
 

Proceedings of the Eighth Annual 
U.S. Army Conference  
on Applied Statistics, 

30 October – 1 November 2002 
 

Barry A. Bodt, Edward J. Wegman 
EDITORS 

 
Hosted by: 

Army Research Office 
 

Cosponsored by: 
U.S. ARMY RESEARCH LABORATORY 

TRADOC ANALYSIS CENTER—WHITE SANDS MISSILE RANGE 
WALTER REED ARMY INSTITUTE OF RESEARCH 

UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES 
 
 

Cooperating Institutions: 
LOS ALAMOS NATIONAL LABORATORY 

GEORGE MASON UNIVERSITY 
OFFICE OF NAVAL RESEARCH 

INSTITUTE FOR DEFENSE ANALYSIS 



Army Research Laboratory 
Aberdeen Proving Ground, MD 21005-5067                                   July, 2003 

 
 
Proceedings of the Eighth Annual 
U.S. Army Conference  
On Applied Statistics, 
30 October – 1 November 2002 
 
 
 
 
Barry A. Bodt, EDITOR 
Computational and Information Sciences Directorate, ARL 
 
Edward J. Wegman, EDITOR 
Center for Computational Statistics, George Mason University 
 
Hosted by: 
U.S. Army Research Office 
 
Cosponsored by: 
U.S. Army Research Laboratory 
TRADOC Analysis Center—White Sands Missile Range 
Walter Reed Army Institute of Research 
Uniformed Services University of the Health Sciences 

 
 
 



TABLE OF CONTENTS 
EIGHTH U.S. ARMY CONFERENCE ON APPLIED STATISTICS 

 
Abstract and Foreword………………………………………………………….……viii 
 
Short Course 
 
Statistical Data Mining 
Edward J. Wegman, Jeffrey L. Solka……………………………………………………..1 
 
General Session 1 
 
Improving Confidence Intervals for Proportions, Differences of Proportions, and Odds  
Ratios (Abstract) 
Alan Agresti (Keynote)...………………………………………………………………….2 
 
Special Session 1 
 
Skew-Elliptical Distributions and Their Applications (Abstract) 
Marc. G. Genton…………………………………………………………………………..2 
 
Time Series Models for Zero-Inflated Data with Applications to Nuclear Power Plants  
(Abstract) 
Sujit Ghosh………………………………………………………………………………..2  
 
A Simple Boolean Model for Assessing Particle Flow from Type II Counter Data  
(Abstract) 
Jason A. Osborne………………………………………………………………………….3 
 
Testing Monotonicity of Regression (Abstract) 
Subhashis Ghosal………………………………………………………………………….3 
 
Special Session 2 
 
Development of Statistical Software (Abstract) 
James Gentle………………………………………………………………………………4 
 
A Tour of New Directions in SAS Statistical Software (Abstract) 
Robert Rodriguez………………………………………………………………………….4 
 
Using SAS/IM: Workshop for Dynamic Statistical Graphics (Abstract) 
Simon L. Smith……………………………………………………………………………4 
 
 
 



Contributed Session 1 
 
Efficient Simulation Experimental Designs (Abstract) 
Thomas M. Cioppa, Thomas W. Lucas…………………………………………………...5 
 
Estimating Probabilities for Simulation (Abstract) 
D. H. Frank………………………………………………………………………………..5 
 
A Space-Time Model That Combines Simulations and Flight Test Data for Assessing  
Missile Launches from the F-22 Prototype Aircraft (Abstract) 
Dave Higdon, Mark McNulty, Bruce Lettallier…………………………………………...6 
 
Contributed Session 2 
 
Evaluation of the Mental Health Impact of 9/11: Results from the Pentagon Post Disaster  
Health Assessment Survey (Abstract) 
Nikki Jordon……………………………………………………………………………….6 
 
Performance Evaluation of Temporal Alerting Algorithms for ESSENCE Syndromic  
Surveillance Data (Abstract) 
Eugene Elbert, Howard S. Burkom, Kevin Nelson……………………………………….7 
 
Effects of Missing or Incomplete Data on Military Medical Research (Abstract) 
T. E. Powers, Y. Li, L. B. Trofimovich…………………………………………………...8 
 
Contributed Session 3 
 
A Comparison of the Outcomes of a Course Taught in the Traditional Classroom Setting  
with the Outcomes of the Same Course Taught in the Distance Learning Format  
(Developing a Methodology) (Abstract) 
Gene Dutoit………………………………………………………………………………..9 
 
A Probability Programming Language (Abstract) 
Andrew Glen, Diane Evans, Larry Leemis………………………………………………..9 
 
A Lemma Useful in Combinatorics and Some of its Applications (Abstract) 
Bernard Harris……………………………………………………………………………10 
 
Clinical Session 1 
 
Multivariate Goodness-of-Fit Testing for M256 Gun Tube Profiles (Abstract) 
David W. Webb, Mark L. Bundy………………………………………………………...10 
 
Study Design to Assess Autonomous Mobility of the Experimental Unmanned Vehicle  
(XUV) 
Barry A. Bodt, Ann E. M. Brodeen……………………………………………………...11 



Contributed Session 4 
 
New Binomial and Multinomial Distributions from Graph Theory 
Milton Sobel, Yontha Ath………………………………………………………………..13 
 
Class Cover Digraphs for Latent Class Discovery 
J. L. Solka, C. E. Priebe, D. J. Marchette………………………………………………..15 
 
Encoding of Text to Preserve “Meaning” 
Angel R. Martinez, Edward J. Wegman…………………………………………………27 
 
General Session 2 
 
A Study of Denial of Service Attacks on the Internet 
David J. Marchette……………………………………………………………………….41 
 
Wilks Award Banquet Address 
 
Considerations of Inspection for Homeland Security with Cross Linkages to Quality  
Control, Game Theory, and Stochastic Simulation (Abstract) 
James R. Thompson……………………………………………………………………...61 
 
General Session 3 
 
Stress-Strength Testing: Some Classical Approaches and Some New Formulations and  
Results (Abstract) 
Francisco J. Samaniego…………………………………………………………………..62 
 
Random Disambiguation Paths (Abstract) 
Carey E. Priebe…………………………………………………………………………..62 
 
Contributed Session 5 
 
Benefits of Non-Destructive Evaluation (NDE) vs. Destructive Testing for Bayesian  
Reliability Estimation (Abstract) 
Paul Deininger, Shane Reese, Michael Hamada, Robert Krabill………………………..64 
 
Munitions Stockpile Reliability Assessment (Abstract) 
Alyson Wilson, Nicholas Hengartner……………………………………………………64 
 
Hierarchical Models for Software Testing and Reliability Estimation (Abstract) 
Todd L. Graves, John C. Kern II………………………………………………………...65 
 



Contributed Session 6 
 
An Almost Natural Application of Bayesian Statistics in Packaging Quality Control 
John A. Wasko, David B. Kim……………………………………………………….….67 
 
Relationship between Toxicity Values for the Healthy Subpopulation and the General  
Population 
Ronald B. Crosier, Douglas R. Sommerville…………………………………………….76 
 
Finding the Season Effect and Trend of Attrition: Detect the Attrition Changes in the  
Early Stage (Abstract) 
T. E. Powers, Y. Li………………………………………………………………………86 
 
Contributed Session 7 
 
Determination of the LD50 for Chemical and Biological Threat Agents (Abstract) 
Nancy A. Niemuth……………………………………………………………………….87 
 
Homogeneity of the Loss Rate and Individual Factor Effect Across MEPS: A Meta- 
Analysis on Attrition (Abstract) 
Y. Li, T. E. Powers………………………………………………………………………87 
 
Relationship between the Dose-Response Curves for Lethality and Severe Effects for  
Chemical Warfare Nerve Agents 
Douglas R. Sommerville…………………………………………………………………89 
 
A Method for Assessing Randomness in the United States Army’s Biochemical Testing  
Program (Abstract) 
Kevin P. Romano……………………………………………………………………….105 
 
Contributed Session 8 
 
The Analytic Challenges of the Army’s Network-Enabled Future Combat Systems  
(Abstract) 
Duane E. Brucker, Paul J. Deason……………………………………………………...106 
 
Threat Management Using Passive Inference of Network Infrastructure Topology  
(Abstract) 
John Rigsby, Jeff Solka…………………………………………………………………107 
 
A Statistical Methodology for Automatic Target Recognition in Satellite Imagery 
John Bart Wilburn………………………………………………………………………108 
 
Finding Clusters (Abstract) 
Jon R. Kettenring……………………………………………………………………….116 
 



Special Session 3 
 
Assessing Uncertainty in Mesoscale Numerical Weather Prediction (Abstract) 
Montserrat Fuentes, Adrian Raftery……………………………………………………117 
 
Local Probability Propagation Algorithms for Approximate Inference in Graphical  
Models (Abstract) 
Martin Wainwright, Tommi Jaakkola, Alan Willsky…………………………………..117 
 
C4ISR and the Future Force (Abstract) 
Monica Farah-Stapleton………………………………………………………………...118 
 
Particle Filtering and Spatial Prediction in the Battlespace (Abstract) 
Noel Cressie, Mark Irwin, John Kornak………………………………………………..118 
 
General Session 4 
 
A Microarray Lesson from Dear Old Dad (Design-Analyze-Display) (Abstract) 
Russell Wolfinger………………………………………………………………………119 
 
Contributed Session 9 
 
Statistical Techniques for Breaking Steganography (Abstract) 
R. Chandramouli………………………………………………………………………..120 
 
Classifier Optimization via Graph Complexity Measures 
J. L. Solka, D. A. Johannsen……………………………………………………………121 
 
Statistical Classification Based on Contours (Abstract) 
Mark Fitzgerald, Karen Kafadar………………………………………………………..136 
 
Contributed Session 10 
 
A Human Dimension Methodology for Assessing Future Combat Systems’ C4ISR  
(Abstract) 
Jock O. Grynovicki, Kragg P. Kysor…………………………………………………..137 
 
Assessing and Removing Unexpected Collinearity in Designed Experiments (Abstract) 
Trevor A. Craney……………………………………………………………………….137 
 
General Session 5 
 
SiZer for Simple, Direct Inference in Exploratory Data Analysis (Abstract) 
Steve Marron……………………………………………………………………………138 
 
Author Index…………………………………………………………………………..139 



EIGHTH U.S. ARMY CONFERENCE ON APPLIED STATISTICS 
 

ABSTRACT 
 
The eighth U.S. Army Conference on Applied Statistics was hosted by the United States Army 
Research Office (ARO), during 30 October – 1 November 2002 on the campus of North Carolina 
State University. The conference was cosponsored by the U.S. Army Research Laboratory 
(ARL), the U.S. Army Research Office, the United States Military Academy (USMA), the 
Training and Doctrine Command (TRADOC) Analysis Center-White Sands Missile Range 
(TRAC-WSMR), the Walter Reed Army Institute of Research (WRAIR), and the Uniformed 
Services University of the Health Sciences (USUHS). Cooperating organizations include Los 
Alamos National Laboratory (LANL), George Mason University (GMU), the Office of Naval 
Research (ONR), and the Institute for Defense Analyses (IDA). The U.S. Army Conference on 
Applied Statistics is a forum for technical papers on new developments in statistical science and 
on the application of existing techniques to Army problems. Approximately ninety individuals 
attended this conference and fifty-one papers were given. This document is a compilation of 
available papers offered at the conference. 
 
 

FOREWORD 
 
 The eighth U.S. Army Conference on Applied Statistics was hosted by the United States Army 
Research Office, during 30 October – 1 November 2002 on the campus of North Carolina State 
University. The conference was cosponsored by the U.S. Army Research Laboratory (ARL), the 
U.S. Army Research Office (ARO), the United States Military Academy (USMA), the Training 
and Doctrine Command (TRADOC) Analysis Center-White Sands Missile Range, the Walter 
Reed Army Institute of Research (WRAIR), and the Uniformed Services University of the 
Health Sciences (USUHS). Cooperating organizations include Los Alamos National Laboratory 
(LANL), George Mason University (GMU), the Office of Naval Research (ONR), and the 
Institute for Defense Analyses (IDA). The U.S. Army Conference on Applied Statistics is a 
forum for technical papers on new developments in statistical science and on the application of 
existing techniques to Army problems. The purpose of this conference is to promote the practice 
of statistics in the solution of these diverse Army problems. 
  
The eighth conference was preceded by a two-day short course, “Statistical Data Mining,” given 
by Edward Wegman of George Mason University and Jeff Solka of the Naval Surface Warfare 
Center. Robert Launer of ARO opened the conference. Several distinguished speakers spoke 
during invited general sessions: Alan Agresti (keynote), University of Florida; David Marchette, 
Naval Surface Warfare Center; Francisco J. Samaniego, University of California, Davis; Carey 
Priebe, Johns Hopkins University; and Russell Wolfinger, SAS Institute. In addition to 
outstanding invited speakers, three special sessions were featured at the conference: Statistical 
Research at North Carolina State University (organized by Leonard Stefanski, North Carolina 
State University), Statistical Software (organized by Edward Wegman, GMU), and Command 
Control and Communication (organized by Wendy Martinez, ONR). Thirty-three contributed 
papers rounded out the program. 
 



 ii

An important moment in the conference was the awarding of the Army Wilks Medal to Eugene 
Dutoit of Troy State University and a recently retired Army civilian from the Dismounted Battle 
Space Battle Lab at Fort Benning, Georgia. Dr. Dutoit was honored for the years of service in 
statistical application for the Army. 
 
The Executive Board for the conference recognizes Robert Launer, ARO, for hosting the 
conference and Edmund Baur, ARL, for maintaining the conference web site, David Webb, 
ARL, for handling many administrative details, Jock Grynovicki, ARL, for chairing the 
conference, Edward Wegman, GMU, for assembling the conference proceedings, and Barry 
Bodt, ARL, for chairing the conference.  
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EIGHT U.S. ARMY CONFERENCE ON APPLIED STATISTICS 
 

SHORT COURSE 
Statistical Data Mining 

 
Dr. Edward J. Wegman            Dr. Jeffrey L. Solka 

         George Mason University   Naval Surface Warfare Center  
 

 
 
 
 
 
 
 
 
 
 
 
 
Abstract: Used to extract knowledge hidden from large volumes of raw data, data 
mining has been applied in recent years to a wide variety of research areas such as 
medical imaging, high-energy physics, consumer behavior, atmospheric sciences, and 
security and surveillance. Data mining is an extension of exploratory data analysis and 
has basically the same goals, the discovery of unknown and unanticipated structure in the 
data. The chief distinction between the two topics resides in the size and dimensionality 
of the data sets involved. Data mining in general deals with much more massive data sets 
for which highly interactive analysis is not fully feasible. In this course we shall discuss 
the scales of data set sizes and the limits of feasibility for the various data set sizes. We 
will introduce some visualization tools and indicate how they may be used to accomplish 
data mining tasks. We shall review some structure finding algorithms including: density 
estimation and bump hunting; clustering and classification; visual clustering strategies; 
CART and related methods; time domain time series methods; nonparametric regression 
including convolution, LOESS and ridges and skeletons methods will be illustrated with 
application to several data sets. Particular emphasis will be placed on visualization 
techniques. The course will cover basic techniques used in visual data mining, including 
parallel coordinates, grand tour, and saturation brushing. These techniques will be 
illustrated in further discussions on rapid data editing, density estimation, inverse 
regression, tree-structured decision rules, classification and clustering, structural 
inference and outlier investigation. 
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EIGHTH U.S. ARMY CONFERENCE ON APPLIED STATISTICS 
 

General Session 1 
 
Improving Confidence Intervals for Proportions, Differences of Proportions, and Odds  
Ratios 
Alan Agresti, University of Florida  
 
Abstract: “Exact” small-sample methods for categorical data are exact in term of using 
probability distributions that do not depend on unknown parameters. However, they are 
conservative inferentially, having actual error probabilities for tests and confidence 
intervals that are bounded above by the nominal level. We examine the conservatism for 
interval estimation and suggest ways of reducing it, illustrating for the binomial 
proportion, the difference between two proportions, and the odds ratio. We also 
summarize simple ways of adjusting standard large-sample confidence intervals to 
improve dramatically their small-sample performance. The standard intervals for 
proportions and their differences have poor performance, the actual confidence level 
often being much lower than the nominal level. Simple adjustments based on adding four 
pseudo observations, half of each type, perform well even for small samples with interval 
estimation of the proportion and the difference of independent or dependent proportions. 
 

Special Session 1 
 
Skew-elliptical Distributions and Their Applications 
Marc G. Genton, North Carolina State University 
 
Abstract: This talk introduces generalized skew-elliptical distributions (GSE), which 
include the multivariate skew-normal, skew-t, skew-Cauchy, and skew-elliptical 
distributions as special cases. GSE are weighted elliptical distributions but the 
distribution of any even function in GSE random vectors does not depend on the weight 
function. In particular, this holds for quadratic forms in GSE random vectors. This 
property implies that standard inferential methods might be misleading when applied to 
time series and spatial processes with GSE distributions. However, the same property is 
beneficial for inference from non-random samples. Several applications are presented for 
illustration. 
 
Time Series Models for Zero-Inflated Data with Application to Nuclear Power Plants  
Sujit Ghosh, North Carolina State University 
 
Abstract: Statistical methods for analyzing count data with excess zeros are very 
important in various scientific fields. For instance in a data set presented in Martz et al. 
(1999), it is observed that the number no `scrams' out of sample of 66 nuclear power 
plants has increased from 1.5\% in 1986 to 33.3\% in 1993. The goal of their study was to 
find if there was any plant specific annual trend in the rate at which unplanned scrams 
occur. The objective of this talk is to develop, assess, and provide convenient tools for 
implementing flexible models for time dependent zero-inflated data. A class of 



hierarchical models has been found to be useful in modeling time dependence and 
heterogeneity (e.g. due to several nuclear plants). Some preliminary results and 
illustrations will be presented based on a data set obtained from the U.S. Nuclear 
Regulatory Commission (NRC) annual reports. 
 
A Simple Boolean Model for Assessing Particle Flow from Type II Counter Data 
Jason A. Osborne, North Carolina State University 
 
Abstract: For aerial application of granular fertilizers and pesticides, knowledge of the 
amount of material flowing from the aircraft can help guide even distribution over a field. 
Grift (2001) has developed a system to help measure mass flow in aerial spreader ducts. 
The system involves an optical sensor that turns off and on as particles flow through the 
duct, providing clump-length measurements. Clumps occur when multiple particles pass 
the sensor before a space in between particles is encountered. If particle arrivals 
constitute a Poisson process, lengths of particles are independent of this arrival process 
and particles begin passage through the duct immediately upon arrival, the system forms 
an infinite-server M/G queue. Of interest is mass flow, or the number of particles, which 
pass through the duct for application to the target region below. Method-of-moment and 
likelihood-based approaches towards estimation of this quantity from clump-length data 
are developed. 
 
Testing Monotonicity of Regression 
 Subhashis Ghosal, North Carolina State University 
 
Abstract: In many situations encountered in practice, the relationship between two 
variables of interest is expected to follow some order restriction. In economics, the 
relationship between, for instance, income and expenditure on some specific item such as 
food or housing is likely to be monotonically increasing, although natural constraints rule 
out a linear relationship. A similar situation also arises in bio-medical or nutrition studies, 
where the response variable may be expected to increase with the dose of a drug, until the 
drug becomes toxic. Another familiar hypothesis is that blood pressure increases with salt 
consumption. Although estimation under the monotonicity constraint has been well 
addressed in the literature, the issue of testing the assumption of monotonicity has only 
begun to receive attention. Bowman, Jones and Gijbels (1998) construct a test based on 
the idea of the critical bandwidth, while Hall and Heckman (2000) test the hypothesis by 
testing the positivity of slope for nearest neighbor linear regression. In our approach, we 
construct test statistics as functionals of a natural U process obtained by locally 
calculating Kendall's measure of discordance. If monotonicity holds, discordances should 
be minimum, and so the process should lie below the level 0. Therefore natural test 
statistics may be obtained by looking at the maximum of the process or the time spent by 
the process above a certain level. We obtain the asymptotic distribution of the test 
statistics through linearization of U-statistics, strong approximation methods and extreme 
value theory for stationary Gaussian processes. Our tests are consistent against the 
general alternatives and also have reasonably high power. One considerable advantage of 
our method is that the limiting distribution of the statistics are explicitly obtained, so we 



do not have to depend on computationally intensive bootstrap sampling required by the 
other methods. 
 
The talk will be based on the paper Ghosal, S., Sen, A. and van der Vaart, A. W. (2000). 
Testing monotonicity of regression. Annals of Statistics, vol 28, No 4, pages 1054--1082. 
 

Special Session 2 
 
Development of Statistical Software 
James Gentle, George Mason University 
 
Abstract: In the past few years, major changes have occurred in how statistical software 
is developed and distributed. The open source movement has encouraged the 
participation of a much large set of people in the development. The Internet has allowed 
for wide and rapid distribution of new software. 
 
A Tour of New Directions in SAS Statistical Software 
Robert Rodriguez, SAS Institute 
 
Abstract: Statistical software in SAS is expanding in a variety of new directions, which 
are motivated by methodological advances, changes in computing technology, and 
requests from applied statisticians in many fields. In Version 9, these directions include 
multiple imputation for missing data, survey data analysis, power and sample size 
computation, nonparametric modeling, robust regression and outlier detection, and 
statistical graphics. Heavy-duty analytic procedures are being multithreaded for scalable 
performance on servers with multiple CPUs, and a number of traditional statistical tools 
have been enhanced. 
 
Using SAS/IML Workshop for Dynamic Statistical Graphics 
Simon L. Smith, SAS Institute 
 
Abstract: SAS/IML Workshop is a Windows-based programming environment for high-
end data analysis that provides the user with the flexibility to combine matrix computing, 
statistical modeling, and dynamic graphics. Programs are written using an extended 
version of the Interactive Matrix Language (IML) in SAS. This presentation will 
demonstrate the power of creating dynamic displays using results from SAS statistical 
procedures. Examples will show how the user can subset data graphically using local 
selection, which offers a more powerful version of dynamic brushing for complex 
multivariate data integrate geographical data with statistical models create graphical 
displays of statistical results such as fits and outlier diagnostics link diagnostic results 
back to the data. 
 



Contributed Session 1 
 
Efficient Simulation Experimental Designs 
LTC Thomas M. Cioppa, TRADOC Analysis Center; Thomas W. Lucas, Naval 
Postgraduate School 
 
Abstract: The Department of Defense uses complex high-dimensional simulation models 
as an important tool in its decision making process. To improve on our ability to 
efficiently explore larger subspaces of these models, we develop a set of experimental 
designs for searching over as many as 22 variables in as few as 129 runs. These new 
designs combine orthogonal Latin hypercubes and uniform designs to create designs 
having near orthogonality and excellent space-filling properties. Multiple measures are 
used to assess the quality of candidate designs and to identify the best one. For situations 
in which more than the minimum number of required runs are available, the designs can 
be permuted and appended to create additional design points that improve upon the 
design's orthogonality and space-filling.  
  
The designs are used to explore two surfaces. For a known 11-dimensional stochastic 
response function containing nonlinear and interaction terms, it is shown that the near 
orthogonal Latin hypercube is substantially better than the orthogonal Latin hypercube in 
estimating model coefficients. The other exploration uses the agent-based simulation 
MANA to analyze 22 variables in a complex military peace enforcement operation. The 
need for maintaining the initiative and speed of execution during these operations is 
identified. 
 
Estimating Probabilities for Simulation 
D. H. Frank, Indiana University of Pennsylvania 
 
Abstract: In simulating a battle between opponents 1 and 2 we need to estimate the 
probability of 1 defeating 2, p1,2. Usually we have empirical evidence from prior 
confrontations between 1 and 2 to get a statistical estimate. But we may have data to 
estimate p1, the probability that 1 defeats a randomly chosen opponent and also p2. For 
example in sports we may wish to simulate a bowl game between two teams who have 
never faced each other but have seasonal records to estimate p1 and p2. 
 
In this paper we examine 3 estimates of p1,2 as functions of p1 and p2 based on pseudo 
probability arguments. We examine these 3 methods based on certain desirable properties 
and also try to test the goodness of these with a chi-square type statistic. We examine 
cases based on known probabilities and simulation case based on estimates. 
    
It is possible to somewhat reverse the process and use estimates of p1,2 to improve 
estimates of p1 in cases where this is contact between 1 and 2. This would lead to ranking 
college football things among other applications 
 



A Space-time Model that Combines Simulations and Flight Test Data for Assessing 
Missile Launches from the F-22 Prototype Aircraft. 
Dave Higdon, Mark McNulty, and Bruce Lettallier; Los Alamos National 
Laboratory 
 
Abstract: The US Air Force must test new aircraft in order to certify that it performs to 
pre-set specifications. One component of this certification process is missile separation - 
ie. can the plane safely launch a missile without the missile knocking off its nose or a 
piece of wing? Before ever conducting an in-flight missile launch, numerous launch 
simulations are carried out on a scale model in a wind tunnel. Many factors affect the 
actual missile trajectory. 
 
Particularly important factors are the altitude, mach number, dynamic pressure, and angle 
of attack of the aircraft. We develop a hierarchical space-time model that incorporates 
these wind tunnel simulations, expert judgment, and several actual flight tests to give a 
predictive model for missile trajectories as a function of the flight factors: altitude, mach 
number, dynamic pressure, and angle of attack. This is joint work with Mark McNulty 
and Bruce Letellier of Los Alamos National Lab. 
 

Contributed Session 2 
 
Evaluation of the Mental Health Impact of 9/11: Results from the Pentagon Post  
Disaster Health Assessment Survey  
Nikki Jordon, USACHHPM 
 
Abstract: BACKGROUND: In the aftermath of September 11, 2001, the Pentagon Post 
Disaster Health Assessment (PPDHA) survey was created to identify healthcare 
needs/concerns among Pentagon personnel and assure that appropriate care/information 
was provided. Fundamental in this assessment was the evaluation of the mental health 
impact due to the attack. 
  
METHODS: The PPDHA incorporated a short screening instrument covering mental 
health symptom domains, mental health functioning and possible predictive risk factors. 
High-risk groups for Post Traumatic Stress Disorder (PTSD), depression, panic attacks, 
generalized anxiety, and alcohol abuse were determined; predictive factors believed to 
be associated with risk groups were assessed through both univariate analysis and 
logistic regression; and validation of risk groups was assessed across functional levels 
using similar statistical methods. 
  
RESULTS: A total of 19,450 Pentagon employees were asked to complete the survey; 
4,739 responded, representing approximately 25% of the population. Overall, 1,838 
(40%) of respondents met the screening criteria for being at high risk for any of the 
symptom domains of interest: PTSD (8%), depression (18%), panic (23%), generalized 
anxiety (27%), and/or alcohol abuse (3%). Mental health risk groups were found to 
strongly correlate with reduced daily functioning (OR=14.4, 95%CI: 11.9-17.4) and use 
of counseling services (OR=4.2, 95%CI: 3.6-5.0). In addition, risk factors known to be 



associated with mental health problems following traumatic events were found to be 
strongly predictive of the high-risk categories identified. 
  
CONCLUSION: These data suggest that the approach used within the survey had 
validity, and that the short mental health questionnaire could serve as a prototype for the 
rapid public health assessment of the mental health impact of future traumatic events.  
 
Performance Evaluation of Temporal Alerting Algorithms for ESSENCE Syndromic 
Surveillance Data 
Eugene Elbert, Howard S. Burkom, and Kevin Nelson; Walter Reed Army Institute 
of Research 
 
Abstract: The U.S. Department of Defense Global Emerging Infections System (DoD-
GEIS) has developed the Electronic Surveillance System for the Early Notification of 
Community-based Epidemics (ESSENCE) to enable outbreak alerting using syndromic 
surveillance. The ESSENCE system monitors over 100 primary care and emergency 
clinics in the National Capital Area, and since the terrorist attacks in September 2001, 
approximately 100,000 per day are collected several times daily from military treatment 
facilities (MTF) worldwide. These data include active duty forces as well as other 
TRICARE beneficiaries. Analysts from DoD-GEIS and the Johns Hopkins Applied 
Physics Laboratory have implemented statistical alerting algorithms enabling prompt 
notification of anomalous data counts. 
 
