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Introduction

Estimating the exponent of regular variation

Recall that a univariate distribution (function) F is said to have a
regularly varying right tail of index a > 0 if the tail function
F =1 — F satisfies _
jim (%)
X—00 F(X)

—Q

The index o measures the heaviness of the tail and estimating it is
of crucial importance in many applications of stochastic models.

A number of estimators have been designed for that purpose.
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The best known estimator of the tail index is the Hill estimator,
introduced by Hill (1975).

Let X1, < Xo,p < ... < X, be the order statistics from a positive
sample (or from the positive part of a general sample) Xi,..., X,.

The Hill estimator based on k upper order statistics is defined as
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Suppose that the original observations form an i.i.d. sample from a
distribution with a regularly varying right tail with tail index «. If

k
n—oo, k—>o00, ——0,
n

then 1
Hin — v = — in probability
o

(Mason (1982)).
If, additionally, k/ loglog n — oo, then we even have
1
Hin—v=— as.
e

(Deheuvels, Hausler, Mason (1988)).
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Choosing the appropriate number k of upper order statistics when
the Hill estimator is applied to a finite sample, is very difficult.

@ Visual techniques are used: the estimator is plotted for a

range of k, and then one looks for a part of the plot that
looks stable.

@ Several smoothing techniques have been introduced to assist
in this visual analysis (Resnick and Starica (1997)).
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Hill estimator applied to i.i.d. SaS sample of 5000, o = 1.7.
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Systematic ways of selecting the number of upper order
statistics

e Hall (1990) suggested a procedure minimizing the asymptotic
MSE of the estimator based on the assumption of 2nd order
regular variation.

@ Danielsson et. al (2001) improved the above approach via a
two-step bootstrap procedure that uses minimal a priori
information.

@ Drees and Kaufmann (1998) introduced a thresholding
approach that works under certain additional assumptions.
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Most of existing approaches to selecting the number k in a tail
estimator is via optimizing asymptotic efficiency.

We view it as the problem of deciding which part of a given sample
contains reliable information on the tail of the distribution F.

Where does the tail begin?

Importance is even higher in a highly dimensional multivariate
context, where we need to test repeatedly for tail independence.
This is highly sensitive to the contamination of the tail by the
center of the distribution.
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Our approach is based on a simple idea. Under the assumption of
regular variation, vague convergence of point processes holds:

n
Np = dx/a, 2 N,
i=1
where:
@ 0y is a point mass at x;
o (an) a positive sequence satisfying F(a,) ~ 1/n as n — oo;

@ N, is a Poisson random measure on (0, oc] with mean
measure fi,(x,00] = x~%, x > 0.
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We interpret this result as follows:

any upper order statistics in the sample that fall in the tail region
behave like points of a Poisson random measure with a power
intensity.

This property can be tested statistically, and sequentially.

One can perform appropriate statistical tests on the subsamples
Xn—k+1,ns Xn—k+2,n, - - - » Xn,n With increasing k.

Terminate the procedure once the k upper order statistics
stop resembling points of a Poisson random measure with a
power intensity.
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In order to avoid taking into account too many order statistics, it is
desirable to make it easier to reject the null hypothesis for larger k.

We achieved this by selecting an increasing sequence 6, T oo and
set

Nn::inf{kzlgkgn,|Qk7n|2w an}

Under a suitable growth condition on 6, this definition of N,
makes it, roughly, proportional to 6,,.
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2|p|
Theorem Let 0, = o(n1+2p\Pl) as n — 0o. Then

@ The Hill estimator based on N, upper order statistics is
consistent:

Np—1
H Z log —— Xo—iin —>’y n— oo
Nm :
N Xn—Ny,n ’

@ the asymptotic behaviour of the estimator is given by

Hn,.n G

where G is a standard normal random variable independent of
the first hitting time 7, of the set +w by a standard Brownian
motion.
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Simulated data, n = 5000

Method Hill N,, 0, = (log n)?| Bootstrap Kopt

Dist. « | Mean |RMSE| Mean | RMSE | Mean |RMSE| Mean |RMSE
Student(4)| 4 |2.7794|1.7098|3.4568| .6510 |3.6135|.6859 |3.4270| .6629
Student(3)| 3 |2.1719| .9843 |2.7726| .3657 |2.8490].4383 |2.7669| .3358
Student(1)| 1 |.9326 | .3937 [1.0109| .0890 | .9881 |.0502 | .9965 | .0391
Stable(1.7)|1.7|2.0347| .6951 |2.0013| .3887 [2.2515| .5654 |2.2138|.5283
Stable(1) | 1 | .8965 | .1683 |1.0099| .0855 |.9945 |.0689 | .9912 | .0404

MA(1) 3 12.8335|1.8239(3.1434| .5232 |3.1365| .5647 |3.0955| .3708
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Simulated data, n = 50000

Method Hill N,, 0, = (log n)?| Bootstrap Kopt

Dist. « | Mean |RMSE| Mean | RMSE | Mean |RMSE| Mean |RMSE
Student(4)| 4 |3.2954|1.5064|3.7958| .4743 |3.7690|.5282 |3.6080| .4217
Student(3)| 3 |2.5280| .6734 [2.9391| .2245 |2.8900|.3013 |2.8490| .1839
Student(1)| 1 | .9499 | .2182 [1.0103| .0697 |.9959 |.0215 |.9970 | .0159
Stable(1.7)|1.7|2.0894| .5303 |1.7733| .1670 [2.2276|.5288 |2.1057|.4079
Stable(1) | 1 | .9608 | .1357 |1.0079| .0764 |.9918 |.0204 | .9965 | .0165

MA(1) 3 13.6480|5.4884(3.1893| .4743 |3.1014|.2113|3.0898|.1775




Conclusions

Conclusions

The suggested choice of the sample fraction works well with
various distributions;

it works well even with modest sample sizes;
it is very efficient computationally;

we still need to understand its behaviour under tail
dependence.
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