Chapter 1 Solutions

1.3 The probability density function for the gamma distribution is
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What is the MTTF for the gamma distribution?

flt|la,\) = to Lexp(—At).
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Recognizing that this is a Gamma(a + 1, A) distribution, we can write the
integral as

N X Tla+l) «
/0 I‘(a)t exp(—At)dt = = —.

T(a) Aotl A
1.4 The probability density function for the Weibull distribution is
FEINB,0) =28t —0)"texp [-At—0)"], 0<60<t,A>0,3>0.

What is the reliability function for the Weibull distribution?
By definition,

R(t)
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/ M3(s — )P~ exp[—A(s — 6)7]ds.
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Noticing that if u = — exp(—A\(s —6)?), then du = A3(s—0)% " exp(—A(s —
6)7)ds, we have

R(t) = —exp(=A(s—6)") |
= exp(=\(t - 6)7).

1.5 The probability density function for an exponential random variable is

f&)y=xe,  t>0, A > 0.



What is the average hazard rate for an exponential random variable?

In Example 1.1.3, it is shown that the cumulative hazard function is H(t) =
At. Therefore, by definition, AHR(ty,ty) = 22=2 — Mta—ta) _

to—1t1 to—t1

1.7 Suppose that we are using the exponential distribution to model an item’s
lifetime.

(a)

We observe that the item failed at 6 hours. What is the likelihood
function for this observation?

Let T ~ Ezponential(\). Then f(t|\) = Ae™™ and the likelihood
function is (A |t = 6) = Ae %N

We observe that the item failed at some time between 5 and 10 hours.
What is the likelihood function for this observation?

From Table 1.6, we know that the likelihood function for an interval
censored observation has the form F(tg) — F(tr). The cumulative
distribution function for an exponential random variable is F(t|\) =
1 — exp(—At). Consequently, the likelihood function is [(A|5 < ¢ <
10) = exp(—5A) — exp(—10X).

We observe the item for 20 hours, and it does not fail. What is the
likelihood function for this observation?

From Table 1.6, we know that the likelihood function for a right-
censored observation has the form 1 — F(tg). The cumulative dis-
tribution function for an exponential random variable is F(t|\) =
1 — exp(—At). Consequently, the likelihood function is I(A|t > 20) =
1 — exp(—20)).



Chapter 2 Solutions

2.1 Suppose that we want to develop an informative prior distribution for the
probability of observing heads when we flip a coin. Suppose that we think
that the most likely probability of heads is 0.5 and that 0.75 would be
“extreme.” Find the parameters of a beta density so that the median is
approximately 0.5 and the 0.9 quantile is 0.75.

The following R code can be used to solve this problem. ¢ is a vector of
length 2 of quantiles, p is vector of length 2 of respective probabilities, init
is a vector of length 2 of starting parameter values.

For this problem, o = § = 0.374.

parametersolver = function(qu,p,init) {
qu <- qu
P<-p

betaoptim = function(param) {
ql <- qul1]
q2 <- qul2]
pl <~ pl1]
p2 <- pl2]
(pbeta(ql,param[1] ,param[2])-pl) "2 + (pbeta(q2,param[1],param[2])-p2) "2

H
]

optim(init,betaoptim)

v = unlist(r)
t = c(v[1],v[2])
print(t)

}

parametersolver(c(.5,.9),c(.5,.75),c(1,1))

2.2 Suppose that we are going to flip a coin 20 times.

(a) Using a beta distribution, write down a prior density that describes
your uncertainty about the probability of “heads.”

Using the prior from problem 2.1, we might use a Beta(0.374, 0.374).
This distribution has median is 0.50, the 0.025 quantile is .00022, and
the 0.975 quantile is 0.9998. This means there is 50% chance that
the probability of heads is below 0.5, and it is very unlikely (a 5%
chance) that the probability of getting heads will fall outside the in-



terval (0.00022, 0.99998). The pdf of this distribution is

F(0748) 0.374—1 0.374—1
_ . 1— : 0<n<l1
P = Fosrroam)” (1=m) =T=

Flip a coin 20 times and record the outcomes. Write down the likeli-
hood function for the observed data.

Let Y = number of heads in 20 flips of a coin. Then Y ~ Binomial(20,
7). My 20 flips of penny had 11 heads, 9 tails. So the likelihood is
given by

Lik(r) = ( 2 >7r11(1 _ )

Calculate the maximum likelihood estimate for the probability of “heads”
and a 95% confidence interval.

log(Lik(r)) = I(x)=log ( 2 ) + 11og() + 9log(1 — )
J () = 171'71 1 ? T 0
. n
=T = %
se.(f) = \/W(ln ") _ \/'552(645) =0.111

A 95% confidence interval is given by @ =+ zg g75s.€.(7) = (0.332,0.768)

Calculate the posterior distribution for the probability of “heads” and
a 95% credible interval.

p(ﬂ' ‘ Y= 11) x 7_‘_11(1 _ 7_(_)97_(_0.37471(1 _ 7_‘,)0.37471
o« Beta(11.374,9.374)
Using R to find the 95% credible interval yields (0.337, 0.751).

gbeta(.025,11.374,9.374)
gbeta(.975,11.374,9.374)

Plot the log-likelihood function.

pi <- seq(0,1, by=.0001)
1 <- 11xlog(pi) + 9*log(1l-pi)

plot(pi,1l, type=’1’, main=’log-likelihood’, xlab=expression(pi),

ylab=expression(Log-1ik(pi)))



log-likelihood
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Plot the prior density.

alpha <- .374

beta <- .374

beta <- (1/beta(alpha,beta)) * pi~(alpha-1) * (1-pi)~(beta-1)

plot(pi, beta, type=’1l’, main=’Prior Distribution’,
xlab=expression(pi), ylab=’beta(0.374, 0.374)’)
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(g) Plot the posterior density.

alpha <- 11.374

beta <- 9.374

beta <- (1/beta(alpha,beta)) * pi~(alpha-1) * (1-pi)~(beta-1)

plot(pi, beta, type=’1l’, main=’Posterior Distribution’,
xlab=expression(pi), ylab=’beta(11.374, 9.374)’)



Posterior Distribution
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(h) Calculate the Bayes’ factor comparing a uniform prior density to your
informative prior density.

Let M; be the model with a uniform prior and My be the model with
a Beta(0.374, 0.374) prior. Then

my(11| M) = /01 ( 20 )wll(l—ﬂ)gdﬂ'
( 20 ) I'(12)r(10) /01 F(r(22) 1211 )10 g

11 r(22) 12)0(10)
= 1/21
= 0.04761905
L/ 20
m2(11 | MQ) = / ( 1 ) 71.11(1 _ 7T)97T0'374_1<1 . 77)0'374_1d7r
0
[ 20\ [(11.374)0'(9.374)
o\ I'(20.748)
= 0.1175762

0.04761905 _ (y 405,

So the Bayes’ factor in favor of M; is 537705

2.3 Consider again the fluid breakdown times introduced in Sect. 2.5. Two
models were proposed for these data. The first incorporated a normal likeli-
hood function and a noninformative prior distribution; the second a normal



likelihood function and a conjugate inverse-gamma/normal prior distribu-
tion. Now suppose that the properties of the manufacturing process were
controlled when these samples of lubricant were produced so that it is known
that the true mean of the sample values must lie between 6.0 and 7.4 (on the
original measurement scale). No further information is available concerning

the value of the variance parameter o2.

(a) Assume that the joint prior distribution for (u,c?) is proportional to
1/0? whenever u € (log(6.0),log(7.4)), and is 0 otherwise. Find an
expression for a function that is proportional to the joint posterior dis-
tribution.

P, 0 |y) o< (0) 7% lexp [—2; > (i u)ﬂ Iu € (10g(6.0),10g(7.4))]
=1

(b) Find a function that is proportional to the marginal posterior distri-
bution of u.

= -n/2
pluly) o< [1+ By | e ox(6.0) 0x(r.0)

n—1)s%/n

(¢) Find a function that is proportional to the marginal posterior distri-
bution of o2.

log(7.4)

1 n
p(o® Y)0</ (02 exp |~z Y (v — )?| du
| log(6.0) ) 202 ;

2.4 Show that the beta distribution is the conjugate prior distribution for the
binomial likelihood.

Suppose that we have data X ~ Binomial(n,r), and that the prior dis-
tribution for 7 is Beta(a, 3). Then the posterior distribution of 7 is given
as

p(r|z,a,p) « W‘”(l—ﬁ)”_ﬁ”ﬂ"_l(l—ﬂ)ﬁ_l

x 7Tw+a71(1 . 7r)nfachﬁfl7

which is Beta(x + a,n — x + 3).

2.5 Show that the gamma distribution is the conjugate prior distribution for
the mean of a Poisson likelihood.



Suppose that we have data X; ~ Poisson()), and that the prior distribution
for A is Gamma(a, 3). Then the posterior distribution of 7 is given as

p(M | Z, e, 8) A2iz1 T exp(—n)\))\a_l exp(—FA)
o X exp(— (64 m)A),

which is Gamma(a + > 1, zi,n + ).

