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FOREWORD

The host for the Thirty-Seventh Army Design of Experiments
Conference (DOE) was the Waterways Experiment Station (WES) at
Vicksburg, Mississippi. Dr. Billy Johnson did an outstanding job
in managing all the 1local arrangements. Dr. Robert Whalen,
Technical Director of WES, kindly provided a 5:00 to 7:30 PM tour
of the WES laboratories on the second day of the conference.

This conference is one of the two Army conferences that the
Mathematical Sciences Division, of the Army Research Office, holds
for Army scientists. Although the title of the DOE Conference
suggests that it is concerned only with design of experiments, it
is actually a statistic conference and covers a wide range of
topics in statistics.

An occasional talk in high 1level mathematical statistics or
probability theory intrudes on the scene, but generally topics such
as these, that are heavily mathematical, are given in the Army
Conference on Applied Mathematics and Computer Sciences. The DOE
Conference is very much a teaching conference having clinical
papers with a panel of discussants, analytic papers (application of
known theory), the usual technical talks, and invited papers.

The keynote address was given by Professor G. Watson. He and the
other invited speakers are listed below.

s ) 1 Affiliati Tit] £ Add

Dr. William H. Du Mouchel Bayesian Meta Analysis

BBN Software Products

Professor Ian McKeague Identification of Nonlinear

Florida State University Time Series From First Order
Cumulative Characteristics

Professor Emanuel Parzan Change Analysis

Texas A&M University

Professor Isabella Verdenelle A Bayesian Look at Experimental

Carnegie-Mellon University Design

Professor Geoffry Watson The Use of Simulation in

Princeton University Statistical Inference

Professor Edward wegman The Straight Scoop on Wavelets

George Mason University : and Nonparametric Function
Estimation

iii



James R. Thompson, Professor of Statistics at Rice University, was
named recipient of the tenth U.S. Army Wilks Award for
Contributions to Statistical Methodologies in Army Research,
Development, and Testing. Professor Thompson's interest in
confronting important Army problems and his willingness to interact
with Army researchers is well established. His work, with Dr. M.S.
Taylor, on data based nonparametric density estimation arising from
modeling of multivariate ballistic data and his faithful support of
the Design of Experiments Conference including presentation of the
tutorial: Density Estimation, Modeling and Simulation: Studies in
Empirical Model Building at the Thirty-Second Conference on the
Design of Experiments Conference are signal contributions.

Each year a two-day tutorial precedes these conferences. This year
the topic was recent developments in "Time Series Analysis", and
was given by Professor Joseph Newton from Texas A&M University. He
gave an excellent, information packed short course. His lecture
notes, entitled "Applied Time Series Analysis" are reproduced in
these proceedings.

The host for these conferences is the Army Mathematics Steering
Committee. The members of this committee are duly aware of all the
effort that goes into making these conferences such memorable
events. Their thanks go to all those in attendance. The speakers
in particular, need recognition for the time they spent in
preparing and delivering their scientific papers.

Proaram Committee
Carl Bates Robert Burge Francis Dressel
Eugene Dutoit Malcolm Taylor Carl Russell
Douglas Tang Henry Tingey Jerry Thomas
Barry Bodt Jock O. Grynovicki

iv
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Simulation in Statistical Inference

Geoffrey Watson*, Princeton University

Abstract

in this paper | will not include one topic discussed in my actual talk since the
paper is already too long. The bulk of the paper describes our mathematical and
computational studies of the parametric bootstrap. This is largely expository - our
examples are chosen to increase our intuition about how to proceed in analogous
situations. There are many uses for the parametric bootstrap but the literature
gives little practical guidance when there are many parameters. We hope that this
paper will also be a useful introduction to the nonparametric bootstrap which was
the initial problem of bootstrap studies and is still their central interest. | believe
this wonderful tool is more subtle than many think it is. The last section is original
and shows how, by converting a testing problem into one of estimation, simulation
leads to the solution of an important problem in paleomagnetism; bootstrapping is
part of this solution.

1 Introduction

Simulation has a long history. “Student” checked his formula for the t-
distribution by manual simulation - drawing numbers on slips of paper. The early
volumes of Biometrika are always fascinating to read; my undergraduate "senior
thesis" was a summary of studies of the effects of non-normality which | mostly
found there. Many involved manual simulation. In the mid-30's Pitman explored
Fisher's ideas of randomization & permutation distributions. He found their early
moments by algebraic methods. However everyone was clear that one could
approximate the wanted distributions numerically. But it was then very slow work.

Even when computing gradually became easier and cheaper, few of us
"changed heads". Machines were just used to do computations (e.g. numerical
linear algebra) that were just a bit bigger than those we were already doing.

*Research sponsored by NSF Grant DMS 9118 896.
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Efron changed everything with his “bootstrap” about 13 years ago. Perhaps |
should have called this talk the “Stimulation in Stat'l inference 111"

The emphasis in the bootstrap literature was, and still is, on NON_PARAMETRIC
methods i.e. methods that will be 100% effective whatever the situation when the
sample size tends to infinity. However an earlier paper by Efron pointing out that
the method of getting accuracies of maximum likelihood estimators works better
with sample likelihoods than expectations is a parametric bootstrap argument!

There is now a large, rapidly growing and difficult literature - the following
monographs give the key ideas and facts: Efron(1982), Beran (1991), Hall (1991).
But it is very hard, even for an academic, to “catch up” with current technology. |
hope that this paper will help applied statisticians to understand and perhaps use
some of the basic ideas. As the "keynote" speaker for this conference, | felt it was
more essential for me to address a topic vital to everyone than to talk about
something on which | have the most expertize!

| drifted into this area because | had to deal with complicated parametric
estimation problems where classical theory was not much help so | tried "to
simulate my way out of trouble - ever the innocent optimist! | was soon told that |
was just rediscovering old bootstrap results. | had not troubled to study the
bootstrap before. This was partly from laziness and partly because | was put off by
what | thought was its uncritical embrace for small samples - | could see its
asymptotic justifications. And | was not so keen on getting non-parametric
methods. | soon discovered it was much more subtie than | thought! Further I think
its use for parametric problems is not only very useful but a good introduction to
the use of the nonparametric bootstrap.

Section 2 will introduce bootstrap ideas via parametric problems which are
so simple that one can see what bootstrapping will do without having to simulate
at all! Further we work with the m.|l. estimators. Of course in more complex
problems one must simulate. Section 3 shows several experiments with problems
where the number of parameters goes from medium to large.- these simulations
were carried out by Javier Cabrera. In Section 4 we will show how simulation
may be used to solve an important problem in palaesomagnetism. Though it is
logically different from the above, bootstrapping is an essential part of the trick!
The computations shown were done by Michel Debiche .



2 Simple examples
Example 1 Original "naive " bootstrap.

Consider a sample of n from

f(x,8) =0-1exp(-x/0)

with arithmetic mean m , the (unbiased) mle for 8. The "Naive" bootstrap way of
getting a conf. interval "8<c" of size p is, | believe , to draw N samples of size n
from f(x,m) , find the mean m* of each, find cBso that Npof the m*'s are less than
cB; we then have the “naive” or “percentile” interval “6<cf” (1)

This is based on the plausible belief that the distribution of m, in sampling
from f(x,0) ,will be APPROX the same as that of m* when sampling from f(x,m) ,

fixed m. Now if N is large, our simulation will give the same answer that we know ,
in this example, from distribution theory --- given m, m*/m distributed as Xon2/2n,

because we know that .
m/@ distributed as Xon2/2n . )

Wirite Prob { Xon2 < con(B)} = /. Hence the “naive” interval (1) is, when N is large,
close to

6 <m cop(B)2n .

But directly from (2) we get the correct ( if N large) interval

Prob { m/@ > cop(1-B)/2n} = B, or
Prob { 6< m . 2n/ con(1-B)} = B. (3)
For n=5, B=.95

con(B)2n = 1.83 , 2/ con(1-B)=2.53

So the naive interval is much too small- its true coverage is much less than the
nominal .95. Hence the use of “NAIVE"|

What is wrong with the "naive™ argument ? -

The distribution of m* , given m, is NOT the same as (only like) the
distribution of m, given 6 .



It is the distributions of m*/m , given m and m/@ , given 6 , that are the same!

Notationally
Lm*/m ,atm = Lm/0 at@

This is true - see (2) - because the distribution of m/e does not depend on 6 i.e.
m/8 is a PIVOTAL FUNCTION .
Pretend now that we don't know that m/@ has the distribution given by (2). We
can here approximate it as closely as we like by taking N large enough in a
simulation study of m*/m. Thus we can get a an almost exact confidence interval
by drawing N samples of size n from the exponential distribution with mean m and
and finding k so that proportion of m*/m's >k = B, to good approximation. Then we

may assert that it should be accurate to say that
Prob{ m/6 > k } = B, or equivalently that “6 < m/k” is a confidence interval of size .

When N tends to infinity we must get the exact confidence interval this way.

The moral of this is that one should use pivotal , or more practically,
asymptotically pivotal, statistics when bootstrapping.

Example 2 lteration of the bootstrap ,to reduce bias. Prepivoting

Consider a sample of n from U[0.2] , the Uniform distribution on [0,6]. Then
80= M =max { x1, ..., Xp} is the biased {its expectation is [n(n+1)] 6} mie for 6 with

SD o/n, approx. Can we improve it e.g. get a less biased version, by using the
bootstrap? | am pretending we don't know all about this estimator but | will use this
knowledge in place of large simulations.

Consider the following idea:
1/ Draw N samples of size n from U[0,M] , each time finding its maximum M"j, j =

1, ..., N, Compute their average Ave M*

Method (a ). A corrected-once estimator is
g4 = M - Bias estimate, Ave M*-M

=2M - Ave M*,

since we'd guess that Ave M*-M would be close to the true bias EM-06. We call
this the additive or linear correction method



Method (b ). Another corrected-once estimator is
01 = M2/Ave M*

This comes from multiplying M by the bias correcting factor M/Ave M*. We call this
the multiplicative correction method.

In each case the subscript “1” is used because one can repeat the process.
2/ Draw N samples from U[O,g ] . find their maxima M** and their average .

The twnce-oorrected estlmators could plausibly be chosen to be
= e 1 - [Ave M“-e ] 291 Ave M**

=0 ] o 4/ Ave M = oi2/Ave M**

92

e
2
However analysis shows this intuition is not right and that we should argue as

follows.

Additive - The idea that gave 8 1 was to assert
L[eo-e]atesL [M'-eo]at eo,suggesting
650, =Ave[M -g,]
or91=eo-[AveM -eo].
ife 1 is closer to 0 , similar use of
L[eo-elate= L[M '9113101

should lead to the better
0, =90+[e1-AveM ],and

04 =9°+[92-AveM ], etc.

Multiplicative - idea was to assert
L[eo/e]atesL (M /eolat eo,

or better
L[eo/z]ate L[M Ie1]at 91.
SO use the latter to get new 92

92 .90 [91/AveM ],and



83 = 80 [82/Ave M*** ], etc.

We now show some properties of these sequences of estimator of 6.

Analysis If N is large, we can avoid arithmetic by recalling that

EM= 6n/(n+1), var M= 62/n2 approx
Method (a)

Ee, =26[r/(n+1)]-0[n/(n+1 )2

=0{1-(n+1)2)

varg 4= varM{1+ N-162(1+1/n2)
so that bias is now slightly down to O(1/n2) while variance is essentially that of M =
90' The bias in g 1 is now smaller than its SD.

Ep.=E 80 +[E 31- EAve M**]

2
= EEO +E 81[ 1- n/(n+1)}A
Eg , =6{1-1/(n+1)3}

an improvement over E 8 1 = {1-1/(n+1)2} but not worth having since the SDs ofa 1

and 82 are O(1/n).
Method (b)
Ee, = EM E {M2/Ave M* M}
= Ep M2/ EM* , for N large,
= E M2/[n/(n+1)]M
= [(n+1)/n] EM
=0

so the BIAS is Zero
varg, = 62/n(n+2), approx .

