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FOREWORD

The host for the Thirty -Seventh Army Design ofof Experiments

Conference ( DOE ) was the Waterways Experiment Station (WES ) at

Vicksburg , Mississippi . Dr. Billy Johnson did an outstanding job

in managing all the local arrangements . Dr. Robert Whalen ,

Technical Director of WES , kindly provided a 5:00 to 7:30 PM tour

of the WES laboratories on the second day of the conference .

This conference is one of the two Army conferences that the

Mathematical Sciences Division , of the Army Research Office , holds

for Army scientists . AlthoughAlthough the title of the DOE Conference

suggests that it is concerned only with design of experiments , it

is actually a statistic conference and covers a wide range of

topics in statistics .

An occasional talk in high level mathematical statistics or

probability theory intrudes on the scene , but generally topics such

as these , that are heavily mathematical, are given in the Army

Conference on Applied Mathematics and Computer Sciences . The DOE

Conference is very much a teaching conference having clinical

papers with a panel of discussants , analytic papers ( application of

known theory ) , the usual technical talks, and invited papers .

He and theThe keynote address was given by Professor G. Watson .

other invited speakers are listed below .

Speaker and Affiliation Title of Address

Dr. William H. Du Mouchel

BBN Software Products

Bayesian Meta Analysis

Professor Ian McKeague

Florida State University

Identification of Nonlinear

Time Series From First Order

Cumulative characteristics

Professor Emanuel Parzan

Texas A&M University

Change Analysis

Professor Isabella Verdenelle

Carnegie -Mellon University

A Bayesian Look at Experimental

Design

Professor Geoffry Watson

Princeton University

The Use of Simulation in

Statistical Inference

Professor Edward Wegman

George Mason University

The Straight Scoop on Wavelets

and Nonparametric Function

Estimation
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James R. Thompson , Professor of Statistics at Rice University , was

named recipient of the tenth U.S. Army Wilks Award for

Contributions to Statistical Methodologies in Army Research ,
Development , and Testing . Professor Thompson's interest in

confronting important Army problems and his willingness to interact

with Army researchers is well established . His work , with Dr. M.S.

Taylor , on data based nonparametric density estimation arising from

modeling of multivariate ballistic data and his faithful support of

the Design of Experiments Conference including presentation of the

tutorial : Density Estimation , Modeling and simulation : Studies in

Empirical Model Building at the Thirty -Second Conference on the

Design of Experiments conference are signal contributions .

Each year a two - day tutorial precedes these conferences . This year

the topic was recent developments in " Time Series Analysis" , and

was given by Professor Joseph Newton from Texas A&M University . He

gave an excellent , information packed short course . His lecture

notes , entitled " Applied Time Series Analysis" are reproduced in

these proceedings .

The host for these conferences is the Army Mathematics Steering
Committee . The members of this committee are duly aware of all the

effort that goes into making these conferences such memorable

events . Their thanks go to all those in attendance . The speakers

in particular , need recognition forfor the time they spent in

preparing and delivering their scientific papers .

Program Committee

Carl Bates

Eugene Dutoit

Douglas Tang

Barry Bodt

Robert Burge

Malcolm Taylor

Henry Tingey

Jock o . Grynovicki

Francis Dressel

Carl Russell

Jerry Thomas
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Simulation in Statistical Inference

Geoffrey Watson *, Princeton University

Abstract

In this paper I will not include one topic discussed in my actual talk since the

paper is already too long . The bulk of the paper describes our mathematical and

computational studies of the parametric bootstrap. This is largely expository - our

examples are chosen to increase our intuition about how to proceed in analogous

situations. There are many uses for the parametric bootstrap but the literature

gives little practical guidance when there are many parameters. We hope that this

paper will also be a useful introduction to the nonparametric bootstrap which was

the initial problem of bootstrap studies and is still their central interest. I believe

this wonderful tool is more subtle than many think it is . The last section is original

and shows how, by converting a testing problem into one of estimation , simulation

leads to the solution of an important problem in paleomagnetism ; bootstrapping is

part of this solution .

1 Introduction

Simulation has a long history. "Student" checked his formula for the t

distribution by manual simulation - drawing numbers on slips of paper. The early

volumes of Biometrika are always fascinating to read; my undergraduate "senior

thesis" was a summary of studies of the effects of non-normality which I mostly

found there. Many involved manual simulation. In the mid-30's Pitman explored

Fisher's ideas of randomization & permutation distributions. He found their early

moments by algebraic methods. However everyone was clear that one could

approximate the wanted distributions numerically. But it was then very slow work.

Even when computing gradually became easier and cheaper, few of us

" changed heads". Machines were just used to do computations (e.g. numerical

linear algebra ) that were just a bit bigger than those we were already doing.

* Research sponsored by NSF Grant DMS 9118 896.
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Efron changed everything with his "bootstrap" about 13 years ago. Perhaps i

should have called this talk the " Stimulation in Stat'l Inference !!!!!!!!"

The emphasis in the bootstrap literature was, and still is , on NON_PARAMETRIC

methods i.e. methods that will be 100% effective whatever the situation when the

sample size tends to infinity. However an earlier paper by Efron pointing out that

the method of getting accuracies of maximum likelihood estimators works better

with sample likelihoods than expectations is a parametric bootstrap argument!

There is now a large, rapidly growing and difficult literature - the following

monographs give the key ideas and facts: Efron (1982 ), Beran (1991 ), Hall (1991 ) .

But it is very hard , even for an academic , to catch up" with current technology . I

hope that this paper will help applied statisticians to understand and perhaps use

some of the basic ideas. As the "keynote" speaker for this conference, I felt it was

more essential for me to address a topic vital to everyone than to talk about

something on which I have the most expertize !

I drifted into this area because I had to deal with complicated parametric

estimation problems where classical theory was not much help so I tried " to

simulate my way out of trouble - ever the innocent optimist! I was soon told that I

was just rediscovering old bootstrap results. I had not troubled to study the

bootstrap before. This was partly from laziness and partly because I was put off by

what I thought was its uncritical embrace for small samples - I could see its

asymptotic justifications. And I was not so keen on getting non-parametric

methods. I soon discovered it was much more subtle than I thought ! Further I think

its use for parametric problems is not only very useful but a good introduction to

the use of the nonparametric bootstrap .

Section 2 will introduce bootstrap ideas via parametric problems which are

so simple that one can see what bootstrapping will do without having to simulate

at all ! Further we work with the m.I. estimators. Of course in more complex

problems one must simulate. Section 3 shows several experiments with problems

where the number of parameters goes from medium to large.- these simulations

were carried out by Javier Cabrera . In Section 4 we will show how simulation

may be used to solve an important problem in palaeomagnetism. Though it is

logically different from the above, bootstrapping is an essential part of the trick !

The computations shown were done by MichelDebiche .
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2 Simple examples

Example 1 Original "naive " bootstrap.

Consider a sample of n from

f (x ,0) = 6-1exp (-x /e)

with arithmetic mean m , the (unbiased) mle for ø . The "Naive" bootstrap way of

getting a conf. interval " O < c " of size B is , I believe , to draw N samples of size n

from f(x , m) , find the mean m* of each , find cßso that NBof the m*'s are less than

CB ; we then have the "naive" or "percentile " interval "O<cß" ( 1 )

OOOO

This is based on the plausible belief that the distribution of m , in sampling

from f(x,0 ) , will be APPROX the same as that of m* when sampling from f(x,m) ,

fixed m . Now if N is large, our simulation will give the same answer that we know ,

in this example, from distribution theory given m , m*/m distributed as X2n212n,

because we know that

m /e distributed as X2n2 /2n . (2)

Write Prob { X2n2 < c2n (B)} = J. Hence the "naive" interval (1 ) is , when N is large,

close to

< m can (B )/2n .

But directly from (2) we get the correct ( if N large) interval

orProb { m / o > c2n(1-1 )/2n } = B,

Prob { Q< m . 2n/ c2n (1 -B )} = B.

For n = 5 , B = .95

(3)

c2n (B )/2n = 1.83 , 2n / c2n ( 1 -B)=2.53

So the naive interval is much too small- its true coverage is much less than the

nominal .95. Hence the use of "NAIVE" !

What is wrong with the "naive" argument ?

The distribution of m* , given m , is NOT the same as (only like ) the

distribution of m , given 0 .

س
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It is the distributions of m * /m , given m and m/e , given 8 , that are the same !

Notationally

Lm /m , at m = L m /o at o

This is true - see (2) - because the distribution of m / ø does not depend on e i.e.

m / 8 is a PIVOTAL FUNCTION .

Pretend now that we dont know that m / o has the distribution given by (2) . We

can here approximate it as closely as we like by taking N large enough in a

simulation study of m*/m. Thus we can get a an almost exact confidence interval

by drawing N samples of size n from the exponential distribution with mean mand

and finding k so that proportion of m*/m's >k = B, to good approximation. Then we

may assert that it should be accurate to say that

Prob { m / 8 > k } = B, or equivalently that " < m / k ” is a confidence interval of size B.

When N tends to infinity we must get the exact confidence interval this way.

The moral of this is that one should use pivotal , or more practically,

asymptotically pivotal, statistics when bootstrapping.

Example 2 Iteration of thebootstrap , to reduce bias. Prepivoting

@ = M

Consider a sample of n from U [0.ø) , the Uniform distribution on (0,0) . Then

0,= M = max { x1 Xn) is the biased {its expectation is (n (n+ 1 ) ] 0} mle for 0 with

SD 0 / n , approx. Can we improve it e.g. get a less biased version, by using the

bootstrap ? I am pretending we don't know all about this estimator but I will use this

knowledge in place of large simulations.

Consider the following idea :

1 / Draw N samples of size n from U [O , M ], each time finding its maximum M*j , j .

1 , ... , N , Compute their average Ave M*

Method (a ) . A corrected - once estimator is

101 = M- Bias estimate ,Ave M*-M

=2M - Ave M*,

since we'd guess that Ave M*-M would be close to the true bias EM-e. We call

this the additive or linear correction method

4



Method (b ). Another corrected-once estimator is

1 = M2/Ave M*

This comes from multiplying M by the bias correcting factor MAve M*. We call this

the multiplicative correction method.

In each case the subscript "q " is used because one can repeat the process.

2 / Draw N samples from U [0 ,ê , ) , find their maxima M** and their average .

The twice -corrected estimators could plausibly be chosen to be

02 = 0 , - [ Ave M **-@ ) = 20 ,- Ave M**

82 =.0 , 0 ,@, / Ave M** = 8,2/Ave M**

However analysis shows this intuition is not right and that we should argue as

follows.

Ave ( M * -0,1

Additive - The idea that gave ê, was to assert

46 ,-6 at 8 = L [ M* - ]at ê, , suggesting

000,

orê, = 60 - [ Ave M - @ol.

tête, is closer to o , similar use of

Lê - 8] at 8 = LỊM " -6, lat6,

1

should lead to the better

ông = e. + ,- Ave M** ) , and

6 -6 + 6,
Ave M *** ) , etc.

Multiplicative - idea was to assert

.

or better

Lê 78]at 8 = LỊM "lo, lat 6,1 '

so use the latter to get new as

2

ê, = éo lê,/Ave[@,/ Ave M ** ),and

5



var 0 ,

03 =, 8, )lêg! Ave M*** ) , etc.

We now show some properties of these sequences of estimator of 0 .

Analysis If N is large, we can avoid arithmetic by recalling that

EM= On/( n + 1 ), var M= 02/n2 approx

Method (a)

Eê, = 20 [n/(n + 1)] -e[ n/(n+ 1 )]2

= 0 { 1 - (n+ 1 )-2 }

Ô,= varm{1+ N-102( 1 + 1 /12}

so that bias is now slightly down to O(1 /n2) while variance is essentially that of M =

00 The bias in o , is now smaller than its SD.

Eộng = E éo + [E ê , - EAve M-"y

= Eê + E ê,I1-n/(n + 1) ^

E@, =0{ 1 -1/(n +1)3},

an improvement over E Ô 1 = { 1-1 /(n+ 1 )2} but not worth having since the SDs ofêof ô

e, are O( 1 /n ) .ê

Method (b)

= EM E {M2/Ave M* |M }

EM M2/ EM* , for N large ,

= EM21n/(n + 1)]M

[(n 1 )/n] EM

and

Een

2

so the BIAS is Zero

var

= E 0 / Ave M**

ê, = 02/n(n +2),approx .

Εθ2 Eө, ө,

E 0, 0 , / EM * , N large

= E 0 e ,'[n/(n +1)]01 ,

= [ ( n + 1 ) n] E @.

= 0, as fore,

6



Thus the multiplicative correction method is better than the additive but both

reduce the bias. Why ? Because it is based on a correct assertion - and this is so

because here Mø is a pivot.

Now we look at CONFIDENCE INTERVALS FOR Ø If we use the multiplicative

approach , we expect here to get the right answer because Mø is a pivot i.e.

L ( M / 0) at 8 = L (M * /MatM. (4)

The cdf of both random variables is kn , Ocks1.

Let qß(M*) be estimated b -quantile of M* , found from the N samples of size n

drawn from U(0 , M) i.e. NB(approx) of the M*'s are less than or equal to this q.

Belief in (4) leads us to assert that

Prob { M /O < qB (M *)/M } =B (5)

Now if we let N tend to infinity , for any fixed M, GB(M*)/M tends to k where kn = B.

So that M / ø < qB (M * ) /M or ø> M2/ 9B(M*) gives a confidence interval with exactly

the coverage desired , B !

However if, in the same problem , we use the linear method and the first round

of simulations only ,we would not expect to get an exact confidence interval. In

fact we would give as the one-sided ß -interval (100B%)

M - 9B(M*-M ) < ø ,

or

Ø> 2M - 98(M *).

Now as N tends to infinity , M being fixed , we have just seen that qB(M*) tends

to k M. Thus the interval becomes

O / M >2-k , kn = B, Ock < 1 .

The actual coverage of this interval is easily seen to be

(2-k)-n (2-31 /n)-n ,

which is tabled below

B = .9

.90244

B = .95

.95062n=4

8 .95031.90123

.90099

B = .99

.99002

.99001

.99001

.99000

10 .95025

.9501616 .90062

20 .90050 .95012 .99000

Although we have made intervals from a nonpivital function , the coverages

are very accurate. We may not be so lucky in other cases.
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Iterative bias correction is worthwhile here because the variance is so small!

Remark 1

This is an example of non -regular m... Thus the variance of the estimator

cannot be obtained from the likelihood and the limiting distribution is non-normal .

In fact the studentized form

(ø -MJ/[M /n ) is exactly pivotal and has a standard exponential distribution when

n tends to infinity . But to do this one needs to know the formula for the SD of M. In

the regular case one could use the negative derivative of the likelihood to get the

correct divisor.

To proceed this way here one would have to use a double bootstrap - in

effect to find the variance formula .

Remark 2

Had we studied the estimation of u from a sample of n from N (4,1 ) , of course

the additive method would be best since sample mean - 4 = m-u is then pivotal. If

we have N(H, B2 ) its distribution depends on B , and Student's t is a pivot now. See

Example 3.

Remark 3

For FINITE Simulation size N , we keep adding a little variance and so mess

things up a bit

Remark 4

CAN WE FIX UP A NONPIVOTAL FUNCTION? e.g. 8-M in EX 2?

Beran (1988) suggests the use of an idea he calls PREPIVOTING .

He calls the function of estimator and parameter that we use (e.g. 0-M , M / O )

a “root”. In general call it r(0 , 0) .

Recall that it r X has cdf (continuous) F(x) , F(X) is uniformly distributed on

[0,1 ] so Prob { F (X ) < a } = A.

Suppose in some general problem we knew the calf of the root riê, e) to be H

(r, o) . Then

H [rê, e),O) is U [0,1 ]

so that the set { 0 : H ( r(e , o) , 0) < a } has probability a . (6 )

The trick then is to find or approximate the cdf H. Then (6) should give a

confidence interval of the right coverage ; note that theoretically there are many

intervals with the right coverage, some more sensible than others .
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One needs two levels of sampling i.e. a double (not iterated) bootstrap.

First try it in the Uniform of Example 2. Use sampling from U (O , M) to find

approximately the cof of the root M-M*. Call it H(k,M) . One might hope that

H (0-M, M) approx U(0,1 ) so that

{0 : H (0 -M ,M )< a } = Conf Int. approx size a .

If N is very large , H will be what we get from distribution theory: 1- (1 -W/M )N.

Then Beran's interval would be

{0 : 1-[ 1- (0 -M )/M ]" < a }

or

{0 : 0 / M < 2-(1-a ) 1/n .

But the probability of this last statement being true is was tabulated above - it

was surprisingly close to a.

Thus here Prepivoting has converted a nonpivotal function 6-M into a pivotal

one M / e and lead to almost exact confidence intervals . With finite samples we

should approximate this happy state .

More Generally

Draw N [ 1 ] samples from f(x , 0 ) , obtaining N ( 1 ) estimates which we will

suppose when ordered from least to largest to be

9* 1 , ... , 0 * N [1 ] :

Now draw N [2] samples from the density f( x , 6*i ) , computing each time the

estimator A** and build their empirical distribution .Call it Hl . , 0* ; ) . With this done

for all N [ 1 ] values of i , we compute the N[ 1 ] values of H (0 , e* i ) .

If H (0 , 0* ; ) < a, accept 0*;; if not, reject it. If the simulation sizes are large

enough , these values should give a simple conf. int . for 0, obtained by adouble

layer of sampling !!

Notice how the arithmetic can get out of hand here- we need

O(N2) samples

Example 3

Sample of n from N (H, B2) , mean m, variance s2. To find an interval for u .

Suppose we don't know how to studentize and we start with the root

9



n 1/2{m -u ) .

By extensive sampling from N /m ,s2) we will find that the cdf of the root

n1/2[m *-m ) is i( x/ s) where i is the cdf of the standard normal . Hence Beran's

method says: use confidence set

{ u : ï( n 1/2(m -u ]/ s) < a }

Thus his method has again studentized ( made pivotal ) the initial root. Moreover

the actual coverage of the interval is only slightly wrong - since it uses the

standard normal rather than the t -distribution.

Abstracting the ideas so far --

We have a statistic T= 480 , computed from a sample of n from f(x , Ø ) and

want a point estimator of ø with little bias and also perhaps a confidence interval

for ø . In general we won't know ET as a function of ø but we assume T is a

reasonable estimator so

ET = Ø+b(Ⓡ ) or 0 (1 + B (@ )) .

( 1 ) Draw N samples of n from f(x , ^øo ) , get N estimates o* and their average

Aveø*.

Do your best to find a function g (^0,0 ) which is pivotal or whose distribution

changes slowly with ø . Then assume

Lg(^0,0 ) = L g (0 * ^ ® )

Solve g ( ^0,0 ) = Ave g (ø *, ^ø ) for ø and call the solution 101. Above we used

g (x ,y) = x-y and x /y.

(2) Repeat with the same plan , solving

g(^ ,ø ) = Ave g (0 ** , ^$ 1 )

to get Ø2 , and so on .

This gives a sequence of point estimators whose bias should go down . It is only

worth continuing it the bias reduction at least size of SD!!!!

To get confidence intervals when we are happy with the additive assertions

LI^ - ) = L ( * - ^go ] , ormaybe

L [^$0 - Ø] = L ( ** .101 ] , we could e.g. find the 97.5 % quantile of the N values

of g* . ^go . Call it q*(.975).

Then we have the approximate statement

Prob { ^$0 - 0 < q*0.975) } = .975 so a 95 % confidence interval would be { ^ o

q* (.975), 100- q*0.025)} . The naive method would give

{ q* 0.025) , q *(.975)} .

The multiplicative case goes similarly .

10



We can use prepivoting to get a more reliable confidence interval for ø , use the

step (1) results to get the cdf of g (0 *,^ ø ) , H., ø ) say. Then propose the set {ø :

H[g (0 , 0)]< a } as a confidence set for o of size a. Or we could use a double

bootstrap to adjust empirically the intervals to get the correct coverage.

Remark 4. There might be occasions when you'd want to estimate a known

function of 8. Also when you might want to use Median * instead of Ave 0* to get

median unbiasedness. We won't pursue these directions here - they pose no new

problems.

Remark 5 Rather a lot of computation is required, especially in double

bootstrapping . There is a literature on methods for reducing it by monte carlo

methods e.g. importance sampling. Redoing whole calculations many times, to

verify a method, is sound are particularly arduous.

3 Distributions with several parameters

The number of strategies for any problem increase with the dimension of the

parameter. We willhere only show some experiments on iterative simulation to

reduce bias. In almost all high dimensional problems, we can at most find

asymptotic pivots. These are usually a consequence of calling upon the central

limit theorem . I think there may be cases where this strategy leading to

nonparametric results may be inferior in small samples to using some statistic

related to a parental distribution , when that assumption is not wildly wrong. This is

a matter for future research. This work was done with Javier Cabrera .

Example 4

Efron's papers (and others) often refer to the problem of estimating the

correlation coefficient ® from a sample of n from a bivariate normal. We try to see

if iteratve simulation decreases the bias.

We used 1000 samples of 5 from a bivariate normal , both means zero , unit

variances and Ⓡ = 0.7. Each pair of lines in Table 1 refers to a corrected set of

estimates so we have the zero - th to fifth correction. The first line each time is the

mean of all 1000 estimates. The second line the standard deviation of these 1000

estimates. Thus e.g. for the means, the SD should be 1/51/2 = .447, about the

value in Table 1. Evaluating the square root of the large sample variance var r =
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(1-2)2 /n, we find 0.228, a little less than the 0.33 in our table . The divisor n-3

here gives .361 .

Following down the columns we see that the mean estimates don't change as

we would expect, that the standard deviations get a little closer to unity and that

the average r's approach .7.

But motion stops after the first iteration .

Z =

Remarks Better results would come if we used the Fisher transformation of r,

- ( 1/2 ) log ( 1 + r)/ (1-1)

12 = (1/2) log ( 1 + ® )/(1 - ® ),

since as nü Ç , 2-12 becomes standard normal and so is then pivotal .

Efron and others have shown that a double bootstrap gives a confidence

interval with good coverage .

Here we should probably not have bothered to iterate for the means and

variances. Notice that there are here 5 parameters only one of which ® was of

interest.

Example 5

We now turn to one of the two problems that lead us to this way of thinking .

Suppose we have samples of n; from Fisher distributions F (H ;, ;) , i = 1,2 , on

the unit sphere | [x = 1 in three dimensions. So will = 1 where wi is the mean

direction and axis of rotational symmetry of the distribution and i controls its

concentration . With x.u = cos e,

Fisher prob density = {1/4 a sinh *) exp { X X. }

The estimates are mi , the directions ofthe sum R; of the observed unit vectors &

ki = (n ;-1 )/(n -1| Rill) .

These x -estimators have distributions skewed to the right and are not unbiased .

We really want to estimate the angle between the means

41 and 42 ·

This is naturally estimated from

my.m2 =
= COS AO

but it is clear that this will lead to an overestimate which can be very severely

biased. So we want to take the bias out of the estimates of O and X1
and

X2
to the

extent that this is possible . To use our method we must draw N samples of ny and

na from Fishers with concentrations ky and k2 and whose mean vectors are
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separated by angle @o. We did separate runs using all additive and all

multiplicative methods but saw no obvious differences. We don't know any simple

but more pivotal quantities that we could have used. We used many

combinations of x=x1 =x2 and n=n9 =n2 and 8 to study point estimation. But only

in a few did we calculate the actual coverage of our 95% nominal intervals. See

Table 2 for some results.

Morals

Over the range of sample sizes and x's tried so far, the methods are not good

correction dwarfed by sd

poor coverages from percentile intervals so need to use better

method ( e.g. double sampling ) to get CI's.

Competitive methods - see e.g. Debiche & Watson, (1991 ) - also have trouble.

The problem is inherently hard .

Example 5

Our other motivation was a set of functional relationship problems . Three

problems have come up from my geophysical contacts.

( 1 ) the estimation of a linear transformation with positive determinant (Gleser and

Watson, 1973) from the initial and final positions of n points, measured with errors

with known covariance matrices

(2) radioactive dating methods lead to fitting a linear relation between three

variables subject to errors with known , possibly unequal , covariance matrices

(Kent , Watson , Onstott,1990).The method given there works in any number of

dimensions .

(3) The motion of sea ice deduced from the initial and final positions of n radio

beacons on the ice whose positions are measured with planar errors by satellite .

One could possibly assume one knew the covariance matrix of the errors . Here

then we are estimating a rigid motion - displacement and rotation.

In Problem 2 above, the actual errors were small and our mathematical method

lead to standard errors that agreed very well with those obtained by John Kent

who kindly used our current method at our request on these data sets. Problems 1

&3 are yet to be attacked.

Instead we tried the simple but classical problem of fitting a straight line with

both variables subject to normal errors . Here if there are n points with the same B's
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in each coordinate and the true points fall on n = a + B6, we have n ( the G's) plus

2 (a & B) plus 1 ( B ) , i.e. n+3 parameters from 2n observations.

In our experiments we also included the method (denoted in our table by

mle") recommended e.g. in Fuller (1987).

In problems 1 &3 the mle type methods are complicated so one might want to use

simpler least squares type methods. So we tried here to start from a least squares

type method, re - estimating positions of the points by their orthogonal projections

onto the currently fitted line . refitting the line, getting a new ^B and points, & so on .

Our results ( Table 3) are confusing , probably because we have so many

parameters to estimate in each round and again we have

no pivots.

Doubt now whether one could EXTRAPOLATE from what was learnt here !

The one clear result was that in many practical situations the mle's will not

behave as advertised. That this is so is seen from Figures 1 and 2. We are now

trying to see if we can " fix up" the mle's !!!

This, Isuspect, will in fact be the major practical use of parametric

bootstrapping.

4 A simulation solution to the " Fold Test Problem " .

A simplified version of a classical problem on paleomagnetism is the

following. Imagine that an eruption spreads hot lava across a plane . When the

iron -rich lava cools below its Curie point, it will acquire magnetization parallel to

the local earth's field at that time . If the slab is not too large all parts of the slab are

parallely magnetized . We imagine that no subsequent events alter this

magnetization. Suppose that it is subsequently folded . Then if we go to different

sites on this folded slab and measure this frozen or remnant magnetization, we will

not get parallel vectors. However the angle between the normal to the bedding

(old horizontal) plane and the magnetization should be preserved. If however the

magnetization of a folded formation was acquired somehow after folding , the

magnetization in the folded formation would be parallel at all sites. The other

alternative is that the magnetization was acquired at some time during the folding

process. These three alternatives are called pre, pos, and syn . This may be

clarified in Figure 1 .

For some 40 years people have tried to sort this out with significance tests. It

has, since 1953, been standard to describe the scatter of paleomagnetic direction

measurements by the Fisher distribution mentioned in the last section. Nowadays

bootstrap methods are being applied to this problem - see eg. Fisher & Hall
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( 1991 ) . It is possible to produce tests that a set of mean vectors come from

distributions with parallel mean directions ( null hypothesis : Post). And it is

possible to test that a set of angles is constant (null hypothesis: Pre ). But one can

get into a logical muddle. Many references could be given - but see e.g. Tauxe,

Klystra, and Constable (1991 ) .

We prefer to think about this differently - as an attempt to estimate the relative

timing of magnetization and folding . Let us assume - as is very common here -

that the axis of folding is known . If it is known only with error this may be coped

with by further layer of simulation. Then the current folding can be unfolded by any

amount until we get back to the original which is 100% unfolding . The present is

0% unfolding . Thus we seek the % unfolding when the rock was magnetized.

Then the measured unit vectors will be more parallel than at other % 's.

A more complicated approached should be used in practice but the following

will give our idea. The basic data will be one sample of n ; unit vectors (the

directions of magnetization of specimens) at site i with mean direction m; and

concentration ki , with i = 1 , ... , S. Now the mean directions could be unfolded (i.e.

rotated about the fold axis, and at each percent a "kappa” estimate based on these

rotated means could be found and plotted against the %. If the curve had a

maximum at say , 75%, we would want to conclude that the magnetization occurred

at that %. But what is the variability of that % estimate ? One suggestion ,which

we will illustrate below , is to assume that the data at the i-th site are distributed as

F ( mi , ki) , draw a sample of n; from this and compute a new mean direction m*i

say, for i = i , ... , s and so a new curve . Then go on till one has N curves. Then

one can get the statistics of the maxima - position , height, etc. The percentiles of

the positions gives us a confidence interval for the position of the maxima. If the

interval overlaps !00% (0%) one cannot rule out the "pre " ("post") hypothesis . In

our worked example, the data used was supplied by K Kodama. We show the first

20 curves Fig . 2. From the statistics of the results (see Figures 3, 4, 5) , we found

that 95% of all positions of the maximum lay in the interval (65% , 80%) . The

practical inference in this case is clear. No doubt in other cases there might be so

much noise that no clear - cut assertion could be made. These computations were

done for me by Michel Debiche .

If the fold axis is measured with some known error it would be easy to add

another layer of simulation to reflect it because one will get different mi at the

same % unfolding . This will broaden a peak such as we gave in Fig 2 - and so

broaden the confidence intervals .
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Here we got our resamples from Fisher distributions. Instead we could draw

bootstrap samples from the points in each original sample , find their mean

directions, rotate each by each % unfolding , calculating Kappa each time . This too

gives a family of graphs which would be treated as before.

Finally I would prefer to use not kappa but a statistic I have devised (Watson,

1983) to check the null hypothesis that a number of populations have the same

mean direction. The use of kappa here goes back to early but incorrect

paleomagnetic practice - McElhinney (1964) .

These two methods are I suppose the applications of the parametric and

nonparametric bootstrap to this problem ! I'm sure that they willget refined and

extended when they are used in practice.
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TABLE 1

BIVARIATE NORMAL

n = 5 10000 simulations 1000 replications 5 iterations

mul=0 mu2=0 sigmal = l sigma2 = 1 ro = 0.7

Mean -0.021000 -0.019741 0.929537 0.925653 0.655325

SD 0.448826 0.438744 0.352741 0,345771 0.330464

Mean -0.020863 -0.019644 0.988923 0.984850 0.689007

SD 0.448893 0.438763 0.375278 0.367848 0.340013

Mean -0.021003 -0.019646 0.989047 0.984776 0.686186

SD 0.449051 0.438793 0.375146 0.367873 0.337448

Mean -0.020925 -0.019757 0.988979 0.984864 0.687068

SD 0.448873 0.438851 0.375570 0.368098 0.337839

Mean -0.020738 -0.019612 0.988741 0.984708 0.686768

SD 0.448984 0.439047 0.375188 0.367905 0.337750

Mear: -0.021048 -0.019722 0.988989 0.984861 0.686793

SD 0.419041 0.438764 0.375357 0.368018 0.337718

-
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TABLE 2

USING MULTIPLICATIVE CORRECTION FOR THE ANGLE

Sample size : 5 , True Parameter : 20 , Kappa = 20

Angle Sto . Dev . Kappa 1 Std . Dev . Kappa2 std.Dev .

Uncorrected Estimates 21.92 8. 116 26.09 17.52 26.94 18.29

Corrected Estimates 20.32 8.664 17.41 11.56 17.94 12.28

Corrected Tuice 19. 11 9. 116 20.28 13.69 20.99 14.37

Linear Correction 16.36 10.654 19.51 13.08 20.17 13.79

Confidence intervals

2.55 SS sos 956 97.5

Corrected Twice 1.688 3.025 19.34 33.86 36.6

Linear Correction 0.000 0.000 16.77 33.43 36.3

Sample size : 20 True Parameter : S , Kappa = 5

Angle Std . Dev . Kappal Std . Dev . Kappa2 Std . Dev .

Uncorrected Estimates 11.770 6.017 5.310 1.279 5.291 1.226

Corrected Estimates 9. 139 6.348 5.012 1.214 4.993 1. 163

Corrected Twice 7.947 6.597 5.024 1.218 5.006 1. 169

Linear Correction 5.784 7.256 4.961 1.868 5.004 1.265

Confidence intervals

2.55 55 sos 955 97.5

Corrected Twice 0.08285 0.2718 6.376 20.50 22.92

Linear Correction 0.00000 0.0000 1.773 19.74 22.84

20 ,Sample size : True Parameter = 20. Kappa : 20

Angle Std . Dev . Kappal std . Dev . Kappa2 Std . Dev .

Uncorrected Estimates 20. 19 4.097 21.23 5.119 21.15 4.904

Corrected Estimates 19.77 4. 195 20.06 4.837 19.98 4.635

Corrected Twice 19.71 4.223 20.11 4.851 20.04 4.654

Linear Correction 19.52 4.338 20.16 6.314 20.00 4.821

Confidence intervals

2.55 58 SOS 95 97.5

Corrected Twice 10.96 12.64 19.80 2 8 27.87

Linear Correction 10.80 12.32 19.67 26.33 27.68

Sample size : 5 ,5. True Parameter : 20 , Kappa = 5

Angle Std . Dev . Kappal Sid .Dev . Kappa2 Std .Dev .

Uncorrected Estimates 29.22 14.82 6.523 4.381 6.740 4.581

Corrected Estimates 24.62 15.95 4.342 2.902 4.476 3.083

Corrected Twice 20.71 16.325.018 3.464 5.202 3.639

Linear Correction 18.49 16. 16 4.842 3.302 5.011 3.482

Confidence intervals

2.55 51 508 956 97.5

Corrected Tuice 0. 1962 0.6265866 17.90 50.36 57.43

Linear Correction 0.0000 0.0004011 14.66 48.61 56.17

Sample size = 20 , True Parameter • 20 , Kappa = 5

Angle Std .Dev . Kappal Sto .Dev . Kappa2 Std .Dev .

Uncorrected Estimates 21.54 8.373 5.310 1.279 5.291 1.226

Corrected Estimates 19.65 8.969 5.012 1.214 4.993 1. 163

Corrected Twice 18.97 9.389 5.024 1.218 5.006 1. 169

Linear Correction 17.81 10.299 4.96 1 1.868 5.004 1.265

Confidence intervals

2.55 55 SOS 956 97.5

Corrected Twice 1.112 2.876 19.30 34.45 37. 12

Linear Correction 0.000 0.000 18.52 34.25 37. 12
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TABLE 3: a = 2 B = 1

FUNCTIONAL RELATIONSHIP

Sample size - 5 Sample size -

a b_std .Dev . Dsid.De

MI.F. 1.98 A 9A 1.02032 0.09189 1.99547 1.00055 0.09,75

Slid.Mev.0.11158 0.:8878 0.03863 0.062'39 0.30901 0.0.688

Uncorrected 2.01377 0.97090 0.09334 2.04155 0.91647 0.10109

Std . Dov.0.10783 0.17564 0.04019 0.05566 0.09510 0.01799

Corrected Once 1.99854 1.00120 0.20004 2.00542 0.98865 0.10061

Std .Dev.0.11137 0.18221 0.04242 0.06027 0.10419 0.01748

corrected twice 1.99426 1.00979 0.09958 1.99960 1.00029 0.00025

Std .Dev.0.11281 0.18521 0.04188 0.06170 0.10716 0.01724

Linear Correction 1.99083 1.01455 0.09973 1.99831 1.00282 0.10044

Std .Dev . 0.11547 0.19ů39 0.04202 0.06217 0.10815 0.01732

0 = 0.1

O = 0.3

MLE 1.80990 1.32309 0.26485

I Std.Dev . 3.18758 5.1 : 863 0.10950

Uncorrected 2.13501 0.72845 0.29520

Std .Dev.0.28726 0.45909 0.13687

corrected Once 2.06939 0.85938 0.32011

Std .Dov . 0.33261 0.54902 0.15849

Corrected Twice 2.02968 0.93864 0.31434

Std . Dev . 10.37227 0.62756 0.15627

Linear Correction 1.94891 1.06672 0.31732

Std . Dev . 1.61161 5.84560 0.15687

1.93024 1.13252 0.29255

0.63185 1.06141 0.04966

2.23287 0.53413 0.32352

0.12044 0.18987 0.06142

2.14881 0.70196 0.32183

0.14471 0.24019 0.06334

2.21198 0.77549 0.31594

0.15884 0.26922 0.06196

2.07814 0.84229 0.32037

0.17893 0.31108 0.06361

MLE 1.4838 1.9459 0.40760

1 Std.Dev. 18.4917 32.5957 0.16660

Uncorrected 2.2811 0.4378 0.47946

Std .Dev . 0.4025 0.6011 0.21989

corrected Once 2.2299 0.5417 0.53285

Std .Dev . 0.4800 0.7577 0.26366

Corrected Twice 2.1963 0.6102 0.52486

Std .Dev . 0.5440 0.8838 0.26271

Linear Correction 1.9099 0.8702 0.52921

Std .Dev . 5.7236 2.7234 0.26260

2.03963 0.8823 0.47362

6.57566 14.5629 0.07734

2.35761 0.2854 0.53149

0.16119 0.2263 0.09648

2.30134 0.3978 0.53822

0.19732 0.3121 0.00159

2.27339 0.4535 0.53221

0.21830 0.3582 0.10164

2.23999 0.5182 0.53648

0.30512 0.4264 0.00122

O = 0.5

0

O = 1.0

MLE 2.3755 1.4762 0.73618

Std .Dev . 19.9005 55.9057 0.30012

Uncorrected 2.4190 0.1374 0.87690

Std .Dev . 0.6312 0.6792 0.39050

corrected Once 2.4017 0.1678 0.98398

Std .Dev . 0.7367 0.8874 0.47236

Corrected Twice 2.3911 0.1867 0.97236

Std .Dev . 0.8322 1.0663 0.47299

Linear correction 2.31262.3126 0.0173 0.97908

Std .Dev . 6.3744 11.6193 0.47204

2.23275 -0.0011 0.89460

11.81564 36.7087 0.14062

2.46052 0.0823 1.00262

0.25924 0.2448 0.37349

2.44374 0.1166 1.02264

0.29379 0.3529 0.18170

2.43486 0.1341 1.01557

0.31635 0.4126 0.18200

2.42273 0.1597 1.02004

0.47741 0.5131 0.18116

MLE 5.500

Sts.Dev . 181.SOS

incorrected 2.462

Std .Dov . 1.135

Corrected Once 2.458

Std .Dev . 1.280

Corrected Twice 2.457

Std .Dev . 1.413

Linear Correction 1.959

Std .Dev . 48.055

-1.586 1.39434

9.599 0.57535

0.042 1.66592

0.690 0.74930
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Sensitivity of Component Reliability from Fatigue Life

Computations

Donald M. Neal William T. Matthews Trevor D. Rudalevige Mark G. Vangel

U.S. Army Materials Technology Laboratory

SLCMT-MRS -MM Arsenal St.

Watertown, Massachusetts 02172-0001

Abstract

Structures which fail due to cyclic loading are said to fail in fatigue.

Damage accumulation due to fatigue is the primary factor which limits

the useful life of aircraft.

Designers of new aircraft obtain information with which to estimate

fatigue life by extensive testing of small specimens, in addition to very

limited testing of actual structural components. Based on this data, an

estimate is made of the lifetime for which very high (.999999) reliability is

assured . This high reliability is currently a requirement in the construction

of army helicopters and fixed wing aircraft.

There is little agreement among designers on how fatigue life should

be determined, as well as insufficient understanding of the uncertainties

involved in high reliability computations.

This presentation reviews the fatigue life determination procedures for

several manufacturers and points out some ways in which these methods

are deficient in obtaining high reliability.

The purpose in introducing this clinical paper is to obtain statistical

procedures that will provide highly reliable fatigue loaded structures such

as the Army helicopter.
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INTRODUCTION

Methodology to substantiate helicopter fatigue life has received considerable attention dur.

ing the last decade. This interest was stimulated by the substantial variability in the results

from the study on the American Helicopter Society pitch link problem. Recently, further

interest has resulted from the U.S. Army's introductionof a structural fatigue reliability crite

rion for rotorcraft. This criterion has been interpreted? as a requirement for a component

lifetime estimate to have a reliability of 0.999999.

Helicopter safe life reliability methodology has recently been the subject of several papers 3.6

and an American Helicopter Society subcommittee round robin .

The authors8 have investigated the sensitivity of high reliability estimates from simple

stress -strength statistical model computations. Results showed substantial variability in reliabil

ity estimates even for almost undetectable differences in the assumed probability density func

tions (PDFs) representing the stress and strength data.

In this report, the uncertainties in determining high reliability for helicopter compo

nent safe life design are studied by introducing a simulation process to identify the effects

of a small amount of variability in the design variables for determining the lifetime esti

mate. The reliability values are determined for a generic uniaxial steel structure loaded

in tension similar to a helicopter pitch link component by applying Miner's Linear

Damage Rule. The six component fatigue test values were obtained from Arden ' where

the maximum applied stress (S) on the component is tabulated with respect to cycles to

failure (N) . In order to obtain an SN curve to represent the component fatigue test

results, a separate regression analysis was applied to a larger set of coupon tests of a

steel for which the results are tabulated in Bury . The assumed spectrum load used in

determining the lifetime estimate was obtained from Berens. Note that only the six com

ponent fatigue test values are from Reference 1 and the remaining test values are from

References 10 and 11 .

10

THE COUPON TEST SN CURVE

This section describes the procedure for determining an SN regression curve to represent
coupon fatigue test data , as shown in Figure 1. The assumed functional representation

of the data is

10

S = S. + (Su - Sole -B (10810 N )' ( 1 )

where S is the maximum applied stress and N is the number of cycles required for the

coupon to fail. So is the coupon endurance limit representing the case when N - 0

and Sy represents the static strength of the coupon; i.e. , the strength for N = 1. The

shape of the SN curve is determined by B and y. So , Sui B, and y were determined from

application of an IMSL computer code 13 for solving nonlinear regression problems. The

resultant SN curve is shown in Figure 1 (solid line) with the individual coupon fatigue

test values.
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Figure 1. Mean coupon SN curve /fatigue data.

A review of the literature on the determination of component fatigue life showed that

various functional representations similar to Equation 1 have been applied where N is the

independent variable and S is the dependent ( response) variable. This is counter to the con

ventional functional representation of test data where S would be the independent variable

in the analysis since a fixed cyclic load (stress) value is applied and a resultant (dependent)

number of cycles to failure is recorded. In order to obtain N as the dependent variable,

Equation 1 can be inverted resulting in the following:

logio N = e {logi – log ((S – Sc )/(S. - So ))] – log B } / y . (2)

Although Equation 2 is recommended in determining the functional representation of the

data, Equation 1 was applied in this study since it is commonly used in engineering fatigue

analysis, and the qualitative measure of the relative uncertainties in determining the reliabil

ity at a specified lifetime are not affected by the SN curve assumption.

In order to simplify the analysis, the fatigue data from Reference 10 was normalized

with respect to the estimated So value determined from the initial application of regres

sion analysis. Another SN curve was then obtained from the normalized data, where ß,

y, and Su were obtained for a known So of 1. The resultant SN(N) curve is shown in

Figure 2. The figure also shows the regression results SN(S) from the application of

Equation 2.
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Figure 2. Regression curves from coupon test results .

THE COMPONENT SN CURVE

108 cycles.

Usually the shape of the component SN curve is obtained from a prior coupon SN(N)

curve, as shown in Figure 2. The location (ordinate position) of the curve is determined

from extrapolating the individual component values, as shown in Figure 3, to N =

The original component values in Reference 1 have been rescaled so that they have scales

similar to the S values in Figure 2. The extrapolation process involves vertically positioning

the coupon SN curve (see Figure 3) to agree with the individual component values and then

extending the curves to N = 108 cycles. Si values are obtained for N = '108 and the compo

nent curves mean stress position at N is

Sm = Sinn , (3 )

where n is the number of component test results. The solid line in Figure 4 shows the repre

sentative component SNC curve and component test data. Since there are usually only six

component test results available, because of the costs in component testing, the above proce

dure is often applied. Using the more extensive, less expensive coupon test results to deter

mine the shape of the SN curve assumes similar material, test, and environment for both

coupon and component.
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SPECTRUM LOAD

The normalized spectrum loading used in the fatigue life analysis is shown in Figure 5a. The

loading was obtained from a rainflow count of a modified combat history described in Refer

ence 11. The spectrum was determined by the number of loads within discrete range incre

ments . The spectrum is simplified to five loads {Lil? by expanding the size of the range

increments and including the appropriate cycle count {n; } within each expanded range .

The normalization procedure involved dividing each Lị by the smallest damaging load Sc (endur

ance limit ). This simplification was adequate for identifying the spectrum effects in this study.

MINER'S RULE

In order to obtain the lifetime estimate from the simplified fatigue load (L) and the normal

ized material strength (S) data shown in Figures 5a and 5b, the following linear damage rule is

applied where

5

DF =

NO

(4)

is the damage fraction for each pass or repetition of the spectrum . This representation of opera

tion hours is described in Reference 10. The n(i)s are the number of cycles corresponding to

the applied load L( i) , as shown in Figure 5a. The N(i) values are obtained from the SN curve,

as shown in Figure 5b, where the corresponding Si values are identified in the figure by the L(i)

values obtained from the spectrum loads in Figure 5a. In addition, the rule requires that

Np · DF = 1 (5)

in order to determine the maximum number of passes (NP) that can occur prior to the

component failure .
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Figure 5b. Component mean SN curve.
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SIMULATION PROCEDURES IN DETERMINING COMPONENT RELIABILITY

Bootstrap Method Applied to Coupon SN Curve Computation

The Bootstrap Method, 14 a simulation process, was introduced in the fatigue life reli

ability analysis in order to examine the effects of uncertainties used in determining the cou

pon SN curve and the resultant component reliability. Only one reliability estimate can be

obtained from a single set of data; however, even with all conditions the same, one would

expect to determine a different reliability estimate from another set of data. The Boot

strap Method provides a technique for estimating the variability among random sets of

data generated under equivalent conditions using data from only a single random sample.

The idea is to create arbitrarily many new datasets by sampling with replacement from the

original data. If there are n values in the original data, then a new dataset is created by

selecting n values from among these observed data, allowing data values to be selected

more than once. The probability distribution of the reliability calculated from these

datasets, which are created by taking random samples from the single observed dataset,

provides an estimate of the actual probability distribution of reliability which could, in

principle, be determined from future datasets.

The material fatigue testing involves obtaining the number of cycles to failure for a

specified applied load (S) shown as the individual data points in Figure 1. The Bootstrap

Method involvesselecting a random set of 9 valuesindependently with replacement from the
set of cycles to failure values {N ;(i)} \ -, for each ; applied stress from {S;! 1?, as shown in

Figure i and obtained from Reference 12. The result is a new set {N ; ()} for each of the S;
values. . The new set is called the Bootstrap sample where some values' can be repeated once,

twice, or more times. The new set is then used in the regression procedures described in the

Coupon Test SN Curve Section in order to obtain a new SN curve (S in Equation 1 ) .

In Figure A1 (see Appendix), the results of applying the Bootstrap show a 90 % confi

dence band on the original SN(N) curve. Results in Figure A2 show the individual SN(N)

curves obtained for the Bootstrap samples. The results from Figures A1 and A2 indicate that

there is more variability for large or small N values than for the central region of the curve

which is consistent with determining confidence bands on regression curves .

For calculating the effects of coupon SN curve uncertainties, a damage fraction (DF* )

value is computed by applying the linear damage rule. The above procedure is repeated MB

times, so that a set of (DF : (1)} MB are obtained. The component reliability R can then be

obtained by counting the number (NB) times Np · DF* < 1 , k = 1,2, ... ,MB , where Np, the

number of passes, is specified . The computed component reliability R including uncertainties

in the coupon testing procedure is written as

R = NB / MB , (6)

where MB is the number of repeated applications of the Bootstrap procedure .

Reliability Estimates from SN Component Curve Simulations

The following simulation procedure was applied in order to identify the effects of

uncertainties in the location of the component SNC curves on the reliability estimates.

* Represents simulation results.
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The uncertainties are assumed because of the potential differences in loading, material, sur

face conditions, and geometry between the coupon and component. Also contributing to

these uncertainties are: the extrapolation of the component fatigue data in determining the

Si's, as shown in Figure 3 , and the availability of only six values in computing Sm (mean of

the curve ), as shown in Figure 4. Examination of potential inaccuracies in the reliability com

putations due to assuming that the component and coupon SN curve shapes are similar was

not included in the simulation process. Introducing variability in the curve's location was suffi

cient for showing sensitivity in the reliability computation. In the simulation process, a ran

dom set of MS . values were obtained. These values are normally distributed about the

Sm value in Figure 4 from the following:

S : (i) = Sm (1 + Vs. Zi), i = 1,2, ... ,M , (7)

where the Zi's are values randomly selected from a standard normal distribution with a mean

of 0 and a variance of 1. The Vs value is the coefficient of variation (CV ) and the mean is

Sm In Figure A3, a representative normally distributed set of Son values are shown for Vs

= 0.01 and Vs = 0.02. The newly obtained mean values ( ) are now used in vertical posi

tioning of the component SN curve, as shown in Figure 4, so that M SN curves can be

obtained from Equation 1 by the following:

si = S (Sm , Su,B,y) + A Pi , i = 1 , 2, ... , M , (8)

where A Pi = sin (i) - Sm. M damage fraction values (DF ; ) are obtained from applying the

procedures described in the Miner's Rule Section and the schematics shown in Figures 5a and

Sb using the newly available S ; values.

From Miner's Rule, compute Np · DF1, i = 1 , 2, ... , M and record the number (Ns) of

times Np · DF ; < 1 for a given Np value, where Np represents the specified number of
passes. The component reliability R can be written as

iܙ

R = Ns / M . (9)

Note that in order to obtain 0.999999 reliability, M = 1 x 100 simulations would be required.

Load Uncertainties Effect On Reliability Computations

15

A simulation procedure similar to that described in the previous section was applied in

order to identify the sensitivity in computing component reliability by introducing uncertainties

in the assumed spectrum loads (see Figure 5a) . There exist potential errors involved in assum

ing a specific load spectrum. They are the results of: an inaccurate measuring device, the

location of the device, and assuming load patterns determined from short periods of data

recording which differ from the actual loads the component would be subject to during its

operational lifetime.

Application of the simulation process involved only modeling uncertainties in the L val.

ues, with n(i)s remaining constant for a given load. Introducing the same amount of variabil

ity in each {L(i) } | values was sufficient to show the sensitivity of the reliability estimates
from uncertainties in the loading.
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Initially, the simulation involves obtaining M1 sets where the juh set { L ; 0)) {- , is deter
mined from the following:

Li) V 3Li)( 1 + VLZ),i = 1,2,...,5

(1
0
)

where j = 1,2, ...,Mi and Zj is a random value from a standard normal N(0,1 ) distribution.

Vl is the coefficient of variation representing an assumed variability in load L(i) .

For the ith simulation , the original five loads {L (i)}} , as shown in Figure 5a, are modified

resulting in a new set {LI(1)} from Equation 10. The distribution of Lj (1) for all j values,
for example, would be similar to that for Sm, as shown in Figure A3.

In the simulation process, the jeh modified set L ;, and its associated N ;, determines a dam

age fraction value DF;, as described in the Miner's Rule Section and Figures Sa and 5b. In

order to obtain component reliability values from the load variability, Miner's Rule is then

applied by recording the number (NL) of times Np . DF : < 1 for j = 1,2, ...Mi . The compo
nent reliability R is then written as

R = NL / Mi .

(1
1
)

Reliability Sensitivity from Uncertainties in Miner's Rule

A simulation procedure similar to those in the previous two sections is applied to the

Miner's Rule relationship in Equation 5. This was done in order to examine the effects of a

possible error in assuming the component will fail when Np : DF = 1 (see Equation 5). In

order to identify the effects of this uncertainty in computing component reliability R, the fol

lowing simulation process was performed:

Initially, the value 1 in Equation 5 is replaced by a set of random numbers {CR; } M2

resulting in Np.DF * < CRi , where

CR ; = 1 + VM.Zi, i = 1,2, ...,M2 ( 12)

and VM and Z¡ are the assumed coefficient of variation and standard normal as previously

defined in the above two sections.

The reliability R is determined from recording the number (NZ) of times that

Np : DF * < CRi, ( 13)

and then defining

R = Nz M2 ( 14)

where M2 is the number of simulations.
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WORKING SN CURVE

The adjustment of the mean component SNC curve from a limited amount of component

test data results in a certain amount of variability in estimating the location of the curve. In

order to account for this variability , and in some instances other uncertainties in the fatigue

analysis process, a component SNC curve reduction factor is often introduced which results in

a new working SNw curve, as shown in Figure A4. There is no standard method for obtain
16

ing a working curve in the helicopter industry. The working curve in Figure A4 was

obtained by a uniform reduction in all Sc values. This approach maintains the same curve

shape as in the original SNC curve ; i.e. , the coupon SN curve shape. This approach is consis

tent with the use of the coupon curve shape in the extrapolation process for each component

data value ( see Figure 3) by which the original component curve Sm value ( see Figure 4) is

obtained. In Figure 3 , a schematic of this uniformity is shown where for N = 1 and

N = 108 show an equal amount of assumed dispersion in the S; values.

Reduction Factors for Working Curves

Some of the reduction factors commonly used by the helicopter manufacturers are dis

cussed in References 15 and 16. In some cases a multiplication factor is used to obtain work

ing curve values, Sw ; i.e. ,

Sa = Sc - P · Son

(1
5
)

where Sc represents the strength values from the component curve, SNc for various P values.

Sm was previously defined in Equation 3.

Another reduction procedure involves defining

Sw = Sc - 3 · SD · ( 16)

where the standard deviation (SD) is often determined from an assumed standard coefficient

of variation for a particular material to represent the Si values shown in Figure 3 and in

Equation 3. A typical value for the coefficient of variation for steel is 7%. The SD value

is then written as SD = 0.07 · Sm . One other method involves determining SD from the

actual Sí values; i.e., SD = SD

Equation 16.

The working curve was introduced in this report in order to evaluate its capability to

include the possible variability in the reliability estimates from the simulation results.

RESULTS AND DISCUSSIONS

In this section, results from the simulation procedures are shown in both tabulated and

graphical form . Variability is introduced in combination, as well as individually, for all of the

following four factors : the spectrum load, the mean SN Curve, Miner's Rule, and the Boot

strap process.
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In Table 1 all four factors were varied for a range of CV values (% variability) from 1%

to 5%, except for the Bootstrap simulation where the variability is obtained from coupon test

results. The component reliability results are tabulated as a function of the corresponding

CV values assumed in the simulation procedures. The results wereobtained by systematically ran

domly selecting values from each of the four factors so that 1 x 10 ° distinct factor combinations

are obtained for computing the damage fraction (DF) in the Miner's Rule Section. The reliabil

ity (R )isthen obtained from thesumof allthe times Np · DF * < 1 divided by 1 x 10%.

Table 1. RELIABILITY VERSUS FACTOR VARIABILITY : UFETIME = 3425

% Variability *

1.0

Reliability

0.999999

2.0 0.989676

3.0 0.937250

4.0 0.872101

5.0 0.816061

* Simultaneous variability assumed for the following: spectrumload, mean curve ,
Miner's Rule = factor (1) and the Bootstrap process on defining mean curve are

applied.

In order to apply the simulation procedures, a 1% variability was introduced for each of

the factors and the number of passes (Np 3425) was selected in order to obtain a baseline

reliability value of 0.999999. This value was selected because of the helicopter industry's inter

est in obtaining high component reliability of 0.999999.

The results in Table 1 show a substantial instability when comparing the reliability estimate

of 0.999999 versus 0.989676 for the respective 1% and 2% variabilities. The implication of these

results is that in one case one in a million failures could occur compared to 10324 failures in a

million in the other. This substantial difference for such a small increase in the inherent variabil

ity in the assumed fatigue life models shows a severe sensitivity in computing high reliability

when there is a small degree of uncertainty in determining spectrum loads, SN curves, and assum

ing a failure requirement from Miner's Rule. The results from increasing the variability from 3%

to 5% show a corresponding reduction in reliability values. The R = 0.816061 for 5% variability

is a very large reduction from the original 0.999999 for 1% variability. The CV values shown in

Table 1 represent a range of potential parameter uncertainties in the fatigue life model.

In Table 2, reliability values are tabulated as a function of the combined and individual vari

ability of the four factors. This was done in order to examine the effects of the individual factor

variability on computing component reliability. The 1% variability was applied to all factors result

ing in R = 0.999999 when Np is equal to 3425 (as in Table 1 at 1% ). The 2% variability was

applied to each factor individually with 1% variability for the other two factors. The Bootstrap

process was applied in all of the cases. Introducing a 2% CV in the spectrum load (SPL) shows

a substantial reduction in the reliability estimate from 0.999999 to 0.996404 . The 2% variability

in the component SNC curve (MSN) shows a smaller reduction of 0.999999 to 0.999440 indicating

that, based upon the particular spectrum considered, the spectrum load uncertainties could result

in greater instability in the reliability values. Small variations in the Miner's Rule assumption

(see Equation 13) do not appear to be as critical in the reliability computations. Increasing the

variability from 3% to 5% shows a continued decrease in reliability estimates except for the case

of Miner's Rule variability which has a very small reduction. The 5% variability on the spectrum

load shows a value R = 0.862469 which is only 5.7% greater than the case where all factors were var

ied simultaneously, as shown in Table 1 for 5% variability.
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Table 2. RELIABILITY VERSUS INDIVIDUAL FACTOR VARIABILITY : UFETIME = 3425

% Variability ( P )

on Individual

Factors *

Reliability

MSNSPL MA

1.0 0.999999 0.999999 0.999999

2.0 0.996404 0.999440 0.999998

3.0 0.967356 0.992375

4.0 0.912587 0.972164 0.999997

5.0 0.862469 0.941979 0.999994

*1%variability is applied to all factorsexcept for individual increase in factor variability (P )

in first column. Bootstrap process also included.

In Table 3, reliabilities are obtained for the individual factors, spectrum load (SPL) , and

location component SN curve (MSN). In order to obtain the R = 0.999999 value for 1%

variability on each of the factors, the number of passes (Np) was 3700 for SPL and 4425 for

MSN. The lower Np value for SPL is consistent with the results in Table 2 since the R val

ues for SPL were lower than those for MSN when Np was 3425. In addition, it is obvious

that a lower number of cycles of operation would usually increase the reliability value. “ The

Bootstrap Method application resulted in a value of R = 0.999977 when combined with a 1%

variability in MSN. This indicates that the method is not introducing any substantial variabil

ity compared to the SPL and MSN contribution in determining R. This is expected because

of the small amount of variability in the SN curves, as shown in Figures A1 and A2. In addi

tion , the range of cycle values contributing the most in determining the damage fraction has

the least amount of variability.

Table 3. RELIABILITY VERSUS INDIVIDUAL FACTOR VARIABILITY / LIFETIME

% Variability Reliability ( R )

SPL* MSNT

1.0 0.999999 0.999999

2.5 0.969376 0.965875

5.0 0.828010 0.818789

* 3700 Lifetime value

+4425 Lifetime value

NOTE: Application of Bootstrap process simulation resulted in R = 0.999977

with 1% variability for MSN.

Table 4 shows the reliability results from reducing the Sm value, shown in Figure 4 and Equa

tion 3, by the tabulated percentage in order to examine the possible material mean strength loss

from environmental effects such as corrosion . New values equal ( 1 - p /100 )Sm where p is the

tabulated percent reduction factor. In the case where p = 0, R = 0.999999 was obtained vary

ing the SNC curve by 1% with Np = 4425 which is in agreement with the result in Table 3 .

This variability in the SNC curve (MSN) was maintained for each of the reduced Sm values.

When p = 1, then 0.995m was used in the simulation process to obtain a reliability value equal

to 0.999852 compared to 0.999999 for no reduction in Sm. This result is not as substantial a

reduction in R as the case where the S, value is reduced by 5% and R = 0.324206 . The over

all results indicate that loads which previously did not increase the damage fraction are now signif

icant contributors in reducing the component reliability. If there is a potential for material

strength loss due to corrosion, for example, then high reliability estimates are substantially

reduced by small mean strength reduction.
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Table 4. RELIABILITY VERSUS PERCENT REDUCTION MSN :

LIFETIME = 4425

% Reduction

0.0

1.0

2.0

Reliability

0.999999

0.999852

0.995542

0.946600

0.720650

0.324206

3.0

4.0

5.0

NOTE : 1% variability on MSN

Table SA shows the deterministic fatigue lifetime values obtained from the application

of various working curves described in the Working SN Curve Section. This computation

was introduced to evaluate the curves relative effectiveness in accounting for the uncertain

ties in estimating the component SNC curve. This evaluation involves comparing results

from Tables SA and 5B. In Table 5A, P = 0.5 which is the reduction from Sc in Equa

tion 15. This shows a lifetime of 0.325, which is a very conservative estimate compared to

the 6150 passes obtained from using the original component curve without a reduction.

The least conservative lifetime estimate is 2000 which was obtained from reducing the com

ponent curves by three SDs. SD was obtained by using the S; values in Figure 3 and

Equation 3. This estimate was less conservative than the 1225 lifetime value obtained

using an assumed CV = 0.07. The extrapolation process shown in Figure 3 may account

for the relatively low SD estimate for the case when the life value is 2000. The other

reduction factors result in a predictable decrease in the life estimate with an increase in

the reduction percent P.

Table 5A. UFETIME VALUES FROM APPUCATION OF

WORKING CURVES

Working Curve

(Adjustment on S) Litetime Value

0.50 * 0.325

0.44 48

0.30 500

0.25 850

0.20 1355

s / 3edf 1225

s / 3ed) 2000

NAO 6150

* Percent reduction at ( P ) on S: where (1-P ) S is location of working curve

and S is mean component strength at endurance limit.

Standard deviation determinedfrom assuming 7 % coefficient of

variation for S.

ONA: No adjustment of SN curve .
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Table 5B . UFETIME VALUES WITH 0.999999 RELIABILITY

VERSUS VARIABILITY ON MSN AND SPL

Lifetime Value% Variability

1.0 3425

2.0 1850

3.0 875

4.0 350

5.0 50

In Table 5B, simultaneous variability on the component curve (MSN) and the spectrum

load (SPL) for 0.999999 reliability shows a reduction in the lifetime value with increasing vari

ability, which is consistent with prior results. By comparing results from Tables 5A and SB

the effectiveness of the working curve in obtaining 0.999999 reliability can be identified .

That is, for example, a 1% variability shows 3425 indicating that any of the working curves

could provide the required reliability although the curve obtained from the three SD reduc

tions would be the least conservative acceptable method. Introducing 2% variability shows a

life estimate of 1850 which, in this case, requires using the three SD reduction procedure

where SD is obtained from assuming a 0.07 CV value. If the variability is assumed to be

5% , then a lifetime value of 50 is obtained which would require a working curve reduction

factor of 0.44 in order to provide the 0.999999 reliability. If a 5% variability in the loading

and SN curve can exist, then most of the working curve procedure would be an undesirable

method for obtaining high reliability.

Using Equation 7, the results of introducing a 1 % uncertainty in the positioning of the

component curve is shown in Figure 6 as a probability density function for the lifetime esti

mate (NP 1 /DF) determined from Equation 4. A 7.3% coefficient of variation was

obtained with a mean life of 6194. The inner range, Np 3 · SD, is 4964 to 7689 when

the function is assumed to be log- normal; this is a substantial variability in the life estimate

for a very small amount of variability in the location of the SN curve.

In Figure 7, a density function for the life estimate was obtained from an assumed 5%

variability using the same procedures as described above. In this case, the CV was 37.5%

with a mean equal to 6621. The inner three SD range is 2065 to 18587 for the lifetime

value estimates. This exceptionally large dispersion in the life estimates for a moderate

amount of variability (5%) in the location of the mean curve indicates instability in estimating

lifetime values. It is noted that by taking the log of the data, a normal function was

obtained indicating that the fatigue estimate can be represented by a log-normal distribution.

In Figure 8, a computation similar to that described in Figure 6 was performed in order

to determine the difference in life values between 1% and 0.0001 % points corresponding to

reliabilities of 0.99 and 0.999999, respectively. A 1% variability in the spectrum was assumed

in the computation of Np. A CV of 10.8 % was obtained with a mean of 6203. Results

show a life of 4795 for the lower reliability of 0.99 and 3689 for the higher reliability of

0.999999 showing a 23 % decrease in the lifetime estimate.

40



1
.
8

1 % Variability on MSN Curve
1
.
6

F
r
e
q
u
e
n
c
y

1
.
4

1
.
2

Mean - 6194

S.D. 451.6

1
.
0

4000 5000 6000 7000 8000 9000

Litotimo

Figure 6. Component fatigue life probability density function.

1
.
1
2

5% Variability on MSN Curve

1
.
1
0

1
.
0
8

F
r
e
q
u
e
n
c
y

1
.
0
6

1
.
0
4

Mean = 6621

S.D. - 2480

1
.
0
2

1
.
0
0

5000 10000 15000 20000 25000

Litovimo

Figure 7. Component fatigue life prability density function .
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Figure 8. Component fatigue life probability density function and reliability.

Figure 9, where a 5% variability in the spectrum load was introduced, shows a log-normal

distribution of lifetime values similar to that in Figure 7 for the SNC curve variability. The

inner range of 1075 to 31956 again shows the substantial variability in the life estimate indicat

ing a serious instability in the fatigue life computation approach when even small uncertain

ties exist in assuming a specified spectrum load. Load spectrum and fatigye strength CVs in
the range of 7% to 13% are being considered by the helicopter industry. A comparison

of the reliabilities of 0.99 and 0.999999 for the respective lifetimes showed 1702 and 448

passes which is a 74% decrease in lifetime. This is a much greater percent decrease than

that of the 1% variability case in Figure 8. This assumed variability is probably more realistic

than that of 1% which was previously assumed.

Comparison of these figures show uncertainties in safe life fatigue design in terms of

changes in design lifetime for a fixed reliability, whereas the results in Tables 1 through 4

show variability in terms of changes in reliability for fixed lifetimes.

Although only a simple case has been considered, the modeling and simulation processes

are capable of dealing with more complex safe life fatigue designs. Such designs could

include more complex load spectra and additional parameters in the fatigue life model. The

value of any high reliability based analyses, whether simple or complex, appears to be in

question in view of the very substantial sensitivity of the reliability and lifetime results from

this study.
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Figure 9. Component fatigue life probability density function and reliability.

CONCLUSIONS

A small amount of variability (uncertainty ) in load or strength in the safe life fatigue

model can result in a substantial reduction in high reliability values for a specified lifetime of

a component. These uncertainties can also result in very unstable lifetime estimates for a

given reliability. In contrast, the small variations assumed in the Miner's Rule criterion, and

the variability in the SN coupon curve determination, caused a minimal amount of change in

the reliability estimates.

A small percent reduction in the strength values in the component SN curve; for exam

ple, corrosion effects, can result in a large decrease in the reliability values.

Introducing working curves in the fatigue life computation is only effective when there is

a small amount of variability in the SN component curve or when the reduction factor was

very large.