2.6 Show that the gamma distribution is the conjugate prior distribution for
the exponential likelihood.

Suppose that we have data X; ~ Exponential(\), and that the prior distri-
bution for A is Gamma(a, 3). Then the posterior distribution of 7 is given
as

p(A &, o, 08) )\”exp(—)\in))\aflexp(—ﬂ)\)
i=1
x X exp(—(8+ 3 )N,
i=1

which is Gamma(a +n, B+ > ;).

2.7 Derive the mean and variance for the lognormal distribution.

o 1 1
EX] = r———exp | — = (log(z) — p)?| dz
X = [ oo |~z loste)
© 1,
= /ﬂomexp(—ﬁy )exp(y + p)dy
>~ 1 1 909 o?
= /_OOWGXP(_E(Z/_U ) )exp(u—l—?)dy
2
o
= exp(,u—l—;).
E[X? = /me;exp fi(log(x)fuf dx
0 xV2mo? 202

© 1,
= [ en(ogt e+ 2y

h ! 1 2\2 2
- /oo 505 OP(- 53y = 207)7) exp(2p + 207)dy

= exp(2u + 20?).



The mean of the lognormal distribution is F[X] = exp(u + "—22), and the
variance is Var[X] = E[X?] — (E[X]?) = exp(2u + 202) — exp(2u + o?).

2.8 Suppose we are using an Exponential(\) distribution to model the lifetimes
of n items.

(a)

Find the maximum likelihood estimator of .

The log-likelihood function for A is log(L(A | #)) = nlog(\) =AY, t.
Taking derivatives,

n

Clos(LA ) =" -3

i=1

Set:cing the derivative equal to zero and solving for A gives § = Yo ti

— n
or A = s
Assume n is large and find the standard error of A
The second derivative of the log-likelihood is

2

d n
5 log(L(A 1)) = —5.

. . P WV
The observed Fisher information is Vi S

Suppose that we observed n = 50 items and that 2?21 ; = 25. Find
a 90% confidence interval for \.

A 90% confidence interval for \ is
(A — 1.645s5e()\), A + 1.645s¢(N)),

which is (50/25 — 1.645,/(50)/25,50/25 + 1.645./(50)/25) = (2 —
0.465,2 4 0.465) = (1.535, 2.464).

Suppose that A ~ Gamma(1,2). Find the posterior distribution for .

From Exercise 2.6, the posterior distribution is Gamma(a + n, 3 +
St x;) = Gamma(l + 50,2 + 25) = Gamma(51, 27).

Suppose that we observed n = 50 items and that 2?21 t; = 25. What
is the posterior probability that A falls in the 90% confidence interval
found in (c)?

10



2.464 o-51
/ exp(—27z)2z*dx = 0.979.
1535 L(51)

11



Chapter 3
3.1 Suppose that X ~ Normal(0,1) and ¥ = exp(X).

(a) Use the change of variables technique to calculate the probability den-
sity function, mean, and variance of Y.

X ~ Normal(0,1) f(z) = 1?2
Y ~ eX g—l(y) — log(y) %g—l(y) _ 1/y

W) = Fxaw) gl<y>|

— e [y >0

So Y ~ LogNormal(0,1) with E(Y) = e!/? = 1.648 and Var(Y) =
e? —e=4.671

(b) Draw a random sample X7, ..., X10,000 from a Normal(0,1) distribu-
tion. Set Y; = exp(X;). Draw a histogram of the Y; and overlay a plot
of the probability density function of Y.

x <- rnorm(10000,0,1)

y <- exp(x)

f <- function(x){f <- 1/(x*sqrt(2xpi))*exp(-.5%(log(x))"2)}

hist(y, freq=F, main=’Histogram of 10,000 random draws from Y
with pdf £(y)’)

curve(f, col=2, add=T)

12



Histogram of 10,000 random draws from Y with pdf f(y)
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(c) Estimate the probability density function, mean, and variance of Y
using the random sample.

quantile(y,c(.025,.05,.5,.95,.975))

mean (y)
var (y)
Quantiles
Parameter Mean Variance 0.025 0.050 0.500 0.950 0.975
A 1.66 4.64 0.14 0.19 0.99 5.17 7.04

3.2 Suppose we perform an experiment where the data have a Poisson()) sam-
pling density. We describe our uncertainty about A using a Gamma prior
density with parameters o and 3. We also describe our uncertainty about
« and B using independent Gamma prior densities.

(a) Simulate 50 observations from a Poisson distribution with parameter
A=5.

x <- rpois(50,5)

(b) Choose diffuse prior densities for « and g.
Let @ ~ Gamma(0.001,0.001) and 8 ~ Gamma(0.001,0.001).

13



(¢) Implement an MCMC algorithm to calculate posterior densities for A,
a, and f.

Evaluating the posterior distribution on the log scale helps to min-
imize numerical issues, as does transforming the parameters to real
line. logpost() is a function that computes the log of the posterior.
logpost2() is a function that computes the log transformed parame-
ters.

library(coda)
library(MASS)
library(LearnBayes)
library (MCMCpack)

logpost <- function(theta, data){
alpha = thetal1]
beta = thetal[2]
lambda = thetal[3]
n = length(data)
sumd = sum(data)
val = (sumd + alpha -1)*log(lambda) - lambda*(n+beta)
+ alphaxlog(beta) - lgamma(alpha) + (.001-1)*log(alphaxbeta)

- .001*(alphatbeta)
return(val)
}
logpost2 <- function(theta, data){ #theta is the log of above theta
a = theta[1]
b = thetal2]
1 = thetal3]

return(logpost(c(exp(a), exp(b), exp(l)), data) + a + b + 1)
#remember the Jacobian!

}

mu.x <- mean(x)
theta <- c(1,1,mu.x); theta <- log(theta)
fit <- laplace(logpost2, theta, x)

sample <- gibbs(logpost2, fit$mode, 10000, c(.13,.13,.13), data=x)

sample$accept

plot(as.mcmc(sample$par))

plot(sample$par[,1], sample$par[,2], xlab=expression(alpha),
ylab=expression(beta), main=’alpha vs beta from Gibbs sampler’)

sample2 <- rwmetrop(logpost2, list(var=fit$var, scale=2), fit$mode,
10000, x)

14



sample2$accept
plot(as.mcmc(sample2$par))
plot(sample2$par[,1], sample2$par([,2])

gibbs() and rwmetrop() are part of the LearnBayes package and
as.mcmc () is in the MCMCpack package. rumetrop is a random walk
Metropolis algorithm, and gibbs is a Metropolis-within-Gibbs algo-
rithm. If you would like addition reading and examples with these
functions I recommend Jim Albert’s Bayesian Computation with R
(Springer).

The Gibbs sampler has problems mixing, probably due to the high
correlation between « and f.

Trace of var1 Density of var1
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alpha vs beta from Gibbs sampler
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By sampling o and § together, the Metropolis algorithm mixes better
than the Gibbs in this problem.

Trace of var1 Density of var1
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(d) Is A =5 contained in a 90% posterior credible interval for A?

quantile (exp(sample2$par[,3]), c(.05,.95))

16



Yes. Remember that the above graphs are based on the log of the
parameters. A 90% posterior credible interval for A is (4.06, 5.05).

3.3 Counsider again the fluid breakdown times introduced in Sect. 2.5. Two
models were proposed for these data. The first incorporated a normal like-
lihood function and a noninformative prior density; the second, a normal
likelihood function and a conjugate inverse-gamma/normal prior density.
Now suppose that the properties of the manufacturing process were con-
trolled when these samples of lubricant were produced so that it is known
that the true mean of the sample values must lie between 6.0 and 7.4 (on the
original measurement scale). No further information is available concerning
the value of the variance parameter o2. Assume that the joint prior density
for (u,0?) is proportional to 1/0? whenever p € (log(6.0),log(7.4)), and is
0 otherwise.

(a) Find an expression for a function that is proportional to the joint pos-
terior density.

We can write the joint prior of 1 and o2 with the use of an indicator
function. i.e., p(u,0?) o< 25 I[log(6.0) < p < log(7.4)]. Then

p(p,0” |y) o< (6) 7% exp l—%; Z(yi - M)Q] Ilog(6.0) < pu < log(7.4)].

(b) Describe a hybrid Gibbs/Metropolis-Hastings algorithm for sampling
from the joint posterior density.

Z ~ Normal(0,1) and ¢; and ¢y are specified constants for p and o
respectively.

