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Light vs. heavy tails

Gaussian noise
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Impulsive stable noise, alpha=1.8
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Why not just throw out extremes?

Not mistakes, they are part of the process.

Extremes are important directly or indirectly:
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Why not just throw out extremes?

Not mistakes, they are part of the process.

Extremes are important directly or indirectly:

@ Financial returns

@ Weather - rain, wave height, wind speed, temperature
@ Risk assessment, insurance
°

Standard summary statistics like mean and variance are heavily
affected by extremes, so can be misleading

Signal processing
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Standard empirical CDF plot with heavy tailed data
Plot (x;, pi), where x; are sorted data values and p; = (i —1/2)/n.

Simulated Cauchy data

Fn(x)

Extremes visually dominate, more data aggravates the problem
Cannot see what the tails are doing. QQ-plot has similar problems.
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Heavy Tailed ECDF

Plot transformed (h(x;), g(p;)), where h and g are:
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Heavy Tailed ECDF

Plot transformed (h(x;), g(pi)), where h and g are:
Pick three values 0 < q1 < g2 < g3 <1 (default 1 =1/4, ¢ = 1/2,
g3 = 3/4). Then define the corresponding data quantiles: t; = F~1(q;).

Use these values to define the two functions

—1—log(—z) x<t

1+ log(z) X > t3

qi(1+log £) pP<aq
g(p) = &(plai, g2,93) = { p n<p<q
93— (1—qs)log =2 p>qs
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HT ECDF plot

Cauchy data

.50: 8.61e-04
0.75: x= 1.05e+00
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HT ECDF plot (continued)

Transformations are continuous, linear in the middle interval and
logarithmically scaled on the outer intervals. So if there is power law
decay, get linear behavior on tails.

Compresses extremes to give better picture of the whole range data.

Model free: makes no assumption about the data

Can adjust g;'s: for one-sided data on the right use 0 = g1 = ¢» < g3,
qsz = 1/2.

Can compare to one or more models, add more annotations, ...
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Heavy tailed ECDF plot with parametric fit comparisons

Cauchy data

normal cdf

Cauchy cdf, green=

red=

5 0.75

0.25 0

95: x= 7.31e+00
99: x= 2.94e+01
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Example: acoustic noise
Alpheidae is a family of snapping shrimp

The snap can generates acoustic pressures of up to 80 kPa at a distance of
4 cm from the claw, strong enough to kill small fish. bubble. As it
collapses, the cavitation bubble reaches temperatures of over 5000 K, can
produce sonoluminescence. Data from Singapore, n =10,000 samples
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Sonar - acoustic noise

A21_BP_250kHz.txt n=10000

0.05

-0.05

0 2000 4000 6000 8000 10000

red= stable S(1.75,2.8e-09,0.00197,~1.78e-06;0)
green= Gaussian N(1.59e-07,1.98e-05)

0.25: x= -1.89e-03
0.50: x= -1.22e-05
0.75: x= 1.90e-03

R
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Financial data

Myriad genetics, daily returns
n=699
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Financial data with tail fit

Myriad genetics, daily returns
n=699

tail fit with 5% of lower and upper tails
099 |-
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0.9 - g tail power= 2.508
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Semi-parameteric fit - tails & ECDF

Myriad Genetics ECDF and heavy tails ECDF
n=699

Fn(x)

J. Nolan (American U)
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Bivariate diagnostics

Heavy tailed data has same problems as in univariate case: large values
visually dominate. Define the amplitude/radii: R = v/ X2 + Y?
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Bivariate diagnostics based on amplitude

Simulate alpha=1.3 stable data
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Bivariate diagnostics based on amplitude

Simulate alpha=1.3 stable data radial distribution, n= 1000
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If directional behavior is very different, can select sector/cone to examine.
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Bivariate diagnostics scaling x and y by amplitude
Use log transform based for R > Ry, preserving direction:

uj o Xj h(R/‘O’ 07 RO)
vi )\ i Ri '