In view of the sensitivity of the safe life reliability criterion of 0.999999 to the modest

variability considered in this analysis, it appears that the 0.999999 reliability is ineffective as a

criterion to ensure safety for a specified service life. In summary, this report has identified

a potential problem associated with obtaining a meaningful quantitative measure of reliabil

ity for a fatigue loaded component.
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APPENDIX
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Figure A1 . Confidence interval on mean coupon SN curve obtained from fatigue data.
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Figure A2. Regression SN curves from Bootstrapping (N -independent variable).
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A Randomization Approach

to an Analysis of Ballistic Data

Malcolm S. Taylor

USArmy Ballistic Research Laboratory

Aberdeen Proving Ground, Maryland 21005-5066

Abstract

Randomization procedures offer a viable approach to the analysis of ballistic data over a

wide class of problems. Distribution assumptions may be avoided and, of even greater

importance, random samples of data are not required. Small sample sizes, while never

welcome, may be accommodated as well.

Introduction

This is an applications paper that details a problem that is representative in many respects

of those engendered by ballistic data. Sample sizes are woefully small due to the cost of data

collection and / or scarcity of testing materiel. The samples themselves are usually nonrandom

and distribution assumptions are tentative. Historical data, when available, cannot be easily

amalgamated to assist in inference.

An approach known generically as randomization, suggested by Fisher [2] and extended to

nonrandom samples by Pitman (5) holds particular appeal, since distribution assumptions and

random sample requirements may be relaxed. Edgington ( 1 ) asserts that " Few experiments in

biology, education, medicine, psychology, or any other field use randomly selected subjects,

and those that do usually concern populations so specific as to be of little interest. ... The

population of interest to the experimenter is likely to be one that cannot be sampled

randomly ." Edgington's words ring true in the example to follow .

The problem : Stability of a kinetic energy penetrator

Kinetic energy penetrator technology has undergone a metamorphosis from the days

when solid balls were launched from cannons or catapults against sailing ships and forts. The

most obvious change has been in the overall configuration of the projectile. The ratio of the

projectile's length to its diameter has gone from one to over twenty, as illustrated in Figure 1 .

This change has taken place largely in response to the changing targets which kinetic energy

penetrators must confront.
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Figure 1. KE Penetrator Evolvement

The changes in tank ammunition design have followed the trend depicted in Figure 2.

The armor piercing, discarding sabot ammunition (Fig. 2(b)) has a penetrator whose outer

diameter is less than the inner bore diameter of the gun tube. The difference is compensated

for by a sabot, which carries the penetrator down the gun tube and is then discarded. The

long rod penetrator ( Fig. 2(c)) is essentially a long rod of exceedingly dense material, typically

tungsten alloy or depleted uranium , over twice as dense as steel. In addition to a discarding

sabot, the penetrator has fins which increase the stability of the rod in flight.

(b)

(c)

Figure 2. Armor Piercing Ammunition

Table 1 contains measurements of spin rates of long rod penetrators taken by Rapacki (6) .

The natural frequency of the penetrators is about 120 cycles per second (hz) . Spin rates close

to this value amplify the initial manufacturing imperfections and increase in -flight bending.
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To avoid this, the fins are reconfigured to reduce the spin rate to an appropriate level below

120 hz.

Table 1. Comparison of Two Fin Redesigns with a Control

design - 0 redesign - 1 redesign - 2

163.6

109.0

218.7

143.2

169.5

97.5

122.2

108.2

78.1

76.7

88.5

If the spin rate is too high, as in design-0 (or control) , the penetrator may become bowed

in flight - sometimes to the point of breaking - and become unstable. Conversely, if the spin

rate is too low, the penetrator may again become unstable. An optimal spin rate cannot be

determined analytically, and resources are not adequate for extensive empirical study.

An engineering consideration with important implications for analysis of these data is the

following: As the penetrator becomes more stable, the variance of the measured spin rates

will decrease. For analysis of the data in Table 1 , this establishes a multi-sample situation

with possible heterogeneity of variance between samples, and where variance stabilizing

transformations are inappropriate since both difference in location and dispersion is relevant

to inference about the penetrator design. This effectively removes from consideration

classical analysis of variance procedures for analysis of these data.

240

Х

210

initial design

180

X
X

150

redesign 1

hz 120

Х

90

60_
redesign 2

30

Figure 3. Spin Rate Data
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A randomization approach to the data analysis

Figure 3 suggests that the fin reconfigurations had the intended effect - reducing the spin

rate and increasing stability. To pursue quantitative support for this observation we will

appeal to a randomization argument, choosing as a null hypothesis that the two fin redesigns

are ineffectual and provide no improvement over the initial design. If the null hypothesis is

true, then the categorical labels: design- 0, redesign - 1, and redesign - 2, are completely

arbitrary, and the eleven observations could be randomly assigned to the columns of Table 1

( retaining the same number of observations per column) without any attendant statistical

consequences."

We will consider restricted null hypotheses in which redesign- 1 is compared to control and

then redesign - 2 is compared to control, rather than an omnibus test. This focuses attention

on the comparisons of interest while easing the overall computational burden. Figure 4

represents the eCz =56 data configurations that are produced by systematic reassignment of

datum values within columns one and two of Table 1._For each resultant configuration, the

difference in location between control and redesign- 1 , xo - Xq , is plotted on the x -axis and the

variance ratio control/redesign- 1 , so/sį , is plotted on the y -axis.

So

S1

2

-80 -60 -40 -20 0 20 40 60 80

X.
O

Figure 4. Data Display after Randomization

1. Some authors assume random assignment of homogeneous experimental units to control and

treatment groups. We are necessarily in violation of this assumption, and arguably are detailing a

permutation test rather than a randomization test. In either case, the procedure remains invariant.
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To determine an observed significance level of the data in Table 1 relative to the data sets

generated by reassignment, the point (X.- Xı,so /s,) calculated from the data in columns one

and two of Table 1 can be ranked against the remaining fifty -five points. We will specify a

naive procedure for ranking the ordered pairs (*;, y;) which will sufficefor these data, and

which retains the structure of nonparametric rank tests (Lehmann (3] ) . We first rank the x

coordinates, assigning to the largest value the rank 1, the second largest rank 2, and so on .

We rank the y -coordinates in the same way. Finally, we sum the ranks assigned to the x- and

y -coordinates. In case of ties, the ranks are averaged.

Using this procedure, the observed data (51.50, 3.24 ) = (2, 4) having combined rank six, is

tied with two other pairs and is assigned an overall rank of three. The observed significance

level is then 3/56 = .054

We knew beforehand the two restricted hypotheses of interest, and as such might invoke a

planned comparisons argument. But, we are testing two of three possible comparisons and so

a multiple comparisons procedure is a more conservative approach. Experimentwise error

rate (Miller [4] ) introduced through multiple comparisons will be controlled with the aid of

Fisher's modified least significant difference procedure (Winer [7] ) which has the desirable

properties of being both nonparametric and applicable to unequal sample sizes.

Suppose we specify an experimentwise error rate of a = .05 for comparison of the two

fin redesigns with the control. Adopting the obvious notation c, di, d2 for control and

redesign, we are interested in the comparisons c- d1 and c -d2. The observed significance level

is determined for each of the pairwise comparisons following the randomization procedure

outlined above . Each p -value is then multiplied by two ( the number of comparisons) in

accordance with Fisher's procedure to obtain an adjusted p-value. The p-values and adjusted

p - values for comparison of c-d1 and c-d2 are given in Table 2.

Table 2. Multiple Comparison of Control and Two Treatments

c -d2comparison

p -value

adjusted

p -value

C-d1

.054

.107

.018

.036

The adjusted p -value, .036, corresponding to comparison of control and redesign-2, falls

well below the a ' = .05 value chosen for experimentwise error rate, and reflects a statistically

significant difference between the two penetrator designs. Comparison of control and

redesign - 1, with an adjusted p -value of .107, exceeds a ' = .05, and does not substantiate a

claim of difference. These conclusions, now quantified, remain consistent with the display in

Figure 1 .

Conclusion

Randomization procedures offer a viable approach to the analysis of ballistic data over a

wide class of problems. Distribution assumptions may be avoided and, of even greater
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importance, random samples of data are not required. Small sample sizes, while never

welcome, may be accommodated as well.

In statistics, as elsewhere, there is no free lunch. The price paid for randomization is

increased computation, since every problem requires a tailored solution, reflected through the

enumerative process required to determine the p -values. However, use of the normal theory

statistics - t-test, F -test, chi-square test, etc. -may only be valid to the extent that they

approximate the p -values obtained from randomization.
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A Randomization Test for Comparing 1 /4- Scale

Kinetic Energy Penetrators

Barry A. Bodt

Ballistic Research Laboratory

Aberdeen Proving Ground, MD 21005-5066

Abstract The material properties of kinetic energy penetrators are studied in a 1/4-scale test

environment at the Ballistic Research Laboratory. Metallurgists fire penetrators of various

material compositions into semi-infinite steel blocks and record depths of penetration. Depth

of penetration behaves approximately as a linear function of velocity, d (v), over the range of

the four-velocity design routinely employed. Under a common slopes assumption, a difference

in performance between penetrators k and l is computed as de(v)-d,(v). This difference is

determined graphically, occasionally with the benefit of a least-squares fit to each perfor

mance. Statements of significance are not made at present. In this paper, a randomization

test is examined as a means for providing analytical support for inference.

1. Introduction

Material properties of kinetic energy penetrators are compared at the Ballistic Research

Laboratory in a 1 /4 -scale test environment. Metallurgists fire penetrators of various material

compositions into semi-infinite steel blocks and record depths of penetration. Depth of pene

tration behaves approximately as a linear function of velocity, d (v ), over the range of the

four-velocity design routinely employed. Under a common slopes assumption, a difference in

performance between penetrators k and 1 is computed as da(v) -d,(v) . This difference is

determined graphically, occasionally with the benefit of a least-squares fit to each perfor

mance . Statements of significance are not made at present. In this paper, a randomization

test is presented as a means for providing analytical support for inference.

Inferences drawn from such experimentation may be considered the result of meta

analysis. Meta-analysis is loosely described as the "integration of independent studies" in a

book by Hedges and Olkin (1985 ). This area has received much recent attention in the social

and biological sciences, but in the physical and engineering sciences it has received little

notice with the exception of a few historical papers (e.g., Tippet ( 1931) and Fisher ( 1932] ) that

have been classified in retrospect as meta- analyses. The independent-studies quality of the

aforementioned problem stems from the combination of data sets gathered at different times

(often different years) and by different experimenters. This fact, practically speaking, invali

dates a necessary assumption for normal theory analyses, namely the belief that thesubjects
for the combined data set are the result of a random sample." Taylor and Bodt (1991) recom

mend surmounting this problem through the use of randomization tests and demonstrate

applicability of this methodology to significance testing with ballistic data.

1

In an ideal situation one would design a multiyear experiment where random sampling did occur, but the the obstacles are so formid

able in this testing environment that it is not donc.
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The purpose of this paper is to introduce a randomization test for comparing 1 / 4 -scale

kinetic energy penetrators. A description of the data collection is followed by the discussion

of a linear model through which significance testing of relevant contrasts can be made. It is

then demonstrated how a reference distribution for determining significance can be achieved

through randomization. Application of the procedure and discussion of the results follow .

2. The Data Collection

The measured response, d;;, is the depth of penetration permitted by a semi-infinite steel

block subjected to a hemi-nose penetrator of material j, fired at velocity i. Semi-infinite

describes the independence of the penetration action to influences from side and rear free

surfaces (i.e., the block is for practical purposes infinite with respect to width and depth) .

Hemi-nose refers to the hemispherical configuration of the projectile nose. Figure 1 shows

the cut-away profile of a semi-infinite block, where the cut is made along the shot line .

Depth of penetration is taken to be the maximum normal distance between the original

entry -point surface and the bottom surface of the hole.

Depth of penetration from penetrators of several different material compositions are

gathered over several velocities. The design structure suggests that the experimental units

are the semi- infinite steel blocks. It is these that are exposed to the two treatments, velocity

and penetrator material. Velocity is included as a test condition because it will affect pene

tration depth. Penetrator material is the only treatment of interest -materials are to be com

pared for relative effectiveness. Confidence in the assessment of relative performance is

ensured through comparison over a range of velocities meaningful to the Army application

( i.e. , over a typical ordnance velocity range ). A template for the experiment is to fire each

penetrator (material) once at each of the following four nominal velocities: 1100 m/s, 1300

m/s, 1500 m/s, and 1700 m/s. Actual velocities will vary. A design matrix overlaid on a com

bined data set including different materials might appear as Figure 2.

Other facets of data collection influence the analysis. Penetrators are tested in separate

experiments, quite possibly over as many as ten years if the purpose is to compare new

materials to an historical control. Small sample sizes with no replication prevail if one

adheres to the template for testing materials. There is no random sampling from a population

of semi-infinite blocks -indeed, at the time of the first experiment, blocks used in later firings

may have not yet beenmanufactured. Even if the sample were random , there is no guarantee

that the population is normal, nor is it likely that the comfort of approximate normality can

be afforded by the Central Limit Theorem with the sample sizes and replication considered.

3. The Linear Model

A linear models framework is presented in this section to support inference for this

problem. Great detail is not given. For a comprehensive, but introductory, treatment, it is

suggested the reader turn to Neter and Wasserman ( 1974 ). The problem is first described in

the context of a two -factor factorial design, followed by a refinement in the form of an

analysis of covariance model. A convenient regression form of this model is then used to con

struct meaningful contrasts, and assumptions required for traditional significance testing of

those contrasts are discussed .
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Figure 1. Cut-away Prorile or a Semi - intinite Steel Block After Penetration.
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Figure 2. Template for Data Colicction.

55



3.1 Factorial Design

The design matrix shown in Figure 2 and the problem description suggest that a factorial

design may be appropriate, with penetrator material serving as the principle treatment under

study and velocity serving as an additional design variable . The additive model is expressed

dj == 4 + V; + M ; + e ( 1 )

where u is the common mean response, Vi and M ; are the effects (shifts from that mean)
caused by the i velocity and the j “ material, respectively, and e : is the error associated with

the (ij) h response. A Model-I stance is assumed, indicating that both material and velocity
be treated as fixed effects.

Two facts render this approach less than ideal. The first, stated in the Introduction, is

that experimenters know thatvelocity behaves approximately linearly with penetration depth.

Even further, experience has shown that de(v) and d /(v) are virtually parallel over the 1100

m/s to 1700 m / s velocity regime, hence the additivity assumption above. Beyond this regime

the assumptions of linearity and parallel lines do not hold. The second is that although four

nominal velocities are intended, the actual velocities tested often number as many as the

number of 1 /4 -scale rods fired. Because firing velocity cannot be completely controlled, each

nominal velocity actually encompasses a range of velocities close to the nominal. Figure 3

illustrates both linearity and firing velocity noise in replication of some tungsten alloy firings
at the four nominal velocities.

This additional information impacts the method of analysis. Taking advantage of linear

ity would save the experimenter degrees of freedom to apply in the estimation of error - more

efficiency in the model is possible. Left unconsidered, firing velocity noise would increase the

estimate of response variability. In the next section the analysis of covariance model is sug

gested, having the advantage that both linearity and firing velocity variation can be incor

porate
d

3.2 Analysis of Covariance

3.2.1 Traditional Model

The linear relationship between velocity and depth of penetration can be made part of

the linear model as follows. First, rewrite Equation 1 in terms of marginal means as

dj = + ( 41. – 4 ) + ( .; k) + ( dij - Mi.- 4 ; + w ),
(2)

where the dot subscript means to pool over that index (i.e., to average based on the sum in

the margin ). Introduce in the model the term May to represent the simple linear relationship

between velocity and the mean response. Adding and subtracting Maly from the right side of
Equation 2 and rearranging terms leaves

dj = Hdly + (4.; • ) + (dj)-Hd/v = 4; + ) . ( 3)

Let v;: represent the velocity of the (i)'h penetrator. The simple linear model which regresses

penetration depth on velocity can then be expressed as u + X (Vij -V.), where y is the slope of
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the regression. Substituting this for Marv in Equation 3 yields

di =4 + 7V; -V ) + ( ;-4) + (d; --V; -V )-4.;),

which the reader recognizes as the common form of an analysis of covariance model.

(4)

Certainly, the analysis of covariance model in Equation 4 has appeal in that it can

account for the contribution to penetration depth from individual velocities; whereas, in the

factorial design the contribution of nominal velocities are counted as being the same regard

less of noise. Further, even if the nominal velocities were exactly achieved, there is advantage

to be gained in introducing the linearity information in the model. In that case, degrees of

freedom for estimating error are saved. The factorial design allows (s - 2) fewer degrees of

freedom for error, where s represents the number of nominal velocities. This follows directly

from the fact that the factorial design requires s - 1 degrees of freedom be assigned to velo

city; whereas, the simple linear regression needs only 1 degree of freedom assigned to the

slope to account for the influence of velocity. If the regression is perfect ( fits exactly to the

mean response for each nominal velocity ), the sum of squares associated with error for both

models are identical, leaving analysis of covariance with a decided advantage. If the regres

sion is not perfect, a tradeoff is made wherein degrees of freedom for the error term denomi

nator are gained at the expense of the regression lack -of - fit being added in the numerator. In

consideration of data with a strong linear relationship like those displayed in Figure 3, an

analysis of covariance approach would be a more appropriate choice than the two-factor fac

torial.

Using the analysis of covariance model to describe the problem structure, questions

regarding material comparisons can be answered through the study of contrasts. If the exper

imenter is interested in the difference in the effect of any two materials k and I, the contrast

Mk - M , would be estimated and then tested for significance.

3.2.2 Regression Formulation

It is convenient to formulate Equation 4 in terms of a regression model. From an appli

cations perspective, the least-squares approach is more widely understood and accepted by

practitioners. Moreover, the parameters have greater intuitive appeal, and their meaning

conforms to how experimenters at the Ballistic Research Laboratory currently think of the

problem.

The change is accomplished easily. Replace the t-level treatment factor with indicator

variables m, k = 1,2, ... t- 1 , defined such that

mk = 1 if the observation is of material k;

= 0 otherwise.

2

Regression is also of use, computationally, when the design matrix is unbalanced .
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The columns in the regression design matrix corresponding to the indicator variables will be

mutually orthogonal. Thus, Equation 4 may be expressed in terms of a regression model as

dij = Bo + B ,mj1 + Bzmij2 + + Be-,mj, -1 + B (V;-V ) + e,, where (5 )

Bo = 4 + M

Bi = Mk- M ,

Bi = y.

t'

th

The coefficients Bx, k = 1,2, t - 1 represent the difference between the effect of the k" and

t " material (i.e., the vertical difference between the regression lines de[v]-d.[v]). The desig

nation of the tth material is arbitrary, determined by how the indicatorvariables are defined.

In the design matrix for the regression model, the t “ material would have zeros in the sub

rows corresponding to the t - 1 indicator variables. The interpretation of the Be's would be

most natural if a reference group or an historical control was denoted the t “ material. Other

comparisons may also be of interest. The general contrast M2- M , k, l #t is obtained through

the difference Ble -Br

In this section the treatment effects were expressed in the context of a regression formu

lation of the analysis of covariance model. Estimation of these effects can be accomplished

after first determining the least squares estimate of the coefficient vector. The next step - and

the main focus of this effort - is to determine the significance of these effects. To begin, a

careful consideration of the assumptions is made.

3.2.3 Assumptions

Several assumptions are required to support the usual analysis of covariance for this

problem . They appear as follows: 1) the regression slopes are nonzero and homogeneous

among materials, 2) velocity is unaffected by material, 3) velocity is precisely measured, 4)

model errors are distributed with zero mean and common variance, and 5 ) the responses are

considered jointly independent normal random variables. The practical implication of 4) and

5 ) together is that penetration depths to be allowed by the semi- infinite blocks constitute a

random sample from some conceptual normal population.

The first four assumptions are accepted; the last is not. Velocity obviously affects pene

tration depth, and data support the similar-slopes claim . All test penetrators are identical in

dimension; there is no reason to expect that velocity will be influenced by which material

composition is being tested. Velocity, though not completely controlled, is precisely measured

using an x -ray multiflash system . As for the last assumption, there is no reason to expect that

penetration depths are normal, and because of the individual-study nature of the experiments,

they do not constitute a random sample.

In Section 4 we relax this last assumption to require only that the penetration depths be

pairwise uncorrelated. With that change, the least -squares estimation of the parameters in

Equation 5 will retain the usual properties of uniform minimum variance among linear

unbiased estimators but without any known distribution on which to base tests of significance.

Under these revised model assumptions, an alternative test for significance is given.
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4. A Randomization Test

In this section a randomization test is proposed as a means to discern among statistically

different materials. Its principal advantages are freedom from the assumption that data

under consideration constitute a random sample from a normal population and the ability to

provide exact significance levels. Some basic foundation is followed by a description of the

test.

4.1 Foundation

A randomization test is a method through which significance testing is accomplished,

with the sampling distribution of the test statistic derived from permutations ( combinations)

of the data. A test of significance measures the numerical evidence against a conjecture.

Data, conveyed through a suitable test statistic, are examined as to their consistency with the

conjecture by comparing the observed value of the test statistic to its sampling distribution

formed assuming the conjecture is true. Degrees of inconsistency are reflected in how

unusual the observed test statistic appears. This appearance is measured in terms of the p

value, the probability that a value of the test statistic is at least as unusual (large or small) as

the one observed.

A classical analysis in this 1 /4 -scale penetrator environment, based on the model of Sec

tion 3.2.2, suggests that a conjecture ( null hypothesis) of either Ho :Bk = 0 or H.:B4-B, = 0

might be tested to compare two materials. Consider the latter hypothesis, a claimed

equivalence between materials k and l. Letting b denote a least-squares estimate for B , bk - b,

is the estimated difference between materials k and I (i.e., the estimated vertical distance

betwee their parallel regression lines ). To determine whether the distance is statistically

significant, one need only compare bk - b, to its sampling distribution . This distribution is

readily attainable, but only if one is willing to assume a normal random sample-not satisfied

here.

Useful significance tests are possible without benefit of assumption 5) . In what follows,

this assumption is replaced with the less restrictive condition that penetration depths be pair

wise uncorrelated, thus guaranteeing nice properties for the least-squares estimators. Before

proceeding we should note that others have circumvented the normality requirement. Non

parametric approaches to this problem include papers by Quade (1967) , Puriand Sen ( 1969) ,

Shirley ( 1981], Conover and Iman (1982 ), and Stephenson and Jacobson ( 1988) . All focus on

the rank transforms of either the response variable, the concomitant variables, or both. For

example, Conover and Iman ( 1982) transform both sets of variables to ranks and then conduct

a parametric analysis of covariance, eventually relying on the F-distribution to determine

significance. An exception to complete reliance on ranks is found in Puri and Sen ( 1969) . In

that paper general scores, including ranks, are adjusted for regression on the concomitant

variables, and the asymptotic distribution of the test statistic based on those scores is

developed using permutation. The hypothesis tested is that no difference exists overall among

the treatments (materials) studied. A related approach is now described, focusing on the

pairwise comparison of materials.
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4.2 Description

3

Consider first Ho :BLE = 0. The geometrical interpretation of By is that it is the vertical

distance between the parallel regression lines de (v) and d (v). This fact is evident from Equa

tion 5. The linear effect of velocity can be removed by adjusting the penetration depth values

for the velocities used to achieve them- the remaining difference among the adjusted values,

excluding random variation, is attributable to material and is expressed Bk. This difference is

estimated as ble by subtracting the average of the residuals resulting from material t from

those of material k, the residuals being computed relative to d(v) in each case. Thus, once the

two groups of residuals are formed, we are interested in the difference in location between

them.

To determine if this difference is significant, we need only establish a reference distribu

tion and compare the observed difference to it. Under the null hypothesis, d_(v) and d( v) are

coincident. Thus, the residuals computed after adjusting for the linear effect of velocity should

be homogeneous. Therefore, in computing bk, the distinction of which residuals resulted from

assignment (association) with material k or material t should make little difference. The

reference distribution is constructed by computing bk under all possible assignments of resi

duals ( effectively ignoring material distinction ) to the two materials, the cardinality of each

material set being preserved. “ For example, if material k had five data values and material t

had four, there would be (5+4)C, values computed for b4. The p -value for the two-sided alter

native hypothesis is simply the ratio of the number of values in the reference distribution

which equal or exceed in absolute value the observed | bk | to the total number of combina

tions, (5+ 4,C5

Significance testing for the hypothesis Ho: B2 - B, = 0 is achieved similarly. Adjust pene

tration values for the linear effect of velocity and compute residuals in the same manner, still

computing the residuals relative to d(v). The difference between materials is estimated by

bk - b, and computed by subtracting the average of the residuals resulting from material i

from those of material k. The reference distribution arises from computing bk - b, under all

possible assignments of residuals between materials k and I.

Before turning to examples, some more detail is required as to how these residuals , rela

tive to d (v ) are computed. From Equation 5, the model d.( v) can be expressed

ď (v) = Bo+ B (v -v .) . (6)

( The indices has been suppressed to emphasize that this is a model for penetration depth . )

Both B , and B, must be estimated. Begin with slope. Assuming parallel

3

Specifically, the null hypothesis for the randomization test is that penetration depth measurements are stochastically independent of the

penetrator having been formed from material k or material 1 (Edgington 1987 ).

4

This rationale presupposes random allocation of subjects to treatments. However, as pointed out by Edgington (1987), random alloca

lion principally guards against undue influence resultingfrom between or within subject variability. Such variability in the context of semi

infinite steel blocks is considered negligible relative to the material differences under study.
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penetration -against-velocity models, d ( v), the common slope is taken as the average within

materials regression slope, b, which can be delivered by any regression subroutine fitting the

regression expressed as Equation 5 in its complete form . The estimate is computed as

ES(v.j-V;)(d;-7;)
i j

(7)

E (v;-V;)2
ij

The ordinate at û = V , B., is taken as an adjusted mean penetration depth for the eth material,

appearing as Equation 8.

d.x(adj) = d .- 6.(6,-v ). (8)

This too will be delivered by a regression of Equation 5 when zeros are used as the values for

the t- 1 indicator variables in the data rows corresponding to the t' material. Using estimates

for B , and ße, the estimated model for the t " material takes the form

0 co) Dr(adj) + b (0, -V) . (9)

Equation 9 is merely the least-squares fit for the th material, taking into consideration the

common slope. The residuals for the jih material relative to the t'h material appear as

Tijce) = d; - dice ( 10)

The residuals rTij (t) are then manipulated in the manner described above.

th

5. Examples

In this section two examples are discussed. The purpose of the first is to provide a

detailed synopsis of how the randomization test is performed. In that example, data are

characteristically sparse. The purpose of the second is to illustrate performance when data

are slightly more abundant and when the data collection does not exactly follow the template

discussed earlier. Data for both examples were extracted from an unpublished manuscript

provided by Mr. Timothy Farrand of the Ballistic Research Laboratory.

5.1 Example 1

Figure 4 displays data arising from the firing of four penetrator (material) types against

semi- infinite steel blocks. All penetrators were manufactured with a common mass of 65 g

and with the length -over-diameter ratio ( L / D ) equal to 15. The depleted uranium (DU)

penetrators are separated according to Rockwell hardness (Rc) . It is apparent that the tem

plate for data collection given in Figure 2 was approximately followed, save duplicate 97 %

tungsten results at 1500 m/s and no result for Du Rc = 45 at 1100 m/s. Four data points are

the most recorded for any material. Data are listed in Table 1.

Two tasks must be accomplished on the way to significance testing. The first step is the

estimation of d (v). In this example, material t is 93% tungsten. Estimates for the parame

ters B , and ß , will result from regressing penetration depth on velocity and the three indicator

variables found in Equation 5. The values for the indicator variables miji, mjj23 mij3
and mi are
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Table 1. Data Matrix for L / D = 15

di (mm ) Vii (m / s) mijl mi2
mi3

97% tungsten

42.70

66.80

78.20

89.70

1098

1304

1489

1507

1

1

1

1

O
O
O
O

O
O
O
O

DU Rc =49

58.42

85.34

101.09

115.06

1067

1314

1481

1654

0

0

0

0

1

1

1

1

O
O
O
O

DU Rc=45

78.99

99.06

116.33

1304

1482

1660

0

0

0

OOO

1

1

1

93% tungsten

39.12

65.02

83.31

105.92

1086

1297

1500

1682

o
o
o
o

0

0

0

0 ܘ ܘ

Table 2. Residuals Relative to the th Material for L / D = 15

97 % tungsten DU Rc=49 DU Rc =45 93 % tungsten

Tij(t)

-0.29

2.49

-5.26

4.38

18.65

20.00

18.46

14.52

14.68

16.32

15.16

-2.63

1.43

- 1.29

2.49
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shown in Table 1. It follows that B1,B2, and Bz representdifferences from 93% tungsten (our

control) and 97 % tungsten, DU Rc = 49, and DU Rc = 45, respectively. The estimated pene

tration depths for material t are given by

&ico) = 73.7310 + 0.1035(vij - 1395 )

and are plotted as &sco in Figure 5. Next, the residuals relative to thet'"group, Tijce);

puted as d, - div. In Figure 6 these residuals are plotted about the horizontal líne,r;Tij(t)
= 0.

Table 2 lists theresidual values for each material.

To determine significance, the Tic , are permuted between the materials being com

pared. Consider, for example, the two DU materials. Their difference is estimated by bą - bz

and takes on the value 2.514, the average of the residuals of DU Rc=49 less the average of

the residuals of DU Rc = 45. The reference distribution for determining significance is con

structed by computing by - bz for each possible combination of the residuals. Figure 7 depicts

one such combination where four residuals were reassigned. In that instance by - b3 = 1.535 .

Figure 8 displays the reference distribution in the form of a stem-plot. The observed value

for by - bz is circled. There are six distribution values which equal or exceed in absolute value

| b2 -53 I (denoted by bold type in Figure 8), hence a p -value of 6/35 or 0.171. Table 3

includes the results of each pairwise material comparison. In consideration of the data, all p

values appear reasonable and act to quantify the differences observed.

5.2 Example 2

A second data set is displayed in Figure 9. Three 65 - g penetrators were tested, each

with L / D = 10. Unlike in the previous example, data were not collected strictly according to

the template in Figure 2. They need not be for the randomization test to be valid. Also, the

distinction between groups do not appear as great as in Example 5.1. It is in this situation

that an explicit quantification of any differences is most needed because it becomes even less

clear how much observed difference is real and how much is attributable to chance variations.

Table 4 lists the results for all pairwise comparisons between materials. The increased

sample sizes over the previous example allows for a finer resolution in the number of refer

ence distribution values. There are 12,870 values comprising the reference distribution for by ,

the estimated difference between 97 % tungsten and 93 % tungsten. The p -value for the ran

domization test is 0.192, meaning that the probability is 0.192 of observing a value for b, at

least as unusual as 1.4050. Generally, such a p -value would not be considered significant, sug

gesting that 97 % tungsten and 93 % tungsten are performing similarly for L / D = 10 penetra

tors.

A second contrast 1 - B2, signifying the difference between 97 % tungsten and DU, is

estimated to be -4.5113. It is not clear from the examination of Figure 9 that this constitutes

a real difference in performance. The randomization test, however, yields a p -value of 0.0040

and provides solid justification for the metallurgist's claim that 97% tungsten and DU materi

als are performing differently. Such a difference was observed by Magness ( 1990) .

5

No discussion in this report is devoted to controlling the error rate for multiple contrasts . For more explanation, see Kirk (1982).
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Table 3. Significance of the Differences Observed in Example 5.1

L / D = 15

Contrast

Estimate # unusual

Randomization

# permutations p -value

Bi
0.3298 60 70 0.857

B2 17.9032 2 70 0.029

B3 15.3890 1 35 0.029

B , B2 -17.5734 2 70 0.029

B2- B3
2.5142 6 35 0.171

B₂- B3
- 15.0592 1 35 0.029
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Table 4. Significance of the Differences Observed in Example 5.2

L / D ==
10

Randomization

# permutationsContrast Estimate # unusual p -value

Bi
1.4050 2472 12870 0.1921

B2
5.91630 3 6435 0.0005

B , B2
-4.5113 26 6435 0.0040
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6. Conclusion

For the testing of 1 /4 -scale kinetic energy penetrators against semi- infinite steel blocks,

the technical considerations and the procedures addressing them are long established. It is

the intent of this effort to enhance the inferential process within the presiding experimental

structure. Presently, once data are collected, inferences principally consist of an engineering

judgment as to the meaning of an observed vertical gap between linear functions representing

the penetration performance of two materials. The initial motivation for pursuing this prob

lem was the engineer's lament that, occasionally, when his judgment was questioned, he had

little recourse but to stand firm on his opinion forged from years of experience. The linear

functions themselves are usually established subjectively and are considered parallel over the

range of 1100 m/s to 1700 m/s. Such subjectivity does bring into question the consistency of

the assessment process. An objective method for fit, such as least squares, is seldom used,

and then not in such a way as to incorporate the common slopes assumption. Nor need it be

in all instances. Often, the differences are so great as to allow for the approximate fitting of

the linear functions with no loss to the outcome, but perhaps equally as often they are not

great, occurring when only marginal improvements are made over an historical ( control)
material.

In summary, the report identifies the experimental situation as being similar to that in

which an analysis of covariance model is usually employed and then expresses the linear

model in a manner conforming to how practitioners currently view the problem, even to the

extent of automatically incorporating the parallel lines assumption. The report then explores

some important problems, such as data arising from independent studies, in implementation

of the classical method for significance testing and recommends an alternative to surmount

these problems in the form of a randomization test. This test is implemented on two sets of

real data, and its application in the context of those data is demonstrated .

The approach presented is an attempt at a unifying structure within which inferences in

this environment can be made both quantifiable and consistent. The recommended procedure

combines existing techniques such as least squares with a new application of a randomization

test in determining the significance of observed material differences. With this test support

ing, practitioners can make definitive statements as to the statistical significance of material

differences observed .
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Abstract

A method was proposed by Hanson and Koopmans ( Annals of

Math . Stat ., 35 , 1964) for obtaining conservative one-sided tolerance

limits for large classes of distribution functions. Let the cdf of the

underlying population be denoted F. The Hanson - Koopmans result

provides upper tolerance limits if – log ( 1 - F ) is convex (IFR distribu

tions) and lower tolerance limits if – log ( F ) is convex . Any two order

statistics can be used to obtain these limits. The method is particu

larly useful for small samples for which the nonparametric tolerance

limits do not exist.

The Hanson -Koopmans procedure was originally implemented for

consecutive order statistics. This was apparently done for computa

tional simplicity in determining the weights. Unfortunately, this choice

results in extremely conservative limits . In this paper , we evaluate the

performance of the Hanson -Koopmans method for various pairs of or

der statistics and suggest combinations for which the conservatism is

greatly reduced . In addition, we suggest a substantial further reduction

in conservatism for distributions with positive support .

An important application of this method in the aircraft industry

is to determining 95% lower confidence limits on the first and tenth

population percentiles of material strength, and this application has

been the motivation for the present study.

1 Introduction

In structural design, an allowable stress, working stress, or design al

lowable for a material is the maximum stress at which one can be rea
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sonably certain that failure will not occur. For the design of structures

for which weight is not a primary consideration , allowables are typically

calculated by dividing a stress level at which failure is known to often

occur by a sufficiently large constant called a safety factor (e.g. , Gere

and Timoshenko , 1984 , p.29) . The structure is then designed so as to

ensure that the sresses do not exceed the allowables for the materials.

This approach is too conservative for many aircraft applications,

however. Since weight is an important consideration in aircraft design ,

this industry long ago established two one-sided tolerance limits to

supplement the use of safety factors in determining allowables. These

tolerance limits are a 95% lower confidence limit on the tenth percentile

and a 95% lower confidence limit on the first percentile of the strength

distribution of a material. These are referred to as 'B-basis ' and ' A

basis ' values, respectively ( Mil Handbook 5E, 1987 ; Mil Handbook 17C,

1992 ) .

In this article, we discuss methods for determining one-sided toler

ance limits nonparametrically. The motivation for this study has been

Mil Handbook 17, and therefore the lower tolerance limits correspond

ing to ‘ A -basis' and ' B -basis ' values will be used when it is desirable to

fix ideas . However, the methods to be discussed are applicable to any

one -sided tolerance limits, and to all sample sizes greater than one.

2 Preliminaries

Let F be the absolutely continuous distribution function of a continu

ous random variable X, and let us be the ßth quantile of F; that is ,

F(IB ) = B. Assume that we have an iid random sample { X ;} =1 from

F, and let the order statistics of this sample be

X(1) < X (2) < ... > X (n ). ( 1 )

We will also need to make use of the order statistics of standard uniform

and standard exponential random samples of size n , and we define these
random variables as

V (i) < V (2) S ... SU(n) (2)

and

E (1) < E(2) < ... > Ein ), (3)

7
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respectively. We will adopt the usual convention of denoting a realiza

tion of a random variable by the corresponding lower case letter.

A (B, 7) lower tolerance limit is a random variable Ti = T ( X1,... , xn )

such that

P ( TI < 11-6) > n. (4 )

A (B, Y) upper tolerance limit is a random variable Tv = Tu ( X1, ... , xn)

such that

P ( Tv > 2p) > 7. (5)

It is easy to see that upper (lower) tolerance limits are precisely upper

( lower) confidence limits on 28 or 21-8 , respectively.

3 Nonparametric Limits Based on One Order Statis

tic

Let { X ;} =1 be independent, identically distributed random varibles

with continuous cdf F(x) . We will demonstrate how a sample order

statistic can sometimes be used as a lower tolerance limit. A similar

argument can be made for upper tolerance limits. The material in this

section is well known ; a recent reference is Conover ( 1980 , 118-121 ) .

The probability that the ith order statistic, X(i) , is less than the

( 1 – B)th quantile of F, 11-8 , is easily seen to be

P(X(0) 311-1 ) = P(F(X(0 ) ) < F(11–2) ) = P (Vo) 51 - B) , (6)

where V ) is the corresponding order statistic from a uniform sample

on (0 , 1 ) of size n . Since

Vo ~ Betali , n - + 1 ) ( 7 )

(e.g. , Hogg and Craig, 1978 , p . 159) , we have that

P ( X ) 511-B ) = Beta (1 – B; i,n - i + 1 ) , (8 )

where Beta (t ; V1 , V2) is the Beta cumulative with parameters vi and

V2. Let io denote the largest rank for which

P (U (i ) < 1 - B) > n. (9 )
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Then X (io) is a lower (1,7) tolerance limit. Note that , for any B and

n, if

P ( U (1) < 1 - B) < Ya , ( 10)

then a (8,4 ) lower tolerance limit based on a single order statistic does

not exist for 7 = 7* •

3.1 imitations of Single Order Statistic Tolerance Limits

This highlights the first, and most serious, limitation of nonparamet

ric single order statistic limits. For a given tolerance limit (B, y) and

sample size n, these limits need not exist.

A second limitation is a consequence of the fact that, for given B

and n , there are only n values of y for which tolerance limits with exact

confidence are available, namely { v } = 1, where, for lower limits,

Vi = Yi(B ,n ) = Beta (1 – B ,i, n - i+ 1 ) . ( 11 )

Usually, the desired y is not one of these n values, and one uses instead

the largest i for which Yi > (or, for upper limits, the smallest i for

which Yi > Y) . This can result in tolerance limits that are exremely

conservative, as the following example illustrates.

Consider the problem of determining a lower tolerance limit when

n = 44 , B = .9 and y = .95. Since

P (U (2) < .1 ) = Beta(.1 ; 2 ,43) = .943 < .95 ( 12)

and

P ( U (1) 5.1 ) = Beta (.1; 1,44) = .990 > .95, ( 13 )

X (1) provides the desired tolerance limit . However, the actual confi

dence of this tolerance limit is .99 – substantially greater than y = .95 .

A natural way to circumvent both of these limitations is to consider

tolerance limits which interpolate between two order statistics, or, if

necessary, extrapolate beyond X (1) or X(n) . It is necessary then to

calculate probabilities such as F (cX (0) + ( 1 - c ) X (;)), where c > 0. We

need to make additional assumptions on F in order to relate F (cX ; +

( 1 – c ) X ;) to F(x(i ) ) = V (6) and F(X(;) ) = U6) . In particular, if we

assume that – log ( F ) is convex, then we can determine lower limits

based on two order statistics, and if we assume that – log(1 – F) is

convex, then we can find upper limits. This is the approach taken by

Hanson and Koopmans ( 1964 ).
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4 The Hanson -Koopmans Theorem

Hanson and Koopmans (1964 ) showed that, given certain pairs of order

statistics from an iid sample of any size , it is possible to find a linear

combination of these two random variables which is ( either an upper

or a lower) tolerance limit for any quantile B and any confidence 7.

The lower limits require the assumption that – log ( F ) be a convex

function , and the upper limits require the convexity of – log( 1 – F) .

Both of these classes are large enough for one to legitimately regard

these tolerance limits as nonparametric. The condition that – log (1 –

F) is convex is equivalent to an increasing hazard rate assumption .

Hanson and Koopmans show that the intersection of the class of dis

tributions for which – log ( F ) is convex with the class of distributions

for which – log( 1 – F) is convex includes the Polya Type II distribu

tions, which includes many of the distributions which are often used in

practice.

We will derive the Hanson -Koopmans lower limits first, and then

we will use a very similar argument to obtain upper limits.

4.1 Lower Tolerance Limits

Assume n > 2 and let 1 < i < i < n . We will consider lower tolerance

limits of the form

Ti = X(-) + kı( X (0) – XG;)), ( 14)

where ki > 1. We make the assumption that - log ( F ) is convex . Note

that, if ki > 1 , then Jensen's inequality does not hold, and we have, for

any quantile 21-B ,

P ( T, < 21-6 ) ( 15 )

P ( F ( Ti) < F(21-6 )]

P ( F ( Ti) < 1 - B ]

P { -log ( F ( Ti)] > -log (1 – B) }

> P{– log [F ( X ( ) )] + ki log [F (XG;))] – k, log[F ( X (0 )} -log (1 – B )]

P [log (U (;)) – ki log (U (;)) + ki log (U (:)) < log( 1 – B)]

-

==

- pluier Corp( )*S1- B
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(1
7
)

The joint density of V (i) and VG) is (Hogg and Craig, 1978 , p . 160)

n!

Fuc:),Ucu) (1 , y ) =
(i – 1)!(j – i – 1)!(n - ;)!

" (y – 2); - - | ( 1 – y)n-j .

( 16)

For fixed ki > 1 , we can integrate this density over the region

D(ki ) = { (x , y ) < y and y(x/y )* 31 - B} ,

and thereby express ( 15) as the following monotone function of ki :

H(ki ) = Sou Fuco,Volz,y)dady. ( 18)

As ki 11 , T:+ xyand H (ki) — Beta (1 – B ;i,n – i + 1 ) = Yi(B,n ).
As ki +00, y (x /y )k + 0O for all 2 < y E (0,1 ) , so H (ki) + 1. So, for

any B, i , j , and n , and for any r > Yi(B ,n ), there exists a kif such that

H(ki ) = y, and hence

Ti = X (1) + ki (X( ) - X (:)) ( 19)

is a lower (B, 7 ) tolerance limit .

4.2 Upper Tolerance Limits

We now sketch the corresponding argument for upper tolerance limits.

The upper limit , based on X (i) and X (j) for i < j , is of the form

Tu = X(i ) + ku (XC) – X (-)). (20)

We assume that – log ( 1 – F) is a convex function , and we would like

to derermine ku so that, for given ß and 7 , Tu provides a (B , 7) upper

tolerance limit . We see that

P ( T , > Xp )

P ( F ( Tu) > F(xp )]

P (1 – F ( Tu) < 1 - B]

P {-log [ 1 – F ( Tu )] = -log( 1 – B)] }

> P { -log[1 – F ( X )] + k , log (1 – F (X ))] – k, log[1 – F ( X (; )} > – log(1 – B)] }

PC - log (U (n - i + 1)) – ku log (U (n – j+ 1)) + k, log ( U (n - it1)) > – log (1 – B)]

Uin - j+1)
< 1 - B

Uin - i+ 1)

(21 )

PU (n-i+1)
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The probability (21 ) is the following monotone function of ku :

V (ku) = Som Fu(n-it1 ),U(n=j+1) ( x , y )dxdy, (22)

where Fum),V(9 (1 , y ) , the joint density of two uniform order statistics ,

is given by ( 16 ), and D(k) is defined in ( 17 ) .

5 Which Order Statistics are Best?

The discussion of the previous section follows from results in Hanson

and Koopmans (1964) . However, the Hanson -Koopmans results are

not widely known , and so it has been necessary to derive them again

in this article.

It seems likely that the reason why the very useful work of Han

son and Koopmans has been virtually ignored by applied statisticians

follows from their unfortunate choice of the ranks i and j . Probably be

cause the numerical double integrals required in order to evaluate ( 18)

represented substantial computation for the time, Hanson and Koop

mans decided to only consider consecutive order statistics, that is they

let j = i + 1. We then have that

n!

Fuc.),U(i+1)( 2, y )= (23)(i – 1)!(n – 1 – 1) **-?(1– y) n- i- 1 ,

and the necessary calculations can be done with the aid of tables of

the gamma and incomplete beta functions, and without the need for

numerical integration. The tolerance limits which result from the use

of consecutive order statistics , as we shall see, are usually conservative

to the point of being useless for most applications.

Woodward and Frawley (1980) is apparently the only article in the

applied literature which builds on the work of Hanson and Koopmans.

These authors wanted to use the Hanson -Koopmans limits for data

which had ties, so that the required consecutive order statistics were

not always available. They noted that considering the range, that is ,

letting i = 1 and j = n , also leads to a single integral in ( 18) . They

computed tolerance limit factors for the range, and provided tables. It

turns out that the Wordward and Frawley limits provide a substantial
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improvement over the use of consecutive order statistics, although these

authors did not comment on this point .

In fact, there is reason to believe that , if one uses closeness of the ex

pected value of the tolerance limit to the relevant quantile as a criterion ,

then consecutive order statistics constitute the worst possible choice of

ranks, at least for the important cases of (.90.95 ) and ( .99.95 ) lower

tolerance limits. A more careful selection of which i and j to use for

given B, y, and n leads to a dramatic improvement over consecutive

order statistics, as we will show in the next section .

6 Exponential Spacings and the Calculation of

H( ki) and V(ku)

The computational burden due to the integral ( 18) is completely un

necessary , since the functions H and V can be obtained in closed form .

The reason for this is that , if X; ~ F for any continuous F , then

it is well known , and easy to show , that – log (Xi) has the standard

exponential distribution .. Consequently, – log (U (1)) has the same dis

tribution as E ( n -1 + 1) and – log (1 – Uw ) has the same distribution as

E() , for any l, where 1 < 15 n, and the E (1) are order statistics from

a standard exponential sample of size n .

Define the spacings in a standard exponential sample as follows:

D, = E() - E (0-1), (24 )

where E (0) = 0. Then, by Theorem 2.5 of Barlow and Proschan (1981 ,

p . 59) , we have that:

1. The { D , } =1 are mutually independent, and

2. P(D, < t) = 1 - e- (n =8 + 1).

Let { E ,} =1 be an iid sample from a standard exponential distribu

tion . For 1 < Isn, we can write Ey) as a sum of the spacings, and

therefore as a linear combination of {É . }= 1 :

Es

E) = Σ D , = Σ

n - 3 + 1
(25)
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Let

(2
6
)

n-j+ 1 n-j+1
Es

n-it1 ES

Ti = ( 1 – kı) l- log( F ( X ;)]+ kil- log( F ( X ; )]

( 1 – kı) E (n - ;+1) + k, E (n -i+ 1)

E,

Σ k, Σ + ki a
n - 3 + 1 n - 3 + 1

E , E,

Σ + ki
n - 5 + 1

n - 3 + 1

I
M
V
C

s= 1

n-j+1

=1

n-it1

s = n - j + 2 N – 8 + 1

so that (2
7
)

H (ki) = P ( 1 2 -log (1 – B)] .

Similarly define

Tu = ( 1 – ku) l- log (1 – F(X(-) )] + kul- log (1 – F(X(; ) ) ) ] (28)

( 1 – ku) E (0) + kvE6;)

E,
j

E

Σ + kus

n - 5 + 1 n + 1 n - 3 + 1

E ,

+ ku (29)

n - 8+1 3 + 1

Es

kuEn- s + 1 Σ

Es

II

-
W
a

s=i+1
n

so that

V(ku ) = P (Tuz - log (1 – B)] .

(3
0
)

If

Y = Σλ; Ε ; (31 )
i=1

where the { E ;}}=, are iid standard exponential random variables, if the

di are distinct, and if li > 0 for all i , then the cdf of Y is (Johnson

and Kotz, 1970 , p. 222)

1

Gy(y ) = { II ( ; -dj)-2 1-1 - 2-1/4 ).ICA :
-درد ] ༥-.

(32)

i=1 j= 1

Lii

By substituting the coefficients in the linear combinations of the { E , } = 1

given by (26) and (28 ) into (32 ) , we obtain closed form expressions for

the probabilities H (ki) and V(ku ) , respectively.
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7 An Example: Determining a Good ki for a

( .99 ,.95) Lower Tolerance Limit With n = 30.

The first order statistic, X(1) , provides a nonparametric (.99,95 ) lower

tolerance limit for n > 299. We will investigate the tolerance limit Ti

given by ( 14) when n = 30. We introduce the more elaborate notation

kiva and Tinj in order to emphasize the dependence on the ranks of

the data values used in the tolerance limits . Corresponding to each

i < i < 30 there is a kia which provides the desired lower tolerance

limit. Since V ( ki) is available in closed form , it is straightforward to

find these ki, values numerically. We will use as a criterion for choosing

i and ; the expected value of Tij under a normal model, the objective

being to choose the tolerance limit for which 21-B – E ( Ti) is as small

as possible.

In Figure 1 , – log |E (Ti) is plotted for each is j < 30. Since

the tolerance limit problem for the normal distribution is invariant

to a change in location and /or scale, we can , without loss of gen

erality, consider a N(0,1 ) population . For this population we have

11-8 = 2.01 = -2.327 . We can see from this plot that, according

to our criterion , the best tolerance limits have i = 1. In Figure 2 ,

- E (T;-) is displayed for 1 < j s 30. The Hanson-Koopman's limit,

with j = i + 1 = 2, has expected value -15.11 . The optimal limit 1,1,12

has expected value -4.743 – a gain of over ten standard deviations in the

expectation. The expected value of the parametric normal tolerance

limit (e.g. , Owen , 1968) is equal to -3.038 . The Woodward - Frawley

limit T 1,30 is somewhat more conservative than the optimal limit, but

it also is much better than T1,2 .

We now make a case for using nonparametric over parametric tol

erance limits for extreme quantiles when the sample size is small. We

consider a Weibull population with a shape parameter of 10 and a scale

parameter of 1 , that is

Fx (x) = 1 -e-510 . (33)

From Figure 3 , we see that this Weibull population looks froughly

normal', but , of course , any such resemblance breaks down in the tails.

Let n = 30, B = .99, and y =.99, and y = .95. Wewill.95. Wewill compare the nonparametric

lower tolerance limit 7,2,12 with the parametric normal limit 7 – 3.063s ,

8
0



where ã and s are the sample mean and standard deviation. The

consequences of using a normal tolerance limit procedure when the

population is (33) is examined by taking 500 random samples of size

30 from (33) and calculating 7 – 3.063s and T1,12 for each . In Figure

4, a histogram of the normal tolerance limit values is displayed. Note

the exreme anticonservatism - the actual confidence of about 68% is

much less than the nominal confidence of 95%. However, in Figure 5,

the tolerance limit Tij has actual confidence of 98%, which is quite

respectable, considering that we have only one tenth the data that

would be required for the usual single order statistic nonparametric

limit.

8 Log Transformation for Data With Positive Sup

port

If the random variables { X ; }} =1 have positive support, then a positive

tolerance limit is desirable . By taking logarithms of the data, calcu

lating T, or Ty, and exponentiating the result, we obtain the lower and

upper limits

Li = x; (x; /x;)k ( 34 )

and

Le = ( ; sX ;(Z ;/ ;)ku, (35)

respectively. Although these tolerance limits are valid for classes of

distributions more narrow than the classes corresponding to T , and Tu,

this is not likely to be a problem in practice, and the limits (34) and

(35 ) can be substantially closer to the quantile in expectation than

(14 ) and (20) . Still , the transformation remains ad -hoc, pending fur

ther investigation . In Figure 6 , (34 ) was used instead of ( 14 ) for the

500 simulated datasets, with some reduction in conservatism of the

tolerance limit.

9 Two Order Statistic Tolerance Limits for All

Sample Sizes

On the basis of extensive computation for the cases of ( .90, .95) and

( .99, .95) lower tolerance limits, we conjecture that the 'best' two order
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statistic lower tolerance limit for any sample size n > 1 , any B, and

any y is Tion , where io – 1 is the rank corresponding to the single

order statistic limit, where we adopt the convention of associating the

rank 0 to situations where a single order statistic limit does not exist .

Different criteria for what is best will result in different choices of j ,

but most reasonable criteria will probably result in a j for which j - 10

is fairly large, and the precise j selected is of secondary importance.

To fix ideas, we adopt here the expected value under a normal model

as a criterion , as discussed in previous sections. For this criterion , if

we fix B and y , choose i = ion, B, y) , and find the optimal j , then we

can regard k, to be a function of n alone. If ñ is the smallest value

of n for which a certain order statistic provides a single order statistic

nonparametric limit, then kilñ) will equal 1 .

The values ki (n) of the previous paragraph provide two order statis

tic tolerance limits which reduce to single order statistic limits at cer

tain sample sizes, and which are less conservative then the single order

statistic limits in between these sample sizes. We illustrate this idea

in Figure 7 , for the case ß = .90 and y = .95 . For this case, the first

order statistic provides a nonparametric lower limit for n = 29 and

the second order statistic provides a limit when n = 46. In between,

the first order statistic provides a tolerance limit which increases in

conservatism as n increases from 30 to 45. The 'optimal' two order

statistic limit , however, equals the first order statistic when n =

equals the second order statistic when n = 46 , and steadily increases

in expected value at intermediate sample sizes. The expectation of a

lower tolerance limit should increase monotonically with n . This is an

appealing characteristic of the two order statistic limit, of this and the

previous section , which is not shared by the usual nonparametric limit.

A similar argument can probably be made for upper limits and for

other percentiles and confidences than 0.90 , .95) and ( .99, 95) , and this

will be a subject of future work

29,

10 Tables

A short table for lower ( .90 , .95 ) tolerance limits is provided in Ap

pendix A , and a FORTRAN subroutine for determining H( ki ) is given

in Appendix B. Additional tables can easily be created. However, if
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one wishes to use two order statistic tolerance limit factors beyond the

cases covered by this table, and if one does not want to compute the

kjo ), the tables in Woodward and Frawley ( 1980) can be used .

11 Conclusion

The main point of this article is that the commonly held notion that

one-sided nonparametric tolerance limits do not exist for certain B, 7,

and n is misleading. We have shown that useful one-sided tolerance

limits involving two order statistics can be obtained for any situation ,

and that these limits are valid over large classes of distributions.

In this article, we also discuss the usefulness of a log transformation ,

the choice of which order statistics to use, and the idea of using the pro

posed limits for all sample sizes – not merely for those cases for which

the usual nonparametric method is not available. These discussions are

somewhat ad -hoc, and considerable work remains to be done. But the

potential usefulness of the proposed limits is clear, and one should not

hesitate to make use of them even before all of the theoretical details

are worked out .
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A Factors k , for ( .90 , .95) Lower Tolerance Limits

i

2

3

4

4

5

5

6

6

6

7

7

7

8

8

8

8

9

9

10

10

10

11

11

11

11

11

12

i

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15

kW

35.177

7.859

4.505

4.101

3.064

2.858

2.382

2.253

2.137

1.897

1.814

1.738

1.599

1.540

1.485

1.434

1.354

1.311

1.253

1.218

1.184

1.143

1.114

1.087

1.060

1.035

1.010

1

1.373

1.344

1.315

1.270

1.245

1.221

1.197

1.174

1.151

1.129

1.108

1.083

1.064

1.045

1.027

1.009

1

1

16 1

17 1

18 1

19 1

20 | 1

21 1

22 1

23 1

24 1

25 1

26 1

27 | 1

28 1

29 1

30 2

31 | 2

322

33 2

34 1 2

352

36 | 2

37 2

382

39 2

40 | 2

41 | 2

42 2

43 | 2

44 2

45 | 2

46 | 2

12

12

12

13

13

13

13

13

13

13

13

14

14

14

14

14
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B A FORTRAN Subroutine for Determining H(ki )

The following subroutine determines H(ki) using the closed form expression . With

trivial modifications, this subroutine can be adapted for calculating V(ku ) . By using

this subroutine along with a standard algorithm for finding a zero of a nonlinear

function, a program can be written for determining the constants ki and ku .

10

20

double precision function hk ( p , a , i , j , xk )

parameter ( nmax = 1000 )

implicit double precision ( a - h , 0-2 )

dimension a ( 0 : nmax ) , b ( 0 :nmax ) , 8 ( 0 :nmax )

a ( 0) = 0

do 10 m= 1 , n - j + 1

a(m) = 1.do/(n-m+1 )

continue

do 20 m=n-j +2 , n - i + 1

a(m) = xk / ( n - m + 1 )

continue

do 30 m=0 , 0-1+ 1

b (m) : 0

s (m) = 1

do 40 mm = 0 , n-i+1

if (mm .eq . m) go to 40

= abs (a (m ) -a (mm ) )

8 (m) = s ( m ) * ( a (m ) -a (mm ) ) / 1

b ( m) = b (m) +log ( r )

continue

continue

r

40

30

r

q = -log (p)

hk = 1

do 60 m=1 , - i+ 1

= abs (a(m) )

81 = a ( m ) / r

con = 8 (m) *81 * exp ( (n - i + 1 ) * log ( r ) -b (m ) -q / a ( m ) )

hk • hk -con

continue

return

end

60
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ROBUST STATISTICAL DECISIONS

( AN EMPIRICAL INVESTIGATION )

EUGENE DUTOIT

U.S. ARMY INFANTRY SCHOOL

FORT BENNING , GEORGIA

ABSTRACT : THE PURPOSE OF THIS STUDY WAS TO DETERMINE , IN AN EMPIRICAL

WAY , THE ROBUSTNESS OF DATA BASED STATISTICAL DECISIONS WHEN SEVERAL

REASONABLE , BUT NOT EXACT , ANALYSES METHODS WERE USED ON THESE DATA .

THE AUTHOR PRESENTED THE EMERGING RESULTS OF THIS EMPIRICAL STUDY

THROUGH THE ANALYIS OF SEVERAL DATA SETS . AT LEAST TWO METHODS OF

HYPOTHESIS TESTING WERE APPLIED TO EACH DATA SET AND THE

PROBABILITIES OF REJECTING THE NULL HYPOTHESIS WERE COMPUTED AND

COMPARED . THESE DATA SETS WERE OBTAINED FROM ACTUAL FIELD/SIMULATION

EXPERIMENTS AND RANDOMLY SELECTED FROM STATISTICAL TEXTS . THE

CONFERENCE ATTENDEES WERE ASKED TO SHARE THEIR OWN EXPERIENCES USING

REASONABLE APPROACHES OF ANALYSES ON THE SAME DATA SETS . AN ANALYSIS

FORM WAS HANDED OUT TO ANY ATTENDEE WHO MIGHT LIKE TO COLLABORATE .

THE FOCUS OF THIS STUDY IS ON HYPOTHESIS TESTING , NOT

ESTIMATION . IT IS IMPORTANT TO EMPHASIZE THAT THE SIGNIFICANCE LEVELS

THAT ARE OFTEN USED IN THE WEAPONS ACQUISITION PROCESS APPROACH 10% .

RELATIVELY SMALL SAMPLE SIZES ARE USED BECAUSE THE ITEMS ARE

EXPENSIVE . THE TOPIC OF THE PAPER MAY SOUND LIKE HEARISEY . THE STUDY

IS NOT ADVOCATING WRONG ANALYSIS . THE GOAL IS SIMPLY TO GET A

" FEELING " FOR THE SENSITIVITY OF THE DECISION MAKING PROCESS WHEN

ALTERNATIVE METHODS OF ANALYSES ARE USED TO EXAMINE THE DATA . THIS

QUEST HAS COME ABOUT BECAUSE SOMETIMES STUDY REVIEWERS AND DECISION

MAKERS WILL ASK IF THE " SO AND SO " METHOD WAS USED IN THE STUDY

BECAUSE THEY HEARD OR READ IN ANOTHER STUDY THAT THIS ALTERNATIVE

METHOD WAS AN APPROPRIATE WAY TO GO OR WAS THE MOST CONSERVATIVE OR

LIBERAL FOR THE STATED CONDITIONS . THESE COMMENTS MAY , AND OFTEN DO ,

HAVE SOME MERIT . IT WOULD BE NICE TO HAVE SOME ANSWER AND BE ABLE TO

SAY SOMETHING LIKE THIS... " ALTHOUGH I CANNOT SAY THAT WE USED YOUR

SPECIFIC METHOD TO ANALYZE THESE DATA WE DID USE AT LEAST TWO

APPROACHES TO THE DATA ANALYSIS . WE HAVE SOME HISTORICAL BASIS TO SAY

THAT THE DECISION THAT WOULD HAVE RESULTED IF WE HAD USED AN

ALTERNATIVE METHOD WOULD HAVE NOT ( OR HAVE ) BEEN DIFFERENT . " IT IS

IMPORTANT TO POINT OUT TO THE READER THAT THIS PAPER CONTAINS NO

CLASSIFIED WEAPONS DATA . THE EXAMPLES THAT ARE GIVEN IN THESE

PARAGRAPHS USE DATA OBTAINED FROM TEXTBOOKS OR GRADUATE STUDENT

RESEARCH .

FIGURE 1 IS THE BASIC " DATA COLLECTOR " FOR THIS EMPIRICAL

STUDY . THIS IS THE FORM THAT WAS DISTRIBUTED AT THE ARMY DESIGN OF

EXPERIMENTS CONFERENCE IN ORDER TO GET ADDITIONAL INPUT FROM SOME OF

THE ATTENDEES . THE FORM SHOULD BE SELF-EXPLANITORY . THERE IS SPACE

FOR A BRIEF DESCRIPTION OF THE PROBLEM AND THE VARIABLES THAT ARE

BEING COMPARED IN THE STUDY . THESE ARE THE VARIABLES THAT ARE

IMPORTANT IN THE STATISTICAL DECISION . THERE IS A SPACE TO ENTER THE

VALUE OF " P " FOR EACH STATISTICAL METHOD USED FOR HYPOTHESIS
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TESTING . THE DECISION INDICATES EITHER A STATISTICALLY SIGNIFICANT

DIFFERENCE ( SD ) OR NO SIGNIFICANT DIFFERENCE ( NSD ) . THE AUTHORS '

COMPLETE MAILING ADDRESS , TELEPHONE NUMBERS AND FAX NUMBER APPEAR ON

THE BOTTOM OF THE FORM .

FIGURE 2 GIVES A SUMMARY OF SOME OF THE STATISTICAL DECISIONS

THAT CAN BE PRESENTED IN THESE PROCEEDINGS . METHOD 1 IS THE PREFERRED

TECHNIQUE BASED ON THE UNDERLYING DISTRIBUTIONS OF THE DATA . METHOD 2

IS A REASONABLE ALTERNATIVE METHOD ( USUALLY NONPARAMETRIC ) THAT IS

NORMALLY DONE AS A MATTER OF COURSE . THIS CONVENTION HOLDS FOR THE

FIRST THREE STUDIES LISTED IN FIGURE 2. THE FLEITAS STUDY HAD A MIX

OF PARAMETRIC AND NONPARAMETRIC TECHNIQUES AS THE PREFERRED METHOD 1 .

THIS FIGURE SHOWS THAT THERE IS A HIGH DEGREE OF AGREEMENT BETWEEN

THE " P " VALUES FOR THE ALTERNATIVE STATISTICAL METHODS . THEREFORE

THERE IS A CORRESPONDING DEGREE OF AGREEMENT IN THE RESULTANT

STATISTICAL DECISIONS . THIS SMALL SAMPLE OF RESULTS WOULD INDICATE

THAT THESE STATISTICAL DECISIONS ARE FAIRLY ROBUST WITH RESPECT TO

THESE DATA SETS ( AND TESTING TO THE 10% LEVEL OF SIGNIFICANCE ) .IN A

SENSE I WILL " FLING DOWN THE GAUNTLET " AND CAUTIOUSLY AND TENTATIVELY

SAY THAT THE REASONABLE ALTERNATIVE METHOD WILL PROVIDE THE DECISION

MAKER A BASIS FOR ARRIVING AT A CONSISTENT CONCLUSION .

I WOULD APPRECIATE YOUR THOUGHTS AND COMMENTS ABOUT THIS

PROBLEM IF YOU COULD OR WOULD LIKE TO PROVIDE INSIGHTS , THOUGHTS ,

COMMENTS AND EXAMPLES CONCERNING ALTERNATIVE METHODS OF HYPOTHESIS

TESTING I WOULD BE DELIGHTED TO HEAR FROM YOU . YOU CAN REACH ME USING

THE INFORMATION PROVIDED AT THE BOTTOM OF FIGURE 1 .
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FIGURE 1

PROBLEM DESCRIPTION

VARIABLES COMPARED

" P VALUE " DECISION COMMENTS

PREFERRED METHOD ( ALT # 1 )

ALTERNATIVE METHOD ( ALT 2 )

ALTERNATIVE METHOD ( ALT 3 )

PLEASE SEND THIS COMPLETED FORM TO

COMMANDANT

US ARMY INFANTRY SCHOOL

ATTN : ATSH CDC - O ( DUTOIT )

FORT BENNING GA 31905-5400

( 404 ) 545-3165 /3166

DSN 835-3165/3166

FAX : ( 404 ) 545-2517

THANK YOU FOR YOUR HELP ,

GENE DUTOIT
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THE EFFECT OF SAMPLE SIZE ON THE VARIABLITY OF SAMPLE MATERIAL

PROPETY VALUES

Bernard Harris

1. Introdutction and Summary . In certifying materials for aircraft construction , a commonly used

certification criterion is called a statistically based material property value. For the specific appli

cation being considered , the tests are both destructive and expensive to carry out. Conscquently,

very sinall samples are usually employed. Therefore, it is desirable to study the small sample behav

ior of these statistically based material property values. In the usual statisical terminology ( rather

than thc terminology of materials testing uscd above), a statistically based material property valuic

is a lower tolerance limit. Specifically, a B -basis value is a 95% lower confidencc liinit on tlic tenth

perrentilc of the probability distribution which has been assumed , and an A - bissis valuc is a 95%

lower confidence limit on the first percentilc .

In this report, we assume that the data is a random siunplc from a normal distribuition with

ouknowni mcan he and unknown variance 02. It is well -known that these statistically basc:el material

property valucs ( tolcrancc limits ) can be written as

T.,2,, ( X, 8) = X - k (1 , a, y) s ,

r-!

wlicre

X
Elx - X )

Xi, and s =

iz )

and kin, a , y ) is 1/ Vn times the 100( 1 - a )th percentilc of the noncentral t - distribution with n - 1

degrees of freedom and non-centrality paraincter Vog - '(1 – a) , where is thic standard norma

ܐܐܐ

cumulative distribution function. For an A - basis valuc, a = .01 ; for a B -basis valuc, a = .03 . For

Jotational simplicity, we will denotc ( 1 ) by T , omitting the subscripts. In order to provide a simple:

picturc of the behavior of T as n changes, tļıc moments of T arc derived in the Appendix to tliis

report.

