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A BAYESIAN FRAMEWORK FOR STATISTICAL,
MULTI-MODAL SENSOR FUSION

Michael J. Smith* Anuj Srivastava |

Abstract

We propose a framework for obtaining statistical inferences from multi-modal and multi-
sensor data. In particular, we consider a military battlefield scene and address problems that
arise in tactical decision-making while using a wide variety of sensors (an infrared camera, an
acoustic sensor array, a human scout, and a seismic sensor array). Outputs of these sensors
vary widely, from 2D images and 1D signals to categorical reports. We propose novel statistical
models for representing seismic sensor data and human scout reports while using standard
models for images and acoustic data. Combining the joint likelihood function with a marked
Poisson prior, we formulate a Bayesian framework and use a Metropolis-Hastings algorithm
to generate inferences. We demonstrate this framework using experiments involving simulated
data.

1 Introduction

Tactical decision makers in the military and in homeland security are increasingly dependent upon
information collected by an ever-expanding array of electronic sensors. Commanders require sys-
tems that can either formulate decisions in an automated fashion or assist in decision making by
processing the available sensor data. A specific problem is to detect, track, and recognize targets
of interest in a battlefield situation using imaging and other sensing devices. The widespread use
of sensors such as imaging devices has made them essential tools of non-invasive surveillance of
battlefields and public areas such as airports and stadiums, as well as remote locations and areas
of restricted access, where additional preventive measures are needed. Usage of multiple sensors
observing a scene simultaneously has become a common situation. An important question for de-
veloping automated systems is: How to fuse information from these multiple sources to learn and
understand the underlying scene? In this paper, we address this problem of sensor fusion using
a statistical framework, by building probability models for sensor data and scene variables, and
seeking high probability solutions.

What makes the problem of fusing sensor data a difficult one? An important issue is the widely
different nature of outputs generated by different sensors. For instance, an IR camera generates
a 2D image, a seismic sensor measures an electromagnetic wavefront, an acoustic sensor measures
an audio signal, and a human scout reports categorical data. Traditional techniques of extracting
features and merging feature vectors do not apply here directly. Past research in sensor fusion
has generally focused on multiple sensors of similar type, e.g. multiple cameras or multiple signal
receivers, and the solutions tend to exploit this similarity. The problem of sensor fusion from
completely different sensors is much more difficult. An attractive solution is to take a statistical

*Department of Mathematical Sciences, United States Military Academy, West Point, NY 10996
TDepartment of Statistics, Florida State University, Tallahassee, FL 32306



approach and to use joint probabilities instead of fusing data or features directly. That is, define
a single inference space and use different sensor outputs to impose probabilities on this inference
space. Despite differences in the nature of sensor outputs, the probabilities imposed can still be
utilized individually or jointly to form scene estimates.

Some of the current ideas for fusing data from multiple sensors of similar type include the
following. Viswanathan and Varshney [13] use likelihood ratio tests (LRTSs) to combine the decisions
of signal sensors operating in parallel; Costantini et al. [1] apply a least-squares approach to fuse
synthetic aperture radar (SAR) images of different resolutions; Filippidis et al [2] study a similar
problem using two SAR sensors. Rao et al [9] describe a decentralized Bayesian approach for
identifying targets. Kam, Zhu, and Kalata [3] present a survey of techniques used in the problem
of robot navigation including Kalman filtering, rule-based sensor fusion, fuzzy logic, and neural
networks. However, rather limited attention has been focused on fusion of sensors with different
modalities: Strobel et al. [12] describe the use of audio and video sensors for object localization
using Kalman filtering; Ma et al. [5] use optical and radar sensor fusion for detecting lane and
pavement boundaries. Some papers have focused on alternate frameworks for statistical sensor
fusion: Mahler [6] develops the theory of finite-set statistics (FSST) as an extension of Bayesian
methods for multiple-target tracking.

1.1 Bayesian Sensor Fusion

We take a fundamental approach to scene inference using a Bayesian formulation that is similar to
the approach of Miller et al [7, 8]. Rather than extracting features, we choose to analyze the raw
sensor data directly and jointly to estimate the locations and identities of target vehicles that are
present. For this paper, we have avoided the difficulty of temporal registration of sensor outputs by
assuming that all sensors are synchronized in time. However, our methodology obviates the need for
spatial association — the fusion proceeds according to the conditional probabilities corresponding
to each of the different data vectors.

We formulate the sensor fusion problem next. Consider a planar region of a battlefield containing
an unknown number of targets of different types. Our goal is to use the sensor data to detect and
recognize them. Let D C R? be a region of interest in a battlefield, and let X denote an array of
variables describing the target positions (in D) and types. In addition to target positions, there
are a number of other variables, such as their pose, motion, load, etc, that can be of interest and,
in general, one should estimate all of them. We simplify the problem by assuming these other
variables to be known and fixed. In particular, we assume a fixed orientation for all target vehicles.

Table 1: Sensor Suite

Label Sensor Nature of Operation Detected Aspects Output

s1 |Infrared Camera|Low-Resolution Imager| Target Location & ID | 2D Image Array (Y7)

so2 | Acoustic Array | Audio Signal Receiver | Direction Only; No ID  |1D Signal Vector (Y2)

53 Scout Human Vision Rough Location; ID Categorical Data (Y3)

3
s4 | Seismic Array Wave Receiver Rough Location; Partial ID| Zone Detection (Y4)

We cannot observe X directly; instead, we must rely on the data that the sensors generate.
Sensors can typically detect only certain aspects of the scene; i.e., sensors are partial observers.



True Underlying

Scene X

[
9,(¥) 9,(X) 9,0 - 9X

Figure 1: Sensor Data Derived from Projections of the Scene

Our goal is to use this partial and complementary information from different sensors to form a
complete inference. As summarized in Table 1, an acoustic sensor array can detect the directions
along which audio signals arrive from target vehicles, but it ascertains neither the targets’ radial
distances along those directions nor the targets’ identities. A scout is trained to recognize target
identities, but he has limited ability to report precise locations. Imaging sensors are also limited by
their resolution, the possibility of target obscuration, and the presence of scene clutter. We assume
the IR camera provides top views of the scenes using overhead shots. Despite their respective
shortcomings, all of these sensors provide a means to discover the number of targets. In contrast,
a seismic sensor is a “classifier” — it reports only target type (tracked vehicle, wheeled vehicle,
dismounted personnel). We depend upon the complementary nature of the sensors and combine
their data to conduct unified inference about the scene. Our choice of sensors is motivated by
current practices and future plans of the military. In addition to the current routines of battlefield
imaging using aerial (infrared) imaging and human scouting, the Army has interest in developing a
variety of unmanned ground sensors (UGS) that include acoustic and seismic sensors. These UGS
are advantageous over electronic/optical systems due to their low cost, low power requirement, and
large detection/tracking range.

Definition 1 Bayesian sensor fusion is a methodology for scene inference that: (i) formu-
lates a prior distribution for the scene, (ii) constructs probability models for multiple-sensor data
conditioned on the scene, and (iii) conducts unified inference about the scene using the posterior
distibution of the scene given the sensor data.

