damage at a given spatial-temporal
location is also based on knowledge of the weapon’s location at some previous
time (τ). The resulting danger-potential field at s and t is:

g(s, t;wk(τ), τ) =
∫

wk1(t)

δ(rs,wk1(t),t)f1(wk1(t)|s, t,wk(τ), τ)dwk1(t) (6)

=
∫

wk1(t)

δ(rs,wk1(t),t) (7)

×
∫

wk(t)

f2(wk1(t),wk(t)|s, t,wk(τ), τ)dwk(t)dwk1(t)

=
∫

wk1(t)

∫

wk(t)

δ(rs,wk1(t),t)f3(wk1(t)|s, t,wk(t), t)

×h1(wk(t)|t,wk(τ), τ)dwk(t)dwk1(t) (8)

=
∫

wk(t)

g(s, t;wk(t), t)h1(wk(t)|t,wk(τ), τ)dwk(t) . (9)

The probability density function, h1(wk(t)|t,wk(τ), τ), represents the condi-
tional probability that the weapon is at wk(t) at time t given that it was at
spatial-temporal location (wk(τ), τ), and it introduces a dynamic aspect to the
analysis. These equalities hold assuming that danger is instantaneous, that the
old location has no effect on targeting if the current location is known, and
that the movement of the weapon does not depend on the generic spatial index
s. The probability depends not only on the movement function and the pa-
rameters associated with the weapon element, but also on the evolution of the
spatial-temporal battlespace. For instance, if the weapon element is damaged,
its mobility may be affected. In the simple example discussed in this paper, the
weapon cannot be damaged, so that part of the dynamic aspect may be ignored.
Expanding this conceptualization, one might re-write (8) and (9) as:

g(s, t;W) =
∑

k

∫

wk1(t)

∫

wk(t)

δ(rs,wk1(t),t)f3(wk1(t)|s, t,wk(t), t)

×h2(wk(t)|t,W)dwk(t)dwk1(t) (10)

=
∑

k

∫

wk(t)

g(s, t;wk(t), t)h2(wk(t)|t,W)dwk(t) , (11)



where W ≡ {(wk(τ), τ): τ < t ; k = 1, 2, . . .} is the set of all past information on
all weapons and h2(wk(t)|t,W) is the conditional probability density function
describing the probability that a weapon is at a specific location in space-time,
given knowledge of all weapons at various locations in space-time.

Figure 2: Notation Conventions
vi,vi(t) The location (state) of observer i (at time t).

vik,vik(t) The location of weapon k observed by observer i (at time t).
wk,wk(t) The true location (state) of weapon k (at time t).
wkl,wkl(t) The lth location impacted by weapon k (at time t).

s, s(t) A hypothetical location (at time t).
rswk

The Euclidean distance, ||wk − s||,
between weapon k at wk and the target location s.

rwkwkl
The Euclidean distance, ||wkl −wk||,
between weapon k at wk and the impact location wkl.

rswkl
The Euclidean distance, ||wkl − s||, between
the impact location wkl and the target location s.

θswk
The angle, arctan[(wky − sy)/(wkx − sx)],
between weapon k at wk and the target location s.

θwkwkl
The angle, arctan[(wkly − wky)/(wklx − wkx)],
between weapon k at wk and the impact location wkl.

θswkl
The angle, arctan[(wkly − sy)/(wklx − sx)],between
the impact location wkl and the target location s.

etc.

In the proposed conceptualization, data are collected primarily as observa-
tions of military-constituents locations. That is, at a given time point, each
observer constituent provides a list of Cartesian coordinates representing its ob-
served locations of other constituents. Note that these observed locations are
almost certainly noisy and perhaps compromised through censoring or enemy
interference. The nature of the error associated with these data is discussed
further in Section 4.

Given the data, our goal in this article is to estimate and map the true dan-
ger potential everywhere in the spatial-temporal region of interest. Information
about the parameters of the weapon constituents and observer constituents is
combined to generate estimates of the danger potential. An advantage of the
spatial-temporal statistical approaches discussed in this paper is the flexibility
of the questions that might be answered using the data. Simple questions about
the location of a weapon or a set of weapons are not the only ones that are an-
swerable. In addition, one might pose questions such as, “How often are enemy
weapons within 10 miles of the border?”, or “Does the danger posed to friendly
regions appear to increase significantly over time?”, or “If friendly mobile ob-
jects need to go from A to B, what is the path of least danger?”, or “Where are
the enemy’s mobile weapons headed?” All of these questions can be answered
through some nonlinear functional of {wk(τ): τ ≤ t ; k = 1, 2, . . .}, and thus



techniques such as Kalman filtering [8] will typically yield biased estimates. An
area of research for us is to develop smoothers/filters/forecasts for which any
nonlinear functional (e.g., danger-potential field) is approximately unbiased.

3. Object-Oriented Combat-Simulation Program

A battle simulation program has been writen in the interpreted, object-
oriented language R (http://www.stat.cmu.edu/R/CRAN/). The R program
implements a dialect of the programing language S, developed at Bell Labora-
tories.

We can think about the battlespace as consisting of military constituents
(e.g., tanks, radar stations, etc.) that interact and change in time in surrounding
physical constituents (the environment). The constituents are constructed in a
hierarchical fashion, using elements with specific functionality (e.g., a gun is
one element of a tank, a sensor is another).

The simulation program consists of defining different classes of constituents
and elements, and writing functions that act on both constituents and elements
(e.g., a tank has a gun element with functionality defined by its parameters,
which include range, accuracy, and explosive power).

The simulation consists of an inner and an outer loop. The outer one loops
through time and the inner one loops through the military constituents (we have
assumed for the moment that the physical constituents are constant during the
period of simulation).

The inner loop consists of the following major steps:

Scanning the Battlespace: The scanBS Function. Most constituents have
some way of observing the battlespace in order to detect other constituents.
Currently, a constituent can have any number of elements of the class sen-
sor.

Making a Decision: The askCommander Function. Every constituent has
a commander that makes decisions concerning the current destination (if
the constituent is mobile) and applying weapons (if available). The com-
mander of a mobile constituent has, in most cases, a set of waypoints to
follow to reach its final destination. At the same time, the commander is
receiving information from the sensors about the status of the surround-
ing battlespace at every time point. Depending on the ’character’ (e.g.,
aggressive, defensive, etc.) of the commander, a decision is made.

Change Location: The move Function. A constituent moves according to
its current speed and destination (both determined by the constituent
commander). There are a number of ways a constituent can move at each
time-step, including a method that assigns a little random error to both
speed and direction at each time-step.

Attack: The attack Function. A constituent can have one or more elements
of the class weapon. Applying a weapon consists of (1) shooting at a



given target, but with error, and (2) evaluating the damage caused by
the weapon, to all constituents (including the target) in the battlespace
within damage range.

Update Attributes: The update Function. Keeps track of the history by
collecting, at each time-step, parameters of interest and storing them (e.g.,
the value of the life and armor parameters; see Section 3.4)

Some of these major steps do not necessarily apply to all constituents.

Currently, two classes of millitary constituents have been defined. The ba-
sic constituent is a stationary object of class defObj with a commander. An
extension of the defObj class is the mobileObj. The mobileObj inherits all the
attributes and functions from the defObj. The only addition to the defObj is a
function and parameters to make the object mobile.

Two classes of elements have currently been defined, namely, sensor and
weapon. An object of class sensor has a function to observe what is in its sur-
roundings; that is, it observes the position of natural and military constituents
within the sensor’s range, but with error. An element of class weapon has a
function to “shoot”, with error, at a given target and functions to compute the
damage caused to other constituents using their life and armor values. All these
error distributions are of the radius-angle type, where the radius distribution is
assumed independent of the angle distribution. Furthermore, the radius distri-
bution is always truncated so that no random radius is bigger than rmax, and the
angle distribution is always wrapped so that no random angle is outsie (−π, π].

Other constituent classes can be created by extending the two basic classes;
for example, the constituent class, tank, has been specified by extending the
mobileObj class and adding a radar (a sensor with specific sensor function) and
a gun (weapon object with attributes specified to model the workings of a gun
on a tank).

3.1 Sensor

Any military constituent can have one or more elements of class sensor.
Each sensor element checks for constituents within the range of the sensor.
Each sensor is provided with a sensor function and a list of parameters that
define the procedure used to generate noisy observations of the constitutents’
location within the sensor’s range. The sensor function can be easily adapted
to diverse types of sensors.

coneErrorSensor Let rviwk
and θviwk

be the true distance and angle, respec-
tively, between the sensor and the observed constituent, with respect to the sen-
sor. If rviwk

is within the sensor’s range, then suppose we observe (rvivik
, θvivik

)
and express the error of that observation through:

rvivik
= rviwk

eεr and θvivik
= θviwk

+ εθ, (12)

where

εr ∼ Gau(mean = 0 , variance = σ2
r), (13)



εθ ∼ Gau(mean = 0 , variance = σ2
θ) , (14)

and when necessary truncation and wrapping occurs in (12). Then a real-
ization of the constituent’s location, vik = (vikx, viky), is given by vikx =
vix + rvivik

cos(θvivik
) and viky = viy + rvivik

sin(θvivik
), where vi = (vix, viy)

is the location of the sensor.

bivarNormSensor If rviwk
is within the sensor’s range and wk = (wkx, wky)

is the true location of the weapon constituent, then suppose we observe vik =
(vikx, viky) and express the error of the observation through:

vikx = wkx + εx and viky = wky + εy, (15)

where independently,

εx, εy ∼ Gau(mean = 0, variance = σ2) . (16)

3.2 The Commander

Every class of constituent has a commander, who we shall call the constituent
commander. For a constituent of the class, defObj, the simplest commander
does nothing. For a mobile constituent of the class, mobileObj, the simplest
commander just follows the waypoints given to reach its final destination. In
general, a commander element is a function that alters the movement of the
constituent and gives weapons a target to shoot at.

Other types of commanders that have been constructed include an aggre-
siveCommander and a defensiveCommander. The aggressiveCommander chases
and then attacks every enemy seen on any sensor, but the defensiveCommander
sticks to its given waypoints and shoots at any enemy within range (but does
not chase them).

3.3 Mobility

For a constituent of the class, mobileObj, and all other classes that inherit
the mobileObj class, there is a function that changes the position of the con-
stituent at each time-step.

Different functions can be specifed as to how the constituent can accomplish
this. In general, if st is the speed of the constituent at time t and φt its angle
of trajectory, then the speed and angle at time t + 1 are given by

st+1 = ρsst + (1− ρs)St+1, (17)
φt+1 = ρaφt + (1− ρa)Φt+1, (18)

where the ρs ∈ [0, 1] and ρa ∈ [0, 1] are given, and St+1 and Φt+1 are given by
a move function. A number of move functions have been constructed. The two
most frequently used are:

goStraightLNorm There is no error involved in the angle, only in the speed:

Φt+1 = φ, (19)
log(St+1) ∼ Gau(mean = µs, variance = σ2

s). (20)



goZigZag In this case, there is error in both the angle and the speed:

Φt+1 ∼ Gau(mean = φ, variance = σ2
φ), (21)

log(St+1) ∼ Gau(mean = µs, variance = σ2
s) , (22)

and when necessary wrapping occurs in (21).

3.4 Weapons

A military constituent can have any number of weapon elements. Other
constituents provide targets for the weapons.

Using a weapon consists of four major parts (functions):

Shooting: The weapon has a function, and a list of parameters, that specify
how the actual impact point of the weapon is computed given the target
position and the position of the weapon.

Damage: At the impact point (provided by the shooting function), a damage
factor (potential damage) to the constituents within the maximum damage
range are computed by the damage function.

Life Reduction: The damage factors are used by the life function to reduce
the life value of the constituents within the maximum damage range.

Armor Reduction: Similarly, the damage factors are used by the armor func-
tion to reduce the armor value of the constituents within maximum dam-
age range.

We now give more details on the four major steps described above. Let
wk = (wkx, wky) and s = (sx, sy) denote the position of the weapon and the
target, respectively, and let rwks and θwks denote the distance and angle of
the target with respect to the weapon. The two most frequently used shooting
functions are:

coneShooting: The impact point is given by

wk1x = wkx + (rwkse
εr ) cos(θwks + εθ), (23)

wk1y = wky + (rwkse
εr ) sin(θwks + εθ), (24)

where independently,

εr ∼ Gau(mean = 0, variance = σ2
r), (25)

εθ ∼ Gau(mean = 0, variance = σ2
θ), (26)

and when necessary truncation occurs with (rwkse
εr ) and wrapping occurs with

(θwks + εθ).



bivarNormShooting: The impact point is given by

wk1x = wkx + ∆xwks, (27)
wk1y = wky + ∆ywks, (28)

where independently,

∆xwks ∼ Gau(mean = sx − wkx, SD = α + βrwks), (29)
∆ywks ∼ Gau(mean = sy − wky, SD = α + βrwks), (30)

with α and β given. Note that impact is written in terms of the location of
the firing weapon plus a deviation, where the deviation is based on the target
location s. The function assumes that the further the target is from the weapon,
the larger the variance of the impact location.