In Sectiou 2, some numerical tabulations are presented which provide concrctc illustrations of thic

material given in the Appendix. These illustrate the variability of T for sample sizes from 2 to
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500 for both A -basis values and B-basis values and the changes in such variability with increasing

sample sizes.

The preparation of this report was motivated by the following considerations. The author has

been a member of a working group concerned with the certification of advanced composites for

aircraft construction . In the course of this activity, the author has come to suspect that some of

the materials engineers conclude that the B -basis ( A -basis) values are intrinsic inaterial properties

and not random variables. It is the purpose of this report to demonstrate that these are randoin

variables and possess statistical variability.

It is not difficult to extend the calculations in Section 2 to obtain the probability density function

of T. However, the simple description of the variability given by tlie mcan , variance, and two -sigma

limits for T provides the user with a suitable description of the variability that will be encountered .

2. Nuincrical Illustrations of the Variability of Statistically Based Material Property Values . In this

section , we provide numerical illustrations of the mean and standard deviation of A - basis and B

basis values for samples of size 2 , 3,...,20, 30 ,35,... , 50,60 , ... , 100,200,500 , oc fur normally dis

tributed data from a population with h = 200,0 = 10 ( values which are reasonable for some

composite materials ). Also, two- sigma limits for such A -basis and B -basis values are given . The

h -values employed have been taken from MIL-HDBK-17-1C , draft dated 7 September 1990, Matc

rials Technology Laboratory, U.S. Ariny.
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Table 1

The Expected Value, Standard Deviation, and Two-Sigma Limits of B -basis Values in Samples

of Size n from a Normally Distributed Population with Mean H = 200 and Standard Deviation

0 = 10 .

Sample Size n Expected Value Standard Deviation Two- Sigma Limits

2 035.787 124.266 ( 0.000, 284.316 )

3 145.435 29.101 ( 87.233, 203.637)

4 161.676 16.941 ( 127.794, 195.558)

5 167.965 12.459 ( 142.867, 193.063 )

6 171.387 10.109 (151.169, 191.605)

7 173.560 8.646 (156.268, 190.852)

8
175.073 7.639 ( 159.795 , 190.351 )

9 176.213 6.893 ( 162.427, 189.999 )

10 177.094 6.318 ( 164.458, 189.730 )

11 177.801 5.858 ( 166.085, 189,517 )

12 178.386 5.480 ( 167.426, 189.346 )

13 178.884 5.162 ( 168.560, 189.208 )

14 179.311 4.890 ( 169.531 , 189.091 )

15 179.676 4.655 ( 170.366, 188.986)

16 179.996 4.450 ( 171.096, 188.896)

17 180.290 4.267 ( 171.756 , 188.824 )

18 180.548 4.104 ( 172.340, 188.756 )

19 180.779 3.958 ( 172.863 , 188.695 )

20 180.982 3.826 ( 173.330 , 188.634 )

21 181.177 3.705 ( 173.767, 188.587 )

22 181.353 3.594 ( 174.173 , 188.533 )

23 181.511 3.493 ( 174.525, 188.492 )

24 181.660 3.399 ( 174.862 , 188.458 )

25 181.801 3.312 ( 175.177 , 188.425)

30 182.373 2.956 ( 175.461 , 188.285 )

35 182.797 2.691 ( 177.415, 188.179 )

40 183.128 2.484 ( 178.160, 188.096)

45 183.405 2.317 ( 178.771 , 188.039 )

50 183.624 2.180 ( 179.264 , 187.984 )

60 183.978 1.962 (180.054 , 187.902 )

70 184.237 1.799 ( 180.639, 187.835 )

80 184.449 1.669
( 181.111 , 187.787)

90 184.623 1.563 ( 181.497, 187.749 )

100 184.769 1.475 ( 181.819, 187.719 )

200 185.518 1.014 ( 183.498 , 187.538 )

500 186.147 .630 ( 184.887, 187.407)

187.180 0.000 (187.180, 187.180)
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Table 2

The Expected Value, Standard Deviation , and Two-sigma Limits of A -basis Valucs in Sample

of Size n froin a Normally Distributed Population with Mcan y = 200 and Standard Deviation

0 = 10.

Sample Size n Expected Value Standard Deviation Two-Sigma Limits

2 -95.967 223.718 ( 0.000, 351.469)

3 106.476 50.913 ( 4.650, 208.302)

4 137.592 27.833 ( 81.926, 193.258)

5 146.035 20.093 ( 105.849, 186.221 )

6 151.833 16.094 ( 119.645, 184.021 )

7 155.466 13.632 (128.202 , 182.730)

8 157.983 11.949 ( 134.085 , 181.881 )

9 160.019 10.716 ( 138.587, 181.451 )

10 161.278 9.771 ( 141.736, 180.820 )

11 162.430 9.019 ( 144.392, 180.468 )

12 163.371 8.405 ( 146.561 , 180.181 )

13 164.164 7.891 ( 148.382 , 179.946 )

14 164.832 7.456 ( 149.920, 179.744 )

15 165.422 7.078 ( 151.266 , 179.578 )

16 165.932 6.750 ( 152.432, 179.432 )

17 166.389 6.459 ( 153.471 . 179.307)

18 166.792 6.201 ( 154.390, 179.194 )

19 167.149 5.970
( 155.209, 179.089 )

20 167.481 5.761
( 155.959 , 179.003 )

21 167.775 5.571 ( 156.633, 178.917 )

22 168.052 5.397 ( 157.258 , 178.846 )

23 168.302 5.238
( 157.826, 178.778 )

24 168.534 5.091 ( 158.352, 178.716)

25 168.747 4.955 ( 158.837, 178.657 )

30 169.623 4.402 ( 160.819, 178.427 )

35 170.269 3.994
( 162.281 , 178.257 )

40 170.779 3.677 ( 163.425, 178.133)

45 171.184 3.422 ( 164.340 , 178.028 )

50 171.526 3.212 ( 165.102, 177.950)

60 172.049 2.884 ( 166.281 , 177.817 )

70 172.450 2.636 ( 167.178, 177.722 )

80 172.756 2.442 ( 167.872 , 177.640 )

90 173.016 2.283
( 168.450, 177.582 )

100 173.228 2.152 ( 168.924 , 177.532 )

200 174.332 1.469 ( 171.394, 177.270)

500 175.263 902
( 173.459 , 177.067)

176.740 0.000 ( 176.740 , 176.740)
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Appendix

Let X1, X2,... , X, be independent normally distributed random variables with incan 11 and

variance o?. Let

1

X = 3 xi, o ? - (X;-P)?
i= 1

Then X and s? are independent , X is normally distributed with mean y and variance 02/11 ,

(12 – 1 )s2 /02 has the chi-square distribution with n - 1 degrees of freedom .

To simplify notation , we set Tn,a,, ( X , s) = T, and write

E(T)

Š( : ) 5 ( 8 } ( +1)* =1432 ; 5 (65"
رز

(1)

To cvaluate E(X)' , write

X = X - H + H.

Then ,

** - ={ ( )x-we }

$ ( ) W -TE(X –u)"
6/2]

Σ

T=0

Hj-27270271(241)

n '
( 2 )

Also , since

$2
to ?

m m

where u has the chi- square distribution with m = n - 1 degrees of freedom ,

669
poo y /2gke- u /27 /2-1

Esk = 1
du

mk/ 227/21 ( 7 )

ob2k/2 r (me )

mk/2 rn)

(3)
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Substituting (2 ) and (3) into ( 1 ) , we obtain

E ( T" ) =Š
j=0

( ; ) (-130-1 ov 1960-5)/2 (+ - 1,

(n - 1)( -5)/2r(" P )

bin ( 31 )w ***2 *o * r (221)
Σ

kurj

"n,a ,7

T=0
ne ( 4 )

In particular, the variance of T is easily written as

ož = a+ kļos

02

+ k ?( Es2 – (Es)?)
n

202

(on
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T (1 )
(n − 1)+4 (

• ( ++ (--- ) ))
2

( 5 )
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Small Sample Design Allowables

From Paired Data Sets

Donald M. Neal Trevor D. Rudalevige Mark G. Vangel

U.S. Army Materials Technology Laboratory

SLCMT-MRS -MM Arsenal Street

Watertown, Massachusetts 02172-0001

Abstract

This paper identifies an acceptable statistical procedure

for obtaining design allowable values from a small set of

material strength data. The allowable represents a ma

terial design number defined as the 95% lower confidence

bound on the specified percentile of the population of ma

terial strength data . The percentiles are the first and tenth

for the A and B allowables. The proposed method reduces

the penalties commonly associated with small sample allow

able computation by accurately maintaining the definition

requirements and reducing variability in the estimate. Ap

plication of very small samples will obviously reduce costs in

testing and manufacturing which is the primary motivation

for this study.

In the evaluation process five methods were considered for

computing the design allowable. Three of these methods in

volved certain statistical distribution assumptions while the

other two were nonparametric procedures. The latter meth

ods introduced a pooling process such that the small sample

was combined with a larger, previously obtained sample.

Monte Carlo studies showed that the nonparametric pro

cedures are the most desirable for computing the design al

lowable value.
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i Introduction

The A or B statistically based design allowable value is a statistic which is less than

the first ortenth percentile of the population with probability .95. That is , the value

is a 95% lower tolerance limit for the percentile. In Figures 1A and 1B , a graphical

display is shown for the B allowable value probability density function for sample sizes

of n equal to 10 and 50 from a standard normal population. The dotted vertical lines

indicate the tenth percentile of the population and the probability that the allowable

is less than or equal to the tenth percentile is .95 for the design allowable value

probability density function . The graphical display of the allowable value density

functions show much less dispersion for n = 50 than for n = 10. Therefore, small

samples will usually result in lower allowable values. In ,1,2 , 3 , 4 , 5 , various procedures

are described for determining the statistical design allowable values .

The motivation for the work described in this paper resulted from a need by the

aircraft industry to obtain a less conservative, statistically based material design value

from a small sample of composite material strength data. Here, ' conservative ' is to be

interpreted to mean ' excessively low ', which corresponds to a design engineer's use of

the word . Statistical conservatism, that is a confidence exceeding the nominal level

of .95 , need not be present for 'engineering conservatism ' to be a problem .

The use of small samples reduces the amount of testing and consequently the

manufacturing cost of composite aircraft structures. For example, in order to qualify

a composite material to be used in the manufacture of a commercial aircraft, the

FAA , requires property values for tension, compression, and shear tests subjected

to the enviromental conditions: hot-wet , cold -dry, and room temperature for three

separate batches of material. In the development of a composite tail section by one

of the major aircraft companies the cost of testing was more than 20 million dollars.

In addition to the cost, excessively conservative allowable values can also result in

an over - design situation, since the value often provides information in determining a

structural design.

In order to avoid the penalty associated with using small samples in the tolerance

limit computation , a procedure is introduced in this paper involving pooling a large

' Military Handbook 17B, Army Materials Technology Laboratory, Polymer Matrix Composites, Volume

1 , Guidelines, 1988 .

Neal, D. M., Vangel, M. G. , and Todt, F. , " Determination of Statistical Based Composite Material

Properties " in Engineered Materials Handbook, Composites, C.A. Dostal, ed ., American Society of Metals

Press, Metals Park, Ohio, Vol. 1 , 1987 .

Neal, D. M., Vangel, M. G., « Statistical Based Material Properties - A Military Handbook - 17 Perspec

tive" , MTL TR 90-5 , U.S. Army Material Technology Laboratory, Watertown, Massachusetts 02172-0001 ,

1990.

'Neal, D. M. and Spiridigliozzi, L. , “An Efficient Method for Determining the 'A ' and 'B ' Design Al

lowables ", ARO Report 83-2 , U.S. Army Laboratory Command, Army Research Office, P.O. Box 12211 ,

Research Triangle Park, North Carolina 27709-2211 , 1983 .

“ Shyprykevich, P.,“ The Role of Statistical Reduction in the Development of Design Allowables for Com

posites ", Test Methods for Design Allowables for Fibrous Composites: 2nd Vol ., ASTM STP 1003 , pp .

111-135 , 1989.

Soderquist, Joseph, National Resource Specialist for Composites ( FAA ), Private Conversation
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sample with a smaller one in order to obtain the allowable value. This is done in

order to reduce the inherent variability that occurs from applying the smaller data

set alone.

In the pooling process the larger data set should be obtained from prior available

test results or from less expensive tests. Ideally, both samples should be from the

same material, test, and enviromental conditioning process. In the pooling process it

is assumed that for a given material (eg., graphite- epoxy) there are similar classes of

failure modes.

In order to avoid the uncertainties involved in identifying a statistical model from a

small sample when computing the allowable value, this paper introduces two nonpara

metric methods (Ferguson, and the Modified Hanson-Koopmans, ) In applying the

Bayesian nonparametric method, the larger set represents the prior and the smaller

one the empirical data. In the Modified Hanson -Koopmans method an ordered array

of strength measurements is obtained from the pooled data sets. The tolerance limit

is determined from a specific ratio of ordered values multiplied by a factor determined

from the sample size of the pooled data .

The Reduced Ratio Method , another procedure for computing small sample de

sign allowables, was also evaluated. This method is commonly used by the aircraft

industry. For example, a U.S. helicopter company routinely uses this method for ob

taining allowables from six specimens tested in tension at 180°F. In the analysis an

additional, previously obtained sample of at least thirty room temperature tension

test results are included in order to reduce variability in the allowable estimate.

2 Determination of Allowable Values

Nonparametric Bayesian Method

The nonparametric Bayesian ," allowable value is obtained from the following. Let

{1; } î represent the current empirical data which the allowable value is to represent

and {t; } the larger prior data set obtained from previous test results.

In the analysis the cummulative density function (CDF) of the prior (larger data

set) is written as

Fo (t) = a(( -0, t] ) /a(R) ( 1 )

where a(R) is the sample size and all - 00 , t] ) represents the number of values less

than t from {t; }” . The CDF of the smaller sample {1; }î is

F.(t|21,72...In)= Žoz:((-00,t)/n

(2 )

i=1

' Ferguson, T. S. , "A Bayesian Analysis of Some Nonparametric Problems" , Annals of Statistics , Vol. 1 ,

No. 2, 209-230 , 1973.

* Vangel, M. G., " Lower Tolerance Limits for Log -Convex Distributions” , to be published .

"Metallic Materials and Elements for Aerospace Vehicle Structures, MIL -HDBK - 5C , 15 September 1976 ,

pp. 9-14.
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where n is the sample size and the sum over i of 85: (t) is equal to the number of I;

values less than or equal to t . For example,

if t = 1 , 2, 3 , 4 , 5

and x = 6, 7 , 8, 9 , 10

then Fn ( 516 , 7 , 8 , 9 , 10 ) = 0 .

If t = 11 , 12, 13, 14 , 15

then Fn( 11 | 6 , 7 , 8 , 9 , 10 ) = 1 .

The posterior distribution for { 1;} io is then written as

Fu (t | 11 , 12 , ... , In ) = PnFo( t) + ( 1 - Pn )Fn(t |21, 22,... , In ) , (3)

where

a(R)
Pn =

a(R) + n

An example of a Bayes estimate for x = 1 when

t = 1 , 2 , 3 , 4 , 5

and x = 1 , 2 , 3, 4 , 5 is

Fn = P , Fo + ( 1 – Pn ) Fn = ( .5 ) ( -2) + ( .5 )( - 2) = .2.

(4)

3 Nonparametric Tolerance Limit on the Bayesian Quantile

Estimate

The allowable value as described previously is a tolerance limit on the quantile es

timates. The process for obtaining that limit is shown in this section . Initailly, a

random sample F (Y ) of size M = a(R) + n is assumed independent of the mixture

of the prior and empirical data sets shown in Equation 3. By ordering a sample of

Y1, Y2 ....,Ym values, the probability density function for Yi, 15 is M can be written

as a Beta distribution,

r(M)zuM- ( 1 – 2)( 1–2)M– 1
fzi (z) = ( 5 )

r (um ) (( 1 – u ) M )

where z( i ) = F(Y;) ) and i = uM with u representing the CDF value corresponding to

the ith ordered number. The tolerance limit Y ' for Y , is

P (Y, 2 Y* ) = 1 -a = P(F(Y) > F(Y* )] (6 )

where Y , is the 100th percentile of Y. Since

>

P(Y 2 Y.) = 5*5(M ): 1(1– 2)(1-w)M–1-dz ( 7 )

r (um ) r ((1 – u )M)

from Equation 5 , a 1 - a tolerance limit on Y , can be obtained by solving for u from

the following. In the case of the B allowable computation , a = .05 and q = .10 ,

Equation 7 can be written as

.10 (M )zuM - '(1 – 2 )( 1 – u )M– 1
dz = .95 .

( 8 )
r(um)r ( ( 1 – u )M)60"
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See Table I for tabulation of u and M values that satisfy Equation 8.

Solving for u in Equation 8 determines the lower tolerance limit of the CDF of

sample size M where the ith ordered value is equal to uM . Obtaining a lower ordered

CDF value from Equation 3 that is approximately equal to a u determines the 1 - a

tolerance limit of the qth quantile of the posterior CDF for a sample size M.

An example of this would be if there were only prior data { t;} jº and a B allowable

value is required where

t = 5, 6, 7, 8 , 12, 16, 20, 25, ... ,40 and

Fo(t) = .033 , .066, .099 ... , 1.0,

then M = 30 and u = .034 from TableI. The allowable value t; is determined from the

approximate solution of u ~ F(t) resulting in t; = 5 ; therefore, the first ordered value

of the prior represents the B allowable value, which is the same as the nonparametric

quantile sign test, º result, when the sample size is 30.

4 The Nonparametric Modified Hanson -Koopmans (MHK)

Procedure

A nonparametric procedure (MHK) ,8 for estimating the allowable value is introduced

for any sample size greater than or equal to 2. The method is a modification of

Hanson-Koopmans," process. The modification has reduced the conservatism in

computing property values when compared with the original method.

The method involves the following. Let I1 , ... ,In be the order statistics of an

independent and identically distributed sample from a continuous distribution F.

Assume that F is log -convex, that is -log F(2) is a convex function . The class of log

convex functions includes a large enough group of distributions so that the following

procedure involving log - convex functions can be considered nonparametric for most

purposes.

The Hanson -Koopmans lower tolerance limits are of the form

Trg = kx, + ( 1 – k)?,, (9 )

wherer < s and k > 1. The tolerance limit Tr, can be negative, even if the distribution

F is zero for any negative values. A practical solution to this problem is to apply the

Hanson -Koopmans approach to the log of the data z, that is ,

Tj. = k log I, + ( 1 – k) log In ,

and then obtain by exponentiation the following

(1
0
)

k

T ,. = et loger + el1- k) 10555 = 15(1 )

(1
1
)

1° Conover, W. J. , " Practical Nonparametric Statistics ”, John Wiley and Sons, 1980 , p. 111 .

" Hanson, D. L. and Koopmans, L. H., " Tolerance Limits for the Class of Distributions with Increasing

Hazard Rates ", Annals of Mathematical Statistics, Vol. 35 , 1964.
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For most distributions of interest, T., still provides conservative tolerance limits,

although technically T., is valid for a class of distributions smaller than the log -convex

class corresponding to T,..

In order to determine the B allowable value, the r, s , and k values are obtained

for a given n in Table II. Tables are also available for the A allowable in Reference 8 .

5 Allowable Computation for Normal and Weibull Models

The following small, single sample, data set allowable computation procedures were

included for comparison purposes. This comparison is made with respect to the

results obtained from the other methods described in this paper.

The normal PDF is

1

fr ( 3 ) e-(3-4 )2/202 ( 12 )
OV27

where H and o are the mean and standard deviation . The normal allowable is

An = X - KAS , ( 13)

where KA is a factor obtained from Reference 1 and X and s are the sample mean

and standard deviation.

The Weibull allowable computation is as follows. The Weibull PDF is

fw (2 ) =

BB -1

e-(1 /a) , ( 14)
QB

where ß and a are the shape and scale parameters and the Weibull allowables can be

written as

Aw = âl- log( Pa)] /B, ( 15)

where the Pa's are tabulated in Reference 3 with â and ß being the maximum like

lihood estimates for a and ß obtained from an algorithem also shown in Reference

3.

6 The Reduced Ratio Method (RRM)

The Reduced Ratio Method, determines an allowable value for a smaller data set

{ S :} î by introducing an indirect computation procedure involving a larger, previously

obtained set of data, { L ; } .

The first step is to determine the mean of L , that is I = 2 ,Lj . The second

step requires obtaining the ratios Ri = S1/ L, R2 = S2 / 1, ... , Rn = snii and the mean

(R) of the Ri's. The reduced mean , R* is then obtained from

Ā * = Ã – t (.95) VR / Vn, ( 16)
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where t(.95) is the .95 quantile of the t distribution for n - 1 degrees of freedom and

VR is the standard deviation of the Ri's. The next step is to compute an allowable

(LB ) from the L sample using some single sample procedure such as described in the

previous section. After obtaining LB the allowable S8 for S is determined as follows

SB = LBŘ* . ( 17 )

7 The Pooling Process

The pooling process, as previously mentioned, requires combining a smaller data set

S ( the one represented by the allowable) with a larger set L obtained from prior test

results. In the MHK process the objective is to represent S with a combined data

set of S and L with sample size m = ns + nl . In the Bayes method the prior is

represented by L and the empirical data by S.

If both the means and variances of S and L are known to be equal, then the pooling

process can be easily justified. Unfortunately, this is seldom the case . Therefore, the

following transformation is suggested. Let L; and S; be the data from sets L and S

respectively and define the new data sets S* and L* by

S ; - $

S ; = ( 18)
S

and

1; = L = 2 ( 19 )

where I and $ are the data set means. This procedure involves reducing the mean of

S and L to a common mean of zero for S* and L" . In addition, the transformed data

sets, S* and L *, have standard deviations equal to the CV's of S and L. Schematics

of this transformation are shown in Appendices A and B.

It is suggested that an equality of variance test between S* and L* be made in

order to determine if an excessively large difference in variance exists . The Siegel

Tukey nonparametric rank sum method,12 proved effective in testing for equality of

variance although for small samples (less than ten ) , the test on equality of variance

will result in a certain amount of uncertainty.

8 Allowable Values for S* from Pooled Data

8.1 Bayes Solution

In the Bayes application let the smaller sample 2 (newly obtained data) of size ns

be represented by the S* values and the larger sample t ( the prior) with nl values by

L* . Initially, u in Equation 8 is obtained from Table I for M equal to the combined

sample sizes of S* and L* in order to determine the allowable for S* . CDF values are

12 Siegel, S. and Tukey, J. W., "A Nonparametric Sum of Ranks Procedure for Relative Spread in Unpaired

Samples" , Journal of American Statistical Association, September, 1960 .
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determined from Equation 3 where t = L* and I; = S; i = 1,2, ... ,n . Equating the CDF

value that corresponds to u determines the ordered (UM) value of Èn. Inverting Èn so

that the corresponding ordered test result is obtained then determines the allowable

value SB .

8.2 The Modified Hanson -Koopmans Method

The nonparametric, solution for obtaining allowable values involves pooling the val

ues from S* and L' and letting the combined ordered array of values be z in Equation

11 with sample size n = ns + ng. Let this value be denoted So ( in place of Tr.). This

method is very simple to apply yet provides results for any sample size greater than

2.

9 Transformation Procedure in Determining Allowable

The allowable value for S* is not sufficient since S and L were the original data sets

involved in the analysis and their magnitudes differ from S* and L* . Therefore, the

following transformation is required :

S8 = SBS.95 + 5.95 (20 )

where SB is the required allowable value for the small sample S. The 5.95 values

represent the lower 95% confidence value for the mean of the S values. The purpose

in using 5.95 instead of 5 is to adjust for the variability in estimating the mean 5

of the small sample S. This variability in S directly effects the computation of the

allowable SB. This often results in Se values being greater than the pth percentile of

the population of S more than 5% of the time. This is counter to the requirement for

an allowable value as described in the introduction.

10 Results and Discussions

10.1 Coverage Rates from MHK, Bayes, and RRM

In Tables III, IV, and V the coverage rate results are tabulated from the application

of the MHK, Bayes, and RRM procedures, as functions of the coefficient of variations

(CV( i ) ) for both the small sample S and the large sample L. The coverage rate

represents the percent of values less than the 10% pt. (B allowable) or the 1% pt. (A

allowable ) of a population of values representing the data set. The data was obtained

by randomly selecting values from either a normal or Weibull distribution with the

specified CV's.

The mean and standard deviation are identified as: m( 1 ) and s( 1 ) for the larger

sample L and m(2) and s(2 ) for the smaller sample S. The sample sizes are usually

n( 1 ) = 30 and n(2) = 6 for the large and small data sets respectively. CV( 1 ) and

CV(2) have similar representation for the two samples.
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In Table III results from randomly selected values obtained from normal distribu

tions with sample sizes of 30 and 6 show that for differences in the CV's less than

20% an acceptable coverage rate can be obtained from all methods since the rates

are greater than 95%. The MHK and Bayes methods provide acceptable results even

for a 60% difference in the CV values although they fail to obtain the desired 95%

minimum . The RRM coverage results with 40% differences in CV's fail to provide

acceptable coverage as shown in both the A and B allowable computation. The A

allowables could not be computed using the Bayes method since an amount of data

much greater than 36 would be required. The A allowable tables for u and M have

not been computed because of the excessively large data set requirements. When

CV(1 ) = .12 and CV(2) = .10, greater variability in L than S, the coverage is much

greater than required, therefore, resulting in potentially over conservative estimates

for the S allowable. This will usually be the case when CV( 1 ) > CV(2 ) .

The MHK and Bayes methods' ability to provide acceptable coverage when the

CV's are .16 for the small sample and .10 for the large sample shows that the methods

are quite robust with respect to differences in the spread of the data sets. In actual

engineering application it is unlikely that the material being considered in the design

( small sample) would have a variability 60% greater than that of the previously tested,

similar material ( large sample ).

In Table IV , the small sample data set was randomly selected from a Weibull distri

bution where the shape and scale values were computed so that they were equivalent

to the tabulated mean and CV's. The larger data set was obtained from a normal

distribution. The results are similar to those in Table III for the MHK and Bayes

methods. The Table IV RRM results show a reduction in the coverage when com

pared with those in Table III, an example is the 78.8% coverage for the A allowable

in Table III compared to 48% in Table IV for differences in the CV's of only 40%.

These results indicate that the RRM is sensitive to the statistical model assump

tion in representing the test data while the MHK and Bayes methods are much less

sensitive. Since MHK and Bayes are nonparametric methods, this robustness to the

model assumption could be expected.

In Table V data was obtained from normal distributions with CV's of .10 and

.16 for L and S respectively. The coverage percent and range of allowable values are

tabulated with respect to increasing sample sizes of both L and S for the RRM and

MHK procedures. Results show that increasing sample size for L with constant small

sample size for S of 6 causes the RRM process to perform poorly since the coverage

is reduced from 86.6% to 73%. The only advantage is the reduction in the range

of the allowable from 17 to 14 which is not very significant. Increasing the sample

size of S from 6 to 15 also shows a somewhat unsatisfactory result since a 81% to

72.8 % reduction in the coverage occurs . These coverage reductions are the inherent

weakness in the method which is vulnerable to situations where L has a much smaller

CV than S. The range reduction from 15 to 10 could be considered an improvement

since there is less spread in the allowable estimate. Unfortunately, this advantage is
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removed because of the coverage loss. This implies that many more (much greater

then 5%) allowable values will be greater than the 10% pt . of the population of

material strength measurements. This situation could result in an overly optimistic

allowable value and therefore a potential under -design situation .

MHK results provide reasonably acceptable coverage for all the combinations of

sample size for both L and S. That is , results show , at least for the cases considered ,

that the method is robust to a variety of sample sizes for both L and S. The range of

the allowables is affected by the sample sizes particularly for the case MHK( 15,6) vs.

MHK(30,15) . The MHK method can provide a smaller range on the allowable but

will not make significant improvements on the coverage capability when the sample

sizes are increased. In the results for MHK(60,6 ) and MHK( 15,6 ) the coverage is 88%

and 92.8% showing that increasing the sample size of L can reduce the coverage. This

is the result of sample L's increased influence in the allowable computation which the

analyst should be aware of when applying the MHK method . It is suggested that the

ratio of sample sizes n(2)/n( 1 ) should not be any smaller than .2.

10.2 A Comparison Study: Single Sample Vs. Two- sample Allowable

Computation

In Figures 2 through 5 a comparison is made between the multi-sample methods

(MHK, RRM , and Bayes) and the single sample Weibull and normal methods with

respect to the coverage percentage and the spread in the allowable estimates. In

Figures 2 and 3 results were obtained by using a random selection of data from normal

distributions. The N(6) and W(6) designations represent results from applying 6

data values to the Normal and Weibull allowable computation procedures. MHK(36 )

results are for the Modified Hanson -Koopmans method using a single sample with 36

data values from the S population distribution. CV's of .10 and .14 are introduced for

L and S in orderto represent a possible difference in the spread of the two data sets.

The ordinate values (A) shown in the figure represent the 95th percentile value of

the allowable simulation results . Ideally, the values should be located on the dotted

line for optimum coverage. Values above the line indicate that coverage has not

been achieved . Those below the line provide the coverage. This can also identify an

excessively low allowable value. In the second part of the figure the vertical dotted

lines represent the spread in the allowable estimates ( 1 to 99 percent of all the data

from the simulation results ).

The Figure 2 results show that the MHK and Bayes methods can provide an

almost optimum computed B allowable. The RRM approach fails to provide the

coverage since results show an 87% rate. Normal distribution for single sample (S )

of 6 provided reasonably good coverage as expected since the data was originally

obtained from a normal model. The Weibull results were overly conservative, possibly,

because an incorrect model was assumed for the data (normal) . MHK(36) results were

excellent as expected since the 36 values applied to the model were all from the normal

distribution representing the data sample S.
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Evaluation of the models' capabilities with respect to spread in the allowables

showed the two-sample methods' allowable values to have much less variability than

those of the single data set methods.

The results in Figure 3 are similar to those in Figure 2 except that the A allowable

was computed. The Bayes method was omitted since a very large data set would

have been required. A spread in excess of 50 was determined from applying the

single sample normal analysis with the 1% point showing an allowable of -12 . This

result can discourage the engineers from using statistical procedures for obtaining

design allowables. In this case, the single sample method, although statistically correct,

provides a design number that is incorrect from an engineering perspective. This result

has been the primary motivating factor in the authors' examination of alternate small

sample procedures. The results from MHK and RRM show a more reliable range of

values for the allowable.

In Figures 4 and 5 random samples were obtained from a NASA contractor

report,13on composite material strength measurements. The figures identify the

names of the companies that manufactured the material and the number of speci

mens tested . In Figure 4, the CV's of .10 and .13 were obtained from unidirectional

tension and crossply tension data. The results show that the MHK and Bayes meth

ods are effective in obtaining a desirable allowable estimate . The RRM results are

greater than the 10% point and therefore fail to provide an acceptable allowable es

timate. The normal and Weibull perform well in obtaining the proper coverage but

as shown previously the spread in allowables for N(6 ) and W(6 ) is much greater than

that of the MHK, Bayes, and RRM results.

In Figure 5, the random samples for both S and L were obtained from 230 data

values ( composite short beam shear test ) . The results are similar to those in Figure

4 except that the normal analysis, N(6) , fails to provide acceptable coverage and the

MHK and Bayes allowables are more conservative ( excessive coverage). A relatively

good agreement between the coverages can be identifed by comparing MHK(36) and

MHK results. A reasonable correlation also exists for the spread in the allowable

estimates. This implies that MHK can perform almost as well as if 36 values from S

were applied to the MHK analysis instead of only 6 from S and 30 from L.

11 Conclusions

Results from this comparison study show that the nonparametric MHK method is

superior in determining small sample design allowables when compared to the the

results from the other procedures evaluated in this paper. The allowable values ob

tained from the MHK method application consistently meet the coverage requirement

(95% of values less than a specified percentile of the population of all test data) for

a relatively wide spectrum of data sets. The variability of the MHK values is much

13 Reese, C. and Sorem , J. Jr. , " Statistical Distribution of Mechanical Properties for Three Graphite- Epoxy

Material Systems” , NASA Contract Report No. 165736 , 1981 .
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lower than that of the values resulting from the small, single sample normal or Weibull

analysis.

The nonparametric Bayesian method provides acceptable allowable values al

though this method is limited by the sample size requirements. This limitation pre

vents the method from being as desirable as the MHK process . Another undesirable

feature is the complexity involved in applying the method .

The Reduced Ratio Method, which is currently used by the aircraft industry,

is not effective due to its failure in providing the required coverage when there are

relatively small differences between the CV's of the prior large data set and the smaller

empirical set from which the allowable is obtained . Also, increasing the sample size of

empirical data and incorrectly assuming statistical models for the data sets prevents

proper coverage.

Application of the small, single sample analysis (Normal and Weibull) results in

extremely large variability in the allowable estimate. In addition, the methods fail to

provide acceptable coverage when incorrect models are assumed .

The proposed pooling process introduced in this paper provides a desirable method

for combining the small and large data sets when there is a difference in their mean

values . Application of this process in the MHK and Bayesian analysis results in an

effective solution in obtaining economical allowable values.
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Table I. M and u Values for Bayesian Basis Value Computation

M

M u M
M u

1 0.021953 51 0.044804 101 0.057686 151 0.064302

2 0.017855 52 0.045192 102 0.057856 152 0.064395

3 0.016529 53 0.045565 103 0.058023 153 0.064514

4 0.016140 54 0.045937 104 0.058188 154 0.064609

5 0.016199 55 0.046301 105 0.058352 155 0.064717

6 0.016516 56 0.046648 106 0.058517 156 0.064814

7 0.016997 57 0.046996 107 0.058670 157 0.064912

8 0.017590 58 0.047339 108 0.058837 158 0.065010

9 0.018264 59 0.047673 109 0.059006 159 0.065099

10 0.018996 60 0.048011 110 0.059156 160 0.065193

11 0.019769 61 0.048318 111 0.059313 161 0.065273

12 0.020570 62 0.048642 112 0.059454 162 0.065382

13 0.021391 63 0.048945 113 0.059619 163 0.065462

14 0.022223 64 0.049255 114 0.059761 164 0.065555

15 0.023060 65 0.049563 115 0.059914 165 0.065658

16 0.023897 66 0.049848 116 0.060051 166 0.065734

17 0.024729 67 0.050144 117 0.060192 167 0.065822

18 0.025554 68 0.050421 118 0.060344 168 0.065910

19 0.026368 69 0.050695 119 0.060480 169 0.065996

20 0.027171 70 0.050968 120 0.060628 170 0.066108

21 0.027959 71 0.051238 121 0.060754 171 0.066192

22 0.028734 72 0.051506 122 0.060883 172 0.066277

23 0.029491 73 0.051771 123 0.061031 173 0.066384

24 0.030233 74 0.052034 124 0.061162 174 0.066449

· 25 0.030959 75 0.052284 125 0.061292 175 0.066530

26 0.031666 76 0.052530 126 0.061420 176 0.066613

27 0.032361 77 0.052773 127 0.061547 177 0.066705

28 0.033033 78 0.053017 128 0.061679 178 0.066789

29 0.033695 79 0.053244 129 0.061802 179 0.066872

30 0.034339 80 0.053479 130 0.061933 180 0.066934

31 0.034967 81 0.053702 131 0.062065 181 0.067007

32 0.035577 82 0.053932 132 0.062179 182 0.067098

33 0.036172 83 0.054160 133 0.062293 183 0.067176

34 0.036754 84 0.054375 134 0.062430 184 0.067258

35 0.037328 85 0.054600 135 0.062553 185 0.067333

36 0.037884 86 0.054808 136 0.062667 186 0.067418

37 0.038420 87 0.055017 137 0.062784 187 0.067486

38 0.038952 88 0.055221 138 0.0628 94 188 0.067569

39 0.039461 89 0.055435 139 0.063010 189 0.067628

40 0.039964 90 0.055634 140 0.063128 190 0.067720

41 0.040459 91 0.055831 141 0.063245 191 0.067794

42 0.040944 92 0.056024 142 0.063344 19 0.067871

43 0.041409 93 0.056215 143 0.063459 193 0.067952

44 0.041864 94 0.056417 144 0.063550 194 0.068022

45 0.042314 95 0.056599 145 0.063666 195 0.068103

46 0.042751 96 0.056781 1460.063763 196 0.068178

47 0.043182 97 0.056960 147 0.063899 197 0.068237

48 0.043596 98 0.057153 148 0.063985 198 0.068315

49 0.044009 99 0.057332 149 0.064101 199 0.068388

50 0.044413 100 0.057502 150 0.064197 200 0.068459
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Table II . Modified Hanson-Knoopmans Constants for Basis Value

r sk

2

3

4

4

5

5

6

6

6

7

7

7

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

8

8

9

9

10

10

10

11

11

11

11

11

12

35.177

7.859

4.505

4.101

3.064

2.858

2.382

2.253

2.137

1.897

1.814

1.738

1.599

1.540

1.485

1.434

1.354

1.311

1.253

1.218

1.184

1.143

1.114

1.087

1.060

1.035

1.010

1

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

12

12

12

13

13

13

13

13

13

13

13

14

14

14

14

14

1.373

1.344

1.315

1.270

1.245

1.221

1.197

1.174

1.151

1.129

1.108

1.083

1.064

1.045

1.027

1.009

1
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Table III . Simulation Results/Computing Allowable Value

Coverage Rate (% ) Versus CV Differences Normal - Normal Distributions

CV Coverage Rate (%)

' B' Allowables 'A' Allowables

CV( 1 ) CV(2) MHK Bayes RRM MHK RRM

.10 .10 99.0 99.2 98.6 99.4 99.0

.10 .12 97.0 98.0 94.8 98.4 94.4

.10 .14 95.4

( 94.6 )*

91.8

95.6

(93.8) *

92.6

86.6

( 84.2 )*

81.0

95.8 78.8

(92.8) * (72.8) *

89.4 59.4.10 .16

.10 .18 88.2 89.2 72.2 83.4 41.2

.10 .20 83.2 83.0 64.2 72.6 24.6

.12. .10 . 99.8 99.8 99.6 99.8 100

CV(i) = S (i )/m ( i ) , i = 1,2 m ( 1 ) = 200 , m (2) = 50

Assumed Distributions are N (m ( 1),s( 1) ), N(m (2) ,s(2) ) = Normal distribution

for prior and currentdata sets respectively

MHK - Modified Hanson -Koopmans

Bayes - Nonparametric Bayes (Ferguson)

RRM - Reduced Ratio Method (Mil-5)

Sample size n ( 1 ) = 30 (prior), n (2)= 6 (data) forcases except ( )*
sample size n( i ) = 60 , n ( 2) = 6
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Table IV . Simulation Results/Computing Allowable Values

Coverage Rate (% ) Versus CV Differences Normal - Weibull Distributions

CV Coverage Rate (%)

'B' Allowables 'A' Allowables

CV( 1 ) CV(2) MHK Bayes RRM MHK RRM

.10 .10 98.6 99.2 97.8 99.6 88.6

.10 .12 98.0 98.4 90.8 98.4 68.6

.10 .14 94.0

( 94.2 )*

89.0

94.2

( ------)*

89.6

82.2

(90.6)*

73.4

94.4 48.0

(96.0)* (63.6)*

89.2 29.0.10 .16

.10 .18 84.8 86.8 65.0 82.0 19.6

.10 .20 76.0 76.6 57.4 69.0 14.0

.12 .10 99.8 99.8 99.4 99.6 98.2

CV(i ) = S (i)/m (i) , i = 1,2 m( 1 ) = 200 , m (2) = 50

Distributions N (m ( 1 ) ,s ( 1 ) ) , W(a(2) ,b(2) )

where N and W are Normal and Weibull models

for prior and current data sets respectively

a(2) = shape parameterand b(2) = scale

determined for prescribed CV in columns 1 and 2

* sample size n (1 ) = 15 ,n(2) =6
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Table V. Range and Coverage (% ) Versus Sample Size /Methods

Normal Distributions

Method Range (%) of 'B' Allowable Coverage (%)

(n ( 1 ) , n (2) )
01 50 99 'B' Allowable

RRM (15,6) 27.19 35.55 44.28 86.6

RRM (30,6) 29.10 36.80 44.58 81.0

RRM (60,6) 30.32 37.52 44.70 73.0

RRM (30,15) 33.42 38.23 43.84 72.8

MHK (15,6) 20.49 32.95 42.87 92.8

MHK (30,6) 25.12 34.51 43.25 91.8

MHK (60,6) 27.40 35.19 42.98 88.4

42.07 90.0MHK (30,15) 29.06 36.17

n ( 1 ) = L sample size

n (2) = S sample size

CV( 1 ) = .10

CV(2) = .16
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THE PRINCIPLES OF SKIP - LOT SAMPLING AND A

COMPARISON OF SAMPLING FREQUENCY OPTIONS

Charles J. Hunter

Defence Scientist , Operational Research and

Analysis Establishment, Ottawa , KIA OK2

and

Jay M.H. Adamsson

Graduate Student, Department of Mathematics ,

University of Ottawa

INTRODUCTION

BCA)
1 . The American , British , Canadian and Australian

(ABCA ) Armies , plus New Zealand in anZealand in an observatory role ,

jointly participate in a standardization programme on

proofing, inspection , and quality assurance ( PIQA ) . This

quadripartite working group (QWG) is mandated to investigate
areas where opportunities for standardization exist and

develop appropriate standardized procedures for implementing

specific PIQA techniques in the field .

2 .
A large component of these areas of investigation is

the applicationof statistical sampling methods for inspection

purposes . Skip-lot sampling is one statistical technique

currently being examined under project number QA / 29 " Skip - Lot

Sampling . " A quadripartite advisory paper (QAP 28 ) has

recently been published that explains the principles of this

technique [ 1 ] .

.
3 . The purpose of the present report is two-fold . The

first section briefly introduces the principles of skip-lot

sampling by means of summarizing the contents of QAP 28. This
will include identifying the conditions under which

implementing a skip-lot sampling plan may be warranted or
beneficial .

4 . The second part focuses on the comparison of three

different sampling frequency options that could be used during

the skipping phase of any skip-lot sampling plan . The quality

assurance properties of each sampling frequency option are

derived by utilizing the simplified Markov Chain approach

developed by Brugger ( 2 and 3 ) . Some advice is provided

regarding which option is most appropriate under economical

constraints or when one wishes to protect against quality deterioration .
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OVERVIEW OF SKIP - LOT SAMPLING '

5 . Skip-lot sampling inspection can be defined as "an

acceptance sampling procedure in which some lots in a series

are accepted without inspection , when the sampling results for

a stated number of immediately preceding lots meet stated
criteria..2 Interpreting this definition in a less formal

sense , a skip-lot sampling plan involves sampling some lots

according to established procedures at a specified sampling

frequency level , while other lots are accepted without

inspection .

6 . Herein lies both the purpose of skip-lot sampling

and its disadvantages . There are various ways of reducing the

inspection effort on products where a demonstrated high

quality is being maintained by the supplier . At one extreme ,

sampling could be discontinued altogether . This is not

recommended for the obvious reason that a deterioration in

process quality could remain undetected for some time .

Another option is to reduce the sample size of items inspected

within a lot , which is the method recognized in ABCA

Quadripartite Standardization Agreements ( QSTAGS) 105 and 330 .

Skip-lot sampling offers yet another option which is applied
to the lots as opposed to the individual items . This is not

to say that a skip-lot sampling plan must be applied in place

of reduced inspection when it is deemed more cost - effective .

Because one is applying these at different stages on the

inspection process it is entirely possible to overlay a

skip - lot sampling plan over a variety of inspection plans that

are applied to the individual items . This is analogous to the

commonly used statistical technique known as two -stage

sampling since the sample drawn takes place in two steps . “

Reference ( 6 ) indicates that for two-stage sampling , any type

of sampling can be employed at each step and combined to form

an overall sampling plan .

7 . Implementing a skip-lot plan also adds another

degree of risk , since an occasional bad lot might be accepted

without inspection . As will be illustrated later when the

construction of skip-lot plans are discussed , this risk can be

controlled through close monitoring of the production process ,

This section draws heavily from the contents of

reference 1 .

2

Proposed International Standards Organization ( ISO )

definition , reference 4 .

3
p . 252 reference 5 .

p . 274 reference 6 .
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plus the inclusion of intermediate retrial stages .

8 . Skip-lot sampling isis beneficial when the lot

inspection or testing is destructive or costly . Also , if

availability of inspection personnel or test equipment is
limited , skip - lot sampling may be useful . There are three

conditions which must be satisfied before skip-lot sampling is
applied to a product :

a . the product must be grouped into identifiable lots

as it is being produced or presented for

inspection ;

b .
production must be stable , to assure a homogeneous

series of lots ; and

quality must be high , as demonstrated by previous

history of the item .

C.

9 .
One of course should always investigate whether

there are any incremental administration complications or

costs associated with incorporating a skip-lot plan , and

ensure that they are less than the benefits to be garnered by

skip-lotting .

CONSTRUCTION OF SKIP - LOT PLANS

10 . The most convenient way to understand skip-lot

sampling is by means of illustration . Figure 1 shows a

skip-lot plan in its simplest form , a qualification stage and
one level of sampling . The process begins at the

qualification phase and one remains in this phase until i

consecutive lots have been accepted . When this condition is

satisfied , one switches to the skipping phase .

11 . For this example , there is only one level of

sampling in the skipping phase , hence one either samples each

successive lot with probability for theor the lot is skipped

( accepted without inspection) with probability 1-f .

There are some key features in Figure i that should

be part of any skip-lot plan . First , the process should

always begin with 100% inspection of lots . This ensures that

the product has a suitably high quality history for

skip-iotting to be applied . Next , the selection of lots to be
sampled during the skip phase should be done at random with

probability i of being selected .

12 .
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FIGURE 1

SIMPLE SKIP - LOT PLAN

START

Qualification (OU )

A sample is drawn from each lot

until i consecutive lots are

accepted .

When i consecutive lots

are accepted

Skip Phase (si).

Each successive lot is

inspected with probability f

or skipped with prob l-f

If an inspected lot is

rejected

Retrial (RSI)

Inspect next n consecutive

lots

If all n lots are accepted

If a lot is rejected
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13 . Perhaps most important , one should determine how

responsive the process must be to an adverse shift in lot

quality . A properly designed plan should respond to an
adverse shift by resuming 100 % lot inspection. The idea of

delaying the decision of changing inspection phases is

usually added to a skip-lot plan to protect against a

premature action of reinstituting 100 % inspection and

requalification of the product when only a single rejection
occurs , as shown in Figure 1 .

14 . The intermediate step acts as a checkpoint to

scrutinize the next few lots (based on experience , a minimum

of four lots are recommended ) to determine whether the lot

quality has experienced an abrupt change or not . If during

this step no additional lots are rejected the process
returns to the skipping phase . If however , the process

fails to meet the criterion for returning to the skip phase ,

100% inspection resumes at the qualification phase and the

process of requalifying by accepting i consecutive lots

starts over .

15 . In practice one needs to consider several factors
to determine how responsive the process should be . Some of

the factors are :

a . The cost of nonconforming lots passing through the

process without inspection and onto the consumer ;

b . The cost of inspecting a lot ; and

c . The likelihood of significant sudden change in

quality occurring .

16 .
Assessing the weight or importance of each of the

above factors will assist the designer of a skip-lot plan in

deciding whether they require responsive action in the form

of immediate resumption of 100% inspection , an increase in

sampling frequency , or postponing a decision by performing

an intermediate inspection step .

17 .
There are obviously many possible combinations of

designing responsiveness into a skip-lot plan . If one is

unsure about the consequences an abrupt shift in lot quality

would have , they should consult a statistician or quality

engineer that is familiar with acceptance sampling methods .

QUALITY ASSURANCE CHARACTERISTICS

There are three quality assurance characteristics

that are normally used to evaluate the effectiveness of lot

sampling plans . Each of these statistics can be graphed

18 .
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against the expected quality of the materiel entering the

sampling procedure . The resulting graphs can be used as

guidelines in designing an effective skip-lot plan , or in

evaluating a plan already in operation .

19 . The first of these statistics is the average

fraction inspected (AFI ) . This is the expected percentage

of lots which would be chosen for inspection for a given lot

quality . Figure 2 gives a graph of AFI vs lot quality for

the sampling plan in Figure 1 with i = 10 , f = 0.5 and

n = 4 . If there was no skip phase the AFI would equal one .

As can be seen in the graph, the skip-lot sampling plan

reduces the number of inspected lots for a high incoming lot

quality , but it increases rapidly once the lot quality

deteriorates . A procedure for calculating the AFI is

covered later in paragraph 27 .

20 .
The other two statistics are dependent on the AFI

and the incoming lot quality . The average output quality

(AOQ ) is calculated here under the assumption that a lot

which is inspected and found to be non - conforming is
replaced by a lot which conforms to the desired quality . As

such , a number of non-conforming lots are inspected and
removed , thereby improving the outgoing lot quality. The

graph in Figure 3 shows the output lot quality. The AOQ is

expected to remain high for the following reason. When

incoming lot quality is low , the AFI is high . Thus , a large

number of non -conforming lots are inspected and replaced ,

thereby raising the AOQ . This statistic is used mainly to

show that outgoing lot quality remains high under skip-lot

sampling even when incoming lot quality decreases . This

would be important in processes where a high outgoing

quality is essential . Given the incoming lot quality , P.

and the AFI , the AOQ is calculated by :

AOQ - P + AFI ( 1 -p) ( 1 )

21 . The third statistic is the operating

characteristic (OC ) curve . This curve gives the probability

of a random lot being accepted under this procedure . A lot

can be accepted in one of two ways . Either it can pass

through the system without being inspected , in which case

both conforming and non -conforming lots are accepted , or it

can be chosen for inspection and passed . In the latter

instance , any non - conforming lots are detected and removed .

Figure 4 gives the OC curve for the system in Figure 1 .

This curve is useful in that it gives the expected

percentage of lots that will be accepted for a given

incoming lot quality . The separation between the diagonal
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line and the skip-lot curve gives an indication of the

additional risk one takes of accepting lots as the lot

quality decreases . The OC is calculated by :

OC - 1 - AFI ( 1 -P) ( 2 )

22 . The AFI curve can be used to study the effect

which each of the parameters has on the overall procedure .

The AFI curve is the best choice of the three in most cases

since the other two statistics are dependant on the AFI . Ву

comparing the AFI curves for different choices of

parameters, a number of different scenarios for skip - lot

sampling can be analyzed and the best choice used in the

design of a plan .

23 . In order to calculate the quality assurance

curves , one must first create the transition probability

matrix for a skip-lot sampling plan . Table 1 gives the

transition matrix for the sample plan in Figure 1 . The

entries in the matrix represent the probability of

traversing from one stage in the plan to the next . Note ,

from the qualification phase ( QU ) one can only move to the

sampling step , hence there is only one entry in the QU row .

Similarly , from si one can only transfer to the retrial step

( RS1 ) . There are two possibilities from the RSI step . One

could return to si with probability pt , or transfer back to

the Qu phase with probability i-pr .

TABLE 1

TRANSITION MATRIX

QU Si RS1

QU 1

;
;

si 1

RS1 1-p* pt

24 . In general interpreting the transition matrix can

be accomplished by reading across the rows for the step or

phase which one is exiting , and down the column of the step

which one is entering .

From the transition matrix , a simplified Markov

chain approach can be used to calculate the steady state

probabilities . First , the number of times which the process

25 .
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enters each stage , represented by T ( S ) , can be calculated in

terms of the qualification stage as follows :

( 3 )T ( QU ) = T ( QU )

T ( s1 ) = T ( QU ) + p ^ T ( RS1 )

T (RS1) = T ( 81 )

solving in terms of T ( QU ) :

T ( S1 ) = T ( QU ) + p * T (S1 )

T ( S1 ) = T (QU ) 1 ( 1 - p *)

(4)

and

T (RSI) = T ( S1 ) = T ( QU ) / ( 1 - p ) ( 5 )

26 . A working table can be created once these

calculations are completed , shown as Table 2 . Column 1 of

the table gives the relative number of times the process

enters each stage . These terms are given as the

coefficients of T ( QU ) in equations ( 3 ) - ( 5 ) above . Column

2 is a simplification of the terms in column 1 .

The terms in the first two columns only give the

number of times entering each phase . Column 3 gives the

expected number of lots in each phase , and column 4 is a

simplification of column 3. Hence , column 4 is the relative

number of lots expected each time the process enters the

phase . By multiplying column 2 by column 4 , we get the

relative total number of lots in each phase . This is

recorded in column 5 . The steady state probabilities in

terms of lots to be inspected during each phase is then

obtained by taking each entry in column 5 , and dividing it

by the sum of the values from column 5 ( denoted by D ) . The

AFI is calculated from column 5 of the working table by

multiplying each term in the column by the corresponding

sampling frequency for that step , then summing these terms

together and divide by D to obtain the AFI .

27 .
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SAMPLING FREQUENCY COMPARISON

29 . The examination of sampling frequency options for

skip-lot sampling plans originated as a by -product of the

first author's involvement as the Canadian project officer

for QWG /PIQA project QA / 29 . During the process of producing

an advisory paper ( 1 ) on the principles of skip - lot sampling

it was noted that it was common to choose the sampling
frequencies for plans in an ad-hoc fashion . This lack of

formal thought in selecting sampling frequencies prompted
the initiation of this study .

30 . In an effort to provide quality assurance

personnel with some concrete guidance on selecting suitable

sampling frequencies , three different options have been

defined . They are based on simple generating functions for

determining the sampling frequency at each successive stage

in the skipping phase . Table 4 lists the generating

functions for the three sampling options that are to be

compared .

31 . The form of the generating functions were derived

from those sampling frequencies most often applied for

skip-lot plans, and are based on the premise of conservative

sampling initially and more economical ( less frequent )

sampling at subsequent stages . Each option therefore starts

the skip phase with sampling at the 50 % level , or i in every

2 lots being inspected . Option A retains its

TABLE 4

SAMPLING FREQUENCY GENERATING RULES

Option Generating

Function

A fn

1

n+ 1

for n - 1,2,3,4

B

f , - ( in
for n - 1,2,3,4

1
С fo

where fo - f -1-1

for n 1,2,3,41
O

fn-1

1
+

f
n - 2
En-2
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conservativeness throughout , reducing the sampling frequency

slowly , whereas option B is the most liberal option in terms

of the fraction of lots being inspected . Option c (also

referred to as the Fibonacci option ) , meanwhile , duplicates

the conservativeness of Option A for the early sampling

stages , then begins to relax the inspection rate with

sampling frequencies set between the two extremes .

32 . These features of Option C make it a good

candidate as a compromise solution for someone who is

concerned with both keeping inspection costs down and

retaining good responsiveness for detecting quality changes .

33 . Figures 5 , 6 , and 7 illustrate skip-lot sampling

plans with a qualification phase , followed by a skip phase
that contains four sampling stages . Each sampling stage

includes an intermediate retrial step to check for quality

degradation Figure 5 depicts the plan for sampling

frequencies generated from option A. Figure 6 gives the

equivalent plan for frequencies obtained from option B , and

similarly , Figure 7 provides the plan derived from option C.

34 . The remaining portion of this report compares the

quality assurance properties of these three sampling plans

in terms of their respective operating characteristic (oc) ,

average outgoing quality (AOQ ) , and average fraction of lots

inspected (AFI ) curves . Initial values are assigned to the

clearance numbers ( i , xg , xz, and xz ) . Later , a sensitivity
analysis is performed on the clearance numbers to measure

their impact on the shape of the aforementioned curves .

35 . The transition matrix and working table for this

four stage process is derived in Annex A. The graphs in

Figures 8 , 9 , and 10 are the AFI , AOQ , and oc curves for the

three sampling frequencies . In creating these graphs , the

values for i , x,, xz, and Xz are 10 , 5 , 10 , and 15

respectively .

36 . The AFI curves shown in Figure 8 demonstrate the

differences between the three options . When the lot quality

is very high ( above 95% ) , the average fraction inspected is

very low . Also , the rate at which the AFI rises as lot

quality decreases is very slow . However , when the lot

quality drops lower (below 90 % ) , the AFI increases rapidly .

Therefore , a small change in lot quality in this range will

result in a large change in the average fraction of lots

inspected . This is characteristic of all three curves . At

high quality levels , the AFI for sampling option A is

greater than for option c , which in turn is larger than

option B. The lower AFI is more economical, however , it

145



F
I
G
U
R
E

5

S
T
E
P
P
I
N
G

R
U
L
E

:1/(n +1)

Q
U
A
L
I
F
I
C
A
T
I
O
N

S
T
A
G
E

I
n
s
p
e
c
t

1
0
0

%o
f

t
h
e

l
o
t
s

.

I
f

ic
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

S
A
M
P
L
I
N
G

L
E
V
E
L
S

1
2

3

I
n
s
p
e
c
t

1,-
1

/2

o
f

t
h
e

l
o
t
s

I
n
s
p
e
c
t

f
a

=1/3

o
f
t
h
e

l
o
t
s

I
n
s
p
e
c
t

f
z

=1/4

o
f

t
h
e

l
o
t
s

I
n
s
p
e
c
t

f
q

=1 /5

o
f
t
h
e

l
o
t
s

u
n
t
i
l

al
o
t

i
s
r
e
j
e
c
t
e
d

X,c
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
p
p
r
o
v
e
d

X
2
c
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
p
p
r
o
v
e
d

X
z
c
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
p
p
r
o
v
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

+

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
f

a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f
a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f

a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f
a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f
al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

146



F
I
G
U
R
E

6

S
T
E
P
P
I
N
G

R
U
L
E

: "

Q
U
A
L
I
F
I
C
A
T
I
O
N

S
T
A
G
E

I
n
s
p
e
c
t

1
0
0

%o
f

t
h
e

l
o
t
s

.

I
f

ic
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

S
A
M
P
L
I
N
G

L
E
V
E
L

1
2

3
4

f
t

I
n
s
p
e
c
t

f ,=1/2

o
f
t
h
e

l
o
t
s

I
n
s
p
e
c
t

f
y

=1/4

o
f
t
h
e

l
o
t
s

I
n
s
p
e
c
t

f
j

=1/ 8

o
f
t
h
e

l
o
t
s

I
n
s
p
e
c
t

f= 1/1
6

o
f
t
h
e

l
o
t
s

u
n
t
i
l

al
o
t

i
s
r
e
j
e
c
t
e
d

X,c
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
p
p
r
o
v
e
d

X,c
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
p
p
r
o
v
e
d

Xc
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
p
p
r
o
v
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f
al
o
t

i
s

r
e
j
e
c
t
e
d

+

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
f

a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f

a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f
a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f
a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

147



F
I
G
U
R
E

7
?

S
T
E
P
P
I
N
G

R
U
L
E

:F
I
B
O
N
A
C
C
I

N
U
M
B
E
R
S

Q
U
A
L
I
F
I
C
A
T
I
O
N

S
T
A
G
E

I
n
s
p
e
c
t

1
0
0

%o
f

t
h
e

l
o
t
s

.

I
f

ic
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

S
A
M
P
L
I
N
G

L
E
V
E
L

1
2

3

I
n
s
p
e
c
t

1,=1/2

o
f

t
h
e

l
o
t
s

I
n
s
p
e
c
t

f
q

=1/3

o
f

t
h
e

l
o
t
s

I
n
s
p
e
c
t

f
z

=1/5

o
f
t
h
e

l
o
t
s

I
n
s
p
e
c
t

f=1/8

o
f
t
h
e

l
o
t
s

u
n
t
i
l

a l
o
t

i
s
r
e
j
e
c
t
e
d

X,c
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
p
p
r
o
v
e
d

X,c
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
p
p
r
o
v
e
d

X
z
c
o
n
s
e
c
u
t
i
v
e

l
o
t
s

a
p
p
r
o
v
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f
al
o
t

i
s

r
e
j
e
c
t
e
d

+
1

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
n
s
p
e
c
t

e
a
c
h

o
f

t
h
e

n
e
x
t

4l
o
t
s

I
f
a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f
a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f
a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f
a
l
l

4l
o
t
s

a
r
e

a
p
p
r
o
v
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

I
f

al
o
t

i
s

r
e
j
e
c
t
e
d

148



0
.
2
5

F
i
g
u
r
e

8

A
V
E
R
A
G
E

F
R
A
C
T
I
O
N

I
N
S
P
E
C
T
E
D

1 0
.
9

0
.
8

0
.
7

. 0
.
6

AVERAGEFRACTIONINSPECTED

0
.
5

0
.
4

0
.
3

0
.
2

0
.
1

0

0
0
.
0
5

0
.
1

0
.
1
5

0
.
2

(1-P)

O
p
t
i
o
n

A
O
p
t
i
o
n

B
O
p
t
i
o
n

C

149



also allows more non - conforming lots to pass without

inspections . As can be seen in the graph , the AFI for

option c increases more quickly as the lot quality

decreases , eventually approaching the curve for option .

This feature is desirable since it will permit an easier

detection of a shift in quality by monitoring the AFI .

37 . The proportion of non-conforming lots passed is
shown by the AOQ curve in Figure 9 . This curve demonstrates

that the average output quality is lowest for option B and

largest for option A , with the AOQ for option c in between .

Another characteristic shown by this graph is that the AOQ

remains high , even when lot quality decreases . The reason

for this was explained earlier in paragraph 20 .

38 . The occurve in Figure 10 shows that for superior

lot quality , there is a high probability of a lot being

accepted , however this decreases rapidly when lot quality

decreases . Option A has the lowest probability of

acceptance of the three choices , followed by option c , then

option B. The options with the lower AFI would be expected

to reject a smaller number of lots , thereby a larger number

of lots would be accepted , giving a higher oc curve.

39 . This comparison procedure can also be used to

study the effects of altering the clearance variables ,

denoted by xi , in the skip - lot procedure . Thegraphgiven
in Figure 11 ' shows the AFI curve for variations in xg , when

the sampling frequencies are generated from option c

( Fibonacci ) . As can be seen in the graph , when the quality

level is high , the AFI is changed very little for the
different choices . However , when the quality of the lots

decreases , the AFI shows a marked difference. When the

value for x, increases , the AFI increases simultaneously .

Thus , a larger value for x, will result in larger changes in

the value of the statistics . This in turn increases the

chance of detection when negative changes in quality occur .

40 . It must be remembered , however , that the values

for AFI and the other statistics are given for a steady

state process . If the situation is that of a limited number

of lots being produced , then a large value for x, would have

an adverse effect on the skip-lot procedure . If the value

is too large , more time will be wasted in the first stage

than is necessary . This is another factor which must be

taken into account when a skip-lot plan is being designed .

The effect of changing the other clearance

variables is much the same as that of changing x,, but to a

smaller extent . By raising the value of xg, for ' instance ,

the effect on the curves are very much similar , but the

differences in the AFI are smaller than for a similar change

41 .

in X ,
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SUMMARY

42 . This report has introduced the reader to the

statisticallot inspection technique known as skip-lot

sampling . The principles behind the method were explained

by using a simple one-stage skip-lot plan as an example .

The conditions under which implementing a skip-lot plan into

a quality assurance process would be justified were also

provided .

43 . The second part of the report dealt with three

different sampling frequency options that could be used for

multi - stage skip-lot sampling plans . These options were

compared by deriving their respective quality assurance

characteristics using the simplified Markov chain approach .

It was noted that the sampling frequency option c , generated

from the Fibonacci sequence of numbers offered a good

compromise between minimizing the inspection effort and

maintaining a high degree of responsiveness to lot quality
deterioration .

A sensitivity analyses on the clearance numbers

showed that the clearance number xg , associated with the

first sample stage , had the largest impact on the shape of
the AFI curve . It was also demonstrated that one can

customize any skip-lot plan through manipulation of the
clearance numbers .

4.4 .
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ANNEX A

DATED OCTOBER 1991

MATHEMATICAL COMPUTATIONS

1 .
This Annex provides the mathematical details for

computing the steady state probabilities in terms of lots

for the four-stage skip - lot plans given in Figures 5 , 6 and

7 . Table A-l shows the transition matrix with non-zero cell

entries where it is possible to transit from the step given

by the row to the corresponding column , representing the

step being entered .

TABLE A - 1

NEW VERSION

QU si RS1 S2 RS2 S3 RS3 S4 RS4

Q
U -

1

. -

1

Si

-

1 - p % 1 pX1

-

. - - -

RS1 1 - plo pa

. - - . - -

S2

- - .

1 - pX2 PX2

- -

RS2 1 - pf p4

0 U

- -

S3

. - - -

1-7X3 px3

RS3 1 - pf O

- -

p4

S4

- - - -

1

RS4 1 - p4

- - - - -

p4

-
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DATED OCTOBER 1991

2 .
The stationary probabilities in terms of sequences

or runs of each step can be determined by summing down the

respective columns of this matrix . These equations can be

restated in terms of T (Qu ) which gives the expressions

identified by the bracketed numbers for each step .

( 1 )

T ( QU ) -T (QUD

T ( s1) -T ( QU) + P TRS1 )

T (RS1 ) - ( 1 - pli) T ( S1 )

T ( S1 ) -T (QU ) + p * (1-7X ) T ( S1 )

( 2 )

T( S1 )
T ( QUD

1 - P' ( 1 -pai )

( 3)

T ( RS1)
. ( 1 - pX2) . T ( QU )

1 -p4 ( 1 - pii )

T ( S2 ) - plit ( 51) + P + T (RS2)

T (RS2) - ( 1 - pla ) T ( S2 )

T ( S2 ) - plit (51) +P* ( 1 - pa) T ( S2 )

T (S2 )
plit ( S1)

1 - P * ( 1 - pa )
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(4)

T ( S2 ) O
pist ( Q )

( 1 -P' ( 1 -pl. ) ] : 1 -P ( 1 - play ]

( 5 )

T (RS2 )
( 1 - play plsT ( QU)

( 1 -p* ( 1 -pl. ) ( 1 - ( 1 - pła ) ]

T ( S3) - pła T (S2 ) + p'T (RS3)

T ( RS3) - ( 1 - pas ) T ( 53 )

T(S3 ) - plaT ( S2) + p4 ( 1 -pls ) T ( S3)

T (S3)
plot (52 )

1 - p* ( 1 - p73 )

( 6 )

T ( S3) -
pripazT (QUD

( 1 - P ' ( 1 - p ? i) ] ( 1 - P ' ( 1 - pła ) ) ( 1-7* ( 1 - p?s ) ]

( 7 )

T (RS3)
pXpX: ( 1 - Pº ) T ( QU)

( 1 - P' ( 1 - pł1 ) ( 1 - p4 ( 1 - p?a ) ] ( 1 - p * ( 1 x ) ]

T ( 94) - påst ( 53 ) + p' T (RS4)

T (RS4) -T (54 )

T ( 34 )
. plst (53)

1 -p4
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( 8 ) ( 9 )

T (RS4 ) -T ( S4 )
priplapisT ( QU )

( 1 - p* ( 1 -pas ) ] ( 1 - p* ( 1 -pła ) ] ( 1 - p * ( 1 - p &s ) ) (1-4)

3.