E62 - ESO P | Ave mr
=E9091/EM , N large
=E 6o e1l[n/(n+1)] e1,
= [(n+1)/n] E 6o

se,asfor81



Thus the multiplicative correction method is better than the additive but both
reduce the bias. Why ? Because it is based on a correct assertion - and this is so
because here M/o is a pivot.

Now we look at CONFIDENCE INTERVALS FOR ¢ If we use the multiplicative
approach , we expect here to get the right answer because M/g is a pivot i.e.

L(M/6)até =L(M*/MatM. (4)

The cdf of both random variables is kN, O<k<1.

Let gB(M*) be estimated B-quantile of M* , found from the N samples of size n
drawn from U(0,M) i.e. NB(approx) of the M*'s are less than or equal to this q.
Belief in (4) leads us to assert that

Prob { M/8<qB(M*)/M } =B (5)

Now if we let N tend to infinity , for any fixed M, qf(M*)/M tends to k where kN = .
So that M/a<qB(M*)/M or o> M2/ qB(M*) gives a confidence interval with exactly
the coverage desired, B!

However if, in the same problem, we use the linear method and the first round
of simulations only ,we would not expect to get an exact confidence interval. In
fact we would give as the one-sided B-interval (1008%)

M-qg(M*-M)<o,
or
o> 2M - qg(M*) .
Now as N tends to infinity , M being fixed, we have just seen that qg(M") tends
to k M. Thus the interval becomes
0/M >2-k , kN = B, O<k<1.
The actual coverage of this interval is easily seen to be
(2-k)N = (2- B1/n) " ,
which is tabled below

B=.9 B=.95 B=.99

n=4 .90244  .95062 .99002
8 90123  .95031 .99001
10 .90099  .95025 .99001
16 .90062 .95016 .99000
20 .80050 .95012 .99000

Although we have made intervals from a nonpivital function, the coverages
are very accurate. We may not be so lucky in other cases.

7



Iterative bias correction is worthwhile here because the variance is so small!

Remark 1

This is an example of non-regular m.l. Thus the variance of the estimator
cannot be obtained from the likelihood and the limiting distribution is non-normal.
In fact the studentized form
t = [o-M}/[M/n] is exactly pivotal and has a standard exponential distribution when
n tends to infinity. But to do this one needs to know the formula for the SD of M. In
the regular case one could use the negative derivative of the likelihood to get the
correct divisor.

To proceed this way here one would have to use a double bootstrap - in
effect to find the variance formula.

Remark 2

Had we studied the estimation of u from a sample of n from N(u,1) , of course
the additive method would be best since sample mean - p = m-u is then pivotal. If
we have N(,B2) its distribution depends on B, and Student's t is a pivot now. See
Example 3.

Remark 3

For FINITE Simulation size N, we keep adding a little variance and so mess
things up a bit

Remark 4

CAN WE FIX UP A NONPIVOTAL FUNCTION? e.g. 6-M in EX 27
Beran (1988) suggests the use of an idea he calls PREPIVOTING.

He calls the function af estimator and parameter that we use (e.g. -M, M/8)

a “root”. In general call it r(0, 6).

Recall that if rv X has cdf (continuous) F(x), F(X) is uniformly distributed on
[0,1] so Prob { F(X)<a} = o

Suppose in some general problem we knew the cdf of the root r(6, 6) to be H

(r, 0). Thfn
H [r(6, 6), 0] is U[0,1l

so thatthe set {6: H [r(6, 6), 8] < o} has probability o . (6)

The trick then is to find or approximate the cdf H. Then (6) should give a
confidence interval of the right coverage; note that theoretically there are many
intervals with the right coverage, some more sensible than others.



One needs two levels of sampling i.e. a double (not iterated) bootstrap.

First try it in the Uniform of Example 2. Use sampling from U (0, M) to find
approximately the cdf of the root M-M*. Call it H(k,M). One might hope that

H(6-M,M) approx U(0,1) so that
{6: H(6-M,M)<a} = Conf Int. approx size a .
If N is very large , H will be what we get from distribution theory: 1-(1-k/M)N.
Then Beran's interval would be
{6: 1-[1-(6-M)M]"< a}
or
{6: /M<2-(1-a)1/n,

But the probability of this last statement being true is was tabulated above - it

was surprisingly close to a.

Thus here Prepivoting has converted a nonpivotal function 6-M into a pivotal
one M/6 and lead to almost exact confidence intervals. With finite samples we
should approximate this happy state.

More Generally

Draw N [1] samples from f(x, 8), obtaining N [1] estimates which we will
suppose when ordered from least to largest to be

e*1, ..., 0" N[1]-

Now draw N [2] samples from the density f( x, 6*j), computing each time the
estimator 6** and build their empirical distribution. Call it H(., 8*;). With this done

for all N[1] values of i, we compute the N[1] values of H (8, 6%i).

if H(a, 0%j) < a, accept 6" ; if not, reject it. If the simulation sizes are large
enough, these values should give a simple conf. int. for 8, obtained by adouble
layer of sampling !l

Notice how the arithmetic can get out of hand here- we need
O(N2) samples

Example 3
Sample of n from N(,B82), mean m, variance s2. To find an interval for p.
Suppose we don't know how to studentize and we start with the root

9



n1/2[m-u] .

By extensive sampling from N(m,s2) we will find that the cdf of the root
n1/2[m*-m] is T(x/s) where T is the cdf of the standard normal. Hence Beran's
method says: use confidence set

{: T(M/2[m-p) /s) < )
Thus his method has again studentized ( made pivotal ) the initial root. Moreover
the actual coverage of the interval is only slightly wrong - since it uses the
standard normal rather than the t-distribution.

Abstracting the ideas so far -

We have a statistic T= g0 , computed from a sample of n from f(x , o ) and
want a point estimator of g with little bias and also perhaps a confidence interval
for 8. In general we won't know ET as a function of o but we assume T is a
reasonable estimator so

ET = o+b(e) ore(1+B(2)) .

(1) Draw N samples of n from f(x ,*20), get N estimates 2* and their average
Aveo*.

Do your best to find a function g(*e,e) which is pivotal or whose distribution
changes slowly with o . Then assume

L g(*e.0) = L g(2*,*0)
Solve g(*0,0) = Ave g(2*,*2) for @ and call the solution *21 . Above we used
g(x.y) = x-y and xjy.

(2) Repeat with the same plan , solving

g(*e,0) = Ave g(2**,*21)
to get g2, andsoon.

This gives a sequence of point estimators whose bias should go down. It is only
worth continuing if the bias reduction at least size of SDIli!

To get confidence intervals when we are happy with the additive assertions

L[*eo0-0]=L[0"-*0], or maybe
L[*e0-2]= L[2* - *21 ], we could e.g. find the 97.5% quantile of the N values
of * - Ago. Call it q*(.975).

Then we have the approximate statement
Prob{ 0 - 8 < q*(.975) } = .975 so a 95% confidence interval would be { *go-
q*(.975), *@o- q*(.025)}. The naive method would give
{q*(.025) , q*(.975)} .
The multiplicative case goes similarly .

10



We can use prepivoting to get a more reliable confidence interval for @, use the
step ‘51) results to get the cdf of g(e*,* @), H(., @) say. Then propose the set {o:
H[g(8, 8)]< a} as a confidence set for 0 of size . Or we could use a double
bootstrap to adjust empirically the intervals to get the correct coverage.

Remark 4. There might be occasions when you'd want to estimate a known
function of 8. Also when you might want to use Median 6* instead of Ave 6* to get
median unbiasedness. We won't pursue these directions here - they pose no new
problems.

Remark 5 Rather a lot of computation is required, especially in double
bootstrapping. There is a literature on methods for reducing it by monte carlo
methods e.g. importance sampling. Redoing whole calculations many times, to
verify a method, is sound are particularly arduous.

3 Distributions with several parameters

The number of strategies for any problem increase with the dimension of the
parameter. We will here only show some experiments on iterative simulation to
reduce bias. In almost all high dimensional problems, we can at most find
asymptotic pivots. These are usually a consequence of calling upon the central
limit theorem. | think there may be cases where this strategy leading to
nonparametric results may be inferior in small samples to using some statistic
related to a parental distribution, when that assumption is not wildly wrong. This is
a matter for future research. This work was done with Javier Cabrera .
Example 4

Efron's papers (and others) often refer to the problem of estimating the
correlation coefficient ® from a sample of n from a bivariate normal. We try to see
if iteratve simulation decreases the bias.

We used 1000 samples of 5 from a bivariate normal, both means zero, unit
variances and ® = 0.7. Each pair of lines in Table 1 refers to a corrected set of
estimates so we have the zero-th to fifth correction. The first line each time is the
mean of all 1000 estimates. The second line the standard deviation of these 1000
estimates. Thus e.g. for the means, the SD should be 1/51/2 = .447, about the
value in Table 1. Evaluating the square root of the large sample variance var r =

1



(1-®2)2/n, we find 0.228, a little less than the 0.33 in our table. The divisor n-3
here gives .361.

Following down the columns we see that the mean estimates don't change as
we would expect, that the standard deviations get a little closer to dnity and that
the average r's approach .7.

But motion stops after the first iteration.

Remarks Better results would come if we used the Fisher transformation of r,
z = (1/2) log(1+r)/(1-r)
Q = (1/2) log(1+®)/(1-®),

since as ni G, z-Q becomes standard normal and so is then pivotal.

Efron and others have shown that a double bootstrap gives a confidence
interval with good coverage.

Here we should probably not have bothered to iterate for the means and
variances. Notice that there are here 5 parameters only one of which ® was of
interest.

Example 5
We now turn to one of the two problems that lead us to this way of thinking.

Suppose we have samples of n; from Fisher distributions F(y;,";) ,i= 1,2, on
the unit sphere ||x]| =1 in three dimensions. So ;|| = 1 where ; is the mean
direction and axis of rotational symmetry of the distribution and °j controls its
concentration. With x.u = cos 6,

Fisher prob density = {1/4 nt sinh "} exp { x X.u }

The estimates are m; , the directions of the sum R; of the observed unit vectors &
ki = (ni-1)/(n-| R; I]) -
These yx-estimators have distributions skewed to the right and are not unbiased.
We really want to estimate the angle 6 between the means
pnq and po .
This is naturally estimated from
mq¢.m2 = cos 6o
but it is clear that this will lead to an overestimate which can be very severely
biased. So we want to take the bias out of the estimates of 8 and x4 and y2 to the
extent that this is possible. To use our method we must draw N samples of n1 and
n2 from Fishers with concentrations k4 and ko> and whose mean vectors are

12



separated by angle 80. We did separate runs using all additive and all

multiplicative methods but saw no obvious differences. We don't know any simple
but more pivotal quantities that we could have used. We used many
combinations of x=x1=x2 and n=n{=n2 and 6 to study point estimation. But only
in a few did we calculate the actual coverage of our 95% nominal intervals. See
Table 2 for some results.

Morals

Over the range of sample sizes and y's tried so far, the methods are not good
* correction dwarfed by sd
* poor coverages from percentile intervals so need to use better
method ( e.g. double sampling ) to get Cl's.
Competitive methods - see e.g. Debiche & Watson, (1991) - also have trouble.
The problem is inherently hard.

Example 5

Our other motivation was a set of functional relationship problems. Three
problems have come up from my geophysical contacts. :
(1) the estimation of a linear transformation with positive determinant (Gleser and
Watson, 1973) from the initial and final positions of n points, measured with errors
with known covariance matrices
(2) radioactive dating methods lead to fitting a linear relation between three
variables subject to errors with known, possibly unequal, covariance matrices
(Kent , Watson , Onstott,1990). The method given there works in any number of
dimensions. o
(3) The motion of sea ice deduced from the initial and final positions of n radio
beacons on the ice whose positions are measured with planar errors by satellite.
One could possibly assume one knew the covariance matrix of the errors. Here
then we are estimating a rigid motion - displacement and rotation.
In Problem 2 above, the actual errors were small and our mathematical method
lead to standard errors that agreed very well with those obtained by John Kent
who kindly used our current method at our request on these data sets. Problems 1
&3 are yet to be attacked.

