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FOREWORD

The host for the Thirty-Ninth Conference on the Design of
Experiments in Army Research, Develcpment and Testing was the
Department of Statistics in Rice University. Professor James R.
Thompson, Dapartment of Mathematics, invitaed this corfarence to be
held at Rice University. He was asked to be Chairperson of this
conference which was held on the 20 - 22, October, 1993, Dr.
Thompson was assisted in this task by Mrs., Diane J. Brown,
Department Coordinator. These individuals are to be commended for
their efforts in coordinating all the details required to conduct
this large successful scientific meetinyg.

Members of the problem committee were pleased to obtain the

services of the following distinguished scientists to speak on
topics of interest to Army personnel:

Speaker and Afflliation  Title of Address

Professor Dennis Cox Estimating Parameters in Complex

Rice University Computer Codes: Designing the

: Computer Experiments

Professor Katherine B, Ensor Properties of Simulation based

Rice University Estimators of Stochastic
Processes

Professor Wei-¥Yin Loh Tree-Structured Statistical Methods

University of Wisconsin-

Madison

Professor Emanuel Parzen Beyond Classical statistical

University Methods: Why and How

Gave the Kaynote Address

Professor J. Sethuraman Contamination of Failure Data can

Florida state University Change Nature of Failure Rate and
Explain the Strength of Long Life
Units

Professor Nozer Singurwalla On the Reliability of Emergency

and Jiangxian Chen Diesel Generators at U.S. Nuclear

George Washington University Plants
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This conference was preceded by a two day tutorial ontitled
vMultivariate Density Estimation and Visual Clustering" presented
by Professor David W, Scott of Rice University. The purpose of
these tutorials is to develop, in Army scientists, an interest in
and an appreciation for the statiatical methods that are needed to
analyse experimental data.

Dr. Dougias B. Tang, Chief of the Department of Biostatistics at
the Nalter Reed Army Institute of Research, was selected to receive
the Twelfth U.8. Army Wilka Award for contridbutions to statistical
Methodologies in Army Reserve Development and testing. Based on
his divorse research productivity, he has become widely recognized
as an authority on olinical trials, medical decision making,
bioassay, and laboratory data analysis.

The Program Committee has regquested that tha proceedings of the
1993 conference be distributed Army-wide so that the information
containred therein ocan assist scientists with some of their
statistical problems. Finally, committee members would like to
thank the Program Committee for all the work it did in putting
together this scientific meeting.

Program (Committeo

Gerald Andersen (ARO) Carl Bates (CAA)
Kevin Beam (RAND) Barry Bodt (ARL)
Robert Burge (WRAIR) Eugene Dutoit (AIS)
Joock Grynovicki (ARL) Carl Russell (TEXCOM)
Douglas Tang (WRAIR) Malecolm Taylor (ARL)
Deloris Testerman (TEXCOM) Jim Thompson (RICE U.)
Henry Tingey (U. of DB) David Cruess (USUHS)
Francis Dressel (ARO) Jerry Thomas (ARL)
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THIRTY-NINTH CONFERENCE ON THE DESIGN OF
EXPERIMENTS
IN ARMY RESEARCH, DEVELOPMENT, AND TESTING

‘ 18-22 October 1993

3 Host: Department of Statistics

‘ Rice University

l- 6100 South Main St.
Houston, Texas

’ Location: Kyle Morrow Room, Fondren Library

Wednesday, 20 October 1992

0800 - 0915 . REGISTRATION: (Kyle Morrow Room Lobby)
0915 - 0930 CALL TO ORDER: Jim Thompson, Rice University

OPENING REMARKS: (Michael M. Carroll, Dean of Engineering,
Rice University)

0930- 1200 GENERAL SESSION I
Chairperson: Malcolm Taylor, Army Research Laboratory
0930-1030 KEYNOTE ADDRESS: BEYOND AOV STATISTICAL
METHODS
Emanuel Parzen, Texas A&M University
1030-1100 Break
1100-1200 PROPERTIES OF SIMULATION BASED ESTIMATORS OF STOCHASTIC
PROCESSES
Katherine B. Ensor, Rice University
1200 - 1330 Lunch

1330 - 1500 CONTRIBUTED SESSION |

Chairperson: Linda Moss, Army Research Laboratory

PARTIALLY DUPLICATED FACTORIAL DESIGNS
Peter W. M, John, University of Texas at Austin

AN APPLICATION OF GENERALIZED P-VALUES IN

TANK GUN ACCURACY RESEARCH
David W. Webb, Army Research Laboratory
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1500 - 1530
1530- 1700

1830 -

1830-1930
1930-

A SERIES OF NEW SUPERSATURATED DESIGNS
Margaret G. Ehm, Marc N. Eliott, and Monnie McGee, Rice
University

Break
CONTRIBUTED SESSION II
Chairperson: Carl Russell, TEXCOM

JUDGING STATISTICAL SIGNIFIANCE GRAPHICAL METHODS VS
TRADITIONAL PARAMETRIC METHODS
Jock O, Grynovicki, Army Research Laboratory

AN EMPIRICAL STUDY OF THE DISTRIBUTION AND PROPERTIES OF
glglgrgkxogg ESTIMATOR USING THE MINIMUM NORMED DISTANCE
Barbara Wainwright, Salisbury State University and Henry B,
Tingey, University of Delaware

CHARACTERIZATION RESULTS IN PROBABILITY

‘Jerry Andersen, Army Research Office

DETERMINATION OF DESIRED DESIGN AND QPERATIONAL
CHARACTERISTICS OF THE SMALL AREA CAMOUFLAGE COVER
(SACC) BY GROUND TROOPS

Geor¥e Anitole and Ronald L. Johnson Belvoire Research
Development and Engineering Center & Christopher J. Neubert,
Army Materiel Command

WILKS AWARD BANQUET (Cohen House/Faculty Club, Rice
University)

Cash Bar

Dinner

Thursday, 21 October 1993

0800 - 0900

0900 - 0915

GENERAL SESSION II
Chairperson: Deloris Testerman, TEXCOM

TREE-STRUCTURED STATISTICAL METHODS
Wei-Yin Loh, University of Wisconsin-Madison

Break




0915 - 1100 CLINICAL SESSION

Chairperson: W. J. Conover, Texas Technological University
Panelists: Bernard Harris, University of Wisconsin-Madison
Wel-Yin Loh, University of Wisconsin-Madison
J. Sethuraman, Florida State University
Noser Singpurwalla, George Washington University

MOBILITY FACTOR INFERENCE
C. Denise Bullock and Nancy Renfroe Waterways Experiment
Station

COMBINING SIMULATION RESULTS ADDRESSING ARMOR VEHICLE
RESEARCH, DEVELOPMENT AND TESTING
Paul J. Deason, TRADOC Analysis Center-WSMR

P-VULTE (P-VALUE UPPER & LOWER TEST ESTIMATION)
Paul H. Thrasher, Material Test Directorate--WSMR

1100-1115 Break
1115 - 1215 CONTRIBUTED SESSION III
Chairperson: Doug Tang, Walter Reed Army Institute of Research

AUTOMATIC CLASSIFICATION OF DOCUMENTS BY LEXICAL CONTENT
Mel Brown, Army Research Office

AN APPLICATION OF CLASSIFICATION WITH POTENTIAL USE IN
REPRODUCTIVE TOXICOLOGY

Barry A. Bodt, Army Research Laboratory & Ronald J. Young,
Edgewood Research, Development and Engineering Center

1215 -1330 Lunch
1330 - 1500 CONTRIBUTED SESSION III (CONTINUED)

IMPROVED PERIODOGRAM ESTIMATORS FOR THE COSINOR MODEL
R. John Weaver and Marshall Brunden, The Upjohn Company &
Jonathon Raz, University of Michigan

CONFIDENCE INTERVALS AND TESTS OF HYPOTHESES FOR NORMAL
COEFFICIENTS OF VARIATION
Mark G. Vangel, Army Research Laboratory

ANALYSIS OF GAS FLOW RESISTENCE MEASUREMENT THROUGH
PACKED BEDS.

Malcolm S. Taylor & Csaba K. Soltani, U. S, Army Research
Laboratory

1800 - 1530 Break (POSTER SESSION, Kyle Morrow Room Lobby)

DESKTOP MODELS FOR WEAPONS ANALYSES
Eugene Dutoit and John D'Errico, Infantry School




1530 - 1630

GENERAL SESSION Iil
Chairperson: Jerry Thomas, Army Research Laboratory

ON THE RELIABILITY OF EMERGENCY DIESEL GENERATORS AT U. §.
NUCLEAR POWER PLANTS :

Noser Singpurwalla & Jiangxian Chen, George Washington
University

Eriday, 22 Octaber 1993

0800 - 0900

0900 - 0915
0915 - 1015

1030 - 1200

ADJOURN

GENERAL SESSION IV
Chairperson: Bob Burge, Walter Reed Army Insitute of Research

CONTAMINATION OF FAILURE DATA CAN CHANGE NATURE OF
FAILURE RATE AND EXPLAIN THE STRENGHT OF LONG LIFE UNITS
J. Sethuraman, Florida State University

Break
CONTRIBUTED SESSION IV -
Chairperson: LTC. Ronald Scotka, TEXCOM

IDENTIFYING THE CRITICAL FACTORS IN AN ADAPTIVE NETWORK
Ann E. M, Brodeen, Barbara Broome, George
Hartwig, and Maria Lopez, Army Research Laboratory

ESTIMATES OF THE NUMBER OF MONTE CARLO TRIALS NECESSARY
FOR MOBILITY SENSITIVITY ANALYSES
Andrew Harrell, Waterways Experiment Station

GENERAL SESSION V

Chairperson: Barry A, Bodt, Army Research
Laboratory, and Chairman of the AMSC
Subcommittee on Probability and Statistics

OPEN MEETING OF THE PROBABILITY AND STATISTICS
SUBCOMMI'I’I‘EB OF THE ARMY MATHEMATICS STEERING COMMITTEE

ESTIMATING PARAMETERS IN COMPLEX COMPUTER CODES:
DESIGNING THE COMPUTER EXPERIMENT
Dennis Cox, Rice University

Program Committee
Gerald Andersen (ARO) Carl Bates (CAA)
Kevin Beam (RAND) Barry Bodt (ARL)
Robert Burge (WRAIR) Eugene Dutoit (AIS)
Jock Grynovicki (ARL) Carl Russell (TEXCOM)
Douglas Tang (WRAIR) Malcolm Taylor (ARL)
Deloris Testerman (TEXCOM) Jim Thompson (RICE U.)

Henry Tingey (U. of DE) David Cruess (USUHS)
Francis Dresiel (ARO) Jerry Thomas (ARL)




BEYOND CLASSICAL STATISTICAL METHODS: WHY and HOW
Emanue] Parzen
Department of Statistics, Texas A&M University
College Station, TX 77843-3143

ABSTRACT: This is a philosophical and technical iaper about future directions
of statistical theory and practice, It discusses: 1. why and how components of statistical
reasoning, 2. certified professional statisticians, 3. statistical computing, 4. statistical edu-
cation, 5. deflning the problem of statistics as probability modeling, 6. statistical education
analogues to statistical modeling, 7. function representations of data and mathematical lit-
eracy, 8. the P value problems of statistics, 9. how to use correlation coefficients to develop
beyond statistical methods

0. INTRODUCTION

This is & philosophical and technical paper about future directions of statistical theory
and practice. We propose that the concept of comparing and combining classical statistical
methods and modern data analysis methods should be called “Beyond Classical Statisti-
cal Methods”, This name is inspired by Hirotsu (1993), “Beyond Analysis of Variance
Techniques: Some Applications in Clinical Trials”. Hirotsu reports that his new methods
Ssuch as max chi-aaua.red statistics and averalgle chi-squared statistics) are beiniaccepted in

apanese statistical guidelines. One goal of this pa}.}:er is to present a framework (in section
9) v\irhgch shows how the statistics introduced by Hirotsu are related to other conventional
statistics. '

While combining conventional and modern methods has a history of academic devel-
opment (Daniel (1959), Gnandesikan (1980)), it may not be much practiced as yet because
applied statisticians have a tendency not to use methods which have not been made read-
ily available to them in statistical computing packages. This paper argues that unitied
methods can impact applied research and statistical education.

The technical content of this paper is the final section which outlines our research
about HOW to combine non-parametric quantile and Comparison Change Correlation
techniques with classical statistical methods. The first 8 sections discuss from various
philosophical viewpoints WHY this research should be on the agenda of statisticians in
a society whose health and prosperity is increasingly dependent on statistically literate
engineers, scientists, managers, and public,

1. WHY AND HOW COMPONENTS OF STATISTICAL REASONING
I believe that courses and talks on statistics should be about both HOW and WHY.

Academic researchers often minimize the WHY component, because a HOW talk often
emphasizes “get to the new material fast without worrying about motivating the results,
since to enhance your reputation impress fellow experts in the short attention span that you
have available that you've done something new and which works”, We say that the HOW
component of statistical reasoning is often “esoteric” in the sense that it is specialized
technical in a way that appeals mainly to experts.

In contrast, the WHY component of statistical reasoning is intended to be “exoteric”
in the sense that it seeks to be understandable to & more general technical audience by
motivating WHY the methods are applicable and interpretable.

_ Presented as a Keynote Address on October 20, 1993 at the 39th Conference on the
Design of Experiments for Army Research, Development, and Testing at Rice University.
Research suppported by the U. 8. Army Research Office.
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Statisticians need to be concerned with WHY in order to practice in their work the
Deming inspired

Continuous Improvement Principle

which states that “every action should be "udged by how well it positions you for subsequent
actions”. Methods should be called simple not by whether their theory is easy but whether
their interpretation can be made easy to comprehend.

To enhance their quality (and competitiveness) many organizations are adopting a
Continuous Improvement Process,
defined as a team approach to Total Quality Management to improve products or services
to exceed the expectations of customers or clients. An understanding and implementation
of statistical concepts of change, variation, and measurements is clearly important in this
process which requires that decisions be based on the information in data, not just on
opinions and guesses.

2. CERTIFIED PROFESSIONAL STATISTICIANS

A question of concern to a broad cross-section of applied statisticians, is the question
of professional certification of statisticians. Professors should be interested in this question
because I believe that it raises fundamental questions about

how to continuously improve statistics courses.

Several ideas that I believe deserve to be in the certification discussion are:
(1) Is the best role model for professional certification of statisticians an exam strue-
ture (similar to that of the Society of Actuaries) which is not a single exam but
a series of exams? In this way one can encourage and reward two or more levels
of advanced statistical literacy. Statistical culture is understanding that there are
several levels of professional statistical literacy, involving different aspects of the
gractice and theory of statistics.

hould certification require, in addition to passing exams, a lifelong process of
Continuing Education credits? Do we not need to encourage and reward keeping
up with the latest developments through short courses and attendance at profes-
sional meetings? I call this process '
“studying the contemporary history of statistics”.

(3) Certification of level of statistical literacy should be the goal of exams in each
statistics course. Statistical educators should seek concensus about the content
of the series of continually updated statistics courses that would provide excellent
education in aﬁelied claasicafa.nd modern methods. The courses should have both
HOW and WHY components.

(4) Statistics programs should have courses that focus on problems of communication
and collaboration between statisticians and scientists (how to achieve a collabo-
ratory of statistical science).

3. STATISTICAL COMPUTING
An incrensingly urgent question is the role in statistics education of
statistical computing and statistical packages,

especially
1) how to enable new methods to be quickly made available to applied researchers,
2) how to enable methods which are complicated (in theory and computation) to be
made simple (in presentation).

A major issue of integrating Statistical Computing into the practice of statistics is:
solving the problem that new methods are considered purely academic unless user friendly

2
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software to use them is available.

A major issue of integrnting Statistical Computing with statistical education is: how
to use statistical packages to implement “alternative” (self learning) classroom cultures
that stimulate students to develop statistical reasoning abilities by real life experience
which expect students to search for patterns, relate contrasting ideas, and give reasons
and arguments for the issuer under discussion.

I believe that currently there is a danger in introductory courses that statistical com-
puting a.lils taught only from the HOW point of view with no discussion of WHY issues,
especially

how can statistical computing make a statistical method simple,
and the impact of computing (especially graphics) on how statistics is practiced.

4, STATISTICAL EDUCATION

How to change the teaching of statistics is now being frequently discussed at statistics
meetings; Amstat News for October 1993 (p. 13) reports the revolutionary views of David
Moore that we need “new” teaching styles.

The goals of an “alternative” educational philosophy should be to emphasize both
practice and theory using two teaching strategies:

1. “Never tell students what they can find out for themselves.”
2. “Tell students about those thir s which they will find most difficult to
learn by themselves.”

Other goals for introductory statistics courses:
1) public respect for statisticians,
2) the recruitment of statisticians,
3) public statistical literacy, awareness that in every activity one should strive to
compare “expectation” with “reality”.

I recommend that courses discuss:

the “map” of statistics (its relations to other disciplinss as the 'glue’ of science);

the “contemporary history of statistics” (emphasizing that innovation in methods
and applications are constantly occurring);

its culture (why statisticians are oriented to “continuous improvement” and how they
keep up with new “hammers” (methods) and “nails” (applications)).

We must be pro-active in changing the current attitude among undergraduate students
that statistics is & required and irrelevant course, to be remembered as little as possible.

5. DEFINING THE PROBLEM OF STATISTICS AS PROBABILITY
MODELING

Defining what statistical science ia about has always been regarded as a controversial
act (many statisticians reject the hypothesis that one can be certain about the study of
uncertainty). We should be aware of the various definitions of statistics:

1) help find scientific truth about probabilities and the fit of observations to theory;
2) make decisions in the face of uncertainty and loss functions;
3) model uncertain data by probability models.

I believe that to find truth (and make decisions) one must explore the widest range of
Sltgxx;na.tives (what I call “going to the edge”). I regard as most operational the following
efinition:

The most important concepts in statistics are the probability model and
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ghgéihood; statistical thinking combines data analysis and concepts of proba-
ity.

Introductory statistics courses may not need to include techniques for theoretically
comFutin probabilities but need to stress that probabilities are what statistics is comput-
ing from data.

Guided by the proverb “if your only tool is a hammer, every problem looks like a nail”,
I proposed (Parzen (1993)) that the practice of statistics can be regarded as combining
“nails” (flelds of applications) and “hammers” (general methods stated mathematically
which are combinef to provide a custom made method for each application, not just
reducing each problem to fit the “simple” techniques the statistician knows).

Current important applications of statistics can be defined as analyzing change (ob-
serving and measuring changes taking place in society, industrial processes, medical treat-
ments, the environment, economic indicators, etc.).

Current methods of statistics can be regarded as having a common theme: use prob-
ability models to model and comprehend Yopulati'ons and data, by an iterative process
of model specification, parameter estimation, and model checking (eloquently de-
scribed by George Box and Gwilym Jenkins in the context of Time Series Ana.lisiss). hat
applied statistics is best practiced by modeling is well described in an article in the Septem-
ber 1993 American Scientist by Gauch.

Bayesians (of the dogmatic type who preach that priors are not just techniques but are
to be believed) imply that statisticians should never use non-Bayesian methods (one should
not analyse data for which one does not have prior beliefs about the model). Modeling
statisticians believe that data can yield patterns and models which provide insights which
were not thought of before the data analysis. The magazine “The Economist” (October
9, 1993 issue) states that principles of “data anallysis without theory” are the basis of
current successful applied research on the mathematics of finance (investing).

6. STATISTICAL EDUCATION ANALOGUES TO STATISTICAL
MODELING

Strategies for solving statistical problems are emphasized in the “new” teaching which
aims to give students a sense of purpose and direction to their statistical learning. My ma-
i’or point is that reforms in statistical education and research are linked, because statistical
earning and statistical investigation are analogous, because both require a cycle of model
building, which one usually repeats (iterates) several times before reaching a satisfactory

conclusion.

The SIET cycle of statistical model building consists of four stages:
Stage 1 (S): Specify very general class of models.
Stage 2 (1): Identify tentative parametric model.
Stage 3 (E): Estsmate parameters of tentative model.
Stage 4 (T): Test goodness of fit, diagnose improved models.

(The slogan could be: “To SIET (see it) is to understand it.”)

The cycle of statistical problem solving consists of four stages:
Stage 1 (P): Pose tﬁe question, form expectations.
Stage 2 (C): Collect the data, make observations.
Stage 3 (A): Analyze the data, compare observations and expectation.
:Sitage 4 (I): Interpret the results, find the best thecry or decision that fits the
ata.

The PCAI cycle of a statistical investigation should be represented in a diagram as a
circular process (rather than a linear process); see figure from p. 183 A. Graham (1993).
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We prefer to call the cycle EOCI (Expect, Observe, Compare, Interpret).
Reformers of mathematics education take the view that teachers should communicate
the four aspects of learning which cognitive sciences recommend for success:
1. simple recall,
2. algorithmic learning,
3. conceptual learning, and
.4, problem solving strategies,

In statistical teaching we can make these cognitive concepts more concrete by teaching
that statistical concepts (such as the sample mean or sample variance) have three aspects:
1. how to define it (mean of sample distribution); 3

2. how to compute it (average the values or the quantile function);
3. how to interpret it (estimate location parameter of sample);
The fourth aspect of statistical learning consists of ideas about combining concepts to
concliiu:lt an iterative statistical investigation whose output is data models which can be
applied.
When one is a discussant of a technical paper it may be helpful to use the four aspects
of learning as a basis for evaluation.

One reason the definition
#“the methods of statistics are modeling”

may be controversial among statisticians is because many introductory statistics courses
adopt approaches which avoid the use of concepts of probabilim

Statistics and probability need to be linked not only to define probability models but
in order to make judgements &and simulations) about how to interpret the significance of
a set of results, to explain that unusual results do sometimes occur just by chance.

Professors of education report that the dilemma of mathematics education reform
is that it requires teachers to have a deeper understanding of ideas and concepts, which
they are reluctant to study. Teachers prefer “ready to apply” modules rather than profes-
sional development. How can we overcome these inhibitions to mathematics and statistics
educational reform?

7. FUNCTION REPRESENTATIONS OF DATA AND MATHEMATI-
CAL LITERACY

The philosophy of “Beyond Classical Statistical Methods” proposes that to Eractice
statistics, one must be aware of the relations between statistics and computing, between
statistics and probability, and between statistics and mathematics.

Early childhood study of statistical data analysis and probability is now regarded
as critical to developirg mathematically literate students who can function in a society
driven by technology. Current mathematics educational reform movements believe ezpers-
ence (with statistical data analysis) is the ideal way to teach and reinforce mathematical
concepts; I propose that statistics can benefit from mathematical tools (such as represen-
tations of data by functions).

My Comparison Change Correlation statistical methods emphasize innovations in
functions that can be used to describe probability relationships and the “shape” of data.
These functions are defined on the unit interval (denoted [10,1 or0<u<lor0<t<l)
end the unit square (denoted 0 < ¢, u < 1); they can be plotted and interpreted by their
shapes, es well as their numerical magnitudea, and yield functional statistics.

“Safe” (best) statistical methods provide two hypotheses between which the researcher
must choose, In the Comparison Change Correlation approach, the null hypothesis of no
relationship is formulated as implying

data representation on [0,1)=white noise

5




while the alternative hypothesis implies
data representation on [0.1)=signal+white noise.

Test statistics are “linear detectors”of the form integral over [0,1& of the product of the
data representing function and the signal representing function. Quadratic detectors are
sums of squares of linear detectors. Information theory detectors are entropy measures of
comparison density estimators.

toid: The concept of null h{ othesis was introduced by R. A. Fisher as a hypothesis
set up for the purpose of being nullified (invalidated). Source: Fisher (1990), p. 322.

8. THE P VALUE PROBLEMS OF STATISTICS

Statistics has as its goals specification and identification of models that fit data, and
assigning “p values” to models selected by multiple comparisons. If we use modeling meth-
ods to decide which of two treatments is better the client wants and expects a p value for
our conclusion! .A.ns*'verin%l such distributional questions mey be feasible using computer
intensive re-sampling methods which can generate the distribution of the statistics that
we propose to test relationships.

I would like to tell you a.true story that happened to me in Israel in September 1993
on a bus to the Weizmann Institute. When a statistician meets a scientist, one often gets
the reaction:

“All scientists need statisticians (good news),
But we do not need them very much (bad news).
How complicated is it to compute a p value?”

Revising this uttitude requires a public relations campa.igh to educate the scientific
public about “Beyond Classical Statistical Methods.”

8. HOW TO USE CORRELATION COEFFICIENTS TO DEVELOP
BEYOND STATISTICAL METHODS

This section is a technical outline, without examples, of Comparison Change Cor-
relation statistical methods, emphasizing HOW conventional statistical methods can be
expressed in terms of diverse correlation coefficients.

We start with the multi-sample problem that we reformulate as data analysis of bi-
variate (X,Y). Multi-sample statistical data analysis arises when observe a variable Y
in ¢ cases or samples (corresponding to ¢ treatments or ¢ populations). The saraples are
usually regarded as the value of ¢ variables ¥1,..., Y. with respective true distribution func-
tions Fi(y). --.,Fc(y{,and quaatile functions Q1(u),...,Q.(u). The general problem is to
model how the distribution functions F}, vary with the value of the conditioning variable
k=1,...,c, and in particular to test the hypothesis of homogeneity of distributions:

Hy:f=..=F=F

The distribution F' to which all the others are equal under Hy is considered to be the
unconditional distribution of Y (which is estimated by the sample distribution of Y in the
pooled sample).

For k = 1,...,c, we observe a random sample ¥3(j),j = 1,...,np for k = 1,...,¢c
The pooled sample, of size n = ny + ... + n¢, represents observations of the poofed (or
unconditional) variable Y. The ¢ samples are assumed to be independent of each other.

We propose that we reﬁard the data as consisting of bivariate observations (X, Y),
where X represents the population k = 1,...,c observed and Y the response observed. The
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observation that is usually denoted Y;(j) is denoted in our notation (X = k,Y = Yj(5)).

. While X is a deterministic variable rather than a random variable, the probability notation
we use can be interpreted for both cases, The marginal (unconditional) distribution of X
is specified by the probability mass function

px (k) = ny/n.
The distribution function of X is defined
Fx(z)=Y_ px(k).

k<

B did or did not occur. Thus I(X = k) denotes the indicator function of the event X = &,
which equals 1 or 0 according a8 X = k or X % k. I(Y < y) denotes the indicator function
of the event Y £ y. The distribution function of the values of Y in the k-th sample,
previously denoted Fj, is now described in the notation of conditional distributions of ¥

given X:
Fu(v) = Fy|x=i(v) = B{I(Y S y)|[(X = k)]

We henceforth use empirical distributions (based on the obscrved data) rather than
theoretical distributions (based on the unobserved population). Then

® - Fy\x=k(v) = E[I(Y < y)|X = k|

= (1/n) ) KX = k)Y <)
observations (X\Y)

= BI(X = k)I(Y < y)]/px (k).

An important general formula: for function g(Y') and set B of real numbers
E[g(Y)|X is in B] = E[g(Y)I(X is in B)]/P[X is in B)

An important general concept is correlation coefficient, We now show that correlation can
be used to describe a statistic that is a conditional mean:

R(X is in B,g(Y)) = CORR[I(X is in B),g(Y)]
= E[I(X is in B)(g(Y) - E{g(Y)])/olg(Y)|/o[I(X is in B)]
= (oddsP[X is in B])PE[(g(Y) - Elg(Y)))/olg(Y)]| X is in B]

where we deflne odds(p) = p/(1 — p). Note that P[X isin B}/o[I(X isin B)] =

(oddsP[X is in B))®.
The pooled sample has unconditional empirical distribution

Fy(y) = (1/n) Y IY <)

observations (X,Y)

Define the indicator function I( Bé of an event B to be 1 or 0 according as the event

The empirical quantile function of Y is denoted Qy(u),0 < u < 1, and is piecewise
constant between points u satisfying Fy(Q}&gu)) =y, caﬁed exact values of u; exact values
u are of the form u = Fy(y) for some y. The quantile function of X is denoted Q y(t),
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0 <t < 1, and is piecewise constant between points ¢ satisfying Fx(Qx(t)) = ¢, called
exact values of t; e:xc)act values of ¢ are of the form t = Fy(z) for some z. ’

To test the null hypothesis Hp, three main methods are proposed in introductory
statistics courses, based on comparing 31) means, (2) scored ranks, (3? distribution func-
tions, We propose to unify these methods by expressing the test statistics in terms of basic
types of indicator correlations:

23 tg?fl: %’;((tt))',l:zotedc'?ﬂﬁfx Y? -? %’(6)}21’5](‘9( <==tQ< xl(;t)), scored ranks of Y),0 <
(3) R(X = Qx(t),Y < Qy(4)) = CORRII(X = Qx(1)), I(Y £ Qy(u))],0 <t,u < 1.

Additional statistics to be investigated for multi-sample problems are accumulation
correlations:

i“t‘g g&ié ))‘{((i)),,l:t)::edc?mﬁf Y§ 3 é’(gk}{[]l‘(olfst 8;’;“)), scored ranks of Yj,O <

t <1
(6) R?—’f < Qx(1),Y £ Qy(u)) = CORR[I(X < Qx(1)), I(Y S Qy(u)),0 <t,u <1,

To motivate how the indicator correlations (1) arise in the Analysis of Variance we
introduce the following notation. The sample mean Y}~ of the k-th sample is the conditional
mean of Y given X = k:

EY|X = K=Y = (1/nb>12'1u<j) = px(HEIYI(X = k)

The pooled sample mean is the unconditional mean of Y:
¢ ¢
Y= E[Y]m ) px(R)B[Y|X = k| = 3 px (k)Y
" k] b=l

The unconditional variance of Y, and the conditional variance of Y given X = k, are
respectively denoted

VARIY] = o2l¥] = 3 S (%) - ¥)/m,
k=1 j=ul
ny

VAR[Y|X = k| = 3 (¥i(j) - Yi")?/np.
j=1

The common variance 02 of ¥ under H is estimated by the pooled variance
[+
o'? = E[VAR[Y |X]| = }_ px(k) VAR[Y|X = k]
k=1
Define the multiple correlation
RY[Y|X] = VAR[E[Y|X])/ VAR[Y]
8




What may be novel is the observation that one can write

RAY|X] = Y (1 - px(R))(R(X = k, )2,
k=1

From the important representation '
VAR[Y] = E[VAR[YIX]] + VAR[E[Y'|X])],

2

infer that the pooled variance ¢** can be shown to be reluted to the original variance

VAR[Y] b
’ o™ = VAR[Y](1 - R?[Y|X))

The F statistic used in the Analysis of Variance to ' st Hy can be shown to be
(n = ¢)T%/(c = 1), defining

T? = RY[Y|X)/(1 - RE[Y|X])

=Y (1 -px(k)THX = k),
k=1

defining
T(X = k) = R(X = k,Y)/(1 = R} [Y|X])® = (odds px(k))® (Y4 - Y") /o".

A plot of (n — ¢)® T(X = Qx(t)), 0 < ¢t < 1, can help determine which sub-udmples are

most different from the others, Note (n — ¢)9T(X = k) has a Student-¢ distribution with

gi—t ﬁi ge%;:ees of freedom under Hy and normality, while (n—¢)T?/(c—1) has F(c—1,n-c)
stribution.

The fon{}oing discussion has cutlined how a conventional statistical method (one way
Anelysis of Variance) can be expressed in terms of correlations, We next state results for
expressing other conventional and beyond methods in terms of correlations.

R(X = z,Y = y), Contingency Table Analysis

The chi-squared statistic Chi used to test independence in a continfency table of n
observations ( ,}9 where X has ¢ possible values and Y has r possible values can be
expressed Chi= nC(X,Y), in terms of a probability concept

C(X,Y) =Y 3 (pxy(2,v)) - px()py (1))*/px (2)pY (1),
r=1y=1

expressed in terms of (empirical) probabilities, We propose to interpret this formula in
terms of indicator correlations

R(X =2,Y =y): (pxy(2,y)) — px(#)py (v))/(px(2)py ()1 = px(2))(1 - py()))"%;

fhen
c

CX,Y) =Y (1 -px(@)(1-pr(W)RX =2,Y =y)|*
z=] y=1




To study the independence of X and Y given data on (X,Y’) we propose a “Chi-square

and Indicator Correlation Tebleau”, consisting of the r by ¢ matrix n°R(X = 2,Y = y)
and bordering rows and columns nd‘(m, )y nC(.,¥), nCav, defining

Cla,.) = (r=1)"1 3 (1 - py(y)IR(X = 2,Y =y)|?
y
Oy =(c—- 1) 3 (1 - px(2))IR(X =2, Y =y)|?

Cav = (¢ = 1)1 Y (1 - px(2))C(e,.) = (r = 1)71 (1 = py(1))C(. )
2 y

We assign p value to these statistics as tests of the null hypothesis Hy by using their
known asymptotic or exact distributions under the null hupothesis, The use in practice of
these statistica is beat illustrated by examples which require their own paper to discuss.

Rather than a table of R(X = 2,Y = y) we prefer a graphical presentation of

nSR(X = Qx(t),Y = Qy(u))

as either & function on 0.< u < 1 for each exact ¢ fixed, or as a functionon 0 < ¢t < 1 for
each exact u fixed. We also plot nC(Qx(%),.),nC(.,, Qy(¥)).

The chi-squared statistic C is & portmanteau or omnibus statistic. When it is sig-
nificant we want to know the cause of the rejection of indegendence the nature of the
dependence, which can be obtained from the above plots which show which coefficients are
most significant.

Comparison Analysis

~ The ultimate approach to modelling is to estimate and interpret comparison density
d(u|t) and comparison distribution D(uFt):

d(ult) = d(u; Fy, Fy|xa@xt)) 0 < v < 1;
Y
D(ult) = /o d(u/[f)ds’ = D(; Fy, Fy|xagx(n)

If u and ¢ are exact values in the sense that they satisfy u = Fy(y), t = Fx(z) for some y
and z, one can show that '

D(ult) = Fy|xm@yx (t)(Qy (%))

The joint dependence density d(¢,u) is defined as a compearison density
d(t,u) = d(u|t) = d(t|u) = d(t; Fx, Fx|y=@y(u)) 0 <t < L

The joint dependence distribution or copula function is defined by

t ru t
D(t, u) = /0 /0 d, )it du' = /0 D(ult')dt'.
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The changePP process is defined on 0 < u < 1 for fixed exact ¢ by

u
cPP(ult) = [ cPP(/)d’ = (odds(xQx(1)Y*(D(ult) - )
The change distribution is defined on 0 < ¢ < 1 for fixed exact u by

D(t|u) = /0 L dt'lu)dt = /0  dle' ),

R(X = 2,Y < y), Multi-Sample Comparison, Accumulation Analysis
R(X € z,Y = y), Change Analysis of a Response

The chi-square statistic, based on correlations R(X = 2,Y = y), is most appropriate
to compute when X is discrete and Y is discrete, Alternative correlations for diagnosis of
the dependence of discrete X and discrete Y, and essential correlations when one variable
is continuous and the other is discrete, are the accumulation correlaton coefficients

R(X = 2,Y < y) = (odds px(c)odds Fy(y))*((Fy|x=a(v)/Fr(¥)) ~ 1)
At exact u .
R(X = Qx(t),Y S Qy(u)) = (odds px(@x(t)))*(D(ui Fy, Fy|xu@y () = v}/ (u(1 - w))*

We could plot for each exact ¢ a change PP process CPP(ult), 0 < u < 1, which
gox'n ares é:onc}l{ tional and unconditional distributions and is asymptotically a Brownian
ridge under Hy:

CPP(ult) = (odds px(@x(t)))*(D(u: Fy, Fy|xuq@yx(t) = +)

We always plot for each exact ¢ change test process which is a collection of accumula-
tion correlation coefficients

CT(ult) = CPP(ult)/(u(1 - u))® = R(X = Qx(t),Y < Qy(u))

Recall that the set of exact u values consists of u = Fy(y), y = 1,...,r = 1. The
(Hirotsu) maximum chi-square statistic is dofined for each treatment ¢ (more precisely,
treatment @ with ¢ = Fy(x))

Rlacoummaa(t) = n max |R(X =Qx(t)Y < Qy(w))
Rlaccumave(t) =n 3 |R(X = Qx(thY < Qy(w)*/(r - 1)
exact u

Bty introducing weights W(u), such as W(u) = (u(1 —u)), one can define weighted Hirotsu
statistics:

2 — 2

RfaccummazW(t) = n max W (u)|CT(ujt)|*,

RaccumaveW () =n 2 W(u)|CT(u|t)]?/(r — 1)

ezact u
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For contitaincy tables (X discrete, Y discrete) these statistics provide alternatives to
the standard Chi-squared statistic to test for independence.

For multi-sample iu‘oblems (X discrete, Y continuous) they provide goodness of fit
type statistics for testing homogeneity of populations. Modeling rather than testing is
provided by density estimation techniques which estimate cPP(ultg, the change PP density
or derivative of the Change PP process.

One of the accomplishments of our research is to relate the accumulation statistics
introduced by Hirotsu (1993) to conventional statistical methods.

R(X = 2,Y), Two sample and Multi-sample tests of homogeneity, Analysis
of Vas'lanca ’(()):’m Way) P P 8 ’

The output of the R(X = 2,Y) command is a plot of the change test density R(X =
Q N:‘)'{ Y), 0 <t < 1, and the values of the conventional F' test statistics of the Analysis
o ance.

R(X € z,Y), Change Analysis of Multi-Samples

Plot R(X € Qx(t),Y), 0 <t <1, and the corresponding max and ave statistics.
R(X = 2, ranﬁ'u y Non-parametric tests, Wilcoxon, Kruskal-Wallis
R(X < z, ranks), Non parametric Change analysis of multisamples

We define ranks to be a transformation of ¥ to Py(Y), where Py(y) is the mid

distribution function
Py(y) = Fy(y) - bpy(y)

R(X = 2, scored ranks
R(X < @, scored ranks
Scored ranks are a transformation of Y to J (I:ﬁY)l) where J(u) is a score function, often
chosen to be a Legendre orthogonal polynomial. heir correlations can be used to guide
estimation of comparison densities,

R(scored ranks, transformation of Y). Change analysis of data Y trans-
formed by one of the transformations I(Y = y), I(Y < y), Y, Py(Y), J(Py(Y)),
and guide to estimation of change density (non-parametric regression).

R((X,Y), R(Px(X), Py(Y)), R(X, Py(Y)), R(Px(X),Y), Correlations and non-
parametric épearman correlations

Compute the correlations and plot the functions of which they are diagnostics, The
important formula

1 |
R(X,Y)= /0 (Qx () = X)X BI(Y - Y7)/o[Y])|X = Qx(t)) dt

suggests that we plot the two functions on 0 < ¢ < 1 that are in the integrand, Smoothing
the uec?nd function, called the change density, is the problem considered in non-parametric
regression.
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Absiract: Simulation based methods of estimation have proven a useful tool for
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ased estimation procedure comparable to the conditional least squares estimates
for parameters of a stachastic process, The simulated conditional least squares
estimates are shown to be consistent and the asymptotic distribution is derived.
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1. INTRODUCTION

Ensor, Bridges & Lawora (1093) illustrated the viability of estimation for
stochastic processes through simulation, Their method built on the original work by
Thompson, Brown and Atkinson (1987) in this area. The premise of such estimators
is that a process can be simulated directly from the defining axioms, Parameter
estimates are then obtained by minimizing over the parameter space somy measure
of error between the simulated process at a given point in the parameter space and
the observed series. The acronym SIMEST, for simulation based estimation, is used
to describe this general method.

This method of estimation has been successfully applied in the area of market-
ing by Bridges, Ensor and Thompson (1992). They model the number of “types” of
personal computers in the.marketplace at time ¢, A personal computer is considered
a new type if something about the technology changed, for example the 486 chip
replacing the 386 chip. The proposed stochastic model was not solvable in closed
form. Using SIMEST they were able to use the proposed stochastic model rather
than resulting to the simplifying assumption of a deterministic model plus random
noise. Another example in marketing is presented by Bridges, Ensor and Raman
(1994), They model the number of customers for a particular home inspection firm
in the Los Angeles area as a birth and death process with constant death rate and
a birth rate which is a function of advertising expenditures.




The proximity measure minimized determines the type of estimators found via
SIMEST. In this paper, simulation based estimators comparable to conditional least
squares estimators for stochastic processes will be examined.

Let {/N(t),t > 0} denote the stochastic process of interest which is observed at
n different time points, i.e. N(¢1),...,N(tn). For simplicity in notation, we refer to
the observed process at time points ¢y,...,t, as Y1,..., Y. If one can simulate the
E[Y;) or E[Yi|Yi~1] fori =1,...,n in theory a SIMEST estimator can be obtained,
As an example of the use of SIMEST in this setting consider a general birth and
death process.

1.1. Simulation of Birth and Death Processes

Consider the Markov counting process N(¢) with parameters A, and u,, which
satisfles the following axioms:
i) P(N(t + 6t) = n + 1|N(t) = n) = A6t + o(6t)
ii) P(N(t + 6t) = n - 1|N(t) = n) = u,bt + o(6t)
iii) The probability of more than one event in (2,¢ + ét] = o(6t).

From the above axioms it is simple to derive the distribution of the time of
the next arrival, Fg(¢) and the distribution of the time of the next exit from the
system, Fp(t) so that

Fp(t) = 1 - P{0 births in (t,¢ + 6t]} =1 = e~n*

and
Fp(t) = 1 — P{0 denths in (¢,t + 6t]} =1 — e~Fnt,

Using the inverse c.d.f. transformation we obtain obtain the time until the next
birth, tp, or death, ¢p, in our process from

tp= =08l oy o 2los(Ta) (1)
An fn ’

where Uy and Uy represent indepencent random variables from the uniform distri-
bution defined over the unit interval, It is then a simple matter to simulate the
conditional mean of Y; given the observed value of Y;~; as the following algorithm
illustrates. Let X; j(#) denote the j** simulated value of the process at time ¢; given
the observed value at ¢;—; or Y;_; ns the starting point of the simulation. The pro-
cess is simulated assuming parameter 6. Also, let X; ,,(6) = (1/m) E;-x X ;(9).
In other words, X, ,,(#) is the simulated conditional mean based on m realizations
of the process at time #; given the value of the process at time #;-;.
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Simple Algarithm to Simulate X.-,,,.(G)

1. Set k = Y.‘_l.

2. Simulate Uy and Up from U(0,1) distribution.

3. Compute tp and tg.

4. Set t =t 4+ min(tg,tp).

5. Iftp<tgpthenk=k—~1lelse b=Fk+1.

6. Ift <t —1t;—) go to 2 otherwise X ;(6) = k.

7. Repeat 1-6 m times. Average
Xi1(8),...,Xim(6) to obtain X; ,(9).

8. Move to time i 4+ 1, go to 1.

An important consideration is that the computation of ¢p and ¢ty depends on
the parameter values .

2. SIMULATED CONDITIONAL LEAST SQUARES

ESTIMATES OF 6

An often used alternative estimator to the maximum likelihood estimators for
stochastic processes is the conditional least squares estimators discussed by Klimko
& Nelson (1078) (see also Hall & Heyde (1980)). The conditional least squares
estimator, §, is the value of # minimizing the conditional lenst squares equation

n

Qnm(f) = Z(Ui ~ pi(6))*
jm]
over the parameter space ©, where u;() = Ey[Y;|Y1,...,Yi1])

To obtain the simulated conditional least squares estimator, fum, the simulated
conditional mean replaces the conditional mean in the above equation. In other
words, the SIMEST estimator based on the conditional least squares equation is
the value § which minimizes Su,m(0) over the parameter space © where

n

Sn,m(g) = Z(Ut‘ - X:’,vu(e))l2

' =]

and X; ,(8) is defined in the previous section.

Since X, (9) is the avernge of m 4.i.d. random variables with expectaion pi(6)
as m, the number of simulations, approaches infinity X; . (8) =5 pi(6). Hence, the
simulated conditionnl least squares estimator maintains the same properties as the
conditional least squares estimator for large m.
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2.1 Properties of the Simulated Conditional Least Squares Estimator

Under certain regularity conditions, Klimko and Nelson (1978) show that §
exists, is a strongly consistent estimator of 8, and is asymptotically normally dis-
tributed. Specifically,

n12(§ = ) 24 MVNL(0, V-IWV 1)

where n
. 1 t
Vice = lim =5 gigiT

n=—0on
nm?

and g; is & k X 1 vector representing the derivative of the conditional mean y;(6)
with respect to the parameter vector 4. Also,

1
W = lim ~ ZU?(O)g.-g;T.

n oo
nm=2

As the number of simulations, m, goes to infinity, 6,m has the same asymptotic
properties as 6. It can be shown that for large fixed m,

is approximately distributed as a Multivariate Normal random vector of dimension
k with 0 mean and covariance matrix

VUL 4 WY,

The regularity conditions of Klimko and Nelson (1978) must be met for the
above resultc on the simulated conditional least squares estimator to hold. It is
important to note, however, that in the SIMEST situation often the regularity con-
ditions can only be checked empirically through simulation since transition proba-
bilities are never explicitly stated. For birth and death processes with a limit on the
population size, the regularity conditions are met if the birth rate is greater than
the death rate. If the regularity conditions are not met then multiple realizations of
the process must be observed before one cau estimate the parameters. If multiple

realizations are observed, SIMEST estimators can still be obtained.
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2.2 Weighted Simulated Conditional Least Squares Estimates

At each stage of our optimization we can easily compute a consistent estimator
of 63(8) by computing the sample variance of X;1(6),...,X: nm(8). Therefore, it is
a simple matter to find the weighted simulated conditional least squares estimator
by minimizing

n
S:,m(e) = 2(1/&?.,,,(0))[(%‘ - 'Xl'.m(o))]2
i=]
where &7 ,,.(0) = =T el 351 (Xim(8) — Xim(6))?. For large fixed m, the result-
ing estimator f,, is approximately normally distributed with mean vector 0 and

covariance matrix 1
-1
(1= =)V,

In practice V is obtained by estitnating the gradients via central differences
using a large number of simulations, then computing

However, using the method of Glynn (1090) in conjunction with a large number
of simulations leads to efficient estimation of the gradients, thereby yielding the
optimal variance estimate.

3. DOES THIS METHOD WORK IN PRACTICE?

A Modest Simulation Study and an Example

Extensive simulation studies were conducted by Ensor, Bridges and Lawera
(1993). Their simulation studies focused on simulated least square estimates instead
of conditional least square estimates but cleurly indicated the utility of the SIMEST
procedure. To investigate the usefulness of the simulated conditional least squares
estimation procedure, tliis method of estimation was repeated numerous times and
summary statistics of the replicated estimates obtained. The model used consisted
of a linear death rate u, = pn (with y == .1) and birth rate A,, = (1000 ~n)n (with
A =.1). The Nelder-Meade (1965) optimization routine was used. One thousand
replicates of the simulated weighted conditional least squares estimation described
in Section 2.2 with m = 500, resulted in a mean of .0078 with standard deviation
.006261 for the parameter A = .1 and a mean of .1047 with a standard deviation of
03604 for the parmneter yi = .1. The average of Sy () for the 1,000 replications




was 12.81 with a standard deviation of 4.90. Comparable results were obtained for
the simulated conditional least squares estimate based on m = 500 and m ="2500.
For this particular model, the conditional variance at each time point is relatively
constant hence the weighted conditiona! least squares estimate does not provide
significant improvement. Often this will not be the case.

