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Presenter
Presentation Notes
Good day.

I will describe a method that we have applied to build what we call a requirements flow model.  The method employs Bayesian networks and designed simulation experiments, and is successfully being used on programs at Raytheon Missile Systems that involve complex reasoning regarding software-intensive systems—i.e. systems that include sophisticated sensor and guidance algorithms.
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Outline 
 Background & Motivation 

• The power of probability models 
• Requirements-flow models for subsystem requirements 
 Basics of Bayesian Networks and the synergy between 

BNs and Design & Analysis of Simulation Experiments 
(DASE)  
• Examples: Rain-Sprinkler-Grass & Chair-Backache BNs 
• DASE terminology in context of BNs 
 Example Requirements-Flow Model: Weapon Kill-Chain 

• Improving performance vs. a prior, similar system  
• Using inference engine and DASE to verify solution  
 Summary & Conclusions 

Presenter
Presentation Notes
Before describing Bayesian networks and their application to building requirements-flow models, I’ll comment briefly on the power of logic and probability models, and on the problem that motivated us to use probability models for deriving, analyzing, and verifying compliance of subsystem requirements.

I will use two classic examples to give a brief, general overview of Bayesian networks.  I will then describe the synergy between Bayesian networks and what we call DASE:  the Design and Analysis of Simulation Experiments.

Finally, I will use a third example to illustrate a notional requirements-flow model and describe how we use experience and information from a prior, similar system, a tool that is called an inference engine, and simulation experiments (DASE), in order to develop and verify compliance with the requirements-flow Bayesian network model.
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Harnessing the power of probability 

Challenge: To create a logically consistent, 
probabilistic requirements-flow model 

 E.T. Jaynes (Probability Theory: The Logic of Science, Cambridge, 2003) 
“The mathematical rules of probability theory are not merely rules for 
calculating frequencies of ‘random variables’; they are also the unique 
consistent rules for conducting inference (i.e. plausible reasoning).” 

 Definition of conditional probability: 
Numerator is the joint probability of (simple or compound) events A & B, 
and denominator is the marginal probability of “evidence event” B 

 Typical process for deriving subsystem requirements 
• Ad-hoc quantitative & graphical methods are used to derive “flow-

down” requirements 
• When compliance problems occur, issues arise when referring to 

artifacts of these methods (e.g., confusion between expressions of 
joint, conditional, and marginal probabilities) 

( ) Pr( , )Pr |
Pr( )

A BA B
B

=

Presenter
Presentation Notes
In his book Probability Theory:  The Logic of Science, the late physicist E.T. Jaynes stated:  “The mathematical rules of probability theory are not merely rules for calculating frequencies of ‘random variables’; they are also the unique consistent rules for conducting inference (i.e. plausible reasoning).”  Plausible reasoning lies within the domain of artificial intelligence or AI, a field within which I worked as a Stanford post-doc in the late 1980s.  For many decades, AI researchers have tried to automate human reasoning, often with limited success.  In my case, our Stanford group tried in vain to use formal, monotonic logic to mimic human reasoning.

Others at Stanford and elsewhere were more successful, formalizing a method that admitted the concept of degree of belief in order to conduct plausible reasoning.  Central to this method is what AI researchers call Bayes’ conditioning, or simply, the definition of conditional probability, given by this equation:  The conditional probability of a simple or compound event A (either a scalar or a vector quantity), given evidence B (another scalar or vector quantity) is given by the joint probability of A and B divided by the marginal probability of B.  I will say more about probability definitions during the three examples that follow.

What motivated us to use this probabilistic method of plausible reasoning?  During our product development process, especially for complex, software-intensive systems, ad hoc quantitative and graphical methods are often used to derive so-called “flow-down” requirements. However, when compliance problems occur, these ad hoc methods give rise to confusing discussions, including ambiguous references to probabilities.