In Figure 1, we depict as projections g1(X),...,gp(X) the various aspects or attributes of the
scene that our sensors si,...,s, can detect. Each sensor is subject to observation errors o; in the
generation of data vectors Yi,...,Y,. We assume that these errors are independent so that the
Y;s are conditionally independent given X. Let L;(Y; | X) denote the likelihood function for data
vector Y; conditioned on the scene X and let v5(X) denote a prior distribution on the scene X.
Applying Bayes’ rule and assuming conditional independence of the Y;s given X, we obtain the
posterior distribution of our interest:

V(X |Yi,...,Y,) o Li(Yi]|X)-- Lp(Y, | X) vo(X).

Our methodology leads us to generate estimates X of the scene from the posterior distribution
v(X|Y1,...,Y,). Indeed, one may distinguish different Bayesian sensor fusion schemes according



to the sense in which their estimates are optimal. Several criteria such as MAP, posterior median,
or MMSE, are commonly used. Techniques for producing optimal estimates according to any of
these criteria are detailed in [11]. We employ Markov chain Monte Carlo methods to generate
samples from the posterior distribution (X |Y7,...,Y),). Specifically, we implement a version of
the Metropolis-Hastings algorithm in a MATLAB environment. We propose a prior distribution
for the scene space and probability models for the four modes of sensor data mentioned above:
infrared imagery (Y1), acoustic sensor data (Y3), a scout’s spot report (Y3), and seismic data (Yy).
We apply our methodology to simulated battlefield scenes and obtain results that illustrate the
inferential advantage to using all available sensor data.

Next, we outline major goals of this paper. (i) We propose statistical models for seismic sensor
data and human scout reports, and derive their likelihood functions. (ii) Along with the estab-
lished models for IR and acoustic sensors, we use these likelihood functions in formulating a fully
Bayesian approach to battlefield inferences. And, (iii) we construct an MCMC solution to gener-
ating Bayesian inferences from the posterior distribution.

This paper is organized as follows. A representation of targets’ positions and identities, and
statistical models for two sensors leading to a joint posterior distribution are presented in Section
2. A Metropolis-Hastings algorithm to sample from this posterior is described in Section 3. Some
examples of scene inferences presented in Section 4. Finally, some simulation results are illustrated
in Section 5.

2 Scene Representations and Sensor Models

This section presents statistical models and representations for the scene and the sensors. Because
of its modular nature, our methodology can readily accommodate different or additional models
that future research may suggest.

2.1 Scene Representation and Prior Model

Let X denote the positions and target identities of vehicles present in a region of the battlefield.
We represent X as a point in the space X = (22, (D x A)", where D C R? is a battlefield region
of interest, A = {a1,...,an, oy} is a set of M possible target types (ap means that no target is
present), and n is the number of targets present. Since n is not known a priori, we allow for all
possible values of n in the construction of X. To support follow-on Markov chain development, we
discretize the battlefield region D along a rectangular grid: let D = {1,..., R} x {1,...,C} with
R,C < oo. This allows us to use (i,7) coordinates to denote target locations. We also impose
the constraint n < RC. The motivation for an upper bound on the number of targets in a fixed
region of the battlefield is clear: two targets cannot occupy the same physical space. We disallow
the possibility that targets stack themselves vertically; the upper bound RC generously allows
for target placements at each point in the discretized region. This modifies the state space to be
both discrete and finite: X = Uf:CO (D x A)". We express a typical state X € X as a matrix:

Ty e Ty

X =|cg ¢ -+ c¢nl|, where (ri,ci)T are coordinates of target locations. Each column of X
a1 Qg e ap

represents a target described by its center-mass location (row and column) and its identity (o). Let

| X|| = n denote the number of columns in the state matrix X and let X; denote the j*® column

of X for j =1,...,n. For n =0, let Xy denote the empty state.



Figure 2: Left panel shows the top view of a simulated scene containing three trucks and four tanks.
Right panel shows a visual rendering of scout’s spot report Y3 (right) with labeled quadrants.

We consider X to be a realization of a marked homogeneous Poisson spatial point process. In
other words, we make the following collection of assumptions. Let N ~ Poisson(\|D|) for some
A > 0 where | - | denotes Lebesgue measure on R? and we assume that |D| > 0. Conditioned on
{N = n}, let the locations ¢, ..., q, of targets be distributed independently and uniformly in D.
Conditioned on the locations qi,...,q,, let the target identities be assigned independently: for
each location, assign identity o; € A with probability 7; > 0 for j = 1,..., M where Z;‘il m; = 1.
These assumptions specify a prior probability measure 1y defined on a o-field of subsets of X.

2.2 Sensor Models

Here we detail the statistical models that we have adopted for the various sensors under consider-
ation: infrared camera si, acoustic sensor array s, human scout s, and seismic sensor array S4.
For s; and s9, we use established models from the literature with incorporation details contained
in [11]. However, this paper offers new models for s3 and s4 and provides detailed motivations for
both.

2.2.1 Model for Scout’s Spot Report

Army units conduct routine tactical operations in accordance with standing operating procedures or
SOPs. Among other provisions, SOPs prescribe reporting formats that scouts use to communicate
their observations to higher headquarters. Here we assume that the “spot report” format calls for
a partitioning of the observed area D into four quadrants and that the report provides quadrant
counts for each target type. See Figure 2 for an illustration. Let Y3 denote the scout’s spot
report. We represent it as a vector of length 4M where M is the number of target vehicle identities
in A\ay = {au,...,an}. Each component of Y3 belongs to Z; = {0,1,2,...}. We propose a
hierarchical model for the conditional distribution of Y3 given X.

To motivate the construction of the model, we may suppose that the scout sequentially answers
questions that he poses to himself: How many targets? Where are they? What are they? He
answers the first question by counting those vehicles that he can see. A reasonable model should
therefore allow for a variety of cases: he sees all the vehicles that are present; he misses one or
more; he “sees” one or more vehicles that are not present; he loses track of his count and begins
repeating vehicles that he has already counted. But then, regardless of how the scout arrives at
his collection of observed targets, he must decide — vehicle by vehicle — how to classify them
according to quadrant and target type. Again, a reasonable model should allow for some ambiguity
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Figure 3: Distances to Nearest Quadrant Boundaries for a Fourth-Quadrant Target

in the quadrant classification of a target lying close to a quadrant boundary. The model detailed
below exhibits one way to incorporate these observations about the nature of the scout’s report.
Total Count: Let Ng be the total number of target vehicles that the scout observes. We model Ng
as a discrete random variable taking values in Z, with probability masses obtained by evaluating a
Gaussian density function at these points and then normalizing. To specify the Gaussian density,
we set the mean p equal to n (the actual number of targets in the scene) and we take the variance
o2 to be this function of the mean:

o?(n) =

Bo, if n=0;
n/By, if n >0,

where By and (1 are chosen to account for the scout’s level of training, his competence, the status
of his equipment, weather conditions, and other sources of error. Note that the variance increases
linearly with the true target count. Let G(k) = G(k|n, By, 51) denote the probability mass that
this discretized Gaussian distribution places on k. Then

exp(fﬁ(kfn)Q)
Seez, o0 (k- (z-n)2)

n = 0;
G(k) =

exp(—%(k—n)Q)
Yaez, OXP (_%(3_”)2) ’

n > 0.