Instead we tried the simple but classical problem of fitting a straight line with
both variables subject to normal errors. Here if there are n points with the same B's

13



in each coordinate and the true points fall onn = a + B {, we have n ( the {'s) plus
2 (o & B) plus 1 (B), i.e. n+3 parameters from 2n observations.

In our experiments we also included the method (denoted in our table by “
mle”) recommended e.g. in Fuller (1987).

In problems 1&3 the mle type methods are complicated so one might want to use
simpler least squares type methods. So we tried here to start from a least squares
type method, re-estimating positions of the points by their orthogonal projections
onto the currently fitted line. refitting the line, getting a new *B and points, & so on.

Our results (Table 3) are confusing , probably because we have so many
parameters to estimate in each round and again we have
no pivots.

Doubt now whether one could EXTRAPOLATE from what was learnt here!

The one clear result was that in many practical situations the mle's will not
behave as advertised. That this is so is seen from Figures 1 and 2. We are now
trying to see if we can “fix up” the mie's!!!

This, | suspect, will in fact be the major practical use of parametric
bootstrapping.

4 A simulation solution to the “Fold Test Problem”.

A simplified version of a classical problem on paleomagnetism is the
following. Imagine that an eruption spreads hot lava across a plane. When the
iron-rich lava cools below its Curie point, it will acquire magnetization parallel to
the local earth's field at that time. If the slab is not too large all parts of the slab are
parallely magnetized. We imagine that no subsequent events alter this
magnetization. Suppose that it is subsequently folded. Then if we go to different
sites on this folded slab and measure this frozen or remnant magnetization, we will
not get parallel vectors. However the angle between the normal to the bedding
(old horizontal) plane and the magnetization should be preserved. If however the
magnetization of a folded formation was acquired somehow after folding, the
magnetization in the folded formation would be parallel at all sites. The other
alternative is that the magnetization was acquired at some time during the folding
process. These three alternatives are called pre, pos, and syn. This may be
clarified in Figure 1.

For some 40 years people have tried to sort this out with significance tests. It
has, since 1953, been standard to describe the scatter of paleomagnetic direction
measurements by the Fisher distribution mentioned in the last section. Nowadays
bootstrap methods are being applied to this problem - see eg. Fisher & Hall

14



(1991). ks possible to produce tests that a set of mean vectors come from
distributions with parallel mean directions (null hypothesis: Post). And it is
possible to test that a set of angles is constant (null hypothesis: Pre). But one can
get into a logical muddle. Many references could be given - but see e.g. Tauxe,
Klystra, and Constable (1991).

Wae prefer to think about this differently - as an attempt to estimate the relative
timing of magnetization and folding. Let us assume - as is very common here -
that the axis of folding is known. If it is known only with error this may be coped
with by further layer of simulation. Then the current folding can be unfolded by any
amount until we get back to the original which is 100% unfolding. The present is
0% unfolding. Thus we seek the % unfolding when the rock was magnetized.
Then the measured unit vectors will be more parallel than at other %'s.

A more complicated approached should be used in practice but the following
will give our idea. The basic data will be one sample of n; unit vectors (the

directions of magnetization of specimens) at site i with mean direction m; and
concentration kj, withi=1, ..., s. Now the mean directions could be unfolded (i.e.

rotated about the fold axis, and at each percent a “kappa” estimate based on these
rotated means could be found and plotted against the %. If the curve had a
maximum at say, 75%, we would want to conclude that the magnetization occurred
at that %. But what is the variability of that % estimate? One suggestion, which
we will illustrate below, is to assume that the data at the i-th site are distributed as
F( m; ki), draw a sample of n; from this and compute a new mean direction m®;
say, fori=i,..., s and so a new curve. Then go on till one has N curves. Then
one can get the statistics of the maxima - position, height, etc. The percentiles of
the positions gives us a confidence interval for the position of the maxima. If the
interval overlaps !100% (0%) one cannot rule out the “pre” (“post”) hypothesis. In
our worked example, the data used was supplied by K Kodama. We show the first
20 curves Fig. 2. From the statistics of the results (see Figures 3, 4, 5), we found
that 95% of all positions of the maximum lay in the interval (65% , 80%). The
practical inference in this case is clear. No doubt in other cases there might be so
much noise that no clear - cut assertion could be made. These computations were
done for me by Michel Debiche. ‘

If the fold axis is measured with some known error it would be easy to add
another layer of simulation to reflect it - because one will get different m; at the
same % unfolding. This will broaden a peak such as we gave in Fig 2 - and so
broaden the confidence intervals.

15



Here we got our resamples from Fisher distributions. Instead we could draw
bootstrap samples from the points in each original sample, find their mean
directions, rotate each by each % unfolding, calculating Kappa each time. This too
gives a family of graphs which would be treated as before.

Finally | would prefer to use not kappa but a statistic | have devised (Watson,
1983) to check the null hypothesis that a number of populations have the same
mean direction. The use of kappa here goes back to early but incorrect
paleomagnetic practice - McElhinney (1964).

These two methods are | suppose the applications of the parametric and
nonparametric bootstrap to this problem! I'm sure that they will get refined and
extended when they are used in practice.
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n =25 10000 simulations 1000 replications 5 iterations

Mean
-~ 8D
Mean
SD
Mean
SD
Mean
SD
Mean
SD
Mearn

mul=0

-0.021000
0.448826
-0.020863
0.448893
-0.021003
0.449051
-0.020925
0.448873
-0.020738
0.448984
-0.021048

TABLE 1
BIVARIATE NORMAL

mu2=0

-0.019741
0.438744
-0.019644
0.438763
-0.019646
0.438793
-0.019757
0.438851
-0.019612
0.439047
-0.019722

SD 0.4i%041 0.438764

sigmal=l

0.929537
0.352741
0.988923
0.375278
0.989047
0.375146
0.988979
0.375570
0.988741
0.375188
0.988989
0.37£357
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sigma2=1

0.925653

0.345771
0.984850
0.367848
0.984776
0.367873
0.984864
0.368098
0.984708
0.367905
0.984861
0.368018

ro=0.7

0.655325
0.330464
0.689007
0.340013
0.686186
0.337448
0.687068
0.337839
0.686768
0.337750
0.686793
0.337718



TABLE 2

USING MULTIPLICATIVE CORRECTION FOR THE ANGLE

Sample size = S, True Porameter = 20, Kappa = 20
Angle Std.Dev. Kappal Std.Dev. Kappa2 Sid.Dev.

Uncorrected Estimates 21.92 8.116 26.09 17.52
Corrected Estimates 20.32 8.664 17.41 11.56
Corrected Twice 19.11 9.116 20.28 13.69
Linear Correction 16.36 10.654 19.S1 13.08

Confidence Intervals
2.5% S8 SO0% 9Ss 97.5
Corrected Twice 1.688 3.02S5 19.34 33.86 36.6
Linear Correction 0.000 0.000 16.77 33.43 36.3

Sample size = 20, True Porameter = S, Kappa = S

26.94
17.94
20.99
20.17

18.29
12.28
14.37
13.79

Angle Std.Dev. Kappa! Std.Dev. Kappa2 Std.Dev.

Uncorrected Estimates 11.770 6.017 S$.310 1.279
Corrected Estimates 9.139 6.348 S.012 1.214
Correctled Twice 7.947 6.597 S.024 1.218
Linear Correction S.784 7.256 4.961 1.868

Confidence Intervals
2.5% S8 SOK 9S8 97.S
Corrected Twice 0.0828S5 0.2718 6.376 20.50 22.92
Linear Correction 0.00000 0.0000 1.773 19.74 22.84

Somple size s 20, True Parametler = 20, Kappa = 20
Angle Std.Dev. Kappal Std.Dev. Kappa2 Std.Dev.

Uncorrected Estimates 20.19 4.097 21.23 S.119
Corrected Estimates 19.77 4.195 20.06 4.837
;brroctcd Teice 19.71% 4.223 20.11 4.851
Linear Correction 19.52 4.338 20.16 6.314

Confidence Intervals
2.5% S8 SO0 oF 97.S
Corrected Twice 10.96 12.64 19.80 2. 8 27.87
Linear Correction 10.80 12.32 19.67 26.33 27.68

Sample size = S, True Parometer = 20, Kappa = S

Angle Std.Dev. Kappal Sid.Dev.

Uncorrected Estimatles 29.22 14.82 6.523 4.381

Correctled Estimates 24 .62 15.95 4.342 2.902

Corrected Twice 20.71 16.32 S.018 3.464

Linear Correction 18,49 16.16 4,642 3.302
Confidence Intervals

2.5% : SE SOR 9S8 97.5

Corrected Twice 0. 1962 0,6265866 17.90 S0.36 $S7.43

Linear Correction 0.0000 0.0004011 14.66 48.61 S6.17

Sample size = 20, True Parameter = 20, Kappa = S

21.15
19.98
20.04
20.00

Kappa2
6.740
4.476
S$.202
S.0o11

Angle Std.Dev. Kappatl Std.Dev. Kappa2

Uncorrected Estimates 21.54 8.373 S.310 1.279
Correcled Estimates 19.6S 8.969 S.012 1.214
Corrected Twice 18.97 9.389 S.024 1.218
Linear Correction 17.81 10.299 4.961 1.668
Confidence Intervals
2.58 S8 SOf 958 97.S5
Correctled Twice 1.112 2.876 19.30 34 .45 37,12
Linear Correction 0.000 0.000 18.52 34.25 37.12

19

S.291
4,993
S.006
S.004

S.291 1.226
4.993 1.163
$.006 1.169
5.004 1.265

4.904
4.635
4.654
4.821

Std.Dev.
4.581
3.083
3.639
3.482

Std.Dev.
1.226
1.163
1.169

.1.26S



TABLE 3: a=2 =1
FUNCTIONAL RELATIONSIIIP . -
Sample size = § Sample size = 20
D b _Std .Dev 2 L _Sid . De

MIF.]1.98898 1.02032 0.09189 1.99547 1.00R%% 0.09.75
Std.Dev.]0.32458 0.:8870 0.03863 0.0625%9 0.30904 0.0.060808
Uncorrected|[2.01377 0.97090 0.09334 2.04155 0.91647 0.10109
Std.Dev.|0.10783 0.17564 0.04019 0.05566 0.09510 0.01799
o=0.1 Corrected Once|1.99854 1.00120 0.10004 2.00542 0.9886€5 0.10061
Std.Dev.|0.11127 0.18221 0.04242 0.0€027 0.10419 0.01748
Corrected Twice]1.99426 1.00979 0.09958 1.99960 1.00029 0.10025
Std.Dev.|0.11281 0.18521 0.04188 0.06170 0.10716 0.01724
Linear Correction}1.99083 1.0i4%5 0.09973 1.99831 1.00282 0.10044
Std.Dev.|0.11547 0.19039 0.04202 0.06217 0.10815 0.01732
— M1LE|1.80990 1.32309 0.26485 1.93024 1.13252 0.29255
{ std.pev.|3.18758 5.11863 0.10950 0.63185 1.06141 0.04966
Uncorrected [2.13501 0.72845 0.29520 2.23287 0.53413 0.32352
Std.Dev.|0.28726 0.45909 0.13687 0.12044 0.18987 0.06142
o=0.3 Corrected Once|2.06939 0.85938 0.32011 2.14881 0.70196 0.32183
Std.Dev.|0.33261 0.54902 0.15849 0.14471 0.24019 0.06334
agm» Corrected Twice|2.02968 0.93864 0.31434 2.11198 0.77549 0.31594
Std.Dev.]0.37227 0.62756 0.15&2?7 0.15884 0.26922 0.0619¢6

