Bayesian Estimation Under Informative Sampling

Based on work of T. D. Savitsky, Daniell Toth, Michail Sverchkov

T. D. Savitsky

Office of Survey Methods Research

October 22, 2014

Table of contents

- Goals
- Motivating Application
- Stimation Model
 - Non sequitur Example
 - Estimating Population Density from Sampled Units
 - Pseudo-population Estimation Statistics
- Bayesian Accounting for Informative Sampling
 - Empirical Generation of Pseudo-populations
- A Simulation

Employment Count Reporting Errors

- Make inference on the population distribution
- When the data are acquired under an informative sampling design
- Where $f(\mathbf{y}_o|\boldsymbol{\lambda}) \neq f(\mathbf{y}_p|\boldsymbol{\lambda})$
- Analyst may not know the sampling design to parameterize it

Employment Count Reporting Errors

- Establishments report number of employees
- On both Quarterly Census of Employment and Wages (QCEW)
- And Current Employment Survey (CES)
- Response Analysis Survey (RAS)
- Our data are $y = |y_{QCEW} y_{CES}|$
- Collected on N=9777 establishments, each for T=15 months.
 - June, 2006— March, 2007
- Produces $N, T \times 1$ functions, $\{y_i\}_{i=1,...,N}$
- Functions each standardized to variance 1
- Desired inference about set of latent functional bases

Randomly-selected observed y_i

More Randomly-selected observed y_i

Stratified Sampling Design

- ullet Sampled 2917 establishments 2013 responded from N=9777
- Stratified design with H=6 strata
- Assigned to strata based on a priori "interesting" features
- Focused on selected portions of functions
- e.g. spike at year-end indicates counting checks, rather than employees

Bayesian Estimation Model: DP mixture over GP's

$$\mathbf{\hat{y}}_{i}^{T \times 1} \sim \mathcal{N}_{T}\left(\mathbf{f}_{i}, \tau_{\epsilon}^{-1} \mathbb{I}_{T}\right), i = 1, \dots, N$$

$$\mathbf{f}_{i} \sim \mathcal{N}_{T}\left(\mathbf{0}, \mathbf{C}\left(\boldsymbol{\theta}_{i}\right)\right)$$

$$\boldsymbol{\theta}_{1}, \dots, \boldsymbol{\theta}_{N} | G \sim G$$

$$G \sim \mathsf{DP}(\alpha_{0}, G_{0})$$

$$\updownarrow$$

$$\mathbf{f} | G \sim \int \mathcal{N}_{T}\left(\mathbf{0}, \mathbf{C}\left(\boldsymbol{\theta}\right)\right) G\left(d\boldsymbol{\theta}\right)$$

GP covariance function - Rational Quadratic

$$\mathbf{f}_{i} \sim \mathcal{N}_{T}\left(\mathbf{0}, \mathbf{C}^{T \times T}(\boldsymbol{\theta}_{i})\right)$$

$$\mathbf{C}\left(\boldsymbol{\theta}_{i}\right) \equiv \mathbf{C}_{i} = \left(C_{f_{ij}, f_{i\ell}}\right)_{j, \ell \in \left(1, \dots, T\right)}$$

$$C_{f_{ij}, f_{i\ell}} = \frac{1}{\theta_{i, 1}} \left(1 + \frac{\left(t_{ij} - t_{il}\right)^{2}}{\theta_{i, 2}\theta_{i, 3}}\right)^{-\theta_{i, 3}}$$

- ullet $\theta_{i,1}$ controls the vertical magnitude
- ullet $heta_{i,2}$ controls the base length-scale \leftrightarrow wavelength
- $\theta_{i,3}$ controls smooth deviations across scales
 - As $\theta_{i,3} \uparrow \infty$, converge to single length-scale, $\theta_{i,2}$

GP Draws

- Top "Rough": $(\theta_1, \theta_2, \theta_3) = (0.4, 0.2, 5.0)$
- Middle "Rough with Variation": $(\theta_1, \theta_2, \theta_3) = (0.4, 0.2, 0.3)$
- Bottom "Smooth": $(\theta_1, \theta_2, \theta_3) = (0.4, 4.0, 5.0)$

Draws from $G \sim \mathsf{DP}$ are discrete, a.s.

Dirichlet Process

► Consider Gaussian G₀

f_i : Monthly CPS data

f_* : Monthly CPS data

Estimating Population Density from Sampled Units

- Consider sequence of populations, $\{N_{\gamma}\}_{{\gamma}\in\mathbb{N}}$.
- Increasing in size as $\gamma \uparrow$.
- $m_{\gamma}(y) := \mathbb{E}(I_{\gamma i}|Y_i = y)$
- $\bullet \ c_{\gamma}\left(y_{1},y_{2}\right):=\operatorname{Cov}\left(I_{\gamma i},I_{\gamma \ell}|Y_{i}=y_{1},Y_{\ell}=y_{2}\right)$
- $w_{\gamma}(y) := \frac{1}{m_{\gamma}(y)}$
- Assume $m_{\gamma}\left(y\right)\overset{\mathrm{a.s.}}{\rightarrow}m\left(y\right)$
- Assume $\forall y_1, y_2, \ c_{\gamma}(y_1, y_2) = o_{\gamma}(1)$

$$\frac{w_{\gamma}}{\mathbb{E}_{o}(w_{\gamma}(y))} f_{o}\left(y|\boldsymbol{\lambda}\right) \stackrel{\text{a.s.}}{\to} f_{p}\left(y|\boldsymbol{\lambda}\right)$$