Simulate alpha=1.3 stable data
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Bivariate diagnostics scaling x and y by amplitude
Use log transform based for R > Ry, preserving direction:

uj o Xj h(R/‘O7O7 RO)
vi )\ i Ri '

transformed data

Simulate alpha=1.3 stable data r.quantile= 0.5
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3-dim visualization in terms of cdf of amplitude

First, take original data and lift based on distance from origin:
Z; =empirical cdf of amplitude at (Xi;, X3/)
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3-dim visualization in terms of cdf of amplitude

Now combine previous 2 slides: transform in xy plane based on amplitude,
transform in z direction based on g(p) from univariate case.

J. Nolan (American U) CASD 2014: non-Gaussian distributions 23 Oct. 2014 20 / 49



3-dim visualization in terms of cdf of amplitude

Now combine previous 2 slides: transform in xy plane based on amplitude,
transform in z direction based on g(p) from univariate case.

transformed data

probabilif}:_i 2
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Multivariate diagnostics | - plot all marginals

marginals of dataset 1

. Nolan (American U) CASD 2014: non-Gaussian distributions 23 Oct. 2014 21 / 49



Components with different tail behavior

component 1 component 2 component 3

component 4 component 5 component 6
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Multivariate diagnostics Il

View projections of X = (Xi,...,Xy):
@ can show the amplitude of arbitrary dimensional data
o linear projections ) a;X; or max projections \/ a; X;
@ 1, 2 or 3d visualization
°

possible interactive way to choose weights and animation to cycle
through components (pairs/triples) or "grand tour” through sequence
of directions

Examples use 20-dimensional data set (elliptical stable with oo = 1.3) with
n = 1000 observations.
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dim weights

J. Nolan (American U)

linear projection n= 1000

d

20

p  sample quantile
0.2500: -0.680902
0.5000: .00575501
0.7500: x=  0.691848
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yl

weights

y2

40

20

-20

-40

J. Nolan (American U)

bivariate linear projection
n=1000 d=20
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9 Meshes and integration on spheres and simplices
@ Grids and meshes
@ Spherical Cubature
@ Simplicial Cubature
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Motivation: multivariate sum stable distributions

Lévy and Feldheim (1930s): X sum stable, with index o and centered,
then there is a finite measure A on the unit sphere S with

Eexp(iu.30) = o~ [ wal(u s A05)).

where

) = |ul*[1 —i(signu) tan =] a#1
ST ul [+ i(signu) 2 loglu] a=1.

Here the spread of mass by A determines the joint structure.
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Motivation: multivariate max stable distributions

de Haan and Resnick (1977): X max stable, centered with index &, then
there is a finite measure A on the unit simplex W_ with

d W
P(X < x) = exp (— /W (\/ —é) /\(dw))
+ \j=1%

Again the spread of mass by A determines the joint structure.
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How to work with spectral measures in higher dimensions?

In both cases, the specification of the dependence structure for max stable
and sum stable laws is done in terms of a spectral measure.

Can work with discrete spectral measures, but currently hard to handle
much else when dimension is bigger than 2.
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How to work with spectral measures in higher dimensions?

In both cases, the specification of the dependence structure for max stable
and sum stable laws is done in terms of a spectral measure.

Can work with discrete spectral measures, but currently hard to handle
much else when dimension is bigger than 2.

Need computational tools to work with spheres and simplices in
d-dimensions, in particular d > 2.

First task: define meshes on simplex and sphere in higher dimensions
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Edgewise 4-subdivision of unit simplex in R3

PES d=3 k=4 #tiangles= 16
10060é] | = = riangles=

038

06

04 086 08 qn
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Mesh on unit sphere in R3, projected from edgewise
subdivision

J. Nolan (American U)
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More uniform mesh - dyadic subdivision
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Integrating over spheres and balls

R package SphericalCubature to evaluate integrals of the form:

/Sf(s)ds and /]Bf(x)dx,

where S is the d-dimensional sphere and B is the d-dimensional ball.