In order to obtain the steady state probabilities

in terms of lots one must extract the coefficients from

equations 1-9 and multiply them by the expected length of

each step in terms of lots . A working table can be

constructed (Table A-2 ) to assist in keeping track of the

algebraic operations that need to be carried out . Reference

[ 2 ] provides the justification for using this working table

method .
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TABLE A-2 WORKING TABLE

STEP

COLUMN 1

COEFFICIENT OF T (OU )

QU 1

si
1

1-p4 ( 1 -pli )

RS1

( 1 - pa)

1 - p* ( 1 - pas )

S2 pX1

( 1-7° ( 1 -p?i ) ] ( 1 - p * ( 1 - p72 ) ]

RS2 pli ( 1 - pła )

( 1 -P' ( 1-2X ) ) [ 1 - p4 ( 1 - p ) ]

S3 ptpla

( 1 - p4 ( 1 - p % ) ] ( 1 - p4 (1 - paz) ] [ 1 - P ( 1 - p ?s) ]

RS3 plspls ( 1 -pas )

( 1 - p4 ( 1 - pas) ] [ 1 - p* ( 1-722 ) ] [ 1 - p* ( 1 - pas ) ]

S4 piipl2px ;

( 1 -p* ( 1 -pas ) ) ( 1- * ( 1 - pas ) ] [ 1 - P* ( 1 -pas ) ) ( 1 - P )

RS4 ptpt2px;

( 1 -P* ( 1 -p ) ] [ 1 -P' ( 1 - pła ) ] [ 1 - P ( 1 -pas ) I ( 1 - P )
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WORKING TABLE (CONTINUED ).

COLUMN 2

COLUMN 3

SIMPLIFICATION OF COLUMN 1

EXPECTED NO . OF LOTS

( 1 - P' ( 1 -pl. ) ] ( 1 - p * ( 1 - x2 ) ) ( 1 - p4 ( 1 - px ) ] ( 1 -pa ) ( 1-21)

p * ( 1 -P)

( 1-P' ( 1 -play ] ( 1 -P' ( 1-pas ) ] ( 1 - P ) ( 1 -pli )

fi ( 1 - P )

4

( 1 -pl. ) ( 1 -p4 ( 1 - play ] [ 1 -p4 ( 1 -pls ) ] ( 1 - P )

pli ( 1 -p* ( 1 -p73 ) ] (1-4) ( 1 - play

1, (1 - P )

4

pX ( 1 -pła ) ( 1 - p* ( 1-2%3 ) ] (1-4)

plip 2 ( 1 - P )
( 1 - pas )

f, ( 1 - P )

4

plapla ( 1 -p?s ) ( 1 -P' )

p²p²2p % 1

f. ( 1 - P ){ )

4

plıplaps
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WORKING TABLE (CONTINUED ).

COLUMN 4 COLUMN 5

SIMPLIFICATION OF

COLUMN 3

( 2 ) X_ ( 4 )

f2f2f2f, ( 1 - P ) fefef ; f. ( 1 -P1 ) (1-2 ( 1 - p % ] ( 1 -P' ( 1 -pła ) I ( 1 -P' ( 1-p73 ) ] ( 1-2 )

pdf2f2f, ( 1 -pas ) fgfgf pi(1 - pis) ( 1 -P' ( 1 -p a ) I ( 1 -P ( 1 -pas ) ] ( 1 - P )

4p / ( 1-P) f , f2fzf.
f2f2f2f4p / ( 1 - P) ( 1 -pms ) ( 1 - P ( 1 - pás) ] [ 1 -P' ( 1 -pks ) ] ( 1 - )

pif fgf, ( 1 - p22 ) f, f,fipi( 1 - pX2) pas ( 1 - p4 ( 1 -p s ) ] ( 1 - P )

4p (1 -P) f , f2f2f,
f2f2f2f4pi( 1 - P) pas ( 1 - p ?a) ( 1-7* ( 1 -pas ) ] ( 1 - P )

piffzf, ( 1-2 ) f , fzf.p1( 1 - pXs) paspaz ( 1 - P )

48 * ( 1 -P) fgfgfgfg f2f2f2f,40 * ( 1 - P) pripka ( 1 -pks ) ( 1 - P )

piffet f ,fzf, p pXsplapis

48 * ( 1 - P ) fgfgfgf f2f2f2f,4 p + (1 - P) priplapas
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4 . Column 1 of Table A-2 lists the coefficients of

T (QU ) from equations 1-9 . Column 2 is a simplification of

column 1 by getting rid of the denominators . This

multiplication or division performed on all the values in

the column does not effect the end result . Column 3 gives

the expected length for each step in terms of lots . column

4 is a simplification of column 3 . Column 5 is the product

of the values from columns 2 and 4 .

5 . The steady state probabilities for lots are

obtained by taking each of the terms in column 5 and

dividing them by D , the sum of all the terms in column 5 .

6 . To compute the AFI curve for each of the sampling

frequency options from Table A-2 one proceeds in the same

manner as was explained in paragraph 27 of the main report

for the simple skip-lot case . Each of the terms in column 5

are first multiplied by the sampling frequency corresponding

to the respective skip-lot plan . This equates to

multiplying the column 5 entries for the qualification stage

and the retrial stages by one ( 100% inspection ) and the

sampling stages by their respective sampling frequencies

i = 1,2,3,4 ) . These values are then summed together

and divided by D to obtain the AFI .

( fi , i
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Toxic Fumes Reduction Modifications

to the M2A2 Bradley Fighting Vehicle

Linda L. C. Moss and William P. Johnson

U.S. Army Ballistic Research Laboratory

Aberdeen Proving Ground, MD 21005-5066

ABSTRACT

Carbon monoxide concentrations measured in the M2A2 Bradley Fighting Vehicle were high enough to

cause the crew's predicted carboxyhemoglobin level to exceed the Military Standard during firings of the

the acceptance test scenario. Five vehicle modifications were proposed to correct this deficiency, and

experiments were conducted to identify carboxyhemoglobin levels of the modified vehicles relative to the

baseline vehicle. The sample data was generalized to determine the probability that each configuration

would pass the toxic fumes acceptance test . Recommendations for permanent vehicle modifications were

made to the Program Manager-Bradley Fighting Vehicles based on the study results.

1. INTRODUCTION

The last Quality Performance Test for new or modified Bradley Fighting Vehicles is the Toxic

Fumes Acceptance Test. This test assures that the crew's exposure to toxic fumes from the propellant

gases of the weapon system is within safety limits. The safety limits for carbon monoxide stated in the

Military Standard 1472C, paragraph 5.13.7.4.2 are:

Carbon monoxide in personnel areas shall be reduced to the lowest levels

feasible. Personnel shall not be exposed to concentrations of carbon monoxide

( CO ) in excess of values which result in carboxyhemoglobin levels in their blood

greater than the following percentages : 5% COHb, all system design objectives

and aviation systems performance limits; 10% COHb, all other system

performance limits.

Prior to March 1989, five of the ten vehicles tested with 500 - horsepower engines failed the toxic

fumes acceptance test. That is, the predicted carboxyhemoglobin level for one or more crew members

exceeded the 10% limit. Consequently, the Program Manager-Bradley Fighting Vehicles formed a working

group to develop and test modifications for reducing the toxic fumes concentrations within the Bradley

crew compartment during firings of the Bradley weapon system . The working group members included

representatives from the Office of Program Manager-Bradley Fighting Vehicles (PMO), the Ballistic

Research Laboratory (BRL), the Combat Systems Test Activity ( CSTA ), the Test and Evaluation

Command (TECOM ), the Army Materiel Systems Analysis Activity ( AMSAA ), the Training and Doctrine

Command ( TRADOC) and the FMC Corporation.

The working group concluded that several proposed vehicle modifications offered sufficient

potential for reducing the toxic fumes in the Bradley to warrant testing. Descriptions of the recommended

modifications are presented in subsequent sections of this report.

The test program objectives were:

(1) To quantify the level of toxic fumes produced in the unmodified, 600

horsepower M2A2 Bradley Fighting Vehicle during firings of the acceptance

test .
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( 2 ) To quantify the relative effectiveness of proposed Bradley Fighting

Vehicle modifications for reducing toxic fumes concentrations within the

Bradley Fighting Vehicle during firings of the acceptance test.

( 3) To provide a recommendation to the Program Manager-Bradley Fighting

Vehicles for a solution to the Bradley toxic fumes problem based on test

results and data analysis.

The acceptance test scenario is a combination of TRADOC events 12 and 15. The scenario , listed

in Table 1 , shows the sequence for firing the M242 25 -millimeter (mm) gun and the M240C 7.62-mm

coaxial machine gun . The method of firing is either a single-shot mode or a burst mode. At the conclusion

of the 46 -minute scenario, 320 25-mm rounds and 300 7.62-mm rounds are expended.

Table 1. Bradley Fighting Vehicle Acceptance Test ( TRADOC Events 12 & 15)

NUMBER OF ROUNDS

25 -mm 7.62-mm

10

10

10

10

MODE

SS

SS

SS

SS

TIME

( min )

29

30

31

32

33

MODE

SS

SS

SS

SS

10 SS SS

NUMBER OF ROUNDS

25 -mm 7.62-mm

10

10

10

10

10

10

10

10

10

10

10

10

3410

10

10

TIME

(min)

0

2

4

6

8

10

11

12

13

14

15

17

19

20

21

21.5

22

22.5

23

23.5

24

25

26

27

28

SS

SS

SS

SS

SS

SS

21

21

21

21

42

21

43

SS

SS

SS

SS

B

B

B

B

B

B

B

SS

SS

SS

B

SS

B

B

SS

SS

35

36

36.5

37

38

39

40

40.5

41

41.5

42

42.5

43

43.5

SS

B

SS

B

SS

B

SS

B

1
5

5

5

5

5

S

5

10

10

10

I
o
n
u
u
u
u
u
u
u
u

44 SS

44.5

45

46

55

55

B

B

B

SS

B = Burst / SS = Single Shot

2. PRETEST DATA ANALYSIS

In preparation for the test program , the toxic fumes data collected during the period July 1983 to

March 1989 were examined to determine the variability of the carboxyhemoglobin ( COHb) levels

computed for the Bradley Fighting Vehicle (BFV ) from the earlier tests. This information was sought to

guide the test design and sample size recommendations.

MIL -STD - 1472C dictates that passage of the BFV system is contingent on "all" vehicle positions

having COHb values less than 10%. Consequently, our analysis focused on the highest COHb value

calculated within the test scenario, regardless of crew position . This value will be subsequently referred to

as the vehicle COHb level . We reasoned that if the highest COHb level satisfied the military standard, all

other COHb levels within the vehicle satisfied the standard. Our approach was conservative, taken to
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guarantee that the baseline and /or modified vehicles provided protection to every crew position.

Therefore, all analyses to determine the best vehicle configuration used the vehicle COHb level.

Percentage data are frequently transformed using the arc sine transformation to stabilize the

variances. However, the arc sine transformation neither increased stability of the variances nor changed

the results in terms of significant differences. Consequently, all calculations within this report were

performed with the vehicle COHb values in percentage units.

The mean vehicle COHb value calculated from the historic data is 8.9% with a standard deviation

of 2.37. This information was used to determine the maximum mean COHb level that could be tolerated

with a given sample size while retaining a predetermined level of confidence that the population mean

COHb level would be less than 10%.

If we assume the sample standard deviation in our tests is no more than 2.37, then to verify the

hypothesis that the true mean of the BFV COHb level was less than 10% with the desired 99.5 % level of

confidence, the sample mean calculated from a minimum of six experimental replicates can not exceed

6.1%. This was a reasonable goal for at least one of the proposed modifications, the BIGGRS modification

(described in section 5), since its projected performance in the A0 vehicle was 4.0%'.

The discussion to this point has addressed the criterion established to provide a 99.5 % level of

confidence that the "mean " vehicle COHb values would not exceed 10%. To establish tolerance limits with

this high level of confidence that a large percentage of the population of COHb values would not exceed

10%, a much larger sample size would have been required. For example, if we had wished to state with

99.5 % confidence that at least 75 % of the population of vehicle COHb values would be less than 10%, a

minimum of 30 experimental replications of each vehicle configuration would have been necessary when

assuming a normal distribution. Resource constraints prohibited the testing of larger sample sizes within

this test program .

3. DATA COLLECTION

Although the primary objective of this test program was the documentation of carbon monoxide

at the crew positions, other toxic fumes (such as carbon dioxide, ammonia and oxides of nitrogen ) were

monitored to insure that their levels were below the applicable standards . These additional data will be

stored in a CSTA database for future reference and analysis.

Toxic fumes data were collected by the Chemistry Branch of CSTA by placing sampling tubes in

the breathing zones of the driver, gunner, commander, and in the center of the crew compartment. The air

was continuously analyzed for ammonia and carbon monoxide at all four locations and for carbon dioxide

at the commander and crew positions. All measurements were made with rapid response, non-dispersive,

infrared gas analyzers. Oxides of nitrogen (nitric oxide and nitrogen dioxide) were continuously analyzed ,

at the commander and crew positions, by chemiluminescent analyzers. Concentration data were recorded

at a minimum of four times per second.

Differential pressures (inside · outside) were measured in the turret by a capacitance type

differential pressure sensor (-0.1 to +0.1 psid ) and recorded at a minimum of four times per second. The

interior temperature was measured in the turret by T -type thermocouples.

All testing was completed with 25 -mm M793 TP - T and 7.62-mm Ball / Tracer ammunition.

Firings were not conducted if the wind speed exceeded 10 mph or if the relative humidity exceeded 90 % .

All firings were conducted under the same general meteorological conditions and as close together as

possible.
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4. ANALYTICAL PROCEDURES

Carboxyhemoglobin levels, for each crew position, were calculated from the measured carbon

monoxide by the modified Coburn - Forster- Kane equation

2,3

1 co

% COHb, = % COHb, e
* 4 + 218 (1 -cilla, B 1403

where:

% COHb, = COHb concentration at the end of the computation interval (percent) .

% COHb. = COHb concentration at the beginning of the computation interval (percent).

t = computation interval ( 15 seconds).

CO = average concentration of carbon monoxide detected during the computation

interval (in parts per million ).

A & B are regression constants determined by the work level.

The carbon monoxide data were integrated at 15 second intervals throughout the test scenario .

Calculations began at the initial detection of carbon monoxide and continued until the concentration

returned to pre-fire levels. The COHb increment was calculated using the average carbon monoxide

concentration, a computation interval of 15 seconds, and a work level characteristic of the physical exertion

required in weapon firing. An initial COHb concentration of 1.0% was assumed per MIL -STD - 1472c. The

computed COHb concentration from one iteration became the beginning COHb concentration for the

successive iteration. Final COHb concentrations were computed after the test scenario for each vehicle

configuration. Statistical comparisons of the mean COHb levels were made both parametrically, under the

assumption that the COHb levels were normally distributed, and nonparametrically. The results of these

comparisons, presented in subsequent sections of this report, served as the basis for the recommendations

included herein .

5. PHASE I TESTING

5.a. VEHICLE CONFIGURATIONS

Phase I of the test program included testing of three vehicle configurations within TRADOC

Events 12 & 15. These included the baseline vehicle, a modification of the rear hull fan, and the vehicle

with the Bradley Improved Gun Gas Removal System (BIGGRS or BG) kit attached.

The baseline test vehicle recommended for this study was the 600 -horsepower M2A2 Bradley with

a constantly operating Noah-Howden engine cooling fan . The test vehicle was considered a "worst" case for

toxic fumes because of the internal under-pressure condition expected during concurrent operation of the

engine, the Noah -Howden cooling fan and the vanaxial rotor fan .

The modification of the rear hull fan, referred to as the Fan Mod, modified the operational

sequence of the rear hull fan. The activation time of the rear hull fan was changed from 15 seconds after

gun trigger release to activation at trigger pull . The rear hull fan remained operational throughout trigger

depression and continued to operate for a minimum of one minute fifteen seconds after trigger release

( Figure 1) . This modification increased the rear hull fan operational time from 37% of the scenario time to

90 % . The operational sequence of the driver's hull fan was not changed; it activated 15 seconds after

trigger release, remained on high speed for a maximum of one minute or until the trigger was pulled for the

next scenario event. Both fans directed the air flow from the exterior of the vehicle to the interior.
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Figure 1. Fan Control Box Operational Sequence

Post Release TimeTrigger

Pull

Trigger

Release
15 sec . 75 sec .

Current

Configuration
Fan Operating

Mexlilicd

fan Operating

The third vehicle configuration tested in Phase I was the BIGGRS kit, which consisted of three

parts: (a) a removable cover (or sock) for the coaxial machine gun feed chute, ( b ) improved seals for the

coaxial machine gun access doors and (c) a deflector to direct the gases from the 25-mm chain gun breech

to the vanaxial rotor fan located between the main gun and the coaxial machine gun . However, an

independent decision by the PM -BFV to include improved door seals on all M2A2 future production

vehicles and on the test vehicle eliminated the need for the seals as part of the BIGGRS kit. The improved

seals for the coaxial machine gun access doors used with the baseline and all vehicle modifications were

developed and installed by the FMC Corporation.

An experimental test design was constructed to test the hypothesis that the mean COHb values of

the baseline vehicle (BL), the fan modification ( FM ), and the Bradley Improved Gun Gas Removal System

(BG) were equal. The alternative hypothesis was that at least one mean value differed from the others. Six

replicates of each configuration were planned for a total of 18 tests. A “ pseudorandom “ design was planned

in two blocks. Three replicates from each configuration made up a block . The design is considered

pseudorandom because the first block would be completed before the start of the second block . This

approach provided a checkpoint on the efficiency of the potential vehicle modifications. At the halfway

point, a cursory analysis was performed to determine if the tested modifications reduced the vehicle COHb

levels as desired .

5.b. PARAMETRIC ANALYSIS

Analysis of variance is robust to the assumption of normality; however, it is not robust to

heterogeneity of variance. Therefore, Cochran's test was implemented on the variances of the three

configurations. The results indicated no significant difference among the variances; hence, the assumption

of homogeneity of variance appeared justified.

At the a = 0.10 level of significance chosen by the working group, the critical F -value, F0.10 (2,6 ),

equals 3.46. As a result of the ANOVA , the F-statistic equaled 1.00. Since the F -statistic was less than the

critical value, we failed to reject the null hypothesis of equal means. This implied that within the

constraints of the statistical test, neither the Fan Mod nor BIGGRS provided significantly lowered COHb

levels than the baseline configuration.

A plot of the percent COHb obtained from each crew position in each vehicle configuration

tested is shown in Figure 2. Here we observed that each configuration had at least one sample point close

to or greater than the limit specification of 10%. Figure 3 shows the mean vehicle COHbvalue and

confidence interval for each configuration . The overlapping intervals indicate that the mean COHb levels

are not significantly different. The estimate of the standard deviation, Sp, used to construct the confidence

intervals is the square root of the mean squared error from the ANOVA , which is 1.40 .

169



Figure 2 . Percent COHb by Position
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5.c. NONPARAMETRIC ANALYSIS

In addition to the parametric analysis, the Kruskal -Wallis Nonparametric Test was performed on

the ranks of the data. Since three tests were performed on each configuration, a total of nine data points

(nine COHb values) were ranked, with the lowest receiving a rank of one . The test statistic, T , computed

as described by Conover is 3.29. This value is less than the exact 1 - a (0.90 ) quantile which equals 4.6 .

Therefore, as with the parametric analysis, we would fail to reject the hypothesis that the configurations

have equal mean COHb values.

6. ADDITIONAL MODIFICATIONS CONSIDERED

The conclusions in Phase I forced consideration of alternative vehicle modifications. No growth

potential appeared to exist for the BIGGRS modification; therefore, it was eliminated from further

consideration. A comparison of the baseline and Fan Mod data collected during Phase I indicated that the

mean COHb level, at each position and for the vehicle, was reduced from the baseline levels during the Fan

Mod configuration tests. The baseline test conditions required normal operation of both the driver's and

the rear hull fans; the Fan Mod configuration required normal operation of the driver's fan and increased

operating time of the rear hull fan. The increased operating time of the rear hull fan increased the airflow

within the test vehicle from that of the baseline configuration . These observations led to the hypothesis

that the vehicle COHb level could be reduced further by increasing the airflow within the test vehicle.

Two options were recognized for increasing the vehicle internal airflow . The first, hereafter

referred to as the Dual Fan (DF) modification, increased the airflow by changing the operating pattern of

both the rear and the driver's hull fans as previously illustrated in Figure 1. Both fans were activated

simultaneously at trigger pull and remained operating for a minimum of one minute fifteen seconds after

trigger release .

The second option, hereafter referred to as the Reversed Fan (RF ), activated both the rear and

driver's hull fans at trigger pull and physically reversed the driver's hull fan. The reversal of the fan

directed the airflow from the interior of the vehicle to the exterior.

Three replications each of the Reversed Fan and the Dual Fan modifications, within TRADOC

Events 12 & 15, were recommended for Phase II testing. Subsequent to the completion of Phase II , it was

proposed that the vehicle modification that appeared to offer the greatest potential for reducing the vehicle

COHb level below the desired 6.1% limit be tested at least three additional times within Phase III .

7. PHASE II TESTING AND ANALYSIS

7.a. PARAMETRIC ANALYSIS

Three replicates each of the Dual Fan and Reversed Fan modifications were tested during Phase

II within TRADOC Events 12 & 15. An ANOVA was performed on both Phase I and Phase II data. Since

the F -statistic, 3.35, was greater than the critical F -value, F0.10 ( 4,10 ) = 2.61, the hypothesis of equal means

was rejected. To determine which means were different, the 90 % confidence interval for each mean was

plotted with Sp, the pooled estimate of the variance, equal to 1.23. Failure of the confidence intervals to

overlap indicates that the means of the associated modifications are significantly different from each other.

The horizontal dotted line in the figure provides a visual reference for the lower confidence bound for the

mean of the baseline configuration. If a confidence interval falls below the dotted line, the mean of the

associated modification is significantly different from the baseline configuration.

The confidence intervals in Figure 4 show no significant difference among the tested "modified"

vehicles; however, the confidence intervals for both the Dual Fan and the Reversed Fan mods fall below

the lower confidence bound of the baseline . This observation led to the conclusion that both the Dual Fan

and the Reversed Fan modifications were significantly better than the baseline in reducing toxic fumes

within the test vehicle . However, because the observed vehicle COHb mean of the Reversed Fan data was

(1) less than the observed vehicle COHb mean of the Dual Fan data and (2) less than the predetermined
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vehicle COHb mean specified in the pretest analysis, the Reversed Fan modification was selected for

supplemental testing in Phase III.

Figure 4 . 90% Confidence Intervals on Vehicle Means, Phases I & II
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7.b. NONPARAMETRIC ANALYSIS

As in Phase I, the nonparametric Kruskal -Wallis Test was performed on the ranks of the data .

The T -value for the test was 7.63. The critical value, estimated by the chi-square distribution with four

degrees of freedom at the 1 - a ( 0.90 ) quantile is 7.78 . Therefore, by this test method, we failed to reject

the hypothesis of equal means. However, since the T -value was very close to the critical value, we

proceeded to Phase III with the Reverse Fan modification.

8. PHASE III

8.a. TESTING AND PARAMETRIC ANALYSIS

The primary objective of Phase III testing was to obtain a better estimate of the vehicle mean

COHb level of the Reversed Fan modification and the baseline vehicle by increasing the sample size of

each. Another configuration was included in Phase III testing at the request of the Bradley Program

Manager's Office. This configuration required a complete shutdown of the driver's hull fan (Fan Oft).

During one of the earlier phases, one lest run was considered bad because the driver's fan was not

operating. The calculated COHb value was less than that of the baseline vehicle. Although it was not near

the desired COHb value of 6.1%, the Program Manager's Office insisted that this modification be tested.
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The mean COHb values and standard deviation for each configuration in the three phases are

listed in Table 2. Since the test for homogeneity of variance could not be rejected, ANOVA was performed

on all the data with the degrees of freedom adjusted to account for the second set of three baseline and

three reverse fan tests conducted several days after the initial tests in Phase I.

Table 2. Phase I - III Statistics for Each Configuration

n Mean Std. Dev.

6

Configuration

Baseline

Rear Fan

BIGGRS

Dual Fan

Reverse Fan

Driver's Fan Off

3

3

1.02

1.82

1.37

9.5

7.9

8.1

6.6

5.5

7.6

3 1.27

6

4

0.97

0.51

The 90 % confidence intervals about the means are presented in Figure 5 for each vehicle

configuration tested within the program. The pooled estimate of the variance used to construct the

confidence intervals was Sp = 1.13. Figure 5 reveals that at 90 % Confidence Level the Dual Fan, Reverse

Fan, and Fan Off modifications are significantly different than the baseline vehicle. A similar plot drawn

for the 99 % confidence intervals about the means is shown in Figure 6. Here only the Reverse Fan

modification is significantly different from the baseline vehicle. However, sample size was a contributor to

the relative lengths of the intervals and the conclusions drawn . To answer the question "What conclusions

would have been drawn if the sample size of the Dual Fan and Fan Off modifications were equaled to that

of the Reverse Fan ( six )?" We conclude from the dotted lines about the means shown in Figure 6 that if

the sample size were increased to six for both the Dual Fan and Fan Off modifications (assuming the mean

were no greater than the mean calculated in the sample of size three and that the variance remained the

same) the Dual Fan would have been determined to be significantly different than the baseline vehicle;

however, the Fan Off modification would not have been significantly different from the baseline vehicle.

8.b. NONPARAMETRIC RESULTS

Examining the results of the Kruskal-Wallis test with all the data from each of the three phases,

the T-statistic is significant at the a = 0.01 level. Multiple comparisons were then performed on the

average rank of each vehicle configuration. Figure 7 shows the pairwise results for a = 0.10, 0.05 and 0.01

levels. For each level of significance, a line begins at each configuration until a significant difference occurs.

For example, referring to the a = 0.10 level, the average rank for the baseline vehicle, BL, is significantly

different from all the other configurations. This is indicated by the horizontal line breaking when it reaches

the next lowest average rank, BG. Then the line continues at BG thru DF, meaning that BG is not

significantly different from FM , FO, or DF. However, BG is significantly different from RF; therefore, the

line does not continue. A line beginning at the Fan Mod is not shown, since its line is a subset of the

previous line. That is, the average rank for FM is not significantly different from FO or DF, but it is

significantly different from RF. Likewise, a line is not drawn for FO , because its line is also a subset of the

line for BG. Indicating FO is not significantly different than DF, but is significantly different from RF.

Lastly, a horizontal line is drawn under DF and RF to represent that there is no significantly difference

between the average ranks of the two modification at the a = 0.10 level.

Similarly, the results are shown for a = 0.05 and 0.01 . At a = 0.01, DF and RF are not

significantly different from each other, but both are significantly different from the baseline vehicle .
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Figure 5 . 90% Confidence Intervals on Vehicle Means, Phases I - III
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Figure 7. Nonparametric Pairwise Results

BL BG FM FO DF RFConfiguration :

Average Rank : 21.33 15.33 14.33 13.25 9.00 4.67

a level

0.10

0.05

0.01

9. TOLERANCE LIMITS

The analysis up to this point was concerned with significant differences among the means. We

discussed at the beginning of this paper the large sample size required if we were to guarantee that a large

percent of the population were to remain under 10 % with a very high level of confidence . However, we will

report on the tolerance limits for the normal distribution expected from this small sample of six and three

for the Reverse Fan and Dual Fan, respectively (see Table 3) . The nonparametric tolerance limits for

sample sizes this small will have much lower values either in confidence level and / or population

proportion. The exact values are being investigated.

Table 3. One -Sided Tolerance Limits for

the Normal Distribution

7 = .90 7 = .95 7 = .99Configuration

Reverse Fan

Dual Fan

P = .86P = .98

P .82

P = .96

P < .75

y = confidence level that P proportion of

the population will have a COHB < 10%

10. RECOMMENDATIONS

Testing of the modified and unmodified Bradley Fighting Vehicle within TRADOC Events 12 &

15 and subsequent analysis of the collected data leads to the following recommendations:

(1) that the Reversed Fan modification be considered the primary solution to

the Bradley Fighting Vehicle toxic ſumes acceptance test problem.

( 2 ) that the Dual Fan modification be considered the secondary solution to

the Bradley Fighting Vehicle toxic fumes acceptance test problem.
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(3) that additional acceptance testing, with other M2A2 vehicles and with the

M2A0 vehicle, be conducted to confirm the results obtained and the

hypotheses formed within this test program .

(4) that a test program to investigate the effectiveness of the Reversed Fan

modification for maintaining Bradley vehicle COHb levels below the limit

specification, during the performance of the training and combat scenarios, be

initiated .

(6 ) that vehicle -to -vehicle variability be investigated

11. POST - TEST PROGRAM ACTIONS

Subsequent to the completion of the test program , the conclusions and recommendations

contained within this report were briefed to the Toxic Fumes Working Group and to the Program

Manager-Bradley Fighting Vehicles.

The Program Manager-Bradley Fighting Vehicles concluded that the Dual Fan Mod was equally

as effective as the Reversed Fan mod in reducing toxic fume concentrations within the M2A2 vehicle during

the performance of the acceptance test scenario and that the Dual Fan mod was a more economical and

logistically simplier modification than the Reversed Fan mod. For these reasons, the decision was made to

include the Dual Fan modification on all future A2 Bradleys and to retrofit the modification to all existing

A1 Bradley fighting Vehicles .
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SOME LIMITATIONS OF THE RANK TRANSFORMATION TEST

FOR INTERACTION

W. J. CONOVER
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ABSTRACT . The rank transformation is used widely to convert parametric

tests , such as the t- test and the F- test , to nonparametric tests such as the

Wilcoxon test and the Kruskal -Wallis test . It is also widely used in experimental

designs to convert analysis of variance procedures to robust procedures that have

superior power in some cases . As a test for Interaction , the rank transformation

can lead to a test that is not valid . Some discussion of the limitations of this

use of the rank transformation is given in this paper .

1. INTRODUCTION . The Rank Transformation Methods refer to standard

classical statistical procedures that are applied to the ranks of the data rather

than to the data themselves. The following two steps are involved .

Step 1 : Replace the data by their ranks , from rank 1 for the smallest, to rank

N for the largest observation .

Step 2 : Use a standard statistical procedure, such as the t - test or analysis of

variance F- test , on the ranks.

Example : Three steel mills are being monitored for the amount of smokestack

contaminants to see if there is a difference in mean level of contamination . Five

randomly selected times for observation lead to the following measurements .

Factory A

46.3 (6 )

43.7 (4 )

51.2 (12 )

49.6 (10 )

48.8 ( 9 )

Factory B

48.6 ( 8 )

52.3 ( 13 )

50.9 ( 11 )

53.6 (14 )

55.7 ( 15 )

Factory C

45.1 (5 )

46.7 (7)

41.8 (2 )

40.4 ( 1)

42.6 ( 3 )

The classical F statistic computed on the data gives

SST / (k-1 )

SSE / ( N - k )

198.1/2

89.6 /12

= 13.27

which is compared with the F distribution with 2 and 12 degrees of freedom .

Because the upper .05 quantile is 3.885 , the observed value is significant.

The classical F statistic computed on the ranks, given in parentheses , gives

SST / (k-1 ) 185.2/2
F = = 11.72

SSE / ( N - k ) 94.8/12
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This is compared with the same quantile from the F distribution as before ,

3.885 , to determine that the statistic is significant, as before .F.05,2.12
O

In some cases the Rank Transform Procedure is a nonparametric test

Classical

Procedure

Rank Transform

Procedure

The t -Test on

2 Independent

Samples

The Wilcoxon

Rank Sum Test

One -way Analysis

of Variance

The Kruskal -Wallis

Test

Correlation Test

for Bivariate

Independence

Spearman's Rho

Test for

Independence

In other cases this results in a robust test .

The Randomized Complete Block Analysis of Variance

The Balanced Incomplete Blocks Analysis of Variance

The Two -way Analysis of Variance Without Interaction

In all of these cases the Rank Transformation Procedure provides an alternative

to the classical procedure that has almost as much power as the classical

procedure when the usual normality assumption is met , and much greater relative

power when outliers are present , or the distributions are heavy -tailed and non

normal.

There is a temptation to use the Rank Transformation in other experimental

designs, where the theory has not yet caught up with practice , such as in a two

way layout with interaction to test for interaction .

2. EARLY RESULTS . Early simulation results ( Iman , 1974) indicated that the

rank transformation led to a valid test for interaction . Iman used the linear

model

+

@ijkXijk = 4 + Q1 By + Y19 + 15

i = 1 , 2 , 3 , 4 ( 4 treatments)

j = 1 , 2 , 3 ( 3 blocks)

k = 1 , 2 , 3 , 4 , 5 ( 5 observations per cell )

OUnder the null hypothesis of no interaction (713 0 ) the F statistic for

interaction , computed on ranks, followed the usual F distribution closely in the

two cases studied :
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Case 1: Qy - 0 , Bj .0 (No treatment or block effects )

Case_2: ay - 0 , B. - B2 0 , B3 - 1 (No treatment effects )
O

This provided the basis for suggestions to use the rank transformation

suggestions in papers by Conover and Iman , and suggestions in the users manuals

of SAS and IMSL .

3. RECENT RESULTS . Later simulation results (Blair , Sawilowsky and Higgins ,

1987 ) showed that under some extreme conditions, in the presence of both block

and treatment effects , the performance of the rank transform test for interaction

could be both non - robust , and lacking in power . They examined the following

case , and varied the constant c as described in the table below .

Case 1 : O

ai

B2

an

C ,
O

0 , aq - c , ag - • c (treatment effects )

B2 -C , Ba 0 (block effects )

(no interaction , the null case )

O

ใ +3 - 0

The linear model used is the same one used by Iman , and given above . The error

terms were taken to be standard normal, and the number of observations per cell

was n , which was varied along with gas described in the following table . The

entry in this table is an estimate of the true level of significance , at a

nominal alpha level of .05 , obtained by simulation with 1000 runs.

c - 0.5

1.0

1.5

2.0

2.5

n - 2 1-5 n - 1010 n - 20n - 20 n - 50

.056 .049 .053 .050 .054

.046 .053 , 073 .101 .193

.053 .076 .132 .309 .848

.044 .105 .326 .803 1.000

.053 .186 .682 .997 1.000

The table shows that for reasonably large shifts in treatment effects , the rank

transformation test for interaction is not robust , even for fairly small sample

sizes .

These results inspired a study of the theory behind this test , by Thompson

( 1991 ) . She assumed the model was linear , as above , and found that the rank

transformation test for interaction was valid if and only if at least one main

effect (blocks and /or treatments ) was not present . Further, she found that if

both effects were present , the mean of the F statistic on ranks has a term that

increases without bound as n increases, thus forcing a to 1.0 .

Choi ( 1991 ) found similar results for the general model

Xijk F (x - Qy - By - V13 )

This explains why Iman (1974) detected no problem with the rank transform test

for interaction , because he looked only at cases where one main effect was zero ,

and why Blair et.al. ( 1987 ) found serious problems , because they reported only

cases where both main effects were present .
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4. DISCUSSION . The conclusion of this paper is that the rank transformation

procedure is very useful in some designs, but that it needs to be used with care ,

and not applied thoughtlessly to every analysis for which a classical procedure

exists .
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ABSTRACT. There has been substantial interest in multivariate probability

distributions with given margins since Galton's ( 1885) investigations. For a multivariate

system to be useful, we require it to be flexibly constructed and easily used in the modeling

of multivariate data. Furthermore, it should possess computational ease and be intuitively

appealing. Its parameters should represent important physical properties, e.g. , measures of

scale, location, shape and correlation . We propose such a multivariate system : the Diagonal

Perturbation System .

We construct the system as a multivariate refinement of the intuitively appealing

framework of the Neyman alternative. We demonstrate the system's flexibility by

presenting several univariate and bivariate models, and bivariate constructions in which

the margins are univariate versions of the system . Additionally, we find the system's

parameters to represent physical properties. We show the system to be readily implemented

numerically. We demonstrate the system's utility through the successful modeling of

multivariate data that has eluded fitting for over a decade. We employ nonlinear

minimization to produce the least squares parameter estimates while capturing not only the

usual sum of squared errors but also the margin's first two moments and the first mixed

moment.

1. INTRODUCTION . There has been an interest in multivariate distributions with

given margins for several years. These include the systems ofMorgernstern ( 1956), Gumbel

( 1960,1961 ), and Farlie (1960) ; Sibuya (1960) ; Plackett (1965) ; Ali , Mikhail, and Haq (1978) ;

Frank (1979) ; Clayton (1978), Cook and Johnson ( 1981 ) , Clayton and Cuzick (1985) ; and

Marshall and Olkin ( 1988). For a general discussion see Mardia (1970a) , Johnson and Kotz

( 1972), and Johnson (1987). We propose a system of distributions which is flexibly

constructed, intuitively appealing and easily used in the fitting of multivariate data.

Neyman (1937) proposed for the density of any random variable , X , the alternative;

f(x ) = c exp[(E 0; 1;(x)] ; O sxs1 and k = 1,2,....

j = 1

The li are Legendre polynomials; 0; are parameters; and c, a function of the 0;, is a

normalizing constant. We construct our system as a multivariate refinement of this

intuitively appealing framework .
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In this paper we present two univariate constructions and consider examples when

constructed from the uniform and gaussian distributions. We then consider two analogous

margin preserving bivariate constructions, again constructed from the uniform and

gaussian distributions. The bivariate distributions with uniform margins are copulas . We

consider a third bivariate construction which does not preserve the margins. As a final

example of the system's flexibility, we consider a bivariate construction in which the

margins are univariate versions ofthe system . We successfully model two bivariate data

sets and give direction to future research .

2. THE DIAGONAL PERTURBATION SYSTEM . Let X7,..., X , be n random

variables (r.v.'s) with marginal distribution functions ( d.f.'s ), @_ (X ),..., 0 , X ); survival

functions ( s.f.'s ), ā ,(Xy),...,7 ,(X ); where 7 ;(Xq) = 1.0 ( X ); probability density functions

(p.d.f.'s), if continuous - or probability mass functions ( p.m.f.'s ), if discrete, 0,X7), ... , _X.).

The system is constructed as

46%...,X ) = [ I 0;(X;)] exp{A[ē;(X )]};i=1,., . ( 1)

i= 1

Here II denotes product and A [ ē ;(X ;)] is a function of the s.f.'s. We now suppress

the arguments of the distribution functions. If Aſē; ) = 0, we have the product of the

distributions, the uncorrelated case . If Acē;) # 0 , we have correlation, that is , changes in

the variance -covariance structure. The notation, Aq, is appropriate as we have , in a sense, a

change in the product of the marginal distributions as ACē;) varies from zero .

3. CONSTRUCTIONS CONSIDERED . Although there are infinite forms of ( 1)

we consider the following univariate and bivariate constructions where Acē;) is a polynomial

function . Fis the diagonal perturbation d.f. of X and G is the original d.f. of X in the

univariate constructions. In the bivariate constructions, F is the joint d.f. ofX and Y, G is

the d.f. of X , and H is the d.f. of Y.

Univariate Constructions Bivariate Constructions

F = G exp(a,GP)
(2 )

F = GH exp[Q,(GH ) ] (4 )

F = G expla,Ğ + azG3 (3) F = GH exp[Q,GĀ + Qz(GĀ)?] (5)

F = GH explanĞ + 2017 + QuGĀ) (6)

Bivariate constructions (4) and (5) preserve the margins as Srdy= g, where

f = sx y F. Construction (6) does not preserve the margins as SF dx = G exp(2106) ; which

is the univariate version (2 ) if Qp = Q 10 and p = 1 , or version (3) if a , = 210 and Q2 = 0.
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4. UNIVARIATE CONSTRUCTIONS.

4.1. Examples of the First Univariate Construction . The density for (2) is

f = (1 - po GP G )g expo,GP). (7)

For (2) to be a d.f. we require:

a) F (- 0) = 0, b ) F ( 0 ) = 1, and c) F ( x + h ) F ( x ) for h 20.

The first two requirements are immediate and the final requirement reduces to (1sQp < 0);

(-00 < Qps 1) for p = 1 , or (-20 < Qys (Al) for p > 1. We see lim =e, the natural
P >

exponent.

If G is the uniform d.f. on (0,1) , f = ( 1 - pą (1-x)?-?x ) g exp (Qo (1-x)%). If p = 1 , we have

EX") = 1

* Σ
the nth moment for X - U (0,1);

ai

n ! 1

7 ], where lim E (X "):
n+1

a(n-i)! a
-> O

i = 0

and Var(X )= (a + 2a, -1 + 20 %2 ..20,09 + 2e9-204)/ a , where lim Var( X ) = 1
a >

Various plots of (7) constructed from U (0,1), where p = 1, are given in Figure 1 .

Figure 2 shows the effect ofa, on u, o ,̒ Yı, and Y2; where Y1 is the coefficient of skewness,

/(42) 3/2 , and Yz is the coefficient ofkurtosis ,H /(H2)2; where hi is the ith moment about u .

As an increases we see u decreasing, a small decrease in o ?, a large increase in Y , and a

decrease then increase in 72. Further analysis of the effect of the parameter a, on the

moment ratios is presented in Figure 3 where we see (7) graphed in the B1 - B2 plane for

varying values of a , where B1 = Vi and B2 = 72. The B1 - B2 plane is presented for reference

in Figure 4 where the equations for the bounding curves and the location of the Pearson

densities are taken from Pearson and Hartley ( 1970). As expected , (4,02,91,92) (2,2,0,1.8)

when Q2 = 0. We see extreme values of an effecting J -shaped beta type I densities.

2

As another example of (7) constructed from the uniform distribution , we consider

P = 2. Graphs of (7) are presented in Figure 5 for various values of az. The effect of Oy on

the moments and moment ratios is presented in Figure 6 and Figure 7. We see more

extreme distortion of the density. Of real interest is the U -shaped beta type I densities for

Qy > 0 and beta type II densities for ag < 0.

If (7) is constructed from N(0,1) , the expectations are not tractable in closed form

and quadrature is required for all results. For p = 1 we again see positive skewness for

positive values of Q, and negative skewness for negative values of Q, in Figure 8. The

moments and moment ratios are presented in Figure 9. As expected, (4,02,71,72) = (0,1,0,3)

when Q, = 0. We see o2 decreasing as Q, changes from 0. The effect of a, on the gaussian
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distribution in the B1 - B2 plane is excluded as there is very little movement away from

(B1,B2) = (0,3).

We again consider (7) when constructed from the gaussian distribution when p == 2.

Graphs for various positive values of are given in Figure 10. Graphs for negative values

of aq are omitted as one can ascertain from the graph of the moments and moment ratios in

Figure 11 that the density is perturbed as u is increasing, o2 is decreasing, y, is decreasing

and Y2 is increasing as dy decreases.

As a third example constructed from the gaussian distribution, we consider (7) when

p = 3 and obtain results much like when p = 2. These are included in Figure 12 which

shows the effect ofvarying values of a , and ag on the gaussian density in the B1 - B2 plane.

We see densities appearing throughout the beta regions, to include the U-shaped type I and

type II beta.

4.2. Examples of the Second Univariate Construction . The density for (3) is

f = (1 - Q ,G - 202GG )g expla ,Ğ + a_G %). (8)

For (3) to be a d.f., again, the first two requirements are immediate and the final

requirement, from Section 4.1 , reduces to (-osa, s 1 ) and (-0SO2 s 1-2/2 + V1-91).

The densities possible by construction of (8 ) with the gaussian density when only the

maximum values of aq are considered are exhibited in Figure 13. This two version system

encompasses nearly one-half of the admissible region of the B1 - B2 plane presented.

5. BIVARIATE CONSTRUCTIONS.

5.1. Examples of the First Bivariate Construction . The density for (4) is

f = ( 1 + pa,(GĀ)P" [pGH - GĀ - GH + pa,GH(GĀ)P] } gh exp[Q (GĀ)P).
(9)

The sufficient conditions for (4) to be a d.f. (Mardia, 1970a) are

a) F (00,00 ) = 1 , b) F (x + 0 ,y ) = F ( x ,y + 0 ) = F(x ,y) ,

c) F (-00, y) = F (x ,-00) = 0 , and d) F(x ,y) + F (x +hy + h ) - F(x+h ,y) - F(x ,y+h) 2 0.

It is clear the d.f. satisfies the first three conditions. The final condition reduces to

conditions on the parameters p and ap. Without loss ofgenerality, we consider (9) as a

copula. As (9) is symmetric, the minimum value of f occurs on the axes, if ap > 0, or on y = x

if
ap

< 0. If y = 0, we have (7) if G is the uniform d.f. on (0,1) . Thus, as in Section 4.1 , we

have (1 sap < 0) ; (ap s 1) for p = 1 , or (aps ) for p > 1. We see the upper limit of ap

as a function of p coincides with that for univariate construction (2) . If y = x, the lower limit

is

cho p .

(p2x2 + 4px2 - 4px ) 2. px - 2x + 2

(ap 2 x + 2).
2px( 1 -x)2p
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2D) - 9D,D2 - 27/D .

14/C +BIC , where A =Here the minimum value offis at x == |A 54

DX - 3D2
5p2 + 4p

and C = [(A2 - B3,12 + Al] . Here, Do = p3 + 4p?, D , =B and
9

9 Do

Dz

4p + 1

Do
We see limap

(B2.48)12= .1 and lim

p > 00

= 2 - B +ap
ep? -- 646.7719769... ,

2B
p > 1

where ß = Chang

-97 (23/3) 1/2 1/3

(2313312) +C (2373)?,*. (Myers,1990).-54

We give an example of (9) with gaussian margins in Figure 14. We see non-elliptic

contours, unlike those of the standard correlated bivariate gaussian. In Figure 15 , we

present the effect of p and ap on the Pearson product-moment correlation coefficient, p,

when (10) is constructed from gaussian margins. We see negative /positive values of ap

producing negative/ positive values of p. Figures 16 and 17 show the parameters effect on

Mardia's ( 1970b, 1974) multivariate measures of skewness and kurtosis, B1,2 and B2,2. As

expected, (0,31,2,B2,2) = (0,0,8) when a, = 0 for all values of p.

5.2. Examples of the Second Bivariate Construction . The density for (5) is

f = { 1 + Q (GH - GĀ - GH) - 202/G + H)ĞĀ + [až + 8Q2 + 4QjQ2GĀ + 4 (Q_GĀ )?]GHGĀ}

+ +

gh expla,GĀ + az(GĀ) . ( 10)

For (5) to be a d.f., again, the first three requirements are immediate and the final

requirement, from Section 5.1 , yield limits on the parameters a , and Q2. We find

( -15Q1 < 1) and ( a ,s1- a ,/2 + V1- Qı). We see the upper limit of a , as a function of Q ,

coincides with that of univariate construction (3) . As a closed form for the lower limit of

has eluded us, numerical computations have provided values for lower bounds. Table 1

gives the minimum ay as a function of representative values of Qı.

Az

a1
. 1.0 - 0.9 - 0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

Min 02 -9.927 -10.223 -10.460 -10.655 -10.815 -10.947 -11.053 -11.138 -11.204 -11.252 -11.284

aj

Min az

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-11.302 -11.306 -11.298-11.278 -11.247 -11.206 -11.155 -11.095 -11.027 -10.951

TABLE 1 Minimum az as a function of an

Graphs of (10) constructed from U(0,1) and N(0,1) margins are presented in Figures

18 through 21. Figures 22 and 23 are contour graphs of r as a function of a, and aq for the

uniform and gaussian cases respectively . Figures 24 and 25 present contours of Mardia's

multivariate moment ratios, B 1,2 and B2,2 , for (10) constructed from N(0,1 ) . Again ,

(2,B1,2,B2.2) = (0,0,8) when (Q2,22)= (0,0) . We see ( 10) to be very flexible, allowing for the

construction of skewed and kurtic surface with negative and positive correlation.
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5.3. Examples of the Third Bivariate Construction . The density for (6) is

f = [ 1 - 210G - 001H + Qu(GH - GĀ - GH) + (Q 10001+ 010012Ğ + 201Q11Ā + aGĀ)GH]

gh exp (aqqĞ + aoĀ + Q4GĀ ). (11)

Little is known about the values of the parameters required to preserve the

nonnegativity of ( 11) . We present graphs of (11) constructed from U (0,1) in Figures 26 and

27 , from N(0,1 ) , in Figure 28 and from Exp( 1 ) in Figure 29. We recall from part 3 that this

construction does not preserve the margins. We note changes in the marginal means and

variances when a 10 or 001 +0.

6. A Final Bivariate Construction . The final bivariate form of ( 1) we examine is

a bivariate construction , where X and Y have marginal d.f.'s (2 ) and joint d.f. (4). We have

F = exp F
у

Fxy = FxF , exp [ wy(FxZy)Pxx ]. ( 12)

Several graphs of (12) ' s density constructed from the gaussian distribution are

presented in Figures 30 through 33. The robustness of this construction is exhibited in

these graphs. We are able to construct both noncorrelated and negative or positive

correlated surfaces which are skewed or non -skewed and either uni- , bi- , tri ., or quadra

modal.

While not presented in this paper, we have investigated several forms of (9), (10),

(11) and ( 12) with margins (7) and (8) constructed from Beta , Cauchy, Gamma, Gaussian,

Laplace, Logistic, Uniform , and Weibull densities. It was recreative to observe the resulting

surfaces.

7. An Innovative Approach to the Modeling of Bivariate Data . Here we

exhibit the utility of the proposed system by fitting aircraft operations and maintenance

data. Periodically aircraft undergo large scale overhaul programs. This presumes that the

aircraft are restored to a better operating condition . The r.v.'s are defined to be the number

of aircraft which suffer n aborts in a six month period. Aborts are mission interruptions

occurring during pre- flight or in -flight operations. We consider the bivariate case of two

consecutive six month periods. The following diagram indicates that between periods 1 and

2 there is no intervening overhaul and that an overhaul occurs between periods 3 and 4.

Period 1 2 3 4

time

No

Overhaul Overhaul

Thus the bivariate r.v.'s considered are Aij, (ij ) = ( 1,2) or (3,4) ; the number of aircraft

suffering x aborts in period i and y aborts in period j . Table 2 gives the data for 203 aircraft

in periods ( 1,2) . The sample is obtained by considering the entire inventory of a particular

aircraft (about 500) and excluding those which are overhauled during periods 1 and 2, and

those without 12 full months of data during this time - 203 result (Mitchell, 1976) . As an

illustration of the data , three aircraft have ten aborts in period 1 followed by six in period 2.
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Table 3 gives the data for 387 aircraft of the same type. Here an aircraft is included if it has

six full months of reported data during adjacent time periods , (3,4 ), to a common overhaul.

The margins of each ofthe bivariate distributions are first assumed to be the

negative binomial p.m.f. given by Johnson and Kotz (1969) ,

Pr[X = x]

( x + a - 1)! 1 b

x !(a - 1)! 1+ b 1 + b * ; a > 0, b > 0, x = 0,1,2 , ....
(13)

Table 4 gives descriptive statistics for the data and it is apparent that the univariate

negative binomial distribution is an appropriate choice to begin modeling the margins.

We select distribution (12) with margins (2) constructed from ( 13) to fit the bivariate

data . We simultaneously estimated the ten parameters using least squares invoking a NAG

(Numerical Algorithm Group 1983) nonlinear minimization routine. We originally

estimated the parameters by considering only the sum of squared errors, ( SSE ), between the

empirical and expected p.d.f.'s. While the SSE's were smaller than those presented in Table

4, the resulting bivariate models failed to approximate the marginal and bivariate moments.

Thus we minimized an objective function composed of the usual SSE of the p.d.f.'s plus

weighted SSE's of the margins' first two moments and the first bivariate mixed moment.

The parameter estimates and results are given in Table 4. Thus we were able to consider

not only the usual ordinary least squares but also the discrepancies between the margins'

means and variances and the bivariate correlation . We attempted to include the higher

univariate moments, B , and B2 , and Mardia's bivariate moments, B1,2 and B2,2, in the

weighted SSE's , but these efforts were not fruitful due to the large variances ofthe higher

order moments. Typically we observed agreement between the observed and expected

moments and moment ratios but the expected observations were about ten percent less than

the empirical

We see in Table 4 a very nice fit, not only of total observations, but of the margins'

means and variances and of the bivariate correlations. Of interest is the unexpected values

ofthe estimated parameters for the 203 aircraft data set . We attempted to set Oy for margin

Aj(x) to zero but found the results to be extremely sensitive to this parameter. We can see

the effects
ap

and P, as indicated in part 3 above, by the estimates for margin A (4 ). The

original method of moment parameters are (a,b) = (2.01,2.98).

8. Summary. We have presented an intuitively appealing system ofmultivariate

distributions which has the Neyman alternative as its genesis. We have considered several

univariate and bivariate versions and a combination of versions to demonstrate the

flexibility of construction . Finally , we used an innovative approach which captures the

moments to model data which had eluded successful fitting for over two decades.

Further versions of the system need to be considered . We have investigated versions

of ( 1 ) when Aſē ;) consisted of transcendental functions, but little progress has been made.

Higher dimensional versions of the system must be explored. While we have obtained two

trivariate densities through arduous differentiation, little is known about them . A clearer

fitting technique is required, such as maximum likelihood. Finally a test of fit specific to the

system is required. The distribution ofthe statistic is not known at this time. If random

variates are required, we can simulate the system through the simulation of the margins

used in its construction . With these advances, we will have a new and complete

multivariate system for modeling and inference.
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Aircraft Total Aborts Without

Intervening Overhaul (A1,A2)

Aircraft Total Aborts With

Intervening Overhaul ( AZA )

Observed Values

Margin Total 92 R Margin Total # g2 B

A1(x ) 5.61 25.77 A3(x) 7.07 45.05

203 .29 387 .23

Az(y) 6.00 23.58 Af(y ) 8.95 45.18

Expected Values and Sum ofSquare Errors

Margin Total 02 R SSE Margin Total 62 R SSE

Aj(x)
5.90 24.59 Az(x ) 7.26 40.58

201.5 .29 175.6 390.0 .23 387.6

Az (y ) 6.34 22.32 Ag(y) 9.34 44.65

Estimated Parameters

Margin Equation (13) Equation (7 ) Equation ( 9 )

b 2 요

Az (x ) 2.38 2.34 103.71 33.39x10-5

1.00 0.85

Az(y ) 5.49x10-2 17.94 2.09 . 384.33

Ag(x ) 1.81 4.49 1.70 0.58

1.00 0.86

A4 (y ) 2.00 4.47 1.00 -0.15

TABLE 4. Descriptive Statistics and Estimates of Parameters for Bivariate Abort Data.
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EVALUATION OF COMMUNICATIONS

THROUGHPUT

Virginia A.T. Kaste, Ann E.M.Brodeen , and Barbara D. Broome *
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Aberdeen Proving Ground, Maryland

Abstract

A controlled laboratory experiment was conducted during the summer of

1991 to evaluate the Combat Net Radio Network (CNRN ) performance of sev

eral emulated Advanced Field Artillery Tactical Data System (AFATDS) nodes

communicating via existing Tactical Fire Direction System (TACFIRE) protocol

using Single Channel Ground and Airborne Radio System (SINCGARS). The

purpose of this experiment was to examine the effects of four levels of message

length and four levels of message transmission rate on network throughput and

delay . In addition , radio transmission mode was considered by running the test

once using single channel transmissions and once using frequency hopping.

Three replications of a 4 x 4 full factorial design were made for each test .

Analysis of variance techniques as well as other forms of network analysis were

utilized to examine the significance and measure the effects of the three net

work parameters. These analyses provide information on communications

thresholds for the TACFIRE protocol using CNRNs. These thresholds should

be considered when designing AFATDS communication architectures and pro

tocols . This paper examines the results with respect to throughput.

1 . INTRODUCTION

The purpose of a network is to serve as a carrier of information from one point to

another . To measure a network's effectiveness, one must determine whether the messages

the network services arrive at their destination correctly and in time to be useful. We will

refer to the amount of correctly passed information as " throughput " and the amount of

time required to pass that information as " delay ." There are a number of parameters that

can impact throughput and delay , for example, the number of messages to transmit, the size

of those messages , the number of nodes on the network , the communications protocol, and

the communications hardware.

Simulation is a widely accepted means of examining the changes in network per

formance resulting from a change in hardware or communications protocol. Simulations,

however, require input. They take information like the probability a message will collide,

the expected delay in message transmission, or the arrival rate of messages at a given node ,

*The authors would like to acknowledge : Mark Thomas , US Army Human Engineering Laboratory, and

Kenneth G. Smith , US Army Ballistic Research Laboratory (BRL ), for developing and modifying the soft

ware drivers used in this test ; Charles Hansen , BRL , for developing the scenarios; Holly Ingham , BRL , and

Thomas DiGiacinto , US Army Test and Evaluation Command , for developing the Net Monitor program ;

and Paul Broome , BRL , for his expertise in improving queries to the database .

Approved for public release; distribution unlimited .
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and extrapolate those estimates, as appropriate, to a larger scenario . Only if the original

assumptions and input are correct will simulation predictions have any validity.

On a limited bandwidth combat network , the number of nodes and the amount of

information to pass can be large, especially during peak battle periods. Further , the impact

of making decisions from old information can be catastrophic . If the interaction of the

various network parameters is understood, the network's effectiveness can be optimized .

Protocols are often too complex to model precisely . Drastic assumptions are usually

made to simplify the model resulting in an unrealistic representation of the protocol . Con

trolled experimentation with the actual protocol on the intended hardware offers much

insight into the behavior of the protocol under various conditions and, therefore, facilitates

modeling

The purpose of this task was to quantify the effect of three parameters, message

length , message arrival rate , and transmission mode , on throughput and delay on a small

scale CNRN . An experiment was designed to allow an analysis of variance of these factors

and to examine their significance. Further data summaries helped quantify the differences

these factors made in network performance. The results of this experiment provide statisti

cally sound baseline information which can be used as input for network simulations, as

guidelines for designing communications architectures and protocols, and for future experi

ments on CNRNS.

The test was conducted on a CNRN , comprised of SINCGARS, using the TAC

FIRE protocol . Projecting these results to other hardware and other protocols is not neces

sarily valid . TACFIRE protocol was chosen for this experiment because the new AFATDS

protocol is not yet available . This substitution provides an appropriate baseline , since fu

ture AFATDS will still be required to support the TACFIRE protocol.

2. TEST CONFIGURATION

The BRL's Firepower Control Facility was used to build , load , and monitor nodes

emulating AFATDS communicating over Combat Net Radios.

There were four nodes, each of which was a SUN workstation . Each contained a

message driver, providing a communications loading and a data collection program to log

the sending and receipt of messages and acknowledgements as well as information on

queues.

The nodes were connected to Magnavox Tactical Communications Modems

( TCMs) to enable communications via SINCGARS . The TCMs allowed communication

using the TACFIRE net sensing algorithm and communications protocol. Each TCM was

then connected to a SINCGARS, which was pre - loaded with F200 hopsets for frequency

hopping. Figure 1 illustrates this test configuration .

Potential message rates were reported in Magnavox's Level 1 AFATDS system

performance study ( “AFATDS Performance Modeling System Level for Multiservice Ad

vanced Field Artillery Tactical Data System " 1991 ) . BRL picked four values within the

range of the reported potential message rates to emulate the rate of user generated messages

as well as the user's system response to incoming messages. For this experiment, the arrival

rate , , represented the number of messages generated during the hour and queued for

transmission on the net, not the number of messages actually transmitted during the hour .
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A scenario generator was written to create “ messages” of character strings of a specified

length and rate over a 1 hour period . In this baseline experiment message priorities were not

considered .

Once the message is generated , the protocol adds several layers of information to

insure the message arrives at its destination. This includes five error correction / detection

bits for each seven - bit character, four synchronization characters , and a preamble (key

time) to bring the transmitter to full power before the message is sent. Acknowledgements,

though shorter in length , are wrapped with similar overhead bits. Figure 2 illustrates the

various portions of a transmitted message.

message length

sync chars

preamble

(sec )

message

chars

( 12 bits )

4 chars

( 8 bits )
MESSAGE:

acknowledgement length

sync chars

ACKNOWLEDGEMENT:

preamble

(sec)

4 chars

( 8 bits )

acknowledgement

12 chars

(12 bits)

Figure 2. The components of messages and acknowledgements.

The numbers of messages generated for transmission each hour by each node, X1 ,

X2, X3, and X4, were assumed to be mutually independent Poisson distributed random

variables, Xị , with parameter 1j . Using the property of convolutions and the uniqueness

property of factorial moment generating functions, we can derive the sum of independent,

nonnegative, integer valued random variables. The distribution of a sum of independent

Poisson distributed random variables is a Poisson distributed random variable with a param

eter equal to the sum of the individual parameters, Elj. From this, we can state that the

arrival rate of messages for transmission to a network is the sum of the message arrival rates

of each node on the network . Since our primary interest was to study the expected

AFATDS network loading, this same theory allowed us to equally distribute the total ex

pected loading among the four nodes during the experiment. For example, if the arrival

rate was 2000 msgs/hr, then the scenario generator created four files of 500 msgs /hr for

each node.

A network monitor with graphical displays provided testers a means of identifying

operation anomalies, allowing early problem correction and effective test control. Figure 3

shows the net monitor display configuration . Messages and acknowledgements transmitted

between nodes are dynamically displayed on the middle frame; the changing message queue
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sizes are shown in the top right frame; and network utilization during the experiment is

displayed in the bottom frame.

A message was assumed to enter network service when it reached the modem, as

depicted by the area inside the dashed line in Figure 4. Thus, the server was considered a

combination of modem and CNRN . The queue was the area outside the dashed line.

3 . EXPERIMENTAL DESIGN

3.1 Factors

The two factors tested in each of the two separate experiments were message

arrival rate and message length. Four levels of message arrival rate were tested with each of

the four levels of message length , i.e. , full factorial design , yielding sixteen test combina

tions . Due to limitations in the TCMs, message lengths greater than 352 characters could

not be considered, as the TCMs would lock up .

The levels of each factor are listed below:

1. Message Arrival Rate (for each node)

100 per hour

250 per hour

350 per hour

500 per hour

2. Message Length ( in characters)

48

144

256

352

The maximum rate of 2000 messages per hour represented the heaviest traffic expected

for AFATDS .

3.2 Design Matrix

It was decided that the shortest reasonable time to test any one of the 16 test

combinations was one hour . Since the testing of all 16 test combinations would have re

quired a minimum of 16 hours ( for a single replication ), which realistically could not be

completed in one day, a randomized incomplete block design was constructed in order that

day -to - day variability would not influence the results . The 16 test combinations were di

vided into blocks of size four , and the four blocks were run over a four day period. The

assignment of the test combinations into blocks was based on a confounding scheme. This

scheme , in which a different set of three of the nine degrees of freedom for the interaction

term were completely confounded within each replication, assured that the effects ofmes

sage arrival rate and message length and the interaction of these two factors on communica

tion throughput could be measured. Three replications of the design matrix were made to

insure the incomplete block design was balanced , thereby facilitating the analysis, although

part of the precision of the estimate of the interaction effect was sacrificed (i.e. , the relative

information available with regard to the interaction term was 2/3) .
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3.3 Design Limitations

At the time the experiment was designed, no frequencies had been assigned to the

hopset device; therefore, the frequency hopping portion of the experiment was in doubt.

Frequencies were assigned just as the second replication under single channel mode was

nearing completion . A second experiment was performed to evaluate communication

throughput for the frequency hopping mode utilizing the same design as for the single

channel experiment. Thus, single channel and frequency hopping were tested sequentially,

one at a time, for twelve days each.

4. EFFECTS OF FACTORS ON THROUGHPUT

The effects of message length and message arrival rate on network throughput were

evaluated for both single channel and frequency hopping modes using the following defini

tion :

Network throughput is the average number of bits per second that were suc

cessfully transmitted and acknowledged over a one hour test cell. This does

not include such overhead as acks or, in the event of collisions, message re

transmissions. It does, however, include error detection /correction bits and

sync characters.

4.1 Analysis of Variance

As the throughput data was checked for completeness , it was noticed that some of

the variances under various experimental conditions exhibited minor discrepancies. The

assumption of homogeneity of variance was checked using the Burr - Foster Q - test and

results confirmed this observation for both the single channel and frequency hopping data

sets . (Note: The customary Bartlett test for homogeneity of variance could not be used, as a

large portion of the experimental cells exhibited zero variance , a condition which negates

the use of this particular test.) The mean throughput for each experimental condition is

given in Table 1 .

Unequal variances are often accompanied by skewness in the distribution within

each experimental cell. When this occurs, the initial form of the observations is unsuitable

for standard ANOVA procedures, and it is often desirable to transform the data . To assist

in selecting an appropriate transformation , a plot of the cell standard deviations (y -axis )

versus the cell means ( x -axis) was made for each data set . The plots revealed a positive

correlation between the cell standard deviations and the cell group means in each case .

When a relationship such as this exists, a suggested transformation to obtain approximately

equal variances can be obtained from the regression of the logarithm of the cell deviations

on the logarithm of the cell means. Using this procedure, the suggested transformation was

the logarithm ; however, the natural logarithm transformation did a better job in reducing

the correlation between the cell standard deviations and the cell means for both data sets .

This was the transformation selected . The transformed data became more normal and the

assumption of homogeneity of variance was verified .

An analysis of variance procedure was performed on each data set. The final ANO

VA tables for the single channel and frequency hopping data are presented as Tables 2 and

3 , respectively . The most significant term in the analysis of each data set was message

length, although message arrival rate also influenced throughput. In each case the interac

tion of the main factors was negligible compared with these effects.
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Message

Length

Message Arrival Rate

1000 1400Rep Mode 400 2000

SC

48

144

256

352

64

192

341

463

126

324

492

591

137

344

495

609

148

369

541

629

I

FH

48

144

256

352

64

192

341

460

119

298

439

507

127

314

448

542

137

325

495

566

SC

48

144

256

352

64

192

341

461

124

321

479

587

137

350

506

603

148

364

527

647

II

FH

48

144

256

352

64

192

279

455

118

292

450

515

127

318

442

527

134

323

479

546

SC

48

144

256

352

64

192

341

469

125

321

492

583

136

348

511

603

148

359

513

608

III

116

FH

48

144

256

352

64

192

339

463

292

422

481

125

297

426

508

131

310

451

563

Table 1 . Mean Throughput (bits /sec) by Experimental Condition

Looking at the mean throughput for each level of message length in Table 1 , one

sees a significant increase in throughput as message length increased from 48 to 352 charac

ters. Similarly , an increase in arrival rate increased the mean throughput. Comparing the

change in mean throughput for the different levels of message arrival rate for each level of

message length , the only meaningful change appears to occur between the 400 and 1000

message arrival rates . This is probably because with an arrival rate of 1000 and above, the

queues were generally building, so network throughput reached its maximum . With an

arrival rate of 400 , network throughput did not reach a sustained maximum , as the queues

were generally empty.

When a factor is significant, techniques are available by which to partition its over

all sums of squares with ( P - 1 ) degrees of freedom into ( p - 1 ) separate sums ofsquares,

each with one degree of freedom . The different components can then be interpreted as
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sums of squares due to linear, quadratic, etc. , components of regression of response on the

factor of interest.