In addition to repeated replications of the various estimators, we examined the
asymptotic properties for one realization. Estimating the gradient for the covari-
ance matrix via central differences based on 10,000 simulated values we obtained a
standard error of .0103 for the parameter estimate of A which for this realization
was .00068 and a standard error of .0517 for the parameter estimate of x which
was .0893 for this realization. The correlation between the two estimates was -.14.
Again, we note that better estimates of the covariance matrix can be obtained using
the method of Glynn (1990).

As mentioned in the introduction, Bridges, Ensor and Raman (1994) model
the number of customers for a particular home inspection firm in the Los Ange-
les area as n birth and death process. The data consists of annual observations
of the number of customers and information on both direct and indirect advcr-
tising costs for the first 13 yeare of the company's existence. Direct advertising
consists of such costs as yellow pages, brochures, ete. Indirect advertising primar-
ily consists of the cost of networking with the real estate agents in the area. The
marketing model proposed was o birth and death model with constant death rate
pn = pn and birth rate which depended on both types of advertising, namely
An = (N = n)(A1(v/a7) + Ma(/@)), where a;y and «; represent the direct and in-
direct, respectively, advertising expenditures at the current time. The advertising
expenditures ave linearly interpolated between years to yield a continuous function
of time. The maximum number of potential customers N is assumed to be §0,000.
Using the simulated weighted conditional least squares estimator described in Sec-
tion 2.2 we obtain estimates of .0000 (standard error=.0000) for A;, .1934 (standard
error=.003375) for Az, and 11.83 (standard error==,2205) for u. For this example,
the correlation between the estimnate of the indirect advertising coefficient and the
exit coefficient is very high, namely .086. Again the standard errors and correlation
are found from the asymptotic covariance matrix. As hypothesized by the mar-
keting researchers, direct acvertising (coefficient ;) does not affect the number of
customers the company obtains.




4. SUMMARY

We have presented an alternative method of estimating the parameters of a
stochastic process when a closed form representation of the conditional expected
value of the process is not available. This method of estimation is comparable to
conditional least squares estimators of the parameters. Klimko and Nelson (1978)
compare the performance of conditional least squares estimators and maximum
likelihood estimators in similar scenarios.

The simulated conditional least squares estimator is preferred over the pre-
viously proposed simulated lenst squares estimator (Ensor, Bridges and Lawera
(1993)). To obtain the simulated least squares estimator one must simulate multi-
ple realizations from an initial starting point. This method of simulation can lead
to high variability in the sample mean path, thereby leading to instability in the
least squares criterion function which is minimized, However, the simulated con-
ditional mean is very stable for n moderate number of simulations resulting in a
criterion function with very little noise at a given point in the parameter space.
The gain'in stability is due to the fact that the estimate of the conditio \al mean
at a particular time is independent of the estimate of the conditional mean at any
other time; whereas, the estimate of the mean at a particular time is dependent on
the previous history of the process. This independence also facilitates the proofs of
the asymptotic properties of the simulated conditional least squares estimators.
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A New Series of Supersaturated Designs

Supersaturated designe are factorial designs in which the number of
factors exceeds the number of observations, Such designs preclude the
possibility of complete orthogonality, making near orthogonality the
obvious goal. In the present paper, designs are constructed using a
new and general method. These designs surpass previous designs in
all cases but one. Design matrices are presented in the appendix.

1 Introduction

There are many settings in which it is desirable to examine the effects of a
lazge number of factors simultaneously, Plackett and Burman (1946) devised
~ optimal designs for studying f = n — 1 factors with n observations, These
designs are completely pairwise orthogonal. A natural extension of their
work involves studying a number of factors, f, greater than the number of
observations, n. Such designs may be useful when it is necessary to examine
the influetice of many factors, and observations are expensive to collect or
are otherwise limited. When f < n complete orthogonality is achievable, but
when f > n the goal is to obtain a design mairix where the columns are as
nearly orthogonal as possible,

One early approach to this problem was the method of group screening
proposed by Watson (1961). The method involves combining f factors into
g groups, Each group is then tested as a single factor in a standard design.
If the effect of a grouped factor is significant its component factors are then
tested individually.

Another approach to this problem is the method of supersaturated de-
signs. A supersaturated design is a single design matrix for which f is greater
than n. The first approach to supersaturated designs was that of Satterth-
waite (1089), who suggested randomly selecting the design vectors. Later,
Booth and Cox (1962) devised optimality criteria and a method for generat-
ing supersaturated designs. One of their criteria, near orthogonality, involves
minimizing the maximum absolute value of the dot product of all pairs of
vectors. Of the designs that achieve this criterion, one then selects the design
that minimizes the number of pairs of vectors with this dot product. Booth
and Cox show that a dot product of four is a lower bound for all designs with
[ > n. Note that near orthogonality is a minimax procedure and produces
designs such that no pair of vectors is highly correlated. Booth and Cox
proposed a second criterion, denoted E[s?], which is the mean of the squared
pairwise dot products. E[s?] results in designs with a few highly correlated
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vectors, but most are pairwise orthogonal. For designs in which no pairwise
" dot products are larger than 4, near orthogonality and E[s?] are equivalent
criteria in that they yield the same design.

Booth and Cox's method begins with a Plackett and Burman (1946) or-
thogonal design, to which they add f —n-+1 randomly generated trial vectors,
resulting in an n x f initial design matrix, Next, they determine the pair of
vectors with the greatest dot product, and attempt to replace each of the two

“vectors with a new randomly generated vector. A vector is replaced if the re-
sulting design matrix is superior in terms of the near orthogonality criterion.
Booth and Cox continued this process until 30 minutes of clock time on the
University of London Mercury computer passed without an improvement to
the design matrix. Booth and Cox used n = 12, 18, 24 and f as large as 2n,

Rosenberger and Smith (1984) focused on very small designs (f = 4, 5,..., 9
and n £ f). For these designs, they were able select the best design accord.
ing to the near orthogonality criterion by means of an exhaustive search. For
larger designs this approach is computationally untenable, For example, the

‘number of possible designs when f = 24 and n = 12 is on the order of 1047,

Lin's designs (1993) involve selecting a half fraction of a Placket and Bur-
man design matrix of size 2n. The resulting matrices have n observations and
f = 2n =2 factors. He examined all such half fraction designs resulting from
a given Plackett and Burman design and reported the best design according
to the near orthogonality criterion. To nbtain designs with f < 2n — 2, Lin
selected a subset of the columns from his f = 2n — 2 design. Lin used a
variety of n's between 6 and 30,

In the present paper we seek a general method that improves upon ex-
isting supersaturated designs with n = 4k, such that k is a positive integer.
This is the class of designs for which pairwise orthogonality is possible and
for which corresponding Plackett and Burman designs exist,

2 Method

We begin our method by creating a matrix of f randomly generated design
vectors. The next stage involves a series of passes designed to improve the
initial matrix. Each pass examines each of the f vectors in sequential order.
When a vector is examined it is compared to a set of alternative vectors with
respect to the resulting near orthogonality criterion for the entire matrix. If
a superior alternative vector exists, the original vector is replaced by the best
of the alternatives. The series of passes continues until a pass occurs that
fails to improve any of the f vectors. For n = 8, 12, 16, and 20 the set of
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alternative vectors is composed of all possible design vectors. For n > 24,
this is not computationally practical, ‘The set of alternative vectors consists
of a randomly sampled subset of all possible design vectors, Note that this
method is sufficiently general to be used with supersaturated designs of any
dimension and with any optimality criterion based on pairwise dot products,
such as E[s?].

3 Results

We generated designs for n = 8, 12, 16, 20, and 24, and corresponding sets
of fin < f < 2n, Asummary of the designs obtained appears in tables 1-5.
The actual design matrices are given in the appendix. Note that “EEM"
refers to Ehm, Elliott, and McGee and denotes our method. The column
heading “0" refers to the number of pairwise dot products equal to 0, the
column heading “4” refers to the number of pairwise dot products equal in
absolute value to 4, and so forth,

Table 1: Designs with n =8

Table 1 refers to designs with n = 8, In this case, Booth and Cox do not
present a design and Lin's method cannot be used.

n=12EEM |[n=12Lin | n=128 & C |

Table 2: Designs with n = 12

Table 2 refers to designs with n = 12. Here, all three methods have been
applied. In Figure 1, we plot the proportion of pairwise orthogonal vectors in
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Figure 1: Propoxtions of Pairwice Orthogonal Vectors for the EEM, Lin, and
Booth and Cox Methods

order to compare the designs graphically. Clearly, both our method and Lin's
are superior to Booth and Cox's method. Our method surpasses Lin's in all
cases except when f = 2n ~ 2, the case for which his method is designed.

Tables 3 and 4 refer to designs where n = 16 and n = 20, respectively. In
these cases, Booth and Cox do not present a design and Lin's method cannot
be used.

Table 5 refers to designs with n = 24, Here, all three methods have been
applied. With f = 30, our design clearly surpasses Booth and Cox's design
according to the near orthogonality criterion. Also, with f = 46 our design is
superior to Lin's in terms of near orthogonality. This case, where f = 2n -2,
is the case for which his was specifically designed. For designs in which some
pairwise dot products are larger than 4, E[s?) and near orthogonality are no
longer equivalent criteria. As discussed earlier, these criteria produce designs
with different characteristics. In light of this, one could apply our method
using E[s?] as the criterion if one preferred designs having a higher proportion
of pairwise orthogonal vectors, but also having some pairwise dot products




equal in absolute value to 8,

As seen in Figure 2, the proportion of pairwise orthogonal vectors at-
tainable decreases steadily as the number of factors in the design increases.
We suspect this reflects the inherent geometry of the problem, Note in fig-
ure 1, the proportion of pairwise orthogonal vectors in Lin's designs does
not decrease substantially as f increases, This suggests that Lin's method of
selecting subsets of designs where f = 2n — 2 to obtain designs with smaller
[ is inadequate, Another observable trend is that, for a given number of
factors, one obtains a slightly better design with larger n. The magnitude of
the effect of f is lazger than that of n,

Proportion of Pairwise Orthogonal Vectors (EEM)

Proportion of Pairwise Orihogonal Vactors
>

040 045 OS50 0S5 060 065 070
//

18 a0 28 a0
Number of Factors
Figure 2: Decreasein the proportion of attainable pairwise orthogonal vectors

as the number of factors increases

4 Discussion and Conclusions

We will consider our method in comparison to competing methods. First
we will compare our approach to that of Booth and Cox. Both methods are
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large scale search procedures, but ours has a natural stopping criterion where
as theirs is arbitrary, Because both are general algorithms they can be used
for a wide variety of n and f. For comparable designs, our method produces
uniformly superior results.

We suspect the following observations may explain why we obtain better
results than Booth and Cox. We found that starting with an orthogonal
matrix made it difficult to add vectors with small dot products, while starting
with randomly generated design vectors produced superior results. We also
achieved better results when sequentially considering each of the f vectors
for replacement rather than replacing the vectors at random.

We now compare our method to that of Lin. Although computationally
simple, Lin’s method is highly specialized and can only be applied to a limited
number of values of n. For given n it only produces designs for f < 2n - 2,
Furthermore, Lin's method for deriving designs for f < 2n — 2 gives poor
results, This is consistent with our own findings, The ideal set of design
vectors changes so dramatically from one level of f to another that even
the best subsets of larger matrices do not yield good designs. This further
suggests that methods specialized for particular values of n snd f are unlikely
to produce good designs for other combinations of n and f. Our method
generates design matrices that exceed Lin's in all cases, but one,

Our designs for n = 16 and f = 32 is the largest supersaturated design
published for which all dot products are less than or equal in absolute value
to the theoretical minimum of 4.

5 Future Work

This research was inspired by a problem posed by the late Dr. Carl Bates.
He needed to estimate the effects of 104 factors using 52 observations. The
104 factors were parameters in a model and the observations were the 52
Sun workstations to which he had access. In order to solve this problem
we hope to thoroughly investigate designs where n > 20 with respect to the
near orthogonality criterion. We also hope to produce designs in which the
maximum pairwise dot product is 4 for n 2 20. Finally we will investigate

the class of designs generated by our method when the optimality criterion
is E[s].
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n = 16 EEM
f 0 4
24 || 144 | 132
26 || 153 | 172
28 [| 166 | 212
30 || 175 | 260
32 185 | 311

Table 3: Designs with n = 16

n = 20 BEM
flo] 4
28 || 171 | 207
30 || 170 | 265
32 || 174 | 322
34 || 173 | 385
38 || 176 | 449
38 || 204 | 488
40 || 222 | 542

Table 4: Designs with n = 20

A rwooofm

n=24EEM || n=24Lin |n=24B&C
Tl 0] 481 0 4 8] 0714738
30 [[178 [257] O 295 [ 81| 59
32 | 183 | 311 | 2

34 ][ 202 | 351 | 8
36 || 202 | 416 | 12
38 || 223 | 460 | 20
40 |l 243 | 507 | 30
42 )| 261 | 560 | 40
44 | 273 | 623 | 50 -1 -1 -
46 || 309 | 662 | 64 || 414 | 552 |69 ) - | - | -
48 |[ 337 | 711 |80 || - - | =1 - 1]= -

Table 5: Designs with n = 24
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AN ENPIRICAL BTUDY OF THE DISTRIBUTION AND PROPERTIES OF
THR SLOPE ESTIMATOR USING MININUM NORMED DISTANCE CRITERION

Barbara A. Wainwright

Statement of the Problen

How should one estimate a linear relation between two
variables? It is common to use a regression model and
automatically appli the ordinary least squarses method of estimating
parameters. This is sometimes the wrong model and method and thus
one should consider other types because of the variables and the
assunptions in question. This leads in turn to consider various
techniques of estimation. The topic of this paper is the
estimation of linear structural relations when there is measurement
error in both the dependent and independent variables. These
problems are often referred to as Model II regression problens
[Graybill, 1961) or measurement arror models [Fuller, 1987). There
are several tachniques for estimating the model parameters.
Howevar, the technique that will be investigated is the one that
nininizes the perpendicular distance batween the observed points
and the estimated line. While these estimates have been derived,
there is very little known about the exact distribution of the
slope estimator and some of its properties other than consistency,
some asymptotic properties ([Fuller, 1987], and some approximate
tests and confidence linits [Creasy, 1956; Kendall and Stuart,
1973). This paper will investigate the following properties of the
slope estimator:

1. the shape of the density of this estimator for small samples,
2. the expected valus,
3. the bias, and

4. the probability of Type I errors for both small and large
samples.

The Minimum Norm Distance Method of Estimation for The Classiocal
Errors in variables Case

There ara many techniques for estimating the structural
relation parameters but if one assumes normality and uses maximum
likelihood estimation techniques, then unidentifiability is an
issue. There are ways to alleviate this problem when either af,
the measurement error variance associated with the y values, o2,
the measurement error variance associated with the x values, or the
ratio of the two error variances (X) is known [Kendall and Stuart,
1973; Lindley, 1953). We will examine the one in which we know the
ratio of the variances of the measurement errors, lambda. This
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case 1is referred to by Fuller [1987] as the classical errors in
variables case. The resulting maximum likelihood estimator
actually minimizes the weighted sum of the squared statistical
distances between the observed points and the estimated line. For
the case in which A = 1, it would minimize the perpendicular
distances. This is often referred to as the "minimum nora
distance." The problem of minimizing the norm distance was
discussed as early as 1877 by Adcock, 1879 by Kummel, and 1901 by
Karl Pearson. However, this approach is regularly attributed
(especially in clinical chenmistry) to W. Edwards Deming, who
reintroduced it in 1943 [Cornbleet and Gochman, 1979; Goldschmidt
et al., 1981; Lloyd, 1978; Mandel, 1964; Northam, 198l1; Schall et
al., 1980; Smith et al., 1980; Vormbrock and Helger; Wakkers
et.al., 1975; Weisbrot, 1985; Vestgard and Hunt, 1973; 2Zucker,
1947). According to Mandel [1964), Deming minimized the weighted
sum of squares

nh A
S = (x, - X)) + (y; - Y,)3A
?;;[11 R LYY
guch that

[ A A M

Yi = a+pXil

The rasulting slope estimator may be sxpressed as

-1 ~ -1
6 . Syy -x S xex . J(“yy A gxx)z . ..l (1)
2 s, 2 s, A

where
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n

8y, = ; (y;-»)?

sw = g (XI-J_K‘) (.Vx'?)

Other resulting estimators are

« = y - px

and

L)

2 1 c 512 - AV = B
gf = -a-_—g[ ;(Yi y) ﬂz; (yi-¥) (x, x) ]-

If lambda is not known, then assuming it is one is possibly
better than ignoring it all together. However, Vormbrock and
Helger suggest the use of duplicates for estimating lambda in
method comparison studies analyzed with Deming’s procedure. For
this approach the following sums of squares are calculated

o 2
(X4, + X;5)
v it et - H )

2 2
(; (yys + Yta))

n
Qy = E(yajj *'y:ia) - 2n




p (xy + "'1:)) i; (Yi1 * Y.tz))

0 ;; (Xg3¥y2 * Xya¥V12) =

; (%55 = %45)3

; (Vis = ¥ia)?

from which the following are computed

zo_o* -‘A A

240,

. 2p9v P3 Qx
(1 + z,pz) (2n - 2)

According to Feldman,et al.[1981] no one knows the exact
saupling distribution of ﬂ It is important to test H;: g = 1,
particularly in method comparison studies. If this is taken as a
constraint on principal components and standard principal
components, it is equivalent to saying o? = ¢ when X and Y are
dependent. Morgan (1939] transforms these measurements and then
opts for a t-test. Using a similar t-test with a slightly
different transformation, one can test p=f, for any value of S..
Confidence intervals can also be constructed. However, Morgan'u
test does not apply if the above constraint can not be imposed.
Keridall and Stuart [1973) as well as Creasy {1956) give
confidence limits and tests of hypotheses for the case A = 1
using the fact that 5 = tan ¢, and the fact that the sample
correlation coefficient, r, has a "Student’s - t" distribution
with (n-2) degrees of freedom when y is normally distributed and
the correlation coefficient, p, is zero.




From the literature, it does not appear that the expected value
of is known; especially since the sampling distribution is not
known. Fuller [1987], in his exposition of the asymptotic
propertiec, claims that B-g = 0 (n"'). He also gives the variances
of the limiting distribution. khese are

A 02s * o2s " plas
vig) " — (3)
p 4
(n-1) o
where
1
("'1)(7: + pa)oda
8 = (n-2)
! Myy + ':;L:mxx = Ay - %mxx)' + 4%‘"&'
o8 P
Fy
and
- 1 2 1
. (myy ‘xmxx) + 4 T My (myy 'xmxx)
ot 5 L
1

Sampling Distribution of 3

Although the exact sampling distribution of ﬁ is complex and
there does not seem to be a general closed form solution, by
examining various expressions of ﬂ, and by using various
transformations of variables and Mellin transforms, we can obtain
expressions for the density of § for some special cases. For small
samples under some of these situations, we can show that the
density is far from being a t distribution.
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Special Case: n = 2

To investigate the density of the slope estimator, let us
consider the simplest case in which n = 2, When n = 2, the line i=s
uniquel determined regardless of the intended method of
estimation. The density of the estimator will, however, depend upon
the conditions imposed and the assumptions made. First, we will
assume that the relation betwasen X and Y is given by

Y= ﬁx- (4’
That is, we will assume that the intercept, a, is zero.
Case 1: X, Measured Without Error
For the first case we will assume that the relation above
holds and that the x11 are fixed or predetermined values of the
T

random variable X eme values are measured without error. This
is therefore an example of a regression situation. We ocbserve

Y = Y+ e

where

9 ~N(°’o'2)

and thus

yi"N(ﬂX,, 0.2)
The slope of the line in this case is given by

AN & Wl 4 R
X2-.X1 X‘

8




In this case

yt =y, -y, - N(BX; -ﬂXl,Zo‘a)

and

X' = X, - X

is constant. Thus

20,2
p N(p' (x,-x.l)’)

Note that in the usual case of least squares,

o’

Var[é] " =

Z; (x, - %)3

which is the same.

Case 2: Xi a Normally Distributed Random Variable

Let us now assume that the relation defined is a structural
one between uncobservable random variables. That is X, is an
unobservable random variable. Assume the following:

Xi ~ N(u,oz)

where we observe

x-i = Xi + di ¢ di ~ N(O, Odz
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y; = Yy te

BX; + o,

- Where

e, ~ N(0,0,).

' Thus the following distributional theory exists.

X, ~ N(p,o?+ 0"

y; ~ N(Bp,p?e? + a,0).

" For the case in which n = 2,

where

y* ~ N(0,2(p%? + 0,2))

x* ~ N(0,2(0% + 0 )

In this case 3 is a ratio of normal random variables,, mach having
mean zero. One could attempt to obtain the density of ﬁ by changing
variables and by using the moment generating function. However,
Maple and Derive could not avaluate these intograll. Through Mellin
transforms, Springer [1979) derives the density for the ratio of

two dependent standard normals (p. 156) and Cralg [1942] derives
the density for the ratio of two dependent normal random variables
each with mean zero and_any finite variance. Taking the bivariate
noxmal density of (x', y'), making a change of variables, and using
the Mellin transform for two dependent random variables [Craig,
1942; Springer, 1979], it is determined that the density of 5
this case is given by

for




95:9,:¥1 - 07

ﬂ(a’yo - 2poxo°ycb - oxcﬂﬂ)

£(g)

4/(0® + 0,) (P°0” + 6,9) (1 - p)

n((B’.o’ +0) - 20T+ G (BTGT + 0.0 g 4 (o2 + °"";’)'

It is also worth noting that if x and y obey a normal bivariate
probability density function, the mean value of y/x does not exist.

Case 31 Xi an Unobservable nathdnltical Variable

If X, is a mathematical variable, then the ralation YwpxX is
a functional relation. If we observe

x; = X, +d;, d; ~ N(0, 0 )
thcn'
yi = PX + ey
where
e, ~ N(0,0.%)
and

i~ N(BXI; a.’) '

The slope estimator is computed in the usual manner, but in this
case

y* = y,~y, ~ N(PX, - pX,,20,2)




X‘ = xz - x1 -~ N(Xz - Xl ] Zodz) .

Anong the varicus substitutions or change of variables that
Craig (1942) uses is that

For the case of a ratio of two dependent normal random variables
with nonzero means, Craig ([1942) provides an expreasion for the
density of w as followa:

1 2 3 -
OxXp| —-—mtte (2,4 - 22, X, + I,Y)
£(w) = 2(2 - p?) ]fex -.aul +bu) |u] du
2ny1 = p* A 2
where
w 1-2pwl, 0, p? ¢ 1
(1 - p?)

b ow Fio PRIt (ry = pr,)w
(1 - p?)

According to Craig,"this can be calculated from existing tables for
particular values of w and of the parameters." No closed form
solution seems to exist particularly for z.

All of this theory above still applies for the case in which
Y = a + 8X. The means in each case will be identical since a will
merely subtract out. Therefore the distributions derived for each
of the three cases will be the same regardless of the value of a.
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General Case: Arbitrary n

Various transformationg of variables were made in an attempt
to derive the density of B, Without loss of generality we can
assume that the means are zero and thus we can use the sums of
squares and crossproducts rather than the sums of squared
deviations from the mean. It is still the case that when i = 1,

A

B = weywi+1 (5)
where
woe 222
but now

n
C = ;xiyi

We hoped to obtain the density of w through an appropriate
transformation or through Mellin transforms. Once wae had thae
density of w, then another changa of ,variable based on Equation 5
could possibly yield the density of ﬁ; It did not.
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Expected Value of 3 and Analysis of the Bias

Through Taylor series expansions an approximate expression is
obtained for the asymptotic expected value of j. For large n,
under the assumption that A = 1, we may conclude that

0.3 - ada a‘z - odz )3

. 1 1 1
Elpl = ('2'9-_2}5" 2po? /| © \J(Ep-?ﬁ* 2pa?

Recall that A=l implies oﬂ = g2 and the above expression reduces
to f which is expected of a connintent estimator. However, it can
be shown that use of an incorrect value of A can introduce an
additional bias that doss not approach zero in the limit as n goes
to infinity. Note that when A » 1, a similar expression raesults
and the sama situation exiats.

Simulation Results
Large Samples

Computer simulations are performed using SPlus. Cases are
considered for which X is a fixed vector with measurement ervor and
for X a random variable. For each of these cases various values of
the parameters and various sample sizes are considered. These
simulations seem to support the theories. For large samples the
distribution of § appears normal in most cases. !!However the use of
an incorrect value of A does introduce bias as Figures 1 through 4
indicate. Note that underestimating A results in underestimation
of B on the average and vice versa.

Table 1 provides the mean, variance, upper and lower tail
probability of rejection of H: p=1 for various cases. It should
be noted that for n=100 and f=1 most simulations result in a
density of § that is very close to a normal density. However, in
method comparison and bicequivalence studies, we often assume that
A=1 if the error variances are unknown. Doing so can shift the
density to the left or right. The shift or biasing effect can
greatly increase the chance of making a Type I error in testing Hy¢
A=1. It should be noted that many other simulations were performed
with similar results.

Smaller Sample Simulations

In smaller samples asymptotics do not alwaya hold and in fact,
extreme values of the statistic often result. Since samples of
sizes 24, 36, and 48 are commonly used for biocequivalence studies
[Snikeris, 1992)], these are considered along with still other
sample sizes, only some of which will be addressed here.

Very skewad densities often result, while in other cases the
densities are fairly symmetric. Table 2 shows the results of
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Table 1: Simulation Results: n =100, Ho: 8 =1.H,: 8 #1

a? g&’- X A mean var | lower | upper | total shape
ﬁp fdp . prob | prob
S .25 1:10,10 5 |1.0007| .0010{ .0190 ] .0260 | .0450 | symmetric
.5 25 | 1:10.10 1 1.0157 | .0010| .0057 | .0750 | .0807 | symmetric
1 1 | N(5.1) | 1.0130 | .0356 | .0080 | .0397 | .0047 | slight skew
25 1 | N(54) 4 1.0010 { .0034 | .0160 | .0320 | .0480 | symmetric
25 L | N(54) 9105 | .0029 | .4003 | .0003 | .4006 | symmetric

0625 | .25 | N(5.4) 4 9999 [ .0008 | .0230 | .0280 | .0510 | symmetric
0625 | .25 | N(54) 1 9764 | ,0008 [ .1383 | .0037 | .1420 | symmetric
25 | .25 | N(54) 1 9995 | 0013 | .0230 [ .0270 | .0500 | symmetric

1

2

1

25 | .25 | N(5,16) 9996 | 0003 | .0250 | .0230 | .0480 | symmaetric
1 .25 | 1:10.10 | .25 | 1.0008 | .0016 | .0230 | .0270 | .0500 | symmetric

25 | 1:10.10 1.0450 | .0017 | .0013 | .0647 | .0660 | symmaetric
25 | 1:10.10 1 1.2400 | .0067 | .0000 | .8600| .8600 | symmetric
25 1 1:10.10 | .0625 | .9982 | .0054 [ .0230 .0270 | .0800 | symmetric

T

!

4

+ | .25 | 1:10.10 | 16 | L.4585 | .0071] .0000G | 1.0000 | 1.0000 | symmetric
T

4

25 1 N(3.L) 16 | §.2657 | 2.83979 | .0000 | .7273 | .7273 | skewed

25 | N(3.1) 1 4.2460 | 1.6350 | .0000 | .7237 | .7237 | skewed
25 4 | N(3.l) l 2505 | .0034 | 1.0000 | .0000 | 1.0000 | symmetric
4 4 | 1:10.10 1 1.0080 | .0128 | .0180 | .0350 | .0500 [ symmetric
25 5 | 1:10.10 l 0910 | 0009 | .0520 | .0110 | .0630 | symmetric
.25 5 [ 1:10.10 2 1.0040 | 00090 | .0210 | .0320 | .0530 | symmaetric

several simulations when n = 24, Although one hopes that the error
variances are not larger than the variance of X here, a few
simulations indicate the general trend of how these variances
greatly affect the density of ﬁ. From the table we can sea that
whenever ¢ is smaller than one or both of the error variances (in
the case § = 1 it does nqt matter) very extreme estimates result
and thus the variance of ? is very large (larger than it should be
according to Fuller). In fact the sampling distribution of is
very skewed to the left or right, as Figures 5 and 6 show.

For smaller error variances the sample correlation tends to be
larger, and therefore we do not obsarve as many large valuas for
the estimator. Figure 7 displays a more stable density. This
difference is also evident in the probabilities of Table 2.
Simulation results for n = 36 and n ® 44 appear in Tables 3 and 4
respectively. Comparing these tables, it is plain to see that for
any given situation, the mean is closer to the tiue value as the
sample size increases from 24 to 36 to 48. Notice that the
variances become smaller as we would expect. In many cases

densities skewed for n = 24 become less skewed for n = 36, and
still less for n = 48,
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Table 2 : Simulation Results: n =24, Ho: =1 H :8#£1

i o | o X A mean var | lower | upper | total | .shape
used i [3 prob | prob

25 | .25 | N (3,.25)] 1 1.2360 | 11.6920 skew left
25| .25 | N (3..5) | 1 1.6390 0833 | 0013 | .0367 | .0380 | skew rt
251 .25 N (3,1) | 1 1.0156 0303 | .0083 | .0340 | .0393 | symmetric
251 .25 N (3.1) 1 1.0570 0206 | 0050 | .0430 | .0480 | symmaetric
251.25| N(3.2) | 1 1.0270 0123 [ 0100 | 0360 | ,0460 | symmesric
T [ 1| N(3.1) | 1 _[-33.0430 | 3668933 | .0003 | 0000 | 0003 | skew left
1 |.25| N(3.1) | .25 | 1.0142 0774 | 0117 | 0303 | .0420 | symmetric

j 1 |.25| N(3.1) | 1 1.5532 .6466 | .0007 | .0343 | .0350 | sym peak
1 |25 N (3.4) | .25 1.0045 0160 | .0150 | .0240 | .0300 | symmetric
1 | .25 N(3.4) | 1 1.1080 0108 | .0000 | .0060 | .00GO | skew lett
8 1] NG | 1 .7085 0428 | .2307 | .0040 | .2407 | skew leit
25| 1 | N(3.1) | 4 1.0552 1,102 [ 0003 [ 0030 [ 0033 | _skaw leic |
28] 1] N(&D | 1 0186 0145 | .0637 | .0003 | .0730 | symmatric |
5] T NG T 4 | LolG 0101 | 0030 | 0387 | 0417 | symmatric |
28] 5| N@D T 3 | 103 0566 | 0003 | 0370 | 0373 |_skaw rt.
25| 8| N ] 1 .0020 0085 | .0367 | .0163 | .0530 | symmoatric
25| 5 | N(34) | 2 1.00G1 0000 | 0113 | .0300 | .0413 | symmaetric |
25| 8 N | 1 0734 0008 | .0203 | .0150 | .0443 | symmatric
5 | .25 | N (3.25)1 1 1.6814 | 2428.0910 | .0001 | .0030 | .0031 | skaw left
B |25 | N (.25 .8 1.1049 7.6676 | .0027 | .0060 | 0087 | sym poak ||
5 ].25] N(34) ] 1 L1657 0676 | .0003 | .0803 | .0806 | symmetric |
3 | .25] N(3.1).| .8 1,0162 0408 | .0083 | .0310 | .0393 | symraetric |
5 .25 N(3h) | 5 1.0010 0004 | 0147 | 0273 | 0420 | symmatric |
5 .25 N(a4) [ 1 1.0362 010270037 | 0817 | 0834 | symmotric |
S| 1| N(3.1) ] 1 8106 1220 | 0090 | 0117 | 0207 | sym peak
5] 1] N(31) ] 2 | 1.1207] 2.9510] .0007 | .0053 | .0060 | skew rt.
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Table 3 : Simulation Results: n =36, Ho: =1, Hy:6+# 1

7e | o1 X A | mean var | lower | upper | total shape
used g A| prob| prob

25 | .25 | N (3,.25)| 1 | 1.0600 2047 | L0010 | .0200| .0300 | sym peak
25 .25 | N (3.1) 1 | 1.0110 0175 ] .0100 | .0370 | .0470 | symmetric
1] 1| N(3.1) 1 | 1.0600 2047 | ,0010 | .0200 | .0300 | sym peak
1 | 1 | N(3.25)| 1 4436 | 3318.9860 | .0030 | .0020 | .0050 peak
1 |.25| N (a.1) | .25 | L.0090 0483 | .0L60 | .0310 | .0470 | symmetric
1 |.25] N (&.1) 1 | 1.4900 ,1205 0| .2000( .2000 | slight skew
1 |.25| N (3.4) 1 | 1.1046 0124 | .0003 | .1313 ] .1316 | symmatric
1 |.25] M (3.4) | .25 | L0040 0106 | .0100 | .0200 | .0480 | symmatric
251 L [ N (3D 1 7063 0237 | 4690 [ .0010 | .4700 | slight skew
257 L] N(3L) ] 4 10470 ,0063 0] .0460 | .0460 shewed
25 1 | N (3ah) 1 0140 0082 ] 12037 .0053 | .1346 | symmetric
28] L | N (3.0 | 4 | L0084 0106 | .0080 | ,0383 | .0463 | symmetric
5125 N(3.265) [ 1 ] L8740 [ 21.0020 | .0060 | .0070 | .0130 | sym peak
5 | .25 N (3.251] 5 | L.0070 1.4640 | .0013 | .0073 | .0080 | skaew leit
5 | .25 N (3.0 | .5 | L0027 0060 | .0147 | .0200 | .0437 | symmatric
S 125 | N () 1 1.0341 0066 | .0037 | .08G0 | .059T7 | symmatric
S 125 N{3.) | .5 | 10120 0271 | .0103 | .0363 | .0466 | symmetric
5 1.25] N (3.1 I 111550 0377 | .0007 | .1000| .1007 | symmetric
251 8 | N (34) 2 1.0018 0065 | 0110| .033%| .0443 | symmetric
251 .5 [ N(3.4) 1 0720 0060 | .0370 | .01 3] .0513| symmetric
1 [ .25 N (3.25) ] .25 | 1.1001 1.9390 | .0030 | .0083 | .0113| sym peak
1 [ 25[N(3.35)] 1 [2.6050 | 3079.8870 | .0030 | .0020 | .0050 | peak skew left
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Table 4 : Simulation Results: n =48 Ho: =1, H :8#1

Q
»

2 X A | mean var | lower | upper | total | shape
used 8 A | prob| prob
25 [ .25 | N (3..25) 1 1.0406 1014 | .0020 | .0330 | .0350 | skew left
251.251 N (3,1) 1 1.0060 0125 ( .0140 | .0300 | .0440 | symmetric
1 1 [ N(3,25) 1 7950 | 205.8400 | .0047 | .0027 | .0074 | skew left
1 1 [ N(@3.1) 1 1.0406 1014 | .0020 | .0330 | .0350 | skew right
1 L | N34 1 1.0056 .0125 | .0140| .0300 | .0440 | symmetric
1 | .25 | N (3..25) 1 | 2.9860 | 1735.5600 | .0020 | .0020 | .0040 | skew left
L | .25 N(3,258) [ .25 | 1.0470 8703 | 0017 | .0110 ) .0217 | skaw left
1 |.25 ] N (3.1) 25 | 1.0070 0340 | .0143 | .0257 | .0400 | symmetric
L .25 N (3D 1 | 1.4800 0875 | .0000| .2000 | .29000 | skew right
L | .25 N (34) 25 | 1.0010 00721 0180 | .0210 | .0390 | symmetric
L | .25 N (3.4) 1 1.1028 0000 0 1670 | .1670 | symmetric
1 | .28 1:8,0 1 1.0729 0056 | ,0013 | .1530 | .0543 | symmaetric
L ].2% 1:8.6 25 | 1.0016 0051 | 0210 | .0200 | .0300 | symmetric
25T 1 ] N(3J4) ] 1 6070 0171 | .6503 | .0003 | .6500 | symmotric
Bl N (3D 4 1.0270 0307 | .0010 0450 | .0460 | skew left
25] 1 | N(3.) | L 1 .0132 00062 | 1700 | .0030 | .1730 | symmetric ||
B9 N (3.4) 4 | 1.0883 0078 | .0057 0340 | 0397 | symmetric
S | .25 | N (3..25) 1 1.7510 | 134.8598 | 0007 | .0047 | .0054 | skew left
S 25 N (3.25)] .5 | 1.0344 JAT1T | 00331 .0367 | .0400 | skew right
5 1.25] N (3.4) S | 9993 0042 | 0153 | .0263 | .0416 | symmetric
512851 N(3.4) 1 1.0348 0048 | .0033 | .065T | .0690 | symmatric
251 .5 | N (3.4) 2 1,0033 0044 | .0100 | .0313 | .0413 | symmetric
25 5 | N(34) 1 | .9697 .0040 | 0553 | .0093 | .0646 | skew right




We can see from the simulation results that large values of ﬁ
often result even when the é;ue value of the parameter is one.
Recalling the expression for §, we can see that a low covariance
(or correlation coefficient in the case of normality) will result
in a large slope estimate. This low sample correlation often
results from introducing large error variances. Another objective
becomes developing a rule based on checking the sample correlation,
and determining what to do with these extremes. An empirical rule
was developed to detect and test for extremes. Once an estimate is
detected as extreme, the correlation cocefficient is tested for
significance. If the correlation coefficient is not significantly
different from zero, then the low correlation is the cause for the
extreme estimate and therefore it is an unreliable estimate of §.
Now the problem becomes what to consider extreme. The objective is
to screen those large estimates that are due to low correlation,
Therefore we do not want to detect as extreme an estimate that is
large because f is large, Since we would probably not know the
actual variances in a single sample problem, a conservative
estimate of variance 1is needed to screen an estimate for
extremeness. It is generally the case that the measurement error
variances will be smaller than the variance of X. When testing H_:
B=1, the maximum variance is attained whancﬁ-o%-aﬁ. When this 1is
the case a good approximation of the variance is 3/n. After much
screening using various estimates, it seems that what works bast
for dJdetecting most of the extremes that resulted from low
corralation is = 5/(3/n). Thus any estimate that is more than five
standard deviations from the hypothesized value of f will be tested
for significant correlation.

In general, if it is believed that

0,2 = 04 = ko?

then the estimate of variance is given by
2k + k?
n
If f»1, then the estimate of variance is

(pa 1 1) k + kz
7 '

Table 5 provides various simulations when n = 8 and the
scraening rule is used. One can see that in p=actically all cases
100! of those detected as extreme were due to low correlation.
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Table 5 : Simulation Results: n = 8, Truncation Results Using i5\/§

o |oj| X A | Fraction deleted due
used | to low correlation

25 .25 | N (3.1) 1 ==1,0000
LN L £a1=1,0000

1 |25 [ N(3.1)] .25 =1.0000

T (25| N (3.1 1 1o

1 .25 N(34)] .25 +=1.0000

1 {25 ] N(34) 1 +=1,0000
20 1 [N@QL] L 12=1,0000
251 1 | N(3.L)] 4 1#2=1,0000
251 1 | N(34) 1 ¥=1,0000

250 L [ N(34) 4 =1.0000

251 .5 | N({d.l) L ¥ =1.0000

251 S N 2 +==1,0000

251 5 | N (L 2 £=1.0000
B35 | N (L) L == 10000

S 28] NGLL) | 8 == 10000

S [ 28] N () L &= 1,0000
325 N ]| 1 =047+
5125 N(32)| .5 2= (,0000

Application

We have the opportunity to analyze some real data using this
estimation technique. The data come from two systems, called A and
B, being comparad for equivalence in handling specimens. Each
system aralyzed one hundred specimens, not once but twice
consecutively. Therefsre we have replicates for estimating lambda.
Flgure 8 gives a plot of system A measursments versus system B
measuremants, It shows a sirong linear trend. We are interasted,
however, in whether the slope is significantly different from one,
suggesting that the systems ars not equivalant.

Analysis of Original Data

Normal plots for x and y indicate that the densities of x and
y 4o not differ drastically from a normal one, and since n=200, we
can assume asymptotics hold. We will analyze the two hundred pairs
anlumingithat the ratio of error variances is one. The analysis
results in
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L)

p = 1.140371

A
V[p] = .,00627

80

z = 1.7724.

This does not suggest that we should reject the hypothesis g = 1,
As we saw from tha simulations, we will have large probabilities of
Type I errors if we assume that A = 1 when in fact it is not. Here
we do not: have to worry about a Type I error, but if
underestimation occurs because we let A = 1, we could be making a
Type II error. Therefore, lambda will be estimated using Vormbrock
and Helger’s method of duplicates and we will use this estimate in

computing ﬁ. Using the duplicates to estimate the error variances,
we find that

02 = 1.840312

0,2 = ,463623

80

A

A = 3.9694.

Using this estimated ratio in the computation of ﬁ'yields

A

B = 1.149295




z = 1,88

These rasults do not differ much from the previous ones, but when
n = 200 we would expect the density of f§ to be approximately normal
and rather stable, particularly when the variance of X is large
relative to the measurement errcr variances. The sample variances
of x and y are 106.5541 and 138.0568, respectively. Recall that af
= o + g2 and so o? ® 106.5541 - 1.840312 = 104.71379. This is very
large réiative to the measurement eryor variance. As we saw from
the theory, the expected value of f will shift when A = 1 is
incorrectly assumed. We have only one estimate, yet we still can
sea that this second estimate is slightly larger and this suggests
that when o?, < 0%, and A = 1 is used, there is underestimation on
average. This may suggest in turn, that the true value of B is
closer to the second estimate., However, we do not have a
probabilistic statement of this fact since we are using only an
estimate of A and we are comparing only one aestimate of ;3 obtajined
by each approach. Although we have not studied the effects of 4 on
the density of 2 in this paper, it seems better to estimate lambda
than to assume it is one. Therefore, when we select only one large
sample and estimate #, we should use an estimate of A rather than
an assumption that A = 1.

If we carry out a least squares analysi3 on the entire set of
observations, the results are as follows:

[

B = 1.12217

S, = .0L3555

and

z = 9,01,

The standard error of this estimate is smaller than the standard
error of the estimate obtained from the norm distance technique.
The smaller variance (.00018) for 1least squares results from
ignoring measurement error variability. Mandel takes the
relationship between Deming’s estimator and the least squares
estimator to be
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) 3
B = LSb,(1+ ?i?:%?if)'

This allows us to compare the variance of Deming’s estimator with
the least squares estimator by '

Var[/p\] - Var[LSby.x (1 + _._Es'.z_..)]

Analysis of Transformed Data

In scanning these data, it seems that the variances tend to
increase as the mgasurement values increass. This can be seen
slightly from the scatterplot. While this may not be large enough
to worry about, we can deal with it by splitting the ranked data
into two equal groups and testing for homogenelty of variance.
While Bartlett’s Test suggests a significant difference between the
two variances, this test is often considered too sensitiva.
Cochran’s test also suggests heterogeneity of variances., In light
of this, we can try to achieve homogenaity of variance with a data
transformation. According to Bartlett [1947], if o2 = km where m
is the mean, then ./x is a possible transformation. If this works to
correct the variarice problem, the variance of the transformed data
will be .25k?. For x, System A, the variance is 2.38 times the
mean. The variance of the transformed data is 1.45 and .25(2.38)2
= 1.42, Along with the scatterplot in Figure 9, this suggests that
we now have homogeneity of variance for the transformed data.
Analyzing the transformed data under the assumption that A = 1 ve
have the following results:

p = 1.1011

vigl = .0054

so that

z = 1,38,
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Using the previous estimate of ﬁ = 4, the results are:

A

B = 1.1093

v[é] = 0054

and hance

z = 1.49.

Next ywe can estimate lambda again for the transformed da&p.

Thims time A = 3.2096. If we analyze the transformed data using
3, the results are:

A

p = 1,1080

v[é] = .0054

and

2z = 1.47.

In none of these analyses do we find a significant difference
between the two systems. :

If we carry out another least squares analysis on the
transformed data, the results are:

A

B = 1.0855




V[[;] = .00016

and thus

z = 6,81,

once again we observe that the variance of the least squares
estimator is smaller than that of the norm distance estimator. As
a result we find significance when in fact there is no significant
difference between the systems and we are led astray by the least
squares method because it does not account for measurement error.

Recommendations

If measurement errors exist, then it is best to use an
appropriate estimaticn technique making sure to account for these
errors in both variables. As we have seen with the apglioaticn,
ignoring measurement error may well result in naccurate
conclusions.

If this technique of estimation is to be used, then it is best
to select a large sanmple whenever possible. We have seen that when
n = 100 the density of ﬁ'ia approximately normal for practically
all typical situations, and even some less than typical. If smaller
samples are necessary, then it is best to select values of X such
that the spread of X is large relative to cand ¢?,, For samples
of size 36, 48, and larger we have sean how the density reasonably
resembles a normal one for cases when o’ was larger than ¢ and o?j.
However, for smaller samples there are many cases in which the
density is far from resembling a normal or even a t distribution
even when ¢ is quite larger than o, and ¢?,, For these cases we
have no reliable test statistic.

It is best to sample replicates (repeatad measures) whenever
possible in order to estimate lambda. As we have seen, tha often
recommended use of A = 1 adds additional bias to the estimate if A
» 1. However, using A = 1 is better than completely disregarding
the measurement error.

If one is testing a hypothesis and obtains an estimate that
seens extremely different from that specified in the hypothesis,
then one should test for a significant correlation. If the
correlation coefficient is not significantly different from zero,
then the estimate of f is an unreliable one. Hence, one should
resample 1f possibla.
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Abstract

The goal of this study was to evaluate the design and
operational characteristics of the Small Area Camouflage
Cover (SACC), when used by ground soldiers in a tactical
environment. The SACC is designed to conceal individuals,
small size equipment and fighting positions. Fifty-nine
reserve soldiers from the 187th Infantry Brigade, Fort
Devens, MA were given the SACC to be incorporated in their
training at the Canadian Forces Training Center, New
Brunswick, Canada. They were given instructions on the use
of tha SACC before the start of the maneuvers. Ten days
later, at the conclusion of the exercises, the soldiers were
presented a questionnaire/ survey of twenty-two SACC design
and operational characteristics, from which they made
individual paired comparisons to determine which of the
characteristics were most important. Each characteristic
was independently evaluated by each soldier twenty-one times
for a total of two-hundred-and thirty-one paired
comparisons. A parametric statistical analysis was
conducted upon the results of the questionnaire/survey, and
six statistically significant (o = 0.05) groups of
characteristics were determined, with the groups defining a
continuum from most to least preferred. This study joined
the expertise of an engineer, statistician, and
psychologist, and gave the investigators a unique testing
challenge of obtaining hard empirical data from a subjective
operational field test.