Syndromic surveillance facilitates the monitoring of this large volume of data. For each 
MTF, we classify diagnoses resulting from outpatient and emergency room visits 
according to seven syndrome groups. Each group is defined by a list of ICD-9 codes. The 
ESSENCE system increments the count for a syndrome group each time a diagnosis code 
falls in the corresponding list. For each MTF, we apply temporal alerting algorithms to 
the data streams corresponding to each syndrome. The utility of these algorithms depends 
on their detection performance; they must be sensitive but with low false alarm rates. We 
have developed these algorithms according to the customary behavior of the syndromic 
data streams. In the ESSENCE II system under development, these algorithms will also 
be applied to various nontraditional data sources in both military and civilian sectors. 
 
For syndromes of more common conditions and/or for larger MTF populations, the data 
streams typically have structure characterized by seasonal and weekly features. We have 
implemented modeling methods to exploit this behavior. To avoid overfitting, we apply 
tests of trend and serial correlation to determine whether modeling is applicable and, if 
so, which techniques to apply. Alerting methods based on regression and autoregressive 
(AR) models include categorical variables for known systematic features such as holiday 
effects. These methods also feature data cleaning procedures to avoid modeling based on 
outliers. 
 
For more rare syndromes and/or smaller populations, data streams appear more random, 
and direct statistical tests are used for alerting. We have compared a variety of methods, 



all depending on estimates of the data stream variance. Determining the length of data 
history required for such tests involves a tradeoff between stability and stationarity. 
 
We have developed methods of performance analysis of these algorithms specific to the 
surveillance problem. This work has generalized ROC methodology to methods recently 
adopted in the field of data mining. For this purpose, Signals designed to emulate an 
outbreak epicurve are added to the authentic data streams for this analysis. This approach 
permits investigation of how small an outbreak is detectable, how soon alerting can be 
expected in an outbreak, and other related issues. 
 
Effects of Missing or Incomplete Data on Military Medical Research 
TE Powers, Y Li, and LB Trofimovich; Walter Reed Army Institute of Research 
 
Background: Increasingly, military planners and policymakers are incorporating 
statistical and epidemiological research into decision-making. Statistics on the numbers 
of applicants for military service, the numbers in training, illness rates and attrition rates 
are available from several different sources. Like virtually all large-scale data systems, 
however, the military data sets on which this research is based are often incomplete. An 
added complication is that the more data that are missing in a database, the greater the 
need is to address the problem of incomplete cases, yet those are precisely the situations 
where imputing or filling in values for the missing data points is most questionable due to 
the small proportion of valid data points relative to the size of the data matrix. The degree 
to which and manner in which such incompleteness may impact results of military 
epidemiologic research is examined.  
 
Types of missing data 
 
The most appropriate way to handle missing or incomplete data will depend upon how 
data points became missing. Little and Rubin (1987) define three unique types of missing 
data mechanisms.  
 

A. Missing Completely at Random (MCAR): Cases with complete data are 
indistinguishable from cases with incomplete data.  

B. Missing at Random (MAR): Cases with incomplete data differ from cases with 
complete data, but the pattern of data missingness is traceable or predictable from 
other variables in the database rather than being due to the specific variable on 
which the data are missing.  

C. Nonignorable: The pattern of data missingness is non-random and it is not 
predictable from other variables in the database.  

 
In this presentation, we will study the types of missing data in the military database, and 
discuss/suggest the statistical methods of handling missing data in the military data. We 
will give a list of methods for handling missing data appear below. This list is not 
exhaustive, but it covers some of the more widely recognized approaches to handling 
databases with incomplete cases. 
 



Contributed Session 3 
 
A Comparison of the Outcomes of a Course Taught in the Traditional Classroom 
Setting with the Outcomes of the Same Course Taught in the Distance Learning 
Format (Developing a Methodology) 
Gene Dutoit, Troy State University 
 
Abstract: Distance learning is an education method where the students and instructors do 
not meet in the same classroom setting. Some students prefer these types of classes 
because they can work at their own pace and time at home without leaving their families 
to attend classes held in the traditional setting. Troy State University, and several other 
colleges and universities, are in a partnership with the United States Army in an 
educational service called eArmyU Access Online and offers degrees through distance 
learning to soldiers stationed all over the world. The method of instruction is use of the 
Internet. Distance learning courses are designed to have the same academic standards as 
the traditional courses and students must meet the same requirements as the traditional 
form of the course. 
 
This paper presents a case study and methodology for comparing the outcomes of a 
course taught in the distance-learning format with the same course taught in the 
traditional mode of in-class instruction. It is a template for further analysis to insure that 
Army distance learning students receive the same level of instruction as the traditional 
students. It compares the outcomes for the same course for four consecutive terms and 
compares the outcomes on parallel forms of examinations. The statistics of item analysis 
are used to identify differences in outcomes and sources of student difficulties. The 
results of item analysis and test analysis are used to provide feedback to students within a 
class and in follow-on classes. A course instructional learning curve is then developed as 
a tool to be used by the course instructors. 
  
A Probability Programming Language 
LTC Andrew Glen, United States Military Academy; Diane Evans, Rose-Hulman 
University; Larry Leemis, The College of William and Mary 
 
Abstract: A probability programming language (APPL) is presented. Statisticians have 
traditionally used statistical packages, such as SPSS, Splus and SAS, to analyze large 
data sets. However, symbolic algebra languages, such as Maple and Mathematica, 
allowed the development of a “probability package” capable of solving intractable 
probability problems involving the creation of new, often complicated distributions. The 
purpose of APPL is to encapsulate algorithms and generalized theorems used in 
probability into a programming environment with the computer algebra system Maple to 
provide the applied community with automated probability capabilities. The advantage of 
such software allows for finding exact distributions in lieu approximations, often 
producing new distributions with highly desirable properties. Automated functions in 
APPL include the following operations on random variables and distributions: 
convolutions, products, transformations, truncations, plots of CDF PDF HF SF and CHF, 
percentiles, expectations, order statistics, piecewise functions (e.g. the triangular 



distribution), minimum distributions, maximum distributions, bootstrap distributions. A 
demonstration of the language and a short summary of the resultant advances in research 
as well as teaching Mathematical Statistics is presented. Applications that encompass a 
wide range of applied topics including goodness-of-fit testing, probabilistic modeling, 
central limit theorem augmentation, generation of mathematical resources, and estimation 
are presented. Copies of this free software will be made available. 
 
A Lemma Useful in Combinatorics and Some of its Applications 
Bernard Harris, University of Nebraska, Lincoln 
 
Abstract: The purpose of this report is to exhibit a summation formula, which despite the 
apparent simplicity of its statement, has substantial generality and a large number of 
applications in enumerative combinatorics. 
 

Clinical Session 1 
 
Multivariate Goodness-of-Fit Testing for M256 Gun Tube Profiles 
David W. Webb, Mark L. Bundy; Army Research Laboratory 
 
Abstract: An electronic database of gun barrel centerline measurements for the majority 
of M256 120mm gun tubes produced at Watervliet Arsenal in the last decade provides a 
very good estimate of the population of centerline profiles for the entire fleet of M256 
gun tubes. In several recent 120mm tank ammunition studies, the selection of tubes based 
on their profiles has been an important issue, since the centerline profile is known to 
affect the center of shot impacts. In order to properly evaluate ammunition performance, 
test designers want assurance that the tanks chosen for their studies have centerline 
profiles that are representative of the entire fleet. 
 
If centerline profiles were a univariate measurement, then a Kolmogorov-type goodness-
of-fit (g.o.f.) test would be an appropriate method for testing if the sample of tanks 
proposed in a study has the same distribution as the population. However, the true 
centerline profile for a given tube is a continuous line through 3-dimensional space. In 
practice, the profile is measured as a discrete collection of ordered pairs. Each ordered 
pair is the displacement of the profile in the azimuth and elevation plane at one of 23 
positions along the barrel. The current method used at the Army Research Laboratory to 
assess representativeness of the fleet only considers the ordered pairs of displacements 
from 4 of these positions, and analyzes these values independently using Kolmogorov’s 
univariate g.o.f. test. Rejection of the null hypothesis in any one of the 8 tests is grounds 
for rejecting that sample of gun tubes as representative of the fleet. 

 
We recognize that our current methodology has its shortcomings, mainly, that the data 
dependencies existing between neighboring stations are completely lost in our analysis. 
Of the panel, we wish to ask if a multivariate analog to the Kolmogorov test or some 
other multivariate g.o.f. test exists that would allow us to determine whether the complete 
profiles from a sample are representative of the fleet. 



Study Design to Assess Autonomous Mobility of the  
Experimental Unmanned Vehicle (XUV) 

 
Barry A. Bodt and Ann E. M. Brodeen  

U.S. Army Research Laboratory 
 
 
 Unmanned ground vehicles (UGVs) will provide scout functions for our forces on 
the future battlefield. A current study of the Experimental Unmanned Vehicle (XUV) 
seeks to demonstrate autonomous mobility. The study design attempts to balance military 
operational and development-related technical concerns, multiple sites, restrictions on 
randomization, and resource constraints to maximize the information quality and content 
resulting from testing. The principal design follows a split-split plot scheme, and this 
answers most questions. However, some additional testing is necessary to address 
subordinate issues. As in most field trials, trade-offs must be made between the statistical 
ideal and the practical reality. Considerations run the gambit of pooling, confounding, 
and nesting, and also the questions of fixed versus random factors and the advisability of 
using a portion of data in two separate analyses. The panel of experts to which this paper 
is presented will be asked to respond to these trade-offs with any guidance they have 
regarding the design or the analysis.  
 
 
More information from Barry Bodt … 
 
 Enclosed in this e-mail is a briefing on this design that the I delivered on 23 
October at Fort Indian Town Gap, PA before representatives from NIST, ARL, and 
General Dynamics. With the caveats mentioned in the briefing, the design as it stands has 
been fairly well received.  
 

One specific area in which the panel might provide guidance is pooling. Douglas 
Montgomery’s 2002 fifth edition text on Design and Analysis of Experiments suggests on 
page 536 that what terms given up to pooling might be determined by first testing the 
significance of the term—perhaps with a high alpha level, say 0.25. I don’t have a feel for 
an appropriate approach, but some pooling will be required because we simply do not 
have enough degrees of freedom in the denominator for many of the tests. Some rough 
power computations, convince me I probably should have double the number of 
replicates I can afford in this test. 

 
Another issue that has been brought up is the fact that the XUV/team factor is 

inseparable in the present design. That was a concession we made. The problem is that if 
we include XUV and Team as separate factors, to support randomization we may have to 
shuttle teams back and forth to the two test courses. Logistics cost us time and 
consequently runs. So this was a trade-off we agreed to. Still, if there was a way to block 
or in some other way cleverly arrange the design so that Team and XUV could be 
separated, it would be nice. Any suggestions along that line would be most welcome. 

 



Ultimately, a second site will be tested. The way this is set up now, I would be 
driven to a split-split plot design. However, I need to be careful on the analysis. For 
example, the test course—even with specified difficulty level—is really nested within 
site. I hope not, but it is even possible that technical operators will be, at least, somewhat 
different the second time around. Alerting me to any landmines in the analysis would be 
very useful. 

 
Another issue is the borrowing of runs from Tech-T1 in the principal experiment 

(12 to be exact) for use in another comparison involving soldiers and night conditions.  
That’s not ideal either and if weather conditions change for the Tech-T1 runs from the 
principal experiment to Excursion 2, I am only going to have to settle for an unbalanced 
design. Randomization restrictions are not well accounted for either. Any thoughts on this 
are also welcome. 
 
 Currently, manned HMMWV runs occur on a separate day than the principal 
experiment involving the XUVs. Given the manned HMMWV’s are the baseline, this is 
not ideal either. There is some thought about lengthening the work day to accommodate 
some manned runs in the morning of say, days 8 and 9, and perhaps in the evening on 
days 2-7. What we play against is fatigue on the part of the safety crew and the test 
administrators. That could also influence the end test result. 
 
 The responses in this study are geared toward autonomous mobility. The robot is 
supposed to carry out a mission, traveling to certain GPS designated points in three 
mission distance configurations. The real issue is, generally, how much help did it need 
to get there? The way it is addressed is in terms of the number of operator interventions 
necessary, the percentage of time the robot is truly autonomous, the number of 
emergency stops (e-stop) that safety invokes to protect the equipment, operator workload 
to keep track of the robot, and the percent of mission distance completed. It is possible 
the robot will get stuck or e-stopped and will not be able to continue. 
 
 There are other questions that you could focus on and I certainly don’t expect you 
to address all of these in the time we will have. Moreover, you may choose one of the 
other questions I allude to in my briefing or another that has completely escaped me. 
 
 My final comment is to let you know this is a real test and the program is a very 
big deal in the Army robotics community. Never before have we tried to collect data that 
addresses military-operational considerations and never before has a test of this size been 
attempted. And, although the schedule is tight, testing does not begin until the 2nd of 
December, although a shake-out test at Fort Indian Town Gap will occur in mid 
November. NIST has been contracted to administer the test, with us involved, and so 
provides test directors, terrain assessment, and some personnel.  



Contributed Session 4 
 
New Binomial and Multinomial Distributions From Graph Theory 
Milton Sobel, University of California, Santa Barbara; Yontha Ath, California State 
University, Dominguez Hills 
 
Abstract: We’d like to apply statistical methodology to graph theory. Although we are not 
experts in the various applications of statistical methodology, we think that by bringing 
graph theory into the statistician’s province we are opening up new areas of research. 
 
On a non-directed graph the edges can be traversed in either direction. If the graph is 
simple there are no loops and only one edge between any pair of nodes. If the graph is 
regular then each node has the same number of edges (same, r) emanating from it. A step 
is the traversal of an edge from one node to another. In a random walk on a graph the 
various edges emanating from any node have probabilities adding to one; for the present 
we assume these are equal, so that for a regular graph of degree r  the common 

probability is 
1
r

 for going along any one edge. 

 
At this point several combinatorial questions arise: In analogy with the usual binomial 
distribution where one can use a fixed sample size rule or on with random sample size, 
we first separate our graph random walk problems into those with a fixed number of steps 
and those with a random number of steps. Suppose we consider first the family of 
complete graphs nK with a total of n nodes ( 1, 2,3,...)n = . Let SP denote the starting node 
and NSP any other node. For SP (resp. NSP). 
 
I. Fixed Number of Steps 
 

1. What is the generating function (GF) for the number of visits to a specified node 
in a random walk on nK with 5 steps. What are the results (mean, variance, etc) 
obtained from the above GF? What are the corresponding results for 10 steps? 
Can these be summarized by writing a general formula for any n ? Is there an 
analogous problem for traversing every edge of the graph (every traversal being in 
either direction)? 

 
II. Random Number of Steps 
 

2. What is the GF for visiting every node (resp., traversing every edge) in the graph 
(if the starting point is not regarded as a bona-fide visit) (NG is the non-gratis 
version; we use G for the gratis version)? A new node is simply one that hasn’t 
been visited before. 

3. What is the GF for visiting j new nodes in a graph? 
4. What is the multinomial analogue for the joint distribution of visiting 1  x i times 

and 2  jx times if neither node is the SP? 



5. What is the GF for the number of new nodes visited before returning to the SP 
(without counting the SP)? 

6. What is the GF for the number of steps needed to visit a specific node (NSP) r  
times? 

 
Besides the family of complete graphs nK , we also consider (for some of the same goals 
as above) a number of additional families, which we list below. 

1. The Complete Family ( nK ) 
2. Bipartite Family (CBP) (analog of the Binomial) 
3. Wheel Graphs ( nW ) with center and radial spokes 
4. Circular Graphs (a closed regular graph of degree 2) 
5. Circulant Graphs (Dividing a clock equally with diameters) 
6. Familiar Geometric Shapes. 

 
A variety of results are obtained for each of these families. Each problem calls for an 
expectation as well as a variance. For family #6 there are a few scattered results in the 
literature; we apologize for those that were not cited. 
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Abstract

This paper examines the robustness of a new graph theoretic method of latent class
discovery. This new method allows for the discovery of new latent classes within
sets of observations residing in a high dimensional space. The robustness of the
methodology is studied using a single gene expression data set.
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Introduction

One is often presented with a set of observations from various labeled classes for
construction of a classifier. For the discussions within a classifier can be thought of
as a mapping from our set of observations, residing in Rn to a set of class labels
1, 2, · · · , j. There are numerous ways that one may construct such a mapping. Some
of the ways are based on estimating the unknown distributions of the observations
that make up each of the individual classes while other methods merely require
one to be able to estimate the discriminant boundary that separates the sets of
observations.

Other times one is presented with a set of unlabeled observations and one is
interested in identifying structural clusters within the group of observations. In
this case one is not provided with any sort of class labels and one is interested in
clustering the observations based on some other criteria. As can be imagined there
are numerous criteria that one might use in order to cluster the observations or
evaluate a clustering after the clustering has been obtained.

A more interesting case, which is the focus of the discussions within, is the case
where we are provided labeled observations, for which we wish to create a classifier,
but we are also interested in the identification of clusters or latent classes that reside
within the labeled observations. In particular we are interested in the identification
of said clusters based on the relationship of the observations to the discriminant
boundary.

This is the focus of our discussions within. We examine the robustness of a
graph theoretic method of latent class discovery. This method is essentially based
on a clustering of observations obtained using a graph thoretic surrogate for their
relationship to the discriminant boundary.



The paper is laid out as follows. First we provide the reader with some back-
ground material on the latent class discovery problem and our previous endeavors
in this area. This section will also detail some of the interesting questions, such as
the robustness of the discovered latent class structure to the derived classifier. In
the next or results section, we will illustrate the application of this methodology to
a gene expression dataset. In this case the identified latent classes correspond to
previously identified disease types. We will also present some preliminary results
in this section that attempt to characterize the robustness of the discovered latent
class structure to the particular classifier that was employed. Finally we wrap up
the paper with some discusses that illuminate our planned future activities. As
with many of the papers that we write, we hope that the reader will be inspired to
go forth and investigate some of the new strategies that might be sparked by the
discussions outlined below.

Background

Given a set of possibly hyperdimensional observations we are interested in identify-
ing any latent classes, from a discriminant analysis standpoint, that reside within
the set of class labeled observations. The first step in the process is the construction
of a graph theoretic classifier.This classifier construction methodology is predicated
on the existence of a metric or pseudometric that measures the distances between
the observations. Our previous work has illustrated how the choice of this distance
measure may markedly effect the performance of the classifier but that is not the
focus of our discussions within [Priebe et al., 2000].The obtained models are then
subjected to the latent class discovery process. The obtained latent classes are
then analyzed using multidimensional scaling or nonlinear dimensionality reduction
methods. Figure 1 provides a flowchart of our overall research strategy.

Figure 1: A flowchart detailing our latent class discovery research strategy.

One of the classification methods that can be employed in the latent class discov-



ery process is the class cover catch digraph (CCCD) method of Priebe [Priebe et al., 2003a].
The construction of this classifier begins by placing a ball about each of one of the
class’s observations. One then obtains a subset of the balls that cover the observa-
tions through a greedy based algorithm. If one considers each of the observations
as a vertex in a graph and then produces a directed graph by drawing a directed
edge from vertex a to vertex b if the ball centered on vertex a covers vertex b then
the construction of this reduced cover can be cast as the solution of a dominating
set. The reader is referred to [Chartrand and Lesniak, 1996] for a full discussion of
domination in graphs.

Given this reduced set of balls that cover one of the class’s observations the latent
class discovery process proceeds as follows. We cluster the balls based on their radii.
The exact manner in which the number of ball clusters is determined is discussed
later. Once the balls are clustered then the discovered latent classes consist of those
observations residing within a particular cluster of balls. In Figure 2 we illustrate
the latent class discovery process using a toy problem. We have colored each ball
based on the latent class that it belongs to and hence there are 4 latent classes.
The observations are colored according to their original two classes and the CCCD
solution that was used during the latent class discovery process originally covered
the red observations.

We note that the proposed latent class discovery process is clustering observations
based on their relationship to the discriminant boundary. This clustering could of
course be accomplished using any sort of classifier that produces a discriminant
boundary that allows one to measure distances to the discriminant boundary and
subsequently cluster the observations based on this distance. Figure 3 illustrates
this idea using a quadratic classifier.

Results

We now illustrate our proposed latent class discovery process on an example gene
expression data set. We have chosen to use an ALL/AML data set first proposed
by Golub [Golub and Slonin, 1999]. This particular study investigated the ability
to distinguish between two forms or leukemia, ALL and AML, and measure the
responses of roughly 7000 genes on 72 patients using an Affymetrix microarray
system. Figure 4 illustrates our strategy for the application of our latent class
discovery process to the gene expression data.

We will now discuss the determination of the number of clusters during the latent
class discovery process. We first define the estimated error rate of our CCCD-
based classifier as follows. For each candidate nuumber of clusters k = 1, · · · , γ̂ an
empirical risk (resubstitution error rate estimate) L̂k is calculated as

L̂k := (1/(n + m))(
n∑

i=1

I{xi /∈ ∪j=1,···,k ∪v∈Ŝj
B(v, min

w∈Ŝj

rw)}

+
m∑

i=1

I{yi ∈ ∪j=1,···,k ∪v∈Ŝj
B(v, min

w∈Ŝj

rw)})

We proceed by defining the “scale dimension” d̂? to be the cluster map dimension
that minimizes a dimensionality-penalized empirical risk; d̂?

δ := min{arg mink L̂k +
δ · k} for some penalty coefficient δ ∈ [0, 1]. This scale dimension determines the
number of clusters to be used during the latent class discovery process.



Figure 2: CCCD-based latent class discovery. Ball color indicates ball cluster mem-
bership. The CCCD solution was created based on the red observations.

Figure 5 presents performance as a function of scale space dimension for the gene
expression data. A visual inspection of the plot indicates a scale space dimension,
indicated by the abscissa of the elbow of the plot, of 5.

The latent classes discovered in the gene expression data correspond to the well
known B-cell and T-cell ALL subtypes. These latent classes were first discovered
using a custom in-house developed visualization framework known as the Interactive
Hyperspectral Exploratory Data Analysis Tool (IHEDAT). It turns out that the
measured distance from the ALL B-cell to the AML observations differs from the
measured distance from ALL T-cell observations to the AML observations. In fact
the ALL T-cell observations are in general more distant from the AML observations
than the ALL B-cell observations. This distance is apparent in Figure 6 where we
plot ALL and AML observations in the MDS projection space. The reader is referred
to [Priebe et al., 2003b] for a more detailed description of how the original latent
class discovery was performed.The reader is referred to [Solka et al., 2002] for an



Figure 3: Quadratic classifier based latent class discovery. Circles indicate clusters
of observations based on the distance to the quadratic discriminant boundary.

in-depth treatment of IHEDAT.
After the initial success of our latent class discovery methodology, we began

to wonder how robust the procedure was to other possible CCCD coverings. In
order to answer this question one of us, DJM, developed a method to enumerate
all possible coverings of the ALL observations. Some of the these possible solutions
correspond to greedy solutions while others do not. There are 180 21 node, ball,
solutions. Sixteen of the nodes remain fixed across the solutions. There are 14
greedy solutions. In Figure 7 we plot scale dimension as a function of the various
solutions.The red symbols indicate the locations of the greedy solutions. The green
symbol indicates the location of the previous solution used to discover the T/B
subclass.

In Figure 8 we present a histogram of the scale dimension across all solutions.
We note that the value of 5 obtained in our original analysis was a little high as
compared with the perceived mean/mode of this distribution. It is an open question
as to how the choice of the scale dimension would effect the latent class discovery
process.

In Figure 9 we present the dominating sets for each vertex.The triangles at the
top of the plot indicate the 16 vertices that appear as part of all 180 solutions. For
each of the other vertices we plot the number of times that the vertex appears in one
of the covers. We have also used color to indicate whether the ball that corresponds
to this vertex is centered on an ALL B-cell, blue, or ALL T-cell, red, observation.
We note that only one T-cell vertex is in the set of 16 that does not change.

We may also analyze the variety of coverings through a characterization of the
graphs that make up the coverings. In Figure 10 we present the unique induced
subgraphs for the 5 changing vertices of the 180 dominating sets (top) and the
unique induced subgraphs in the 5 changing vertices of the 14 greedy dominating
sets (bottom).We note that the greedy based graphs are a proper subset of those
graphs obtained based on the 5 changing vertices of the 180 dominating sets.



Figure 4: Latent class discovery strategy for the Golub gene expression data.

The analysis, with regard to the robustness of the procedure, presented so far in
the paper has been interesting but not particularly compelling or even necessarily
relevant to ascertaining whether the latent class structure identified during the
original analysis would be identified if one were to use a different covering. The
original greedy solution contained 3 clusters of balls that only contained ALL B-cell
observations and 1 cluster of balls that contained 8/9 of the ALL T-cell observations.
One way to evaluate the other coverings would be through the use of a figure of
merit that captured the information contained within this first solution. We have
chosen to use a figure of merit consisting of the percentage of B points that are in
pure B clusters and the highest percentage of T points in any one cluster. In Figure
11 we present the calculated figures of merit for each solution. We note that all of
the greedy folutions contain eight ninths of the T points in one cluster. We also
note that .4 or more of the B points are in pure B clusters. It is a little hard to
discern the exact nature of the solutions, based on ther plot, due to overplotting
but it is reasonable to infer that one may have been able to idnetify the B-cell T-cell
distinction utilizing any of a number of the other greedy solutions.

Conclusions

We have discussed a new method of latent class discovery that is appropriate for
application to hyperdimensional data sets. This method allows one to discover
previously unidentified classes within a class based on the relationship of the obser-
vations to the discriminant boundary. We have illustrated the application of this
methodology to one gene expression data set. We have also presented some prelim-
inary results that attempt to quantify the robustness of this method with regards
to the dominating set that was used to facilitate the latent class discovery process.
We have performed some rudimentary exploratory data analysis on the enumerated
dominating sets. We have presented a strategy that we have developed to study the
robustness of the latent class discovery process to choice of dominating set. This



Figure 5: Cross validated performance as a function of scale dimension for the ALL
Golub gene expression data with respect to the AML data.

problem is a very difficult one and will continue to be the subject of our ongoing
research efforts.
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Figure 7: Scale dimension plotted as a function of the various Golub ALL dom-
inating sets with respect to the AML observations. Red symbols indicate greedy
solutions. The green symbol indicates our original solution used to make the T/B
cell discovery.

Figure 8: Histogram of the scale dimensions obtained with all 180 Golub ALL
dominating sets.



Figure 9: Dominating sets for each vertex in the Golub ALL data. Triangles rep-
resent the 16 vertices that are members of all 180 solutions. Color indicates T -cell
or B-cell membership.



Figure 10: Unique induced subgraphs in the 5 changing vertices of the 180 dominat-
ing sets for the Golub ALL data with respect to the Golub AML data (top) and the
unique induced subgraphs in the 5 changing vertices of the 14 greedy dominating
sets for the Golub ALL data with respect to the Golub AML data (bottom).



Figure 11: Proportion of B points that are in pure B clusters vs. highest proportion
of T points in any one cluster for the 180 dominating sets of the Golub ALL data
with respect to the Golub AML data. Red triangles indicate greedy solutions.
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Abstract:
A novel way to encode text streams is provided.  The encoding allows for the application of computational 
methods in the determination of semantic similarity between text units.  Supervised and unsupervised 
learning methods are used on a subset of the TDT Pilot Corpus to determine the effectiveness of the encod-
ing in classification and clustering processes. 

Key Words:  bigram proximity matrix, trigram proximity matrix, classification, clustering, semantics, 
dimensionality reduction, similarity measures

1.  The Problem

A large percent of information available to command and control systems exists in the form of text.  Fast 
and effective methods to classify and group automatically related information for further processing are 
desirable. A critical step to the application of efficient computational methods is the encoding of the text 
stream. This paper introduces a novel method for encoding the text stream, with highly desirable computa-
tional properties.  Tests show that the encoding preserves enough semantic distinctiveness to allow for very 
high rates of correct classification, where classification is based on measures of ‘semantic’ similarity com-
puted between encoded text units. 