Quadrant Target Counts: Given {Ng = ng}, we model the components of Y3 as sums of classi-
fication counts constrained so that Z?g (Y3); = no. The counts tally the outcomes of “generalized
Bernoulli” trials. That is, each observed target corresponds to a conditionally independent trial;
each trial has 4M possible outcomes corresponding to the scout’s possible quadrant & target-type
classifications. The outcome of trial ¢ is governed by parameters {p; }?fl that satisfy p;; > 0 and

ijl ptj = 1 for each t = 1,...,ng. These generalized Bernoulli parameters, in turn, depend upon
the scene X. (Note that we have a different collection of generalized Bernoulli parameters for each
vehicle. If, instead, we had one fixed collection of parameters applicable for all ng observed targets,
then Y3 would follow a conditional multinomial distribution given X.)



Now we describe the choice of generalized Bernoulli parameters {p; };ﬂ/[l for the t*" trial. Con-
sider a target at location ¢; = (74, ¢;)” and suppose that ¢; lies within quadrant ;. Our convention
is that a target’s location is specified by its center-of-mass. As illustrated in Figure 3, let d; denote
the distance from g; to the i*" quadrant — Euclidean distance to the nearest quadrant boundary
— and set dy;, = 0. Then, for a fixed constant a > 0, set

_ exp(—dii/a)
Pti = 4 )
ijl exp(—dy;/a)

In words, p¢; is the probability that the scout reports quadrant ¢ as the location for target t.
Now we account for the scout’s reported target type. Let I{a; = j} indicate that «; is the identity
of target t; let I{c; # j} indicate that «; is not the identity of target . We use these indicators
and a classification error parameter denoted o3 to split each py: for j =j; = (i —1)M +1,...,iM
with ¢ =1, 2, 3,4, put

i=1,2,3,4. (1)

P = (L—o3)pul{an =i} + = pul{an # ji}.
In words, the scout correctly reports the target type with high probability and he is equally likely
to report any of the incorrect target types.

We apply the above formulation of generalized Bernoulli parameters {pq}?% to each of the
vehicles that the scout observes (¢t = 1,...,n¢). If it happens that ny = n, where n is the correct
number of vehicles, we assume that the scout observes each target exactly once and that he classifies
them independently as above-described trials. In case ng < n, we assume that the scout observes
and similarly classifies a proper subset of targets, where each of (7;10) subsets is equally likely. In case
n < ng < 2n, we assume that the scout classifies all targets that are present and that he “double
counts” ng — n targets, where each of (non_n) collections of doubly-counted targets is equally likely.
Let |-| denote the greatest integer less than or equal to its argument. For ng > 2n, we assume
that the scout repeatedly classifies each target k& times, where k = [72], and then augments this
redundancy by including an equally-likely choice from among (:f) subsets where r = ng mod k.
Likelihood Function: As suggested earlier, the scout’s target-set selection can be modeled in
many ways. For the scheme described above, conditioned on {Ng = ng}, let T € X denote the
array of targets that the scout observes. Let P(7T') denote the collection of column permutations
of T and let T, € P(T') denote an ordered np-tuple of targets (locations and identities). Then the
description in this section leads to this likelihood function for Y3:

(To)ng

Gg(n
L3(Y3|X) = ;L ?) Z H Y31 pp(Y8)2 pt74M(Y3)4M' (2)
O TeP(T) t=(To)

The permutations arise because the scout may perform his vehicle-by-vehicle classification according
to any ordering; each makes an equally-weighted contribution to the likelihood.

2.2.2 Model for Seismic Data

Open-source documentation about seismic sensors is easy to find; see, for example, “Remote Battle-
field Sensor System (REMBASS) and Improved Remote Battlefield Sensor System (IREMBASS)”
at the location'. According to such sources, a seismic sensor detects and classifies (but does not

Lhttp: / /www. fas.org/man/dod-101/sys/land /rembass. htm
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Figure 4: Same Simulated Scene with Overlay of Seismic Detection Zones (left) and Visual Ren-
dering of Seismic Data Yy (right) with & = 5 labeled zones.

count) those targets whose ground vibrations emanate from within a circular detection zone of
known radius. Depending upon the placement of the sensors, these detection zones may or may
not overlap. Additionally, the battlefield region D may contain “dead space” where target vehicles
are not detectable by any of the seismic sensors.

Any statistical model that describes data collected by these sensors should reflect certain key
aspects of the sensors’ behavior. First, whether or not the sensors detect the target vehicles depends
upon the locations of the vehicles, the locations of the seismic sensors, and each sensor’s detection
zone radius. As stated in Section 2.2.1, our convention is that a target’s location is specified by its
center-of-mass. We assume that all seismic sensors have circular, non-intersecting detection zones
with equal radii as depicted in Figure 4. Second, each sensor provides a single classification that
summarizes the target-type presence in its zone. If at most one target type is present, there is no
confusion. But a statistical model should contain some mechanism whereby the sensor reconciles
the presence of more than one target type in its detection zone. The model that we propose offers
one way to address these issues.

Assume that k seismic sensors having mutually disjoint detection zones generate a data vector
Yy with k& components (one for each sensor). Let (Y3); € A report the j' sensor’s summary of
target-type presence in its detection zone. Figure 4 provides an illustration for k = 5. Its left
panel shows the overlay of detection zones on top of the same simulated scene displayed for the
scout’s spot report. Note that two tanks and one truck lie in dead space — their center-mass
locations are not within any of the detection zones. For this scene, the correct seismic data vector
is Yy = [ae, au, ap, a1, as]’ where ap = tank and ay = truck. A visual rendering of Y appears in
the right panel where the labeling of the detection zones to match vector components is as follows:
top-left is 1, top-right is 2, center is 3, bottom-left is 4, and bottom-right is 5.

Let o4 denote a fixed error parameter and let n;; denote the number of type-a; targets (i =
1,..., M) that are present in detection zone j = 1,..., k. Fix a detection zone j and let P(-) denote
a probability measure defined as follows on all subsets of A.

e Case 1 If zone j is devoid of target vehicles, we allow the sensor to report correctly with



high probability and we assume that the sensor is equally likely to report erroneously any of
the target types:

1_047 Y = Qp;
P{(Ya)j =ylny = =nu; =0} = ¢ %, y € A;
0, otherwise.

e Case 2 If zone j contains exactly one target type, we again allow the sensor to report
correctly with high probability. However, in this case, we assume that the sensor is more
likely to report an incorrect target type than to report the absence of targets; we assume that
all wrong-type classifications are equally likely.

4> Y = ap;
1—04, y=ay;
4(]?\)2%1)’ y € A\{aj, };
0, otherwise.

P{(Y4); =y|ni > 0for i =1iponly} =

e Case 3 This is most interesting — the sensor must “decide” among competing target types.
Denote by n.; = Zf\il n;j the number of targets (of all types) present in detection zone j.
Let I{a; = i} indicate whether «; is the identity of target ¢t = 1,...,n.j. Let a > 0 be a
fixed constant and let d; denote the distance from target ¢ to the center of the detection
zone. These distances are analogous to those depicted in Figure 3 and contribute to the
classification probabilities in a manner similar to Equation 1.

p

04, Y = ap;
. n;j THap—ile—dt/a
P{¥i)j =y 2< |{iny >0} } = (1—on)ZegO=Ie Sl -y — e 4
t=1
0, otherwise.