1.0 BSBCTION 1 ~ INTRODUCTION

The Small Area Camouflage Cover (SACC) is a
continuation of a program begun in 1986 to develop an
Individual Camouflage Cover (ICC). The original program was
sponsored by FORSCOM and resulted in prototype arctic,
woodland, and desert ICCs. The SACC development gsponsored
by the Soldier Enhancement Program, extended the original
design by developing a more effective, durable, and
versatile camouflage capability including a cover for
tropical backgrounds.




The SACC is designed to provide protection from visual,
near-infrared, and radar observation, and in the arctic
version, also provides protection from ultra-violet
detection. The SACC will conceal individual troops, or can
be attached together for use over weapon emplacements,
fighting positions, and supply caches.

In designing the SACC, certain characteristics, such as
color/texture match with background, lightweight, low shine,
and durability were used as guidelines, 1In addition, 18
other technical and operational design characteristics have
been determined for the SACC. In order to finalize the
current development and to put emphasie on the most
important requirements in future SACC designs, the design
characteristics needed to be ranked in their order of
importance. To determine the order of importance, a troop
test was conducted using soldiers from the 3rd Bn, 35th Ing,
187th Bde from Fort Devens, MA. The test was conducted
during exercise Nordic Shield II at the Canadian Forces
Combat Training Center near Gagetown, New Brunswick, Canada
in August 1992.

2.0 SECTION II ~ RXPERIMENTAL DESIGN
2.1 Test Target

The test target was a woodland SACC developad at Fort
Belvoir, VA. It is reversible with a two-color green
pattern on ornie side and a four-color brown pattern on the
reverse. The SACC is made of incised, vinyl coated nylon
gcrim, weighs less than 518 grams (18 ounces), and ls small
enough 2.76 x 1.77 meters (4’6" x 7’) to be fitted into the
pocket of a soldiers uniform. The SACC also has near-
infrared and radar camouflage characteristics.

2.2 Test 8ito

The test site was located at the Canadian Forces Combat
Training Center, New Brunswick Canada. The area represented
a typical north temperate zone woodland environment,
consisting or large open fields of grass land and large
tracks of dense coniferous and deciduous forests.

2.3 Test Subjects

A total of 59 reserve troops from the 3rd BEn, 3%th Inf,
187th Inf Bde, Fort Devens, MA participated in the study.
The troops consisted of enlisted personnel, non-commissioned
officers, and commissioned officers.
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4.4 Test Procedure

The troops were issued 25 SACCs to be used during their
tactical exercise. These SACCS were eventually used by 59
soldiers. At the conclusion of the exercise, a
questionnaire/survey Table 1, was given to the troops, in
which they made individual comparisons between 22 technical
and operational design characteristics. The procedurae
involved comparing each characteristic to all the others, a
pair at a time. The task was to decide which of each pair
of characteristics was the most important. Each soldier
made a total of 231 paired comparisons, with each
characteristic being evaluated 21 times. The comparison was
made as follows: If the evaluator preferred the column
characteristic over the row characteristic, in Table 1, a
one was placed in the box. If the row characteristic was
preferred over the column characteristic, a zero was placed
in the box. The ones for the row of each characteristic
were added along with to the number of zeros for the
corresponding column to produce a total acceptance score.
The larger the acceptance score the more important the
evaluator felt about the characteristic. The soldier was
instructed not to skip any comparisons.

3.0 BSBCTION XII - RESULTS

The soldiers answering the questionnaire/survey
produced sufficient data to enable a ranking of the subject
design and oparational SACC characteristics, from most
desired to least desired. Table 2 shows the descriptive
data with the sample size, mean, standard deviation,
standard error, and the 95 percent confidence interval for
each characteristic, Trble 3 contains the analysis of
variance !/ */, while Table 4 shows the Scheffe’s Multiple
Range Procedure which separates the operational
characteristic into statistically different groups. The
higher the mean, the greater the preference the evaluator
had for the characteristic. In all cases, a code letter is
used for the characteristic (see Table 1).
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TABLE 1
SACC DESIGH AND OPERATIONAL CHARACTERISTICS
coDs o
LETTER  CHBARACTRRIATIC
ABCDEFGHIJKLMNOPQRSTUV

3

.=~Woodland, aretic, trople and desert

: 8ACCs should be reversible (i.e., A
omo . another seascnal or background color on

SR " pack) " ,

B -Must not make noise when being handled

[#]

«Shelf life of 10 years

U.

= SACC should be no bigger than 4 1/2 by 7
feut

- Must bi non-£lammable

=

e |

- Weight deces not hinder transport

-Does not interfere with vision

¢}
H -Must not shine or glare
I

~Must be easily carried

J -Must be able to be joined with other J
SACC units to place cver larger objects
such as HMMWV or gun position

R «Must be fungus resistant

r

- Does not interfere with hand mcvement

<4

«Qffers protection against visual M
detection (matches background c¢olor,
texture, breaks up outline of hull and
tracks)

N -Must not snag

o

-Offers pretection against raday
detection

P -Must not greatly increase the body
temperature of a soldier under the SACC

-0Offers protection against thermal Q
detection

©

~-Fleld life (durability, color fading, R
etc,) of 60 days

o]

8 ~Must not present a health hazard

T ~Must be easy to uge

(=

-Offers protection against near-infrared
detection

V -Must be easily carried by M1 Tank or
Bradley
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TABLE 2
MEAN PREFERENCE DESCRIPTIVE DATA FOR
THRE SACC DESIGN AND OPERATIONAL CHARACTERIATICS

95% CONFIDENCRE

CHARAC- SAMPLR STANDARD STANDARD INTERVAL
. TBRISTIC  SIZR MSAN DEVIATION ERROR LOWER LIMIT UPPER LIMIT
A 1239 .587%76 . 4925 .0140 .5601 . 6150
B 1239 .4931 .5002 .0142 4653 5210
Cc 1239 ,5278 . 4994 0142 5000 .5557
D 1239 ,6392 . 4804 0136 .6124 . 6660
B 1239 .4560 .4983 .0142 4282 .4838
F 1239 .5738 . 4947 0141 . 5463 .6014
e} 1239 .5157 .5000 .0142 .4879 5436
H 1239 .5343 4990 0142 5065 5621
I 1239 ,5214 4997 0142 .4935 5492
J 1239 .4479 . 4975 0141 4202 4757
K 1239 .4318 .4955 , 0141 4042 .4594
L 1239 .4019 .4905 0139 . 3746 .4293
M 1239 ,6336 4820 0137 . 6067 . 6604
N 1239 ,5093 .5001 .0142 .4814 5372
0 1239 .5609 .4965 0141 .5333 .5886
) 1239 ,4294 , 4952 0141 .4018 4570
Q 1239 .4512 . 4978 0141 4234 , 4789
R 1239 .5198 .4998 .0142 .4919 5476
S 1239 .4213 .4940 .0140 .3938 .4488
T 1239 .4044 .4910 0139 3770 4317
U 1239 ,5028 .5002 0142 4749 .5307
v 1239 .4366 . 4962 0141 .4090 .4643
TABLE 3

ANALYBIS OF VARIANCE FOR DBSIGN
AND OPERATIONAL CHARACTERISTICS PREFERENCE

DEGRERS OF sSUM OF MEAN SIGNIFICANCE
1ol FREEPOM SQUARES SQUARES JF-RATIQ LEVEL
Requirement 21 127.4798 6.0705 24.7248 0.000*
Error 27,236 6687.0202 2455
TOTAL: 27,257 6814.5000

Bartlett’s Test for Homogeneous Variances

Number Degrees of Freedom = 21
F = 0,306 Significance Level o = 0.999
*Significant at o less than 0.001 level.

Table 3 indicates that there were significant
differences in the soldiers preference for the listed design
and operational SACC characteristics. The Bartlatt’s Test
indicated that the variance of each characteristic is
homogeneanus, i.e, not significantly different, so they are
from the same population,
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The Scheffe'’'s Multiple Range Test (Table 4)
was used to determine where these significant differences in
preferences occurred. This test separates a set of
significantly different means into subsets of homogeneous

means.
TABLE 4

SCHEFFR’S MULTIPLE - RANGR TEST - SACC DESIGN

AND OPERATIONAL CHARACTERISTICS PREFERPNCE
WORST BEST
GROUP 1 GROUP. 2 GROUP.3 GROUR 4 GROUP S GROUP G
L .4019 § .4213 J 4479 B .4931 R 5198 ¢ .5278
T .4044 P .4294 Q .4512 U .5028 I .5214 H .5343
8 (4213 K .4318 E .4560 N .5093 C .,5278 O .5609
P .4294  V .4366 B .4931 G .5157 H .5343 F .5738
K .4318 J 4479 U .5028 R .5198 O 5609 A .5876
vV .4366 Q .4512 N .5093 I .5214 F .5738 M .6336
J 14479 E .4560 G .5157 C .5278 A .5876 D .6392
Q .4512 B .4931 R .5198 H .5343 M .6336
E .4560 U .5028 I .5214 O .5609
B .4931 N 5093 ¢ .5278 F .5738
U .5028 G .5157 H .5343 A .5876
N .5093 R .5198 O 5609
@ .5157 I .5214

C .5278

H .5343

4.0 BSECTION 1V - DISCUSSION

The questionnaire was successful in determining which
design and operational characteristics were deemed most
important and least important as judged by the ground troops
(Table 4). The most important characteristics for the SACC
were as follows:

No larger than 4 1/2 by 7 feet

Offer protection against visual detection

Woodland, arctic, tropic and desert SACCs should be
reversible ’

Weight does not hinder transport

Offers protection against radar detection

Must not shine or glare

Shelf life of 10 years

Each group of characteristics differs significantly o = 0,05
from each other. The six least important characteristics
were:

e Does not interfere with hand movement
¢ Must be easy to use
¢ Must not present a health hazard
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e iMust no. greatly increaus rhe body temperature of the
soldier under the SACC

e Must be fungus resistant

e Material is durable

Note that most of tha characteristics overlap into adjoining
groups. However, there were feaw surprises among the most
preferred characteristics. As expected the SACC should be
small, lightweight and be able to blend with the background,
hence reversible. The least preferred characteristics of
not being a health hazard, easy to use, durable, and not
interfere with hand movements give an insight into the
soldisrs thoughts on camouflage. That is, if it works and
is not to hard to carry the scldier, will put up with
hardships.

The following requirements fell into the middle range
of preference, i.e,, groups 3 and 4:

Must not make a nolse when being handled

Offers protection against near-infrared detection

Must not snag

Dcas not interfere with vision

giold life (durability, color, fading, etec.) of 60
ays

Must be easily carried

Shelf life of 10 years

Must not shine or glare

Offern protection against radar detection

Weight does not hinder transport

Must be able to be joined with other SACC units to

placa over larger objects

Offers protection against thermal detection

e Must be non-flammable

The proper identification of important and not important
characteristics precludes the possibility of incorrectly
assigning resources to a characteristic which has little
practicul importance. A good example of this would possibly
be characteristics .S (must not present a health hazard) and
G (does not intertere with vision).

5.0 BSECTION V - SUMMARY AND CONCLUSIONS

A total of 59 soldiers from the 3rd Bn, 35th Inf, 187th
Inf Bde, Fort Devens, MA participated in the study. During
their field training, they used the SACC to conceal
individual troops, weapon emplacements, fighting positions,
and supply caches. Upon completion of the exercises, they
were given a questionnaire/survey in which the soldiers made
individual comparisons between 22 design and operational
characteristics. Their task was to decide which of each
pair of characteristics was the most lmportant. Each
subject made a total of 231 paired comparisons, with each
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characteristic being evaluated 21 times. A review of the
data indicated that the statistical procedures enabled the
investigators to determine the most important and least
important characteristics. Logical decisions on how to
expend resources on the development of new camouflage can
now be determined from what otherwise would be viewed as a
large pool of subjactive responses out of which little
objective conclusions could be determined.
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Tree-structured Statistical Methods

Wei-Yin Loh

Department of Statistics
University of Wisconsin
Madison, WI 53706

Abstract
Racent developments in tree-structured methods are reviewed with
- emphasis on extensible and computationally efficient strategies.

1 Introduction

Tree-structured methods are compute-intansive statistical procedures that
ylold decirion trees as olutions for classification and regression problems.
Two sarly methods are the AID and THAID (Morgan and Sonquist, 1963;
Morgan and Messenger, 1973) computer programs for regression and clas-
sification. These methods construct binary declslon tress by recursively
partitioning & data set. At each stage, all possible splits of the data in the
partition ate examined to find one that maximally reduces node impurity,
where impurity is defined in terms of entropy or mean square error. AID and
THAID were later supsrceded by CART (Breiman, Friedman, Olshen and
Stone, 1984), whose most important contribution was a method of “prun-
ing” to get a tres of approximately the right size. CART, however, adopted
the slow split-finding strategy of its predecessors,

The FACT (Vanichsetakul, 1986; Loh and Vanichsetakul, 1988) method
uses standard linear statistical techniques such as linear discriminant analy-
sls and analysls of variance tests to find splits. It also uses a direct stopping
rule similar to that in AID and THAID, instead of pruning. As a result,
although FACT usually performs well in many applications, datasets can be
conatructed to fool 1t. Further, being based on linear discriminant analysls,
FACT does not always give binary splits; it splits each node into as many
subnodes as thers are classes. On the other hand, the speed of FACT Is
usually ten to several hundred times faster than CART's,




2 Main results

Several new algorithms have been developed recently at the University of
Wisconsin that combine the pruning method of CART with the fast aplitting
method of FACT. These algorithms share a common philosophy of sacrific-
ing local split optimality for computational speed and ease of extensibility to
genetalized regression settings, Because of their ability to fit complex models
‘quickly, the statistical accuracy of these methods is typically as good as, if
not better than, CART's. Shih (1993) develops a likelihood-based method of
split selection for categorical variables and a method of grouping more than
two classes Into two superclasses to allow binary splits. Chaudhurl, Huang,
Loh and Yao (1994) describe a method of tres-structured regression that
ylelds, If desired, smooth estimatas of the function and its derivatives. Con-
ditions for asymptotic conslstency of the estimates are provided, Chaudhuri,
Lo, Loh and Yang (1893), Lo (1993) and Yang (1993) generalize these ideas
to tree-structured Polsson regression and logistic regression models, Ex-
tenslons to stratified regression modeling of censored data using plecewise
paramotric and nonparametric models (such as Waibull and proportional
?Illl';ll models) are repoited In Loh (1901), Ahn (1992) and Ahn and Loh
1904).
The key ideas may be summarized as follows,

1, Use of a grouping procedure if necessary to combine classes Into two
superclasses at each node prior to splitting. This ensures binary splits.

2, Use of two-sample ¢-tests for differences between means and variances
to select the varlable to split a node, In the case of univariate splits,
These tests are also used to detect patterns In residual plots to gulde
split selection In regression.

3. Usa of linear discriminant analysis to determine the best linear com-
Lination split or the best univariate split on the selectod variable,

4. Use of CART"s pruning method to determine the final size of the tree.

3, Use of linear projuctions with dummy varlable coding to convert cat-
egorical variables into ordered variables before splitting.

6. Use of maximum likelihood fitting for plecewise generalized regression.

7. Use of welghted averaging to produce smooth estimates of the function
and Ite derlvatives,

126




The details of the algorithms will be reported elsewhere. The practical
advantages of this strategy over CART are:

1, Computational speed. CART finds linear combination splits on or-
dered variables by global optimization over all coefficients in the linear
combination. Our method is much more efficlent because it uses linear
discriminant analysis. In the case of regression, CART fits a model to
each subnode for every split considered, Since it examines all possible
splits, this process Is very time consuming. Our approach fits a model
to each subnode only after a split is selected, Hence model fitting is
performed only once at each node.

2. Treatment of categorical variables. To find the best split on a categor-
ical variable, CART searches over all subsets of categories. Because
the number of such splits increases oxponentially with the number of
categories, this is also a very time consuming process. Another prob-
lem s that this strategy tends to prefer splits on categorical varlables
with many categories aver splits on ordered variables. Our approach
of converting each categorical variable into an ordered variable avoids
this problem and speeds up split selection,

3. Boolean combination splits on categorical variables. This can be quickly
obtained via linear combinations of transformed categorical variables.
Global optimization strategles are impractical because of the large
number of splits that need to be evaluated,

4, Versatllity In model fitting. Because model fitting is performed af-
ter aplit selection, models of arbitrary complexity (such as GLIM or
proportional hazards models) may be fitted to each node at little ad-
ditional cout,
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COMBINING SIMULATION RESULTS ADDRESSING ARMOR VEHICLE
SURVIVABILITY

Paul J. Deason, Ph.D.
U.S. Army TRADOC Analysis Center - WSMR
White Sands Missile Range, N.M. 88002-5502

This is a clinical paper addressing means to combine the results of
a nunber of studies on two simulation models, the desired result of
which is to identify a balanced cost-effective set of survivability
enhancements for a direct-fire armored weapon system at an
acceptable risk, so that these enhancements may be made a part of
the engineering specifications for the weapons system. Passiva
survivability elements consist of ballistic protection measures,
and signature reduction ir the areas of RF, visual, and thermal
spectra., Countermeasures considered cover smoke, receivers,
jammers, and active protection systems. The intent is to maximize
the use of passive measures, avoiding high technology, high risk
solutions, . and avoiding highly sophisticated active
countermeasures.

SIMULATION MODELS

Simulation models are used in the study to aevaluate the
effectivenass of the system in combat given the enhancements of the
suites of countermeasures, signature reduction, and ballistic
protection. The two models are the GROUNDWARS few—-on-few direct
fire and artillery simulation, and the Combined Arms and Support
Tznk Foico Evaluation Model (CASTFOREM), a many-on-many battlefield
simulation.

GROUNDWARS, maintained by the Army Materiel Systems Analysis
Activity (AMSAA) is used primarily to evaluate weapon system
effectiveness by representing land combat between homogeneous
forces, where the total number of combatants cannot exceed twenty,
and where the systems have a limited representation of sensors and
munitions. A statistical terrain is represented. GROUNDWARS is
stochustic employing Monte Carlo probability thecry as its primary
solution technigue; three hundred replications of a case are
normally employed.

CASTFOREM, maintained by the TRADOC Analysis Center - WSMR (TRAC-
WSMR) is a stochastic, event sequenced, force-on-force simulation
of ground combat involving up to a BLUE brigade and opposing RED
forces. It is used for weapon system trade-off analyses,
investigation of alternate tactics, i - .aetric analyses of selected
weapon system performance parameters, and other similar studies.
CASTFOREM is extremely flexible, and can accommodate any terrain or
weapon system for which data is available. Terrain used 1is
digitized actual terrain. Weather and ambient light conditions are
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constant throughout a battle. Battlefield obscurants, smoke, and
dust are modeled as dynamic clouda. Processes are modeled
probabilistically using Monte Carlo tachniques; the model is
stochastic event sequenced, although time-step events are possible.
Normally, 21 replications of a case are employed.

COUNTERMEASURES PLAYED IN GROUNDWARS

In the followin table are described the variation of
countermeasures suites for the system examined through the use of
tha GROUNDWARS model. Those with a ’Y’ in the cell indicates the
sulte was exaained.

The scenarios used are the following:

SCEN A: This scenario represents a BLUE mechanized infantry
task force in a prepared defense against an overwhelming
modern RED armor attack. The setting is Central Europe,
Winter, with snow on the ground and 7 kilometers visibility.

SCEN B: This scenario represents a meeting engagement between
a BLUE mechanized infantry brigads and a modern RED tank
regimsant. The setting again is Central Europe in Winter with
genow and 7 kilometers visibility.

SBCEN C: This scenario is set in late spring in Southwest Asia,
dusty with 14 kilometers visibility. The BLUE force is a
mechanized infantry battalion (+) in a hasty defensive posture
encountering two Threat tank battalions equipped with current
equipment. Threat counter-maneuver artillery is minimal.

The countermeasures described in the table are as follows:
IWR: Laser warning receiver - detects when the system is being
lased by a threat rangefinder or detects a missile guidance
laser.

MWS: Missile warning system/muzzle flash detsctor - detects
the launch of a missile or the flash of a gun.

RWR: Radar warning receiver - indicates when being painted by
radar.

SMK: Signifies the employment of self-protective smoke in the
visual, infrared, and millimeter wave spectra in the direction
of the perceived threat munition.

JAM: Infrared Jammer - disrupts the infrared tracking beacon
on au incoming missile

SLID: Small, low-cost intercept device - a vroposed counter-
nissile system.

SHORTSTOP: A prorosad artillery countermeasure device.
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Several sultes are not considered for the following reasons:
a. Smoke would not be used in the SCEN A prepared defensive
position, except if the system were on the move and exposed.
Smoke was not used in GROUNDWARS (but was used in CASTFOREM.)
b. In SCEN A, SCEN B and SCEN C the LWR alone would not pick
up the threat missiles to JAM, so the cases were not played.
,6. In BCEN B and SCEN C the MWS alone is unable to detect the
target and cue smoke, so that combination was not played.
d. In SCEN C there was no radar threat portrayed, soc RWR was
not considered.
e. In Scen C there was no artillery affecting the system, so
SHORTSTOP was not played.

COUNTERMEASURE SUITES IN CASTFOREM

Using the same chart for the countermeasure suites played in
GROUNDWARS, the suites that were evaluation in CASTFOREM are
denoted with a ’c’.

Table 1: COUNTERMEASURE SUITE COMBINATIONS
GROUNDWARS and CASTFOREM

POSSIBLE SUITE SCEN A SCEN B SCEN ¢
BASELINE (No CM) Ye Ye YC
IWR Y Y Y
| zwr, sMx ¥ y
“ LWR, JAM
| v, sMx, an
| 1ws Y Y ve
MWS , SMK
MWS , JAM Y Y Ye
MWS , SMK , JTAM
RWR . Y Y
RWR, SMK | Y
RWR, JAM ‘ ¥ Y
| RWR, SMK, JAM Y
LWR, MWS Y ¥ Y
IWR, MWS , SMK Y YC
LWR, MWS , JAM Y Y Y
LWR, MWS , SMK , JAM ' y
LWR, RWR Y y
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LWR , RWR, SMK v
LWR ,RWR, JAM Y v “
LWR, RWR , SMK , JAM Y
MWS , RWR Y y
MWS , RWR, SMK Y
MWS , RWR, JAM Y Y
_MWS , RW>, EMK , JAM v

LW, ..i's, RWR ¥ Y
LWR ,MWS , RWR , SMK Y |
'LWR,MWS , RWR, JAM Y v “
LWR ,MWS , RWR , SMK , JAM YC Yo Ye
LWR, MWS , RWR , SMK , SHORTSTOP Yo ve |
LWR , MWS | RWR, SLID YC Ye Ye

SIGNATURE REDUCTION IN GROUNDWARS and CASTFOREM

TlHreat systems employ a variety of means to detect and to bring
fire onto our system cf concern. These means are direct view
optics, low=light television systems, thermal imaging systens,
ground surveillance radars, and seekers in "smart" artillery
nunitions. If the ability of the system to be detected or to be
acourately pinpointed were raduced, its survivability would be
enhanced. It is possible to reduce the signature of the vehicle
through the use of various suites of coatings and shaping. The
signature reduction suites are represented on the vehicle by
specifying an average detaection range reduction achievable against
the array of threat sensors represented in the scenarios.
Probability of detection by threat seekers as a function of slant
range and target signature were determined using Booz-Allen and
Hamilton’s Desktop Radar and Infrared Signature Model. This
raduction is as measured by the NVEOL sensor curves for the threats
of interust; the point where the probability of detect curve is 50%
(Pdet=0.5) fur the range deaired was taken as the turget reduction
criteria. (The Jochnson oriteria of one cycle was used for
detection.) Five levels of signature reduction were played in both
‘the GROUNDWARS and CASTFOREM models, and were designated lLevel A
through Level E.

132




Table 2: SIGNATURE REDUCTION IN GROUNDWARS and CASTFOREM

DETECTION RANGE SCEN A SCEN B SCEN C
BASELINE SYSTEM ¥YC ¥C YC
level A YC YC YC
Lavel B YC YC YC
lavel C YC YC YC
Level D 1 xc Ye Ye
Level E | ve ye ye

BALLISTIC PROTECTION IN GROUNDWARS AND CASTFOREM

The ballistic protection suites added to the vehicle are in
addition to the base armor package inherant with the system. This
added ballistic protection would be against direct fire kinetic
snergy and chemical energy munitions, and indirect fire (artillery)
munitions. Due to the differences inherent in the penetrations from
direct fire rounds and indirect fire munitions cause the ballistic
packages to be considered separataly, although there would bhe a
carry-over effact (synergy) one to the other. Three levels of
ballistic protection were considered, based on the probability of
resisting a system kill (as defined by an analysis using the Army
Resaarch Laboratory CAD and evaluation models) given a hit, of 50%,
75%, or 95% (given the percentage is higher than the standard armor
package.) (an attempt to desiyn a package that would withatand the
impact of large calibre direct fire munitions, or a direct impact
of artillery HE was not considered.) These packaces are limited by
the power, weight, and dimensional constraints of the system.

;291‘ 3. BALLISTIC PROTECTION IN GROUNDWARS and CASTFOREM
e e

pa—
BALLISTIC PROTECTION SCEN A SCEN B SCEN ¢
BASELINE SYSTEM yC Y 'qe]
50% DF, 50% IF . Ye YC YC(DF)
0% Df, 75% IF {e YC
50% DF, 95% IF yc YC
75% DF, 50% IF ¥C YC YC(DF)
75% DF, 75% IF (el YC
75% DF, 95% IF YC YC "
' 95% DF, 50% IF YC YC YC(DF)
95% DF, 75% IF YC YC
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"95% Dl‘f“ 95% IF I YC | yC | Il

COMBINED RUNS IN CASTFOREM

A number of runs are scheduled in CASTFOREM to evaluate
combinations of signature reduction, countermeasures, and ballistic
protection. To date, only cases using the countermeasure suite of
'LWR, MWS, RWR, and SMK at reduced signature levels A, B, and C,
using the base level of ballistic protection are scheduled. Other
cases will be considered as a result of preliminary analyses!
additional combined case runs are welcomed from the panal.

MEASURES OF EFFECTIVENESS

Common measures of effectivensss output by GROUNDWARS and CASTFOREM
are system kills, system loss, RED force loss, BLUE force loss, the
system exchange ratio (system kills/system loss), force loss
exchangs ratio (RED force loss/BLUE force loss), and surviving
nansuver force ratio (RED mansuver force (initial-final)/BLUE
maneuver force (initial-final)). In CASTFOREM these measures are
.available over time for each replication. A metric which could
handle the synargy of the battle over time, and the contribution
differences of the systenm in various parts of the battle by virtue
of its survival is envisioned. In these scenarios, the early
contribution of a system could cause it to expend its ammunition
early, and so not contribute later in the battle. Howaver, because
of its early contribution, more BLUE direct fire systems could
survive and participate strongly. The more survivable system’s
contribution could be swamped by the end of the battle due to the
synergy. Therefore, a combined metric is visualized.

Then, once the systems providing the most potential are determined
(ranked?) by their performance in the simulations, additional
factors must be considered, such as the following:

a. Cost

b. Weight and size constraints placed on the systenm

c. Technological risk and possible fielding date
The intention is to provide the Army with a robust point solution
package to enhance the survivability and performance of the systen
and the force.

EPILOGUE

Since the conference in October 1993, the method of analysis used
was to separate GROUNDWARS and CASTFOREM except as the findings
were mutually supporting, and use the results from CASTFOREM as the
principle effectiveness determiner. The final full factorial
CASTFOREM runs matrix consisted of the European Defense and the SWA
Meeting Engagement scenarics, two lavaels of signature reduction,
three countermeasure suites, three levels of ballistic protection,
which when added to the bamse level of each factor (no signature
reduction, no countermeasure suite, basic level of ballistic
protection) resulted in a 96-case matrix (2 X 3 X 4 X 4.) The final
product of this analysis, known as the LOSAT Survivability




Requirements Study, should be available after the First of April,
1994 from the Technical Management Division, LOSAT Project Office,
U.S. Army Missile Command, Attn: SFAE-ASM-LS, Redstona Arsenal,
Huntsville, Alabama 35898-8051
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A REDISCOVERY OF THE HODGES~LEHMANN ESTIMATE

PAUL H. THRASHER
Analysis Branch of Analysis Division
Materiel Test Directorate
White Sands Missile Range, New Mexico 88002-5157

_ + The Hodges~Lehmznn estimate was proposed in 1963 to
balance the risks of estimatiny too hiyh and too low. It was
recently rediscoverad in a considsration of what estimate should be
used after a cne-dimensional null hypothesis is rejected.
QN. Use of Hata to find a point estimate for a
iar;m-tcr s often requested. 1If no standard or unacceptable value
s provided for the parameter, a point estimate is often found to
(1) stand alone or (2) serve as the midpoint of a confidence
interval. If (1) a standard and unacceptable value exist and (2)
the data and agreed upon Type I and Type II risks imply rejection
~of the null hypothesis that the parameter meets the standard, then
the next question is cften "How badly does the parameter miss the
requirement?" . Although a p-value and a post-test Type II risk can
answer this question, a point estimate is often requested by
managers not versed in statistical language.

. If a point estimate is needed, an analyst may well want to
present a more statistically justified number than the commonly
used average ¢r sample median. One general technique ls to extend
hﬁioth.lil testing. This was (1) done in reliability studies at
White Sands Missile Range with arguments described in sections 2-8
of this paper, (2) presentsd as a clinical paper to tha Thirty~
Ninth Conference on the Design of Experiments in Army Research,
Development, and Testing and (3) recognized by one of the panelists
as the Hodges-Lehmann technique.

ZL—IBAEIQNALB' Any point estimate necessarily has limited
information. It should be made as meaningful as possible.
A point estimate might be too high or toco low. An intuitive

approach is to adopt a goal of equal likelihood; that is, try to
equalize the risks of estimating too high and too low.

One way to approach this goal is to think of two hypothesis
tests that (1) share the common null hypothesis of "The Desired
Parameter Equals The Point Estimate" and (2) have the opposing
alternate hypotheses of "The Point Estimate Is Less Than The
Des.red Parameter" and "The Point Estimate Is Greater Than The
Desired Parameter" as the upper and lower alternatives to the null.
Since the p-value is the probability of being wrong if the null is
raioatcd, the goal of equal likelihocod can be approached by
adjusting the point estimate in these two thought hypothesis tests
until their p-values from data are as close to each other possible.
This forces both p-values toward one half.
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Clearly each p-value can be forced to exactly one half if the
thought hypotheses tests have p~values that are continucus with the
always continuous point estimate. If such thought hypotheses tests
are not appropriate for the data, an average can be taken of the
two point-estimates that make the two p-values closest to one half.

The resulting estimate can logically be named and described by
the acronym p~-vulte (p~-value upper & lower test astimate). "P-
Vulte" can be thought of linguistically as a noun; but it is more
informative if it is considered as an adjective in a three word
title. For example, "Gaussian p-vulte mean" or "Wilcoxon
p=vulte median" denote both the distribution that describes the
data and the parameter that is being estimated.

3, NON-~-INNOVATIVE RESULTS. For data from populations
described by some common distributions, use of the p=-vulte
techniyue yields nothing new. For example, the Student’s t
p-vulte mean is simply the sampla average.

This result is obtained by considering the two areas, of the
probability density function, that are separated by the desired
estimaltle. Adjusting these areas until they are equal makes both of
them exactly equal to one half. At this point, the test statistic
t is zero. The well known expression for t,

[Sample Axg:ggg = Population Mean]
[Sample Standard Deviation / Square Root of Sample Size]

immediately yields the p-vulte mean to be the sample average.

4. .. HBIASSED RESULTS. Non-symmetric probability density
functions Jaad to biassed p~vultes. This bias tends to zero as the
sample slze becomes very large. One example 1s the binomial p-
vulte R where R is the reliability (i.e., the probhability of one
success Jn one trial).

Caloculation of this p=vulte is direct in concept; but in
ractice it requires a computer. Equating the two p-values
s the same as equating two sums of b(jin,p-vulte) where b is

the function for the binomial probability distribution; x 1is
the number of successes out of n trials; one sum ranges from
jw0 to jwx; and the other sum ranges from Jj=x to j=n, After
data is taken, the only unknown in the equation is the p-vulte.
Clearly a numerical solution is possible; but the existence of two
sums causes difficulties. Calculation is facilitated by

(1) pulling the term b(x;n,p-vulte) out of both of the two equal
sums, (2) remembering that the sum of b(j;n,R) from j=0 to j=n must
be one for any R, and (3) arriving at the calculation equation of

l o b(xjn,p-vulte) + TWICE THE SUM OVER b(7j;n,p-vulte);

this sum ranges either from j=0 to Jj=(x-1) or j=(x+1) to j=n.
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The bias may be illustrated with an example. For a sample
size n of 25, different values of x yield the binomial p-vulte R
and the maximum likelihood estimator (i.e., x/n) to be

—_— =y —x/n__
1 .0453 .0400
3 . 1247 +1200
7 .2828 .2800
12 .4802 .4800
13 .5198 .5200
18 .7172 .7200
22 .8753 .8800
24 .9547 .9600

All of these p~vultes ara biassed towards the central possible
value of R (i.e., 0.500). The shifting is greatest for values of
x that are farthest from corresponding to x/n = 0,500,

As an aside, consider the situation when x=0 or x=n. There
are two possible interpretations for the binomial p-vulte R, Just
looking at the summation equations and plots of the distributions
for different possible values of R suggest that these p-vultes are
unbiased (i.e., identically zero and one). However, looking at the
underlying the thought hypothesis tesuts suggests that thesc p-
vultes are undefined. This occurs because there is no physical
alternative that the estimate should be lower than 0 or higher than
n. Unless a limiting procedure is considered, the binomial p«vulte
R is thus undefined when xw0 or x=n, One philosophical
interpretation is that being undefined is not bad in this
situation; that is, neither perfection nor total failure should be
claimed for the population just because data from any sample fails
to indicate differently.

Finally, another example shows the tendency of the bias to be
removed with large sample sizes. Choosing x’'s and n’s such that
x/n is 1/5 yields

S W p-vulte
5 2161
10 .2090
25 .2038
75 .2013
250 .2004
1000 .2001

This table exhibits the tendency of consistency.

54__BQBHfI__AHD__§BH§LIIEE__BB§!LI§- Application of the
p~vulte technique to the Wilcoxon signed ranks T test ylelds robust

and sensitive results. This should be expected because the
Wilcoxon signed ranks T test is well know for its high power.
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The Wilcoxon p~vulte median may be calculated without first
calculating actual p-values. This is based on the way that the
Wilcoxon p-value calculation is done using a thought experiment:

(1) Consider n chips for the n data of the sample;
(2) Label each chip with
(a) the sample rank of the absolute value of the
difference between the standard & the datum and
(b) a + sign on top if the standard exceeds the datum
but on the bottom if the datum is the biggest;
) Calculate T+ by summing the ranks on the chips where
the standard exceeds the datum (i.e., +'s are up);
Think of tossing all chips;
Consider all two to the nth power possible landings;
Count the number of possible landings for which the
sum of the ranks of chips with plus sides up is less
than the T+ result of step 3 (i.e., count possible
results that are as bad or worse than the data);
(7) Find the p=value by dividing the result of step 6
by the result of step 5.
[Note: See the appendix for a discussion of handling ties.)

—

A, P S~
U w
— e

This finds the probability of being wrong in rejecting the null
hypothesis, that the median equals the standard, in favor of the
alternate hypothesis that the median is higher than the standard.
The p=valua for the other alternate hypothesis, that the median is
lower than the standard, can be found by changing "less than or
equal to" in step 6 to "greater than or equal to". Obviously, the
counting in step 6 is tedious and time consuming for even a
computer when n is large and the standard is near the middle of the
data. Fortunately, it is not necessary to find the p=vulte by the
direct approach of gquessing "standards" until one is found that
yields oagal p-values for the two alternate hypotheses. The
shortcut is based on features of the number line and the p-value:
(A) The upper and lower alternate hypotheses both have zero
p-values if the standards are outside the data’s range;
(B) 1In starting with two trial standards on opposite sides
of the data and moving them inward, neither p-value
changes until the extremes of the data are reached;
(C) Reaching the extreme data values causes (i) the count
in step 6 to increase fcom zero to one and (ii) the
two p~-values to increase; both become one divided by
two raised to the nth power;
(D) The other points on the number line that change the
counting in step 6 are values of "standards" equalilng
(1) other data and (ii) pair-wise averages of the data;
(E) The symmetry of the number line and integer intervals
between ranks makes symmetric contributions to the
two p-values as the two "standards" are slid in unison
over pairs of points identified in property D;
(F) Equal p-values are retained by crossing pa{rs of
property D points simultaneously;
(G) The p-vulte is reached when the two "standards" meet.
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Thus the Wilcoxon p-vulte median is the sample median of all the
pair-wise averages of the data including each datum with itself.
If the sum of the sample size and the number of palr-wise averages
(L.e., n + nl/[2!1{n-2}}]) is odd, then the p~vulte is unique. If
this sum is even, the p=-vulte ie somewhere between the innermost
pair of data and pair-wise averages on the number line. Although
there as no justification, a unique estimate may be obtained by
instinctively defining it as the average of the innermost points;
this will be called the "even estimate",

Although the calculation of the Wilcoxon p-vulte median is
direct in concept, its actual calculation needs a shortcut to be
practical for large data sets. Even a modest sample size generates
a large number of iair-wise averages, Even medium size computers
can have storage dilifficulties if all n + nl/[2]1(n~2)]l]) = n(n+l)/2
averages are stored at once, bubble sorted, and counted off to the
middle value. Fortunately, there is a simple technique to avoid
the handling of this large array of numbers:

1. Bubble gort the data X1l X2 X3 - - - Xn
with the lowest datum
at the low end;

2. Think of a X1l X2 X3 - - - Xn
triangular
array of ' X1 All Al2 Al3 -« =« « Aln
pair-wise X2 A22 A23 - =~ = A2n
averagss X3 A33 = - - A3n
of all data - - -
including - - -
each datum - - -
with itself; Xn Ann

3. View the diagonal;

4. Construct and store the averages on the diagonal and the
row and column numbers needed to find these averages;

5. Bubble sort the diagonal, discard the lowest average,
and replace it with the next largest array average;
[Note: The location of the replacement average from

the discarded average is either (a) immediately
to the right on the same row or (b) ilmmediately
down the diagonal. Clearly, replacement from
the diagonal necessitates another replacement
before proceeding to the iteration of step 6.)

6. Repeat step 5 until the sample median of the triangular
array can be found.

[Note: For odd n(n+l)/2, discarding [n(n+l1)/2 - 1] / 2
values makes the smallest value on the remaining
diagonal equal to the Wilcoxon p-vulte median.
For even n(n+l)/2, diecarding n(n+l)/4 - 1
values makes the average of the two smallest
values on the remaining diagonal e¢qual to the
even estimate of the Willcoxon p-vulte median.]

This technique uses storage for the 3n diagonal values and their

roY and column sources instead of storage for the n(n+l)/2 array
valuen.
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_ The sensitivity and robustness of the Wilcoxon p-vulte median
may be illustrated by simulations. Either graphs or tables may be
used to display the results.

. The two graphs display results from a simulation illustration
of (1) how rapidly repeated sampling yields convergence and (2) how
closely the convergence approaches the input parameter. The three
lines are all calculated from the same set of simulations. One
sample of size eleven is simulated to £ind and plot the average,
sample median, and Wilcoxon p-vulte median at the left (i.e., #=]1)
ends of the three lines, Each of the following points to the right
incorporates another simulation of a sample of size eleven; the
three quantities graphed are the average of the averages, the
sample medlan of the sample medians, and the Wilcoxon p-vulte
median of the Wilcoxon p-vulte medians.

Since a uniform population between zero and one is used for
the simulations, the target value for all three lines is exactly
one half. The solid line traces the central limit theorem
prediction that the average of averages from different random
samples will approach the population mean. The line with long
dashes traces the corresponding theorem prediction that the sample
median of sample medians from random samples will approach the
population median. Finally, the line with short dashes doces the
analogous process with the Wilocoxon p-vulte median.

The graph from populations with no outliers shows that the
average converges best. The Wilcoxon p-vulte median does almost as
well; but the sample median exhibits large excursions. Thus the
average is most msensitive; the Wilcoxon p-vulte median ls quite
sensitive; and the sample median is least sensitive.

The graph from populations with outliers shows the sample
median to converge best. The Wilcoxon p-vulte median does qufte
well; but the average is biased toward the weighted average of
(0.95)(0.5) + (0.05)(2.5) = 0.6, Thus the sample median is most
robust) the average is least robust; and the Wilcoxon p-vulte
median is bracketed by the sample median and the average.

An analyst is never certain if data has outliers. Thus the
Wilcoxon p~vulte median is the best estimate of central tendency.

These graphical results need to be rupeated many times before
they can be generalized. Instead of trying to compare many graphs,
repeated simulations can be reported with tables.

Bafore preparing tables, the investigation should be broadened
to include populatione other than the uniform. After all, a
Gaussian or Student’s t probability density function
would be expected to have better convergence than the uniform.

For sensitivity investigation, the sample variance of repeated

slmulations 1is the quantity that is desired to be minimized.
Tabulated results from a set of 200 simulated graphs
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for probability density functions

(pdf’'s) of

uniform (u), and sine (8) with no outliers are:

triangular (t),

Number of pdf Sample Sample Sample
samples of variance variance variance
siza 11 in of of sample of Wilcoxon
estinate averages medians p-vulte medians
t 0.038 0.053 0.040
3 u 0.053 0.097 0.059
8 0.0€5 0.145 0.073
t 0.020 0.02% 0.022
10 u 0.029 0.055 0.032
8 0.035 0.085 N.038
t 0.007 0.012 0.008
60 u 0.010 0.023 0.012
s 0.013 - 0.036 0.014

All of the sample variances in the sample median columns ars

appreciably larger than those in the other two columns.
sample median is the least sensitive.

in the average column.

as sensitive as the average.

Thus the

The saiple variances in the
Wilcoxon p~vulte mediarn column are only siightly lerger than those

Thus the Wilcoxon p-vulte median ies almost

Yor robustness investigation, the quantity of interest is the

Tanulated results from 200
graphs when the target is 0.5 and 5 nercrnt of the population has

actual measure of central tendency.

a bias of 2.0 are:

Number of pdf Ceitral Central Central
samples of average average average
size 11 in of of sarple of Wilcoxun
ostimate averages medians p-vulte medians
t 0.547 0.515 0.520
3 u 0.545 0.533 0.52&
8 0.545 0.539 0.531
t 0.546 0.511 0.518
10 u 0.544 0.526 0.525
8 0.546 0.540 0.530
t 0.549 0.512 0.520
60 u 0.548 0.524 0.528
8 0.548 0.540 0.532

All of the values in the averages columns are appreciably further

from 0.5 than those in the other two columns.

the least robust.
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sample median columns are comparable. Thus the sample median and
. Wilcoxon p-vulte median are more robust than the average.

The result of the tabular investigation is thus the same
as that of the less extensive graphical analysis. The Wilcoxon p-
vulte median is the best estimator of central tendency when the
analyst does not know. if outliers are present or absent.

§. . PROFESSTIONAL REVIEW AND ACKNOWLEDGMENTS. All techniques
muet be reviewed and placed in context with established methods.
This review was provided by the Thirty-Ninth Conference on Design
" of Experiments in Army Research, Development, and Testing at Rice
University in October, 1993.

Three important things were recognized at the conference.
First and most important, the p-vulte technique is the same as the
Hodgea-Lehmann estimate. This pioneering work was reported with
great mathematical thoroughness in Hodges, J. L. Jr. and Lehmann,
E. (196%): Estimates. of Location Based on Rank Tests, Ann. Math.
Statist. 34, 598611, Second, Hodges-Lehmann estimation is based
in ‘a philosophy that is not in either mainstream of statistical
methodology. It is neither frequentist nmor Bayesian; it may be
most properly described as Fisherian. Third, it has been applied
only to one dimensional data. In the thirty years since Hodges-
Lehmann estimation was introduced, statistical methodology has made
gre;t fdvances in the more productive area of multidimensional
analysis,

Many people associated with the Conference on the Design of
Experiments in Army Research, Development, and Testing are deeply
appreciated for their wvaluable contributions. ©Long before the
conference, the clinical session chairperson, W. J. Conover,
identified the Wilcoxon T test zero percent confidence interval as
the sample median of pair-wise data averages. Also before the
conference, program committee member Malcolm Taylor encouraged the
presentation of this paper. Another program committee member,
Francis Dressel scheduled this paper in a clinical session where it
eventually received many constructive comments. Panelist Bernard
Harris recognized that the p-vulte has the statistical property of
consgistency. Panelist Wei-Yin Loh identified the Wilcoxon p-vulte
median as the Hodges-Lehmann technique. Panelist J. Sethuraman
explaired Loh’e identification and also identified the reference to
the original journal article by Hodges and Lehmann. Program
committee member Gerald Andersen specifiad the section of the Rice
University library, where the conference was physically held, that
had a textbook description showing clear direct equality of the
Wilcoxon p-viulte median

and the Hodges-Lehmann estimate. Panelist Nozer Singpurwalla
enunciated that the Hodges-Lehmann estimate does not utilize
any prior information in a Bayesian analysis. Many other

conference participants, especially David W. Scott who taught
the tutorial on multivariate density estimation, illustrated that
multidimensional techniques have wider applicability than the
single dimensional Hodges-Lehmann estimate.
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APPENDIX. TIE BRERXING. Certain analyses such as the
Wilcoxon signed ranks T+ test have difficulties associated with
ties. There are two types of ties. First, groups of data may have
- one common reported value. Second, the standard may equal the
reported value of a datum or group of data. The first of these is
easgily handled by assigning ranks to each group member in a manner
that (1) does not effect the ranks of other data and (2) uses an
average rank within the group. [E.G., Assign ranks of 1, 2.5, 2.5,
4, 5, 7, 7, 7, 9, 10, 11, 12 to the absolute values of the
differences between the standard and data equaling 2.05, 3.3, 3.3,
3‘9’ 4'5' 5.5, 5!5' 5.5, 6.1' 6.2’ 6'3, 14.4.] The Second type Of
tie is more difficult and is discussed below.

A trivial method of handling a tie of the standard with a
datum or a group of data is to simply discard all zeros in the set
of differences of the standard and the data. Unfortunately, this
causes the p-value to be non-monotonic with the standard.

