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Motivation: social networks

Myspace Online Social

Statistical characterization ' Network

3 friends?
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Often heavy-tailed




Outline

3 motivation
3 characterizing graphs

3 sampling with random walks
O undirected, directed graphs
O degree distribution

7 summary



On-line social networks

Can pick up node degree and neighbors at
each visit (web, FaceBook, Linkedln, ...)
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How then? sampling/crawling
O Leslovec et al, 2006, Mislove, etal 2007, ...




Sampling vs. crawling

3 sampling
o random node sampling
e unbiased estimates
e expensive
3 crawling

o snowball sampling, breadth
first search

e biased estimates
o random walk (RW)

» select next node uniformly
from neighbors
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RW sampling: undirected graph

Bias removal?
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RW sampling: undirected graph

Bias removal?

O Markov model 1 —
7 at steady state visits 01 |
edges uniformly at random oo |
Model: ,
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produces asymptotic unbiased estimates



Sampling errors

7 estimate 0, (avg. degree d) with B samples

J error metric -
JEL,-6,)°1/B
2]

NRMSE (i) =

3 random node sampling

smaller if
NRMSE(i):@l)/B [ i< d ]

3 random walk sampling (= random edge)

smaller if
NRMSE (i) = | @ —1/B | =g

Heavy tails more accurate
with RW sampling




Node sampling vs. RW: Orkut

__hode sampling random walk

log(CCDF)
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RW sampling effective for estimating heavy tails



Directed graphs: hidden in-edges

Challenges: sources, sinks

o walk outgoing edges =ources

O add random jumps \4/;\{
Problem: RW steady state strongly
distribution not computable ~«7 22&”;55:;1
Solution (DURW):

o during walk, construct undirected l

graph consistent with walk
o walk undirected graph on revisits \ ink's

O use undirected RW estimation



Estimating joint in/out degree
distribution

Impossibility result

3 when indegree heavy-tailed

O samples contain “almost no” statistical information
unless > %2 of edges sampled

O Fisher information — zero as max degree — o
exponentially fast

3 different result when tall is light
O estimation much easier



Directed graphs: visible edges

3 transform digraph to undirected graph
3 collect samples using RW

7 estimate
12 : hii(sk)
A. / : - h.. ) .’ . : O’l’ [ ]
QDL,] n ” ﬁ'(Sk) L] (Sk) L]

3 . 1, ik:i,Ok:j
hij(sic) = {O, otherwise
ft(sg) = C x deg(sy)

3 deg(sy) Is degree of new undirected graph, C chosen
to make 7( ) a distribution



RW-based degree distribution
estimation

3 performance on real datasets

0 VvS. uniform vertex sampling
o vs. DURW for marginal outdegree distribution

Graph # nodes  # edges E[out-deg] Type
Flickr [10] |1,715,255 22,613,981  18.1 OSN
LLYouTube [10] |1,138,499 4,945,382. 5.3 8‘?2"

iveJournal [107]5,204,176 77,402,652  18.7
Wiki-Talk [2] 12,394,385 5,021,410 3.9 usr talk
Web

Web-Google [1]| 875,713 5,105,039  9.87

3 infout degree distribution heavy talled



Behavior of RW: YouTube

3 empirical joint degree distribution
3 Neyman-Pearson correlation: 0.95

3 reciprocity: 0.79
o fraction incoming edges paired with outgoing edges

True PMF |09(PMF)
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outdegree

Behavior of RW on real datasets

3 YouTube \/E[

7 NMRSE  NRMSE(¢;) =

,3—12

3 sampling budget 10% of graph size (B = 0. 1)
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RW vs. uniform node sampling

3 YouTube, log(NRMSE) with B = 0.1
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Web-Google

OB=0.1

log(PMF)
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Wiki-Talk

OB=0.1
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Out-degree distribution estimation:
DURW vs. RW

3 RW based on all

edges provides o
(slightly) lower |
errors 10";»

3 efficient use of
iIndegree
Information?
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Issues

3 real world networks exhibit wide range of
reciprocity, statistical dependence

3 reciprocity has little effect on estimation
quality

7 effect of tail dependence?

3 other statistics?
O clustering coefficient
O centrality




Summary

3 random walk sampling — asymptotically
unbiased estimates

[ more effective than other techniques for
characterizing heavy tails

O in/out degree distribution
O variables positively correlated with degree

Questions

3 dealing with transients
o frontier sampling — coupled RWs

3 negative correlations