In Section 2 we will introduce the bigram proximity matrix (BPM) and the trigram proximity 
matrix (TPM), the two structures resulting from the text stream encoding.  The corpus used as a testbed, as 
well as the similarity measures used, are presented in Section 3.  Section 4 discusses the experiments con-
ducted to determine the encoding capacity to preserve distinctive features of the text stream content.  The 
‘shape of meaning’ via parallel coordinates is discussed in Section 5, and Section 6 offers conclusions and 
possible future work.

2.  The Bigram Proximity Matrix (BPM) and the Trigram Proximity Matrix (TPM)
The BPM and the TPM are matrix structures used to encode each text unit, i.e., paragraph, section, chapter, 
book, etc.  A simple example using a sentence will make the encoding process clear. The BPM for the sen-
tence or text stream, 

“The wise young man sought his father in the crowd.” 

is shown in Table 1. We see that the matrix element located in the third row (his) and the fifth column 
(father) has a value of one. This means that the pair of words his father occurs once in this unit of text. It 

1. Email:  martinezar@nswc.navy.mil (Angel Martinez) and ewegman@galaxy.gmu.edu (Edward Wegman)



should be noted that in most cases, depending on the size of the lexicon and the size of the text stream, the 
BPM will be very sparse.
  

By preserving the ordering of words of the discourse stream, the BPM captures a substantial 
amount of information about meaning. Also, by obtaining the individual counts of word co-occurrences, 
the BPM captures the ‘intensity’ of the discourse’s theme. Both features make the BPM a suitable tool for 
capturing meaning and performing computations to identify semantic similarities among units of discourse 
(e.g., paragraphs, documents).  

The TPM captures the occurrence of consecutive triplets of words by constructing a cube with the 
lexicon on three axes.  A trigram is the point of intersection of the row, column and page in the cube, as 
illustrated in Figure 1.  The figure expands the same sentence given above.  The trigram “sought his 
father,” is the point (sought, his, father), that is, the array element in the 7th row, 3rd column, and 5th page.  

As can be seen, the resulting N3 array structure, where N is the size of the lexicon is very sparse.  The TPM 
is a trivial extension of the BPM.  Preliminary testing seems to indicate that for some applications (e.g., 
change of topic determination) and for larger sizes of text units, the TPM performs better than the BPM.          

Notice that the BPM and TPM are arrays whose rows, columns, and pages (in the case of the TPM) 
are indexed by the lexicon of the text unit.  We chose alphabetical ordering of the lexicon; however, this is 
not essential.  In the pre-processing of the text, all punctuation marks, except the ending period, were 
deleted.  The end period was considered a word and placed at the head of the lexicon.

3.  The Test Suite and Similarity Measures
Documents from the Topic Detection and Tracking (TDT) Pilot Corpus (Linguistic Data Consortium, Phil-
adelphia, PA) were used as the textual testbed.  The TDT corpus is comprised of close to 16,000 newscasts 
collected from July 1, 1994 to June 30, 1995 from the Reuters newswire service and CNN broadcast news 
transcripts. A set of 25 events are defined in the TDT. Each of the 16,000 newscasts is flagged with one of 
three possible flags: Yes, No, or Brief. The flags are used to indicate that a newscast discusses one of the 25 

Table 1. Example of Bigram Proximity Matrixa

a.  Zeros in empty boxes are removed for clarity.

. crowd his in father man sought the wise young

.

crowd 1

his 1

in 1

father 1

man 1

sought 1

the 1 1

wise 1

young 1



events, or it does not, or it does so only briefly. In order to meet computational requirements, a subset of 
the TDT corpus was used in this work. A total of 503 newscasts were chosen from the 16,000 available. 
These news stories comprise 16 of the 25 events discussed in the TDT. See Table 2 for a list of topics. The 
503 documents chosen contain only the Yes or No flags. This choice stems from the need to demonstrate 
that the BPM and TPM capture enough meaning to make a correct or incorrect topic classification choice.

The 503 stories selected produced a lexicon of 11,103 unique words. Conflated forms are counted 
as different words. Using this lexicon and the structure already described, a BPM and TPM were created 
for each of the 503 stories. The assertion is that each of the structures captures enough of the meaning in 
the newscast to serve as a classification feature. We test this assertion using various methods in exploratory 
data analysis and computational statistics.

Table 3 lists the measures of semantic similarity used in this study. For definitions of these mea-
sures, see [Martinez, 2002].  It should be noted that some of these are distances and some are similarities; 
however, for ease of exposition, we will refer to them all as measures of semantic similarity. All similarity 
measures were first converted to distances so they could be used with the various methods.  Also, some of 
these measures are binary, in which case the frequencies of word pairs and triples are changed to a 0 or a 1. 
Similarly, the proximity matrices are converted to distributions to use the probabilistic measures. 

Two variants of the lexicons are considered. In one variant, common high-frequency words have 
been removed from the lexicon and the documents. In another variation, we stemmed the words as well as 
removed the common high-frequency words from the documents. Part of this research examines how this 

Figure 1   Here we see an example of a trigram proximity matrix (TPM). Note that the indexes on each side of the cube correspond  
to a word in the lexicon. The element in the ith row, jth column and kth page indicates the number of times that sequence of three 
words appears in the text unit.



affects the discriminating power of the proximity matrices.  Many NLP applications [Kimbrell, 1988], [Salton, 
Buckley and Smith, 1990], [Frakes and Baeza-Yates, 1992], [Berry and Browne, 1999] use a shorter version of 
the lexicon by excluding words often used in the language. These words, usually called stop words or noise 
words, are said to have low informational content and thus, in the name of computational efficiency, are 
deleted. Not all agree with this approach [Witten, Moffat and Bell, 1994].

Taking the denoising idea one step further, we stemmed the words in the denoised text. The idea is 
to convert all conflated forms of the words to their stem or root to increase the frequency of key words and 
thus enhance the discriminatory factors of the features.  Stemming is routinely applied in the area of infor-
mation retrieval (IR). In the IR application, stemming is used to enhance the performance of the IR system, 
as well as to reduce the total number of unique words and save on computational resources.  A popular 
stemmer is the Porter stemmer [Baeza-Yates and Neto, 1999], [Porter, 1980]. The Porter stemmer is sim-
ple; however, its performance is comparable with older established stemmers. The Porter stemmer works 
on the suffix of words. These are stripped according to several parsing rules and replaced with one of a list 
of endings or the null ending. On most occasions, these simple replacements work well, as is the case of 
the words:  protecting, protected, protects, protection, which are conflated forms of ‘protect.’  However, in 
other cases, it does not work as well.  For example, a word like probate will be stemmed to probe, which 
carries a totally different meaning.  The same thing applies for relativity, which is conflated to relate.  In 
information retrieval applications, these anomalies of the stemmers do not seem to affect their usefulness.  
The issues are not so clear in our application.

            

Table 2. List of 16 Topics

Topic 
Number

Topic Description Number of 
Docu-
ments 
Used

Topic 
Number

Topic Description Number of 
Docu-
ments 
Used

4 Cessna on the White 
house

14 15 Kobe, Japan Quake 50

5 Clinic Murders (Salvi) 38 16 Lost in Iraq 30

6 Comet into Jupiter 45 17 NYC Subway bombing 24

8 Death of Kim Il Sung 35 18 Oklahoma City bomb-
ing

76

9 DNA in OJ trial 29 21 Serbians down F-16 16

11 Hall’s copter in N. 
Korea

75 22 Serbs violate Bihac 19

12 Humble, TX, flooding 16 24 US Air 427 crash 16

13 Justice-to-be Breyer 8 25 WTC bombing trial 12



To determine if there is any deleterious effect of using the stemmer and denoising with the BPMs 
and TPMs, the same experiments are conducted on all three versions: full, denoised, and stemmed docu-
ments. Table 4 summarizes the size of the lexicons in these three cases.

4.  The Tests
In this section, we present the results of applying supervised (kNN classification) and unsupervised learn-
ing (model-based clustering) to the collection of 503 news stories. In supervised learning experiments, the 
class membership of each observation is known, and we are interested in how well we can classify the top-
ics given the BPM and TPM features.  In the case of unsupervised learning, experiments start with very lit-
tle information, essentially the observations.  No knowledge of the number of classes nor the observations’ 
membership to these are available. 

4.1  kNN Classification
We first apply supervised learning approaches to the BPM and TPM  features to determine whether these 
features allow us to classify documents according to their meaning. If we can accurately classify using the 
proximity matrix as a feature, then this is an indication that these features preserve meaning.  In kNN clas-
sification, the decision rule is to assign x to the class that has the greater number of members amongst the k 
nearest neighbors [Web, 1999], [Cover and Hart, 1967].  Due to the high-dimensional nature of these fea-
tures, we cannot apply classical supervised learning methods such as linear or quadratic classifiers.  How-
ever, the kNN classifier is well-suited for our BPM and TPM features, since all we need are the pairwise 
distances between all BPMs and TPMs.

The kNN classification method was applied using the following parameters:

• Thirteen measures of semantic similarity (see Table 3)
• k values: k = 1, 3, 5, 7, and 10
• Proximity matrix:  BPM and TPM
• Three text conditions: full, denoised and stemmed

Table 3.  Measures of Semantic Similarity

1.  Matching Coefficient 8.  Sokal - Sneath

2.  Sokal - Michner 9.  Gower - Legendre 1

3.  Dice Coefficient 10.  Gower - Legendre 2

4.  Jaccard Coefficient 11.  Normalized Correlation Coefficient

5.  Cosine - Ochiai 12.  L1 - Probabilistic Measure

6.  Russell - Rao 13.  IRad - Probabilistic Measure

7.  Roger - Tanimoto

Table 4.  Lexicon Sizes

Type of Lexicon Size of Lexicon

Full Lexicon 11,103

Denoised Lexicon 10,997

Stemmed Lexicon (also denoised) 7,146



   The dotplot shown in Figure 2 shows the results for the rate of correct classification (CCR) using 
denoised text and is representative of the other experimental results.  Of the thirteen measures of semantic 
similarity, 10 resulted in high CCRs. Three of them resulted in very low CCRs. These are the Sokal-Mich-
ner, Roger-Tanimoto, and Gower-Legendre 1.  Summary conclusions from the experiments are:

1.  The BPM and TPM seem to contain sufficient semantic information to allow for almost per-
fect classification results. 

2.  Binary similarity measures based solely on word pairs and triples that are common to two 
documents worked better with denoised text

3.  Probabilistic measures of semantic similarity performed the best with denoised and 
stemmed text.

4.  The Dice, Jaccard, Sokal-Sneath, Gower-Legendre 2,  L1 norm and IRad measures were the 
best performers.  

4.2  Unsupervised Learning
The method chosen for our unsupervised learning experiments is called model-based clustering [Banfield 
and Raftery, 1993], [Fraley and Raftery, 1998].  This method is based on finite mixtures [Everitt and Hand, 
1981]  where the output model is a weighted sum of c multivariate normals.  See Martinez [2002] for more 
information on model-based clustering for this application.  One of the benefits of using model-based clus-
tering instead of some other method is that it includes a mechanism for determining the number of groups 
in the data set. Thus, we hoped to see results with approximately 16 clusters (or topics).

As a way to compare supervised and unsupervised learning methods, similar experiment variables 
were used with model-based clustering. The following variable combinations were used:

• Thirteen measures of semantic similarity (see Table 3)
• Two values of k nearest neighbors for the Isomap dimensionality reduction: k = 7, 10
• Proximity matrix:  BPM and TPM
• Three text conditions: full, denoised and stemmed
• One ‘best’ dimension value from Isomap

In order to use model-based clustering, the dimensionality of our observations (i.e., the BPMs and TPMs) 

had to be drastically reduced from 11,1032 (in the case of the full lexicon) to 2, 3, 4, 5, and 6 dimensions. 
This reduction was effected through the Isometric Figure Mapping (Isomap), a nonlinear dimensionality 
reduction method [Tenenbaum, deSilva and Langford, 2000].  Isomap is essentially an extension of multi-
dimensional scaling (MDS) methods, where geodesic distances between k nearest neighbors are used as 
inputs to MDS.

The assessment of the results was done via a visualization aid we developed called ReClus. ReClus 
takes the output from the model-based clustering procedure and draws one large rectangle. This rectangle 
is subdivided into n smaller rectangles, where n is the number of clusters chosen according to the model-
based clustering procedure.  The area of each smaller rectangle is proportional to the number of cases in 
the cluster. Inside each rectangle, and for each case assigned to that cluster, the class number is printed, or 
optionally, the case number is printed.  Each number is color-coded to denote the degree of certainty that 
the particular case belongs to the cluster. A threshold is set to print in black bold type when the certainty is 
0.8 or above.  ReClus, thus, provides a quick visual way to examine the results from model-based cluster-
ing. Although, judging between two results entails a degree of subjectivity, this is a problem only where 



results are close. Additionally, ReClus provides information to guide the examination of confounding fac-
tors in the clustering process.  An example of a ReClus plot is given in Figure 3.

We now offer some specific observations on the results, keeping in mind that it is difficult to assess 
the goodness of clusters.  Of the 312 experiments, thirteen showed the correct number of clusters, sixteen. 
Not surprisingly, however, none of these - and for that matter, none of the 312 - showed sixteen correct 
(i.e., ‘pure’) clusters.  In each of the thirteen results, two rectangles contained the same class cases (topic 
number 6 was split into two groups). We note that the same situation for topic 6 arose in those results con-
taining 15 and 17 clusters.  Usually, more than half of the rectangles suffered from  some degree of con-
tamination.  If we consider a good result as one with the highest number of ‘pure’ rectangles, followed by 
a high number of only lightly ‘contaminated’ ones, and the fewest number of jumbled rectangles, then the 
following are the best results:

• Ochiai measure, full text, dimensionality 6, BPM and k = 7
• Jaccard measure, stemmed text, dimensionality 6, BPM, and k = 7

The above categorization of the best results is naive. It assumes that a mix of 2 or more classes in a 
rectangle is an undesirable result. However, in the case of our test bed, a mix could point to a justifiable 
confusion. For example, in several of the ‘best’ results classes 8 and 11 are usually mixed; however,  both 
sets of documents are about North Korea.  Also, topics 18 and 17 are sometimes mixed:  both sets of docu-
ments deal with bombing, the Oklahoma City bombing and the NY subway bombing.  The same happens a 
few times with classes 21 and 22:  both report on two different aspects of the Serbian conflict.

The intriguing case mentioned above, where class 6 had two pure rectangles containing class 6 
cases, raises the issue of latent classes or sub-groups within the topics.  A reading of the documents 
involved does show two different foci. The main subject of the set is the crash of fragments of the comet 
Shoemaker-Levy onto the surface of Jupiter.  One group in the set emphasizes background information 
about the comet as well as the fact that the space shuttle is in orbit ready to observe what is yet to take 
place.  The second group’s focus is predominantly on the event already taking place and observations of 
the phenomenon.  

5.  The ‘Shape of Meaning’ and Parallel Coordinates

Examination of the model-based clustering results using ReClus seem to show two aspects of the semantic 
content of the text units:  (1) the possibility of latent topics, as was the case with topic 6, and (2) the detec-
tion of similarity between topics, as in the cases of topics 8 and 11, 17 and 18, and 21 and 22.  Visual detec-
tion of similarity between topics can also be seen using parallel coordinates [Wegman, 1990].  A matrix of 
parallel coordinate plots was created by placing together in matrix form a parallel coordinate plot for each 
topic.  See Figure 4 at the end of the paper.  By looking at the overall shape formed by the lines and the 
points where these touch the five axes (5 dimensions), we are able to detect patterns.  These patterns seem 
to be manifestations of semantic content of the clusters.  Notice the following:

• The parallel coordinates for topics 8 and 11 show exact patterns for a good number of their lines.  This 
corroborates the confusion detected in the model-based clustering results via the ReClus display. The 
possible common theme repeated is North Korea and US relations.

• The parallel coordinate plots for topics 17 and 18 show a group of lines with the exact pattern in both.  
This corroborates the confusion detected in the model-based clustering results via ReClus.  A possible 
common theme that is repeated is bombing and its immediate effects.

• The parallel coordinates for topics 21 and 22 show a small group of lines with a common pattern.  This 
pattern may represent a common core of the two topics about the Serbian conflict.



• Topic 6 showed invariably in two clusters in the ReClus figures.  Notice the pattern from the lines of 
the parallel coordinates for topic 6.  On the second axis from top to bottom, one notices a separation of 
lines.  This indicates two different groups, separable at the dimension represented by that axis.  These 
groups may represent the two sub-themes found in reading the newscasts of topic 6.

Parallel coordinates were a crucial help in making sense of our model-based clustering results.  On 
occasion, a permutation tour [Wegman, 1990] of a single topic’s parallel coordinates was necessary.  For 
example, the parallel coordinate plot for topic 8 shows a simple structure.  But, the ReClus view shows 
topic 8 linked with topic 11 in three different clusters.  Is the model-based clustering result wrong?  When 
a permutation tour of topic 8 was performed, about three sub-groups became evident.  This seems to match 
a reading of the 35 newscasts from topic 8 as the next paragraph explains.

As mentioned above, classes 8 and 11 appeared mixed in the experiments.  Topic 8 and topic 11 
both deal with North Korea, one regarding the death of Kim Il Sung and the other the crash of the Ameri-
can helicopter in North Korean territory.  Most of the time there are three rectangles containing cases from 
8, of which two are mixed with 11 and one rectangle (almost purely 11) was only very slightly mixed with 
8.  As is the case with class 6, this may imply the existence of latent classes in groups 8 and 11. A quick 
reading of the newscasts for topic 8 seems to show three major themes discussed over the background of 
Kim Il Sung’s death and the probable succession of his son Kim Jong-il.  The three latent topics are:  (1)  
US and North Korea relations; (2)  North Korea and South Korea relations; and (3)  North Korea’s nuclear 
plants.  

The visualization tool ReClus made the examination of the results from the model-based clustering 
experiment possible and fruitful. The BPMs and TPMs capture sufficient meaning to produce satisfactory 
results with this unsupervised learning method.  For best results, the Ochiai measure of semantic similarity 
should be used in the Isomap dimensionality reduction method, and the dimensionality can be reduced to 
five or six dimensions.  Full and denoised text did well with the Ochiai measure.  It seems that latent 
classes are detected by the BPMs and TPMs, as made manifest by the results discussed above. 

6.  Conclusions and Future Work
We introduced in this paper two transformations of the text stream amenable to computational methods, 
called the bigram proximity matrix and the trigram proximity matrix.  The usefulness of the BPM and 
TPM depends on how much semantic information they preserve.  In order to determine the adequacy of 
these encodings to preserve semantic information, supervised learning using kNN classification and unsu-
pervised learning, using model-based clustering were applied.  Variables in the experiments consisted of 
combinations of the following:

• Thirteen semantic similarity measures
• Three text conditions (full, denoised and stemmed)
• Various values of k (kNN).

Supervised learning experiments were conducted on the full dimensionality of the feature space (see Table 
4 for the lexicon sizes).  Dimensionality was reduced to a lower number (2 - 6) using the nonlinear dimen-
sionality reduction procedure called Isometric Figure Mapping (Isomap).  With dimensionality reduced, 
unsupervised learning experiments were conducted using model-based clustering.

Results from supervised learning experiments showed that correct classification ratios in the range 
of 0.95 - 0.99 were common for many of the semantic similarity measures used. This indicates that the 
BPM and TPM capture sufficient semantic information for the discrimination of semantically dissimilar 



text units. Results from the unsupervised learning experiments showed that the BPM and TPM capture suf-
ficient semantic information to group thematically related documents and seems to detect latent sub-
themes. In conclusion, we can state that the text stream transformations do capture enough semantic infor-
mation to allow for the semantic discrimination of text units.

Several obvious possibilities for future work are:
• To create efficient algorithms for lexicon expansion and subsequent recomputation of 

BPMs and TPMs.
• To apply BPMs and TPMs to the problem of change of topic determination.
• To explore the capability of BPMs and TPMs in combination with model-based clustering, 

parallel coordinates and ReClus in the detection and identification of sub-topics.
• To examine the effect of the following:  size of documents, type of documents (scientific 

article, news story, patent description, etc.), and number of text units in a topic.
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Figure 2   This shows the results of applying the kNN classification method to the problem of correctly classifying the 
newscasts according to their topic. We see that most of the measures of semantic similarity perform well.



Figure 3. ReClus layout showing the results from the model-based clustering where the Jaccard measure is used with denoised text.   
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Figure 4.  Parallel coordinates plot matrix for the 16 topics.
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A study of denial of service attacks on the
Internet

David J. Marchette

Abstract

The public Internet is a critical component of the information infrastructure
supporting finance, commerce, and civil and national defense. Denial of service
attacks on major Internet sites, both the direct effect on the attacked sites and
the indirect collateral effects on the Internet as a whole do considerable financial
damage on a regular basis. Denial of service attacks could be a part of a concerted
attack on the flow of information. This coupled with a physical attack of some
kind poses a substantial threat.

Monitoring these attacks in a timely manner is problematic because the institu-
tions under attack often have good financial and security incentives not to share that
information, and getting the information in a timely (cyber-scale) manner is dif-
ficult without a (computerized) automatic notification process. Remote detection
using backscatter allows the detection of attacks in a completely passive manner
without any cooperation from the primary target computer(s). This paper discusses
some of the mathematical and statistical aspects of backscatter analysis, and illus-
trates some interesting practical issues in the analysis.

1 Introduction

Suppose there is a coordinated denial of service attack (using one of a selection of
freely available tools) on the public banking access sites of the 10 largest US banks (or
the largest stock trading sites). Financial institutions are reluctant to share information,
so it might take a while (hours or days) to sort out the size and the scope of the attack,
or to even find out that the attack took place. A method of determining the scope of the
attacks without relying on self-reporting is clearly needed.

The basic idea of most denial of service attacks is to flood a computer with bogus
requests, or otherwise cause it to devote resources to the attack at the expense of the
legitimate users of the system. A classic in this genre is the SYN flood. The attacker
sends SYN packets requesting a connection, but never completes the handshake. One
way to do this is to set the source IP address to a nonexistent address (this process of
changing the source address is called “spoofing” the address). For each SYN packet,
the victim computer allocates a session and waits a certain amount of time before “tim-
ing out” and releasing the session. If enough of these “bogus” SYN packets are sent,
all the available sessions are devoted to processing the attack, and no legitimate users
can connect to the machine.



A related attack is to send packets that are out of sequence, or errors, forcing the
victim computer to spend time handling the errors. For example, if a SYN/ACK packet
is sent without having received an initiating SYN packet, the destination computer
generates and sends an RST (reset) packet. If the attacker can arrange to have millions
of SYN/ACK packets sent, the victim computer will spend all its resources handling
these errors, thus denying service to legitimate users. One way to arrange this, is
through a distributed denial of service tool, such as trinoo or TFN2k. These tools
compromise a set of computers, dispersed across the IP address space, then use these
“intermediate victims” to send thousands of packets to the intended victim. Each packet
is crafted to have a random (spoofed) source IP address, so the attacking machines
cannot be identified. See [Mar01], [Che01] and [NNM01] for descriptions of some
distributed denial of service attacks.

The result of such an attack is a number of reset (or other) packets appearing at
random sites around the Internet, with no obvious session or initiating packets to ex-
plain them. See Figure 1. This is used by [MVS01] to estimate the number of denial
of service attacks during three one week periods, by counting how many unsolicited
packets are seen addressed to one of the

�����
possible IP addresses they monitored.

2 Analysis

Following [MVS01], we can compute some of the probabilities of detection needed to
analyze backscatter packets. Assume the spoofed IP addresses are generated randomly,
uniformly on all

�����
addresses, and independently. Assume there are � packets sent in

an attack on a given victim. If we monitor all packets to 	 IP addresses, then it is easy
to see that the probability of detecting an attack is:
��

detect attack
������������ 	� ��������� (1)

From this, one obtains the result that the expected number of backscatter packets we
detect is 	��� ��� � (2)

We would like to determine how many packets were originally sent. This will
give an estimate for the severity of the attack, and might allow us to infer whether the
attack was likely to have been mounted by multiple attackers, for example through a
distributed denial of service tool. To do this, note that the probability of seeing exactly�

packets, under our independence assumption, is
�� �
packets 
���� � ����� 	� ��� � ! � ��� 	� ����� �#" ! � (3)

The maximum likelihood estimate for � , using Equation 3, is$�%��& �'�(���	*) � (4)

Thus, if we see
�

packets, we can use Equation 4 to estimate the size of the attack.
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Figure 1: Backscatter from a denial of service attack. Packets are sent to the victim
from one or more attackers. These packets have spoofed IP addresses, which cause the
victim’s response to be sent to random addresses within the Internet.

Note that if the attacker chooses from a subset of all possible IP addresses, say of
size � , then we must replace ����� in Equations 1–4 with � . These equations, then,
under the assumptions of uniformity and independence, allow us to estimate the orig-
inal size of the attack from the packets we see at our network, assuming we know the
original size of the pool of IP addresses from which they are selected.

There is also the question of determining the number of attacks. [MVS01] do this
by defining an attack as a series of packets with a maximum inter-packet gap less than
a fixed value. The idea being that if there is a long enough gap between packets, then it
is reasonable to assume that these correspond to different attacks. They then count the
number of attacks they detect, and report over 12,000 attacks in the three week period
they investigated.

This assumes that all attacks generate packets to the network monitored. We will
assume that all attack packets generate backscatter (until the machine ceases to func-
tion), ignoring issues such as filtering firewalls or other kinds of mechanisms that may
block either the attack or the backscatter packets. If our monitored network ( � IP ad-
dresses) is sufficiently small, and a sufficiently small number of packets are sent in the



attack, there is a reasonable probability that we will receive no packets.
Several calculations are possible to determine whether the assumptions are valid.

For example, [MVS01] suggest using the Anderson-Darling test of uniformity to test
that the IP addresses are in fact uniformly distributed. We will discuss this further
below. This of course assumes we know how many IP addresses are in the complete
pool. A perusal of the attack code available on the Internet shows that the tools often
allow the user to choose which octets of the IP address to randomize, thus reducing the
pool. Assume the pool contains � addresses, and we monitor 	 addresses, and that the
attack packets are sent every � seconds. Then if we knew how long a gap one should
expect to see between detected packets, one could use this to estimate � , and thus be
able to use the equations above for the estimate of the size of the attack. This would
also be important for the determination of a definition of attack, as one would want the
gap to be many standard deviations larger than this expected delay. The calculation is
straightforward. The expected number of attack packets between two detected packets
(assuming independence) is:�� ����� � ��� 	� � � " � 	�
	 � � � � � 	
� ��� � ����� � � � ���	� � � ����� " � �	� � 	
The variance of the number of packets between two detected packets is�� ����� � ��� 	� � � " � 	��	 � ��� ������� � ��� 	� � � " � 	��	�� �

� � � � � 	 ��� � ��� 	�� � � � ���� � � � � 	 � ����� � � � � 	�� � � �!�	 �� � � � � 	��	 � �
So, from this we see that we expect a gap of around " �� seconds between packets

from a given victim. For example, if an attacker sends 100 packets per second, and one
monitors

��� �
IP addresses, one expects to see a new packet about every

� �$# seconds,
and a spread of three standard deviations gives a 10 second gap. This rate of attack is
quite low ([MVS01] claim intensities of as large as 600,000 packets per second), but
this is only for illustration’s sake (even at this rate, a SYN flood can be quite effective).
Similar calculations can easily be done for other values of 	 , � , and � .

All these calculations have been predicated on the attacker choosing randomly from�(���
possible IP addresses. Many attack tools choose from a subset of these, such as

only selecting octets from the range 1–254. This can be easily incorporated in the
above analysis, by replacing the

� ���
by the appropriate number.