The individual degrees of freedom were separated as linear, quadratic, and cubic

effects for both message length and message arrival rate ( " cubic " included higher powers

which could not be separately estimated from this data ). This further ANOVA showed the

effects of both message length and message arrival rate were linear, quadratic, and cubic ,

with the linear effect being strongest. This trend was evident for both single channel and

frequency hopping.

There were no statistically significant differences among the three replications of

either experiment. Typically the " blocks within replication " source of variation is not

calculated, but it was evident from the ANOVA that it did not influence throughput.

4.2 The Smirnov Nonparametric Test

The Smirnov nonparametric test for two independent samples was utilized to test

for differences between the single channel and the frequency hopping throughput data .

The Smirnov test is useful in situations where two samples have been drawn , as in the

AFATDS experiment, one from each of two possible different continuous distributions,

and it is desired to determine whether the two empirical distribution functions associated

with the two populations are identical .

The hypothesis for the comparison was based on a two - sided test . The null hypoth

esis was that the two populations , single channel and frequency hopping, have identical

distribution functions. The respective distribution functions were denoted by F (x) and

G(x) , and the null hypothesis written as

Ho : F (x ) = G (x) for all x from - to +0 .

The alternative hypothesis was

Hj : F (x ) + G (x) for at least one value of x .

For the two - sided test, the test statistic T1 was defined as the greatest vertical

distance between the two empirical distribution functions, and Ho was to be rejected at

some level of significance a if Ty exceeded its 1 - a quantile, as given in a table of

quantiles of the Smirnov test statistic for two samples of equal size . The test statistic for the

two - sided test was calculated as 4/16 . From the appropriate table , the .95 quantile of Tı

was 7/16 . Therefore, for the throughput data , Ho was accepted at the 0.05 level of

significance. From the table values, the critical level â was estimated as larger than 0.20 .

The effect of mode of radio operation on network throughput was not statistically

significant.

4.3 Data Summary

In this section the following definition for normalized throughput is used :

Normalized throughput is the number of bits transmitted and acknowledged

divided by the number of bits that could be transmitted if there were no over

head . As with throughput, this does not include such overhead as acks or, in
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DEGREES OF

FREEDOM

SUM OF

SQUARES

MEAN

SQUARE

F

RATIOSOURCE

2 0.00 0.00 n.s.d.

9 0.10 0.01

6.153 S.s.d.

1

1

1

Replications

Blocks within Replications

Message Length (L)

Linear

Quadratic

Cubic

Arrival Rate (R)

Linear

Quadratic

Cubic

Message Length

x Arrival Rate (LR )

Error

Total

18.45

16.68

1.71

0.06

2.323

16.68

1.71

0.06

0.77

1.77

0.46

0.09

0.02

s.s.d.

s.s.d.

s.s.d.

s.s.d.

s.s.d.

s.s.d.

S.S.d.

n.s.d.

1 1.77

0.46

0.09

0.229

0.0121

47

0.19

21.28

Table 2 . Analysis of Variance (Effect on Throughput - Single Channel)

n.s.d. - no significant difference

s.s.d. – statistically significant difference

DEGREES OF

FREEDOM

SUM OF

SQUARES

MEAN

SQUARE

F

RATIOSOURCE

2 n.s.d.0.01

0.11

0.00

0.019

3 17.41 5.80

1

1

1

Replications

Blocks within Replications

Message Length (L)

Linear

Quadratic

Cubic

Arrival Rate (R)

Linear

Quadratic

Cubic

Message Length

15.72

1.62

0.07

1.54

1.20

0.27

0.07

0.21

3

s.s.d.

s.s.d.

s.s.d.

s.s.d.

s.s.d.

S.s.d.

s.s.d.

s.s.d.

15.72

1.62

0.07

0.51

1.20

0.27

0.07

0.02

1

1

9 n.s.d.

x Arrival Rate (LR)

Error

Total

0.0121

47

0.18

19.46

Table 3. Analysis of Variance (Effect on Throughput - Frequency Hopping)
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the event ofcollisions, message retransmissions. In this experiment the trans

mission rate was 1200 bps, so if throughput is provided in bits per second, the

divisor is 1200 bps.

Figure 5 shows normalized throughput vs message length for SC transmissions. In the

figure, normalized throughput has been multiplied by 100 , so a value of 50 implies the

throughput achieved is 50% of the network's throughput capacity, or about 600 bps.

( To identify throughput from the normalized throughput graphs, simply multiply the nor

malized throughput value by 12.) Normalizing throughput allows comparison of through .

put results from experiments using different transmission rates .

Normalized throughput increased as message length increased . With longer mes

sages more time was spent on the actual transmission of data and less on the overhead

associated with accessing the net . Further, as the arrival rate increased , throughput in

creased . At the 400 msg/hr rate the network was often idle , contributing to lower through

put . At higher arrival rates, there was an increase in throughput; however, the increase was

small once the rates went beyond 1000 msg/ hr. At these higher rates the queues were rarely

empty . The maximum normalized throughput for this experiment was 52%, a throughput

of about 625 bps. Loading the system with more messages only increased the queue sizes,

not the throughput.

Figure 6 depicts normalized throughput vs message length for FH transmissions.

The trends are similar to those for SC transmissions. The maximum normalized throughput

was 47%, a throughput of about 560 bps. This was less than that of SC transmissions.

The lenient definition for throughput in this analysis does not consider the added

overhead of the extra five Hamming bits (for error correction /detection ) for each seven

information bits . In reality the normalized throughput of information bits for SC is 52%

7/12 = 30%, a throughput of about 360 bps. The normalized throughput for FH is 47%

7/12 = 27%, a throughput of about 325 bps .

Figure 7 provides a slightly different perspective on the effects of message length

and arrival rate on throughput for SC transmissions. Increased message length clearly im

proved throughput. The three message length increases (all around 100 characters) each

improved throughput by a factor close to ten . Beyond the 1400 msg /hr arrival rate , there is

very little increase in throughput. At this point the network appears saturated . Figure 8

depicts throughput vs arrival rate for FH .

5. CONCLUSIONS

For throughput, the ANOVA has shown that message length is a more significant

factor than arrival rate ; their interaction is negligible. Future experiments will consider

longer message lengths. The mode of radio operation was not a statistically significant fac

tor.

The advantages of experimentation are evident. The results provide valuable infor

mation on CNRN thresholds with the TACFIRE protocol, albeit in a " perfect" environ

ment . Experimentation with actual hardware and protocols has shown that even under

laboratory conditions, there is inherent communications degradation . The results have

shown even best case conditions to be worse than assumed in previous modeling studies. SC

throughput never exceeded 648 bps. In frequency hopping mode, it never exceeded 566
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bps. If the Hamming code is considered overhead, the throughput dropped to 360 bps for

SC and 325 bps for FH . The limits of the CNRN using TACFIRE protocol identified in

this experiment should be considered when modeling or designing communications

architectures and protocols.
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Abstract: We consider the problem of identifying the class of time series model to which

a series belongs based on observation of part of the series . Techniques of nonparametric

estimation have been applied to this problem by various authors using kernel estimates of

the one-step lagged conditional mean and variance functions. We study cumulative versions

of Tukey regressogram estimators of such functions. These are more stable than estimates of

the mean and variance functions themselves and can be used to construct confidence bands.

Goodness -of- fit tests for specific parametric models are also briefly discussed .

1 Introduction

Currently one of the most challenging problems in nonlinear time series analysis

is to identify the class of time series model to which a series {Xt } belongs based on

observation ofpart of the series , { Xt , t = 0,1 , ... , n } . Techniques of nonparametric

estimation have been applied to this problem by Robinson (1983) , who studied the

large sample properties of kernel estimators of lagged conditional means E(X+ |Xt-; )

and E(X4 |X -;, Xt- k ) for various j and k values. Such estimators are useful for

detecting nonlinearities graphically, see Tong (1990 , p . 12 ) . This approach has been

further developed by Auestad and Tjøstheim ( 1990) who focused on kernel estimates

of the one -step lagged conditional mean and variance functions 1 (x ) = E(X+ \ X4-1 =

x ) and ( ) var( X4X4–1 = x) for the purpose of identifying common nonlinear

models such as threshold ( Tong, 1983 ) and exponential autoregressive (Ozaki, 1980 ) .

In the present paper we discuss an approach to this problem based on es

timation of cumulative versions of the conditional mean and variance functions,

A( - ) = Si \(x ) dx and T( . ) = Si y(x ) dx , where a is an appropriately chosen point

in the state space. These estimators, denoted Â and f , are obtained by integrating

Tukey regressograms for and y . The reason for considering cumulative versions of

the conditional mean and variance is that it is possible to derive functional limit the

orems, whereas available asymptotic results for kernel or regressogram estimators

of d and y are only useful pointwise. We advocate Â and I as natural ‘signatures'

of a time-series in preference to estimates of land 7 .

We present a functional limit theorem for Â which holds under conditions that

can be readily checked when {Xt } is a Markov chain . This result can be used to

1
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construct confidence bands, which are more helpful than confidence intervals in

assessing plots. This is the chief benefit from estimating cumulative conditional

means and variances rather than and y themselves. Another benefit is that À

and I are relatively insensitive to variations in bandwidth compared to the kernel

or regressogram estimators.

We also briefly describe an application of our approach to omnibus goodness

of - fit testing for parametric models of the form 1(x ) = g (0, r ) , where g is a known

function and 6 is an unknown parameter, e.g. a linear model . Robinson ( 1983 ) has

given a test for linearity, but his test has the diadvantage that it is only applicable

at a small number of discrete locations. Other formal tests for linearity found in the

literature are parametric — constructed by arranging the linear model to be nested

within various larger parametric models, see Tong ( 1990 , Section 5.2) . We propose

an omnibus test based on a comparison of A and a smoothed version of Sag(@ ,x) dr ,

denoted Ã . Here ő is the conditional least square estimator of 0, see Klimko and

Nelson ( 1978) .

There are some connections between the present paper and cumulative hazard

function estimation in survival analysis; see the survey articles of Andersen and

Borgan (1985 ) and McKeague and Utikal (1990a) . In fact Â is closely related to

an estimator introduced by McKeague and Utikal ( 1990b ) . Martingale techniques

play an important role here, as they do survival analysis.

2 Estimation of A and I

>Assume that the conditional mean and variance of Xt given Xo, X1 , Xt- 1

only depend on Xt- 1 . This property holds , for example, if {Xt } is a Markov chain .

In particular, an important example is the nonlinear autoregressive process

Xx = | (X+-1 ) +0(Xt- 1 ) € t , ( 1.1 )

where { et } are iid with zero -mean and unit variance and y = 02. In this case

the time series is characterized by the triplet ( 1 , 7 , distribution of co ) . We are

primarily interested in A and y . It is assumed throughout that { Xt } is stationary

with a marginal density denoted f.

We restrict attention to estimation of A and I on a fixed interval [a , b] . The

regressogram estimators î and ŷ are defined as follows. Let I1, ...,Idn be a parti

tion of [a , b] made up of intervals of equal length wn , the bins of the regressogram ,

and denote Iz = I ; for x E I ;. Set

n

î (z ) = (nwnf(x))- I {X4–1 € Iz }X +,
t= 1

n

9 (z ) = (nwnf(x ))- 1{X4–1 € Iz } (Xų – Î (x ) )?,- X – (
t= 1
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where f is the histogram estimator of f given by

n

f(x ) = (nwn)-1{X4–1 € Iz },
t= 1

and I ( ) is the indicator function . Regressogram estimators were introduced by

Tukey (1961 ) and have been studied recently by Diebolt ( 1990 ) .

Introduce the estimators

Â( - ) = [ {(a ) de and f( - ) = S, 7(a ) dr.

Although it is possible to use the more sophisticated kernel estimators to yield better

estimates of land y, there is little to be gained from using them in Â and f , which

are less sensitive to variations in î and ĝ. We prefer the regressogram estimators due

to their computational simplicity. In practice, care needs to be taken in choosing

the interval (a , b) and the bins to ensure that the regressogram estimates are not too

unstable. For good results, the binwidths should be of comparable size (we have

taken them to be of equal size merely to simplicity the notation ), and there should

be at least 5 observations per bin ..

Ideally, in order to carry out inference on 1 , using a confidence band for A say,

we would like to find the limiting distribution of Vñ (A - A) . However, for technical

reasons we are only able to obtain a satisfactory weak convergence theory when A

is replaced by the smoothed version of A given by A* ( z ) = S * ** (x ) dx, where

1 ° (E ) = *.:(u)(u)du/ J.:*(u) du
and f* is the histogram estimator of f determined by a finer partition of [a , b]

consisting of intervals of equal length wne. We regard A* as a 'surrogate' for A ,

which is reasonable since A* converges uniformly in probability to A. However

Vn (A * – A) may not be asymptotically negligible. If it is ( for example if i is

piecewise constant over 11 ,... , Idn for some n ) then A* is not needed and we can

deal with A directly.

The asymptotic distribution of Â is given by the following result , for which we

assume that is Lipschitz, EX ; < 00 , ( X., Xt) has a bounded joint density for all

t > 1 , and the marginal density f is continuous and does not vanish on (a , b).

+ 0 and
nTHEOREM . Suppose that supre [a , b] Var[f(x)] = o(wn ) , nwn → , nw

w ~ wh as n + 0. Then vnÂ – A* ) converges in distribution a continuous

Gaussian martingale with mean zero and variance function H(z) = să v(x ) /f(x ) dr .

A proof of this result can be found in McKeague and Zhang ( 1991 ) . A large

class of stationary Markov processes {Xx } that satisfy the first condition of the

219



theorem is described in Auestad and Tjøstheim ( 1990) , who show that strong mixing

with a geometric mixing rate implies var( f(x )] Of(nwn )-1 ) uniformly over [a , b]

provided that f is bounded there . Thus the condition of the theorem holds in this

case if nw +00 . In a particular example it will be easier to check geometric

ergodicity (Nummelin, 1984 ) , which implies strong mixing with a geometric mixing

rate . Geometric ergodicity is in turn implied by a readily checkable condition of

Tweedie ( 1983) .

2

We now turn some possible applications of this result .

Confidence bands . It can be shown that Ê (-) = So w / fdr is a uniformly consis

tent estimator of H, so that an asymptotic 100( 1 - a )% confidence band for A* is

given by

Ô ( ) can- 1 / 2 Â (b)1/2(1+ x € [a , b ],
Ĥ ( )

ħ (6)

where Ca is the upper a quantile of the distribution of supte [0,1 /2] | Bº (t ) and Bº is

the Brownian bridge process, see Andersen and Borgen (1985, p. 114) . Tables for

Ca can be found in Hall and Wellner ( 1980 ) .

Testing for a difference between two regression functions. Consider the

two -sample problem of testing whether two independent time series have identical

regression functions . Denote the various functions, sample sizes estimators etc.

associated with the two series by using a subscript 1 or 2, as in dj , j = 1 , 2. Let

n = ni + n2 . Then, if n; /n + P; for j = 1, 2, and the conditions of the theorem are

satisfied for the two series , vñlâu - Â2 ) converges in distribution to a continuous

Gaussian martingale with mean zero and variance function

-1

P1

Si hilo
71 ( x )

fi ( x )

dx + P2

「 1.
72 ( x )

f2 ( x )

dx ,

a

provided that li = 12 on [a ,b ]and n(Ai - A% ) converges uniformly in probability

to zero . The latter condition holds if the common is piecewise constant, as

mentioned earlier. Confidence bands for A1 - A are constructed as above. Some

plots of such bands are given in Section 3 .

Goodness- of- fit testing. Consider the problem of testing whether I belongs to

a parametric family {g ( 0, · ) : 0 € 0 } of regression functions. Here g is a known

deterministic function, and is a closed , bounded subset of RP. Let Ã( z )

so ( x)dr , where

{(z ) = 5,1*(u)oto, u )du/J.:(u) du
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and õ is the conditional least squares estimator minimizing Cr= (X4-9(0 , Xt- 1))2.

McKeague and Zhang ( 1991 ) have shown that , under the parametric model, the

processvn ( – Ã) converges weakly to a Gaussian process having a covariance

that can be estimated consistently. This result can be used to develop graphical

methods for detecting departures from the parametric model based on plots of Ã–Ã ,

or to give formal chi-squared goodness -of- fit tests .

3 Simulation study and example

We have carried out simulations using three model examples taken from Aues

tad and Tjøstheim ( 1990) :

Model 1 : linear autoregressive, Xt = 0.8X4-1 + Et ;

Model 2 : threshold autoregressive,

Xx = {
-0.3X -1 + €t , if Xt- 1 < 0 ,

0.8Xt- 1 + €t , if Xt- 1 > 0 ;

Model 3 : exponential autoregressive, Xx = {0.8 – 1.1 exp (-50X2-1) } Xt -1 + €t .

Here €t is Gaussian white noise with mean zero and standard deviation 0.1 .

Auestad and Tjøstheim (1990 ) checked geometric ergodicity and stationarity for

these examples.

We restricted estimation of A to the interval (-0.3,0.3) . The binwidth was

taken as wn = 0.05 (same as Auestad and Tjøstheim , who plotted point estimates

of for these three models). Inspecting the plots of Â in Figure 1 , we find that

the three models are easily distinguishable, even for sample size as low as 250. The

parabolic shape of the linear autoregressive model, and the 'squashed' parabola of

the exponential autoregressive are especially distinct .

Figure 2 shows plots of differences between the estimates of the cumulative re

gression functions in the two sample problem , for various pairs of the above models.

In the first plot in each row , the two series are generated using the linear model and

the zero function is contained within the band, so our test would correctly conclude

that the regression functions are identical. In the other plots , the zero function is

well outside the bands and the test correctly concludes that the regression functions

are different.

We conclude with an example involving real data. Consider the set of IBM

daily closing stock prices from late 1959 to mid 1960 (period I) and mid 1961 to

early 1962 (period II) given in Tong ( 1990 ) . The daily relative change in price

appears to be stationary and is used in place of the raw data. Tong ( 1990 ) tested

for linearity and decided that period I is linear and period II is nonlinear . Figure

3 gives a plot of the difference between the estimates of the cumulative regression

functions in the two periods, along with the 95% confidence band, using dn = 10 .
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Figure 1. î with 95% confidence bands ; solid lines , î ; dotted lines , A ; dashed

lines , confidence bands; first row , n = 250 ; second row , n = 500 .
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The confidence band does not contain the zero function , so we conclude that

the regression functions for the two periods differ significantly from one another.

Our chi- squared test with dn = 8 , 10 and 12 , and degrees of freedom L = 2 and 4,

gave the same result .

-
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0
.
0
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4

-0.02 0.0 0.02 0.04

10;Figure 3. Â1 - Â2 with 95% confidence band for IBM stock price data; dn

Âj = period I , Â2 period II .
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Abstract

Change Analysis “in the strict sense” is concerned with the problem of de

tectingand estimating slow and abrupt changes in the probability distributions of

successive observations Y (t) of a variable or system . This paper has two goals ( 1 )

introduce an approach to Change problems by introducing analysis of Score Change

Processes (whose idea is to study if a model to a whole data set fails to fit it by

" random walking ” the parameter estimating equations); (2) develop analogies be

tween four basic statistics problems, corresponding to the standard assumptions

made about a sequence of observations Y (t), t = 1 , ... , n ; test the hypothesis: A:

Distribution of specified parametric form , B : Independence, C: Identical distribu

tion , For a sequence of bivariate observations X ((t), Y(t ) ) one would like to test

D: Independence of X and Y. Contents are: Introduction , Change analysis in the

strict sense ( test Assumption C ), Goodness of fit ( test Assumption A ), Spectral

Analysis (test Assumption B), Four phases of change analysis, Parametric scores

change analysis, Nonparametric scores change analysis .

1. Introduction

Data Y ( 1),..., Y (n ) which can be regarded as continuous random variables

observed sequentially can be called indexed data or a time series. Classic statistical

inference makes three basic assumptions:

Assumption A. Probability law of each Y has probability density belonging to

a known parametric family of probability densities f(y; 8) .

Assumption B. Random variables Y (1),... , Y (n ) are independent.

Assumption C. Random variables Y( 1 ) , ... , Y(n) are identically distributed.

Methods for detecting (and estimating) the fit (and the nature of violations)

of these assumptions in our opinion can be respectively related to three parallel

theories:

Theory C. Changepoint analysis or change analysis (in the strict sense) .

Theory B. Spectral analysis (time series analysis in the frquency domain ).

Theory A. Goodness of fit.

We believe that one can define a theory, called Comparison Change Analysis,

which is intended to study analogies between theories A ,B , C (and bring the insights

of the theories that are more developed, such as spectral analysis, to less developed

ones) . General accounts of this theory are given in Parzen ( 1992) , ( 1991 ) .

Theassumptionthat thedata is observed sequentially, which may seem to limit

the applicability of Change Analysis, is dropped when the analogies are extended

to the bivariate data analysis problem whichconsiders independent bivariate data

(X( t ) , Y (t ) ) , t = 1 , ... , n , and desires to model the relation between X and Y and

in particular to test

Assumption D. X and Y are independent random variables.

A general non -parametric theory of testing assumption D can be related to

Research supported by the U. S. Army Research Office .
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Theory D. Change analysis ( random effect ).

Analogies between theories A to D are obtained from the facts that in each

problem the first step in analysis is to define a dynamic statistic which isa function

on the unit interval (0,1 ) whose asymptotic distribution ( under the null hypothesis

that the assumptions are true) is either a Brownian Bridge or a related process. The

test statistics in each theory are analogous to the nonparametrictest statistics that

statisticians have developed to test goodness of fit forequality of two distributions.

Textbooks imply it is difficult to choose among the many test statistics for

goodness of fit and analogous testing problems; we believe we should be optimistic

about our ultimate ability to develop procedures for adaptively choosingappropriate

test statistics which not only test the null hypothesis but also suggest likely models

instead of only rejecting the null hypothesis.

2. Change analysis in the strict sense (test Assumption C)

The theory of change analysis in the strict sense considers data Y (t), t = 1 , ... , n

which represents a transformation of observed data (the identity transformation

leaves the data unchanged ).

Let Y- denote the sample mean (an estimator of the true mean y if the data

are identically distributed ). Let oyî denote a suitable estimator (such as the sam

ple standard deviation ) of the true standard deviation oy of the data under the

assumption of identical distribution (which is assumed to be finite ).

The data Y is transformed to normalized data

Y"( t ) = (Y(t ) - Y -) /oy .

We plot the normalized data as a sample change density ( T), 0 < t < 1 , defined

to be a piecewise constant function whose value is equal to Ý (j) on the interval

(3 – 1 ) /n < 7 < j/n , for j = 1,...,n . Note that ſó c*( )dt = 0, só c^2( )dt = 1 .

CUSUMS (cumulative sums) are becoming increasingly important diagnostic

tools to look for patterns in indexed data. They are related to the sample change

process on 0 < t < 1

C(= ) = *c(+)dt.
=

The points T = j /n for j

C ( 1 ) equals a cumulative sum :

1 , ... , n are called “ exact " values of t ; at these points

j

C “ ( / n ) = (1/n ) Y "(k) = (j /n )Y ; .
k= 1

To understand why the change process is an effective means of detecting change

in the data consider its behavior under two models for Y( . ) .

If Y is deterministic and linear, say Y(t ) = t , then at exact t = j/n approx

imately

**(T ) = Y (j) = 12.5 ( T –.5 ) ,

C"( ) = (-.5)12.5+ (1 – 7 ) .

The graph of C "( T) when Y( . ) is linear is a parabola that goes from 0 to 0 with
mimimum value at T = .5 .
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If Y( . ) is random (independent identically distributed ), the stochastic process

(T ), 0 < 1 < 1 , can be shown to be asymptotically distributed (asthe sample size

n tends to infinity ) as a Brownian Bridge stochastic process B ( ), 0<<1, which

is a zero mean Gaussian process with covariance kernelE [ B (s) Ď (t)] = min(s , t )–st.

Note that B(0) = B(1 ) = 0, and

Variance[ B ( r )] = T( 1 – T ) .

To test for departures fromAssumption C (identical distribution ) one tests if the

observed change process (T) is significantly different from a sample curve of a

Brownian Bridge which can be expected to be a wiggly (non -smooth ) curve oscil

lating about the horizontal axis.

A related process that plays a central role in change analysis is the Change
Test Process

CT (1) = " ( ) / (+ (1 – 7 ) ) .5 .

The fundamental role of the change test process starts with the fact that for

fixed T = j/n , CT( 1) can be shown to be a monotone transformation of the

classic two-sample Student's t-test statistic of the null hypothesis M1 = M2 in the

model Y( 1), ... , Y(j ) is Normal(41,02) and Y (3 + 1),..., Y (n) is Normal(u2,02).
The sample means and variances of the two samples Y (1),..., Y (j) and ¥ ; +

1 ) , ... , Y(n ) are respectively denoted M1 ,51-2 and 42 ,52.2 The pooled sample
variance is

5^2 = 7512+ (1 – ) S2 2.

One can verify that

ôğ = $^2 + (+( 1 – )) ( M19 – 12 )?,

Miº - Yº = ( 1 - 1 )(u1 - 42" )
+

The classic two -sample Student's t - test statistic is n.5 T, defining

T = (+( 1 – 7 )).5(41° – M2^ ) /S“ .

Define R, a " correlation version” of T, by

R2 = 72/(1 + T2), T2 = R²/ ( 1 – R ).

Then

R² = 7( 1 – 7 ) ( M1º – M2 )2lô

and one concludes that CT(T) is , like R, a correlation type statistic since

R? = (1/( 1 – 7))(M1º– Y.)2loß

= ICT ( )72

We can consequently express Student's t-test statistic T as a monotone function of

CT"(1 ) since T = R/( 1 - R2) .5 .

Let t^ denote the value among the exact values T = i/ n (for j = 1 , ... , n - 1 ) at

which the absolute value of CT°(1 ) achieves its maximum . Under the assumption of

at most one change in the distribution of Y( . ) , CT (7 )̂ is a test statistic for change
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and its time of occurence is consistently estimated by qÀ (a result established by
Carlstein (1988)) .

3. Goodness of fit ( Test Assumption A)

One of the most extensive and least applied branches of statistical theory is

the theory of goodness of fit of probability models to observed data. Despite its

importance (both for theory and practice) it appears to be sparsely taught to grad

uate students in statistics . The chi-squared goodness of fit test introduced by Karl

Pearson in 1900 is regarded as one of the top 20 achievements in modern science.

How can one explain the neglect of instruction in its theory ? One explanation may

be that its theory is often taught rigorously as a study in pure probability theory

rather than developed vigorously for its statistical interpretation .

Let Y( t ) , t = 1 ,... , n , be a random sample of a continuous random variable with

true distribution F(y) = F (y ; 00) belonging to a finite parametric family F(y; 0) .

The true quantile function is F - 1(u ; 60 ), 0 < u < 1. The sample distribution
function is denoted

F(y ) = fraction of sample < y .

Let O^ denote the maximum likelihood estimator of 0. Stochastic processes whose

asymptotic properties are of interest ( for both theory and practice) are

F(y) – F(y ; 60 ) ,

F " (y ) – F(y; 8“ ) ,

F(y; 8^ ) - F (y ;60) ,

evaluated at y = F-1 (u ; 60 ) , 0 < u < 1. We denote such a processCº(u) , 0 < u < 1 ,

to emphasize itsanalogy to asample change process . We use functions of u to study

changes of distribution , and functions of 7 to study changes of models fitting data.

The testing and estimation procedures of goodness of fit theory can be organized

into four phases summarized (in section 5 ) in our discussion of the four phases of

change analysis.

4. Spectral Analysis ( Test Assumption B)

One approach totesting the assumption of independence is to consider as an al

ternative hypothesis for the data Y (t), t = 1 , ... , n , that it is a zero mean stationary

time series with covariance function, defined for v= 0 , +1 , +2,. ,

R(v ) = E (Y( t )Y( t – v )]

and spectral density function , defined for 0 < w < 1 ,

-12πων

f(w) = R (v )e –1274
VB - 00

The sample spectral density is defined

fω) = (2πη)-ΙΣY(t)ei2πωt+2
t= 1
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with sample distribution function (on 0 < w < 1 )

F"(w )= 5 f(a)da
Normalized versions of these functions are

f * (w ) = f* (w ) / F ( 1),

F*"(w ) = F (W ) / F* ( 1).

Analogues of the sample change density and sample change process are

c(w) = f* (w) – 1 ,

C "(w ) = F*-(w ) – w .

5. Four phases of change analysis

A sample change process C"(T ) , 0 < t < 1 , is a dynamic statistic (sample

path of a stochastic process) which often can be shown to satisfy under the null

hypothesis of “ no change” the null hypothesis Ho : C ( . ) is a Brownian Bridge ( or

a related hypothesis ). The statistical analysis of C ^ (.) has four phases:

Phase 1: Graphical analysis; is the plot of C * (T ), 0 < t < 1 , oscillatory, a

deterministic parabola, other patterns.

Phase 2: Non -linear functionals. One tests Ho by computing the values of test

statistics (whose asymptotic distributions under Ho can be deduced from the

theory of empirical processes)

['1c (r)l?dr

[ (16 (r)?/ (1– 1)dt,
C"0<<1

max, 1C*( T ) ,

max 10 "(T )\/ T (1 – t ) .
t=j/n

Phase 3: Linear functionals. For various score functions K(T ) , called change

score functions, one computes the linear functional (or component )

Cº(K) =
2 = ( K (T)C ( ) = (K ( c (dr

One can often write approximately

n

C ( K ) = (1/n ) K ((j – .5 ) / n ) |(j –.5)/n)

j= 1

The score function is usually chosen as a sequence of Orthonormal functions

410.),42(.), ... , especially the Legendre polynomials, which test against patterns in

the change density c (t ).
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The key to change analysis is to choose transformations of data ( score the data)

which are most powerful for detecting change. From the sample changeprocesses,

suitable linear functionals ( score the change) are formed . These linear functionals

are called “double score components”. One can define bivariate density functions

d ( t, u ), 0 < t < 1,0 < u < 1 , of which double score functions are diagnostics.

Choice of data score functionsare motivated in sections 6 and 7 parametrically and

non -parametrically, respectively.

Phase 4: Density estimation. By one of the many methods available in the the

ory of curve smoothing (kernel methods, splines, exponential methods, wavelets,

etc. ) form a smooth estimator c(+ ) of the change density.

An exposition of the theory of these phases would require a book and is beyond

the scope of this paper . Our goal in this paper is to outline the phases and to

explain how we choose transformations of theoriginal data from which to form a

change process.

6. Parametric scores change analysis

To detect change over time in a sequence one must have some prior opinion

about the ways in which the probability distribution of the observations may be

changing (such as in location , scale, skewness, etc ) . Sample change processes are

formed fortransformed data, where the transformation is called intuitively a data

score function. The most powerful data transformations are essentially the sufficient

statistics, or more precisely the Fisher score functions, when one has a parametric

model f( y; 0) for a random sample Y(t ) , t = 1,... ,n ,where 0 = (01 ,.( 01 , ... , 0k ) .

The maximum likelihood estimator &^ is obtained by maximizing the average

log -likelihood

L(0 ) = ( 1 /n ) log f( Y (t);8 )

n

t= 1

Define score functions

S ; (Y ; 0) = 2/30; log f (Y ; 0 )

The maximum likelihood estimator is the solution of the estimating equations for

j = 1 , ..., k

( 1 /n) S ;( Y (t); 8" ) = 0.

n

t= 1

Our approach to change analysis asks if for every potential changepoint T =

m/n the parametric model with @ = @^ fits the data Y (t), t = 1, ..., m , up to the

time m in the sense that approximately

m

( 1 /n ) S;(Y(t ) ; 6 ) = 0 .
t= 1

We define the score change process to linearly interpolate its values at T = m/n,

for m = 1 , ... , n

C "(T;S ;) = ( 1 /n) S (Y (t);8")

m

; Y 6t= 1

where

S(Y ; 8" ) , = S;(Y ;6")/ES;( Y;6 )).
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We form k score change processes, for j = 1,..., k .

We call this approach " random walk your normalized scores. " We are develop

ing the probability theory of the score change processes.

These theoretical concepts can best be understood through examples. Consider

a gamma distribution model

f(y; v, 0) = (oʻT (v ))- 1, -1 exp( -4/0 )

where is a positive scale parameter, assumed unknown, and v is a positive shape

parameter, assmed known. One can show that the score function of the parameter
A is

S(Y ; 0 ) = (1/0 )(( Y / C ) - v) ;

the maximum likelihood estimator is

Oʻ = Y- / v;

the normalized score function evaluated at the maximum likelihood estimator of

the parameter may be shown to be

S* (Y( t ) ; 0) = 2.5 ( (Y( t )/Y“) – 1 ) .

To test the observations Y( . ) for change, one forms the maximum likelihood

score change process Cº( T ; S* ) , 0 < T < 1, and tests if this dynamic statistic is

significantly different from a sample path of a Brownian Bridge stochastic process.

Alinear functional of the change process corresponding to the score function

K( T ) = 12.5 (T -.5)

is

n

C-(K, S* ) = ( 1 /n )(12v).5( (Y(t)/Y-) – 1 ) ( (t – .5) /n )

= ( 12v ) .5 ( 1 /n ) Y ( t ) ( (t – .5) /n ) /Y£

t= 1

=

t= 1

Under the nullhypothesis of no change the asymptotic distribution of n.5C "( K , S *)

is Normal(0,1).

An example of an application of this statistic is in Hsu (1979 ) where it is

presented as a test designed for a small change in the scale parameter 8 of an

independent Gamma distributed sequence, derived by Kander and Zacks ( 1966) by a

Bayesian analysis assuming the changepoint t is uniformly distributed in time. This

test statistic is derived inour approach as analogous to a component in standard

goodness of fit analysis.

7. Nonparametric scores change analysis

Our approach to change analysis recommends that one compute and interpret

several change processes formed from several transformations of the original data.

In addition to ( or instead of) various parametric score change processes, one can

define various nonparametric score processes for a data sequence Y (t), t = 1 , ... ,

Define:

n .
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sample distribution function F (y );

sample probability mass function p(y) = fraction of sample equal to y;

mid -distribution function Pº (y ) = F " (y ) - .5p"( y).

The mid -rank data transformation forms Pº(Y(t )) , t = 1 , ... , n . When all Y

values are distinct, Pº( Y (t)) = (Rank(Y (t)) - .5 )/ n ; we recommend this definition
ofmid -ranks over the mostused definition Rank (Y(t ) )/(n + 1 ) .

One chooses a data score function J(u), 0 < u< 1, suitable for testing non

parametrically various types of changes in the distribution of the data ( especially

changes in location or scale parameters). A typical choice for J(u) is a Legendre

polynomial normalized to satisfy

61(u)du = 0,$*>(u)du = 1.

Apply the four phases of change analysis to the transformed data sequence

J (Pº ( Y (t )). In the third phase one examines and interprets linear functional tests

for change of the form

n

C“(K, J ) = (1/n ) K ((t–.5)/n)J(P"(Y (t ) )
t= 1

for suitable change score functions K(T ) . One can usually show that under the null

hypothesis of no change the asymptotic distribution of n.5C"(K, J) is Normal (0,1 ).
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AN ANALYSIS OF THE EFFECT OF THE DEGRADED -STATES METHODOLOGY

FOR VULNERABILITY ASSESSMENT

William E. Baker

U.S. Army Ballistic Research Laboratory

Aberdeen Proving Ground, MD

ABSTRACT

Degraded -states methodology represents a fundamental change in the procedure for

assessing the vulnerability of armored fighting vehicles. Results of such assessments

serve as input to Ammy wargame models large stochastic computer simulations which,

for a given scenario, calculate the number of kills for both friendly and enemy forces.

In an attempt to determine the ultimate effect of this new methodology, one such

wargame was modified to accept the degraded -states input. Three hundred replications

of the model were run using conventional input, degraded -states input, and some

aggregate of the two. Outputs from the wargame, in the form of partial kills, compiete

kills, and ratio of kills, were compared using contingency tables to determine whether

differences in the results were statistically significant.

I. INTRODUCTION

Degraded - states methodology represents a fundamental change in the procedure for assessing the

vulnerability of armored fighting vehicles. The traditional metric for vulnerability analysis was derived

from a mapping procedure applying the Standard Damage Assessment List (SDAL ) to the calculated

damage state of the vehicle. However, studies had shown that the theory behind this metric was

problematical in a conceptual sense...2 The degraded -states metric was proposed as an alterative

procedure (more appealing because the mathematical foundation is more rigorous).

1

Rapp, J. R. " An Investigation of Alternative Methods for Estimating Armored Vehicle Vulnerability , " BRL -MR -03290,

U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, July 1983 .

? Starks, M. W. "New Foundations for Tank Vulnerability Analysis ." The Proceedings of the Tenth Annual Symposium on

Survivability and Vulnerability of the American Defense Preparedness Association (ADPA ), Naval Ocean Systems Center,

San Diego, CA, 10–12 May 1988 .

' Abel, J., L. Roach , and M. Starks. " Degraded -States Vulnerability Analysis." BRL - TR -3010, U.S. Army Ballistic Research

Laboratory Aberdeen Proving Ground, MD, June 1989.
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An immediate concem was how the vulnerability results obtained using degraded - states methodology

could be incorporated into the large wargames so prevalent in U.S. Army studies, since these results did

not conform to those from traditional analyses. Accordingly, the U.S. Army Ballistic Research Laboratory

(BRL ) and the U.S. Army Material Systems Analysis Activity (AMSAA) commenced a joint program to

further develop and implement the degraded -states methodology. Consequently, the Degraded - States

Weapons Analysis Research Simulation (DSWARS) was written . It is an adaptation of a previous

stochastic ground -combat simulation and will accept as input the degraded -states metric as well as the

traditional SDAL -based metric.

For a specific set of scenarios, DSWARS was run in three different modesstandard damage

assessment list, degraded states, and some aggregate derived from the first two. AMSAA and BRL were

interested in whether the differences in results were statistically significant, and that is the question which

will be addressed in this paper.

II. WARGAME RESULTS

DSWARS was run at two visibility ranges using two types of attacker bullets and two types of

defender bullets. Thus, eight (29) different scenarios were examined. The simulation was run 300 times

for each scenario using each methodologyma total of 7,200 runs. Summary results are shown in Table 1 .

The first column indicates the scenario, where the first digit represents the attacker bullet ( 1 = penetrator,

2 = nonpenetrator), the second digit represents the defender bullet, and the third digit represents the range

of visibility (3 km , 7 km ). A penetrator bullet will penetrate frontal armor, a nonpenetrator bullet will

not but may penetrate other armor. The second column indicates the methodology employed, while the

third column lists the side. Blue is always defending with three armored vehicles in a hull -defilade mode,

and red is always attacking with nine armored vehicles in a fully -exposed mode. The simulation

commenced at a range of 4,000 m and continued until the nearest attacker closed to within 500 m of any

defender

The results presented are for a firepower kill on the armored vehicles. The table shows the number

of complete kills for both red and blue. The degraded -states methodology calculates partial kills on

vehicles, and so the column labeled " any " is the sum of the complete and partial kills. Notice that the

Comstock, G. R. " The Degraded -States Weapons Analysis Research Simulation (DSWARS): An Investigation of the

Degraded States Vulnerability Methodology in a Combat Simulation ." TR -495, U.S. Army Materiel Systems Analysis Activity,

Aberdeen Proving Ground, MD, February 1991.
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" complete " column is identical to the "any" column for the remaining methodologies. The final two

columns are the ratios of red kills to blue kills for both " complete " and " any."

I was asked to compare the three methodologies in a pairwise fashion for four different measures.

1 ) Attacker and defender complete - firepower kills, 2) attacker and defender any-firepower kills, 3) the ratio

of attacker complete -firepower kill to defender complete- firepower kill, and 4) the ratio of attacker any

firepower kill to defender any-firepower kill. Merely comparing the summary results would not provide

a clear indication ofhow DSWARS was reacting to the different methodologies; while the average number

of kills might be close over the 300 runs, individual replications could be considerably different. There

were also advantages to comparing each scenario individually. The results might be similar at the longer

visibility range but disagree significantly at the shorter one. Therefore, I requested the intermediate results

(i.e. , the number of red kills and the number of blue kills in each replication for each scenario ).

Furthermore, since these numbers are not independent, the data were categorized into the number of " X "

blue kills and "y" red kills, where x = 0, 1 , ... , 3 and y = 0, 1 , ... , 9 .

Intermediate results for the ratio data were a bit more difficult to separate. In an individual

replication, if the number of blue kills totaled zero , then the ratio of red kills to blue kills went to infinity.

Furthermore, there were a large number of different ratios that were possible. Therefore, the intermediate

results for ratios were grouped into ten specified intervals (0.0-0.9, 1.0-1.9, ... , 8.0–8.9 , 9.0 and over ),

placing those ratios equal to infinity into the top interval.

III. STATISTICAL ANALYSIS

In attempting to evaluate the consistency of DSWARS results under the three different methodologies,

I have used the chi-square test for differences in probabilities within contingency tables to determine

whether or not the differences in output are statistically significant. This procedure can be found in most

elementary statistical textbooks . The chi-square test is used to test a hypothesis in this case , that there

is no difference between results obtained using the SDAL method, the degraded -states method, and the

aggregate method. These three methods can be considered populations, and output from the 300

replications of DSWARS can be considered random samples from these populations.

s

* Conover , W. J. Practical Nonparametric Statistics. New York : John Wiley & Sons, 1971 .

235



Table 2 displays the contingency table from the BMDP statistical software package for one of the

scenarios using any-firepower kill ratios, comparing the SDAL method and the degraded -states method.

The rows represent the different methodologies; the columns are bins that represent intervals ( X, X + 0.9)

for x = 0 , 1 , ... , 9, into which the ratio of red kills to blue kills can conceivably fall. The top bin includes

ratios defined as infinity. When examining firepower kills rather than ratios, the columns of the

contingency tables are bins that represent " x " blue kills and "y" red kills for x = 0, 1 , 3 and y = 0, 1 ,

... , 9. Recall that blue kills and red kills are combined in the tables since they are not independent (i.e. ,

a large number of red kills would imply a tendency for a small number of blue kills). The intersection

of rows and columns form cells that contain the number of occurrences out of 300 replications that such

a " column " output results from such a " row " method.

...

Three assumptions should be satisfied when using the chi-square test for differences in probabilities:

( 1) each sample is a random sample,

( 2) the various samples are all mutually independent, and

(3) each observation falls into exactly one cell.

Consider the probability that a randomly selected value from the i th population falls into the j th bin.

The null hypothesis is that all such probabilities in the same column of the contingency table are equal

(i.e. , results obtained using the different methodologies are identical). The expected number of

observations for each cell, assuming a true null hypothesis, is calculated. The test statistic is defined as

T = É ( 0,3 - E.,)2
( 1 )

isl j = 1

E
i

where

T = number of rows

с = number of columns

ij = number of actual observations in cell (ij)

Ejj = number of expected observations in cell ( ij)

and

Ej
nic;

N

(2)
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where

ni = number of observations in population i

C ; = number of observations in bin j

N = total number of observations.

This test statistic is computed and subsequently compared with the chi-square distribution .

The chi-square distribution is used as a large -sample approximation, since the exact distribution of the

test statistic is difficult to determine. A widely held belief is that this approximation is good, provided

that < 20 % of the cells have an expected number of observations < 5. If this is not true , or if there are

cells where the expected number of observations is zero , then several categories should be combined to

overcome the problem .

The results are shown in Table 3. The left half of the table pertains to kills, both complete -firepower

( CF ) and any -firepower (AF ). The right half of the table pertains to kill ratios, complete- firepower ( CFX )

and any-firepower ( AFX ). Each number in the table represents a p -value, which is the probability of being

in error if the null hypothesis is rejected. In other words, if the methods are equivalent, the probability

of seeing differences equal to or greater than those observed in these samples of 300 is equal to p. A

p -value < 0.05 would generally lead to rejection of the null hypothesis. This would lead to the conclusion

that results obtained using the different methodologies are dissimilar. Therefore , the methodologies should

not be mixed in DSWARS, since it would be unclear whether differences in any subsequent comparisons

of war -game results were true differences or merely a manifestation of these dissimilar methodologies.

The column labeled " overall " in the table refers to a single comparison of all three methods; columns to

the right show the results of pairwise comparisons. The results for the kill ratios seem to mimic those for

the kills themselves, with the notable exception of scenario 213 AF .

In summary , the p -values indicate that for complete -firepower kills, the three methods generally give

different results. For any -firepower kills, the p -values are slightly larger, but the general conclusions

remain unchanged . In each case , the SDAL method and the aggregate method seem to agree more often

than the other two pairs — but still not consistently.
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IV. PROBLEM

I had decided to compare the intermediate results produced by DSWARS because I was concemed

that merely examining the final results might mask some subtle difference in methodologies. I also

thought it reasonable to compare each scenario individually, hoping this might provide some additional

insight. Final results sometimes agree , but for reasons other than similarity of the methodologies.

Eventually, such a problem arose .

Comparison of the SDAL method with the degraded -states method provided, what at first appeared

to be, inconsistencies. For scenario 123 CF, the complete -firepower kill ratios were close (i.e. , 1.4 and

1.3 ( Table 1 ]). For this case , the p - value was 0.013 ( Table 3) , indicating that the null hypothesis of no

difference in results obtained from the two methodologies should be rejected. Contrast that to scenario

223 AF, where the any-firepower kill ratios were quite different (3.5 and 4.3); but the p -value was 0.313,

implying that the null hypothesis should not be rejected.

After discussing these outcomes with the developer of DSWARS, I realized that the kill ratios were

calculated differently from what I had expected. While the final results for kills are merely the

intermediate results averaged over the number of replications, the final ratios are not such averages, but

simply the ratio of the final kill results. In other words, I expected

Ratio = ( R / B, + R , / B , + + R./B.]/n

= R, / nB, + R In B2 + ... + R , /nB ,

+

(3)

Instead , I received

Ratio =
[ R, + R2 + ...

[ B, + B +

+ R ) in

+ B. ] /n2,

+ R.R, + R2 +

B, + B2 + + B. (4)
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Unless the number of blue kills is the same in each replication, Equation (3) and Equation ( 4 ) will give

different results for the ratio. If the individual kill ratios ( R /B ;) include high values, Equation ( 4 ) will be

less than Equation (3). Of course , Equation ( 3) breaks down when an intermediate ratio becomes infinity.

Apparently, the pros and cons of these two equations had been discussed years ago; Equation ( 4 ) remains

the procedure of choice for this simulation .

Table 4 supports the p -value from Table 3. For the case of interest, it shows means and standard

deviations of the number of kills along with 99 % confidence intervals. The first column represents the

scenario, while the second indicates the side (blue or red ), and the third indicates the type of kill (CF or

AF). The final two groups of columns represent the SDAL method and the degraded -states method.

Notice that for scenario 123 CF, the 99 % confidence intervals for mean blue kills do not overlap. For

mean red kills, the confidence intervals overlap slightly. This is an indication that the two methodologies

disagree in terms of the number of kills. In spite of this, the ratio of their means is close. The

nonoverlapping confidence intervals lend credence to the low p -value of 0.013. Now look at scenario

223 AF. The 99 % confidence intervals overlap in both cases, even though the ratio of their means is quite

different. Recall that the p - value for this case was 0.313, again intuitive based on the overlapping

confidence intervals.

Kill ratios appear to be the most important output of the ground -combat simulations. It is these

exchange ratios that the decision makers want to see . Therefore, it was particularly desirable to evaluate

how they are affected by the different methodologies. Since the kill ratios calculated in the individual

replications are not used in the evaluation of the final ratios, the contingency table approach was

inappropriate. Given the procedure for calculating such ratios, a pairwise comparison would seem

reasonable, but then the methodologies must be compared over all scenarios. Also , in using these data,

there are only eight comparisons, indicating that the statistical test may not have much power (i.e., may

not have great ability to detect a false null hypothesis). I did use the Wilcoxon signed -ranks test to

examine the null hypothesis between the SDAL method and the degraded -states method. The p -values

were 0.484 for the CF ratio and 0.050 for the AF ratio .

V. CONCLUSIONS

DSWARS, a stochastic ground -combat simulation , was written to accept input from three different

methods of vulnerability assessment — the standard -damage -assessment- list method , the degraded -states
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method, and an aggregate method combining portions of the other two. I used statistical procedures to

test the hypothesis that there is no difference in results from using the various methodologies. Three

hundred replications were run using each methodology for each of eight different scenarios a total of

7,200 runs.

The numbers of red kills and blue kills were compared for individual scenarios using contingency

tables. The intermediate ( individual replication ) results were used to test the null hypothesis. Because

kill ratios are merely a function of final kill results, no intermediate kill ratios could be used . For this

case, I employed the Wilcoxon signed - ranks test to test the null hypothesis. However, it was necessary

to make pairwise comparisons over all scenarios, and the paucity of the data (only eight different

scenarios) lessens the confidence in the test results.

The primary conclusion is that the SDAL method, the degraded -states method, and the aggregate

method produce different results in DSWARS, especially when examining the number of kills for both

red and blue. (Exchange ratio results are inconclusive and would benefit from additional data .) Of course ,

this is not always the case ; there are scenarios where they agree quite well. However, in general, we

should guard against mixing results from these three methodologies.
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Table 1. DSWARS Results - Firepower Kill

Kills Ratios

Scenario Methodology
Side Complete Partial Any Complete Any

113 SDAL 5.7 5.7

113 DS 4.8 5.3

R

B

R

B

R

B

7.59

1.33

6.17

1.27

7.79

1.29

0.00

0.00

1.28

0.12

0.00

0.00

7.59

1.33

7.45

1.39

7.79

1.29

113 AGG 6.0 6.0

123 SDAL 1.4 1.4

123 DS 1.3 1.8

R

B

R

B

R

B

3.52

2.57

2.92

2.25

4.32

2.53

0.00

0.00

1.37

0.18

0.00

0.00

3.52

2.57

4.29

2.43

4.32

2.53

123 AGG 1.7 1.7

213 SDAL 13.0 13.0

213 DS 18.6 15.7

R

B

R

B

R

B

8.39

0.64

7.25

0.39

8.55

0.58

0.00

0.00

1.08

0.14

0.00

0.00

8.39

0.64

8.33

0.53

8.55

0.58

213 AGG 14.7 14.7

223 SDAL 3.5 3.5

223 DS 3.9 4.3

R

B

R

B

R

B

5.76

1.65

4.32

1.10

6.23

1.52

0.00

0.00

1.90

0.34

0.00

0.00

5.76

1.65

6.22

1.44

6.23

1.52

223 AGG 4.1 4.1
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Table 1. DSWARS Results - Firepower Kill (Continued )

Kills Ratios

Scenario Methodology Side Complete Partial Any Complete Any

117 SDAL 3.5 3.5

117 DS 3.2 3.4

R

B

R

B

R

B

6.75

1.91

5.94

1.85

7.19

1.76

0.00

0.00

1.01

0.18

0.00

0.00

6.75

1.91

6.95

2.03

7.19

1.76

117 AGG 4.1 4.1

127 SDAL 0.9 0.9R

B

127 DS 0.8 1.2R

B

R

B

2.68

2.89

2.28

2.84

3.29

2.80

0.00

0.00

1.08

0.06

0.00

0.00

2.68

2.89

3.36

2.90

3.29

2.80

127 AGG 1.2 1.2

217 SDAL 9.3 9.3

217 DS 12.4 10.6

R

B

R

B

R

B

8.25

0.89

7.70

0.62

8.49

0.74

0.00 8.25

0.00 0.89

0.75 8.45

0.18 0.80

0.00 8.49

0.00 0.74

217 AGG 11.4 11.4

227 SDAL 2.7 2.7

227 DS 2.9 3.3

w7
0
W7
0
W7
0

5.36

1.98

4.49

1.56

5.66

2.05

0.00

0.00

1.70

0.32

0.00

0.00

5.36

1.98

6.19

1.88

5.66

2.05

227 AGG 2.8 2.8
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Table 3. DSWARS Comparisons: P -Values

Scenario Kills Ratios

DS

SDAL

SDAL

AGG

AGG

DS

DS

SDAL

AGG

DSType
Overall

Type
Overall

113 AF

CF

.559

.000

.283

.000

.940

.940

.352

.000

AFX

CFX

.742

.000

.599

.000

.575

.000

117 AF

CF

.000

.000

.001

.000

.018

.018

.006

.000

AFX

CFX

.001

.000

.029

.000

.001

.000

123 AF

CF

.005

.000

.017

.000

.002

.002

434

.000

AFX

CFX

.000

.000

.000

.013

.558

.000

127 AF

CF

.001

.000

.000

.000

.004

.004

.070

.000

AFX

CFX

.000

.000

.000

.012

.014

.000

213

5
5
5
5

5
5

5
명

AF

CF

.001

.000

.035

.000

.457

.457

.001

.000

AFX

CFX

.713

.000

.790

.000

.732

.000

217 AF

CF

.079

.000

.071

.000

.250

.250

.235

.000

AFX

CFX

.062

.000

.050

.000

.357

.000

223 AF

CF

.012

.000

.342

.000

.006

.006

.014

.000

AFX

CFX

.027

.000

.313

.000

.020

.000

227 AF

CF

.001

.000

.000

.000

.413

.413

.092

.000

AFX

CFX

.002

.000

.000

.000

.004

.000

Table 4. Selected Confidence Intervals

SDAL DS

Side Type X S 99 % CI X S

B

R

CF

CF

2.57

3.52

0.72

2.25

( 2.46 , 2.68 )

(3.19, 3.85 )

2.25

2.92

B

R

AF

AF

1.65

5.76

0.93

2.02

(1.51 , 1.79)

( 5.46 , 6.06 )

1.44

6.21

SDAL

AGG

.748

.748

.044

.044

.002

.002

.090

.090

.355

.355

.111

.111

.028

.028

.881

.881

Scenario 99 % CI

123

123

0.82

1.99

(2.13, 2.37)

( 2.62, 3.22)

223

223

0.92

1.80

( 1.30, 1.58)

(5.94, 6.48)
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VARIANCE COMPONENTS IN TANK GUN ACCURACY RESEARCH

David W. Webb

Probability & Statistics Branch

Systems Engineering & Concepts Analysis Division

U.S. Army Ballistic Research Laboratory

Aberdeen Proving Ground , MD 21005-5066

webb@brl.mil (410) 278-6646

Abstract

Using a nested -factorial design , the Ballistic Research Laboratory

conducted a 480- round test to determine if a proposed manufacturing

process referred to as dynamic indexing would reduce tube -to- tube

variability , ožubes of the U.S. Army's M256 tank cannon . For each of four

different 120 -mm ammunition types and for both horizontal and vertical

axes, variance component estimates of oube were calculated for

dynamically indexed tubes and for standard tubes . Using an indirect

hypothesis test, estimators for the two tube types were compared . The

analysis showed that dynamic indexing does not reduce ožube as hoped .

I. INTRODUCTION

Through the analysis of several statistically designed experiments, researchers at

the U.S. Army Ballistic Research Laboratory (BRL) have learned that tube-to -tube

variability* is one of the major contributors to the overall variation in jump for the

M1A1 Tank System . Jump is defined as the difference between the aim point and impact

location after corrections have been made for all known sources of error (e.g. , muzzle

velocity and wind conditions) .

In an ongoing effort to reduce tube-to- tube variation in the MiAi , a concept refered

to as dynamic indexing was developed for the M256 cannon . A brief description of this

concept follows. Using data describing the gun dynamics during firing, a reference profile

is defined that compensates for tube droop and minimizes the perturbations to sabot

projectiles at ambient temperature. This differs from the standard indexing procedure in

which the reference profile only compensates for tube droop. Under both indexing

procedures, measurements of the tube centerline profile are taken and the tube

mathematically rotated until the best match to the reference profile is obtained . Once

this rotation is accomplished, the muzzle upstand, breech- interrupted threads, and breech

locking locking plug are machined, thus irrevocably defining " up " for the gun tube ..

As part of a prototype test, five gun tubes were randomly selected from the

production line at Watervliet Arsenal and were dynamically indexed . These tubes were

*

" Tube- to- tube variability " is a term used by researchers in the tank gun accuracy community. It is

equivalent to what statisticians might refer to as " between -tube variability ."
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shipped to Aberdeen Proving Ground and fired from a single M1A1 Tank using 105

rounds of 120 -mm ammunition . The results of this test showed "a tendency to reduce

tube -to -tube variability, providing an improvement in fleet hit probability " (Schmidt , et .

al . , 1989) . Based on these initial results , a more complete proof-of-principle test was

recommended .

II . TEST PLAN

The primary objective of the test was to determine if the tube - to -tube variability of

dynamically indexed tubes ( DITs) is statistically smaller than the tube- to -tube variability

of standard tubes (STs). In other words, " Does dynamic indexing of the M256 cannon

reduce the dispersion of centers -of-impact ?" (see Figure 1 ) .

The Probability & Statistics Branch of the BRL devised several experimental design

plans and presented them before the Project Manager for Tank Main Armament Systems.

The relative merits of the design plans were discussed with concerns expressed for

economy of available resources and robustness of test conditions .

Ultimately, one of the plans was selected and slightly modified for a detailed

comparison of DITs and STs. The design called for four types of 120-mm ammunition ,

twenty DITs, and twenty STs. To make the experiment and the results as robust as

possible , it also called for four tanks and four ammunition temperatures. However, in

order to reduce the amount of testing, the tank and ammunition temperature factors

were confounded . Therefore, if this confounded factor was found to be statistically

significant, one would be unable to distinguish between the Tank effect, the Ammunition

Temperature effect, or their interaction. For each treatment combination , three rounds

were fired . The complete test design matrix is shown in Figure 2 .

III. DATA MATRIX

The trajectory of each round was monitored at four different ranges: 800 m , 1500

m, 2400 m , and 3000 m . From measurements taken at these ranges, azimuth and

elevation jumps were computed and recorded . For various reasons, such as short -landing

rounds or range equipment failures , the jumps were not always obtained at each of the

four ranges . The percentage of missing data at the 1500 - m and 3000 - m targets

precluded any formal analysis at these ranges . Exploratory analysis and the computation

of simple descriptive measures of the 800 -m and 2400 -m data indicated that the 2400 - m

azimuth jumps were strongly affected by wind . Therefore, the analysis was concentrated

on the data recorded at 800 m , since at this shorter range the data are believed to be less

influenced by wind and other flight conditions .

Using a procedure that relies on the assumption that rounds fired on the same

occasion follow a similar trajectory profile, jump estimates were made for those rounds in

which the 800 - m field data were missing.

Because of the substantial differences (e.g. , aerodynamics and threat capabilities)

between the ammunition types , the comprehensive data set was divided into four 120

round subsets to be analyzed separately . Furthermore , the azimuth and elevation jump

values were assumed to be independent, so that separate analyses were performed on the

azimuth jumps and the elevation jumps .
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Figure 1 The Goal of Dynamic Indexing
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Ammunition Type

Tank/Temp Tube Type Tube ID

1

2

3ST

2 3

(x,y) (x,y ) (x,y) (x,y) (x ,y) (x,y) (x,y) (x,y) (x,y) (x,y) (x,y) (x,y)

(x,y) (x,y) (x,y) (x,y ) (x,y ) (x,y) ( x, y) (x,y) (x,y) | ( x,y) (x,y) (x,y)

(x,y) (x,y) (x,y) (x,y) (x,y) (x,y) (x,y ) x,y) (x,y) (x,y) (x,y) (x,y)

(x,y) (x,y) (x,y) (x,y) (x,y) (x ,y) (x ,y) (x,y) (x,y) (x,y) (x,y) (x,y)

(x,y) (x,y) (x,y) (x,y) (x,y) ( x,y) (x,y) (x,y) ( x,y) ( x, y) ( x, y) ( x, y)
6

1

1

2

DIT

4

5

(x,y) (x,y ) (x,y) (x , y) ( x ,y) ( x , y) ( x, y) (x,y) (x , y) (x,y) (x,y) (x , y)

(x,y) (x,y) (x,y) (x,y) (x,y) (x,y) (x,y) ( x , y) (x , y) ( x ,y) ( x , y) (x , y)

(x,y) (x,y ) (x,y) (x , y) (x,y) ( x , y) ( x ,y ) ( x, y) (x , y) ( x , y) (x ,y) ( x , y)

(x,y) (x,y) (x,y) ( x,y) (x,y) (x,y) | (x ,y) (x,y) (x,y) (x,y) (x,y) (x ,y)

(x,y) (x,y) (x,y) I (x,y) (x,y) (x,y) | (x,y) (x,y) (x,y) I (x,y) (x,y) (x,y)

(x,y) ( x ,y) ( x ,y) (x ,y) ( x ,y) (x ,y) | ( x, y) ( x, y) (x , y) (x,y) (x , y) (x , y)

(x,y) (x,y) (x,y) (x ,y) ( x , y) (x ,y) ( x ,y) (x , y) ( x,y) (x,y) (x,y) (x,y)

(x,y) (x,y) ( x ,y ) (x ,y) (x ,y) (x ,y ) ( x,y) (x ,y) ( x , y) (x,y) (x,y) (x,y)

(x,y) (x,y ) (x ,y) (x,y) (x,y) (x,y) (x,y) (x,y) (x , y) | ( x ,y) ( x , y) (x , y)

(x,y ) (x,y) (x,y) (x,y) (x ,y) (x,y) ( ,y) ( x,y) (x ,y ) (x,y) (x,y) ( x, y)

S
T

6

7

8

9

10

2

DIT

6

7

8

9

10

( x ,y) (x,y) (x,y) ( x , y) ( x , y) (x ,y) (x , y) (x , y) (x ,y) ( x , y) ( x , y) (x ,y)

( x , y) (x,y) (x,y ) (x,y) (x,y) (x ,y) ( x,y) ( x, y) ( x , y) (x , y) (x,y) (x ,y)

(x , y) (x,y) (x,y) (x,y ) (x,y ) ( x ,y) ( x ,y) ( x ,y) ( x,y) (x,y) (x ,y) (x,y)

(x ,y) (x ,y) ( x ,y) (x ,y) ( x, y) ( x ,y) (x ,y) (x ,y) ( x ,y) ( x ,y ) (x ,y) ( x ,y)

(x,y ) (x ,y) (x,y ) (x ,y ) (x,y) (x,y) (x,y) (x,y) (x,y ) | (x,y) (x,y ) (x,y)

( x ,y) (x ,y cy) (x ,y) (x,y ) ( x,y) ( x, y) ( x,y ) | ( x ,y) (x ,y) ( x ,y)

(x ,y) (x , y) (x ,y) (x ,y) (x ,y) (x ,y) (x ,y) ( x , y) (x ,y) ( x , y) ( x , y) (x , y)

(x ,y) (x ,y) (x ,y) (x,y ) (x,y) (x ,y) (x ,y) ( x, y) ( x ,y) | (x,y) ( x, y) ( x ,y)

(x,y ) (x,y) (x,y) (x,y) (x,y ) (x ,y) (x ,y) (x , y) (x ,y) ( x , y) ( x , y) (x ,y)

(x ,y) (x ,y ) (x ,y) (x,y ) (x,y) (x ,y) (x ,y) (x ,y) (x , y) ( x , y) (x , y) (x ,y)

ST

11

12

13

14

15

3

11

12

DIT

14

15

(x ,y) (x ,y) (x ,y) (x ,y) (x ,y) (x , y) (x , y) (x ,y) ( x , y) ( x , y) (x ,y) ( x, y)

(x ,y) (x ,y) (x ,y) (x , y) (x ,y) (x,y ) (x ,y) (x ,y) (x ,y) (x,y) (x,y) (x ,y)

(x ,y ) (x ,y) (x ,y) ( x , y) (x ,y) (x ,y) (x ,y) (x ,y) (x ,y) ( x , y) (x,y) (x ,y)

(x ,y) (x ,y) (x ,y) (x ,y) (x ,y) (x ,y) (x ,y) (x,y ) (x,y) ( x ,y ) ( x , y) (x ,y)

(x,y) (x,y) (x,y ) I (x,y) (x,y ) (x ,y ) (x ,y ) (x,y) (x ,y) I (x ,y) (x,y) (x,y )

(x ,y) (x ,y) (x ,y) (x,y) (x,y) (x,y ) (x,y) (x ,y) (x , y) (x,y) (x,y) (x ,y)

(x,y) (x ,y) ( x,y) (x ,y) (x ,y) (x ,y) (x ,y) (x ,y) (x, y ) (x,y) (x,y ) ( x,y)

(x ,y) (x ,y) (x ,y) (x ,y) (x ,y) (x ,y ) (x ,y) (x ,y) (x,y) (x,y) (x,y) (x ,y)

(x ,y) (x ,y) (x ,y) ( x ,y) (x ,y) (x,y) (x,y) (x ,y) (x ,y) (x,y ) (x,y) (x ,y)
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Figure 2. 480 -Round Test Design

With simple exploratory procedures, some potential outliers in the data were

flagged. After conferring with test directors and other researchers involved in the study ,

some of these jump values were corrected while others remained unchanged . No round

was deleted from the analysis just because it seemed to be a " fier " . All jump values were

eventually accepted as accurate and included in the analysis .

IV . STATISTICAL ANALYSIS

The following discussion will examine how the comparison between DIT and ST

tube-to -tube variability was made for any of the eight ( four ammunitions for azimuth and

elevation ) subsets of the entire data set .

The analysis strategy was to obtain an estimate of the tube-to -tube variance for

those rounds fired from DITs, and to compare it with the tube-to- tube variance estimate
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for STs, (i.e. , o qube-dit versus o fube-st). This required dividing the data in half into 60

DIT rounds and 60 ST rounds. The test design for such a set of 60 jump values appears

in Figure 3. The model for the standard tubes azimuth data, for example, is

Lijk = + Q; + Bi( ) + Ek(ij)

where ,

Tijk jump of kth round from jth standard tube on ith tank/temp, measured in mils;

р
overall mean ;

effect of ilk tank/temp, i = 1 , 2 , 3 , 4 ;

Bilo) effect of ith standard tube on ith tank/temp, j = 1 , 2 , 3 , 4 , 5 ;

Eklij) error of kth round from jth standard tube on the tank/temp , k = 1 , 2 , 3 .

Tank /Temp Jump

X х X

х х х

Tube ID

1

2

3

4

5

1 X X X

х х х

х X х

х х X

х х X

2 х х X

X х X

X х X

х х X

х х X

10

11

12

13

14

15

3 х X х

х х х

X X х

х X X

х х X

4

16

17

18

19

20

X X X

х х X

х X X

Figure 3. 60 - jump test design from which the variance component

estimate o Tube is derived . For each combination of Direction ( azimuth or

elevation) , Tube Type (DIT or ST ), and Ammunition Type ( 1 , 2 , 3 , or 4) ,

the test design is as shown above where each " x " represents a jump value .