We assume that the seismic sensors’ classifications are conditionally independent given the scene.
The above enumeration of cases depending on X and the assumption of conditional independence
lead to the following likelihood function for Yj:

k
La(Ya| X) = [[ P{(va); = y| X} (3)
j=1

2.3 The Posterior Distribution

The likelihood functions L;(Y7 | X) and Ly(Y2 | X) for infrared images and acoustic data (respec-
tively) are given in [11]. Combined with the likelihood functions derived in this paper, and along
with the assumption of conditional independence of the data vectors, we may now express the
posterior distribution:

v(X Y1, Yo, Y3, Yy) oc Li(Y1]|X) La(Ya | X) L3(Y3| X) La(Ya| X) vo(X). (4)



Although we will sometimes use the shorthand v(-) = v(- | Y1, Y2, Y3, Y1), we will always mean that
the likelihood functions L;(Y; | X) are defined (respectively) as in Equations 2 and 3 (and as in [11])
and that the prior distribution vy is defined as in Section 2.1.

3 Metropolis-Hastings Algorithm

So far we have defined a posterior distribution v on the scene space X, and our task now is to
obtain samples from the posterior distribution v so that we may conduct scene inference. This
section presents the algorithm we use to generate approximate samples from v.

3.1 Transitions of the Markov Chain

We control the evolution of the Markov chain by restricting the one-step transitions to a class
of “simple moves.” Although this slows down the convergence of the resulting Markov chain, we
impose the restriction because analyzing the chain is easier in this setting [4, 7, §].

Given the current state X® at time ¢, we consider four fundamental types of transitions. To
each type corresponds a collection of “neighboring” states (neighbors of X (t)) — the states that
can be reached from X® in one transition. We now introduce notation for these sets of neighbors.

1. The first simple move is DEATH. This means that we select and remove one of the current
targets from the state matrix. Let Np(X®) denote the neighbors of state X*) under the
DEATH transition. Define

(XUj=1,..n}, if |XO>1;

Np(X®) =
o) {x03, if |IXW] = o,

where X (_t]) denotes the matrix X®) after removing column j.

2. The second simple move is CHANGE ID. This means that we select a current target in
the state matrix and change its identity a. Let No(X®) denote the neighbors of state X ()
under the CHANGE ID transition. Define

@) .5 _ : t .
Ne(X®)y = {XpS:5=1,....n}, if | X®) > 1;
{x03, if [ XO =0,

where X(At)j denotes the matrix X after changing the identity component of column j.

3. The third simple move is ADJUST. This means that we select a current target in the state
matrix and slightly perturb its location q. Let Na(X (t)) denote the neighbors of state X (*)
under the ADJUST transition. Define

(X0 j=1,...n}, if [XO] >1;

NA(XW) =
AlX) {x®3, if [ X®] =o,

) )

where each X g j denotes as many as eight perturbations to the location components of XJ(-t .
For example, if a current target has location ¢ = (,7), then we permit an adjustment to
q €{(i£1,5),(i£2,7), (i,j£1),(i,j£2)}ND. The symbol & is suggestive of this perturbation
pattern of rows and columns.
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Figure 5: Simple Moves from current state (leftmost) to perform DEATH, CHANGE ID, ADJUST,
and BIRTH (left-to-right).

4. The fourth simple move is BIRTH. This means that we augment the current state matrix
by the addition of another target. Let Ty = {X](-t) :j=1,...,n} C (D x A) denote the

collection of targets represented in state matrix X and let Ng(X®) denote the neighbors
of state X®) under the BIRTH transition. Define

Np(XW) = {X: 7€ (D x A)\Txw},

where Xﬁt) is the augmentation of the matrix X® by one additional column 7 corresponding
to any “legal” target not already present: HX@H = | X®| 4 1.

To help visualize the slight adjustments to a given state matrix X® contained in the sets
of neighbors Np(X®), No(X®), Na(X®), Np(X®), we present examples in Figure 5. The
ADJUST example depicts a shift of the uppermost tank; the other examples are obvious. In
Chapter 5, we present portions of Markov chain sample paths that exhibit incremental adjustments
similar to Figure 5.

3.2 The Metropolis-Hastings Algorithm

We now state the basic algorithm that prescribes the evolution of our Markov chain; see, for
example, Robert and Casella [10]. Fix a state space X and let v (known as the target distribution)
be a probability distribution on X.

Algorithm 1 (Metropolis-Hastings)
Given the current state X € X,

1. Generate Y; ~ G(y|X®W). (G is called the proposal distribution.)

Y, wp. y(X®,Y);

2. Set X {X(t) wp. 1 'y(X(t),YZ), » v(z) G(ylz)

where y(x,y) = min{l M}

For a large class of proposal distributions G and for X(1) ~ F where F is an arbitrary probability
distribution on X, this algorithm is known to generate a Markov chain with unique stationary
distribution v. For a detailed description of G based on the simple moves in Section 3.1 and for a
discussion on asymptotic properties of this Markov chain, please refer to [11].

11



4 Conducting Scene Inference

Implementing the Metropolis-Hastings algorithm in MATLAB, we obtain an approximate sample
from v(-| Y1, Ya, Y3, Y}). Specifically, we generate X() ~ 14 (prior distribution) and then observe
X@ xG) . according to the Metropolis-Hastings transition kernel. After stopping the chain,
we discard the first B states (sometimes called a burn-in period to allow time for the Markov chain
to approach its stationary distribution) and we retain, for purposes of inference,

{x(BHD x(B+2) - x(B+R)Y

In this chapter, we describe methods for using our sample to answer a variety of questions. We
denote the retained portion of the Markov chain by

(X}, whereweset Xy = XD xp = X(BR), (5)

Letting v denote the posterior distribution of the scene, we proceed under the assumption that
{X;} ~v.

Having obtained a sample {X } from the posterior distribution v, we might wish to produce a
maximum a postertor: estimate XMAP of the scene. Such an estimate is characterized by XM AP =
argmax ycy v(X), that is, Xwmap is a mode of the posterior distribution. An obvious candidate
to estimate Xyap is the sample mode: we can simply report the state matrix that appears most
frequently among {X;}. An alternative approach abandons the previously described sample and
instead uses an adjustment to the Metropolis-Hastings algorithm given earlier. The technique is
known as simulated annealing and it provides a means to obtain MAP estimates XMAP; see, for
example, Winkler [14].

5 Simulation Results

Now we present some experimental results demonstrating the proposed framework for Bayesian
sensor fusion. In these experiments, we utilize sensor data simulated according to the models
proposed.

We start with a simulated scene with corresponding sensor data in Figure 6 and construct a
Markov chain to sample from the resulting posterior. Figure 7 shows periodic snapshots along a
sample path of this Markov chain in X. Before proceeding with scene inference, we make some
qualitative observations about the performance of our algorithm. The top-left panel in Figure 7
depicts the initial state. Navigating through the panels in left-to-right, top-to-bottom fashion, we
see the state of the chain at multiples of 100 steps. The bottom-right panel depicts the true scene.
At a glance, we observe that this particular sample path evolves quite close to the true scene.
Figure 8 illustrates how the posterior energy associated with a sample path regulates the evolution
of the Metropolis-Hastings algorithm. It depicts H(X®) o —log v(X®) plotted against 7. The
non-increasing nature of the posterior energy indicates that the Metropolis-Hastings algorithm is
indeed steering the sample path toward target configurations with more and more probability mass
under the posterior distribution.