Bonnéry et al. (2013) extends Glivenko-Cantelli

Empirical Generation of Pseudo-populations

The Procedure

- Generate B pseudo-populations, each of size n, by weighted sampling of observed data with replacement using normalized inverse inclusion probabilities
- Estimate $(\lambda_b)_{b=1,\dots,B}$ under each pseudo-population
- ullet Concatenate estimates, $oldsymbol{\lambda} = (oldsymbol{\lambda}_1, \dots, oldsymbol{\lambda}_B)$

Empirical Generation of Pseudo-populations

The Idea

- Weighted empirical predictive distribution, $\hat{f}(\mathbf{y}_p|\mathbf{y}_o)$, generates "pseudo-populations" (Pfeffermann et al., 1998, Pfeffermann and Sverchkov, 2003, Sverchkov and Pfeffermann, 2004), applies result of Bonnéry et al. (2013)
- ullet \mathbf{y}_p are treated as parameters

$$\hat{f}(\boldsymbol{\lambda}|\mathbf{y}_o) = \int f(\mathbf{y}_p|\boldsymbol{\lambda}) \, \hat{f}(\mathbf{y}_p|\mathbf{y}_o) \, f(\boldsymbol{\lambda}) \, d\mathbf{y}_p = \int c(\mathbf{y}_p) f(\boldsymbol{\lambda}|\mathbf{y}_p) \, \hat{f}(\mathbf{y}_p|\mathbf{y}_o) \, d\mathbf{y}_p.$$

- ullet Full uncertainty accounted for in estimation of λ
 - population generation, $\hat{f}(\mathbf{y}_p|\mathbf{y}_o)$
 - λ estimation given the finite population, $\hat{f}(\lambda|\mathbf{y}_p)$
 - conditioned on y_o

Substitution "Plug-in" Method

- $f_o(\lambda|H(\mathbf{Y}_o)) \equiv \text{sample model}$
- Use (\tilde{w}_i) to adjust $H\left(\cdot\right)$ from sample to population
- $\widehat{f_p}\left(\boldsymbol{\lambda}|H\left(\mathbf{Y}_o, \tilde{\mathbf{w}}\right)\right) \equiv$ population model

$$\bullet \; \text{Statistic, } \widehat{f_p} \left(\boldsymbol{\lambda} | \mathbf{H} \left(\mathbf{y}_o, \tilde{\mathbf{w}} \right) \right) = \prod_{j=1}^p \widehat{f_p} \left(\lambda_j | \mathbf{H} \left(\mathbf{y}_o, \tilde{\mathbf{w}}, \boldsymbol{\lambda}_{-j} \right) \right)$$

$$\begin{split} &\log \widehat{f_p}\left(\theta_{qm}^*|H\left(\{\mathbf{y}_i\}_{i \in s_m}, \{\tilde{w}_i\}_{i \in s_m}, \tau_{\epsilon}, \boldsymbol{\theta}_m^*\right)\right) \\ &\propto -\frac{1}{2}n_m \log\left(\left|\mathbf{C}^{\tau}\left(\boldsymbol{\theta}_m^*\right)\right|\right) - \frac{1}{2}\sum_{i \in s_m}\mathbf{y}_{o,i}^{'}\mathbf{C}^{\tau}\left(\boldsymbol{\theta}_m^*\right)\mathbf{y}_{o,i}\tilde{w}_i + \log f(\theta_{qm}^*) \end{split}$$

- $\mathbf{C}^{\tau}\left(\boldsymbol{\theta}_{m}^{*}\right) = \mathbf{C}\left(\boldsymbol{\theta}_{m}^{*}\right) + (1/\tau_{\epsilon})\mathbb{I}_{T}$
- ullet s_m collects the units assigned to cluster m
- $n_m = \sum_{i \in s_m} \tilde{w}_i, \sum_{m=1}^M n_m = n$

Comments on using Sampling Weights

- Both re-sampling and substitution don't require to re-parameterize
- This estimator employs harmonic averages for full conditionals
 - May break-down under high variation in the weights
- ullet "Gold standard" to jointly model (\mathbf{y}_i, π_i)