Linear Correction|1.94891 1.06672 0.31732 2.07814 0.84229 0.32037}-
Std.Dev.|1.61161 5.84560 0.15687 0.17893 0.31108 0.0636)
MLE| 1.4838 1.9459 0.40760 2.03963 0.8823 0.47362
! Std.Dev.|18.4917 32.5957 0.16660 6.57566 14.5629 0.07734
Uncorrected| 2.2811 0.4378 0.47946 2.35761 0.2854 0.53149
Std.Dev.| 0.4025 0.6011 0.21989 0.16119 0.2263 0.09648
. Corrected Once| 2.2299 0.5417 0.5328S5 2.30134 0.3978 0.53822
c=0.5 Std.Dev.] 0.4800 0.7577 0.26366 0.19732 0.3121 0.10159
Corrected Twice| 2.1963 0.6102 0.52486 2.27339 0.4535 0.53221
Std.Dev.] 0.5440 0.8838 0.26271 0.21830 0.3582 0.10164
eaP | Linear Correction| 1.9099 0.8702 0.52921 2.23999 0.5182 0.53648
Std.Dev.] 5.7236 2.7234 0.26260 0.30512 0.4264 0.10122
MLE] 2.3755 1.4762 0.73618 2.23275 -0.0011 0.89460
Std.Dev.]19.9005 55.9057 0.30012 11.81564 36.7087 0.14062
Uncorrected | 2.4190 0.1374 0.87690 2.46052 0.0823 1.00262
Std.Dev.] 0.6312 0.6792 0.39050 0.25924 0.2448 0.17349
=10 Corrected Once| 2.4017 0.1678 0.98398 2.44374 0.1166 1.02264
Std.Dev.| 0.7367 0.8874 0.47236¢ 0.29379 0.3%529% 0.18170
Corrected Twice] 2.3911 0.1867 0.9723¢6 2.43486 0.1341 1.01557
Std.Dev.] 0.8322 1.0663 0.47299 0.31635 0.46126 0.18200
Linear Correction| 2.3126 0.0173 0.97508 2.42273 0.1597 1.02004
std.Dev.] 6.3744 11.6193 0.47204 0.47741 0.5131 0.18116
MLE| 5.500 <-1.586 1.39434 3.12274 -0.9583 1.73817
Sti.Dev.}181.505 2:.599 0.57535 | 27.06611 23.2686 0.274123
Uncorrected]| 2.4€2 0.042 1.66592 2.49416 0.0168 1.94763
Std.Dav. 1,135 0.690 0.74930 0.47249 0.2464 0.33696
Corrected Once| 2.458 0.051 1.87017 2.48°95 0.0236 1.98775
0=20 $td.Dev, 1.280 0.896 0.90436 0.50090 0.3565 0.35256
Corrected Twice| 2.457 0.057 1.84784 2.48762 - 0.0270 1.97479
. 8td.Dev. 1.413 1.067 0.90460 0.52055 0.4173 0.35310
Linear Correction 1.959 0.633 1.86108 2.48089 0.0344 1.98286
Std.Dev.| 48.055 23.013 0.90312 0.76009 0.5600 0.35160
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Sensitivity of Component Reliability from Fatigue Life
Computations

Donald M. Neal William T. Matthews Trevor D. Rudalevige Mark G. Vangel

U.S. Army Materials Technology Laboratory
SLCMT-MRS-MM Arsenal St.
Watertown, Massachusetts 02172-0001

Abstract

Structures which fail due to cyclic loading are said to fail in fatigue.
Damage accumulation due to fatigue is the primary factor which limits
the useful life of aircraft.

Designers of new aircraft obtain information with which to estimate
fatigue life by extensive testing of small specimens, in addition to very
limited testing of actual structural components. Based on this data, an
estimate is made of the lifetime for which very high (.999999) reliability is
assured. This high reliability is currently a requirement in the construction
of army helicopters and fixed wing aircraft.

There is little agreement among designers on how fatigue life should
be determined, as well as insufficient understanding of the uncertainties
involved in high reliability computations.

This presentation reviews the fatigue life determination procedures for
several manufacturers and points out some ways in which these methods
are deficient in obtaining high reliability.

The purpose in introducing this clinical paper is to obtain statistical
procedures that will provide highly reliable fatigue loaded structures such
as the Army helicopter.
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INTRODUCTION

Methodology to substantiate helicopter fatigue life has received considerable attention dur-
ing the last decade. This interest was stimulated by the substantial variability in the results
from the study on the American Helicopter Society pitch link probleml Recently, further
interest has resulted from the U.S. Army’s introduction of a structural fatigue reliability crite-
rion for rotorcraft. This criterion has been mterpreted as a requirement for a component
lifetime estimate to have a reliability of 0.999999.

Helicopter safe life reliability methodology has recently been the subject of several papc.-',rs3‘6
and an American Helicopter Society subcommittee round robin.’

The authors® have investigated the sensitivity of high reliability estimates from simple
stress-strength statistical model computations. Results showed substantial variability in reliabil-
ity estimates even for almost undetectable differences in the assumed probability density func-
tions (PDFs) representing the stress and strength data.

In this report, the uncertainties in determining high reliability for helicopter compo-
nent safe life design are studied by introducing a simulation process to identify the effects
of a small amount of variability in the design variables for determining the lifetime esti-
mate. The reliability values are determined for a generic uniaxial steel structure loaded
in tension simijlar to a helicopter pitch link component by applying Miner’s Linear
Damage Rule.” The six component fatigue test values were obtained from Arden! where
the maximum applied stress (S) on the component is tabulated with respect to cycles to
failure (N). In order to obtain an SN curve to represent the component fatigue test
results, a separate regression analysis was applied to a larger set of coupon tests of a
steel for which the results are tabulated in Bury.10 The assumed spectrum load used in
determining the lifetime estimate was obtained from Berens.!! Note that only the six com-
ponent fatigue test values are from Reference 1 and the remaining test values are from
References 10 and 11.

THE COUPON TEST SN CURVE

This section describesothe procedure for determining an SN regression curve to represent
coupon fatigue test data,'® as shown in Figure 1. The assumed functional representation
of the data is

S=S.+ (Sy — Se)e ~# (logio N’ (1)

where S is the maximum applied stress and N is the number of cycles required for the
coupon to fail. S, is the coupon endurance limit representing the case when N -»
and S, represents the static strength of the coupon; i.e., the strength for N = 1. The
shape of the SN curve is determined bx Band y. S, Sy, B, and y were determined from
application of an IMSL computer code! for solving nonlinear regression problems. The
resultant SN curve is shown in Figure 1 (solid line) with the individual coupon fatigue
test values.
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Figure 1. Mean coupon SN curve/fatigue data.

A review of the literature on the determination of component fatigue life showed that
various functional representations similar to Equation 1 have been applied where N is the
independent variable and S is the dependent (response) variable. This is counter to the con-
ventional functional representation of test data where S would be the independent variable
in the analysis since a fixed cyclic load (stress) value is applied and a resultant (dependent)
number of cycles to failure is recorded. In order to obtain N as the dependent variable,
Equation 1 can be inverted resulting in the following:

logloN =e {log[ 108 ((S =Se )/ (S —Se )] -logp}/y. (2)

Although Equation 2 is recommended in determining the functional representation of the
data, Equation 1 was applied in this study since it is commonly used in engineering fatigue
analysis, and the qualitative measure of the relative uncertainties in determining the reliabil-
ity at a specified lifetime are not affected by the SN curve assumption.

In order to simplify the analysis, the fatigue data from Reference 10 was normalized
with respect to the estimated S, value determined from the initial application of regres-
sion analysis. Another SN curve was then obtained from the normalized data, where S,
y, and S, were obtained for a known S, of 1. The resultant SN(N) curve is shown in
Figure 2. The figure also shows the regression results SN(S) from the application of
Equation 2.

29



N
~ SN(S)
SN Regression Curves
SN(S)-S ndent variable
3- SN{N;.Nmmvamm
]
a

g
ﬁ-
Q

T T —T T T

0 2 4 6 8

Log10 N Cycles

Figure 2. Regression curves from coupon test results.

THE COMPONENT SN CURVE

Usually the shape of the component SN curve is obtained from a prior coupon SN(N)
curve, as shown in Figure 2. The location (ordinate position) of the curve is determmed
from extrapolating the individual component values, as shown in Figure 3, to N = 10® cycles.
The original component values in Reference 1 have been rescaled so that they have scales
similar to the S values in Figure 2. The extrapolation process involves vertically positioning
the coupon SN curve (see Figure 3) to agree with the individual component values and then
extending the curves to N = 10" cycles. S; values are obtained for N = 108 and the compo-
nent curves mean stress position at N is

=3S;/n, | 3)

where n is the number of component test results. The solid line in Figure 4 shows the repre-
sentative component SN curve and component test data. Since there are usually only six
component test results available, because of the costs in component testing, the above proce-
dure is often applied. Using the more extensive, less expensive coupon test results to deter-
mine the shape of the SN curve assumes similar material, test, and environment for both
coupon and component.
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Figure 4. Mean SN curve for component test values.
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SPECTRUM LOAD

The normalized spectrum loading used in the fatigue life analysis is shown in Figure Sa. The
loading was obtained from a rainflow count of a modified combat history described in Refer-
ence 11. The spectrum was determined by the number of loads within discrete range incre-
ments. The spectrum is simplified to five loads {L} by expanding the size of the range
increments and including the appropriate cycle count {n;} { within each expanded range.

The normalization procedure involved dividing each L; by the smallest damaging load S, (endur-
ance limit). This simplification was adequate for identifying the spectrum effects in this study.

MINER'S RULE

In order to obtain the lifetime estimate from the simplified fatigue load (L) and the normal-
ized material strength (S) data shown in Figures 5a and Sb, the following linear damage rule® is
applied where

Y |
DF--i__};‘1 ) 4)

is the damage fraction for each pass or repetition of the spectrum. This representation of opera-
tion hours is described in Reference 10. The n(i)s are the number of cycles corresponding to
the apphed load L(i), as shown in Figure 5a. The N(i) values are obtained from the SN curve,
as shown in Figure 5b, where the corr&pondmg S; values are identified in the figure by the L(i)
values obtained from the spectrum loads in Figure 5a. In addition, the rule requires that

 Np-DF =1 (5)

in order to determine the maximum number of passes (NP) that can occur prior to the
component failure.

- :
“’ ~
o | -
o |
_ Ln 100 108 125 140 168
% -y Load (L)
H Figure Sa. Normalized load spectrum
relative to endurance limit.
- |42
LQ)
o
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Figure Sb. Component mean SN curve.
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SIMULATION PROCEDURES IN DETERMINING COMPONENT RELIABILITY

Bootstrap Method Applied to Coupon SN Curve Compuhtlon

The Bootstrap Method,'* a simulation process, was introduced in the fatigue life reli-

ability analysis in order to examine the effects of uncertainties used in determining the cou-
pon SN curve and the resultant component reliability. Only one reliability estimate can be
obtained from a single set of data; however, even with all conditions the same, one would
expect to determine a different reliability estimate from another set of data. The Boot-
strap Method provides a technique for estimating the variability among random sets of
data generated under equivalent conditions using data from only a single random sample.
The idea is to create arbitrarily many new datasets by sampling with replacement from the
original data. If there are n values in the original data, then a new dataset is created by
selecting n values from among these observed data, allowing data values to be selected
more than once. The probability distribution of the reliability calculated from these
datasets, which are created by taking random samples from the single observed dataset,
provides an estimate of the actual probability distribution of reliability which could, in
principle, be determined from future datasets.

The material fatigue testing involves obtaining the number of cycles to failure for a
specified applied load (S) shown as the individual data points in Figure 1. The Bootstrap
Method involves selecting a random set of 9 values independently with replacement from the
set of cycles to failure values {N; (r)}i for each j™ applred stress from {S,} , as shown in
Figure 1 and obtained from Reference 12 The result is a new set {N (r)} for each of the §;
values.. The new set is called the Bootstrap sample where some values' can be repeated once,
twice, or more times. The new set is then used in the regression procedures described in the
Coupon Test SN Curve Section in order to obtain a new SN curve (S in Equation 1).