The confounded factor , Tank/Temp, and the nested factor , Tube, were each

considered to be random . Furthermore, each ai, Bi(i), and ék( ij) , was assumedto be
normally distributed with mean zero and variance of ank/Temp, o tube-st, and oảnd-ST,

respectively.
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For an analysis -of- variance under these model assumptions, the degrees-of -freedom

and expected mean -squares (EMS) associated with each factor are:

Source df EMS

Tank/Temp 3 oảnd-st + 30Ľube-st + 150 Žank/Temp

oŘnd-St + 30ğube-ST
Tube 16

Round 40
Rnd -ST

The method -of-moments estimator for the variance component ołube-st is given by

MSTube- st – MSRnd-ST
8² T

ST
Tube - ST

3

Likewise, for the DIT data, an estimator for oſube-dit is

Ô

MSTube- DIT MSRnd -DIT

3
Tube - DIT

Once each estimate was computed , there was still the task of how to determine if

there was a significant reduction in tube-to -tube variance with dynamic indexing.

Unfortunately, this could not be done directly since the distributions of each ožube-DIT

and o ſube-st are extremely complex and there was no known method for comparing two

random variables coming from such distributions .

An indirect test for the equality variance components was needed , and after

conferring with several academicians a novel approach was attempted (Mathew 1991 ) .

For each data set , the round - to - round variability is denoted by either oŘnd-Dit or oŘnd-s

depending upon the tube type. While there is no reason to believe that dynamic indexing

has any effect on the round - to -round variance , this assumption can be tested . Estimators

for oŘnd-dit and oŘnd-st are MSRnd -dit and MSRnd-St, which are multiples of x random

variables with 40 degrees of freedom . Therefore,

MSRnd-DIT
F ;

MSRnd-bit /40

MSRnd-ST / 40

F40,40
MSRnd-ST

is a test statistic for the two -tailed hypothesis test

Ho: oŘnd-dit = oảnd-St, against

Ha: oknd-dit + OŘnd-ST:

Next, note that

F'S

MSTube-DIT / 16

MSTube-ST / 16
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is a test statistic for the hypothesis test

Hó: oậnd-st + 30ube-st = oknd-Dir + 30Tube-dit, against

Há oknd-st + 30 %ube -st > OŘnd-Dit + 30Žube -dir.

However, if the ratio F = MSRnd-dit /MSRnd-st is insignificant, then F' becomes an
that is,

test statistic for the equality of tube- to - tube variability;

F' = MSTube-st /MSTube -dir tests the hypothesis

Hó : oſube -st = oſube-dit, against

H ožube- st > ožube-dir.

On the other hand , if the test for equality of round -to-round variabilities is

significant, then this would contaminate the indirect approach suggested above. In such

case, graphical comparison of the variance components estimates, o ſube-bit and 6 ſube-st

with other pairs of estimates that are known to differ could provide a subjective

evaluation of ožube-dit and ožube-st .

V. RESULTS

Due to the classification of this subject matter , numerical results cannot be

divulged . Qualitatively , the overall conclusions were quite surprising and somewhat

disappointing . For the 120 -mm ammunition type that was used in the prototype test ,

which showed that dynamic indexing resulted in a lowering of ožube, the azimuth and

elevation tube-to - tube variance estimates were statistically greater with DITs than they

were with STs . The reason for this is still unknown .

Among the other 120 -mm ammunition types, only one showed a significant

reduction in otube with dynamically indexed tubes and that occurred only in azimuth . All

other cases were insignificant.

VI. REFERENCES

(1 ) Schmidt, E. , J. Bornstein , J. Thomas, and T. McCloskey . "A Method for Indexing

Tank Cannon ." BRL- IMR - 912, U.S. Army Ballistic Research Laboratory , Aberdeen

Proving Ground, October 1988 (CONFIDENTIAL).

(2 ] Mathew, Thomas. Letter to the author and Jerry Thomas. February , 1992 .

251





IDENTIFYING EXPERIMENTAL VARIABILITY AND ITS INFLUENCE ON THE

RESEARCH , DEVELOPMENT, TESTING, AND EVALUATION PROCESS

Jock o . Grynovicki

U.S. Army Laboratory Command

Human Engineering Laboratory

Aberdeen Proving Ground, Maryland

21005-5001

ABSTRACT

Uncontrolled sources of variability during experimentation may mask

significant results and may consequently hinder the ability of the Department

of Defense (DOD ) decision makers to draw conclusions concerning weapon systems

or standing operating procedures ( SOPs ) . To protect against drawing the wrong

conclusions , one must use experimental methodology that reduces , identifies ,

or controls sources of variability . To illustrate this point , a field

exercise , which is designed to determine how quickly and accurately soldiers

can identify enemy ordnance using a prototype expert system compared to the

standard 60 series technical manual , is presented, along with results and

conclusions . A design strategy that allows experimenters to estimate and test

these uncontrolled sources of variability is provided .

INTRODUCTION

Since decision making based on the use of statistical tools almost

always involves collection of data , the way in which the data are collected

becomes extremely important . The design of an experiment has been defined

very simply as the order in which a combination of experimental variables is

run or controlled .

Experimental designs are employed in the Army's research , developmental

testing , and evaluation efforts to assure that unbiased and correct decisions

are made regarding equipment , SOPs , and weapon systems .

Variation produced by disturbing factors , both known and unknown , is

called experimental error . Important effects may be wholly or partially

obscured by experimental error . Conversely , through experimental error , the

experimenter may be misled into believing in effects that do not exist .

Experimental designs are used to help reduce the experimental error in the

data collected . Randomization or counterbalancing is employed to try to help

average the effect of many extraneous factors which may be present in an

experiment .

Unfortunately , uncontrolled sources of variability during

experimentation may mask significant results and may consequently hinder the

ability of the Department of Defense (DOD ) decision makers to draw conclusions

concerning weapon systems or SOPS. To protect against drawing the wrong

conclusions , one must use experimental methodology that reduces , identifies ,

or controls sources of variability . One tool is to use " Model - Based

Diagnostics " associated with variance - component estimations to assess the data

and the experimental model as proposed by Hocking ( 1985 ) , demonstrated by

Grynovicki and Green ( 1988 ) , and published by Hocking, Green , and Brener

( 1989 ) , and Grynovicki ( 1990 ) .

253



These new closed form expressions for the estimators of variance

components have been developed , based on the equivalence shown in Hocking ,

Green , and Brener ( 1990 ) of the variance component estimation problem to the

problem of estimating the covariance , Ot , between appropriately related

observations . In addition , these estimators have been shown to provide

information that will be useful in diagnosing problems and to suggest simple

graphical procedures for examining the influence of the treatment levels .

(Grynovicki , and Green ( 1988 ) ) .

To illustrate this point , a field exercise designed to determine how

quickly soldiers can identify enemy ordnance , using a prototype expert system

compared to the standard 60 series technical manual, is presented, along with

results , diagnostics , and conclusions . A design strategy that allows

experimenters to estimate , test , and identify these uncontrolled sources of

variability is provided .

GENERAL VARIANCE COMPONENT ESTIMATES

AND MODEL DIAGNOSTIC METHODOLOGY

Before introducing the field study , a general description of the model

diagnostics is provided . For brevity , this discourse is limited to a

hierarchical model with factor 2 random and nested in factor i and crossed

with factor 3 . All other factors will be considered fixed .

The traditionalThe number of levels of factor ( i ) is designated by ai .

univariate repeated measures mixed model is

Yijkm u+Ai+AS ; ( i ) + Ck + ACik +CASkj ( i) +E ( ijk ) m 2.1

in which u is the grand mean , Ai is the effect of level i of treatment or

factor A, AS ; ( i ) is the effect of factor 2 nested into factor 1 , Ck is the

effect of level k of the third treatment , ACik is the effect of the AC

treatment combination of level ik , CASkj ( i ) is the effect of levels kj ( i ) of

treatment 3 crossed with treatment 2 nested in 1 , and Elijk ) m is the random

experimental error . For the traditional univariate repeated measures

approach , it is assumed that Ai , CK , ACik , and u are fixed treatment means ,

and ASi ( j ) , CASkj ( i ) , and E ( ijk ) m are zero mean , independent normal random

variables with variances 012 , 0123, and 00 , respectively . While the variables

are independent , the responses are correlated with the covariance structure .

Cov (Tijkm Ži* j ***m* )

3

0 if

012 012 if

0123 012 + 123 if

00+0123 if

2.2

iti * j*j *

ij - i * j * , k # k *

ijk = i* j *** , Mem *

ijkm = i * j *k *m*

The covariance Ot is between observations at the same level of factors

indexed by t and different levels of all other factors in the model . If we

think of the data as arranged in a two-way table with ai times a2 rows and a3

columns , we see that 012 is the covariance between observations in the same

row but different columns . Under the assumption that there are no

uncontrolled sources of variability and the model and its assumptions are
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correct , these covariances are assumed to be the same for all rows and all

pairs of columns . Theta 123 is the covariance between observations in the

same cell and is assumed to be the same for all cells . If the experiment is

not replicated, this estimate is not estimable and considered zero .

This suggests examining the corresponding sample covariance . These

sample covariances , or averages thereof , yield the estimators of the Ot . The

sample covariance yielding the estimate of $12 is

-1

6,, - ( az a3 13) EΣ (1,1 ' Σ Fljko Klok -Y .
iok

)

2.3
12

k#k *

i

in which ai is the number of levels of factor i , ri = ( a ; -1 ) , and Yijk. is

the cell mean for cell lijk ) .

From equation 2.3 , one recognizes the 012 estimator as an average of

ala3r3 equal sample covariances corresponding to all combinations of k#k * , i= 1

to al These covariances that are averaged contain the diagnostic power in

determining if the data contains outliers , there is uncontrolled sources of

variability, or if the data does deviate from the underlying assumptions .

The distribution theory for these diagnostics is developed in Grynovicki

( 1989 ) . In this dissertation , the covariance is written in matrix notation

which is referred to in the literature as a bilinear form . For the above

model, 012 can be written 21 ' A 22 in which

21' = ( Yilk . , Yizko , Yiayko ) ,

2.4

22 ( Yi1kY . , Y12A* ,
Yia, kt )

( Ia2
and A =

Jaz Jaz ' ) . Iaz is the identity matrix of dimension a2 , and Jaz

is a row of ones of length a2 . The variance covariance structure of ( 21 , 22 )

determines the probability density function . If the variance covariance

matrix has the form

Com
a ( I )

C ( I )

c ( I )

a ( I )
2.5

with a and c being linear combinations of the treatment variances in the

model , one can consider 21 and 22 as independent , and the distribution of the

diagnostics is
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S

( n - 4 ) / 2

exp ( -5 / (2a ) )
„ x exp

3)

( ( n - 1 ) / 2 ) !

n

1/2 1/2
( 27) a

(nc pa / 5 a

2a (1 -ps

2.6

(2-8 ,1/2 ( 2a ) ( n - 3172

O

If ( 21 , 22 ) have a variance-covariance structure

( :
a ( I ) +b (JJ ' )

C ( I ) +d ( JJ ' )

C ( I ) +d (JJ ' )

a ( I ) +d (JJ ' ) ) 2.7

one can consider this case as dependent , and the distribution as derived in

Grynovicki ( 1989 ) is

ΣΣ

is

(2M+2i+2j 2 ) / 26 (t/ 2a1
q qt

i j

(M+2i+M+2j ) / 2 (M+2i ) / 2 (M+2j ) / 2

2 b r ( (M+2i ) / 2 ) r ( (M+2j ) / 2 )
1 1

X 2.8

a

a

- ( ( a +b ) / ( 2a b ) ) w

e 1 1 1 1
(M+2j-2 ) / 2

(M+21-2 ) / 2 ]
dw .

( 1 +w )

An interactive computer program that calculates the cumulative

distribution of the variance estimates and diagnostics for either distribution

has been written and is described in Grynovicki and Green ( 1990 ) .

use of this program, Army experiments can determine if the covariances are

consistent or abnormal given the particular experiment . Thus , inconsistencies

with the data or inadequacies with the model that may lead to erroneous

conclusions can be identified and adjusted .

The program is written in Turbo-Pascal® and can be run on any IBM

compatible personal computer .

ARMY FIELD EXPERIMENT

To illustrate how uncontrolled experimental error can influence the

decision process and how the model diagnostics can reduce , identify , or

control sources of variability , a field exercise designed to determine how

quickly and accurately soldiers can identify enemy ordnance , using a prototype

expert system compared to the standard 60 series technical manual is

presented, along with results and conclusions . For illustration , only the

time data will be discussed . It is worth mentioning that both systems were

fairly accurate with AIRES being slightly but not significantly better

(Grynovicki , Miller , and Krass ( 1990 ) ) .

The U.S. Army Electronics Technology and Devices Laboratory (ETDL )

developed a prototype explosive ordnance disposal (EOD ) automated information
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retrieval and expert system ( AIRES ) to assist an EOD team to disarm , detonate ,

or otherwise " render safe " ordnance . Traditionally, the EOD team's source of

technical information is the technical manual ( TM ) 60 series manual which has

15,000 pages of paper and 1,500 sheets of microfiche . AIRES transforms a

portion of the TM 60 series manual into a portable computer - based system

capable of assisting the EOD technician in the identification and render safe

procedure .

This proof-of-principle prototype system (see Figure 1 ) , which acts as

an intelligent interface between the user and a large complex data base ,

features ( a ) expert system software for information retrieval , (b ) an optical

disk for data storage , ( c ) a flat panel display for presenting graphics and

text data , and (d) touch interaction for operator input .

The operation of AIRES requires the user to enter the known

characteristics of the unidentified ordnance . The ordnance is identified when

a match between the characteristics entered and the attributes of an item in

the data base has been achieved . As new characteristics are entered, the

system monitors the number of items in the data base that match the user

input . In the prototype system , data are entered by touching menu choices and

keypad entries presented on the display . When all known data have been

entered or when a unique match has been obtained , the user is presented with

an engineering drawing of the ordnance and is asked to confirm the

identification . This pairing was because the test participants ( TPS ) could

only identify the same ordnance once .

Text Matrix

A repeated measures design was used to expose each TP to the manual and

automatic methods of identifying ordnance for disarmament . Groups were the

between-subject factor , and methods were the within-subject factor . The

experiment was counterbalanced for site , method , and ordnance ( see Table 1 ) .

Since the subject could not identify the same ordnance more than once ,

the six items of ordnance were paired and grouped into two groups of three by

difficulty li.e. , a mortar round ( a ) in group A had the same general

identification characteristics and difficulty as a mortar round ( f ) in group

B ) . The pairing resulted in the following initial grouping :

Group A

Group B

a

d

b

e

с

f

The ordnance was then counterbalanced to assure that the same ordnance

was tested an equal number of times for each method .

Subjective Evaluation

The independent variables were method of classification ( standard versus

AIRES) group ( five groups of subjects evaluated at different times ) , and

subjects. The dependent variables were the time to identify the ordnance and

number of correctly identified trials .
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Table 1

Randomization Scheme and Experimental

Design for AIRES Evaluation

Experiment I

August 1988

Method

STANDARDGroup Subject AIRES

1 1

2

3

4

5

6

F

E

с

A

D

B

А

F

D

B

E

с

B

A

E

с

F

D

с

B

F

D

A

E

D E

D

A B

E

B С

F A

2 1

2

3

4

5

с

B

A

F

E

D

с

B

A

F

E

E

D

с

B

A

F

F

E

D

с

B

A

A B

F А

E F

D E

с D

B C

3 A

B

1

2

3

4

5

6

B

с

D

E

F

A

с

D

E

F

A

B

D

E

F

A

B

с

E F

F A

A B

B с

с

DE

D

E

F

4

U
N
D

W
N
H

F

E

D

с

B

A

A

F

E

D

с

B

B

A

F

E

D

с

с

B

A

F

E

D

D

с

B

A

F

E

E

D

C

B

А

F

5 E1

2

3

4

5

6

B

A

F

E

A
U
1

F

E

D

с

B

A

A B с

F A B

E F A

D E F

С D E

B DD

B

A

F

ROUNDS : A

B

m
y

l
o
g
o
n

Model 500/1 , 122mm , fuze model RGM - 2

Model D-832 Smoke Mortar , 82mm , fuze model M- 6

Model OF-A, HE Mortar , 120mm , fuze model M2-31

Model M59 , 122mm , fuze model M51A5

Model EBK-5M or ZBK-5K, Heat , USSR, 100mm , fuze model GPV-2

Model 365-K , Fixed Frag . , USSR, 85mm , fuze model KTM- 1
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To try to control for subject variability , all participants had to be

graduates from the EOD Advanced Training Course at the U.S. Army Ordnance

Missile and Munitions Center and School (USAOMMCS ) and had to have experience

using the TM 60 manual . In addition , all participants were given individual

training about AIRES by the Armament Research , Development , and Engineering

Center (ARDEC ) using munitions that were different but equal in difficulty to

the munitions used in the field exercise . The TPS were given detailed

instruction about entering known characteristics of the unidentified on AIRES

using the touching menu choices and keypad entries . They were administered a

pretest trial and had to correctly identify fire ordnance before they were

considered proficient .

Originally , 40 military personnel from USAOMMCS and the U.S. Army Forces

Command (FORSCOM ) were requested , but only 30 TPs were obtained . Based on the

pool of subjects that were available , the participants in this experiment had

a diversity of military occupational specialties (MOSS ) from various armed

forces as well as a diversity of EOD experience as shown in Table 2 .

Table 2

Summary of EOD Experience by Armed Forces

EOD average

experienceService Percent of total TPS

Army

Navy

Marines

Air Force

26.7

20.0

16.7

26.6

8

6

4

8

a

1

10.5

8.2

9.5

7.6

Unknown 10.0 12.0

Three additional TPs with no report of years of experience .

RESULTS AND DISCUSSION

The results of the analysis for identification time are shown in

Table 3 .

The traditional analysis of variance (ANOVA) indicated no significant

difference in time between the two methods . The average time to identify

ordnance using the standard method was 8.41 minutes as compared to 7.46

minutes to identify the ordnance using AIRES . One reason for being unable to

determine a significant difference between the classification methods may have

been because of a significant subject -within - group -by -method effect which is

used as an error term for method . Possible experimentation for this inflated

error term may be attributable to uncontrolled sources of variability, and

outliers .
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Table 3

ANOVA

August 1988

(time in minutes )

Source DF SS F Significance ( .05 )

Groups 4 215.7 1.91 N.S.

Subject within group 21 593.7 0.94 N.S.

Method

Method by group

1

4

35.1

97.4

0.69

0.48

N.S.

N.S.

21Method by subject
within group

1067.8 1.69 S.

Error 104 3132.0

Note . s . 3- significant ; N.S. - nonsignificant

To obtain insight into the nature of this significant interaction and

the underlying linear model, the variance components diagnostics for the

random effect subject within group (012 ) will be evaluated for consistency .

Based on the underlying assumption of sphericity associated with the repeated

measures model , the variance components should be statistically similar .

These four components are equal to the sample covariance across subjects for a

specific group between the two different methods and are presented graphically

in Figure 2 .

0

12

AIRES Method

Group

3 4 51 2

1
-42.29

2
113.22S

t
a
n
d
a
r
d

M
e
t
h
o
d

G
r
o
u
p

19.16
3

210,59
4

-6.76
5

Figure 2 . Variance component diagnostics for the random effect subject

within-group (Experiment I ) .
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In rewriting these covariances as a bilinear form , it can be shown that

the variance-covariance matrix of the two response vectors exhibits the

independent form as outlined in equation 2.5 and therefore , the distribution

of the diagnostics follows equation 2.6 .

A computer program to calculate the cumulative distribution of the

variance component diagnostics is presented in Grynovicki ( 1989 ) . The program

is written in Turbo-Pascal Version 5.0®, and can be compiled and run on any
IBM personal computer , provided Turbo - Pascal 5.0 is available .

The program uses Simpson's integration method and requires calculation

of the modified Bessel function for both integer and fractional order .

When the program is run, a menu appears that prompts the user about

whether the diagnostic being investigated should be considered the dependent

or independent case . Once the distribution is selected, the user is asked to

enter the standard deviations of each response vector

Y

ijk and

Y

ijk

as well as the covariance between the selected pairs .

for the sample size and range of integration .

The program also asked

For the diagnostics for 012 , the variance was estimated as 11.2 and

covariance as -0.523 based on the method of variance component estimate found

in Hocking , Green , and Brenner ( 1990 ) . The sample size used was six which is

conservative, and range was decided interactively until the cumulative

distribution reached one .

The 5th percentile for the diagnostic distribution was estimated as

-23.12 , and the 95th percentile associated with a diagnostic had a value of

3.73 . Thus , -42.29 and 13.22 fall outside this 95th percentile confidence

interval and indicate a problem with the underlying linear model and its

assumptions .

In investigating this unexplained square of variability, the average

time to identify the three ordnances was examined by the demographics of the

military personnel . As shown in Table 4 , the Army military personnel

identified the ordnance slightly quicker than military personnel from other

armed forces . In addition , experience seemed to influence identification

time . Military personnel with more than 5 years ' experience identified

ordnance more quickly with both methods than military with 5 years ' experience

or less ( see Table 5 ) . For the less experienced group , identification time

was decreased an average of 3.3 minutes using AIRES versus the manual system,

while the experienced group had a decrease of only 1.1 minutes . Thus , AIRES

seems to benefit the less experienced soldier more . To investigate these

trends , a second experiment was conducted using soldiers with less than 5

years ' experience .
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Table 4

Average Identification Time of Three Ordnance by Armed Forces

Armed Forces Manual AIRES

Army 23.5 minutes 22.0 minutes

Othera 24.7 minutes 23.0 minutes

aothers include Air Force , Navy , and Marine Corps personnel.

Table 5

Average Identification Time of Three Ordnance by EOD Experience

Experience Number of subjects Manual AIRES

1 to 5 years 6 26.8 minutes 23.5 minutes

More than 5 years 21 23.8 minutes 22.7 minutes

Experiment II

Speculating that the inflated error term for method may be because of

the wide range of EOD experience and service background of the subjects , it

was decided that a second field experiment with TPs having an equal amount of

EOD experience and service background ( all Army ) be conducted . All

participants had 2 years 6 months or less EOD experience as summarized in

Table 6. A repeated measures design was also chosen for this experiment with

two groups of six subjects each . Time was the dependent measure . Only 11

subjects successfully completed the field trial . The assumption of sphericity

using Box's M could not be rejected . The diagnostics for 012 for the second

experiment is shown in Figure 3 . The variance for the response vectors was

estimated using the method previously discussed as 17.91 with a correlation of

0.323 . The diagnostic was determined to fall under the independent

distribution . The sample size of six was used . The 95th percentile

confidence interval was calculated to be between and including -6.68 and

21.08 . As seen from Figure 3 , the data appear consistent , and the linear

model and underlying assumption of sphericity appear to hold ; the assumption

of sphericity using Box's M statistic could not be rejected .
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Figure 3 . Variance component diagnostics for the random effect subject

within-group (Experiment II ) .

Table 6

Subjects ' Training and Experience

Experiment II

November 1988

EOD experience

(years and months )Group Subject Service and MOS

1 111

2

3

4

5

USA/ 55010

USA/ 55010

USA/ 55010

USA/ 55010

USA/ 55010

1

2

2

1

1

2
5
0

11

2 1

2

3

4

5

USA/55010

USA/ 55010

USA/55010

USA/ 55010

USA/ 55010

0

1

1

2

2

11

6

2

0

6

TheA univariate analysis for repeated measures was then performed .

results are shown in Table 7 .
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Table 7

ANOVA

Experiment II

November 1988

(time in minutes )

Source DF SS F Significance ( .05 )

Groups 1 29.99 0.42 N.S.

Subject within group 9 640.85 1.95 N.S.

Method

Method by group

1

1

351.82

46.94

9.70

1.29

S.

N.S.

Method by subject

within group

9 326.13 1.00 N.S.

Error 43 1568.50

Scheffé's Test

Scheffé Grouping Mean

A 10.85 STANDARD

B 6.19 AIRES

Note .
S. 8

significant ; N.S. = nonsignificant
3

The F variable for method (F ( 1,9 ] = 9.70 ) indicated that there were

statistically significant differences between the automatic and manual methods

of identification . A soldier using the standard method took almost 11 minutes

to identify the ammunition , while using the AIRES method decreased the average

time by 4.6 minutes to 6.18 minutes . There were no significant differences

between soldiers or interactions regarding time of identification . All

soldiers but one identified the ordnance faster using AIRES as shown in Table

8 .

Thus , there was a significant identification time difference between the

automatic (AIRES ) and manual ( standard ) methods when soldiers with limited

experience and the same MOS (Experiment II ) were evaluated . Soldiers in this

group identified ordnance significantly faster using AIRES .
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Table 8

Experiment II

November 1988

Mean Completion Time by Group , Subject , and Method

(minutes )

Group Subject AIRES STANDARD

1 1

2

3

4

5

5.67

3.67

9.50 :

4.67

7.00

13.67

5.00

12.67

7.33

24.00

2 7.67

5.33

6.67

5.33

4.67

9.00

1

2

3

4

5

6

11.67

12.00

13.33

6.33

13.67

10.00

CONCLUSIONS

This paper has demonstrated that uncontrolled sources of variability

during experimentation , attributable to difference in experience , age , MOS ,

and Armed Forces , mask significant results and hinder decision makers from

drawing the correct conclusions concerning the explosive ordnance disposal

automated information retrieval and expert system. Model -based diagnostic

procedures have been demonstrated to be effective in assessing the data and

experimental model, and indicating probable causes for the violation of the

model assumptions . Through these diagnostic procedures , the researcher was

able to control additional sources of variability so that the data conformed

to the standard assumption of compound symmetry . Thus , the researcher was

able to conclude that there was a significant identification time difference

between the automatic (AIRES) and manual ( standard) method when soldiers with

limited and the same MOS were evaluated . Soldiers in this group identified

ordnance significantly faster using AIRES .
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MODELING GUNFIRE:

A PROBLEM IN MAXIMUM LIKELIHOOD ESTIMATION

Henry B. Tingey

Statement of the Problem.

-ti ++

M

d

φ

-

77

2 2
0

Figure 1. Schematic

A gun at 0 fires at a walld units away. The angle of fire, 0 , that the gun makes

with OM is a random variable having the distribution function given by

F(6)={ (*+2){ ( ) **** 1/12

(1)

Suppose we can observe only the hit made on the wall. Let x be the distance

measured from M to a hit. From a random sample 21 , 22 , ... , In of such hits : i )

Determine the maximum likelihood estimator of a , a , ii ) Find the distribution ofâ ,

iii ) When a = 1 what is the distribution of x , the distance form M to a hit ? iv) Set

up a uniformly most powerful test for the hypothesis, H : a = do with alternatives

a< ao for an arbitrary significance level.

a) Given the sample of hits , -1.306 d, 4.921 d , 2.865 d, -6.512 d, -3.984 d, -0.782

d, 3.542 d, 5.552 d, -4.375 d, -2.107 d. Test Ho : a = 1 versus H : 8 < 1 at

the .05 level of significance.

b ) Plot the power function of the test Ho : a = 1 against the alternative a < 1 at

the .05 significance level using the points a = 774, ( 1/4) , 1/4.

Determination of the Maximum Likelihood Estimator.

The principle of maximum likelihood estimation is : If fx ...... Xn ( X1, ... , Xn; 0 )

is the density for a random sample of size n drawn from a population with an

unknown parameter 0, then the maximum likelihood of 6 isthe value, ê, if it exists ,

such that fx , ...Xn (X1,... , Xn; 0 ) > f x2,...,xn (X1,... , Xn; A') where ô' is any other

value of 0, IIf( xi;0) = L (0 ;ti,... ,xn) = L(0) .

269



The function, a f (xi,6) , the likelihood function, is a function of 0 when the zi

are known. When this is true the function is regarded asa likelihood function of

O and the maximum likelihood estimate of 0 is therefore that value of A for which

maximizes a f(x1,0) as a function of 0.

The procedure is as follows: We are given the distribution function (cdf) of

which the first derivative with respect to the random variable is the density.

Recall then, ( 1 ) and for simplicity let

中 + 三 ,
z

=

TT

That is;

G(z) =

0, z < 0

za , 0 < z < 1 .

1 , z > 1

(2 )

Then

G' ( z ) = g( z , a)

where g(z , a ) is defined over 0 < z < 1 and is zero otherwise.

= aza-1
( 3 )

Consider now the likelihood function ,

n

L(a ) = II g( zi , a ) .
i= 1

Following the customary procedure of finding the maximum ofthe logarithm

of the likelihood function rather than of the likelihood function itself, maximize

n n

L(0)* = In L(0) = ln II 9( zi , a ) = n In a + (a – 1 ) In zi.
i= 1 i= 1

Then

L' (0)* R
I
D

+ Σ

+

In zi ,

i= 1

and setting L' ( 0) * = 0 , we obtain,

п

â =

Σ log zi
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The Distribution of â .

The distribution of â may be determined exactly by two different approaches

and approximately in at least one way. The two methods of finding the exact

distribution are, i) consider a change of variable in the density function and ii)

by means of moment generating function . The approximate method consists of

considering the normal approximation

i) Recall (3 ) , let y = -log 2. Then

h ( y ) dy = ae ay dy 0 < y < oo . (4)

It is easily verified that the integral of (4) is 1. Consider the transformation

ay = -4/2 . Again by substitution into (4) yields,

1

q(u) du = e-u/2 du

2

and

Q (V ) = 1 "
1

e

2

-u / 2 du
( 5 )

describes the x2 distribution with two degrees of freedom .

Hence log z is distributed as x2 with two degrees of freedom . Therefore 1 /â is

distributed as x2 with 2n degrees of freedom since it is the sum of n independent

x variables .)

ii ) Recall:
n

â = 0 < 2 < 1 .

Σ 2In zi

Let

Σ In zi

=

Ey â = 1 /y .
n

The moment generating function is defined by my (t ) = E[e Y ] with t as a pa

rameter, t + an . From the sample 21, ..., 2n of n independently and identically

distributed variates we may make the following calculations, by substitution

Ele+Y ]

{ E [e-(t/n) log 7 ] } " ,

since the distribution of any one z describes the distribution of all the others.

Hence the result here

+ { E [z-t/n ]}"

1 The exact distribution of â is considered in Appendix I.
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But

n

{E [z-t/n] } ""= [/ dz]"
aza-(t/n)

z- t /n aza- 1 dz

]"a - (t /n )

Therefore

>mz(t ) = (6 )

1- (t/an )

This is the moment generating function for a gamma distribution with param

eters , B = an a' = n - 1 .

By virtue of the uniqueness theorem : If two random variables have the same

generating function , they have the same density function. thus, an attempt

must be made to identifythis density function with a known density. Otherwise,

we go on to the next problem.

1

Consider k (w) =

(n − 1 ) !

i wn-le-wna اس>0.
1

na

n- 1

Let w =

2
2

=

R
I
R

e -nalâ a
ââ > 0 .

n
à then ?e (2) 1)! late

Let u = 2n alâ j (u) = 2"(n − 1)! un-le-u /2 u > 0 . This is a xî distribu

tion, when n == 1 .

iii) The approximate normal distribution of the estimator, â , for large samples is

given by:

1 (& -a) 2

0(â ) =
V2π2

where

e
22

1

õ2 = ok =
=

log , g ( 2 , a) = log a + (a – 1 ) log z

-NE [m2 log g (z ,a )]

1ď log g (z , a )

da2 a2

Then

1

-n

n (-1)
n

n

Q(â) =
V 2πα2

e 281 ( -a )2
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The Case When a = 1 .

Returning to the original density function ,

a- 1

f(a) = (* +
0 + 7/2

- 1/2 < < 7/2 .

If a = 1 it is then readily apparent that f(0) = k and k =

density.

has the uniform

The distribution of x will be given by the expression

g (x ) = h [f(x )] \ h ' [f(x )] ] .

From the physical situation, let x = d tan $.

1

h' (0)
1 + x2

Hence the distribution of x is given by

1 1

g (x ) = ito
-00 < x < oo ( 7)

TT 1 + x2

or the familiar normalized Cauchy distribution.2

The Uniformly Most Powerful Test.

First the definition of a uniformly most powerful test . A uniformly most pow

erful test is defined as a test in which all alternatives give rise to the same critical

region . That is :

f ( x : 0 ) > kf(x : 00 )

for any particular value of $ and all possible do . This situation is , in general, not

true . However, for the common distributions in statistics it is.3

A natural procedure, in the context of this paper is then to try the likelihood

ratio test. For the situation here let z1 , ... , Zn be a sample size of n from a popula

tion with density g (2, a ). We wish to test the null hypothesis , H : g (2 , a ) belongs

to w a subspace ofN. The likelihood of the sample is :

1

L
g (zi, a ) .

TT

2

69 .

Referred to in Box Hunter , Hunter Statistics for Researchers as a Mathematicians Toy, p .

3 Further discussion of the uniformly most powerful test is found in Appendix II .
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Ordinarily the likelihood as a function of the parameters will have a maximum

as the parameters are allowed to vary over the whole parameter space , N. The

maximum in w will occur in a like manner except here the parameters vary over a

subspace of N. L(Q) , the maximum value, will be called L ( ) in the whole space.

Lao ), the maximum value, willbe called L(w ) inthe subspace. The ratio of these

two maxima thus form the likelihood ratio which is denoted by d.

This fraction has the following obvious properties ; it is positive since L is a

product of positive density functions, lû) is always less than or equal to L(S)
because of fewer degrees of freedom in w . Also here it is a ratio of similar shaped

monotonic functions that differ, at most , in location . Thus , the ratio is a mono

tonic function of sample observations only and has range zero to one.

Suppose for the distribution here we wish to test the null hypothesis

Ho : a = ao .

This point is then w while the whole a axis is 82. The likelihood is

n

L = II azo- 1 .
i= 1

The maximum value of the likelihood is 1 will be given by setting a = â to obtain

n

LCÂ) = II aza- 1
i= 1

and in w

n

Lw ) = II Qozo-1
i= 1

The likelihood ratio is
n

1 = II aolâ zmo -a .
i= 1

Taking the log of both sides we obtain

log Σ log zi 1

log qolâ - 20 /â + 1 where

=

n n â

Consider the limiting cases for ao and â :4

4 Here n will be fixed and have no real effect at the limit .
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For ao +0

αο+0

For ao = â

For â +0

lim log on to a + 1 + -00 .

loguer
are al + 1 = 0 .

lim logo - +17-00.5

a

â-0

Also it is readily apparent that log is monotone since all the values involved

in the function are always positive or zero and monotone, as the ratio of two similar
monotonic functions.

Using criterion as a test would yield a very clumsy procedure. An actual

samplingdistribution for I would indeed be difficult to find. We then have two

resources,

i ) The large sample distribution of which states that under certain conditions ,

-2 log 1 is distributed approximately as x2 with degreesof freedomequal to

the dimensionality of 12, say k , less the dimensionality of w , say r , if r < k ,

and Ho is true.

ii) We may recall the result of the distribution of the reciprocal of the estimator,

â , as determined via the moment generating function method.

Here we now see the quantity 2nd which is distributed as x2 with 2n degrees of

freedom is everywhere greater than the criterion and has the desirable properties

of the xa distribution . We need only specify an 'n ' and a uniformly most powerful

test will be determined . Further, 2n cannot have fewer than 2 degrees of freedom

while the large sample 1 has only 1 , no matter what the sample size . The nature

of the chisquare distribution has been shown to give uniformly more power as the

degrees of freedom increase.

Because the large sample approximation still has the inherent awkward calcu

lation involved , we use the test criterion,

2n and

T = – xżn under H. (8 )
â

a) For the sample given earlier the hypothesis is tested by

Test procedure :

i ) Ho : a = 1

ii ) Ha : a < 1

iii Significance level = .05

T = 2n x2 with 2n degrees of freedom under H.

v Here n = 10 so we have 20 degrees of freedom

vi ) Test Rule: Reject H , if T > xão .05 = 31.4

vii ) Calculation of T

iv )

5 This result can be easily verified from elementary calculus.
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Recall

a = -n/ 105 (047/2)
and </d = tan o = arctan x/d

For our sample

X $ ( nearest minute)6 Radians ( + ) log ( +1)

– 1.306d

4.921d

2.865d

- 6.512d

-3.984d

- 0.782d

3.542d

5.552d

-4.375d

- 2.071d

- 52°34'

78°31 '

70°46'

- 81 ° 16'

- 75°55'

- 38°02'

74° 14'

79°48'

- 77°08'

- 64° 13'

- 0.91746

1.37037

1.23512

- 1.41838

- 1.32499

-0.66381

1.29561

1.39218

- 1.34673

- 1.12079

.208

.936

.893

.049

.078

.289

.412

.943

.071

.143

-1.57022

-0.06614

-0.11317

-3.01593

-2.55105

-1.24133

-0.09212

-0.05869

-2.64508

-1.94491

Then [ log ( 6+ /2) = -13.29864
and

=

10

= .75196

13.29684
.

So for Twe obtain

2( 10) ( 1 )
T = = 26.60 .

.75196

Since T = 26.6 < xão.95 = 31.4 we do not reject Ho.

The Power Function .

For the case here, when we are testing the hypothesis , Ho : a = ao versus all

alternatives HA : 0 < ao, the power function will be given by

P(a) f(x ) dx ,

where f(x) is the appropriate xa density. This will be a function of a . Then the

true a is far to the left of ao the power will be near 1. As a approaches ao the

power approaches the significance level . As a goes to the right the power decreases
to zero for this alternative.
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For purposes of graphing the power function , consider the following argument.

Power =Pr {T > x= (.95)}

where T is our test statistic and xão ( .95 ) is the

critical value of the xa distribution or

Pr

{ên ao }xỉ (95)} =1-8.

Call the true value of a , at and multiply both sides of the inequality by a

obtaining:

:1–B.Pr { amat > x30( 195)}
=

Then , since 2n at is an exact x2 variate we have

Pr

{ xã . > xỉ (95)}
= Power

GT xo (195) Pr {x > 35 x3 (95)}
αΤ

7/4

6/4

5/4

4/4

3/4

2/4

1/4

54.95

47.10

39.25

31.40

23.55

15.70

7.85

0.0

.0005

.0033

.05

.27

.74

.9925
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This is the uniformly most powerful test for a given alternative. Also it is more

powerful that the criterion as will be shown later . As n increases the test becomes

more sensitive . As n decreases so does the power of the test .

As a final note to this paper it may be of interest to repeat the above test

procedure for the large sample distribution of the criterion .

Under this procedure -2 log 1 ( ) xí under H ..

Reject here if –2 log / > xỉ ( .95) = 3.84 .

Calculation :

0 (log
1 1

-2 log = -40 ( log +1

.75196 .76196

= -40.28518 - 1.33 + 1 )

= 1.7928

Therefore do not reject Ho since 1.7928 < 3.84 .

A look at the power of the test in comparison to the above power function may

take the following argument.

In order to satisfy the condition of a uniformly most powerful test for the test

criterion 2n de consider the following:

ao

We need to show for

> A

that Txżn as the test statistic for the exact sampling distribution of 2nemo

and T , as the statistic for the appropriate distribution of –2 log have the

relationship Ta > Txz, or where

for Txí :

ao

â

> A

αο

and Ti : > A

It is sufficient to show that A' > A to conclude that Txz, is a uniformly more

powerful criterion than Tn. It will be necessary to establish the inequality A' > A

for every A and A' .

Consider first the critical values and equate the respective test statistics to
them

= 31.4

2n ao

•
Xin

=Ixan
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here â 5.6394 is sufficient for rejection and cle = 1.5700

Ta = –2n (log(log - * + 1) = 3.84

here â S.5700 for rejection and even
= 1.7547

Then A' > A and clearly since the chi square distribution is monotonic and also

has a greater rateof change as the degrees of freedom are increased the inequality

will therefore hold for every A' and Ă it follows that Txz. is the uniformly most

powerful test criterion .

7

The solution here is iterative. Usually 4 or 5 tries to give accuracy to the 3rd decimal place.
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Appendix I

The Exact Distribution of â .

After performing the substitution in Part II , it was found that :

$(y) dy = aeay dy

which defines the distribution of the reciprocal of the estimator, a .

The distribution of a then is actually the inverse of a chi square distribution

with two degrees of freedom .

It is possible to find the form of the distribution of a then by substitution into

the above formula .

Let x = 1 /y

then dx =
pedy

thus y =
1

I
is the inverse of the above transformation and it follows that

h (x ) dx = x -2 dx . From the relationship

g ( x ) = f[h (x )] \h'(x )|

we obtain

ar -2 e-a/2 dx .

If we let

x = â

dx = dâ

a

ealad

then

Theâ2

describes the distribution of the maximum likelihood estimator , a .

Here the distribution of â is not readily recognizable. It may be possible to

identify this distribution via Pearson's Principle ofMoments. However, if this were

tried , one is still faced with getting to a convenient form of the distribution . Since

it has already been shown that the distribution of 1 /â is readily recognizable and

has the desirable properties of a “ good ” test , it seems futile to pursue this approach

any further.
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Appendix II

Mathematical Proof of a Uniformly Most Powerful Test.

For a particular value of a' of a the best test of ao against a' is given by

choosing as a critical region the set of points for which

f( z ; a' ) > kf(z ; 20 )

or for this particular distribution

a'za' - 1 > kao z20-1

ao

za' - 20 > k
a'

log k + log
log z >

a'

αο

a'

ao

Hence we have as the best critical region an interval log 2 > A. Since it is

known that log z is distributed as chi square with two degrees of freedom , A is to
be chosen so that

f(xảr dy? = P {Type I error} .

The value A is the abscissa for xî distribution such that if f(x ) is the xź
distribution then

P {Type I error} .
А

For example: For

P {type I error} = .05

A = 5.99

This derivation is on the basis of a single observation . The generalization to

samples of size n is immediate. The observation ( zi , ... , Zn ) may beplotted in n
dimensional space which may be divided into two regions ,rejection andacceptance.

The ratio of the products ofthe two density functions will yield a critical region

which will be defined by a chi square value with 2n degrees of freedom at the level

of the Type I error.
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RESPONSE SURFACE METHODOLOGYFORVALUEADDEDANALYSIS

Captain William F. Mann III and LTC Andrew G. Loerch

Force Systems Directorate - Resources Analysis

U.S. Army Concepts Analysis Agency
8120 Woodmont Avenue

Bethesda, Maryland 201814-2797

ABSTRACT. The Value Added Analysis (VAA ) study at the U.S.Army

Concepts Analysis Agency will develop the capability to perform cost-benefit

analysis of major item systems in support ofthe Army Planning,

Programming,Budgeting, and Execution System (PPBES). A sub-problem

of the study is the analysis of the contribution of the systemsunder

consideration to different measures of effectiveness in a combat model.

Modified Plackett-Burman designs are used to create general linear

formulas of the form :

Y = bo + b1x1 + b2x2 + b3x3 + ... + brXr .

While linear models are usually used for fitting a regression line along a

range of variables, they can also be used with qualitative variables . The

estimator bo is a collective measure of the worth of the base case weapons.

The estimators bị through by represent the contribution of individual

systems to the improvement of the Corps-level measures of effectiveness

(MOEs); e.g. , Loss Exchange Ratio, Fractional Exchange Ratio, Effective

Battalions Remaining, etc.

There are several advantages of this method over previous practices.

First a weapon's " additive" effect can be estimated . This "additive" effect

can be usedto determine the "benefit " of buying this system . Secondly, the

general linear model can be used to evaluate different force packages or

mixes without rerunning the combat model.

1. INTRODUCTION . The Value Added Analysis (VAA ) methodology

was developed by the U.S. Army Concepts Analysis Agency to provide the

Army Staff with a rapid response analysis framework forperforming cost

benefit analysis to compare competing investment alternatives during

development of the Army Program . An important aspect of this

methodology is the evaluation of major item systems performance using a

combat simulation .

In the present environment of shrinking budgets and no dominant

theater, program development has become increasingly difficult. Many

competing systems must be evaluated in several theaters across several

years. The number of simulation runs is potentially huge. The task, then ,
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is to keep the number of runs at a minimum while extracting as much

information as possible from each one.

The purpose of this paper is to describe how the technique of response

surface methodology (RSM ) and the general linear model (GLM ) can be

used to accomplishthis task . The use of these two statistical techniques

allows the systematic development of the set of required simulationsand its

inputs, and facilitates the analysis of the output as well.

2. COMBAT MODELING . The Corps Battle Analyzer (CORBAN ) is a

complex combat simulation in which combat functions are represented

mathematically. VAA requires the evaluation and quantification of certain

combat and non -combat systems. It is also necessary to represent the

systems in several different theaters and across a wide range of years. To

get a broad spectrum of possible situations, the systems are evaluated in

three different and plausible scenarios for three different years (1996, 2001 ,

and 2008) . For each of these nine scenario/ year combinations, VAA

requires approximately 50 CORBAN runs. We are interested in several

measures of effectiveness (MOEs) derived from the model. Some examples

of these MOEs are:

a. Loss Exchange Ratio (LER) - This MOE is a ratio of the number of

major Red systems lost divided by the number of Blue systems lost. LER is
computed as follows:

LER =
Red Systems Lost

Blue Systems Lost

b. Fractional Exchange Ratio (FER ) - This MOE measures the

fractional red losses compared to fractional blue forces. FER is computed

as follows:

Red
FER =

Red Systems Losses

Red Systems Started

Blue SytemsLosses

Blue Systems Started

c. Red and Blue Effective Battalions Remaining (EBR) - This MOE is a

measure of the number of battalions ( generally maneuver, artillery, rocket

and helicopter) remaining on each sidethat are still combat effective at the

conclusion of the simulated conflict.

d. Red and Blue Movement of Force Center of Mass (MFCM ) - This

MOE measures of the performance of an attacker by examining the

distance the center of mass of his forces has travelled.

The inputs to CORBAN include scenario, terrain , representative Red

forces and Blue forces, missions, and orders. The Base Case asset list
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contains current systems that will be available during a particular year of

interest. Excursions are developed by substituting base case systems with

new weapon systems, or adding new systems, to produce new results that

can be compared with the base case results.

3. THE STATISTICAL MODEL. If one imagines that the CORBAN

model is a black box (see Figure 1), the use of response surface methodology

becomes easier to understand. "Response surface methodology comprises a

group of statistical techniques for empirical model building and model

exploitation. By careful design and analysis of experiments, it seeks to

relate a 'response ', or outputvariable to the levelsof a number of

'predictors', or input variables, that affect it " ( Box and Draper, 1987 ; 1 ) .

Inputs Outputs

Blue Systems
Y

Red Systems

CORBAN 12

Terrain

Y

3Scenario

Figure 1. CORBAN with All the Inputs

The most common and simplest method of using a combat model is to

establish a base line case, and then to add each new weapon system one at a

time, measuring the changes in combat effectiveness. These changes from

the base line case measure the amount a weapon system contributes to the
outcome of the battle. While this method measures the contribution of each

individual weapon, it does not allow the determination of the additive effect
of weapon systems, i.e. , if an attack helicopter raises the value of an MOE

by " X " and a tank raises the value by " y", then it is not true that if both

systems are present the resulting improvement would be " x + y".

The ideal solution would be to explore all possible combinations and find

the combination of systems that yield the greatest increase in the MOEs

values. While this method is practical with small situations, the number of

combinations grows quickly. If one had to explore every combination of 40

different systems, the number of potential runs would be 240, or 109.9 billion

runs .
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RSM represents a compromise between the process of replacing weapons

one at a time and the ideal solution of doing every combination. This

compromiseis a fractional design. This technique is based on taking

specific combinations of the total combinations possible. The combinations'

results are then averaged to find an estimate for a system's contribution to

the MOE .

RSM does allow the measurement of the additive effects of weapons.

This methodology fosters the construction of a "design matrix" that varies

the inputs in an efficient manner so that a linear model can be built to

forecast the effects of the systems with respect to the outputs. A set of

coefficients is computed which are the mean or average improvement given

the new weapon system . These coefficients can be used in an additive

estimate .

In the following example, we hold the Red weapon systems,the

terrain , and the scenario input variables constant and vary the Blue

systems that we want to study. This technique reduces the inputs to the

black box to a more manageable size as illustrated in Figure 2 .

Inputs Outputs

X

1

→ Y
Y,

1

X

N CORBAN

B
l
u
e

S
y
s
t
e
m
s

4
2

X

3

X

4

Y
3

Figure 2. Controlling only the Desired Input

A general linear model is a method of estimating an output or dependent

variable, Y, whose mean is a function of one or more independent variables

(x1 , x2 , etc. ). The general linear model is of the form :

Y= bo + b1X1 + b2x2 + b3X3 + ... + byxp .

+ +

( 1 )

or in matrix form ,

Y = XB ,
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where Y is an output MOE vector of the model run results, bo is the effect of

the base case weapons, bị through br are the effects of systems 1 through r

in the excursions, and X is the design matrix of binary independent

variables whose construction is described below . This model isolates only

the presence of main effects without considering any interaction effects.

Plackett -Burman designs are useful when the problem of determining

the main effects with maximum precision is reduced to a combinatorial

problem . They are useful when the problem has only two -level factors, i.e. ,

when there are low and high variable setting or binary (0 , 1 ) variables. If

there is a need to consider a mixture of two and three factor treatments ,

orthogonal array designs may be employed.

Plackett-Burman's method specifies the construction of the design

matrix , X. This matrix represents a map of all the independent variables'

values for each computerrun. Each row corresponds to aspecific

computer run and each column corresponds to a different factor. In the

case ofVAA, the systems being considered for procurement are the factors.

The values of the matrix elements are either 1 or 0 which represents the

presence or absence of the system, respectively.

To illustrate this coding scheme, we consider the following two cases .

The first case involves a new system replacing an existing system . An

example of this case would be the Squad Automatic Weapon (SAW )

replacing the M60 machine gun . In excursions where soldiers are

equipped with a SAW , a 1 would be entered in the design matrix. In

excursions where the M60 is used , a 0 would appear.

The second case involves a new system that does not replace an existing

system . JSTARS would be such a system . In this case , a 1 would indicate

the presence of the new system , while a 0 would denote its absence.

Once the design matrix is formed , each excursion is performed as

specified using the combat model, and the outputs are obtained, forming

the Y vector. The coefficients (elements ofB) for the linear model are

obtained by matrix algebra. Then we have:

XB = Y. ( 2 )

To solve for B , we have two options. If a full Plackett-Burman matrix is

used without deleting any columns such that X is of full rank , then :

B = X -1Y . ( 3 )

If there is a need or desire to use a reduced matrix (modified Plackett

Burman design ), then we use the standard formula for GLM :

B= (x+x)-1xTy
( 4 )
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(Neter, Wasserman , and Kutner, 1985 ; 239).

The above matrix manipulation can be done on spreadsheets, IMSL

routines, FORTRAN programs, SPSS, BMDP, or other statistic programs.

While the GLM is normally used for fitting a regression line along a

range of variables ,it can be used withqualitative variables as well (Neter,

Wasserman , and Kutner, 1985 ; 342). The estimator bo is the measure of

worth of the base case weapons. The estimators bị through br represent the

contribution of individual systemstothe improvement of the Corps-level

MOEs; e.g. , LER, FER , EBR , etc. "These coefficients are often called

differential intercept coefficients because they reveal by howmuch the value

of the intercept termof the category that receives the value 1 differs from the

intercept coefficient of the category that receives the value zero . The

category that receives the value zero is often referred to as the base or

comparison category " ( Dillon and Goldstein , 1984; 245 ).

The advantage of the above formulation is that the general linear model

can be used to evaluate different force packages or mixes of systems without

rerunning the CORBAN model. The linear model can then be used to give

an estimate of the values of the MOES Y1 , Y2, and Y3 for the new

combinations of systems without conducting additional simulation runs .

The number of computer runs needed to determine the linear model

depends on the type of combat model that is being used. A stochastic

combat model will give different answers for each random number seed

used, all other inputs being held constant; therefore, multiple runs must be

made for each combination . Deterministic (expected value) models are not

random . Therefore, only one run of this model is needed to measure the

output for each combination . VAA uses the deterministic version of

CORBAN , so one more run than the total number of system contributions,

r, to be estimated, or at least r + 1 runs are needed using the Plackett

Burman design or a subset of Plackett -Burman (Plackett and Burman,

1946; 319) . The additional run is required to determine the intercept, bo for

the base case value. So with r+ 1 runs, coefficients can be computed for

equation (1) above. It should be noted that each Plackett-Burman design is

unique and based on multiples of four runs. However, one can use subsets

of larger designs to tailor the design matrix . In these cases , one must use

equation (4) to find the coefficients.

This general linear model will result in a perfect fit (no residuals) of the

output data when we have exactly r+ 1 model runs for r weapon systems

coefficients and one coefficient for the base case or intercept term .

Therefore, we will have r + 1 data points for r + 1 estimators (bo to br).

Statistically, we can not estimate the lack of fit due to the lack of residual

terms. If desired, additional runs could be made on non -explored points or

a subset of a larger Plackett-Burman matrix can be used and the general
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linear model's aptness can be determined . This is necessary if statistical

tests are needed to determine the significance of the coefficients.

An additional advantage of the use of this method, is the ability to add a

small number of additional weapon systems later. The past work is not for

naught, additional computer runs can be added , and the problem can grow

from the initial set of runs (see example 2), into a more traditional multiple

regression problem .

4. ILLUSTRATIVE EXAMPLES. Example 1 ( See the appendix for

additional computational details) demonstrates the proposed methodology.

In this example there are 7 systems (r=7) that we want to compare to the

base case of which four are new direct fire weapons (weapons are 1-4), two

field artillery weapons (FA weapons 5 and 6), and one new attack helicopter

(helicopter 7). Using the Plackett-Burman design , we set up the design

matrix, X. The 8 ( r+1) computer runs are performed and, in this case, the

output of Blue Effective Battalions Remaining (EBRs) MOE is used, forming

our output vector, Y. Using equation (3) our linear model becomes:

Y2 = 3 + 18.5x1 + 18.5x2 – 3x3+ 8x4 - 14x5 + 18.5x6 + 30x7 ( 5 )

where bo = 3, the value of the base case systems, and

Xi =

11, if weapon i is present,

0, otherwise.

With the above general linear model, one can see that the largest

improvement is incurred when the Attack Helicopter is introduced ,

followed by a three way tie for the next largest contribution among systems

1 , 2 ,and 6. The next important weapon is 4. Finally note that systems 3 and

2 actually decrease the ability to obtain a higher EBR score .

Once the study is done, the sponsors wish to add another system . As

shown by Example 2 , this can be done. The disadvantage of adding a new

system is that there is a loss of the structure of the original orthogonal

design . This orthogonal design gave us advantages ofbalance and coverage

of the sample space. The same basic methodology can still be used since the

problem is still a multiple regression problem .

5. PROBLEMS USING THIS TECHNIQUE. This procedure is not a cure

for input errors and intense weapon system interactions, nor does it

immediately help to explain counter-intuitive results . Thorough analysis is

still required to check the answers, and then serious thought is needed to

interpret the results.

When this methodology was first used in the VAA study, the discovery

of input errors was more difficult. When the traditional method of combat
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modeling is used, only one system is adjusted at a time from the base case.

The modelers can then easily compare the results from their excursions to

the base case and determine the differences and find any errors . It is much

harder to find modeling errors in an experimental design when there are

many different new systems in each run . Once major errors are

discovered, it may then be required to rerun all the runs to correct the

error.

A major concern arose when some system coefficients were negative.

Intuition tells the analyst that the replacement of an old systemwith a

vastly superior system should not result in a decrease in capability. An

examination of the systems then showed unnoticed modeling data problems

with all the negative systems. Examples are search patterns larger than

the arrays set up to store them, firing rates set to zero, or an incorrect

portrayal of the weapon . The methodology has not yet, in its use in VAA ,

produced a result that was worse for a clearly superior system when the

input data for the respective new and old systems were correct.

To assist in error checking, other summary or intermediate statistics

were used to find problems. An example is the number of losses for each

side. For instance, if the Fractional Exchange Ratio for a system is

negative, the major components of FER, thenumber of Red losses and the

number of Blue losses are examined . The regression was applied to these

statistics and interestingdiscoveries could be made. The presence of some

weapons was linked to Blue experiencing more losses during these runs.

Calculations showed that it was the increase of Blue losses that made the

system's FER turn negative. This technique helped lead to discovering the

reason why there were more Blue losses .

In some cases, an interaction between two systems occurs . This

interaction can be a synergism between two systems that greatly increases

their ability. A pairing of a long range sensor and a long range missile is

an example of a possible synergistic interaction . The interaction could also

decrease the systems' MOE contribution , such as two long range weapons

that when together compete for the same targets. A solution to this problem

is called a " foldover" design that isolates the main effects of the interested

systems (Boxand Draper, 1987 ; 158 and 162). The cost of this foldover

design isto double the number of computer runs. Other designs to

specifically measure interactions are available, but their cost in the number

of computer runs are very prohibitive except in problems with only a limited

number of independent variables.

Interpretation of combat results has never been easy. Time and thought

still need to be invested to determine why system " A " is doing so poorly, or

doing so well, and then to present the results to the decision makers.

Decision makers need to understand the reasons for an answer, and RSM

may make it harder for the modeler to explain the results. In this

particular situation , a database system isinvaluable to manipulate the
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large amount of data needed to perform these analyses. Explaining and

verifying counter -intuitive results is a difficult and tedious process.

6. SUMMARY. The Plackett -Burman designs are ideally suited for use

in the VAA methodology. The requirement to evaluate multiple systems in

various combinations would be impossible in a timely manner if combat

simulations would be needed for every conceivable groupingof weapon

systems. Thus, the use ofRSM to form general linear models will allow

VAA to be a responsive tool needed in the PPBES process. While there are

many benefits to this statistical approach , this method is not a panacea for

combatmodeling. There is still a great requirement for thorough and

detailed analysis to be done.
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APPENDIX

Example 1

This example is done using a software package called MATHCAD ,

which allows one to use matrix algebra . This example is for

demonstration purposes only and does not represent actual data .

ORIGIN = 1 PROPOSAL FOR DETERMINING COEFFICIENTS

BASED ON THE

PLACKETT - BURMAN

DESIGN
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0 1 0 1 1 1
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DESIGN MATRIX : =

X : = DESIGN MATRIX

Representative output from the CORBAN model

i.e. Effective Battalions Remaining

Run #

1

2

3

4

5

6

7

8

[23

45
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56

67
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L 3

Y : =

-1

B : = ( XT.X ) · XT.Y

3

18.5

18.5

- 3

8

-14

18.5

30

MEAN Value of the Base Case

WPN 1

WPN 2

WPN 3

WPN 4

FA 1

FA 2

ATK HELO

B =

Check of the fit of the model

Yi : = X : B

0

Σ( Υ Yl ) = 0

Y - Y1 =
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Example 2

In this example , we have completed our computer runs, and

now have a new weapon system to add in . While we will lose

some of the benefit of the original orthogonal design ,

we can still treat this as a multiple regression problem .

In this example , we add an additional column , and repeated

the first three rows of the design and with the presence of

the new weapon system .

ORIGIN = 1

1

1

'
o
o
d

DESIGN_MATRIX : =

1

1

1

1

1

1

1

1

О
О
Р
О
Р
Р
О
Р
О
О
Р

1 1 1 0 1 0 0

1 1 1 0 0

0 1 1 1 1

0 0 1 1 0

1 0 0 1 1

0 1 0 0 1

1 0 1 0 1

0 0 0 0 0

1 1 0 1 0

1 1 1 0 0

0 0 1 1 1 1
О
Р
О
О

О
Р
Р
Р
О
Р
О

# of Runs

1

2 BASED ON THE

3 ORIGINAL

0 4 PLACKETT - BURMAN

0 5 DESIGN WITH AN

6 ADDITIONAL COLUMN

7 AND THREE MORE ROWS

0 8

1 9

1 10

1 ll

O
o

X : = DESIGN MATRIX

The output matrix with the three additional

results from the three additional computer runs .

Y :

237

45

24

34

56

67

78

3

33

55

33

1

2

3

4

5

6

7

8

9

10

11

-1

B : = ( XT.X ) · XT.Y

B =

37

18.583

18.667

-3

7.917

-14.083

18.583

29.833

9.667

MEAN of the Base Case Weapons

WPN 1

WPN 2

WPN 3 This is our new coefficient matrix .

WPN 4 Notice the small changes in the

FA 1 coefficients when compared to

FA 2 Example 1 .

ATK HELO

NEW WPN
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We will now check the results of the model . Realize now

that we have more points than coefficients , so there may

be some variance in the model .

X : B =

[ 23.1677

45.167

23.667

34

56

67

78

3

32.833

54.833

33.333

E : = Y - ( X. B )

The variance is represented by the

error of the predicted results , Yl ,

to the actual results , Y.

j : = 1 . rows ( X )

Check of the fit of the model

0.4

Yl : = X : B -0.1671

-0.167 E

0.333 j

-14

-3.553.10 -.4

Y - Y1 = -14 0
j 12

-8.527.10

-14 This graph shows the

-5.684.10 distribution of the

-14 error , Yi - Y.

-5.684.10

-14

6.306.10

0.167

0.167

-0.333

-13

( Y - Y1 ) = -5.871.10

In this example the error term is not exactly zero

due to round off error .
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LECTURE 1

Descriptive Statistics and Tests For White Noise

Almost every area of scientific inquiry is concerned with data collected over time, that is, with time

series. Figure 1.1 contains the graph of ten such time series. The aim of this lecture is to introduce some of

the basic descriptive techniques used in time series analysis.

1.1 . Time Series Data Types

Time series can be classified in many ways , including by the following four characteristics :

1. The dimension of the index set T over which observations are made. The set T can be one-dimensional

or multidimensional. Daily births of females in California (Series I) have a one -dimensional index set,

while wheat yields recorded over a regular grid of positions in a large field have a two - dimensional index

set. This second example also illustrates that the index set need not literally be " time" but can also be

" position ."

2. Whether the index set is continuous or discrete. Thus an analog EEG record from one probe is a

continuous one- dimensional series, wbile daily birth data are a discrete one - dimensional series.

3. How many variables are recorded at each element of the index set. Univariate ( also called scalar) time

series have one variable at each time, while multivariate time series have a vector of variables measured

at each time. For example, a series consisting of monthly interest rates and gross national product is a

one- dimension al bivariate time series.

4. Whether the variable or variables at each time are themselves discrete or continuous. Most series are

continuous; that is, each variable can take on a continuum of values. An example of a discrete valued

series is a binary time series, one in which an observation can take on only one of two values .

Note that discrete -time time series can also be either equally spaced or irregularly spaced in time. We

will be almost exclusively concerned with time series that are one dimensional, equally spaced, discrete in

time but continuous in space, and univariate.

1.2. Time Series Memory Types

The basic property of time series analysis is that it is concerned with repeated measurements on the

same phenomenon at different times or places. Because of this, the analyst must take into account the

correlation between successive observations. This is in marked contrast with the data analyzed in many

areas of statistics where one assumes that the data are made up of independent and identically distributed

observations obtained by randomly sampling some population or populations. The presence of correlation

makes the analysis of time series data and the interpretation of the results much more difficult than in the

independent case .
!
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Course Materials

This handout is based on the book TIMESLAB: A Time Series Analysis Laboratory

written by H. Joseph Newton and published by Wadsworth and Brooks / Cole of Pacific

Grove, California 93950; (800) 354-9706 . For more information , contact the publisher

or H. Joseph Newton; Department of Statistics; Texas A&M University; College Station,

Texas 77843 ; (409) 845–3141; email: jnewton@stat.tamu.edu.

Outline of Lectures

This tutorial is divided into six lectures. The aim of the lectures is to introduce the

basic ideas and methods for analyzing time series from a statistical point of view . They will

make extensive use of the computer program - also called TIMESLAB — that accompanies

the speaker's book . The lectures are :

1. Descriptive statistics and tests for white noise. Numerical and graphical summaries

of time series are discussed and illustrated on ten typical time series. Two tests are

described for determining if a time series can be regarded as having no patterns (white

noise ).

2. Transforming and forecasting time series. As in regression analysis, it is sometimes

necessary to transform a time series before proceeding with the analysis. Several

transformations are described. Also, several simple forecasting methods are described.

These methods do not use time series models.

3. Time series models. The basic properties of standard time series models (ARMA,

ARIMA, etc. ) are described . The basic theory of covariance stationary time series and

their prediction are discussed.

4. Estimation and model identification. Estimation procedures and their properties are

described for the mean and autocorrelations of a time series as well as for the param

eters of the models introduced in Lecture 3.

5. Model-based forecasting methods. The models and estimates discussed in Lecture 4 are

used to find forecasts and forecast intervals. Forecasting using regression models is

also discussed .

6. Searching for periodicities. The problem of determining if cycles exist in time series

is considered and illustrated on some famous time series, including sunspot data . The

general problem of spectral density estimation is also briefly discussed.
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DESCRIPTIVE STATISTICS AND TESTS FOR WHITE NOISE LECT . 1
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LECT . 1 DESCRIPTIVE STATISTICS AND TESTS FOR WHITE NOISE

In this section we classify time series into three broad classes according to what we will call their memory

type:

1. Purely Random Series. This type of series shows no patterns over time. Series III is an example

of such a series. It was generated by TIMESLAB using a random number generator so that it would be

indistinguishable from a random sample from a standard normal distribution . Series IV , on the other hand, is

a real data set (monthly total rainfall), but appears quite similar to Series III . We will see later that such data

are aptly named white noise. Purely random series are also called no -memory series, as one characterization

of statistical independence is that an observation at one time has no memory of the observations at any

other time.

2. Long -Memory Series. This type of series is the opposite extreme of white noise; that is, a plot

of the data looks to be almost that of a deterministic function of time. Series V and VI illustrate this type.

The first was artificially generated as values lying on a cosine curve that goes through ten cycles with small

random numbers added to each point. Series VI is a real economic time series (monthly total international

airline passengers for 12 years ). These two series have in common that both could be almost perfectly

extrapolated far into the future unless something were to happen to the mechanism generating the data.

This is the origin of the term "long memory.” The dependence on the past does not die away quickly. Note

that many of the time series in business and economics are long memory.

3. Short-Memory Series. This type lies between white noise and long memory, occurs often in

the physical and engineering sciences, and comprises the bulk of the time series that can be most usefully

analyzed by the sophisticated methods of time series analysis that we will study. Series VIII and IX appear

to be short-memory series; clearly observations close together in time are more similar than those far apart

in time, but there are no apparent deterministic patterns in the data (although upon closer inspection you

might be able to tell that Series IX is actually the sum of four cosine curves ). In a short-memory series the

predictability of the observations at one place in time from past observations appears to die out quickly as

time goes on .

1.3. Basic Descriptive Statistics

The first aim of any statistical procedure is to give a succinct description of the data being analyzed,

both graphically and numerically. In time series analysis there are three basic graphical techniques for

describing data: the correlogram , the partial correlogram , and the periodogram . In this section we introduce

each of these quantities in turn and illustrate how they are used to describe data 2( 1) , ... , (n ).

1.3.1 . The Sample Correlogram

... )
n for

The distinguishing characteristic of a time series is that it can exhibit serial correlation , that is, corre

lation over time. For example, Figure 1.2 contains scatterplots of z(t ) versus z(t – 1 ) for t = 2 ,

Series I and II . Note that for Series I there appears to be little correlation in the plot, while in Series II there

appears to be high positive correlation.

In a time series 2 ( 1), ..., 2( n ), we usually want to measure the correlation of the data with themselves

except " agged " a certain number oftimeunits. Thus for a lag v, we have nav pairs of z's that are separated

by v time units, namely the pairs

(z (1), 2(1 + v)),(z (2), (2 + v)) ,..., (z(n - u), (n )) .