Table 1: Data sets used in the SYN/ACK study.
Data Set Name Duration # days # packets

April April 4 – April 17 14 10,449
May May 9 – May 17 9 23,264
June June 1 – June 15 15 27,845
July July 1 – July 15 15 59,666
Sept Sept 1 – Sept 17 17 210,774
Oct Sept 19 – Oct 15 26 1,253,714
Dec Oct 28 – Dec 12 66 5,421,893
Jan Jan 1 – Jan 31 31 665,392

Total 193 6,672,997

3 Experimental Results

To determine the extent that the assumptions of the theory are met, we consider a
data set taken from a network of

� � �

IP addresses. The data consists of unsolicited
SYN/ACK packets received during two periods: April 4, 2001 – Jul 16, 2001 and
September 1, 2001 – Jan 31, 2002. During these periods there were times when the
sensor was down, for a total of 210 hours. The full data set consisted of 5,842 hours.
We refer to the network on which the data was collected as the “protected network”
throughout this discussion.

Missing data brings up one of the practical issues in a study of this kind. The pro-
tected network is a working network with a moderate load, and so there is the problem
of determining which packets were solicited and which were not. This is exacerbated
if there are packets that were not captured by the sensor, either because it was unable
to handle the load or because the sensor was down. With SYN/ACK packets, we need
to know if the SYN packet was sent. If it was, and the sensor failed to capture it,
we will notice further packets (ACKs, PUSHs, etc), and can therefore determine that
the SYN/ACK is a part of a legitimate session, and therefor not backscatter. For this
reason, we focus on SYN/ACK packets in this section.

3.1 The Data

In order to avoid the gaps in our data collection, we broke the data into eight subsets,
as depicted in Table 1. These are named according to the last month in which data was
collected for that subset. As will be seen, this split was not perfect, as there were still a
few gaps within the larger subsets.

We further restrict our investigation to web server (port 80) traffic. Thus we are
considering only unsolicited SYN/ACK packets to our network from port 80. Figures
2 and 3 depict the data for the eight data sets. In these, the x-axis corresponds to
time (in hours) from the start of the data set, and the y-axis corresponds to the victim
(source) IP address. The IP address is always a 32-bit number with the highest octet in
the highest bits. One dot is plotted for every packet (there is considerable overplotting
in these pictures, but they serve to illustrate the data).



Figure 2: The attacks for the first four data sets. The x-axis is time, the y-axis is a 32-bit
number corresponding to victim IP address. A dot is placed for each packet. Days are
indicated by dotted lines.



Figure 3: The attacks for the second four data sets. The x-axis is time, the y-axis is
a 32-bit number corresponding to victim IP address. A dot is placed for each packet.
Days are indicated by dotted lines.



Table 2: Number of attacks in each data set.
Data Set T = 5 minutes T = 1 hour

April 1,510 1,231
May 3,072 1,585
June 2,901 2,248
July 1,727 1,220
Sept 3,493 1,520

Sept/Oct 5,216 1,847
Oct/Dec 48,050 3,990

Jan 3,804 3,070

As can be seen in these Figures, there are a number of obvious attacks, as well as
some very long-lived attacks. At this resolution it is impossible to count the attacks,
and so we need to define exactly what we mean by an attack. For our purposes, we
define an attack to be a sequence of packets from a single victim such that no gap
between packets exceeds a fixed value (T). The results for two values for this threshold
are presented in Table 2. If we restrict our definition to those attacks for which we
received more than ten packets, we have the results reported in Table 3.

Table 3: Number of attacks in each data set for which there were more than 10 packets.
Data Set T = 5 minutes T = 1 hour

April 54 42
May 62 60
June 97 80
July 149 107
Sept 375 192

Sept/Oct 1,324 177
Oct/Dec 6,551 414

Jan 263 206

Some care is needed in counting the packets in an attack. Figure 4 depicts the
packets from one victim. The destination (spoofed) IP addresses are on the y-axis,
and time is on the x-axis. Note the characteristic “streaking” in this Figure. This is a
result of resent packets. When the victim does not receive an answer to it’s SYN/ACK,
it waits a small amount of time and then assumes the packet was lost in transit and
resends the packet. It repeats this several times, each time increasing the wait period.
This results in the “streaks” in the Figure, and in an over-estimate of the number of
attack packets, if this is not taken into account. We define a resent packet to be one
which agrees with a previous packet in the source and destination IPs and ports, and
the acknowledgment number, and which is received within 1 minute of the first such
packet. The numbers in Table 3 are computed using this definition, and so resends are
not counted in the definition of an attack.

Note that the resends can also be used to help determine whether the packets are
backscatter from a denial of service attack, or are a scan of the protected network. One
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Figure 4: 2,160 packets from a single victim computer.

expects to see resends in backscatter. Scan tools that send a single packet per host/port
will not show this pattern, while those that send multiple packets will typically not
increase the time between packets, nor will they tend to have as large a time between
packets as one sees with resent packets.

3.2 Attack Statistics

Figures 5 and 6 show histograms for the (log base 2 of the) number of packets detected
in the attack, after removing resends, for the different data sets, for the two values of
T. Our estimate of the number of packets in the original attack (assuming we believe
that the attacker is selecting spoofed IP addresses uniformly, independently, from all� ���

possible IP addresses) can be obtained by multiplying the x-axis values by 16.
One observation is that the densities are surprisingly similar across all the data sets.

The histograms appear to support a hypothesis of roughly three modes to the density,
indicating (perhaps) the existence of three different types of attacks.

It is likely that many of the packets in the bin at 0 (corresponding to a single packet
detected in the attack) represent errors in the process of selecting “unsolicited” packets
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Figure 5: Histogram of the log (base 2) of the number of packets per attack. These
counts are computed after the resends have been removed, as described in the text.
T=5 minutes.
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Figure 6: Histogram of the log (base 2) of the number of packets per attack. These
counts are computed after the resends have been removed, as described in the text. T =
1 hour.



(for example, dropped SYN packets at the sensor), or are the results of other attacks
(such as scans) or errors unrelated to cyber attacks.

Another explanation is that these are low packet rate attacks. Since a SYN flood
need only fill the connection table of the victim, and keep it filled, an attack lasting only
a few hours need not send more than

� � �

packets (our estimate of the number of packets
in an attack in which we observe 1 packet). Thus, it seems reasonable to suggest that
for attacks against single servers (that cannot load-balance using a server farm, for
example), attacks of this magnitude might be effective, and popular, accounting for the
large number of such “attacks” detected.

We now turn to the question of whether the attack is random, that is, whether the
spoofed IP addresses have been (uniformly) randomly selected from all

�'���
possible

IP addresses. Some pictures will be informative. While looking at pictures is subjec-
tive, and cannot detect subtle deviations from randomness, it can be very effective in
detecting unexpected structure. (Note: in all the analysis which follows we use T =
5 minutes.) Figures 7 and 8 depict the packets from two victims. In these plots each
packet is plotted as a dot, with x value corresponding to time and y value correspond-
ing to the spoofed destination IP address. This is computed from the IP � � � � ��� � as� #���� � � . Figure 7 seems to pass a “looks random” test, while Figure 8 shows definite
non-random structure. This manifests itself in two ways. First, it is obvious that the
intensity of the the attack is not constant throughout the attack. Second, there is a di-
agonal structure detectable in the packets, showing a high degree of correlation. This
attack does not satisfy our assumptions of independent random selection of spoofed IP
addresses.

Figure 9 depicts attacks against two victims consisting of 9,674 and 22,716 pack-
ets. These show quite different structure, indicating several different attack tools were
used. The top figure shows an attack with linear structure, overlapping an attack that
looks to the eye to be fairly random. The bottom figure shows an attack with quite
complicated dependence structure, with both a linear component, and some measure of
clearly deterministic structure. This latter kind of attack was not observed in the data
prior to the October data set.

Because of the systematic nature of the IP address selection in the bottom plot of
Figure 9, the data passes a goodness-of-fit test (the Kolmogorov-Smirnov test) with
flying colors. This test assumes (and does not test for) independence, and so is invalid
for these data.

The above observations indicates that the blind use of goodness-of-fit tests will be
of little use for these data. The changing intensity, and structure in many of the attacks
make any assessment by a goodness-of-fit test problematic at best. Thus, each attack
must be assessed individually, testing the different intensity regions separately. Further,
it is vital that tests for dependence be used, in addition to distributional tests.

The number of large attacks (attacks with more than 1000 packets) seems to be
increasing in these data. In April the average was approximately one such attack every
two weeks, while by December the rate was approximately two per day. This may be
a short time phenomenon (the rate does appear to have dropped to about 1 per day by
January), or it may be a result of the increasing availability of attack tools or new attack
paradigms. Further data is needed to assess this trend.

It might seem natural to assume that the attacks with linear structure are actually
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Figure 7: 1,997 packets from a single victim computer in April. The x-axis corresponds
to the time of arrival of the packet, the y-axis corresponds to the last two octets of the
spoofed destination IP address.

scans of the protected network, rather than backscatter from denial of service attacks.
A perusal of the data shows that some of the attacks exhibiting linear structure do not
have resent packets associated with them, lending credence to this hypothesis. Of the
69,773 attacks in the � � # minute data, 60,488 contained resent packets. Also, of the
248 attacks consisting of more than 1000 packets (after eliminating resends), 209 of
them had resends associated with them. An alternative explanation would be that these
victims have been configured to not send retries, but to rather drop the connection if
an ACK packet is not received promptly. There is a technique, referred to as “SYN
cookies”, in which the victim encodes state information in the SYN/ACK packet, and
thus does not resend packets. See

http://cr.yp.to/syncookies.html.

The case against the hypothesis that these attacks represent scans of the protected
network rests on three observations: first, it is unusual to scan a network from port
80, although one could certainly do this, provided one had the permission necessary to
use this port; second, the linear structure does not manifest itself as a sequential pass
through the IPs in the domain, but rather, on a small scale, has an apparent random
component to it; third the existence of apparent “resend” packets argues against any
of the known scan tools. Thus, regardless of the actual nature of the attack, the linear
structure still remains to be explained.
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Figure 8: 7,137 packets from a single victim computer in October. The x-axis corre-
sponds to the time of arrival of the packet, the y-axis corresponds to the last two octets
of the spoofed destination IP address.



0.00 0.05 0.10 0.15 0.20

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Time (hours)

S
po

of
ed

 IP

0 20 40 60 80 100

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Time (hours)

S
po

of
ed

 IP

Figure 9: Attacks on two victims, showing nonrandom structure. The top figure repre-
sents 9,674 packets collected in July, while the bottom represents 22,716 collected in
November.
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Figure 10: An attack on a United Kingdom Internet Service Provider.

Figure 10 is interesting, in that the same pattern is replicated over six different vic-
tims, corresponding to addresses xxx.xxx.xxx.3-8. This is an Internet service provider
in the UK, which is obviously using a server farm to load balance. Our hypothesis
is that this is a distributed denial of service attack, where different attackers received
different IP addresses when the victim IP was resolved through a DNS lookup.

This raises the question of whether the linear pattern that we are seeing is an artifact
of the attack or the response of the victim. Perhaps it is the load balancing that is
inserting the linear structure into the attack. Perhaps the non-random IPs are a result of
the timing of responses from the victim, rather than an error in the attack tool’s random
number generator.

As can be seen in the Figure, the character of the attack changes approximately
four hours into the attack. Is this a change in the packets sent in the attack, or a change
in the strategy of the victim(s)? This change occurs approximately simultaneously for
all six victims, indicating that in either case the change is coordinated.

Victim action seems unlikely to be the cause, partly from the standpoint that there
seems to be little value in it from the point of view of the victim, and partly from
further observation of other attacks. A closer look at Figure 9 (top) reveals that there
is an overlap between structured and non-structured attack patterns within the same
victim. This is hard to reconcile with the hypothesis that victim response is responsible
for the pattern. Thus, we believe that the pattern is a result of the activity of the attacker.

As can be seen in Figure 11, these data are highly correlated, which is hardly sur-
prising given the pictures. One can use this information to build a model of the gener-
ating process.
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Figure 11: Autocorrelation function for the data in the lower plot of Figure 9, showing
statistically significant autocorrelation.

Figures 12 and 13 provide a view of the number of attacks ongoing as a function
of time. Attacks are defined as packets from individual victims, with no gap between
packets of more than five minutes.

For the first four data sets, we see that while attacks occur throughout the time
periods considered, there are rarely more than a few attacks at any time, and attacks
typically last less than a day. There is some activity between May 10 and May 11,
when there were 9 simultaneous attacks. Otherwise, the attack level is quite low.

The last four data sets show considerable activity. The ramp up in attack levels
starts in mid September, and continues through to late November. At the height of the
attacks there were over 30 victims under attack, and the attacks lasted for a month.
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Figure 12: Number of attacks detected as a function of time.
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Figure 13: Number of attacks detected as a function of time. The gaps in the October
plot are due to sensor drop-out.



4 Conclusions

The problem of measuring the number of denial of service attacks on the Internet is a
difficult one, since many organizations are hesitant to report these attacks. Even when
they do report them, they are often after the fact, and of little value for warning other
potential victims of the threat. By utilizing the backscatter packets from certain classes
of attacks, we have demonstrated that one can track these attacks in real-time, and we
have shown that the attack level on the Internet can be quite high for extended periods
of time.

Further work is needed in modeling these attacks, determining the algorithms used
for generating packets, and thus providing some ability to classify the attacks. Knowing
something about the attack can provide useful information for potential victims to use
in defending against the attacks. Also, by monitoring trends in the attacks we can,
potentially, identify when new classes of attacks are created, or when a new massive
attack is underway.

The problem of determining the impact of the attack on the victim is a difficult
one, which we have not addressed here. The victim machine could go down, in which
case the backscatter packets would cease, but this may be indistinguishable from a
cessation of the attack. It would be of value to determine whether subtle changes in the
backscatter packets can be used as indications of the effect of the attack on the victim.

There are some methods available to defend against denial of service attacks, but
these are not perfect and have difficulty with large distributed attacks. It would be valu-
able to incorporate that defense strategy into our analysis so that we could determine
whether the victim is defending against the attack, and measure the effectiveness of
the defense. With that said, the mere fact that we can track these attacks in real time
without the cooperation of the victims and without adding to the load on the network
is a powerful and useful tool. Clearly there are plenty of opportunities for statisticians
to aid in the analysis of these data.
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Wilks Award Banquet Address 
 
Considerations of Inspection for Homeland Security with Cross Linkages to Quality  
Control, Game Theory, and Stochastic Simulation 
James R. Thompson, Noah Harding Professor of Statistics, Rice University 
 
Abstract: It is proposed to develop models for inspection (both of people and containers) 
utilizing insights from quality control. In Acceptance-Rejection Quality Control, we 
balance costs of sampling with those of passing bad items. In the Deming Paradigm of 
Statistical Process Control, we carry out sampling for the purposes of system 
improvement as opposed to lot validation. Homeland Security issues embody potential 
for both philosophies and we will be attempting both lot validation and system 
improvement. The classical Acceptance-Rejection paradigm, in the Homeland Security 
situation, can be shown readily to lead to inspection of all airline passengers and all 
baggage. It is extremely costly and leads to a situation where ticket prices soar and/or the 
state heavily subsidizes security.  
 
In the United States, current allocations of funds for inspection require different strategies 
than 100% inspection. This leads to the use of covariate information concerning the 
inspected population so that the inspection should involve stratification. It also leads to 
strategies whereby the input stream of customers with poor risk profiles might be 
modified by political and other strategies. 
 
In classical quality control, the system inspected is not sentient. In Homeland Security, 
the terrorist commanders are intelligent agents who will attempt to use information about 
inspection protocols to lessen the probability of discovery, both of terrorists and their 
baggage. Thus, we need to develop mixed strategies (in the sense of von Neuman-
Morgenstern) hybrids for inspection strategies. Rather that seeking to deal with models 
simple enough for closed form solution, it is proposed to go rather toward realistic 
models whose analysis requires stochastic simulation . 
 
Although the immediate charge here is for Homeland Security, it should be noted that 
quality control-game theoretic simulation models may also be created when planning 
inspections for weapons of mass destruction and/or their development in another country. 
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General Session 3 
 
Stress-Strength Testing: Some Classical Approaches and Some New Formulations and  
Results 
Francisco J. Samaniego, University of California, Davis 
 
Abstract: If Y is a random variable representing the breaking strength of a given material 
and X is a random variable measuring the stress placed on that material, then the 
probability that the material will survive the stress to which it is subjected is simply P = 
P( X < Y ). In most applications involving stress-strength testing, the variables X and Y 
are modeled as independent. The probability P arises in a broad array of applications, and 
has been studied extensively. Some of the highlights of the literature in this area will be 
reviewed, including Birnbaum’s (1956) nonparametric confidence bounds for P and 
subsequent improvements, parametric inference regarding P pioneered by Mazumdar 
(1970) and Church and Harris (1970), work on general parametric families based on large 
sample theory (see Johnson (1988) and Enis and Geisser’s (1971) Bayesian treatment of 
the estimation of P. After surveying these classical results, our focus will shift from 
estimating P to the problem of estimating the stress and strength distributions themselves 
from available data. Two particular formulations of stress-strength testing will be 
discussed. Arcones, Kvam and Samaniego (2002) defined the notion of stochastic 
precedence as follows: X stochastically precedes Y if P( X < Y ) > 1/2. In most industrial 
and military applications, test subjects can, more often than not, withstand the stress to 
which they will be subjected. This leads to a constrained nonparametric estimation 
problem whose solution will be described. The second formulation to be discussed 
involves the analysis of autopsy data, for example, data on welded rebar from a collapsed 
bridge. Estimation of the distributions of stress and strength is shown to be feasible and 
efficacious in selected parametric settings. 
 
Random Disambiguation Paths 
Carey E. Priebe, Johns Hopkins University 
 
Abstract: We wish to navigate from a specified source to a specified destination through a 
spatial configuration of detections and associated potential risk regions. Along with each 
detection comes a mark indicating the probability that entering the associated risk region 
incurs non-zero risk. In accordance with application we may, upon approaching a 
detection, disambiguate the associated risk (that is, determine conclusively if that risk is 
indeed non-zero) at cost c to the overall traversal time. 
 
A random disambiguation path is a path-valued random variable whose various values 
represent different paths taken depending on the results of disambiguations; the actual 
path depends on the (unobserved at the outset) actual risks. Our goal is to determine the 
random disambiguation path achieving the minimum expected zero-risk traversal time. 
 
An illustrative application for random disambiguation paths is mine countermeasures 
path planning -- navigating through a field of detections, each of which may or may not 
be an actual mine, but each of which is marked by the detector with a probability that the 



detection is indeed a mine. A sensor is available which allows us, when close enough, to 
determine conclusively whether or not the detection is truly a mine. 
 



Contributed Session 5 
 
Benefits of Non-Destructive Evaluation (NDE) vs. Destructive Testing for Bayesian  
Reliability Estimation 
Paul Deininger, Los Alamos National Laboratory; Shane Reese, Los Alamos 
National Laboratory and Brigham Young University; Michael Hamada, Los 
Alamos National Laboratory; Robert Krabill, Los Alamos National Laboratory 
 
Abstract: Can non-destructive testing (NDE) of weapon parts or assemblies produce 
enough data to effectively obviate the need for destructive evaluation (DE), even in cases 
where the NDE data is less accurate and precise than the DE data? The data from both 
NDE and DE are used in either the normal frequency or Bayesian estimation of the 
reliability of parts or assemblies. It is well known that NDE examination is considerably 
less monetarily expensive than DE examination, even when the loss of the part or 
assembly from DE is discounted. For a given set of data desired, one can perform several 
to many NDE examinations for the price of a single DE. The technical problem of how 
many NDE tests with inaccurate or imprecise measurements are equal in value to a single 
DE test is explored by using a statistical framework for determining the possible 
advantages of NDE data over DE data. Two cases are considered: pass/fail NDE data and 
continuous measurement NDE data. Examples are shown using NDE and DE 
radiography data from a weapon component where both the misclassification probability 
and the number of NDE trials needed are calculated from the data rather than assumed. 
The analysis shows that given these values of misclassification probabilities, a small 
number of NDE trials can produce an equal or larger amount of usable information 
compared to a single DE, information that is suitable for estimating the weapon or 
weapon component reliability. The results imply that by completing several replications 
of each type of NDE test on the weapon parts, one may cost-effectively estimate the 
weapon reliability without destruction of the weapon or component. This conclusion, 
however, depends on the values of the misclassification probabilities, the relative costs of 
NDE vs DE, and the assumption that NDE can obtain the same type of desired data as DE 
without qualitative losses of any kind. 
 
Munitions Stockpile Reliability Assessment 
Alyson Wilson, Los Alamos National Laboratory; Nicholas Hengartner, Los Alamos 
National Laboratory 
 
Abstract: Both the DoD and DOE maintain stockpiles of munitions. These systems are 
faced with issues of reliability and performance, which are often made more complex due 
to diverse storage conditions and aging effects. Information about the systems comes 
from a variety of sources, including component testing, engineering judgment, similar 
system data, and full-system testing. However, there may not be data collected about 
every component or subsystem. We will present a Bayesian hierarchical approach to 
estimating full system and component reliability for munitions stockpiles that integrates a 
variety of information sources and treats the problem of combining data and priors from 
various sources in a consistent fashion. 
 



Hierarchical Models for Software Testing and Reliability Estimation 
Todd L. Graves, Los Alamos National Laboratory; John C. Kern II, Duquesne 
University 
 
Abstract: It is generally impossible to test software exhaustively. Instead, one must select 
examples of inputs to the software, run them, and ascertain what their success or failure 
imply about untested inputs. Bayesian hierarchical modeling is an excellent methodology 
for inference based on experimentation in related but nonidentical conditions. We will 
discuss two different hierarchical modeling approaches, one due to Wooff, Goldstein, and 
Coolen (2002), and one our own. We will also discuss implementation of analyses based 
on these two modeling strategies in software.  
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An Almost Natural Application of Bayesian

Statistics in Packaging Quality Control

John A. Wasko
David B. Kim

Department of Mathematical Sciences
United States Military Academy

West Point, NY 10996

October, 2002

Abstract

Lower cost homogeneous items are advertised and sold by quantity in
a single package across all business sectors, from food service to medical
to manufacturing. Quality control measures come at a price that is some-
what exacerbated by operating in a low cost, high quantity market. It is
therefore of interest to find a cost-effective way of ascertaining the number
of items in a package.

Straightforward application of the central limit theorem and the Bayes’
theorem allows us to find the distribution of the number of items in a pack-
age conditioned on the weight of the package, provided a prior distribution
of the number of items in the package is known. Initial and updated prior
distribution estimates can be formed via manufacturer’s reliability data
and sampling data. This information combined with a standard quality
control measure of package weight provides an almost natural Bayesian
framework. We will show that well-established Bayesian techniques and
testing can be employed to provide a useful tool which addresses this
problem.
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1 Introduction

In today’s highly competitive business environment, the mass packaging of ho-

mogeneous items is a common practice whether it is done by hand or by an

ultra precise computer controlled machine. Both the manufacturer of the items

and the customer are interested in ensuring that the proper number of items are

contained in each package. From the manufacturer’s point of view, she needs to

implement the necessary quality control measures at the lowest possible cost.

The customer may be interested in economical and efficient ways of determining

if each package contains at least the contracted amount.

Most of us have seen a jar full of pennies–presumably in thousands–and

wondered how many pennies were in it. One sensible solution in a situation like

this would be to weigh the jar and try to estimate how many pennies are in

the jar based on the weight. We propose that one way of tackling the quality

assurance problem described in the previous paragraph is simply by weighing

the package and incorporate the information from the distribution of the weights

of the items. Even as both frequentist and Bayesian analyses may be employed

in the situation, the availability of the prior information and other factors make

the situation almost ideal for the Bayesian framework to be used in.

In this report, we concentrate on the situation where a customer is inter-

ested in ways of accepting or rejecting a package based on the measurement

of its weight. In the next section, both frequentist and Bayesian models are

constructed for the problem. In the subsequent section, some numerical results

are presented.



2 Modeling

2.1 Motivation and Development of a Bayesian Model

Let N be the number of items; Xi the weight of the ith item; WK =
∑K

i=1 Xi.

If a single package is given and its weight is measured, then we may treat N as a

parameter, and we have one observation WN = wn. A corresponding frequentist

approach as well as a Bayesian approach conditioned on the observed weight can

be employed in the situation.

In many practical applications, n should be at least in hundreds, if not in

thousands. Whether or not Xi is normally distributed, Wn should be normally

distributed by Central Limit Theorem. That is,

WK |K = n ∼ N(nµ, nσ2) (1)

where µ = E(X1) and σ2 = Var(X1). To facilitate the analytical treatment, we

will assume from this point on that X1 ∼ N(µ, σ2) and that both µ and σ2 are

known. (We also assume that the measurement is that of net weight: the tare

weight has been subtracted from the raw measurement.)

Clearly, WK

µ is an unbiased estimator of n. This is also the solution many

will arrive at in the problem of counting the number of pennies in a jar. At this

point, let us ask the following question: what are the sources of randomness in

the situation? First, there is the item to item difference in weight, which leads us

to model the weight of individual item as a random variable Xi. The packaging

mechanism is another source of variation. So N is a proper random variable

with a probability structure, and we need to model it as such. For the situation

we are concerned with in this report where only the weight of one package is

measured and used to estimate the number of items in it, we then have N = n

for a given box and wish to estimate n, and the probability distribution of N

may be used as a prior distribution in a Bayesian framework. If a measurement



yields the weight wn, we can write the probability mass function of n conditioned

on the measured weight wn as follows:

p(n|wn) ∝ f(wn|n)π(n)

That is,

p(n|wn) =
f(wn|n)π(n)∑
j f(wn|j)π(j)

(2)

Since n, the number of items, is discrete, the marginal of wn is obtained by

summation. Note also that the index n in wn is not to be changed from a term

to another term in the summation since wn denotes the observed weight of the

package. Treating the conditional pmf in Eq.(2) as the posterior in a typical

Bayesian framework, we may employ any of widely used Bayesian inferential

tools that would suit our purpose.

We should also make one remark here concerning any conjugate prior. The

key feature of our model is in Eq.(1). The “parameter” n appears both in the

mean and the variance of the normal distribution, causing n to appear both in

and out of the exponential such that the well known result that the conjugate

relation between normal distributions cannot be applied here even if we were to

allow n to be continuous for the sake of technical convenience.



2.2 Bayesian Hypothesis Testing Using Generalized 1-0
Loss

The case we are interested in, the case where the customer is going to either

accept or reject the shipment based on the weight of the box, is clearly the

one where we can apply the hypothesis testing method. The customer has an

obvious interest in

H0 : n ≥ n0

H1 : n < n0

where n0 is the contracted amount. One could easily construct the hypothe-

ses of interest for the manufacturer as well, and the following can be just as

easily adapted.

In a Bayesian framework, it makes perfect sense to ask what the probability

a hypothesis is correct is, since we have, in our model, probability distribution

for the parameter(s) which the hypotheses are describing. Given the posterior

distribution found using Eq.(2), we can compute the posterior probability that

each hypothesis is correct. That is,

P (H0|wn) =
∑

n≥n0

p(n|wn) (3)

P (H1|wn) =
∑

n<n0

p(n|wn). (4)

Choosing the hypothesis with the higher posterior probability corresponds to the

Bayes’ rule using 0-1 loss. In many situations, however, the customer may have

different loss for different types of error. We can incorporate that information

by using a generalized 0-1 loss function. The generalized 0-1 loss function allows

us to incorporate differing loss based on the type of error (I or II) whereas the

usual 0-1 loss assigns the equal loss on both types of error. Let CI be the cost



the customer will incur when she rejects a package with the acceptable number

of items, n ≥ n0–that is when she makes the type I error–and let C2 be the

cost when she accepts the package when it does not contain the acceptable

number of items, n < n0, corresponding to the type II error. It is a well known

result that rejecting the null hypothesis when the posterior probability that it

is correct, P (H0|wn), is less than CII

CI+CII
(or alternatively P (H1|wn) > CI

CI+CII
)

corresponds to a Bayes rule, having the optimality properties that go with being

a Bayes rule (see Casella and Berger (1990) or Berger (1993)).

3 Numerical “Sensitivity” Analysis

Using the decision rule described in the last section, to reject the shipment

when P (H1|wn) > CI

CI+CII
, we know it will be a “good” decision in theoretical

terms knowing that it is a Bayes rule. In practice, µ and σ2 will also vary from

one setting to another, and a user of the method may be interested in how the

method performs under such different settings. We have of course performed

the usual posterior sensitivity analysis to see if prior misspecification affects

the inference in significant manner. The numerical investigation of how the

method performs under these different settings was done using Microsoft Excel.