0. Initialize j = 0, and starting vales ul9), 20,
1. Generate p* from p'9) + ¢, Z.

(029) 78 exp[— oy X1 (yi—n")?| 11l0g(6.0)<pu” <log(7.4)]
(020) 78 “lexp |~ —koy S0, (yi— )2 | 1[l0g(6.0) <) <log(7.4)]

2. Compute r =
3. Draw u from a Uniform(0,1) distribution.
4. If u < r, set Ut = p*. Otherwise, set pt) = ;0),

5. Generate o2* from o20) 4+ ¢, 7.

(07)" 8 "Loxp[— st 1, (i —n9)?]1{10g(6.0) <D <log(7.4)]
=

2
6. Compute r = — a : _ .
(020) 7% “lexp |~ gy S0y (ys )2 | [log(6.0) <) <log(7.4)]

7. Draw u from a Uniform(0,1) distribution.

17



8. If u < r, set 02U+ = g2* Otherwise, set 02011 = 20),

9. Increment j and return to 1.

3.4 Implement the algorithm in Fig. 3.1. Use batch means to compute the
simulation error.

m = 10000

pi = array(0, dim=c(m,1))
pi0 = 0.5

pil = piO

for (j in 1:m)

{

pi.star = runif(1,.1,.9)

r = (pi.star”3* (1-pi.star)"8)/(pil1~3*(1-pil)~8)
u = runif(1) <= r

pil = pi.star*(u==1) + pil*(u==0)

piljl = pil

}

To calculate the simulation error via batch means:

# 1. Get the means of the batches
b <- 80
v <- m/b; v #make sure v is a whole number
means <- array(0, dim=c(b,1))
for(i in 1:b){
means [i,1] = mean(pil[(v*i - (v-1)):(v*i)])

3

# 2. Check that lag 1 autocorrelation of batch means is less than 0.1
library(coda)
autocorr (as.mcmc (means), 1)

# 3. Compute an estimate of the simulation error
mu <- mean(means)

stderror <- sd(means)/sqrt(b)

The simulation standard error is 0.0019. You can also get this using summary (as.mcmc (pi))
from the coda package.

3.5 Implement the algorithm in Fig. 3.4. Calculate the autocorrelation for the
chain.

data <- read.table(’http://www.bayesianreliability.com/wp-content/
uploads/2009/06/table23.txt’, header=T)

18



y <- log(datal,1])

n = length(y)

m = 5000

par = array(0, dim=c(m,2))

parl = c(0,0.5)

sl = 0.5; s2 =1

for(j in 1:m){
mu.star = rnorm(n=1, mean=parl[1], sd=s1)
r = exp(-sum((y-mu.star)~2)/(2*pari[2]))/

exp(-sum((y-par1[1])~2)/(2*par1[2]))

u = runif(l) <=r
parl[1] = mu.star*(u==1) + parl[1]*(u==0)
nu = rnorm(1,0,sd=s2)
var.star = parl[2]*exp(nu)

r = (var.star” (-n/2)*exp(-sum((y-par1[1])"2)/(2*var.star)))/
(par1[2]~ (-n/2)*exp(-sum((y-par1[1])~2)/(2*par1[2])))
u = runif(l) <= r

parl[2] = var.star*(u==1) + parl[2]*(u==0)
parlj,] = parl

# Calculate the autocorrelation
autocorrelation <- function(par, lag){
1 = lag
A = par[1:(m-1),]
B = par[(1+1):m,]
mul = mean(par[,1])

mu2 = mean(par[,2])

corl = (sum((A[,1]-mul)*(B[,1]-mul))/(m-1))/
(sum((par[,1]-mul) "2)/m)

cor2 = (sum((A[,2]-mu2)*(B[,2]-mu2))/(m-1))/

(sum((par[,2]-mu2)"~2)/m)
return(c(corl, cor2))
}

autocorrelation(par, 1)

The autocorrelation for the chain (i.e. lag 1) is 0.8565168 and 0.7419024
for ;1 and 0. You can also get this using autocorr.diag(as.mcmc (par))
from the coda package.

In the analysis of the launch vehicle success probabilities described in Ex-
ample 3.4, the hyperparameters « and \ were assigned values of 5 and 1,
respectively.

(a) Perform a sensitivity analysis for a and A by varying their values over
a suitable range.
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data <- read.table(’http://www.bayesianreliability.com/wp-content/
uploads/2009/06/table31.txt’, header=T)
m <- datal,3]
y <- datal,2]
launch.mcmc <- function(m, y, size, alpha, lambda, eta, nu){
K1 = alpha/lambda
D1 = eta/(etat+nu)
n = length(m)
parl = array(0, dim=c(size,2))
par2 = array(0, dim=c(n,1))
arateK = 0; arateD = 0
# We use the log of the posterior for a more stable algorithm
logpost = function(K,D){
val=0
for(i in 1:n){
val = val + (y[i]+K*D-1)*log(par2[i]) +
(m[i] -y [i]1+K-K#D-1)*log(1-par2[i])}
val = val + nxlgamma(K) - n*lgamma(K*D) - n*lgamma(K-K*D) +
(alpha-1)*log(K) - lambda*K + (eta-1)*log(D) + (nu-1)*log(1-D)
return(val)

for (j in 1:size){
for (i in 1:n){
a = y[i] + K1xD1
b = m[i] - y[i] + K1 - K1%D1
par2[i] = rbeta(l,a,b)
}
z = rnorm(1)
K.star = Klxexp(z)
# use log(r) because we want to use the log of the posterior
logr = logpost(K.star,D1) + log(K.star) - (logpost(K1,D1) + log(K1))
u = runif (1) <= exp(logr)
arateK = arateK + u
K1 = K.starx(u==1) + Kix(u==0)
¢ = mean(par2)
D.star = rbeta(l, Klx*c, Kix(1-c))
logr = (logpost(K1,D.star) + (Ki*c-1)*log(D1/D.star)) -
(logpost(K1,D1) + (Kix(1-c)-1)*log((1-D.star)/(1-D1)))
u = runif(1) <= exp(logr)
arateD = arateD + u
D1 = D.starx(u==1) + D1x*(u==0)
pari[j,] = c(X1,D1)
}

arate = c(arateK, arateD); arate = array(arate/size, dim=c(1,2))
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colnames(arate) = c("Kappa", "Delta")
pif <- array(0, dim=c(size,1))
for(i in 1:size){
Kj = paril[i,1]
Dj = paril[i,2]
pif[i] = rbeta(l, Kj*Dj, Kj*(1-Dj))
}
par = cbind(parl, pif)
colnames(par) = c("Kappa", "Delta", "Pif")
ans = list(par = par, accept = arate)
return(ans)

}

samplel <- launch.mcmc(m,y,size=10000, alpha=5, lambda=1, eta=.5, nu=.5)

samplel$par <- samplel$par[-c(1:50),]

mu <- array(apply(samplel$par, 2, mean), dim=c(3,1))

st.dev <- array(apply(samplel$par, 2, sd), dim=c(3,1))

quant <- rbind(quantile(sampleli$par([,1], c(.025,.05,.5,.95,.975)),
quantile(samplel$par[,2], c(.025, .05, .5, .95, .975)),
quantile(samplel$par([,3], c(.025, .05, .5, .95, .975)))

summary = array(c(mu, st.dev, quant), dim=c(3,7))

colnames (summary) = c("Mean", "Std Dev", "2.5%", "5%", "50%",
"95%", "97.5%")

rownames (summary) = c("Kappa", "Delta", "Pif")

summary

par (mfrow=c(1,2))

hist(samplel$par[,1], freq=F, xlim=c(0,30), xlab=expression(Kappa),
main=’alpha=5  lambda=1’)

curve (dgamma (x, shape=5, scale=1), add=T)

hist(samplel$par[,2], xlab=expression(delta), x1lim=c(0,1), freg=F,
main=’eta=0.5 nu=0.5’)

curve (dbeta(x, .5,.5), add=T)

sample2 <- launch.mcmc(m,y,size=5000, alpha=10, lambda=1, eta=.5, nu=.5)

sample2$par <- sample2$par[-c(1:50),]

mu <- array(apply(sample2$par, 2, mean), dim=c(3,1))

st.dev <- array(apply(sample2$par, 2, sd), dim=c(3,1))

quant <- rbind(quantile(sample2$par([,1], c(.025,.05,.5,.95,.975)),
quantile(sample2$par[,2], c(.025, .05, .5, .95, .975)),
quantile(sample2$par[,3], c(.025, .05, .5, .95, .975)))

summary = array(c(mu, st.dev, quant), dim=c(3,7))

colnames (summary) = c("Mean", "Std Dev", "2.5%", "5%", "50%",
"95Y%", "97.5%")

rownames (summary) = c("Kappa", "Delta", "Pif")

summary

par (mfrow=c(1,2))
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hist(sample2$par[,1], freq=F, xlim = c(0,30), xlab=expression(Kappa),
main=’alpha=10 lambda=1’)

curve (dgamma(x, shape=10, scale=1), add=T)

hist(sample2$par[,2], xlab=expression(delta), xlim=c(0,1), freg=F,
main=’eta=0.5 nu=0.5’)

curve(dbeta(x, .5,.5), add=T)

sample3 <- launch.mcmc(m,y,size=5000, alpha=15, lambda=1, eta=.5, nu=.5)

sample3$par <- sample3$par[-c(1:50),]

mu <- array(apply(sample3$par, 2, mean), dim=c(3,1))

st.dev <- array(apply(sample3$par, 2, sd), dim=c(3,1))

quant <- rbind(quantile(sample3$par([,1], c(.025,.05,.5,.95,.975)),
quantile(sample3$par[,2], c(.025, .05, .5, .95, .975)),
quantile(sample3$par[,3], c(.025, .05, .5, .95, .975)))