So our challenge was to create a logically consistent, probabilistic requirements flow model—the word “flow” implies a reasoning method that includes quantitative feedback, not simply open-loop “flow-down.”  Note that the term “consistent” has a specific mathematical meaning in logic, namely, that for an arbitrary sentence to be consistent, there exists at least one world in which the sentence is true.
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Example 1 (http://en.wikipedia.org/wiki/Bayesian_network) 

Wet Grass, G; Sprinkler On S, & Raining, R 

Sprinkler Rain 

Grass 

F T
F 0.6 0.4
T 0.99 0.01

SR

CPTS (1 parent) CPTR (0 parents) 

F T
0.8 0.2

R

CPTG (2 parents) 

F T
F F 1 0
T F 0.2 0.8
F T 0.1 0.9
T T 0.01 0.99

GR S

Using rules of probability (e.g., JPD factorization, Law of 
Total Probability, & Bayes’ Rule), a BN model is sufficient for 
computing correct probabilistic answers to specific questions. 

Conditional Probability 
Tables (CPTs) 
• Represent nodal 

events using discrete 
probability distributions 

• Cells populated using 
data or best-guesses 

causally directed acyclic 
graph (DAG) 

Presenter
Presentation Notes
Our first example originally appeared in a 1988 book by Judea Pearl, titled Probabilistic Reasoning in Intelligent Systems:  Networks of Plausible Inference. Bayesian networks are sometimes called probabilistic networks, belief networks, or causal networks, but the most common term within the AI literature is Bayesian networks.  Pearl coined the term to emphasize three aspects:  (1) the often subjective nature of the information used to construct them; (2) the reliance on Bayes’ conditioning when performing inference; and (3) the ability to support both causal and evidential reasoning, a distinction that was underscored by Thomas Bayes.

The first element of a Bayesian network is a causally directed acyclic graph, or DAG.  Although the notion of causality is valuable in constructing a logically consistent probability model, once constructed, complex causal or acausal queries may be made using the model.  Note that a DAG does not indicate single-state event flow (e.g., rain causes sprinklers to turn on or off and grass to be wet, but rather a flow of nodal state-transition probabilities.

Nodal probabilities are listed within conditional probability tables, or CPTs.  CPTs model events as either binomial or multinomial random variables. The CPT entries are made using either data of some sort or human judgment—in our third example, the data come from designed simulation experiments.  Although Bayesian networks can accommodate missing data and continuous random variables, they are much easier to manipulate using complete data (which we can generate from simulation) and discrete random variables with network parameters being modeled using CPTs.

Within our first simple example, Rain is an unconditionally independent event, having no parent nodes.  The next node in the DAG is Sprinkler, denoting whether or not it is turned on.  The probabilities of the Sprinkler being on are modeled as being conditional on the state of its one parent, Rain, and are quantified within the Sprinkler node’s CPT.  Finally, the third node is Grass, denoting whether or not it is wet; in the world modeled by this example, Grass can only become wet due either to Rain and/or Sprinkler.  Since Grass has two parents, its CPT must contain all combinations of the two parents’ possible states.  Again, all CPT entries are estimated either from experimental data or from human judgment.

Once constructed, the Bayesian network is a complete representation of the joint probability distribution of all the DAG’s nodes.  Using the rules of probability, the Bayesian network is used to infer logically consistent, probabilistic answers to specific questions which may or may not include evidence. Before evidence is provided, the answer to queries is in the form of a prior marginal probability; when evidence is provided, the answer is called a posterior marginal probability.  The variables not appearing in a specific query are called nuisance variables and are summed out, as illustrated on the following slide.



http://en.wikipedia.org/wiki/Bayesian_network
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Example 1 (G, S, R), Cont.:  
Computation for a specific query 

Sprinkler Rain 

Grass 

BN1 

F T
F 0.6 0.4
T 0.99 0.01

SR

CPTS (1 parent) CPTR (0 parents) 