Recall that after firing a weapon aimed at s, the explosion actually occurs at
wk1. Let rswk1 denote the distance between the location of the potential target
and the explosion location caused by the weapon, let α denote the maximum
damage that the weapon can cause, and let R denote the maximum damage
range from the point-of-impact. The function that is currently used to define
the damage is given below.

powerDamageScaling: The damage-factor function, δ(rswk1), is given by,

δ(rswk1) =
{

α(1− (rswk1/R)p1)p2 for 0 < rswk1 < R
0 else ,

(31)

Let `c denote the current value of the life parameter of the constituent in
question, `n the new life value after weapon impact, ac the value of the current
armor strength of the constituent, and δ the damage factor from the explosion
at the location of the constituent (as given by the damage-factor function). The
current life-reduction function is defined as follows.

scalingLifeReduction: The new life value is given by,

`n = `c − δ/ac; (32)

if `n ≤ 0, the constituent is considered ’dead’ (destroyed).

The current armor-reduction function is defined as follows.

negativeArmorReduction: The new armor value, an, is given by

an = ac − δ; (33)

if an < 0, then an is put equal to 0.

The program allows for user-defined functions and is designed in such a way
that it is easy to add new functions to elements.

3.5 The Environment



In the current version, a very simple physical environment is assumed; a
flat terrain with no obstacles. This can be generalized; the object-oriented
simulation program is very flexible.

3.6 Running the Program

Running the simulation consists of constructing all military constituents,
which can include both offensive-type and observer-type constituents. After the
simulation, each constituent stores its history, including the exact position of the
constituent at all time points. Similarly, the sensor elements (if any are installed)
store everything that they see. It is also possible to construct observer-type
constituents after the simulation has run, and let them observe the battlespace
at some specific time points, or at all time points. An example of five mobile
tanks and three sensors (two radar and one satellite) in the battlespace is given
in [9].

4. Data for C2 Decisions

Once a simulation of the Y-process has been completed, it is time to consider
the generation of the data Z. Running the simulation gives the experimenter
access to the true battle information but, in real-world situations, the informa-
tion is degraded in some manner. To reflect this, we degraded the simulated
Y-process in several ways. Censoring might occur in both the time- and space-
domains for various reasons. Terrain features might limit the observation region
of an observer, and technical difficulties might prevent or delay observation of
data. Location-based error was also deemed to be a fairly likely situation. Less
likely, but worth considering, was false data provided by the enemy.

Spatial and temporal censoring can occur under a variety of circumstances.
Some examples might include adverse sensing conditions (e.g., sunspot activ-
ities, jamming) that could prevent or delay any data transmission during the
affected time period. Such censoring might be generated by using exponentially
distributed start, stop, and transmission delay times. It is also likely that certain
sensors may not transmit continuously. These sensors may transmit at system-
atic intervals (for instance, one data report every 30 seconds) or at event-invoked
times. One might consider a reliability probability for such sensors. That is, for
a predetermined set of time points, there is a probability that at each of these
times the sensor will transmit its data. Additionally, any given sensor might fail
during the course of the battle. Spatial censoring might occur as the result of
terrain (e.g., a hill) or meterological (e.g., clouds) effects. Finally, there may be
systematic spatial censoring resulting from spatial regions outside of the sensing
range of all available sensor constituents or elements. Any or all of these types
of censoring may occur in a single battle scenario.

Location-based error is worth particular mention. It seems to us to be ubiq-
uitous in all battle scenarios. Moreover the radius-angle error distributions
turn up repeatedly. While standard bivariate normal error might be applied to
any location (and is indeed applied to satellite-type sensors), radar-type sen-
sors and weapon-target applications were given radius-angle error distributions.



Let (x, y) be the true Cartesian coordinates of the observer location (assume
known) and (x0, y0) the true Cartesian coordinates of the location of interest
(unknown). Notate the true angle and radius from the observer location to
the location of interest as θ0 and r0, respectively. Now suppose that θ̂ and r̂
are independent, random, noisy observations of θ0 and r0. If θ̂ and r̂ are un-
biased for θ0 and r0, the nonlinear relationship between (θ0, r0) and (x0, y0)
leads to a bias in (x̂, ŷ), the estimates of (x0, y0) based on (θ̂, r̂). (To see this,
note that E(x̂) = E(x + r̂ cos θ̂) = x + E(r̂)E(cos θ̂) = x + r0E(cos θ̂). But
E(cos θ̂) 6= cos θ0, so E(x̂) 6= x0 = x + r0 cos θ0. This also holds for y0, by sym-
metry.) However, a Taylor approximation such as the one described in Section
5 below, shows that by adjusting the mean of r̂, an approximately unbiased
estimate for (x0, y0) can be achieved. That is, assume that the reported angle
θ̂ is:

θ̂ = θ0 + εθ , (34)

where εθ is distributed with mean 0 and variance σ2
θ ; and assume that the

reported distance r̂ is randomly distributed with (adjusted) mean r0/(1− 1
2σ2

θ)
and variance σ2

r . As is shown in (??)-(??) of Section 5, these assumptions lead
to an approximately unbiased estimate of (x0, y0). The angle θ̂ and radius r̂ are
then converted back into the standard Cartesian coordinates for the purpose of
mapping the results.

In our simulations, a small set of distributions was considered for the radius
and the angle; we always assume the radius distribution and the angle distribu-
tion to be independent. For the radius, we considered the truncated lognormal,
truncated gamma, and scaled beta distributions; these were chosen because it
was felt that in each case a maximum range seemed applicable. For the angle,
only two distributions were considered, namely, the wrapped normal and the
Von Mises distribution [6]. The default distributions for the radius-angle error
distributions were the truncated lognormal for the radius, independent of the
wrapped normal for the angle.

5. Analysis

For the purpose of this paper, the goal of the analysis is to estimate the true
danger-potential field of a battlespace over time. Note that the deterministic
danger-potential field is well defined if the impact-location distribution and the
location of the firing weapon is known. Since the former is likely to be known
from intelligence sources, our focus is on the latter. Consequently, we wish
to estimate the true danger potential in the face of unknown weapon locations.
We discuss two possible approaches, whose differences we shall investigate in the
future. One approach is to apply Bayesian methods [5]. In this case, one might
generate the distribution of danger-potential fields implied by the distribution
of weapon locations. An alternate, much faster approach is to apply some sort
of ‘plug-in’ estimation for the locations of the offensive constituent(s).

Regardless of the approach used, an estimate of the posterior probability
distribution of the locations of the weapons, given the observations, would be



useful. When dealing with the radius-angle errors described earlier, the distri-
butions of the observations can be complicated to represent. However, second-
degree Taylor approximations can be used to approximate the mean and the
(2× 2) covariance matrix of the observations, as we shall now demonstrate.

Before examining this approximation, the following facts are worth noting.
Second-degree Taylor approximations show that, for εθ small, cos(εθ) is approx-
imately equal to 1 − 1

2ε2
θ, and sin(εθ) is approximately equal to εθ. Similarly,

cos2(εθ), sin2(εθ), and cos(εθ) sin(εθ) are each approximately equal to 1 − ε2
θ,

ε2
θ, and εθ, respectively. Assuming the same distribution on the distance and

angle as discussed above, consider the observation, vik ≡ (vikx, viky). Write
vik as vi + ∆vik

, where ∆vik
= (∆x,∆y), ∆x = r cos(θ), ∆y = r sin(θ), and

θ = θviwk
+εθ. Combining these equalities and assuming independence of r and

θ, we obtain

E[vikx] = E[vix + r cos(θviwk
+ εθ)]

= vix + E[r]E[cos(θviwk
+ εθ)] (35)

= vix +
rviwk

1− 1
2σ2

θ

{cos(θviwk
)E[cos(εθ)]− sin(θviwk

)E[sin(εθ)]} ,

where the last equality is a consequence of the assumptions following equation
(??). Applying the Taylor approximations, we obtain

E[vikx] ' vix +
rviwk

1− 1
2σ2

θ

[cos(θviwk
)E[1− 1

2
ε2θ] (36)

−rviwk
sin(θviwk

)E[εθ]]
= vix + rviwk

cos(θviwk
) (37)

= wkx .

A similar approach can be used to compute the expected values of viky, v2
ikx,

v2
iky and vikxviky. With these expected values, the approximate expected value

and covariance matrix of vik can be computed, yielding

E[vik] ' wk , (38)

and

var[vik] ' [σ2
r − r2

viwk
(1− γ)− σ2

θ(σ2
r + r2

viwk
γ)]pp′ + [σ2

r + r2
viwk

γ]σ2
θqq′, (39)

where p ≡ (cos θviwk
, sin θviwk

)′, q ≡ (sin θviwk
,− cos θviwk

)′, and γ = (1 −
1
2σ2

θ)−2. Note that the covariance matrix above involves the unknown angle
θviwk

; it is suggested that the observed angle θvivik
be used in its place.

More generally, consider the following model for data obtained by observing
the offensive constituent wk from an observation constituent, vi. The resulting
observation, vik, can be expressed as:



vik = wk + εik, (40)

where εik is a random vector with mean zero and a (2 × 2) covariance matrix
depending on the type of error distribution associated with the observer, as
well as the relative position of the observation constituent with respect to the
offensive constituent. In the case of the observation constituents being radar
sites, we assume a radius-angle error distribution and the covariance matrix of
εik is given by (??).

Thus, for observations {vik: i = 1, . . . , M} on wk from multiple observers,
v1, . . . ,vM , the following model applies:




v1k

...
vMk


 = Gwk +




ε1k

...
εMk


 , (41)

where

G =




I2

I2

...
I2


 , (42)

and I2 is the (2×2) identity matrix. The εik in (41) are independent (2×1) zero-
mean error vectors with covariance matrix, Σi, as given by (??). Notice that G
is a (2M × 2) matrix, wk is a (2× 1) vector, and the other vectors represented
above are (2M × 1) vectors. The generalized least-squares estimator for wk is
then

ŵk = (G′Σ−1G)−1G′Σ−1




v1k

...
vMk


 , (43)

(44)

where

Σ =




Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · ΣM


 . (45)



This is a rather crude estimate, and we are currently exploring filtering/forecasting
methods (e.g., variants of the Kalman filter and Bayesian sequential imputation)
that incorporate past information on the weapon’s locations.

Recall from (11) how weapons’ past locations W = {(wk(τ), τ): τ < t} de-
termine the danger-potential field g(s, t;W) in space and time. We now consider
a forecast of this field at the present time t, based on noisy past observations,
V ≡ {(vik(τ), τ): τ < t; k = 1, 2, . . .} of the weapons’ movements. Define

ĝ(s, t;V) ≡ E[g(s, t;W)|V]

=
∫

W

g(s, t;W)fW|V(W|V)dW , (46)

where fW|V(·) is the posterior probability density of the true spatial-temporal
locations W, given the data V. Holding all the assumptions from the devel-
opment of (2)-(??) to be true and replacing g(s, t;W) with (??), (??) can be
written as

ĝ(s, t;V) =
∫

W

∑

k

∫

wk(t)

g(s, t;wk(t), t)h2(wk(t)|t,W)dwk(t)

× fW|V(W|V)dW (47)

=
∑

k

∫

wk(t)

g(s, t;wk(t), t)

×
∫

W

h2(wk(t)|t,W)fW|V(W|V)dWdwk(t) . (48)

Because wk(t) at t and V are conditionally independent given W, we can re-
write h2(wk(t)|t,W)fW|V(W|V) as h3(wk(t),W|t,V). Hence,

ĝ(s, t;V) =
∑

k

∫

wk(t)

g(s, t;wk(t), t) (49)

×
∫

W

h3(wk(t),W|t,V)dWdwk(t)

=
∑

k

∫

wk(t)

g(s, t;wk(t), t)h4(wk(t)|t,V)dwk(t) , (50)

where h4(wk(t)|t,V) is the conditional probability density function describing
the probability that a weapon is at a specific location at time t, given the past
observations of all weapons at various locations. The calculations leading to
(50) require modification if V also contains current observations {(vik(t), t): k =
1, 2, . . .}; this results in a filtered (rather than a forecasted) space-time danger
potential. These calculations will be reported on elsewhere. It should also be
noted that at times where observations are not taken or are incomplete, the
danger potential will tend to spread out as the uncertainty about the locations
of the weapons increase. For an example of a space-time danger field generated
by the computer program described in Section 3, see [9].