The traditional way to measure serial correlation in time series is by the sample autocorrelation coefficient

as given in the following definition.
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DESCRIPTIVE STATISTICS AND TESTS FOR WHITE NOISE LECT . 1
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Figure 1.2. Scatterplot of z(t) versus c(t - 1 ) for Series I and II .

Definition . Let z ( 1), ..., (n ) be a univariate time series data set. The sample autocorrelation coefficient

oflag v is given by

(v) =
Ezi (z(t) – 3) (+(1 + v)– 3). van,

[ h=1 ( z(t) - 3)

where i is the sample mean of 2 ( 1), ... , 7 (n ). A plot of hlu) versus v for v = 0,1,... , M for some maximum

lag M is called the correlogram of the data.

Note that 8(0) = 1 and that the largest value of v that can be considered is n - 1 , since if v > n, there

are no pairs of z's separated by v time units . Note further that we will define Öl- ) = ( v).

To illustrate the use of the correlogram , consider Figure 1.3 where we have given the correlograms for

the ten series introduced earlier. A large value of Ô (v ) is indicative of a possible periodicity in the data of v

time units. For example, the correlogram of a pure cosine curve is also sinusoidal. Notice that Series V and

VI exhibit this behavior.

A correlogram that does (does not) decay rapidly to zero and then stay there as v increases means that

the series is short ( long) memory. Note that the wheat price index , the artificial series, the airline data, and

the random wall series appear to be long memory by inspection of the correlogram .

1.3.2. The Sample Partial Correlogram

As in elementary statistics, high correlation does not imply causality. We can introduce partial and

multiple correlations in an attempt to describe further the correlation in certain sets of variables. In el

ementary statistics, if we have random samples from populations Y , 2, and X1 , ..., X ,, we can find the

residuals ey and ez of regressing Y on the X's and 2 on the X's and then find the usual sample correlation

coefficient between ey (1),... , ey (n ) and ez( 1) , ..., ez(n ). The result is what is called the sample partial

correlation coefficient between Y and Z given X1 , ..., Xp, and is often denoted @XZIX. -X,. The sample

multiple correlation coefficient Rix....X , is the proportion of variability in Y that is "explained' by its linear

relationship with the X's. The analogous quantities in univariate time series analysis are the sample partial

autocorrelation coefficients and residual variances . The sample partial autocorrelation coefficient of lag u

is the correlation between z(t) and (t + v) after having removed the common linear effect of the data in

between (the lag one partial is just the usual lag one sample autocorrelation ). We denote the lag v partial

autocorrelation by 0 ,. We will usually display what we call the standardized residual variances, that is, the

residual variances divided by the sample variance. These values will always be between zero and one, and a

small ( large) value indicates that z(t) is ( is not) very predictable from its past, thus indicating that the data

are long (short) memory. A useful rule of thumb is that data are long memory if their standardized residual

variance sequence becomes less than 8/n for some lags.

In Figure 1.4 we display the partial correlogram and standardized residual variances for each of the

univariate series that we have been considering. We can use the partial autocorrelations in the same way

that usual partial correlations are used . In Series VII, for example, the correlogram takes some time to decay
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Figure 1.3. The Correlograms for Series I - X .
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to zero , while the partial correlogram is large for lag one and then small benceforth. This indicates that the

correlation between z(t ) and 2(t + 2) is due only to the common relationship of z(t ) and 2(t + 2) to z( t + 1 ) .

1.3.3. The Periodogram and Sample Spectral Density

A recurring theme in science is the study of deterministic phenomena that have been observed over time

(music, speech , radio signals, etc.) via harmonic analysis, that is, by decomposing a time record into the

sum of sinusoids of various frequencies and amplitudes. Harmonic analysis is also important in the study of

random phenomena observed over time. In this section we will look at what is called the periodogram of a

data set 2( 1) , ..., (n ).

The basic idea of harmonic analysis is that one can find a unique set of sinusoids (a cosine plus sine of the

same frequency ) that when added together reconstruct the mathematical object being studied . Thus one can

study a complicated object by breaking it up into these simple "frequency components ” and studying them

separately. Further, in a certain sense ,conclusions made about one sinusoid are independent of conclusions

made about others .

A similar idea in statistics is that of orthogonal contrasts in the analysis of variance, wherein the results

of applying different treatments to experimental units can be decomposed into the sum of linear, quadratic,

and higher-order effects that are orthogonal, or statistically independent.

The mathematical objects that can be studied by harmonic analysis vary widely. Examples include

sequences of finitely many numbers, infinitely long sequences, functions that are periodic , and general con

tinuous or even discontinuous functions. No matter what object is being studied, the results are always of

the form of a decomposition into independent sinusoids that can be studied separately.

Definition . A sinusoid ga (z ) of period k (or frequency 1/k) is the function

2a2

9 : (x ) == Q COS

k*** .
+ b sin

2xx

k
* E (-0,0).

Since cos and sin have period 27, we have that g :(a + kl) = 9: (z) , for any integer l . We can also write

9: (z) = C cosa
273 ),
ke

...1

where C = Vo? + 6% and $ = arctan ( b / a ) are called the amplitude and phase of gt .

A data set z ( 1),..., 2 (n ) is an example of a finite sequence of numbers. The basic fact of the harmonic

analysis of such a sequence is that we can calculate from z( 1) , ... , 2 ( n ) a set of orthogonal sinusoids of

frequencies 1/n , 2/n, ( n /2 ]/n , where (c) denotes the greatest integer less than or equal to c, together

with a constant, so that when the constant and the sinusoids are added together, the resulting function

coincides with the data at the indices 1,2, ..., n . Further, the sample variance of the a's is proportional to

the sum of the squared amplitudes of the sinusoids.

Before presenting the sinusoidal decomposition of a time series data set, we define the discrete Fourier

transform of a set of numbers.

Definition . The discrete Fourier transform (DFT) of the (possibly complex) numbers 2( 1 ) , ..., (n ) is the

set of complex numbers z( 1),..., 7(n ) given by

n

z(k)= «
z (t)ezri(t-1)uro = =(t) co820(t– 1wx + i z(t) sin 2*(t – 1 )wk,

1:1 1= 1 t= 1
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Curve) for Series 1 - X .
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Table 1.1 . Interpreting the Periodogram

Appearance of Data Nature of Periodogram

Smooth Excess of low frequency; that is, amplitudes of

sinusoids of low frequency (long period ) are

large relative to other frequencies

Excess of high frequency

No frequencies dominate

Wiggly

Random (no pattern)

Basically sinusoidal

of period o time units

Periodic of period p

but not sinusoidal

A peak at frequency 1 / P

A peak at fundamental frequency 1 / p and

peaks at some multiples of 1/0 ( harmonics)

wherewk = (k - 1)/n , k = 1 , ... , n .

If we insert a minus sign into the exponent in the first expression , we have what is called the inverse

discrete Fourier transform (IDFT ), since if one were to find the IDFT of the DFT of z , the result would be

nr .

Theorem 1.3.1 SINUSOIDAL DECOMPOSITION OF DATA

Let 2 (1), ...,I (n ) be a finite sequence of numbers and let z( 1),..., 2(n ) be the DFT of 1. For k =

1, ... , n , let wt = (k – 1)/n and define

a = Re(z(x)), by = Im(=(k)).

Let ô? = AET-1 (z(t)– 7)?, and for t = 1,...,n define

9: (t) = Qt cos 2a(t - 1 )WH + bo sin 2*(t - 1 )ws

= cos (21 (t - 1)wy - arctan (bx /0x ) ].

Then

a ) Q = i, by = 0, Ci = 7?, 91 (t ) = 3

b ) z(t) – 3 = [h=292 (t)

c ) ģ = - C7

d ) For k = 2, ..., (n / 2]+ 1 , we have

ab = an- k+2 , by = -bn-872

cos 21(t - 11W * = cos 2Twn - $ + 2

sin 2a(t - 1 ) = - sin 2wwn - + 2

and thus

9 (t ) = In- 8+2 (0) , C = CM - 4 + 2,2
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which gives

256/3 )+2 gæ(t) , n odd

3(t ) - 7 =

22122298 (t) +9(1/2)+1(t), n even

(n / 2 )+1

k = ?
n odd

? =

2 < CEE

2 C Cn/2)+2) n even .

e ) For k = 1 , ... ,[n /2]+1, the vectors8x = ( 94 ( 1), ...,9:(n )) are orthogonal,that is, 818 * = 0 , j #k.

Implications: This theorem gives a decomposition of a time series data set into a set of orthogonal (part

(e)) sinusoids of frequencies 1 /n, 2/n , ... , ( n /2]/ n (part (a)) , and gives a decomposition of the variability

in the t's ( as measured by o^) in terms of the sum of squared amplitudes of the sinusoids (part (c)) . In

terms of understanding why the z's vary then, these squared amplitudes play an important role . Note that

C = [z(k )l?/nº.

Definition . For a time series data set 3( 1 ) , ..., * ( n ), let wt = (k – 1)/n, k = 1 , ... , [ n / 2] + 1, and define

G3 = =(hereiki-iwop?
k = 1,..., [n / 2]+ 1.

A plot of nC7 versus Wk is called the periodogram ofz . The function

f (w ) =

1
So = ,Ei= (t)e?ri(t-1) ] , we (0,.5 )

f(1 -w ), WE (.5, 1]

is called the sample spectral density function of 2.

Note that the periodogram is the sample spectral density evaluated at the so - called natural frequencies

WI , W2 , Win / 2 )+10..

Interpreting the Periodogram

+ Bcos 21(t - 1) ,

In Figure 1.5 we give a plot of three data sets of length 200 ( and the log of their periodograms) that

were constructed by

2 (t - 1) t

3(t) = a cos 8 cos
100 10 4

that is, as the sum of pure cosines of frequencies 1/100, 1/10, and 1/4. The three series were obtained by

varying a, b, and 8 ( Series 1 has (10,3,1) , Series 2 has (3,3,3) , and Series 3 has (1,3,10)) .

Recall that a sinusoid of frequency w is the sum of a sine and a cosine of that frequency, but for simplicity

we are considering sinusoids that have no sine part. A sinusoid of long period (low frequency) is very smooth

in appearance relative to one of short period (high frequency ). Thus when a is large relative to B and a

(such as Series 1) , we would expect 2 to be relatively smooth in appearance; that is, the long -term rise and

fall of the data should be large relative to short term oscillations. On the other hand, Series 3 appears quite

wiggly since ay is large relative to a and ß. In Series 2 we have used equal values of the three coefficients and

the resulting data are between Series 1 and 3 in terms of wiggliness.
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Figure 1.3. Sums of Pure Cosines and Their log Periodograms.

Note how the periodograms pick out the amplitudes of the component sinusoids. In general, of course,

time series data sets are not made up of sums of only a few pure sinusoids. However, with the above example

as motivation, we can make the qualitative statements given in Table 1.1 .

In Figure 1.6 we give plots of the logarithm of a standardized form of the periodograms of the ten

univariate series that we have been discussing throughout this lecture. Note how these graphs confirm the

discussion above. In particular, note the harmonics in the periodogram of the airline data, the random

pattern in those for Series III and IV , the excess of low frequency in Series VII, the periodicity in the birth

data, and how the periodogram is able to tell that Series IX is in fact the sum of four pure cosines .

Displaying the Periodogram

It often happens that a few values of a periodogram are very large relative to the rest and thus dwarf

them in the plot. Plotting the (natural) log of the values rather than the values themselves allows us to see

other possible values of interest. We would also like to plot the log periodogram on some standard scale so

that several such plots can be compared in a meaningful way. A useful standardization of the periodogram

is suggested by the following theorem , which follows immediately from part (c) of Theorem 1.3.1 .
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Theorem 1.3.2 STANDARDIZING THE PERIODOGRAM
ARD

Let nC for k = 1 , ... , n be the periodogram ordinates of a time series 2( 1 ) , ... , :(n) , and let jd =

:= (2(e) – 3)?.Then

Strony
= 1;

that is, the average value ofnCz/ is one.

Because of this theorem we will routinely display

log

(no)
k - 1

versus

, k = 1,... , [n /2 ]+ 1 ,

with the graph truncated at -6 and 6 on the vertical axis . We will rarely encounter a value of nC/ô that

is greater than e or less than e-6 .

The Sample Spectral Distribution Function

We have seen that data that have no obvious trends, cycles, or serial correlation should have a peri

odogram that oscillates roughly about a constant. On the other hand, smooth ( wiggly ) data have an excess

of low (high ) frequency, while cyclic data will have peaks in their periodogram . One useful way to display

these ideas graphically is via the sample spectral distribution function .

Definition . Let f(wo),..., j(wo) be the sample spectral density function of data z(1),...,2 (n ) at the

frequencies w ; = (j - 1)/Q, j = 1 , ... , Q. Let q = (0/2) + 1 and

F (Wx) =
La f(W ;)

D }= f(w ;)

k = 1 , ... , 9 .

Then F (wo),..., flwy) is called the sample spectral distribution function of z.

IQ = n, then the j's are in fact the periodogram ordinates, and thus the F's could be called the

cumulative periodogram of z. Note that flw ,) = 1, while if i = 0, we have j(wi ) = 0 and so f (wa)= 0 .

Thus

OS F(w ) S1, k = 1 , ... , 4,

and the spectral distribution function of random data will fluctuate about the straight line that connects

the points (0,0) and ( .5,1) , that is, the line y = 22.

In Figure 1.7 we display the cumulative spectral density of our example data sets. Note that these

graphs are much less variable than their corresponding log periodograms. Also, an excess of low (high)

frequency means that the cumulative periodogram starts out above (below ) the line y = 22 before catching

up to it before w = .5 , while peaks in the periodogram translate into jumps in the cumulative periodogram

( such as at frequency 1/12 in the airline data), and the cumulative periodograms of the white noise series

( Series III and IV )wary little from the line y = 22.
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Figure 1.8. Example of White Noise Test.

1.3.4. The Relationship of the Correlogram and Periodogram

Recall that the sample autocorrelation coefficient of lag v for data is given by

Σ21=!" (=(t) – 3) (z(t + v) – 7) ,
(v ) = lul < n.

Σ . , (ε(t) - 3)

Then (u) can be written as

ölu)
Â (v )

Ř (0)'
lul < n,

if we define the sample autocovariance function Å by

n - lul

1

Â (v) = (alt) – 7)(z(t + v )– 3) , lul < n.

t= 1

We note that it can be shown that

(w) Â (v)e- 3riow,

vs-(n- 1)

R(u) = $. Wedrive

The Fast Fourier Transform (FFT)

To calculate the discrete Fourier transform

w(x) = { =(t)e*ri(0–1/4-1)/n, k = 1, ... , n,
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of data 2(1),..., 2(n ) appears to require nº multiplications and additions (n for each of the n values of k)

and many evaluations of complex exponentials. In the mid - 19608 various researchers made use of a variety of

trigonometric identities to obtain algorithms called fast Fourier transform (FFT) algorithms that essentially

require only n (P1 + ... + Pk ) multiplications and additions, where p1, ... , Pre are the prime factors of n , and

a greatly reduced number of evaluations of complex exponentials. For example, if n = 1024 = 210 , then the

number of operations is 1024 ( 2 + ... + 2) = 10 · 2 · 1024 = 2 log, 1024 , which is approximately 50,000 as

opposed to 10242 ~ 1,000,000, a savings of a factor of about 50.

Note that if n is not very composite, that is, it has some large prime factors, the FFT saves very little

over a straightforward DFT.

1.4. Testing for White Noise

The first inference that one should make about an observed time series is to whether or not it could be

considered to be a realization from a white noise process. In this section we consider two graphs that are

useful for making such an inference. If z ( 1),..., (n ) is a random sample from a population, then for large
n:

a) The correlations ô (1 ), ..., Ô (m ) are independent and identically distributed as N(0,1/n) variables.

Thus there is approximately a 95 percent chance that an individual ô(u) will be outside of £ 1.96 /Vn. To

produce simultaneous confidence bands having 95 percent confidence level, we must construct individual

intervals having level .951/m . This is what is done in the first graph.

b) The cumulative periodogram has a 95 percent chance of falling entirely within the lines y = 20 €

1.36 / va, where q = (n / 2]+1. The second graph is the cumulative periodogram with these two lines and the

line y = 22 .

In Figure 1.8 we give the result for two data sets; the first being a normal white noise series of length

100, and the second being the same series with a cosine of length 100 , amplitude .5 , and period 4 added to

it . Notice that none of the boundary lines are crossed for either series, but that the cumulative periodogram

seems to increase rapidly at w = .25 , something that is unusual and should be a hint that this data set is in

fact not white noise.
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Transforming and Forecasting Time Series

2.1 . Transformations

Some of the time series analysis techniques that we will introduce in later lectures assume ( 1) that

the data being analyzed have no deterministic trends or cycles, and (2) that the variability in the data is

constant over time. The traditional method of analyzing data that fail to meet these requirements is to do

the analysis in three steps : ( 1 ) try various transformations until the result appears to meet the requirements,

(2) analyze the result of step 1 , and (3) do the inverse operation of what was done in step 1. This strategy is

very similar to that used in regression analysis. In this section we will describe some of the transformations

that are often used in time series analysis.

2.1.1 . Stabilizing Variance

Suppose that the variability in a data set I appears to be increasing as time increases ( see the airline data

for example). If the mean level of the data is also increasing with time, then the variability in y(t ) = log z(t)

should appear fairly constant over time. This is a fairly common occurrence in real data. In general, one

might try various power transformations to obtain a series having constant variability ; that is,

y (t) = (z(t)) .

2.1.2. Removing Trends

Another common phenomenon in time series data is that the values appear to be growing in some

polynomial fashion with time, particularly linearly; that is, the data appear to follow

z(t) = a + bt + e(t) ,

where e (t) is white noise. Such polynomial trends are often removed by using differencing.

Definition . The dth difference of a time series data set = having n elements is a data set y baving n - d

elements obtained by

y (t) = 2 (t + d) - z(t) , t = 1 , ... , n - d.

It is easy to see that if I contains a general dth -degree polynomial trend, applying first differencing d

times will remove it , while if : has a cycle of length s time units, then taking sth differences will remove the

cycle.
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Regression Residuals
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Figure 2.1. Residuals from Regression for Series V.

Perhaps the most well known example of differencing is the airline data that we have been analyzing.

The variability in the data is increasing with time and thus a log transform is usually applied. The result

of this transform has an obvious 12 -month cycle and also a linear trend . Thus the traditional advice on a

series such as this is to take the first difference of the 12th difference of the log of the original data.

Regression Analysis

te(t),

A traditional method of removing trends and cycles from time series data is to do ordinary regression

of the data on the deterministic functions of time. For example, Series V of the univariate series that we

have been analyzing was formed by

21(t - 1)
(t ) = 10 + .1t + 3 cos + t = 1, ..., 100,

10

where e(t) is a series having serial correlation If we did ordinary least squares regression of the form

21(t – 1)

y(t) = Bo + Bat + By cos + c(t) ,
10

we would obtain the residuals given in Figure 2.1 , which can then be further analyzed by time series analysis.

2.1.3. Accounting for Seasonal Variability

Often it is of interest in seasonal time series to analyze how a data set differs from regular seasonal

variation . For example, suppose that I consists of m years of monthly data, that is, n = 12m. We can define

the monthly means and variances to be the means and variances of each of the 12 data sets consisting of like

months; the Januaries, Februaries, and so on . Thus,

m

Ek = = (t + 12 (t – 1))

1:1

Σ ( + 12(t – 1)) – 3x ) " .
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Dala (dotted ) and Smoothed Dale ( solid )

IBF

0.8

-1.8

20 40 60 80 100

Figure 2.2. An Example of the Moving Average Smoother.

k = 1, ..., 12. Note that other seasonal ( quarterly or hourly, for example ) means and variances can be

defined similarly.

2.1.4 . General Smoothing Operations

Another approach to removing deterministic -looking parts of a time series is to use general methods of

smoothing data and then analyze the deviations from the smooth version . For example, one way to smooth

wiggly data is to use a moving average smoother, for example, the one of length 3 :

y(1) = 3(1) + z(2) + z(3)
3

y(2) =
<(2)+ z(3 ) + 2 (4)

3

y ( n − 2) =
z(n − 2) + z(n − 1) + z(n)

3

Since consecutive y's have two of the z's in common in their average, we would expect that the y's won't

vary as much as the original z's; that is , y will be much smoother in appearance . In Figure 2.2 we have

generated 100 points of a cosine of amplitude one and period 40, added N(0,1) white noise to it , and then

used a moving average smoother of length 11. Note that the last smoothed value corresponds to the 95th

data point, and so we have superimposed the 6th through 95th data points and the smoothed data. Note

that the smoothed data clearly exhibit the cosine curve, which is not obvious in the original data.
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Airline Data and Extended Values

8005
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3204

160+

34 68 102 138 170

Figure 2.3 . Airline Data and Extended Values.

2.2.3. Simple Moving Average

This method models an observation as a simple average of the previous m observations where m is to

be chosen . For a given moving average length k we can calculate

sv =-- .. (-- + « -»)
as a measure of how well the simple moving average model of length k fits the observed data. We chose m

as the value of k minimizing S(k) . Then we forecast future values recursively. For example, if m = 3 we

calculate

#(n + 1) = { [ = ( n) + z(n − 1) + z(n − 2)]

(n + 2) = { të ( n + 1) + z(n) + z(n − 1 )]

é(n + 3) = { lë (n + 2) + ë(n + 1) + z(n)],

and so on .

2.2.4. Simple Exponential Smoothing

Instead of modeling an observation as a simple average of the previous m observations, exponential

smoothing methods model z(t) as a weighted average of all of the previous values. The type of weights that

are used depends on the appearance of the data and leads to methods having a variety of names . We will

discuss only the simple exponential smoothing technique which is most suitable for data that appear to have

no linear or seasonal trends.
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2.2. Some Simple Forecasting Methods

An important objective of time series analysis in many scientific areas is to forecast (predict) future

values of a time series 2 ( 1),... , (n ). In this section we begin our discussion of forecasting methods by

looking at some simple methods. In later lectures we will consider forecasting using time series models.

Each of the methods in this section can be viewed as having two parts: ( 1 ) a model -fitting part , and

(2) a forecasting part.

2.2.1. The Inverse Differencing Method

A simple but effective method for extrapolating trends and cycles in data that can be handled by

differencing is to extend the data set with M new values in such a way that if the extended series of length

n + M were then differenced , the last M values (the ones corresponding to the new values) would all equal

the mean of the differences of the original data . For example, if a data set appears to have a linear trend,

we might detrend it by applying first differences . We could then find a new data point :(n + 1) so that

(n + 1) – 2(n) = ž, where ž is the mean of the differences of 2( 1) , ... , 7(n) . Thus =(n + 1) = (n) + 7, and

if we continue this process , we obtain

a(n + h) = 2(n + h - 1) + 7, h > 1 .

If we have data that appear to contain both a linear trend and a seasonal cycle , we might apply both first

and dth differences, where d is the length of the seasonal cycle. For monthly data having an annual cycle,

we would solve

<(n + 1) – 2(n) – (n – 11) + z(n - 12) = 7 ,

where 7 is the mean of the first and 12th differences of 2( 1),..., f (n ). This results in the predictor

( n + h) = 2(n + h - 1) + 2 (n + h – 12) – 2(n + h - 13) + 7, h > 1 .

In Figure 2.3 we give the result of inverse differencing applied to the airline data . The observed data values

are represented on the plot by both a solid curve and an x at each point, while the extended values are

represented only by the solid curve . The extended values are the last two cycles on the graph and are

consistent with what we would expect from a predictor. It is not surprising that we could use this “ naive "

method on the airline data as it is a long-memory series and we would expect that almost any method

would work well, including just drawing in the next two cycles by hand. For series that do not follow such

a deterministic pattern we will have to use more sophisticated methods.

2.2.2. The Regression Method

If the data appear to follow a deterministic function of time that can be expressed as a simple or multiple

linear regression model, we can predict future values of the series by substituting future values of t into the

least squares regression function. For example, if

z(t) = a + b + c cosccos 21(t – 1)+ e(t) ,
P

... ) where the period p is known, we can estimate a , b, and c by their least squares estimates â,

Ö, and ĉ, and forecast a value h steps into the future by

i(n + h) = a + 6 (n + h) + ĉ cos
21(n + h – 1)

P
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The simple exponential smoothing method consists of modeling (t) as a weighted average :

î(t + 1) = B;2(t + 1 - j) ,( +
t > 1 .

j= 1

If we let B; = a[ 1 - al- 1 , where OSA S 1 ; that is, we let the weights decay exponentially to zero, then

B; = 1 , and thus for large t , the weights will approximately sum to one. We can choose a as the value

ofa minimizing

s(o)= (-19-24.-»-<«-»)
and then forecast the value at time n + 1 by

£(n+ 1) = { «(1–ap=ta(n +1 -j).
jol

The calculations involved in this process can be greatly reduced by noting that

e(t + 1) = at(t) + ( 1 - a)i(t) ,

where i(l) is defined to be c(1) . We can also write this as e(t + 1) - (1 - a)i(t) = at ( t), which is called a

difference equation of order one.

2.3. Difference Equations

Difference equations are very important in the study of time series analysis. In particular, many fore

casting methods can be thought of as future values of difference equations. Further, many probabilistic

models for time series are written as difference equations.

Definition . Let z( .) and w( . ) be sequences of real numbers. Then

z(t ) + Qiz(t – 1) + ... + Qpz(t – p) = w(t)

is called a difference equation of order p, coefficients Q1,... ,Qo , and forcing term w(.) .

To calculate the values of z for all values of t it is sufficient to know all of the values of w and any

p consecutive values of 2. These p values are called starting values or initial conditions. If we know the

starting values z( 1) , ..., 7(b) and the values w ( p + 1), ... , w (n ) for a difference equation , then we can find

z(P + 1) , ... , :(n) recursively by

26p + j) = w [ p + j) - Žar(p+;=k).
j = 1 ,...,np.

Note that w ( p + 1) and z(1), ..., 2 (P) are used to find z (p + 1), which is in turn used in finding z(+2) , and

So on .
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Definition . Let

§a; (t– j) = w(8)
Źj=0

be apth -order difference equation. If w (t) = 0 for allt, then the difference equation is said to be homogeneous.

The polynomials

9(z) = ar h(z) =

j=0 j=0

are called the characteristic and indicial polynomials, respectively, of the difference equation .

Let 21,... , 2 be the zeros of h ; that is, h (zi) = 0. Note that the zeros of g are the reciprocals of the

zeros of h. These zeros play an important role in solving difference equations.

If wewere to plot the real and imaginary parts of a complex number z = a + bi on an X-Y plane, then

1z1 = Va? + 87 is greater than one if andonly if the plotted point falls outside of a circle of radius one that is

centered at the origin . This circle is called the unit circle, and we will henceforth refer to zeros being inside,

outside, or on the unit circle.

-
-
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LECTURE 3

Time Series Models

In this lecture we consider how the basic ideas of probability theory apply to the analysis of time series

and we discuss some of the traditional time series models.

3.1. Introduction

As in many areas of statistics, our basic aim in time series analysis is twofold : descriptive and inferential.

In Lecture 1 we considered some basic ways to describe time series data. To make inferences from data we

will use the following strategy:

1. Assume that some member of a family of models will adequately represent the observed behavior of a

time series data set .

2. Identify which member of the family best represents the data (model identification ).

3. Estimate the parameters of the chosen model.

4. Check the adequacy of the fit of the estimated model.

5. Make statistical and scientific inferences based on the characteristics of the chosen model.

Note that we will also make inferences occasionally without assuming a particular model for the data.

We will call these nonparametric in analogy with the usual nonparametric analysis in the random sampling

case .

The aim of this lecture is to introduce both the quantities that we want to make inferences about (the

correlogram , spectral density function , and predictors) and the models that are usually used to allow us to

make meaningful inferences about these quantities.

We visualize that a data set 2 ( 1) ,..., 2 ( n ) is just one possible set out of many that could have been

generated by some random mechanism that is producing data. The set of all possible realizations that could

be observed is called the ensemble of realizations.

Definition . A time series is an indexed collection {X(t) , t E T} of random variables having finite second

moments; that is, E(X? (t)) < oo for each element of the index set T.

Usually we will consider T to be the set 2 of all integers; that is, we will assume that the phenomenon

being observed has been going on for a long time and will continue indefinitely. We will often refer to a

time series as X(t) or just X if there is no possibility of confusion . We use capital letters to refer to random

variables and lowercase letters for particular values for the random variables.
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3.2 . Covariance Stationary Time Series

Traditionally, two assumptions are made about the joint behavior of the random variables making up a

time series . The first we will label as an assumption and the second is the definition of covariance stationarity.

Assumption. The behavior of a time series X can be adequately described by a knowledge of its mean

value function m and covariance kernel K , that is,

m(t) = E(X(t)) , tez

K(8 , t ) = Cov ( X ( 8), X(t ) ) , s , tez.

If X is a Gaussian time series then this assumption is valid . We will see later that a wide variety of

non -Gaussian time series can also be effectively analyzed . There is currently a great deal of effort being

made in the time series community toward developing methods for analyzing data from processes which do

not satisfy this assumption .

Definition . A time series X is said to be a Gaussian time series if the joint distribution ofany finite number

of X (t) 's is multivariate normal; that is, for any positive integer n and any n integers t1 , ... , to , we have

that the joint distribution of X (tı),..., X (tn ) is multivariate normal.

The multivariate normal distribution plays a crucial role in the theory and analysis of time series.

Definition . A time series X is said to be covariance (or weakly ) stationary if its mean value function is a

constant, that is, E(X(t) ) = H , and if there exists a function ( R (u), v E 2) such that

K(s , t ) = Cov ( X ( s ),X(t)) = R(t - s) ;

that is, the covariance of any pair of X's that are the same distance apart is the same. The function R is

called the autocovariance function of X.

We will often drop the prefix auto in the word autocovariance. Note that there is another (stronger)

type of stationarity, namely strict stationarity .

The Autocorrelation Function

We usually concentrate on the correlation between two random variables rather than on their covariance .

Definition . Let X be a covariance stationary time series having autocovariance function R. The autocor

relation function ofX is given by

elu) = Corr ( X (t), X(t + v)) , vez.

A plot of p (v ) versus v for v = 0,... , M is called the correlogram of X.

Note that by the definition of the correlation of two random variables, we have

Cov(X (t), X (t + v )) R(v) R (v )

plo) = Nar(X (t))Var(X (t + v)) R (O)R(O) ROO)

=
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and thus p ( 0 ) = 1 and p-u) = P (v ). Thus the autocorrelation function of X is just the autocovariance

function divided by the variance R(0) of the series.

We will be primarily concerned with covariance stationary time series and thus will be trying to make

inferences about H and the autocovariance function R. In Theorem 3.2.1 we summarize some of the basic

facts about R, and introduce a functions that is mathematically equivalent to R and are of importance in

their own right, both theoretically and in practice.

Theorem 3.2.1 THE SPECTRAL DENSITY FUNCTION

Let { R (v ), v E Z} be the autocovariance function of the covariance stationary time series X. Then

a ) R(v) = R(-u) , VEZ.

b ) If R is absolutely summable, that is, L - |R (v) << , then there exists a function f(w ),w € (0,1),

symmetric about w = .5 , called the spectral density function ofX , such that

R ( v) = $(w) com Zruwduw,
VEZ

and

f (w ) = R(v) cos 2x0w , WE (0,1).

V8-00

c ) The equations relating R and f can also be written as

R (v ) = si
f(w )eativw dw

f (w ) = Ë R (v)e- 3- ivw = R ( 0) +29R(u) cos 27ww .
V8 val

Implications: We are assuming that all inferences about a covariance stationary time series X can be based

on making inferences about # and R. The theorem provides us with a function f that is mathematically

equivalent to R. This function is important in its own right in many circumstances. We can also say that

one possible realization (z(t) , t e 2) can be thought of as a sum of infinitely many sinusoids where within

a particular realization the amplitudes of these sinusoids are fixed, but between possible realizations they

vary according to a probability law . These sinusoids are called frequency components and we can think of

f (w ) as being proportional to the average value (over many realizations) of the squared amplitudes of the

frequency component of frequency w.

Ensemble Mean Interpretation of p and f

Perhaps the most useful interpretation of p and f is as ensemble averages of the sample autocorrelation

and sample spectral density functions. It can be shown that under very general conditions,

E ( f(w )) - f ( w ) and ECô( u)) - plu)

as the length of the sample realization goes to co . For example, if we are interested in studying the EEG of

a patient, we would recognize that a sample time series consisting of an EEG record would vary from one
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time to another in that patient's history and we would be most interested in making inferences about some

average behavior of the observed time series. In a situation like this, viewing the spectral density function

as the average of the sample spectral density over many long realizations of EEG records is a natural thing

to do .

The White Noise Process

The simplest type of time series model is when X consists of uncorrelated random variables having a

mean of 0 and a constant variance o?.

Definition . A time series X is said to be a white noise process with variance o’ if

E(X(t)) = 0, tez

R (u) = Cov { X ( 6), X(6 + v)) = {
o' , v = 0

v +0.

Such a process is denoted by X ~ WN (0 % ).

If we define the Kronecker delta function

1 , v = 0

0 , 0 + 0,0;

we can write R ( u ) = 8,0 ° when X ~ WN(0°) . Note that

s (w ) = Ë R(u) cos 250w = 02 Î 6. coe Orow = p?;
V8-00 V8-00

that is, the spectral density of a white noise process is ilat (a constant). Thus in analogy with the physical

spectrum of white light, a sequence of uncorrelated random variables (which is often used to model physical

noise) is referred to as white noise. Processes not having constant spectral densities are often called colored

noise.

3.3 . The Theory of Linear Filters

We will often express one time series Y as a linear function of the values of another series X. We would

like to be able to derive the probabilistic properties of Y from known properties of X.

Definition . The time series Y is a filtered version of the time series X with filter coefficients {B ;, je 2} if

we can write (as a limit in mean square)

Y(t) = 3 B ; X (t – j), tez.

j :

In Lecture 2 we defined the moving average smoother

1

Y(t) = Σ X(t - j) ,
2M +1

js-M
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which is a filtering operation with coefficients

M>اذا

B ; =

1

2M +1'

0, 1j1 > M.

Another simple example of filtering a time series is a moving average process ( as opposed to the moving

average smoother).

Definition . The time series Y is called a moving average process of order q if

Y(t) = ŚPre(t – k) , tez,

k=0

where Bo = 1 and c ~ WN (0 *). We will write Y ~ MA(2,6,0%) to denote such a series. We will also often

write Y ~ MA(9) to mean that Y is a moving average process of order q without concern for its coefficients

B or noise variance o?.

We have seen that if e ~ WN (0 %), then R. (u) = 8,0 ° and fc (w ) = gº where we have now put the

subscript e on R and f to indicate to which time series they correspond. The following theorem will allow

us to easily find Ry and fy for an MA process. In fact, the theorem provides expressions for Ry and fy

(as long as they exist) in terms of Rx and fx whenever Y is a filtered version of X.

Theorem 3.3.1 UNIVARIATE FILTER THEOREM

Suppose that X is a covariance stationary time series with autocovariance function Rx and spectral

density function fx . Suppose that Y is a filtered version of X with filter coefficients B. Then assuming that

the quantities involved exist, we have

a ) Y is also covariance stationary.

b ) The autocovariance function ofY is given by

Ry (v ) = Ro( k ) Rx ( v – k) , VEZ,

ks - 00

where

Rp( k) = . B;B;+/#! ke Z.

j =

c ) The spectral density function ofY is given by

fy (w ) = 1h (eariw [* fx (w ),

where the function

h(z) = Ï Brza, z EC,

k = -00
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is called the impulse response function of the filter.

We note that h(eariw ) is called the frequency transfer function of the filter. We will use the Filter

Theorem extensively in the sequel, particularly in the next section where we introduce time series models

having a finite number of parameters.

R and f for an MA(9)

Let Y ~ MA(9 , B, 02) . Then part (a) of the Filter Theorem allows us to immediately conclude that

Y is covariance stationary since it is a filtered version of white noise, which is certainly itself covariance

stationary. Further we have

fy (w ) = o - lh( e2riw ) , WE (0,1),

where h(z) = [1=o Baza is a gth -degree complex valued polynomial. We also have

fy (w ) = Ry (0) + 2 Ry (v) cos 270W .

v= 1

The fact that Ry ( v) = 0 for lul > q is an important characterization of an MA(q) process.

The Effect of Differencing

The Filter Theorem is also important for studying the effects of some transformations. For example,

we can see the effect of differencing very clearly. Thus suppose X is a covariance stationary time series with

spectral density function fx . Suppose Y is obtained as the dth difference of X ;that is, y(t ) = X (t) -X (t - 1 ).

Then Y is covariance stationary and

fy ( w ) = 11 - e2ridw 12 fx (w ),

since h(z) = 1 – zd. Thus fy (w ) will be zero anywhere that earidw is one, namely at any w such that dw is

an integer. Thus

fr ) = 0, j = 0,1 , ... , d.

In particular, first differencing makes fy (0) = fy (1) = 0 , while 12th differencing makes fy (0) = fy ( t ) =

fy ( 1) = 0. Thus differencing totally removes frequency components of these frequencies from a time

series. In fact, any differencing makes fy (0) = 0.

What Does the MA Smoother Do?

Another example of using the Filter Theorem to study the effect of transformations is to consider the

moving average smoother . Let X be a covariance stationary time series with spectral density fx and let

M

1

Y(t) = X - .
2M +1

js -M

The frequency response function of this filter is

M

1

h (e ?riw ) = Σ
2M +1

ezriju = 2M
1

Dm (w ),
2M +12M +

js-M

where the function

M

DM (W ) =

j=-M

Σ ο2πίγω
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Dirichlet Kernel For M = 5 Dirichlet Kernel For M = 20
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Figure 3.1 . The Dirichlet Kernel.

is called the Dirichlet kernel and is well known in many scientific areas. We have

sin ((M + 1)2nw)
Dm (W ) =

sinrw

Figure 3.1 gives graphs of DM for M = 5, 10 , 20 , and 40. Note that the kernel becomes more concentrated

about zero as M increases . Note also that the kernel is negative for certain frequency ranges and has large

" sidelobes," that is, secondary peaks. Thus we have

fr (w ) == (2x +1) Dww °fx6w ).

and DM becomes more and more concentrated around frequency zero as M (the number of terms on each

side of X(t) used in the average) gets large. Thus the moving average smoother is essentially allowing only

frequency components of low frequency to be passed" to Y from X.

Definition . If Y is a filtered version of X with frequency transfer function h (eariw ), then the filter is called :

a ) a low (high ) pass filter if only low ( high) frequency components are passed through the filter, that is,

if fy (w ) = 0 for w 2 wi ( w swi) for some frequency wi .

b ) a bandpass filter if only frequency components in a certain interval (band ) of frequencies are passed

through the filter.

Thus the moving average smoother is an example of a low pass filter except that its frequency transfer

function never becomes exactly zero for high frequencies. We can now see why h(e2riw ) is called the frequency
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transfer function of the filter; it determines what happens to the various frequency components in X as a

result of the filter.

The Lag Operator

Linear filters can be succinctly represented if we introduce what is called the lag (or backshift) operator .

Definition . The lag operator L operating on a time series X is defined by

L*X(t) = X(t - k) , kez.

FY is a filtered version ofX we define the filter polynomial operator to be

h(L) = Bulk.Ë BALL
ks - 00

Thus we can write formally

Y(t ) = Ë BAX (e – k) = Ë BAL+X(t ) = -(L)X(t) .
k : -00 ks - 00

3.4. Time Series Prediction

In this section we describe some of the basic theory for prediction. Several time series models are

presented in Section 3.5 .

If we have a realization X( 1) , ..., X (n ) from a time series X, we often wish to find a function of the

data that is close to some future variable X(n + h) . We call n the memory or origin of the predictor and h

the horizon or number of steps ahead being predicted .

Definition . Let Xn = (X( 1) , ..., X (n ))7 be a realization of length n from a time series X.

a ) The best unbiased predictor ofX(n + h) given Xn is that function inn of Xn that has the same

mean as X(n + h) and bas smaller prediction error variance than any other unbiased function of Xn.

b ) The best unbiased linear predictor ofX(n + h) given Xn is that linear function înch of Xin that has

the same mean as X(a+h) and has smaller prediction error variance than any other unbiased linear function

of Xn :

c ) If Řnh converges in mean square as n to a random variable Xnn, then Xnn is called the infinite

memory, h step ahead predictor ofX(n + h) .

d ) The error variances of Xnn,Ynd, and Xnn are denoted õin, õhn, and ohn, respectively.

The following theorem is a straightforward application of material on prediction of random vectors .

Again , it is somewhat technical so we have included a discussion after the theorem for those not interested

in the details.
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Theorem 3.4.1 UNIVARIATE PREDICTION

Let X be a zero mean time series. Then

a ) The best unbiased predictor and its error variance are given by

inn = E (X(n + h)| X (1),..., X (n ))

õnn h= Var ( X (n + h )|X (1),..., X (n )) .

b ) IfX is covariance stationary with autocovariance function R, then the best unbiased linear predictor

and its error variance are given by

Ånn = 17/ P ,X ,

onn = R ( 0) - Tarorna,

where P, is the nxn matrix having zeros except on its main reverse diagonal which is made up of ones,

X , = ( X (1),..., X (n ))?, and the prediction coefficients

AnA = ( An (1),..., An (n ))"

satisfy the prediction normal equations

Indnu = Ink

where fn = Toepl(R (O ),... , R (n − 1)) and Inu = (R (h ),... , R (h + n - 1))?. Further, these predictors

and prediction error variances can be found using conditional means and variances as in part ( a) but for a

Gaussian time series having the same autocovariance function as X.

c ) Let In (j) and on denote the coefficients and prediction error variances for the best unbiased linear

one step ahead predictor. Then the in ( j) and on satisfy Levinson's recursion :

R (j+1) - El= d;(k )R (j+1– k )
d ;+1 ( + 1) =

d ;+1 (k) = 1; (k) – dj +1 (j + 1)^;(j+1 – k), k = 1 , ... , j

0 }+1 = ;(1 – 1 }+1\j + 1)) ,

with 11 ( 1) = P( 1 ) and õş = R ( 0 ). Further, for k > 1 , da (k) is equal to the correlation between the errors in

predicting X(t) from X (t + 1), ... , X (t + k – 1) and predicting X(t + k) from X(t + 1),..., X (t + k – 1) .

Thus de (k) is called the partial autocorrelation coefficient of lag k .

d ) IfX is covariance stationary and

lim oni= 0 > 0,

then X is said to be purely nondeterministic and

i) There exists a white noise time series e having variance 0% and an infinite sequence ofconstants

yo = 1, 71, 72, ... such that, as a limit in mean square ,

X(t) = Σγκε(t – Ε) .
b=0
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This is called the infinite order moving average representation of X , and the e's are called the innovations

of the process .

ii) The infinite memory predictor Xnn exists and is given by, as a limit in mean square,

Xnh = Ene(n + h – k) ,
kah

while

σ. = σ . Σ .= oEva:
b=0

Further, for v 20,

h- 1

One = Cov( Xan, Xn,Mtu) = 0% vilito = R ( v) – o-. I livstu.( )
juh j=0

iü ) A sufficient condition for X to be purely nondeterministic is that X have a spectral density f

satisfying

S = log f (w )dw > -00 ,

= "1 108 / (w ) .w >
in which case

Om = es .

e) WOLD DECOMPOSITION . Any covariance stationary time series X can be written as

X(t) = U (t) + V(t) ,

where U and V are uncorrelated with each other, U is purely nondeterministic, and V is purely deterministic.

Implications: Part (a) says that best predictors and their error variances are just conditional means and

variances, while part (b) gives formulas for finding best linear predictors and their error variances . Note

the similarity of the prediction normal equationsto the normal equations in regression analysis, with R (0)

playing the role of yły, rn playing the role of X ?x, and inn playing the role of X y. The last part of part

(b) provides an often used method for calculating linear predictors, namely the device of pretending that

the process is Gaussian and then using conditional means and variances.

Part (c) of the theorem contains the often used Levinson algorithm . This algorithm allows us to find

recursively the prediction coefficients. We will refer to this algorithm frequently. The last part of part (c)

shows that for each memory n, the last prediction coefficient is indeed a partial correlation. These partials

are used extensively in identifying time series models.

Part (d) of the theorem provides algorithms for finding infinite memory linear predictors. These are

often very easy to calculate. Further, the infinite order MA representation of a process in terms of its

innovations is often used in other contexts . Note from part (ü) of (a) that the infinite memory one step

ahead prediction error X (n + 1) -Xnı = (( n + 1) , which is the origin of theterm innovation; that is, e(n + 1 )

is what is left over after having used the infinite past of X to predict X(n + 1) . Finally, part (e) givesa way

of decomposing any covariance stationary time series into two parts, one that can be perfectly predicted if

we know enough of its past, and one part that cannot be perfectly predicted no matter how much of its past

we know . Most of the time series models that we consider have only this unpredictable or nondeterministic

part.
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3.5. Time Series Models

In this section we present some of the models that have been used to represent data.

3.5.1. Random Walk Processes

The first process we discuss in this section is in fact not even covariance stationary, but occurs very

frequently in the physical and economic sciences.

Definition . Suppose

X(t) = X(t – 1 ) + e(t) , t1,

WN (0 % ). Then X is called a random walk process and we write X ~ RW (oº).

Actually a random walk process is not fully specified until the characteristics of the starting value X(0)

are given. We usually assume that X(0) is a random variable that is un correlated with any of the e's.

Theorem 3.3.1 PROPERTIES OF RANDOM WALKS

Suppose X ~ RW ( o >) with

E(X (0)) = -x , Var( x ( 0 )) = oš, Var( e( t)) = 0 Cov ( x ( 0 ), e (t )) = 0 .

Then

E(X(t)) = 4x and Var( X (t )) = 0 ; + to , t > 1 .

Note that X is not covariance stationary since Var( X (t)) is not independent of t . Further, Var ( X (t)) -

o as t + . Figure 3.2 gives five realizations of length 200 from a Gaussian random walk process ; that

is, X(0) and c(1),... , (200) are iid N(0,1) variables. As time progresses, the realizations get increasingly

far apart. This is expected since Var( X (t)) is increasing linearly without bound as t increases. Note also

that these realizations are similar in appearance to many price time series in economics such as stock market

data. Finally, note that the first difference of a random walk process is a white noise process.

Prediction of Random Walks

If X ~ RW (oº ), then Ăni = X(n) .

3.5.2. Moving Average Processes

In our discussion of linear filters above, we introduced the moving average process:

X(t) = Ś Bre(8– K) , Bo = 1, tez,

k=0

WN(0%) , and showed that its autocovariance function R and spectral density function f are given

by

σ'ΣΙΣ2215b BxButlet lul se

R(v) =

{
f(w) = o '\h (e2riw )/?, WE (0,1),

0, lul >

331



TIME SERIES MODELS LECT . 3

5 Random Wallos ( n = 200, dist = 1 )
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Figure 3.2. Five Realizations from a Gaussian Random Walk Process.

where the complex valued polynomial h is given by

h(z ) = Ć Buz .
b=0

If we write the process in operator notation as

X(t) = h(L)e(t) ,

it is of interest to determine whether we can invert the operator; that is, can we write in any sense e(t )

( 1/h(L))X(t)? The answer is given by the following theorem .

Theorem 3.3.2 INVERTIBILITY OF MA PROCESSES

Suppose X ~ MA (2,B , ). If the zeros of h are all greater than one in modulus, then

a ) f (w ) > 0, we(0, 1).

b ) We have e(t) = 2 = a ; X (t – j), WE (0,1), where the a's are the coefficients of the polynomial

g(z) = 1/h(x) = p moazzi and are given by ao = 1 and a ; = - ; > 1.min(9,7) B ; ai -i,

We can now formalize our definition of an invertible MA process.
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Definition . An MA (2, B ,0 °) process is said to be invertible if allof the zeros of its characteristic polynomial

h are greater than one in modulus.

Prediction for MA Processes

For a Gaussian MA process,

inn |= E (X(n + h ) Xn ) = BE( (n + h- k ) ]Xn) = 0 ,
ČAE((n+h –k)X.)= 0,

h >

k=0

since e(t ) is independent of X(s) for t > s . Thus by the device described in part (b) of Theorem 3.4.1 , we

can write the following recursion for the best linear predictors :

Dizo Bx Xn,h-k, h = 1, ..., 9
inn

0,

=

h > 9.

Partial Autocorrelations for MA Processes

In Theorem 3.4.1 we saw that the partial autocorrelation of lag v of a time series X is the last coefficient

, ( v) in the best v step ahead linear predictor. Note that unlike the ordinary autocorrelations which become

identically zero for lags greater than the order q , the partial autocorrelations of an MA process decay to zero

exponentially

MA Spectra and Trigonometric Polynomials

Before leaving MA processes, we note that since R(v) = 0 for lul > g , we can write from Theorem 3.2.1 ,

f(w ) = R(0) + 2 ŠR(v)cos 2x0w.
v= 1

Now we can also write cos 27vw as a polynomial of degree v in cos 2 w since for v > 2 , we have the important

trigonometric identity

COS v6 = 2 cos 0 cos ( v – 118 – cos (u – 2)8 ,

which if used recursively, ultimately expresses cos ve as a polynomial in cos 6. Thus the spectral density of

an MA(q) can be written as a gth - degree trigonometric polynomial. The above identity is also important in

other contexts in time series analysis. If we write z(v) = cos ve , we have

z(v) – 2 cos 8 z(v – 1) + z(v – 2) = 0, v > 2,

with z(0) = 1 and z( 1) = cos, which is a second -order difference equation with initial conditions z(0) and

z( 1) . This equation has solution z(u) = cos v8 .

Examples of MA Processes

In this section we have seen :

1. The autocorrelation function for an MA(2) process is identically zero for lags greater than the order q .

2. The partial autocorrelation function decays to zero as v increases.

3. The spectral density function of an MA(q) process is a qth -degree trigonometric polynomial. Thus for

small values of q , it is difficult for the spectral density to have sharp peaks.
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In Figure 3.3 we display the correlogram , partial correlogram , spectral density, and one realization of

length 200 from each of two MA processes. The two processes are:

Model 1: X(t) = e( t ) - 0.70c(t- ) - 0.10c(t – 2) + 0.60c(t – 3)

Model 2: X(t) = e(t) + 0.80c(t – 4) ;

that is, the first process is an MA(3) process while the second is a (subset) MA(4) . In both cases, the

correlogram is zero for lags greater than the order of the process, while the partial correlogram is not . The

partials for the subset model are zero except for lags that are multiples of four.

3.5.3. Autoregressive Processes

Perhaps the most often used time series model in practice is the autoregressive process. Intuitively, X is

an autoregressive process of order p with coefficients a1,..., Q , and noise variance o2 if it can be transformed

to white noise by a filter of length p; that is,

X(t) + a , X (t - 1) + ... + ap X (t– p) = e(t) , tez ,

where e ~ WN(o?) . One appeal of this process is that it is in the form of a regression model

X(t) = -QjX(t – 1 ) -
. . . . -

- QpX (t - p) + c(t) ,

with past (or “ agged ” ) values of X as the independent variables in the regression.

It is important to note that the autoregressive process is not defined explicitly, but rather as the solution

to a stochastic difference equation, that is, a difference equation whose terms are random variables. The

difficulty with this is in determining whether there is in fact a covariance stationary time series that satisfies

such an equation. To illustrate this, suppose that X satisfies the difference equation with p = 1 :

X (t) + aX(t - 1) = e(t) .

Successively substituting for X(t – 1), X (t – 2) , ... gives

K- 1

X(t) - ( -adiclt- j) = -(a)* X (t– k) .
j=0

If lal < 1 , then taking the limit of the expected value of the square of both sides of this results in

x(t) = Σβ, (t - j) ,
j=0

where B ; = (-a )'.

Now we could also write = x( + 1) + X(t) = c(t + 1 ) , which gives upon successive substitution

X(t) = -24X ( +1) + e(t + 1 )

---- (X(+ + 2) + e(t +2)) +e(t+ 1)]

=(-1 *Xưe+ K)+ -+x 48+1)
j= 1
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Figure 3.3. Correlogram , Partial Correlogram , Spectral Density, and a Realization of Length 200 for Each

of Two MA Processes.
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which, if lal > 1 , gives as a limit in mean square

X(t) = Bje(t + j) ,

j= 1

where B ; = (-1/a) . If lal = 1 we are not able to do this process as neither (-a)k nor (-1/2)* goes to
zero .

These arguments can be extended to p > 1 where instead of the location of lal determining whether to

write X(t) as a function of past and present or future e's , the location of the zeros of the complex valued

polynomial

g (z) = a; , ao = 1,

j=0

determines the representation. The following theorem summarizes the basic results .

Theorem 3.5.3 PROPERTIES OF AUTOREGRESSIVE PROCESSES

Let ao = 1 and Q1, ... ,Qy be a set of real constants, and define the complex valued polynomial (called

the characteristic polynomial of the stochastic difference equation) g(z) = }-o aj zd. Let en WN(02) .

Then

a ) If none of the zeros ofg are equal to one in modulus, then

X(t) = Bjelt – j), tez ,

j :

exists as a limit in mean square where the B's are the coefficients of the polynomial

1

h(z) = giz)

This representation is called the (doubly) infinite order moving average representation of X. Further, X

satisfies the autoregressive difference equation, is covariance stationary, has spectral density

f ( w) = o* bolečtwy? = o ] f( " im )eariw ,

and has autocovariance function R satisfying

Źa;R (j – v) = 0*B ve Z.
1

j=0

b ) If the zeros of g are all less than one in modulus, then B; = 0 for ; 20; that is, X(t) can be expressed

as a function of e's at only future times.

c) If the zeros of g are all greater than one in modulus, then Bj = 0 for j < 0; that is, X(t) can be

expressed as a function of e's at only the present and past times . Thus the equations relating the R and the

a's can be written as

a ; R (j – v) = 8,0 ?, v > 0,

j=0

Śa; RC
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which are called the Yule - Walker equations.

From this theorem we can see that as long as none of the zeros of g are on the unit circle (that is, equal

to one in modulus ), the infinite order moving average process provides a covariance stationary solution to

the stochastic difference equation and has the properties given by the theorem . If all of the zeros of g are

outside the unit circle, then a stationary solution can be explicitly defined.

Since in practice we do not observe the future, we would like to define an autoregressive process so that

X(t) is only a function of {c(s), 8 St} . We formalize this in the following definition .

Definition . A time series X is said to be an autoregressive process of order p with coefficients a =

( Q1,..., ( ,) and noise variance o ? if X satisfies the stochastic difference equation

X(t) + Q1X (t - 1) + ... + apX (t - p ) = e(t)

where the zeros ofg(x) = { }-o ajzi are all greater than one in modulus. We denote such a time series by

X ~ AR (2 ,a ,o ).

Recall for an MA(9) process that R(v) = 0 for lul > g ; that is, as soon as the lag v gets larger than the

order of the process, X(t) and X(t + u) are no longer correlated . The autoregressive process has a correlation

function that often gives a more realistic description of how X(t) and X(t + v) become uncorrelated as u

increases. We will illustrate this by considering the AR( 1 ) process. For an AR( 1) process having coefficient

a and error variance oʻ , we can write the Yule -Walker equations for v = 0 and v == 1 as

R(0) + a R ( 1) =

R( 1 ) + aR(0) = 0,

since R( 1) = R ( -1). From the second equation we have R( 1) = -aR(0) , which when substituted into the

first equation gives

op

R(0)
1 - a ?

From the Yule Walker equations for v > 0 , we have

a

Director

R ( v) = -a R (u – 1) = ( -a )' R (v – 2) =
... s

= ( -a )* R (O),

which gives

R (v ) =
( -a )" o ?
=

R ( u)

p (v ) = = (-a)" ,
R(0)

v > 0.
1 - a

Finally, since R ( v) = R (-u ), we have

R ( u) =
aود )ll-)

plu) = ( -a )lol, VEZ.

1 - a?

Note that a sequence {a(u) , v 2 0} is said to decay exponentially to zero if we can write

la(v) | < co,

where 181 < 1. Thus the autocovariance function (and hence the autocorrelation function ) of an AR(1 )

process decays exponentially to zero . The rate of decay depends on how close a is to one.
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Theorem 3.3.4 EXPONENTIAL DECAY OF AR CORRELATIONSIENT

Suppose X ~ AR(p , a ,o%) and let R be the autocovariance function of X. Let 21 , ... , 2p be the zeros

of g (z ). Then

1

| R (0 )| < ( max
Izi

for some constant k > 0.

*(max Art)

Note that the theorem says that R(v) is an exponentially decaying function of the reciprocal of the

modulus of the zero of g that is closest to the unit circle . If a zero is close to the unit circle , R (v ) may decay

very slowly

Autoregressive processes are very popular also because the estimation of their parameters and the

forecasting of future values are rather easy from a computational point of view .

Prediction for AR Processes

Prediction is very simple for AR processes as we can write for a Gaussian AR (p) process

Xnn = E (X (n + h )|Xn ) = -Źaj Xn,A-j.
j= 1

Thus the AR predictors satisfy the homogeneous difference equation

E ajšo,n-;= 0.
j =0

Further

h- 1

Var ( Xn,n – X(n+ h)) = 0 [ Bi.
k=0

where the B's are the coefficients of the MA ( 00 ) representation of X.

From these facts, we also obtain an important fact about the partial autocorrelations 8 of an AR (p )

process, namely that for any lag v greater than the order p, we have that 0 , = 0 .

Examples of AR Processes

We have now seen that for an AR (P) process:

1. The autocorrelation function satisfies a difference equation of order p ( namely the Yule -Walker Equa

tions) and thus, since the zeros of the characteristic polynomial are all outside of the unit circle, the

correlogram decays exponentially to zero .

2. The partial autocorrelation function is identically zero for lags greater than p.

3. The spectral density is the reciprocal of a pth degree trigonometric polynomial. This means that it is

capable of having very sharp peaks.

In Figure 3.4 we give the correlogram , partial correlogram , spectral density, and a realization of length

200 for each of the two AR models :

Model 1 : X(t) – 0.80X(t – 1) + 0.40X(t – 2) = e(t)

X(t) - 0.90X(t – 1) + 0.70X(t - 2) = e(t) .
Model 2:
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Note how the qualitative features of the data correspond to the spectra and correlations. In particular,

notice that the correlograms are of two types. In Series 1 , the correlogram decays relatively rapidly to 0,

while in Series 2, the correlogram follows a sinusoidal decay.

3.5.4. Autoregressive-Moving Average Processes

In the previous two sections we studied MA and AR processes. In this section we consider the

autoregressive-moving average (ARMA) process which in a variety of ways is a combination of the AR

and MA processes.

Definition . A time series X is said to be an autoregressive-moving average process of orders p and q ,

coefficients a = (Q1 , ...,ap) and B = (B1,..., B ,)?,and noise variance oº if X satisfies

ŹasX16 – j) = ŚPuct =k), tez,

j=0 k=0

where e ~ WN(o ) and the zeros of the complex polynomial g(z) = 2 = oajzd are all outside the unit circle.
We denote such a time series by

X ~ ARMA (8,9, a, b, oʻ) .

If the zeros of the complex polynomial h(z) = Cizo Bezh are all outside the unit circle, then we say that X

is invertible.

The operators g(L) and h(L) are called the AR and MA operators, respectively. Using arguments

similar to those given in the previous two sections, we can show that an ARMA process has the MA100 )

representation

X(t) = 3vuelt – k) , tez,

k=0

j=0

where the ya's are the coefficients of the polynomial h(z)/9(2) , while if X is invertible, it has the AR ( 00 )

representation

Za;X(t – j) = c(0) , tez,

where the a ; 's are the coefficients of the polynomial g(z)/h(z) . Thus we are able to justify the idea of writing

g(L)X(t) = h(L)e(t ) as

X (t) =
g(L)

h(L)e(t)

or

g(L) X (t)= e(t).
h ( L )

In the next theorem , we express the autocovariance and spectral density functions of an ARMA process in

terms of its parameters.

Theorem 3.5.6 R AND Í FOR AN ARMA PROCESS

If

X ~ ARMA(P,9,4 ,B ,oʻ ) ,

then
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Table 3.1. Nature of R and f for ARMA Processes

Process
R(v) or plu) f(w)

MA(9) O for lul > 9

AR (P) exponential decay

for v > 0

exponential decay

for v > &

gth -degree trigonometric

polynomial

reciprocal of pth -degree

trigonometric polynomial

( 9, p ) th -degree rational

trigonometric polynomial

ARMA (P, 9 )

a ) f (w ) = 0 % !h(eztiw )12

lg(ezriw )

b ) The autocovariances R satisfy

Ś a;R(j– v) = ŚPaRxdu– ) u 20

j=0 b=0

= 0, v > g,

where the cross - covariances Rxe are given by

v > 00,

Rxe( u) = Cov( X (t ), c(t + v)) =

shoq osou,

and the yu's are the coefficients of the MA ( 20 ) representation of X.

Thus R satisfies a homogeneous difference equation of order p for v > q . The equations for v =

9 + 1, ... ,9+ p are often called the high order Yule -Walker equations. We can now summarize the nature of

R (or p) and f for AR, MA, and ARMA processes as in Table 3.1 .

Examples of ARMA Processes

As we have seen , the ARMA process is a combination of the AR and MA processes. The basic charac

teristics of an ARMA model are :

1. Neither the correlogram nor the partial correlogram is identically zero past some lag; rather they each

decay exponentially past some lag.

2. The spectral density function is the ratio of a gth - degree trigonometric polynomial to a pth - degree

trigonometric polynomial. Thus it can have sharp peaks and / or sharp troughs.

In Figure 3.5 we give the correlogram , partial correlogram , spectral density, and a realization of length

200 from each of the two ARMA models:

1 : X(t) - 1.20X (t – 1) + 0.78X (t – 2) = e(t ) + 0.45e(t - 1) + 0.39e(t – 2)

2 : X(t) - 0.90X (t – 1) = e(t) + 0.80€(t – 4 ).

That is, Model 1 is an ARMA( 2,2 ), while Model 2 is an ARMA ( 1,4) where the first three MA coefficients

are zero . In each of these models, both the correlogram and the partial correlogram exhibit an exponential

decay, thus ruling out a pure AR or pure MA model.
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3.5.5 . Subset and Multiplicative Subset ARMA Processes

A natural extension of the ARMA model is the case where only a few of its coefficients are nonzero;

that is , the subset ARMA models which we write as

(É--") x6 = ( §»-<-))

where ui S ... Sup = p and vi s ... suo = q are called the AR and MA lags, respectively. We can go

a step further and define a multiplicative subset ARMA process as a combination of a " full " ARMA and

subset ARMA by

( v) (EN) - ( ) ( c )*** c).

Such models will be important later . Note that as long as the zeros of each of the four polynomials involved

in the model are all outside the unit circle , then we can express the multiplicative subset ARMA model as

an ordinary ARMA model of orders p + up and q + uQ , and use all of the results that we have obtained for

ARMA processes .

3.5.6. ARIMA Processes

Many of the processes in economics and business are nonstationary but can be transformed to station

arity by differencing. This fact has led to the popularity of the so -called Box - Jenkins method of time series

analysis. The method employs extensively what is called an ARIMA model.

Definition . A time series X is called an autoregressive integrated moving average process oforders ( p, d, 9)

if the series Z(t) = ( 1 - 1)'X (t) is an ARMA (P, 9) process. We denote such a process by

X ~ ARIMA(P, d , q , a ,b ,oʻ) .

The simplest example of such a model is the random walk process where d = 1 and p = q = 0. Note

that if we let g and h denote the AR and MA operators for the ARMA part of the model, then we have that

X satisfies

g(L)(1 – L)*X(t) = h(L)e(t) .

Multiplicative Subset Seasonal ARIMA Models

A general model of the form

g(L)G(L)( 1 - 1)*(1 – 1 $) X (t)= h(L)H(L)e(t) ,

where g , G, h , and H are the four operators in the multiplicative subset ARMA model, provides a general

framework within which many seasonal time series can be analyzed. If the AR and MA lags are multiples

of the seasonality factor S, then this model is the one which is used in the Box - Jenkins forecasting method.
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LECTURE 4

Estimation and Model Identification

In this lecture we describe some of the basic statistical inferences that can be made about univariate

time series. In Section 4.1 we give the sampling properties of the descriptive statistics that were introduced

in Lecture 1. In Section 4.2 we describe the basis of the two tests for white noise we used in Lecture 1. In

Sections 4.3 and 4.4 we consider respectively the questions of estimating the parameters of an ARMA model

and identifying the orders of the model.

4.1 . Sampling Properties of Descriptive Statistics

In Lecture 1 we introduced the statistics

X =

Exce

n-lul

Â (v) = (x (t) – 7)(X (t + lul ) – X) , lulen

Â (u)
p (v) =

Ř (0)'
lul < n

ilw)== (xce)– 8Jessic- mp.
WE (0,1),

as well as the sample partial autocorrelation function . We will now use upper case letters to represent time

series observations, as they are considered to be random variables, whereas in Lecture 1 we were treating

them primarily as sets of numbers.

In this section we state a series of theorems summarizing the sampling properties (mean , variance, and

asymptotic distribution ) ofX, R , P, and ſ. We will investigate the sampling properties of the sample partial

autocorrelation function later. At the end of each theorem , we give summaries of the their implications.
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4.1.1. The Sample Mean

Theorem 4.1.1 SAMPLING PROPERTIES OF X

Let X be a covariance stationary time series with mean y and autocovariance function R. Let X , =

( X (1),..., X (n )) ? be a realization of length n from X and let in = 21-, X(t) . Then

a) E ( Xn) = H.

b ) Var(år) + 0 as nuo if and only if Cov ( X (n ),Xn) - 0 as n - 00 , a sufficient condition for which

is that R (n ) - 0 as n +0.

c) If CO2 - R (v) < oo, then limnoo nVar ( X ) = 2.09 - R (v ),

d ) Under mild assumptions, valin -w) N (0, f(0)).

Implications: Part ( a) says that X , is an unbiased estimator of H. A sufficient condition for an estimator

to be consistent is that it is asymptotically unbiased ( that is, has expectation converging to the parameter

being estimated) and has variance converging to zero . Thus part (b) gives a condition for Xn to be consistent.

A time series is also said to be ergodic in the mean if Var (in) - O as n , that is, if the average X ,

over time of a single realization approaches the average y = E(X(t)) at a single time t of the ensemble of all

possible realizations. Thus X is ergodic in the mean if and only if as n gets large, adding new observations

in the calculation of Xn has no effect on it in the sense that Cov (X (n ), #n) - 0.

Part (c) gives two expressions that can be used to approximate Var( x ,) and also shows that Var( ån)

goes to zero at the rate of 1/n. Finally, part (d) provides a general Central Limit Theorem for Xm. This

gives

(0 )

Xn + 2a1ay10

as a 100( 1-a)% confidence interval for y. We will see in Lecture 6 that under the conditions of part (d) , we

can find an estimator f (0) such that

10

Yn + Zal2V

is also a 100(1-a)% large sample confidence interval for H.