F T
0.8 0.2

R

CPTR (2 parents) 

F T
F F 1 0
T F 0.2 0.8
F T 0.1 0.9
T T 0.01 0.99

GR S

Q1: What is the probability that it’s 
raining, given that the grass is wet? 
Start with conditional probability 
formula, and sum over “nuisance” 
variable(s) X: 

∴ A1: The probability that it’s raining, given wet grass, is ~36%. 
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=
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358

 21 = 2 products 

 22 = 4 products !X is the complement 
of X, i.e. 1 - X 

Presenter
Presentation Notes
The question that we ask in Example 1 is called a diagnostic query:  What is the probability that it is raining, given that the grass is wet?  The specific form of the equation for Bayes conditioning is shown for our query.  Note that since we are given evidence, i.e. wet Grass, the answer to this query is a posterior marginal probability.  Note also that to compute the answer, there is one nuisance variable in the numerator, Sprinkler, and two nuisance variables in the denominator, Sprinkler and Rain, which must be summed over.  In general, for binomial nodes, there are 2k terms in each sum, where k is the number of nuisance variables.

The color-coded expression indicates the origin of each term in the products and sums, as implied by the DAG.  This expression is the simplest possible expression of the respective probabilities; other expressions are possible but would include terms that would be eliminated when considering causal linkages.

The answer to our query is that, given that the Grass is wet, there is a 36% probability that it is raining.



6 of 14 Bayesian Networks for Requirements-Flow Modeling 
CASD 2014 

Example 2*: Aching Back, A; Injury, B; Other 
Worker(s), W; Sports Injury, S; & Bad Chair, C 

Chair Sport 

Worker 

BN2 

Back 

Ache 

CPTC         
(0 parents) CPTS        

(0 parents) 

Q2: What is the probability that Bob’s chair 
is bad, given that his back aches? 

F T
0.98 0.02

S

F T
0.2 0.8

C

F T
F F 0.99 0.01
T F 0.1 0.9
F T 0.8 0.2
T T 0.1 0.9

S C B

F T
F 0.99 0.01
T 0.1 0.9

C W

F T
F 0.9 0.1
T 0.3 0.7

B A

*From Ben-Gal, “Bayesian Networks,” 
www.eng.tau.ac.il/~bengal/BN.pdf  

Presenter
Presentation Notes
Our next example involves Bob’s office chair and his aching back; it illustrates two things: (1) the notion of conditional independence and (2) how quickly computational complexity grows with the number of nodes in the DAG.  The question being asked is another diagnostic query:  What is the probability that Bob has a bad chair, given that his back aches?  A similar diagnostic query could be asked: What is the probability that Bob suffered a sports injury, given that his back aches?  Again, the CPT entries reflect the results from either data or human judgment. In this world, backs are injured only from bad chairs or from sports injuries.

Let’s focus on the node labeled Back, indicating injury of Bob’s back.  Given evidence of Back’s two parents, Chair and Sport, Back is conditionally independent of its non-descendants, i.e. other Workers’ states.  Again: given the state of any node’s parents, it is conditionally independent of its non-descendants. If evidence is provided regarding a child node, the node’s posterior marginal probability changes, making it dependent on its descendants.  This is an example of what is commonly called the local Markov property.  In Bayesian networks, the property is formally established using a concept called d-separation.