6. Discussion and Future Directions

In examining the ways in which Statistics can contribute meaningfully to
problems in Command and Control, our research efforts at The Ohio State Uni-
versity [7] are based on our belief that the proper quantification of uncertainty
is crucial to providing the commander with as accurate and precise information
as possible. We also believe that maps are an effective way of representing the
resulting knowledge and uncertainty. We have developed a hierarchical design
and notation for discussing the hypothetical battlespace, which has led to the
postulation of danger potential as an information tool of interest to the battle
commander.

The danger-potential field has a number of desirable properties. First, the
fields are summable, so that the effect of additional weapons can be easily in-
corporated. In addition, danger potential extends naturally to spatial-temporal
fields. Since the form of the danger potential of a specific weapon can be com-
puted in advance and can be represented concisely as a function of the weapon
location, a spatial-temporal picture of the danger-potential field can be devel-
oped quickly, assuming the locations of the weapons are known.

The weapons’ locations are often unknown and we are exploring two ap-
proaches to incorporating the location uncertainty into the danger-potential
field: plug-in estimation and full Bayesian inference. Covariance-matching
kriging methods are being considered for plug-in estimation and sequential-
imputation methods are being considered for Bayesian inference.
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LUNCHEON PRESENTATION (1200 - 1330) 
 



John Tukey (1915-2000): Deconstructing
Statistics1

James R. Thompson
Department of Statistics

Rice University, Houston, Texas 77251-1892
thomp@rice.edu

Abstract

John Tukey ushered in a new age of statistics. He taught us to question the funda-
mental assumptions of Fisher. He was the first significant postmodern statistician.
John gave us a new paradigm of data analysis. He brought statistics into the age
of computer visualization as an alternative to model based inference. He created a
revolution whose ultimate consequences are still unclear.

Keywords: Exploratory Data Analysis, Graphics, Robustness.

1 Introduction

G.K Chesterton observed that there was a fundamental difference between the
Anglo-Saxon and European (i.e., French) modalities of model-based action. The
Europeans would build up a logical structure, brick on brick, to a point where
conclusions, possibly dreadful ones, became clear and then act upon them. The
Anglo-Saxons would go through the same process but then, before implementing
the conclusions, would subject them to “common sense.” “Yes, yes,” they would
say. “These seem to be the conclusions, but they simply aren’t consistent with what
we know to be true. Better have a reexamination of the assumptions.”

Such an attitude has a long tradition in British letters and science. We recall
Samuel Johnson when looking at a carefully crafted argument for determinism,
including the absence of free will, dismissing the argument with, “Why, Sir, we
know the will is free.” And again, when considering Bishop Berkeley’s neoPlatonist
rejection of objective reality, Johnson kicked a stone down the high street as a
conclusive counter-example.

Sometimes, even the British fall captive to the consequences of flawed models.
For example, the Reverend Thomas Malthus’s model opined that human popula-
tions would grow exponentially until they hit the linear (in time) growth of food
supplies, and then crash, and start the process all over again. The ruling powers in

1This research was supported in part by a grant ( DAAD19-99-1-0150) from the Army Research
Office (Durham.



England quickly started acting on the implications of this model. The Irish Potato
Famine was one of the results. Arguing that it would do no good to feed the starv-
ing Irish peasants from the plentiful, Irish produced, grain supplies, as this would
simply postpone the inevitable, the English calmly watched while over a million
people starved. The Malthusian model led to the (inappropriately named) theory
called Social Darwinism, in reaction to which Marxism, with its own devastating
consequences, was a response.

John Tukey was perhaps the most important questioner of models in Twentieth
Century science. His logical roots extend all the way back to the Franciscan Prince
of Nominalists William of Ockham (1280-1349).

There is a danger in disdaining the consquences of reasonable models. The AIDS
epidemic is a case in point. Strong model based arguments were made early on for
closing the gay bathhouses. They remain open in the United States to this day.
Now there seems to be evidence that the huge pool of HIV infectives in the United
States, via cheap air travel, drives a non stand-alone epidemic in Europe. But these
are all model based conclusions, and model based conclusions are not the fashion
today. An anti-modeling philosophy fits in well with the temper of the times. An
American president has answered the ancient question, “What is truth?” with “It
depends on what the meaning of ’is’ is.” We live in a time of grayness: “Some
things nearly so, others nearly not.”

Modern statistics was started in 1662 by John Graunt (Graunt, 1662), a London
haberdasher and late Royalist captain of horse, without academic credentials, who
came up with the incredible notion of aggregating data by quantitative attribute as
a means of seeing the forest instead of the trees. Instead of discarding his ideas as
downmarket because of the lack of credentials of the discoverer, the “respectable”
establishment of his time, in the person of William Petty, simply tried to co-opt
them as their own discovery.

The “Victorian Enlightenment,” in which the statistical community played an
important part, received its initial impetus from the Darwinian revolution in bio-
logical science. Statisticians were iconoclasts, questioning assumptions, using data
based modeling to attack assumptions based on long held views. Francis Galton
and Karl Pearson were key players, with Fisher coming along later as the premier
consolidator and innovator of his statistical age.

A characteristic of these bold Victorians was a belief in their models. The old
models of Lemarque, say, were wrong. The new models of the Victorians, however,
were, if not precisely correct, a giant step toward reality. We recall Galton’s con-
fidence (Galton, 1879) in the universality of the “normal distribution” (so-called
because everything followed it):

I know of scarcely anything so apt to impress the imagination as the
wonderful form of cosmic order expressed by the “Law of Frequency of
Error.” The law would have been personified and deified by the Greeks,
if they had known of it. It reigns with serenity and in complete self-
effacement amidst the wildest confusion. The huger the mob and the
greater the apparent anarchy, the more perfect is its sway. It is the
supreme law of Unreason.



Students who have had their grades on tests subjected to a “normal curve” are
victims of blind faith in Galton’s 110 year old “maxim.” (There is no obvious
pooling of attributes which causes the Central Limit Theorem to operate in this
case.)

2 Enter John Tukey and EDA

An obvious scientific progression would be for Galton’s maxim to serve as an hy-
pothesis which would compete with some new maxim which would then evolve into
an improvement on the notion of universal normality. Tukey questioned the normal
assumptions. He gave counter-example after counter-example where the normality
assumption was false. But he never presumed to replace it with any model based
alternative.

The same can be said for just about everything in the Fisherian pantheon of
statistical models. Tukey deconstructed them all. But he did not replace them with
a new set of explicit models. He simply dispensed with the Aristotelian paradigm of
a chain of ever better models and changed the terms of discourse to the construction
of a set of techniques for data analysis which were apparently “model free.” Those
who attended one of John’s shortcourses in Exploratory Data Analysis (generally
team taught with a junior colleague, to whom John gave most of the good punch
lines) have heard the mantra:

Exploratory Data Analysis lets the data speak to you without the
interference of models.

3 The Box Plot

Let us consider one of the main tools of EDA: the schematic or box plot. The rules
for its construction are rather simple:

1. Find the median (M) of the data.

2. Find the lower quartile and lower quartile of the data (lower hinge (LH) and
upper hinge (UH)).

3. Compute the Step length: S = 1.5 (UH - LH).

4. Determine the Lower and Upper Inner Fences according to LIF = LH - S and
UIF = LH + S.

5. Determine the Lower and Upper Outer Fences according to LOF = LH - 2S
and UOF = UH + 2S.



The use of the schematic plot essentially replaces the normal theory based one-
dimensional hypothesis tests of Fisher. Let us consider a sampling of 30 income
levels from a small town: 5600, 8700, 9200, 9900, 10100, 11200,13100,16100,19300,
23900, 25100, 25800, 28100, 31000, 31300,32400, 35800, 37600,40100,42800, 47600,
49300, 53600, 55600, 58700, 63900, 72500, 81600, 86400, 156400.

M =
1

2
[31300 + 32400] = 31850. (1)

LH =
1

2
[13100 + 16100] = 14600. (2)

Similarly, for the upper hinge, we have

UH =
1

2
[53600 + 55600] = 54600. (3)

S = 1.5× (54600− 14600) = 60000. (4)

UIF = 54600 + 60000 = 1146000. (5)

UOF = 54600 + 2× 60000 = 174600. (6)

In the Tukey paradigm, an income value outside an inner fence would be suspicious,
i.e., we would not be very confident that it really was from the mass of incomes
considered. And a value that is outside an outer fence would almost certainly not be
from the mass of incomes considered. We see, here, that only one income is outside
an inner fence, and it is inside an upper fence, namely the income of 156,400. So,
by the use of the schematic plot, we would say that it appeared that the individual
with an income of 156,400 is not a part of the overall population considered. Our
judgement is ambiguous, since the observation falls inside the upper outer fence.
Such a rule, as given in Exploratory Data Analysis, is didactic and, unlike the
Fisherian significance tests, apparently model free.

0 50000 100000 150000 200000

*

Figure 1. Box Plot of Income Data.

Let us note, however, some obvious assumptions. Firstly, the technique assumes
that the data comes from a symmetrical distribution. (Of course, such symmetry
might be approximately obtained from the raw data by an appropriate transforma-
tion.) Then, we need to notice some tacit assumptions underlying the placing of the



fences. If the underlying distribution is normal, the probability of an observation
being outside an inner fence is .007 ≈ 1%. This is, interestingly, about the same one
would obtain with a 1% significance test of parametric form. If the data is normal,
the probability of an observation lying outside the outer fences is 2 in a million (a
nice round number). It is hard to imagine that Tukey was not thinking in terms of
the normal distribution as his standard. The inner fence and outer fence boundaries
are not appropriate for distributions much tailier than the normal.2 The technique
based approach of the box plot, then, is very similar to what one would get if one
used the normal assumption and specifically derived a likelihood ratio test, or the
like.

If the schematic plot reduces essentially to a model based parametric procedure,
what have we gained by its use? The answer would appear to be “graphical per-
ception” rather than robustness. Moreover, the schematic plot does not correct
for sample size. With a sample size of 30 from the same normal distribution, the
probability that none of the observations will fall outside the inner fences is 81%
rather than 99%. For 30 samples from the same normal distribution, the proba-
bility that all the observations will fall inside the outer fences is 99.994% rather
than 99.9998%. Suppose the number of incomes we considered was 300 instead of
30. Then the probability of all the normal variates falling inside the inner fences is
only 12.16%. The probability of all falling inside the outer fences is 99.94 %. The
box plot is a wonderful desk accessory (and is installed as such in most statistical
software packages), particularly when one is plotting data from two sources side by
side, but it needs to be used with some care.

4 The 3RH Smooth

The work in nonparametric regression has been voluminous. Almost all has actually
been within the context of Fisherian orthodoxy. Tukey attacked it de novo.

Consider a small company that makes van modifications transforming vans into
campers. In Table 1 we show production figures on 30 consecutive days.

2For the Cauchy distribution, the probability of an observation falling outside an inner fence is
15.6%. The probability of an observation falling outside an outer fence is 9%.



Table 1. Production.

1 133
2 155
3 199
4 193
5 201
6 235
7 185
8 160
9 161
10 182
11 149
12 110
13 72
14 101
15 60
16 42
17 15
18 44
19 60
20 86
21 50
22 40
23 34
24 40
25 33
26 67
27 73
28 57
29 85
30 90

We graph this information in Figure 2. The points we see are real production
figures. There are no errors in them. Nevertheless, most people would naturally
smooth them. Perhaps the figures are real, but the human observer wants them to
be smooth, not rough. One could look upon such a tendency to want smoothness
as being some sort of natural Platonic notion hardwired into the human brain. We
can rationalize this tendency by saying that the real world has smooth productions
contaminated by shocks such as sudden cancellations of orders, sickness of workers,
etc. But the fact is that most of us would hate to make plans based on such a
jumpy plot.
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Figure 2. Daily Production Data.

The fact is that the world in which we live does tend to move rather smoothly
in time. If there were so much turbulence that this was not the case, it would be
hard to imagine how any sort of civilized society could ever have developed. So
we ought not despise our apparently instinctive desire to see smooth curves rather
than jumpy ones. Tukey achieved this by a running median (3R) smooth. Unlike
the earlier hanning smooth (H) which replaced an observed value by a weighted
(.25, .50, .25) average of it and its fellows, the 3R smooth will not drive the smooth
to oversmoothed unreality when not checked. The 3R smooth is naturally self-
limiting and requires no human manager. However, it is somewhat inclined to
exhibit patches where one transitions from one locally flat function to another. So
Tukey “polished” the 3R smooth with one or two hanning smooths. The result was
an easy solution to the nonparametric regression problem, one that owed naught to
normal theory or Fisherian orthodoxy. We show a 3RHH smooth of the production
numbers in in Table 2 graphed in Figure 3.



Table 2. 3RHH Smooth.