Publicly available package on the open source CRAN repository
@ Exact integration of polynomials f in any dimension.

@ Adaptive numerical cubature of smooth functions in moderate
dimensions.

@ 'Directed’ numerical cubature of non-smooth functions in moderate
dimensions.
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Integration over simplices

R package SimplicialCubature to evaluate integrals of the form:

/5 f(s)ds,

where S is an m-dimensional simplex, 1 < m < d. We are mostly
concerned with the case m = d — 1, e.g. the unit simplex W_..

Publicly available package on the open source CRAN repository
@ Exact integration of polynomials f in any dimension.

@ Adaptive numerical cubature of smooth functions in moderate
dimensions.

Using the subdivision routines mentioned above, we can define and exactly
integrate piecewise polynomial functions on the simplex for multivariate
extreme value distributions.
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© Generalized Spherical Distributions
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Generalized spherical distributions

Let X have a density f(x) on RY and let S be the unit sphere
{x:|x| =1}, B be the unit ball {x: |x| <1}. A distribution is spherical if
f(-) is constant on each sphere rS, r > 0.
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Generalized spherical distributions

Let X have a density f(x) on RY and let S be the unit sphere
{x:|x| =1}, B be the unit ball {x: |x| <1}. A distribution is spherical if
f(-) is constant on each sphere rS, r > 0.

A distribution is generalized spherical if there is a curve/surface S, with
f(-) being constant on all multiples rS,, r > 0.

Goal: to have flexible program to work with large classes of such
distributions in d—dimensions.
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Star shaped distributions in 2D

mix of 8 cones
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Star shaped contour in 3D

3 > e){a\oswomoso coqes
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Previous work

Fernandez, Osiewalski and Steel (1995) gave idea; Arnold, Castillo and
Sarabia (2008) extended some and advocated modeling data with these.

We will start with a contour/surface given by a polar representation:

S« ={c(s)s:s € S}
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Previous work

Fernandez, Osiewalski and Steel (1995) gave idea; Arnold, Castillo and
Sarabia (2008) extended some and advocated modeling data with these.

We will start with a contour/surface given by a polar representation:

S« ={c(s)s:s €S}

/'\/z—'\
A

S

IDEA: define a distribution with all level curves a scale of this contour.

Need two parts: (a) a flexible way of describing multivariate contours and
(b) a (univariate) radial function to specify decay.
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Radial function and density

Let g(r) > 0 be an integrable function on [0, c0), it will determine the
radial decay of the density. Using the contour function c(s) and the radial

function, define
x|
F(x) = {g () >0 (1)
g(0) x| =0.
With suitable integrability conditions (see below), this gives a density on
RY,

Fernandez, Osiewalski and Steel (1995) started with a homogeneous
function v(x) on R? (v(rx) = rv(x)) and defined B, = {x € R :

v(x) < 1}. If B, is convex and symmetric, then v(-) is a norm on R? with
unit ball B, and unit sphere given by it's boundary

S« = {x € R : v(x) = 1}. In general, v(-) is not a norm, but we may still
call S, a “unit ball". In their approach, the density

f(x) = g(v(x))

is called a v-spherical density. A.K.A. homothetic distributions.
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In terms of the contour function, v(x) = |x|/c(x/|x|). We find using the
contour function as the starting point a more intuitive approach: it defines
the unit ball, which defines the level curves.
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In terms of the contour function, v(x) = |x|/c(x/|x|). We find using the
contour function as the starting point a more intuitive approach: it defines
the unit ball, which defines the level curves.

For (1) to be a proper density, it is required that
kti= /cd(s)ds € (0,00) (2)
S

and

/ r?=tg(r)dr = k,.
0

We will assume ¢(s) is continuous and bounded away from 0 on compact
S, so the k. is finite. An easy way to guarantee the second condition is to
start with a univariate density h(r) on [0,00) and define

g(r) = ker*=9h(r).
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Specifying the contour

We wanted flexible, parametric families of generalized spherical
distributions that worked in arbitrary dimensions that included most of the
cases described in the earlier work. We allow contour functions of the form

Zajcj S)+ ———— E

)
j=1 3J CJ (S)

where ¢; > 0, ¢ > 0, and ¢j(-) and/or c*(-) are one of the cases discussed
below.