Computations for answering our query appear on the next 3 slides.

http://www.eng.tau.ac.il/%7Ebengal/BN.pdf
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F T
F F 0.99 0.01
T F 0.1 0.9
F T 0.8 0.2
T T 0.1 0.9

S C B

Example 2 (A,B,W,S,C), cont.:  
Computation for specific question 
Q2: What is the probability that Bob’s 
chair is bad, given that his back aches? 
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A B B S C W C S C A B B S C W C S C

A B B S C W C S C A B B S C W C S C

A B B S C W C S C A B B S C W C S C

A B B S C W C S C A B B S

+
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Num
Den

C W C S C

=

 23 = 8 products 

 24 = 16 products Omit “Pr” to save space 

Chair Sport 

Worker Back 

Ache 

F T
0.98 0.02

S
F T

0.2 0.8

C

F T
F 0.99 0.01
T 0.1 0.9

C W

F T
F 0.9 0.1
T 0.3 0.7

B A

Presenter
Presentation Notes
Observe that the numerator for answering our query now includes 3 binomial nuisance variables, leading to summing 8 products.  The denominator includes 4 nuisance variables, leading to summing 16 products.



8 of 14 Bayesian Networks for Requirements-Flow Modeling 
CASD 2014 

( )( )( )( )( ) ( )( )( )( )( )

( )( )( )( )( ) ( )( )( )( )( )

( )( )( )( )( ) ( )( )( )( )( )

| |
0.9 0.9

!
0.02 0.90.8 0.

! | ! |
0.1 0.1

|

| , | ! ,
0.9 0.2

| , | ! ,
0.9 0.2
!

8
!

0.02 0.9
| , !

| |
0.7 0.7

| |
0.7 0.7

| ! | !
0.1

8
!

0 0
|

8

0.8 0.8

0.
| ! ,

0. 0. 81 .9 .02

S S

S S

A B A B

A B

B C C

C C

S C

W C W C

W C W

S C B S

A B

A B A B

C
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Example 2, cont.:  
Numerator Computation 
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 23 = 8 products 

 24 = 16 products 
F T

F F 0.99 0.01
T F 0.1 0.9
F T 0.8 0.2
T T 0.1 0.9

S C B

Chair Sport 

Worker Back 

Ache 

F T
0.98 0.02

S
F T

0.2 0.8

C

F T
F 0.99 0.01
T 0.1 0.9

C W

F T
F 0.9 0.1
T 0.3 0.7

B A

Presenter
Presentation Notes
This slide shows numerator computations.
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Example 2, cont.:  
Denominator computation 
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As the number 
of nodes k and 
the number of 
states per node 
m increase, the 
computational 
complexity for a 
general joint 
probability 
distribution 
grows as O(mk); 
with BNs, it 
grows more 
slowly, as 
square of the 
maximum 
number of 
parents per 
node. 

Presenter
Presentation Notes
Finally, this slide shows denominator computations.

As cumbersome as this simple example appears, it turns out that the computational complexity of Bayesian networks grows much slower than the complexity of computing general joint probability distributions.  This is due to the conditional independence property that we described previously.
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Example 2 (A,B,W,C,S), cont.  
Computation for specific question 
A2: The probability that Bob’s chair is bad, 
given that his back aches is 

( )
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{ }
{ }
{ }
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{ }
{ }
{ }
{ }
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3

1

1
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2
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,

2

, !

2

, !

4

, !

3
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0.1827 0.8867
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X W W
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X S S

X
X C

S

X B

C

W W
B

X
S

X

X

A

AA
A

X

X

C

X XA
CC

X
∈

∈

∈
∈

∈
∈

∈

= =

= =

∑

∑

 23 = 8 products 

 24 = 16 products 

∴ A2: The probability that Bob’s chair is bad, 
given that his back aches, is ~89%. 

As demonstrated on previous slides, we definitely need software (inference 
engine) to do these computations correctly, given a valid model (BN + nodal 
state definitions + CPTs).  Examples:  Kevin Murphy’s Bayes Net Toolbox:  
http://code.google.com/p/bnt/ & UCLA’s SamIam: http://reasoning.cs.ucla.edu/samiam/ 