Day Production 3 33=3R 3RH 3RHH
1 133 133 133 133 133
2 155 155 155 159 159
3 199 193 193 185 182
4 193 199 199 198 196
5 201 201 201 201 199
6 235 201 201 197 195
7 185 185 185 183 183
8 160 161 161 167 170
9 161 161 161 161 162
10 182 161 161 158 155
11 149 149 149 142 140
12 110 110 110 118 118
13 72 101 101 96 97
14 101 72 72 76 77
15 60 60 60 59 60
16 42 42 42 47 49
17 15 42 42 43 45
18 44 44 44 48 49
19 60 60 60 56 55
20 86 60 60 58 55
21 50 50 50 50 50
22 40 40 40 43 44
23 34 40 40 39 39
24 40 34 34 37 40
25 33 33 40 45 47
26 67 67 67 60 59
27 73 67 67 69 69
28 57 73 73 79 79
29 85 85 85 88 86
30 90 90 90 90 90

In the case of the box (schematic) plot, we have seen a technique of John Tukey
which appears somewhat derivative of a Fisherian test of significance. The 3RHH
smooth has nothing to do with Fisherian thinking. It is brand new with Tukey and
is built on Gestaltic notions rather than anything dealing with normal theory.
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Figure 3. The 3RHH Smooth.

5 Conclusions

Most of the postmodern philosophers proclaim a new evangel and then wind up
spouting old stuff from Nietzsche, Marx, Heidegger, Freud, etc. Tukey was a true
revolutionary. Some of his material was, quite naturally, derivative from the work
of Fisher, Pearson, and other statisticians from an earlier age. But most of the
Tukey paradigm was new. In the case of smoothing, jackknifing, prewhitening,
multiple comparisons, analysis of spectra, analysis of seismic data, citation indexing,
projection-pursuit, Fast Fourier Transforming, data spinning, election forecasting,
probably in most of the areas in which he worked, John Tukey was doing new
things, things that nobody had done before. He deconstructed Fisher and Pearson
and Gauss, but he then built his own structures.

What John did not do, unfortunately, was leave a roadmap of the models behind
his paradigm. It can be said that W. Edwards Deming’s legacy suffers from the
same problem. Deming, like Tukey, was rather didactic, telling his disciples to
do this or that because he, Ed Deming, had said to do it. But Deming was an
Aristotelian, and, though he did not himself publish his modeling taxonomy, it is
possible to discern it if one looks carefully. (Thompson and Koronacki (1992) have
attempted to infer Deming’s modeling structure.) Tukey is different. Nearly a pure
nominalist, he spurns modeling and attacks problems almost sui generis. Yet there
is a pattern. We can see some of John’s implied axioms. Here are a few:

1. The eye expects adjacent pixels to be likely parts of a common whole.



2. The eye expects continuity (not quite the same as (1) ).

3. As points move far apart, the human processor needs training to decide when
points are no longer to be considered part of the common whole. Because of
the ubiquity of situations where the Central Limit Theorem, in one form or
another, applies, a natural benchmark is the normal distribution.

4. Symmetry reduces the complexity of data.

5. Symmetry essentially demands unimodality.

6. The only function which can be identified by the human eye is the straight
line.

7. A point remains a point in any dimension.

Much more than this is required if one is to attempt to infer John’s scientific
philosophy. It might be an appropriate life’s work for somebody, or for several
somebodys. Though I have had a go at deciphering Deming, I despair of doing this
for Tukey. And I am reasonably sure that if John were asked about the wisdom of
somebody trying to come up with a Rosetta Stone for understanding the philosophy
of John Tukey, he would laugh at the idea. And yet, if statistics is to survive, we
have to come to grips with the fact that the statistical paradigm was changed by
John Tukey in revolutionary ways, ways always brilliant, frequently destabilizing.
He wanted to leave us a toolbox, and he did. But until we understand better the
implications of the Tukey Revolution, we cannot possibly answer questions about
the place of statistics in Twenty-First Century Science.
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CLINICAL SESSION I (1330 - 1530) 
 
A Statistical Analysis of Course of Action Generation ? 
Barry Bodt, Joan Forester, Charles Hansen, Eric Heilman, Richard Kaste, and Janet 
O'May, Army Research Laboratory 
 
A recent approach to course of action (COA) generation employs a genetic algorithm 
(Fox-GA) to generate a pool of diverse, high quality courses of action. This pool is 
intended as an initial set which planners can and adjust before nominating a subset to the 
commander. Evaluation of the recommended COAs by Fox-GA has to date involved 
either expert opinion as to suitability or results from the abstract wargame internal to 
Fox-GA. (A single scenario is simulated using different COAs over terrain at the 
National Training Center, Fort Irwin.) Further, since the concept prototype was a 
component of a larger research program in military displays, much of the emphasis on 
Fox-GA development has been in perfecting usability. 
 
In a limited scenario, we seek to examine Fox-GA with respect to two basic questions: 
(1) How do the user controls on Fox-GA affect the quality of the COA reflected in the 
battle outcome? (2) How well do Fox-GA recommended COAs perform in a more widely 
accepted simulation, Modular Semi-Automated Forces (ModSAF)? Some information 
regarding the variability of ModSAF results also factor in the discussion. 
 
The author's principal concern is how to choose a reasonable response measure to support 
evaluation within FoxGA and comparison with ModSAF. A few measures are proposed. 
Within the context of the questions we seek to answer about Fox-GA, what advice can 
the panel offer? 
 



A Clinical Paper On Efficient Search Strategies in 
High-Dimensional Complex Models 

 
Major Thomas M. Cioppa, United States Army, Doctoral Candidate, 
United States Naval Postgraduate School, Department of Operations 

Research, Monterey, CA  93940 
 

Dr. Thomas W. Lucas, Associate Professor, United States Naval 
Postgraduate School, Department of Operations Research, Monterey, CA  

93940 
 
 

Simulation models have become increasingly complex, often with a large 
number of factors (variables) requiring examination.  A comprehensive exploration of 
these factors may not be feasible even as processing speed increases or with parallel 
computing.  For example, a model with 26 factors, each at two levels, with only one 
replication would require over 67 million observations in a traditional full factorial design 
(226).  This could be considered a “small” problem since many computer simulations have 
thousands of factors.  If one is willing to assume negligible interactions, then a fractional-
factorial design is satisfactory, but still the required number of observations may be quite 
large.  These “traditional” experimental designs and associated theory have been well 
researched (Box, Hunter, and Hunter (1978) and Hicks (1993)).  Experimental designs 
relating specifically to computer simulations and models with a large number of factors 
were studied by Jacoby and Harrison (1962), Hunter and Naylor (1970), Kleijnen (1975), 
Biles (1979), Welch et al (1992), and Bates et al (1996). 

 
As the number of factors available for experimentation has increased, 

methodologies were developed to reduce the number of observations required to identify 
significant main effects.  Earlier work by Dorfman (1943) with group screening was 
extended by Watson (1961) and Li (1962).  Subsequent screening techniques to identify 
the most significant factors, denoted as factor screening, were developed by Ott and 
Wehrfritz (1972), Montgomery (1979), Smith and Mauro (1982), Schruben (1986), and 
Mauro (1986).  More recent factor screening methodologies include sequential 
bifurcation by Bettonvil and Kleijnen (1996), Latin supercube sampling by Owen (1998), 
and supersaturated designs by Yamada and Lin (1999).  The primary focus of these 
methodologies is efficiently (defined as reducing the number of observations) identifying 
the critical factors (defined as contributing the most to the outcome measure).  The 
critical assumption in these methodologies is that interactions are negligible.  The 
objective is to efficiently identify the main effects, and then, if necessary, perform 
additional experimentation for refinement. 

 
In certain areas, for example command and control in military conflict, 

interactions are prevalent and cannot be assumed negligible, even from the initial onset of 
the experimentation.  The presence of non-monotonicity and chaos in combat models, 
defined as battles on the edge, is an obscuring factor in the search (Dewar, Gillogly, and 
Juncosa (1991)).  Finding general patterns of behavior is complicated by the difficulties 
associated with exploring high-dimensional non-linear model surfaces.  Existing search 
methodologies often restrict analysts to comprehensively exploring a tiny hyperplane of 
model space, finding extreme points, or varying many factors simultaneously by 
confounding main effects with interactions.  The result of the aforementioned approaches 



may fail by either identifying a local extrema as a global extrema or failing to identify 
critical interactions.   

 
Hencke (1998) developed an agent-based combat simulation to analyze 

information and coordination.  His model succeeded in “providing a simulation where the 
agent’s actions are reasonably well behaved, that is reminiscent of well-trained forces.” 
His work is an excellent representation of a high dimensional complex model where 
interactions are significant and will provide a basis for the proposed experimentation.  
Assume an imminent conflict will occur between two opposing forces, denoted as Blue 
and Red.  Table 1 shows the factors, each a variable capable of multiple levels, which can 
be adjusted and will serve as an excellent source for experimentation.  Archimedes, an 
agent-based simulation being developed under the Marine Corps Combat Development 
Command’s Project Albert, contains a much larger factor set than Hencke’s model and 
may serve as an excellent model to further explore a proposed search strategy. 

 
Table 1:  Factors for Experimentation  

Red Forces Blue Forces 

Red agents in cell Blue agents in cell 

box center x box center x 

box center y box center y 

box size x box size x 

box size y box size y 

goal x goal x 

goal y goal y 

probability hit probability hit 

speed Speed 

sensor/shoot range sensor/shoot range 

charge ratio charge ratio 

runaway ratio runaway ratio 

maximum hits maximum hits 
 
 
The goal of this research is to determine a methodology and associated theory 

that has the ability to efficiently search across the breadth of factors to identify not only 
main effects, but also critical second-order (and perhaps third-order) interactions.  A 
sequential design, where the number of observations may not be known in advance, 
which combines traditional full and fractional factorial designs, Latin supercube, and 
supersaturated designs together with group screening, prior information, and expert 
judgment may provide an effective approach to efficiently identify not only main effects, 
but also appreciable interactions.  Furthermore, once an appropriate set of factors and 
their interactions have been identified, a perturbation approach to judge the stability of 
the proposed set will be integrated into the search methodology. 
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Statistical Analysis of Atmospheric Properties for Estimation of Infrared Radiance of 
Ballistic Missiles 
CPT Scott Nestler, United States Military Academy 
 
Atmospheric properties, like temperature and density, can greatly affect the amount of IR 
energy that is reflected off an incoming ballistic missile. While many models to predict 
mean atmospheric conditions exist, there are no global models that account for the 
variability in these properties. This shortcoming makes it difficult to assess uncertainty 
due to atmospheric conditions. For this reason, a model that is adjusted for known 
extreme values is needed for use in describing the global behavior of atmospheric 
parameters. This study is in support of the Missile and Space Intelligence Center's 
development of a Bounded Earth Atmospheric Model (BEAM). This study will attempt 
to create such a model through statistical analyses on an existing atmospheric model. It is 
expected that BEAM will primarily be used by designers of IR sensors used in missile 
defense systems. 
 
CONTRIBUTED SESSION V (1330 - 1530) 
 
Stochastic Properties for Uniformly Optimally Reliable Networks 
Yontha Ath, California State University, Dominguez Hills and Milton Sobel, University 
of California, Santa Barbara 
 
The field of Optimal Network Reliability seems to be a pretty hot topic among a small 
group of engineering people. Although it is highly statistical in nature, few statisticians 
have become interested in it. It has many applications, e.g. to military environments as 
well to local area computer networks that operate in parallel. Such a network is modeled 
by a probabilistic graph G in which the points or nodes (i.e., communication centers, 
satellites, telephones, missile sites or computer stations) are perfectly reliable but the 
edges (representing telephones lines, communication links such as microwaves or 
multiply-connected cables) operate independently of one another, each with a given 
common known probability p(0<p<1). The network G is in an operating state iff the 
surviving edges induce (contain or consist of) a spanning connected subgraph of the 
given graph G. We consider only the all-terminal reliability. For an undirected network 
with n nodes and e edges, what is the most reliable network for the given pair (n,e)?It is 
quite interesting that a unique optimal graph does exist for many of the pairs (n,e) studied 
thus far. In this talk, we present several new conjectures for a graph to be uniformly 
optimally reliable (UOR). We also present some new counterexamples to the known 
conjectures on UOR graphs in the literature. Finally, we use Dirichlet methodology and 
apply it to the above network problems. For example, we consider different models for 
the lifetime of the edges and we are interested in the Expectation and Variance of the 
resulting (random) time until the (all-terminal communication) system gets severed (i.e., 
the network gets disconnected). 
 