@ c(s) =1, which makes S, the Euclidean ball.

o c(s) = c(s|u,0) is a linear cone with peak 1 at center p € S and
height 0 at the base given by the circle {x € S: p - x = cosf}. It is
assumed that 0] < 7/2.

o c(s) = c(s|u, o) = exp(—t(s)?/(20?)) is a Gaussian bump centered
at location p € S and “standard deviation” o > 0. Here t(s) is the

distance between p and the projection of s € S linearly onto the plane
tangent to S at pu.
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o c*(s) = Isller(rey. P> 0.

o c*(s) = ||As||pmm), p >0, Aan (m x d) matrix. This allows a
generalized p-norm. If Ais d x d and orthogonal, then the resulting
contour will be a rotation of the standard unit ball in ¢P. If Ais d x d
and not orthogonal, then the contour will be sheared. If m > d, it will
give the ¢P norm on R"™ of As.

o c*(s) = (sT As)'/2, where A is a positive definite (d x d) matrix.
Then the level curves of the distribution are ellipses.

Sums of the last three types allow us to consider contours that are familiar
unit balls, or generalized unit balls, or sums of such shapes. Sums of the
first three types allow us to describe star shaped contours. Combinations
allow more general shapes, see the following plots.
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isotropic elliptical
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generalized (rotated) 1-norm
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blob #1 blob #2

blob #3 blob #4
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normal bumps mix of 8 bumps

5 cones, r0= 0.3
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Some 3D contours

cybe with bulge

e
LoST
o

eplgson

1
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The radial function

Generally want g(r) to be decreasing so that f(x) is unimodal on R¥.
Here are two accessible classes, defined in terms of univariate r.v. R > 0,
which has pdf h(r).
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The radial function

Generally want g(r) to be decreasing so that f(x) is unimodal on R¥.
Here are two accessible classes, defined in terms of univariate r.v. R > 0,
which has pdf h(r).

o R ~Gamma(d + a+ 1), then g(r) = k.r'=?h(r) is a constant times a
Gamma(a). If a € (0,1], then g(r) is decreasing. Is finite at 0 if and
only if a =1, always has a light tail.
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The radial function

Generally want g(r) to be decreasing so that f(x) is unimodal on R¥.
Here are two accessible classes, defined in terms of univariate r.v. R > 0,
which has pdf h(r).

o R ~Gamma(d + a+ 1), then g(r) = k.r'=?h(r) is a constant times a
Gamma(a). If a € (0,1], then g(r) is decreasing. Is finite at 0 if and
only if a =1, always has a light tail.

@ R is the amplitude of an isotropic a-stable distribution (0 < o < 2)
on R?: R = |Z|. Using result of Wolfe (1975) on unimodality of
isotropic stable laws, it can be shown that r'=h(r) is decreasing,
bounded at the origin, and has a heavy tail: r*=9h(r) ~ cr—{(d+a),
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The radial function

Generally want g(r) to be decreasing so that f(x) is unimodal on R¥.
Here are two accessible classes, defined in terms of univariate r.v. R > 0,
which has pdf h(r).

o R ~Gamma(d + a+ 1), then g(r) = k.r'=?h(r) is a constant times a
Gamma(a). If a € (0,1], then g(r) is decreasing. Is finite at 0 if and
only if a =1, always has a light tail.

@ R is the amplitude of an isotropic a-stable distribution (0 < o < 2)
on R?: R = |Z|. Using result of Wolfe (1975) on unimodality of
isotropic stable laws, it can be shown that r'=h(r) is decreasing,
bounded at the origin, and has a heavy tail: r*=9h(r) ~ cr—{(d+a),

Working on methods to simulate from such distributions.
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