summary = array(c(mu, st.dev, quant), dim=c(3,7))

colnames (summary) = c("Mean", "Std Dev", "2.5%", "5%", "50%",
l|95%|| , Il97'5%||)

rownames (summary) = c("Kappa", "Delta", "Pif")

summary

par (mfrow=c(1,2))

hist(sample3$par[,1], freq=F, xlim = c(0,30), xlab=expression(Kappa),
main=’alpha=15 lambda=1’)

curve(dgamma(x, shape=15, scale=1), add=T)

hist(sample3$par[,2], xlab=expression(delta), x1lim=c(0,1), freq=F,
main=’eta=0.5 nu=0.5’)

curve(dbeta(x, .5,.5), add=T)

sample4 <- launch.mcmc(m,y,size=5000, alpha=1, lambda=2, eta=.5, nu=.5)

sample4$par <- sampled$par[-c(1:50),]

mu <- array(apply(sample4$par, 2, mean), dim=c(3,1))

st.dev <- array(apply(sample4$par, 2, sd), dim=c(3,1))

quant <- rbind(quantile(sampled4$par([,1], c(.025,.05,.5,.95,.975)),
quantile(sample4$par([,2], c(.025, .05, .5, .95, .975)),
quantile(sampled4$par[,3], c(.025, .05, .5, .95, .975)))

summary = array(c(mu, st.dev, quant), dim=c(3,7))

colnames (summary) = c("Mean", "Std Dev", "2.5%", "5%", "50%",
l|95%|| , "97-5%")

rownames (summary) = c("Kappa", "Delta", "Pif")

summary

par (mfrow=c(1,2))

hist (sample4$par[,1], freq=F, xlim = c(0,30), xlab=expression(Kappa),
main=’alpha=1  lambda=2’)

curve (dgamma(x, shape=1, scale=2), add=T)

hist(sample4$par[,2], xlab=expression(delta), xlim=c(0,1), freqg=F,
main=’eta=0.5 nu=0.5’)

curve(dbeta(x, .5,.5), add=T)
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par (mfrow=c(2,2))

hist(samplel$par[,3], freg=F,

main=’Samplel’)

hist(sample2$par[,3], freg=F,

main=’Sample2’)

hist(sample3$par[,3], freg=F,

main=’Sample3’)

hist (sample4$par[,3], freg=F,

main=’Sample4’)

alpha=5 lambda=1

x1im=c(0,1),
x1im=c(0,1),
x1im=c(0,1),

x1im=c(0,1),

xlab=expression(pil[f]),
xlab=expression(pi[f]),
xlab=expression(pilf]),

xlab=expression(pil[f]),

eta=0.5 nu=0.5

eta=0.5 nu=0.5
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Sample1 Sample2

N
A a8
= T T T T T 1 = T T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10
T T
Sample3 Sample4
. 3 , o
o o
S T T T T T 1 S T T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10
T g
Quantiles
Parameter Mean Std Dev 0.05  0.95
samplel K=5 5.12 2.12 225  9.04
6=0.5 0.56 0.09 0.40 0.71
Ty 0.56 0.23 0.16 0.91
sample2 k=10 9.73 3.21 5.26 15.54
6=0.5 0.60 0.09 046 0.74
Ty 0.60 0.18 0.28  0.87
sample3 k=15 14.62 3.49 9.40 20.82
6=0.5 0.62 0.08 0.48 0.74
Ty 0.62 0.15 0.36 0.85
sampled k=05 1.32 0.64 0.53 2.49
60=05 0.46 0.12 0.27 0.66
Ty 0.46 0.35 0.00 0.99

An alternative to running an MCMC algorithm several times, as done
above, is to do sampling importance resampling (SIR). For more infor-
mation see Albert’s Bayesian Computation with R section 5.10 (Springer).
The idea is that we can take a weighted bootstrap sample (with replace-
ment) from the current posterior distribution to get a sample from the
new posterior distribution. The weights are computed by calculating
%. Then convert the weights to probabilities by normalizing
them to add to 1. Lastly, resample the sample from the OLD posterior

using these probabilities to get a sample the NEW posterior.
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In this exercise, we are on the log scale. Since we are only interested
in how changes to the prior on K affects the posterior distribution,

log ( YewPosterior) - _ o (P | Nrew
&\ "OldPosterior p(K|a,NoLp )

Then the weights to get an approximation to sample2 above are

log [ PE 2 A nEw o Ko%K
P\ % ANEW ) aAe
& p(K |a,Norp S\ KK

= blogK.

For this particular example, SIR works well for getting an approxima-
tion to sample2 and sample4 above. However, for sample3, SIR gives
a poor approximation. The graph below shows the marginal posterior
that we will be sampling from, along with the three new priors on K
that we used for samples 2 through 4 above. With SIR, be careful that
you have enough points in the tails that will be heavily weighted in
the resampling. To get a decent approximation to sample2 I had to
increase my MCMC sample size to 100,000 in order to get sufficient
data in the upper tail. We can also see that for sample3, our samples
for the marginal posterior do not extend nearly far enough to get a
good approximation for that distribution.

‘o]
o 7] —— Marginal Post of K
il' --- Gamma(10,1)
< || Gamma(15,1)
© j‘.‘ -=-=  Gamma(1,2)
[
i
> 2 N "
= il
n HE
c [
8 N ' |
o 7!
!
|
- i
s 1
i
i
o i el
S =
| | | | | | |
0 5 10 15 20 25 30

The graphs below show how the three SIR approximations (resam-
pled from the 100,000 size MCMC) compared to the three additional
MCMC runs called sample2, sample3 and sample4 above.
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Here is the code used for SIR

# Sampling Importance Resampling (SIR)

samplel <- launch.mcmc(m,y,size=100000, alpha=5, lambda=1, eta=.5, nu=.5)
samplel$par <- samplel$par[-c(1:50),]

lw <- 5xlog(samplel$par[,1])

lw <- 1w - max(lw) #so we don’t exponentiate anything too large or small
wt <- exp(lw)/sum(exp(lw)) #normalizing

ind <- sample(1:99950, replace=T, prob=wt) #easier to sample the

s2 <- samplel$par[ind,] #indices of samplel

lw <- 10*log(samplel$parl[,1])

lw <- 1w - max(1lw)

wt <- exp(lw)/sum(exp(1w))

ind <- sample(1:99950, replace=T, prob=wt)
s3 <- samplel$par[ind,]

lw <- -4xlog(samplel$par[,1]) - samplei$par[,1]
lw <- lw - max(1lw)

wt <- exp(1lw)/sum(exp(1lw))

ind <- sample(1:99950, replace=T, prob=wt)

s4 <- samplel$par[ind,]
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eport how changes in the values assumed for A and « impact the
b) R t h h in th 1 d for A\ and « i t th
posterior means of other model parameters.

The choice of K has a small effect on the marginal posterior distri-
bution of 4. As we increase K, the mean of the marginal posterior of
0 increases slightly. The posterior predictive mean for 7y is roughly
equal to the posterior mean of §, so our choice of K has the same effect
on the posterior mean of 7y as that of d.

3.7 Derive the conditional densities described in Example 3.4 for the random

effects model.

The joint posterior distribution is

10
_ _ 0.25 1
o 813) x 7050 Shesp [0 LS LSh SNy
j=1

K 202k
i=1 j=1

So the full conditional densities are

5 10
p(p|B,0% ky) o exp 21;2_: Yij — p)?
10
Z
Jj=1

X exp ym ))2

=1

5
1
o exp | = { 50u® =2 Y (v — )

i=1 j=1
2

=1 j=1

1 5
P ToG250) | T R0 ZZ (i = 03)
i 2

1 1 5
Vo= R B Tear O 5022%—@

=1 j=1

5 10
1 o
~  Normal % ;;(yw — Bj), 50
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p(Bj | Bizj, 11,07, K,y) o exp
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Chapter 4

4.1

4.3

44

4.12

4.13

The Beta(293,0.5) prior for 7 yields a posterior with a median of 0.999
and a 95% credible interval of (0.990, 1.000), whose length is 0.010. The
uniform prior (i.e., Beta(1,1)) yields a posterior with a median of 0.997
and a 95% credible interval of (0.983, 1.000), whose length is 0.017.

The likelihood is [T, (M;)¥ exp(—At;)/y;! oc Ai=1¥i exp(— S, ti))
and the prior distribution is proportional to A*~! exp(—£A). Using Bayes’
Theorem, the posterior distribution is proportional to

NFEiz vi—lexp[— (B + Y0, t;))] so that

Mt~ Gamma(a + Y0 yi, B+ S ti).

The Gamma(5,1) prior for A yields a posterior with a mean of 2.85
and a 95% credible interval of (2.40, 3.05), whose length is 0.65. The
Uniform(0,20) prior yields a posterior with a mean of 3.00 and a 95%
credible interval of (2.52, 3.52), whose length is 1.00.