Reliability Described by Belief Functions, A Second Look 
George Hanna, Army Materiel Systems Analysis Activity 
 
Glenn Shafer and A. M. Breipohl published the paper Reliability Described by Belief 
Functions in the 1979 Proceedings of the Annual Reliability and Maintainability 
Symposium of the IEEE. The paper uses Dempster-Shafer belief functions to assess the 
reliability of a circuit based on indirect data. The weakest aspect of the method is the 
construction of the belief functions. The belief functions are assumed to be consonant and 
one-sided, i.e., non-zero belief is associated only with statements of the form the 
reliability exceeds a particular value. Surely there will be occasions when the evidence 
provides support for two-sided statements about reliability. Furthermore, the assignment 
of confidence levels to belief values though not objectionable is not particularly 
compelling. 
 
Since the time of the paper, two developments provide value to a reconsideration of 
Dempster-Shafer belief functions for assessment of reliability. First, is the cost to the 
Army of obtaining direct data to support verification of reliability requirements for 
weapons under development. Some items, such as missiles, are inherently expensive to 
test. For other items money available for testing may be limited due to general reduction 
in Army funding. Even when the Army can afford direct verification tests of a 
developmental system there is a strong desire to reduce the cost of verification. 
Consequently, there is high level interest in new methods to assess both reliability and 
other performance characteristics using other than direct system test data. In fact the 
Army has sponsored development of a methodology putatively based on Dempster-
Shafer theory to assess reliability using other than direct data. The second development 
has been one of the reinterpretations of the Dempster-Shafer theory. Specifically the 
interpretation described in the book A Mathematical Theory of Hints: An approach to the 
Dempster-Shafer theory of evidence written by Jurg Kohlas and Paul-Andre Monney and 
published in 1995. The Kohlas and Monney approach to statistical inference employs a 
process model to relate an observable outcome to an unobservable random variable and a 
parameter of interest. Process models lead naturally to Dempster-Shafer belief functions 
by providing a literal meaning to the concept of a basic probability assignment that was 
introduced in Shafer's book, a mathematical theory of evidence and apparently named 
because of its formal properties. 
 
The presentation will introduce the process model approach to developing belief 
functions. The belief function for binomial data based on a stress-strength process model 
will be discussed in detail. A simple model relating indirect and direct data will be used 
to illustrate evidentiary combination. The final part of the presentation will consider some 
of the obstacles to the use of process models and Dempster-Shafer theory for reliability 
assessment. 
 



Damage Assessment Using Test Data and Expert Testimonies 
Yuling Cui and Nozer D. Singpurwalla, George Washington University 
 
This talk lays out a general framework for damage assessment using test data and expert 
testimonies. Here test data are binary, while expert testimonies arise either in the form of 
informed judgments, or science based models, or both. Our proposed approach is 
"normative", in the sense that it is based entirely on the calculus of probability. This is 
ongoing work. 
 
System Reliability for Precision Missilery 
Mike Danesh, Aviation and Missile Research, Development and Engineering Center 
 
This paper presents a top-level summary for the development of a complex missile 
system. It is based upon a systematic approach that provides insight into the integration 
of scientific, engineering and mathematical technologies necessary for development of a 
robust missile system. It has been developed based upon a decade of experience with the 
PATRIOT system and has been endorsed by established experts. 
 
As part of this talk, a mathematical tool called ExCAP (Confidence Expanded 
Assessment Package) will also be presented. ExCAP expands on conventional 
assessment methods by adding capabilities developed in the field of evidential reasoning. 
 
SPECIAL SESSION ON RELIABILITY (1600 - 1730) 
 
NRC Workshop on Reliability for DoD Systems--An Overview of the Statistical Content 
Francisco Samaniego, University of California, Davis 
 
The National Research Council of the National Academy of Sciences hosted a DoD-
sponsored workshop on Reliability in June, 2000. Invited speakers addressed issues in the 
areas of system design and performance monitoring, reliability growth, techniques for 
combining data from related experiments, approaches to the analysis of field-
performance data, fatigue modeling and related inferences, software reliability issues, and  
reliability economics. From my perspective as Chair of the Organizing Committee and of 
the workshop itself, I will discuss the highlights among the statistical ideas, approaches, 
visions and recommendations presented at the workshop. Some of their implications for 
the development of a new "Reliability, Availability and Maintainability (RAM) Primer" 
will also be discussed. 
 
NRC Workshop on Reliability for DoD Systems--A DoD Perspective 
Ernest Seglie, Office of the Secretary of Defense, Operational Test & Evaluation 
 
In 1998 National Research Council issued a study of Statistics, Testing and Defense 
Acquisition. It recommended that, "The Department of Defense and the military services 
should give increased attention to their reliability, availability, and maintainability data 
collection and analysis procedures because deficiencies continue to be responsible for 



many of the current field problems and concerns about military readiness." 
(Recommendation 7.1,Page 105) 
 
In response to this recommendation and other more pointed observations on the state of 
current practice in DoD compared to industry best practices, the Department asked the 
National Academies to host a Workshop on Reliability. A second workshop on software 
intensive systems will be held next year. The first workshop was held 9 and 10 June 2000 
at the National Academy in Washington. Speakers and discussants were from industry, 
academia, and the Department of Defense. The suggestions from the workshop will be 
part of an effort to implement the recommendation to produce " new battery of military 
handbooks containing a modern treatment of all pertinent topics in the fields of reliability 
and life testing" (Recommendation 7.12,Page126). DoD Handbook 5235.1-H, Test and 
Evaluation of System Reliability, Availability, and Maintainability: A Primer was last 
updated in 1982. 
 
Implications of this effort to providing reliable systems for the warfighter will be 
addressed. 
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QUANTILE/QUARTILE PLOTS,CONDITIONAL QUANTILES,COMPARISON DISTRIBUTIONS

Emanuel Parzen
Texas A&M University, Department of Statistics

1. Histograms and Order Statistics
Histograms are traditionally plotted by statisticians to identify distributions that fit

a sample (data set) Y1, . . . , Yn.
Order statistics (sample values arranged in increasing order are denoted Y (1; n) ≤

· · · ≤ Y (n;n).

2. Sample Quantile Function
For identifying distributions that fit data we recommend the sample quantile function

Q∼(u) = F∼
−1

(u) = Y (j;n), (j − 1)/n < u ≤ j/n,

inverse of the sample distribution function

F∼(y) = E∼ [I(Y ≤ y)] = (1/n)Σn
t=1 I(Yt ≤ y)

3. Population Ensemble Quantile Function
When we regard Y1, . . . , Yn as a random sample of Y , we define population distribution

function F (y), −∞ < y < ∞, and quantile function Q(u), 0 ≤ u ≤ 1,

F (y) = P [Y ≤ y] = E [I(Y ≤ y)]

Q(u) = F−1(u) = inf {y : F (y) ≥ u}

4. Density Quantile, Quantile Density
If F is continuous, F (Q(u)) = u for all u and (differentiating)

f(Q(u)) Q′(u) = 1.

Quantile density q(u) = Q′(u).
Density quantile fQ(u) = f(Q(u)).

Asymptotic distribution of sample quantiles which makes statistical inference possible
is given by √

n fQ(u)(Q∼(u)−Q(u)) →d B(u)

where B(u), 0 < u < 1, is Brownian Bridge, zero mean Gaussian process with covariance
E [B(s)B(t)] = min(s, t)− st.

Analogous limit theorems can be proved for estimators of conditional quantile func-
tions QY |X=x(u).



5.Tail Classification of Distributions
Tail classification of distribution functions can be described by exponents of regular

variation α0 and α1:
fQ(u) = uα0 L0(u), u near 0,

fQ(u) = (1− u)α1 L1(u), u near 0.

In terms of α we define
α > 1, long tail;

α = 1, medium tail;

0 ≤ α = 1, short tail;

α < 0, infinitely short tail.

6.Continuous Sample Quantile
In practice we prefer continuous sample quantile

Q∼c((j − .5)/n) = Y (j; n), j = 1, . . . , n,

Q∼c(0) = Y (1; n), Q∼c(1) = Y (n; n)

and defined by linear interpolation at other u values. The continuous quantile command
in Splus is related to our definition by

Q∼c(p) = Q∼c
Splus(p + ((p− .5)/(n− 1)))

Note Q∼c
Splus((j − 1)/(n− 1)) = Y (j; n), j = 1, . . . , n.

7.Quantile Function of Transform
Assume Y = g(W ) where g(w) is quantile-like (is non-decreasing and continuous from

the left).
FY (y) = FW (g−1(y))

QY (u) = g(QW (u))

QY |X=x(u) = g(QW |X=x(u))

8.Distribution Transform
When F is continuous, FY (Y ) is Uniform (0, 1) since

QFY (Y )(u) = FY (QY (u)) = u

We call FY (Y ) distribution transform or probability integral transform. More important
is mid-distribution transform Fmid

Y (Y ), defining mid-distribution function

Fmid
Y (Y ) = FY (Y )− .5pY (Y ).

Randomized distribution is

F rand
Y (y) = FY (y)− U(y)pY (y), U(y) Uniform (0, 1).



9.Conditional Quantile Function
Bivariate data (X, Y ) is often modeled by conditional mean E [Y | X = x]. To model

conditional distribution
FY |X=x(y) = P [Y ≤ y | X = x]

we recommend estimating conditional quantile function

QY |X=x(u) = inf {y : FY |X=x(y) ≥ u}.

For jointly normal (X, Y ) conditional distribution of Y given X = x is normal,

QY |X=x(u) = µY |X=x + σY |X=xΦ−1(u).

10.Bayes Theorem Conditional Quantile Function
It is not true that QY (FY (y)) = y for all y, but for almost all values of the random

variable Y
QY (FY (Y )) = Y

Therefore by formula for quantile function of a tranform

QY |X=x(u) = QY (QFY (Y )|X=x(u))

We have reduced estimating the conditional quantile of Y to estimating the conditional
quantile of the distribution transfrom FY (Y ) which we next interpret as a comparison
distribution and estimate as a comparison density. One can apply this formula to Bayes
estimation of a parameter θ from data X.

11.Comparison Distribution, Comparison Density
To compare two distributions F and G, a universal problem of statistical inference, we

define concepts of comparison distribution D(u;F, G), 0 ≤ u ≤ 1, and comparison density

d(u;F,G) = D′(u;F,G).

When F and G are continuous, and G << F (f(y) = 0 implies g(y) = 0),

D(u; F, G) = G(F−1(u)),

d(u; F, G) = g(F−1(u))/f(F−1(u))

When F and G are discrete, and G << F (probability mass function pF (y) = 0 implies
pG(y) = 0),

d(u; F, G) = pG(F−1(u)/pF (F−1(u)),

D(u; F, G) =
∫ u

0

d(s;F,G) ds



12. Exact u, PP plots
We call u F exact if u is in the range of F , u = F (y) for some y. Then Q(u) = inf {y :

F (y) = u}, and F (Q(u)) = u. For u F exact

D(u;F,G) = G(F−1(u));

for other u, D(u;F,G) is defined by linear interpolation between its value at exact u.
Change comparison distribution

Change D(u; F,G) = G(F−1(u))− F (F−1(u)).

Graph of D, called PP plot, connects linearly

(0, 0), (F (yj), G(yj)), (1, 1)

where yj are jump points of F (assume F discrete).

13. Comparison Approach to Estimating Conditional Quantiles
Bayes’ theorem for conditional quantiles is written

QY |X=x(u) = QY (QFY (Y )|X=x(u)) = QY (s)

We propose to find
s = QFY (Y )|X=x(u)

by computing the function of s, 0 < s < 1,

u = FFY (Y )|X=x(s) = P [FY (Y ) ≤ s | X = x]

When Y is continuous

u = FY |X=x(QY (s)) = D(s; FY , FY |X=x)

When Y is discrete and s is FY exact

FY (Y ) ≤ s = FY (QY (s)) if fY ≤ QY (s),

u = P [FY (Y ) ≤ s | X = x] = P [Y ≤ QY (s) | X = x] = D(s; FY , FY |X=x)

14. Bayes Comparison Theorem for Conditional Quantiles
We can verify the following extension of Bayes theorem for conditional quantile func-

tions:
QY |X=x(u) = QY (D−1(u; FY , FY |X=x))

Proof for Y discrete:
For discrete Y with ordered values yj , QY (s) = yj for s in interval FY (yj−1) < s ≤ FY (yj).

For u in interval FY |X=x(yj−1) < u ≤ FY |X=x(yj), s = D−1(u; FY , FY |X=x) varies
linearly between F (yj−1) and F (yj), and QY (s) = yj .

For interval FY |X=x(yj−1) < u ≤ FY |X=x(yj), QY |X=x(u) = yj = QY (s).