We tabulated the values of P (H1|wn) for various settings. The loss function

we used corresponded to the case where CI = 9CII so that the value we are

comparing the posterior probability to is CI

CI+CII
= .9. The values of P (H1|wn)

in bold red then means that the shipment is rejected.

Suppose now n0 = 200, µ = 3. We used a triangular prior on 190 and 240.

We varied the mode and σ2. Table 1 shows the posterior probabilities and the

decisions based on them when the observed weight was 605. The robustness

in prior specification is demonstrated by the proposed method giving mostly

consistent decision in the same rows. In Table 2, we looked at the posterior



robustness for different values of µ, and similar robustness is demonstrated.



4 Conclusion

We have proposed a method of assuring or testing the number of items in a

package only by its weight measurement and the knowledge of the distribution

of the weights of the individual items. The robustness of the Bayes’ rule obtained

using a generalized 0-1 loss function was demonstrated.

The case we examined in this report is where the testing is done on a box

by box basis. We are currently working on an extension of the method which

can be phrased in the following question: Suppose we are given the weight mea-

surements of m packages. These packages are supposedly packed with the same

mechanism/procedure so that these may be modeled as iid random variables.



From these m measurements of weights, can we find out about the marginal

distribution of n, the amount the packing mechanism puts in each box? This

could be used to test the reliability of the packing mechanism quickly (without

counting items one by one) and also to better specify the prior that is to be

used in the case we looked at in this report.
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ABSTRACT 
 
The present chemical warfare agent toxicity estimates are not suitable for use 

with the general population (GP) because they are framed for male soldiers.  A method 
was created to convert the median effective dose and probit (or Bliss) slope to estimates 
applicable to the GP.  It was assumed that individual susceptibilities have a log-normal 
distribution.  Two mathematical models were developed to describe a healthy or sensitive 
subpopulation (SP).  In the tail model, the SP consists of all individuals having 
susceptibilities within a tail of the GP distribution.  In the bell model, the SP has a 
lognormal distribution. The median and the probit slope of an SP were determined as a 
function of the SP size.  The two models gave similar results.  Historical military 
demographics were used to estimate the size of the healthy SP from which military 
personnel are drawn.  Uncertainty factors were obtained from the tail and bell models.  
Uncertainty factors from both models were consistent with the results of two previous 
studies that quantified differences between populations.  Based on our analysis, revisions 
are required in the intraspecies uncertainty factors used in establishing proposed acute 
exposure guideline levels for threshold lethality due to inhalation of nerve agents. 



The complete documentation for this presentation is available from the 
following published technical report: 

 
Crosier, Ronald B. and Sommerville, Douglas R., Relationship Between Toxicity 

Values for the Military Population and Toxicity Values for the General Population, 
ECBC-TR-224.  U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving 
Ground, MD, March 2002.  AD-A400 214. (40 pages). 

 
The technical report has been approved for public release, distribution is 

unlimited.  Registered users should request copies from the Defense Technical 
Information Center; unregistered users should direct such requests to the National 
Technical Information Center. 
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Edgewood Chemical Biological Center

Comparison of Populations via Mathematical Modeling

l Goal:  To develop a mathematical model to describe differences in agent 
toxicity between a healthy subpopulation (SP) and the general population (GP)

£ Parameter value conversion between populations—median dose/dosage values and 
probit slopes

£ No known work previously done on this subject

l Only one model parameter:  SP Size

l Key assumptions

£ Individual susceptibilities for the GP have a normal distribution (bell-shaped curve) of 
Log (Effective Dose) or Log (ED) values

£ SPs (either healthy or sensitive) are represented by one of two models:  Bell or Tail

l Disclaimer:  The content of this poster is not to be construed as an official 
Department of the Army position unless so designated by other authorizing 
documents
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Edgewood Chemical Biological Center

Application to Decision Support Methods

l Casualty estimations

£ Current CW agent toxicity values (LCT50 or ECT50 and probit slope) for military subpopulation 
are not appropriate for use in estimating casualties for the general population exposed to CW 
agent attacks or incidents

£ Using military toxicity values for the general population will result in the underestimation of 
civilian casualties

l Method offers a simple means to arrive at reasonable approximation of civilian 
toxicity values based on an extrapolation using mathematical/statistical 
modeling from known military values
£ Algorithm for toxicity value conversion can be easily programmed into transport & dispersion 

models
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Edgewood Chemical Biological Center

Defining a Subpopulation

l Healthy Subpopulations
£ Military

£ Workplace

l Sensitive Subpopulations
£ Infants

£ Elderly

£ People with chronic medical 
conditions

l Other Subpopulations
£ Gender

l Mathematical modeling can account 
for gender differences
£ Separately apply either Bell or Tail Model to 

each gender 

l Use of demographics to estimate SP 
size
£ Existing chemical warfare (CW) agent 

toxicity values developed for military SP

£ Workplace SP used for industrial chemicals

A Subpopulation can be defined in a variety of ways
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Edgewood Chemical Biological Center
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mGP = Probit slope of GP

ED50 = Effective Dose 50% for GP

Healthy Subpopulations (Shaded Area)  
Size = 10% of Population
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Edgewood Chemical Biological Center

Demographics of U.S. WWII Military Subpopulation

40% of Male 
Population 

[Upper Limit]

Age Eligible Males 
(18 to 45 years old)

17% of Male 
Population 

[Lower Limit]

Peak Military 
Strength (1945)

Subpopulation Size Estimate:  
25%

l Many age eligible males 
medically unfit for service

l Some healthy males 
exempted from service
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Edgewood Chemical Biological Center

SP Size Role in Models and Conversion Process

l Tail Model
£ Selection of SP size fixes mathematical 

relationship between SP and GP

£ Example:  If Size = 10%, then ED50 of a 
sensitive SP is located at ED05 of the GP

l Bell and Centroid Models
£ Selection of SP size does not determine 

SP mean and standard deviation

£ SP bell curve must remain underneath 
GP bell curve 

£ Range of feasible values exists for SP 
mean and standard deviation
n Bell Model—Maximum difference in means 

of SP and GP

n Centroid Model—Located at centroid of 
feasible range

Conversion 
Process

[1] Probit Slope
[2] Median Dose

Fix the 
SP Size

Supply Toxicity Values 
to be Converted

Probit Slope (GP or SP)
Median Dose (GP or SP)

Final 
Toxicity 
Values

Two Parameters 
for Conversion

One Model 
Parameter
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Ratio of Medians for mGP: 2, 3, 4, 6 and 12

Subpopulation Size
Probit Slope (mSP or mGP)
Median Dose (for either SP or GP)

Only Three Only Three 
Values NeededValues Needed

Bell Model

Calculation of Effective Dose Ratio 
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EDRs from Tail, Bell and Centroid Models 
Ratio of Medians for mGP = 12

EDRs from Tail, Bell and Centroid Models 
Ratio of Medians for mGP = 2

Relative Magnitude of Model EDRs 
at a Fixed Probit Slope and SP Size

Tail > Bell > Centroid

Comparison of EDRs from Different Models
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CW Agent Acute Exposure Guideline Levels (AEGLs)

l Environmental Protection Agency 
(EPA) AEGLs–protection of health 
of sensitive individuals
£ AEGL-1:  Threshold notable discomfort

£ AEGL-2:  Threshold serious effects

£ AEGL-3:  Threshold lethality

l CW agent AEGLs based on most 
toxic route: inhalation (IH)

l Proposed CW agent AEGLs 
(posted on EPA website)
£ G-type and VX Nerve Agents (Oct 2000)

£ Sulfur Mustard (HD) (January 2000)

£ Phosgene (CG) (August 2000)

£ Chlorine (October 1997)

l AEGL development involves use of 
Uncertainty Factors (UF) to account 
for various sources of uncertainty
£ UF values are usually 1, 3 or 10

£ Examples of UF applications in AEGLs:
n Healthy to sensitive human (Intraspecies)

n Laboratory animal to human

n Incomplete to complete database

l Intraspecies UFs
£ Needed to account for response variability 

in the human population 

£ Used to convert from a healthy human SP 
to a GP basis for threshold effects
n Essentially ECT01 (healthy SP) to ECT01 (GP) 

11

Edgewood Chemical Biological Center

Tail Model
mGP = (4.25) / (2.03)

= 2.09
LC50 = (3.55) x (100 ppm) 

= 355 ppm

Bell Model
mGP = (4.25) / (1.66) 

= 2.56
LC50 = (2.59) x (100 ppm) 

= 259 ppm

Tail and Bell Models 
Estimates for the 

General Population

Size: 25% of GP 
mSP = 4.25 

LC50 = 100 ppm

Toxicity Estimate for 
Sensitive Subpopulation
(Withers and Lees [1985])

Conversion Process

Calculation Order

[1] Probit Slope Ratio (PSR)
[2] Effective Dose Ratio (EDR)

Calculation OrderCalculation Order

[1] Probit Slope Ratio (PSR)[1] Probit Slope Ratio (PSR)
[2] Effective Dose Ratio (EDR)[2] Effective Dose Ratio (EDR)

EDR (Tail) = antilog(1.15 / 2.09) = 3.55
EDR (Bell) = antilog(1.06 / 2.56) = 2.59

For SP Size of 25% of GP
Median (Tail) = 1.15 Z units
Median (Bell) = 1.06 Z units

For SP Size of 25% of GP
PSR (Tail) = 2.03
PSR (Bell) = 1.66

The Toxicity Estimates Shown in this Example are not to be 
Construed as Official U.S. Department of the Army Estimates

Sample Calculation—Chlorine Toxicity
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Comparison of Intraspecies UFs for CW Agent AEGLs

l Tail and Bell Models can be used 
to calculate intraspecies UFs 
£ UFs based on EDR of LCT01 (healthy 

SP) to LCT01 (GP)

£ Military probit slope values from 
Grotte and Yang (2001)

£ Probit slopes for CG and Chlorine 
estimated from review of existing 
experimental data

£ Models provide mathematical basis 
for setting intraspecies UF values

l EPA AEGL-3 intraspecies UFs
shown for comparison
£ Assignment of values more qualitative 

in nature

Tail Bell Tail Bell
EPA 

AEGL

G IH 12.0 5.9 7.2 3.2 1.9 10

G PC 5.0 2.5 3.0 16.7 4.6

HD IH 6.0 3.0 3.6 10.4 3.6 3

HD PC 7.0 3.4 4.2 7.5 3.0

VX IH 6.0 3.0 3.6 10.4 3.6 10

VX PC 6.0 3.0 3.6 10.4 3.6

CG IH  6.7 8.3 2.8 1.7 3

Chlorine IH 3.2 2.2 35.9

Uncertainty Factors 
(Between 1st Percentiles)

Agent Route
Military 
Probit 
Slope

m GP

IH — Inhalation

PC — Percutaneous
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Conclusions from Comparison of Intraspecies UFs

l Both models are conservative 
£ Tail Model the most conservative

n Sets an absolute upper limit on UF value

£ Bell Model gives more realistic SP distribution 
shape
n Important for comparing the 1st percentiles of two 

distributions

l Suggested course of action on current 
CW agent AEGL intraspecies UF values
£ G-Agent should be strongly reconsidered

£ VX, CG and Chlorine should be reassessed

£ Strong mathematical support for HD—no 
change need be considered

£ Any changes should be kept in context of ALL  
other assumptions made in developing AEGLs 
for a particular agent

GG--AgentsAgents:  
AEGL (10) >> Tail (3) & Bell (2)

VXVX:  
AEGL (10) >> Bell (4)
AEGL (10) = Tail (10)

CG & ChlorineCG & Chlorine:
AEGL (3 & 3) > Bell (1.7 & 2.2)
AEGL (3 & 3) = Tail (2.8 & 3.2)

HDHD:  
AEGL (3) ≈ Bell (4)
AEGL (3) << Tail (10)

CautionCaution

ExcellentExcellent

PoorPoor

UF Comparison SummaryUF Comparison Summary
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Summary

l New method developed for 
converting toxicity 
£ Based on the mathematical modeling of 

a SP and its relationship to the GP

£ Conversion from SP to GP basis

£ Addresses a critical parameter gap (GP 
CW agent toxicity estimates)

l Method needs only three values:  
£ Model parameter:  SP size

£ Two toxicity values for conversion
n Probit slope for either SP or GP

n Median dose for either SP or GP

l Both healthy and sensitive SPs can 
be modeled with either of two 
models:  Tail or Bell/Centroid

l Historical military demographics 
reviewed for modeling military SP

l Intraspecies UFs for EPA CW Agent 
AEGL-3s investigated with method
£ Method provides mathematical basis for 

calculation of intraspecies UF values

£ Strong argument exists for current G-
agent UF being too high

£ Current VX UF value is questionably high 
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Additional Information

l Work documented in U.S. Army technical report

£ Crosier, RB and Sommerville, DR, Relationship Between Toxicity Values for the 
Military Population and Toxicity Values for the General Population, ECBC-TR-
224. Edgewood CB Center, Aberdeen Proving Ground, MD, March 2002.  
UNCLASSIFIED/UNLIMITED.  AD # A400214.

l Work funded by U.S. Department of Energy, National Security 
Administration, Chemical and Biological National Security Program

£ Technical point of contact:  John E. Brockmann, Sandia National Laboratory
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Finding The Season Effect And Trend Of Attrition: Detect The Attrition Changes In  
The Early Stage 
T.E. Powers, Walter Reed Army Institute of Research; Y. Li, Walter Reed Army 
Institute of Research 
 
Abstract: Background: Early attrition is an expensive problem for the United States 
military, and attrition reduction targets are frequently discussed as a sensible means of 
cost savings. Progress toward such goals is often measured over relatively short time 
spans. Specifically, time series examination of attrition by time of enlistment is a 
standard tool for assessing progress. The aim of this paper is to see if there is a season 
effect or there is a sudden increase in attrition 
 
Subjects and Methods: All first-time enlistees beginning active duty military service 
during January, 1995 - December, 2000 will be categorized according to the month and 
year of beginning duty. Attrition percentages during the first 3 months of service will be 
determined within each month/year group for the 1995-1999 period, and regressed 
against several factors seen in previous studies to be predictive of attrition, including 
service branch distribution, gender distribution, race distribution etc. Then homogeneity 
of the attrition rates by the months of enrollment will be tested, and time trends 
examined. A second level regression model will be developed to predict the attrition rate 
for future months. A measure of the agreement between the predicted attrition rate and 
actual attrition rate of the following month will be used to detect any sudden in actual 
attrition from expected levels.  
 
Results: Raw 3-month attrition percentages were seen to fluctuate considerably according 
to the month and year of beginning duty, ranging from about 5% to over 25% within the 
study period. Strong seasonal patterns seen in the raw attrition percentages were still 
present in the standardized percentages, although not as pronounced, indicating that some 
of the apparent seasonal pattern was related to changing demographic profiles of recruits 
over the course of a year. Time series modeling of the adjusted results yielded 
harmonious fit, and precise predictions of the CY 2000 attrition rates. Modeling of the 
unadjusted results was less precise, although also reasonably accurate. 
 
Conclusions: The apparent seasonal trend in attrition is found to be more than a purely 
seasonal phenomenon - it is in part related to seasonal variation in the demographic 
profile of incoming recruits. Any changes to that pattern, such as might be introduced by 
changes in delayed entry procedures, would not be noticed by a seasonal time series 
analysis. A prior regression to distill the effects of demographic factors from the attrition 
data makes for a more harmonious and robust predictive model. 
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Determination of the LD50 for Chemical and Biological Threat Agents 
Nancy A. Niemuth, Battelle 
 
Abstract: The LD50, defined as the dose of a substance expected to kill 50 percent of the 
test population within a given time, is a commonly used measure of toxicity. Three 
studies will be presented to illustrate and compare approaches to experimental design and 
LD50 estimation using examples of chemical and biological threat agents tested in our 
laboratory. A modified up-and-down design was used to establish the LD50 for GD in 
treated and untreated animals in an assessment of treatment efficacy. In developing a 
model of passive protection of human botulinum immunoglobin against botulinum toxin, 
stagewise adaptive dose allocation was used to determine the LD50 in the test species, 
while a fixed dose design was used to monitor toxin potency over time. Fixed dose 
designs generally require more animals, but less time and laboratory resources, than the 
stagewise and up-and-down strategies. For each study, the LD50 was calculated using four 
statistical methods, including probit dose-response models, logistic regression, and point 
estimates obtained using the Reed-Meunch and Spearman-Karber methods. These 
methods generally give consistent point estimates, but varying information about the 
dose-response curve. 
 
Homogeneity of the Loss Rate and Individual Factor Effect Across MEPS: A Meta- 
Analysis on Attrition 
Y. Li, Walter Reed Army Institute of Research; T.E. Powers, Walter Reed Army 
Institute of Research 
 
Abstract: Introduction: A major aim of the AMSARA project is to develop predictive 
models for military attrition based on information that can be reliably detected at the time 
of applicant screening. Previous AMSARA studies have found significant contributions 
to early attrition several such variables, including: medical disqualification at MEPS, 
gender, age, race, academic measures, number of dependents, body mass index, etc. 
Separately, it has been found that attrition rates vary according to the MEPS through 
which individuals are processed, with the highest attrition rate more than double that of 
the lowest one. A natural question then is whether the effects of medical and 
demographic factors found previously are homogeneous across all MEPS. A hierarchical 
model is used to make this determination, and results are used to develop a more accurate 
overall attrition model. 
 
Methods: An initial attrition model examines for homogeneity of effects of individual 
variables mentioned above, as well as the attrition rate across the MEPS. Then a 
hierarchical model is used to study the effects of these variables according to their overall 
distributions at the various MEPS. For example, the model will help assess whether the 
effect of being male is the same across MEPS with vastly different percentages of male 
applicants. As another example, the effects of medical disqualification will be examined 
in relation to the percentage of individuals disqualified at each MEPS. Finally, all MEPS 



variables that show significance and interactions in the hierarchical model are controlled 
for in the attrition model. 
 
Results: Several of the demographic factors considered are found to differ according to 
the MEPS through which individuals were processed. Interestingly, while the medical 
factors were stronger predictors of attrition, none was found to differ by MEPS, perhaps 
reflecting the fact that medical waiver decisions are handled centrally. The variation of 
the effect of the heterogeneous variables were predicted using the improved model, and 
the chi-square test shows the model is significantly improved.  
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In recent years, the U.S. Environmental Protection Agency has developed a 
categorical (or ordinal) logistic regression approach for regressing ordered categories of 
toxic responses (e.g., no effects, non-adverse effects, other effects of increasing severity, 
etc.) on one or more factors (e.g. dose, exposure time, type of agent, etc.) due to a 
chemical agent exposure.  The advantage of such an approach is that two types of dose-
response curves (severity of effect and percent of individuals versus dose) are fitted 
simultaneously.  For chemical warfare (CW) agent toxicity, ordinal logistic regression 
provides a means to statistically demonstrate and quantify the steepness of both types of 
dose-response curves for acute exposures to organophosphate-type CW agents (or nerve 
agents).  Experimental animal data from three acute inhalation studies were reviewed and 
analyzed separately using a probit link-function:  (1) monkeys exposed to GA (tabun), 
GB (sarin) or GF (cyclosarin); (2) rats exposed to GB; and (3) rats exposed to GB or GF.  
For each study, both vapor concentration and exposure time were varied.  Clinical signs 
and mortality were recorded for all three studies.  From these signs three categorical 
responses were defined:  death, severe effects and less than severe effects.  An animal 
was categorized as having severe effects if it exhibited at least one of the following signs 
(yet did not die within 24 hours post-exposure): convulsions, gasping, collapse or 
prostration.  The regression analysis indicated that for all three studies slightly more than 
one standard deviation (1.0 to 1.4) separated an effective concentration (ECXX) for severe 
effects from a lethal concentration (LCXX) for XX% affected.  This method provides a 
better way of estimating threshold lethality, because for the data analyzed, threshold 
lethality (approximately a LC01 or LC05) is the equivalent to about an EC16 (for severe 
effects).  The 16% effect level can be estimated with greater confidence from 
experimental quantal data via probit analysis than the 1% effect level.  Thus, questionable 
extrapolation of the dose-mortality curve down to the 1% level can be avoided by using 
the dose-severe effect curve in its place. 
 

INTRODUCTION 

Human toxicity estimates for chemical warfare (CW) agents are required to 
properly evaluate agent-related health hazards under a variety of situations:  military 
deployment operations; handling, storage and destruction of CW agents; and emergency 
response procedures.  Modeling and simulation (M&S) plays an important role towards 
this end.  For use in such models, it is required that toxicity is expressed as a function of 
exposure parameters (dosage and exposure duration).  Knowledge is also needed of the 
dose-response (DR) curves for the population at risk:  severity of effect (DR-S) and 
percent of affected individuals (DR-P) as a function of the dose. 

 To address these needs, data for CW organophosphate (or nerve) agents have 
been traditionally analyzed via the probit analysis (or binary logistic regression)1-3 of the 
quantal (or binary) data taken for a particular toxicological endpoint (e.g.. alive or dead, 
presence or absence of miosis, etc.) as a function of one or more factors (dosage, vapor 
concentration, exposure duration, etc.).  It has been standard practice to define the 
resulting mortality-response relationships in terms of a linear time-integrated 
concentration (i.e., vapor concentration (C) multiplied by the exposure time (T), or CT 
for short−a dosage).4  Two important parameters are produced by probit analysis that 
characterize the DR-P curve for any particular toxicant:  median dosages (either median 
effective (ECT50) or lethal (LCT50)) and the probit slope.  Both Mioduszewski et al.4,6 and 
Anthony et al.7,8 employed this method.  However, on its own probit analysis can only 



characterize the DR-P curve for a particular endpoint.  Knowledge about the other dose-
response curve, DR-S, for nerve agents is also very important, especially since it is 
known to be very steep.9 

However, defining the DR-S curve requires additional measures.  The simplest 
approach has been to compare the reported literature values of ECT50′s* and probit slopes 
calculated via probit analysis for a range of endpoints.10,11  However, the accuracy of 
calculated ECT50 ratios for different endpoints is reduced when the values in the ratio 
come from separate studies (i.e. comparing the ECT50 (miosis) from Study A to the 
ECT50 (convulsions) from Study B). 

A better approach is to investigate multiple endpoints in the same study, as was 
done by Cresthull, et al.12 who reported both severe effects and lethality as a function of 
C and T.  A probit analysis was performed separately on each endpoint.  The estimated 
ECT50′s (incapacitation) and LCT50′s were compared to estimate the steepness of the DR-
S curve.  Unfortunately, regressing toxicological responses using a binary format 
implicitly assumes that the responses are independent of each other, which is not the case 
here.  The result is that important information is ignored which could better characterize 
the steepness of the DR curve. 

 One solution to this problem is to employ categorical (or ordinal) logistic 
regression.13  The U.S. Environmental Protection Agency (EPA) is currently developing 
this method for its own applications (such as supporting the Benchmark Dose (BMD) 
model).14-17  Instead of the binary response used in probit analysis, categorical logistic 
regression uses ordered categories of toxic responses (e.g., no effects , non-adverse 
effects, other effects of increasing severity, etc.), which are regressed as a function of one 
or more factors (e.g. dose, exposure time, type of agent, etc.).  The advantage of this 
approach is that the two types of DR curves (DR-P and DR-S) are fitted simultaneously.  
Thus, for CW nerve agents, ordinal logistic regression provides a means to statistically 
demonstrate and better quantify the steepness of both types of curves for acute inhalation 
(IH) exposures. Data from three CW nerve agent studies5-8,12 were reviewed and re-
analyzed using ordinal regression.  The purpose of the analysis was to determine the 
relationship between the DR-P curves for lethality and severe effects resulting from IH 
exposures to G-type nerve agents.  Potential risk assessment applications18 of this type of 
knowledge were then explored. 

TOXICITY STUDIES REVIEWED 

 Overview.  The three studies reviewed for this work were Cresthull, et al. 
(1957),12 Mioduszewski, et al. (2001 and 2002),4-6 and Anthony, et al. (2002),8 all of 
which were conducted at what is now the Edgewood Chemical Biological Center (ECBC)  
A brief summary of the studies is presented in Table 1.  The Toxicology Team, ECBC, 
maintains raw data and other materials associated with these studies. 

In all three studies, the animals were exposed (whole body) in dynamic airflow 
inhalation chambers.19  For Cresthull, et al., the agent vapor concentrations were allowed 
to reach equilibrium at the target value for the run; after which, the animals were quickly 
introduced into (and removed from) the chamber via a sliding animal carriage.  The 
exposure duration was, thus, the time between introduction and removal. 

                                                        
*
The definition of an effective dosage (ECTXX) includes aspects from both types of dose-response curves.  An 

ECTXX for Effect A is the dosage needed to produce either Effect A or an effect of greater severity (from the 
same route of exposure) in XX% of the subjects exposed to that dosage.  Thus, cumulative measures are found 
for both the effect severity curve (an effect of equal or greater severity) and the percent affected (XX%) curve. 



In the other two studies, the animals were placed into the chamber prior to the 
introduction of agent vapor.  Then, the chamber was quickly brought to equilibrium at the 
target vapor concentration.  The concentration was kept constant once equilibrium had 
been reached.  The concentration-time profile generated was described by MacFarland 
(1987).13  His definition of exposure duration was the one used in these studies--the 
interval from the start of the flow of agent into the chamber to the time-point when the 
agent flow is stopped.  Following exposure, the chamber was purged with air for 10 
minutes, and the animals were then removed from the chamber. None of the animals were 
restrained during an exposure run.  Both Cresthull et al. (1957) and Mioduszewski, et al. 
(2001 and 2002) have been previously used in the development of acute exposure 
guideline level values for CW nerve agents.10,11   

Table 1 
Summary of CW Nerve Agent Studies Reviewed 

 
Definition of Severe Effects and Lethality.  The ordered ternary responses 

defined for the present work (lethality (L), severe effects (S) and less than severe effects 
(M)) were defined from the clinical signs and mortality, which were recorded in the three 
studies.  Mortality within 24 hours post exposure was counted as a lethal effect.  An 
animal was categorized as having severe effects if it exhibited convulsions, gasping, 
collapsed or prostration (yet did not die within 24 hours post exposure).  Mortality 
occurring between one and 14 days post exposure was treated as a severe effect response.  
In Cresthull, et al., incapacitation was defined as collapse or convulsions. 

 Experimental Quantal Data.  The experimental quantal data from Cresthull, et 
al., Mioduszewski, et al., and Anthony, et al. are presented (using a discrete format) in 
Tables 2 to 4.  For example, in Table 2 for T = 10 minutes and C = 18.1 mg/m 3 GA, there 
are two animals with no effects severe or above, one animal having at least severe effects 

Name of Study Cresthull, et al . (1957)
Mioduszewski, et al . (2001 

and 2002)
Anthony, et al . (2002)

Year(s) Conducted 1953 to 1954
1998 to 2000 in two 

separate phases
2001 to 2002

Agent(s) Investigated GA, GB and GF GB GF and GB

Species Used Rhesus Monkey Sprague-Dawley Rat Sprague-Dawley Rat

Total Number of 
Subjects

152 700 500

Gender Mostly Female
Equal number of Males and 

Females
Males (240)             

Females (260)

Breakdown by Agent of 
Number of Subjects

GA (56), GB (52),             
GF (44) 

All GB GF (320), GB (180)

Number of Subjects per 
Exposure Group

4 10 or 20 5, 10 or 20

Number of Runs 36 43 38

GA:  18.1 to 81
GB:  6.6 to 29.1 GB:  2.0 to 54.4 GB:  3.5 to 35.9
GF:  7.3 to 59 GF:  2.0 to 41.9

Exposure Times 
(minutes)

2 and 10
Phase I:  10, 30, 90, 240    

Phase II:  5, 60, 360
10, 60 and 240

Primary Endpoint(s) of 
Interest

Incapacitation and 
Lethality (1 day)

Lethality (1 and 14 days) Lethality (1 and 14 days)

Vapor Concentrations 
(mg/m3)



and no mortality, and one animal that died or in shorthand—[2, 1, 1].*  In the discrete 
format, the sum of the values in a table row equals the total number of individuals 
exposed using a particular set of test parameters (agent, C, T and gender), which for the 
present example equals four (or 2+1+1).  The original notebooks were also reviewed to 
gather additional information on the categorical response distributions.   