F T
F F 0.99 0.01
T F 0.1 0.9
F T 0.8 0.2
T T 0.1 0.9

S C B

Chair Sport 

Worker Back 

Ache 

F T
0.98 0.02

S
F T

0.2 0.8

C

F T
F 0.99 0.01
T 0.1 0.9

C W

F T
F 0.9 0.1
T 0.3 0.7

B A

Presenter
Presentation Notes
Even so, as demonstrated on the previous slides, in order to perform the calculations reliably for answering a Bayesian network query, we definitely require software.  In AI, this software is called an inference engine.  Examples of software that we have used include Kevin Murphy’s Matlab-based Bayes-Net Toolbox, which Kevin developed while at MIT; and SamIam, which was developed within Professor Adnan Darwiche’s Automated Reasoning Group at UCLA.  Each software package has advantages; however, when teaching engineers to use Bayesian networks, we prefer SamIam’s graphical user interface.

http://code.google.com/p/bnt/
http://reasoning.cs.ucla.edu/samiam/
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*The most common DASE experimental design is space-filling, i.e. Latin 
Hypercube Sampling, to obtain response summary statistics, which—in the 
case of BNs—are used to populate CPT entries. 

Synergy of DASE, Design & Analysis 
of Simulation Experiments, with BNs 

At each chosen 
point in the XC 
space, a set of 
random draws 
from factor set 
XU is made.  

The Factor Hypercube* Factor-Set Assignment 

XC 
Control Set 

 Interest in specific 
factor levels 

XU 
Uncertain Set  
 Randomly 

drawn values 
 
 XC1

X
C3

X
C2

XU

X*

XU

XU

XU
XU

XU

XU XU

XU

DASE is used in the 1st and 3rd stages of requirements-flow modeling: 
1) Populate BN’s CPT entries with baseline sample proportion estimates 
2) “Judiciously” modify baseline CPT entries, weighing cost/benefit options 
3) Verify that new design satisfies the BN’s modified CPT entries and system 

performance requirements, which are stated as marginal probabilities 

Presenter
Presentation Notes
Before moving to our final example, we comment briefly on the synergy that we have experienced between Bayesian networks and DASE, the Design & Analysis of Simulation Experiments.  In DASE, values of a defined response are estimated using samples that cover a particular factor space. Our most common experimental design in the control factors is space-filling, i.e. Latin hypercube, and replicates at each Latin hypercube point are made with random draws from uncertain (also called Monte Carlo) factors.  Each entry in each CPT of a Bayesian network is a sample proportion estimate, generated by extracting data from one or more simulation experiments.  Although we used the maximum-likelihood estimates, we could also have used Bayesian estimation for each CPT entry.

Within the specific context of requirements-flow models, DASE is used in the first and third of three stages:

in Stage 1, CPTs are populated with sample proportion estimates from designed simulation experiments using a baseline, prior system that is similar ito the new system.
In Stage 2, subject matter experts judiciously alter specific CPT entries, thus allocating requirements for a proposed, improved system.
In Stage 3, DASE is used again, once changes have been implemented, in order to verify whether or not the requirements have been satisfied.
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Example 3*  
Weapon kill-chain model for anti-aircraft missile 

Search

Det1 Det2

TrkGuide

Damage

F T

0.1 0.9

Search

F T
F 1 0
T 0.1 0.9

Det1
Search

F T
F 1 0
T 0.4 0.6

Det2
Search

None Disable Kill
F 1 0 0
T 0.03 0.02 0.95

Damage
TrkGuide

F T
F F 0.55 0.45
F T 0.12 0.88
T F 0.4 0.6
T T 0.1 0.9

Det1 Det2 TrkGuide

*Simplified from Ball’s 
example in The Fundamentals 
of Aircraft Combat 
Survivability Analysis & 
Design (2nd ed., 2003) 

Exploring potential of 
increasing this sensor’s 
performance in order to 
increase PK

1 value from 
baseline system’s 0.70 
to new system’s 0.77 

1Common error: to confuse a conditional probability 
like Pr(Damage=Kill | TrkGuide = True), with a 
marginal probability like PK 

2We’re ignoring potential for improving both sensors’ 
performance simultaneously—along with many 
more complex, allowable queries of this BN! 