A more realistic method of handling these zeros is to
recognize, for continuous data, that they really don’t exiet. They
appear to exist only becaute the data were not measured to a
sufficient number of significant digits. Such apparent ties can be
removed in a pre~analysis of the data by shifting the data away
from the standard. = Thies is analogous to the introduction of
"jitter" into data for computerized data viewing in multivariate
density estimation. An analytical analysis of this shifted data
calculates an expectation value from all possible shifts.

Obviously a probability density function 4is needed to
calculate expectation values. Two possibilities are the binomial
and the uniform.

A binomial pre-analysis may be used as a first approximatjion
in breaking of ties. For a single tie, an apparent datum X may be
cinsidered as being above or below the standard in the following
plcture

STANDARD + DELTA |- X
STANDARD e m e ————————— APPARENT X
STANDARD - DELTA |- x

PROBABILITY OF SHIFT: 1/2 1/2

with the probability density tabulated under the above picture,
Two values of the p-value are calculated from the two possible
relative locations of the apparent datum. The p-value’'s
expectation value is the sum of the products of possible p-values
and the probabilities of thouse p-values. Since the probabilities
are both 1/2 in this binomial pre-analysis for a single tie, this
p-value’'s expectation value is just the average of the p-values.
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The picture and table of probabilities for two data, X and Y, that
iy apparently tie the standard are

STD + DEL |- - x,¥ x y
| STD L R — -——— - X,Y
~ STD - DEL |- y x X,y
PROB([SHIFT): 1/4 1/4 1/4 1/4
-or ' o
| PROB[SHIFT]: -~ 1/4 1/2 1/4
 Mwh§ie the second version of the table of probabilities is for
-axpoctation value calculations. (There is no sense in calculating
., both - degenerate p-values for the two center shifts.) In the

. general case of n data that apparently tie the standard, binomial
' .. pre-analysis yields a p-value'’s expectation value equal to the sum

. olfrom j=0 to j=n} of the product of (1) b(j;n,1/2) and (2) the p-
i walue caleculated from a data set with j data shifted to one side
" and n=j shifted to the other of the standard.

.. The numerical value used in the shift (i.e., delta) does not
‘effect rank analysis results as long as delta is emall compared to
. the smallest separation between two data. However, not all ties of
- data with itself are broken by binomial pre-analysis when two or
more data are tied with the standard. This does have a effect,
The effect of false ties of measuremente of a continuous random

. variable can be removed with unifocm pre-analysis.

The uniform probability density function is an appropriate
description of data that is taken with digital meters. Any reading
is necessarily rounded off to the number of digits available on the
meter. The meter cannot indicate which way or how far the data
value is off, Thus the analyst knows only that the true
measurement should be somewhere between in the interval bounded by
data plus or minue half the smmallest unread digit.

The picture and table of probabilities for uniform pre-
analysis of two apparently tied data X,Y are

STD + 2 DEL |=- X X

STD + DEL - y Y

STD | eeemem e X,Y
STD - DEL - Y y

ST0 - 2 DEL |- X X

PROB( SHIFT]: 1/4 1/4 1/4 1/4




where the stared (i.e., *) non-split absolute values of differences
iy, ;batyeen“the standard and split data have been deleted from

W

» * L] ]
- X X x ¥ Y Y
_f.".y : X x X y Yy
| “ | -\.f--.;;a_;--;-_-_. ...................... o o e o Pt O X,Y
beT[ L '_- y Sy X x X Y
SRR -y ey Y X x X

and the degenerate interchanges of x and y have been removed.

Since all four of the probabilities in the table are egqual, the p-

value’'s expectation value is the average of the four p=values

caleulated from the four sets of data less X and Y plus each of the
R . completely=-split bput non-degenerate x and y. Instead of pictures,
vt . tables can-be used, For n=2, the table is '

- DIFFERENCE

BETWEEN ‘STANDARD SIGNS IN 4
~ 2 DELTA | + b - -
‘1 DELTA. | + e 4 -

where bnly the information essential for calculation has been
retained. For n=4, the corresponding table is

DIFFERENCE
BETWEEN STANDARD

S IOTALLY SPLIT DATA

4 DELTA
3 DELTA
2 DELTA
1 DELTA

E

+
-+
+

+++ +
++ +1
++1 +
+1 ++
++11
+1 +1
I ++1
+1 1 4+
t + 1 +
11 ++
+1 11
1 +1 1
LI I 2 |
1 11 4+
11 11

where again only the information essential for calculation has been
retained. 1In the general case of n data that apparently tie the
standard, uniform pre~analysis yields a p~value’s expectation value
equal to the sum [over 1—0 to j = the total number of ways of
choosing 0, 1, «==, n positive signs for the n differences between
data and the standard)] of the product of (1) the reciprocal on two
to the nth power and (2) the p-value calculated from a shifted data
set where all n ties have been broken.

Uniform pre-analysis is obviously more complete and time

consuming than binomial pre-analysis. Both are improvements over
no pre-analysis when rounding off introduces fictitious ties.
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Automatic Classification of Research Projects Based on Lexical Content

by
Mel Brown
Army Research Office

. Abstract:

To track the scope of industﬂal and 'govenunental research in a variety of scientific areas
of interest to the Army, ARO has previously assigned scientists to reud research reports
from these organizations and, based on the scientists’ knowledge, to classify the research

"' according to a system of classification categories that correspond to Army technologies

and operational functions, To avoid this highly labor intensive.effort, which needs to be
- updated annually or bi-annually, an aigorithm has been developed that automates this
classification, The algorithm performs the classification based only on the aggregate of
- words that are used in the research report, as calibrated based on previous classifications
- which had been performed manually.

o Introduction:

| -As part of its ongoing effort to ensure the mission relatedness of'its basic research
program, and to provide the Army with guidance in its technical base programs, ARO
attempts to keep track of research in progress in industry,

A particularly convenient window on industry has been the industry reports prepared in
connection with the Independent Research And Development (IRAD) program. The
IRAD program provides major DOD contractors with funding that they can use to
perform R&D of their own choosing. In return, the contractors have been required to
provide reports to DOD describing the research. Until recently, contractors have also been
required to provide on-site reviews every 3 years to put portions of their research on
display for interested government representatives.

In past years, ARO scientists have examined the written reports and attended some of the
on-site reviews, and have manually compiled a data base that summarizes and categorizes
the research according to the major Army functions that the research supports, Examples
of such functions are logiatics, mobility, vulnerability reduction, NBC protection, target
acquisition, lethality, C31, and ECM/ECCM, and their various subfunctions. ARO has also
tracked research that support major techmcal areas such as electronics, materials,
manufacturing technology, computers/computer science, and space-related technologies,
also broken down by their various sub areas,

For convenience in organizing the data, ARO has assigned alphnumeric labels, called

descriptors, to designate the various research categories. Previously, the ARO descriptors
have been assigned manually to each of the IRAD projects by ARO scientists through a
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tedious, labor intensive effort of reviewing all of the IRAD reports generated by the
~ participating industrial agencies,

‘.. 'Recently, Congress has mandated a number of changes to the IRAD program, Among

these changes are the reporting requirements for industry. On-site reviews are now
‘optional on the part of each company, and are less formal, Also, written reports are now
- to be compressed to a maximum of § pages per research project, and are to be reported
annually to DTIC for inclusion on a CD ROM that DTIC will make available to DOD
agencies, . i

Details of the information to be included on CD ROM, and formats for the information,
are still in flux, However, thesé are expected to include project titles, company/profit
center names, narrative descriptions, and funding levels. Abstracts and keywords may
possibly also be included, although these are currently among the items under negotiation
.between induatry, DTIC, and other interested DOD agencies. .

In one respect, the new rules make it more difficult to keep track of what industry is doing
inits IRAD efforts, as a result of the shortening of the written reports and the sievere
“reductior. in on-site reviews. On the other hand, the availability through DTIC of
computerized reports promises to enhance ARO's capability to keep track of industry
IRAD efforts, In particular, it opens the possibility of automating the process of'
. categorizing the IRAD efforts by Army functions supported, thereby greatly reducing the

* highly time consuming demands on ARO scientists who have previously performed this
categorizing manually,

What follows is an interim report on the development of a computerized technique for
automating this categorization based on data supplied by DTIC, and on information
derived from manually generated categorizations performed in previous years,

It should be noted that many of the IRAD projects are inherently structured so as to
support more than one Army function. Categorization by ARO descriptor is therefore in
most cases largely a technical judgement call, and even in principle can be correct only to
. within broad tolerances. Moreover, the very definitions of the Army functions and,
particularly, of the contributing technologies are inherently somewhat fuzzy in their
definitions, and constantly changing. Thus, the relationship between ongoing IRAD
projects and Army functions that they tend to support, is at best imprecise and changing,
even in principle, so that any technique for relating project with functions would
necessarily be somewhat imprecise and changing,

Nevertheless, Army managers need basic information as to how the ongoing IRAD
projects and the Army’s own RDT&E tech base program tend to support the Army’s
functional needs, even if such information may be less than fully precise and/or stable over
time. It would appeat, therefore, that categorizing IRAD (and Army tech base) projects
according to ARO descriptors promises to be useful to Army management for addressing
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policy questions relating to funding the Army tech base, even if the categorizations are

o performed only to within some residual errors.
- Approach: Data
~Available dati for automating the categorizatinns consist of two parts.

'- Ti\,e ﬂrlt p@n conaists of the sample of data that had been categorized manually in
previous years (i.e., the historic data). This consists of written IRAD reports, supplied by

induitry, of which the project titles and industry-supplied keywords are used, together

- with' ARO-generated characterizations by ARO descriptor.

The second part consists of the DTIC-supplied data that represent the current IRAD

projects which are to be classified.

_For the pufpom of algorithm development, only the historic data is available. DTIC data

for current projects is being collected from industry, and is being loaded and formatted
onto CD ROMs by DTIC, but is not yet available,

-Approach: Model

The categorization algorithm is based on a mathematical model, developed as follows:

Each IRAD report (historic or current) contains several data fields that will be analyzed.
The entries in the data fields will be broken into words, In this way, each project report
will generate an aggregate of words that have been taken from the various data fields, and
the aggregate of words so obtained will be regarded as collectively representing the
project. The words will be used as a basis for categorizing the project and associating it
with an ARO descriptor. To do this, the procedure must first be calibrated based on
historio projects.

Mathematically, the collection of words derived from all of the historic projects (i.e., those
used to calibrate the model) will define a multi-dimensional mathematical space. In this
space, each word corresponds to one of the dimensions, and vice versa. For convenience,
call this space word space.

Now consider an arbitrary historic project. This project defines a vector in word space, as
follows: Each coordinate has the value 1 if the corresponding word appears in the word
aggregate for that project, and has the value 0 if it does not appear, That is, the coordinate
indicates whether or not the word appears at Jeast once in the project report (or, more
accurately, in those data fields of the report which are used in the analysis).

Next consider those vectors derived from projects that have a given ARO descriptor
assignment. The average of those vectors will be used to represent that particular ARO
descriptor. A descriptor vector Vp, corresponding to an ARO descriptor D therefore has
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the foliowing simple meaning; its typical component Vpy corresponding to a word W in
the calibration word set measures the observed fraction of projects with descriptor D in
which word W appears at least once, Each of the Vpy will therefore be between 0 and 1.

Having completed the calibration using historic data, consider the problem of assigning
ARO descriptors to a set of current projects. To do this, choose an arbitrary project with
vector X where component X = 1 or 0 according to whether word W appears at least
once in the project writeup or not,

Now define a metric in word space. It might seem sufficient to use the metric

Hy = gvll(xw - vow)|

to represent the distance between the vector X and a typical descriptor vector Vp,
There is, however, a problem that will cause this metric to need some modification.

As defined above, Hy, gives equal weight to all words in the calibrated data base.
However, some words clearly have better discriminating power than others, and this needs
to be reflected in the definition. :

To see how this comes about, consider the two ways that words can fail to discriminate,
One way is for a word to appear in almost all project writeups. Such common words as: &,
the, it, of, with, and, ... would clearly fail to help to identify projects as to their content.
So also would words such as: advanced, novel .. and others which seem to find their
way into most project writeups,

The second way is for & word to appear only once, or at most a very few times, so that the
word is likely random and thus not associated strongly with the project writeup’s content,
Typographical errors might fall into this category.

In the first case, the components Vi for the given word W will be close to 1, for all
desvriptors D; in the second case, the components will be close to 0 for all D, It follows

that, for word W to be a good disuriminator among the D requires that the Vpy vary
widely over the D, To reflect this, modify the definition of the metric Hp, as follows:

Hp = Zl(xw - Vnw)' Gw
w
where Gy is a weighting function defined as

Gw = max (Vpw) - min (Vpw)
D D
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Using this metric, the projact is assigned descriptor D for which the metric is smallest,

In fact, one can also keep track of the smallest, second smallest, third smallest, etc. Using
these, there are several possible interpretations. One is the assignment of probabilities that
D is correctly assigned, Another is that the descriptor is to be apportioned (by funding
leve!, perhaps) according to the various D in some way. Yet another is a fuzzy set
interpretation that assigns partially to each of the D, yet not necesserily requiring partial
assignments to add to 1. The question of how best to perform such an interpretation is at
this point an open question,

Definition of “Word”

Although the foregoing model suffices, in principle, to define an assigninent procedure
that can be automated, there is yet one more refinement to add.

The refinement has to do with what it is that constitutes a word. In one sense, the matter
is easily settled. A word is simply any string of characters (not itself containing a space)
between two spaces. The problem, however, is more subtle.

Consider, for example, the words "optic," "optics," "optical," and "optically." These
might appear to be four distinct words, and would according to the above model be
treated as four distinct words, Nevertheless, the words are very similar sernantically, and
for maximum reliability in assigning ARO descriptors be treated as one word.

There are, in principle, several ways to do this. One could, at great effort and expense,
compile a table of all English words, augmented by all technical, governmental, and
military terms, and assign them to a subset of “root” words. Another way, at perhaps even
greater expense, would be to develop rules of English by which one could constructively
make the assignments. A much simpler way, though only approximate, is to truncate all
but the first k characters, where k is a parameter to be determined. This is the only

“ practical method, as is the one that will be used,

A problem, though, is how to best choose the truncation length k. If k is large, there is no
truncation and therefore semantically equivalent variants of a single word will tend tn be
treated as distinct, as in the example above, If k is too small (e.g., k = 1) then words that
are semantically very different will tend to be treated as identical. This is also incorrect.
The best value of k will therefore lie between the extremes. To ﬂnd the best value, tests
were run based on a subset of the full data base,

It turned out that k was essentially flat between k = 4 and k = 7, Outside these values, the

assignments became progressively erratic. However, k = 3 was not very much less reliable
thank = 4,
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w0 1t seéms, based on the test runs, that truncating to the first 4 characters produces the best

results, as well as reduces the size of the problem after calibration, and also the
cbmputation times for both calibration and dencriptor assignment,

In itself, it seems both a surprising and counterintuitive result that & value as small as k = 4
"-lhoqld work as well as it does.

._Pullmlnury Ruultl

Test cases were run uslng small subsets of hlltoric data to calibrate the algorithm, The

* same subsets of data were used as test data, to be assigned to ARO descriptors. Subsets,
"~ rather than the full historic data set, were used in order keep the test computations within
. wfeasliblé computlng time for test purposes. This procedure, in which calibration and
. assignment data are the same, will of course generate test reaults that may be distinctly
.optimistic. As a test of feasibility, however, the procedure serves as a reasonable indicator

""" in the sense that, if the test results are poor when generated in this way then it is unlikely
.. that the llgoﬁthm can be made to work under realistic conditions,

" The full historic data hase consists of 5915 projects that extend over about 540 ARO
descriptors. Test cases, randomly selected from the full data base, have consisted of up to
ubout 245 projects.

: Tentttive results, genermd in this way, tend to show an assignment reliability of 98% or
greater. This is clearly too optimistic to expect under realistic conditions, but at least
demonstrates the feasibility of the procedure. It is to be understood that the research is
ongoing, and that the results reported here are only a first cut, and are to be regarded as
tentative and, as noted above, biased toward an optimistic outcome,

Computation times for the algorithm have required up to 60 hours on a 486/50 PC, using
a Turbo Pascal implementation of the algorithm. The principal reason for the large
computing time has to do with memory limitations. The calibration matrix V and other
calibration data require too much memory to be kept in RAM. The algorithm was
therefore implemented in such & way that the calibrated data was stored on disk, The
classification procedure therefore raquired a large number of hard disk accesses, which are
slow and which consumed the overwhelming portion of the total running time,

A production version of the algorithm will attempt to reduce the number of hard disk
accesses that are needed.

Moreover, it has been observed that the definitions of the historic ARO descriptors had
been chosen in a way that can be improved in two important respects: (1) descriptors can
be eliminated or combined where there are found to be few or no project entries; and (2)
descriptors can be re-defined to reduce or remove potential ambiguities in the way that
they are likely to be assigned. A task is currently in progress to re-define the descriptors

154




- accordingly, and this has largely been done. The revised list contains only 150 ARO

- descriptors, as compared with 540 previously. This is expected to sharply reduce the
memory requirements and computation time, and to mgniﬂcantly improve the reliability of
the multl

L _’l‘e‘lﬁl,are.ln prt_icm but results are not yet available,

_llﬁpiementitlon Problems

Given, eventually, a successful test implementation with the full historic data base, using
the revised ARO desctiptors, there will remain several problems that will still need to be
lddmsed Thele include the following:

Even as revised, the ARO descriptors may not be optimal. In principle, there probably
exists some kind of a natural clustering of the research projects that implies and

" corresponds to some optimal set of descriptors, The identification of such clustering and
the assoclated descriptors remains to be done,

_The assignment procedure depends upon the existence of a number of calibrated vectors
'vp that represent the various descriptors D, Among the IRAD projects, however, will bea
. number which may be of intereest to the Navy or to the Air Force, but which are not
" applicable to Army functions, Corresponding to these, there will be no ARO descriptor,
except for the default that identifies them as “Not Applicable,” or NA, Unlike the other
descriptors, each of which represents projects with some common body of technologies
and applications, the NA descriptor represents a broad collection of projects with little in
common. The vector vp that corresponds to descriptor NA will therefore not be “close” to
typical vectors of NA projects. Typically, then, NA projects will appear to be closer to
other descriptor vectors, and the projecta will therefore tend to be misidentified. It may be
possible to filter most of the NA projects by requiring, for a project to be identified with a
descriptor, not only that the descriptor vector be closest to the project vector, but that the
distance between them not exceed some empirically determined threshold.

From one year to the next, technologies change and Army functions (thus ARO
descriptors) also change. The calibration that was valid for last year will therefore not be
fully valid this ysar. Annual maintenance of the calibration, both as to technologies and as
to Army functions, needs to be addressed.

Other Potential Applications of the Methodology
If successful, the approach used here to classify IRAD projects with respect to their Army

functional relevance, as measured by ARO descriptors, might also be applied to other and
unrelated problems. Representative examples might include:




In linguistics, it might be interesting to use this approach to study the semantic content of
words, parts of words, and sequences of words, The empirical observation, alluded to
above, that some significant semantic content is embodied in as few as the first 3
characters of a word, sesms relevant,

In a related spirit, one might use this approach to study the psychology of how we humans
organize and perceive and understand language. A simple version of such a study might
take the form of presenting readers with standard English text, with all words truncated to
no longer than k characters, for various k, and to observe the kinds of difficulties that the
readers have in interpreting the truncated text,

In literature, forensics, history, and military intelligence, there arise questions of who
wrote what. The approach used here might provide a useful approach in cases where

- literary samples are available from each of the candidates for authorship attribution, and
the question were that of identifying the actual author,
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An Application of Classification with
Potential Use in Reproductive Toxicology

Barry A. Bodt
Army Research Laboratory

Ronald J. Young
Edgewood Research, Development,
and Engineering Center

"ABSTRACT., Mammalian sperm develop distinctive motion patterns
durIng capacitation known as hyperactivated motility. Many
studies now point to an association between hyperactivation and
in vitro fertllization. A method for the objective determination
of hyperactivation is sought as a tool for the clinical assess-
ment of fertility, and as a marker for the investigation of sperm
function. Hyperactivated motility ls characterized by a change
from progressive movement to a highly vigorous, nonprogressive
random motion. Historically, the determination of the level of

. ‘hyperactivated motllity has been based on the visual inspection

of the cell's path as recorded on film--an extremely lengthy
process for a sample containing hundreds of cells. Recent advanc-

es in videomicrography allow the cell locations to be tracked by

computer systems which record many motility characteristics for
each cell (e.g., the straight line velocity). In this presenta-
tion we will discuss the application of statistical classifica-
tion supporting the automated discrimination between hyper-
activated and non=-hyperactivated cells on the basis of their
motility characteristics, We will also preview on-geing work
where the proportion of hyperactivated cells determined by the
classification rule is used as a response in assessing the
toxicological effect of certain metals.

1, INTRODUCTION. This work centered on the establishment of
an automated procedure to classify rabbit sperm cells as to their
motility, hyperactivated or non-hyperactivated. In Figure 1 we
show the digitized representation of the swimming paths or tracks
of several cells. Hyperactivated motion is described as a highly
vigorous, nonprogressive, random motion (e.g., cell tracks 23,
27, 16 and 20 of Figure 1). Hyperactivation is the process of
developing from & linear progressive motion (e.g., cell tracks
21, 41, 9, and 12 of Figure 1) to hyperactivated motion. The
interest in hyperactivation is that it has been found to be
strongl¥ assoclated with capacitation, the biochemical/bio-
physical changes a cell undergoes, enabling it for fertilization
(Tesarik et al., 1990). Whereas the components of capacitation
are not easily measured, the cell motions can be. Motility
classification, supported by these measures, has potential as a
narker for capacitation.

157



1\\ 1:/_,/

Vertical Position (pixels)
e
T

147 .31 —
%6 .32 178 .27

Horizontal Position (pixels)

Figure 1. Digitized representation of several cell tracks.
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Great improvements have been made in recent years in quantify-
ing cell motions. Several systems are now on the market to
supnort computer assisted videomicrography. This technology
provides a VCR tape of the swimming motions of cells, a digitized
record of cell motion, and motility parameter values for each
cell, With this automation, it is much faster to characterize
cells in terms of their motility parameter values--a process once
carried out by hand as film frames were successively projected on
a yrid., The task in this study was to take cell tracks
from previously determined hyperactivated or non-hyperactivated
cells and establish a rule for classification based on these, now
easy to establish, motility paramefter values.

2, ESTABLISHING MOTILITY PARAMETERS. The motility parameters

- of 342 hyperactivated sperm obtained by incubation of sperm from
four rabbits under the capacitation conditions of Bracket and
Elephant (1975), and 899 non-hyperactivated sperm incubated for
one or two hours in T medium were chosen for the statistical
analysis. The hyperactivated sperm population contained the major
types of hyperactivated motion noted in the literature. The
parameters under study were VSL [velocity over a straight-line
path (pm/sec)], VCL [velocity over a curvilinear path (pm/sec)],
VAP [velocity over a smoothed curvilinear path; 5-point moving
average (um/sec)), LIN (VSL/VCL), STR (VSL/VAP), WOB (VAP/VCL),
AALH [average amplitude of the lateral head displacement (um)],
MALH [maximum amplitude of the lateral head displacement (um)]},
BCF [beat cross frequency (Hz)], Dance [AALH/LIN (um)], and Dance
Mean [VCL*AALH (pm?/sec)].

3. PREVIOUS CLASSIFICATION MODELS. Others have attempted
to use the motility parameter values for classification (e.g.,
Mortimer and Mortimer, 1990; Burkman, 1991) with reasonable
success. A potential for further analysis was suggested
because 1) LIN, a key measure in the decision, would in some
cases be misleading, and 2) there was opportunity to employ
more sophisticated means of statistical classification.

The first issue was the reliance in decision rules on LIN, In
Figure 2, four possible tracks are given with the associated
values for VCL, LIN, WOB, and AALH., From Mortimer and Mortimer,
high values (> 0.60) for LIN are indicative of a non-
hyperactivated or linear progressive motion, and low values
(< 0.60) indicate hyperactivated motion. Figure 2a,b show non-
hyperactivated and hyperactivated motions, respectively, where
the values for LIN are consistent with the rationale for its use
(i.e., when VSL and VL are different, departure from linear
progressive motion is present.) Figure 2c¢,d show non-
hyperactivated mctions where, because of the looping path of
the cell, the values of LIN are in the range for hyperactivated
motion. Thus, the measure LIN will in some instances mislead.

A second issue was in the classification methods employed.
No article in the biological literature suggested using tradi-
tional statistical methods for classification. Technigues
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Figure 2. Motility parameter measurements with accompanying cell
path display for motion types; a) non-hyperactivated,
b) hyperactivated, and c-d) non-hyperactivated.
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employed were, for example, comparing the univariate relative
frequenc¥ histograms associated with the hyperactivated and non-
hyperactivated cells, using t-tests to test the difference
between mean values from the two groups, and examination of
summary statistics from each group. The actual decision rule
suggested by Mortimer and Mortimer would have required a cell to
satisfy each of three constraints: VCL > 100 pm/sec, LIN < 0.60,
and AALH > 5 pm. Each were determined individually.

4. GRAPHICAL ANALYSIS., Classification potential was assessed
graphically by comparing the motility parameter distributicns for
hyperactivated and non-hyperactivated cells. Figure 3 shows .
unmodified parallel boxplots of the hyperactivated (H) and
non-hyperactivated (N) class distributions for each motility
parameter., Data were normalized to support examination of the
relative classification potential among motility parameters., For
LIN and WOB, at most 25% of the non-hyperactivated cells show
values in the same range as those of the hyperactivated class,
indicating that both have strung potential for classification.
Based on the deygree of separation for the inner 50% of the data,
it is likely that AALH, MALH, and VCL*AALH would also be reason-
able classifiers. Note that a classification rule based on VC
alone did not appear promising.

The relative frequency distributions for LIN, VCL, AALH, and
WOB are given for each motility class in Figure 4. LIN, VCL, and
AALH were selected for display because of their prominence in the
literature (2-4), and WOB for its importance in this study.
Hyperactivated cells were absent in the range (0.8 - 1,0) for
both LIN and WOB, and converselx high percentages of non-
hyperactivated cells, LIN, 75.5% and WOB, 94.3% were found over
this range. This strongly suggests good classifying potential for
each. AALH shows only minimal distribution overlap. VCL has
considerably more. The individual concomitants of hyperactivation
suggested by Mortimer and Mortimer are reasonably consistent with
these results despite the fact that rabbit sperm, not human
sperm, values are reported here.

As a starting point for improvement, the rules suggested by
Mortimer and Mortimer were implemented on our data. The results
appear as Figure 5, In Fig re 5a it can be seen that cells satis-
fying the VCL and AALH constraints (partitions have been over-
laid) for hyperactivated motion are very likely hyperactivated,
but a good number of cells not satisfying those constraints are
also hyperactivated, VCL and AALH are linearly associated. In
Figure 5b all three conditions are shown. Again, a number of
hyperactivated cells do not meet the decision criteria. Of course
the rules are being implemented on a species for which they
were not intended. Further investigation of rules based on
these parameters and our data was warranted.
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Figure 3. Parallel boxplots of motility parameter measures for
hyperactivated (H) and non-hyperactivated cells.
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Figure 4, Relative frequency distributions for a) LIN, b)AALH,
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hyperactivated (N) motility.
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5., DISCRIMINANT ANALYSIS, Discriminant analysis and regres-
sion, on a (0,1) class variable, were used to explore models for
classification. All possible subsets regression was used to
select the best models for each number of independent variables.
BMDP programs supporting stepwise discriminant analysis and
regressizn were used in the analysis., Table 1 lists the results
for individual motility parameters, the best two-parameter
models, and the best three-parameter models. Though many models
perform well, it is clear that WOB is the key motility parameter.
Model 11, based on WOB and VCL, was judged to be the best. It had
the highest efficiency, and included motility parameters which
were not strongly linearly associated, correlation -0.47.
(Interestingly, multiple correlation made the use of AALH, LIN,
and VCL together an undesirable choice from a prediction
standpoint.) The discriminant form of the model was selected but
did not differ markedly from the regression model. Cells were
classified as hyperactivated if

WOB < 0.586 + VCL * (6.76 * 10°).

Jackknifed cross validation procedures using BMDP software
reinforced this model selection.

6. CART MODEL. Tree-structured methods were also used in
developing a model (CART™, version 1.1, 1985 California
Statistical Software, Inc.) The CART routine offers many options;
only the defaults were used. Generally, CART works as follows for
univariate partitions. Each possible predictor variable (motion
parameter) for class is examined individually. For a specific
variable, the program searches over all the values, resting at
each one to see how efficient it would be to partition the data
into hyperactivated and non-hyperactivated classes based on that
value. (In our data set this requires over 1200 assessments of
efficiency for each variable.) The routine notes the best value
for that variable based on classification efficiency. The vari-
able which partitions the data in the most efficient manner is
selected and its value is used as the first partition of the
data, creating two nodes, one each for hyperactivated and
non-hyperactivated classes, Within each one, some cells may be
misclassified. The routine then searches among the variables
looking to further partition the two nodes to increase efficien-
cy. The routine eventually settles un a decision tree for classi-
fication with maximum efficiency subject tp the constraint that
the tree complexity should not be great. iy

In running CART, all the motility parameters considered
earlier as possible predictors were included. The result was that
CART chose only WOB and VCL, with the rule: classify as hyper-
activated if

VCL > 51 and WOB < 0.78.

The decision tree is illustrated as Figure 6. Of the 1221 cases
examined, only 12 non-hyperactivated cells and 2 hyperactivated
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Table 1. Summary of best models using discriminant (D)/regression (R) analysis

based on 322 hyperactivated (H) and 899 nonhyperactivated (N) cells

Misclassified (No.) Efficiency (%)
Model  Variables H(D/R) N (D/R) D/R R?
1 WOB 2/31 19/15  96.64/9623 0838
2 LIN 21/34  65/46  9312/9345 0702
3 AALH 59 /91 5/4 94.76 / 9222 0.639
4 MALH 63/109  16/9 93.53 /9034  0.600
5 VCL*AALH 113/188  4/0 00.42 /8460 0411
6 STR 132/171  78/36  82.80/83.05 0356
7 VCL 108/209 205/56  7437/7830 0261
8 VSL 56/210 301/26 7076 /8067 0235
9 AALH/LIN  190/283  1/0 84.36 /7682  (.140
10 WOB, AALH  21/32  16/10  96.97/9656  0.856
11 WOB, VCL 23/30  12/11  9713/966+  0.847
12 VCL. LIN. 23/34  34/29  9533/9484 0757
AALH
13 VCL. LIN, 24/38  40/30 | 94,76 / 9443 0746
MALH
14 VCL. LIN. 24/40  50/36  9378/9378 0729
VCL*AALH
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Flgure 6I. CART decision tree for determining hyperactivation.
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Figure 7. Scatterplot showing the association between actua.
hyperactivated motility and predicted hyperactivated
motility using the CART model, where the quadrant i
signifies predicted hyperactivated motility.
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cells were misclassified for an efficiency of 98.9%. Cross
validation attempts, holding out randomly selected subsets,
consistently identified WOB and VCL as the important motility

paraTetersa Application of this decision rule to our data appears
- as Figure 7.

The use of LIN, AALH, and VCL was also investigated. CART did
not choose VCL, The tree was slightly more complex, having five
nodes instead of three as above, The classification efficiency
was 96.5%. When a model based on WOB and AALH was attempted, CART
did not choose to use AALH, opting instead for a rule based only
on WOB for an efficiency of 97.0%. Other runs using linear
combinations of variables were attempted but resulted in more
complex decision trees.

7. MODEL COMPARISON. Figure 8 illustrates decision criteria
delivered by the discriminant and CART models using VCL and WOB.
To understand the model differences we have partitioned the point
set WOB X VCL, where WOB ranges from 0.0 to 1.0 and VCL ranges
from 0 to 350, according to the hyperactivit¥ decision rules for
each model. A cell whose WOB and VCL values locate it in a shaded
region would be classified non-hyperactivated by CART. The
unshaded region corresponds to a hyperactivated classification
delivered by CART. The bold line represents the discriminant
model. Points falling below that line would be classified as
hyperactivated, and above, non~hyperactivated, Within each region
we have indicated the true number of hyper. .civated and non-
theractivated cells present. From this one can assess their
ge ative performance, and will find the CART model to be slightly

etter.

8. APPLICATION. An experiment was conducted in which sperm
cells were exposed to metal ions in four concentrations over
four different time periods. This factorial design was run
within blocks (different rabbit donors). Cells were identified
as hyperactivated or non-hyperactivated by the CART model estab-
lished above., Initial graphical analysis (Figure 9) suggests an
adverse effect induced by increased exposure to lead on the
percentage of motile nells which exhibited hyperactivated motion.
Since lead is known to be a reproductive toxicant, this might
suggest that one impact is in its inhibition of hyperactivation.

9. SUMMARY, A classification problem in reproductive toxi-

cology was approached using well known statistical procedures.
We found classification criteria involving a different set of
motility parameters then what had been suvggested in the litera-
ture. Further, the combination of WOB and VCL performed better
than the popular set of VCL, AALH, and LIN. Application of the
new model is now being made tc help uncover potential reproduc-
tive toxicants.




I
’ o.e i 1 !
woB  [[siatd 299 H
04 -‘   ‘ 3N
i CART
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Figure 8. Comparison of models, where the unshaded region and the
half-plane below the discriminant model denote regions
for predicted hyperactivated motility by CART and
discriminant analysis, respectively, and the actual
counts for hyperactivated (H) and non-hyperactivated
(N) motility are given,




Figure 9. Smoothed scatterplct showing a possible interaction
effect on the percent of motile cells which are
hyperactivated (PMOTHY) attributable to lead exposure
expressed in terms of time and concentration .
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Abstract

This article presents an analysis of the small-sample distribution of a
class of approximate pivotal quantities for a normal coefficient of variation
which contains the approximations of McKay (1932), David (1949), the ‘nalve’
approximate interval obtained by dividing the usual confidence interval on the
standaid deviation by the sample mean, and a new interval closely related to
McKay (1932). For any approximation in this class, a series is given for e(t),
the difference between the cdfs of the approximate pivot and the reference
distribution. Let x denote the population coefficient of variation. For McKay
(1932), David (1949), and the ‘naive’ interval e(t) = O(x?), while for the new
procedure e(t) = O(x'), Examples involving strength data for a composite
material are discussed.

Key Words: Noncentral ¢ distribution, chi-squared approximation, McKay's
approximation

1 Introduction

If X is a normal random variable with mean x and variance ¢, then the parameter

o

K= - 1

” (1)

» is called the population coefficient of variation. Let X, fori = 1,...,n be an

. independeat random sample, with X; ~ N(u,0?) for each i. In terms of the usual
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sample estimates of the normal parameters

X = ix.'/n (2)
ta]
and "
§%= 3 (Xi= R)(n 1), ®)
i=1
a point estimate of (1) is
K=8X (4)

This statistic is widely calculated and interpreted, often for very small n, usually
without an accompanying confidence interval. An exact method for confidence
intervals on x based on the noncentral ¢ distribution is available (Lehmann, 1986,
p. 352) but it is computationally cumbersome; hence the need for approximate
intorvals. In this article, we will investigate an approximate pivotal quantity which
can be used to easily calculate confidence intervals and perform hypothesis tests on
k which attain very nearly the nominal confidence level or size. ‘These calculations
require only standard tables.

Let Y, denote s x? random variable with v = n — 1 degrees of freedom, and
define W, & Y, /v. For a € (0,1), let x3, denote the 100a percentile of the
distribution of Y, and let t = x2 , /v be the corresponding quantile of W,,. Define
the random variable

Q= K3(1+ &2 (5)
= (1+ 0Kk

where 8 = 6(v, a) is a known function. If we choose § so that
Pr(Q <ty Pr(W, <t) (8)

then, since the distribution of W, is known and free of x, we can use Q as an
approximate pivot for constructing hypothesis tests and confidence intervals for
k. We define the accuracy of the approximation (6) to be ¢(t) = p — a, where
p = Pr(Q < t). Note that p is the actual confidence level of a one-vided confidence
interval for x?, based on Q, having nominal confidence a. In Section 2, we give
a Taylor series expansion for ¢(t) in powers of x?, leaving the details to the Ap-
pendix. We then consider four choices for 8: corresponding to the approximations
of McKay (1932) and David (1949), to the ‘naive’ approximate interval obtained
by dividing the usaal confidence interval on the star.dard deviation by the sample
mean, and to a new interval closely related to McKay (1932).




McKay (1932) proposed that Q and W, are appruximately equal in distri-
bution when 6 = v/(v-+ 1), but he was unable to investigate the small-sample
distribution of Q. Consequently, Fieller (1932) and Pearson (1932) performed a
simulation study, with satisfactory results, David (1949) proposed McKay's ap-
proximation with 8 = 1; this suggestion has received much less attention than
McKay (1932). Much later, Iglewicz and Myers (1970) compared selected quan-
tiles of the approximate distribution for K, obtained from Q@ with McKay’s choice
of 8, with the corresponding exact values obtained using the noncentral ¢ distri-
bution. This numerical investigation demonstrated that McKay's approximation
is very good, at least for n > 10 and 0 < x < .3. Instead of examining differences
in quantiles numerically, we will investigate differences in cdfs analytically, and
thereby develop a deeper understanding of the small-sample properties of these
approximations.

2 A Taylor Series for e(t)

Denote the distribution of W,, by H,(:) so that, for 0 < a < 1, H,(t) = a. Since
u(2) = /(9 + 1) is & monotone function with inverse u—!(y) = y/(1 - 6y),

K3 2 2 2
Fr [(1+axe) (I? ) 5‘] =P’<1+K0K= < ‘1:nﬂ) ™)

= Pr [(%)’5 '1"-?'('11—'0_:)75] Ep

For a given choice of (v, a), we have defined the accuracy of the corresponding
approximation to be e(t) = p — a. In the Appendix, we show that

c(t)=tH",(t){[0t—1+Q-—yt—+)yl—:l] K (8)
N [-e+11u-eu2+u3 ~3ut+ 607t — 303+ 30313 — g8
4(14v)?
+§1—u+2ut) (1—0t)+ (1-v+vt)(2-v+vt)(1-0t)]
14v 2(1+v)
N (2+u~—v:)(1-0t)’] n‘+0(n°)}.
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For McKay's approximation, 8 = (1) = p/(v + 1), and (8) becomes

-2 (240042073174 204
(¢) s tH! (¢ .
=3Vt 91t + 503t - Tttt - Bu2e2 - 2,203 + 90083 - Bt i3 4 00 14
+ ¥ 4
2(1 4+ v)
+0(n°)}.

David (1949) proposed @ with @ = 6(2) = 1 as an approximate pivot for a normal
coefficient of variation, The accuracy of David's approximation is

- 2)x3 — 100 -+ 413
ea(t) = tH.',(t){(ty +2)1~ [4 i 14:(1 :_oul;z+4u
+-16t +4vt+ 1813t - 140384 6813 - 15013 — 61342 + 1813 ¢2
4(1+v)?
butd — 43¢0 - 10v313+2u’t"+2v°t‘] 4
YTy *

(10)

+

+ O(n‘)}.

Another reazonable choice for § is 6(3) = 1/t, Confidence intervals are ohtained for
this choice of & by simply dividing the endpoints of the usual confidence interval
for ¢ by X. The corresponding approximation has accuracy

es(t) = ¢HL(1) {%"' (11)
~6+11v~ 602403 -3But+ 603t —31314 30347 - 33| |
O(x%)}.
+[ 01 k' + 0(x%)
Finally, note that if
2 v v 2
=08 = =
6=10 (u+1)t+u+1 u+1[x3|,+1]’ (12)

then the O(x?) term in (8) is zero, and we have an approximation with accuracy
-2-3v+12v7 913+ 204 +wt — 16028 + 21038 - Tott
ealt) = tHL() d
2(14v)
+ 513¢% — 161317 + 90412 4 43u3t3 -5+t K+ 0 b
2(1+v)

(13)
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We will refer to the approximations corresponding to these four choices of 0 as
Approximations 1.4, or the McKay, David, Naive, and Modified McKay approxi-
mations, relpectively

3 Discussion

If x is ymall, as is usually the case in practice, e;(t) will also be small for j =
1,...,4, 50 any of the above approximations will be satisfactory. For large sam-
ples, 8(9) = 1 for j # 3; hence the three corresponding methods are asymptotically
equivalent. Investigation of e1(t) and es(t) demonstrates that David’s approxima-
tion is not clearly better than McKay's, and, in any case, McKay's method is much
more often used than David's. Also, Approximation 3, though adequate if x is suf-
ficiently small, is substantially less accurate than the other three approximations.
We will therefore not consider David's and the Naive approximation further, and
restrict attention primarily to the McKay and Modified McKay approximations.
Denvte ¢(:) regarded as a function of a by &.), that is &(a) = e[H;(a)).
The difference ¢(a) ® |&;(a)| — |§4(a)| will be positive when the Modified McKay
approximation is more accurate than McKay's approximation, and negative oth-
erwise. Hence this difference provides a means for comparing these two methods.
Using the noncentral ¢ distribution, it is straightforward to evaluate ¢(a) exactly,
and this is preferable to using the approximate formulas of the previous section.
In Figure 1, results sre displayed of computing ¢(a) numerically, for 20 values of
between .025 and .5; for sample sizes of 2, 5, 10, and 25; and for a equal to .01, .05,
.95, and .99. Note that the Modified McKay method is usually more accurate than
McKay's method, What is not clear from these differences is that, particularly
when « Is small, the Modified McKay approximation is often eztremely accurate:
in fact, virtually exact. This point is made by Figure 2, which shows the accura-
cies of these two methods (as determined from the noncentral ¢ distribution), as
functions of a, for a sample size of 5, and for x = .05 and x = .25, respectively.

4 Confidence Intervals and Hypothesis Tests

In this section, we illustrate how the approximate pivot (5) can be used for approx-
imate confidence intervals and one. and two-sample hypothesis tests. We assume
that x is positive, and that the probability of X being negative is negligible.




A 100(1 ~ a)% approximate confidence interval based on (5) is

K K
ve et ) o

where t; = x2,.,/2/v and t3 & X}, //v. One.sided intervals can be determined
similarly, If we let u; = vt;, for ¢ = 1,2, then we can write the McKay and
Modified McKay confidence intervals as

N % _ 2 ﬂ—lﬁ [( Uy -) ? i’-—l/ﬁ
A"‘{K[(uﬂ 1)x+u K[(GEr-1) k4 2 (15)

A= x[("*+2_1)x=+1‘1]"” x[(ﬁz_ﬂ_1)x=-+l‘!]"”
4 v v ’ v )

v41
(16)
respeactively.
Since (1+x3)/x? in (5) is & monotone function of x?, we can alsc use (5 to test

he null hypotheais Hy : x = Ko, for some known xo. An endpoint of the interval
(14) does not exist if ¢(6K3 4+ 1) — K? < 0, or equivalently,

’ t

K*> 0~i—_—;. (17)
In order for (17) to hold for the choices of 8 considered in this article, either K'?
must be large or ¢ must be small. Neither of these conditions are likely to occur in
practice except possibly when n and ¢ are both very small. If X is small but (17)
holds, then one can either reduce the confidence level, increase the sample size,
or else use the exact method based on the noncentral ¢ distribution. Note that if
6= Ofa) = 1/t; for 1 = 1,2, then (14) becomes

As = (K/vE, K/VE), (18)

which is the usual interval on o, with the endpoints divided by X.

Assume that we are given two independent random samples of sizes ny and ng,
having population coefficients of variation x; and x3, with sample estimates K
and K3, respectively, From (6) we see that

ngl+0Ka’! . nf!1+na’!

Kg(l + 01{?) ~ Rg(1+n¥)FVhW = TFVMV” (19)
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where F,, ., denotes an F random variable with v; = n; — 1 numerator and

"¥3 = n3 — 1 denominator degrees of freedom. When xy = 53, 7 = 1, and it is

eusy to show that 7 is monotone increasing in p = x3/x3. In fact, since we are
sssuming that both xy and x3 are small, 7 = p. Hence, we have an approximate
F test for the equality of two coefficients of variation, anslogous to the usual F
test for the equality of variances.

5 Examples

The tensile strength of five specimens of a composite material are as follows (in
1000 Psi): 326, 302, 307, 209, 329. We have X; = 312.6 and §; = 13.94, s0
that K; = 045, u; = ] gny = 11.14, and u; = x} o5 = .4844. Equations (15)
and (16) lead to confidence intervals on x by the McKay and Modified McKay
methods, respectively. For this example the Modified McKay procedure gives the

. 90% confidence interval (.0269,.1289), which differs from the McKay interval only

in the fourth decimal place.

Five specimens of the same material are tested in shear, giving shear strengths
as follows (in 1000 Psi): 0.7, 9.6, 9.4, 9.4, 10.9. For these shear data, X; = 9.8,
S; = .6285, and K; = .064. To test the null hypothesis that the population
coefficient of variation for tensile strength equals the corresponding value for shear
strength, we compute (for the McKay method)

K3[1 4+ va/(va+ 1)K3]) _ .045%(1 + (.8)(.0642 & AQK (20)
Since the probability that an Fy4 random variable is less than .495 is .256, there
appears to be insufficient evidence to reject this null hypothesis. Note that the

Modified McKay method is not appropriate for this significance test since 6(4) is
a function of a.

6 Conclusion

A class of approximate pivotal quantities for a normal coefficient of variation re-
lated to the approximation of McKay (1932) has been investigated analytically,
with particular emphasis on four special cases. The most important results are
that, if x denotes the population coefficient of variation, then the difference be.
tween the actual and nominal levels of McKay's (1932) confidence interval are of
O(x?), and that a very slight modification of McKay's method leads to an appar-
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ently new O(x*) method which is usually superior to McKay (1932), and which is
recommended.

Appendix: Derivation of Equation (8)

For most applications x will be small, so our plan is to let

g=gq(s?) = T-T-(TEW (21)

and to expand Pr[(X/x)? < ¢ in & Taylor series in &2, then to expand each term
in this series again in powers of k2, using (21), We assume throughout that ¢ is
nonnegative; this imposes slight restrictions on & and x which are not importa.nt

in practice.
The random variables X and § are equal in distribution to
X=p+Z0/y/m (22)
and )
S=vo \/w:u ' (23)
respectively; where Z ~ N(0,1), and Z and W, are independent. Hence
3 -2
(i:.) = W, (1+KZ/V7)™2 = [-"’%ﬁ] , (24)

where T, s denotes & noncentral-t random variable with degrees of freedom » and
noncentyality parameter § & \/n/x. By conditioning on Z and expanding in a
Taylor series about Z = 0, we have that

3
p="Pr [(%)’ < q] = E{H., [q (1+ f-f-=) ]} = H/(¢)+eHl(a)-{  (25)
[(1 qv -1 X 4 ~6 + 11y — 613 + 13 - Jvg + 613g - 33¢ + 33g? - u"q"

v+1 4(v +1)?
+O(x® )}.