A 95% credible interval for u is (2.65, 6.29) with a posterior median of
3.81. A 95% credible interval for A is (1.01, 2.27) with a posterior median
of 1.57. Using K = 5 equal probability bins, we find that 0.7% of the
R test statistics exceed the 0.95 quantile of the ChiSquared(4) reference
distribution, which suggests no lack of fit. See the plot of the posterior
median of reliability with 90% credible interval over the first 5 hours in
Figure 1.

Using K = 5 equal probability bins, we find that 4.9% of the R test
statistics exceed the 0.95 quantile of the ChiSquared(4) reference distri-
bution, which suggests no lack of fit. The DIC for the hierarchical model is
245.446 and the DIC for the constant failure probability model is 285.322.
Based on DIC, we prefer the hierarchical model. We provide the Win-
BUGS code for the hierarchical in Table 77.
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Table 1: WinBUGS code for exercise 4.13

HHHHHHH R R GRS  HRR T
# Exercise 4.13

# EDG Hierarchical Model

# for success probabilities pil[]

# x[] number of failures in n[] trials

model

{

for(iin1 : N ) {

z[i]<-ind [i]

y[il<-n[i]l-x[i]

y[il ~ dbin(pilil,n[il)

pili] ~dbeta(delta,gamma)I(.0001,.9999)
}

#use InverseGamma

delta<-1/rdelta

gamma<-1/rgamma

rdelta ~ dgamma(0.1,0.1)I(.001,1000)
rgamma ~ dgamma(0.1,0.1)I(.001,1000)

}

Data

list(N = 63)

Inits

list(
rdelta=.003,rgamma=.5,

pi=c(
.5,.

3.
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1.0
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Figure 1: Exercise 4.12 median posterior of reliability and 95% credible intervals
versus time ¢ in hours.
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Chapter 5

5.1

5.2

Draw a reliability block diagram describing how to successfully perform an
everyday task.

Consider the task of brushing your teeth. The following is a list of possible
components for the block diagram:

get toothbrush

put toothpaste on toothbrush

put water on toothbrush

brush teeth

brush tongue

spit out toothpaste

rinse mouth

® N o TR W=

rinse toothbrush

Below is the reliability block diagram.

1245678 —0

This a series system. Notice that component 3 is not essential for the
cleaning of one’s teeth, so it can be left out of the diagram.

For additional reading om the diagrams discussed in this chapter I recom-
mend System Reliability Theory by Rausand and Hgyland.

Draw the reliability block diagram and fault tree corresponding to a 3-of-5
system.
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5.3 Determine the structure function for a 3-of-5 system.
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The structure for a k-of-n system is given by equation 5.1.

d(x) = x1woxs(l —x4)(1 — 25) + x12224(1 — 23)(1 — x5)
+ x1woxs(l — x3)(1 — 24) + 12324(1 — 22)(1 — 25)
+ zrxzas(l — 22)(1 — 24) + zr2425(1 — 22)(1 — 23)
+ zoxzxg(l — 21)(1 — 5) + zowgas (1 — 21)(1 — 24)
+ zowgxs(l — x1)(1 — z3) + x3zgx5(l — 21)(1 — 29)

+ x1222324(1 — x5) + x1222375(1 — 24)
+ .’11‘11'233431‘5(1 — .’L‘3) + 12324751 — IQ)
+ xoxszaxs(l — 1) + T1x2T3T4X5
= I1XT2%3 + T1ToTy4 + T1XT2T5 + T1T3T4 + T1T3T5 + 1425
+Tox3x4 + XoX3T5 + T3T4T5 — 3T1T2T3T4 — ST1XL2L3T5

—3.’171162.’174.%’5 — 3.%’1373.’174.1’5 — 3.’1?231‘3.%‘4$5 + 6:131.’1321‘3.’174335

5.4 Draw the reliability block diagram corresponding to Fig. 5.9.

Using the 5 minimal cut sets we might draw the block diagram as

3 o (S
A EEnE

5.5 Determine the minimal path sets and minimal cut sets for IE6 in Fig. 5.9.
Calculate the structure function for IE6.

The minimal cut sets are {BE2, BE3, BE5}, {BE3, BE4, BE5}. The mini-
mal path sets are {BE2, BE4}, {BE3}, {BE5}. To determine the structure
for TE6 we can use either equations 5.3 or 5.4. Using equation 5.4 with the
3 minimal path sets we get

dp(x) = 1—(1—zomg)(1 —23)(1 —25)
= X34+ T5+ ToTyg — T3T5 — XL2X3L4 — LoLALE + T2L3T4Ts

5.6 Define the structural importance of component ¢ in a coherent system of n
components as

1) = gy 3 [0(14,%) — 60, %))

x| xz;=1
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The sum is over the 2! vectors for which x; = 1. Calculate the structural
importance of each component in Fig. 5.5.

For component 1

(',iCQ,ZL'g) ¢(1,$2,$3) *¢(O,CE2,.’£3)

0
1
1
1

For component 2

(.’E],',.’Eg) (]5(1'1,1,1'3) _¢(x1307x3)

0:0) 0
(0-1) 0
(1-0) 1
(1-1) 0
I4(2) = i

For component 3

(x1,22,-)  @(z1,22,1) — $(x1,22,0)

(00, 0
(01-) 0
(10-) 1
(1) 0
I4(3) = i

5.7 Derive Eq. 5.8 from Eq. 5.1 by assuming that each component has reliabil-
ity R;(t) = R(t).

Beginning with equation (5.1),
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We want to choose the subset A; that is a minimum path set (i.e. ¢(z) =1
for the elements in A;). Therefore, we want at least k elements of A; to be
1. Let s be the number of elements in A; equal to 1. Therefore,

n

P((JTzolJJ =21 =1)=P(s = k) = (HRE) (1 -R(t)" " =---

i€A;  i€AS s=k
k—1
=13 (DR (1 - R®)"

5.8 Calculate the hazard function for a series system with n components when
each component lifetime has a Weibull distribution.

Let C; ~ Weibull(\;, 3;). By definition, the hazard function is

hs(t) = IJ;((?) Using example 5.6 and Ry = [, R;, the hazard function is

he(t) = S0 XBit] !

5.9 Show that the mean time to failure (MTTF) for a standby system with
perfect switching is equal to the sum of the MTTF's for each component:

MTTFg = Z MTTE,.
i=1

MTTF, = E[Ty] = E[Ty + Ty + --- + T,] = E[T}] + E[Ts] + --- + E[T,)] =
S MTTEF,

5.10 Suppose that each of the n components of a standby system with perfect
switching has an Exponential(\) distribution. Show that the lifetime of the
system has a Gamma(n, \) distribution.

T; ~ Exponential(A) = Gamma(1l,)). Let Ty denote the systems life-
time. Then T, = 2?21 T;. Therefore, since Ty is the sum of independent
Gamma(1, \) random variables and using the result for gamma random vari-
ables in section B of the appendix, we have Ty ~ Gamma(n, \).

5.11 Reanalyze the data from Table 5.3 assuming that the prior distribution for
2
the reliability of each component is [['(1/3)] (- log(m;))~3.

The posterior now becomes
p(my,mo,ms | x) oc (1 — 1) 25 (1 — mo) %3 (1 — 73) (mymoms) 0(1 — mymoms)?

[~ log(m1)] = [~ log(m2)] %[~ log(m3)] ~5

38



Quantiles
Parameter Mean St.Dev 0.025 0.050 0.500 0.950 0.975

m 0.868 0.074 0.699 0.732 0.878 0.965 0.976
e 0.861 0.077 0.690 0.720 0.871 0.968 0.978
3 0.887 0.082 0.690 0.733 0.904 0.987 0.992
TS 0.998 0.002 0992 0.994 0.999 1.000 1.000

The following is a histogram of the posterior distribution on s:

Density
100 150 200 250 300 350

50
|

0
|

[ I I I I I I |
0.965 0.975 0.985 0.995

s

mh <- function(theta, size, data){
pil = theta[1]
pi2 = thetal[2]
pi3 = thetal[3]
s = datal,2]
f = datal,3]
par = array(0, dim=c(size, 4))
aratel = 0; arate2 = 0; arate3 = 0
post = function(theta)q{
pl = thetal[l]l; p2 = thetal[2]; p3 = thetal[3]
ps = thetal[l]l*theta[2]*thetal3]
val = p1~s[1] * (1-p1)~f[1] * p2~s[2] * (1-p2)~f[2] * p3~s[3] =
(1-p3)~£[3] * ps”s[4] * (1-ps) f[4] * (-log(p1))~(-2/3) *
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(~log(p2))~(-2/3) * (-log(p3))~(-2/3)
return(val)
}
for(i in 1:size){
pil.star = runif(1)
r = post(c(pil.star, pi2, pi3)) / post(c(pil, pi2, pi3))
u = runif(1) <= r
aratel = aratel + u
pil = pil.star*(u==1) + pilx*(u==0)
pi2.star = runif (1)
r = post(c(pil, pi2.star, pi3)) / post(c(pil, pi2, pi3))
u = runif(1) <= r
arate2 = arate2 + u
pi2 = pi2.star*(u==1) + pi2*(u==0)
pi3.star = runif (1)
r = post(c(pil, pi2, pi3.star)) / post(c(pil, pi2, pi3))
u = runif(1) <= r
arate3 = arate3d + u
pi3 = pi3.star*(u==1) + pi3*(u==0)
pis = 1 - (1-pi1l)*(1-pi2)*(1-pi3)
par[i,] = c(pil, pi2, pi3, pis)