Observe 
the higher 
conditional 
potential of 
Sensor2 vs. 
Sensor1.2 

Presenter
Presentation Notes
Our third example is a simplified, notional kill-chain model taken from Ball’s text, The Fundamentals of Aircraft Survivability Analysis and Design.

The one, independent node in this example is Search, i.e. probability that the anti-aircraft weapon is searching for the target aircraft.  The next two nodes depict the detection probability of two sensors.  Both sensors’ states determine the probability that the weapon successfully Tracks, Guides, and Detonates within acceptable range for target damage.  The final Damage node is trinomial, including possibilities of no damage to the target aircraft, disabling the target aircraft from completing its mission, or killing the target aircraft.  In requirements discussions, it is a common error to confuse a conditional probability like Pr(Damage = Kill | Trk Guide = True) with a marginal probability like PK.

In this case, the form of the question is a sensitivity analysis query:  How might we change a single CPT entry to increase PK from its current value of 0.70 to 0.77?  We note that Sensor2’s detection probability, given that the weapon is in search mode, is 0.6, which is considerably lower than Sensor1’s performance.  To answer this question, we used SamIam’s sensitivity analysis function (SamIam stands for sensitivity analysis, Inference, and more).  The next slide shows the results.
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Sensitivity Analysis  
Weapon kill-chain model for anti-aircraft missile 

 Simple, 1-factor sensitivity 
queries for each sensor 
quantify the higher 
potential for incrementally 
improving PK by improving 
Sensor2’s performance 
than Sensor1’s 

 In addition, Sensor1’s 
performance is already 
closer to 1; incremental 
improvements are likely 
more difficult to obtain 

 Therefore, the better 
decision is to improve 
Sensor2 (and then verify 
with another DASE study) 

Many, more-complex queries can be explored using the same BN. 

Presenter
Presentation Notes
The plot on the left indicates two things:  (1) The required increase of Sensor 1 detection probability, given that Sensor 2’s performance remains fixed, and (2) the rate of increase in PK increase per Detection1 increase.

Compare the left and right plots:  Note that even at Det1 = 1, our desired PK value of 0.77 is not possible.  In addition, the sensitivity of Sensor2’s detection is more 4 times greater than Sensor1’s sensitivity.  Also, note that, since Sensor1’s detection probability is already closer to 1 (i.e. 0.9), it is likely that improving Sensor2 performance from 0.6 to 0.85 will be more feasible.

This example was chosen for its simplicity; many, more-complex queries can also be explored using the same Bayesian network.
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Summary 
 Combined with DASE, Bayesian networks (BNs) provide 

a way to allocate & evaluate subsystem requirements in 
a quantitative, comprehensive manner 
• A rigorous probability model enables immediate evaluation 

of “what-if” queries when considering subsystem 
improvements 

• A requirements-flow model enables immediate sensitivity 
analysis and upper-bound estimates on the likely 
achievable gains of a proposed improvement 

• BNs provide a natural framework for integrating results 
from multiple DASE studies to mitigate suboptimization 

 Many tools exist for DASE and BN development 
The challenge: To educate engineers in the promise 
of BNs + DASE and the use of available tools. 

Presenter
Presentation Notes
To summarize:

Combined with DASE, Bayesian networks provide a way to allocate and evaluate subsystem requirements in a quantitative, comprehensive manner.
  - A rigorous probability model enables the most efficient discussion and evaluation of “what-if” queries
  - A requirements-flow model enables immediate, periodic sensitivity analysis and estimation of upper bounds on the likely achievable gains of proposed improvements.
  - Bayesian networks also provide a natural framework for integrating results from multiple DASE studies to mitigate suboptimization.

Finally, the challenge is to educate engineers in the promise of combining Bayesian networks with DASE, using the available tools.

Thanks for your attention.
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