Using (21), the terms in (25) can now be expanded in powers of x2 about x? = 0,
giving

H,(q) H,(t) + t(6t - 1)H(t)x? (26)

; t(6t — 1)%/2 [2H](t) + tH](t)] k* + O(x®),
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Hi(q) = H}(t) + (6t - D H(t)e” + O(x*), (27)

and
(l-qw-1_ (=tv=1 (6t~1)(v=1-21) , ‘
V+1 - V+1 U+1 N+O(K). (28)
Using the identity

tH(1) = [;-(1 -t)- 1] tH.(2), (29)

substituting (26), (27), and (28) into (25), and collecting terms in x? leads to (8).
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Improved periodogram-based estimators of frequency for the Cosinor model

By R, JOHN WEAVER, MARSHALL N, BRUNDEN and JONATHAN RAZ
The Upjohn Company, Kalamazoo, Michigan 49001
and the University of Michigan, Ann Arbor, Michigan 48109

SUMMARY

~ This paper discusses the estimation of the parameters of the Cosinor model. The standard
periodogram-based approach of Walker (1971) produces biased estimates of all the parameters, and it will
be shown that the bias in the froquency estimate can be substantial. An altemative periodogram-based
estimator of frequency is proposed and is shown to have minimal bias.

Some key words : Cosinor model; Frequency estimation; Periodogram; Time series.

1. INTRODUCTION

Suppose wo have a time series y, !mi,2,...,n, where y, is the observation taken at time ¢,
The model we consider is

Yi=0qcon(w,2)+B sin{w,t)+e,. (1)

where the errors ¢, are assumed to be independent with E (¢) = 0 and Var (¢) = a* for all £, This model
was proposed for the analysis of biological thythms by Halberg, Tong and Johnson (1963), who called
it the Cosinor model, Further detalls have bocn given in Halberg, et. al. (1972), Nelson, et. al. (1979) and
Bingham, et. al. (1982). This model has been extensively used and reported in the chronobiology literature,
and computer programs for its implementation have been published by Monk and Fort (1983) and Vokac
(1984). '

In matrix notation, this model can be expressed as

yuXob, +e

where y is the » X 1 vector of the observations, X, is the s X 2 design matrix with cos(w, ¢) in row
t of the first column, and sin(e, ¢) in row ¢ of the second column, The 2 X 1 vector ¢, equals ( 0, By
)'and ¢ is the # X 1 vector of error tesms. In the conventional Cosinor model, the frequency (or
equivalently the period) is considered to be fixed and known, and the subscript O indicates that X, is a
function of the true paramater value t, In this case, the model is linear in the unknown parameters @,
and B,, and the usual least squares estimates of ¢, apply.

Many times, however, we may not know the true frequency and we need a way to estimate all
the parameiers simultaneously. A common approach is to use the method of nonlinear least squares
esiiination. For the Cosinor model, these methods have problems with converging to local rather than
global minima, and are extremely sensitive to the choice of starting values. Aliernative methodology is
desirable,




2. STANDARD PERIODOGRAM Ef [IMATORS FOR THE COSINOR MODEL

A natural approach to this estimation problem would be to use a method based on the
periodogram, or some function of it. The periouogram has long been used in the hidden periodicity
problem, and E.T. Jaynes (1987) has demonstrate that it is a sufficient statistic for inferences about a
single stationary frequency, when the errors are ncrmally distributed.

Periodogram-based sstimators for the Cosinor model were proposed by Whittle (1952), and have
been extensively discussed by Walker (1971), who derived many of their properties. The estimators are

&@) = 23 y,con(00) @
iwl

B(a) = %): ¥,8in(0¢) ®
te]

where @ is such that

: max
() - O<w<x ()

and
2

zn: ye int

.2 = 9, .
I(w) = 7 (&) Blo))

The expression I,(m) is one of the usual definitions of the periodogram, and we will refer to it as.
the Standard periodogram. The estimator & is defined as the value of w that results in the absolute
maximum of /(@) for 0 < w < . This estimate of ® is used in (2) and (3) to get the estimates of o
and B, These estimators are equal to the least squares estimates when y is known and n = cP,, and are
called approximate least squares estimates (Bloomfield, 1976). Walker proved that they are consistent and
asymplotically normal, and gave expressions for their asymptotic variance matrix. Rice and Rosenblatt
(1988) show that the estimates of o, and B, will be consisteni only when w, is estimated with precision
0 (n"), and that the asympiotic theory should be used cautiously.

In obtaining the Walker estimates of frequency, Diggle (1990) suggested considering all
frequencies 0 < w < &, not just the Fourier frequencies. The algorithm searches for the ordinate that results
in a maximum along a grid of spocified length, centored on the Fourier frequency that produces the
maximum periodogram. This type of approach is also discussed in Rice and Rosenblatt (1988) and Zhao-
Guo (1988).

The Walker estimators have good asymptotic properties, but can be significantly biased for a
moderate length time series. If the model holds and E(y) = agcos(w, 1) + Besin(w, 1), then




E(8(@)|0) = 22 [ C,(w+ey) + C,(-0y)]

+ %’. [s,(m +y) = 8,(0-0,)],

where
sin (2¥)
S, (4) = sin(."_;.lu)._.j_.
sin(.;.)

. sin(" )
C.,(u) = cosL."_E_lu)_?_
sin(.g)

This expression simplifies to the following if © = o,

E(6(0) |o) -a,+.i:2c,(2m,) +l:2 5,(20,)

Similar expressions hold for B,

Any bias or estimation error in & may result in additional bias in the estimates of o, and f,
and even if we are able to estimate m, oxactly, our estimates of o, and B, will still be biased if » is not
an intoger multiple of the true period.

3, BIAS IN THE STANDARD PERIODOGRAM ESTIMATOR OF FREQUENCY

There has been little published on the bias of the Walker estimator of w,. The exact bias has not
been determined, but Bloomfield gives an indication of the approximate bias, credited to Whittle (1952),
as

E(®) = w, + lermlnvolvlng.;'l..

Rice and Rosenblatt also discuss the bias of the frequency estimate, and show for a moderate
length data series, the bias can be significant. In a simulation with oy = 8, f, = 0, @, = 0.5, and #=100,
the bias waa shown (o be .0013, which is more than twice the standard error indicated by the asympiotic
theory.

An analytic expression for the bias of the frequency estimator cannot be derived. As an
alternative, we will consider an approximation suggesicd by the work of Rice and Rosenblatt (1988). To
measure the bias in the estimator of w, we will approximate E(®) by the value of w that maximizes
the expocted value of the periodogram,

To derive the expectation, the periodogram is reexpressed in matrix notation, As in Section 1,
define the n x 2 matrix
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( cos{®) sin(w)\
cos(2w) sin(2m)
X(0) = . .

+

Lcos(nm) sin(nw),

For simplicity, we will write it as X in the discussion that follows, remembering that it is actually a
function of w. Again, let us denote X () as X,. The Walker estimators of o, and B, can then be written
in matrix notation as

¢,
= = 2 t
6}' 3, "nx y

and the Standard periodogram can be expressed as
1,(w) = 2 dyby

which is
I(w) » -;[%y'x][%x'y] - 2yxxy

The periodogram in matrix notation has a familiar form from the study of linear models. The
matrix XX' is square (1 x n) and symmetric, making the periodogram a positive semidefinite quadratic
form y‘Ay with matrix A = (2/n)XX ",

The expectation is easily derived using properties of quadratic forms. The Cosinor model can
be written as y, m 5, + ¢, ,fort= 1,2,...n, with s, = 0t cos (@, t ) + B, sin ( @y t ). In this form, the
vector y is composed of a signal vector s, with ¢* element s, , and a vector of errors €. For the general
signal plus noise model, the expectation of the corresponding quadratic form is

E(y'Ay) = 6*trace(A) + s'As

Applying this to the Standard periodogram we have

E(Zy-'xx'y]- 207 + .ﬁ.s‘XX's.
n ]

The first term has no effect on the location of the maximum, so only the second term will need to be
considercd,

"The expected periodogram is a function of the true parameter values oy, f,, w, and the sample
size n. Given values o: these paramelers, we can find the w that results in the maximum and obtain an
approximation to the bias, In general, for given values of wy, and a, it can be shown that the bias will be
the same for all o, and P, such that o = kf};. The bias depending on k is equivalent to the bias depending
on the phase 8, = arctan2(-B,/ay), since tan (8,) = - k when o, = kB,. We consider 6, equal to 0, /4, /2
and 3n/4, The values selected for the true frequency w, are the midpoints of each quarter of the interval
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(0,x]. Sample sizes of n ranged from 10 to 500, In order to ensure that we find the global maximum of
the expected periodogram, we use a grid search algorithm. The sxpected periodogram is first calculated
at the Fourier frequencies, and the Fourier frequency that results in the largest periodogram ordinate is
identified. This frequency is . Using o, as the center of the grid, a refined search with a grid mesh
of 0,0001 is made from .»,., to ®,,; representing a range of four Fourier frequencies, Extensive
simulations show that th - expected periodogram approach gives excellent estimates of the true bias.

Figure 3.1 gives a graphical picture of the bias in the estimator of frequency for one set of
parameters, 6, = 0 and true frequency @, = #/8, It shows that the bias itself is a periodic function of
sample size. This type of patiern was seen for all combinations of parameter values we looked at, though
the bias was sometimes negative, or alternated from positive to negative with increasing n.

Figure 3.1
Bias in the Standard Perlodogram Estimate
@ =0 o==n78
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0.00
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4, IMPROVED ESTIMATORS FOR THE COSINOR MODEL

We note the similarity between Walker's estimators and least squares estimators in Section 1, For
non-Fouricr frequencies, the Walker estimates of o, and B, are approximately equal to usual least squares
estimates when @ is known, and are equal when n = ¢cP, or when o is a Fourier frequency. This
relationship suggests another definition of the periodogram for non-Fourier frequencies, where we replace
the "approximate” Walker estimates by the actual ordinary least squares estimators,
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The ordinary least squares estimators of a, and B, are given by

al.l
- (xcx)-lxty

b "o

Define the "least squares” periodogram as
@) = 2 (0l + By = 2 b

or equivalently as the quadratic form
1¥(0) =y'Ay, A= .%(X(X‘X)"(X'X)"X').

Since the actual least squares and Walker estimators are equal et the Fourier frequencies, the two
periodograms aie also equal at these frequencies, As we have replaced "approximate” estimators with
"exact" estimators in the new periodogram, we might expect our estimate of frequency to improve also.
Again, the bias of the least squares periodogram estimator of frequency is approximated by
maximizing the expected periodogram. The least squares periodogram is also a quadratic form with
A= n/2(X(X'X)"'(X'X)"X") . Unlike the Standard periodogram, we initially cannot ignore the
contribution of the error term, since

3
trace(A) = .’F_%T(_ia .

where

This term has negligible effect unless the signal to noise ratio is very small, » is small or @y is close 1o
zero or 2x. The calculations of bias are performed for the same values of 0y, o, and # as for the Standard
periodogram.

The results show that estimation of the frequency based on the least squares periodogram is elso
biased and does not really offer an improveinent over conventional Walker estimates. This is illustrated
in Figure 4.1, which reveals an interesting and possibly useful relationship. In the cases examined, the bias
of the Least Squares periodogram estimate is always of the opposite sign as the bias in the Walker
petiodogram cstimate, and of approximate equal magnitude. This suggests using a periodogram that is in
some sense a combination of the two periodograms.
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Figure 4.1
Bias in the Least Squeres Periodogram Estimate
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The simplest combination is the arithmetic average of the two periodograms, & quudratic form
with

A=X[2l + 32X XXX

Based on the biases we have seen with the Standani and Least Squares periodograms, the
estimate of frequency based on the average periodogram is expected 10 give an unbiased estimator of w,
, or at least one with reduced bias. Calculations and simulations show that the latter is true. The new
average periodogram estimator has less bias than both the Walker or Least Squares estimators, and the
bias approaches zero faster as n becomes large. See Figure 4.2,

Another approach is 10 use a geometric average. Let us define the "composite” periodogram by
l lc v ';6; 6'_, *

Substituting in the matrix representations of the estimates gives
1S(w) = y'Ay, A=X(X'X)'X',

The matrix A is the familiar hat matrix from linear regression, and /,°(w) has a form simihiar to the
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Figure 4.2
Bias in the Average Perlodogram Estimate
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regression sum of squares in linear models. Again, when o is a Fourier frequency, (X' X ) = 2/n I, and
the Composite periodogram will be equal to the Standard periodogram.

We will show that the value that raximizes the expectation of the composite periodogram is
always o). Consider the expression

R, (w) =s's - s'X(X'X)"'X's
wgs!(I-H)s

where s is the signal vector and H = X ( X' X )" X', This is the difference between the total sum of
squares of the signal and the value of the periodgram at w. The following are true

s's>0 s=0
sHs20
s'U-H)s20

The first statement is immediate since the expression s's is a sum of squares, while the second and third
follow because H and 7 - H are both idempotent, From these we can also conclude s's 2 s'Hs. This
means that the absolute maximum value s'Hs can possibly attainis s's w s'Hs For the Cosinor model
the signal is s = X 0, 30 when X = X, we have
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S'Hs = §oXoXo(XoX o) ' XoX, 0,

- gly,

Thus, an absolute maximum occurs when X = X, , i.¢, when @ = t,. It can also be shown that the absolute
maximum is unique,

The key portion of this proof is that (7 - H)s is idempotent, and thus positive semidefinite, This
does not occur for the other periodograms. In fact, it can be shown by numeric example that s'As can
exceed s's in all of the other periodograms.,

The performance of the Composite Periodogram estimator of frequency was examined by
simulation study, From the Cosinor Model with oy, = 8,0, B, = 0.0 and a, = «).5 a total of 100G data
series, each of length n = 100, were generated with random Gaussian noise of mean 0 and variance 1,
The results of the simulation are reported in Table 4.1. The Standard periodogram produced biased
estimates of frequency, as well as bias in the estimates of the other two parameters. The Composite
periodogram gave an unbiased frequency estimate and the estimates of o, and B, were greatly improved,
but still biased, The biases were expected, since in section 2, we saw that even with w estimated without
bins or error, we still obtain biased estimates for o, and f,. Using this fact, we construct the biss-corrected
estimates

& =6 - %c,(m)o,(zo) - .gs_(zo)b,(za)
and

B =p - .:ls,(zm)o,(za) . %c,(za)n,(m)

We will call these the adjusted Composite Periodogram estimators. Simulations, reported in Table 4.2,
indicate that the adjusted estimators are now approximately unbiased,

5, SUMMARY AND CONCLUSIONS

We have considered four definitions of the periodogram, given by
1) = o byby

LX) = ;&L,&L,
1Y () = (Y (@) + 1¥ (@)

IS(w) = ;6;6“

These are called the Standard, Least Squares, Average and Composite periodograms, The periodograms
are equal at the Fourier frequencies, differing only in how they approximate the periodogram betwoen
these frequencies. They may be expressed as quadratic forms in y, allowing us to casily compute their
expectations and to compute the approximate bias in the frequency estimates based on thase periodograms.

Based on maximizing the expected periodogram, the Standard and Least Squares periodograms




19¥1°0 SSFI0 eeI0T 9¥CT0 9SFI0 125071 0001 0
9000°0 90000 00050 £1000 90000  ZI0S0 0050 w
8682°0 GS8Z°0 SZI0°0- £265°0 €620  95.70 0000 9
Z6¥1D Y10 ¥S56°L PISTO STFI0  19%6L 000'8 %
A4S “AaqPIS uBoW IS ‘A% PIS WOl onqes onil, JPWRIBJ

P4

wriSopouag aysodumy) weidopouag paTpun)g -

sayexday 0001
T4 weISopoa] JAYTEM PISPURIS 9} JO




09%1°0 2544 €z10'1 19%1°0 9G¥10 ee10Y 0001 L
9000°0 9000°0 000S°0 90000 9000°0 00050 00S°0 ®
£¥820 £3820 L2000 86820 GS8Z0 GZ10'0- 0000 °d
9Z¥1°0 azZ¥10 LL66'L Z6¥1°0 ¥ZF10 $GG6'L 000’8 °n
ASW ‘AT PIS UBI ) ISH ‘A PSS | wesly nEBA S0I], IJSWRIE
weidopoLRg amsodwo)) weISopolRd pIepuR)S
paisnfpy
sayexriday 0001
sIjewries WeISopouay wodo)) pasnlpy
aq) Qe weidopoua ymwodmwo)) gy Jo

Y Aq3L



produce biased frequency estimators for moderate n. The Averuge periodogram estimators are also biased,
but to a lesser degree than either component. The estimators based on the Composite periodogrum are,
on the other hand, unbiased for all combinations of true parameter values and all #. The Composite
periodogram also has a familiar interpretation in terms of the least squares problem of fitting Cosine
curves, making it easy to implement.

We also propose bias-adjusted estimators of o, and B,, using the Composite periodogram
estimator of frequency. Simulations show that these estimators are approximately unbiased, and that the
Standard and Composite Periodogram estimators have similar variances. Based on these results, we would
strongly recommend using our new estimators for fitting the Cosinor model to individual data series.
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Meta-Analysis of Gas Flow Resistance Measurements Through Packed Beds
Malcolm S. Taylor and Csaba K. Zoltani®

Measurements of the resistance to fiow through packed beds of inert spheres have
been reported by a number of authors through relations expressing the coefficient of drag
as a function of Reynolds number. A meta-analysis of the data using improved statistical
methods is undertaken to aggregate the available experimental results, For Reynolds
number in excess of 10° the relation 1og F, = 0,49 + 0.9010ogRe’ is shown to be a highly
effective representation of all avatilable data.

Nomenclature

Dy, = spherical particle (bead) diameter
D, = test chamber diameter

, - v a
£, ReT(1=h (12_ 9 , friction factor

AP D% ¢ .,
| L 1_¢),coefﬁclentofclrag

Fy, = i-th observed value of the drag coefficient

F,,* = predicted drag coefficient corresponding to
the i-th observed value

L. = length scale

Re = Re, ¢ = pliD, ¢/, Reynolds number

Re’ = Re/(1 - ¢)

Re, = Reynolds number based on particle size

{ = average gas velocity

Bi» 1=0, 1,2 = model coefficient

AP = change in pressure

p = density

¢ = porosity of the packed bed

(1~¢) = solids loading

4 = gas viscosity

1. U.S. Amy Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066. This material

also appears in ARL-TR-301, November 1993,
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1. Introduction

Experimental results are cumulative if in aggregate they unify and extend empirical
relations and theoretical structures which may be obscured in individual investigations.
Empirical cumulativeness, which Hedges (1987) describes as "... the degree of agreement
among replicated experiments or the degree to which related experimental results fit into
a simple pattern that makes conceptual sense," is the focus of this paper. Glass (1976)
was among the first to recommend the use of quantitative procedures in integrative re-
search reviews and to introduce the term "meta-analysis' to cover the collection of such
procedures. Meta-analysis claims certain classical statistical procedures, as well as ap-
proaches developed specifically for research synthesis, and has found application in the
social and biological sciences. The unification of experimental results obtained by differ-
ent investigators, operating independently with their own experimental protocol and
sometimes using different methods of analysis, is the kernel of meta-analysis. A compre-
hensive treatment of this subject is given by Hedges and Olkin (1985).

Measurement in the physical sciences is generally regarded as highly accurate, and
although some variability is inevitable, the variation itself is thought to be insignificant
from a practical standpoint. Counterexamples to this notion are plentiful, even in careful-
ly conducted experiments, Consider, for instance, the situation described by Touloukian
(1975) involving two sets of measurements taken on the thermal conductivity of gadolini-
um. These data, shown in Figure 1, " ... are for the same sample, measured in the same
laboratory two years apart in 1967 and 1969, The accuracy of curve 1 was stated as with-

in 1% and that of curve 2 as 0.5% ... " and yet, the curves differ by more than several hun-
dred percent at higher values of temperature,
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Figure |. Thermal conductivity of gadolinium.




Physical scientists normally bring a careful qualitative analysis to their research
studies. If prudently employed, interrogative statistics, which are part of meta-analysis,
have a contribution to make in the physical sciences as well,

After data has been collected according to a carctully constructed experimental de-
sign (e.g., see Montgomery 1991) the main reason for determining a correlation (a regres-
sion analysis) is to examine the effects that some variables exert, or appear to exert, on
others. Even when no intuitive physical relationship is apparent, regression analysis may
provide a convenient summary of the data, The summary can be accomplished in a num-
ber of ways and has been an active area of investigation since the time of A M. Legendre
(1752-1833), who published the first account of regression by least squares in 1805, Sec-
tion 2 of this paper reviews the correlations that have been advanced for steady flow
‘hrough inert spherically packed beds and some of the consequences of the attendant data
analysis. In Section 3, a meta-analysis of the gas flow resistance measurements is under-
taken, Section 4 contains a summary and main conclusions,

2. Regression Analysis of Gas Flow Resistance Measurements

Ergun (1952), Kuo and Nydegger (1978), and Jones and Krier (1983) have pro-
posed models relating coefficient of drag to Reynolds number for steady flow through
packed beds of inert spheres, However, the correlations were developed under different
experimental regimens. Robbins and Gough (1978) also investigated coefficient of drag
at high Reynolds number but presented their results in terms of a friction factor

f," = m » Which is the ratio of coefficient of drag F,, and Reynolds number Re
scaled by a solids loading factor (1 - ¢).

In comparing Ergun’s relation
F, = 150 + 1. 75(-2-), (1)
1-¢
to that of Kuo and Nydegger
F, =276.23 + 5. 05(%)“". 2)
or of Jones and Krier
F, =150 +3, 89(%;)“". 3

a slight notational difference portends substantial complications. Equation (1) is a simple
linear model. Equations (2)-(3) are nonlinear in the sense that one or more parameters
appear nonlinearly. Nonlinearity complicates the statistical analysis of the data since de-
termining appropriate choices for the parameters in equations (2)-(3) becomes a computa-
tionally intensive optimization procedure, and inference about the resultant relation and
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parameters becomes much more tentative, The mathematical underpinnings of nonlinear
regression will not support as much in the way of statistica! inference or hypothesis test-
ing as is available for linear regression. In general, nonlinear models should be avoided
unless there is a compelling reason for their use. Draper and Smith (1981) discuss this is-
sue in greater detail.

Standard regression procedures are developed under several assumptions. Funda-
mental among these is that the response (here, F,) is measured with error but the predic-
tor(s) (here, Re and ¢) are measured without error. Jones and Krier vrovide estimates of
error for F,, Re, and ¢, confirming that this assumption is not met, and call into question
the efficacy of the resultant correlations, Sometimes an attempt to circumvent this re-
quirement is undertaken by arguing that the error in predictor measurement is sufficiently
small as to be ignored when compared to the range of the predictor variable. If this claim
is invoked, reliance upon any resultant representation must be tempered accordingly.

Since a correlation provides a convenient representation of the available data, a di-
rect attempt at evaluating the adequacy of a regression equation involves an examination
of the differerces between the measurements taken and the values predicted by the equa-
tion. These differences, F, —F, ", 1= 1, 2, ..., n, are called residuals; F, is an experi-
mentally determined value of drag coefficient, and F,’ is the corresponding value predict-
ed by the regression equation. A residual plot for equadon (3) is shown in Figure 2,

These plots may serve as a diagnostic tool in addition to assessing the adequacy of a fitted
regression model.
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Figure 2. Residuals vs. particle diameter Dy;
Jones and Krier data with 6 mm beads excluded.

Figure 2 strongly suggests that another crucial regression assumption is not satis-
fied. The variance of the residuals does not appear constant over the range of Re” =
Re/(1 - ¢); and moreover, the departure from the fitted equation is systematic with bead
diameter, D,. Jones and Krier reccommend reverting to the relation (2; proposed by Kuo
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and Nydegger to describe their own measurements taken for 6 mm beads. This recom-
mendation is data specific and is difficult to justify in general. They conjecture that an in-
teraction between bead size and tube diameter may be present, but this requires quantita-
tive substantiation. In general, weighted lcast squares, or a transformation on the obser-
vations F,, before regression, are potential corrective procedures suggested by this residu-
al pattern,

2.1 Regression Analysis Revisited

Nonlinear regression algorithms normally seck to minimize the sum of the squared
residuals~~as in ordinary linear regression—in attempting to determine the "best" choice
of parameters to model the data. These procedures have previously been cited as compu-
tationally intensive. More specifically, they are iterative and may diverge or converge to
local extrema, depending upon the choice of initial conditions. Through a systematic se-
lection of initial conditions, the authors determined that the equation _

R, =61 +2, 7(TR:°-;)°-", @

provides an improved representation of the data reported by Jones and Krier,

The root mean square error (RMSE), an estimate of the standard deviation of the
residuals and a commonly used measure for adequacy of fit, is reduced by 20% compared
to that corresponding to equation (3). The measurements taken on the 6 mm beads, the
chief contributor to heterogeneity of variance, have been excluded from the regression,
making the comparison with Jones and Krier direct. A reduction of one-fifth in RMSE is
not by itself a stunning improvement, but it does focus more sharply on the underlying
physical process. The residual plot for equation (4) still exhibits the undesirable pattern
of under(over) fitting categories of bead diameter, but is an improvement compared to the
display in Figure 2,

The data collected by Robbins and Gough (1978, 1979), which "... correspond to
several tests performed on several occasions' for beds of spheres, right circular cylinders,
and multiperforated cylinders, m% be transformed into units appropriate for comparison
through the relationship f,” = . The authors confined the analysis to data taken

v
Re/(1-¢)
on 1.27 mm diameter lead shot and on 4,76 mm and 7.94 mm diameter steel spheres, and
determined the cquation

F, =-237+3, 14(1—%)“”, ()

for representation of flow through spherically packed beds. Equations (4)-(5) are shown,
along with the previously established correlations (1)-(2), in Figure 3,
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Figure 3. Proposed models for relating cosfficient of drag
and Reynolds number.

Transforming the variables (Re’, F,) by taking logarithms, which was suggested by
the residual plot in Figure 2, effectively linearizes the data. In regression analysis, a mea-
sure of precision of the regression line which is used in addition to RMSE, is given by a
statistic denoted as R, R? assumes values in the unit interval [0, 1] and quantifies the
amount of variation in the response accounted for by the regression line. Values close to
one are highly desirable, indicating that the regression has effectively accounted for most
of the variation in the response. The regression line determined after logarithmic trans-
formation of the Jones and Krier data has R? = 0.98, The transformed Robbins and
Gough data have R? = 0,99. These values are so close to 1.0 that pursuit of a nonlinear
model is difficult to justify mathematically,

Comparison between linear models and nonlinear models is difficult. RMSE val-
ues cannot be compared across the transformation, and a well-defined R? statistic for non-
linear models does not exist.

3. Meta-Analysis of Gas Flow Resistance Measurements

Cotusider in aggregate the correlations that have been advanced for gus flow resis-
tance measurements through spherically packed beds. For the nonlinear models, a statis-
tical resampling plan is applied, whose goal is to extract information from a set of data
through repeated inspection. The procedure is called the "bootstrap,” named to convey its
self-help attributes, and it attempts to address an important problem in data reduction—
having computed an estimate of some parameter, what accuracy can be attached to the es-
timate? Accuracy here refers to the "+ something" that often accompanies statistical esti-
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mates, and may be conveyed through such devices as variance, RMSE, or confidence in-
terval. For the log-linear model, the available data are directly combined.

The authors are hindered in fully exploiting a meta-analysis approach by the inabil-
ity to obtain all of the pertinent experimental data. It is unfortunate that experimental da-
ta are not routinely archived after collection; otherwise, additional information that it may
hold is lost to extraction by subsequent investigations and by alternative statistical meth-
ods. The data of Jones and Krier and of Robbins and Gough were accessible. With these
data, this paper proceeds as far as statistical prudence permits,

3.1 Bootstrapping Regression Correlations

Detailed descriptions of the bootstrap and accounts of its successful applications
are amply documented (e.g., Efron (1979, 1982)), Efron and Tibshirani (1985), LePage
and Billard (1992). The computational contrivance that the bootstrap procedure exploits
is the generation of perturbed data sets from a single set of data through sampling with re-
placement, Specific to this study, the set of paired observations taken on coefficient of
drag and Reynolds number, {(F,, Re, ), ..., (F,, Re, )}, that is the basis for a reported
correlation, is sampled with replacement to generate another  set
{(F,,*,Re; ™), ..., (F,* Re, ")} whese elements are copies (with duplication) of the
original measurements. This set is called a bootstrapped data set. Ths process of sam-
pling with replacement to generate bootstrapped data sets is repeated many times.

If a correlation is determined for each bootstrapped data set and its equation plot-
ted, an indication of the sensitivity of the regression line to perturbation of the original
data comes into focus. In Figure 4, the results of 1000 replications of this process are
pictured. The outermost iines indicate boundaries within which the correlation (5) might
be expected to lie if the criginal data set were simply perturbed. They were obtained
fromn the maxima and minima of the drag coefficient predicted for particular values of
Re’.2 The envelope constructed for correlation (5) contains correlation (4). This suggests
that no significan: difference between these empirical relations exists, Similar results are
obtained if we begin with correlation (4); correlation (5) will lie within the corresponding
confidence cnveiope. Consideration of perturbed data is highly appropriate here, since
experimental results cannot be expected. to be reproduced, even if the experiment is repli-
cated under tightly controlled conditions. The theoretical justification for the use of boot-
strapped data is given by Efron (1982).

The relationship of Kuo and Nydegger, for which the experimental data was not ac-
cessible, was determined for a single diameter bead, D, =0. 83.

2. More preciscly, the values represent extreme quantiles after all of the Fys have been ranked; theii
values are nct essentially different from maxima and minima.
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Figure 4. Bootstrapped confidence envelopes for nonlinear regression
(based on Robbins-Gough data),

3.2 Log-linear Regression

Figure 5 displays the logarithmic transformed data of Jones and Krier, and Robbins
and Gough, combined, The fitted line for these data is

logF, = 0.49 + 0,90 log R¢’; (6

included in the regression are the data taken on 6 mm beads which were previously ex-
cluded.

Visually, the data appear lincar after transformation. Statistically, the R2-value for
the regression is 0.99, making the fitted line a highly satisfactory representation of these
data for all practical purposes.
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4, Summary and Conclusions

For Reynolds number exceeding 10, a more effective representation and data anal-
ysis than presently available can be obtained after logarithmic transformation of the data.
This linearizes the data and removes the necessity for nonllnear regression techniques,
The equation

logF, =0.49 +0.90logRe’ - o

is an effective description of the available experimental data.
If a representation of the form
Fy = By + Ai(Re/1 - ¢} ®

is required, then Jones and Krier's results are more effectively reflected through the equa-
tion

Re )o 91

F, =61 +2, 7( 9)

and Robbins and Gough’s data restricted to spherically packed beds provide the relation

F, = ~237 + 3, 14( ¢,)°"9 (10)




but here again, approximate confidence envelopes constructed with the aid of the boot-
strap suggest that these relations can be combined without loss of underlying physical in-
sight. In total, the statistical analysis supports the combination of the various correla-
tions, for the stated test conditions, into a single relationship,

While it is quite reasonable to suspect an interaction between the geometry of tube
and packing, perhaps reflected through the ratio D./D,, more extensive testing is required
to establish this relation, Hopefully this will be done in accordance with 2 formal statisti-
cal experimental design to minimize testing and maximize extraction of information.

G.E.P.'Box, an important contemporary statistician, has remarked that "No model
is correct, but some are useful.” In this spirit these remarks are offered along with the
hope for an incremental move toward a more useful model.
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DESKTOP MODELS FOR WEAPONS ANALYSIS

JOHN D'ERRICO
EUGENE F. DUTOIT

DISMOUNTED WARFIGHTING BATTLE LAB

A. INTRODUCTION

The purpose of this report is to provide a collaction of simple, desktop computer models for
operations rescarch analysts and others within the combat developments area.

It was not intended that any of these models shouid replace the more complex models available
to oombat developers. Thare seems to be no lack of coraplex models, or efforts to produce more
of the same. This report, on the other hand, attemnpts to attack the other end of the modeling
spectrur,

Many operations research snalysts, authors of new concepts, action officers who are developing
operational requirements documeats, and others, are not well served by the large, complex
modals which demand much in the way of resources, time, knowledge, and money, in order to
use them.

On the other hand, there has been a substantial void in the number of models available to combat
developments action officers to help them in their day-to-day work. This is the area which this
report attempts to resolve, at least to some extent.

Each model in this report has been thoroughly reaearched, developed, and tested. Ample
references to souroe doouments have been cited. The format used to describe each model was
based on eass of understanding and use.

A 3.5" disk , containing all the models, sample dats flles, and programs described herein, can be
obtained by sending a blank, DOS-formatted, 3.5" doublo denaity or high density disk to:

Commandant

U.S. Army Infantry School

ATTN: ATSH-WCS (Mr. D'Errioo)
Fort Benning, GA 31905-5400
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B. PROBABILITY OF HIT MODEL

1. Introduction.

a. Description. This model, developed by Mr. john D'Errico, calculates the probability of
hit for direct fire, single shot weapons, against a point target. Inputs required are the weapon's
biases and dispersions, the target dimensions, the firer's aimpoint on the target and the range to
the target. The resulting probability of hit is displayed on the screen.

b. Limitations. This program computes the probnbﬂity of hit based on the measurements
of a two-dimensional target. It uses a process similar to the one used in'many wargame models.

¢. Applications. Desktop analytic tool for studying weapon accuracies and calculating
prpbabllltiu of hit based on biases and dispersions provided by AMSAA and JMEM.

d. Setup, This model runs on a DOS-based computer. Data can be entered into the
model in a few minutes, and results are displayed in less than one minute,

2. Guide to Operation.
a. Bquipment Required.
(1) IBM compatible PC computer.
(2) 3.5" disk drive.
b. Installation.

4% (1) Tum on the computer and get to the bOS prompt.

(2) Insert the 3.5" disk containing the PHCALC model into your computer's disk drive.

% (3) From the DOS prompt, enter the command: A:PHCALC (or B:PHCALC lfyo‘u‘re
using the B: disk drive).

¢. Definitions.

(1) Horizontal shift in aimpoint from target center, in centimeters: If the firer's
intended aimpoint is to the left of the target's center, the user should input the number of
centimeters to the left as a negative number (e.g., -23). If the firer's intended almpoint is to the

ris;n of the target's conter, enter the number of centimeters to the right as a positive number (e.g.,
12).




(2) Vertical shift in aimpoint from target center, in centimeters: I the firer's intended
aimpoint is below the target's center, enter the number of centimeters from the center as a
negative number. If the firer's intended aimpoint is above the target's center, enter the number of
centimeters from the center as a positive number,

d. Operation.

(1) This program determines the probability of hit on a rectangular, two-dimensional
target. If you wish to obtain the probability of hit on a target composed of two rectangles, (a
vehicle consisting of a hull and turret), you merely need to keep in mind the location of the single

aimpoint on the target, and run this program twice—once for each rectangle--and manually add
the two resulting probabilities.

(2) For example, assume you are firing a missile at a tank 300 meters away. Its frontal
measurements are: 300 om wide by 200 om high for the hull, and 200 om wide by 100 em high
for the turret. Your aimpoint is the junction between the turret and the huil. The missile's biases
and dispersions are shown in Screen 1. Using this program you will determine the separate
probabilities of hit for the turret and the hull, keeping in mind that your aimpoint for both is the
turret ring. When you enter the data for determining the probability of hit against the turret, your
vertical shift in aimpoint from the center of mass is -S0cm because your actual aimpoint is 50 cm
below the turret's center of mass. In determining the probability of hit for the hull, you must
indicate an upward shift of +100 cm from the hull's center of mass. Adding both probabilities will
give you the probability of hit againat the target.

(3) Actual prompts and sample inputs for the turret are shown in Screen #1.

/Horlzonul fixed bias (mils):? 0
Vertical fixed bias (mils):? 0

Select one of the following:
1 ~ Total horizontal & total vertical dispersions
2 - Soparate variable & random error dispersions.

(Eater 1 or 2 from the keyboard)? 1

Total horizontal dispersions (mils).? 3
Total vertical dispersions (mils):? 3

Target width (centimeters):? 200
Target height (centimeters):? 100
Distance to target (meters).? 300
Horizontal shift in almpoint from target center (cm):? 0
Vertical shift in aimpoint from target center (cm):? -50

Screen #1
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(4) The following result will be displayed on your screen.

‘ The probability of hit, P(H), is .2754702 . I

Screen #2

(5) To run the program again, enter A:PHCALC or B:PHCALC

Horizontal fixed bias (mils):? 0
Vertical fixed bias (mils):? 0

Select one of the following:
1 - Total horizontal & total vertical dispersions
2 - Separate variable & random error dispersions.

(Enter 1 or 2 from the keyboard)? 1

Total horizontal dispersions (mils):? 3
Total vertical dispersions (mils):? 3

Target width (centimetars):? 300
Target height (centimeters):? 200
Distanos to target (meters):? 300
Horizoutal shift in aimpoint from target center (cm):? 0
Vertical shift in almpoint from target ceater (om):? 100

Screen #3

(6) The probability of hit for the hull will be displayed as follows:

' The probability of hit, P(H), is .4444504 I

Screen #4
(7) Adding the results for the turret (Screen 2) and the hull (Screen 4) gives the
probability of hit on the tank.
2754702
4444504
7199206
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e. Explanation.

(1) This model uses the probability density function for a random variable having a
normal distribution: fx) = [1/(g 2% )] {exp[-(x-4)*/(20°)]}, where 4 is the population mean and
o i8 its standard deviation. In calculating probability of hit, the fixed bias is taken as the mean,
and the total variable biases and dispersions are taken as the variance. '

(2) Since a rectangular target has two dimensions, width and height, the problem
becomes one of determining the joint probabilities of hitting the target within its horizontal
boundaries and, simultaneously, within its vertical boundaries.

(3) To keep measurements oonaistent.l the biases and dispersions are converted from
mils to centimeters on target at the given range to the target. This conversion is by.the equation

200(Range in meters)tan[(6/2)(.00098175)]

where the constant .C0098175 is used to convert mils to radians, and © represents the mean or
standard deviation in mils.

(4) Given that the mean and standard doviation in the horizontal direction: are
converted to ceatimeters, and the width of the target is in centimeters, the distances of the
horizontal boundaries of the target are transformed to standard form using the equation
z = (x-4)/o. The probability density function of the standard normal variable then becomes

&(x) = (1/V2 Yexp(-£/2)

(5) Integration of the probability denaity function with the z.scores as the limits of
* integration yields the probability of hit in the horizontal direction. :

(6) The same process is used to determine the probability of hitting the target within
the vertical boundaries of the target.

7) Finally, the probability of hitting the target within the horizontal boundaries is

( ‘
multiplied by the probability of hitting the target within the vertical boundaries, and the result is
the probability of hitting the target.

(8) The trapezoidal method of integration, with 100 intervals, is used in this model.




C. PROBABILITY OF HIT PLOTTING MODEL

1. Introduction.

a. Description. This model, developed by Mr. John B'Errico, plots the hits for.direct fire,
single shot weapons, against a point target.” Inputs required are the weapon's biases and
dispersions, the target dimensions, the range to the target, and the number of iterations (i.e., the
number of single shots to be plotted). The results are displayed graphically on the screen.

b. Limitations. This program plots the strike of each bullet relative to a two-dimensional

target.

c. Applications. Desktop analytic tool for studying weapon accuracies. In effect, this
model is a graphic, stochastic version of the PHCALC probability of hit model.

d. Setup. This model runs on a DOS-based PC computer. Data can be entered into the
mode! in a few minutes, and results are displayed in less than one minute.

2, Gﬁide to Operation.
a. Equipment Required.
(1) IBM compatible PC computer.
(2) 3.5" disk drive.
b. Installation.
(1) Tumn on the computer and get to the DOS prompt.
(2) Insert the 3.5" disk containing the PHCALC model into your computer’s disk drive.

(3) The process for printing the display with a printer depends on the version of DOS
being used, the type keyboard, and the type of printer, but you must prepare for it now.

(a) For DOS 5.0, type the command GRAPHICS GRAPHICS (the word
“graphics," typed twice, separated by a space) from the DOS prompt, before running this
program. With an enhanoed keyboard, pressing the [Print Screen] key, or the (Shift] + [Print
Screen] keys, should print the display on your printer.

(b) If your version of DOS is older than 5.0, you should type the command
GRAPHICS at the DOS prompt before running this program. If you have an unenhanced
keyboard, the keys [Shift] + [Prt Scn] should print the screen on the printer.




(4) From the DOS prompt, enter the command: A:PHPLOT (or B:PHPLOT if you're
-using the B: disk drive).

c. Operation.

(1) This model places a target on 'the screen, scaled to the height and width inputs, und
then displays the impact of each round in the target area, according to the weapon's biases and
dispersions and range to the target.

(2) Program prompts and sample inputs are shown below, in screen #1.

Eater the horizoatal fixed bias (mils) of the weapon system? 0
Enter the vertical fixed blas (tails) of the weapon system? 0
Total horizontal variable biases & dispersions (mils)? 3
Total vertical varisble biases & dispersions (mils)? 3
Enter the weapon-target range in meters? 300
Enter the height of the target in meters? 2
cater the width of the target in meters? 1

Enter the number of single rds to be fired? 200

Screen #1

(3) Upon entering the last input, a result similar to the one shown on the following
page will appear on the screen. The display remains on ths screen until any key is pressed, in
case the user wishes to print the display on his printer. Pressing any key (except the print screen
keys) will clear the screen, and return the user to the DOS prompt.

(4) To run the program again, enter A'PHPLOT or B:PHPLOT, whichever is
appropriate.

d. Explanation. Given the biases and dispersions, this model samples from a normal
probability distribution for the accuracy of each round, then determines the impact point based on
the “ange to the target. The method used to generate normally distributed (pseudo) random
numbers was proposed by Marsaglia and Bray in 1964. (Reference 8)
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D. FORCE EFFECTIVENESS INDICES MODEL
1’ Introduction.

a. Description. This model, from the TATAWS study (Reference 7), programmed and
modified by Mr, John D'Errico, determines the value of each weapon system in a wargame, based
on input from the killer-victim scoreboards. In general, the value of a weapon in a wargame is
based on the values and quantities of opposing forces killed by that weapon.

b. Limitations. Force effectiveness indices are not commonly used, and as such, are not
familiar to decision makers.

c. Applications. Desktop analytic tool for evaluating the effectiveness of a weapon within
u wargame.

d. Setup. This model runs on an IBM compatible PC computer. Data can be entered
into the model in a few minutes, and results are printed in less than one minute.

2, Guidé to Operation.

a. Equipment Required.
(1) IBM PC compatible computer.
(2) 3.5" disk drive, °
3 Dot matrix Printer.

b. Ins;tauation.
(1) Turn on the computer and get to the DOS prompt.
(2) Insert the 3.5" disk containing the FEI2 model into your computer's disk drive.
(3) Turn on your printer, and make sure that it is "on line."

(4) From the DOS prompt, enter the command. A:FEI2 (or B:FEIL2 if you're operating
from a B: disk drive).

¢. Operation.

(1) Essentially, you will be asked to enter the names of Red and Blue weapon systems,
and data from a killer-victim scoreboard. Whether you are conducting a trial run or
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not, you should save your data via main menu item #3--it will keep you from being frustrated in
cas¢ you exit the program unintentionally (power interrupt, etc...) and have to enter the data all
over again. Also, if you make a mistake while entering data, continue to enter the remainder of
the data since you will be able to make any changes when you're done.

(2) The prompts you will see, and sample rosponses, are shown on the following
facsimile screens. .o .o .

(3) The first menu, also called the main menu, is as follows

1 - Enter Data

2 - Change Data

3 - Save Data

4 - Perform Computations & Print Results
5 - Quit

(Enter one of the above numbers)

1

Screen #1

(4) Entering the number 1, in Screen #1, leads to the next menu.
[

1 - Enter Data From Keyboard
2 - Bnter Data From Disk
3 - Return to Main Menu

(Enter one of the above numbers)

71

Screen #2
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(5) Having selected the method for entering data, you will next be asked to enter the
title for this case. The response in this example is "Test Case #1, 22 Dec 92, John D'Errico."

ENTER TITLE OF GAME. Test Case #1, 22,Dec 92, John D'Errico

Screen #3

(6) You will now be asked to enter the number of Blue weapon types, followed by the
name of each Blue weapon type. For example, the killer-victim scoreboard might show three
types of weapon systems: tanks, Bradley Fighting Vehicles, and Improved TOW vehicles,
Therefore, you would enter 3 for the number of Blue types, followed by the name of each type.
When entering the names of the weapon systems, try to use no more than five or six characters,

such as M1A1 or BFV-1 or TANKI; otherwise, the printout becomes too crowded and difficult
to read.

(7) Itis suggested that you enter every weapon system on the killer-victim scoreboard.
Later on, this program will allow you to choose those Blue and Red weapons you wish to have
included in the force effectiveness ratios.

(

ENTER NO. OF BLUE WEAPON TYPES. ? 3

ENTER THE NAME OF BLUE WEAPON # |
T TANK

ENTER THE NAME OF BLUE WEAPON # 2
? arv

ENTER THE NAME OF BLUE WEAPON # 3
7 HMMWY

Screen #4




(8) Similarly for the Red weapon types.
r~

ENTER NO. OF RED WEAPON TYPES. ? 3

ENTER THE NAME OF RED WEAPON # 1
7 TANK

ENTER THE NAME OF RED WEAPON # 2
? smP

mmumovmm#s
7 BaDM

Screen #S$ -

(9) Now you will be asked to il in the data from the killer-victim scoreboard. Read
each prompt carefully, and you should have no trouble entering the correct data, If you make a
mistake, keep going with the correct data, You will be able to make corrections later by

uloctlng tho "Chmge Dltl" item ﬁ'om the maln menu, Kmhmuhmw

- ENTER NO. OF RED TANK KILLED BY BLUE TANK
73

ENTER NO. OF RED BMP KILLED BY BLUE TANK

74

ENTER NO. OF RED BRDM KILLED BY BLUE TANK
72

ENTER NO. OF BLUE TANK
76

Screen #6

(10) Similar displays will request the remainder of the Blue vs Red and Red vs Blue
results, as follows.