6 Summary

We have presented a statistical framework for merging information from multi-modal sensors in
order to generate a unified inference. To setup a Bayesian problem, we have introduced statistical

12
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Figure 6: Simulated Scene 2 (top) and Corresponding Sensor Data (bottom) from (left to right)
Infrared Camera, Acoustic Sensor Array, Scout, Seismic Sensor Array

models for two sensors - seismic sensor and human scout - and used established models for infrared
camera and acoustic array. Assuming a homogeneous Poisson prior on the target placements in the
scene, we formulate a posterior distribution on the configuration space, and utilize a Metropolis-
Hastings algorithm to generate samples and inferences from it. Experimental results are presented
for detecting and recognizing targets in a simulated battlefield scene.
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Figure 7: Evolution of Markov Chain for Simulated Scene 2: (left-to-right and top-to-bottom)
X(l), AX(100),AX’(200)7 o ’X(1000)’ XTRUE

4500

4000 -

posterior energy

3500 b

3000 I I I I I I I
0 5 10 15 20 25 30 35 40

t/25

Figure 8: Posterior Energy: Evolution for the Figure 7 Sample Path

14



[7]

M. I. Miller, U. Grenander, J. A. O’Sullivan, and D. L. Snyder. Automatic target recognition
organized via jump-diffusion algorithms. IEEE Transactions on Image Processing, 6(1):1-17,
January 1997.

M. I. Miller, A. Srivastava, and U. Grenander. Conditional-expectation estimation via jump-
diffusion processes in multiple target tracking/recognition. IEEE Transactions on Signal
Processing, 43(11):2678-2690, November 1995.

B. S. Rao and H. Durant-Whyte. A decentralized bayesian algorithm for indentification of
tracked targets. IEEE Transaction on Systems, Man and Cybernetics, 23(6):1683-1698, 1993.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer-Verlag,
New York, 1999.

M. J. Smith. Bayesian sensor fusion: A framework for using multi-modal sensors to estimate
target locations & identities in a battlefield scene. PhD Dissertation, Florida State University,
Tallahassee, FL, August 2003.

N. Strobel, S. Spors, and R. Rabenstein. Joint audio-video object localization and tracking.
IEEE Signal Processing Magazine, 18(1), 2001.

Ramanarayanan Viswanathan and Pramod K. Varshney. Distributed detection with multiple
sensors: Fundamentals. In Proceedings of the IEEE, Vol 85, No 1, pages 54-63. IEEE, January
1997.

Gerhard Winkler. Image Analysis, Random Fields and Dynamic Monte Carlo Methods.
Springer-Verlag, New York, 1999.

15



OVNV VINSN -:0T0Z-TO-TOZ VAN :2920-T-66-6T AVVA OV

VINSN ‘uyely Ares NS4 ‘uewelnyiss ¢
SjuswWabpajMmouNoy
salsnels paljddy uo asualajuod Auy
700¢ 19(0120 0¢

AlIsIaniun a1el1s epuo|4 ‘10ssajold Jolen "a-yd % loyiny-0D

eneisenlls nuy

Awapeay Alell|i\ Sa1els palun ‘Saouslas [eanewsyiey Jo uswiedsq

UHWS %OIIN D11

uoisn4 1osuas [epON-INIA ‘[ednsiels
10} Ylomawrel ueisaleg v




3I0M\ 18Yylin4 10} suonoaadg
suonsan® [eanoe] 01 uonedlddy yum ureyd Aoxaeln ajdwex3
wyiioB|y sbunseH-sijodonay e bunuawa|dw

SI0SUBS 7» 8UdIS 10} S|OPOIN [ednsneIs

UOIBANOIA % UonIulaq :uoisn4 JI0suas uelsakeg

uoleluasald Jo auipnQ




“eJep Iosuas ay) UaAIb auaos

ayj Jo uonnqgnsip Joudisod ay) Buisn auads ay) 1noge adualajul Paljiun SPNPUOD e

'9U=adS 9yl uo

PaUONIPUOI BIEP JOSUSS 10} SUONDUN) POOYIaXI| JO S|apow Aljigqeqold s1onnsuo) e

'aUd9s 3y} Joj uonnquisip Jold e sarenwio e

:Jey1 adualajul auads 1o} ABojopoylaw e SI uoisn) J0osuas ueisaleq

uomuyed




‘uonnquasip Joud e Jo Aem Ag 81eWISa SJapUBWIWOD 3Y) JO UOISN|OUl SPIOYY e

'sanl|igeqo.d

wuiol Buibiaw Aq auns Josuas-njnw ay) Jo ainjeu Arejusws|dwod ayy syodx3 e

'3U3IS 3} JO SI9AISO [enJed ale sI0osuas Jey) saziubolay e

:uoisny losuas 10j ABojopoyiaw ueisakeg InQ

UOITEAIION




** 0 asIou Josuas Aq paldniiod ale SI0109A Bleq @

‘.

.&\W AH\W

10109/ eYep ayelaual pue ~ auads ay} Jo *b suonosfoid ayr anlasqo s ¢ -+ - ‘Ts slosuaS e

X)°6

6

(X)°6

3]

X 9Uads
BuiAllepun aniL

9U39S 3] JO S19adsy ualayIq 19919 SIoSuUaS




'SUOINBIUSLIO PAXI) YIIM SYINJ) pue syue) 0] palilll] S9|2IYaA 1equiod Jo sadAl

9UdIS playajeg pare|nwis




:S9|21YdA 186.4e] 0] Buipuodsaliod suwnjod Yyim

XlJew e s| ureyd AoyJej Jno ul arels [edidA) e ‘ y buneosunul % Buiznalosip 1ayy e
"Juasaud syabie) Jo Jaquinu syl SI U —
'sadAy18buer sjgissod pyjotesesi {NWo ‘- ‘lo} =) -

:1SaJ81ul Jo uolbal pjalameq e sl A2 ~

:a1aum (V" X (@) oHomD — Yy 99eds ay) urjuiod e ag 0} Y BUBIS Ay} AE) )\ @

au32S auy) Jo uonduasaq feanewsayren




‘a|qelisap ase y uo 01 suonnqguisip Joud onsieal sI0N e

"(@, Ul Ajuofiun pue Apuspuadapul

painqgiisip aq s1abiey jo b ¢ - - - “Ih suoneao| ay) 19 AQ = >D, UBAIS) —

‘0 < Y awos 4oy (| |y)uossiog ~ N —

:ssa00.d juiod |eneds uossiod snoausbowoy payJew e jJo uonezieaies| Yy e

92oualladx3 sJapuewwo) ay] :uonngiisiq Jold




'SapI|S BUIMO||0) aY] U0 pPagIIasap ale 7 Ylom Siy) ul pasodoid Amau

ale Aelre 10suas 21WSIBS ay) 1o} pue 110dal 10ds S,1Nn03s ay) 1o} s|apow Alljigeqold e