"~ - In Figure Al (see Appendix), the results of applying the Bootstrap show a 90% confi-
dence band on the original SN(N) curve. Results in Figure A2 show the individual SN(N)
curves obtained for the Bootstrap samples. The results from Figures Al and A2 indicate that
there is more variability for large or small N values than for the central region of the curve
which is consistent with determining confidence bands on regression curves.

For calculating the effects of coupon SN curve uncertainties, a damage fraction (DF*)
value is computed by applying the linear damage rule. The above procedure is repeated Mp
times, so that a set of {DF_ (|)}'1"3 are obtained. The component reliability R can then be
obtained by countrng the number (Ng) times Np - DF* <1, k = 1,2,.Mp, where Np, the
number of passes, is specified. The computed component reliability R including uncertainties
in the coupon testing procedure is written as

R = Np/Mg, : | (6)
where Mp is the number of repeated applications of the Bootstrap procedure.

Reliability Estimates from SN Component Curve Simuilations

The following simulation procedure was applied in order to identify the effects of
uncertainties in the location of the component SN curves on the reliability estimates.

*Represents simulation results.
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The uncertainties are assumed because of the potential differences in loading, material, sur-
face conditions, and geometry between the coupon and component. Also contributing to
these uncertainties are: the extrapolation of the component fatigue data in determining the
Si’s, as shown in Figure 3, and the availability of only six values in computing Sy (mean of
the curve), as shown in Figure 4. Examination of potential inaccuracies in the reliability com- ~
putations due to assuming that the component and coupon SN curve shapes are similar was
not included in the simulation process. Introducing variability in the curve’s location was suffi-
cient for showing sensitivity in the reliability computation. In the simulation process, a ran-
dom set of M S values were obtained. These values are normally distributed about the

Sm value in Figure 4 from the following:

S =Sm(1 + Vs-Z)), i =1,2,..M, [©)

where the Z;’s are values randomly selected from a standard normal distribution with a mean
of 0 and a variance of 1. The Vg value is the coefficient of variation (CV) and the mean is
Sm- In Figure A3, a representative normally distributed set of S7 values are shown for Vg
= 0.01 and Vg = 0.02. The newly obtained mean values (S ) are now used in vertical posi-
tioning of the component SN curve, as shown in Figure 4, so that M SN curves can be
obtained from Equation 1 by the following:

S} =S(Sa,SuBY) + AP, i=1,2,.,M, ®

where AP;=8S_ (i) - Sm M damage fraction values (DF;) are obtained from applying the
procedures descrlbed in the Miner's Rule Section and the schematics shown in Figures 5a and
5b using the newly available S; values. .

From Miner’s Rule, compute Np - DF{, i = 1,2,..,M and record the number (Ns) of
times Np - DF{< 1 for a given Np value, where Np represents the specified number of
passes. The component reliability R can be written as

R = Ng/M. ®
Note that in order to obtain 0.999999 reliability, M = 1 x 10% simulations would be required.

Load Uncertainties Effect On Reliability Computations

A simulation procedure similar to that described in the previous section was applied in
order to identify the sensitivity in computing component reliability by introducing uncertainties
in the assumed spectrum loads (see Figure 5a). There exist potential errors involved in assum-
ing a specific load spectrum. They are the results of: an inaccurate measuring device, the
location of the device, and assuming load patterns determined from short periods of data
recording which differ from the actual loads the component would be subject to during lts
operational lifetime.

Application of the simulation process involved only modeling uncertainties in the L val-
ues, with n(i)s remanmng constant for a given load. Introducmg the same amount of variabil-
ity in each {L(l)} values was sufficient to show the sensitivity of the reliability estimates
from uncertamtles in the loading.
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Initially, the simulation involves obtaining M1 sets where the j set {L J. (i)} ;"_1 is deter-
- mined from the following:

Li® =LG)(1 + VL Z),i=12,.,5 . Qo)

where j = 1,2,..,M1 and Z; is a random value from a standard normal N(0,1) distribution.
VL is the coefficient of variation representing an assumed variability in load L(i).

For the j' B simulation, the onglnal five loads {L(l)}5 as shown in Flgure Sa, are modified
resulting in a new set {L® (i)}l from Equation 10. Thc distribution of L (l) for all j values,
for example, would be similar to that for Sy, as shown in Figure A3.

In the simulation process, the j"’ modified set L?, and its associated N ;, P determines a. dam-
age fraction value DF?, as described in the Miner’s Rule Section and Figures 5a and 5b. In
order to obtain compénent reliability values from the load vanabllnty, Miner’s Rule is then

applied by rccordmg the number (NL) of times Np-DF; <1 for j = 1,2,.M1. The compo-
nent reliability R ns then written as

R = N_/Ml. (11)

Reliability Sensitivity from Uncertainties in Miner's Rule

A simulation procedure similar to those in the previous two sections is applied to the
Miner’s Rule relationship in Equation 5. This was done in order to examine the effects of a
possible error in assuming the component will fail when Np-DF =1 (see Equation 5). In
order to identify the effects of this uncertainty in computing component reliability R, the fol-
lowing simulation process was performed:

Imtnally, the value 1 in Equation 5 is replaced by a set of random numbers {CR,}l
resulting in Np- DF * < CR;, where

CRi=1+Vy-Zi,i=12 ..,M2 (12)

and V) and Z; are the assumed coefficient of variation and standard normal as previously
defined in the above two sections.

The reliability R is determined from recording the number (Nz) of times that
Np-DF* < CR;, ) ) (13)
and then defining

R=NzM2z - ~— - ~— - -’ (14)

where M2 is the number of simulations.
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WORKING SN CURVE

The adjustment of the mean component SN curve from a limited amount of component
test data results in a certain amount of variability in estimating the location of the curve. In
order to account for this variability, and in some instances other uncertainties in the fatigue
analysis process, a component SN curve reduction factor is often introduced which results in
a new working SNy, curve, as shown in Figure A4. There is no standard method for obtain-
ing a working curve in the helicopter industry.16 The working curve in Figure A4 was
obtained by a uniform reduction in all S; values. This approach maintains the same curve
shape as in the original SN¢ curve; i.e., the coupon SN curve shape. This approach is consis-
tent with the use of the coupon curve shape in the extrapolation process for each component
data value (see Figure 3) by which the original component curve Sy value (see Figure 4) is
obtained. In Figure 3, a schematic of this uniformity is shown where for N = 1 and
N = 10% show an equal amount of assumed dispersion in the S; values.

Reduction Factors for Working Curves

Some of the reduction factors commonly used by the helicopter manufacturers are dis-
cussed in References 15 and 16. In some cases a multiplication factor is used to obtain work-
ing curve values, Sy; i.e.,

SW’SQ-P‘Sm (15)

where S; represents the strength values from the component curve, SN for various P values.
Sm was previously defined in Equation 3.

- Another reduction procedure involves defining

S, =Sc-3-SD | | - _(16)

where the standard deviation (SD) is often determined from an assumed standard coefficient
of variation for a particular material to represent the S; values shown in Figure 3 and in
Equation 3. A typical value for the coefficient of variation for steel is 7%. The SD value
is then written as SD = 0.07 - S,,. One other method involves determining SD from the
actual §; values; ie., SD = —S.)2/(n — 1) » and substituting the SD value in
Bauation 16. (S =Sm*/ (-1

The working curve was introduced in this report in order to evaluate its capability to
include the possible variability in the reliability estimates from the simulation results.

RESULTS AND DISCUSSIONS

In this section, results from the simulation procedures are shown in both tabulated and
graphical form. Variability is introduced in combination, as well as individually, for all of the
following four factors: the spectrum load, the mean SN Curve, Miner’s Rule, and the Boot-
strap process.
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In Table 1 all four factors were varied for a range of CV values (% variability) from 1%
to 5%, except for the Bootstrap simulation where the variability is obtained from coupon test
results. The component reliability results are tabulated as a function of the corresponding
CV values assumed in the simulation procedures. The results were obtained by systematically ran-
domly selecting values from each of the four factors so that 1 x 10° distinct factor combinations
are obtained for computing the damage fraction (DF) in the Miner's Rule Section. The rehabnl-
ity (R) is then obtained from the sum of all the times Np - DF* <1 divided by 1 x 10%.

Table 1. RELIABILITY VERSUS FACTOR VARIABILITY: LIFETIME = 3425

% Variability* Reliability
1.0 0.999999
20 0.969676
30 0.937250
40 _ 0.872101
5.0 0.816061

*Simultaneous variability assumed for the following: spectrum load, mean curve,
Miner's Rule = factor (1) and the Bootstrap process on defining mean curve are

In order to apply the simulation procedures, a 1% variability was introduced for each of
the factors and the number of passes (Np = 3425) was selected in order to obtain a baseline
reliability value of 0.999999. This value was selected because of the helicopter industry’s inter-
est in obtaining high component reliability of 0.999999.

. The results in Table 1 show a substantial instability when comparing the reliability estimate
of 0.999999 versus 0.989676 for the respective 1% and 2% variabilities. The implication of these
results is that in one case one in a million failures could occur compared to 10324 failures in a
million in the other. This substantial difference for such a small increase in the inherent variabil-
ity in the assumed fatigue life models shows a severe sensitivity in computing high reliability
when there is a small degree of uncertainty in determining spectrum loads, SN curves, and assum-
ing a failure requirement from Miner’s Rule. The results from increasing the variability from 3%
to 5% show a corresponding reduction in reliability values. The R = 0.816061 for 5% variability
is a very large reduction from the original 0.999999 for 1% variability. The CV values shown in
Table 1 represent a range of potential parameter uncertainties in the fatigue life model.

In Table 2, reliability values are tabulated as a function of the combined and individual vari-
ability of the four factors. This was done in order to examine the effects of the individual factor
variability on computing component reliability. The 1% variability was applied to all factors result-
ing in R = 0.999999 when Np is equal to 3425 (as in Table 1 at 1%). The 2% variability was
applied to each factor individually with 1% variability for the other two factors. The Bootstrap
process was applied in all of the cases. Introducing a 2% CV in the spectrum load (SPL) shows
a substantial reduction in the reliability estimate from 0.999999 to 0.996404. The 2% variability
in the component SN¢ curve (MSN) shows a smaller reduction of 0.999999 to 0.999440 indicating
that, based upon the particular spectrum considered, the spectrum load uncertainties could result
in greater instability in the reliability values. Small variations in the Miner’s Rule assumption
(see Equation 13) do not appear to be as critical in the reliability computations. Increasing the
variability from 3% to 5% shows a continued decrease in reliability estimates except for the case
of Miner’s Rule variability which has a very small reduction. The 5% variability on the spectrum
load shows a value R = 0.862469 which is only 5.7% greater than the case where all factors were var-
ied simultaneously, as shown in Table 1 for 5% variability.
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~ Table 2. RELIABILITY VERSUS INDIVIDUAL FACT OR VARIABILITY: LIFETIME = 3425

% Variability (P) Reliability
on Individual
Factors* SPL MSN MR
1.0 . 0.999999 0.9999399 0.999999
20 0.996404 0.999440 0.999999
3.0 0.967356 0.992375 —
40 0.912587 0.972164 0.999997
5.0 0.862469 0.941979 0.999994

*1% variability is applied to all factors except for individual increase in factor variabi
in first column. Boourappromsabo“mgudod W @)

In Table 3, reliabilities are obtained for the individual factors, spectrum load (SPL), and
location component SN curve (MSN). In order to obtain the R = 0.999999 value for 1%
variability on each of the factors, the number of passes (Np) was 3700 for SPL and 4425 for
MSN. The lower Np value for SPL is consistent with the results in Table 2 since the R val-
ues for SPL were lower than those for MSN when Np was 3425. In addition, it is obvious
that a lower number of cycles of operation would usually increase the reliability value. “The
Bootstrap Method application resulted in a value of R = 0.999977 when combined with a 1%
variability in MSN. This indicates that the method is not introducing any substantial variabil-
ity compared to the SPL and MSN contribution in determining R. This is expected because
of the small amount of variability in the SN curves, as shown in Figures Al and A2. In addi-
tion, the range of cycle values contributing the most in determining the damage fraction has
the least amount of variability.