(11) Red vehicles killed by Blue BFV:

( ENTRR NO, OF RED TANK KILLED BY BLUE BIFV
75

L)
BNTER NO, OF RED BMP KILLED BY BLUB BFV
73

ENTER NO, OF RED PRDM KILLED BY BLUE BFV
71

ENTER NO. OF BLUE BIFV
12

Screen #7

(12) Red vehicles killed by Blue HMMWYV:
r

ENTER NO, OF RED TANK KILLED BY BLUS HMMWY
70

ENTER NO, OF RED BMP KILLED BY BLUR HMMWV
72

ENTER NO, OF RED BRUM KILLAD BY BLUR HMMWY
70

BNTER NO. OF BLUE KMMWY
72

Screen #8

(13) Blue vehicles killed by Red tank:

ENTER NO, OF BLUE TANK KILLED BY RED TANK
72

ENTER NO, OF BLUS BFV KILLED BY RAD TANK
T4

ENTER NO, OF BLUR HMMWV KILLAD BY RED TANK
?0

ENTER NO. OF RED TANK
712

Screen #9




(14) Blue vehicles killed by Red BMP:
(

ENTER NO, OF BLUR TANK KILLED BY RED KM
73

ENTER NO, OF RLUE BFV KILLED BY RED BMP
73 :

:unm.ammmmnumn
1

" ENTRR NO, OF RED BMP ‘
712 \

Sereen #10

(18) Blue vehicles killed by Red BRDM:

ENTER NO. OF BLUB TANK KILLED BY RED RRDM
71

ENTRR NO. OF BLUS AFV KILLED BY RED BRDI
73

ENTER NO, OF BLUR HMMWY KILLAD BY RED BADM
70

ENTRR NO, OF RXD BADM
74

Screen #11

(16) The programn now returns to the main menu. (SAVE YOUR DATAL)
(f

1 - Bater Data

2 - Chauge Data

3 - Save Data

4 - Porform Computations & Print Results
5 - Quit

(Cater ons of the abovo numbars)
713

Screen #12
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(17) Save the data immediatei, after data entry. You could always change it and then
save it again later, Sgving it as soon as possible will pr
case of a mishap. When you select item #3, abor , to save the data, you wtll be prompted for a
drive and filename. You may save the data to any drive and any normal filename (beginning with
an alphabetic letter and having no more than eight letters and numerical digits, with no, spaces in
it). Remember, if you want the data saved in a particular directory on the c: drive, you must
specify the entire path in the filename. For example, if you want to save your data on your fixed
disk, in an ORSA\BFV-COEA directory, with a file name of BFV-RUN3.DAT, then your file
name would be C:\ORSA\BFV-COEA\BFV-RUN3.DAT. For saving your data to a floppy disk,
usually something like A:BFV-RUN3.DAT is sufficient, since most people don't create different
directories on their floppy disks. You may want to use a different floppy for data.

—

Enter Drive:filename

(For example, C:test_1, is drive C: and filename TEST_!

? A:FEI-TEST DAT

Screen #13

(18) The data will now be saved, and the main menu will reappear.

/

1 = Enter Data

2 - Change Data

3 - Save Data

4 - Perform Computations & Print Results
5 - Quit

(Enter one of the above numbers)

72

Screen #14
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(19) Item #2, to change data, was selected in this example simply to display the change
data menu which appears below.

4 ,

1 - CHANGE BLUE NAMES

2 =CHANGE RED NAMES

3 = CHANOR BLUE FIRING AT RED DATA

4 « CHANOR RED FIR_J0 AT BLUR DATA

5 = RETURN TO MAIN MENU |

(ENTER ONE OF THE ABOVE NUMBERS)
75

Screen #15

(20) Selecting #5 returns you to the main menu.

/

1 - Enter Data

2 - Change Data

3 - Save Dgta

4 - Perform Computations & Print Results
S = Quit

(Enter one of the above numbers)

74

Screen #16

(21) Selecting item #4, above, does not immediately initiate the calculations and
printing of results. The user is first given an opportunity to select whether or not standard force
effectiveness ratios should be included in the results (force exchange ratio, loss exchange ratio,
system exchange ratio, percent system contribution, and percent force remaining, in addition to
this model's force effectiveness indicators. See page 19 for definitions.




(22) Select type of results desired.

1 - Print Standard Effectiveness Ratios
2 - Do Not Print Standard Effectiveness Ratios
(Enter 1 or 2)

71

Screen #17

(23) Before doing the calculations and printing the results, the user is given the chance
ta select the types of forces to be included in the calculations and force effectiveness ratios.
Consequently, the list of Blue forces will be displayed, followed by the list of Red forces, and the
user selects the forces to be counted in the resulting ratios.

(24) Select forces to be included in computation of resulits.

/
1 TANK

2 BFV

3 HMMWV

Enter the nurabers (one at a time, pressing the enter key after every selection) you
want included in the standard force ratios. .

Enter -9 when all selections have been made.
Bater ~1 to select all the items.

7.l




(25) After making the Blue weapon system selections, the list of Red weapon systems
- will be displeyed, as in Screen #19.

1 TANK
2 BMP
3 BRDM

Euter the numbars (one at a time) you want
included Ln the standard force ratios.

Enter -9 when all selections have boen made,
Enter -] to select all the items.

? -1

Scroen #19

(26) Having made the Blue force and Red force selections, the program will &
automatically perform the caloulations and print the results. After the results have besn printed,
the main menu will be displayed. Selecting "S" to quit the program will also send the necessary
control codes to your printer to return it to normal (after printing the results in small print),

(27) The following printout is a result of the inputs used in the above example.
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DESCRIPFTION: Test Case #1, 22 Dec 92, Jobn DErrico
FILEN/ME: A.FELTEST.DAT

‘ KILLER - VICTIM MATRICES

RED VICTIM

BLUE
KILLER NUM TANK BMP BRDM TOTAL
TANK 60 30 4.0 1.0 9.0
BFV 120 50 0 .0 9.0
HMMWY 2.0 0.0 2.0 0.0 20
-~ BLUE VICTIM
KILER NUM TANK BFV HMMWV TOTAL :
TANK 120 1.0 40 0.0 60
amp 130 30 30 1.0 7.0
BRDM 4.0 1.0 30 0.0 40
‘l‘o‘erl..VAwlO!lum 0.7216 STANDARD LER = 1.1763 (Reda Killed)XBlues Killed)
TOTALVAWIOPIID - 0N STDBLUEPMR = 01500

RCE RFFRECTIVENESS RATIO ou) - o.ms STOREDPMR = 02837
(Teul Blue Vm Rad Value STANDARDFER = 0.5403

FBI VALURS STD. SER VALUES FRACTIONAL PARTICIPATION INDICES
(Valus of one weapon) LETHALITY SURVIVABILITY
WEAPON SYSTEM SER PC
TANK 0.05¢7 TANK 00149 TANK 15000 0.4%00 1.5000 0.0000
v 0.02%¢ BMP 0.0328 v 12937 0.4300 0,7500 1111
HMMWV 0.03% BRDM 0.0442 HMMWYV 05000 0.1000 10000 333
d. Definitions.
Sundard Los Exshangs Ratio (LER)Y: (Red Losses)/ (Blus Lossss).
: (Red Losses)/(Red [nitial Sirength)
Standard Foros Bxchange Ratio (FER):
(Blus Lossss)yBlus Initial Strength)

Standard Specific Exchaogs Ratio SER):  (Red Lossss From Specific Blue Sysiem)(Spscifie Blus System Losses)
Staadard Perosct Sysieen Contribation: (Red Losses Due to Speci@o Biue Systam)(Total Red Lomes)

Perosnt Foros Remalning: (Total Number of Blus Survivors)(Total lnktial Number of Blue Foroes)

Latallty: (Red Lowses by 8pecific Blue Sysiem)(Initial Number of Specific Blue Syseew)

Survivabilhy: ((Blus System Survivors)(Total Blue Survivors))/j(lnitial Blue Sysenus)/(1'otal [nitial Blus Foros)) .
Towal Value of Blue: Sum of the value of sach Blus wespon times the initial pumber of that Blue weapon.

Total Valus of Red: Sum of the value of sach Red wespon times the initial sumber of that Red weapon.




E. SINGLE SHOT BURSTING MUNITIONS MODEL
1.’ Introduction.

3 a. Description. This computer model was developed by Mr. John D'Errico, Dismounted

i Warfighting Battle Laboratory, U.S. Army Infantry School, Fort Benning, Georgia. It displays

the results of firing one or more bursting (exploding) munitions from a single-shot weapon, such

as the M203 grenade launcher, at an area target. Personnel in the target area may be deployed in

a line, file, cnlumn, or wedge formation. Inputs required are: the biases and dispersions of the

weapon, the projectile velocity; the weapon-target range; radius of damage; number of single

* rounds to be fired at the target; and the number, spacing, and formation ‘of personnel in the target
area.

b, Limitations. The targets depicted in this model are stationary, standing, two
dimensional, personnel targets.

¢. Applications. Desktop analyses involving small arms, small arms munitions, and their
effects on personnel area targets.

d. Setup. This model runs on any IBM compatible PC Lomputer. Run time depends on
the number of iterations desired, with one to fiteen minutes being typical. Each iterativn takes
about one second.

2. Guide to Operation.

a. Equipment Required.
(1) IBM compatible PC computer.
(2) 3.5" disk drive.
(3) Printer (optional).

b. Installation.
(1) Tumn on the computer and get to the DOS prompt.
(2) Insert the 3.5" disk containing the SSBURST model into your disk drive.
(3) See paragraph C.2.b.(3), Probability of Hit Plotting Model, for printing graphics.

(4) From the DOS prompt, enter the command: A:SSBURST (or B:SSBURST if
you're using the B: disk drive).
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c. Definitions. For this model, one "iteration" refers to firing one set of rounds against the
target. For example, if the nuinber of rounds to be fired at the target is four, then each iteration
will fire four rounds at the target. For trial purposes, five or ten iterations is sufficient to see the
model work. For more accurate results, 200 to 1000 iterations is recornmended.

d. Operation.

(1) You will be prompted for input. The first prompt will ask you to enter the
horizontal fixed bias of the weapon system. Entering a zero indicates that the weapon has been
zeroed for the range to the target. Biases and dispersions are in mils.

(2) The next prompt will ask you to enter the vertical fixed bias of the weapon system,
Entering a zero indicates that the weapon has been zeroed for the range to the target.

(3) A total of ten prompts will appear on the screen, and you must enter a response for
. each one. Biases and dispersions are in mils, and distaiices are in meters. All ten prompts and
sample responses are shown below.

(4) Keep in mind that the wedge formation was constructed for nine personnel only. If
you plan to select 8 wedge, enter a 9 in the eighth prompt below. The other formations can
accapt any number of personnel.
qﬂer the horizontal fixed bias of the weapon system? 0
Enter the verticai fixed bias of the weapon system? 0
Enter the total horizontal variable biases and dispersions? 10
Enter the total vertical variable biases and dispersions? 10
Enter the projectile velocity in meters per sec? 60
Enter the weapon-target range in meters? 250
Enter the radius of damage in meters? 5
Enter the number of personnel in the target area? 11
Enter the space between personnel? 5 .
Enter the number of single rds to be fired? 4 ’

. »‘

. &

Screen #1 ‘.,,z,,‘

(5) After you enter the last of these ten responses, the next (and last) set of prompts &
will appear. These prompts, and their sample responses are shown in screen #2.

(6) When selecting the type formation, ¥=¢r in mind thet the wedge was constructed
for nine personnel only.




(7) Select formation.

(Target formation:

1 -Line

2 - Column

3 - Wedge (9-man squad)
4 - File

(Bnter 1 -4)?2

< Sl - ' wh W

(8) After you input the number of ltmﬁom. the model will begin to graphically display
~ each iteration's results, one iteration at a time.

() Bach iteration's results are dirplayed on the screen, for a brief time. When the last
 iteration has been completed, the picture will remain on the screen until you either print the
scroen to a printer, or press any other key to return to the MS-DOS prompt.

(10) You will sutomatically get a printout of results, showing how each round did ;
against ench target. The printout will include the anumber of the round, the number of the target,
the effect of each rouad on the target area, the average number of targets killed by each round,

- and the average results for the cumulative effect of all rounds. For 1000 ltemiom, the results
are highly repeatable.

(11) Although you may select practically any number of personnel for a Line, column,
or file formation, the wedge currently applies to only nine personnel. Keep in mind that the scale
of the display on the screen depends on the number of personnel in the target area and theit
separation distance. Choosing a large number of personnel separated by 10 meters will make the
personnei, and possibly the bursting radius, very small or invisible.

. (12) The circle which represents the bursting radius on the screen may appear to
enclose a target without killing it (killed targets are shown as solid white squares). This is
because the screen's vertical-to-horizontal scale may not allow a circle to look like a circle.
Sometimes the bursting radius circle will appear as an oval, or ellipse. The mathematics,
however, are corréct, and all targets within the bursting radius are kilied.

(13) A complete example, rom prompts and responses to results, follows.




(14) Opening screen:
/

This program was authored by:
John DErrico
Dismounted Warfighting Battle Lab
U.S. Army Infantry School
Fort Benning, GA 31905
(706) 545-7611/7000
DSN 835-7611/7000

(Press the [Enter] key to continue)?

Screen #3

(15) Description of inputs:

Ghis program will require you to enter the following:
Horizontal and vertical fixed biases (zeroes if the
weapon is assumed to be zeroed on the target).
Total horizontal variable biases and dispersions.
Total vertical variable biases and dispersions.
Muzzle or average projectile velocity.

Range to the target area.

Bursting munition's radius of damage.

Number of personnel in the target area.

Separation distance between personnel.

The number of single rounds to be fired.

The target formation: line, column, wedge or file
(not applicable to a single person point target).
Number of iterations (not applicable to point targets.)

The last picture plotted on the screen remains until you
‘press 8 key, in case you want to first print it with [PrtSc].

(PRESS THE ENTER KEY TO BEGIN THE PROGRAM/INPUTS)?

Screen #4
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(16) Select printer option:

Do you want the program results sent to your printer? Y

Tumn on your printer and press [Enter] when ready?

Screen #5
(17) Inputs:
—

Enter the horizontal fixed bias of the weapon system? 0
Enter the vertical fixed bias of the weapon system? 0

Enter the total horizontal variable biases and dispersions? 10
Enter the total vertical variable biases and dispersions? 10
Enter the projectile velocity in meters per sec? 60

Enter the weapon-target range in meters? 250

Enter the radius of damage in meters? 5

Enter the number of personnel in the target area? 11

Enter the space between personnel? 5

Enter the number of smgle rds to be fired? 4

Screen #6

(18) Target formation:

Target formation:
1 -Line
2 - Column
3 - Wedge (9-man squad)
4 - File

(Enter1-4)72

Screen #7

(19) Since on]y the last screen will remain on display, until Iy]'ou either pnnt it to the
prmter or press agy other key, only the last screen in this example is shown on the following
page. On page 26 the results are pnnted out.
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H.Bias: @
~U.Bias. @
H.Disp: 10
U,Disp: 10
Ueloe,
Range: 258
Damage: .5
Tgts:
Rounds: 4

SAMPLE PRINTOUT OF THE SSBURST PROGRAM

8

KILLS: 6

Targets killed: 6
Kill ratio: ,5454546

79



(20) The following results are based on the example above. Since only 10 iterations

were used, you can expect substantially different results if you run the same example.

10

NUMBER OF ITERATIONS:
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(21) Positioning of personnel in the various formations is according to the following
format. The numbers indicate the actual number assigned each person in the target area, and
match the numbers referred to in the printout of results.

" Line Column

6543 2] T
- 9 10
7 8
5 6
3 4
1 2
Wedge File
8 7
6
7 s
4
o 6 3
2
5 I
3
2 4
1
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F. ANALYTIC HIERARCHY PROCESS MODEL
1." Introduction.

a. Description. This program was authored by Mr. John D'Errico, U.S. Army Infantry
School. The Analytic Hierarchy Process (AHP) was developed by Thomas L. Saaty in the early
1 1970's. It is a method for ranking a set of alternatives based on multiple levels of character-
istics. For example, performance and cost may be two characteristics on one level, and they
might each consist of several other characteristics on a lower level. In turn, each of these
characteristics could be further defined by characteristics on even lower,levels. Each character-
istic's value may be based on physical data such as seconds, inches, pounds, dollars, probability of
hit, etc..., or on subjective evaluations. The AHP can also assist the user when developing
subjective values.

. b. Limitations. This model is primarily intended for first-time users of Saaty's Analytic
Hierarchy Process. It is considered more as a tutorial which will enable the user to make an easy
transition to the use of a spreadsheet program such as Lotus 1-2-3. Spreadsheet software would
be much faster and more flexible for a complex AHP analysis.

c. Applications. The AHP has been applied to a large variety of problems in the areas of:
‘education, management of energy, political candidacy, transportation planning, and others. It has
also been in use at the Pentagon. At the Infantry School the AHP was used in the combat boot
analysis, multipurpose bayonet analysis, and TOW warhead improvement analysis and selection.

d. Setup. Mr. John D'Errico has developed two BASIC language programs for the
Analytic Hierarchy Process. These programs will run on any IBM compatible PC. Data sorting
and transformations usually take one or two days. Runs can occur at the rate of one every ten

minutes. Lotus 1-2-3 can also be used to run the AHP, in which case the user gains much
flexibility and speed in sensitivity analyses and run time.

2. Guide to Operation.
a. Equipment Required.
(1) IBM PC compatible computer.
(2) A3.5" disk drive.
(3) A printer.
(4) GWBASIC . This programing language can usually be found on the DOS disks if

you }mve a DOS version earlier than 5.0, It is also provided on the modeling disk. If using DOS
version 5.0 or more recent, use the GWBASIC on the modeling disk. (A:GWBASIC)
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b. Installation.
(1) Turn on the computer and gét to the DOS prompt.
(2) Ifyou are using the a: drive, enter the command A:GWBASIC

(3) You will know thut GWBASIC has been loaded when you see 8 soreen with the
OK prompt at the top and the ten function keys along the bottom.

(4) Enter the command LOAD"A:AHP (You will receive tpother “OK" prompt).
(5) Bnter the command RUN

(6) You will now see the prompting messages, and requests for data, according to the
facsimile screens shown at the end of this section.

c. Bxample. The following example shows the mechanios of the AHP process and it
should help to explain both the prooess itself and the terminology associated with it. It will also
serve as a basis for desoribing some of the practical applications in which the AHP has been used,
and the various ways of setting up the AHP to fit the problem at hand, This example assumes
ths+ there are three alternatives (ALT1, ALT2, ALT3) and five characterstos (CEL (CHARI, CHAR?,
CHAR3, CHAR4, CHARS) which will be uled to evaluate the alternatives.

(1) STEP1. Compare each characteristic to every other characteristic. Compmﬁve
values or welghts may be based on either real data such as seoonds, pounds, feet, or dollars, or

based ¢n subjective detennhutiom A matrix for these pairwise comparisons of characteristics
would ba set up as follows.

CHAR] CHAR2 CHAR3 CHAR4 CHARS
CHARI] 1.00
CHAR2 1.00
CHAR3 1.00
CHAR4 1.00
CHARS 1.00

(a) The 1's on the main diagonal indicate that each characteristic is equal to itself in
importance. To fill in the remainder of the matrix, ask yourself how much more important or
better is the item in the left column than the item across the top row. For the use of subjective
data, Saaty recommends a scale of one to nine, where the number 1 indicates equality, and three,
five, seven, and nine indicate that the item on the left is weakly more important, strongly more
important, demonstrably more important, and absolutely more important than the item across the
top. In this example, we assume that we have physical measurements which we are comparing.
Accordingly, we know that CHAR]1 is five times better than CHAR2, three times better than
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CHARS3, three times better than CHAR4, and nine times better than CHARS. Adding these
comparative values to the matrix results in the following.

CHAR1 CHAR2 CHAR3 CHAR4 CHARS
CHARI 100 500 3.00 300 9500
CHAR2 1.00
CHAR2 1.00
CHARA . 1,00 '
CHARS _ 1.00

(b) After each row is filled, the reciprooal of each number in the row is entered in
the symmetrically opposite cell across the main diagonal. For example, aince the intersection of
CHARI and CHAR3 is a 3, meaning CHAR] is three times better than CHARS3, then the
intersection of CHAR3 and CHARI1 is 1/3, or 0.33, meaning CHARS is one-third as good as
CHAR], as follows.

CHARI1 CHAR2 CHAR3 CHAR4 CHARS
CHAR]I 100 500 300 300 500
CHAR2 020 1.00
CHAR3 033 1,00
CHAR4 033 1.00
CHARS 0.11 1.00

(c) Sinoe we're not using subjective evaluations, we can actually fill in all cells based
on the relationships established in the first row. Since CHARI is five times better than CHAR2
and three ilmes better than CHAR3, then CHAR2 must be 3/5 as good as CHAR3. Similarly,
dnooCHAmhﬁvotimubMthlnCHARzmdnhoﬂmubmmthHARs then CHAR2
must be 9/5 {1.80) times better than CHARS, and so on. Consequently, the matrix will be filled
as follows, based on the relationships established in the first row.

CHAR1 CHAR2 CHAR3 CHAR4 CHARS
CHARI 1,00 500 300 300 900
CHAR2 0.20 100 060 060 180
CHAR3 033 1.67 1,00 100 3.00
CHAR4 033 1.67 100 100 3.00
CHARS 0.11 035 033 033 1.00

(2) STEP 2. Compute the priority vector. Mnthematica.lly. this is roughly equivalent
to normalizing the principsl eigeavector.

() For each row, take the nth root of the product of the n numbers in the row , as
follows. This is all done automatically in the model, but to translate this to Lotus 1-2-3 you must
know the process occurring within the model.
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CHAR] CHAR2 CHAR3 CHAR4 CHARS

CHARI 100 500 300 300 9.00 4035.00 3.32

CHAR2 020 100 060 060 180 0.13 0.66
CHAR3 033 167 100 100 3.00 1.65 1.1
CHAR4 033 167 100 100 3.00 1.65 L1l
CHARS 0.11 0.55 03y 100 ° 0.007 0.37

0.33

(b) Normalize this last vector by dividing each number by the sum of all the
numbers. In this case, the sum of the numbersis 3.32+0.66 + 1,11 + 1,11 + 0.37 = 6,57; 50 the
normalized numbers would be as follows.

CHARI
CHAR2
CHAR3
CHAR4
CHARS

3.32/6.57
0.66/6.57
1.11/6.57
1.11/6.57
0.37/6.57

0.51
0.10
0.17
0.17
0.06

(c) This priority vector is really a statement of the weights attributed to each of the
characteristios according to the pairwise values given in the above matrices. In other words,
CHAR! is considered to be the most important characteristic, with a score of .51, and it is five
times as important as either CHAR3 or CHAR4, which each have a value of 0.17. Except for the
mathematic rounding errors, the characteristics have maintained their original relationship. But
this is because we have not used subjective values. Had we used subjective data, we would not
have taken the first row of data in the initial matrix and automatically formed reciprocals, Instead
we would have continued to enter raw subjective entries for each cell, without regard to
previously implied relationships. When using purely subjective means to acquire the entries, we
could very well end up saying that CHARY1 is five times better than CHAR2 and three times
better than CHAR3 (which implies that CHLAR2 i3 3/5 as good as CHAR3) and then say that
CHAR?2 is half' as good as CHAR3,

(3) STEP 3. Estimate the consistency of the priority vector. This will be our measure
or indication of how consistently the characteristics were compared to each other during
development of the original matrix of pairwise comparisons. Again, since we have not used
subjective data, our matrix of pairwiss comparisons should be consistent. An example of
inconsistency was givon at the end of the paragraph above,

(8) Multiply tiie matrix of comparisons by the priority vector.

PRIORITY
COMPARISON MATRIX VBECTOR V1
100 500 300 300 9.00 0.51 2.57
020 100 060 060 180 0.10 0.51
033 L67 100 100 3.00 0.17 0.86
0.33 1.67 100 100 3.00 0.17 0.86
ol1 0355 033 033 100 0.06 0.28




(b) Obtain a new vector V2 by dividing the first number in V1 by the first element
of the priority vector; the second element of V1 by the second element of the priority vector; and
80 on, .as follows.

. v2
2.57.51 5.04

51,10 S.10

86/17 5,06

86/.17  5.06

28/06 4.67

{¢) . Add the elements in V2 and divide this sum by the nuniber of elements (i.e.,
average the numbers in V2), In our example, (5.04 + 5.10 + 5,06 + 5,06 + 4.67)/5 = 4,99, This
munber, 4.99, is an approximation of the maximuum (or principal) eigenvalue, abbreviated as
Amax, and it is used to estimate the consistency of the pairwise comparisons. The closer Amax is
to.the number of rows or columns in the matrix of comparisons, the more consistent the pairwise
comparisons were,

(d) How close is close? A method uf evaluating the consistency follows.

« Obtain the consistency index by dividing (Amax - n) by (n-1). Inour wumple.l
.the consistency index would be (4.99-5)/(5-1) = ..01/4 = .,003, Since we're only intmmd in the
magnitude of the differsnce, and not its direction, we'll call it .003,

- Divide the consistency index by the appropriate random index, shown in (3)
below, to obtain the consistency ratio. A consistency ratio of 0.10 or less is considered
‘acceptable. In our case, the consistency ratio would be .003/1,12 =003, indicating that we
were consistent in our pairwise comparisons. If we had boen using subjective judgements for all
our comparisons, the consistency ratio would help us catch significant ecrors in mdtlvlty such
ns: Aisas good as B, B is twice as good as C, and A is as good as C.

- Random indices for comparison matrices of up to 15 rows (or 15 columns).
Number of Rows  Random Index

3 58
‘ 90
s 112
6 124
7 132
8 1.41
9 148
10 1.49
1 1.51
12 1.48
13 1.56
14 1.87
15 1.9
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(4) STEP 4. Much of the above work was done to obtain 8 measure of consistency for
the pairwise comparisons made in the original matrix. The priority vector, however, is what we
were after, Now we have to repeat the process for the matrix of alternatives as shown below.

(a) The set of alternatives must now be evaluated in light of the above
characteristics. In order to do so, pairwise comparisons must be made with respect to each
characteristic above. ‘This means we will have five sets of matrices, one for each characteristic.
In the first matrix of pairwise comparisons, the question we are asking is; with respect to
CHARI1, how much better or more important is ALT1 than ALT2, and so on.

(b) These matrices, along with their priority vectors, maximum eigenvalues,
consistency indices (C.1.), and consistency ratios (C.R.), are shown below.

PRIORITY
VECTOR AMAX CR

CHAR!1  ALT1 ALT2 ALT3

ALT1 100 050 200 0.29 3.00 0.00
ALT2 200 100 400 0.57
ALT3 050 025 1.00 0.14

CHAR2 ALT1 ALT2 ALT3 3.00 0.00
ALT! 1.00 100 050 0.25
ALT2 100 100 0.50 0.25
ALT3 200 200 100 0.50

CHAR3S  ALT1 ALT2 ALT3
ALT1 100 200 200 0.50 3.00 0,00
ALT2 050 100 1.00 0.25
ALT3 050 100 100 0.25

CHAR4  ALT1 ALT2 ALT3
ALT! 100 100 200 0.40 3.00 0.00
ALT2 100 100 200 0.40
ALT3 050 050 1.00 0.20

CHARS  ALT1 ALT2 ALT3
ALT1 100 100 1.00 0.33 3.00 0.00
ALT2 100 100 1.00 0.33

ALT3 100 1.00 1.00 0.33




(5) STEP 5. The matrix of priority vectors from the pairwise comparisons of the
alternatives is now muitiplied on the right by the priority vector from the characteristics,

' 0.51
0.29 0.25 0.50 040.033 0.10 0340 (ALT1)
0.57 0.25 0.25 040 033 0.17 0443 (ALT2)
0.14 0.50 0.25 020 0.33 0.17 0.217 (ALT3)
0.06

This last vector, the solution vector, shows the final values of alternative 1 through alternative 3.

d. Additional Notas, In this example, there was only one level of characteristics.
Additional levels may be considered in the same problem by simply repeating the above
process. This is comparatively easy in a complete hierarchy, in which every item on one level is
related to every item on the next higher level. Our example is a three-level, complete hierarchy,
depicted by the following diagram. Level one is the solution; level two consists of the set of
charaoteristios; and level three contains the set of alternatives.

Level 1 (Goal)

Level 2

Level 3 (Alternatives)

A four-level complete hierarchy might look like the following, containing the solution on level
one, sets of characteristios on levels two and three, and the alternatives on level four.

Level 1 (Goal)

Level 2

Level 3

Level 4 (Alternatives)
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In any case, the procedure remains the same. You comparc the #lternatives with respect to each
of the sheracteristics in the next higher level; then compare the characteristics with respect to
eacn: of the superior characterisiics in the next higher level, and so on, developing a set of
priority vectorc at each level. Then you compare the highest leval of characteristics with respect
to the solution, Finally, you must multiply each set of priority vectors in the correct order, to
obtain the solution vector. The correct order of multiplication is as follows: Put the lowest
level's set of priority vectora on the left (this will be the set of vectors vesulting from comparing
the alternatives to each other), and place each successively higher set of vectors (o the right.
Then multiply the matrices and vectors from left to right.

A slightly more complicated hierarchy is an "incomplete" one, where each item on one level is
not necessarily related to every item on the level above, as shown relow,

Level 1 (Goal)

Level 2
> Level 3
¢ /

Level 4 (Alternatives)

The easiest way to solve this type of hierarchy is tc convert it into a complete hierarchy by
putting zeros in the matrix of comparisons to indica:e no relationship between characteristics.
After that, the problem is solved as a complete hierarchy.

If any questions or problems arise from the use of this method, ~r the AHP program, ¢ >ntact
Mr. D'Errico at 3914 Eve Ct, Columbusg GA 31909. Offioe phone (706) 545-7611.

e. Displays. The following facsimile screens display all the prompts, inputs, ani menus,
based on the example in the text, above.




Load GWBASIC (assuming it's in the DOS directory).

C:\DOS\GWBASIC —\‘

| RN

Load the AHP model from disk drive A, and enter sommand "RUN®

LOAD"A.AHP

Make sure your piimteris on.

Turn on your printer. This program will not run without it.

(Press the (Brtter] key when ready)?

Enter three lines to describe this run, Press '[Bnter] to leave a line hiank.

7

DESCRIPTION OR TITLE FOR THIS ANALYSIS (Enter 3 lines for title)
AHP-Test #1 [Enter]

20 Dec 92 [Bnter]

John D'Errico [Enter]




Select "Enter Data" from the main menu.

T

~ 1-ENTERDATA

2 - CHANGE DATA |

3- SA\)‘E DATA (As soon a3 yuu ha§o entéred_ all datal)
4-PERFORM COMPUTATIONS -

5 - END PROGRAM

(SELECT ONE OF THE ABOVE NUMBERS)

Enter data from the keyboard (K), uniess previously saved on a disk(D).

ENTER DATA FROM KEYBOARD OR DISK ? (K/D)

7D (Enter "D" and use the' sample data provided on the modeling disk)

When retrieving data from a disk, bs prepared to enter the disk/path/filename.

ENTER NAME OF DISK: FILE

7 a:ahpltest.dat (This file was included on your modeling disk)




After the data has been entered or changed, re-save it, and select item 4.

MAIN MENU
| - ENTER DATA
2-CHANGEDATA -
3 - SAVE DATA

4 < PERFORM COMPUTATIONS
$.END PROGRAM _
(SE1.ECT ONE OF THE ABOVE NUMBERS)

Prlndna wlll stop after the title, dtematives and characteristics are printed.
in case you want to start printing the results on b NOW Pago for a cleaner look.

DO YOU WANT TO SKIP TO NEXT PAGE ?
YN Y -

After the results are ﬂrinted, select "S" to end the program.

MAIN MENU
| - ENTER DATA
2 - CHANGE DATA
3. SAVE DATA
¢ - PERFORM COMPUTATIONS
$ - END PROGRAM

(SELECT ONE OF THE ABOVE NUMBERS)
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Enter the command "SYSTEM" (without quotation marks) to return to DOS,

( N

MAIN MENU

| - ENTER DATA -

2 - CHANGE DATA
3 - SAVE DATA
4 - PERFORM COMPUTATIONS
5 . END PROGRAM

(SELECT ONE OF THE ABOVE NUMBERS)




f Results. The following results were based on the example given in the text above.

. AHP TEST ¥

.30 Des 92
Joha D'Rerico

ALTRRNATIVES EVALUATED:
ALT1 -

ALT2
ALY

" CHARACTERISTICS CONSIDERXD:
OMARI

CHARY

:

CHARACTERISTIC VALUES

CHARI CHAR2 CHAR3 CHAR4 CHARS
CHARI 100 3500° 300 300 900
CHARZ 030 100 060 060 100
CHARS 033 167 100 100 200
CHARY 033 167 100 100 00
CHARS 411 035 033 033 100

RIGENVRCTOR  MAX EIOENVALUE: 499  CONSIFSTENCY RATIO: <0.002%0

CHAR! EIOENVECTOR  EIGENVALUE
ALTI ALT2 ALTI

ALTI 100 05 200 0.29 3.00

ALTI 200 100 400 0.57

ALTY 030 o028 100 0.14

CONSISTENCY RATIO: 0.00000

CHAR2 EIOENVECTOR  EIOENVALUR
ALT1 ALTS ALDY

ALTI 100 100 0% 025 3.00

ALT2 100 1.00 050 043

ALT? 200 200 100 0.50

CONSISTENCY RATIO: 0.0000

248




CHAR3 EIGENVECTOR

_ ALTI ALT2 ALTD

"ALTI, 100 200 200 0.9

ALT2" 030 100 1,00 0.28

ALTY 050 1.00 I.QO 0.33

CONSISTENCY RATIO: 0.00000

CHAR4 _ EIOENVECTOR
ALTI ALTZ AT

ALTI 100 100 200 0.40

ALTZ 100 100 3200 0.40

ALTS 050 030 100 020

CONSISTENCY RATIO: 0.0000

_GHARS EIOENVECTOR

‘ ALTI ALT2 ALTS

ALTI 100 100 109 03

ALT? 100 100 100 033

ALTY 100 100 100 03

CONSISTENCY RATIO: 0.0000

RANKING OF ALTERNATIVES:
ALTd= 0.44)
ALTI= 0340
ALT)« 0217

EICENVALUE
.00

EIQENVALUE
3.00

BIOENVALUR
, .m




G. DATA RANKING.
1. Introduction.

a. Description. This program, developed by Mr. John D'Errico, takes any set of numerical
data as input, sorts it into ascending and descending orders, and provides the ranks associated
with each, |

b. Limitations. This program can accept a maximum of 1000 data points.

c. Applications. Desktop tool for data analysis. |

d. Setup. This model runs on a DOS-based computer. Data entry consists solely of

entering the numbers to be sorted and ranked. Sorting and ranking will usually take less than a
minute,

2, Guide to Operation.
a. Equipment Required.
(1) IBM compatible PC computer.
(2) 3.5" disk drive.
(3) Printer.
b. Installation.
(1) Tum on the computer and get to the DOS prompt.

(2) Insert the 3.5" disk containing the RANKDATA program into your computer's
disk drive.

(3) From the DOS prompt, enter the command A:RANKDATA (or B:.RANKDATA If
you're using the B: disk drive.

¢. Definitions.

(1) Rank. After a set of numbers is put into order (ascending order, for example) the
rank of each number is simply the number of its position in the ordered list. However, when the
same number is repeated on the list, their rank is determined by averaging the numbers of their
positions. For example, assume that the numbers 12, 3, 17, 11, 12, 6, 42, 3 must be ranked.
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The first task is to sort the numbers into (for this example) ascending order. The sorted list of
numbers then becomes 3, 3, 6, 11, 12, 12, 17, 42. The number 3 occupies position 1 and 2, so
each 3 gets a rank of 1.5 since (1 +2)/2 = 3/2 = 1.5, The number 6 gets a rank of 3 since it holds
position 3, the numbet 11 gets a rank of 4 since it holds position 4, the numbers 12, occupying
positions 5 and 6, each get a rank of 5.5 since that's the average of position numbers 5 dnd 6.
Number 17 gets a rank of 7 since it holds position 7, and the number 42 gets a rank of 8 since it
holds position 8 in the ordered list of eight numbers.

(2) Ascending Order. Numbers in ascanding order are listed with the smallest number
at the top of the list and the largest number at the bottom of the list.

(3) Descending Order. Numbers in ascending order are listed with the argest number
at the top of the list and the smallest number at the bottom of the list,

d. Operation,

(1) The first display is as follows:

—

This program accepts up to 1000 numbers, then prints
the numbers as entered, followed by the numbers

in ascending and descending orders and their
associated ranks. Ranks are assigned from 1 to n.

Tied scores are assigned the mean of the ranks for
which they are tied.

(Press RETURN to begin the program)

\

Screen #1

(2) The second display prompts you to enter score (number) #1, score #2, score #3,
etc..., with the instruction to eater the number -99 when you havs no more numbers to enter.

-

Enterscore #1 73

(Enter -99 after last score has been entered)

Screen #2

251




(3) The final display will prompt you to make sure that your printer is turned on,

Make sure that your printer is on

Press the [Enter] key when ready-
?

Screen #3
(4) The following is a sample printing from this program.

DataEntered: 53 11 2728 §292435171279
1612379246

ASCENDING DESCENDING
DATA RANKS DATA RANKS
2 2 35 !
2 2 28 2
2 2 24 3
3 4.5 17 4
3 4.5 1§ s
4 6 12 6.5
5 7.8 12 6.5
s 7.5 11 8
6 9 9 10
7 11 9 10
7 11 9 10
. 7 1 7 13
9 14 7 13
9 14 6 15
11 16 s 16.5
12 17.5 s 16.5
12 17.5 4 18
16 Bt 3 19.5
17 20 3 19.5
24 21 2 22
28 22 2 22
3 23 2 22

(5) At this point the program ends and returns you to the DOS prompt.
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H. LAGRANGE INTERPOLATION.

1. Introduction.

a. Description. This model, developed by Mr. John D'Errico, uses Lagraage polynomials
to interpolate between two points on a nonlihear curve.

b. Limitations. This method is subject to error if using a large number of known data
points as a basis for the interpolation.

c. Applications. Desktop tool for data analysis. -

d. Setup. This program runs on an IBM compatible PC computer. It takes approximate-
ly one minute to enter five data points, and less than a minuts to display the interpolation.

2, Guide to Operation.
a. Equipment Required.
(1) IBM compatible PC computer.
(2) 3.5" disk drive,
b. Installation.
(1) Turn on the computer and get to the DOS prompt.

(2) Insert the 3.5" disk containing the LAGRANGE program into your disk drive.

(3) From the DOS prompt enter the command: A:LAGRANGE

¢. Explanation.

(1) Given a set of data points such as those in Table 1, there is often a need to
determine a data point which is not listed in the table. For example, we might need to estimate
the probability of hit [P(H) at a range of 1.2 kilometers, based on the data in Table |

RANGE P(H)
e.1 0.90
0.5 0.88
1.0 0.58
20 0.18

Table 1




(2) A common practioe, dus to its simplicity and speed, is to interpolate linearly
between two given data points. Using Table 1 this would mean interpolating between the
ranges of 1.0 and 2.0 kilometers in order to find the value not given--the P(H) at 1.2 kilometers.
However, when the given data does not fall along a straight line, linear interpolation is subject

to gross errors, particularly if the data points within which the interpolation is done are not close
together,

(3) The method described herein uses Lagrange's form of interpolation polynomials.
This is a widely used form for interpolation within a set of given data points. The given data
points may be equally or unequally spaced, and may line along a nonlinear curve,

il
(4) This method is also subjeot to errors, particularly if using a large number of given
data points to make the interpolation, A way to minimize the error is to take a couple of data

points on either side of the value to be interpolated, ignoring the data points which are farther
away.

(5) This method is presented as an alternative to linear interpolation, not as a

substitute, and it ia to be used when a straight line would be substantially off the true curve of
known data points, as shown in Figure 1.

1
- 0.88

o8r
0.7
0.8
08
04t
0.3
0.2
0.1

1

0:50 by linwar

P(H) .Iincarpolacio

i

]

b I i ! 4 -l | 1 A

0
01 03 08 07 08 11 13 16 1.7 18
RANGE

FIGURE ¢!

(6) This method should only be used to interpolate within the range of given data
points. There are better methods for interpolating (or extrapolating) outside the range of the
given data points; namely, Newton's forward and backward differences, among others.

254




(7) There is more than one way to derive the approximating interpolative polynomial
used herein, such as the method of undetermined coefficients; however, the method selected here
is straight forward, and was easy to program.

(8) Equations.

(a) Since the derivations, proofs, and uniqueness theorems are readily available in a
multitude of books on numerical analysis, thess are not duplicated in this paper.

(b) Given a get of n+1 data points of the form (x, f{x)), the collocation polynomial
(the nth degree polynomial fitting those points) is
px) = § KoL, (%)
where, for each j, 0 <j <n, f{x) is the given valuo along the y-axis associated with the given x,
vulue along the x-axis. L (x) is the nth degree polynomial defined as

(XA (R )Ry ) (K1) (k%)
L=

("j"‘o)("j'xl)---(xj""g.l)("j'xm)---("r") E{ (%-x)
d. Operation.

(1) Using the data in Table 1, assume that we want to estimate the probability of hit at
1.2 kilometers. Table | is repeated below,

f h
RANGE PH)
0.1 \
0.8 0.88
1.0 0.58
20 0.18
_J/
Table 1

(2) The LAGRANGE program's first screen asks if you want a program description
and explanation displayed on the screen. For this exampie we will select Y(es).

If you want a brief program description/explanation, enter
Y or y and press [Enter]; otherwise, simply press [Enter].

7y

Screen #1




(3) The next three displays consist of the explanation,

[

DBSCRIPTION

This program accepts any number of (x,y) coordinates,
determines the Lagrange form of interpolative polynomial
whlehnuthn(&y)dnupoinu.mdthennhtheuunoemeuny
number of x-values for which a y-value must be

predicted.

It is recommended that this program be used to intsrpolate

ouly between the lowest and higheet known x-valuos (don't m\pom)
and that only 3 to 6 coordinates of known polnts be used for this
interpolation.

(Press (Enter] to continue)

Screen #2

(4) Continued description:

(

When entering the first set of data, simply enter the x-value and y~value,
separated by a comma, and press [Enter] after each pair of coordinates,
For exampla, to enter the coordinates (1,2), (2,4), and (3,9) you would
first enter a "3" in response to "Enter the number of known (xy) data
points." Then you would enter the three coordinates as follows:

1,2 [Enter]

2,4 [Bnter)

3,9 [Enter)

(Preas (Enter] to continue)

Screen #3

(5) Final screen of dmﬂbﬁons.

~
Aftar you have entered the known (x,y) enordinates, you will be asked
to eater the number of x-values for which you need predicted y-vaiues.
Simply enter the number of x-values for which you need y-values
interpolated. Finally, you will be asked to enter the x-values, one at a
time, pressing the (Enter] key after each x-value entry.

Screen #4




(6) Now you will be prompted to enter the number of known data points.

Enter. the number of known (x,y) data points.

?4

Screen #5

(7) The next four prompts ask you to enter the data points. Only the first prompt is
shown here, since the remaining three are identical except for the coordinate entered.

~
Enter XY for Data Point #1

?7.14,9

(Enter the X and Y values, separated by a comma)

Screen #6

(8) The next prompt asks for the aumber of x-values for which you need & y-value.
Only one y-value is requested in this example--the P() at 1.2 kilometers.

Enter the number of x-values for which you need
a y-value predicted.

71

Screen #7

(3) Now you must enter the single x-value. For this exampie the response is 1.2,
representing 1.2 kilometers.

Enter X value # 1
712

Screen #8




(10) The final display lists the x-values and y-values you entered, followed by the
x-value and y-value you needed interpolated.

; V .

: X Y

3 1 9

/ 5 88

B 1 58

2 18

1 1.2 4347836
i

j ‘Scresn #9

c {11) Asyou can see from Screen #9, the program has ended and returned you to the
prompt you started with--in this case, the root directory.




1. FUNDAMENTAL DUEL
1. Introduction.

a. Description. This model (Reference 4, chapter 17) depicts the outcome of two
‘opposing, single shot, direct fire weapon systems, each having an unlimited amount of
* ammunition, Inputs required are each weapon's reliability, rate of fire, and probebility of kill
. given a single shot. The results are displayed in terms of the probability that the Blue weapon
wins the duel and the probability that the Red weapon wins the duel.

b. Limitations. This model evaluates the outcome of a simple one-on-one duel, based on

. rates of fire and exponentially distributed firing times between rounds.

: c. Applications. Desktop analytic tool for applying a simple concept to evaluations of
single shot weapon systems.

d. Setup. ‘I'his_model runs on an IBM compatible PC computer equipped with Lotus
- 1-2+3. Data can be entered into the model and results displayed in less than a minute,

2. QGuide to Operation,
a. Equipment Required.
(1) IBM PC compatible computer.
(2) 3.5" disk drive.
(3) Lotus 1-2-3 spreadsheet software.
b. Installation.
(1) Turn on your computer and activate Lotus 1-2-3.

(2) Insert the 3.5" disk containing the FUNDUEL model into your computer's 3.5"
disk drive.

(3) From the Lotus 1-2-3 menu, load the A:FUNDUEL. WK1 model (or B:FUNDUEL
if you're working from the b: drive) by entering /FR, then backspace to erase the default path, and

enter A. and press the (Enter] key. After the Lotus 1-2-3 files are shown, select the FUNDUEL
file. ‘
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¢. Operation.

. (1) Move the cursor to the rell you wish to change. This should be cell B2, E3, B4,
B6, B7, B8, B10, or Bl 1,

" {2) Asyou make a change in ono cell, the probabiLities of Blue and Red winning (cells
F$ and F6 respectively) aré sutomatically tecalculated for a practically instantaneius answer.

N ~
N THE FUNDAMENTALDUEL -

PRHIT-B 0.6
FRYJ}L‘B 0.7 . . ) ' - K
PSSK-B 042 . PROB-B ' 0.567568
RELR | - ST
PRHIT-R 0.8 PROB-R - 0432432
PRKHR 08 ' o RS K
PSSK-R 0,64 3 CHECK 1
~ROF-B 2 g
ROFR 1 -

R - Soreeatl
" d. Definitions. .
REL-B: Reliability of the Elue weapon system,
PR HIT-B: Blue weapon's probability of hitting the Red target.
PR K/H-B: Blue weapon's probability of kill, given a hit, on the Red target.

PSSK-B: Blue weapon's probability of kill given a single shot at the Red target. It is the
product of the probability of hit and the probability of kill given a hit.

REL-R: Reliability of the Red weapon system.
PR HIT-R: Red weapon's probability of hitting the Blue target.

PR K/H-B: Red weapon's probability of kill, given a hit, on the Blue target.
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~ PSSK-R: Red weapon's probebility of kill given a single shot at the Blue target. It is the
. product of the probability of hit and the probability of kill given a hit,

ROF-B: Blue weapon's rate of fire.

RO?_-R: Red weapon's rate of fire.

' PkOB"-Bi The probability that Blue wins the duel..
.'pnoa-n The probubility that Red wins the duel

: CHECK Veriﬁcation of the equations. It is the sum of PROB-B and PROB-R, which should
" be equal to 1.00.

L T

ce Bxplmgi‘on.