"yaJeasal paysijgnd wouy paydope ase s pue s 1o} suonoduny pooylaxi] e

uonoalad [e207 | il fented ‘uonedso] ybnoy 19A1909Y anep Relly 21WSISS

eleq ealiobsge) dl ‘uoneso ybnoy UoISIA UewnH 1N09S

10108/ eubisS T dl oN ‘Ajuo uonoaug 1an1909Yy [eubis olpny | Aelly 21nsnoay

Rely abew| qz dl ® uoneso18biel | Jabew| uonnjosay-moT | elawe) pateul

(*X)ndinQ ereq S10adsy paloaleg uonesadQ Jo ainjepN losuas

Jaded ay1 ul palapisuo) SIosuas T a|geL

JUSWUOIIAUT 10SUSS-NININ ‘[ePON-IINIA




¢Aayl ate 1eypn éAayl ate alaypn ¢s1abiael Auew MoH e

:suonsanb aaly) bullamsue » bupse
1N02S aY] auibewl am ‘Buads ay) U0 PauoIPUOI UoNIUN) POOYIdXI| © 19NJISU0D 0] e

‘2dA1 Aq 7 1ueIpenb AQ S1UNO2 196.€) S110dal 1n0Js e 1ey) asoddns e

oday 10ds Ss1n02S




(v/tp=)axa IT
. ¢ ¢ ¢ ¢ — ¢ — @Q.

12 1904e) 10} uoneoo| se ¢ jueipenb suodal 1N03s ay) eyl Aljigeqold ay) suiaq

"2 Juespenb o] *H uonedo| wouy sduelSIp slouap p 197

0y = Rm\wvwﬂmw saysnes €4 11odalods syr reyy aunbai {0u = Sp7} usnin

"1, UeaW YIM ueissnes) paznalosip ~ SAJ :paAlasqo siabiel Jo Jaquin

2OIBUN ¢.S190ue] AuelN MOH :pooyl|ayiT 1n02S




1(°r)=* (L)d>°L

. O\N\\\
. : mmm _ _
S:Am\CN\fu o mAm\CNw& HAm\CEQ ._IH AOQVU - AN _ m\wvm@
OQADrN\v

1uoNdUN} POOY[YI]

'sadA) 186.1e) 1084100U1 BY) JO Aue 110dai 01 Ajay1| Ajrenba
S| ay pue Amb — 3 ‘d'm adAy 186.1e) ay) s1iodal A)1991109 1N0IS aY] ‘SPIOM U|

*10119 UoneIIISSE|d ay] SI €0 Js)swelred

{0 £ @oz.ﬁmwl|§ + {=mw}r"d(so—1) = "d
0

: =
10bie) qa? Ul 10} w@*&mﬂ si9)aweled |jnoulag pazijetsauab sulyaq

7196181 Jo Amuspl ayy s Lo Jeyy ayesipul { £ = #0} 1197

¢ABYL ale Jeypn :pooyiaXi IN0ds




~oords peap, Jo sdeb jiwpe Aew Aely o
‘SNIpeJ 9U0Z-U0I12319p uMouy B sey yoeo Aelse ue ul pakojdap ale SI0SUsS e

"WaY) 1UN0D 10U Sa0p INg S1abie] SaljISSe|d 7 S109]19p JOSUSS JIWSISS e

sauoz s Josuas
uo 1199 18p o ws 18s

Aelly 10Suas 2IWSIaS




"9STMIS)O
LMoy 3 fi
‘% = f

‘0o =N~

p = {Auo 0 = 11050 < Fu|fi = H(TK) td

:8dA1 1861€) T Ajoexs surejuod [ auoz g ased e

*9STMIST}O

YV DA vHAQH.@EQH:.HEQ_@HQ@CW&
‘0o =N~

:s196.e) Jo ploaap si [ suoz (T ase) e

JolNeyag Josuas 21WsSIas




{x 1A= [T = (x 1m0

;uonouny pooyi|adIi e

d\wﬁ|® Hm”@m %
d\ﬂﬁlwﬁ — @Ow\ N,HMNA O — 3

J\.w@@“@ ¢

HAIQAEﬁ\“@iwg@“m?\@w&

:[ auoz ul sadA) 196.e) Bunadwod Buowe ,8pIdap, 1SNW JOSUSS € ased e

JolNeyag Josuas 21WsSIas




'»«1 uonngnsip Areuoneils buiney

Y’ Uo ureyd AoxJe\ 21pobis ue 10n1suod am :sbunseH-sijodons|y eIA SIU) Op /N e

"1 WOoJ) sajdwes ajelausab 1snw am ‘adusiajul 1oNPuUOI 0] e

()0 (x| R) %7 (X |WA)TT 0 (g g x)1 = (X))

:uonnguasip Joussod ay) 10j uoissaldxs ue urelqo am ‘ajnu ,sakeg BulA|ddy e

"Juspuadapul

Alreuonipuod aJe * { S10109A Blep J0Suas 8y} ‘ Y auads sy} UaAIb eyl swnsse ap\ e

U39S a8y} Jo uonnglsiq Jo11a1sod




'«1 uonnquisip Areuonels anbiun yum ureyo
AOMJe|N e 3relsusab 01 umouy si wyuiobie siyr ‘ y uo uonnglisip Aljigeqold Arenigre

Ue S|/ 3I8ym J ~ ()X 10} pue ) suonnquisip lesodo.d Jo sse|o abie| e 104

(z]f)D (T)a ‘7 puT = Aaﬁ&.v\ﬁ

(filz)o (fi)n
T x dm g [T AR
‘uonnglisip jesodold sy pajed si 5 .ASN‘_\MVU ~ *1 eresauan T
‘X D (;) X SIS JualNd au) USAID

wiyluob|y sbunsey-sijodonsin




‘spooyJloqybiau payesipul Sy} JO SUO WO} 3)elS e Sayeulwou AGVN | i) D)

1snlpy a| abuey)d

SoN0\ a|dwis,, :uonngLisiq [esodoud




eleq olwsias 1oday sinods eubis onsnody  abew| paselul

wod HE
. IR

aUd9s [eulbliO

ele( J0suas 7 auads ajdwex3




reuibliQ uonn|os

ureyD AOMJIB[N a8yl JO UOIIN|OAT




1={
puodsey] < 660 < (‘)T < w
d

:9|dwes I1no uo paseq ajnJ ajdwis e 19N1SuU0d

Aew am ‘(Aes) g6'0 1ses| 1e ag 01 Alljigeqo.d siyl saldinbal Jspuewwo ay) J|

—C
.A.@mvwﬁ 1 MN % Aq a8 siy1 jo Aljigeqo.d
loud1sod ay) a1ewnsa 0] sn smoje ureyd AoxJey Jno Jo Aliadoud aipobia ay