Table 2 
Monkey G-Type IH Quantal Data from Cresthull, et al. 

Note: Shaded row was not used in the final analysis after having been identified as a 
statistical outlier in the initial analysis. 

                                                        
* This is in contrast to a common toxicology convention of displaying quantal data in a cumulative format, 
where the number of animals having an effect of equal or greater severity are included in an effect category.  In 
which case, the above example [2, 1, 1] would be written instead as [4, 2, 1]. 

T C CT

(min) (mg/m3) (mg-min/m3) M S L
33.3 67 4 0 0
50.8 102 2 2 0
54.3 109 0 4 0
62.0 124 0 1 3
62.3 125 0 3 1
65.0 130 0 2 2
68.5 137 2 2 0
71.0 142 0 0 4
81.0 162 1 0 3
18.1 181 2 1 1
18.8 188 0 2 2
21.7 217 0 0 4
23.0 230 1 0 3
24.6 246 0 0 4
8.8 18 4 0 0
13.7 27 1 0 3
16.4 33 2 1 1
17.0 34 4 0 0
18.6 37 1 0 3
19.7 39 2 1 1
23.5 47 1 1 2
29.1 58 0 1 3
6.6 66 1 2 1
8.1 81 0 1 3
8.2 82 0 2 2
10.0 100 0 0 4
31.0 62 2 1 1
42.0 84 1 1 2
44.0 88 0 1 3
48.0 96 0 0 4
59.0 118 0 0 4
7.3 73 3 1 0
10.0 100 2 1 1
12.2 122 0 2 2
13.0 130 0 2 2
15.5 155 0 2 2
19.9 199 0 0 4

GB

GF

2

10

2

10

Agent
Number per Category

GA

2

10



Table 3 
Rat GB IH Quantal Data from Mioduszewski, et al. 

 

T C CT C CT

(min) (mg/m3) (mg-min/m3) M S L (mg/m3) (mg-min/m3) M S L
36.3 182 1 7 2 25.6 128 5 3 2
44.0 220 3 4 3 28.2 141 9 1 0
48.1 241 0 6 4 31.5 158 1 3 6
51.4 257 1 2 7 36.3 182 1 3 6
54.4 272 0 3 7 44.0 220 0 1 9
15.3 153 9 1 0 9.6 96 10 0 0
18.7 187 7 2 1 12.0 120 9 1 0
21.8 218 0 6 4 15.3 153 1 7 2
27.1 271 0 2 8 18.7 187 2 4 4
34.3 343 0 0 10 21.8 218 0 1 9
6.0 180 10 0 0 6.0 180 6 4 0
7.4 222 8 2 0 7.4 222 0 9 1
9.0 270 1 6 3 8.5 255 0 5 5
10.3 309 0 0 10 9.0 270 0 3 7
12.1 363 0 0 10 12.1 363 0 1 9
6.0 360 2 5 3 5.9 354 1 7 2
6.4 384 3 5 2 6.0 360 0 4 6
7.0 420 1 8 1 6.4 384 1 6 3
7.6 456 1 3 6 7.0 420 0 5 5
8.1 486 3 1 6 7.6 456 0 0 10
4.0 360 6 4 0 4.0 360 0 8 2
4.1 369 9 1 0 4.1 369 4 5 1
4.5 405 1 6 3 4.5 405 0 4 6
4.9 441 0 6 4 4.9 441 2 1 7
5.5 495 0 2 8 5.5 495 0 0 10
2.1 504 10 0 0 2.1 504 10 0 0
2.7 648 9 0 1 2.7 648 0 6 4
3.3 792 7 2 1 3.3 792 0 4 6
4.2 1008 0 6 4 4.2 1008 0 2 8
4.4 1056 0 4 6 4.4 1056 0 0 10
2.3 828 5 3 2 2.3 828 5 4 1
2.7 972 2 6 2 2.4 864 0 10 0
2.8 1008 2 7 1 2.7 972 2 4 4
3.0 1080 0 2 8 2.8 1008 0 5 5
3.5 1260 0 1 9 3.0 1080 0 1 9

360

90

Number per Category

5

10

30

60

Number per Category

Male Female

240



Table 4 
Rat GB and GF IH Quantal Data from Anthony, et al. 

T C CT

(min) (mg/m3) (mg-min/m3) M S L
17.2 172 9 1 0
21.5 215 7 3 0
23.3 233 10 0 0
23.9 239 2 3 5
25.2 252 2 2 6
26.9 269 1 3 6
31.1 311 0 0 10
17.2 172 10 0 0
21.5 215 10 0 0
31.1 311 1 8 1
34.4 344 5 3 2
41.9 419 0 1 9
4.9 294 6 2 2
5.7 342 4 4 2
5.9 354 0 1 9
6.4 384 0 0 10
7.2 432 0 0 10
4.9 294 10 0 0
5.7 342 5 4 1
6.4 384 0 6 4
7.2 432 1 2 7
7.8 468 0 0 10
2.0 480 7 2 1
2.0 480 1 8 1
2.2 528 0 3 7
2.5 600 0 2 8
3.3 792 0 0 10
2.0 480 3 4 3
2.0 480 4 6 0
2.2 528 0 8 2
2.5 600 1 3 6
3.3 792 0 1 9
18.0 180 0 10 0
21.6 216 4 5 1
22.7 227 0 8 2
23.8 238 0 3 7
24.8 248 0 3 7
26.6 216 0 0 10
22.7 227 8 2 0
26.7 267 1 8 1
28.7 287 0 6 4
32.8 328 0 5 5
35.9 287 0 2 8
5.6 336 0 4 1
6.1 366 0 4 6
6.6 396 0 0 5
6.6 396 1 4 0
7.0 420 1 5 4
7.5 450 0 1 4

Female 3.5 840 0 5 5
4.3 1032 8 2 0
5.6 1344 0 3 7

240

GB

10

60

240

Female

Female

Male

Agent
Number per Category

Gender

GF

Female

Male

Female

Male

10

60

Female

Male

Male

Male



STATISTICAL THEORY 

Probit analysis was the method used by Cresthull, et al.,12 Mioduszewski, et 
al.,4-6 and Anthony, et al7,8 for the analysis of their data.  A brief review of probit analysis 
is presented herein, followed by a review of its extension for use with ordered categorical 
responses with three or more levels (or ordinal logistic regression), whose application 
towards CB nerve agents is the subject of this work.   

To perform either a binary or ordinal logistic regression, a link-function is used 
to connect the random and systematic components of the regression model.13  This is 
accomplished by transforming the probability of an effect or response to a linear scale.  
Several probability distributions are commonly used for this transformation:  probit, logit 
and complementary log-log.2,13,22  Historically, CB nerve agent toxicology has used a 
probit link-function, which is implicit in the use of probit analysis.  For ease of 
comparison, ordinal regression with a probit link-function is used in this work.  Thus, the 
following discussions implicitly assume the use of a probit link-function. 

Probit Analysis.  For each individual, there is a dose or dosage* that is just 
sufficient to produce a specified biological response.  These just-sufficient dosages are 
called effective dosages to distinguish them from administered dosages.  The distribution 
of effective dosages for a homogeneous population is usually lognormal.1,5,20,21   

Although statisticians typically describe the lognormal distribution of effective 
dosages by the mean and variance of log(effective dosage), toxicologists usually describe 
the distribution by the median effective dosage, ECT50, and the probit (or Bliss) slope, m: 

(1) ECT 50 = antilog(η)  (2) m = 1 / σ  

(3) 50{log (CT) - log(ECT )}
Z =

s
 

where η is the median of log(effective dosage), σ2 is the variance of the distribution, and 
Z is the standard normal random variable.  The ECT50 is used in a cumulative fashion by 
toxicologists: 50% of the exposed individuals will exhibit a specified biological response 
of equal or greater severity for the same exposure route.  Effective dosages for response 
levels other than 50% can be calculated using Eqn. (3) with known values for ECT50 and 
m, and using the Z value corresponding to the cumulative probability of interest (e.g. Z 
equals 0 for a 50% response).  Toxicologists traditionally use base 10 logarithms to 
calculate the probit (Bliss) slope.1,3,5,21  This convention is used herein. 

Although the normal distribution is continuous, quantal (binary) data are used to 
estimate the distribution parameters (ECT50 and m).1  Probit analysis and maximum 
likelihood estimation (MLE) are used to estimate these parameters from data.1,22  The 
following equation is fitted via probit analysis/MLE for vapor toxicity studies:1  

(4) 0 C T( 5) log C log T + (other factors)N P iY Y k k k k= − = + +  

where YN is a normit, YP is a probit, and the k’s are fitted coefficients.  The 
constants kC and kT are the probit slopes for concentration and time, respectively.  Often, 
experiments are conducted with exposure time held constant, which reduces Eqn. (4) to 
the traditional probit equation.1  Thus, the probit slope for a vapor exposure usually refers 

                                                        
* The terms dose and dosage are often used interchangeably, but they do have different definitions.  Dose is the 
total amount of a substance that is administered, while dosage is an amount administered relative to some other 
quantity (e.g., body mass, body surface, and/or time).20  For inhalation exposures, dosage is the term used.20   



to the slope on vapor concentration (m = kC) instead of the slope on time.  The greater the 
probit slope, the smaller the variance is in the distribution of individual susceptibilities. 

When fitting Eqn. (4), all variability in the data will contribute to the estimate 
for m, be it from variance due to individual susceptibilities, batch effects, experimental 
error, etc.  Probit analysis performed on a compilation of data from many sources will not 
produce an accurate measure of variance among individuals due to the heterogeneity 
introduced by differences among the studies (e.g., experiment procedures, type of 
animals used, etc.).23  The effect of such heterogeneity will be to reduce the probit slope.  
Also, as was previously noted, probit analysis on its own can only characterize the DR-P 
curve for a particular endpoint.   

Ordinal Logistic Regression.  Conceptually, ordinal regression simply involves 
the division of ordered multi-level categorical responses into a series of cumulative 
binary responses.23  In the case of ternary data, with ordered discrete response levels of 
low {0}, medium {1} and high {2}, the following ordered binary combinations are 
produced:  {0} vs. {1 and 2}; and {0 and 1} vs. {2}.  Thus, one way to express the model 
is to apply Eqn. (4) to each binary combination:1 

 

(5) { } { } C T0 1,2
0 1, 2 log C log T + (other factors)N iY k k k k


 = + +  

 

(6) { } { } C T0,1 2
0,1 2 log C log T + (other factors)N iY k k k k


 = + +  

 where YN {01,2} and YN {0,12} are the normits for the binary responses of 
{0} vs. {1 and 2}; and {0 and 1} vs. {2}, respectively.  The constants, k 01,2 and k 0, 12, 
are the intercepts for the normits of the cumulative probabilities of an effect exceeding in 
severity the low {0} and medium {1} responses, respectively.23  

When using Eqns. (5) and (6), it is implicitly assumed that the values of the 
individual various probit slopes (i.e. kC, kT , ki, etc.) are constant (e.g. kC, (in Eqn. (5)) 
equals kC (in Eqn. (6))).  Otherwise there would be conditions where Eqns. (5) and (6) 
would intersect, a probabilistic impossibility for ordered responses.1  As with probit 
analysis, MLE is used to provide fits for Eqns. (5) and (6).13,22  An iterative-reweighted 
least squares algorithm is used to obtain maximum likelihood parameter estimates.22,23  

Dose-Percent Response Curves (Severe and Lethality).  For the present study, 
Eqns. (5) and (6) are used to solve for ECT50 (severe) and LCT50, respectively.  To 
calculate the ECT50 / LCT50 ratio, Eqns. (5) and (6) can rearranged to produce: 

(7) 50
10

50

ECT
log ?

LCT Ck
 

= 
 

 

(8) { } { } [ ]
0,1 2 0 1,2 severe lethalk k k k

 
 κ = − = −  

 

where κ is the distance in normits between the percent affected levels of the 
severe and lethality DR curves.  For instance, when κ equals one, the ECT50 equals a 
LCT16 (since the 50 and 16% cumulative effect levels from a standard normal distribution 
are separated by one standard deviation), or if κ equals two, then ECT84 equals a LCT16.   

Confidence limits on estimates for both {κ / kC } and κ can be calculated.  The 
standard error of a ratio, (a / b), is given by Barry (1978),25 which is based upon the 
propagation of error formula for a ratio: 



(9) 2 2

var( ) var( ) cov( , )
std err of (2)

a a a b a b
b b a b ab

         = + −         
         

 

 where var(a), var(b), and cov(a,b) are the variance of the quantities, a and b, and 
their covariance, respectively.  The 95% confidence limits for the ratio will equal (a / b) ± 
(2)(std err).  The following relations from Mood, et al. (1974)26 were also used to get the 
necessary information for determining the limits for both {κ / kC } and κ: 

(10) var(a  b) var( ) var( ) (2)cov(a, b)a b± = + ±  

(11) cov ( , ) cov ( , ) cov ( , )a b c a c b c± = ±  

where cov(a ± b, c) is the covariance of the quantity, (a ± b), with a third 
quantity, c. 

DATA ANALYSIS 

 An ordinal logistic regression program (a component of MINTAB Version 13) 
was used to perform the calculations.  The three datasets (in Tables 2 to 4) were analyzed 
separately.  The ternary data consisted of the number of subjects having less than severe 
effects (M), severe effects (S), and lethality (L), as previously defined. 

Only one continuous predictor, logC, was used in the present analysis.  The 
other available continuous predictor, T, was treated as a categorical factor instead, since 
the emphasis was on the estimating the relationship between severe and lethal DR-P 
curves.  Complications were avoided by not trying to directly model the non-linear 
dependence of toxicity on logT.  Both Mioduszewski, et al.4-6 and Anthony, et al.7,8 have 
found that log(LCT50) versus logT was non-linear for G-agent IH toxicity. 

In addition to logC, full factorial designs were used in each of the three studies 
to investigate the effect of two or more of the following factors:  agent type, exposure 
duration (T) and gender.  Cresthull, et al. investigated agent type (3 levels) and exposure 
duration (2 levels), for a total of 6 groupings.  Mioduszewski, et al. studied gender (2 
levels) and exposure duration (7 levels), for a total of 14 groupings.  Anthony, et al. 
explored all three predictors, using a total of 12 groupings [agent type (2 levels), gender 
(2 levels), and exposure duration (3 levels)]. 

For the present analysis, the following model was used in the ordinal regression 
programs (modifications of Eqns. (5) and (6)):  

(12) { } C ilogC
N

N severe i
i

Y severe k k k G= + + ∑  

(13) { } C ilogC
N

N lethal i
i

Y lethal k k k G= + +∑  

 where Gi equals one when modeling the i-th group (from the total number (N) of 
groups from the full factorial) of a dataset and zero for all other groups, and the ki‘s are 
fitted coefficients.  This approach produces only one value each for the probit slope (kC), 
{κ / kC } and κ for the whole dataset, as well as individual ECT50 and LCT50 values for 
each group.  By dividing a dataset into smaller independent subsets (for separate analyzes 
using MINTAB), it is possible to obtain multiple values for kC, {κ / kC } and κ as a 
function of the various factors within a dataset.  However, it was found for each 
parameter that the individual subset values were not significantly different (statistically) 
from other subset values within the larger dataset.  Thus, it was assumed that kC,  {κ / kC} 
and κ were constant in value for the whole dataset. 



 In addition to calculating values for kC, {κ / kC } and κ for each dataset, Eqns. 
(9) to (11) were used (in conjunction with the variance-covariance matrix of the model fit 
returned by MINTAB) to estimate the errors associated with these values.  Also, error 
estimates for individual group ECT50 and LCT50 values were made in the same fashion.   

RESULTS 

 The results of the data analysis are presented in Tables 5 to 11.  Tables 5 to 8 
contain the estimates for individual group ECT50 and LCT50 values, while Tables 9 to 11 
present the estimated probit slope (kC), {κ / kC } and κ values for each dataset.  When 
available, values previously reported by the researchers are shown for comparison.  

Table 5 
Monkey G-Type IH ECT50 (Severe) Values from Ordinal Logistic Regression and 

Cresthull, et al. 

 
Table 6 

Monkey G-Type IH LCT50 Values from Ordinal Logistic Regression and Cresthull, et al. 

T ECT50 (Severe) 95% ECT50 (Severe) 95%

(min) (mg-min/m3) Fiducial Limits (mg-min/m3) Fiducial Limits

GA 102 90 to 115 102 none reported

GB 36 31 to 40 30 none reported

GF 58 49 to 70 62 none reported

GA 145 121 to 173 <180 none reported

GB 56 46 to 67 <66 none reported

GF 96 82 to 112 100 none reported

Estimates from Ordinal 
Logistic Regression

Cresthull, et al (1957)        
(24 hours Post-Exposure)

Agent

2

10

T LCT50 95% LCT50 95%

(min) (mg-min/m3) Fiducial Limits (mg-min/m3) Fiducial Limits

GA 131 118 to 146 135 123 to 152

GB 46 40 to 53 42 29 to 60

GF 76 65 to 88 75 63 to 87

GA 187 161 to 217 187 164 to 221

GB 72 61 to 85 74 62 to 87

GF 124 108 to 143 130 112 to 151

10

Estimates from Ordinal 
Logistic Regression

Cresthull, et al (1957)   (24 
hours Post-Exposure)

Agent

2



Table 7 
Rat GB IH ECT50 (Severe) and LCT50 Values from Ordinal Logistic Regression and 

Mioduszewski, et al. 
 

Table 8 
Rat GB and GF IH ECT50 (Severe) and LCT50 Values from Ordinal Logistic Regression 

and Anthony, et al. 

T ECT50 (Severe) 95% LCT50 95% LCT50 95%

(min) (mg-min/m3) Fiducial Limits (mg-min/m3) Fiducial Limits (mg-min/m3) Fiducial Limits

Female 136 128 to 145 173 163 to 184 166 151 to 186

Male 184 173 to 196 234 220 to 248 240 211 to 287

Female 144 134 to 183 183 171 to 196 184 167 to 205

Male 185 173 to 198 235 220 to 252 231 211 to 255

Female 196 183 to 209 249 233 to 265 263 241 to 292

Male 225 211 to 240 286 268 to 305 undefined undefined

Female 300 281 to 320 381 360 to 404 387 357 to 417

Male 354 334 to 375 450 425 to 476 459 412 to 472

Female 319 300 to 340 406 383 to 430 404 385 to 426

Male 366 346 to 388 466 440 to 493 448 427 to 482

Female 589 547 to 633 748 697 to 803 741 654 to 825

Male 801 749 to 857 1018 952 to 1090 1040 917 to 1466

Female 780 735 to 827 991 938 to 1048 987 946 to 1039

Male 830 781 to 882 1055 996 to 1117 1048 973 to 1150

Gender

5

Estimates Derived from Ordinal Logistic Regression
Mioduszewski, et al (2001) 
(24 hours Post-Exposure)

360

10

30

240

60

90

T ECT 50 (Severe) 95% LCT50 95% LCT50 95%

(min) (mg-min/m
3
) Fiducial Limits (mg-min/m

3
) Fiducial Limits (mg-min/m

3
) Fiducial Limits

Female 222 213 to 231 267 256 to 278 253 244 to 266

Male 305 288 to 324 367 347 to 389 371 344 to 405

Female 187 179 to 197 226 216 to 235 235 228 to 243

Male 253 236 to 271 304 283 to 326 316 297 to 348

Female 286 271 to 302 344 328 to 361 334 317 to 349

Male 335 319 to 352 403 384 to 423 396 376 to 416

Female 288 266 to 311 346 322 to 372 355 332 to 376

Male 359 335 to 384 432 405 to 461 433 409 to 464

Female 447 425 to 471 539 513 to 565 533 506 to 566

Male 470 448 to 494 566 540 to 594 595 550 to 677

Female 686 623 to 757 826 753 to 907 840 766 to 922

Male 1090 1016 to 1169 1312 1222 to 1408 1296 1152 to 1486

GF

GB

Agent

10

60

240

GF

GB

GF

Gender

GB

Estimates Derived from Ordinal Logistic Regression
Anthony, et al (2001)          

(24 hours Post-Exposure)



Table 9 
Probit Slope(Concentration) Estimates for G-Type Nerve Agents IH Exposures from 

Ordinal Logistic Regression and Original Researchers. 

Note: For shaded blocks above, Cresthull, et al. arrived at essentially one probit slope value for their entire 
dataset, along with an estimate for the standard error.  Thus, instead of a range of values, the 95% confidence 
limits calculated from their standard error are shown in the table.   
 

Table 10 
Estimates for Distance (κ) Between Severe (S) and Lethality (L) Dose-Response Curves 

for G-Type Nerve Agents IH Exposures from Ordinal Logistic Regression 

 
Table 11 

ECT50/LCT50 Ratio Estimates for G-Type Nerve Agents IH Exposures from Ordinal 
Logistic Regression and Original Researchers 

 
DISCUSSION 

 Group ECT50 and LCT50 Estimates.  The estimates for median effective 
dosages for severe effects and lethality from ordinal logistic regression are in agreement 
with those reported by the original researchers for the datasets that were reviewed (see 
Tables 5 to 8).  The means of the absolute percent differences (see Eqn. (14) below) were 

Probit Slope 95% Probit Slope Range of

(kC ) Conf. Limits (k C ) Values

Cresthull, et al (1957) 9.1 6.4 to 11.9 11.0 6.6 to 15.4

Mioduszewski, et al. (2001) 13.9 12.3 to 15.5 13.2 8 to 24.4

Anthony, et al. (2002) 18.0 15.4 to 20.5 23.5 13.3 to 31.2

Dataset

Estimates from Ordinal Logistic 
Regression

Median and Range Reported by Original 
Researchers (24 hour post-exposure)

S to L Distance Variance 95%

(k ) (normits) (S to L Dist) Conf. Limits

Cresthull, et al (1957) Monkey 1.02 0.0225 0.72 to 1.32

Mioduszewski, et al. (2001) Rat 1.44 0.0069 1.28 to 1.61

Anthony, et al. (2002) Rat 1.44 0.0100 1.24 to 1.65

Dataset

Estimates from Ordinal Logistic Regression

Species

(ECT50/LCT50) 95% (ECT50/LCT50) Range of

10 (̂k / kC ) Conf. Limits 10^(k  / k C ) Values

Cresthull, et al (1957) 0.77 0.70 to 0.85 0.80 0.71 to 0.96

Mioduszewski, et al. (2001) 0.79 0.76 to 0.81

Anthony, et al. (2002) 0.83 0.81 to 0.85

Dataset

Estimates from Ordinal Logistic 
Regression

Median and Range Reported by Original 
Researchers (24 hour post-exposure)



found to equal 4.9, 2.1 and 2.6%, for the datasets from Cresthull, et al. (1957), 
Mioduszewski, et al. (2001) and Anthony, et al. (2002), respectively.   

(14) 50 50

50

XCT (original) XCT (ordinal)
abs % diff (100)

XCT (original)
−

=  

In the cases of Mioduszewski, et al. (2001) and Anthony, et al. (2002), values 
for ECT50 (severe) were not reported, thus the ECT50 (severe) values in Tables 7 and 8 
from the ordinal regression analysis are the first such reported values for these datasets. 

Probit Slopes (kC).  For each dataset, the probit slope (concentration) estimates 
from the ordinal regression are in agreement with those reported by the original 
researchers (see Table 9).  These results confirm previous findings on the steepness of the 
DR-P curves for G-type nerve agents.9,10  For the ordinal regression kC values, the 
differences between the kC values from the three datasets are statistically significant.  The 
larger kC values (less individual variability) from the two rat studies (Mioduszewski, et 
al. and Anthony, et al.) (vs. the monkey study) is probably due to the genetically defined 
laboratory rats as compared to the monkeys used by Cresthull et al.  However, other 
reasons for differences between the rat and monkey studies (batch effects, experimental 
error, etc.) cannot be entirely ruled out.  Within the two studies investigating two or more 
agents (Cresthull, et al. and Anthony, et al.), the difference in probit slopes between the 
agent subsets are not statistically different; so, it is unlikely that the changes in probit 
slopes are due to differences between the agents. 

Distance (Normit) Between Severe and Lethality Dose-Response Curves.  
The distance (κ) (see Eqn. (8)) is found to range from 1.02 to 1.44 normits for the three 
datasets reviewed (see Table 10).  The average of κ values equals 1.30.  Values for κ 
from these datasets were not previously reported. 

Using κ = 1.30 for G-type nerve agent IH exposures, it is found that an ECT16 
(severe) approximately equals the LCT01.  Going both further up and down the dose-
percent response curves, other equivalencies can be calculated (see Table 12).  The 
steepness of the DR-S curve is readily demonstrated by the fact that the dosage causing 
incapacitation (or greater effect) in 84% of exposed individuals will also kill about half 
(45.4%) of those within the incapacitated (or greater) group.  Furthermore, trying to use a 
G-type nerve agent to achieve complete incapacitation with minimal fatalities among a 
target group is an impossibility, since there will be an 85% lethality rate among the 99 
out of 100 incapacitated subjects at an ECT99 (severe). 

Table 12 
Comparison of Equivalent ECTXX and LCTYY Levels for G-type Nerve Agent IH 

Exposures 

YN YN XX% YY% Ratio
Severe Lethal Severe Lethal YY% to

(normits) (normits) (or greater) XX%
-2.00 -3.3 2.3 0.0 2.1
-1.00 -2.3 15.9 1.1 6.8
0.00 -1.3 50.0 9.7 19.4
1.00 -0.3 84.1 38.2 45.4
2.00 0.7 97.7 75.8 77.6
2.31 1.01 99.0 84.4 85.3



 Based on the estimated variances of the individual κ values, there is a significant 
difference (with 99% confidence) between the monkey κ value of Cresthull, et al. and the 
two rat κ values of Mioduszewski, et al. and Anthony, et al.  This suggests that the 
existence of a species effect on κ values for G-type agent IH toxicity, particularly since 
the two separate rat studies produced identical κ values.  However, additional work is 
needed before any definitive conclusions can be reached. 

In addition to using ordinal logistic regression to estimate κ from quantal data 
sets, it is also possible to use Eqn. (7) to estimate κ from historical studies where no raw 
quantal data is provided.  All that is needed are estimates for ECT50/LCT50 and kC, and it 
is not a requirement that the parameter estimates be taken from the same study. 

Ratio of ECT50 and LCT50 Values.  The ECT50/LCT50 ratio is found to range 
from 0.77 to 0.83 for the three datasets reviewed (see Table 11 and Eqn. (7)).  Based on 
the estimated 95% confidence limits of the individual ratio values, there is no significant 
difference between the values from the three datasets.  The average of the ratio values 
equals 0.80.  Only Cresthull, et al. reported an estimate for the ratio, 0.80, which is in 
agreement with the ordinal regression ratio value of 0.77 for this dataset. 

 Steepness of Dose-Response Curves.  The ECT50/LCT50 ratio represents a 
comparison between the steepness of the two DR curves (DR-P and DR-S) (see Eqn. (7)).  
There is no statistically significant species effect on ECT50/LCT50 (as mentioned 
previously).  However, there is a species effect on both κ (smaller for the monkey than 
for the rat) (see Table 10) and kC (smaller for the monkey than for the rat) (see Table 9).  
Thus, there is no change in ECT50/LCT50 values, since changes in both κ and kC have 
roughly the same dependence on species.  In practical terms, this means that the monkeys 
in Cresthull, et al., had more individual variability (lower kC value), but a steeper DR-S 
curve (lower κ value), than the rats in Mioduszewski, et al. and Anthony, et al.   

 Defining Threshold Lethality.  Historically, defining the threshold lethality for 
a nerve agent has been a difficult task.18  The operational community needs threshold 
lethality estimates for purposes of modeling, exposure criteria, risk assessment, etc.  
Level 3 of the Acute Exposure Guideline Levels (AEGL-3) is an example of a threshold 
lethality exposure estimate.27  In practical terms, a threshold lethality dosage is 
commonly defined as the dosage that will cause mortality in about 1% of the exposed 
individuals (a LCT01).10,11,18  Unfortunately, probit analysis is not suitable for accurate 
extrapolation from the 50% down to the 1% effect level.1  Extrapolations beyond the 16% 
to 84% range are not recommended, as demonstrated by the widening fiducial limits in 
the example probit analysis plot shown in Figure 1.  The shape of the probit plots (both fit 
and fiducial limits) is typical of what is expected:1  large random errors are involved in 
estimating the two key values needed for the extrapolation, the LCT50 and kC. 