(1) Background. In a fundamental duel, it is hypothesized that two duelists, Blue (B)
and Red.(R), fire at each other until one is put out of action. The firing times, or time between
rounds, for each duelist is considered to be of a random character with known probability density
functions, the parameters for which may be different for Blue and Red. At the start of the
engagement, each contestant loads, aims, and fires his first round at his opponent, Thus, in the
fundamental duel, both start with unloaded weapons. It is also assumed here that each time Blue
and Red fire at each other they have constant single shot kill probabilities, although such kil
probabilities of Blue and Red may be different. Both Blue and Red have unlimited ammunition
supplies, so that a kill is certain.

(2) Definitions.
py™ mean rate of fire of Blue (B)
Py ™ mean rate of fire of Red (R)
Dy ™= single shot kill probability of Blue against Red
Dy ™ 8ingle shot kill probability of Red against Blue
P(B) = chance that B wins the duel
P(R) = chance that R wins the duel = 1- P(B)

(3) The mean rates of fire, o, and g, are, respectively, the remprocals of the mean
times between rounds fired by Blue and Red.

(4) The single shot chances of kill, p, and p,, may be built up or determined by taking
the product of the chance of a hit and the conditional probability that a hit is a kill; i.e.,

Px = po(h) py(klh) and p, = py(h) py(kih).

(5) Finally, we make an assumption that appears of practical value; namely, that the
time to fire the first round and the (imes between rounds fired for B and R follow single
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parameter negative exponential distributions. So, for random times ¢
Ji) = pexp (- o), Where p= p, or p,, as nesded. Mean time between rounds = 1/p.
(6) Since the exponential distribution is equivalent to the chi-square distribution with
two degrees of freedom, this means that the time at which the nth round is fired is the sum of n

independent selections from the above equation, or the chi-square distribution with 2n degrees of
freedom (or the gamma distribution) given by

St) = (1) exp(=pt)(n-1)!

P

Then, the chance that Blue wins is; P(B) =
| Pooy t Pair

and the chance that Red wing is P(R) = 1 - P(B) =

Poos * Dapy

(7) Consequently, for exponentially distributed firing times between rounds, the chance
that a side wins is the kill rate for that side divided by the sum of the kill rates for both sides,
which is a rather simple outcome. Hence, the value of kill rate as a key measure of effectiveness
is evident. Note that if the single shot kill probabilities of B and R are equal, then their rates of
. fire take over; and if their rates of fire also are equal, each B and R have a 50% chance of
winning. The chance of a draw, or both being killed, is zero.
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. J. FUNDAMENTAL DUEL WITH LIMITED AMMUNITION FOR BLUE

l'. Introduction.

a. Description. This model (Reference 4, chapter 17) depicts the outcome of two
opposing, single shot, direct fire weapon systems when the Blue weapon system has a limited
amount of ammunition. Inputs required are each weapon's reliability, rate of fire, and probability
of kill given a single shot. The results are displayed in terms of the probability that the Blue
weapon wins the duel and the probability that the Red weapon wins the duel.

. " b. Limitations. This model evaluates the outcome of a simple onie-on-one duel, based on
rates of fire, probabilities of kill, and exponentially distributed firing times between rounds.

. Applications. Desktop analytic tool for applying a simple concept to evaluations of
single shot weapon systems.

d. Setup. This model runs on an IBM compatible PC computer equipped with Lotus
* 1-2-3. Data can be entered into the model and results displayed in less than a minute.

2. Guide to Operation.
a. Bquipment Required.
(1) IBM PC compatible computer.
(2) 3.5" disk drive,
(3) Lotus 1-2-3 spreadsheet software.
b. Installation.
(1) Turn on your computer and activate Lotus 1-2-3.

(2) Insert the 3.5" disk containing the LIMAMMOB model into your computer's 3.5"
disk drive,

(3) From the Lotus 1-2-3 menu, load the A:.LIMAMMOB model (or B.LIMAMMOB
if you're working from the b: drive) by entering /FR, then backspace to erase the default path, and
enter A: and press the [Enter] key. After the Lotus 1-2-3 files are shown, select the
LIMAMMORB file.




¢. Operation.

(1) Move the cursor to the cell you wish to change. This should be cell B2, B3, B4,
B6, B7, B8, B10, B1l,'or B12,

(2) Asyou make a change in one cell, the probabilities of Blue and Red wlnnlng (cells
E3 and B4 respectively) are automatically recalculated for a pracucally mstantaneous answer,

(
FUNDAMENTAL DUEL (LIMMITED AMMO FOR BLUE)
REL-B 1
PRHIT-B 0.6 PROB-B 0.558272
PRK/HB 0.7 PROB-R 0.441728
PSSK-B 0.42 CHECK 1
REL-R 1 _
PR HIT-R 0.8
FRK/H-R 0.8
PSSK-R 0.64
ROF-B 2
ROF-R 1
ROUNDS-B §

Screen #1

d. Definitions,
REL-B: Reliability of the Blue weapon system,
PR HIT-B: Blue weapon's probability of hitting the Red target.
PR K/H-B: Blue weapon's probability of kill, given a hit, on the Red target.

PSSK-B: Blue weapon's probability of kill given a single shot at the Red target. Itis the
product of the probability of hit and the probability of kill given a hit.

REL-R: Reliability of the Red weapon sy: ‘em,
PR HIT-R: Red weapon's probability of hitting the Blue target.

PR K/H-B: Red weapon's probability of kill, given a hit, on the Blue target,
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PSSK-R: Red weapon's probability of kill given a single shot at the Blue target. It is the
product of the probability of hit and the probability of kill given a hit.

ROF-B: Blue weapon's rate of fire.
ROF-R: Red weapon's rate of fire.
PROB-B: The probability that Blue wins the duel,
PROB-R: The probability that Red wins the duel.
~ ROUNDS-B: The rumber of rounds available to the Blue weapon system.

 CHECK: Verification of the equations, It is the sum of PROB-B and PROB-K*which should
be'oqual to 1.00.

- o, Explanation.

(1) This model uses the same parameters as the fundamental duel where both sides
have unlimited amounts of ammunition, except that now Blue is limited by N-rounds,

(2) When Biue has a fixed number of rounds equal to N, and Red has an unlimited

supply of ammunition, then for the assumption of exponential firing times between rounds, the
chance that Blue wins is given by

P(B) = [oacy/(a2s + Paa)] {1 * [0/ @rin + A"}
P(BR) = 0

and

Note: agp = 1 - p, = single shot survival probability for Red when fired on by Blue.
P(BR) = chance of a draw (B and R kill each other).
(3) See paragraph 1.2.¢, for additional explanations of the fundamental duel.
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J. FUNDAMENTAL DUEL WITH LIMITED AMMUNITION FOR RED
1. Introduction.

a. Description. This model (Reference 4, chapter 17) depicts the outcome of two
opposing, single shot, direct fire weapon systems when the Red weapon system has a limited
amount of ammunition. Inputs required are each weapon's reliability, rate of fire, and probability
of kill given a single shot. The results are displayed in terms of the probability that the Blue
weapon wina the duel and the probability that the Red weapon wins the duel.

b. Limitations. This model evaluates the outcome of a simple one-on-one duei, based on
rates of fire, probabilities of kill, and exponentially distributed firing times between rounds.

c. Applications. Desktop analytic tool for applying a simple concept to evaluations of
single shot weapon systems.

d. Setup. This model runs on an IBM compatible PC computer equipped with Lotus
1-2-3, Data can be entered into the model and results displayed in less than a minute.

2. Guide to Operation.
a. Equipment Required.
(1) BMPC compatible computer.
(2) 3.5" disk drive,
(3) Lotus 1.2-3 spreadsheet software,
b. Installation.

(1) Tum on your computer and activate Lotus 1-2-3,

a (2) Insert the 3.5" disk containing the LIMAMMOR model into your computer's 3.5"
disk drive.

(3) Prom the Lotus 1-2-3 menu, load the A\ALIMAMMOR model (or B:LIMAMMOR
if you're working from the b: drive) by entering /FR, then backspace to erase the default path, and

enter A: and press the [Enter] key. After the Lotus 1-2-3 files are shown, select the
LIMAMMOR file,
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c. Operation.

(1) Move the cursor to the cell you wish to change. This should be cell B2, B3, B4,
B6, B7, B8, B10, BIT, or B12,

(2) As you make a change in one cell, the probabilities of Blue and Red winning (cells
E3 and B4 respectively) are automatically recalculated for a practically instantaneous answer.

-

BASIC DUEL (LIMITED AMMO FOR RED)
REL-B 1 \
PRHIT-B 0.6
PRK/H-B 07
PSSK-B 0.42 PROB-B  0.567382
REL-R 1 PROB-R 0432418
PR HIT-R 0.8 CHECK 1
PR K/H-R 0.8
PSSK-R 0.64
ROF-B 2
ROF-R 1
ROUNDS-R §

Screer '\

d. Definitions.
REL-B: Reliability of the Blue weapon system.
PR HIT-B: Blue weapon's probability of hitting the Red target.
PR K/H-B: Blue weapon's probability of kill, given a hit, on the Red target.

PSSK-B: Blue weapon's probability of kill given a single shot at the Red target. It is the
product of the probability of hit and the probability of kill given a hit.

REL-R: Reliability of the Red weapon system.
PR HIT-R: Rad weapon's probability of hitting the Blue target.

PR K/H-B: Red weapon's probability of kill, given a hit, on the Blue target.




PSSK-R: Red weapon's probability of kill given a single shot at the Blue target. It is the
product of the probability of hit and the probability of kill given a hit.

ROF-B: Blue weapon's rate of fire.

ROF-R: Red weapon's rate of fire,

PROB-B: The probability that Blue wins the duel..

PROB-R: The probability that Red wins the duel.

ROUNDS-R: The number of rounds available to the Red weapon. |

CHECK: Verification of the equations. It is the sum of PROB-B and PROB-R, which should
be equal to 1.00.

¢. Explanation,

(1) This model uses the sams parameters as the fundamental duel where both sides
have unlimited amounts of ammunition, except that now Red is limited by N-rounds.

(2) When Red has a fixed number of rounds equal to M, and Blue has an unlirnited
supply of ammunition, then for the assumpticn of exponential firing times between rounds, the

chance that Blue wins is given by
“ o] [ N } M
P(B) = + X
PoAs T Papn . Aot Pan _| At o
and
P(BR) = 0.

Note: ,g, ™ 1 - p, = single shot survival probability for Blue when fired on by Red.
P(BR) = chance of a draw (B and R kill each other).

(3) See parsgraph 1.2,e. for additional explanations of the fundamental duel.




K. LANCHESTER'S SQUARE LAW AS A FUNCTION OF TIME

1. Introduction.

[}

a, Description, This model (Reference 4, chapter 28) determines the remaining-Blue
forces and remaining Red forces at any given time during a battle between homogeneous forces.
Inputs required for each side are the total number of weapon systems, and each weapon's
probability of hit, probability of kill given a hit, and rate of fire. :

b. Limitations. This model evaluates the outcome of one set of identical weapon systems

against an opposing set of identical weapon systems, It is based on each weapon's constant kill
rate of opposing forces.

¢. Applications. Desktop analytic tool for evaluating homogeneous force effectiveness in
terms of a basic concept.

d. Setup. This model runs on an IBM compatible PC computer equipped with Lotus
1-2-3, Data can be entered into the model and results displayed in less than a minute.

2. Guide to Operation.
a. Equipment Required.
(1) IBM PC compatible computer.
(2) $5.25' disk drive.
(3) Lotus 1-2-3 spreadsheet software.
b. Installation.
(1) Tum on your coniputer and activate Lotus 1-2-3.

4 (2) Insert the 3.5" disk containing the LANBASIC model into your computer's 3.5"
isk drive.

(3) From the Lotus 1-2-3 menu, load the A:LANBASIC model (or B:.LANBASIC if
you're working from the b: drive) by entering /FR, then backspace to erase the default path, and

enter A: and press the [Enter] key. After the Lotus 1-2-3 files are shown, select the LANBASIC
file.




4 ¢. Operation,

g | _ ' (1) The model parameters are shown below.

L 4
b, BASIC LANCHESTER EQUATION AS FUNCTION OF TIME
3 . BATTLE BLUE  RED
5 INTTIAL FORCE SIZE* - 100 ' %
y P(E)* 0.5 0.5
; P(KED* 028 0S5
r RATE OF FIRB® 04 . 04
CONSTANT KILL RATB 0.08 0.1
TIME ELAPSED (T)* 2
. STRENGTH AT TIME T 9097 4047
i ' FORCE ADVANTAGE RATIO 2,25 0.44
| : LERATTIMET 1,08
! TIMB OF ANNTHILATION ERR 12.4645
0.141421 0,141893 1010017
1414214 0707107

Screen #1

9 (2) Move the cursor to the cell you wish to change. You may change only the items in
! : Screen #1 which are marked with an asterisk. In Screen #1 an error (ERR) is shown in cell F13
i because the given data has the Red force annihilated before the Blue force; consequently, Blue
cannot be annihilated (no force remaining).
d. Definitions.

Initial Force Size: Number of identical weapons on the Blue or Red side.

P(H): A weapon's probability of hit against the opposing force target.

P(K|H): Probability of kill given a hit against the opposing force target.

Rate of Fire: The rate of fire in rounds per time unit (usually minutes).

Constant Kill Rate: The constant rate at which a single weapon kills an opposing force
target.

Time Elapsed: The battle time.

Strength at Time T: The number of Blue or Red weapons remaining at the end of

time T,




Force Advantage Ratio: The number of friendly weapons divided by the number of
opposing force weapons after time T.

LER at Time T: The number of Red losses divided by the number of Blue losses.
Tims of Annihilation: The time at which there are no remaining weapons on t.hat side.
An error, indiated by "ERR" will be displayed on the side of the force which has weapons
remaining after the opposing force has been annihilated. This is because the winning force cannot
be a.nnihilatef! after all opposing weapons have been destroyed.
Note: The data appearing in rows 14 and 15 ars intermediate calculations,
e. Explanation of Lanchester's square law as a function of time.
(1) Definitions.
B, = Initial Blue strength
R;= Initial Red strength -
B = Size of the Blue force at any time ¢
R = Size of the Red force at any time ¢
p= Constant rate at which a single Blue weapon kills a Red weapon

B = Constant rate at which a single Red weapon kills a Blue weapon

“ (2) The remaining Blue forces B(f) and remaining Red forces R(f) at any time 7 are
B(f) = BoshB ¢ - vBTp Rosinh\/aB ¢
R(f) = Ricosh B ¢ - /AP Bysinh /B ¢
(3) The time ¢, at which Red is annihilated (i.e., R(f) = 0) is given by
v [1/2voB)) In ((v&B, + vB RM(/PB, - /B R)]
(4) Similarly, if Red wins, then Blue's time of annihilation (i.e., B(t) = 0) is given by

ty = (11260} In ((v@B, + JB RM(B R, - vp B)]

given by




L. DUEL WHEN BLUE HAS A WEAPON FAILURE RATE

1. ' Introdu=tion.

a. Description. This model (Reference 4, chapter 17) depicts the outcome of two
opposing, single ghot, direct fire weapon systems, each having an unlimited amount of
ammunition, as in the fundamental duel, but including the idea of weapon failure times. Inputs
required are: each weapon's probability of hit, probability of kill gived a hit, round reliability, and
rate of fire; the number of Blue weapons, and the Blue weapon failure rate. Results are displayed
in terms of the probability that Blue wins the duel and the probability tliat Red wins the duel.

b. Limitations. Only homogeneous forces are used in this model. Blue and Red have

unlimited ummunition supplies; Blue has a limited number of weapons, and Red has a failure-free
weapon.

c. Applications, Desktop analytic tool for applying simple failure rates to evaluations of
single shot weapon systems.

d. Setup. This model runs on an IBM PC compatible computer equipped with Lotus
1-2-3. Data can be éntered into the model and results displayed in less than a minute.

2. Guide to Operation.
a. Equipment Required.
(1) IBM PC compatible computer.
(2) 5.25' disk drive.
(3) Lotus 1-2-3 spreadsheet software,
b. Instalietion.
(1) Turn on your computer and activate Lotus 1-2-3,

(2) Insert the 3.5" disk containing the DLFAILB model into your computer's 3.5" disk
drive.

(3) From the Lotus 1-2-3 menu, load the A:DLFAILB model (or B.DLFAILB if you're
working from the b: drive) by entering /FR, then backspace to erase the defauit path, and enter
A: and press the [Enter] key. After the Lotus 1-2-3 files are shown, select the DLFAILB file.




¢. Operation.

(1) The model parameters are shown below.

DUELS WITH WEAPON FAILURE RATES FOR BLUE
REL OF BLUE RD* 1
PROB HIT BLUE RD* 0.6 .
PROB K/H BLUE RD* 0.7
PSSK BLUB RD- 0.42
REL OF RED RD* 1
PROB HIT RED RD* 0.8
PROB K/H RED RD* 0.8
PSSK RED RD 0.64
ROF BLUB* 2
ROF RED* 1
NUM BLUB WPNS* 1
BLUB WPN FAIL RATE* 0.02
0.04
PROB BLUE WINS 0.552632

Screen #1

(2) Move the cursor to the cell you wish to change. You may change only the itams in
Screen #1 which are marked with an asterisk.

d. Definitions.
REL OF BLUE RD: Reliability of the Blue round.
PROB HIT BLUE RD: Blue weapon's .probability of hitting the Red target.
PROB K|H BLUE RD: Blue round's probability of killing the Red target given a hit.
PSSK BLUE RD: The product of the above three inputs.
REL OF RED RD: Reliability of the Red round.
PROB HIT RED RD: Red weapon's probability of hitting the Blue target.
PROB K[H RED RD: Red round's probability of killing the Blue target given a hit.

PSSK RED RD: The product of the above three inputs.




ROF BLUE: The Blue weapon's rate of fire.

ROF RED: 'I"he Red weapon's rate of fire.

NUM BLUE WPNS: The number of Plue weapons in the Blue force.
BLUE WPN FAIL RATE: Fuilure rate of the Blue weapon.

PROB BLUE WINS: The probability that Blue wins the duel.

§

PROB RED WINS: The probability that Red wins the duel.
e. Explanation.
(1) Definitions.
P(5) = Probability that Blue wins the duel.

A ™ Mean rate of fire for a Blue weapon.
P ™ Mean rate of fire for a Red weapon.
P» ™ Single shot kill probability of Blue against Red.
Pr = Single shot kill probability of Red against Blue,
M ™ Mean fhilure rate for a Blue weapon.
Ha ™= Mean fhilure rate for a Red weapon.

(2) Blue's and Red's weapon failure times are assumed to be exponentially distributed.l

with mean failure times 1/py and 1/j,, respectively, or mean failure rates of p, and p,. If we
further assume that Blus and Red have unlimited ammunition supplies, Blue has a limited number

of weapons N, and Red has & fhilure-free weapon (j1, = 0), then the chances that Blue and Red

win are
Hlh Ha N
P(B) = oo | 1 ( )
Ay + APy [ ty * Py t Prby ]

P(R)=1-P(B), P(BR)=P(Draw)=0
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M. ESTIMATING OPERATIONAL AVAILABILITY

1. Introduction. .

a. Description. A method for estimating operational availability based on a conibins- tion
of test data and parameter estimates from other sources. This model was developed by Fred
Bernstein, Bugene Dutoit, and Greg Meyers (References 5).

b. Applications. Desktop model for estimating operational availability. It also gives the

 reliability analyst the opportunity to determine the sensitivity of operational availability to
changes in the parameters that contribute to this measure of readiness. ™

¢. Setup. This model runs on a DOS-based computer. On-hand data can be entered into
the model and results displayed in a few minutes.

2. Guide to Operation,
a. Equipment Required.
(1) IBM compatible PC computer,
(2) 3.5" disk drive.
(3) Lotus 1-2-3 spreadsheet software.
b. Installation.
(1) Turn on the computer and activate Lotus 1-2-3,
(2) Insert the 3.5" disk containing the OPERAO model into your 3.5" disk drive.
(3) From the Lotus 1-2-3 meny, load the A:OPERAO model (or B:OPBRAO if you're
working from the b: drive) by entering /FR, then backspace to erase the default path. Enter A:
(or B:) and press the [Eater) key. After tho Lotus 1-2-3 files are shown, select the OPERAO file.

¢. Operation.

(1) The model parameters are shown below.




(2) Move the cursor to the cell you wish to change. You are allowed to change only
the daga marked by an asterisk--other data represents calculations made by the model.

( ESTIMATING OPERATIONAL AVAILABILITY

oT 10

TT 30

MR 0.3

K 1

ALDT 5

MTBOMF 100
0.3
0.05
0.35
0.333333
0.116667

Aq 0.883333

Screen #1
d. Definitions for Screen #1.
OT: Operating Time.
TT: Tetal Time.
MR: Muaintenance Ratio.
K: Ratio of Maintenance Manhours to Clock Hours,
ALDT: Administrative Logistic Downtime.
MTBOMF: Mean Time Between Operational Mission Failure.
e. Explanstion:
(1) Definitions.
A, Operational Availability.

ALDT Administrative Logistic Downtime.




DT Downtime,
K Ratio of Maintenance Manhours to Clock Hours.
MR Maintenance Ratio.

MTBOMF Mean Time Between Operational Mission Failure.

oT Operating Time.

ST Standby Time.

TALDT Total Administrative Logistic Downtime.
TCM Total Corrective Maintenance.

TPM Total Preventive Meintenance.

TT. Total Time.

(2) The basic relationship that is used to estimate Operational Availability (A,) is:
Ao = (OT + ST)/(OT + ST + TCM + TPM + TALDT 1))

(3) The entire denominator of equation (1) is Total Time (TT). The last three terms of
the denominator account for all the downtime (DT). The numerator of this equation represents
the total uptime (UT) for the system. An alternate way to express uptime is to subtract the DT
from the TT. Equation (1) can then be written as:

Ay= (TT-DTYTT=1-DT/TT 2

(4) Equation (2) can be expressed in terms of the "Downtime" components as:
Ag=1-(TCM+TPM + TALDT)/TT 3)

(5) The Maintenance Ratio (MR) is the total number of man-hours of maintenance of

direct labor in some particular time period divided by the total operating time in this same time
period. This can be expressed as:

MR =K * (TCM + TPM)/OT (4)

where K is the ratio of Maintenance Manhours to Maintenance Clock Hours. For example, if
«wo0 maintenarice men work from 12:00 noon to 5:00 PM (10 Maintneance Manhours during a 5
clock hour period of time) then K = 10/5 = 2, Equation (4) can also be written as:



TCM + TPM = (MR) * (OT)/K. (5)

(6) TALDT can be estimated by considering the total number of failures in some given
time period multiplied'by the average logistical down time for each failure (ALDT). Tlus
relationahip can be stated as:

TALDT = (OT) * (ALDTYMTBOMF. | (6)

() Bquations (5) and (6) can be substituted into equation (3). By factoring (OT) and
(TT) as common terms, the following estimating relationship is obtained

Ao=1+ (OT/TT) * (MRYK + (ALDT/MTBOM) M

, (8) Equation (7) can be used to assess the A, of a system based on a combination of
test data and parameter estimates from other sources. The ratio of (OT/TT) can be obtained
from the operational mode summary and mission profile for the system. The estimates for the
MR and MTBOMEF can be obtained from testing and engineering analysis. The values for ALDT
and K can be estimated from additional logistical analysis, testing and field reports for existing
but similar systems. Equation (7) also gives the reliability analyst the opportunity to determine
the sensitivity of A, to changes in the parameters that contribute to this measure of readiness.
This can help determine which factors can be traded off against A, and still have the system meet
the operational requirement of readiness.
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N. INDIRECT FIRE EFFECTS

1. Introduction.

a. Description. This model was developed by the Joint Munitions Effectiveness-Manuals,
Surface to Surface, and published under the authority of the Joint Technical Coordinating Group
for Munitions Effectiveness. It calculates the effects of artillery and mortar fires for high
explosive and improved conventional munitions, Inputs required are: ' number of volleys; number
of rounds per volley; round reliability; lethal area; submuaition reliability, volley pattern
dimensions; target area dimensions; number of submunitions per round; angle of fall; mean point
of impact and precision errors; target location error, and pattern adjustment factor. Results are
displayed/printed in terms of fractional damage (amount of target destroyed) for the number of
volleys used, or the number of volleys required to achieve a desired fractional damage.

- b, Limitations. Effectiveness estimates for a large number of volleys may be unreliable
due to the methodology used in this model.

c. Applications. Degktop analytic tool for determining artillery and mortar effiects on
personnel and materiel targets.

d. Setup. This model runs on an IBM compatible PC computer. Data is readily avaiisble

from Joint Technical Coordinating Group publications or the Army Materiel Systams Analysis

Actlvity at Aberdeen Proving Ground. Data can be entered and results displayed or printed in 2
few minutes.

2. Guide to Operation.
a. Equipment Required.
(1) IBM compatible PC computer.
(2) 3.5" disk drive. '
(3) Printer (optional).
b. Installation.
(1) Tum on the computer and get to the DOS prompt.

(2) Insert the 3.5" disk containing the SUPERQUICKIE II program into your disk

drive.




(3) From the DOS prompt, enter the command A: (or B: if you're operating from
the B: disk drive).

(4) Enter the command CD SQ. (to change to the SQ directory on the 3.5" disk)
(5) Enter the command SUPERQ :

(6) If' you receive the message, "Enter run time file path,” it is probably because you
are not in the SQ directory of the A: (or B:) drive. You cannot run this program simply by
entering the name of the executable file and path (A\SQ\SUPERQ EXE).

¢. Operation.

(1) The first two screens contain publication, destruction, and copywrite information.
Please take the time to read these screens.

-

2 DECEMBER 1991 (ARMY) M 10160+17-1
(NAVY) TWS14-AA-MEM-010
(USMC) FMIRP 10+14-THe4-A
(USA) 6181317

JMEM/38 SUPERQUICKIE 0 PROGRAM (SUPERQ) FOR PERSONAL COMPUTERS
DISTRIBUTION STATEMENT B. Distribution aitherised to U.S, Qovernmant
wew; 3 Decemaber 1991, Other for this

agencies caly;
dooument must be referred to Director, AMBAA, Attn: ], Aberdesn
Proving Qround, MD 21003-5071,

DESTRUCTION NOTICE. For unclamified, iimited documents, destroy by azy
wethod that will prevent disclosure or reconsiruction of the documens,

REPRODUCTION. Users may not change this flexible disk.
PUBLISHED UNDER THE AUTHORITY OF THR JTCO/ME

FRESS THE SPACE BAR TO CONTINUE
UNCLASSIFIED




(2) Super Quickie II is for use by the Department of Defense only.

[ UNCLASSIFIED

SUPERQ
VERSION 1.0

‘120291

THIS PROGRAM 18 NOT RELEASABLE TO AGENCIES OUTSIDE THE
DAPARTMENT OF DEFENSE WITHOUT THE PRIOR APFROVAL OF THE
APPROPRIATE MEMBER OF THE JOINT TECHNICAL COO!'DINATING
GROUP POR MUNITIONS EFFECTIVENESS (JTOO/ME).

SUMERQ I8 COMPILED WITH THE MICROSOFT QUICKBASIC COMPILER.
THIS COMPMLER AND THE BRUN4$.EXH FILE ON THIS DISKETTE ARE
COPYRIGHTED BY THE MICROSOFT CORPORATION,

PRESS THE SPACE BAR TO CONTINUE
UNCLASSIFIED

Screen 2

(3) The next prompt asks vou to select the amount of time you want messages
displayed. "Short" is recommended.

(

MESSACGE DISPLAY TIME

1 SHORT
2 MBDIUM
3 LONO

ENTER THE NUMBIR OF THE DISPLAY TIMR YOU WANT 1 <

Screen 3

(4) Next you will be asked if you have a color monitor.

DO YOU HAVE ACOLOR MONTTOR -YN ¥ <

Screen 4




(5) If you have a color monitor, you will be given the opportunity to change colors.

‘ DO YOU WANT TO CHANQE THE COLORS-Y/N N < I

Screen 5

(6) The next prompt warns you to make sure that the 3,5* disk's write-protect tab is
disabled. It is disabled (will allow writing to it) If the write-protect tab is covering the small,
rectangular hole on your disk. If'you can see through the hole, slide the tab over the hole.
Additionally, you are asked to enter the drive that has the Super Quickie IT program onit. Do
not enter a colon after the drive letter (do not enter A:, for example, just the letter A, B, or C.)

¢ NOTE *
DISKETTE MUST NOT HAVE A WRITE-PROTECT TAB INSTALLED
ENTER THE DRIVE YOU ARE WORKINOON-A,B,ORC A

Screen 6

(7) The following notices will be displayed next.
(

11 NOTE It
UNITS OF MEASUREMENT MUST BE CONSISTINT
PRESS THE ESCAPE KRY AT ANY TIME TO EXIT FROGRAM

PRESS THE SPACE BAR TO CONTINUE

Screen 7

(8) The next display gives you the options you have with Super Quickie II. Basically,
you can choose HE or ICM, and you can choose to input the number of volleys and have Super
Quickie IT determine the fractional damage to the target area, or you can input the fractional
damage desired and have SuperQuickie II determine the number of volleys required.
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/ OPTIONS

| HEFD -'omnmuum EFFECTTVENESS OF HE WEAPONS WHERE THE NUMBER OF
VOLLEYS/SALVOS 1§ INPUT AND THE EXPECTED FRACTIONAL DAMAGE OR
CASUALTIRg IS OUTMUT.

2 ICM/FD - DETERMINES THE EFFECTTVENESS OF ICM'S WHERE THE NUMBER OF VOLLEYS
al SALVOS 18 INPUT AND THEB EXPECTED FRACTIONAL DAMAORL/CASUALTIRS IS

3 HI/NV - DETERMINES THR EFFECTIVENESS OF HE WEARONS WHERE THE DESIRED
FRACTIONAL DAMAGE/CASUALTIES I8 INPUT AND THE REQUIRED NUMBER OF
VOLLEYS/ALVOS I8 OUTPUT. "

4 ICMAYY .« DETERMINES THE EFFECTIVENESS OF ICM'S WHERE THE DESIRED FRACTIONAL
?mlll.cm&mn INPUT AND THE REQUIRED NUMBER OF VOLLEYS OR

ENTER THE NUMBER OF THE OPTION YOU WANT TORUN |

Screen 8

(9) The next set of displays request the inputs for. the option you chose above. If you
decide during the inputs that you have made an error on a previous entry, don't worry; you will
got a chance to make corrections later--just continue with the remainder of the entries. Another
point worth remembering: some entries will require an additional prompt at the bottom of your
screen, and you could be frustrated if you don't notice it. The prompt may be walting for a yes or
no response and you'll be trying to enter a regular numerical input which won't be accepted.

(10) The following eatries pertain to option #1, selected above in Screen 8. This
option calls for a number of volleys of high explosive (HE) rounds, and will obtain a result in
terms of the fraction of the target area destroyed. Fractional damage of a target area is a decimal
number which equates to the fraction of the total number of personnel or materiel targets in the
target area which were destroyed by the indirect fire. For example, if the lethal areas entered _
below are for personnel, a result of .23 means that 23% of the personnel in the target area were -
killed. It doesn't matter how many personnel are actually in the target area, Similarly for
materiel targets. If the lethal areas entered are for tanks, then a result of .19 means that 19% of
the tanks in the target area were destroyed.




(11) The first input is the number of rounds per volley. Press [Enter] after each input.

' HED

NUMBER OF ROUNDS PER VOLLEY/SALVO

Numu OF UNIQUE VOLLEY/SALVO SETS (MAX = 8)
OUND RELIABILITY

wauuumon RELIABILITY

VOLLEY/SALVO PATTERN LENGTH (RNQ)
VOLLEY/SALVO PATTERN WIDTH (DEFL)

BIFL)

NUMBER OF SUBMUNTITIONS PRR ROUND
ANGLE OF FALL, DRGREES '
SUBMUNITION RECTANOULAR PATTERN LENOTH (RNG) OR RADIUS
SUBMUNITION RECTANQULAR PATTERN WIDTH (DRFL)
MPIRANGR ERROR PROBABLE OR CEP

MPI DRFLECTION ERAOR PROBABLE
FRECISICN RANGE ERROR PROBABLE OR C2P
PRECISION DEFLECTION ERROR PROBABLE
TARGET LOCATION ERROK (CEP)
PATTERN ADJUSTMENT FACTOR (K)

FH

Screen 9

(12) The second input is for the number of unique volley sets. For exampls, if you
would like to obtain fractional damage results for firing 3 volleys and 12 volleys into the target
area, then you have two unique volley sets--one set of 3 volleys and one set of 12 volleys. This
model will automatically add an additional result for firing one volley, In this example we will
onter two volley sets-—-3 volleys and 12 volleys--and the model will give us results for three volley
sets: that is, results for 1volley, 3volleys, and 12 volleys. Note that there is a maximum of five

unique volley sets. You can enter five volley sets, and the model will add the sixth result for one
volley.

(13) The second input (the number of unique volley sets) is one of those inputs which
will produce an almost inconspicuous prompt at the bottom of the screen. This prompt will ask
you to enter the number of volleys you warit fired for each unique volley set. In our case, we're
going to enter two unique volley sets, and the prompt at the bottom of the screen will appear,
asking us to enter the number of volleys for volley set 1, and then another prompt will appear in
the same place, asking us to enter the number of volleys for volley set 2.
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(14) The second entry (number of unique volley sets) and the first prompt at the
bottom of the screen looks like Screen 10.

( ' HE/FD

NUMBER OF ROUNDS PER VOLLEY/SALVO
NUMBER OF UNIQUE VOLLEY/SALVO SETS (MAX = 5)
ROUND RELIABILITY
SUBMUNITION RELIABILITY
VOLLEY/SALVO PATTERN LENGTH (RNO)
VOLLEY/SALVO PATTERN WIDTH (DEFL)
AREA TARGET LENGTH (RNG) OR RADIUS )
AREA TARGET WIDTH (DEFL) \
NUMBER OF SUBMUNITIONS PER ROUND '
ANGLE OF FALL, DEOREES
_ SUBMUNTTION RECTANGQULAR PATTERN LENGTH (RNG) OR RADIUS
. SUBMUNTTION RECTANGULAR PATTERN WIDTH (DEFL.)
MPI RANGE ERROR PROBABLE OR CEP

MP! DEFLECTION ERROR PROBABLE
PRECISION RANGE ERROR PROBABLE OR CEP
PRECISION DEFLECTION ERROR PROBABLE
TARGET LOCATION ERROR (CEP)
PATTERN ADJUSTMENT FACTOR (K)

: - ENTER VOLLEY/SALVO SIZE NUMBER 1 = 3

HHEHH .

Screen 10

(15) The second prompt at the bottom of the screen will ask for the second volley size.
In our example, 12 volleys will be entered for the size of the second volley set, as follows.

r

HE/FD

NUMBER OF ROUNDS PER VOLLEY/SALVO 6
NUMBER OF UNIQUE VOLLEY/SALVO SETS (MAX = 5) 2
ROUND RELIABILITY 00000
SUBMUNITION RELIABILITY 00000
VOLLEY/SALVO PATTERN LENOTH (RNG) 00000
VOLLEY/SALVO PATTERN WIDTH (DEFL) 00000
AREA TARGET LENGTH (RNG) OR RADIUS 00000
AREA TAROET WIDTH (DEIM.) 00000
NUMBER OF SUBMUNTITIONS PER ROUND 00000
ANGLE OF FALL, DEOREES 00000
SUBMUNTTION RECTANGULAR PATTERN LENOTH (RNO) OR RADIUB 00000
SUBMUNTTION RECTANGULAR PATTERN WIDTH (DEFL) 00000
MPl RANGE ERROR PROBABLE OR CEP 00000
MP1 DEFLECTION ERROR PROBABLE 00000
PRECISION RANGE ERROR PROBABLE OR CEP 00000
FRECISION DEFLECTION ERROR PROBABLE 00000
TARGET LOCATION ERROR (CEP) 00000
PATTERN ADJUSTMENT FACTOR (K) 00000
ENTER VOLLEY/SALVO SIZE NUMBER 2 » 12

Screen 11
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(16) The next input is for round reliability. Notice at the bottom of the list the volley
sizes are now displayed, including 1 volley added by the model.

F ‘ HE/FD

NUMBER OF RO'INT 3 PER VOLLEY/SALVO
NUMBER OF UNIC .8 VOLLEY/SALVO SETS (MAX « 5)

4

VOLLEY/SALVO PATTERN LENGTH (RNO)
VOLLEY/SALVO PATTERN WID'TH (DEFL)
AREA TARGET LENOTH (RNG) OR RADIUS
ARBA TARGET WIDTH (DEFL)

NUMBRR OF SUBMUNITIONS PER ROUND
ANGLE OF PALL, DEOREES
SUDMUNITION RECTANOULAR PATTERN LENOTH (RNG) OR RADIUS
SUBMUNITION RECTANGULAR PATTERN WIDTH (DEFL)

MP1 RANGE ERROR PROBABLE OR CEP

MPt DEFLECTION ERROR PROBABLE

PRECISION RANOE ERROR PROBABLE OR CEP

" PRECTSION DEFLECTION ERROR PROBABLE
TARGET LOCATION ERROR (CEP)

PATTERN ADJUSTMENT FACTOR (K)
VOLLEY/SALVO SIZES 1,3, 12

o

jaseee. ..

§ §igdests

Screen 12

(17) The next item in the list, submunition relisbility, will now display N/A in the
right column because we se!ectgd the HE option. Submunition reliability is used for ICM only.

4 am

NUMBER OF ROUNDS FER VOLLEY/SALVG

NUMEER OF UNIQUE VOLLEY/BALVO SETS (MAX = 5)

ROUND RELIABILITY

SUBMUNITION RELIABILITY

VOLLRY/SALVO PATTERN LENGTH (RNO)

VOLLRY/SALVO PATTERN WIDTH (DEFL)

AREA TAROPET LENGTH (RNQ) OR RADIUS

ARKA TARGET WIDTH (DEFL)

NUMBER OF SUBMUNITIONS PER ROUND

ANGLE OF FALL, DEQREES

SUBMUNITION RECTANQULAR PATTERN LANGTH (RNQ) OR RADIUS

- SUBRMUNTTION RECTANCGULAR PATTERN WIDTH (DEFL,

: MF1 RANGE ERROR PROBARLE OR CEP

- MP! DEFLECTION ERROR PROBABLE
PRECISION RANGE ERROR PROGABLE OR CEP
PRECISION DEFLECTION ERROR PROBABLE
TARQET LOCATION ERROR (CEP)
PATTERN ADJUSTMENT FACTOR (K)
VOLLEY/SALVO SIZES 1,3, 12

geEBEERRcANEcE:,..
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: (18) The volley/salvo pattern length (in the range direction) &nd width (in deflection)
o7 are entered next. These are the dimensions of the volley pattern in the impact area.

( HEFD
NUMBER OF ROUNDS PER YOLLEY/SALVO

NUMBER OF UNIQUE VOLLEY/SALVQ SETS (MAX = )
ROUND RELIABILITY

SUBMUNTTION RELIABILITY

VOLLEY/ALVO PATTERN LENGTH (RNO)
VOLLEY/SALVO PATTERN WIDTH (DEFL)

AREA TAROET LENQTH (RNG) OR RADIUS '
AREA TARGET WIDTH (DEFL)

‘ NUMBIER OF SUBMUNITIONS PER ROUND .

T, ANOLE OF FALL, DEGREES )

‘ SUBMUNTTION RECTANQULAR PATTERN LENGTH (RNG) OR RADIUS
SUBMUNITION RECTANOQULAR PATTERN WIDTI (DRFL)

MPI RANGE ERROR PROBABLE QR CEP

MPI DRFLECTION ERROR PROBABLE

PRECISION RANOE ERROR PROBABLE OR CEP

PRECISION DEFLECTION ERROR PROBABLE

TARGET LOCATION ERROR (CEP)

PATTERN ADJUSTMENT FACTOR (K)
VOLLEY/SALVO 81ZE3 1,3,12

a§§§u.

T

Screen 14

(19) The next entry is for the area target length (range direction), or the radius of the
target area, A prompt at the bottom of the screen asks you if you entered a radius or not.

4 -

NUMBER OF ROUNDS PER VOLLEY/SALVO ¢
- NUMBER OF /NIQUE VOLLEY/BALVO SETS (MAX = 5) 3
. ROUND RELIABILITY 056
SUBMUNITION RELIABILITY WA .
VOLLEY/SALVO PATTERN LENGTH (RIG) 290
VOLLEY/MALVO PATTERN WIDTH (DEFL) 98
AREA TAROET LENOTE (RNG) Ok RADIUY 100
ARRA TAROET WIDTH (V1)
NUMBER OF SUBMUNITIONS PER ROUND
ANGLR OF FALL, DEGREES
SUBMUNITION RECTANGULAR PATTERN LENGTH (RNG) OR RADIUS
SUBMUNITION RECTANGULAR PATTERN WIDTH (DEFL)
MPI RANGE ERROR FROBABLE OR CEP
- MP1 DEFLECTION ERROR PROBABLE
PRECISION RANGE KRROR PROBABLE OR CEP
PRECISION DEFLECTION ERROR PROBABLE
TARGET LOCATION ERROR (CER)
PATTERN ADJUSTMENT FACTOR (K)
VOLLEY/SALVO SIZES 1,3, 12
DID YOU ENTER 4 RADIUS - YN N

T

Screen 15
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(20) The target width (deflection) is 100 meters for this example. As soon as you
enter this number, the next line, for number of submunitions per round will be shown as N/A.

/- ‘ HEFD

NUMBER OF ROUNDS PER VOLLFY/SALVO ]
NUMBER OF UNIQUE VOLLEY/SALVO SETS (MAX = §) 2
ROUND RELIABIUTY 0.96
SUBMUNITION RELIABILITY N/A
VOLLEY/RALVO PATTERN LENGTH (RNG) 230
VOLLEY/SALVO PATTERN WIDTH (DEFL) 98
AREATAROET LENOTH (RNG) CR RADIUS 100
AREATARGET WIDTH (DRIL) 100
NUMBER OF SUBMUNTTIONS PER ROUND NA
ANGLR OFFALL, DROREES 00000
SUBMUNITION RECTANGQULAR PATTERN LENGTH (RNG) OR RADIUS 00000
SUBMUNITION RECTANGULAR PATTERN WIDTH (DEFL) 00000
MP{ RANOE ERROR PROBABLE OR CEP 00000
MP! DRFLECTION ERROR PROBABLE 00000
PRECIXION RANGE ERROR PROBABLE OR CEP 00000
PRECISION DEFLECTION ERROR PROBABLE 00000
TARGET LOCATION ERROR (CEP) 00000
PATTERN ADJUSTMENT FACTOR (K) 00000

VOLLEY/SALVO SIZES 1,3, 12

Soreen 16

(21) The angle of fall is entered next, and the next two inputs will be shown as N/A.

4 -

NUMBER OF ROUNDS PER YOLLEY/SALVO 6
NUMEER OF UNIQUE VOLLEY/SALVO SETS8 (MAX = §) 2
ROUND RELIABILITY 0.96
SUBMUNITION RELIABILITY WA
VOLLRY/BALVO PATTERN LENOTH (RNG) 30
VOLLEY/SALVO PATTERN WIDTH (DEL1.) 95
AREA TARORT LENQTH (RNO) OR RADIUS 100
AREATARGET WIDTH (DEFL) 100
NUMBER CF SUBMUNITIONS PER ROUND NA
ANOLE OF FALL, DEQRERS 47
SUBMUNITION KECTANGULAR PATTERN LENGTH (RNG)OR RADIUS  1/A
SUBMUNITION RECTANGULAR. PATTERN WIDTH (DEFL) NA

_ MPIRANGE ERROR PROIABLE OR CI'P 00000
MP! DEFLEOTION ERROR FROBABLY 00000
FRECISION RANOE ERROR PROBABLE OR CEP 00000
PRECISION DRFLECTION ERROR P2GBABLE €0000
TARGET LOCATION ERROR (CEP) 00000
PATTERN ADJUZITMENT FACTOR (K) 00000
VOLLEY/BALVO SIZES 1,3, 12

Screen 17
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(22) For the mean point of impact (/PI) errors, the first entry will cause a prompt at
the bottom of the screen, asking you if you entered & circular error probable. In this case, yes.

& o

NUMBER OF ROUNDS PER VOLLEY/SALVO 6
NUMBER OF UNIQUE VOLLEY/SALVO SETS (MAX = §) 2
ROUND RELIABILITY 096
SUBMUNITION RELIABILITY

N/A
VOLLRY/SALVO PATTERN LENGTH (RNG) 250
VOLLEY/SALVO PATTERN WIDTH (DEFL) 08
AREA TAROET LENGTH (RNG) OR RADIUS 100
AREA TARQET WIDTH (DEFL) 100
NUMBER OF SUBMUNTTIONS PER ROUND NA
ANQOLE OF FALL, DEGREES 47
SUBMUNITION RECTANGULAR PATTERN LENGTH (RNG)ORRADIUS  N/A
SUBMUNTTION RECTANGULAR PATTERN WIDTH (DEFL) NA
MP! RANGE ERROR PROBABLE OR CEP 40 \
MPI DEFLECTION ERROR PROBABLE 00000
PRECISION RANGE ERROR PROBABLE OR CEP 00000
PRECISION DEFLECTION ERROR PROBABLE 00000
TAROET LOCATION ERROR (CEP) 00000
PATTERN ADJUSTMENT FACTOR (K) 00000
VOLLEY/SALVO SIZBS 1,3, 12

DID YOU ENTERACEP - YN Y

Screen 18

(23) Similarly for the precision errors.

a -

NUMBER OF ROUNDS PER VOLLEY/SALVO 6
NUMBER OF UNIQUE VOLLBY/SALVO SETS (MAX = 5) 3
ROUND RELIABILITY 0.9¢
SUBMUNITION RELIABILITY N/A
VOLLEY/SALVO PATTERN LENGTH (RNG) 230
VOLLRY/SALVO PATTERN WIDTH a%ﬂ.) 93
AREA TARGET LENOTH (RNG) OR RADIUS 100
AREA TAROET WIDTH (DEFL) 100
NUMBER OF SUBMUNITIONS PER ROUND N/A
ANGLE OF FALL, DEQREES’ 47
SUBMUNITION RECTANGULAR PATTERN LENGTH (RNG) OR RADIUS  N/A
. SUBMUNITION RECTANGULAR PATTERN WIDTH (DEFL) NA
MP1 RANOR KRROR FROBABLE OR CEP 40
MP1 DEFLECTION ERROR PROBABLE 00000
PRECISION RANOE ERROR PROBABLE OR CEP 42
PRECISION DEFLECTION ERROR PROBABLE 00000
TAROET LOCATION ERROR (CEP) 00000
PATTERN ADJUSTMENT FACTOR (K) 00000
VOLLEY/SALVO S1ZES 1,3, 12
DID YOUENTER ACEP - YN Y

Screen 19




(24) The target location error is entered as 0 meters.