{y < sque) Aweue Jo equnu : } S Y} = 197

¢,918U1 1n0 aJe syuey Auew MoH :uonsanb sspuewwo? [ealdAL

L)X 7 e X e X}

‘9oUaJ3jul Jo sasodind Joj ‘urelal pue (poriad ul-uing) sarels & 1siiy ay) preasiq

suonsang [eanoe] Buuamsuy




uOoIN23X3 1Sk aAaIYdy 01 wyliob|y ayl Buipoday
ereq [eay buisn uonepifen

POOYI[3Y17 IN0JS 10} Sia)aweled alewnsg o) Juswuadx3y paubisaq

aley aoueldaddy asealou| 0] £) uonnginsiq fesodoid H-N panoidu|

SJI0SUaS 2Jnaubel ‘B8 — SI0SUBS [euoNIPPY 10) S[OPON

MIOAA 31NINH J0J SUondalIQ




H.DN 7
.Aﬁm__a K 0 — 1g|| ﬁ|v%@ﬂ — (x| W)

. i1(2)'A : el
(1) (420 —2 (11, ((2) (U % °T))

abew| Y| 1o} pooyi|axiT




4
i

vgx@

Z

I

(x|ex)eT

[euBbiS 21SN0JY 10} POOyI|aXIT]




4

uwn|o9 Jo uauodwod Anuapl ayy builbueyo taye ()X XUrew sy} ssjousp SN alaym

0= 1pXxl It {oX}
T2 lwxly us1=008x)

— ASXVU\\/\.

*[ uwnjod Buinowsal Jaye () X XUrew au ssjousp SN aIaym

0= pXxl I {1oX}

o — o = (X))
T< Xl Qut1=1C: Ev@ ®)

dl IONVYHD pue H1v3q Jo} sarels buuoqybiaN




T+ || vam: = | Gﬁm: uasald Apealje jou 196.e1 eba)|, Aue 01 Buipuodsallod

L UWwn|o9 [euonippe auo Ag () X Xirew ayp Jo uoneluawbne ay) sl Gﬁm alaym

{OXI\N WV x @) 2+ ()X} = ((nX)aN

WX

Sjuauodwod uoneao| ay) 01 suoneginyuiad ybia se Auew se sajouap M%N yoea alaym

0= pXxl I 1oX}

¢ — ¢ ¢ ¢ ”A VA1VMMN\\/\.
T2 lpxlp uso=0: 8y 0

H1Ylg pue | SNCAY Joj sarels BuloqybiaN




'T=84m + Vin 4+ Om + dm bBuihjsires sybram aaiisod paxij 8anposiul
am aleym pue WX 7\ (3 X (T,) uo uonounj ssew Anjigeqoid e si (-) Sx&& alaym

(A (OXDINT (L) PV L gam +

AQVAA@XV«M\/\.H _A@vkv‘\\\/\._ Vin -+ AQVAGYX&D\\/\.H :@vvmvr\v\\/l
ﬁ I

om +

a

sbunseH-sijodosnal 10 uonnguisiq esodoid




S JonusQOpRIo0) JO AlSIeNUT
repejey| uasey
As1aniun uose 261099

uewbap\ ¢ premp3

JljJel ] 18ulalu] Puiweanls 1o} SonAjeuy ensia

A
N




'Y00ZLVLSINOD J0 sbuipaadold ,“erep oujel) 1oulalu] 2110X3,
pue eaidAy, Buizifensi,, (7002) 3 ‘uewbap pue ) ‘repejey =
8T1-8 ‘(T).T ‘eoueyr .'A1in2asiagAd 1oj eyep yiomiau
J0 sisAjeue [eonsnel1s,, (#002) '3 ‘UewbapA pue " ‘SN8ydIelN =
716-£68 ‘()21
'Sansnels /eaiydels pue jeuoneinduwo) Jo jeulnor | ‘siapeay
19x9ed 19u1a1u] Jo Apnls ased vy :ejep Bulweans 10j
sanbiuydal sawos uQ,, (£002) 'q ‘@msydtel\ pue 3 ‘uewbapy =
s1aded saiy
BuiMo||0) 3yl uo paseq SI uoIssnasip Buimol|o) ay | #

A

JV

oljjel ] 18ula1u] Bulweanls 10} SonAjeuy ensia



s10/d VAT =
s10[d aullAxS =
sy1o|d |[ejia1epn =
solydels) AreuoilnjoAg pue uoISinday Y20|g @
uonelo|dx3 snsiaA SIsAjeuy =
SolAfeuy [ensip @
uOoIdNPOIU| @

A

JV

oljjel ] 18ula1u] Bulweanls 10} SonAjeuy ensia



SMB3IA payull ‘Bunind

pue Buiddoud ‘sdewosdiw s ue) ueq ‘uoneiol pue bBuooy
syo1d (91d02s0a181s) @-£ ‘Buiysniqg uoneanies ‘bulysnig
JuaI|0 uo solydeub ‘18AIBS UO BIRP JO YUIYL

payonolun eyep BulAjgapun Inq ‘pajeald s1algo eyeq
solydels aAnoeILlu] ‘7

03491s ydAjbeue pue 10j09 awos sdeylad

sjeuarew paysiignd (uaded) 1soy e

syo1d Ajisuap 1sow
‘s10|d @1eUIp100D |3|[eted ‘soouyew jojdianeds ‘sjoid siBl]L e

$100Q S@UYNL pP3
solydeso onels T

® @ @ #

®

A

solydels eyeq Jo sabels uno4

JV



S10|d aullAxs ‘Buiddeiy alydelboas juaisuel] ‘|[elolep) e
sonAleuy [ensip e
UOISINI3Y Y20|g pue UOISINIdY «
eyep buiweans ®
Buisiousq aAneIal]
Buidde 189S e1eq @
Buinjons aJae 1ey) S18S elep paxid ®

solydelus) Areuonnjonl ‘v

A1anoosip el10di09 ssouo ‘sunoy jaxid ‘sdew yiajdoioyo
pauonIpuod S, ue) ueq ‘s1Sa10) apow pue saall apow Buipnjoul
Buiyroows olwreuAp ‘syo|d Ayisuap payjoows Ajediwreuip

10 9AISINJ3J ‘IN0) puelb Jeuoisuawipnnw ‘INo} puels ®

paseq Jusl|d Hmsq JOU ‘yym paloeldalul ag 1snw eyl eyeg

solyde.s o_Emc>o '

A

JV

solydels eyeq Jo sabels uno4



GT'002'6'¢6T ‘O3 =
1Soy a3yl yp|all ‘Miomiau
9yl Salluapl gpialy gpaly TPI8Y -0 SSe|d #
0TZ 0¥'€0T 0€T ‘B8 “22T ueyy Jabue| si Tp|al{ =
12ugns J10J pasn SaWilsaWosS
ep[al ‘1soy aly1oads ayy salnuspl yp|al epialy
X10M]3U 8yl Saljiyuspl Zpialy’ TpIaly — g Sse|0 @
T'T'T'T ‘06 ‘2gT ueyl Jgjews sI Tp|oly =
1soy du10ads ay1 Ajnuspl i-zsp|aly
I0MIBU 8] saljiuapl TpIal — v SSe|D @

JV

SYI0M1BN JO sadA |
- J1}Jel | 18uuaiu] bulweans 10j sonAreuy [ensip



13jrel] 18utayiglereq uoneolddy|iapeay uoneslddy|iepeaH |020101d|18peaH dI|JapeaH 18u4ayl3