15. Formula for Conditional Mean From Conditional Quantile Function
Our computational process for computing conditional quantiles involves estimating in

succession as a function of x

d(s; FY , FY |X=x), 0 < s < 1

u = D(s; FY , FY |X=x), 0 < s < 1

s = D(u; FY |X=x, FY ), 0 < u < 1

QY |X=x(u) = QY (s), 0 < u < 1

The relation between the above functions is illustrated by formulas for the conditional
mean.
Quantile formulas for conditional mean. When Y continuous

E [Y | X = x] =
∫ ∞

−∞
yfY |X=x(y)dy

=
∫ ∞

−∞
y
fY |X=x(y)

fY (y)
dFY (y), y = QY (s)

=
∫ 1

0

QY (s)
fY |X=x(QY (s))

fY (QY (s))
ds

=
∫ 1

0

QY (s)d(s; FY , FY |X=x)ds

=
∫ 1

0

QY (s)dD(s; FY , FY |X=x), u = D(s; FY , FY |X=x)

=
∫ 1

0

QY (D−1(u; FY , FY |X=x))du

=
∫ 1

0

QY |X=x(u)du

When Y discrete, similiar formulas start with

E [Y | X = x] =
∑

y

ypY |X=x(y).

16. Logistic Regression Estimation of Conditional Comparison Density
Let sj = j/m, j = 0, 1, . . . , m (often m = 20). Approximately

d(sj ;FY , FY |X=x)

= (sj − sj−1)−1 P [QY (sj−1) < Y ≤ QY (sj) | X = x]

which can be estimated for fixed sj as a function of x by logistic regression (for which
there exists many parametric and non-parametric methods).



17. Rejection Sampling Computation of Conditional Quantile of Distribution Transform
Combining these estimates as a function of x for fixed sj one can form a piecewise

constant estimate as a function of s for fixed x.
From the comparison density d(s;FY , FY |X=x), 0 < s < 1 one can estimate by rejec-

tion sampling the values of the comparison quantile

s = D−1(u; FY , FY |X=x), 0 < u < 1.

18. Mid-Distribution Transform
A unifying role in non-parametric data analysis is played by the mid-distribution

transform (equivalent to tied ranks of a sample)

Fmid
Y (Y ) = FY (Y )− .5pY (Y )

E
[
Fmid

Y (Y )
]

= .5,

VAR
[
Fmid

Y (Y )
]

= (1/12)(1− E
[
p2

Y (Y )
]
).

The importance of Fmid
Y (Y ) in non-parametric statistical data analysis is illustrated by the

formula for a score statistic to test H0 : FY |X=x = FY :

T (J) =
∫ 1

0

J(u)d(u; FY , FY |X=x)du.

When Y is discrete, with distinct values y1, . . . , yk,

T (J) = Σk
j=1(pY |X=x(yj)/pY (yj))

∫ FY (yj)

FY (yj−1)

J(u)du.

Approximately
T (J) = Σk

j=1pY |X=x(yj)J(Fmid
Y (yj))

= E
[
J(Fmid

Y (Y )) | X = x
]
.

Linear rank statistics can be represented

T∼(J) = E∼ [
J(F∼mid

Y (Y )) | X = x
]
.

19. Location Scale Quantile Models
The sample quantile Q∼(u) is a non-parametric estimator of the population quantile

Q(u). A parametric estimator can be formed from a location-scale model

Q(u) = µ + σQ0(u)

where Q0(u) is known.

Maximum likelihood estimators of µ and σ, denoted µ̂ and σ̂, yield estimator Q̂(u) =
µ̂ + σ̂Q0(u).



Asymptotically efficient estimates, denoted µn,L and σn,L, can be formed as a linear
functional of order statistics (sample quantile function); they can be computed by con-
tinuous parameter regression analysis from the asymptotic representation of the sample
quantile as a linear regression

f0Q0(u)Q∼(u) = µf0Q0(u) + σf0Q0(u)Q0(u) + σB(u).

20. Location Scale Models for Conditional Quantiles

QY |X=x(u) = µY |X=x + σY |X=xQ0(u)

Estimators
Q̂Y |X=x(u) = µ̂Y |X=x + σ̂Y |X=xQ0(u)

can be formed in the same way as in the unconditional case from linear functions of our
non-parametric estimators denoted Q∼Y |X=x(u), of the conditional quantile QY |X=x(u).

To compute these parametric estimators we assume Q0(u) known. We can compare
several choices of Q0(u) by plotting Q∼

Y |X=x(u) and Q∧Y |X=x(u) on scatter diagrams.

Estimation of µ|X=x is alternative to non-parametrically estimating E [Y | X = x].

21. Confidence Intervals for QY (u) and Conditional Quantile QY |X=x(u)
Confidence intervals for a parameter Q(u) can be formed from the asymptotic distri-

bution of Q∼(u): √
n(Q∼(u)−Q(u)) →d B(u)/fQ(u)

This formula has a severe disadvantage , it requires estimation of fQ(u).
From the values of the sample quantile functions Q∼Y (u) (Similarly for Q∼Y |X=x(u))

one can obtain a confidence interval for Q(u) using facts such as

√
n(F∼n (Q(u))− u) →d B(u)

One can find functions c1(u) and c2(u) such that with probability greater than α, for all
u,

u− (c1(u)/
√

n) < F∼n (Q(u)) < u + (c2(u)/
√

n),

Q∼
n (u− (c1(u)/

√
n)) < Q(u) < Q∼

n (u + (c2(u)/
√

n))

From parametric estimates of a location-scale model

Q̂(u) = µ̂ + σ̂Q0(u)

or
Q̂(u) = µn,L + σn,LQ0(u)

one can derive a simultaneous confidence interval (Rosenkrantz (2000))

Q̂(u)− c1(u, n) ≤ Q(u) ≤ Q̂(u) + c2(u, n)

This location-scale model confidence interval is shorter than the non-parametric confidence
intervals above.



22. Five Number Quantile Summary
Quantile function can “compress data” by a five number summary: values of Q(u) at

u = .05, .25, .5, .75, .95

Median Q(.5)
Quartiles Q(.25), Q(.75)
Mid Quartile QM = .5(Q(.25) + Q(.75))
Quartile deviation QD = 2(Q(.75)−Q(.25))
QD approximation to Q(.5)
Normal distribution QD = 2.7σ.

23. Quantile Quartile Function Q/Q(u), 0 < u < 1
To use quantile functions to identify distributions fitting data we propose

Q/Q(u) = (Q(u)−QM)/QD = QY Q(u),

defining transform of data
Y Q = (Y −QM)/QD

Claim: plot of y = Q/Q(u) contains all the insights of a box plot. Add to plot dotted lines

horizontal y = −1,−.5, 0, .5, 1

vertical u = .05, .25, .5, .75, .95

Five number summary of distribution becomes

QM, location

QD, scale

Q/Q(.5), skewness

Q/Q(.05), righttail

Q/Q(.95), lefttail

Elegance of Q/Q(u) is its universal values

Q/Q(.25) = −.25

Q/Q(.75) = .25

Tukey outliers correspond to | Q/Q(u) |> 1.
Tukey criteria for outlier value Q(u) outside fences:

Q(u) > Q(.75) + 1.5(Q(.75)−Q(.25)), Q(u)−QM > QD,

Q(u) < Q(.25)− 1.5(Q(.75)−Q(.25)), Q(u)−QM < QD.



Diagnostics of left and right tail behavior:

Short : −5 < Q/Q(.05) Q/Q(.95) < .5

Medium : −1 < Q/Q(.05) < −.5 .5 < Q/Q(.95) < 1

Long : Q/Q(.05) < −1 1 < Q/Q(.95).

Diagnostics of skewness:

Q/Q(.5) > 0, mean < median < mode, left− skewed

Q/Q(.5) < 0, mode < median < mean, right− skewed.

24. Conditional Quantile Five Number Summary
From the conditional quantile QY |X=x(u) at u = .05, .25, .5, .75, .9, we recommend five

number summary:
location of conditional distribution

QMY Q|X=x = (QMY |X=x −QMY )/QDY

scale of conditional distribution

QDY Q|X=x = QDY |X=x/QDY

skewness of conditional distribution

Q/QY |X=x(.5) = (QY |X=x(.5)−QMY |X=x)/QDY |X=x

right tail of conditional distribution

Q/QY |X=x(.95) =

(QY |X=x(.95)−QM)Y |X=x)/QDY |X=x

Q/QY |X=x(.05) defined similarly.

25. Conditional Quantile Scatter Plots, Diagnostic Plots
We recommend plotting as a function of x for u = .05, .25, .5, .75, .95

y = QY Q|X=x(u)

on a scatterdiagram of (XQ, Y Q). Also plot y = QMY |X=x. On separate graphs, plot as
function of x, QDY Q|X=x, Q/QY |X=x(.05), Q/QY |X=x(.95).

26. Unification of Conventional Statistical Methods
Conventional t test, Kruskal-Wallis test, goodness of fit) methods of two sample and

multi-sample data analysis can be extended and unified by representing the data as (X, Y )
and computing and graphing

conditional quantiles of Y given X = x,

conditional comparison quantiles of Fmid
Y (Y ),

conditional comparison distribution of Fmid
Y (Y ).



These are functions of u for each of the discrete x values of X. We plot summaries as a
function of x plotted at Fmid

X (x).
To summarize data in many samples we represent (Xj , Yj) where Xj denotes popula-

tion (denoted k = 1, . . . , c) from which response Yj was observed. The values of Y for a
fixed value X can be summarized by a conditional quantile function QY |X ∼(u). The pooled
sample of Y values is summarized by an unconditional quantile QY

∼(u). As an alternative
to running box plots to compare and summarize the different samples we propose condi-
tional quantile/quartile plot which connects linearly points (Fmid

X (k), Q/QY |X=k(u)), k =
1, . . . , c. One plots this curve for u = .05, .25, .5, .75, .95. One also plots constant lines
Q/QY (u), u = .05, .25, .5, .75, .95.
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Innovative Bayesian Designs in Clinical Trials 
Donald Berry (University of Texas, MD Anderson Cancer Center) 
 
I will give some background on Bayesian designs for clinical trials and four examples of 
Bayesian designs used in actual trials. These examples embody the principles of early 
stopping, allocating treatments to maximize benefit to patients in and out of the trial, and 
two variations on a theme (a drug for stroke and another for non-small cell lung cancer): 
seamless phases II and III with sequential sampling and using surrogate endpoints. 
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The accuracy of weapon systems firing unguided ammunition, such as most tank and artillery 

systems, relies on understanding numerous sources of error and correcting for them.  Random errors are 

addressed through weapon and ammunition design, quality production, effective maintenance, and firing 

processes that minimize the magnitude of these error sources.  Bias errors are different because their 

magnitude and direction can often be estimated and then compensated for while aiming the weapon.  In 

this paper, we examine two common methods used to compensate for the bias errors inherent in aiming 

and firing tank cannons.  There are a number of advantages and disadvantages to each of these processes, 

but the relative accuracy benefits depend on the magnitude of the error sources that make up the total 

error budget for the fleet of tanks.  Although this budget is comprised of numerous error sources, 

reasonable estimates of accuracy are attainable with basic models of the predominant factors. This 

presentation illustrates models for first-shot accuracy under two common zeroing processes.  Such a 

comparison can then be used to determine the policy that makes a particular fleet of tanks most accurate 

in varying tactical situations and can be a useful tool for identifying and reducing the actual source of bias 

errors. 

 



In tanks, estimating the bias error is a two-part process.  First, boresighting is a process that 

measures the offset between the tank’s fire control system and its cannon, and then corrects for that offset.  

Typically, boresighting is accomplished by placing an optical device along the centerline of a cannon.  

The cannon is then moved so that a target point, at a known distance from the tank, is viewed with the aid 

of the optical device.  Assuming that there is no error in the optics of the device and that the device can be 

placed directly along the cannon centerline, the cannon will be aimed at the target point.  Of course there 

are errors, but modern boresighting devices are relatively accurate.1  Once the cannon is aimed at the 

target point, the tank’s fire control optics are also aimed at the target point.  Since the tank-to-target 

distance is known and the various angles of the cannon and fire control optics can be measured, the 

boresighting process provides enough geometrical information to aim the tank’s cannon at a target, at any 

range, with the tank’s fire control optics.   

 

While boresighting allows accurate alignment of the cannon with respect to the target prior to 

firing the cannon, the cannon can bend, displace laterally, and rotate during the actual firing process.  The 

result is that by the time the projectile exits the cannon muzzle, the cannon is no longer aimed so precisely 

at the target.  Additional mechanical interactions and aerodynamics further alter the eventual trajectory of 

the projectile.  The sum of the changes between the predicted trajectory (as based on the statically aimed 

cannon) and the actual trajectory is often referred to as “jump”.  Correcting for jump, which normally has 

a large, nonrandom component, is called zeroing.  Zeroing is the second step in the two-part process of 

estimating and compensating for bias error.  It can be accomplished a number of ways; but the two most 

common in tank gunnery are individual zero and fleet zero.  Tanks are individually zeroed when their 

jump is individually estimated, and a unique correction is calculated and applied to that tank.  Fleet zero is 

a process by which an average jump value is estimated for a number (fleet) of tanks and the correction 

implied by that average jump is applied to every tank in the fleet. 