 The use of ordinal logistic regression provides a better approach to the problem 
of defining threshold lethality.  For G-type agent IH exposures, the results from Table 12 
demonstrate that an ECT16 (severe) is equivalent to an LCT01.  Thus, instead of the 
questionable extrapolation from the median lethal dosage down to the 1%, the more 
statistically defensible extrapolation from the median effective (severe) dosage down to 
the 16% level can be performed instead.  Thus, the concerns of the toxicologist about the 
limitations of probit analysis in estimating threshold lethality are satisfactorily addressed. 

CONCLUSIONS 

 Estimation of the relationship between the DR curves for lethality and severe 
effects has been accomplished for inhalation exposures to G-type nerve agents via the use 
of ordinal logistic regression on data from three previously conducted animal studies.  



Knowledge of the mathematical relationship between the two curves provides a better 
means to define threshold lethality dosage by using the dose-severe effect curve in its 
place.  The use of ordinal logistic regression is statistically and toxicologically defensible 
for this application, thereby addressing concerns with the known limitations of probit 
analysis (the previously used approach). 

Figure 1 
Percent Cumulative Probability as a Function of Dosage for Female Sprague-Dawley—

Five Minute GB IH Exposure from Mioduszewski, et al. (2001) 

 For inhalation exposures to G-type agents, it was found that an ECT16 (severe) is 
equivalent to a LCT01 (a distance of 1.27 standard deviations).  At the 16% level for 
severe effects, it is not improbable that an occasional death will occur among any small 
group of untreated victims with severe effects (convulsions, etc.)—exactly what is meant 
by threshold lethality.  By defining threshold lethality using a sub-lethal endpoint, a safe 
and conservative approach is achieved, with a higher degree of statistical confidence.
 Acknowledgements.  I wish to thank Ms. Robyn B. Lee of Robyn B Lee and 
Associates LLC for presenting this paper (on short notice) in my place at the Eighth US 
Army Conference on Applied Statistics, North Carolina State University, Raleigh, NC, 
31 October 2002.  In addition, the technical assistance of Mr. Ronald B. Crosier, Dr. 
Sharon A. Reutter, Dr. Robert J. Mioduszewski and Mr. J. Steven Anthony (US Army 
Edgewood Chemical Biological Center) is greatly appreciated. 

REFERENCES 
 
[1] Finney, DJ, Probit Analysis.  Third Edition, Cambridge University Press, Cambridge, 1971. 

[2] Hosmer, DW and Lemeshow, S, Applied Logistic Regression. John Wiley & Sons, New York, 1989. 

[3] Bliss, CI, The Determinations of the Dosage-Mortality Curve from Small Numbers, Quarterly Journal of 
Pharmacology.  2:  192-216, 1938. 

[4] Mioduszewski, RJ, Manthei, JH, Way, RA, Burnett, DC, Gaviola, BP, Muse, WT Jr., Sommerville, DR, 
Crosier, RB, and Thomson, SA, Interaction of Exposure Concentration and Duration in Determining Acute 
Toxic Effects of Sarin Vapor in Rats, Toxicological Sciences.  66:  176-184, 2002. 

[5] Mioduszewski, RJ, Manthei, JH, Way, RA, Burnett, DC, Gaviola, BP, Muse, WT Jr., Anthony, JS, Durst, 
HD, Sommerville, DR, Crosier, RB, Thomson, SA, and Crouse, CL, ECBC Low Level Operational Toxicity 
Program:  Phase I—Inhalation Toxicity of Sarin Vapor in Rats as a Function of Exposure Concentration and 
Duration, ECBC-TR-183. US Army ECBC, APG, MD, August 2001.   AD# A394372. 

10 100 1000

      1

      5

     10

     20

     30
     40
     50
     60
     70

     80

     90

     95

     99

CT

P
er

ce
nt

Solid Line--Regression Fit
Dashed Line--95% Fiducial Limits
Circles--Actual Experimental Values

10 Rats Each Exposed at Four 
Separate GB Vapor Concentrations

10 100 1000

      1

      5

     10

     20

     30
     40
     50
     60
     70

     80

     90

     95

     99

CT

P
er

ce
nt

Solid Line--Regression Fit
Dashed Line--95% Fiducial Limits
Circles--Actual Experimental Values

10 Rats Each Exposed at Four 
Separate GB Vapor Concentrations



[6] Mioduszewski, RJ, Manthei, JH, Way, RA, Burnett, DC, Gaviola, BP, Muse, WT Jr., Thomson, SA, 
Sommerville, DR, Crosier, RB, Scotto, JA, and McCaskey, DA, Low Level Sarin Vapor Exposure in Rats:  
Effect of Exposure Concentration and Duration on Pupil Size, ECBC-TR-235. US Army ECBC, APG, MD, 
May 2002.   AD# A402869. 

[7] Anthony, SJ, Haley, MV, Manthei, JH, Way, RA, Burnett, DC, Gaviola, BP, Sommerville, DR, Crosier, RB, 
Mioduszewski, RJ, Jakubowski, EM, Montgomery, JL, and Thomson, SA,. Inhalation Toxicity of GF Vapor in 
Rats as a Function of Exposure Concentration and Duration and Its Potency Comparison to GB, presented at 
Biosciences 2002 Medical Defense Review, US Army MRICD, Hunt Valley, MD, 2-7 June 2002. 

[8]  Anthony, SJ, Haley, MV, Manthei, JH, Way, RA, Burnett, DC, Gaviola, BP, Sommerville, DR, Crosier, 
RB, Mioduszewski, RJ, Thomson, SA, Crouse, CL, and Matson, KL,. Inhalation Toxicity of GF Vapor in Rats 
as a Function of Exposure Concentration and Duration and Its Potency Comparison to GB, ECBC-TR-XXX. 
US Army ECBC, APG, MD, In publication. 

[9] Reutter, S, Hazards of Chemical Weapons Release during War:  New Perspectives, Environmental Health 
Perspectives.  107(12):  985-990, December 1999. 

[10] US EPA, Office of Pollution Prevention and Toxics, NERVE Agents GA, GB, GD, GF (CAS Reg.  No.  
77-81-6, 107-44-8, 96-64-0, and 329-99-7): Proposed Acute Exposure Guideline Levels (AEGLs).  October 
2000. http://www.epagov/ docs/fedrgstr/EPA-Tox/2001/May/Day-02/4940.pdf (September 2001).   

[11] US EPA, Office of Pollution Prevention and Toxics, NERVE AGENT VX (CAS Reg.  No.  50782-69-9): 
Proposed Acute Exposure Guideline Levels (AEGLs).  October 2000.  
http://www.epagov/docs/fedrgstr/EPA-Tox/2001/May/Day-02/4945.pdf (September 2001). 

[12] Cresthull, P, et al., Inhalation Effects (Incapacitation and Mortality) for Monkeys Exposed to GA, GB, and 
GF Vapors, CWLR 2179.  US Army Chemical Warfare Laboratories, Army Chemical Center, Edgewood 
Arsenal, MD, 16 September 1957.  AD# 145581. 

[13] Agresti, A, Categorical Data Analysis.  John Wiley & Sons, New York, 1990. 

[14] Allen, BC, Hertzberg, RC, Strickland, JA, and Teuschler, LK, Categorical Regression for Dose-Response 
Modeling of Toxicity Data and It’s Application to RfD/C Development, Department of Defense Workshop.  
Sponsored by the US EPA, National Center for Environmental Assessment, Cincinnati, OH.  Workshop held 27 
April 1998, Wright-Patterson Air Force Base, Dayton, OH. 

[15] US EPA, The Use of the Benchmark Dose Approach in Health Risk Assessment, EPA/630/R-94/007.  US 
EPA, Office of Research and Development, Washington, DC, 1995. 

[16] Guth, DJ, Carroll, RJ, Simpson, DG, and Zhou, H, Categorical Regression Analysis of Acute Exposure to 
Tetrachloroethylene, Risk Analysis.  17(3):  321-332, 1997. 

[17] Dourson, ML, Hertzberg, RC, Hartung, R, and Blackburn, K, Novel Methods for the Estimation of 
Acceptable Daily Intake, Toxicology and Industrial Health.  1(4):  23-41, 1985. 

[18] Sommerville, DR, A Novel Idea on How to Define Threshold Lethality for Nerve Agent Inhalation Toxicity, 
Third Annual Decontamination Commodity Area Conference.  Salt Lake City, UT, sponsored by the Joint 
Service Material Group’s Commodity Area Manager for Decontamination, 23-26 May 2000. 

[19] MacFarland, HN, Designs and Operational Characteristics of Inhalation Exposure Equipment, in Salem, 
H, ed. Inhalation Toxicology, Marcel Dekker, New York. pp. 93-120, 1987. 

[20] Salem, H, Principles of Inhalation Toxicology, in Salem, H, ed.  Inhalation Toxicology.  Marcel Dekker, 
Inc., New York, pp. 1-33, 1987. 

[21] Crosier, RB, and DR Sommerville, Relationship Between Toxicity Values for the Military Population and 
Toxicity Values for the General Population, ECBC-TR-224. US Army ECBC, APG, MD, UNCLASSIFIED, 
March 2002.   AD# A400214. 

[22] MINITABTM Statistical Software, Release 13.32.  MINITAB Inc., 3081 Enterprise Drive, State College, 
PA 16801-3008, website:  /www.minitab.com/. 2002. 

[23] Franks, AP, Harper, PJ, and Bilo, M, The Relationship Between Risk of Death and Risk of Dangerous Dose 
for Toxic Substances, Journal of Hazardous Materials.  51: 11-34, 1996. 

[24] McCullagh, P, and Nelder, J, Generalized Linear Models, Chapman and Hall, NY, 1992. 

[25] Barry, BA, Errors in Practical Measurement Science, Engineering and Technology. John Wiley & 
Sons, Inc., NY, 1978. 

[26] Mood, AM, Graybill, FA, and Boes, DC, Introduction to the Theory of Statistics. Third Edition, 
McGraw-Hill, NY, 1974. 

[27] Crossgrove, RE, ed., Standing Operating Procedures for Developing Acute Exposure Guideline Levels 
for Hazardous Chemicals.  National Research Council, Committee on Toxicology, Subcommittee on Acute 
Exposure Guideline Levels (Krewski, D, Chair), National Academy Press, Washington, DC, 2001.  



A Method for Assessing Randomness in the United States Army's Biochemical Testing 
Program 
CPT Kevin P. Romano, United States Military Academy 
 
Abstract: Each year the United States Army spends millions of dollars combating its 
number one threat to soldier readiness. Some assert the futility of combating it, 
acknowledging its pervasive presence. Those with lives closely tied to the soldier at risk 
are deeply affected also, straining the Army’s resources in their struggle to support their 
service member. What is this threat to soldier readiness, safety and the well being of 
Army families? Substance abuse. 
 
In the early 1980’s the Department of Defense realized that a more aggressive program 
was needed to curb the amount of drug and alcohol abuse among the armed services. At 
that time DoD instituted mandatory biochemical testing in the Armed Forces. The Army 
chose to implement what has been termed “Smart Testing.” The foundation of Smart 
Testing is based upon randomness- randomness of collection date and individual. 
Randomness of collection date is the one aspect of Smart Testing that is hard to address. 
There is currently no automated method that assigns random collection dates. Nor is there 
a metric for Army officials to assess the randomness of unit collection dates. 
 
This paper presents a user-friendly method, the Testing Order of Merit statistic, to 
qualitatively analyze the randomness of biochemical testing within the Army. The 
method presented expands upon theory originally presented by Claude E. Shannon of 
Bell Labs in the 1940s. Additionally, historical data is analyzed and presented using the 
Testing Order of Merit statistic as a metric.  
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The Analytic Challenges of the Army's Network-enabled Future Combat Systems 
LTC Duane E. Brucker, U.S. Army TRADOC Analysis Center ­ White Sands 
Missile Range; Paul J. Deason, U.S. Army TRADOC Analysis Center ­ White Sands 
Missile Range 
 
“…The science and technology insights and breakthroughs are being discovered today in labs, 
workshops and simulations centers all across the country. We’re looking for capabilities that will 
gird a capabilities-based force for the full spectrum of missions we will face in the 21st century”  

Army Chief of Staff Eric K. Shinseki 
 
Abstract: The danger of the Army not transforming into a force that can project real 
sustainable combat power anywhere in the world is the Army becoming irrelevant to 
national security. The vision GEN Shinseki has for the future of the Army is 
encompassed in the transformation to a future Objective Force. The primary instrument 
for Transformation is the yet-to-be-developed Future Combat System. The envisioned 
FCS will be networked to allow real-time situational awareness and require less logistics 
and maintenance than current combat systems. It will also be able to operate more 
effectively in joint operations. This Objective Force will be more deployable than current 
heavy divisions, yet have more lethal firepower than today’s light and heavy divisions. 
“We must be able to project power anywhere in the world – not just in the easily 
accessible areas with multiple air and sea ports of debarkation, but in the most remote, 
landlocked and infrastructure-poor areas as well, “ Shinseki said. “That goal was critical 
as we crafted the Army Vision over two years ago. Our current operations in Central Asia 
reinforce the need for Objective Force capabilities as we balance this global war against 
the asymmetries of international terrorism with the regional Threats that demand our 
attention and a need for conventional warfighting process.” 
 
The Army may be required to deal with a wide range of potential operations from 
stability and security operations (SASO) through small-scale contingencies (SSC) and 
regional conflicts to major theaters of war (MTW) in the next decade and beyond. The 
globalization of societies, the urbanization of populations, and the advances in 
technology, information technology in particular, combine to produce unique challenges 
to the superiority of the Army in any operation that it may undertake. A comprehensive 
description of the FCS operational environment may be found in “The Future Threat 
2015” 
 
Principal assumptions in analyses are that the models and simulations, and their data and 
algorithms represent the FCS, Stryker Brigade Combat Team, and legacy forces 
sufficiently accurately and robustly for meaningful analyses and comparisons to be 
accomplished. This is especially vital in representing the electronics, sensors, 
communications and fusion systems that transform data to information to intelligence to 
knowledge to decision following the guidance of the mission and the tactics, techniques, 
and procedures necessary to enable the force.  
 



The network centric and information focus of the FCS-equipped Objective Force requires 
the combat simulation models be able to represent the gathering, processing, 
dissemination, interrelation and interaction, and effect of information to a degree that 
heretofore has not been necessary. Or possible. 
 
Technical solutions projected for FCS do not exist. Data will be derived from models and 
not from test results. These solutions will be expected from the well-designed 
experiments and analytic rigor from the entire body of experimental statisticians 
throughout the United States. This is the challenge to this body. The challenge for the 
future to be a part of the necessary transformation of the Army to an effective, efficient, 
and relevant arm of decision for the national security of the United States and its allies in 
the 21st Century. 
 
Threat Management Using Passive Inference of Network Infrastructure Topology 
John Rigsby, Naval Surface Warfare Center; Jeff Solka, Naval Surface Warfare 
Center 
 
Abstract: Understanding how network infrastructure changes with time is essential to 
protecting an organization's network. Multiple methods for discovering network topology 
using different areas of graph theory and concepts of social network relationships will be 
discussed. Passively detecting changes in network topology and presenting this to 
network engineers and analysts will increase an organization's threat management 
capabilities to counter malicious network activities; the application of change point 
detection to social networks will be the backbone of this approach. This research project 
is in the early stages of development and will be presented as such. 
 



  
A Statistical Methodology for Automatic Target Recognition in Satellite Imagery 

 
John Bart Wilburn 

Recognition Research 
Tucson, Arizona 

Wilburn@dakotacom.net 
 

Abstract: A methodology is presented for Automatic Target Recognition (ATR) 
of missiles in satellite imagery of a cloud-covered earth. The method is based on the 
results of a two dimensional local maximum filter applied to a sequence of simulated 
images capturing the boost phase of a missile, and is an algorithmic estimate of the 
probability of detection on a trajectory, i.e., a “track”. Track association is determined by 
the significance level for rejecting hypotheses that detection events in sequential frames 
of imagery are not associated with missile targets or satellite motion. 
 
Introduction: 
The problem addressed here is a calculation of statistical confidence in the detection and tracking 

of missile targets acquired by a satellite sensor in the boost phase of missile deployment.  The specific 
task of the system is to detect a small, relatively bright, moving target against a scene cluttered by clouds. 
The criteria for success are a high probability of detection and a low probability of a false alarm, and 
computational efficiency. Further, assumptions for this system must be minimal as follows:  

 
1. The elements of the scene are either background features, e.g., clouds and 

terrestrial lights, or missile targets. 
2. Target radiance is additive.  
3. The target moves along a line of predictable shifts between frames of imagery,  
4. The target object is small, generally much less than the resolution of the optical 

system, thus it is represented in the image of the point-spread function (psf) of the optical system, 
adequately sampled by the focal plane array (FPA), with the peak expected most of the time to be 
in the instantaneous-field-of-view (IFOV) of one pixel.  
 
The method of detection and tracking proposed is based on the notion that detection is an event, 

i.e., the occurrence of an isolated and distinct pixel. To satisfy this requirement, the satellite imagery must 
be filtered in a manner that results in distinct and isolated pixels, and the filter that satisfies this 
requirement is the local maximum filter1. As will be shown, this filter also satisfies the requirements of a 
high probability of detection and a low probability of false alarm, is computationally efficient, and it is 
well behaved in the context of cloud-cluttered imagery 

 
The Local Maximum filter: 
The local maximum filter is a form of ranked-order (RO) filters developed from theory 

described in prior work1 - 3 on RO filters. The application of the local maximum filter to target 
recognition in a cluttered image is a form of feature extraction derived from a fundamental 
departure of local RO filters from classical approaches to image filtering. The local maximum 
filter, and its RO family relative the local median filter, are a window type of filter and function 
according to the satisfaction of a reflexive relationship between the location and relative values of 
the data in the sample space of the filter window. Morphological considerations of the filter, then, 
apply to the structure of the data with respect to the reflexive relationship defining the filter, and 
the morphology of a particular object, or class of objects, of interest are represented in the filter 
coincidentally as properties of an object that satisfy the reflexive relationship of the filter. A 



presupposition of an extensional property, such as the shape of a particular object, or class of 
objects, evident in some context, is not represented in the filter.  

 
The approach to target recognition described here is not to focus on suppressing the clutter to 

reveal the target, but rather to focus on finding the target embedded in the clutter. A canonical description 
of this approach is looking for properties shared by any significant part of all targets, but not shared by 
other features in the image. This is the mode of object recognition employed by human observers4, indeed 
by all animals. This principle, and our application of it, and may be illustrated by the analogy of a looking 
for a baseball in a pile of leaves.  A baseball has the properties of sphericity, grayness and it has a seam. 
All baseballs share these properties; wherever you see a baseball under any conditions you see it, it has 
these properties.  If we can see as much as any quarter of any baseball in any situation of the clutter, we 
see these properties. We expect nothing else in the pile of leaves to have these properties, and if we see 
anything else with these properties and claim it to be a baseball, then we commit a type-II error - a false 
alarm. Conversely, if we see some part of a baseball and reject it, then we commit a type-I error.  

 
Filters can be constructed in a variety of geometries (Figure 1) that include adjacent pixels on 

linear intersecting arms, denoted by the “0”, with a single common pixel at the intersection, or center 
position indicated by “ ⊗”, that is also the output port of the filter.   The orthogonal filter prohibits 
adjacent maxima on the horizontal and vertical axes while the diagonal filter prohibits adjacent maxima 
on the diagonal axes.  The hexagonal filter prohibits adjacent maxima on all but the horizontal axis while 
the octagonal filter prohibits adjacent maxima on all axes.  The latter is well suited to detection and track 
of a missile launch in any direction. 
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Figure 1.  Filter Geometry (Number of Elements) 
                

The local maximum filter functions according to a rank-order relationship of the data sampled by 
the filter constrained by a predicate. A predicate has semantic content as it is either true or false, and the 
filter is constrained by it to be defined if the predicate is true, or undefined if it is false. The predicate is a 
description of the data in terms of conditions.  If the data do not satisfy the conditions, then the predicate 
is false and the filter returns a null result.  If the data satisfy the conditions, then the predicate is true and 
the filter returns the result of the filter function at the center position of the window.  

 
The predicate conditions of the local maximum filter involve the value and position of an 

individual datum with respect to the value and position of all data within the scope of the window, and 
they apply to each of the 1-d arms of the filter simultaneously for each increment of the filter in the field 
of data. The predicate conditions are: (a) the datum sampled by the center position of the filter, “ ⊗”, is 
simultaneously the maximum value of the data of every axis of the filter, and (b) the satisfaction of a 
threshold established by the SNR statistics of the image. This threshold defines the lower limit of a 
reasonably expected target in terms of its SNR determined by its brightness and the standard deviation of 
the image brightness. If the data sampled by the filter satisfy these conditions, the predicate is true and the 
filter returns the datum sampled by the center position of the window. If the predicate is not true, then the 
filter returns a zero. This functioning of the octagonal filter results in isolated and distinct pixels as 



intended, but of particular interest is the additional realization that the output image of all local maximum 
filters is a subset of the input image, thus radiometric information is preserved.  

 
The effectiveness of the octagonal local maximum filter in isolating local maxima is 

demonstrated (Figure 2) for a simulated cloud scene (102 x 102 pixels) in a solar band from the Synthetic 
Scene Generation Model (SSGM). The imagery is presented as a bit map on an 8-bit scale, thus all pixel 
values are on a scale of 0 to 255. The figure compares the pixel imagery and histogram/exceedance 
statistics before and after application of the filter.  The comparisons indicate a significant reduction in the 
number of pixels at all brightness levels:  the total number of pixels decreases from greater than 104 to 
less than 200. The filtered image consists of a pattern of isolated pixels as intended, and the pixel levels of 
the original, or input, image are preserved in the output, or filtered, image, thus radiometric information is 
preserved. As can be seen, many regions of a natural image above some threshold do not have local 
maxima in the sense defined here. 
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Figure 2.  Filter Performance for SSGM Scene 
 

The performance of the filter is specific to a class of image clutter represented by figure 2. The 
image in figure 2 is one frame of a sequence of 26 frames simulating the continuous nadir view at one 
frame per second of a cloud cluttered earth by satellite sensor in low earth orbit. This set of imagery is 
reasonably stationary in the strict sense: the image mean of the set <<I>>=31.1 with, σ<I>=2.72, and 
mean standard deviation: <σI >=19.4 and σσ=1.1. The statistics of the image in figure 2 are: <I>=33.7; 
σI=18.9, skew=2.58, and Kurtosis=15.42. The filter performance is described by two parameters: the 
probability of detection, pd, and the probability of false alarm, pfa.  These probabilities are measured in 
two kinds of Monte Carlo tests of 300 trials of the filter against the raw image shown in figure 2 for 
randomly inserted targets of different brightness levels. The pd is the empirical probability in the Monte 



Carlo test that the actual target is one of the output pixels of the filtered image, and pfa is the empirical 
probability of pixels appearing in the output image that are not the target.   

The first kind of Monte Carlo test, shown in figure 3, is of a fixed composite of target plus 
background randomly inserted in place of a background pixel. The second kind of Monte Carlo test, 
shown in figure 4, is of a fixed target brightness added to a randomly selected background pixel. These 
two Monte Carlo tests satisfy different purposes. The first kind is a measure of the filter to detect fixed 
pixel brightness levels in the test image. This first kind of Monte Carlo test measures the probability of 
the filter to detect an unknown target parameterized by an average brightness of the pixel containing the 
target measured over all images having an intensity distribution as shown in figure 2. The second kind of 
Monte Carlo test is of a simulated target of known, absolute brightness to satisfy a given probability of 
detection in imagery having an intensity distribution as shown in figure 2. As will be seen, the average 
signal-to-noise of the target plus background pixels, <SNRt>, measured in the second test, and the 
<SNRt> inferred from <It> of target pixels, and <I> and σI of the total image in the first test are 
remarkably close.   

 
The first kind of test is parameterized by the signal-noise (SNRi) of the target pixel for the ith level 

of brightness: . iT
 

 
I

i
i

T
σ=SNR , where σI is the standard deviation of the image brightness.     (1) 

  
The filtered image is subject to a threshold test by setting to zero all pixel output of the filter 

satisfying the integer calculation of . The purpose of the test was to describe the 
behavior of the filter parametrically in terms of p

Iin SNRp σ*<
d and pfa as a function of a variable SNRi in the space of 0 

to 7.5. The pd and pfa   results are shown in figure 3. 
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Figure 3.  Composite Target Pixel Detection and False Alarm from Monte Carlo Statistics 
 
 
   The results of the Monte Carlo Testing show that the filter is well behaved and that the region 

of a reasonable target is one having a SNR ≥2.5 satisfying a probability of detection of pd >0.5 and a 
probability of false alarm of pfa = 6.4 X 10-3. 

 



The second kind of Monte Carlo test follows from the first kind with a criterion for detection of 
pd >0.5. In this test, we fix the pd and search for the minimum absolute target brightness satisfying this 
criterion as a function of the threshold of the filter in terms of the SNR. The results are curves of absolute 
target brightness as a function of SNR, or pfa by figure 3, parameterized by pd. The average (target + 
background) pixel signal-to-noise, <SNRt> satisfying pd is computed over all measures of SNRt in the 
Monte Carlo tests of the image. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 4. Target Level Satisfying a pd from Monte Carlo Statistics 
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The distribution of the probability of detection of a given target level in this test 

follows the distribution of the image intensity (figure 2) according to conventional signal 
detection theory in terms of the skewed statistics of the image data. Thus it follows that 
the target level for pd=0.50 is constant for thresholds less than or equal to the SNR of the image, 
as that threshold level corresponds to the image mean value, and increasing for thresholds greater 
than the image mean. By the same reasoning, we expect that target levels for pd>0.5 is constant to 
thresholds somewhat greater than the SNR of the image, and increasing thereafter, and we see 
that this is indeed the case. The results show that the minimum target level for pd=0.51 is target 
level=18 having a <SNRt>=2.75 at a threshold of SNR=1.78, or by figure 3, a pfa=1.58 X 10-

2,and increases to target level= 26 (<SNRt>=3.18) at a threshold of SNR= 2.5 (pfa=6.4 X 10-3). 
The results for higher probabilities of detection follow a similar pattern: The minimum target 
level at pd=0.78 is target level=30 (<SNRt>=3. 40) at a threshold of SNR= 2.0 (pfa=1.2 X 10-2), 
and for pd=0.85, the minimum target level is a target level=40 (<SNRt>=3. 9) at a threshold of 
SNR= 2.5 (pfa=6.4 X 10-3).  These results compare favorably with the inferences drawn form 
figure 3, and the expected results from signal detection theory. 

 
Target Recognition: 
The schema for target recognition combines the notions of detecting local maxima and persistent 

linear motion. Persistent linear motion is a high probability of detection on a line of predictable shifts 
between frames, and it is referred to as a track. Determining a high probability of detection on a track is 
track association.  We may combine these notions with our assumptions of the imagery and conclude that 
any track consistent with background motion, which we know a priori, is not like a target, and any track 
inconsistent with background motion is like a target. In this way, track association inconsistent with 
satellite motion, i.e., inconsistent with background motion, constitutes target recognition. 

 



We may illustrate the schema for recognition of missile targets in boost phase by application of 
the Octagonal filter to a dynamic sequence of 25 SSGM images simulating sensor acquisition at the rate 
of 1 frame per second of a missile target. The missile simulated in this set of imagery is a theater missile 
and has a variable target pixel brightness with <SNRt> =3.8 and a σt=1.7. The results of the Monte Carlo 
test of the filter shown in figure 3 indicate that we may expect this target to have a pd ≅ 0.8, thus it is a 
target we may reasonably expect to detect and it is a typical target by definition. Recognition of the target 
is determined by the measure of confidence we may have in associating detection of this target with a 
specific track as a reasonable and typical target. 