}

arate = c(aratel, arate2, arate3); arate = arate/size
list = list(par = par, accept = arate)

return(list)

}

start <- datal,2]/datal,4]
sample <- mh(start[1:3], 10000, data)
plot(as.mcmc (sample$par))

#get rid of burn-in samples - calculate summary statistics
sample$par <- sample$par[-c(1:100),]

mu <- array(apply(sample$par, 2, mean), dim=c(4,1))

st.dev <- array(apply(sample$par, 2, sd), dim=c(4,1))

quant = rbind(quantile(sample$par[,1], <(.025, .05,.5,.95,.975)),
quantile(sample$par([,2], c(.025, .05,.5,.95,.975)),
quantile(sample$par([,3], c(.025, .05,.5,.95,.975)),
quantile(sample$par([,4], c(.025, .05,.5,.95,.975)))

summary = array(c(mu, st.dev, quant), dim=c(4,7))

colnames(summary) <- c("Mean", "Std Dev", "2.5%", "5%", "50%",
||95%|l s l|97.5%")

rownames (summary) <- c("pil", "pi2", "pi3", "piS")

summary

hist(sample$par([,4], freq=F, xlab=expression(pi[S]), main="")
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5.12 There are a variety of different measures of the reliability importance of a
component (Rausand and Hgyland, 2003). Birnbaum’s measure of impor-
tance of the ith component at time ¢ is

dRs(t)

Il =370

Birnbaum’s measure is the partial derivative of the system reliability with
respect to each component reliability m;(¢). A larger value of Iz(i|t) means
that a small change in the reliability of the ith component results in a
comparatively large change in the system reliability. Show that in a series
system, Birnbaum’s measure selects the component with the lowest reliabil-
ity as the most important one.

The three Birnbaum’s measures are: Ig; = moms, Igo = mms, and Igz =
mime. Without loss of generality, suppose m < mo < m3. Based on the de-
scription of the measure in the exercise, we are looking for the largest value,
which should correspond to 7. Therefore, by comparing the different mea-
sures: Ipy = moms > mm3 = Ipo if and only if mo > 7. Which is true by
our assumption. Also, Igy = momg > mme = Igs if and only if 73 > 7.
Which is again true by our assumption. Therefore, g is the largest value
and the procedure selected the most important component. This result still
holds if 71 < w9y < mw3. It is trivial for the case that m; = w9 = m3.

5.13 Show how to calculate the posterior distribution for 71, w2, and w3 using the
data in Table 5.1 using simulation and the Metropolis-Hastings algorithm.

R code for a Metropolis-Hastings algorithm:

mh <- function(theta, size, data){

pil = theta[1]

pi2 = thetal2]

pi3 = thetal3]

s = datal,2]

f = datal,3]

par = array(0, dim=c(size, 3))

aratel = 0; arate2 = 0; arate3 = 0

post = function(theta){
pl = thetal[l]; p2 = thetal[2]; p3 = thetal3]
val = p1~s[1]*(1-p1) " f[1]1*p2~s[2]*(1-p2) "f [2]1*p3~s[3]*(1-p3) "f [3]
return(val)

}
for(i in 1:size){
pil.star = runif(1)
r = post(c(pil.star, pi2, pi3)) / post(c(pil, pi2, pi3))
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u = runif(l) <=r

aratel = aratel + u

pil = pil.star*(u==1) + pilx(u==0)

pi2.star = runif (1)

r = post(c(pil, pi2.star, pi3)) / post(c(pil, pi2, pi3))
u = runif(l) <=r

arate2 = arate2 + u

pi2 = pi2.star*(u==1) + pi2*(u==0)

pi3.star = runif(1)

r = post(c(pil, pi2, pi3.star)) / post(c(pil, pi2, pi3))
u = runif(1) <=r

arate3 = arate3 + u

pi3 = pi3.star*(u==1) + pi3*(u==0)

parli,] = c(pil, pi2, pi3)

}

arate = c(aratel, arate2, arate3); arate = arate/size
list = list(par = par, accept = arate)

return(list)

3

start <- datal,2]/datal,4]

sample <- mh(start, 10000, data)

#get rid of burn-in and calculate summary statistics

plot(as.mcmc (sample$par))

sample$par <- sample$par[-c(1:50),]

mu <- array(apply(sample$par, 2, mean), dim=c(4,1))

st.dev <- array(apply(sample$par, 2, sd), dim=c(4,1))

quant = rbind(quantile(sample$par[,1], c(.025, .05,.5,.95,.975)),
quantile(sample$par[,2], c(.025, .05,.5,.95,.975)),
quantile(sample$par([,3], c(.025, .05,.5,.95,.975)),
quantile(sample$par([,4], c(.025, .05,.5,.95,.975)))

summary = array(c(mu, st.dev, quant), dim=c(4,7))

colnames (summary) <- c("Mean", "Std Dev", "2.5%", "bj", "BO%", "95%", "97.5%")
rownames (summary) <- c("pit", "pi2", "pi3", "piS")
summary

hist(sample$par[,4], freq=F, xlab=expression(pi[S]),
main="Marginal Posterior Distribution from M-H")

The posterior distributions can be found in Table 5.2 and Fig. 5.15.

R code for a simulation:

sim <- function(size){
pil = rbeta(size, 9,3)
pi2 = rbeta(size, 8,3)
pi3 = rbeta(size, 4,2)
pis = pil*pi2*pi3
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5.14

pi = array(c(pil,pi2,pi3, pis), dim=c(size,4))
mu <- array(apply(pi, 2, mean), dim=c(4,1))
st.dev <- array(apply(pi, 2, sd), dim=c(4,1))
quant = rbind(quantile(pil,1], c(.025, .05,.5,.95,.975)),
quantile(pil,2], c(.025, .05,.5,.95,.975)),
quantile(pil,3], c(.025, .05,.5,.95,.975)),
quantile(pil,4], c(.025, .05,.5,.95,.975)))
summary = array(c(Mean=mu, Std.Dev=st.dev, quant), dim=c(4,7))
colnames (summary) <- c("Mean", "Std Dev", "2.5%", "5%", "50%",
"95%", "97.5%")
rownames (summary) <- c("pil", "pi2", "pi3", "piS")
list = list(pi = pi, summary = summary)
¥
simulation <- sim(10000)
simulation$summary
hist(simulation$pil[,4], freq=F, xlab=expression(pi[S]),
main="Marginal Distribution from Simulation")

Quantiles
Parameter Mean St.Dev 0.025 0.050 0.500 0.950 0.975
T 0.750 0.119 0.494 0.536 0.762 0.920 0.941
o 0.726 0.128 0.448 0.495 0.738 0.915 0.936
T3 0.673 0.177 0.289 0.347 0.696 0.925 0.947
g 0.366 0.133 0.132 0.161 0.359 0.600 0.645

Assume a two-component series system. One component has an Fxponen-
tial(3) prior distribution; the other has a Weibull(5,2) prior distribution.
Using simulation, determine the probability density function of the prior
distribution for the system.

rl rexp (10000, 3)

r2 = rweibull (10000, 5,2)

rs = ril*r2

hist(rs, freq=F, xlab = expression(R[S]), main="")
mean(rs); sd(rs)

quantile(rs, c(.025, .05,.5,.95,.975))

Quantiles
Parameter Mean St.Dev 0.025 0.050 0.500 0.950 0.975
Rg 0.609 0.652 0.015 0.030 0.405 1.88 2.340
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5.15 Translate the fault tree in Fig. 5.9 into a BN.
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Bayesian Network for Fig. 5.9

5.16 Translate the fault tree in Fig. 5.24 into a BN. Write down the conditional
probabilities specified by the fault tree.

Bayesian Network of Fig. 5.24

o
ORORC
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P(Br =0|Cap =0,B=0) = (Ap =0|Cap=0,A=0)=1
P(Br=0|Cup=1,B=0)=1 P(AF:O\OAleA—O)—l
P(Bp =0|Cap=0,B=1) = (Ap =0|Cap=0,A=1)=

P(Bp=0|Cup=1,B=1)=0 P(AF—O\CAB—lA—l)—O

5.17 Suppose that the data in Table 5.3 come from a three-component paral-
lel system. Using independent Uniform(0,1) prior distributions for the
reliability of each component, calculate the posterior distributions for the
reliability of each component and the system.

The formula for the reliability of the system in a parallel system is given on
page 136. For the three component system in Table 5.3, we have

mg=1—(1—m)(1—m)(1l—m3)

The MCMC algorithm is similar to the one used in problems 11 and 13.
Only the posterior function needs to be adjusted.