Equivalent Number of Uncorrelated Observations

To illustrate the results of Theorem 4.1.1 , suppose that X is an AR ( 1) process with coefficient a , noise

variance o ?, and mean k. Then

R (0) (1 - p ) 1 + P

f (0 ) =
( 1 - P ) 1

Thus a 95% confidence interval for j is given by

R(O) I - P

in + 1.961
R (0 ) 1 + 2

n 1-2

This expression allows us to introduce the idea of an equivalent number of uncorrelated observations. Recall

that a 95% confidence interval for the mean of a population having variance R(0) based on a random sample

of size N is given by

R(O)
X +1.961

N
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Thus to make sure that the confidence interval from the AR (1) process and the random sample have the

same width , we would need

1 - P
N = n

itp

For example, a sample of size n = 100 from an AR ( 1) process having p = .8 is equivalent in this sense to

a random sample of size 11 from a population having the same variance as that of the AR ( 1) process. On

the other hand, if p is negative, there is actually more information about win an AR ( 1) realization than in

a random sample of the same size. In general, a realization of length n from a time series having spectral

density f is equivalent for estimating u to a random sample of size N from a population having the same

variance R(0) as the time series, where

nR(0)
N =

|(0

Σ ( 0)
V8-0

Thus if f(0) is large ( small), estimation of w for the time series case is less (more) accurate than for the

corresponding random sample case .

4.1.2. The Sample Autocovariances and Autocorrelations

In Lecture 1 we stated that the sample autocovariance function

n-lul

R(u) =
a

(X(t) – $)(X(+ + lvl) – X),
lulco,

t= 1

is generally accepted as the most satisfactory estimator of the autocovariance function R. The most popular

alternative to Ř is the "unbiased " estimator

Ř(u)

1

n - lol
Z ( X (t) – X)(X(t + v) – X)
tal

- A(-).nalul

so called because if we knew H and used it instead of X in the definition of Ř, the result would be unbiased,

whereas R (u) with w replacing i would have bias -lul/n. However, we rarely know 80 neither Â por å

is unbiased, and in fact their bias is small relative to their variability. Further, it is generally believed that

the mean square error of R (v) is smaller than that of Ř (v ).

Theorem 4.1.2 PROPERTIES OF Å AND Ô

Under mild assumptions,

a ) E(R(v) –-R( v ) = -5° R(O) – 0 - o .
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b ) We have

lim nCov (ä (h ), ô (9 ))

a

· Ï [p( + g)p(* + h) + p( – g)P(r + h)– 20( h ) o ( r ) e ( r + 9 )

+

13-00

– 2p(9)P(-)o(r + h) + 2p(9) (h)p?(r)]

Rạos [co 2nhw – A(n) (100 279W – plo) ] " (w )dw.

c) Any finite collection ofR's or p's is asymptotically multivariate normal.

d ) We have

lim nVar(Â (v)) = Ë (R (r) + R(r – v ) R (r + v)]= 2r v 21 cos ? 2* ww f'(W )dw ,
13-00

while

18-0

lim nVar(ö(v) = § (p<(") + (r = v ) $%++ v) – 4p (0 ) p( p ) p ( + v) + 20°(w)p®(r)]

koS"(con 250w – Plu) ?r? (w)du.

e) IfX is a white noise series with variance R ( 0) = oʻ, we have, approximately for large samples, that

the elements of the covariance and correlation sequences are uncorrelated, and for v > 0,

R (v) ~ N(0 , S. b ( u) ~ N(0,5) ,

while Ř(0) ~ N (0 °,20 * /n ).

4.1.3 . The Sample Spectral Density Function

The next theorem verifies our observation in Lecture 1 that the sample spectral density function is too

oscillatory to be useful for making statistical inferences.

Theorem 4.1.3 PROPERTIES OF THE PERIODOGRAM

Under mild assumptions,

a ) The periodogram is unbiased.

b ) We have

if (w ), W # 0, .5

lim Var( f (w )) =
(w w ,
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while

lim Covli (w .), f(wa) ) = 0, W1 &Wa.

c) For any integer M 2 1 and fixed frequencies wa , ... ,WM in ( 0,.5), we have that the random variables

2j (wa) 2f(wm )

f (wi) f (WM )

converge in distribution to the M independent random variables Q1,... ,QM , each having the chi-square

distribution with two degrees of freedom .

d ) IfX is a normal white noise process with variance oʻ , then the periodogram ordinates, that is, the

values of the sample spectral density at the natural frequencies, are independently distributed and

2j(w ;).
W ; * 0,15 f(w ) ~ xi W ; = 0 , .5.

Implications: Part (b) shows that the sample spectral density function is not consistent since its variance

does not go to zero. Further, the variance at frequency w is a constant independent of sample length. The

fact that the variance of f(w) is a function of f?(w ), that is, the square of the mean of f(w) , is another

reason for plotting the log of the periodogram instead of the periodogram itself, as it is easy to show that

the limiting variance of the log of f (w ) is a constant independent of w .

Part (b) also shows that the values of the sample spectral density are asymptotically uncorrelated at

different frequencies. Thus the log periodogram appears to be a white noise series itself except that its

level will change with the level of the true spectral density. Parts (c) and (d) provide information on the

asymptotic distribution of the sample spectral density. In essence , the sample spectral density has the chi

square distribution for large n in general, while if X is a Gaussian white noise series, then the periodogram

is exactly chi-square for all n . We will use this fact in the next section when we consider tests for white

noise.

4.2. Tests for White Noise

In this section we consider two widely used methods for testing whether it is reasonable to conclude

that a data set is a realization from a white noise time series.

4.2.1 . Bartlett's Test

Suppose that X(1) ,... ,x(n) is a realization from a WN(0%) process . Thus the spectral distribution

function F ofX is given by F (w ) = o'w for w € (0,1 ), and we would expect that the cumulative periodogram

(ws) =
Et f(w;)

k = 1,... , 9 = (n /2 ]+1,

Dj= f(w ;)'

of the data should be close to the points

S =
k = 1, ... , 9.

In fact it is easy to show that

lim Pr( pies,vals- ||sa) - Ž 1-14-2) =G()
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to judge whether a cumulative periodogram has a maximum deviation from the expected straight line too

extreme to be reasonable under the hypothesis of white noise .

4.2.2. The Portmanteau Test

Bartlett's test is done in the frequency domain and uses the fact that the spectral density of white

noise is constant. Another approach to the problem of testing for white noise is to use the fact that its

autocorrelation coefficients for nonzero lag are all zero . The most popular method of this type is often called

the portmanteau or Q test. If X(1) , ..., X (n ) is a sample realization from a white noise process , then the

statistic

1

Q = n(n + 2)

" ] == ;86) +-x

Thus the hypothesis of white noise is rejected if Q > xam. Note that this test is often applied to the

residuals (one step ahead forecast errors) from a model that has been fit to a data set. In this case , one

degree of freedom is subtracted from m for each parameter that has been estimated .

The Choice of m in the Q Test

One difficulty in using the Q test is in deciding what value of u to use. Asymptotically, this choice

shouldn't matter, but to investigate its effect in small and moderate samples, we give in Table 4.1 the results

of a simple simulation study. For samples of size 50 , 100 , and 200 , we generated 500 Gaussian white noise

series and counted how many times the null hypothesis of white noise was rejected for a =.01 , .05, and .10

for a=5 , 10 , and 20. For each sample size, these should be 5, 25 , and 50 for the respective values of a. For

each a, we also counted the number of times out of 500 that the conclusion was not the same for the three

values of . From these results, it appears that ( 1 ) the true Type I error probability of the Q test tends to

increase with m, particularly for smaller sample sizes, and (2) the effect of choosing m is more important as

a increases.

Table 4.1 . Results of a Simulation Study of the Effect of the Choice of m in the Q Test

6

r10

P = 20

dit .

up .

p - 50 P100 200

8 6

14

18 14

21 20 11

Upla .06

p50 20900 8200

31 27 27

31 26 26

46

48 46

uphek.10

B - 60 -100 80200

46 62 36

56 66 64

72 70 53

81 82 74

23

67

4.3. Estimating the Parameters of ARMA Models

Given data X (1), ... , X (n ) from an ARMA process of orders (8,9 ), we would like to find estimates â,

), and ĝ3 of the parameters of the model as this would allow us to estimate f by

ŚBreda
vikw

f (w) = qalizo

Σά,ájezriju

and we could substitute the parameter estimates into the formulas for forecasting future values of X. In this

section we assume that the orders p and q are known and discuss the estimation of the parameters. In the

next section we consider the problem of determining p and q .
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4.3.1 . Maximum Likelihood Estimation

4.3.1 :

The first method that we consider is the application of the general principle of maximum likelihood.

If we assume that the data are from a Gaussian ARMA process, the ARMA likelihood can be evaluated

for specified values of its parameters via the Kalman Filter Algorithm . Much of the recent emphasis in

calculating the maximum likelihood estimates for ARMA processes has been on combining a likelihood

" evaluator " with a nonlinear "optimizer” that requires no derivatives .

The basic theoretical results for maximum likelihood estimation for time series are contained in the

following theorem .

Theorem 4.3.1 PROPERTIES OF MLE'S FOR TIME SERIES

Let Xn = ( X (1),..., X (n )) be a finite realization from a Gaussian time series that has spectral density

f which depends on the parameters 0 = ( 1,...,0 ,)?. Let Øn be the maximum likelihood estimator of O

based on Xn . Then under certain regularity conditions

Vicôn - O) N,(0 , ,1- (0)) ,

where I(C) is called the information matrix ofO and bas ( j, k)th element

1

Ijx (0) =
O log f (w ) O log f(w)

-dw .

де,
j, k = 1 , ... , 1.

де,

Asymptotic Distribution of ARMA MLE's

The next theorem applies Theorem 4.3.1 to ARMA processes.

Theorem 4.3.2 ASYMPTOTIC DISTRIBUTION OF ARMA MLE's

SupposeX is an invertible Gaussian ARMA (8,9, a, B, 0°) process. Let Ry and Rz be the autocovariance

functions of as AR ( P, Q, 1) and AR(9,8,1) process, respectively. Let 6 = ( 7,87,0 %)7. Then

a ) The information matrix of0 is given by

Jea
Таро,

IBP 0,

I (O ) =

Symmetric

1

201

where for j, k = 1, ... , and I, m = 1 , ... , , we bave

19 = (Ry (lj – kl)

Hot == Rz( 1l - ml)

1 * "to glezriw )h(e-21iw,dw .

ےri(-ارس
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b ) If q = 0, then 1- '(a) = S(a), where S(a) is the Schur matrix corresponding to a, and thus

s (a ) Op

=(-):(ه.[ ] ) .07 204

c) If p = 0, then r~ ' (B) = S (B ), where S ( B ) is the Schur matrix corresponding to B, and thus

'S (B )

va (600 m)
5 Na+ 1

(ous leo 2:1)07 201

4.3.2. Approximate MLE's

Box and Jenkins show that if X is an invertible ARMA process with a Gaussian error term e , then the

likelihood function of a, B, and o for a realization X of length n can be expressed as

L(Q , B, 0* |X) = ( 260 )-1/2 ]Mn(0,8 )14/2 expexp

-Set ).
S(a, b)

202

where Mn is a matrix that is a function of a and B, and

S(0,8)= 2(0)
to - 00

with e(t) = E (e(t ) /X) , and the conditional expectation is calculated assuming that a and B are the true

values of the ARMA parameters. To find the a, b, and gº that maximize the likelihood, Box and Jenkins

state first that the term |M . ( a , b )| can be ignored, and second that the summation for S (a , b ) can be

truncated below at some finite limit, -T, say. The process they suggest for finding the e's is called back

forecasting. Once & and Ø arefound to minimize S (a , ), the value of of that maximizes the likelihood

( again ignoring the term |M2|1/2) is given by

ão = S(8,8).
n

4.3.3. Method of Moments Estimators

Given the autocorrelations, the coefficients and error variance for AR , MA, and ARMA processes can

be found. using the relationships between the true p's and true coefficients. A natural way to estimate the

coefficients of these processes is to use estimates of the autocorrelations in these procedures. Such estimators

are called method of moments estimators. For AR processes, the method of moments estimates use the

Yule-Walker equations with sample autocorrelations substituted for true autocorrelations. The resulting

estimates are thus called the Yule -Walker estimates. For an AR (p) process the Yule Walker estimates have

the same asymptotic properties as the maximum likelihood estimators ;, that is, they are asymptotically

efficient.
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MA Processes

The method of moments for MA and ARMA processes are not guaranteed to exist. For an MA process ,

the factorization is feasible if the estimate

f (w) = Ś Å (u) cos 260W

is positive for all we (0,1).

4.3.4. Estimation for AR Processes

Autoregressive processes are widely used in both spectral estimation In this section we consider some

non -MLE estimation procedures for such processes . Throughout the section we assume that the sample

mean has been removed from the data being analyzed .

Yule - Walker Estimators

Perhaps the most natural method of estimating the parameters a and o ? of an AR (p,a, o”) process is

to substitute the sample autocovariances Ê for the true autocovariances R in the Yule-Walkerequations and

then solve the resulting sample Yule Walker equations:

fya = -f and ö? - ŚásÃli),
j=0

to obtain what are called the Yule -Walker estimators (YWE) â and ô2 . The availability of Levinson's

algorithm makes the YWE's attractive from a computational point of view . Unfortunately there is wide

evidence that the YWE's perform poorly in some cases.

Theorem 4.3.3 PROPERTIES OF YWE's

Let å and ô? be the YWE's calculated from a sample X ( 1), ..., X ( n ). Then

a ) â and ô? are the ordinary least squares estimators for the regression problem y = -Xa te where

E ( e) = 0 , Var(e) = oʻL , y is the (n + p )-dimensionalvector y = (X(1 ) , ... ,X(n ) , 0 , ... ,0) , and X is the

(n + p) * p matrix X = (X1, ...,Xp), where x ; = Vy.

b ) The zeros of ĝ(z) = Es=o âjzi are guaranteed to be outside the unit circle.

a

c ) If X ( 1),..., X (n ) is a sample from a Gaussian AR (p, a,o ) process, then

S(a) 0p

vo 드 , 1

or
204

where S (a ) is the Schur matrix corresponding to a.

(ف-و)مه(ه. .

Implications: This theorem gives two important results in addition to verifying our observation about the

use of zeros as proxies for unobserved data. First, the fitted process is guaranteed to be stable. Thus the

spectral density is sure to be positive. Further, if we use the â in the AR prediction formula , we have

Š(n+ 1 ) = -Źa; (a+j= 1)
j = 1,2 , ... ,
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and the predictors will converge to zero . The second result is that the YWE's are asymptotically efficient;

that is, they have the same large sample properties as the maximum likelihood estimators.

Properties of Sample Partial Autocorrelations

The sample partial autocorrelations play an important role in determining models for time series. In

the next theorem we describe some basic sampling properties that they have.

Theorem 4.3.4 PROPERTIES OF PARTIAL AUTOCORRELATIONS

IfX is a Gaussian AR (P ) process, then the sample partial autocorrelations for lags p + 1 and higher

are asymptotically independent and identically normally distributed, are asymptotically unbiased, and have

asymptotic variance 1/n.

4.4. Identifying ARMA Models

The problem of determining what type of ARMA model best fits a data set has become very important

in time series analysis. In this section we describe a variety of diagnostics that have used to identify models.

4.4.1. Some Useful Diagnostics

Suppose that we have a realization X ( 1), ..., X (n ) from a covariance stationary time series X. We

saw in Lecture 3 that the true autocorrelations, partial autocorrelations, and spectral density have certain

characteristics for different model types. The statements below are of necessity rather general and somewhat

vague. In later parts of this section we will describe some methods that have been developed to try to use

these statements in a somewhat automatic way.

AR Processes

The autocorrelation function decays to zero and then oscillates about zero , while the partial autocorre

lation becomes identically zero for lags greater than the true order p. The decay of p can follow a sinusoidal

pattern if some of the zeros of its characteristic polynomial are complex. The spectral density of an AR

process can contain very sharp peaks, while the troughs appear somewhat less sharp.

MA Processes

The autocorrelation function is identically zero for lags greater than the order of the process, while

the partial autocorrelation function does not become identically zero . The peaks in the spectral density are

smooth relative to what can be attained for AR models, while the troughs can be rather sharp .

ARMA Process

Here the autocorrelation function decays in the same way as that of an AR process but only after lag 9 .

Again the partial autocorrelation does not become zero . The spectral density function can now have either

sharp or rounded peaks and troughs.

The statements made above are for models that have nonzero coefficients . If only a few of the coefficients

of a model are nonzero , then further statements can be made. We consider two examples of this, although

there are a wide variety of possibilities. First, if we have an MA or ARMA model with only a few nonzero

coefficients, then plu) can be small for some lags smaller than q. Second, if X is an AR (P) with only ap
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nonzero, then the spectral density ofX will have a very sharp peak at frequency 1 /p. We will consider below

automatic methods for determining if a subset model will adequately represent a time series.

4.4.2 . The AIC and Related Criteria

The problem of order determination in time series analysis is similar to the general statistical problem

of determining which of a set of possible models best fits a set of data. One very important method for

making such a choice is due to Akaike and is thus called Akaike's Information Criterion (AIC) . Although

there are a variety of ways to describe AIC, one simple motivation is as follows. If we have two competing

models for a data set and they have the same number of parameters, then we would probably choose the

one that best " fits " the data in some sense . For example, in regression, if we have two possible models for

the dependent variable and each is in terms of a subset of q independent variables, then we would probably

choose that model that leads to the smaller sum of squares of residuals . If competing models have different

numbers of parameters, then we would not want to choose one based merely on goodness of fit . Again , in

regression , it is a well- known phenomenon that adding a variable to a model is guaranteed to decrease the

sum of squares of residuals, but also tends to increase the variability in predictions resulting from the larger

model. We have also seen this phenomenon in the problems of smoothing that we have considered. In such

problems, increasing the complexity of a model may reduce variability, while at the same time increasing

bias.

Using general principles of information theory, Akaike proposed measuring the " goodness" of a model

that has parameters 0 = (01,... ,0,97 by

AIC(-) = -2 log L(0) + 2r,

where L is the likelihood function of 1 , and is the maximum likelihood estimate of 0. The first term is the

measure of how well a model fits the data, while the second is a penalty for the number of parameters in

the model. The AIC is then used to choose the model that has the smallest value of the criterion . Thus if

a term in AIC is the same for all competing models, it can be deleted. For ARMA modeling, this leads to

considering

AIC ( r) = n log ô ? + 2r,

where è , is the maximum likelihood estimate of the error variance for the model having a parameters.

The CAT Criterion and AR Models

Another criterion that is useful for determining the order of an autoregressive process is the CAT

criterion due to Parzen . Instead of assuming that X is an AR ( ) process, Parzen considered the problem of

determining the order p of an autoregressive process that approximates in some optimal way the behavior

of an arbitrary covariance stationary time series. We will discuss this further in Lecture 6.

Definition . Let o;, ..., o be the error variance estimates from the Yule-Walker equations based on a

sample of size n, and let

j = 1 ,... , M .

Then the criterion autoregressive transfer function (CAT) criterion for order k is defined to be

1

k = 1 , ... ,M

CAT(k )

|-(1+ ) R (O).

+

k = 0.
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Note that the natural way to define CAT (0) would be as just - Â (0 ), in which case it has been shown

that the AIC and the CAT criterion are asymptotically equivalent. Parzen has suggested the definition above

so that CAT can be used as a test for white noise. As we pointed out above, if X is an AR (0) ( that is, white

noise) process, then AIC (and hence CAT with CAT(0) = - Ř (0)) would asymptotically only choose order

zero approximately 75% of the time.

AIC and ARMA Models

The AIC is also applicable for choosing the order of ARMA processes. Ideally, we should use the

exact maximum likelihood method for each possible order and then calculate AIC based on the maximized

likelihood. Unfortunately, this is very time consuming and in some cases (particularly when the process is

close to nonstationary or noninvertible) it is difficult to get the maximization procedure to converge. An

alternative is to use the estimate of the error variance obtained from the method of moments estimator for

each order. This also can be difficult to implement since in some cases the factorization of the covariance

generating function becomes infeasible. Thus in TIMESLAB, we suggest using the consistent but inefficient

method described below to estimate the error variance for each order.

4.4.3. The Stepwise ARMA Method

Since an ARMA model looks very much like an ordinary regression model, it is natural to apply regression

techniques in their analysis. In fact we saw above that applying ordinary least squares to autoregressive data

leads to asymptotically efficient parameter estimates. In the MA case this was not true. In this section we

extend the regression analogy to the ARMA case by describing the TIMESLAB command ARMASEL which

performs a stepwise ARMA procedure.

Suppose we feel that an ARMA model of some order (p,q) should fit a data set X( 1) , ... , X (n ) and

( P, Q ) is an upper bound on the order. Then in analogy with stepwise regression analysis, we would write

X(t) = -a;X (t - 1) - . - apX (t - P) + Breſt - 1) + ... + Boe(t - Q) + c(t) ,

that is , we would regress X(t) on previous X's and e's. Since we cannot observe the e's, we cannot do the

regression directly. The command

ARMASEL (1,0,1 , . , k1, k2 ,kopt ,pval, p , q ,alpha, bota , rvar ,ior )

carries out a stepwise version of the regression described above. The first eight arguments are input and the

last six are output although alpha and bota can be used as both input and output if kopt is negative as

described below . The final model chosen has orders p and g returned in the integers p and q, coefficients

a and B returned in the arrays alpha and bota, and noise variance returned in the real scalar rvar . The

output integer ior is 0 if no errors are encountered, while it is 1 if the matrix being swept is judged to be

singular at any step .

The arguments 1, 2, n, and a contain the data, the sample size, and M and s as described above.

The arguments ki, k2, kopt, and pval allow the user to use ARMASEL in a variety of ways. First, the real

scalar pval is the “ p -value to enter ” at each step of the stepwise procedure. Thus using a smaller value

for pval allows more variables to enter the model. Then n, s , ki , k2, and kopt (and possibly alpha and

bota ) together describe what lags are contenders for inclusion in the model. First, the largest AR or MA

lag possible is 7 - s as described above. Then we have the following rules based on the value of kopt.

kopt = 0 The #1 AR lag ( out of the possible r- s) having the largest Axx (v) in absolute value

and the k2 MA lags havingthe largest Âxel - u) in absolute value are contenders for
inclusion .

kopt = j > 0 This is the same as kopt=0 except that the stepwise procedure continues until j lags

are included.
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kopt=j <o The 1 AR lags that are entered in alpha and the k2 MA lags that are entered in beta

are forced into the model. Thus {1 +k2= -j .

Subset Autoregression

Subset AR models have been found to be particularly useful in representing some time series . For

example, for the log of the lynx data, an AR(11) model having only coefficients of lags 1 , 2, 4, 10, and 11

nonzero has a value of AIC smaller than that of any full AR model. The ARMASEL command can be used to

fit such models .
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Forecasting Using Models

In this lecture we discuss forecasting based on both ARMA models and regression models.

5.1. Box -Jenkins Modeling and Forecasting

The most popular ARMA-model based forecasting method is one proposed by Box and Jenkins. The

method uses the traditional statistical modeling strategy of ( 1) model identification, (2) parameter estima

tion, (3) diagnostic checking, and (4) consideration of alternative models, if necessary, within the class of

multiplicative seasonal ARIMA models to obtain a model suitable for forecasting. In this section we de

scribe the various steps in the method . The appeal of the method is its simplicity and the wide availability

of computer software for using it.

The Models

The Box -Jenkins method for data X( 1) , ... , X(n) assumes that if we transform X to a series W by

W(t) = ( 1 - 1)*( 1 – 19)ºy(t) ,

where

X t m ) 180

108(X (t) + m ), 1 = 0,

and
m is chosen

to make
X(t) + m positive

for all t (unless
d = 1) , then

a model
of the

form

Y(t) = { (x(+)+my+,

(60v) (6.2") won---( at) ( ****)
e (t) ,

with e ~ WN (0 %), will adequately represent W. Note that this model for W can be written as an ARMA (P +

PS, 9 + QS) model by multiplying the polynomials in the model. One of the appeals of the Box - Jenkins

models is that many of the coefficients in this general ARMA model are allowed to be zero . Thus this class

of models allow us to represent data parsimoniously, that is, with a small number of parameters. This is the

same idea as in the stepwise ARMA modeling embodied in the ARMASEL command .

The model for W is called the multiplicative seasonal ARMAmodel with orders ( P, P , 9 , Q , d, D, S ) and

coefficients (a, 0,8,9) . We will generalize this model slightly by removing the restriction that the powers

of L in the second and fourth polynomials above are of the form ks and rs. This allows us to include the

general subset ARMA model in the class of models that we can consider . Thus we have the model

g(L)G(L) (W(t) – ] = h(L)H(L)e(t) ,
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where

ole) = <a,v G ( L) = EC-2","CL) = ŚRAL' H(L) = § Yolu- ,

j =0 n=0

are called the full and subset AR and full and subset MA operators, respectively. Each of these is assumed

to have all of their zeros outside the unit circle, so that the model is stationary and invertible. We can also

write the model with a constant term To , that is,

g(L)G(L)W(t) = 70 + h( L ) H ( L)c(t),

where

To = g (1) G ( 1)) ų = Saj

{") (É )"

From our previous discussions, it should be clear that the Y transform is used to stabilize variance, the

W transform removes trends and cycles, and the model for W represents the behavior in the data after this

“ preprocessing." In the remainder of this section we describe and illustrate the four steps in the Box - Jenkins

procedure.

Model Identification

The model identification step itself consists of three parts:

1. Determine if the power transform from X to Y is required , and if so , what values of m and I should be

used. Note that m is only included to make X(t) + m positive for all t .

2. Determine if the differencing transform from Y to W is necessary, and if so , what values of d, D, and

S should be used.

3. Determine if an ARMA model is required to model W, and if so , what values of the orders and lags

should be used .

Identifying a

This step is used either ( 1) to stabilize the variance of X or (2) to produce a time series Y for which

the differencing step can eliminate any trends and /or cycles. This step is not needed for any series whose

variance appears constant and which has no trends or cycles. To illustrate a case where the power transform

is needed, consider the series in Figure 5.1 , which consists of the sales of an industrial company for 77 months.

This data set consists mainly of a linear trend and an annual cycle whose amplitude is increasing with time

at a faster than linear rate . If no power transformation is applied , no amount of differencing can remove the

cycle. For example, we have included in Figure 5.1 a graph of the first and 12th difference of X. Since all

of the data are positive, we let m = 0 and try to find a suitable value for d.

There area variety of possible methods for selecting 1. Unfortunately, which method to use is somewhat

subjective and depends on the nature of the data . We will try a variety of A's and chooses the one that has

the highest value of R ’ for the regression model

21(t + 1)
X^ (t) = a + bt + c cos

12

that is, the value that leads to the series that is best fit by a linear trend plus a cosine curve. Note that

the cosine is shifted two months because the data start in January and the maximum yearly value is in

November
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Figure 5.1 . Example of Identifying ..

In Figure 5.1 we have included a graph of Rº for 51 values of 1 between 1 and .6 , and the graphs ofX^

for 1 = 0, 1 = .24 ( the value giving the maximum R ?), and d = .6. The log transform is ruled out because

of how poorly the first cycle of the cosine fits the data .

The method of the previous paragraph is appropriate for these data because the transformed data do

seem to be sinusoidal. In general, one chooses the transformation so that the resulting data most closely

match some deterministic function that can be removed by differencing.

Identifying Differences

In this part of the process, one looks for the least amount of differencing required to produce a correlo

gram and partial correlogram that can be matched by that of a multiplicative subset ARMA process having

only a few parameters. This is not always an easy process as it requires rather extensive experience. In

Section 3.5 we described a variety of types of correlograms and partial correlograms and the corresponding

models. Unfortunately no such description can be exhaustive. Note that doing more differencing leads to

losing observations, while doing less may lead to having to use more parameters in the ARMA model. The

probability limits for prediction that we will obtain below are a function of the number of observations minus

the number of estimated parameters. Thus there is a tradeoff in degrees of freedom in these two parts of the
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identification process.

To illustrate differencing, consider again the sales data. In Table 5.1 , we give the values of the cor

relogram and partial correlogram for the power transformed data and for its first, 12th, and first and 12th

differences.

Table 3.1. Table of Correlations and Partial Correlations for Various Differenced Versions of the Power

Transformed Sales Data

.26

.26 .0
9

Correlations of Y

11 .89 .71 .45 .19 • .01 -.09 - .01 .08.28.49 .43 .69

13 1 .61 .46 .03 - 14 -.21 -.19 • .00 .01.24 .37 .42

26 1 .30 ..10 - . 26 • .34 .38 .2 -.18 • .04 .07 .14

Particle of I

11.89 -.42 ..50 .03 .29 .12 .16 .13 • .06 .03 -.04

13 | -.28 .04.13 • .02 -.18 • .04 .11 • .08 - .0 .12 -.07.06

26 1 .06 • .06 - .10 ..11 .02 .02 -.11 - .00 -.00 .09 - .05 -.02

.18

Correlations of ist Dittoriaco

.33 .40 - .07 -.29 -.57 • . 49 -.84 • .26 .02 .24 .46 .61

13 1 .38 .27 -.01 - . 23 - .44 • .13 -.43 -.20 • .06 .24 .27 .60

261 .29 .29.04 -.13 -.36 • .34 • .36 • .20 - 10 .16 .39

Porties of 1st Distorace

11 .33 .33 -.33 -.45 -.46 • .13 - . 20 -.24 • .03 • .06 - .04 .24

13 1 • .08 - .16 .00 .19 - .03 ..14 .01 .13 • .16 .01 -.16 .06

261 .08 .06 .00 -.08 .11 .04 • .14 .07 .01 • .01.02 .06

Correlations of 12th Diteronco

11.40.64 .23 .19 .07 .04 -.13 -.10 -.00 -.14 .08 - .22

13 | • .10 • .22 -.14 • .12 • .06 • .10 • .04 • .03 • .02 • .00 • .14 • ,..20

26 | -.17 -.08 • .09.01 .00 .06 .10 .10 .00 • .01 -.13 -.14

Pertius of 12th Difference

11 .40 .46 -.10 - .12 -.02.01 -.20 -.08 .22 -.11 .16 • .30

13 1 • .17 .03.10 .00 -.01 -.03 • .11 .03 - . 23 .02 -.11

26 1 .02 .22 -.17 .07 .00 • .00 .06 -.13 .01 -.16 - .03 ..16

.03

Correlations of ist , 12th Difteraco

11 -.60 .36 • .2 .00 -.08.11 • .17 • .02.12 • . 26 .44 • .36

13 | .18 • .14 .05 - .04 .09 - .09.06 .00 .003 .04 • .02 • .00

26 1 -.06 .09 - .11 .10 -.06 .02 .04 .00 -.07 .00 -.03 • .00

Purtig of ist , 17th Dittor.ac .

11 -.60 .01 .00 -.10 -.13 .00 -.10 -.31 .04 -.22 .23.06

13 | 16 • .12 -.16 • .06 • .06 .01 .06 - 11 .14 • .09 .02 -.11

26 1 29 .11 .12 - .04 .01 -.10 .00 00 .03 • .04 .06 - .06

03-38863.330000

00.397436

01 - .083808

1017.036166

10112 - .044060

Identifying ARMA Models

Once the data are differenced (if necessary ), the next part of the method is to find an ARMA model that

adequately represents the differenced data. Rere only the sample autocorrelation and partial autocorrelation

functions are used . To illustrate this process, we continue with a discussion of the sales data . Note that

the correlogram and partial correlogram of the first and 12th difference series have an obvious pattern that

the others don't. .First, the lag one partial is large and is followed by several that are small, followed by

an increase at lags 10 and 11. The first three correlations (-6, .36, -.22) are decaying exponentially with

alternating signs, indicating the presence of an AR ( 1) term in the model with coefficient approximately .6.

The presenceof large correlations at lags 10, 11 , and 12 indicates the presence of a subset MA term in the
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data . Since the maximum correlation is at lag 11 , it is tempting to conclude that the MA term should be of

lag 11. In Table 5.2 we give the true autocorrelation function for the best fitting models having an AR( 1 )

term and then either an MA( 11 ) term or an MA(12) term.

Table 3.2. True Correlations for Two Models for Sales Data

.0
0

.02 • .00 .12 -.24

.00 .00 .00.00

.48 -.24

.00 .00

Cootticiats Fron SEASEST

11 .504522 .780130

rur.026497

Correlations for 12 ( 1 ) , A ( 11 )

1 | • .50 .26 - . 13 .06 -.02

131.12 -.06.03 - .02 .01 .00

Cootticiant . Frou SEASEST

.501941 ..801871

rur.024118

Correlations for A(1) ,,(12)

1 | • .50 .26 -.13 .00 -.03 .01

13 1 .24 -.12 .00 -.03 .02 • .01

.01 - .03 .06 -.12

.00 .00 .00.00

.24 • .49

.00 .00

The residual variance for the model having the MA( 12) term is smaller than that for the model having

the MA( 11 ) term but the correlations for the latter model appear to match those of the data better. There

seems to be no clear optimal choice between the two models.

Estimation and Diagnostic Checking

Once a model has been determined, the approximate likelihood estimation procedure is used to estimate

its parameters, while the portmanteau test is used to determine if the residuals of the fitted model are white

noise.

Forecasting

Given estimates of the parameters of a model that has been judged to be adequate, the Box - Jenkins

procedure then produces forecasts as follows. For simplicity we suppose that y = 0. Then we have

g(L)G(L)( 1 - 1)^( 1 – L9 )DY(t) = A(L)H(L)e(t) ,

where Y is the power transformed series. The result of using the SEASEST command is estimates of the

coefficients of the four polynomials g ,G,h, and H, that is, the parameters of the model for

w(t) = ( 1 - 1)*( 1 – [ 9] ° Y (t).

This model for W can be translated into a model for Y , and thus we can write Y as an ARMA model of

orders p * = p + up + d + SD and q* = q + ve . Note that if differencing was done, then some of the zeros of

the polynomial for the AR part of the model for Y will be on the unit circle .

Now given this ARMA(0 *, q* ) model for Y , a recursion for the forecasts ofY can be used. This recursion

is similar to the ones used in the approximate MLE procedure. Once forecasts for Y are obtained they can

be converted to forecasts for the original series X by doing the transformation that is the inverse of the one

done in the power transform step .

Consider Figure 5.2 which contains the sales data with forecasts of the next 24 values of the series and

95% probability limits appended.

3
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Sale Data and Forecasts

2007

1801

1201

80+

40

m . wahch
24 48 72 96 120

Figure 3.2. Sales Data and Forecasts with 95% Probability Limits.

5.2. Other Modeling Strategies

An important feature of the Box - Jenkins modeling and forecasting procedure is that the initial de

trending and deseasonalizing transformations are done by differencing and not by regressing the data on

deterministic functions of time.

5.2.1. Regression with Autoregressive Error

Suppose we would like to model X(t) as a deterministic function of time and the errors appear to be

autocorrelated; that is, we have

y = XB +6,

where y = (X(1) , ... , x(n))?, X is an (n x m) matrix of fixed constants, and c = ( c ( 1), ..., e(n )) has

covariance matrix o'y. In this section we assume that e can be adequately modeled asan AR(P) process

for some order p. We can estimate the parameters by the following iterative procedure.

1. Use ordinary least squares to find initial estimates do and residuals eo .

2. Determine the order Øi, coefficients ås , and error variance ji of an autoregressive model for eo.

3. Create a new observation vector 31 and regression matrix W, by applying the AR filter found in step

2 to y and X.

4. Now apply ordinary least squares to z, and W, to obtain the coefficient estimate B , and residuals

@z = y -X1.

5. Return to step 2 with e , replacing eo .

This process continues until successive iterations result in the same value of the AR order . The successive

values of the quantities involved will have subscripts 1,2, ....
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:

One possible model for the log (base 10 of the lynx data is

2at 2at

z(t) = x + a cos + bsin

9.5
+ c(t) ,

9.5

where e is an AR (p ). Using the procedure described above, we find p = 2 with coefficients – 1.037 and 0.351 ,

while the estimates of the regression coefficients are 2.901, 0.354, and -0.469.

3.2.2. ARARMA Modeling

One very simple method for automatically modeling and forecasting data has been suggested by Parzen

( 1982) and used successfully by Newton and Parzen in a forecasting competition organized by Makridakis

(see Makridakis et al. ( 1984 )). The method consists of two parts:

1. For some maximum lag Mi, calculate the regression coefficients

x (t) X (t+ k)
tal

I
I k = 1, ... , M .n

Σx?(1)
jul

Then let m be the value of ke having the largest \Bul, and form

e(t) = X(t + m) + BmX(t) , t = 1 , ... , n - m.

2. Fit an autoregressive process to the e's, using maximum possible order My and an order -determining

criterion to determine the order p to use . In the general ARARMA procedure one would fit an ARMA

model to the e's, but in most cases an AR process is adequate.

The first part is called the first AR since it is in essence fitting a one lag subset AR model to X.

The second part is called the second AR. Note that the first AR may result in a coefficient that is greater

than one , while in the second AR, it is recommended that the Yule Walker or Burg estimators be used to

guarantee that the process fit to the e's is stationary.

The result of this procedure is a model of the form

(1+ " ) ( L) x (t) = (t ),

where ĝ is the AR operator determined in part 2 of the procedure. This model is similar in form to the

Box -Jenkins model (with no MA terms) except that it is easily made automatic, and the data determine

the nature of the first AR , which is analogous to differencing and is in fact sometimes referred to as " quasi

differencing ". If the first AR turns out to be stable , that is, the coefficient has absolute value less than one,

then the forecasts will eventually converge to the mean of the observed data . As we discussed in Lecture 1 ,

forecasts that follow a difference equation of necessity either are explosive or must converge to some finite

value. In the short run this may not be troublesome, but if the analyst has a feel for the long-run nature of

forecasts, then this information should be incorporated into whatever model is used, either by modeling this

behavior using a regression model, or by using differencing if polynomial growth is expected, or by insisting

on a stable ARMA model if the series is expected to remain fairly constant.
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Sales Date and Forecasts by DTPORE

2007

160+

120+

hasi
at

48 72 98 120

Figure 5.3. Sales Data and Forecasts As Determined by DTFORE .

The Sales Data Again

To illustrate the simplicity of the ARARMA procedure, we applied it to the fourth root of the sales

data. It turned out that a= 12 , p=2 , beta = ( - 1.0666> , and alpha = < - .229 , - . 467 >. The first AR essentially

chose 12th differences, except that the coefficient is actually more nonstationary than the - 1 that would

mean twelfth difference . In data such as this, this quasi- differencing will remove most of the variation in the

data, and at least in the short term future, the model used in the second part of the model fitting has little

impact on the nature of the forecast. Note further in this example the quasi- differencing will ultimately lead

to more explosive growth than the actual 12th difference.

In Figure 5.3 , we display the sales data, the values fitted by the model (the actual data are represented

by the x's ), and the forecasts of the next 24 values of the series. The values to be plotted were again divided

by 10 prior to doing the plotting. Thus this figure is comparable to the one using the Box-Jenkins method.

If the first AR chosen by DTFORE is stable, then the SEASPRED command can be used to find probability

limits for the forecasts. The intent of DTFORE however is to provide an easy -to -use command that gives

forecasts that have been shown in the forecasting competition) to compare very favorably with those given

by more elaborate methods.
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Searching for Periodicities

In this lecture we consider the classic problem of searching for periodicities in time series. The basic

tools in this search are the spectral density function f and sample spectral density function f. In Section 6.1

we consider nonparametric estimation of f, that is, estimation performed without making any assumptions

about the form of the true f. Then in Section 6.2 we consider using ARMA models for estimating f. Finally,

in Section 6.3 we use the results of the first two sections to actually search for periodicities in some famous

series.

6.1. Nonparametric Spectral Density Estimation

We saw in Lecture 4 that the sample spectral density function j is an inconsistent estimator of the spec

tral density function f. In this section we describe how can be modified to produce consistent estimators.

6.1.1. Smoothing the Sample Spectral Density

The basic problem with j is that it is too wiggly to be an adequate estimator of a function that is

typically smooth over much of its domain . In this section we consider a simple averaging approach to

smoothing the periodogram .

Recall from Theorem 4.1.3 that under general conditions

f(0),3( )...., ( n/2,

are asymptotically independent random variables with

f(Wj)xż, wj # 0,5
f (w ;) ~

{
2

f (w ;)xi, W ; = 0, .5 .

Consider estimating ſ at one of the natural frequencies w ; = ( j – 1)/n by

m

f (w ;) =

1

2m +1
ko-m

- 1 ¿ f (ws+ t),

that is, by the average of f (w ;) and the m values of the periodogram on either side of it. If W ; -m < 0 or

Wj + m > .5 , we can use the fact that f is symmetric about 0 and 15 to obtain the elements in the sum .

Now suppose that w ; -m > 0 and witm < .5. We can think of f(w ;) as averaging all of the periodogram

values in the frequency band w ; m/n , that is, as a smoother having bandwidth m/n. We consider

bandwidth to be half the width of the frequency band, that is, the width of the interval on each side of the
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center frequency. Arguing heuristically, we assume that n is large and use the asymptotic properties of j to

obtain

E ( (w ;)) =
1

2m +1
do-m

em tiį $(w:: o

m

Var (i( w;) = (amin)' [ 1 °(wit ) Sam +1 me sen
1

max . 5 '(Wj+2 ).
sem

These two expressions exhibit clearly the importance of the smoothness of ſ, as well as the tradeoff between

variance and bias in f (w ;) in the choice ofm. For a fixed value of n, increasing m will increase the bandwidth

and lead to including values of f at frequencies farther from the target frequency w ; in the expected value of

f (w ;), thus increasing the possibility of a larger bias. If f is smooth in the neighborhood of Wj, then this bias

will not increase appreciably. On the other hand, increasing m has the effect of decreasing the variance of

the estimator, again assuming that ſ does not significantly increase as frequencies get farther from w ;. Note

that the simplest case is when X is white noise, in which case f is constant over (0,.5 ), and we can increase

the bandwidth without increasing the bias while decreasing the variance at the rate of 1/(2m + 1) . At the

other extreme, we might be estimating f at a frequency that is adjacent to a band where frises sharply to a

peak, in which case increasing m could increase both the bias and the variance. This phenomenon is known

as leakage as high power in f in one frequency band "leaks” into estimates of ſ at other frequencies.

As long as f is bounded, we can let m go to co as n goes to co so that the variance of f (w ;) goes to

zero . As m and n get large, we have

Elf(w ; )) =

1

2m + 1
ko-m

{ $ (w ; ++) = 2m

Witm/n

f (w )dw .

Jwj-min

If we let m/n get small and assume that f is such that it is roughly constant over a small interval, then the

above integral is approximately am f(w ;),and j (w ;) is asymptotically unbiased.

For two different fixed frequencies w ; # wk, we have that f (w ;) and f (wx) will become independent

as m/n goes to zero since they will eventually be based upon averaging values of the periodogram for

nonoverlapping frequency bands.

We next consider the asymptotic distribution of f(w;). For W ; -m > 0 and W ;tm < .5, we bave

f (w ;) ~

1

2m +1
ksem

į llwjet.Qu+m+,

where a means has the same distribution as , and the Q's are independent x; distributed random variables .

We know that a pure sum of independent x' random variables has itself a x distribution with degrees of

freedom equal tothe sum of the individual degrees of freedom . Thus if X ~WN(0° ) , we would have that

{oP/ (2(2m + 1)]} xăcam +1). The distribution of a general linear combination of yº random variables

is often approximated by that of Q = cx ;, where c and v are chosen so that the mean and variance of Q

are the same as those of the linear combination . We will use this device to approcimate the distribution of

f (w ;)/ f(w ;). Thus we have

E(Q) = ~ = = =
51

$ (w ;)

C )
1

Var ( Q ) = 2cʻv = Var
f (w ; 2(2m + 1)

We then set cv = 1 and 2cv = 1/2(2m + 1) and obtain c = 1/v and v = 2(2m + 1) , which gives

vf(w ;)
,

f (w ; )
W ; * 0, .5 .
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Note that in this simple averaging case we could have obtained this immediately from our assumption that

f is constant around wj.

Estimating f(0) and f( .5)

The arguments given above must be modified when we consider estimating f at frequency 0 or .5 , as

then the values off on each side of the center frequency are the same. If we write, for example,

f (0) =

anti [10 +2 764.00)
we find

vf(w ;) ~ xilas

2f (w ;)
w ; = 0 , .5.

6.1.2. Kernels and Fourier Series Approximations

The next natural step in estimating f is to insert a weight function into the averaging of the periodogram

so that values of f at frequencies far removed from w ; get less weight than values at frequencies close to w ;.

We consider integrated weighted averages of j of the form

f(w)= "K(w =1){( )dr,

where K is a weight function called a (spectral) window . For a fixed frequency w , this expression essentially

says to superimpose the weight function onto the graph of the periodogram (with its value at zero centered

at frequency w) , then multiply the two functions together (which down -weights values of j far removed from

the " center ” frequency w) , and finally do the integral. To find the estimate at a different frequency, the

same process is carried out with the weight function moved over to be centered at the new frequency. Thus

the function K essentially dictates what part of j can be " seen " when finding the estimate at a certain

frequency. This is the origin of the term window . We will study windows of various shapes and discuss the

effect of their width .

Using spectral windows then is a natural extension of the idea of averaging the sample spectral density.

We could use weighted averages that are sums instead of integrals, but the integrated averages arise naturally

from another point of view , which we now describe. Such averages arise naturally from considerations of the

general theory of the Fourier series representation of a function on a finite interval. An expression of the

form

f (w ) = Ë R (h )e–PrivwΣ
08-00

where

R (v) = 4So
f (w )eariowdw

is called the Fourier series representation of f, and the coefficients R(u) are called its Fourier coefficients.

The periodogram

f(w ) = Ë Âlo)e -ation
0:-( - 1)

is thus actually an estimator of the nth partial sum

f (w ) =

us-(n- 1 )

2 R(v)e-ariva
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From this it is clear that there are two sources of error in j as an estimator of f: a truncation error due

to using In to approximate f, and an estimation error due to having to estimate R. In the general theory

of Fourier series it is well known that the approximation of some functions by their Fourier series can be

improved by applying a sequence of weights kn (u) to R in fn, giving

Ë kn(w ) R (v )e-fo ,& (W ) =

us-(n- 1)

- Zriuw

f (r )Kn ( w – 7 )dr.

The sequence kn is called a lag window , and the function

n-1

Kn(w ) = kn (u)e uriva , we (-00,00 ),

vs-(n-1)

is called a spectral window . Thus the integrated averages that we have been discussing arise naturally from

the idea of applying weights to the sample autocovariances. The weights kn (v) are usually an even function

of u and thus Kn is real and symmetric about .5 . Further, Kn (w ) is defined for all we (-0,00 ) and is

periodic of period 1. This also means that K , is symmetric about zero .

Definition . A spectral estimator of the form

n - 1

-Zriuw

jn,k (w ) = Σ Ε ( ) ( )kn (v) R (v )e - 3rio

"= -(n- 1 )

= 1 1 ( ) K. (w – udr

is called a window estimator with lag window km and spectral window Kn. If kn (u) = 0 for lul > M for some

integer M (called a truncation point), we say that the estimator is of truncated form .

Note that the sample spectral density function itself is of the above form with kn (v ) identically one ,

which gives that Kn is the Dirichlet kernel.

Windows of Scale Parameter Form

A variety of weight functions have been suggested, most of the scale parameter form , that is,

kn( u ) = 10 ),

for some integer M < n called the scale parameter, with d being a function satisfying

1. 1(0) = 1.

2. A (-1) = x ( ).

3. So t' (u)du soo .
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Definition . The function defined above is called a lag window generator, wbile the function

A (w ) = zu/ (w eiudu, we (-00,00 ),

is called the spectral window generator corresponding to d .

For lag windows of scale parameter form , it can be shown for large M that

Kn (W ) = 2 *MA (2 Mw ).

In Table 6.1 we give information about eight of the lag and spectral window generators that are commonly

used . The last five columns in the table contain numerical quantities that are important for judging the

adequacy of the window . We describe these quantities below .

The first five lag window generators are zero outside of lul S 1 and thus kn ( v ) = 0 for lvl > M and fm ,&

only involves values of R (u) for lvl s M, and M is then called a truncation point. This terminology is often
used even when I is not of truncated form .

The basic feature of the windows is that they decay rapidly from frequency zero and then rise back up

again in what are called sidelobes. All of the windows converge to a delta function as M increases . This

is analogous to letting the bandwidth of the simple averaging smoother of the previous section go to zero .

The truncated periodogram , Tukey, and Parzen -Cogburn -Davis windows are negative in certain frequency

bands, while the others are nonnegative. This is important because using a negative spectral window can

result in a spectral estimator that is negative.

Since the main lobe of a window is not rectangular, it is difficult to measure how wide it is. In the last

column of Table 6.1 we give what is called Parzen's measure of the bandwidth of a window , denoted Bp and

defined to be the width of a rectangular window having the same value at w = 0 as Kn and the same area

as Kn . Since the areas of all of the Kn are one, we have

1

Bp =

2.MA(0)

In Figure 6.1 , we have superimposed the Parzen and Tukey windows for truncation points 24 and 18,

respectively. Note how the main lobes seem to line up, which could be predicted based on the bandwidths

of the two windows.

6.1.3. Sampling Properties of Estimators

As we have pointed out, the properties of a spectral estimator based on smoothing j will depend on

the smoothness of f and the properties of the weighting function being used. In the case of a lag window

of scale parameter form , the properties of the weighting function will depend on the scale parameter M and

the lag window generator ..

Theorem 6.1.1 PROPERTIES OF WINDOW ESTIMATORS

Let X( 1 ) , ... , X(n) be a sample realization from a covariance stationary time series X which has spectral

density function f and let be a lag window generator. Let

f ) = ΣBur(w )= Gū JR(v)e=3siv
Privw

18

where M is chosen as a function of n so that M - as 100. Note that the limits on the sum are actually

-M to M if X is of truncated form and -(1 - 1) to n - 1 otherwise. Then
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Table 6.1 . Some Window Generators and Their Characteristics

A (w ) = SC 1 ( )eviewde
27

9 (0)
So t ' (u)du Emin

B ,

Generators of Truncated Form , i.e. , 1(u ) = 0, lul > 1

Truncated Periodogram Window : 1(u) = 1

1 sinw

O 2

-

执

Bartlett Window : \(u) = 1 - lul

1 sin wsin w /21?

201(09.12) 1 11 2/3 2/3
À

Tukey Window : \(u) = 0.54 + 0.46 COB TU

1 sinw ?

2

27 w x2 wa
0.2372 0.795

1.20
À

Parzen Window : \(u) =

(
1 - 62? + blu , lul 5.5

2(1 - lull)', .5 Susi

3 ( sin w / 4

87 w / 4( 光 ) 2 6 0.539 1.32
À

Bohman Window : 1(u) = ( 1 - lul) cos Tu + sin alul

2*( 1 + coow )

1/2
(

2

(22-2)د
0.586 0.734

1.23

Generators Not of Truncated Form

sin su

Daniell Window : 1(u)
TU

:,طسا< 2
20 q°76 1 1.28

古

3 sin Tu

Bartlett-Priestley Window : 1(u)

(Tu )?
COS TU)

TU

(1 - 0 ) ), kiso
2 7 ° / 10 1.2 1.19

+

Parzen -Cogburn -Davis Window : \(u) =
1

S

1 + 23p , = * / 27

2r
S21 - 1

1

sins

For r = 2:

1

2

- will i sin
4 1 1.66 1.66

.45$
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Parzen ( M = 24 ) and Tukey ( M = 18 ) Windows Parzen ( M = 24) and Tukey ( M = 18) Windows
20

17 0.14
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0.074
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-
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0
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5

Figure 6.1. The Parzen (solid curve) and Tukey (x's) Spectral Windows for comparable Bandwidths.

a ) The estimator fim (w ) is asymptotically unbiased.

b ) ASYMPTOTIC VARIANCE . If M is chosen so that M and M/n - 0 asno, then

28"(w) So 1 ° (u) du, w = 0 , .5
lim Var(fu, a(w )

f*(w) SO 1 ( )du, w * 0, .5

lim. Cov( fu,ne(wa),f1,10(wa) = W1 w2.

= {pose puedeut03n- M

c ) Confidence intervals for f(w) are given by

B. (w ) + Zony Phar(w / 12(w)du,

No 1( W ), cf , (w ,

where c = exp(Zarav se 1°(w)du),and

( xalaxi-a/2 )

These intervals are for f at a single frequency. A large sample simultaneous confidence band on f for all

frequencies can be obtained by multiplying both terms in the second confidence interval by exp ((2 log M ) /2).

The Choice ofM

The choice of M determines the amount of smoothing done, with too large ( small) a value resulting in

undersmoothing ( oversmoothing ). In general the choice of M is very difficult unless some information about

the function being estimated is known. Basically, if f has a narrow peak, we would like the bandwidth of the

spectral window to be narrow 80 that leakage doesn't occur. This however leads to undersmoothing in other

frequencies. Thus nonparametric spectral estimators have trouble " resolving" peaks without introducing

spurious peaks in other ranges . We will see later that parametric spectral estimators can solve this problem

in many cases . In any event, the prevailing view on the choice of M is to try more than one value and use
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the resulting plots to make general statements about f. For example, one could use three values, M1, M2,

and M3, where

M м .
.1

.05ST5.10,
.25255 Most5

.75.

6.2. Parametric Spectral Density Estimation

In Section 6.1 we considered nonparametric methods for estimating the spectral density of a covariance

stationary time series. We saw that ( 1) the choice of the scale parameter M is the key to finding a good

estimator, and (2) it is difficult to produce an estimator having sharp peaks without introducing possibly

spurious peaks as well. In this section, we consider using the spectral density of an ARMA model as

an approximation to that of the process being analyzed. We will see that this parametric spectral density

estimation procedure is easy to implement and under a wide variety of conditions leads to estimaton superior

to window estimators.

6.2.1. Autoregressive Spectral Estimation

In this section we assume that the process being observed can be written as an infinite order autoregres

sive process. This includes the cases of a finite order autoregressive process and an invertible MA or ARMA

process .

Theorem 6.2.1 CONDITIONS FOR AR(0) REPRESENTATION

IfX is a covariance stationary time series baving a spectral density satisfying

0 < di < f (w ) sdg < 0 , we (0,1),

for some constants de and da , then X can be written as an infinite order AR process.

AU ARMA processes except those that have a zero of the moving average polynomial on the unit

circle have spectral densities that satisfy the conditions of this theorem . We consider approximating the

true spectral density f of a process that can be written as an infinite order autoregression by that of

a pth order AR process. Given data X (1),..., X (n ), autoregressive spectral estimation consists of three

steps: ( 1 ) determining the order k of the best approximating AR spectral density ft, (2) finding estimates

år(1),...,ax(k ) and % of the parameters of fa, and (3) estimating f by

f (w ) =
o ?에

Dårljler

To determine the order, we can use any of the methods described in Lecture 4. However, Parzen's CAT

criterion was specifically proposed in the context of autoregressive spectral estimation, so we describe it here.

The basic motivation for the criterion is contained in the next theorem .

Theorem 6.2.2 PROPERTIES OF CATRTIE

Let o; be the error variance and

))& (2 = Ś & Clan
j=0
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be the transfer function of the estimated AR process of order p based on a realization of length n from

a process which can be written as an infinite order autoregressive process having coefficients aj, aj, ... ,

transfer function

Joo(2) =
j=0

and error variance 0% . Let CAT(p) be the CAT criterion for order p. Then

lim E (CAT(D )) = lim Je,

where

9, = ' s (lair - daro19)sweden

This result shows that the CAT criterion chooses the order that results asymptotically in the spectral

estimator that is closest (in the sense of the integrated relative mean square error measured by Jp) to the

true AR ( 00 ) transfer function . This is the origin of the name "criterion autoregressive transfer function .”

In the next theorem we present the basic sampling properties of the autoregressive spectral estimator.

Theorem 6.2.3 PROPERTIES OF AR SPECTRAL ESTIMATION

Let X be a covariance stationary time series that can be expressed as an infinite order autoregressive

process

Èa ; X (t – j) = e(t),
j=0

where the errors e are independent and satisfy E(X"(t) ) < c. Let fo be the autoregressive spectral estimator

of the spectral density f based on a realization of length n. Then

a ) Ifp is chosen so that

i) p , ii)ii) - 0, and ii) va laz1-0,
j=p+ 1

as n +00 , then for any k fixed frequencies 0 < wy < ... < Wx < 0.5 , the joint asymptotic distribution of

Valp( f,(0) – f(0)) , Valolf (wa)– f ( w . )) ,...,

Valolje (wk) – f (wa )), Vn /P( fp( 0.5) – f(0.5)) ,

is that ofindependent, sero mean , normal random variables having variances

45°(0) , 28° (wa),..., 21°(Wx),45° (.5) .

b ) IfX is a finite order autoregressive process, then letting p be any function g ofn that satisfies 2 - 0

and p / n -- as nuo satisfies the requirements of part (a), and the variance of fp(w )goes to zero at the

rate g(n)/n as n + 0.
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c ) If X is an invertible ARMA process, then p = logn satisfies the requirements of part ( a), and the

variance of ſo(w ) goes to zero at the rate of log n/n as n - .

Implications: This theorem shows that if we are estimating the spectral density of a process that can be

written as an infinite order AR , then the autoregressive spectral estimator is consistent and asymptotically

normal as long as the order that we use is chosen in the correct way. Requirement (üi) for the choice of p

shows that the choice depends on how rapidly the coefficients of the AR ( 00 ) go to zero . For a finite order AR

process, these coefficients become zero past the order of the process, and we can choose p to go to infinity

as slowly as we want . For an invertible MA or ARMA process, we could show that the coefficients of the

AR(20) representation go to zero at a rate bounded by pt for some constant p and thus choosing p = logn

is sufficient.

The next theorem (due to Newton and Pagano (1984)) gives confidence bands for AR ( ) spectra

Theorem 6.2.4 CONFIDENCE BANDS FOR AR SPECTRAIDENC

IfX is a Gaussian AR (P ) process, then asymptotically the probability is 1 - a that the true spectral

density f lies entirely within the Scheffe -type bands

hy(W)+alw < f (w )
he(w ) + s (w ) 1,(w)-ow '

WE (0,1),

wbere

how) = Tow)= *(v)+2E** con 250W

- 96

5 % (w ) = xopt}x W)Đx(w)

i(u) = åp(j)a ,(i+ o), v = 0, ... , P

and

xf (w ) = (1,2 cos 21W , ... , 2 c06 27pw )

D = BCBT

[ s (a ) Oy
C =

2/04

oʻqli – 1) , k = p + 1, j = 1,...,P + 1

B

0-9(05+ j-1 + 04–3+1 ) , k = 1,...,P j = 1 , ... , + 1 ,

s (a ) is the Schur matrix corresponding to a, and in forming Ô estimators ofa and o ? are substituted for

the true values. For any frequency w where h (w ) – $ (w ) is negative, the upper limit is taken to be co .
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Lynx Data Divided by 1000
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Figure 6.2. The Lynx and Sunspot Data.

6.2.2. MA and ARMA Spectral Estimation

The next natural step in spectral estimation is to use MA and ARMA models to obtain estimators.

We note that MA spectral estimation is very similar to nonparametric spectral estimation in that it results

in an estimator that is a finite degree trigonometric polynomial. Thus it suffers from the same difficulty in

estimating spectra that have sharp peaks. It does have the advantage of having the AIC available to aid in

choosing the degree of the polynomial.

The use ofARMA models to estimate spectra does not have the weakness that nonparametric and mov

ing average methods have and much attention has been paid recently to ARMA spectral estimation However,

unless the true spectral density has both sharp peaks and troughs, autoregressive spectral estimation , with

its computational simplicity, should be adequate.

6.3 . Methods for Determining Periodicities

Several of the most famous time series that have been studied in the past have appeared to contain

cyclical components. For example, in Figure 6.2 , we display two data sets : (1 ) the annual number ofCanadian

lynx trapped on the Mackenzie River for the years 1821-1934, and (2) the annual average value of the daily

index of the number of sunspots ( using the scale devised by Professor Rudolf Wolf in 1849) for the years

1755–1964. These data sets have been extensively studied over the past several years (see for example Part

4 of the 1977 volume of the Journal of the Royal Statistical Society, Series A) . The basic property of these

data is that there appear to be cyclic patterns but that these patterns are not perfectly cyclic. The " sunspot

cycle ” is a well known phenomenon and has an important effect on radio communications. The cycle in the

lynx data is usually explained as being due to a predator-prey relationship between the Canadian lynx and

the snowshoe hare, its most important source of food.

Time series such as the lynx and sunspot data are traditionally analyzed according to one of three

models:

375



SEARCHING FOR PERIODICITIES LECT . 6

1. As the sum of a deterministic sinusoid plus an error that is a covariance stationary time series, that is,

X(t) = x + a c00(24t) + b sin(?*t+ e(t),
P P

where the error series e is covariance stationary, and p is the period of the sinusoid .

2. As the values of a stochastic process referred to by names such as an 'outburst' model or a filtered

Poisson process. The basic idea of this type of model is that a physical process builds up and then bas

a large surge or outburst, followed by a decay back to some baseline value. We will not consider this

model further.

3. As the values of a covariance stationary time series of near cyclic type. For example, the AR(2) model

X(t) + a_X(t – 1) + agX(t - 2) = e(t)

will appear roughly cyclic with period p if a = -2 cos (2a / p) and ag is close to 1 .

6.3.1 . Deterministic Sinusoid Plus Error

If we believe that a time series is actually a deterministic sinusoid observed with additive error and

we know the period of the sinusoid, then we can use regression analysis to estimate the coefficients of the

sinusoid and test whether the amplitude is in fact zero . If the errors are uncorrelated , then ordinary least

squares can be used , while if the errors are correlated, we can use the procedure described in Section 5.2 for

doing regression with autoregressive errors . In fact, in Section 5.2 we used the lynx data to illustrate the

procedure.

Estimating a Period

If one has data X (1 ),... , X ( n ) and suspects that they contain a deterministic sinusoid of someunknown

frequency plus noise, then this problem is often referred to as a search for hidden periodicities. It seems

natural to inspect the periodogram of the data and test whether the largest value of the periodogram is

significantly different from zero . If not , then we would conclude that thereare no deterministic sinusoids of

any of the natural frequencies in the data. If the largest value is significantly different from zero , then we

must ask whether it could happen that there is a sinusoid but it is actually at a different frequency. To do

this test, we can use the results of the next theorem . In this theorem we assume that n is odd. The results

are approximately correct if n is even .

Theorem 6.3.1 FISHER'S EXACT TEST

Let f (w ;) be the periodogram of a realization oflength n ( n odd) from the process

21 (t - 1) - 1)
b sin + e(t) ,X (t) = a= 0 COS

P P

where the period p is a factor of n , and e is a Gaussian white noise series. Let m = (n / 2). Then

a ) If a = b = 0, the exact distribution of

max, (f(w ;))
j = 2,(n / 2 )

In / ]

Σω;))
j=3
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Logio of Lynx Data Lynx data, Period CH49.323973,10.06691)
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Figure 6.3. Log ( base 10) of the Lynx Data and the Estimated AR (11) Spectral Density.

is given by

Pr(p > 3) = Ś1-1*-1 (7.) – jeja - 1
z > 0 ,

j=1

where K = (1/2 ).

b ) The chance that the test given in part ( a) will choose a frequency other than 1/8 is less than the

level of significance a that is used in the test.

The test in part (a) is called Fisher's exact test. For the log of the lynx data, we find that g = 0.5967

which has a p - value less than 10-4, and the maximum is at period 114/12 = 9.5 . If one suspects the existence

of r sinusoids, then the above test can be modified .

A crucial assumption in the Fisher test is that the errors are white noise. If they are not, that is ,

the spectral density of the error time series is not a constant, then a large value of the periodogram at a

particular frequency could be due to either ( 1) the existence of a sinusoid having that frequency, (2) the

spectral density being large at that frequency, or (3) a combination of the two. This is referred to as the

mixed spectrum case ( see Section 6.3 of Priestley (1981)) , and unless one has some prior knowledge of the

nature of f or the sinusoids involved, separating the two parts of the model is very difficult.

6.3.2. Estimating Peak Frequencies in AR Spectra

For a process of near cyclic type, the data appear to be cyclic except that the lengths of cycles vary from

one cycle to the next. Thus such a model is often referred to as a disturbed periodicity model, and the analog

of determining the period of a deterministic sinusoid is to determine the frequency wa where the spectral

density of the process has a peak. Searching for peak frequencies is not difficult if the process is a finite order

MA or AR process as then f ( or its reciprocal in the AR case) is a finite-degree trigonometric polynomial and

finding the critical values (maxima and minima) of such a polynomial is not difficult. Given a realization of

length n from an AR ( ) process, we can estimate the peak frequency w* by finding the frequency where the

reciprocal of f has a relative minimum . We will denote this estimator by ŵ . If the order p is unknown, then

we can estimate it and the coefficients of the estimated order process and again use the process described

above to estimate the peak frequency. This estimator is denoted by wp. The properties of these estimators

are given in the next theorem .
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Theorem 6.3.2 ESTIMATING A PEAK FREQUENCYATIN

Let w and wo be the autoregressive spectral estimates described above ofa peak frequency we based on

a realization of size n from a Gaussian AR (P, Q , 0 ° ) process. Then

a ) Vñlü -wo) - N(0,0%(wº )) , where

0% (wº) = b *(wº)C(a)S(a)C+(a)b(wº

(60(h" (wo)/2x )

where S (a ) is the Schur matrix corresponding to a,

b * (w ) = ( sin 2tw , 2 sin 4TW , ...,psin 27pw ),

h ( w ) = of/f (w ), and C(a) is the px p matrix having ( j, k) th element

Cj, (a ) = @ j ++ + 0%-j ,

with Qv = 0 if v > por u < 0.

b ) If a consistent order -determining criterion is used for finding P, then the results of part ( a) continue

to bold for ws.

c) If an order-determining criterion that is guaranteed asymptotically to not underestimate the order is

used to find , then wp is a consistent estimator of w ' .

From these results, we can find a large sample confidence interval for wº as

w 29/20 ),

while the lower and upper limits in a confidence interval for the reciprocal of w* , that is, for the period of

the peak, are given by the reciprocals of the upper and lower limits for the frequency. Notice the important

role played by the second derivative of h in the asymptotic variance of W. For a sharp peak, h" will be large

and thus the confidence interval will be narrow . For a broad peak, the interval will be wide.

A crucial part ofthe method of this section is the fact that we have been finding a zero of a finite- degree

polynomial. Thus if f is of the form of an ARMA spectral density, that is, as the ratio of two finite-degree

polynomials, we cannot apply the above procedure. However, as long as f can be expressed as the spectral

density of either an AR (00) or MA (00) process, we should be able to apply the above procedure and obtain

asymptotically good properties.

To illustrate the use of this procedure, we consider the lynx data again. While there is no clear agreement

among analysts what AR process best models the log of the lynx data, we consider the result of using the

order 11 process determined in Section 5.2. In Figure 6.3 we give plots of the log (base 10) of the data and

the estimated AR ( 11) spectral density. The confidence interval for the period corresponding to the largest

peak in the spectral density is (9.32, 10.05) years.
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