. - —

NUMBER OF ROUNDS PER VOLLEY/SALVO 6
NUMBER OF UNIQUE VOLLEY/SALVO SETS (MAX = $) 2
ROUND RELIARILITY 0.96
SUBMUNITION RELIABILITY NA
VOLLEY/SALVO PATTERN LENGTH (RNG) .20
VOLLRY/SBALVO PATTERN WIDT™ (DEFL) ° 93
AREA TAROET LENOTI{ (RNO) OR RADIUS 100
Amruonwmmm.) 100
NUMBER OF SUBMUNITIONS PER ROUND N/A
ANGLE OF FALL, DECRRES 7

SUBMUNTTION RECTANGULAR PATTERN LENOTH (RNG) OR RADIU! A
SUBMUNTTION RECTANGULAR PATTERN WIDTH (DRM.) N/A
MPI RANOE ERROR PROBABLE OR CE» 40
MPI DEFLECTION RRROR PROBABLE 00000
mm& ERROR FROBABLE OR CRP “a .

DEFLECTION ERROR PROBABLE 00000
TARGET LOCATION ERROR (C2P) 0
PATTERN ADJUSTMENT FACTOR (K) 00000
VOLLRY/SALVO SIZES 1,3,12

Soreen 20
(23) The pattern adjustment fictors may be obtained from the JTCG. In our example
the pattern adjustment factor is 4.
4 —

NUMBER OF ROUNDS PER VOLLEY/SALVO 6
NUMBER OF UNIQUE VOLLEY/SALVO 8RTS (MAX = 9) 2
ROUND RELIABILITY 0.9¢
SUBMUNTTION RELIABILITY NA
VOLLEY/SALVO PATTERN LENGTH (RNO) 250
VOLLEY/MALVO PATTERN WIDTH 95
AREA TARGET LENOTH (RNG) OR RADIUS 100
AREA TAROET WIDTH (DEFL) 100
NUMBER OF ONS PR ROUND NA
ANOLS OF FALL, DEGREES ]
SUBMUNTTION REGTANGULAR PATTERN LENOTH (RNG) OR RADIUS  N/A
SUBMUNTTION RECTANGULAR PATTERN WIDTH (DRFL) NA
MP1 RANGE KRROR PROBABLE OR CEP 40
MP! DEFLICTION ERROR PROBABLE 00000
PRECISION RANOR ERROR PROBABLE OR CEP a
PRECISION DEFLECTION ERROR PROBABLE 00000
TAROET LOCATION KRROR (CEP) 0
PATTERN ADJUSTMENT FACTOR (K) 00000
VOLLEY/SALVO SIZ28 1,3, 12

Screen 21
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(26) Having filled the first set of prompts, the entries for lethal areas are next. After
vou enter the lethal areas, you will get a prompt at the bottom of the screen asking if you entered
personnel lethal areas rather than lethal areas for materiel targets.

/
LETHAL AREAS
LETHAL AREAS MUST BE ENTERED IN DECREASING ORDER
LETHAL AREA OF POSTURE | OR MATERIEL TOT 1 3300
LETHAL AREA OF POSTURE 2 OR MATERIEL TOT 2 - 400.0
LETHAL AREA OF POSTURE 3 OR MATERIEL TOT 3 150.0

]
DID YOU ENTER PERSONNEL LETHAL AREAS - YN Y

Screen 22

(27) The last set of entries pertain to the percent of personnel in each of the above
postures during the first and subsequent volleys. For example, in the above screen you might
have entered three lethal areas for personnel who are standing, crouching, and prone. The
scenario might dictate that when the first volley lands, 80% of the personnel in the target area are
standing, 10% are crouching, and 10% are in a prone position. However, for subsequent volleys,
10% of the personnel are still standing (running, moving to a new position, etc...), 50% are
crouching, and 40% are in a prone position. Entries to match this scenario are as follows.

[

LETHAL AREAS
LETHAL AREAS MUST BE ENTERED IN DECREASING ORDER
LETHAL AREA OF POSTURE t OR MATERIEL TOT | 5300
LETHAL AREA OF POSTURE 2 OR MATERIEL TOT 2 4000
LETHAL AREA OF POSTURE 3 OR MATERIEL TOT 3 1500

FOR POSTURE SEQUENCING, THE FRACTION OF PERSONNEL IN EACH POS' (/RE MUST
LIE BETWEEN 0.0 AND 1.0. THE 8UM OF ALL THR POSTURES MUST EQUAT 1.0

FRACTION OF PERSONNEL POSTURE | DURING FIRST VOL/RAL 0.80
FRACTION OF PERSONNEL POSTURE 2 DURING FIRST VOL/SAL 0.10
FRACTION OF PERSONNEL POSTURE 3 DURING FIRST VOL/SAL 0.10
FRACTION OF PERSONNEL POSTURE | FOR SUBSEQUENT VOL/SAL 0.10
FRACTION OF PERSONNEL POSTURE 2 FOR SUBSEQUENT YOL/SAL 050
FRACTION OF PERSONNEL POSTURE 3 FOR SUBSEQUENT VOL/SAL 0.40

Screen 23




(28) All inputs will now be displayed, and you are given the opportunity to make
changes in the data prior to calculating the results.

_a :

INPUTS
1 NUMBER OF RDS PER VOL/SAL 6 13 PRECISION CEP 42,00
2 NUM QF UNIQUE VOL/SAL SETS 2 16 PRECISION DEP N/A
3 ROUND RELIABILITY 96 17 TARGET LOCATION ERROR 0.00
4 SUBMUNITION RELIABILITY N/A 18 PATTERN ADJ FACTOR (K) 4
$ VOL/SAL PATTERN (RNO) 250.00 19 POSTURE { LETHAL AREA 530,00
6 VOL/SAL PATTERN (DRIL) 95,00 20 POSTURE 2 LETHAL AREA 400.00
7 TAROET LENQTH (RNQ) 100.00 21 POSTURE 3 LETHAL AREA 150.00
8 TARQET WIDTH (DEFL) 100.00 22 POSTURE 1 FIRST VOL/SAL 0.80
9 NUM OF SUBMUNITIONS FERRD NA 23 FOSTURR 2 FIRST VOL/SAL 0.10
10 ANOLE OF FALL 4700 24 POSTURE 3 FIRST VOL/SAL 0.10
11 SUBMUNITION PATTERN(RNG) NA 23 POSTURE L AFTERFIRST VOL/SAL  0.10.
12 SUBMUNTTION PATTERN (DEFL) N/A 26 POSTURE 2 AFTER FIRST VOLSAL 050
13 MPI CEP 4000 27POSTURE 3 AFTER FIRST VOL/SAL 040
14 MIP DEP N/A 28 VOL/SALSIZES 1 3 12

DO YOU WANT TO MAKE ACHANOE - YN N

Screen 24

(29) Ifyou had wanted to make a change in the inputs, you would have responded
with a "Y* to the prompt at the bottom of Screen 24. However, assuming that no changes need
to be made, a response of "N, as in Screen 24, will produce the desired results in terms of
fractional damage.

f

RESULTS
EXPECTED FRACTIONAL DAMAGR/ACASUALTIES
VOLLBY/MALVO roOs | POS3 POS3 MIXED
1 00362  0.0281 00113  0.0329

3 01047  0.0819 00335  0.0752
12 03570  0.2891 0.1278 02401

NOTE: 6 ROUNIXY) PER VOLLBY/SALVO

PRESE P TO FRINT OR FRESS THE SPACEBAR TO CONTINUE

Screen 25
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(30) Whether you press "P" to print the results shown on the screen, or press the
spacebar to continue, the following screen is displayed.

- .

1 ENTER ALL NEW INPUT (RETURN TO THE OPTIONS MENU)
2 CHANGE EXISTING INPUT
3 EXIT TO SYSTEM

ENTER THE NUMBER OF THE OPTION YOU WANT" 3

Screen 26

(31) Entering a 3, above, will return you to the a:> prompt after the next screen.

/' UNCLASSIFIED

RECOMMENDED CHANGES, COMMENTS OR CORRECTIONS TO
IMPROVE THIS PROGRAM SHOULD BE ADDRESSED TO:

DIRECTOR

U.S. ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ATTN: AMXSY -J

ABERDEEN PROVING GROUND, MD 210035-5071

PRESS THE SPACE BAR TO RETURN TO SYSTEM

UNCLASSIFIED

Screen 27

(32) Upon pressing the space bar, you will be returned to the A:\SQ> prompt. If you
need to return to the C: drive and prompt, simply type C: and press the [Entar] key.
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An Application of Generalized p-Values
in Tank Gun Accuracy Research

David W. Webb

US Army Research Laboratory
Weapons Technology Directorate
Aberdeen Proving Ground, MD 21005

By optimally rotating a tank cannon to counteract gravity
droop and the cannon's dynamic response during firing, the
idea of "dynamic indexing" was believed to be a major step in
the reduction of between-tube variability, o?,. Using an
indirect approach +to compare the between-tube variance
components for dynamically indexed tubes (DIT's) and standard
tubes (ST's), an earlier analysis of the test data failed to
show a difference between 0, ,, and 0%, ;. Seeking a more
direct comparison of independently obtained between-tube
variance components, Xhou and Mathews proposed a test variable
based on the recently developed concept of generalized
p-values, This paper describes how this generalized test
variable is employed to compare two between-tube variance
components taken from independent mixed models. Finally, a
comparison 1s made between the conclusions drawn from the
original analysis and a reanalysis of the field test using
Zhou and Mathews' generalized p-value approach.

Introduction

U.S8. Army experiments conducted in the late 1980's showed that
between-tube variability is a significant contributor to the
overall error in the M1Al series tank. In an attempt to reduce
this variability, researchers took advantage of the fact that each
gun tube has its own unique curvature by proposing that gun tubes
be dynamically indexed (Schmidt, et. al., 1988). That is, each gun
tube is rotated about the center boreline so that its curvature
counteracts both the gravitational droop and the whipping motion of
the tube immediately after trigger pull. This whipping motion
(more properly referred to as the dynamic response) is caused by a
vertical difference in the centers-of-gravity of the gun tube and
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the breech block which supports the gun tube. Normally, a gun tube
is only rotated to lessen the effects of the gravitational droop.
This is known as standard indexing.

. In 1990, the U.S. Army Ballistic Research Laboratory (now part
of the U.S. Army Research Laboratory) conducted a large-scale field
test whose primary purpose was to determine if dynamic indexing
would reduce the between-tube variability of the M1Al series tank
(Webb, et. al., 1991). This costly experiment included four types
of ammunition, four tanks, twenty standard tubes (ST's), and twenty
dynamically indexed tubes (DIT's). The response recorded from each
round was its horizontal and vertical jump, where jump is defined
as the distance from the aimpoint to the impact point after all
known corrections (such &s wind and muzzle velocity) have been
applied.

A separate and independent analysis of jump was performed for
all eight (2. x 4) combinations of direction and ammunition type.
Table 1 shows an arrangement of the data collected for each subset
of the entire test. In this table, we see that the fixed factor
Tube Type and the random factor Tank were crossed, while the random
factor Tube was nested within Tube Type. Three rounds were fired
per cell.

To obtain an estimate of between-tube variability for both
dynamically indexed and standard tubes, two independent mixed

linear models were applied to Table 1 (one for each tube type).
For each type of tube, the linear model is:

Zi im0 B ycs) Yexcin o
where

1) z,,, is the jump of the k" round from the j*' tube on the
i*" tank, measured in mils;

2) 4 is the overall mean;
3) @, is the effect of the i‘" tank for i = 1, 2, 3, 4;

4) P, is the effect of the j** tube on the i*" tank for j =
1, 2, 3, 4, 5;
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llm
Tube T Tube
Type Tank ID Jump

1 z z 4
2 z 2 z
1 3 2 z z
4 2z 2z z
5 z 2z 2
n 6 2 2 z
7 k4 z z
2 8 2 z z
9 z 2z z
1 10 2 z z
11 2z z 2
12 z z z
3 13 ] z z
14 z z z
15 z z ]
16 z z z
17 2 z 2z
& 4 18 2 2 2
19 2 2 2
20 z z z
| 21 zZ z oz
. 22 2 z 2
1 23 z z z
24 2 z 2
25 2 z 2
26 2z 2z ]
27 2 2 2z
2 28 z z z
29 z z z
2 30 z z z
31 2 ] 2z
32 2z z z
3 33 b4 ] 2
34 2 z 2z
35 z z z
36 z z 2
37 2 z F]
4 38 z z z
39 2z Z 3
40 z z ]

- -3 o

Table 1. Data matrix for each combination of direction and
ammunition type. Each "z" represents a jump value.
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5) Bjy ~ N(O, a¥p);

6) €:.y 18 the error associated with the k™ round from the
j** tube on the i*" tank for k = 1, 2, 3, and;

7) ek“j) ~ N(O, OZR).

Comparison of Between-Tube Variabilities: An Indirect Approach

The goal of the statistical analysis was to conduct a one-
sided hypothesis test comparing the between-tube variabilities,
namely,

2 2 2 2
HO= Gr.gr £ Opr-prr vs. H‘i Or-gr > Or_prms
or, equivalently,

o} 3
Hp 79 <1 vs. Hyp 090 > 1,

¢ }-DIT Or.prr
Superficially, the ratio

o MSrgr  SSp.gr

F [ ]
MST-DI T SST-DI T

!

wvhere (' follows an F distribution with 16 numerator and
denominator degrees of freedom, may appear to be a proper test
statistic for H,. However, examination of the expected mean
squares for each model shows that F' is actually a test statistic
for

a 2 ' 2 2
Or-grt305-. Or-g+30%-
HYy ST o0ksT g HS T-97790R-97 o 4,

03 prpt30’ ve: o2 ,+302
T-DIT R-DIT r-o17¥30R-p11

Under the assumption that o?, .., and 0% _;; are equal, F' serves
as an indlrect test statistic for H,, since significantly large
values of F' would be attributable to differences in the between-
tube variabilities and not the between-round variabilities.

The assumption of equal batween-round variabilities can be
tested by the statistic
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o MSp-gr , SSp-gr

Ft P
MSg.prr  SSp-prr

where F' follows an F distribution with 40 degrees of freedom in
both the numerator and denominator. If this assumption is not
rejected, then one may proceed with the computation of F to test
H,.

Oon the other hand if the assumption of equal between-tube
variance is rejected, then F' is more prone to Type I or Type IT
errors. These errors are due to the presence of tha nuisance
parameters, 0%, and 0%, in the expected value of the test
statistic. How should the analysat proceed if this is the case?

Comparison of Betwesn-Tube Variabilities: The Ganeralized p-value
Approach

As doacribed by Tsui and Weerahandi (1989), classical one-
sided hypothesis tests of the form H,: 0 < 6, versus H,: & > 0.,
utilize a test statistic T(X) that is simply a function of the
sample spacs, X. For the okserved response, x, the critical
region, <., is defined as

ce={X: T(X)2T(x)} .

The p-value associated with the hypothesis test is then given as

p- é%%i.Rr(XGCHG) :

However, if this probability is dependent upon some nuisance
palrameter, tj, then the p-value may not be calculable. This is
exactly the problem that exists with the dynamically indexed tube
experiment.

Tsuil and Weerahandi proposed the idea of a geaneralized p~-value
(GPV) for one-sided hypothesis tests when nuisance parameters are
present. In lieu of a test statistic, a generalized test variable
is used, which is not only a function of the sample space, but also
the sample data and the parameters. The generalized test variable,
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T(X: x, 9, 1), is chosen so that for all fixed values of x, the
following conditiona hold:

1) t = T(x; x, 8,, 1) is free of n;
2) the distribution of T(X; x, 0,, n) is free of n; and
3) for fixed n, Pr(T(X; x, 0, n) 2 t) is nondecrsasing in 0;

In addition, the critical region is replaced by the
generalized extreme region, C(,(0,n), whose domain includes the
" nuisance parameter, and is defined to be:

Co(0,m)={X: T(X;x,0,n)2T(x;x,0,0)} .

Finally, the GPV is given as:
p=Pr(xec,(0,n)|6=0,)

-PI(T(K;X,QO,‘Q) zt) .

With the above definitiocns, Tsui and Wearahandi showed that
the GPV is independent of the nuisance purameters and can hence be
used as evidence against the null hypothesis.

The construction of generalized test variables is not a
trivial task and unfortunately little guidance is given in ths faew
papers that have been published on this topic. Zhou and Mathew
(1993) derived a geaneralized test variable that is used to compare
variance components obtained from two independert mixed hierarchial
models. This methodology was directly applied to the between-tube
variasbliity comparison. Their generalized test variables is given
by:

T(X;%,0,1) =T(X; X, Ct.prrs O%-gar: Ca-orrs Ox-s7)

2 2
O&-p17 4 O7-37

2 2
Q. Or 88qp. S8y,
r-pIT T-0IT (o:-DIT+3o§'-DIT) T-DIT . ;3 R-8T

R-ST
. (4] :-DIT +3 lSST—DI:I" SSR- sT

2
Or-prr

S8r-st 492 SSr-prr
S81.gr SSp.prr

2
(0%-sr*30%-s1)
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where each S5 term is the random variable for the appropriate sums-
of-squares and each ss termn is the realized value of SS. These ss
values are taken directly from standard analyses of variance of

the field tast data.

Although this genearalized test variable appears to be very
sumbersome, the calculation of a GPV is straightforward. Under H.,

.013!-511',’_3 (1)

Or-p1r 2 2 88, 2 88p_
= (GR-p1r+307-p17) SST 2T 4 Un-sr‘gs-uz
. Ox-pr7 +3 T-DIT R-3T
o>
T(X:%,0,,0) = im0
(03-s7+30%-57) k- N 0%-o11 S=R-IT
i = SSp.gr " SSp.pry
2 2 88 ) a 88y.gn
(03-prr*30%.pr7) ss:“”;r + 'ﬂn-sr-ss' %
- -DIT R-9T
2 2 88p.g7 2 8Sy-pr
(OR-g7r+307-gr) 33, :r + Cr-prr ss: :I:
2 oe oA
$ 6,

‘where each k; is an obsarved sum-of-gpquares (a constant) and each
¢, is a chi~square random variable.

Furthermore, if X = x, then SS; ,;p = 8Srp;0y SSaprr ™ 8Sr-prrr SSr-sr
= SSp.g7, and SST-'DI'T- 88r.prry BO that,

t=T(x; X, ea' n)

. (O%-p7*307-prr) (1) +04-gr(1)
(0%-9r+30%.g7) (1) +03.prp(1)

2 2 2
o 9R-D1r*307-pr1*OR-sr

3 3 3
OR-gr+307.9r+OR-prr

-1, (8ince 6%.prr = 0%-gr) .
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Finally, the expression for thae GPV simplifies %o
k |k

+
[N
k3 k‘

[

that is, the GPV is the relative freguency with which this function
of chi-sgquare random variables exceeds unity.

p=Pr 2l|;

For known values of the sums-of-squares, this probability can
be determined by simulation. A FORTRAN program simulated 50,000
valueés of the gsneralized test variable and counted the number of
times that it exreeded unity to obtain the GPV.

Resulta

Due to security classification restrictions, the sums of
squares dsrived from the data cannot be divulged in this report.
Howaver, p-values from both the indirect and GPV approach
hypothesis tests for all combinations of direction and ammunition
type are presented in Table 2.

Indirect Generalized

Direction Amzunition Test 2pproach | Taest Approach
A .993 (.433) .989
Azimuth B .858 (.111) »676
o «017 (.016) 036
D 149 (.373) 122
A 981 (.760) 972
Elevation B 779 (.745) «759
c «253 (.560) 226
D +438 (.873) 453

(p-values for the test of H,: 0% 5 = 0% ., are in parentheses)

Table 2. P-values for the tests of H,: 0%, < 0rprre
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The two columns of p~values for H,: O g & 0, are quite
similar. This indicates that both analysis approaches arrive at
the same basic conclusion, namely that dynamic indexing fails to
consistently reduce between~tube variability. Only in one case out
of eight (Ammunition € in Azimuth), was 9%, ,;; determined to be
significantly lower than g%, ...

It is also interesting to note a few differences in the two
columns of p~-values for H,: 0°r¢ < 0%rp;pe For Ammurnition ¢ in
azimuth, the GPV is more than double that of the p-value obtained
via the indirect approach. Also, for Ammunition B in azimuth, the
absolute difference in p-values is rather large. These differences
may be due to the unequal between-round variabilitie associated
with these data sats (note the low parenthesized p-va .ues in Table
2). Recall that the indirect approach requires that the between-
round variabilities are equal, whereas the GPV approach does not
require this assumption and is therefore an exact hypothesis
testing procedure. Violation of this assumption may result in
unreliable p-values reported via the indirect approach.

gummary

For this particular data set, both procedures arrived at the
same conclusions to the dismay of the engineers behind the dynamic
indexing concept. Some minor differences in the p-values
highlighted potential problems in using the indirect approach to
test H,: 0%rgr S Frome

The procedures for testing independent betwean-tube
variabilities presented in this paper each have their particular
advantages and drawbacks. The indirect approach is simple to
apply, as it requires only the use of F ratios based on sums-of-
squares taken directly from independent analyses of variance.
However, this approach relies on assumptions made about the
nuisance parameters, o¢*.;r and & Failure to meet the
assumptions may increase either the Type I or Type II error
probabilities.

The GPV approach 8 independent of the nuisance parameters,
and is therefore an exact test for the null hypothesis. The main
disadvantage to this approach is that there is little guidance in
the statistical 1literature on the derivation of a proper
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generalized test variable. Furthermore, computation of the GPV
requires computer simulation of the generalized test variable. 1If
the analyst can obtain a proper generalized test variable, the
exactness of the GPV approach makes it the more desirable of the
two analytical strategies.
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IDENTIFYING THE CRITICAL FACTORS
IN AN
ADAPTIVE NETWORK

Ann E, M. Brodeen, Barbara D. Broome, George W. Hartwig, Jr.,, and Marla C, Lepez
Advanced Computational and Information Scliences Directorate
Aberdeen Proving Ground, Maryland 210055067

ABSTRACT

In the ideal communications network each node would be smart enough to monitor
network performance and, when necessary, adapt itself to better accommodate its work-
load. The adaptive network node would employ a decision algorithm to modify conflguza-
tion, routing and protocol parameters based on measured network performance and sys-
tem requirements. This paper describes continuing research into feasible approaches to
developing an adaptive network for use in battlefield command and control systems. The
initial approach entails the collection of message traffic information into a deductive da-
tabase from which network performance is assessed and compared to system require-
ments. Inadequate performance would trigger identiflcation and assessment of alterna-
tives for improvement, The project emphasizes use of actual hardware and controlled
e..periments to explore alternatives for parameter settings. This paper describes an ini-
tial attempt to identify baseline performance data for a prototype communications net-
work and to determine those factors to which the system is most sensitive,

BACKGROUND

Dacentralized battlefleld command and control requires reliuble and timely distribu-
tion of information. At present, information distribution is limited hy noisy channels and
protocols that do not meet traffic demands, forcing commanders to make decisions from
out of date or incomplete information. To solve this problem, our research addresses con.
trol of noise and interference on communication channels and construction of network
protocols that will be affective on the modern battlefield.

Currently the civilian sector is experiencing a communications revolution; however,
civilian applications often assume a physical infrastructure, such as towers and high pow-
er base stations, that is not always feasible in a military environment. Our research takes
into account the special problems of the battlefleld: mobility, bandlimited channels, arbi-
trary or intentional interference, multimedia data, and rapid pace of operations. The net-
works that are of particular interest to the Army have nodes with high computing power
but weak, noisy, shared communication links. For this reason, our approach to commu-
nicatlon emphasizes working intelligently at each node to limit or redirect the amount
of information that must be passed along the communication channel. Each node is as-
sumed to act independontly to improve the effectiveness of the information exchange be-
tween nodos. Such a system of controls requires that each node be able to: monitor the
network traffic; decide whether performance is inadequate; and if so, make an appropri-
ate adjustment to the protocol.
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Figure 1. An Adaptive Tactical Network.

OBJECTIVE

Protocol parameters such as packet size, coding technique and channel access algo-
rithm could be adjusted to improve or possibly optimize information transfer. In general,
the objectives are to maximize throughput and minimize delay in the delivery of informa-
tion to the eud user, where throughput and delay are defined as follows:

Network throughput is the average number of bits per second that are successfully

transmitted and acknowledged over a one hour test cell. This does not include such

overhead as acknowledgements, error detection/correction codes, synchronization
characters, or, in the event of collisions, message retransmissions.

Network delay is the average time interval that passes between a message’s arrival at
the host's modem and the host's receipt of the message acknowledgement. Messages
that are not completely serviced during the running of the test cell will not be consid-
ered in computing network delay.

The question of how best to adapt to a particular situation is extremely difficult to
addrass. Resesrch into network protocols and communication channels will provide the
underlying foundation required to identify appropriate network adaptations. However,
because of the complexity of these protocols, theoretical research must be supported with
carefully designed and controlled experiments to determine which network parameters
are most useful in moderating network congestion.




APPROACH

Based on previous research, several parameters were selected for a sensitivity analy-
sis: retry interval, the time to wait for an acknowledgement before retransmitting; win-
dow size, the number of outstanding messages permitted before transmission is blocked;
message length, the number of characters in each message; and arrival rate, the number
of messages per hour queued for transmission at each node.

A prepilot test has been conducted tc determine thresholds for retry interval, window
size, message length and arrival rate. Next a pilot test will be executed to screen each of
the four parameters for possible elimination. Finally an experiment will be designed and
executed to measure throughput and delay under each of the test cell conditions.

EXPERIMENTAL CONFIGURATION

The experimental hardware consists of the equipment shown in Figure 2. The com-
puters are Tadpole SPARChook I's each with 32 megabytes of memory. These are con-
nected to a Harris Black Box Radio Emulator via Harris Tactical Data Buffers (TDB), The
TDB provides an interface between VHF transceivers and digital computer equipment.

SPARCbook

aYr
H ® ’

SPARChook

N

SPARChook

TR Ty

BLACKRBROX RADIO
EMULATOR
C

0 0 O

Figure 2. Experimental Configuration

In providing this service tha TDB performs the following tasks: data modulation/demod-
ulation, error detection/correction, and compensation for unequal terminal and radio
link data rates.
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The SPARChooks are connected to a SUN 4/280 serving as the data storage and data
reduction machine. The software residing on the SUN generates messages, logs message
trafflc, and identifles measage retries and delay. To minimize blocking and possible er-
rors, input is read from text files in a predefined order. Through the software, the exper-
imenter can interactively select which test cell and iteration to execute next.

PREPILOT RESULTS

The prepilot test wan conducted to determine thresholds for retry interval, window
size, message length and arrival rate and to explore limitations of the software. Figure
3 illustrates the various factors explored.

During this period it was found a window size of one resulted in overflow errors that
prevented data transmission. Average message delays were computed over one minute
intervals to insure the sampling was sufficient to identify the warm up period. Software
requires further development to support fully automated execution of an entire replica-
tion and to accommodate more nodes in the network,

FACTOR LEVELS

Retry Timeout (seconds) 10 40
Window Size (messages) 8 60
Message Length (characters) 80 240
Arrival Rate (messages/node) 200 800

Figure 3, Prepilot Study Factors and Levels

F¥UTURE WORK

When software modifications are completed, the pilot test will be conducted to ex-
plore the need to eliminate or retine the levels of investigation for any of the factors. The
number of replications will be dependent upon the duration of the test cells and the
amount of automation introduced. A full factorial design will be implemented. The pa-
rameters selected for this test are those which can be easily modified. Future experiments
will consider more complex protocol modifications,
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MEASURES OF EFFECTIVENESS
FOR
MONTE CARLO SENSITIVITY ANALYSES

Andrew W. Harrell
U.S. Army Engineer Waterways Experiment Station
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. The Army Mobility model (AMM) developed, at the
U.8. Army Engineer Waterways Experiment Station, uses the data from
about a hundred factors that describe a vehicle terrain unit, road
unit, or linear feature to predict vehicular speeds. Recently,
Monte Carlo simulations were conducted for several wheeled and
tracked vehicles and different areas, varying some selected groups
of these factors plus and minus 10 percent about their nominal
values. The results of these simulations have been studied to
develop empirical relationships that allow the expression of
confidence measures for the speed predictions on an entire mobility
map. As a first step, programs have been written to test methods to
estimate the value of continuous statistical parameters (the mode
and its standard deviation) of a discrete histogram. This allows
theorems of mathematical statistics to be applied to the confidence
levels around the valueas of the parameters. The method uses a
variation I made on E. Parzen’s formula for the location of the
mode of the continuous distribution associated with a discrete
histogram.! The formula works by estimating the rate of an
assoclated statistical process by discrete windows (Jth waiting
times). The incomplete gamma function and a maximum liklihood
product is then used to estimate the parameters. ? This approach
has been taested for a range of Monte Carlo generated discrete
approximations to gamma distributions. It was then applied to the
histograms of possible errors in speed predictions of tactical
vehicles moving across areas on different mapsheets. These
histograms were genarated previously in the course of the work by
Lessem and Ahlvin and are discussed in reference (6].

'See Parzen, Emanuel, "Stochastic Proceses", Holden Day, 1962,
and Press,W., Flannery, B. et al., "Numerical Recipes in C," 2nd
ed., Cambridge U. Press, 1988,

? Tbhid.

309




In trying to determine how to organize the sensitivity trials
in this particular set of programs and data there are several
approachs that can be taken. Because the speed prediction program
uses a series of lookup tables and flow chart, "yes" or "no", go
and no-go cutoff rules, points at which the program computes a no-
go output are natural areas to investigate its sensitivity to
errors in the data. Error measures can be associated with "critical
regions" in the data around these points. Determining the modes and
momants in the discrete non-parameteric histograms generated by the
sensitivity trials gives a way of characterizing and reproducing
the confidence in information contained in the program’s output
involving these regions. One approach, which measures the program’s
"inherent sensivity" to errors, 1s terrain-independent and vehicle
depandent. It examines the code in the program to find the 1-factor
critical regions in the outputs of the Monte Carlo trials. It then
adjusts the values of the other factors in a detrimental direction
of the lookup table values until tha 2,3 and higher multi-factor
critical regions are identified. Another approach is "project
specific" and is both terrain dependent and vehicle dependent. It
looks at the areas on the speed prediction maps where no-gos occur.
It than goes back to the input files to determine the values of the
data at the terrain units where these no-gos occur. This is the
approach that will be taken in this paper.

After the procedure for conducting the trials is determined it
is important to consider ways to examine confidence levels for the
parametera that are estimated. One approach to this, which recently
has gained popularity, is the technique of bootstrapping. This
technigque conducts Monte Carlo trials of the Monte Carlo trials.
The algorithm resamples not from the original data, but from a
smoothed kernel estimate of the data (see MathCad (8] for the
details of the alygyorithm and Efron, Hall and Tittleman, and Scott
for the theory behind formulas for the variance of the sampled
estimate of the parameter). Smoothed kernel formulas, introduced by
Parzen and others (see Scott [12], Parzen [9]) allow better
resolution of modes and other information in the data usirig a given
histogram bin size or window. In order to estimate the second
moment or the variance of the kernel estimate, it is necessary to
write programs to compute the second derivative of the frequency
polygon of the histogram (see Scott [12]). Bootstrapping confidence
intervals can then also be computed from this information.

In this paper a somewhat simplified approach is taken. A
leave-one~-out maximum liklihood product of smoothed kernels over
differant possible bin widths is taken. The product is taken over
a choice of possible bin widths. Once the best bin width is
determined the variance of the kernel associated with this bin
width is computed (see Numerical Recipes in C, 2nd ed. [10]) This
aggregrates the data in a one dimensional histogram and does not
give you as much information as in the more complicated multi-
dimensional approach.

Figures 1, 2, 3, and 4 show the results of a series of Monte
Carlo error sensitivity +trials run on some vehicle speed
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predictions by Lessem et al. [6]. They display the speeds predicted
for the M998 High Mobility Multi-Purpose Vehicle (HMMV), the M977
10-Ton Heavy Expanded Mobility Tactical Truck (HEMTT), Mil3
Armoured Personnel Carrier, and the M-1 tank. The terrain areas
tested are in Yakima, Washington, Granjean Wells, New Mexico and
Bachelor, Australia. The graphs have predicted speeds plotted on
the horizontal axis. The speeds were computed by varying nine
factors: =so0il strength, slope, surface roughness, visibility,
vegetation type, and four other attributes dealing with obstacle
characteristics around their nominal values in a certain terrain
unit. The nominal values for that terrain unit were chosen as the
points around wkich the vehicle’s performance on the mapsheet
terrain units changed most noticeably. The points wera determined
by referring both to the output that the program computed and to
the tables in the speed computation program where the performance
changed significantly. On the vertical axis is a count of the
number of occurances of a given speed for that vehicle, that
terrain unit, and for the range of Monte Carlo trials used. Both
uniform and normal density functions were used to compute the
randum numbers used in the Monte Carlo sensitivity trials. Thus
the graph displays the areal sensitivity of the speed predictions
for that vehicle in that area. Notice that the results don’t appear
to have a common probability density function. The WES technical
reports by Lessem et. al. (6] and [7) contain a mora detailed
discussion of the features of the mobility programs which cause the
histograms to assume these shapes.

In general, these histograms will separate into several parts
each with distinct characteristics. In this particular case parts
of the graphs associated to each single mode were separated out.
Let us assume this has already been done. We arrange the results of
the Monte Carlo simulations in a histogram of N bins with the
number of Monte Carlo hits (test items) in the ith bin equal to
hist;, In order to estimate the number of Monte Carlo trials
necessary to reproduce the probability density function from which
these results give samples we have to use an unstructured or
nonparametric approach.’ Let us define

(2"

;;histi
(1.1) p(t+1/2%0) '-—W

where t = bin number around which estimate is centered
J = Integer = 1
N = total number of observations

3 Keinosuke Fukunaga, "Introduction to Statistical Pattern
recognition," Academic Press, 2nd ed., 1991.

315




According to the reference by Fukunaga [3), this formula gives
the Parzen density estimate for the value of this probability
density function at the point k = t+ J/2.4 In this formula we are
using a local region defined by a window of size J around the point
to estimate the number of hits in a counting process in terms of
the histogram values located in this region. This formula gives
estinates for the values of the density function at N-J points.
Sorting these estimates and picking out the middlie and highest
values then gives the best prediction of the mode and the mean of
the histogram using windows of size J. On page 261 of this
reforence the value of the standard deviation of this estimate is
calculated to be:

E+J

;;hisci
Ty TN

Note that the value of this standard deviation refers to an

“interval around a point on the x-axis of the histogram and not
:roﬂnd th: height of the histogram or number of Monte Carlo values
n that bin.

These formulas and theorems allow a leave-one-out procedure
along with a maximum liklihood product to be used to aestimate
thevalue of the window size which gives the smallest error in
estimating the parameters.’

Using our procedure for computing estimates of the value of
the probability distribution, at the point k defined in equation
1.1 the function p(k) 1is proportional to the amount the
cumultative distribution function changes in this interval... so,
the larger it is, the better is the chance for a local maximum of
the probability distribution function at that point. The program
computes astimates of the continuous modes for different window
sizes, whare J = window size, x; = bin# of largest of these
agstimates, p(k) = weighted estimate of mode at this bin = (sum of
# of distribution hits in the bins inside a window of width J
centered at k)/(total # shots)* J, In the case where the

4 Actually, this is the density function of a "renewal counting
process" as defined in Parzen [9].

' See besides the Numerical Recipes in C reference also the
Introduction to Statistical Pattern Recognition text referred to
above. These same procedures can be used to characterize the
histogram distribution of pixel intensities in digital images. Such
a characterization allows the use of various neural network
learning procedures to ba used to identify the images.
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distribution function is suspected to be bimodal, this procedure
will identify at least the top two modes when it is iterated over
different window sizes.

Lot 8 (J) sthe range of data values around the candidate for mode

calculated using a window gize of J.

i-x.' * -"!r
Thug, 8(J) = Y  hist;, .
i-x.r - -g

Then, in this notation, the probability distribution p,(k) of
the smoothed estimate of the original data is given by:*

d (J)

.pJ(k) - N T

Let

j-k#.g

(2.1)  8,(k)= Y aist, .
1ak-

wlc,

Let H(J)= the hypothesis that the true mode x;has been
identified by considering a window of size J. We want to consider
how likely it is that the range around x,should be shorter than it
is observad to be. Let P(a,x) be the incomplete gamma function:

X
5 1 - -
P(a,x)lm e-tteide
a {

where:

¢ See the discussion in Numerical Recipes in C edition 1 and
also the book by Parzen, pages 133-134.
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I'(a) -fe-tcmdc .
0

Thus, P(a,x) is the cumulative Poisson probability distribution
function, Prob(X <= a) for the Poisson probability distribution X.
It is defined as the probability that the number of Poisson random
events occuring will be between 0 and a - 1. Each of these random
events will have a probability of occurance of N¥p,,

The probability that the range around x; is actually shorter than
observed to be if H(n) is true instead of H(J) is’:

(e n-t
[ pytay) LLBLE D7 gonnuto gy
0
It we lct:-
y=Np,;n) t
a=n
X = 6J(J)
in the above equation ,
then it is equal to:
P(n OJhn
'—TN D, ET
which is the same as:
P(n,J %E%i} .

Taking the product of all these factors for each mode x,then gives
the likelihood that the range around x,should be shorter than the
ranga observed around x;, for all n other than J.

Thus the likelihood function is defined by Likelihood (H(J)):

7 parzen, Ibid pp. 133-134.
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(2.2) L(n|J) sl,, Fi{n,Jd*8,(J) /8,(n)) .

The program then computes the value of this window size J that
maximizes the likelihood function, given a set of arrayed a
posteriori error sizes.

More precisely, the steps in the computation are:

1) Compute the
d,(n)

aicording to squation (2.1) for the points corresponding to each
bin.

2) Compute the maximum liklihood products according to equation
(2.2) in order to deatermine the optimal window siza.

3) Compute the weighted sums p(k) according to equation (1.1)
and the standard deviations according to equation (1.2) for the
points corresponding to to each bin.

Because of <the nonparametric form of the Parzen denaity
estimate, the procedures will work for any empirically determinad
histogram. A discrete sorting procedure normally gives a pretty
good estimate of the value of the mean and mode (even assuming the
actual distribution is continuous). However, in order to
approximate the size of the standard deviation in the estimation of
the parameters, it is necessary to use the maximum likelihood
estimators. These estimators of the best window sizes will result
in good approximatioris of the parameters.




An example of how these parameter estimates work is shown as
it is applied to the results of Monte Carlo sensitivity runs in
Figures 1,2,3,4. The simulations shown in the figures were
conductaed for four vehicles the HMMV, the M997 trailer transporter,
the M113 APC, and the M-1 tank. The top charts show the results for
a mapsheet Yakima Proving Grounds and the bottom charts those for
& mapsheet including Batchslor Australia.These figures show the
results of varying the parameter values plus and minus 10 per cent
around their nominal values. Nominal values are defined as the
vehicle parameters plus the specific parameter values in each
terrain unit. For, this analysis, we considered the particular
values for which that - ehicle experiences a go, no=-go situation,as
the values around which variations were made.

Data from the M997, M113, and M5%98 runs were extracted
directly from the top row of histograms in Figures 1,2, and 3
respectively. Programs were written to expand the information into
a 20 bin histogram and to scale the data. This turned out to be a
good range for the incomplete gamma function to discriminate the
maximum likelihood estimates. The results of the program runs are
shown below. First the program calculates a value for the mode by
simply sorting the columns of the histogram. This is called a
discrete estimate. The abscissa of this point is called modei. Then
the program computes the optimal window size for smoothing the data
using the leave-one-out maximum likelihood procedurae explained
above and dstermines a continuous estimate for the mode along with
a standard deviation. Both of these numbers are computed using this
optimal window size.

The results are shown below:

histogram of Monte Carlo error runs
M998 Yakima-15 9-factor-terrain ( mode#l )

X p(x) graph:
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7.2500 0.0218 *
7.7500 0.0000
8.3000 0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors
Discrete estimate of mode of data set is 42.500000

Discrete estimated value of modei= 5.650001
Probability of mode detected at window size 3 is 0.229365

Probability of mode detected at window size 4 is 0.253296
Probability of mode detected at window size 5 is 0.256476




Probability of mode detected at window size 6 is
Probability of mode detaeacted at window size 7 is

Most likely window gize is 5 value of mode is 32.50000
Continucusly estimated value of modei=5,10000

Standard deviation of the continuous estimate (for this window

size) is

histogram of Monte Carlo error runs
M998 Yakima-15 9=-factor-terrain ( mode#2 )

X
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24,3000
24,8500

0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors
Discrete estimate of mode of data set is 11.0000G00

Discrete estimated value of modei=19.549995

Probability of mode detected at window eize 3 is 0.204653
Probability of mode detected at window size 4 is 0.039479
Probability of mode detected at window size 5 is 0,116221
Probability of mode detected at window size 6 is 0.065450
Probability of mode detected at window size 7 is 0.129556

Most likely
Standard deviation of the continuous estimate (for this window

size) is

Continuously estimated value of modei=11.00000

histogram of Monte Carlo error runs
M997 Yakima-15 9-factor-terrain ( mode#l )

X

0.014268
0.014372

0.607092

P(x) graph:
0.0000
0.0000
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0.,3766  Wvedidseirdrhver o oror

0.3766 % vedor et e b o s ol ok b e o o

0.2397 Hhhkwhkhhndn

0.1429 Wdddedww

0.0000

window size is 3 value of mode is 11.0000000

0.269430

P(x) graph:
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2.8000 -0.0387

2.9500 0.2062 hhkhkkhknk

3.1000 0.4510 Nhddddedrdedrdidederhhhhhhhn

3.2500 0.6950 el ve ek ve e e vk o ok o v ok ok vk o v o v o o ol o ol e e e e e e
3.3833 O.5956 v nsevnvevede v o v ok b o e ok o e o o ool o ke o
3.5167 0.4954  Mdedesvederedeedvdesvsrthdeoedeokok e vk
3.6500 0.3952 hiwdedesrdeddedihhhdhkhw

3.8000 0.2234  Wdhdddrhdhw

3.9500 0.0515 %

4,0833 0.0344 »

4.2167 0.0172

4,3500 0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors

Discrete estimate of mode of data set is 40.500000
Discraete estimated value of modei= 3.250000

Probability of mode detected at window size
Probability of mode detected at window size
Probability of mode detected at window size
Probability of mode detected at window size 6 is 0.083600
Probability of mode detected at window size 7 is 0.084213

Most likely window size is 3 value of mode is 40.500000

Standard deviation of the continuous estimate (for this window
size) is 1,253331

is 0.282627
is 0.064773
is 0.076770

Nod W

Continuously estimated value of modei=3,250000

histogram of Monte Carlo error runs
M977 Yakima-15 9-factor-terrain ( mode#2 )

X p(x) graph:
6.9000 =0,0032
7.0500 ¢.0000
7.2000 0.0032
7.3500 0.0065
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9.3167 00,2165 Whadkhhhhn
9,4500 0.1299 hnvdedk
0.0000 0.0000




Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors

Discrete estimate of mode of data saet is 6.000000
Discrete estimated value of modei= 8.045999

Probability of mode detected at window size 3 is 0.007822
Probability of mode detected at window size 4 is 0.023633
Probability of mode detected at window size 5 is 0.082934
Probability of mode detected at window size 6 is 0.183745
Probability of mode detected at window size 7 is 0.298017

Most likely window size is 7 value of mode is 5.500000

Standard deviation of the continuous estimate (for this window
size) is 0.103940

continuously estimated value of modei=8.1995999

histogram of Monte Carlo error runs
M113 Yakima-15 9-factor-terrain ( mode#l )

b p(x) graph:
3,0000 =-0.,0B62
3.2000 0.1149 wwkww
23,4000 0.3161 Whwwwwhnwnhhnn
23,6000 0.5172 Hdmdrmmmmwhdhhhhdhhdhhhhn
3.7500 006322  Jervevevr i ve ik ve v vt v e e ok v ok o o ke o ke o ok ke o
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4.4500 0.7902 Whdedede e R R AR e
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5,.3000 05230  devevedevk s veir e ek b oo sk e de ok ek ok ook
5.5000 0.3563 wwhdwhwwdhhwhihn
5.7000 0.1897 hdekdrminnw
5.8500 0.0977 hhw
6.0000 0.0057
0.0000 0.0000
0.,0000 0.0000

Data drawn from a histogram of Monte Carlo sensitivity
to errors in terrain factors

Discrete estimate of mode of data set is 13,799999

Discrete estimated value of modei= 4.300000
standard deviation is 0.283068

Probability of moda detected at window size 3 is 0.003206
Probability of mode detected at window size 4 is 0.020749
Probability of mode detected at window size 5 is 0.114160
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Probability of mode detected at window size 6 is 0.132713
Probability of mode detected at window size 7 is 0.369124

Most likaly window size is 7 value of mode is 13.799999

Standard deviation of the continuous estimate (for this window
siza) is 0.283068

Continuously estimated value of modei=13,79999
summary of Mode Estimates for data

Discrete estimate of mode of data set 1 is point 5.650001 at
42.500000

continuous estimate of mode of data set 1 is point 5.100000 with
value 32,500000

A window of size 5 was used to estimate this

Discrate estimate of mode of data set 2 is point 19.549995 at
11.000000

continuous estimate of mode of data rat 2 is point 19.549995 with
value 11.000000

A window of size 3 was used to estimate this

Discrete estimate of mode of data set 3 is point 3.250000 at
40.5060000

continuous estimate of mode of data set 3 is point 3.250000 with
value 40,500000

A window of size 3 was used to estimate this

Discrete estimate of mode of data set 4 is point 8.049999 at
6.000000

continuous estimate of mode of data set 4 is point 8.199999 with
value 5.500000

A window of size 7 was used to estimate this

Discrete estimate of mode of data set 5 1is point 4.300000 at
13,799999

continuous estimate of mode of data set 5 is point 4.300000 with
value 13.799959

A window of size 7 was used to estimate this

In summary, using this techrnique of estimation for finding
modes there is in one case (data set 1) about a 10 percent increase
in the accuracy of the determination of its location. This makes
available a more accurate fix on the NOGO program vehicle speed
values around which to do the sensitivity analyses. Also,
determination of the optimal window size to use¢ in the estimate,
gives a means to non-parametrically astimate the standard deviation
of the sensitivity analyses results. This then tells us how many
Monte Carlo trials should be used to explore the program’s
senstivity to variations in the values in its internal tables and
input data. For example, for the two runs conceriing the M977
performance, one mode has a determination with a standard deviation
of 1.253 and the other with a standard deviation of .1039. After
determining this, you could then go back and run 10 times more
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Monte Carlo trials around the first mode. Similarly, althougn it
was not analyzed for this paper, the determination of a mode in
the case of tha M-1 tank is much less well defined. Locking at the
Monte Carlo sensitivity histogram in the top part of Figure 4, it
is clear that in this case the predictions will be less accurate.
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