Quantiles
Parameter Mean St.Dev 0.025 0.050 0.500 0.950 0.975
1 0.841 0.078 0.669 0.696 0.850 0.953 0.962
o 0.834 0.081 0.655 0.684 0.845 0.948 0.959
T3 0.845 0.092 0.624 0.676 0.858 0.968 0.978
Ts 0.996 0.004 0.986 0.989 0.997 1.000 1.000

Notice the difference between the posterior distribution for the reliability
of this parallel system and the series system from the same data shown in
Table 5.4.

The Kernel density estimates of the posterior distributions of the compo-
nents and the system are shown below.
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5.18
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Suppose that we have a three-component system like that in Example 5.1,

and suppose that each component has an Exponential(A) lifetime. Write an

expression for the probability density function of the lifetime of the system.
Lt N) =X ™™ Ei(t|A)=1—e*

The reliability of the system can be derived combining equations 5.5 and

5.7.

Rs(t) = Ri(1—(1—Ry)(1— R3))
= RiRy+ RyR3 — R1RsR3
= 2R?2-R? (since Ry = R2 = R3)
1-F(t) = 2(1-F()*—-(1-F@)°
d d 2 3
SU-EW) = o [1-F) - F(0) + F()]
fs(®) = F()+2f()F(t) = 3f()F>(t)

e M 42 e M (1 — e M) — 3he M (1 — e )2
4)\6—2)\25 _ 3)\6—3)\t
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5.19 Reanalyze the BN in Fig. 5.22 with data from Tables 5.8 and 5.9 assuming
that we have also observed 20 observations with C; = 0,Cy = 1,C3 = 1
that resulted in 6 system successes and 14 system failures.

We this information we can add 7844 (1 —mpss)™ to the likelihood and the
posterior becomes

p(mi,ma,ms | x) ocmp(L—m)* w3 (1 — ma)?m3 (1 — ma)mpgs (1 — mrss) mg’(1 — ms)?

[~ log(m1)] = [~ log(m2)] ¥ [~ log(m3)] ~5
Imrss € (0.35,0.85)]

Using the Metropolis-Hastings algorithm given below we obtain

Quantiles
Parameter Mean St.Dev 0.025 0.050 0.500 0.950 0.975
T 0.82 0.10 059 063 083 095 0.97
o 0.78 0.12 0.51 0.56 080 0.95 0.96
T3 0.78 0.16  0.41 0.47 080 0.97 0.98
TESS 0.42 0.06 035 035 041 0.54  0.57
TS 0.80 0.05 0.68 0.71 0.81 0.88  0.89

With this new information the 95% credible interval for mrgg has narrowed
from (.36, 0.84) in the example in the text to (0.35, 0.57).

mh <- function(theta, size, data){
pil = thetal[1]
pi2 = thetal[2]
pi3 = thetal3]
pifss = thetal4]
s = datal,2]
f = datal,3]
par = array(0, dim=c(size, 5))
aratel = 0; arate2 = 0; arate3 = 0; arated4 = 0
post = function(theta)q{
pl = thetal[1]; p2 = theta[2]; p3 = theta[3]; pFSS = thetal4]
ps = 0.95*%plxp2*p3 + 0.8*pl*p2*(1-p3) + 0.85*pl*(1-p2)*p3 +
0.5%p1*(1-p2)*(1-p3) + pFSS*(1-pl)*p2*p3 + 0.4*(1-pl)*
p2*(1-p3) + 0.55%(1-p1)*(1-p2)*p3 + 0.05%(1-pl)*(1-p2)*
(1-p3)
val = p1~s[1] * (1-p1)~f[1] * p2~s[2] * (1-p2)~f[2] * p3~s[3] *
(1-p3)"f[3] * pFSS™6 * (1-pFSS)"14 * ps°s[4] *
(1-ps)"£[4] * (-log(p1))~(-2/3) * (-log(p2))~(-2/3) *
(-log(p3))~(-2/3)
return(val)
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for(i in 1:size){

pil.star = runif(1)

r = post(c(pil.star, pi2, pi3, pifss)) /
post(c(pil, pi2, pi3, pifss))

u = runif(1l) <= r

aratel = aratel + u

pil = pil.star*(u==1) + pilx*(u==0)

pi2.star = runif(1)

r = post(c(pil, pi2.star, pi3, pifss)) /
post(c(pil, pi2, pi3, pifss))

u = runif(1) <=r

arate2 = arate2 + u

pi2 = pi2.star*(u==1) + pi2*(u==0)

pi3.star = runif(1)

r = post(c(pil, pi2, pi3.star, pifss)) /
post(c(pil, pi2, pi3, pifss))

u = runif(l) <=r

arate3 = arate3 + u

pi3 = pi3.star*(u==1) + pi3*(u==0)

pifss.star = runif(1,.35,.85)

r = post(c(pil, pi2, pi3, pifss.star)) /
post(c(pil, pi2, pi3, pifss))

u = runif(1) <=r

arate4 = arate4 + u

pifss = pifss.starx(u==1) + pifss*(u==0)

pis = 0.95%pil*pi2*pi3 + 0.8*pilpi2*(1-pi3) + 0.85*pil*
(1-pi2)*pi3 + 0.5*pil*(1-pi2)*(1-pi3) + pifss*(1-pil)*
pi2*pi3 + 0.4%(1-pil)*pi2*(1-pi3) + 0.55%(1-pil)*(1-pi2)*
pi3 + 0.05%(1-pil)*(1-pi2)*(1-pi3)

par[i,] = c(pil, pi2, pi3, pifss, pis)

}
arate = array(c(aratel, arate2, arate3, arated4), dim=c(1,4))
colnames(arate) = c("pil", "pi2", "pi3", "piFSS")
arate = arate/size
return(list(par = par, accept = arate))
}
start <- c(datal[1:3,2]/data[1:3,4], 6/14)
sample <- mh(start, 10000, data)

5.20 In Example 5.7, determine the probability that the item fails because of risk
1.
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The probability that the item fails because of risk 1 is given by
P(T1 < Tg) = / P(T2 >t | T, = t)ledt
0
= /Oo €_>\2t/\1€_)\1td7f
0

A /OO e ttda) gy
0
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Solutions to Selected Chapter 6 Exercises

6.1 From A(T;) — A(T;—1) ~ Exponential(1), where A(T;) = A\T; for the expo-
nential renewal process, we obtain A(T;)—A(T;—1) = AXT; —A\T;—1 = MT;—
T;—1) ~ Exponential(1). Consequently, T; — Ty ~ 5 Exponential(1) =
Exponential (N).

6.2 For failure times t1,to, ..., ty, T1,To—T1, ..., T,—T,—1 are i.i.d. Gamma(a, A).
The corresponding likelihood is proportional to

n

\/T(a)]" (H(t,» - ti_l)“1> exp(—Atn) |

i=1

where ty = 0. Under Type-I censoring at ¢., the corresponding likelihood
is proportional to

n

A% /T(a)]” <H(titi_1)a1> exp()\tn)/too F(tla, N)dt,

=1

c—tn

where f(t|a, A) is the Gamma(a, \) probability density function. Type-II
censoring is not relevant for a single repairable system.

6.4 A 95% credible interval for x is (0.473, 1.120), so that the data suggest
that there is no need to use the MPLP over the PLP, where s equals 1.
Accounting for the censored observation, 264 ~ 4. Using K = 4 equal
probability bins, we find that 1.3% of the RE test statistics exceed the
0.95 quantile of the ChiSquared(3) reference distribution, which suggests
no lack of fit.

6.8 If the last failure occurred at ¢*, we have A(T' +t*) — A(t*) ~ Gamma(k, 1)
so that R-(t) = P(T > t), but

T>t=A1 (At +X)—t" >t=X > At +t*) — AtY),
where X ~ Gamma(k,1). Consequently,
R = [ Fels, 1)t
A(t+t7)—A(t%)
where f(z|k, 1) is the Gamma(k, 1) probability density function.

6.20 Assuming that uptime U ~ Gamma(ay, A\y) and downtime D ~ Gamma(ap, Ap),
then the long-run availability A = % is
o /Ay

ay/Av +ap/Ap
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Solutions to Selected Chapter 7 Exercises

7.2 We fit a logistic regression model in heating time and soaking time. We
use the actual heating and soaking times (centered by their respective av-
erages) as covariates in a full second order model, i.e., X1, Xo, X1 X, X2,
and X2, where X; and X3 are the centered heating and soaking times, re-
spectively. The regression coefficient of Xs has a high posterior probability
(0.992) of being different from zero, i.e., has an impact. The coefficients
for X2, X2, and X;X> are less important with posterior probabilities of
0.938, 0.920, and 0.908, respectively, of being different from zero. See
the following reference for more details: B.P. Weaver and M.S. Hamada
(2008), “A Bayesian Approach to the Analysis of Industrial Experiments:
An Illustration with Binomial Count Data,” Quality Engineering, 20, 269—
280.

7.3 Using K = 4 ~ 63%% equal probability bins, we find that 4.3% of the
R test statistics exceed the 0.95 quantile of the ChiSquared(3) reference
distribution, which suggests no lack of fit.