Table 3. RELIABILITY VERSUS INDIVIDUAL FACTOR VARIABILITY / LIFETIME

% Variability Reliabiiity (R)
SPL* MSNt

1.0 0.999999 0.999999

25 0.969376 0.965875

5.0 0.828010 0.818789
*3700 Lifetime value
14425 Lifetime value
Nsn?‘mm%o&w”mmm resulted in R = 0.999977

Table 4 shows the reliability results from reducing the Sp value, shown in Figure 4 and Equa-
tion 3, by the tabulated percentage in order to examine the possible material mean strength loss
from environmental effects such as corrosion. New values equal (1 - p/100)Sy, where p is the
tabulated percent reduction factor. In the case where p = 0, R = 0.999999 was obtained vary-
ing the SN, curve by 1% with Np = 4425 which is in agreement with the result in Table 3.

This variability in the SN; curve (MSN) was maintained for each of the reduced Sy, values.

When p = 1, then 0.99S;, was used in the simulation process to obtain a reliability value equal
to 0.999852 compared to 0.999999 for no reduction in Sy. This result is not as substantial a
reduction in R as the case where the S, value is reduced by 5% and R = 0.324206. The over-
all results indicate that loads which previously did not increase the damage fraction are now signif-
icant contributors in reducing the component reliability. If there is a potential for material
strength loss due to corrosion, for example, then high reliability estimates are substantially

reduced by small mean strength reduction.
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Table 4. RELIABILITY VERSUS PERCENT REDUCTION MSN:

LIFETIME = 4425
% Reduction Reliability
0.0 0.999999
1.0 0.999852
20 0.995542
30 0.946600
40 0.720650
5.0 0.324208

NOTE: 1% variability on MSN

Table SA shows the deterministic fatigue lifetime values obtained from the application
of various working curves described in the Working SN Curve Section. This computation
was introduced to evaluate the curves relative effectiveness in accounting for the uncertain-
ties in estimating the component SN curve. This evaluation involves comparing results
from Tables SA and 5B. In Table SA, P = 0.5 which is the reduction from S; in Equa-
tion 15. This shows a lifetime of 0.325, which is a very conservative estimate compared to
the 6150 passes obtained from using the original component curve without a reduction.
The least conservative lifetime estimate is 2000 which was obtained from reducing the com-
ponent curves by three SDs. SD was.obtained by using the S; values in Figure 3 and
Equation 3. This estimate was less conservative than the 1225 lifetime value obtained
using an assumed CV = 0.07. The extrapolation process shown in Figure 3 may account
for the relatively low SD estimate for the case when the life value is 2000. The other
reduction factors result in a predictable decrease in the life estimate with an increase in
the reduction percent P.

Table SA. LIFETIME VALUES FROM APPLICATION OF

WORKING CURVES
Working Curve
(Adjustment on S) Lifetime Value
0.50* 0.325
0.44 48
0.30 500
0.25 850
0.20 1355
8 - 3(sd)t 1225
S -3(sd) ' 2000
NAO 6150
)
mwdmms wnm(mﬁnbwmawmmgm
m f’E"«vsiauonlc!omrmimut mn 7% coefficient of

O NA: No adjustment of SN curve.
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Table 58. LIFETIME VALUES WITH 0.999999 RELIABILITY
VERSUS VARIABILITY ON MSN AND SPL

% Variability Lifetime Value
1.0 3425
20 1850
3.0 875
40 350
5.0 50

In Table 5B, simultaneous variability on the component curve (MSN) and the spectrum
load (SPL) for 0.999999 reliability shows a reduction in the lifetime value with increasing vari-
ability, which is consistent with prior results. By comparing results from Tables SA and 5B
the effectiveness of the working curve in obtaining 0.999999 reliability can be identified.
That is, for example, a 1% variability shows 3425 indicating that any of the working curves
could provide the required reliability although the curve obtained from the three SD reduc-
tions would be the least conservative acceptable method. Introducing 2% variability shows a
life estimate of 1850 which, in this case, requires using the three SD reduction procedure
where SD is obtained from assuming a 0.07 CV value. If the variability is assumed to be
5%, then a lifetime value of 50 is obtained which would require a working curve reduction
factor of 0.44 in order to provide the 0.999999 reliability. If a 5% variability in the loading
and SN curve can exist, then most of the working curve procedure would be an undesxrable
method for obtaining high reliability.

Using Equation 7, the results of introducing a 1% uncertainty in the positioning of the
component curve is shown in Figure 6 as a probability density function for the lifetime esti-
mate (Np = 1/DF) determined from Equation 4. A 7.3% coefficient of variation was
obtained with a mean life of 6194. The inner range, Np = 3 . SD, is 4964 to 7689 when
the function is assumed to be log-normal; this is a substantial variability in the life estimate
for a very small amount of variability in the location of the SN curve.

In Figure 7, a density function for the life estimate was obtained from an assumed 5%
variability using the same procedures as described above. In this case, the CV was 37.5%
with a mean equal to 6621. The inner three SD range is 2065 to 18587 for the lifetime
value estimates. This exceptnonally large dispersion in the life estimates for a moderate
amount of varlabnlnty (5%) in the location of the mean curve indicates instability in estimating
lifetime values. It is noted that by taking the log of the data, a normal function was
abtained indicating that the fatigue estimate can be represented by a log-normal distribution.

In Figure 8, a computation similar to that described in Figure 6 was performed in order
to determine the difference in life values between 1% and 0.0001% points corresponding to
reliabilities of 0.99 and 0.999999, respectively. A 1% variability in the spectrum was assumed
in the computation of Np. A CV of 10.8% was obtained with a mean of 6203. Results
show a life of 4795 for the lower reliability of 0.99 and 3689 for the higher reliability of
0.999999 showing a 23% decrease in the lifetime estimate.
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Figure 8. Component fatigue life probability density function and reliabilty.

Figure 9, where a 5% variability in the spectrum load was introduced, shows a log-normal
distribution of. lifetime values similar to that in Figure 7 for the SN¢ curve variability. The
inner range of 1075 to 31956 again shows the substantial variability in the life estimate indicat-
ing a serious instability in the fatigue life computation approach when even small uncertain-
ties exist in assuming a specified spectrum load. Load spectrum and fatique strength CVs in
the range of 7% to 13% are being considered by the helicopter industry. T A comparison
of the reliabilities of 0.99 and 0.999999 for the respective lifetimes showed 1702 and 448
passes which is a 74% decrease in lifetime. This is a much greater percent decrease than
that of the 1% variability case in Figure 8. This assumed variability is probably more realistic
than that of 1% which was previously assumed.

Comparison of these figures show uncertainties in safe life fatigue design in terms of
changes in design lifetime for a fixed reliability, whereas the results in Tables 1 through 4
show variability in terms of changes in reliability for fixed lifetimes.

Although only a simple case has been considered, the modeling and simulation processes
are capable of dealing with more complex safe life fatigue designs. Such designs could
include more complex load spectra and additional parameters in the fatigue life model. The
value of any high reliability based analyses, whether simple or complex, appears to be in
question in view of the very substantial sensitivity of the reliability and lifetime results from
this study.
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Figure 9. Component fatigue life probability density function and reliability.

CONCLUSIONS

A small amount of variability (uncertainty) in load or strength in the safe life fatigue
model can result in a substantial reduction in high reliability values for a specified lifetime of
a component. These uncertainties can also result in very unstable lifetime estimates for a
given reliability. In contrast, the small variations assumed in the Miner’s Rule criterion, and
the variability in the SN coupon curve determination, caused a minimal amount of change in
the reliability estimates.

A small percent reduction in the strength values in the component SN curve; for exam-
ple, corrosion effects, can result in a large decrease in the reliability values.

Introducing working curves in the fatigue life computation is only effective when there is
a small amount of variability in the SN component curve or when the reduction factor was
very large. :

In view of the sensitivity of the safe life reliability criterion of 0.999999 to the modest
variability considered in this analysis, it appears that the 0.999999 reliability is ineffective as a
criterion to ensure safety for a specified service life. In summary, this report has identified
a potential problem associated with obtaining a meaningtul quantitative measure of reliabil-
ity for a fatigue loaded component. :
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APPENDIX
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Figure A1. Confidence interval on mean coupon SN curve obtained from fatigue data.
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A Randomization Approach
to an Analysis of Ballistic Data

Malcolm S. Taylor
US Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5066

Abstract

Randomization procedures offer a viable approach to the analysis of ballistic data over a
wide class of problems. Distribution assumptions may be avoided and, of even greater
importance, random samples of data are not required. Small sample sizes, while never
welcome, may be accommodated as well.

Introduction

This is an applications paper that details a problem that is representative in many respects
of those engendered by ballistic data. Sample sizes are woefully small due to the cost of data
collection and/or scarcity of testing materiel. The samples themselves are usually nonrandom
and distribution assumptions are tentative. Historical data, when available, cannot be easily
amalgamated to assist in inference.

An approach known generically as randomization, suggested by Fisher [2] and extended to
nonrandom samples by Pitman [5] holds particular appeal, since distribution assumptions and
random sample requirements may be relaxed. Edgington [1] asserts that "Few experiments in
biology, education, medicine, psychology, or any other field use randomly selected subjects,
and those that do usually concern populations so specific as to be of little interest. ... The
population of interest to the experimenter is likely to be one that cannot be sampled
randomly.” Edgington’s words ring true in the example to follow.

The problem: Stability of a kinetic energy penetrator

Kinetic energy penetrator technology has undergone a metamorphosis from the days
when solid balls were launched from cannons or catapults against sailing ships and forts. The
most obvious change has been in the overall configuration of the projectile. The ratio of the
projectile’s length to its diameter has gone from one to over twenty, as illustrated in Figure 1.
This change has taken place largely in response to the changing targets which kinetic energy
penetrators must confront.
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Figure 1. KE Penetrator Evolvement

The changes in tank ammunition design have followed the trend depicted in Figure 2.
The armor piercing, discarding sabot ammunition (Fig. 2(b)) has a penetrator whose outer
diameter is less than the inner bore diameter of the gun tube. The difference is compensated
for by a sabot, which carries the penetrator down the gun tube and is then discarded. The
long rod penetrator (Fig. 2(c)) is essentially a long rod of exceedingly dense material, typically
tungsten alloy or depleted uranium, over twice as dense as steel. In addition to a discarding
sabot, the penetrator has fins which increase the stability of the rod in flight.

Figure 2. Armor Piercing Ammunition

Table 1 contains measurements of spin rates of long rod penetrators taken by Rapacki [6].
The natural frequency of the penetrators is about 120 cycles per second (hz). Spin rates close
to this value amplify the initial manufacturing imperfections and increase in-flight bending.
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To avoid this, the fins are reconfigured to reduce the spin rate to an appropriate level below
120 hz.

Table 1. Comparison of Two Fin Redesigns with a Control
| design-0 | redesign-1 | redesign-2

163.6 97.5 78.1
109.0 1222 76.7
218.7 108.2 88.5
143.2
169.5

If the spin rate is too high, as in design-0 (or control), the penetrator may become bowed
in flight —~sometimes to the point of breaking —and become unstable. Conversely, if the spin
rate is too low, the penetrator may again become unstable. An optimal spin rate cannot be
determined analytically, and resources are not adequate for extensive empirical study.