1ake] arempieH

e1eq uoneoljddy|ispeaH uonedlddy|iapesH |090101d|189peaH dI

1ahe di

eleq uoneoljddy|ispeaH uonedlddy|iapesH |090101d

A

1aAe |02010.d

eyeq uonedlddy |iepesaH uoneoiddy

1aAe uonealddy

eleq uoneolddy

A

buissaippy di/d01
- J1Jed| 19uiaiu] Buiweans 10 SonAjeuy ensip

JV




|00010.d
albessa|\ |0J3U0) 18UIBIU|=dIND | #

|00010.1d Wwelibeleq 1asn=dan+
|00010.d |0J3U0) uoIsSIwsuel | =d)] &

A

JV

S|020101d Uowwo)
- J1jel| 19ulaiu] Buiweans 10 SonAjeuy ensip



J18peaH dl 8yl

(Atre 1) suonad()

SSOIPPVY (JT UOIFRUIISI(]

SSAIPPY JT 90IN0G

TINSYDOT) TOPROJ] 1020101 QAT O3 OUILT,
JOSIJ() JTOULSRL sae[q TOTYROTIITOPT
15T JoyoRJ [RIOT, OOIATOG JO odA T | qiSuor] | UOISIoA

buissalppy di/dD1
- Jl}Jel] 18uiaiu] bulweans 10j sonAreuy [ensip



JapeaH 1939ed dd1

(Ate J1) suond()

IOJUIOJ YOI U S329Y)
OZIS MOPUIAN sSey PoATOSNY | mSuor

JOQUUITLN pﬂﬂ;ﬂ.ﬁ%_ JOTMOTNIY

ToquIny oouonbog

110 UOTIRULISO(] 110,] 92a104G

buissalppy di/dD1
- Jl}Jel] 18uiaiu] bulweans 10j sonAreuy [ensip



UOI}OBUUOD 3y} Ysiuly — N4 =

s19x0ed JO 19pI0 SMOU]
1SOY Yoea 0S UO0I108UU0I 9ZIUOIYIUAS — NAS =

19Sal — |QY =
dvSy uopealdde 01 paysnd 8q pinoys erep — HSd =
199ed e Jo 1dI9dal sbpajmoudde 0] pasn — Yy =

sadA] be|4 swoS#:

A

JV

buissaippy di/d01
- J1Jed| 19uiaiu] Buiweans 10 SonAjeuy ensip



AJV/NIH

NI
AV
HSd
AIV/NIA
NI
AV
HSd
AV
HSd
HSd
HSd
AV
UOISSIS dO.1 9|qISS0d i NAS
¢ 1SOH T 1SOH
bulssal

A

PPV dI/dO1L

- J1Jed| 19uiaiu] Buiweans 10 SonAjeuy ensip

JV



AbBarenys yoene uayoey e si suod 10j buiuueds «
uoISNJul
9|gissod mojfe suod (uado) pajosloidun =

‘S1I0d pJaepuels aAey |oe pue
AJJ3JIP UBAS ‘61702 — Sju ‘0TT — €dod ‘08 — dny
'Gg — diws ‘gz —18ul9) ‘gz —uss ‘Tz —dy ‘69
s110d paepuerls asn S92IAISS pJepurls sawos =

1SOy yoes
10} suod 9£G'G9 = 472 BWOS ale alay| @

A

JV

S110d
- J1Jed| 19uiaiu] Buiweans 10 SonAjeuy ensip



*J1)jed] 18ulalu] Bulweals ul SJuana
pajuBMUN 10 SUOISNJIUl 19813 01 SI wiajqoad Jolfew ay|

A

eleq l1auJaqu| buiweans wouay saiydess Areuonn|ons

JV



*ano(e pagliosap
elep Japeay ayl uo AJjuo paseq Saoualajul ayew o)
%99S pue “19xoed ayl JO JUa1U0d Blep ayl aloubl app ‘S

"UOISSaS JO uoleinp
‘s1oxoed JO Jagwnu ‘sajAq Jo Jagwinu ‘1od 821n0s
‘dl ®21nos ‘140d uoneunsap ‘4| uoieunsap ‘sdwels
awin 1e AJuo 00| |/ “dljel] 18ulalu] 10} S|02030.d

21Seq ay) aqliasap anoge pauonuaw siaded ay] ‘7

'21N10N11S BlRp MaU Aj[eluswepun)

e sjuasaidal eyep Buiweans ansiag | ‘sadA) erep

Buiweans aininy saunbiyaid pue erep buiweans
Jo ajdwexa [eaidAjoloid e si diyjedy 18ulL1u] T

A

eleq 19uiaiu] buiweans wody solydeas Areuoiln|ond

JV



‘S1ayloows [auuay pajybiam Ajrenuauodxa
Buipnjoul sabeiane Buinow pajybiom Ajrenuauodx3

sloyewnsa Alsuap
2INIXIW aAndepe pue |auday JO Suolle|NWI0) aAISINIaY

uoneznuenb oBwoab uo paseq so|dwes-o0pnasd

SJUBWIOW pue SIUNO0J JO SUOIB|NWIO0) SAISINISY

:9pN|oul apew aAey am suoisabbns awos

"e)ep ay) pJedsip pue ‘wyiliobe
aAISINJaJ & a1epdn ‘Wall Blep B je 00| aMm ‘A|aAIeN

‘Jeak Jad eyep Japeay 1auiaqu] Jo s91AgeIa) 92 199|102 SN

“e1ep ay) a1ols o1 ajqissoduw
Sl 11 12y a1eJ & Yons Se SaALLe elep Buiweans

1

A

eleq 19uiaiu] buiweans wody solydeas Areuoiln|ond

JV



"'SPU028sS QT AIaAS Mau SI pue SaA|OAd

oiydeub ayy "doi ayl 1e 1 saodejdal mau ayy pue abed ayy

JO wonoq ayl Jo sdoip yooda 1sapjo ayl snyl ‘passed aney

syooda Q00T sdeysad jnun sanunuod syl ~doj ayy uo panoid

MOU SI yooda puodas ayy pue umop paysnd sI yooda 1s.1)

a1 Joj a1ydeub ayy ‘yooda puodass ayy Bulinp pajenwindoe

aJe elep |euonippe sy -aiydeub ayl jo doi ayy 1e panoid si
yoodas 1s11) syl “weabelp |[ejia1epA e Sl uonsabbns feniul AnQ e

"Spuo2asI||iw QT sdeytad
10J 1se| Aew yooda ayp ‘oijedy 1ouisqu] 10) adnoead Ul e

‘PIO |3yl pJledsip
pue ‘erep mau ayj 10id ‘(Ajsnoauriueisul usaa) yoods |jews AlaA
© 10] elep alg|nwindde 01 SI eapl ayl “YJomaweldy 1sajdwis ayr ujp ‘T

solydeub Areuolinjons 1noge si yjel siyl ing

A

eleq 19uiaiu] buiweans wody solydeas Areuoiln|ond

JV



Wil | UOo aduspuadaq o1dx3
UM saiydelas Areuonnjond

A

eleq 19uiaiu] buiweans wody solydeas Areuoiln|ond

JV



Evolutionary Graphics from Streaming Internet Data

Waterfall

for

Destination

IP versus

Time for
only one

hour
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Evolutionary Graphics from Streaming Internet Data
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