A Review of Combat Helmet Acceptance Testing

a. Penetration-Resistance

1. Legacy Acceptance Plan: 4 helmets (1 size $\times 4$ envs.) $\times 5$ shots: OK if 0/20 penetrations
2. OT\&E Plan (Sep. 2011): 48 helmets (4 sizes $\times 4$ envs. $\times 3$ reps) $\times 5$ shots: OK if </= 17/240 penetrations

Test Fixtures

- Five patterned 9 mm shots: front, crown, back, left, right
- data: penetrations; back-face deformation (dent in clay)

Reaction: Rep. Louise Slaughter (June 2012)

- I think $17 / 240$ test plan poses "unacceptably high risk" to soldiers
- Director, OT\&E (July 2012): Not to worry because: STATISTICS.
- OT\&E to Nat'l. Acad. Sci. Comm.: Pls. analyze, evaluate, explain, ...

Q \& A

- Why 240 ?
- Greater coverage of operational space: more precision (esp. w.r.t. BFD = BackFace Deformation $=\max$ depth of headform indentation)
- Why 17 ?
- The "90/90" criterion
- Under binomial assumptions, with worstcase acceptable result, 17/240, lower 90\% conf. limit on non-pen. probability is .90

Comment

- Worst-acceptable-case lower 90\% conf. limit on non-pen. probability is awkward way to characterize acceptance plan.
- More direct way: Plan has a 90\% probability of rejecting helmets with an underlying 10% penetration probability

Why 90/90?

- 0/20 plan has approximately this property
- Previous Natl. Acad. Sci. Body-armor report suggested some plans with this property
- But, no empirical or scientific reason to set pen-prob of 10 as the "standard" or limit on acceptable pen-prob.

O.C. Curves: $0 / 20$ and $17 / 240$ plans

Manufacturer's Incentive

- To have 90\% chance of passing acceptance test

Plan pen-prob
- 0/20 .005

- 17/240 . 055

We Need Data:

How penetrable are current helmets?

- Short Summary - ~12,000 shots: 7 penetrations
-(no helmets failed 17/240 test)
- estimated pen-prob < . 001
- worst subset, upper 90\% C.L. . 004
- This tells us where to look at the O.C. curve

Data Message: Manufacturers are in sync with incentive of $0 / 20$ plan

Mfgs. about 100x better than the 10\% pen-prob "standard"
Current Data

Committee Position

- There is no scientific or empirical basis for setting pen-prob $=.10$ as a 'standard': current helmets much better
- Acceptance test should be designed to provide adequate assurance that new helmets are not more penetrable than existing helmets
- $17 / 240$ does not meet that criterion. Helmet 10x current helmet pen-prob would be very likely to be accepted.

In Essence

New plans should be designed so that their O.C. curves resemble the left end of the 0/20 plan's O.C. curve, not the right end.

Operating Characteristic (OC) Curves

data

Comment

- DOT\&E, in Itr to Rep. Slaughter, recognized reduced manufacturer's risk/incentive, but said that would be OK for future lighterweight helmets
- Committee charter and DoD protocol were for all helmets
- Trade-off bet. wt. and pen-prob needs to be addressed directly.
-e.g., 10x higher pen-prob vs. 10\% lighter?

Towards Determining Limit for Penetration Probability

- Simple model: Given a helmet shot: $\operatorname{Pr}($ death $)=$
$\operatorname{Pr}($ death:pen $) \times \operatorname{Pr}($ pen $)+$
$\operatorname{Pr}($ death: $\overline{\text { pen }}) \times[1-\operatorname{Pr}($ pen $)]$

If the $\operatorname{Pr}(.:$.$) s are known (well-$ estimated), DoD could set a goal for $\operatorname{Pr}($ death $)$, solve for $\operatorname{Pr}($ pen $)$ req't.

b. Back Face Deformation

- Legacy Plan
- compare BFD to specified limits, defined by shot location
-Score: Fail if BFD > Spec Limit
-Helmet accepted if 0/20

DOT\&E Plan

- For designated subsets of BFD data, calculate upper 90/90 Normal distribution statistical tolerance limit.
- OK if 90/90 UTL < Spec, all subsets
-This is a 90/10 plan for variables

Motivation

- Variables data more informative than attributes data:
- steeper O.C. curves,
- tighter confidence intervals, - etc.
- Stat'l analyses can 'characterize' BFD distributions as function of env., shot location, helmet size

Issues

- How to split/pool data?
- Normality assumption?
- Complexity?
- Justification of BFD spec limits?

Let's look at some data

H1: BFD by Shot Loc. and Env. vs. Spec Limits of 25.4 and 16.0 mm

Note. A 20 mm dent in your head is OK, front or back, but not left, right, or crown.

H3: BFD by Shot Loc. vs. Spec Limits

a few exceedances, << 10\%

H3: BFD by Shot Loc. and Helmet Size

Complexity - 1

- Tolerance limits are hard to explain - two probabilities to keep straight
- The TL criterion is equivalent to a margin criterion Margin = (USL - ybar)/stdev > K^{*}
- Can design acceptance plans (n, K^{*}) to meet two O.C. specs

Comment

- Calculating upper T/Ls after obtaining the data would be appropriate, but it's unnecessary and awkward to state test plan in terms of upper T / L
- It's a margin test - how many sigmas of margin do we need?

Complexity - 2

- Pre-analysis analyses w.r.t. pooling can greatly complicate O.C. curves
- Compound Decision: Mfg. passes if UTL criterion is met for all data subsets?

Cultural Considerations

- Statisticians salivate at large amounts of multi-factor data
- Others gag
- Archie Bunker: "Don't give me no stastistics, Meathead! I want facts."
- NAS Report: Go back to binomial scoring - with meaningful spec limits

Spec Limits

- Legacy Spec Limits by shot location have no empirical or scientific basis
-They reflect manufacturers' capability, not injury risk
- Suggestion: Use data to develop Spec Limits aimed at assuring new helmets are as BFD-resistant as current helmets

Results of NAS Report

 (available from National Academies Press)- More banter between DoD and Rep. Slaughter
- New Acceptance Test Plans?
-tbd?
- Army previously changed 17/240 plan to two-stage plan:
(i) $0 / 22$, then (ii) $17 / 218$
- more stringent than 0/20