 

Currently, when tanks are individually zeroed, it is done manually.  In other words, the tanks are 

taken to a firing range, where they shoot a number of rounds at a target, the impact points are measured 

relative to the aim point, and a correction is calculated and applied based on the average miss distance and 

direction.  Since each ammunition type reacts differently, the tank must be individually zeroed with each 

ammunition type it will fire.  This method of zeroing was used in the United States into the 1980s.  

                                                
1 Held, B. J., and D. W. Webb. “A Comparison of Muzzle Boresights for Tank Cannon.”  BRL-MR-3977, U.S. 
Army Ballistics Research Laboratory, Aberdeen Proving Ground, MD, 1992.  Prior to using dedicated boresight 
devices, one method of boresighting in the United States was to tape string across the muzzle of cannon to form a 
crosshair.  Binoculars were then used to view down the cannon from the breech end, across the crosshair at the 
muzzle, to the target point. 



However, with the advent of depleted uranium ammunition and the 120mm cannon, new calibration 

policies had to be considered.  The new ammunition was considered environmentally unfriendly, hence 

there was a desire to limit its use.  Additionally, the new, higher technology and often larger caliber 

ammunition being introduced was expensive, so finding a way to zero without firing a lot of rounds was 

important.  This requirement led to the fleet zero technique of estimating and compensating for bias 

errors. 

 

The major assumption behind the fleet zero concept is that all the tanks in a fleet shoot in a 

similar manner; for example, if Tank X shoots a particular ammunition type high and to the right, the 

assumption requires that Tank Y would shoot the same ammunition type high and to the right.  If this 

basic assumption is reasonably accurate, then a good estimation of the bias error for Tank X will also be a 

good bias estimation for Tank Y.  Current fleet zero polices depend on this assumption.  Today, the U.S. 

Army has established a fleet zero computer correction factor (CCF)∗ for each fielded ammunition type.  

The fleet zero facilitates the introduction of new ammunition types since part of the fielding process is to 

establish and distribute a CCF for the new round.  This is accomplished by firing the ammunition, under 

several firing conditions, from a number of tanks representative of the larger fleet and measuring the miss 

distances to the aim point.  The basic data is then analyzed and generalized to a single CCF for the entire 

fleet for the new ammunition type.  In the case of the individual zero, introduction of a new ammunition 

type requires each tank in the fleet to fire several of the rounds to establish CCFs unique to each tank. 

 

Using the fleet zero has a number of other distinct advantages over an individual zero policy.  The 

limited number of rounds required to establish a fleet CCF substantially reduces the cost compared to 

individually zeroing tanks.  The controlled nature of the tests used to establish the fleet CCF also 

indicates that safety and environmental concerns associated with the firing of tactical rounds can be 

greatly diminished.  As individually zeroing tanks requires safe firing ranges near the battlefield and the 

need to supply additional ammunition for zeroing, the fleet zero policy is more tactically sound since it 

eliminates these requirements.  Finally, one of the most significant advantages fleet zero offers is the ease 

with which it is implemented at the tank and soldier level.  Once a CCF number is passed to a tank 

owning unit all that is required is that the CCF be entered tank fire control computers.  In contrast, 

individually zeroing tanks requires firing the tanks, measuring the impacts, calculating the CCF, and then 

entering it on the fire control computer.  Each of these steps, which can produce significant error, requires 

training.   

                                                
∗ The CCF is the value of the correction that is input into the fire control computer of the tank.  The value is used by 
the fire control computer as part of the calculation that aims the cannon. 



 

There are disadvantages to the fleet zero policy, however.  The greatest disadvantage is that the 

fleet zero policy is only as good as the basic assumption that underlies it; hence, fleet zero does not 

account for differences between tanks and firing conditions.  When that assumption is found wanting, 

tanks that shoot significantly different than the fleet average will shoot inaccurately under the fleet zero 

policy.  Additionally, if the conditions under which a tank fires (e.g., the ammunition temperature) has a 

significant affect on the magnitude and direction of the bias error, a fleet zero policy may not adequately 

address the affect.  Individually zeroing tanks obviously accounts for the firing differences between them, 

and if done under conditions similar to those encountered during battle or gunnery drills, will also account 

for ammunition bias sensitivity to environmental conditions. 

 

 Choosing the better zeroing policy for a given set of conditions requires an understanding of how 

those conditions affect accuracy as they vary.  Since it is impractical to obtain this experimentally, a 

mathematical model is necessary. 

 

 

Mathematical Modeling of Fleet Zero 

 

For our modeling purposes, the three dominant components of variance associated with tank 

cannon accuracy are round-to-round variance, occasion-to-occasion variance, and tank-to-tank variance.  

These components are quantified by the parameter values 2
Rσ , 2

Oσ , and 2
Tσ , respectively.  Round-to-

round errors are random differences in jump between the same type of rounds fired on the same occasion 

from the same tank.  An occasion is defined as a total firing event during which nothing has happened to 

the tank that could appreciably affect how it shoots (e.g., maintenance or significant movement).  In other 

words, the total occasion timeframe is short enough that neither the tank nor firing conditions 

significantly changing is assured.  Occasion-to-occasion errors are therefore the random differences 

between firing occasions (in regard to their mean jumps) while firing the same type of ammunition from 

the same tank.  Finally, tank-to-tank errors are the differences in mean jumps between different tanks 

firing the same kind of ammunition.  Tank-to-tank error is only pertinent to the fleet zero method of 

zeroing.  In addition to the three major errors, ammunition temperature is included in the model as the 

major known variable not otherwise accounted for in the fire control calculations of current U.S. tanks. 

 

The three variance components and ammunition temperature are the only contributors to the total 

variability in the Stationary-to-Stationary Ammunition Accuracy Test (SSAAT), which is the U.S. Army 



Test Center’s protocol for initially estimating the CCF.  As displayed in Table 1, the SSAAT calls for 

four randomly chosen tanks to each fire four three-round occasions.  Within tanks, each occasion is fired 

at one of four specified ammunition temperatures.  The CCF is then calculated as a weighted average of 

the mean impacts from the firings at the four temperature conditions.  The weightings are based on the 

U.S. Army Materiel and Systems Analysis Activity’s (AMSAA) estimated global temperature distribution 

for armored vehicle combat. 

 

Temperature 

(oF) 

 

Tank 

-10 30 70 110 

1 Occasion 1: 

Rounds 1-3 

Occasion 5: 

Rounds 13-15 

Occasion 9: 

Rounds 25-27 

Occasion 13: 

Rounds 37-39 

2 Occasion 2: 

Rounds 4-6 

Occasion 6: 

Rounds 16-18 

Occasion 10: 

Rounds 28-30 

Occasion 14: 

Rounds 40-42 

3 Occasion 3: 

Rounds 7-9 

Occasion 7: 

Rounds 19-21 

Occasion 11: 

Rounds 31-33 

Occasion 15: 

Rounds 43-45 

4 Occasion 4: 

Rounds 10-12 

Occasion 8: 

Rounds 22-24 

Occasion 12: 

Rounds 34-36 

Occasion 16: 

Rounds 46-48 

 

Table 1.  Design layout for the Stationary-to-Stationary Ammunition Accuracy Test (SSAAT). 

 

 

Under more general conditions, a linear model for the SSAAT is given by 

 

( ) ( )ijklijkjiijkl ROTy ++βτ++α= , 

where 

 

(1) ijkly  is the azimuth (or elevation) jump for round l fired during occasion k from tank i at temperature 

j, for i = 1, …, a; j = 1, …, b; k = 1, …, c; and l = 1, …, n; 

(2) α  is the intercept from the temperature dependency model; 

(3) iT  is the effect of tank i, assumed to be ( )2,0 TN σ ; 

(4) β  is the slope from the temperature dependency model; 

(5) jτ  is the jth ammunition temperature level; 



(6) ( )ijkO  is the effect of occasion k, nested within the combination of tank i and temperature j, assumed 

to be ( )2,0 ON σ ; and 

(7) ( )ijklR  is the effect of round l from occasion k fired from tank i at temperature j, assumed to be 

( )2,0 RN σ . 

 

A few assumptions concerning this model deserve further discussion.  First, although impact data 

are bivariate, the model is univariate as a result of the assumption of independence between horizontal 

(azimuth) and vertical (elevation) impacts.  This assumption is invalid for some weapon systems, 

especially rapid-cadence systems; however, for large-caliber weapons in which the cadence is relatively 

slow, this assumption has proven consistent over many years of testing. Second, the temperature 

dependency model previously noted is a simple linear regression model relating jump as a function of 

ammunition temperature.  This relationship between ammunition temperature and jump is the result of (1) 

the relationship between propellant temperature and in-bore velocity (hot propellant burns quicker, hence 

the projectile travels faster while in-bore) and (2) the dynamic and consistent motion of the gun tube 

immediately after shot initiation.  The coefficients from this model are estimated from previous live-fire 

tests of this ammunition type.  Over the range of ammunition temperatures in the SSAAT, a simple linear 

regression has shown to be a basic, yet adequate model.2  Finally, based upon the belief that the effect of 

ammunition temperature is the same upon each tank, the model excludes an interaction term involving 

these two variables. 

 

In the SSAAT model, the average jump at each temperature is given as 

( ) ( )••••••τ ++βτ++α= jjj ROTy
j

, and under the random-effects assumptions, is normally distributed 

with mean jβτ+α  and variance 222 111
ROT acnaca

σ+σ+σ .  For a specific set of weights, { }bww ,...,1  

satisfying 1
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2 Held, B. J., D. W. Webb and E. M. Schmidt, “Temperature Dependent Jump of the 120mm M256 Tank Cannon.” 
BRL-MR-3927, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1991. 



 

After the SSAAT is completed, each tank in the fleet incorporates the CCF into its fire control 

system.  Now, tanks in the fleet firing this same ammunition at perhaps a different temperature, j ′τ , will 

have a first-shot jump which can be similarly modeled as ( ) ( ) CCFROTy kjiljikjilkji −++βτ++α= ′′′′′′′′′′′′′ .  

This jump is also normally distributed with mean 
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==
.  This is a general model which can be applied to 

either the horizontal and vertical jumps.  However, note that for horizontal data, it is assumed that 0=β , 

since the temperature dependency on jump is assumed to exist only in the vertical direction.∗ 

 

 

Mathematical Modeling of Individual Zero 

 

The mathematical model for the SSAAT provides a framework for a model of those rounds fired 

during an individual zeroing exercise.  Despite the fact that only one occasion (at one temperature) is fired 

per tank, all factors from the SSAAT model are retained.  Because 1== cb , the subscripts for 

temperature and occasion are no longer necessary and, consequently, can be dropped. The subscript i is 

retained as an identifier for tanks and to accentuate the fact that the individual zero is different for every 

tank. Therefore, rounds fired during the exercise are modeled as ( )iliil ROTy ++βτ++α= .  To avoid 

confusion with the SSAAT model, we let l range from 1 to m.  The individual zero for tank i will simply 

be the average jump observed during its zeroing exercise, ( )iiii ROTyIZ •• ++βτ++α== , where iIZ  

is distributed normally with mean βτ+α  and variance 
m

R
OT

2
22 σ+σ+σ .   

 

                                                                                                                                                       
 
∗ Mass imbalances in the tank gun system cause a torque about its center of mass, resulting in movement of the gun 
tube while the projectile is in bore.  Since the projectile’s acceleration and velocity vary with the propellant 
temperature, the projectile’s in-bore time also varies with the temperature.  Because of the torque-induced gun tube 
motion, the muzzle-pointing direction at shot exit also varies with propellant temperature, resulting in temperature-
related gun jump.  The gun system’s mass imbalance is primarily in the vertical plane, and the gun tube is more 
constrained in the horizontal plane due to the trunnions; thus, most of the described gun tube motion and resulting 
temperature-related gun jump is in the vertical plane. 



That same tank firing at a later time and possibly at a different temperature, τ′ , will have its first-

shot vertical jump modeled as ( ) iilili IZROTy −+′+τ′β++α= ′′ , where liy ′  is distributed normally with 

mean ( )τ−τ′β  and variance 22 1
2

yRyO m

m σ++σ .  Already we see that it is important for the ammunition 

temperature at the time of zeroing to be as close to the ammunition temperature during combat so that the 

jump bias from the intended aimpoint is minimal.  For horizontal jumps, we follow a similar argument, 

except that there is no temperature dependency (i.e., 0=β ), and conclude that 







 σ++σ′′′

22 1
2,0~

xx ROlkji m

m
Nx . 