An engineering consideration with important implications for analysis of these data is the
following: As the penetrator becomes more stable, the variance of the measured spin rates
will decrease. For analysis of the data in Table 1, this establishes a multi-sample situation
with possible heterogeneity of variance between samples, and where variance stabilizing
transformations are inappropriate since both difference in location and dispersion is relevant
to inference about the penetrator design. This effectively removes from consideration
classical analysis of variance procedures for analysis of these data.

240
210+ initial design
1804 %
1504
X redesign 1
hz 1204 ')
X 4
90+ [ ]
(]
604 redesign 2
304
e L L 1

Figure 3. Spin Rate Data
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A randomization approach to the data analysis

Figure 3 suggests that the fin reconfigurations had the intended effect —reducing the spin
rate and increasing stability. To pursue quantitative support for this observation we will
appeal to a randomization argument, choosing as a null hypothesis that the two fin redesigns
are ineffectual and provide no improvement over the initial design. If the null hypothesis is
true, then the categorical labels: design-0, redesign-1, and redesign-2, are completely
arbitrary, and the eleven observations could be randomly assigned to the columns of Table 1
(retaining the same number of observations per column) without any attendant statistical
consequences.

We will consider restricted null hypotheses in which redesign-1 is compared to control and
then redesign-2 is compared to control, rather than an omnibus test. This focuses attention
on the comparisons of interest while easing the overall computational burden. Figure 4
represents the ¢C,=56 data configurations that are produced by systematic reassignment of
datum values within columns one and two of Table 1. For each resultant configuration, the
difference in location between control and redesign-1, x,— x,, is plotted on the x-axis and the
variance ratio control/redesign-1, s,/s,, is plotted on the y-axis.
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Figure 4. Data Display after Randomization

1. Some authors assume random assignment of homogeneous experimental units to control and
treatment groups. We are necessarily in violation of this assumption, and arguably are detailing a
permutation test rather than a randomization test. In either case, the procedure remains invariant.
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To determine an observed significance level of the data in Table 1 relative to the data sets
generated by reassignment, the point (x,~ x,, 5,/s,) calculated from the data in columns one
and two of Table 1 can be ranked against the remaining fifty-five points. We will specify a
naive procedure for ranking the ordered pairs (x,, y;) which will suffice for these data, and
which retains the structure of nonparametric rank tests (Lehmann [3]). We first rank the x-
coordinates, assigning to the largest value the rank 1, the second largest rank 2, and so on.
We rank the y-coordinates in the same way. Finally, we sum the ranks assigned to the x- and
y-coordinates. In case of ties, the ranks are averaged.

Using this procedure, the observed data (51.50, 3.24) = (2, 4) having combined rank six, is
tied with two other pairs and is assigned an overall rank of three. The observed significance
level is then 3/56 = .054

We knew beforehand the two restricted hypotheses of interest, and as such might invoke a
planned comparisons argument. But, we are testing two of three possible comparisons and so
a multiple comparisons procedure is a more conservative approach. Experimentwise error
rate (Miller [4]) introduced through multiple comparisons will be controlled with the aid of
Fisher’s modified least significant difference procedure (Winer [7]) which has the desirable
properties of being both nonparametric and applicable to unequal sample sizes.

Suppose we specify an experimentwise error rate of a” = .05 for comparison of the two
fin redesigns with the control. Adopting the obvious notation ¢, d1, d2 for control and
redesign, we are interested in the comparisons c-d1 and ¢-d2. The observed significance level
is determined for each of the pairwise comparisons following the randomization procedure
outlined above. Each p-value is then multiplied by two (the number of comparisons) in
accordance with Fisher’s procedure to obtain an adjusted p-value. The p-values and adjusted
p-values for comparison of c-d1 and c-d2 are given in Table 2.

Table 2. Multiple Comparison of Control and Two Treatments

comparison c-d1 c-d2
p-value 054 018
adjusted 107 .036
p-value

The adjusted p-value, .036, corresponding to comparison of control and redesign-2, falls
well below the a” =.05 value chosen for experimentwise error rate, and reflects a statistically
significant difference between the two penetrator designs. Comparison of control and
redesign-1, with an adjusted p-value of .107, exceeds a”=.05, and does not substantiate a
claim of difference. These conclusions, now quantified, remain consistent with the display in
Figure 1.

Conclusion

Randomization procedures offer a viable approach to the analysis of ballistic data over a
wide class of problems. Distribution assumptions may be avoided and, of even greater
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importance, random samples of data are not required. Small sample sizes, while never
welcome, may be accommodated as well.

In statistics, as elsewhere, there is no free lunch. The price paid for randomization is
increased computation, since every problem requires a tailored solution, reflected through the
enumerative process required to determine the p-values. However, use of the normal theory
statistics —t-test, F-test, chi-square test, etc.—may only be valid to the extent that they
approximate the p-values obtained from randomization.
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A Randomization Test for Comparing 1/4-Scale
Kinetic Energy Penetrators

Barry A. Bodt
Ballistic Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

Abstract The material properties of kinetic energy penetrators are studied in a 1/4-scale test
environment at the Ballistic Research Laboratory. Metallurgists fire penetrators of various
material compositions into semi-infinite steel blocks and record depths of penetration. Depth
of penetration behaves approximately as a linear function of velocity, d(v), over the range of
the four-velocity design routinely employed. Under a common slopes assumption, a difference
in performance between penetrators k and / is computed as d,(v)-d(v). This difference is
determined graphically, occasionally with the benefit of a least-squares fit to each perfor-
mance. Statements of significance are not made at present. In this paper, a randomization
test is examined as a means for providing analytical support for inference.

1. Introduction

Material properties of kinetic energy penetrators are compared at the Ballistic Research
Laboratory in a 1/4-scale test environment. Metallurgists fire penetrators of various material
compositions into semi-infinite steel blocks and record depths of penetration. Depth of pene-
tration behaves approximately as a linear function of velocity, d(v), over the range of the
four-velocity design routinely employed. Under a common slopes assumption, a difference in
performance between penetrators k and / is computed as d,(v)-d,(v). This difference is
determined graphically, occasionally with the benefit of a least-squares fit to each perfor-
mance. Statements of significance are not made at present. In this paper, a randomization
test is presented as a means for providing analytical support for inference.

Inferences drawn from such experimentation may be considered the result of meta-
analysis. Meta-analysis is loosely described as the "integration of independent studies” in a
book by Hedges and Olkin [1985]. This area has received much recent attention in the social
and biological sciences, but in the physical and engineering sciences it has received little
notice with the exception of a few historical papers (e.g., Tippet [1931] and Fisher [1932]) that
have been classified in retrospect as meta-analyses. The independent-studies quality of the
aforementioned problem stems from the combination of data sets gathered at different times
(often different years) and by different experimenters. This fact, practically speaking, invali-
dates a necessary assumption for normal theory analyses, namely the belief that the subjects
for the combined data set are the result of a random sample. Taylor and Bodt [1991] recom-
mend surmounting this problem through the use of randomization tests and demonstrate
applicability of this methodology to significance testing with ballistic data.

1
In an ideal situation onc would design a multiyear experiment where random sampling did occur, but the the obstacles are so formid-
able in this testing environment that it is not done.
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The purpose of this paper is to introduce a randomization test for comparing 1/4-scale
kinetic energy penetrators. A description of the data collection is followed by the discussion
of a linear model through which significance testing of relevant contrasts can be made. It is
then demonstrated how a reference distribution for determining significance can be achieved
through randomization. Application of the procedure and discussion of the results follow.

2. The Data Collection

The measured response, d is the depth of penetration permitted by a semi-infinite steel
block subjected to a herm-nose penetrator of material j, fired at velocity i. Semi-infinite
describes the independence of the penetration action to influences from side and rear free
surfaces (i.e., the block is for practical purposes infinite with respect to width and depth).
Hemi-nose refers to the hemispherical configuration of the projectile nose. Figure 1 shows
the cut-away profile of a semi-infinite block, where the cut is made along the shot line.
Depth of penetration is taken to be the maximum normal distance between the original
entry-point surface and the bottom surface of the hole.

Depth of penetration from penetrators of several different material compositions are
gathered over several velocities. The design structure suggests that the experimental units
are the semi-infinite steel blocks. It is these that are exposed to the two treatments, velocity
and penetrator material. Velocity is included as a test condition because it will affect pene-
tration depth. Penetrator material is the only treatment of interest —materials are to be com-
pared for relative effectiveness. Confidence in the assessment of relative performance is
ensured through comparison over a range of velocities meaningful to the Army application -
(i.e., over a typical ordnance velocity range). A template for the experiment is to fire each
penetrator (material) once at each of the following four nominal velocities: 1100 m/s, 1300
m/s, 1500 m/s, and 1700 m/s. Actual velocities will vary. A design matrix overlaid on a com-
bined data set including different materials might appear as Figure 2.

Other facets of data collection influence the analysis. Penetrators are tested in separate
experiments, quite possibly over as many as ten years if the purpose is to compare new
materials to an historical control. Small sample sizes with no replication prevail if one
adheres to the template for testing materials. There is no random sampling from a population
of semi-infinite blocks —indeed, at the time of the first experiment, blocks used in later firings
may have not yet been manufactured. Even if the sample were random, there is no guarantee
that the population is normal, nor is it likely that the comfort of approximate normality can
be afforded by the Central Limit Theorem with the sample sizes and replication considered.

3. The Linear Model

A linear models framework is presented in this section to support inference for this
problem. Great detail is not given. For a comprehensive, but introductory, treatment, it is
suggested the reader turn to Neter and Wasserman [1974]. The problem is first described in
the context of a two-factor factorial design, followed by a refinement in the form of an
analysis of covariance model. A convenient regression form of this model is then used to con-
struct meaningful contrasts, and assumptlons required for traditional significance testing of
those contrasts are discussed.
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Ficure 1. Cut-away Prorile of a Semi-infinite Steel Block After Penetration.

R ¥

Materiai

M,

M,

1100 1300 1500 1700
Velocity (mss)

Fizure 2. Template tor Data Coliecuon.
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3.1 Factorial Design

The design matrix shown in Figure 2 and the problem description suggest that a factorial
design may be appropriate, with penetrator material serving as the principle treatment under
study and velocity serving as an additional design variable. The additive model is expressed

d..=,.4+V.+M+e.. (1)

where 4 is the  COmmOn mean response, V; and M, are the effects (shifts from that mean)
caused by the i velocity and the j' matenal, respectively, and e;; is the error associated with
the (1]) response. A Model-I stance is assumed, indicating that both material and velocity
be treated as fixed effects. :

Two facts render this approach less than ideal. The first, stated in the Introduction, is
that experimenters know that velocity behaves approximately linearly with penetration depth.
Even further, experience has shown that d,(v) and d(v) are virtually parallel over the 1100
m/s to 1700 m/s velocity regime, hence the additivity assumption above. Beyond this regime
the assumptions of linearity and parallel lines do not hold. The second is that although four
nominal velocities are intended, the actual velocities tested often number as many as the
number of 1/4-scale rods fired. Because firing velocity cannot be completely controlled, each
nominal velocity actually encompasses a range of velocities close to the nominal. Figure 3
illustrates both linearity and firing velocity noise in replication of some tungsten alloy firings
at the four nominal velocities.

This additional information impacts the method of analysis. Taking advantage of linear-
ity would save the experimenter degrees of freedom to apply in the estimation of error —more
efficiency in the model is possible. Left unconsidered, firing velocity noise would increase the
estimate of response variability. In the next section the analysis of covariance model is sug-
gested, having the advantage that both linearity and firing velocity variation can be incor-
porated.