 
The detections of the target and a background feature suggest a hypotheses of a target track rt = x 

– 4y, i.e., a shift of ∆x = 1 and ∆y = -4 between frames, and a satellite motion track of rs= -2x-3y. 
Detections by the local maximum filter satisfying the hypotheses of rt and rs at a threshold of SNR=2.5 
are shown in figure 5 as a composite of frames plotted on an arbitrary frame of the input set of imagery 
for reference. The detection events are indicated by a bright cross reflecting a tolerance in detection of +/- 
1 pixel to allow for non-integer multiples of pixel movement between frames. Failures of the filter to 
detect an object satisfying this hypothesis are shown by a null result. 
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Figure 5: Track data for 25 sequential frames 

  
The notion of detection being an event enables this approach to result in an assertion of target 

recognition bounded by the probabilities of type-I and type-II errors as follows.  The data in figure 5 
reveal that the filter detected an object on track rt in m=20 of N=25 frames, and we employ the binomial 
probability law (1) to calculate the type-I and type-II errors, α and β respectively, for hypotheses of pj on 
rt .   
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To find the maximum likelihood estimate of pd, we plot the α and β errors as a function of pj, =0 
-1.0 as shown in figure 6. From figure 6, we can see that a 99.6% confidence region of pd is found by 
observing that the type-I error =0.002 at p=0.5, and the type-II error =0.002 at p=0.945, thus we have a 
probability of 0.996 that 0.5 <pd <0.945. The maximum likelihood estimate of pd is the value of pj where 
the type-I error= the type-II error =0.5, and that occurs for pj=0.78.  
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Figure 6:  Type-I and Type-II probabilities of pd  

 
 
Estimating pd is an intermediate step to asserting an object to be a target. We may combine the 

estimate of pd with the notion that it is specific to a track and define target recognition as: pd >0.5 on a 
track. We may then accept or reject a null hypothesis that an object is not a target on that basis with the 
alternative hypothesis being that the object is a target; the decision determined by the respective 
probabilities of either hypothesis being true. The probability of the null hypothesis being true is given by 
the type-I error = 0.002 evaluated at pd =0.5, thus we may confidently reject the null hypothesis, knowing 
that there was only a 0.002 chance that it was true, i.e., a significance level of 0.002, and accept the 
alternative hypothesis that the object is a target on a track, or it is recognized, with a probability given by 
the type-II error = 0.998 of being true.  

 
Tracks are found by hypotheses of a track on all pixels based on neighboring pixels within range 

of possible motion in subsequent frames. The hypotheses are confirmed in the manner shown here to be 
either satellite tracks and ignored, target tracks and recognized, or pixels that cannot be confidently 
associated with any track and ignored as false alarms. The development of this method is dependent on 
the fidelity of the simulation of the targets, and particularly dependent on the fidelity of the simulation of 
the imagery of a cloud cluttered earth produced by a satellite sensor. 
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Finding Clusters 
Jon R. Kettenring, Telcordia Technologies 
 
Abstract: Military intelligence and homeland defense problems often involve analyses of 
massive amounts of data. It is tempting to tackle such problems using methods of data 
mining, the most common of which is cluster analysis. Indeed, clustering methods appear 
on the surface to be just the right tools for breaking complex, difficult data down into 
manageable cohesive subsets. Yet the reality in practice is that these methods often fall 
short on performance. In this talk, I will offer a personal perspective on the difficulties of 
finding clusters and suggest opportunities where new research could help improve the 
situation. 
 



Special Session 3 
 
Assessing Uncertainty in Mesoscale Numerical Weather Prediction  
Montserrat Fuentes, North Carolina State University; Adrian Raftery, University of 
Washington 
 
Abstract: Current methods of meteorological forecasting produce predictions with 
unknown levels of uncertainty, particularly in regions with few observational assets. 
Forecast errors and uncertainties also arise from shortcomings in model physics. With the 
ability to estimate the uncertainty in predictions, forecasters would have a powerful tool 
to make decisions and to judge the likelihood of mission success. 
 
The goals of our work are to develop methods for evaluating the uncertainty of mesoscale 
meteorological model predictions, and to create methods for the integration and 
visualization of multisource information derived from model output, observations and 
expert knowledge. We do this by extending the recently developed Bayesian melding 
approach. 
 
We also develop a new approach to assess the performance of mesoscale numerical 
models, and show how it can also be used to remove the bias in model output. We specify 
a simple model for both numerical model predictions and observations in terms of the 
unobserved ground truth, and estimate it in a Bayesian way. 
 
Local Probability Propagation Algorithms for Approximate Inference in Graphical  
Models 
Martin Wainwright, University of California-Berkeley, Tommi Jaakkola, 
Massachusetts Institute of Technology, Alan Willsky, Massachusetts Institute of 
Technology 
 
Abstract: Graphical models provide a flexible and powerful framework for modeling 
interactions among a collection of random variables. As such, they are studied and used 
for a variety of purposes, including statistical image processing, error-correcting coding, 
artificial intelligence, and communication theory. One important problem is to use a set 
of noisy observations to compute important statistical quantities, including posterior 
marginals, the maximum a posteriori (MAP) configuration, and the log likelihood of the 
data. Local probability algorithms (e.g., belief propagation; sum-product; max-product) 
have proven to be very useful for this purpose. If the graph is cycle-free (i.e., a tree), then 
the local message-passing updates are guaranteed to converge and compute the correct 
quantities. For a graph with cycles, on the other hand, convergence is no longer 
guaranteed, and the algorithms provide only approximations. 
 
In this talk, we describe how these algorithms can be understood as seeking a particular 
“reparameterization” of the distribution on the graph with cycles. This perspective leads 
to an intuitive characterization of the possible fixed points, and also to understanding of 
the nature of the approximation error. We also briefly describe various extensions based 
on convex analysis, including: (a) a technique that provides efficiently computable 



bounds on the log likelihood; (b) a method for computing provably exact MAP estimates 
for a subclass of problems, based on the idea of (hyper) tree agreement. 
 
C4ISR and the Future Force 
Monica Farah-Stapleton, Communications-Electronics Command 
 
Abstract: The last decade has seen the U.S. Armed Forces engaged in an intensive effort 
to digitize the battlespace, by leveraging the Information Technology explosion of the 
Nineties. However, this approach did not address the warfighter's ability to be more 
mobile and responsive. The goal for the next decade is to exploit network centric 
technologies to support a lighter, more responsive, and more lethal force. Consistent with 
this trend, future tactical Army systems are expected to integrate Command, Control, 
Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) 
capabilities to an unprecedented degree. The concept of trading “information for armor” 
poses a significant challenge for the new generation of Command and Control (C2), 
Intelligence, Surveillance and Reconnaissance (ISR) (to include Target Acquisition) and 
Communications (Comm) systems. The US Army has performed a C4ISR systems 
engineering analysis focusing on the Dismounted Soldiers through the Unit of 
Employment (UoE) view. The intent of this study was to provide a process as well as a 
product that will facilitate discussion and collaboration among lead Government and 
Contractor organizations regarding the integration of previously disparate C2, ISR, and 
Comm domains. One of the by-products of a C4ISR systems engineering analysis is the 
source data employed in the methodology to represent C4ISR in Force on Force models. 
As the current focus is on Comm representation, the methodology is generating model 
propagation effects and model network effects. This talk will discuss the work being done 
by the Army on C4ISR systems of systems engineering analyses in support of future 
tactical Army systems, and the relationship of this work to C4ISR representation in Force 
on Force models. 
 
Particle Filtering and Spatial Prediction in the Battlespace 
Noel Cressie, Mark Irwin, and John Kornak, Ohio State University 
 
Abstract: There are considerable difficulties in the integration, visualization, and overall 
management of battlespace information. One problem that we see as being very 
important is the combination of (typically digital) information from multiple sources in a 
dynamically evolving environment. In this paper, we present a spatial-temporal statistical 
approach to estimating the constantly changing battlefield, based on noisy data from 
multiple sources. The potential danger from an enemy's weapons is examined in the 
spatial domain and is extended to incorporate the temporal dimension. Statistical methods 
for estimating danger fields are discussed, and an application is given to a data set 
generated by a simple object-oriented combat-simulation program that we have 
developed. This research was carried out by a group of Ohio State University statisticians 
supported by ONR's Probability and Statistics Program. 
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A Microarray Lesson from Dear Old Dad (Design-Analyze-Display) 
Russell Wolfinger, SAS Institute 
 
Abstract: As our familiarity with microarray technologies matures, so should the 
sophistication of the ways we use them. Traditionally sound scientific practices, tempered 
with modern knowledge, remain the fundamental enablers of hypothesis-driven research. 
Adequate replication at population levels, balanced randomization of treatment 
assignments, and proper attention to sources of variation are all generic and time-tested 
methods that remain underutilized in many microarray studies. Good experimental design 
not only leads to the most efficient use of resources, but meshes naturally with well-
chosen statistical models and inferences. Techniques such as the mixed-model analysis of 
variance have been employed successfully for decades in other disciplines such as 
agriculture, genetics, and clinical trials, and are now beginning to capture attention in the 
molecular biology community. A relatively new aspect is the need to visualize the high 
volumes of results from these analyses. We learn from DAD (Design-Analyze-Display) 
in the context of the peroxisome proliferator and phenobarbital data from the two papers 
of Hamadeh et al (2002, Toxicological Sciences, 67, 219-240) and using software from 
the upcoming SAS Microarray Solution. 
 



Contributed Session 9 
 
Statistical Techniques for Breaking Steganography 
R. Chandramouli, Stevens Institute of Technology 
 
Abstract: Steganography is a relatively new area of information assurance research. It 
deals with hiding messages in plain looking signals (e.g., audio, image or video) such that 
their very presence is concealed. Recent press reports based on government intelligence 
sources suggest that steganography based covert communications were used in planning 
the 9/11 attacks. With the advances in Internet technologies steganography based security 
threats could become increasingly prevalent in the future. Therefore it is imperative to 
develop techniques to intercept and break malicious steganography. We believe that these 
techniques will help to develop early warning systems and trigger appropriate command 
and control for homeland security in which the U.S. Army plays a major role. 
 
In this paper we discuss statistics based strategies to detect and estimate steganography 
based covert communications. First, breaking steganography (a.k.a. steganalysis) is 
formulated as a statistical decision fusion problem. This formulation is then used to detect 
if a signal under investigation contains any secret messages. Theoretical properties of this 
methodology are investigated along with practical applications. The second part of this 
paper considers estimating hidden messages based on a statistical blind separation 
technique. Within this theme, questions that are addressed include: what statistical 
properties must a steganography algorithm satisfy to escape detection and, steganography 
key estimation. A number of examples for image steganalysis applying our techniques 
will also be presented. 
 



Classifier Optimization Via Graph Complexity
Measures
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Abstract

This paper examines the use of minimal spanning trees as an alternative measure of
classifier performance. The ability of this measure to capture classifier complexity is
studied through the use of a gene expression dataset. The effect of distance metric
on classifier performance is also detailed within.

Keywords
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Introduction

Given a set of observations X along with a set of associated class labels C one is
often interested in constructing a classifier which is essentially a mapping from X
to C. The problem with constructing such a mapping comes when the inherent
dimensionality of the observations is high. In fact many modern datasets may con-
sist of less than one hundred observations in several thousand dimensions. Despite
the requisite considerations for the curse of dimensionality the community that pro-
duced such data still wishes to be able to determine the classification mapping. In
fact they are often interested in identifying a small, less than 100, subset of the
collected data dimensions wherein the various classes are well separated. Given the
fact that in the multiclass case the identified dimensions might be different for each
of the particular classes or even different when we compare each class against every
other class, one by one, the selection of these particularly fruitful dimensions might
be particularly daunting.

Selection of the features is of course predicated on some sort of measure of their
ability to contribute to the discriminant analysis of the particular class. One can
formulate various figures of merit to use including cross-validated nearest neighbor
classifier performance. This figure of merit while simple to implement is quite
computationally intensive. Potential benefits may be obtained from the use of other
figures of merit that might serve as an alternative to the cross-validated nearest
neighbor performance, while still capturing the ability of the the cross-validated
nearest neighbor performance to quantify the difficulty of the classification problem.

Another factor that can contribute to the classifier performance is the manner
in which one measures the distance between observations. Our previous efforts (ref



CEP JSM 2000) indicated the benefit of varying the choice of Minkowski p param-
eter when one measures the distance between observations. In fact the creation of
any sort of classification scheme is predicated on the ability to measure distances
between observations. We are of course interested not only in how classifier perfor-
mance might change as a function of the Minkowski p parameter but also how any
sort of proposed complexity measure might change as one varies the p parameter.

Given these preliminary discussions the paper unfolds as follows. First we pro-
vide some background discussions as to our approach to the feature identification,
classification complexity quantification, metric space adaptation methodology. Sec-
ond we illustrate the application of the discussed approaches to an artificial nose
and gene expression dataset. Finally we close our discussions with some indications
of our future plans for continuing work on these issues.

Background

Given X a n x d matrix of observations and a set C of n associated class labels
chosen from the set 1, 2, · · · , nc then one is interested in constructing a mapping
Y : X → C that associates with each x ∈ X a class label. The simplest way
to measure the efficiency of said classifier is by the cross-validated single nearest
neighbor error rate L̂ or alternatively by the cross-validated single nearest neighbor
probability of correct classification 1− L̂.

The performance of the classifier is in part determined by the way that we choose
to measure distances between the observations. We choose to write a generalized
distance function d(x, y) between two observations in our original space as

d(x, y) = (
d∑

i=1

wi|s(xi)− s(yi)|p)
1
p (1)

where w is a weighting vector that indicates how much each of the d dimensions
contributes to the distance, s is a smoothing function, and p is a parameter that
indicates the form of the Minkowski metric. We have previously presented results
that examine the effects of varying these parameters on single nearest neighbor
classifier performance as applied to an artificial nose dataset [Priebe et al., 2000].

The purpose of the current article is to continue these discussions and also to
examine the use of a minimal spanning tree as a classifier complexity measure.
Previously Friedman and Rafsky proposed a test based on the minimal spanning
tree to determine whether two samples of observations were drawn from the same
distribution [Friedman and Rafsky, 1979]. Recall that given a graph G a minimal
spanning tree is a connected subgraph that has no cycles which covers each point
in the graph and whose sum of edge weights is minimal [Gross and Yellen, 1999].

One can use this method to characterize classifier complexity as follows. First
compute the minimal spanning tree based on the full set of observations. Second,
count those edges in the minimal spanning tree that travel between disparate class
types. The number of such edges is then used to characterize the complexity of the
problem.

Figure 1 shows a representative spanning tree obtained based on a sample of 100
points from two bivariate normals, µ1 = [1, 1],µ2 = [−1,−1], σ1

xx = 1.5, σ1
yy = 1.,

σ2
xx = 1., σ2

yy = 1.5. The red edges indicate edges between disparate classes.
At times in the results section we will be interested with which subset of d-

dimensional features contributes in a positive manner to the discernibility of the two



classes. One classic way to characterize the manner in which a particular feature
contributes is the scatter. There are numerous ways that this term has been defined
in the literature but we will follow Duda, Hart, and Stork, 2000 [Duda et al., 2000].
We begin by considering two classes with C1 and C2, with n1 and n2 members
(respectively).The class means are given by

mi =
1
ni

∑
x∈Ci

x.

The class scatter matrices are given by

Si =
∑
x∈Ci

(x−mi)(x−mi)t.

The within class scatter is defined by

SW = S1 + S2.

The between class scatter is defined by

SB = (m1 −m2)(m1 −m2)t.

In the univariate case SB and SW are scalers and we choose those features with
large values of SB/SW . In the multivariate case SB and SW are no longer scalers
and we choose those features with large values of tr(SB)/tr(SW ).

Results

We have chosen to illustrate the performance of our algorithms using two datasets.
The first dataset is an artificial nose dataset. The response of a nonlinear fiber
optic artificial nose was measured when it was exposed to a target compound,
trichloroethylene, in conjunction with various confusers, Coleman fuel, chloroform,
and others, against just the confusers mixed with air. The dataset used for our
analysis consisted of 80 observations with target compound and confuser along
with 80 observations or just the confuser compound. Each observation consists of
19 fibers sampled at 2 wavelengths 60 times during the fiber exposure phase. Hence
the response of the system consists of a point in a 2280 dimensional space.

The second dataset that we will be discussing is a gene expression dataset that
was previously analyzed by Golub et al 1999, [Golub and Slonin, 1999]. This Af-
feymetix dataset consists of measurements of over 7000 genes on a group of 72
patients all of whom were currently ill with leukemia. The patient population was
divided between those patients with the acute lymphoblastic variant (ALL), 47, and
the acute myeloblastic variant (AML), 25. The discriminant analysis problem in
this case was distinguishing between the ALL and AML varieties.

Figure 2 presents average cross-validated single nearest neighbor classifier per-
formance, green curve, along with average cross-validated minimal spanning tree
based complexity, blue curve, as a function of Minkowski p parameter obtained us-
ing the raw artificial nose data. We notice that the complexity curve is low when
the performance curve is high, and that the complexity curve is high when the per-
formance curve is low. We also note that the optimal performance is obtained at a
Minkowski p parameter of 5. This type of deviation from the standard Euclidean
parameter value of p = 2 is in keeping with our previous work on this dataset
[Priebe et al., 2000].



Given an optimal p parameter value of 5 we would like to know how the perfor-
mance varies as a function of the included scatter selected fibers. Figure 3 shows
average cross-validated single nearest neighbor performance as a function of scatter
selected fibers at p = 5 obtained using the raw artificial nose data. We notice that
this plot indicates that one can improve upon the optimal performance of .75 ob-
tained using all 38 fibers at a p = 5 by using the top 21 scatter selected fibers at a p
= 5, measured performance level of .78125. We need to clarify that the ranking of
the scatter selected fibers was obtained by computing the scatter value for each of
the fibers individually and then ranking them based on the obtained scatter values.
One again we point out the fact that the performance and complexity curves seem
to be mirror images of one another. This is the type of behavior that we would
expect if the minimal spanning tree complexity measure was truly capturing the
difficulties associated with the classification problem.

The previous results detail the benefits of first choosing an optimal Minkowski p
parameter and then choosing an optimal weighting or w parameter. Next we con-
sider first choosing a smoothing function s, followed by a Minkowski p parameter,
and finally an optimal w parameter. It is the hope that one can improve classifier
performance by first choosing s, then p and finally w. First we smoothed the nose
data using a spline-based smoother. Figure 4 presents average single nearest neigh-
bor cross-validated performance and average complexity as a function of Minkowski
p parameter for the spline smoothed nose data. The optimal p value of 29 with
an associated performance of .85625 is in keeping with our previous studies of this
data. The behavior of the complexity curve is as expected.

Proceeding as we did when we analyzed the raw nose data we next present a plot
of performance as a function of scatter selected fibers at the associated optimal p
parameter value. Figure 5 presents average single nearest neighbor cross-validated
performance as a function of scatter selected fibers at p = 29 obtained using the
spline smoothed nose data. In this case we were not able to improve upon the
performance obtained using all 38 of the fibers

We next turn our attention to an analysis of the Golub gene expression dataset.
Figure 6 presents average cross-validated single nearest neighbor performance, green
curve, and and average complexity, blue curve, as a function of Minkowski p param-
eter for the full Golub gene expression dataset. We note that the minimal spanning
tree complexity measure seems still to perform quite well and that the optimal
performance level of .8194 is obtained at a p parameter value of 4.

Figure 7 shows average cross-validated single nearest neighbor performance a
function of scatter selected genes for the full Golub data at p = 4. We notice that
we are able to improve upon the performance associated with using all 7000 of the
genes by using the top 372 scatter selected genes, performance level = .84722.

The last analysis that we will present uses a reduced set of Golub genes obtained
as follows. First we use only those genes that have an expression level of 20 or
greater across all patients. Now consider a ng genes by ns patients data matrix.
We first divide each column by its mean. Next we subject each row to a standard
normalizing transformation. Our analysis then proceeds forward with this reduced
set of 1753 genes. Figure 8 presents performance and complexity as a function of
Minkowski p parameter for the reduced Golub gene expression dataset.

We notice that the optimal performance is obtained at a Minkowski p parameter
value of 4. We also notice that once again the MST based complexity seems to
capture the associated discriminate difficulty.

Finally we wish to examine the performance as a function of scatter selected
genes for the reduced Golub dataset. Figure 9 shows performance as a function of



Table 1: Results Summary.
Data Number of Features p 1− L̂
Nose 38 2 .7
Nose 38 5 .75
Nose 21 5 .78125
Smoothed Nose 38 2 .70
Smoothed Nose 38 29 .85625
Smoothed Nose 13 29 .7825
Golub Gene 7129 2 .805
Golub Gene 7129 4 .8194
Golub Gene 372 4 .84722
Reduced Golub Gene 1853 2 .8
Reduced Golub Gene 1853 4 .84722
Reduced Golub Gene 1698 4 .8611

scatter selected genes for the reduced Golub data at p = 4.
In this particular case the full performance level is obtained when one uses 1698

of the original 1753 genes that appear in the reduced gene dataset. We do note that
we can obtain a performance level of on the order of .82 utilizing fewer than 200 of
the original reduced genes along with an associated Minkowski p parameter value
of 4.

Conclusions

Our results are summarized in Table 1. We can see that one can make great im-
provements in classifier performance by merely adjusting the Minkowski p value.
This is in keeping with our previous paper that just focused on the artificial nose
data. We also note that in many cases one can improve performance not only by
optimizing the p parameter value but by also following this optimization with a
down select of the features utilizing a measure such as scatter for a figure of merit
to use in our forward selection process. Finally we note that in the case of the
artificial nose data, we demonstrated the advantage of using a smoother prior to
the p value calculation.

We have not discussed how the magnitude/value of the Minkowski p parameter
might be related in some sense to the structure of the data that we are dealing with.
We have also not examined the simultaneous optimization of p parameter selection,
smoother and feature down selection process. This research is relegated to future
endeavors.

On the complexity front, we have shown that for the two applications at hand, the
artificial nose data and the gene expression dataset that the MST based complexity
measure does a good job of capturing the difficulty of a classification problem.
Currently we merely provide this information as an observation. We have not to
date examined the incorporation of the MST based complexity characterization into
the general feature selection process. This too must be relegated to future work.
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Figure 1: Example minimal spanning tree computed based on two samples from
fairly well separated bivariate normals. The red edges are between disparate classes.
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Performance and Complexity as a Function of Minkowski
p Paramater for the (Nonsmoothed) Nose Data

p=5 

Figure 2: Average single nearest neighbor cross-validated performance, green curve,
and average minimal spanning tree based complexity, blue curve, as a function of
Minkowski p parameter based on the raw artificial nose data.
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Figure 3: Average single nearest neighbor cross-validated performance as a function
of number of scatter selected fibers at p = 5 for the raw artificial nose data.
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Figure 4: Average cross-validated single nearest neighbor performance, green curve,
and average complexity,blue curve, as a function of Minkowski p parameter for the
spline smoothed nose data.
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Figure 5: Average single nearest neighbor cross-validated performance as a function
of number of scatter selected fibers at p = 29 obtained using the spline smoothed
nose data.
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Performance and Complexity as a 
Function of Minkowski p Value for the Full Golub Data

Figure 6: Average cross-validated single nearest neighbor performance, green curve,
and average complexity, blue curve, as a function of the Minkowski p parameter for
the full Golub gene expression dataset.
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Figure 7: Average cross-validated single nearest neighbor performance as a function
of scatter selected genes for the full Golub dataset at an optimal p = 4.
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Figure 8: Performance and complexity as a function of the Minkowski p parameter
for the reduced Golub gene expression dataset.
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Figure 9: Performance as a function of scatter selected genes for the reduced Golub
dataset at an optimal p = 4.



Statistical Classification Based on Contours 
Mark Fitzgerald and Karen Kafadar, University of Colorado--Denver 
 
Abstract: Paleontologists collect data on tracks and footprints of dinosaurs to gain 
information about their evolution, locomotion, and behavior. A particular goal is the 
classification of these footprints to achieve a taxonomy based on this physical evidence. 
Typically, an ``expert'' draws the outline of the footprint from a photograph which is then 
digitized and from which certain ``landmarks'' are identified (e.g., total length, total 
width, digit lengths and widths, angles between digits, heel-to-digit lengths, etc.), and a 
conventional classification algorithm is applied to these landmarks. Bookstein (1986) 
studied this approach in depth. Siegel (1982) developed a ``repeated median regression'' 
algorithm that was motivated by the comparison of skulls based on such identified 
landmarks. Kendall (1980) studied shape using an alternative approach based on 
geometric probability. 
 
Most studies of shape start with the given data. However, these data generally arise from 
an ``expert'' who draws or outlines the footprint from a photograph. A less subjective 
approach would involve a contouring algorithm applied to the data from a digital 
photograph of the footprint. This approach raises two issues: 
 
(1) which contour? ``Experts'' can usually pick out the most likely contour representing 
the outline. Can the expert's intuition be modeled into an objectively-defined contour? 
 
(2) Comparison of contours. If a computer algorithm can identify a contour, or perhaps a 
set of plausible contours, can we model them in a way that allows us to compare the set 
of contours from one trackway to another? This would provide a taxonomy of dinosaurs 
based on footprints. 
 
We describe some approaches to these two issues, along with examples from other fields 
where this problem of classification based on contours also arises. 
 
 
 



Contributed Session 10 
 
A Human Dimension Methodology for Assessing Future Combat Systems’ C4ISR 
Jock O. Grynovicki and Kragg P. Kysor, U.S. Army Research Laboratory 
 
Abstract: As the U.S. Army invests in automation for battle command, it is important to 
determine how technology impacts (either positively or negatively) on operator, staff, and 
organizational performance. While many studies have taken a traditional task analysis 
approach to assessing technology’s effects on battle command performance, this paper 
examines Future Combat Systems’ (FCS) command, control, communications, 
computers, intelligence, surveillance, and reconnaissance (C4ISR) usability, 
functionality, and staff performance issues from a multiple-level systems analysis. 
Specifically, this paper identifies a number of tasks and behavioral characteristics that are 
associated with effective battle command performance at the operator, team, and 
organizational level. Each of these aspects, in turn, suggests a measurement taxonomy for 
assessing the enabling or degrading influence of digitization on battle command 
performance. Thus, a framework for assessing digital staff performance was developed 
that considers, hardware, software, battle command functions, soldier operator 
capabilities, as well as staff and leader dynamics. This Human Dimension of Battle 
Command initiative is intended to help the U.S. Army leadership assess the impact of 
FCS digitization on individual soldier, staff, and organizational performance. The lack of 
emphasis on the human component in the design and integration of automation can result 
in significant performance degradation, increased training requirements, and a lack of 
system acceptance by the soldier. This paper concludes with an example of a set of 
Likert-type scale metrics for use in assessing digitization.  
 
Assessing and Removing Unexpected Collinearity in Designed Experiments 
Trevor A. Craney, Pratt & Whitney 
 
Abstract: When creating designed experiments, it is not always possible to run the 
experiment at the exact settings required to maintain orthogonal effects. However, this is 
not measurement error when precise measurements of the settings can be made once the 
experiment begins. A comparison is made for a 15-run Box-Behnken design using both 
the intended design settings and the actual design settings. Variance inflation factors are 
used to measure the induced collinearity in the effects. Two cutoff values are suggested 
for use to determine when an effect’s variance inflation factor is too large to keep that 
effect in the model. This method is discussed relative to existing methods to offset 
collinearity in regression. 
 



General Session 5 
 
SiZer for Simple, Direct Inference in Exploratory Data Analysis 
Steve Marron, University of North Carolina, Chapel Hill 
 
Abstract: Smoothing methods for exploratory data analysis include histograms and 
scatterplot smoothers. These are powerful tools for finding structure in data, when used 
by knowledgeable practitioners. But traditional implementations can be dangerous when 
used by non-experts, since all too often one can interpret spurious sampling artifacts as 
important underlying structure. SiZer addresses the statistical inference problem of 
separating those features that are important and worth deeper investigation, from those 
that are mere noise artifacts. Results are presented via a novel visualization. 
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