7.14 a) We fit the model
Y; ~ Poisson(A\t;) ,

where

log(N\;)) = 1+ B25YS2; + 335Y S3; + 545Y S4; + 555Y S5,
+B60TY2; + 3;:0TY 3; 4+ BsOTY 4;
+BoVTY2; + B1oVTY3; + 811 VIY4; + B1oVTY5; + B13VTY6;
+061451722; + $15517Z3; + B16OPM?2; .

The covariates in the Poisson regression model above are dummy vari-
ables, e.g., SY 52, = 1 if SYS = 2, etc. The summaries of the posterior
distributions for the (s are given in the table below.

b) A 90% credible upper bound on the predicted number of failures in
the next 10 years for a normally closed (OPM=1) 2- 10-inch (SIZ=2)
air-driven (OTY=1) globe valve (VIY=5) in a power conversion system
(SYS=3) is 99.
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Quantiles
Parameter Mean Std Dev 0.025 0.500 0.975

51 -10.000 0.781 -11.740  -9.971 -8.618
B2 0.9023 0.5226 -0.1079  0.8903 1.9800
03 1.030 0.490 0.121 1.012  2.065
04 1.214 0.551 0.161 1.204  2.343
Bs 0.317 0.572  -0.766 0.311 1.469
Bs 0.5966 0.5961 -0.6806  0.6254 1.6900
07 -1.213 0.248 -1.700 -1.211 -0.719
Bs -2.560 0.497 -3.610 -2.529 -1.672
Bo 0.2025 0.7742 -1.3010 0.1882 1.7550
Bo 0.6059 0.7904 -0.9477  0.6105 2.1500
B11 3.068 0.592 2.040 3.026  4.370
B2 1.893 0.602 0.825 1.846  3.203
B3 0.833 0.992  -1.246 0.875  2.677
Bia -0.0039 0.2792 -0.5266 -0.0069 0.5741
Bis 1.625 0.316 1.021 1.618  2.262
Bie -0.2065 0.1896 -0.5760 -0.2063 0.1617

7.17 For X ~ Gamma(a, ), we can use Y = AX to remove \ as seen by
Y ~ Gamma(a,1). However, we cannot transform Y to remove a. Con-
sequently, a Cox-Snell residual does not exist for the gamma distribution.
The deviance residual for the ¢th observation y; has the form:

sign(ys — ui) v/2[=log(yi — pa) + (yi — i) /il
where j1; = a;/A?. See McCullagh and Nelder (1989) for more details.

7.24 Based on the predictive distribution summaries displayed in the table be-
low, PCB type copper-tin-lead at 20°C is the recommended factor-level
combination with the longest lifetime distribution.

Quantiles
PCB Type Temp (° C) 0.025 0.500 0.975
copper-nickel-tin 20  251.2 700.2 1233.2

60 55.0 157.9 2785

100 51.6  143.9  253.3

copper-nickel-gold 20 570.5 1636.9 2869.4
60 89.8 5339 929.1

100 142.3  403.6  708.6

copper-tin-lead 20 587.4 1702.2 3031.9
60 168.1  469.5  844.3

100 130.5  372.8  646.8

]



Solutions to Selected Chapter 8 Exercises

8.1

8.4

8.14

We use the model y;; = =5+ Biz; + €, where 3; ~ Normal(pug, 0%) and
€ ~ Norma(0,c?), for the jth observation of the ith LED. See the table
below for posterior summaries of the model parameters. Using K = 5
equal probability bins, we find that 33.6% of the RP test statistics exceed
the 0.95 quantile of the ChiSquared(4) reference distribution, which sug-
gests some lack of fit. Using a threshold of -2.0 at 300 hours, a 90% credible
interval for reliability is (0.3343, 0.7514) with a posterior median of 0.5505.

Quantiles
Parameter Mean  Std Dev 0.025 0.500 0.975
01 0.004246 5.482E-4  0.003169 0.004245 0.005317
o 0.007738 5.528E-4  0.006640 0.007746  0.008833
O3 0.007844 5.571E-4  0.006747 0.007838 0.008937
on 0.007461 5.543E-4  0.006385 0.007464 0.008572
0G5 0.009606 5.523E-4  0.008527 0.009608 0.010710
e 0.006429 5.500E-4  0.005347 0.006427 0.007494
B7 0.007638 5.613E-4  0.006531 0.007635 0.008756
s 0.008719 5.525E-4  0.007629 0.008722 0.009819
Bo 0.011470 5.591E-4  0.010380 0.011470 0.012580
1" 0.007862 0.006230 -0.004482 0.007914 0.020440
o 0.203600 0.024980  3.036E-4 0.200900 0.260200
o 0.017710 0.005276  0.010830 0.016750 0.030620

Using K = 9 equal probability bins, we find that 32.5% of the R test
statistics exceed the 0.95 quantile of the ChiSquared(8) reference distri-
bution, which shows lack of fit, as compared with the original model in
Example 8.2, whose assessment is given below as the solution to Exer-
cise 8.16. Consequently, we prefer the original model and do not use the
alternative model to calculate R(t) and ¢ 1.

Using K = 22 equal probability bins, we find that 3.8% of the R test
statistics exceed the 0.95 quantile of the ChiSquared(21) reference distri-
bution, which suggests no lack of fit.

94



8.16

8.17

Here, we consider only the fit of the model in Example 8.2. Using K =9
equal probability bins, we find that 12.9% of the RP test statistics ex-
ceed the 0.95 quantile of the ChiSquared(8) reference distribution, which
suggests no lack of fit.

It is doubtful that there is a closed form expression for the destructive
measurement z; = D;(t) with D;(t) defined in Eq. 8.21 when it is measured
with a Normal(0, 0?) measurement error. Instead, we derive Eq. 8.23, the
probability density function of z; without measurement error as follows.
We have z = D(t) = By — $1(1/2)t, where x ~ Lognormal(ju,c?), where
the probability density function of z is

1 1
—F€X ———(log(z) — 2
— s P |~ 52 lo8(x) — 1)

We obtain the probability desntiy function of z by a change of variables.
Because x can be expressed in terms of z by z = ﬁl_t , we see that
at Bo—=
1

dx = Wdz. Consequently,

fl@lpuo®) =

(B1t) 1 1 But 2
e B e T B [_202 (oe (7)) ] |

which simplifies to Eq. 8.23.
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Selected Solutions to Chapter 9 Exercises

9.1

9.2

9.3

9.4

9.7

Under a Beta(1,1) prior, the 0.90 posterior quantile of the 95% credible
interval length for a sample size of 377 is 0.075. The 0.90 posterior quantile
of the 95% credible interval length for a sample size of 3000 is 0.036, so
that we use N, = 3000. A bisection search finds that for a sample size
of 2695, the 0.90 posterior quantile of the 95% credible interval length does
not exceed 0.0375. That is noptimar = 2695.

For (a) 5 out of 10 successes, Toptimal = 1931; (b) 50 out of 100 successes,
Noptimal = 1462; (c) 9 out of 10 successes, Noptimar = 1219; and (d) 90 out
of 100 successes, Noptimal = 643.

Under X ~ Poisson(At), with a Gamma(1,1) prior for A\, o = 0.95, v =
0.90, Ligrget = 0.05, and 4, = 100000, we find using a bisection search
that toptimar = 14339. We can carry out the testing by allocating the total
testing time of 14339 across multiple units that can be tested simultaneously,
assuming that all the test units have a common A.

Consider the data collection planning example, which focuses on reliability
at time ¢ = 24 months. Assuming that the lifetimes have a LogNormal(u, 0?)
distribution, we use the following prior distributions: u ~ Normal(4,0.1)
and 0% ~ InverseGamma(20,10). Letting v = 0.90, a = 0.95, and
Liarger = 0.1, we find that a sample size N = 500 meets the stated
requirement, i.e., the probability of the o x 100% credible interval length
of R(24) not exceeding Liarge: is at least . A bisection search yields
Noptimal = 83. The example in the chapter used prior distributions, which
yielded a reliability prior distribution at 24 months with a median of 0.50
and a 0.95 probability interval of (0.00, 1.00). The prior distributions used
in this exercise yielded a reliability prior distribution at 24 months with a
median of 0.88 and a 0.95 probability interval of (0.79, 0.94).

We use the following less diffuse priors distributions:

Bo ~ Normal(—17.3,(0.15/5)2),
By ~ Normal(7.5,(0.15/5)?), and
o2 ~ InverseGamma(100 x 5,0.11% x 100 x 5).

For v = 0.9, o = 0.95, L¢grget = 0.1, and reliability at time ¢ = 10,500 days,
we check to make sure that the planning criterion for n; = 400,2 = 1,2,3
and vg = 0.5 meets the requirement. We use a GA that minimizes the total
sample size, ni + ng + ng, where instead of discarding (ni,n2,n3) cases,
which have a planning criterion p (i.e., the probability that the o x 100%
credible interval length does not exceed Lyqrger) that does not exceed v, we
penalize these cases by minimizing:

n1+ ng +ng + [100(y — p)/0.01]1(p <) + [25(y — p)/0.01]1(p > 7).
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A GA found the nearly optimal solution v3 optimar = 0.496 and Noptimar =
(n1,n2,n3), where ny = 145, ny = 50, and n3 = 189, whose penalized
criterion is 384.
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