 

 

Hit Probability Comparison of the Two Zeroing Methods 

 

Given the distributions of first-shot jumps under the two zeroing methods, determining which 

method offers the higher hit probability is of interest.  To do this, we will assume that tanks are properly 

boresighted and aimed at the center of a square target of length L (mils). 

 

Under a fleet zero policy, first-shot hit probability is given in general by 
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, and 

yFZσ  is defined similarly. 

 

Recall from Table 1 that the current SSAAT calls for 4=a , 4=b , 1=c , and 3=n ; 

additionally, the ammunition temperatures (measured in degrees Fahrenheit) are 101 −=τ , 302 =τ , 

703 =τ  and 1104 =τ .  The weights are 01.1 =w , 19.2 =w , 64.3 =w , and 16.4 =w , representing 

AMSAA’s  estimated global temperature distribution for armored vehicle combat (i.e., AMSAA expects 



1% of future tank battles to take place in a –10o F environment, 19% of future tank battles to take place in 

a 30o F environment, and so on).  With these substitutions, we obtain 

( )222 04.112.125.1,0~
xxx ROTlkji Nx σ+σ+σ′′′′  in the horizontal direction; for vertical jumps, 

( )( )222 04.112.125.1,68~
yyy ROTjlkji Ny σ+σ+σ−τβ ′′′′′ .  Therefore, the first-shot hit probability under a 

fleet zero policy is given by 
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where 222 04.112.125.1
xxxx ROTFZ σ+σ+σ=σ  and 

yFZσ  is similarly defined.  For some types of 

ammunition, the elevation jump and propellant temperature are independent.  In this case, we have 0=β  

so that ( )
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For individual zero, the hit probability is given by 

( ) ( )
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where 22 1
2

xxx ROIZ m

m σ++σ=σ  and 
yIZσ  is similarly defined.  Most proponents of individual zeroing 

policy argue that as few as three rounds give an adequate estimate of a tank’s zero and keep the cost of 

individually zeroing the whole fleet to a minimum.  Therefore, setting 3=m , 22 33.12
xxx ROIZ σ+σ=σ .  

Finally, in the specific case of ammunition for which 0=β , we obtain an expression analogous to that for 

fleet zero, ( )
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 Under specific conditions defined by the parameter values, one can determine which zeroing 

method has a higher hit probability.  For example, under the current SSAAT procedure and an individual 

zeroing exercise with 3=m , if one assumes (1) no temperature dependency (i.e., 0=β ), (2) equivalence 

of horizontal and vertical variances (i.e., 22
yx TT σ=σ , 22

yx OO σ=σ , and 22
yx RR σ=σ ), and (3) that the 



occasion-to-occasion and round-to-round variances are equal, then ( ) ( )IZFZ HitPHitP >  if and only if 

RT σ<σ 97. .  In most cases, however, such a simple relationship cannot be established. 

 

Given the dependency between jump and ammunition temperature, seeing which zeroing method 

has a higher hit probability when the temperature at the time of the individual zeroing exercise differs 

from the temperature at the time of combat is of interest.  To do this, we can plot the difference in hit 

probability, ( ) ( )FZIZHit HitPHitPP −=∆ , as a function of both of these temperatures for assumed values 

of the variance components and the temperature-dependent slope.  Estimates of these parameters are 

available for most ammunition in the U.S. Army arsenal.  As an example, consider a hypothetical training 

round with a temperature-dependent slope of 004.0=β  mils per degree Fahrenheit.2∗  Assume also that 

the variance components relative to the length (L) of the square target are 6L
yxyx OORR =σ=σ=σ=σ  

and 697.0 L
yx TT ×=σ=σ .  Figure 1 is a 3-D plot generated by MATLAB® of HitP∆  as a function of 

the firing and zeroing temperature for this baseline case.  The black lines are contours for 0=∆ HitP .  

Yellow and orange regions indicate temperature conditions for which 0>∆ HitP  (i.e., when individual 

zero produces the higher hit probability).  On the other hand, blue regions indicate when fleet zero gives 

better hit probability.  From the figure, we see that when firing and zeroing temperatures are equal, 

individual zero is the preferred policy, especially when the temperatures are toward their extremes.  

Conversely, if the firing and zeroing temperatures differ greatly, the preferred procedure is fleet zero 

(blue regions).  For this baseline case, we also obtain the curious result that tanks which individually zero 

at 68o F will have the same hit probability as using a fleet zero for any firing temperature. 

 

One can next study the effect of increasing (or decreasing) any of the variance components on 

HitP∆ , keeping all other parameters constant.†  First, consider a change in tank-to-tank dispersion.  

Because Tσ  is negatively correlated with ( )FZHitP  but not correlated at all with ( )IZHitP , HitP∆  

increases with Tσ .  Intuitively, this makes sense – greater tank-to-tank variation increases the number of 

tanks with large bias and hence the need to individually zero; the opposite holds with less variability.  

This is confirmed graphically in Figure 2, where relative to the baseline case, a decrease in Tσ  to a value 

                                                
∗ Three of the four ammunition types studied in this report had temperature-dependent slopes ranging from .0041 to 
.0047 mils per degree Fahrenheit; one ammunition type had no temperature dependency.  Therefore, a value of .004 
mils is reasonable for the purpose of this example. 
 
† For simplification of the ensuing example, we will henceforth assume that the horizontal and vertical variance 
components are equal and will drop the “X” and “Y” subscripts used previously. 



of 8/97.0 L∗  makes fleet zero the more favorable policy; the opposite is true if Tσ  is increased to 

4/97.0 L∗ .  In fact, in this latter case, we see that there is a range of temperatures (24o F to 95o F) in 

which the tank can be individually zeroed and have a better ( )HitP  than under fleet zero, no matter what 

the actual ammunition temperature is at the time of firing.  This range of temperatures will hereafter be 

referred to as the Individual Zero Preferred (IZP) range.  

 

Baseline Case
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(black line is the contour for no difference)

 

Figure 1.  Baseline-case relationship between HitP∆  and the ammunition temperatures at the time of 

firing and zeroing. 
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Figure 2 (a) and (b).  Effect of changing Tσ , while holding all other parameters fixed at baseline value. 



If occasion-to-occasion dispersion is the free parameter, it is not intuitive which zeroing method 

becomes more preferable since, for example, both ( )FZHitP  and ( )IZHitP  decrease when Oσ  increases.  

Therefore, one can turn to the 3-D color charts to see which hit probability is influenced the most by a 

change in Oσ .  Figure 3(a) shows that a reduction in Oσ  creates an IZP range of approximately 52o F to 

77o F.  On the other hand, as Oσ  increases, Figure 3(b) shows fleet zero becoming the more preferable 

policy.  This is easily explained by noting that the expressions for the variance of jump (both in vertical 

and horizontal) under fleet zero have a 2
Oσ  coefficient of approximately 1.12; in the case of individual 

zeroing, this same coefficient is larger, namely 2. 
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Figure 3 (a) and (b).  Effect of changing Oσ , while holding all other parameters fixed at baseline value. 

 

The effect of a different round-to-round dispersion is similar to that of a change in occasion-to-

occasion dispersion, although less pronounced.  This is seen in Figure 4(a), where lowering Rσ  by the 

same amount as that used for Oσ  to generate Figure 3(a) yields a smaller IZP range of  62o F to 71o F. 

 

Figure 5 is included to show two extreme cases of operating with a different temperature-

dependent slope.   Recall the previous discussion (page 9) in which it was shown that under specific 

conditions (including no temperature dependency), ( ) ( )IZFZ HitPHitP >  if and only if RT σ<σ 97. .  

Figure 5(a) is the trivial extension to this set of conditions, showing that RT σ=σ 97.  implies 0=∆ HitP  

for all combinations of individual zero and actual firing temperatures.  Figure 5(b) is for the case where 

the temperature dependency is much stronger.  Similar to the baseline case, we see that tanks which 



individually zero at 68o F will be equally as effective as tanks using fleet zero, regardless of the actual 

firing temperature.  The deep orange regions of this figure indicate that there is great potential for 

improving hit probability if tank commanders are allowed to individually zero at the same extreme 

temperature as that expected during battle.   However, the blue regions indicate the greater risk involved 

if a tank is individually zeroed at a temperature much different from that encountered during battle. 
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Figure 4 (a) and (b).  Effect of changing Rσ , while holding all other parameters fixed at baseline value. 
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Figure 5 (a) and (b).  Effect of changing temperature-dependent slope, while holding all other parameters 

fixed at baseline value. 

 



Implications 

 

The results of the current modeling effort imply some interesting and important information and 

policy choices.  First, we know from previous testing that the magnitude of the various error sources 

varies by ammunition type.  Ammunition type A may have small tank-to-tank errors, while type B may 

have large tank-to-tank errors.  In fact, the trend appears to be that the more energetic the ammunition, the 

greater the tank-to-tank errors.3  This means that an optimal zero policy may vary across ammunition 

types.  For example, ammunition types with small tank-to-tank differences could use the fleet zero, and 

those types that exhibit large tank-to-tank differences could individually zero those ammunition types 

when needed. 

 

Conversely, a policy that screens tanks could identify those tanks that do not shoot well with the 

fleet zero and require that they be individually zeroed.  This seems to be the policy that is used today 

during gunnery exercises.  Prior to conducting the record tank tables,∗ each tank fires several rounds of 

ammunition to ensure that the tank is calibrated using the fleet CCF.  When a tank cannot demonstrate a 

calibration in this manner, the tank is zeroed using an individual zero.  

 

Whether a new zeroing policy would return completely to the individual zero method or to some 

hybrid where only certain ammunition types are individually zeroed across the fleet or where only certain 

tanks are individually zeroed, the training impacts will be large.  The U.S. Army has trained with the fleet 

zero for nearly two decades and it was successful in Operation Desert Storm.  As a result, there is a 

significant amount of confidence in the policy and a great deal of institutional support.  To change the 

policy requires convincing most of the Armor Force that a significantly better approach exists.  In 

addition, a substantial training effort would be required to prevent the numerous possible errors associated 

with individually zeroing tanks from manifesting themselves across the fleet because of improper zeroing. 

 

Significantly, the modeling showed that the greater the jump dependency on ammunition 

temperature, the more sensitive the accuracy of the tank is to the zeroing decision-making process.  This 

means that attention to temperature-related jump effects should continue when developing ammunition.  

Fortunately, temperature-dependent jump is measurable and consistent across the fleet of tanks.  

                                                
3 Pell, Richard F., “Key to Improve Accuracy: Tighter Gun Tube Specs”, Letter to the Editor, ARMOR, January-
February 1996, pg. 3. 
 
∗ Tank tables are training exercises whereby a tank(s) fire at various targets on a range and are scored on number of 
hits, time, and procedure.  On most of the tank tables, the tanks also maneuver 



Therefore, corrections for temperature are possible via the fire control system or temperature conditioning 

while the ammunition is stored in the tank’s bustle. 

 

Finally, the importance of having accurate tanks and the difficulties associated with changing 

zeroing policies suggest that a root cause analysis to determine why some ammunition types or some 

tanks require different zero policies is warranted.  Certainly, a great deal of understanding and knowledge 

has been developed over the last few decades, but more work seems necessary if the accuracy of U.S. 

tanks is to keep pace with the demands for greater hit probability at extended range. 
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Conceptual Issues in Model Assessment: 
What Can We Learn From Past Mistakes?  

 
Naomi Oreskes 

Department of History and Program in Science Studies 
University of California, San Diego 

 
In recent years, there has been growing recognition that complex models of natural 
systems cannot be validated, and that the term validation is misleading from both 
scientific and regulatory standpoints.  From a regulatory standpoint, problems arise 
because of differences in the way the term validation is interpreted by expert and lay 
communities.  From a scientific standpoint, problems arise when we assume that model 
validation provides confirmation of the underlying scientific conceptualization.  
 
Most efforts at model validation concentrate on comparing model output with the natural 
world.  While such comparisons can be useful, they do not provide adequate basis for 
confidence in the accuracy of the model.  There have been many cases in the history of 
science of models that made accurate, quantitative predictions, but were later shown to be 
conceptually flawed.  This paper examines three examples.  In each case, the conceptual 
flaws were not apparent to their designers and users, yet appear obvious in retrospect.  
Furthermore, because the flaws were conceptual, quantitative assessment of model 
accuracy would not have revealed the underlying problems.  Hindsight suggests that 
conceptually flawed models may still be useful for the immediate predictive problems for 
which they were designed, but they are not reliable for understanding processes and 
structures.  A well-confirmed model may thus be acceptable for a design or problem-
solving purpose, as long as that purpose does not require comprehension of underlying 
causes.  
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