3.2 Analysis of Covariance
3.2.1 Traditional Model

The linear relationship between velocity and depth of penetration can be made part of
the linear model as follows. First, rewrite Equation 1 in terms of marginal means as

dij =p+ (u -p) ""(ﬂ_j'#) + (d,-j‘ﬂi.'#_j + p), ()

where the dot subscript means to pool over that index (i.e., to average based on the sum in
the margin). Introduce in the model the term u, , to represent the simple linear relationship
between velocity and the mean response. Addmg and subtracting u, ,, /v from the right side of
Equation 2 and rearranging terms leaves

dij =#gpt (#_j’ﬂ) + (dij' HBap b+ ). (3)

Let v; represent the velocity of the (ij)th penetrator. The simple linear model which regresses
penetration depth on velocity can then be expressed as p + ’Y(Vij -v ), where ~ is the slope of
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the regression. Substituting this for , , in Equation 3 yields
d;; = p+ (v, 'V) +(uj-p) + (dij -V '7) 'I‘_j), 4)
which the reader recognizes as the common form of an analysis of covariance model.

Certainly, the analysis of covariance model in Equation 4 has appeal in that it can
account for the contribution to penetration depth from individual velocities; whereas, in the
factorial design the contribution of nominal velocities are counted as being the same regard-
less of noise. Further, even if the nominal velocities were exactly achieved, there is advantage
to be gained in introducing the linearity information in the model. In that case, degrees of
freedom for estimating error are saved. The factorial design allows (s-2) fewer degrees of
freedom for error, where s represents the number of nominal velocities. This follows directly
from the fact that the factorial design requires s-1 degrees of freedom be assigned to velo-
city; whereas, the simple linear regression needs only 1 degree of freedom assigned to the
slope to account for the influence of velocity. If the regression is perfect (fits exactly to the
mean response for each nominal velocity), the sum of squares associated with error for both
models are identical, leaving analysis of covariance with a decided advantage. If the regres-
sion is not perfect, a tradeoff is made wherein degrees of freedom for the error term denomi-
nator are gained at the expense of the regression lack-of-fit being added in the numerator. In
consideration of data with a strong linear relationship like those displayed in Figure 3, an
analysis of covariance approach would be a more appropriate choice than the two-factor fac-
torial.

Using the analysis of covariance model to describe the problem structure, questions
regarding material comparisons can be answered through the study of contrasts. If the exper-
imenter is interested in the difference in the effect of any two materials k and /, the contrast
M, - M, would be estimated and then tested for significance.

3.2.2 Regression Formulation

It is convenient to formulate Equation 4 in terms of a regression model. From an appli-
cations perspective, the least-squares approach is more widely understood and accepted by
practitioners. © Moreover, the parameters have greater intuitive appeal, and their meaning
conforms to how experimenters at the Ballistic Research Laboratory currently think of the
problem.

The change is accomplished easily. Replace the t-level treatment factor with indicator
variables m,, k = 1,2, - - - t-1, defined such that

m, =1 if the observation is of material k;
=0 otherwise.

2
Regression is also of use, computationally, when the design matrix is unbalanced.
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The columns in the regression design matrix corresponding to the indicator variables will be
mutually orthogonal. Thus, Equation 4 may be expressed in terms of a regression model as

d; =By + Bymyy + Bymy + - + B ymy 4 B(v-V v)+ e;» where %)

ﬂo =p +Mv
B =M,-M,
ﬂt =1’

The coefficients B, k=1,2, - - - t-1 represent the difference between the effect of the k'™ and
t™ material (ie., the vertical difference between the regression lines d,[v]-d,[v]). The desig-
nation of the t" w material is arbltra.ry determined by how the indicator vanables are defined.
In the design matrix for the regression model, the t™ material would have zeros in the sub-
rows corresponding to the t-1 indicator variables. The interpretation of the B,’s would be
most natural if a reference group or an historical control was denoted the t' matenal Other
comparisons may also be of interest. The general contrast M, - M, k,l #t is obtained through
the difference g, -8,

In this section the treatment effects were expressed in the context of a regression formu-
lation of the analysis of covariance model. Estimation of these effects can be accomplished
after first determining the least squares estimate of the coefficient vector. The next step—and
the main focus of this effort—is to determine the significance of these effects. To begin, a
careful consideration of the assumptions is made.

3.2.3 Assumptions

Several assumptions are required to support the usual analysis of covariance for this
problem. They appear as follows: 1) the regression slopes are nonzero and homogeneous
among materials, 2) velocity is unaffected by material, 3) velocity is precisely measured, 4)
model errors are distributed with zero mean and common variance, and 5) the responses are
considered jointly independent normal random variables. The practical implication of 4) and
5) together is that penetration depths to be allowed by the semi-infinite blocks constitute a
random sample from some conceptual normal population.

The first four assumptions are accepted; the last is not. Velocity obviously affects pene-
tration depth, and data support the similar-slopes claim. All test penetrators are identical in
dimension; there is no reason to expect that velocity will be influenced by which material
composition is being tested. Velocity, though not completely controlled, is precisely measured
using an x-ray multiflash system. As for the last assumption, there is no reason to expect that
penetration depths are normal, and because of the individual-study nature of the experiments,
they do not constitute a random sample.

In Section 4 we relax this last assumption to require only that the penetration depths be
pairwise uncorrelated. With that change, the least-squares estimation of the parameters in
Equation 5 will retain the usual properties of uniform minimum variance among linear
unbiased estimators but without any known distribution on which to base tests of significance.
Under these revised model assumptions, an alternative test for significance is given.

59



4. A Randomization Test

In this section a randomization test is proposed as a means to discern among statistically
different materials. Its principal advantages are freedom from the assumption that data
under consideration constitute a random sample from a normal population and the ability to
provide exact significance levels. Some basic foundation is followed by a description of the
test.

4.1 Foundation

A randomization test is a method through which significance testing is accomplished,
with the sampling distribution of the test statistic derived from permutations (combinations)
of the data. A test of significance measures the numerical evidence against a conjecture.
Data, conveyed through a suitable test statistic, are examined as to their consistency with the
conjecture by comparing the observed value of the test statistic to its sampling distribution—
formed assuming the conjecture is true. Degrees of inconsistency are reflected in how
unusual the observed test statistic appears. This appearance is measured in terms of the p-
value, the probability that a value of the test statistic is at least as unusual (large or small) as
the one observed. '

A classical analysis in this 1/4-scale penetrator environment, based on the model of Sec-
tion 3.2.2, suggests that a conjecture (null hypothesis) of either Hy:6, =0 or Hy:56,-6,=0
might be tested to compare two materials. Consider the latter hypothesis, a claimed
equivalence between materials k and /. Letting b denote a least-squares estimate for 3, b, -b, -
is the estimated difference between materials & and / (i.e., the estimated vertical distance
between their parallel regression lines). To determine whether the distance is statistically
significant, one need only compare b, -b, to its sampling distribution. This distribution is
readily attainable, but only if one is willing to assume a normal random sample —not satisfied
here.

Useful significance tests are possible without benefit of assumption 5). In what follows,
this assumption is replaced with the less restrictive condition that penetration depths be pair-
wise uncorrelated, thus guaranteeing nice properties for the least-squares estimators. Before
proceeding we should note that others have circumvented the normality requirement. Non-
parametric approaches to this problem include papers by Quade [1967], Puri.and Sen [1969],
Shirley [1981), Conover and Iman [1982), and Stephenson and Jacobson [1988]. All focus on
the rank transforms of either the response variable, the concomitant variables, or both. For
example, Conover and Iman [1982] transform both sets of variables to ranks and then conduct
a parametric analysis of covariance, eventually relying on the F-distribution to determine
significance. An exception to complete reliance on ranks is found in Puri and Sen [1969]. In
that paper general scores, including ranks, are adjusted for regression on the concomitant
variables, and the asymptotic distribution of the test statistic based on those scores is
developed using permutation. The hypothesis tested is that no difference exists overall among
the treatments (materials) studied. A related approach is now described, focusing on the
pairwise comparison of materials.
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4.2 Description

Consider first Hy: 8, =0. 3 The geometrical interpretation of §, is that it is the vertical
distance between the parallel regression lines d,(v) and d,(v). This fact is evident from Equa-
tion 5. The linear effect of velocity can be removed by adjusting the penetration depth values
for the velocities used to achieve them —the remaining difference among the adjusted values,
excluding random variation, is attributable to material and is expressed §,. This difference is
estimated as b, by subtracting the average of the residuals resulting from material t from
those of material k, the residuals being computed relative to d(v) in each case. Thus, once the
two groups of residuals are formed, we are interested in the difference in location between
them.

To determine if this difference is significant, we need only establish a reference distribu-
tion and compare the observed difference to it. Under the null hypothesis, d,(v) and d,(v) are
coincident. Thus, the residuals computed after adjusting for the linear effect of velocity should
be homogeneous. Therefore, in computing b,, the distinction of which residuals resulted from
assignment (association) with material k or material t should make little difference. The
reference distribution is constructed by computing b, under all possible assignments of resi-
duals (effectively ignoring material distinction) to the two materials, the cardinality of each
material set being preserved. ~ For example, if material k had five data values and material t
had four, there would be (s, ,Cs values computed for b,. The p-value for the two-sided alter-
native hypothesis is simply the ratio of the number of values in the reference distribution
which equal or exceed in absolute value the observed | b, | to the total number of combina-
tions, 5+ 4)Cs'

Significance testing for the hypothesis Hy:8, -5, =0 is achieved similarly. Adjust pene-
tration values for the linear effect of velocity and compute residuals in the same manner, still
computing the residuals relative to d,(v). The difference between materials is estimated by
b, - b, and computed by subtracting the average of the residuals resulting from material /
from those of material k. The reference distribution arises from computing b, - b, under all
possible assignments of residuals between materials k and /.

Before turning to examples, some more detail is required as to how these residuals, rela-
tive to d,(v) are computed. From Equation 5, the model d (v) can be expressed

d(v) =By + B(v-v). (6)

(The indices has been suppressed to emphasize that this is a model for penetration depth.)
Both 3, and B, must be estimated. Begin with slope. Assuming parallel
3
Specifically, th il h is for the randomization test is that penetration depth hastically ind dent of th
ponciraton having been fapmed from maeral & of materia s (Edgngion 1087} T s are stochasdcally independent of the
This rationale presupposes random allocation of subjects to treatments. However, as pointed out by Edgington [1987], random alloca-

tion principally gurds against undue influence resulting from between or within subject variability. Such variability in the context of semi-
infinite steel blocks is considered negligible relative to the material differences under study.
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penetration-against-velocity models, d(v), the common slope is taken as the average within-
materials regression slope, b,, which can be delivered by any regression subroutine fitting the
regression expressed as Equation § in its complete form. The estimate is computed as

TE(v;-vy) (d5-d))
1
b, = — — (7)
Ez(vij v j)
i]j
The ordinate at v =Vv , f,, is taken as an adjusted mean penetration depth for the t" material,
appearing as Equation 8.

-d—t(adj) =E - b (;. '7). (8)

This too will be delivered by a regression of Equation S when zeros are used as the values for
the t-1 indicator variables in the data rows l<‘:orrespondmg to the t™" material. Using estimates
for 3, and B, the estimated model for the t*" material takes the form

ag(t) = dt(ad_;) + b( -V ) )

Equation 9 is merely the least-square}s‘i fit for the t matena.l, takmg into consideration the
common slope. The residuals for the j'" material relative to the t"* material appear as

o = 9~ dyy
The residuals Tijp) &€ then manipulated in the manner described above.

(10)

5. Examples

In this section two examples are discussed. The purpose of the first is to provide a
detailed synopsis of how the randomization test is performed. In that example, data are
characteristically sparse. The purpose of the second is to illustrate performance when data
are slightly more abundant and when the data collection does not exactly follow the template
discussed earlier. Data for both examples were extracted from an unpublished manuscript
provided by Mr. Timothy Farrand of the Ballistic Research Laboratory.

5.1 Example 1

Figure 4 displays data arising from the firing of four penetrator (material) types against
semi-infinite steel blocks. All penetrators were manufactured with a common mass of 65 g
and with the length-over-diameter ratio (L/D) equal to 15. The depleted uranium (DU)
penetrators are separated according to Rockwell hardness (Rc). It is apparent that the tem-
plate for data collection given in Figure 2 was approximately followed, save duplicate 97%-
tungsten results at 1500 m/s