A Warm Up

- Generate N = 10000 population units
- $\mathbf{f}_i \sim \mathcal{N}_t \left(\mathbf{0}, \mathbf{C} \left(\boldsymbol{\theta} \right) \right)$
- ullet $\theta = (0.2, 0.7, 1.0)$ are global, not indexed by unit No clustering
- Generate $y_{ij} = \mathcal{N}\left(f_{ij}, \tau_{\epsilon}^{-1}\right)$
- τ_{ϵ} chosen to achieve noise-to-signal of 0.1
- Employ H=4 strata
- Assign units based on quantiles of variances for $N, T \times 1$ functions, \mathbf{y}_i
- Idea is that more interested in high magnitude (error) functions
- (STSI) Sample n=750 from H=4 strata with,
 - $\mathbf{n} = (82, 113, 211, 344), \, \mathbf{p} = (0.03, 0.05, 0.08, 0.14)$
- Generate B = 25 pseudo-populations for re-weighted estimation

$\theta = (0.2, 0.7, 1.0)$ and $\mathbf{n} = (82, 113, 211, 344)$

2- stage Sampling Design

- Form $n_I = 10$ homogenous blocks by variance quantiles (of y_i)
- 1st stage: Sample 7 blocks proportional to variance
 p = (0.04, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.14, 0.19)
- $\bullet \ 2^{\rm nd}$ stage: H=4 strata based on variance quantiles within blocks

	block/stratum	$H{=}1$	2	3	4
$p_{I}\left(\mathbf{s}_{I}\right)*p_{i}\left(\mathbf{s}_{Ii}\right)'=$	1	0.001	0.002	0.004	0.006
	2	0.002	0.003	0.006	0.009
	3	0.002	0.004	0.007	0.010
	4	0.003	0.004	0.008	0.012
	5	0.003	0.005	0.009	0.013
	6	0.004	0.005	0.010	0.015
	7	0.004	0.006	0.011	0.017
	8	0.004	0.006	0.012	0.019
	9	0.005	0.007	0.014	0.022
	10	0.007	0.010	0.019	0.029

• n=750 units from N=10000 population

2– stage Posterior Distributions for $\theta = (\theta_1, \theta_2, \theta_3)$

- Monte Carlo draws of 10 samples, each selecting 7 of 10 blocks
- "Most" population elements have non-zero selection probabilities
- Conditional inclusion dependence is low

Generate Functions Under M=3 Clusters

• Generate N = 10000 population units

$$\bullet \ \ \mathsf{Here}, \, \{ \overset{P\times 1}{\pmb{\theta}_i} \}_{i=1,\dots,N}$$

• 3 clusters with location values, $\Theta^* = (\theta_1^*, \dots, \theta_M^*)$:

	parameter/cluster	m=1	2	3
$oldsymbol{\Theta}^* =$	p=1	0.30	0.30	0.30
	2	0.30	2.50	0.70
	3	0.80	1.50	2.00
		rough-varied	smooth	rough

- $\mathbf{s} = s_1, \dots, s_N$ indexes randomly-assigned cluster memberships
- $s_i \in (1, ..., M = 3), i = 1, ..., N$
- $oldsymbol{ heta} oldsymbol{ heta}_i \equiv oldsymbol{ heta}_{s_i}^*$

Generate Functions Under M=3 Clusters

- ullet $\mathbf{f}_i \sim \mathcal{N}_t \left(\mathbf{0}, \mathbf{C} \left(oldsymbol{ heta}_{s_i}^*
 ight)
 ight)$
- Generate $y_{ij} = \mathcal{N}\left(f_{ij}, \tau_{\epsilon}^{-1}\right)$
- ullet au_{ϵ} chosen to achieve noise-to-signal of 0.1
- Employ H=4 strata
- Assign units based on quantiles of variances for $N, T \times 1$ functions, \mathbf{y}_i
- (STSI) Sample n=800 from H=4 strata with unequal probabilities, ${\bf p}=(0.03,0.06,0.07,0.16)\,,\;{\bf n}=(75,155,178,392)$
- Generate B = 25 pseudo-populations for re-weighted estimation

Posterior Distributions for $\theta_i = (\theta_{i,1}, \theta_{i,2}, \theta_{i,3})$

- One unit randomly chosen within each cluster
- Non-informative performs worst on members of smooth cluster

Clustering of $\{f_i\}$ for RAS Data

- 6 clusters contain (950, 648, 204, 106, 57, 48) establishments
- Based on relative magnitude of errors committed than on shape

Closing Period by Size \times Cluster

- 7 employee size categories, $(1-9,\ 10-19,\ 20-49,\ 50-99,\ 100-249,\ 250-499,\ >499)$
- BLS defines four time-indexed closing periods
- larger sized establishments in lower error clusters report sooner

References

- Bonnéry, D., Breidt, F. J., and Coquet, F. (2013). Uniform convergence of the empirical cumulative distribution under informative selection from a finite population. Technical report, Submitted to Bernoulli.
- Pfeffermann, D., Krieger, A., and Rinott, Y. (1998). Parametric distributions of complex survey data under informative probability sampling. Statistica Sinica 8, 1087-1114 (1998).
- Pfeffermann, D. and Sverchkov, M. (2003). Fitting Generalized Linear Models under Informative Sampling, pages 175–195. John Wiley & Sons, Ltd.
- Sverchkov, M. and Pfeffermann, D. (2004). Prediction of finite population totals based on the sample distribution. *Survey Methodology*, 30(1):79–82.